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ABSTRACT

A Dual-Ported Real Memory Architecture
for the G-machine

Linda J. Rankin
Oregon Graduate Center, 1986

Supervising Professor: Richard B. Kieburtz

A dual-ported real memory architecture is described which supports the

requirements of a list-processing evaluator, the G-machine. The architecture pro- .

vides support for allocating avails.ble nodes and a concurrent garbage collection

scheme. This scheme uses reference counts and requires traversal of sub-graphs to

collect cyclic structures. The architecture requires only one customized hardware

component that provides support for maintaining reference counts. Simulation of

the architecture shows that it is efficient and meets the requirements of the G-

machine given certain assumptions about the number and size of sub-graphs that are

traversed. Cyclic structure information provided by the compiler would reduce the

number of sub-graphs requiring traversal. Simulation shows that this optimization

improves performance of the design, particularly for allocation rates greater than

lOOK nodes per second.

vi



1

INTRODUCTION

List-structured memory is considered to be an architectural primitive of list

processors. Memory is viewed by the processor as an infinite heap of binary nodes.

When new objects are created, memory must be allocated to contain their represen-

tation. When an object is no longer in use, garbage collection is the process by

which unused storage space is reclaimed. The memory system must, therefore, have

a mechanism to allocate new nodes and be able to reclaim storage at the same rate -

at which new objects are created.

The performance of a memory management scheme directly affects the perfor-

mance of a list-processor. Early experience with large LISP programs indicated that
\

substantial execution time - 10 to 40 percent - was spent in garbage collection

[Ste75,Wad76]. Since that time, some performance gains have been realized through

the development of more efficient garbage collection algorithms[Coh81]. For exam-

pIe, an algorithm developed by [Lie83] concentrates on those objects that are the

most likely to be collected.

As list-processing systems have evolved, additional performance gains have

been made by supplementing garbage collection either by microcode or direct

hardware support. Adding microcode support for free variable lookup in the Dora-

doLisp system resulted in a speedup factor between two and four [Bur80]. More

recently, two commercial LISP machines, one by Texas Instruments and the other by
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Symbolics, have included in their design direct hardware support for garbage collec-

tion. Both of these machines use a modified version of Baker's classical copying col-

lector algorithm [Bak78]. The Symbolics design includes hardware support for a bar-

rier which lies between the evaluator and memory. This barrier prevents the un con-

trolled propagation of references to objects in the old space and assists in identifying

objects according to their lifetime. Implementing this barrier in hardware has a

dramatic effect on performance [Moo84].

Designing memories for list-processing systems, therefore, has become a syn-

thesizing process where the memory requirements of the garbage collection algorithm

and the processing requirements of the evaluator define the architecture. This thesis.

presents an architecture that was created in such a manner. The memory. IS

designed to meet the requirements of the G-machine, a graph-reduction evaluator

that uses a dynamic list-structured memory. The garbage coll~ction algorithm is a

modified reference counting scheme developed at Oregon Graduate Center [Deb84,

Kie86, Fos85] that provides for concurrent garbage collection using a separate pro-

cessor. The memory architecture is a dual-ported memory with hardware support

for communication between the G-machine and the collector, reference counting, and

the allocation of free nodes. Perhaps the most exciting aspect of the design is its

potential for real-time list-processing.

The remainder of this thesis describes the memory requirements of the G-

machine and the garbage collection algorithm which, in turn, define the functionality

of the memory architecture. A microarchitecture is then presented for which a pro-

totype design is specified. Commercially available components have been used in the
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design wherever possible, and thus only one customized component is required to

build the memory system. This prototype design provides timing information so the

design could be simulated to obtain performance information. Simulation results are

presented and analysis of the design is conducted with respect to critical perfor-

mance Issues. Finally, suggestions are made for further research and improvements

in the design.
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THE G-MACHINE

The G-machine architecture was originally defined by Johnsson [Joh83] as an

evaluation model for an ML compiler. A sequential evaluator has been developed at

Oregon Graduate Center (OGC) [Kie85A] based on that abstract model. This

evaluator, which will be referred to as the G-machine, performs graph reduction

where expressions are represented as graphs rather than strings. The memory archi-

tecture and management scheme has been designed to meet the requirements of the.

