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ABSTRACT

A study was made of some of the characteristics, capabilities, and limita-

tions of the iPSC concurrent computer manufactured by the Intel Corporation.

Initial experiments with test programs measured the large amount of time

required to send and receive messages between nodes and between the cube

manager and the nodes. Programs adapted to run concurrently will have the

greatest speedup over the same program executed serially if the computational

time is large relative to the time spent passing messages. A large-scale compu-

tational chemistry program (named EOEPP83) that calculates the global

minimum energy of peptide structures (a peptide is a small protein) was ported

and adapted to execute on the iPSC computer. The data entry and checking

portion of the original code was ported to the 286/310 Intel computer that

serves as a manager of the 32 to 128 CPU's (nodes) of the iPSO. The data for

each structure is sent by the manager to a separate node which reports its

results back to the host or system manager and then is assigned another struc-

ture. This adaptation is able to concurrently minimize the energy for 32 chem-

ical structures a maximum of approximately 17 times faster than the same

data can be utilized serially on a VAX 11-780 computer. A user manual was

written to assist the user in assembling the input data file.

vi
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1. INTRODUCTION

As computer hardware becomes faster, larger and more complex compu-

tational problems are being addressed. Many computer scientists believe that

present machines based on 'Von Neumann" architecture are approaching a

theoretical limit for the speed obtainable with computers having only one cen-

tral processing unit (CPU). One approach to solving this problem is to build

machines with multiple CPU's that can attack various aspects of a problem

concurrently. Such parallel architectures offer the potential for achieving more

computational operations per unit time, but also introduce new problems, such

as determining which aspects of a serially executed algorithm are amenable to

parallel computation, coordinating the results of the various CPU units, resolv-

ing race conditions, and reducing contention for resources [1]. The granularity

of parallelism can vary all the way from fine-grained parallelism, such as a sin-

gle executable statement, to an entire subroutine or several subroutines.

Although it is possible for compilers to detect some opportunities to calculate

"do loops" and array manipulations in parallel, in general, the potential for

parallelism can be difficult to detect when utilizing most currently available

programming languages. Thus, in order to move into parallel computations,

either other languages more suited to concurrency must become popular 121,or

existing code must be restructured [3,4]. For certain applications, modified
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architectures and approaches may be required for optimal performance [5].

At the present time, the Oregon Graduate Center (OGC) has one of the

first commercially available parallel computers, viz., an Intel Personal Super-

Computer (iPSC)1. It consists of 32 microcomputers referred to as nodes.

There is a total of 16 Mbytes of memory evenly divided but not shared between

the 32 nodes. Each node has a copy of a small operating system, an Intel 80287

numeric coprocessor, and an Intel 80286 CPU. There are eight communication

channels per node: seven internode Intel 82586 communication coprocessors and

one "global ethernet" channel for communication with the cube manager dis-

cussed below. Each node can serially simulate the parallel execution of several

independent processes (the actual number is limited by available memory). The

process switching granularity is 50 msec. All nodes are identical and are con-

nected by bidirectional links in a hypercube topology. In a 32 node basic

hypercube unit of 4 nested cubes, each node is directly connected to 5 nearest

neighbors. In larger configurations, in general, each node is directly connected

to "d" nearest neighbors, where the hypercube has 2 to the power of d nodes.

Although the OGC machine (d = 5) consists of a single unit of the

specifications just described, the architecture allows expansion up to two or

four units (64 or 128 nodes). Hypercube interconnections for a 32 node machine

are physically implemented via backplane connections. Machines consisting of

two or four 32 node machines are interconnected via external cables.

l){enix is a trademark or Microsoft Corp., Unix or AT&T, and iPSC of Intel Scientiftc Computers.
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Processes communicate with processes on the same or neighboring nodes

by sending and receiving messages. Message passing can be "blocked" or

"unblocked". A blocked message delays execution until the message is sent, the

execution of statements is not delayed with an unblocked message. In the

latter case, a check must be made to determine whether or not a message has

been sent before attempting to utilize the same communication channel for

sending another message. Although unblocked messages compared to blocked

ones decrease execution time, a program may generate messages faster than

the iPSe machine can receive them. The node operating system will "time

out" unreceived messages and cause programs to halt execution. This point is

discussed further in a later section.

The collection of nodes is controlled by a system cube manager (hereafter

also referred to as the "host") which is an Intel 286/310 computer. This com-

puter has the same processors as a node, but in addition, has a floppy disk

reader, a Xenix operating system, and 2 Mbytes of memory in addition to a 40

Mbyte Winchester disk. The iPSe is a true "multiple instruction, multiple

data" (MIMD) machine.

Programming the iPSe

At the start of this work, the following procedure was followed for pro-

gramming the iPSe. Programs were compiled and the object modules for each

process were bound together into one bound module. The node configuration

utility (NCD) is an interface program that creates an executable system image
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file which contains the user process, the node operating system, a.nd the com-

munication software. The user creates an NCU specification file which

identifies the processes, specifies stack size and number of channels, and names

the executable process. Invoking and running the NCU program is a time con-

suming process even for a small program. If it is necessary to recompile a pro-

gram (e.g. after debugging), the NCU utility is re-invoked, but there are

options which avoid repeating parts of the NCU process and thus successive

invocations of the NCU are less time consuming.

Toward the end of this work, the static loading NCU process was

replaced by a dynamic loading one. In this procedure, a dynamic loader

installs the operating system and communication software on the nodes ini-

tially and this step need not normally be repeated. A new operating system

command named "loadkill" removes any programs operating on the nodes and

reinitializes them while leaving the installation of the operating system and

communication software intact. The programs are compiled and bound as

before, but then can be loaded on to the nodes directly or even dynamically by

system calls from the program running on the cube manager. The total time

required has been reduced to less than 50% of that formerly required.
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2. RATIONALE AND EARLY STUDIES

Since the iPSO consists of 32 nodes the best speedup attainable for the

time to solve a single problem would be 32 times the speed of a machine with

only a single node. We will see that although such a speedup is approachable,

the usual case is somewhat less than the maximum. For a program to take

maXImum advantage of the iPSO, it must require enough OPU time to justify

. the extra time spent in initializing and loading the nodes, and especially in

coordinating the computation on the nodes via message passing. Messages

between any two nodes in a hypercube topology pass through an average of d/2

internode connections, where "d" is the power of two that is equal to the total

number of nodes (d is equal to 5 for a 32 node machine). Messages can be up

to 16K (K=1024) bytes long, but are sent in 1 Kbyte packets and then reassem-

bled after reception. Early test programs executed on the OGO's 32 node iPSe

have shown that message passing between nodes is time consuming, and mes-

sage passing from the nodes to the cube manager is even slower. Moreover, the

time depends upon the number of internode connections a message must pass

over to reach its destination. The results of a test program which sends a

series of messages of various lengths between neighboring nodes (nodes 0 and 1)

or between nodes that share a common neighbor, i.e. messages that must pass

over two internode connections (node 0 and 3), are shown in figure 1.
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Figure 1.

Transmission Rate Between Nearest Neighbors Versus Message Length

The message transmission rate between nearest neighbors in Kbytes per second

is plotted against the message length in Kbytes. The error bars in the figure

represent one standard deviation. Clearly, messages to a neighbor are imple-

mented by a different mechanism than those that must pass over more than

one internode connection (figure 2).
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1 2 3

K b y t e s

Figure 2.

4

Transmission Rate (Two Connections) Versus Message Length

As the need for forming lKbyte packets increases, the transmission rate for the

former type decreases and the latter rate increases. In both cases, the time to

send a message is relatively slow. The time for nearest neighbor messages of 1

Kbyte is 8.0 :i: 0.5 msec per message and for a 4 Kbyte message is 23.0 :i: 1.4

msec per message. These figures do not illustrate a transmission time anomaly
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reported by the Intel corporation. Partially full multi-packet messages with a

trailing packet of less than 500 bytes show longer transmission times than

larger messages with the same number of packets, but the trailing packet is

larger than about 500 bytes. This anomaly appears only for messages

transmitted over at least two internode connections.

Internodes Message Length(Kbytes) Time( msec )

1 1
1 2
1 3
1 4

8.0 :f: 0.5
11.5 :f: 0.1
16.0 :f: 0.5
23.0 :f: 1.4

2 1
2 2
2 3
2 4

11.1 :f: 0.3
27.3 :f: 1.2
43.5 :f: 3.1
61.3 :f: 3.5

Figure 3. Time for Message Sending (Blocked)

For example, as shown in figure 3, a 1024 byte message from node 0 to

node 3 (2 internode connections) required 11.1 msec to send. A message only 4

bytes longer (1028 bytes) required 64.2 :f: 1.0 msec. As will be seen in the ttper_

formance Measurements" section, the node to host messages are much slower

than the node to node messages. Because of this high overhead of message

passing, the creation of too many parallel process, (e.g. creation of slave nodes

to attempt to ease the bottleneck of a rate-limiting subroutine), can actually

increase the throughput time of the program relative to that of one with a

smaller number of slave nodes.
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Another test program was written which computes 11"by applying the rec-

tangular rule on the integral....

1

I~
o (l+x")

The user is asked to input the number of intervals, thereby fixing the size of

each dx in the integration by the delta method.
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Figure 4. A Non-optimized Program Calculating Pi

The program divided up the task into as many sub-integrations as there are

nodes available. The host then assigned a segment of the integration to each

of the available nodes. As mentioned, these host to node messages are slower

than node to node messages. Node 0 was a master node which received the
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data from the other nodes (node to node messages) and after adding on its own

contribution, sent the results back to the host in a single message. The pr<r

gram was run utilizing a total of 8, 16, and 32 nodes and the results are shown

in figure 4. The most dramatic result shown in the figure is that for a low

number of intervals, the fewer the nodes available, the faster the program exe-

cutes. More nodes require more time consuming messages to be sent. This pr<r

gram sends 2n messages where n is the number of nodes available. Half of the

messages are host to node and half are node to node. As the number of inter-

vals increases, the ratio of computational time to time spent passing messages

increases. The number of messages sent remains constant and as the number

of intervals requested rises, the greater number of nodes available, the faster

the program executes. At this point, the availability of nodes begins to pay

dividends of decreased time required. When writing code for this program, the

efficiency of message passing from the host to the nodes and vice versa was not

optimized by the use of a minimum cost spanning tree arrangement of message

passing. The host sent a message to each available node. In the next test pr<r

gram [6] the host only sends a single message with all the data to node O. This

node then assigns the intervals to the remaining nodes and collects the data as

before. Moreover, the node to node communication between each node and the

master node 0 is via a minimum cost spanning tree. When this was done and

the timing measurements repeated, the results shown in figure 5 were found. At

a low level of intervals, all three programs required less than 1.5 seconds to

run. The curves cross over each other near 10000 intervals rather than over



11

100000 intervals as in figure 4. Apparently, for this algorithm, the efficient

implementation of message passing and the elimination of all but two host-

node messages can save up to about 8.5 seconds (10 seconds for the 8 node run

of figure 4 minus 1.5).
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Figure 5. An Optimized Program Calculating Pi

A very important observation emerges from these experiments. If the number

of messages is constant, the fraction of time devoted to message passing

decreases as the computational load increases. Message passing optimization is

not worth the effort unless the number of messages required is large or the time

factor is dominant (or both).
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Thus, for programs to be suitable for the iPSe, they must require rela-

tively large amounts of processor time, must be intrinsically "parallelizable",

and most important, must have a high ratio of computational operations to

message passing. A key program design consideration for making effective use

of the iPSe then is to separate out computational tasks that require much

time, are parallelizable and also represent a significant fraction of the total

effort of the program. Again, early test programs demonstrated that the ratio

of executed instructions to messages sent (or received) must be large to justify

the extra overhead involved in message passing. Just how large is a function of

the length of the message, the number of node to node connections the message

must pass through, and whether the messages are node to node or between the

host and a node.

Additional test programs demonstrated that if messages were generated

at a rate faster than they could be received, the system would "hang" as

apparently the node buffers were filled to capacity. Error handler messages

arising from the node operating system indicated that messages were being

generated faster than the nodes could receive them. The explanation for this is

that the node operating system (NOS version 2.0) does not do any flow control.

Nodes are not able to alter running programs with the goal of letting the

number of unreceived messages decrease. Similarly, many messages arriving at

the host can cause the message reception apparatus to become costive and sy&-

tern messages indicate that messages may "time out" if they are not received

within a certain time span. As will be seen, this flow control problem arose
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during the implementation of the program for this work.

A major parameter in parallel processing is the size of the "granule" of

computation that is executed in parallel. In traditional programs for Yon Neu-

mann computers, a granule corresponds to an entire application program, and

little parallelism within an application program can be exploited. On the other

hand, in most dataflow work to date, the grain size chosen for parallel schedul-

ing has been at the level of a single arithmetic or logical operator [3,4]. If

analysis of a program shows that one subroutine accounts for 50% of all the

CPU time, the theoretical limit of improvement, if this subroutine can in fact

become a "granule" and run in parallel, is two fold--ignoring the overhead of

parallelization.

These early studies and others to be mentioned demonstrate that each

node of the iPSC hypercube is inherently about 2 times slower than the VAX

11-780. The program chosen for the present work ran twice as slow on a single

node of the iPSe compared to the time on the VAX. Thus, a 100% improve-

ment of program execution would bring the performance of the hypercube and

11-780 close to the same value. Such an improvement would not justify the

effort required to get it running on the iPSC--a program with much more

speedup potential was required in order to maximize the advantages of the

hypercube. Therefore, a search was made for a scientific application program

that 1) is in current use, 2) is computationally intense rather than input-output

intense, 3) requires enough execution time on a VAX class machine to justify an

improvement effort, and 4) is amenable to parallel execution. Such a program



14

could then be utilized to study concurrent computations in general, and the

advantages and disadvantages of a particular hardware approach to current

computers, viz., the Intel iPSC hypercube.

After some searching among chemistry programs, ~n ideal candidate for

meeting the above goals was found--a program that computes the energy of

peptides (a peptide is a small protein) as a function of the three-dimensional

conformation (i.e. structure of the molecule) utilizing rigid geometry calcula-

tions [7,8]. The program used for experiments with the iPSC is the property of

the Polygen Corporation, Waltham, Massachusetts and is called ECEPP83

(Empirical Conformational Energy Program for Peptides-1983 edition). An ear-

lier version, which does not have the minimizer, is available through the

"Quantum Chemistry Program Exchange"[9]. This program has been used

extensively to calculate the global energy minimum of peptide hormones and

peptide effector molecules [7,8]. Chemists have made the case that the native

structure or conformation of proteins and peptides is the one(s) with the lowest

free energy. ECEPP83 and earlier versions enjoy relatively wide use since

small peptides are usually not crystallizable and thus their structures are not

determinable by Xray crystallography. Moreover, spectroscopic methods at

present can only yield vague attributes of structures as complex and variable

as peptides. In many cases, computational methods are the only means avail-

able to study this problem. ECEPP83 has been very successful for peptide

structure-function studies and also for suggesting useful analog structures

which will have a subset of the properties of the original molecule. Previously,
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analogs have been synthesized by making substitutions without much

knowledge of the mechanism of the functionality of the molecule. This

approach has not been very successful. Rather, ECEPP83 assists the selection

of substitutions based on three dimensional structure and the location of vari-

ous cbemical groups--choices made after the use of ECEPP83 has contributed

to the understanding of the structure-function relationships of the molecule.

The search for a global minimum for one peptide can easily require many

bours, even days, of VAX speed CPU time [7 and the references quoted there].

The order (0) of complexity for the minimum algorithm embodied in ECEPP83

is nr2, where n is the number of conformers whose energy is sought and r is the

lengtb of the peptide, i.e. the number of amino acid residues (monomers) that

make up the linear peptide chain (the polymer). The present version is approxi-

mately 5100 lines of Fortran77 code and was originally written for the IBM

360. The program has evolved through versions for the IBM 370, Xerox Sigma

9, the Univac 1100, and finally the Digital Equipment Corporation VAX 11-780.

This bistory may partially account for the modest amount of documentation

that accompanies the code.

Use of the program requires the user to define an initial structure for a

particular peptide whose structure is to be calculated. This is done by defining

an initial value for each dihedral angle of the molecule. The user then specifies

the number of passes through the minimizer and what angles are to be allowed

to change in the subsequent energy minimization algorithm. Lastly, the

number of cycles through the program is chosen and from this point on the



18

program requires no I/O until a local minima is found. During each cycle the

algorithm changes each dihedral angle at least once and calculates the energy

interaction between each pair of atoms. If the energy rises, the angle is

changed in the opposite direction (i.e. rotated opposite to the first change). If

the energy decreases, rotation and calculation continues in the same direction

until a minima is found. This process is repeated for each angle. The whole

process is one cycle and the user may opt for the number of cycles to be calcu-

lated.