G-machine. This section describes the memory requirements of the G-machine and

those aspects of the G-machine which affect the implementation of the garbage col-

lection algorithm.

Memory Requirements

Dynamic list-structured memory is considered to be an architectural primitive

for list processors, including the G-machine. Memory is list-structured in that it is

made up of nodes which consist of a pair of individually accessible data elements

that could be basic values or pointers. The G-machine views memory as an infinite

heap where new nodes are allocated upon request. The G-machine has an instruc-

tion alloc which is a primitive instruction to memory as is read or write. The G-

machine uses alloc to request a memory address in which it will store the represent a-

tion of an object. When that object is no longer is use, garbage collection is required

to reclaim the storage space so it can be used again. Thus, the illusionof an infinite
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heap.

The G-machine also requires a tagged memory. Each data field of a graph

node includes a tag bit. This tag, called the is_pointer tag, is used by the G-machine

to identify if the data is a pointer or a basic value. The graph node itself also

requires a tag called the is_evaluated bit. The G-machine uses this tag to distinguish

whether or not the node has been evaluated by a previous reference.

The G-machine stores all expressions and data in a graph, no static structures

such as arrays are used. Therefore, the demand for free nodes is expected to be

greater than that of conventional applicative language processors. The projected

allocation rate obtained from a static analysis of G-machine microsequences is'

between 75K and 125K nodes per second. This is an order of magnitude greater

than the allocation rate of the benchmark programs used to test the efficiency of the

memory management scheme on the Symbolics machine [Moo84]. In order to support

this high allocation rate without significantly hindering the evaluation process, a

concurrent memory management scheme may be a necessity.

In addition to supporting a high allocation rate, the garbage collection algo-

rithm must be able to detect cyclic structures. The G-machine does not form

exclusively acyclic graphs; recursive functions may exhibit one or more cycles during

reduction. However, the incidence of cyclic graphs is expected to be less than acyclic

graphs.

In summary, the memory requirements of the G-machine are as follows: 1)

memory must be list-structured, 2) memory must be able to provide the address of

an available node upon request, 3) the memory architecture must provide for tags, 4)
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garbage collection must be efficient, and perhaps a concurrent process, and 5) the

garbage collection algorithm must be able to collect cyclic structures.

Memory Management

The garbage collectiQn algorithm used in this design is a modified reference

counting scheme. This scheme requires a count of the number of references to a

node to be maintained. In the classical reference counting scheme, the reference

count is used to determine the collectibility of a node. When the reference count is

zero, then it is assumed that there can be no external references to a node and it is

collectible. To maintain the reference count a complex operation on a write to

memory is required:

(1) Check whether the previous contents of the node was a pointer, and if so, decre-

ment the reference count of the node to which it points.

(2) Check whether the datum being written is a pointer, and if so, increment the

reference count of the node to which it points.

There are two aspects of the G-machine which affect the manner in which a

reference counting scheme is implemented. The first is related to how an expression

is evaluated, and the second is due to the way the G-machine architecture provides

for an internal representation of the expression graph.

The G-machine evaluates applicative expressions, i.e. applications of functions

to argument expressions. The expression is represented by a graph in memory, and

during the process of eval~ation, is mutated by a series of reduction steps until it

reaches a normal form. Graph reduction is accomplished through the manipulation
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of a traversal stack that contains pointers into memory. A possible configuration of

the traversal stack is shown in Figure la.

o
Xn

(a) (b)

Figure 1. Traversal stacks.

The traversal stack contains pointers directly to the argument expressions and'

to the principal application that is being reduced. To reduce the expression, a pro-

gram compiled for the function f is executed. After reduction, the principal applica-

tion node is overwritten with the representation of its value (figure! b). .