Initial studies on ECEPP83 (with gprof[lO] on the 11/780) have showed

that 33 to 40% of the CPU time was spent in calculating square roots! More-

over, there were many loop functions which had the potential for concurrencY'.

The energy interactions between pairs of atoms are independent and therefore

could possibly be calculated on separate processors. On the other hand, each

such calculation would require a message to be sent back to the host, or sent to

a node dedicated to data collection and task assignment. However, a considera-

tion of how ECEPP83 is used by peptide chemists led to the possibility of an

ideal solution to this problem. ECEPP83 is an iterative energy minimizer, but

it is not able to escape from local minima. In other words, it travels down into

an "energy valley"--but there is no assurance the the valley is the one of lowest

global "elevation". Users must supply many starting conformer structures,

mlDlmlze each one, and hope that they have hit the lowest valley or energy

mlDlma. This corresponds to feeding a series of structures to a "Von Neu-

mann" computer. The approach taken here is to load the entire ECEPP83
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program on every node of the iPSe concurrent computer and thus be able to

calculate up to 32 structures concurrently.

The input and data checking part of ECEPP83 are run in the cube

manager. The user creates and edits an input file which the cube manager

reads serially. The necessary arrays are initialized with the information for a

conformer. The cube manager maintains and updates, via messages from the

nodes, an array which stores information as to the availability of nodes. The

cube manager reads the array to find a node that is not presently assigned a

conformer, sends the data for a conformer, and looks for a node for the next

conformer data, etc. The starting conformers are generated by stochastic

methods or by intelligent guesses and/or prior knowledge from other sources

(e.g. from spectroscopy).
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3. DEVELOPMENT OF THE PROGRAM

By implementing the major part of the ECEPP83 program on every node

of the hypercube, the best match between the serial use of the program and the

inherent advantages of the iPSe hypercube would be obtained. The effect of

the slowness of the message passing mechanism would be minimized. Stated

another way, since this algorithm is essentially used in a SPMD (Single Pro-

gram Multiple Data) mode, implementation of the program on every node is

close to the ultimate in large grain parallelism, i.e. a collection of computers

under the control of another computer.

The initial task was to port the entire program onto the cube manager.

The program as obtained from the Polygen Corporation ran correctly on the

OGC VAX 11-780 with no modifications. Getting the code to run on the The

Intel 286/310 computer that serves as the host for the 32 nodes of the iPSC

was another matter. The available compiler (ftn286) lists as "ERRORS"

several FORTRAN constructions for which the Unix 4.2 £17 compiler merely

issues a "WARNING". Thus, the COMMON, EQUIVALENCE, and BLOCK-

DATA statements were adjusted to conform to the more exacting standard of

the ftn286 fortran compiler. All COMMON statements must be the same

length, the dimensions of arrays in EQUIVALENCE statements must be expli-

citly stated (i.e., they are not 1 by default), and there can only be one
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BLOCKDATA statement in the main program, not more then one. Some com-

ments needed to be moved since the ftn286 compiler reads 132 space lines and

the f77 compiler reads 72 space lines. Advantage was taken of the length limit

of 31 for variable names allowed by ftn286 compared to the miserly 6 allowed

by f77. Since the ftn286 compiler does not support multiple ENTRY points to

a subroutine, this function was emulated by conditional GO TO statements.

As a result of this, calls to these entry points in some cases had to be supple-

mented with dummy arguments since different ENTRY points do not require

the same argument list or even that argument lists be the same length.

Finally, there were calls to ENTRY points in two subroutines that entered the

subroutine at the beginning and exited the subroutine before any executable

statements. Comments found in the code suggested that such calls were based

on a particular compiler on another machine and somehow optimized subse-

quent calls to the subroutine. Such unnecessary calls were eliminated from the

code. The changes to COMMON and EQUIVALENCE statements comply with

the ANSI 1978 standard [11] whereas the changes regarding the length of a

line, ENTRY statements, and BLOCK DATA statements represent deviations

from the ANSI standard.

The name of one subroutine had to be changed (DECIDE to DECIDEJT)

SlDce it conflicted with a Xenix system library function. Similarly, an array

named EPS was defined in a COMMON block and assigned a value in a

BLOCK DATA statement. A real variable of the same name occurs in the

main program, which does not has access to that COMMON block. The ftn286
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compiler confuses these two notations whereas the f77 compiler does not. The

variable name was changed to rEPS.

The final specifications and format for input are described in the user

manual which can be found in appendix A. The input of amino acids is the

standard three letter code used by biochemists 1131and is supplemented by

additional three or four letter words for the various conformational forms of

certain amino acids. The occurrence of the D isomers (the mirror image alter-

native position) of the amino acids is accomplished by placing a D in front of

the standard three letter code. However, some of the existing amino acid codes

were four letters long and thus adding a D to yield of 5 letter word would cause

an input error. In addition, some different amino acid forms were represented

by the same four letter code. These errors went unnoticed by previous users

probably because of the scarcity of occurrence of the D isomers of the amino

acids in question. New three and four letter assignments were introduced

which avoid these ambiguities and are described in appendix A.

Other minor modifications were made, and two preprocessor-compiler

errors were discovered and reported to Intel as part of this work: The pre pro-

cessor would only allow "include (file)" statements to be placed at the beginning

of the main program. In addition, the compiler changed all upper case charac-

ters to lower case characters, even inside of a literal. The traditional name of

the user defined data file was "ECPDA T" and the data file containing the bond

angles and lengths for the amino acids, which is read by the ECEPP83 program

initially before any user interaction, was named "TGENDATA". It was
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necessary to change these file names to lower case characters. After loading

the entire program, modified as described, onto the cube manager (not utilizing

any of the nodes), a test program required 251 to 298 seconds to run (with no

other users). The same program run on the VAX 11-780 (using gprof to yield

meaningful times) required 84 to 89 seconds. Thus, for this example, the Intel

286/310 is slower than the VAX 11-780 by about a factor of three. If the nodes

proved to be the same speed as the 286/310, we could expect a theoretical

speedup of 32/3 or about 10 for a d = 5 iPSC hypercube (fully loaded) over

that of the 11-780. This value can be compared to the actual speedup obtained

after the program was implemented on the nodes.

In order to develop ECEPP83 for loading of the iterative subroutines

onto each node, the program was separated into 5 separate programs for ease

of editing and compiling. Programs named host.f and hostsubsJ handled user

input, data checking, node tasking, and collection of the final data. These were

loaded into the cube manager. Compiled and linked programs named node.f,

nodesubs.f, and nodesubs2.f programs received data from the host and per-

formed the iterative energy calculations and reported results back to the host.

The final version of the host or cube manager program behaves as follows:

ECEPP83 originally could obtain the data for a conformer either interactively

or via an input file. The version resulting from this work is called ECEPP86

and is shown schematically in figure 6. The program obtains by DATA state-

ments, the force field data necessary for the calculation of charge interactions.

The data for amino acids angle data and bond length is read from an external
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file named "tgendata". The only user input after the host program is initiated

is to answer a request for the number of conformers to be input. The con-

former data is then read from a user prepared input file named "ecpdat".

"flog

o "~pDd&~&"-inpu~ file or c:oD8~&Dh

o ~ermiD&1input-Dumber or CODformers

o "eepd&~"-user defined d&~a file

o "myIOfi"-OU~pu~ file

Figure 6. Data Flow View of ECEPP86 Loaded on the iPSC

If no input errors for a conformer are detected, the required data-':'most

of which is contained in arrays and variables in COMMON statements--is sent

to the lowest numbered node available. The free node is chosen after consulta-

tion of ail array named "freelist" which contains the information as to the

availability of nodes ready for assignment. Once a node is charged with the

pertinent data for one conformer, successive iterative cycles of minimization

are initiated and repeated as specified. When the nodes finish their calcula-

tions, the results are written into an output file named "mylog" via a node

operating system utility named syslog. A call to syslog from a node program

provides an implicit method to record data--routed through the host--into an

output file. Alternatively, the initial data and the data for the minimization of
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each conformer could have been managed by a master node. This node would

be the only one corresponding with the host. Such an arrangement would have

the advantage that 60% of the information required to define a conformer is

the same for all conformers and thus this information could be sent in one mes-

sage to the master node for dispersal to the nodes via a minimum cost span-

ning tree connection network. Alternatively, the host uses its slower message

mechanisms to disperse this common information to each node separately.

Aside from the loss of a "slave" node (a lout of 32 loss or about 3% of the

computational power), there are several other problems with the master node

concept in the present case. The resulting data from each node is several lines

long and if the minimization data. for two structures arrived at the master

node concurrently, the resulting da.ta. would be interspersed. The master node

could be loaded with software that separated the data from. two or more

incoming nodes based on the "type" variable that accompanys each message.

However, the test programs ment.ioned alerted the possibility that such an

arrangement could lead to message timeouts or program interruption if the

number of messages unreceived became large. Messages incoming to the host

cannot be received by type and as mentioned, the host message reception queue

ca.n overflow. It was decided not to implement a master node, rather to exit

the final data via the preexisting syslog function which does not exhibit flow

control problems. The data from two or more nodes written into the output

file by syslog still can be interspersed and this problem was handled by process-

ing the output file with the Xenix sort and awk functions to sort and convert
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the final data to a more readable format.

The input data checking from the original program was retained. Any

input error results in a diagnostic message on the screen which describes the

error. The program then skips over the data for that conformer and reads the

data for the next one. Therefore, input errors and errors occurring on one node

can cause the loss of data for a conformer, but cannot cause the other node

programs or the host program to halt. Each node performs a task that does

not depend on the outcome of any other node. Rather than assign 32 jobs and

ascertain which nodes have become free since the start, ECEPP86 upon detect-

ing a node to be free, immediately reassigns that node and only assigns a job to

a higher numbered node if no lower ones are now available. Since the program

can be long running, it is very desirable to be able to examine the output at

any time during the run. The data could be output via a message sent to the

host, but this would have required an explicit receive command in the hostJ

code. Such an explicit send (node) and receive (host) was employed to notify

the host that a node finished the calculations for a conformer and hence was

ready to receive data for another. Similarly, if a node program encountered an

irreconcilable error while running the iterative cycles, a syslog call outputs an

error message and if possible, a message is sent to the manager (if the node

program is still functional). This latter message is required for the manager to

keep track of the number of nodes that can be expected to be producing

answers versus those that are "hung" and not performing any executable state-

ments. If the data for all conformers has been sent out, the host program must



25

remain "active" in order to receive the results as they are available. If the host

program terminates, the node program is "timed out" after a few minutes and

no more messages can be deposited in the output (mylog) file.

A script named "prettyprint" (Appendix B) was written utiliz.ing the

"sort" and "awk" tools [12] to convert the final output to a more pleasing for-

mat while removing unrelated operating system messages.

Testing showed that conformers whose energy calculations are caught in

local minima, can sometimes be further minimized (jump out of local minima)

by increasing the number of minimization "cycles" requested. At the start of

each cycle the first derivative of the rate of change of the energy is reinitialized

and is much larger than that calculated in the valley of a local minima. Thus,

once caught in a local minima, the user can generate a new set of conformers

to test, or alternatively, initially request more minimizer passes for each con-

former (this latter, of course, involves hindsight).

The approach outlined here has several distinctive characteristics which

are summarized below.

1) the ECEPP83 program depends on "brute force" calculations

involving much CPU time. This is the state of the art of peptide con-

former calculations though research is in progress [14,15] to construct

expert systems for intelligent selections of starting conformers.

2) the simplified approach and the large grain parallelism suggested

here afford nearly ideal load balancing.
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3) Although the parallelization strategy suggested for ECEPP83 will

not generalize to all scientific calculations, the approach presented here

will have applicability to other problems, is relatively easy to understand,

implement, and easy to use.

4) Most important, the speedup potential will be maximized.

The major problem in iPSC implementation of the ECEPP83 code was

the management of the large amount of data that must be sent from the

manager to the nodes. As mentioned above, there is a flow control problem in

that messages cannot be allowed to be issued by the manager ad libitum

without the possibility of "hanging" the system. When the message passing was

coded and implemented, it was indeed found prudent to send a few messages to

a node, have the node respond that it was ready for more data, then to

proceed with more host to node messages. In order to send the data values in

a CO"M:M:ON block via a message, it is necessary to have that block declared

identically both at the point of origin of the message and at the site of the

reception of the message. A example of host to node message of the type

employed here to send a COMMON block to a node is....

call sendmsg(cil, 12, INUMRS, 2004, node, pid)
(1) (2) (3) (4) (5) (6) (7)

where:

(1) "sendmsg" is a blocked send--i.e. the program proceeds beyond this point

only after the message is sent. (This has no implication for whether the

message has been received).
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(2) cil is the communication channel identifier assigned by a previous "copen"

call.

(3) 12 specifies the (integer) message type. It is the only qualifier that a node

program can use to select a message to be received.

(4) INUMRS is the buffer containing the message to be sent. If it is desired

to send a COMMON block, this would be the identifier of the first vari-

able of that block.

(5) 2004 is the number of bytes of the buffer that is to be sent. If it IS a

COMMON block, it is the length of that block.

(6) node is the id of the node being sent the message.

(7) pid is the process id integer of the process being sent the message.

An example of a node call to receive the message given above is...

call recvw(cil, 12, INUMRS, 2004, cnt, node, pid)
(1) (2) (3) (4) (5) (6) (7) (8)

where: (2) and (3) have the same significance as for "sendmsg" and...

(1) "recvw" is a blocked receive--the calling process is blocked until the mes-

sage has been received.

(4) INUMRS is the name of the buffer where the received message will be

stored.

(5) 2004 is the number of bytes in the buffer named "INUMRS"

(6) cnt is the number of bytes received--if cnt is greater than 2004, the excess

part of the message is truncated.
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(7) node is the id of the node that sent the message

(8) pid is the process id of the process that sent the message

Figure 7 shows a segment (pseudo code) of the host program that handles

the message passing to the nodes.

c
c
c
c
C

50
C
C
C
C

C
40

c
c
c
c

do 25 k = 0, conformers

search for an available node
if freelist(i) is O-nodeis free
if freelist(i) is I-node is busy.

for (i==Oto number_oLnodes) if (freelist(i).eq.O) go to 40

if every node is busy, then a recvmsg must be provided so that
program can receive a message that a node is free.

call recvmsg(cil, type, status, 2, cnt, node, pid)
if (status.eq.O) freelist(node) = 0
if (status.eq.l) hungJlodes = hungJlodes + 1
go to 50

update freelistO and starting sending messages to free node

messages containing data sent to nodes
illegal input increments a variable...

bad structures = bad structures + 1
c
C rest of data for that conformer is passed over
C

C
C test to see if all conformers sent out
C

if ((structures).eq.conformers) go to 900
25 continue

C
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C
C
900

determine immediately the number of jobs left on the hypercube

do 23 j = 0,(numberJiodes - 1)
if (freelist(j).eq.l) lefLonJiodes = lefLonJiodes + 1

23 continue
left_onJiodes = left_onJlodes - bad..$tructures - hungJlodes

C
C provide a means to receive messages from remaining jobs on nodes
C unreceived messages will eventually time out and syslog crashes
C

27 call recvmsg( cil, type, status, 2, cnt, node, pid)
C

C whatever the message type or value of status,
C there is one less job lefLonJiodes
C

lefLonJiodes = lefLonJlodes - 1

if (left_onJlodes.eq.O) go to 1000
go to 27

1000 end

Figure 7. Pseudocode for Host Message Control

Every effort was made to send only those CO:M:MON blocks and varI-

abIes that were actually needed. A possible problem was noticed in regards to

COMMON blocks on the nodes. It was found that if an array variable was

reassigned in a subroutine two calls below the node program, that change was

known to the CO?v1MON block locally, but not necessarily in the node pro-

gram. In other words, the CO:M:MON block was only updated locally and not

necessarily updated two levels up in the main program. This behavior has not

been further studied and verified. Presently the workaround involves sending

messages out of the nodes from locations where the most recent values are

known to be present.

Unfortunately, character strings can not be sent in messages. In order to

send a message buffer containing the variable KY (see appendix A) which has
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the type "CHARACTER*4", it is necessary to declare KV In an

EQUIVALENCE statement as equivalent to a variable declared as

INTEGER*4. This latter variable is able to be sent in a message as an integer

to the nodes where it is again equivalenced to KV.