The instruction set of the G-machine includes a subset of update instructions

which are used to overwrite the contents of a graph node. Only on the update of a

graph node are the contents of a node overwritten. This fact can be exploited to

simplify the number of operations required to maintain the reference count of a node

on a write to memory. A new instruction trash is added to indicate that the con-

tents of a node are to be overwritten. Therefore, on a full node update, the following

sequence of instructions would be observed:

trash address!

write address!, datum!
trash address2

write address2, datum2
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Trash is used to indicate in the above example that the contents of address!

will be overwritten. If the contents of address! is a pointer, then the reference count

of the node to which it points will be decremented. The only operation that is now

required on the write is to test if the datum is a pointer, and if so, increment the

reference count of the node to which it points.

The method of graph reduction used by the G-machine allows the addition of

the primitive instruction trash which simplifies the maintenance of reference counts.

On the other hand, implementation of a reference counting scheme is complicated by

the fact that the G-machine's architecture provides for an internal stack which holds

pointers to the graph in memory. During evaluation of an expression, the traversal.

stack can copy or destroy graph pointers without mutating the representation in

memory. These operations are executed in a single cycle and maintaining reference

counts for these internal references would b.e costly. Instead, a stack allocation

scheme called stack allocation with persistence [Kie86] is used.

During a function call, many nodes are allocated to the G-machine. Some of

these nodes are short-lived and never connected to the rest of the active expression

graph. Upon a return from a function call these nodes are no longer used and should

be collected. Other nodes that are allocated during a call are written into the graph

to represent the value of the function application. These nodes (persistent nodes)

persist after a return from a call and are not collected. All nodes that are allocated

during a function call will be called temporary nodes because they are considered to

be temporary until they are identified as persistent.
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The stack allocation scheme is used so that references from the internal stack

need not be counted. Nodes allocated during a function call are placed in a stack.

Upon a return, each node in the stack that was allocated during the call is examined

for collectibility. A stack discipline can be used for deallocation because the G-

machine meets three conditions:

(1) The G-machine has only local control transfers, contexts are saved and restored

according to a LIFO discipline.

(2) No component of the state of the G-machine persists after completing evalua-

tion of a function application.

(3) No node allocated during evaluation of an application is accessible after return

from the function unless it is reachable in memory from the root of the result

expreSSIOn.

In order to implement stack allocation with persistence an additional tag bit is

added to the graph node. This tag, called the persistenLbit, is used to distinguish

temporary nodes from persistent nodes. A temporary node is only collectible upon

the return of a function call. This insures that a node will not be collected as long

as the state of the G-machine may include a pointer to that node. Temporary nodes

that are to be examined for collectibility are identified using the stack mechanism

described above. On the other hand, persistent nodes can be examined for collecti-

bility at any time.
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GARBAGE COLLECTION ALGORITHM

The garbage collection algorithm used in the design is a concurrent modified

reference counting scheme. A reference counting scheme is well-suited for a dual-

processor implementation because the operations required to maintain reference

counts are inherently local operations. As a result, little explicit cooperation is

required between the evaluator and the collector. In addition, using a separate pro-

cessor to collect garbage in parallel with the evaluation process is the only way truly -

real-time list-processing is achievable.

A shortcoming of the traditional reference counting scheme is that it cannot

.collect cyclic structures. A simple example illustrates this:

, ,

fix)
G-->

~
Figure 2. Example of garbage creation.

Let A, B, and C be a set of linked data elements in memory as shown in Figure 2.

After the operation f(x), A no longer references B. The graph rooted at B is garbage,

but its reference count is one due to the reference from C to B. Therefore, the refer-



11

ence counting scheme does not detect that Band C can be collected, since only those

elements with a reference count of zero are identified as collectible. Concurrent gar-

bage collection schemes have been proposed which use reference counting, but collec-

tion is augmented by an independent trace-of-accessible-storage collection in order to

collect cyclic structures [Deu76, Wis77].