In the present version of the code (ECEPP86) 36 messages are sent to a

node for each conformer. The information in these 36 messages totals 85532

bytes. In addition, 12 flow control (Le. node to host) messages were utilized. In

the current implementation it takes approximately 12 seconds to send the dat.a

for one conformer to anyone node. Mter the host has sent a maximum of 6

messages or a maximum of 2 to 10 K bytes of data, the host waits for a mes-

sage from the node signaling the successful reception of those messages. Mter

the host receives such a flow control message, another segment of data is sent

out. During the development of these flow control messages, it was possible,

with fewer such controlling messages, to create situations where the ECEPP86

program would terminate ("hang") about every other run. In such a critical

race condition, the insertion of a simple write statement in the host code could

increase the percent of normal program termination. The number of flow con-

trol messages employed in the final version of the code is robust and could be

cut back and a faster node loading than 12 seconds could be achieved. On the

other hand, the program has not failed due to this cause since the present

number of flow control messages (12) was implemented. In total 48 messages

are sent (36 + 12) or about 4 messages per second. The test program men-

tioned earlier was able to sent about 10 per second, however, in the present
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case the messages all involve the bost, average almost 2000 bytes long (and

hence had to be broken up into several lK packets), and pass over more inter-

node connections.

During the time of node initialization, a message may arrive from

another node signaling that the node is finished with calculations on a particu-

lar conformer and ready for another assignment. Such a message must wait

until the next flow control message arrives. During each pause generated by

the 12 additional flow control messages from the node to the host, the host is

able to receive pending messages of any type. The type accompanying the mes-

sage allows the software to determine whether the message is a flow control

message, one concerning an available node, or a message signaling that a node

has an interrupt from which it cannot recover. If the message is the first typc,

the program continues to send conformer data. If it is the second type, the

free list array is updated in the appropriate position, the program loops back to

receive another message. This cycle continues until a flow control message is

received. If it is of the last type, the program loops back to receive another

message, the freelist is not updated, and the host program will not send any

new data sets to this now non-functional node. A small segment of the the

host program for the above message handling is...

call sendmsg(cil, 34, CHIANG, 3380, node, pid)
C

C next message could be a flow control (type 100) or
C a notification that a node is finished and ready for

C another task (type 200) or one signaling an interrupt
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c
C
705

C
710

C
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from which the program cannot recover or be re-
initializeed (type 3(0).

call recvmsg(ci2, type, condition, 2, cnt, node, pid)
if (type.eq.l00) go to 710
if (type.eq.200) then

freelist(node) = 0
go to 705

endif

if (type.eq.300) then
hung.Jlodes = hung...nodes + 1
go to 705

endif

call sendmsg(cil, 35, ENOORD, 10240, node, pid)

Figure 8. Host Program Message Passing Code.

In the original program, the user could be advised of several things that

have been removed from the implementation on the hypercube. The user had

the option of seeing the results of each iteration, which would include, if so

requested, the Cartesian coordinates of each atom, the breakdown of the total

energy of the molecule into the contribution from each type of atomic interac-

tion calculated (electrostatic, non-bonded, torsional, cystine torsional, and loop

closing), and this information could be given before or just after each iteration,

or both. In the present case, the user is just informed of the final optimized

angle of each bond, the total energy, and the energy due to proline residues. If

needed, these angles can be fed to the original program to obtain (in minimal

time since the results are already optimized) the atomic coordinates.
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4. RESULTS

At the present time, ECEPP83-the original program, and ECEPP86--the

original program modified for the iPSC, yield similar but not absolutely identi-

cal results. A number of conformer data sets have been processed by each

machine. The greatest difference between the two machines each processing

the same data involved two passes through the minimizer of 100 cycles each.

In one cycle, each angle of the peptide (i.e. the angles the user wishes varied) is

varied at least once and then varied again continuously until the energy value

for the peptide no longer decreases. The VAX 11-780 afforded a value of 68402

Kcal and the iPSC a value of 68406 Kcal. This differenc~ is attributed t.o the

effects of accumulated roundoff and is acceptable. Similarly, it was noticed in

one part of one calculation, that after only 30 cycles, the two machines value

fOT one angle differed by 0.30 degrees. In this case, the energy values were

identical as apparently this amount of rotation in a side chain bond did not

affect the free energy.

In one case, initially terrifying when first seen, the two machines pro-

duced totally different answers starting from the same data set. However, if

each final set of angles was fed to the other machine, the same answer was

obtained. In other words, although the two machines obtained different minim-

ized structures from the same data, each one appeared to have traveled down
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to a. different energy valley. There are many local minima but only one lowest

energy structure. Each machine, when fed the final set of angles calculated by

the ,other, verified the energy values. A study of each pass through the minim-

izer indicated that initially the two machines were minimizing along the same

path. The structure of the peptide undergoing minimization was GLY SER

CYS PRO :MET CYS (see Appendix A for the symbols used). The program was

varying the GLY omega angle, which is the C to N planar and trans peptide

bond [13], when the minimized structures started to diverge. An attempt was

made to determine the exact location of the divergence and the values calcu-

lated by each machine at each point. The minimizer function utilized by the

progJ"am is very complex[16]. Coupled with the fact that the minimizer incre-

ments are many and minute, the exact point of diversion could not be deter-

mined easily. The investigation was sufficient to show that the divergence

occurred at a point where the calculated energy as a function of the omega

angle in question was constant on one machine and had a very slight downward

slope on the other. Apparently, one machine (the 11-780) persisted in changing

this same angle while the iPSC switched to varying another angle. Thus, each

proceeded down a different solution path.

In summary, the local minima found on one machine could be verified on

the other and this phenomenon has occurred only once. Such a result does not

constitute a "flaw" in parallel computation, but certainly is a consequence that

must be considered with algorithms that deal with problems that have many

solutions. One could consider an algorithm that calculates chess moves as
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analogous to the one discussed here. There may be several minima for a par-

ticular peptide that differ only by a few Kcal and thus may be therma1ly inter-

convertible. Similarly, there may be several chess moves of similar desirability.

In both cases, the algorithms presently known are incomplete as far as finding

the perfect answer.

The ECEPP83 program, as origina1ly obtained from Polygen Corpora-

tion, was ostensibly able to minimize cyclic peptides. These structures have no

free end, analogous to a bicycle chain. Although the program would minimize

a cyclic input structure, upon reaching the junction between the two ends, the

program exited without being able to calculate the relative energy of the

molecule. Since cyclic peptides are uncommon, this part of the code has not

been updated to be able to complete such calculations. Although Pol)'gen Cor-

poration has accomplished this in their latest version of ECEPP83 called

ECEPP85.

As mentioned above, the node program outputs data to a system logfile

named "my log" with a ca1l to a library function named 81/slog which sends the

data through the cube manager and into "my log". As with user specified mes-

sages, 8Y810gwrite commands are quite slow and the data may appear in the

mylog file several seconds after initiation of the call to 8yslog. Moreover, since

the data output is several lines long, it is relatively common for the output

data from two nodes to be interspersed in the mylog file. Fina1ly, the mylog

file also contains all system notifica.tions concerning not only 8Y8/0g calls, but

also loading and unloading commands etc. The mylog file may be viewed while
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the ECEPP86 program is running a.nd thus provides a way of viewing the data

as it is produced. After all conformers are calculated, the data was converted

by a. program, called "prettyprint" (Appendix B), which utilizes the "awk" and

'.sort" Xenix tools to remove unwanted lines, sort any interspersed output, and

present the final answers in a more easily readable format.
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6. PERFORMANCE MEASUREMENTS

In section 2: reference was made to a test program which integrated a

function that computed 1r. The point was made that this program was slower

when 32 nodes were utilized than when only a single node was involved in cal-

culations. In that case, the computational time is short relative to the time

required for message communication. Messages can be blocked or unblocked.

With a blocked message, no more statements are executed until the message is

sent, and with unblocked messages the program continues to execute and the

message is sent when the operating syst~m finds it convenient to do so. The

node operating system supports a "routine named status which allows a process

to determine the state of the buffer associated with an unblocked message. A

call to status with the message channel identifier as an argument returns a 0 if

the message has been sent (no promises with respect to reception) and returns

a 1 if the message buffer is not available because the message has not yet been

sent. In all the test cases utilized in this study and for ECEPP86, blocked mes-

sages were used exclusively. For the test cases, programs with un blocked mes-

sages did not execute faster than the same program with blocked messages.

Apparently, the time required to send the messages in these cases was the same

order of magnitude a.s that required to execute a status check to determine if

the communication channel could be reused. Because of tht' flow control
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problem mentioned, no attempt was made to use unblocked messages in the

ECEPP86 program code. In order to study blocked message time requirements

more closely, a polynomial integration program (integrating polynomials up to

a degree of nine) was run with varying numbers of slave nodes. The entire

univariate polynomial was passed to node O. The limits of integration were

divided up by node 0 into as many equal intervals as there are nodes available

(total nodes minus one). Node 0 sent an integration interval to each remaining

node which in turn reported its results back to node O. After receiving all

intervals, node 0 summed the results and sent a single message back to the

host. The host Fortran code does not have a real-time clock function available.