The algorithm used in this design is a concurrent reference counting scheme

which was developed at OGC [Deb84, Kie86, Fos85]. Included in the algorithm is a

mechanism for detecting and collecting cyclic structures. Cyclic structures are

identified by traversing sub-graphs whose roots have been identified as potentially

collectible. Since the algorithm supports a dual-processor implementation, the G- .

machine should be interrupted only if it is creating objects faster than garbage can

be salvaged. Because of the parallel nature of the algorithm and its ability to detect

cyclic structures, it meets the garbage collection requirements of the G-machine.

Conceptually, the garbage collection algorithm can be divided into two kinds

of operations; 1) those operations which manage the reference counts, and 2) those

operations where the collectibility of a node is determined. Both of these aspects of

the algorithm are described.

Managing Reference Counts

As with the traditional reference counting scheme, reference counts may be

modified when the graph image in memory is altered by the evaluator. In a write

operation to memory, reference counts are incremented if the datum being written is

a pointer. Similarly, in a trash operation, reference counts are decremented if the

node being overwritten contains a pointer.
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Reference counts are also modified when nodes are collected. If the contents of

the node that is collected contains pointers, then the reference counts of those nodes

pointed to are decremented.

Determining Collectibility

Nodes which are examined for collectibility are obtained from two sources;

temporary nodes allocated during a function call, and persistent nodes whose refer-

ence counts have been decremented. Persistent nodes can have their reference

counts decremented as the result of the G-machine trash instruction or when a node

that points to the persistent node is collected. In the latter case, a distinction IS

made between those persistent nodes that are part of a cyclic sub-graph that IS

being collected and those that are not. The reason for this will become apparent

when the cycle-detection portion of the algorithm is explained.

If the reference count of a node N is zero, then N is immediately collectible. If

N contains a pointer, then the reference count of the node to which it points (M) is

decremented. If node M is persistent, it is added to the set of nodes that are to be

examined for collectibility. Otherwise node M is a temporary node and is already (or

will be) in the set of nodes to be examined for collectibility upon the return from a

function call.

If the reference count of the node N is greater than zero, then the sub-graph

rooted at node N is traversed to determine if it is a cyclic structure that is collecti-

ble. The main function of the traversal process is to count the number of local arcs

(or references) in the sub-graph and compare this value to the actual reference

count. If the values are equal, then it is assumed there can be no external references
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to the node and it is collectible. The concurrent algorithm requires three additional

data fields besides the reference count for each graph node. These are 1) the local

reference count, 2) the recently_visited bit which is used to indicate that the evalua-

tor has modified the expression graph, and 3) the is_collectible bit which is used to

indicate the collectible status of a node.

The concurrent garbage collection algorithm requires four traversals of the

sub-graph. Four traversals may seem as an excessive amount of overhead, but it is

important to note that the approach is incremental in that the sub-graph being

traversed is a small portion of the expression graph in memory. In Figure 3 the sub-

graph rooted at node N is traversed to show how the collectibility of the nodes N, 0, .

P and Q is determined.

In Traversal 0, the local reference count and the recently_visited bit are

cleared. A non-zero value for the local reference count terminates the traversal. Dur-

ing Traversal 1, the local reference count is incremented each time the node is

visited. Traversal 1 does not visit the children of those nodes with the

recently_visited bit set. Note in the example that the G-machine has visited node 0

during the time between Traversal 0 and Traversal 1 (node 0 has had its reference

count incremented, and its recently_visited bit is set). Therefore, node Q remains

unaffected after Traversal!.
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Traversal 1

Traversal 3

Figure 3. Example of sub-graph traversal.

In Traversal 2 the local reference count is compared to the reference count. If

they are equal, then the node is marked as collectible. Once a node is encountered

that is uncollectible, then all nodes that are children of that node are marked uncol-

lectible as well. In Figure 3, both nodes 0 and Q are marked as uncollectible after

the completion of Traversal 2.