However, the Xenix operating system times procedure can be called from a For-

tran program on the host. Figure 9 shows the data obtained for a degree five

polynomia1. "Clock Cycles" refers just to the computational time and does not

include the portion of the code that is interactive data entry.

Sia ve
Nodes

Clock Cycles
(50 msec)

Host Messages
(in or out)

Node Messages
Node-Node

31
15

1

44
23
4

2
2
2

62
30

2

Figure 9. Profile of Integration Program

In this program node 0 is the recipient of the data from the other nodes above

it. The results are accumulated here and the final results sent to the host in a

single message. Clearly the computational time is very short relative to the

time required to send and receive messages. The host and node programs were
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then modified such that a maximum of 32 nodes were available and each of

these sent their results directly back to the host for summation. With 32 nodes

working and no node to node messages, the program required 551 clock cycles

to run. The program sent 32 host to node messages and 32 node to host mes-

sages or about 2.3 messages per second. In the present case shown in tabular

form above, a program where almost all the messages are node to node, more

than 25 messages were sent per second. Node to node messages are much fas-

ter than those that enter or leave the host. As seen in an earlier discussion,

the speed of node to node messages varys as a function of message length and

the number of internode connections.

With ECEPP86, there is no node to node communication and therefore,

all communication is host to node or node to host. The "Development of the

Program" section discussed the 12 seconds required to send 85.5 Kbytes of ini-

tial data required for one conformer to the assigned node. Occasionally,

ECEPP86 would run much faster, requiring only about 2.5 seconds to send the

same data. This behavior occurred during the time that the program required

to load all the nodes. Similar behavior could be made to occur if the dynamic

loader is instal1ed with "contention" mode rather than "po11ing" mode. These

two options refer to the method used to pass messages. On the one hand,

nodes are "pol1ed" to see if they have any messages to send as opposed to "con-

tention" mode where messages contend for their destination. At the time of

this writing, poll mode is the standard usage and the contention option has not

been official1y relea.sed by the Intel company. Whether the occasional fast.er
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behavior seen with ECEPP86 can be explained by an inadvertent change to

contention mode is not known at this time. In contention mode, the program

crashes randomly, when the above fast behavior occurs spontaneously, it does

not! Rather, this aberrant behavior could represent some very favorable

"phase" occurrence. The phenomenon has been reported to Intel and is under

investigation.

The starting data for three test conformers was fed to ECEPP83 running

on the 11-780 execution profiled with gprof [10]. It is important when using

gprof not to leave the terminal waiting for I/O from the user. If the gprof must

be used in a situation where input is required from the terminal, then it is

important to type the correct input before it is requested by the program, to

keep the input buffer of the terminal filled. Waiting at the terminal does affect

the profiler, even though the converse might have been expected. The CPU

time measured for the three test conformers was 31, 88, and 220 seconds for a

total of 339 seconds. The cube could calculate the same three serially on one

node in 535 seconds. The 11-780 is approximately 1.58 times faster with these

three calculations than a single iPSC node. In spite of the fact that the

ECEPP83 version running on the 11-780 has slightly more printout than the

hypercube version, then the hypercube has the potential to calculate peptide

conformers roughly 20 times faster(32/1.58) than the 11-780. In another test

case, 64 sets of the above data which took 339 seconds to run on the 11-780,

was run on the iPSC concurrently. Ignoring the fact that the cube was only

fully loaded less than half of the time, the speedup for the iPSC over the 11-780
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was 11.6. It is expected that more detailed measurements (i.e. the fully loaded

time is increased relative to the partially loaded time) could show that the

iPse hypercube can achieve close to a 20 fold speedup with some SPMD applj.

cations such as the ECEPP86 program studied here.

Since these measurements were taken, the £77 library function frexp(} has

been improved. The £77 sqrt() function uses this function and currently the

program mentioned above that required 220 seconds, now runs in 184 to 188

seconds. For the ECEPP83 program running on the VAX 11-780, this

represents a 15% improvement. A recalculation of the possible speedup of the

iPse hypercube over the VAX 11-780 yields a new value of 17 (32/1.86). It is

expected that each new version of either machine will continue to move this

figure up or down. A1; long as such perturbations are relatively small, the

results reported here will have the same relevance.

Finally, the laboratory which originally developed the ECEPP83 program

compared the performance of a IBM 370/168 mainframe computer versus a

Prime 350 minicomputer fitted with a Floating Point Systems AP-120B array

processor 117]. The comparison was made with one cycle of minimization with

the data for bovine pancreatic trypsin inhibitor 118]. The code used for the

Prime computer was carefully programmed in assembly language for thosE'

parts of the ECEPP83 code known to be "bottlenecks" in terms of time

required. The original ECEPP83 code at the start of the present work is not

identical to that used in reference 117]. Thus, for the computations shown

below in figure 10, the same data is utilized for three different machines each
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employing different coded implementations of the same algorithm.

AP-120BjPrime 350 IBM 370/168 VAX 11-780

Time (see) 300 652 1030

Figure 10. Comparison of Three Computer Systems for a Benchmark

The authors making the initial comparison estimated that more of the

improvement of the Prime 350 over the IBM 370/168 was due to hardware

rather than to the hand coding. In the present case, the iPSC Was not able to

run this benchmark since it required more space than is available on a single

node. As mentioned, the ECEPP83 and ECEPP86 programs have an order of

complexity (0) equal to the square of the length of the peptide. The bench-

mark here is the data for an unusually long peptide, the starting conformer

was that previously known from X-ray crystallographic data. The calculation

of such a large molecule, without the X-ray data (such data is not usually

available) would be unthinkable with the present state of the art. Because of

its large size, certain arrays of the ECEPP86 program (viz. VAR, INDAv, and

W) had to be re-dimensioned to handle the benchmark and the resulting

requirements were too large to be loaded on to one node of the iPSC. This rt'5-

triction is not a serious limitation of the ECEPP86 variation developed for the

iPSC-as mentioned, the benchmark is an example of a somewhat unusual, but

admittedly useful, application. In addition, we have already seen that even if

the program could have been loaded onto a node, it would be approximately

1.86 times slower than the 11-780. So, in most cases, usage of ECEPP83
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involves the serial input of many hundreds of conformers to Von Neumann

machines. The iPSe can perform such calculations (32 or more conformers)

concurrently and therefore a fuBy loaded 32 node hypercube has the potential

for computation almost three times faster than even the Prime 350

((300/((1030 * 1.86)/17))) using an array processor with hand written code. As

mentioned, the Intel company plans the commercial availabilit), of a vector

processor in 1986. For a basic unit of 32 nodes, this will involved replacing every

other node with a iPSe- VX (vector extension) board. It will be very interest ing

to test whether this configuration (16 nodes instead of 32) will realize a gain in

speedup of more than the 2 fold required to "break even",
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6. CONCLUSIONS

For any person considering writing original code for parallel execution or

converting existing code from serial to parallel execution, several considera-

tions can be suggested. The following suggestions are made on the assumption

that it is more difficult to construct parallel computations than serial ones.

(1) What is the potential for speedup when a comparison is made between the

parallel machine in question and the existing serial machine?

(2) Whether writing new or porting existing code, what debugging tools are

available?

(3) What is the stage of development of the parallel machine, and what is the

reliability of the software and its documentation?

(4) On parallel machines, the results of one processor must be communicated

to other processors and/or to a computer controlling the processors either

by message passing or shared memory. What is the overhead involved or

contention problems associated with processor cooperation?

(5) For existing code, how well documented is the code, and what depth of

understanding is required to modify the serial code for parallel execution?

(6) How difficult will be the thorough testing of the parallel implementation

for correct output and normal termination?
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(7) What is the granularity of parallelization that can be applied to the algo-

rithm? What is the ratio of computation effort to the effort mentioned in

item 4 above?

(8) Is expertise available to deal with the problems that seem to arise in any

effort to improve an existing application code?

The present study has pointed out that for the case of the Intel iPSC

computer, items (2) to (4) above had negative aspects which increased the

implementation time or tended to minimize the gains achievable. In the case of

item (5) above, it was usually the case that it was sufficient to know what the

various subroutines accomplished, rather than how they were designed, in order

to construct the parallel version of ECEPP83. On the other hand, the in pro-

gram documentation was not updated each time the code was improved. The

formal documentation was written in 1975 for the first implementation on an

IBM 370 computer. In the case of the present study, positive effects of readily

exploitable large grain parallelism and help from the code's developers served

to mask these difficulties and those associated with items (1) to (6). The large

grain parallelism implemented here matches well the single program multiple

data use of the ECEPP86 program. The number of messages required did not

grow with the size of the problem, and although slow, the message passing

overhead is a small fraction of the computation time.

Consideration should be given to all of the above items when implement-

ing any algorithm on a parallel machine. The completed parallel implementa-

tion must be tested extensively to help assure that the output will be
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compatible with the program executed serially.

A final consideration has to do with the dynamic nature of both

hardware and software of any new machine. In the case of the Intel iPSC

machine, hardware improvements were made to the message passing systems

and several software updates were implemented during the course of this work.

Parallel computation has a bright future. However, short of a new

"parallel language", useful implementation of existing code and algorithms will

require considerable effort, even under favorable circumstances. The Intel iPSC

represents one hardware approach affordable to concurrent computation that is

presently available. Clearly, the development and utilization of parallel

hardware and software is as yet at a formative stage, and developments are

proceeding rapidly. For example, in the late summer of 1986, a new vector pro-

cessor is promised that should improve both vector and scalar operations. It

will be interesting to see how this new hardware will affect the performance of

the ECEPP86 code.
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APPENDIX A: ECEPP86 USER'S GUIDE

INTRODUCTION

This manual assumes that the reader has some prior knowledge of pro-

tein chemistry or is willing to learn.

ECEPP86 calculates the lowest energy secondary and tertiary structure

for peptides up to 100 amino acids long. The primary structure and an initial

conformation must be user defined. The program employs rigid geometry

without consideration of entropy or surrounding water molecules. The program

does not vary bond angles, rather it varies bond rotational (dihedral) angles.

For example, the distance between 1,3 atoms is not varied, but 1,4 atoms, 1,5

atoms, and higher are varied. Thus, the final energy value obtained is a rela-

tive energy and is only comparable to other conformations of the same

molecule and not to the energy of another molecule--however similar the

molecules may be. Minimized structures are defined by a set of dihedral angles

along with a value for the relative energies. The energies for the proline (PRO)

residues are output separately and thus the total energy for a conformer will

be the value for the variable ETOT (total energy) plus that for the variable

EPRO (proline energy).
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DATA FORMAT

Any numberof sets of starting conformers are listed serially in an input

file named "ecpdat". Numbers in parenthesis in the following discussion refer

to input line numbers in the sample input file listed below. The set of data for

each conformer (except the last) is terminated by a "&" character (28,62, but

not 75) and this symbol as well as the sample number must be in space 1 at the

left margin. The standard three letter code for amino acids is augmented to

include many amino acid derivatives.

Amino Acid Abbreviations

Alanine

Aspartic acid
Cystine
Glutamic acid
Isoleucine
Leucine

Asparagine
Glutamine
Valine

Tyrosine
Threonine
Norleucine

ALA
ASP
CYS
GLU
ILE
LEU
ASN
GLN
VAL
TYR
THR
NLE

Hydroxyproline
Serine
Histidine
H-N epsilon HIS
Proline up (phi=-67)
Proline down (phi=-75)
Lysine
Methionine
Arginine
Tryptophan
Cysteine
Phenylalanine

HYP
SER
HIS
HIS2
PRO
PROD
LYS
MET
ARG
TRP
CYSH
PHE

Place a "D" in front of any 3 letter code to get D-isomers. In order to

avoid 5 letter codes, the following exceptions for D-isomers are used.

L-isomer D-isomer

PROD DPRD

CYSH DCYH

HIS2 DHS2
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The codes for the end groups have also been augmented to include

derivatized N- and C- terminals.

C-terminals

Car ~oxyI
Amide
Dimethyl amide
Ethy I ester

COOH
CONH
NME2
COOE

Methyl-carbonyl
N-methyl amide
Methyl ester
Cyclic peptide

COME
CO i'\}.1
COOM
CO-

N-terminals

Amine
N-methyl
N-formyl
Trans proline
Pyroglutamic acid

NH2
MENH
FONH
PROT
PGLU

Protonated amine
N-acetyl
Cis proline
Cbarged proline
Cyclic peptide

NH3
ACNH
PROC
PRO+
NH-

Altbough tbe title of a conformer can be any set of alphanumerics, the

sort and awk script called "prettyprint" requires that tbe conformer set name

be an integer (1,29,63). All the peptide output from ECEPP86 is deposited in a

user defined system logfile named "my log". "Prettyprint" takes "my log" as

input and removes extraneous system calls and sorts and reformates the mylog

file to an easier to read datafile named "answers".

After the title tbe next line of the "ecpdat" file shows the number of

times tbe data for a conformer is to be passed through the minimizer (2,30,64).

Tbe next line is the number of residues in the peptide, this number is always 2

more than the number of amino acids since the end groups are considered resi-

dues (3,31,65). Tbis is still true for a cyclic peptide (i.e. residues + 2). The

next tbree input lines are the N-terminus, the amino acid sequence, and the C-



62

terminus (4-6,32-34,66-68). Since the input format for the amino acids is "904",

the width of each amino acid designation must be 4 characters wide. If the

amino acid designation is already 4 characters long, then it is necessary to

omit the space after such a designation (33,67). If the peptide contains CYS

residues (as opposed to CYSH) the next line must be a "-I" followed by x pairs

of disulfide pairs (7). Be sure to allow the correct spacing demanded by the 2i5

format. Subsequently, the next x line(s) designate the residue numbers of the x

pairs participating in disulfide bonds. In the present case, there is only one

such line (8). If there are no CYS residues, then lines (7-8) are omitted.

The starting dihedral angles of the backbone atoms only can be designated

by two different methods. The first is designated by lines (9,35) as GNI or

"general input". Following this option, there are as many lines as there are resi-

dues (amino acids + 2). The first and last of these lines (10,16 and 36,43) are

for the N-terminus and C-terminus, respectively. Not every N or C terminus

has three angles, but these lines must have three angles designated. If the

actual terminus chosen has less than three angles to be designated, the excess

is ignored--but is required to be present. In between the lines mentioned, thl're

are as many lines as there are amino acids--i.e. not counting the two termini

lines (11,15 and 37,42). These lines designate the PHI, PSI, and OMEGA

a.ngles, respectively.

The second method involves the user designating a particular predeter-

mined structure for a particular sequence of residues (69-71). The possible
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structure

R handed helix
L handed helix

Beta Sheet (extend)
C7 Equatorial
C7 Axial

Helix type 2
Beta turn type 1
Beta turn type 2
Beta 1 region

PHI=-75,PSI=-33
PHI=54,PSI=50
PHI=-154,PSI=153
PHI=-84, PSI=78
PHI=78, PSI=-63
PHI=-158, PSI=-58
(57,127;125,-51)
(-42,100;125,36)
PHI=-151, PSI=44

63

input abbreviation residues designat.ed

HLXR
HLXL
BTC5
C7EQ
C7AX
HLX2
TRNI
TRN2
BTI

inclusive (24 is 2,3,4)
inclusive
inclusive
inclusive
inclusive
inclusive

adjacent residues
adjacent
inclusive

This input is ended with the word "DONE" (69-71).

The above efforts are necessary to designate the starting backbone

dihedral angles. The next effort is the designation of the starting amino acid

side chain angles (CHI angles).

Each CHI angle of each sid~ chain has a separate input line. The first

integer is the residue number (remember that the nth amino acid has a residue

number of n + 1). The second integer is the CHI angle number (I ,2,3...etc) and

the third entry is the angle in degrees. This data is ended by a line of three

zeros (25,52,72, but not 60, see below). If it is desired to use default values for

the side chain CHI angles, the above input is replaced by one line of three zeros

(as in line 72).

At this juncture the starting conformer is completely defined. However,

the user has the task of specifying which of the above angles are to be varied

and which are to remain fixed. Similar to the above, there are two methods for
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doing this. The easiest way is to stipulate that the variable angles are either

"ALL" (73), "BACK"(backbone) (26), "SIDE" (sidechain), "NONE", or "SPEC"

(53). The first three of these are self explanatory, the last option, viz. "SPEC"

constitutes the second method for "specifying" (SPEC) the angles to be varied.

If the peptide is cyclic, then the "SPEC" option must be utilized. Referring to

lines (54-60), the first integer is the residue number, the second is the number of

angles to be varied and this is followed by a list of the numbers of those angles

(PHI = 1, PSI = 2, OMEGA = 3, CHI1 = 4, CHI2, = 5, CHI3 = 6, etc). The

total number of entries following the second integer should be equal to the

second integer. AB before, these entries are ended by a line of 3 zeros (60, not

25,52).

Finally, the last entry for any conformer is the number of cycles of

minimization desired (27,61,74). Shown below is a segment from a correctly

formated input "ecpdat" file listing the starting conformer for three different

molecules.

Input line

SAMPLE INPUT

En try in "ecpdat" file Format

1
2
3
4
5
6
7
8

70al
'<)1..

1
10
7

PGLU
SER CYS PRO MET CYS
COO-

-1 x
y z

i2
a4

19a4
a4
2i5
2i5

Comments

title must be an integer
minimizer cycles
residues + 2 end groups
N end--4 characters
3 letter code words
C end--4 characters

-1 flags x pairs of -S--S-
y disulfide bond to z
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

GNI 0 0
180. 180.

-155. 157.
-120. 94.00
-20.0 -79.
-110. 117.
-115. 109.
180. 180.

2 1 171.2
2 2 178.
3 1 67.
5 1 165.
5 2 177.
5 3 179.
5 4 180.
6 1 130.
o 0 O.

BACK
100
&
2
2
8
NH3
GLY SER CYSHPRO MET CYSH
coo-
GNI 0 0

180.00 180.00 180.
-179.46 56.82 -175.14
65.730 -51.19 -152.0

-60.62 -60.63 180.0
67.581 -56.82 180.

-65.73 51.19 -98.
60.620 60.63 -180.
180.00 180. 180.

3 1 -162.76
3 2 -178.
4 1 -67.
6 1 -165.
6 2 177.
6 3 179.
6 4 180.
7 1 130.

180.
-180.0

180.0
180.

-98.
-180.
180.

a4,2i2
*
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desire for general input
N end--3 angles
a set for each residue

including end groups

*
C end--3 angles
residue number then...
CHI number then...

angle in degrees

a4
end of CHI angles
variable angles (KV)
number of cycles
flag to end a data set
conformer number 2

al

no disulfide bonds

"3" is SER-- "I" is CHIt
SER--"2" is CHI2
"4" is CYSH, etc.
MET has 4 CHI angles

CYSH has 1 CHI angle
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53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

66

o 0 O.
SPEC a4
2 3 1 2 3 20i2
341234
441234
53123
66123456
741234
000
100
&
3

5
9
ACNH
GLY SER SER DMETLYS PRO TYR
COO-
HLXR 2 6 a4, 2i2
TRN267
DONE

o 0 o.
ALL
100

specify variable angles
residue number then...

number of angles then...
sequential number: PHI=l,
PSI=2,OMEGA=3,CHII =4,
CHI2=5,etc.
PHI,PSI,OMEGA,CHll
end SPEC with 3 zeros

conformer number 3

N-acetyl
D-methionine isomer

starting structure
TRNI and TRN2 must

specify adjacents
use default values

vary all angles
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APPENDIX B:PRETTYPRINT

The shell script "prettyprint" takes as input the mylog file which con-

tains the syslog output of ECEPP86. Prettyprint calls the scripts prettyl and

pretty2 which utilize the Xenix functions "awk" and "sort" to convert the

mylog file into a more readable form. System calls unrelated to the chemistry

calculation at hand are also removed and the final output is written into a file

named "answers".

prettyprint is.....

awk -f prettyl mylog > slop
sort -nd +0 -1 +1 -2 slop'> slop2
awk -f pretty2 slop2 > answers
rm slop slop2

prettyl is.....

BEGIN {i = I}
{

if
(($11!="ACI")&&($3=="NODE: ")&&($8!="Loader:")&&($8!="Cubeto)

&&($8!="Cu beload ")&&($8!="Load: ")&&($1o!="Excep tion to)
&&($8!="Warning--III"))

{
print $4,i,$8,$9,$10,$II,$12,$13,$14,$15,$16,$17 ,$18,$19,$20

}
else if ($l1="ACI")

{
prin t $4,i,$8,$9,$10,$12,$13,$14,$15,$16,$17,$18,$19,$20,$21

}
i++

}
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Lastly, pretty2 is.....

BEGIN {
x = "ETOT"
y = "Junction"" "Z -- .

}

printf("%3d0/0-155",$3,$5)
for(i = 6; i <= NF; i++)

{

}
prin tf("\n It)

}
else

{

printf("%9.3r', $i)

print $3,$4,$5,$6,$7,$8,$9
printf("\n")

}
}
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APPENDIX C: A PEPTIDE PRIM:ER FOR NON-CHEMISTS

INTRODUCTION

This short appendix will introduced the subject of protein structure-

function studies and the re]evance to the program deve]oped in this work.

It is safe to say that the raison d'eire of the genetic materia] of a]]

known organisms (inc1uding viruses) is the specification of the collection of pro-

teins that the organism is capable of synthesizing and a]so to specify the chro-

nological time and place of that synthesis. The genetic material serves only

that purpose and the collec'tion of proteins so specified is a necessary and

sufficient definition of the organism in question. Since all known organisms use

the same genetic code, it follows that the proteins of all known organisms have

the same structural basis. Proteins are all synthesized as linear polymers com-

posed of a unique sequence of twenty different subunits--called amino acids.

Proteins which a.re not linear and/or contain other amino acids or other

molecules result from reactions that occur after synthesis as linear po]ymers.

Once formed, proteins subsequently rapidly Cold up into a characteristic three

dimensional shape. Although a]] protein molecules and all the molecules of one

prot.ein can exist as "random coils" in three dimensional space, all biologic all)'
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active protein molecules exist in a. configuration in space that is the same for

each type of protein molecule. In other words, each unique protein polymer has

its own unique three dimensional structure (termed its own "conformation ").

Protein chemists believe that the three dimensional conformation of a protein

is the thermodynamically most stable one at the temperature in question. As a

corollary to this hypothesis, two or more conformers may have structures

differing by only a few kilocalories in their thermodynamic stability and thus a

molecule may have several populations in different conformers. Experiments

now considered classics [13] have shown that the information needed to specrfy

the complex three-dimensional structure of proteins is contained solely in its

amino acid sequence. If a native protein is unfolded into a straight chain

molecule (this can be accomplished with heat or certain reagents), the molecule

can spontaneously re-fold to its native configuration. Straight chain and/or

unfolded native proteins seldom exhibit their biological activity or properties as

enzymes, hormones, toxins, allergens, etc. Thus, the biological activity of pro-

teins is a function of their conformation. In order to understand the mechan-

ism of their function, the conformation must first be determined. Only then

can the interaction of proteins with cell receptors, with chemical reactions that

proteins catalyze in the form of enzymes, with each other in the case of

antigen-antibody reactions--be analyzed and understood at the molecular level.

Structure determines function. The arrangement of the charged groups of

a.mino acids and their electrons in space dictates the interactions with similar
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tein is known, the detailed understanding of the mechanism of its function is

possible--without the conformation, the mechanism of action is merely conjec-

tural.

How then is the conformation determined?

There are a number of spectroscopic methods which yield information on

the conformation of proteins and peptides (a peptide is short protein)--but not

enough information can be obtained to define the entire structure. If the pro-

tein or peptide can be crystaHized, X-ray crystaHography can provide the total

global minimum structure. This can be a long process depending on the size

the protein whose structure is desired. Unfortunately, many peptides in the

range of more than two and less than 100 amino acids cannot be crystaHized.

For these, computational methods at present are the only means available. As

mentioned in tbe earlier sections of this work, the ECEPP83 program calcu-

lates a three dimensional structure of a peptide after the user specifies a start-

ing conformer. The starting conformer defines the dihedral angles of both the

backbone structure and those of the amino acid sidechains. The program has

access to an input file which contains the bond lengths, the bond angles, and

other constants for the twenty amino acids and their derivatives which are

found in native and most synthetic proteins. The algorithm is based on rigid

geometry, i.e. the bond angles and bond lengths are held constant, and the

dihedral angles are varied, the energy of each generated conformer is
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calculated, and the results evaluated by a minimizer function which acts itera-

tively to obtain the local minimum. The difficulty with this approach arises

from the existence of many minima in the multidimensional conformational

energy surface of the protein 117]. The algorithm employed for the ECEPP83

code is not able to escape from energy minima (to minimize to deeper ones)

unless the minima are relatively shallow. Therefore, to reach the deepest

"energy well" requires the calculation of many different starting structures. If

enough starting conformers are tested and they are sufficiently spread out over

the multidimensional conformational energy surface of the protein, eventually

one (or more) of these test starts will minimize to the "deepest energy wells".

On a serial computer, starting conformers must be processed one at a

time. The implementation described in this work allows the conformers to be

tested concurrently and this represents very large grain parallelism.
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