In Traversal 3 the nodes that are marked as collectible are collected. For

each node that is collected, the reference count is cleared. During Traversal 3, the
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first node that is encountered in the sub-graph that is not collectible (node 0 in the

example) must have its reference count decremented. Since the collectibility of the

node has already been determined by the graph traversal process, it is not necessary

to add it to the set of nodes to be examined for collectibility.
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MEMORY MANAGEMENT ROLES OF THE HOST

k3 the G-machine is evaluating the expression graph in memory, garbage col-

lection is conducted in parallel by a separate processor. This processor, called the

host processor, performs other related functions such as maintaining a free list, allo-

eating nodes to the G-machine, and implementing the stack allocation with per-

sistence scheme. The remainder of this section describes how these functions are

implemented.

Maintaining a FreeList

The method used by the host for maintaining the list of free nodes is a variant

of the "buddy system" [Knu68] as described in IKie86]. The memory address space is

divided into blocks, each of which has a buddy (save the largest one) whose address

differs from its own in just a single bit. Each of these blocks has a flag bit associated

with it known as the allocated-flag. k3 nodes, and thus blocks become allocated, the

allocatedJlag associated with each node (and block) is set. Conversely, as nodes, and

thus blocks are collected, the allocated-8ags are cleared. Figure 4 shows the blocks

and how the allocatedJlags might be set for a memory with eight nodes. Three

nodes (2, 6 and 7) are not allocated.
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Figure 4. Example of buddy system memory allocation.

If the host started at the beginning of the memory address space, the time

required to find the next free node would be O(1og(x)), where x is the size of memory

in nodes. If the host stores the address of the last node allocated, however, the aver-

age time required to find the next available node becomes constant and is indepen-

"dent of memory size. Therefore, when the host allocates a new node, it stores the

address in a register to be used in processing the next allocation request.

Stack Allocation with Persistence

Temporary nodes to be examined for collectibility are identified through the

use of the stack allocation with persistence mechanism described earlier. To restore

the addresses of temporary nodes allocated during a function call, the host processor

can take advantage of the way the buddy system allocates nodes in memory. Since

the host is using the address of the last node allocated to identify the address of the

next free node in memory, nodes are allocated linearly through the address space.

As a result, nodes allocated during a function call are in the set of nodes that lie

between the address of first node allocated for the function and the address of the

Address allocated .flal!:s

()()() 0 1 1

001 1

010 0 0

011 1

100 0 1 1

101 1

110 0 0

111 0
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last node allocated.

Given the above conditions, storing the address of each node allocated during

a function call in a stack is not required. Instead, a stack, called the allocation

stack, can be used where each word in the stack need only contain the address of the

last node allocated for each function call. Upon a return from a function call, the

addresses of those nodes that were allocated during the call will lie between the

addresses of the top two words of the allocation stack. The host tests the

allocatedJiag and the persistenLbit for each node in this address space to obtain

the set of nodes that are to be examined for collectibility. Only those nodes that

have the allocatedJiag set and the persistenLbit cleared will be examined.

Allocating Nodes

One of the memory requirements of the G-machine is that memory must be

able to provide the address of the next free node upon request. Since the host main-

tains the free list, its functions also include identification of the next free node to be

allocated. Rather than having the host respond to each G-machine allocation

request directly, a buffer is used to provide the addresses of free nodes to the G-

machine. This buffer allows the G-machine to continue processing without have to

wait for the host to process each request. The host, therefore, upon an allocation

request passes the address of the next free node it identifies to the buffer instead of

the G-machine.

Unfortunately, allocating nodes is not as simple as merely passing free node

addresses to the buffer. The host must be able to obtain the address of the node

that was allocated to the G-machine in order use the stack method for identifying
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temporary nodes. Since the situation could occur that the G-machine is requesting

nodes faster than the host could process the output of the buffer, the host must keep

its own copy of the buffer.

To process an allocation request, the host moves the address of the node at

the head of its copy of the buffer to the top of the allocation stack. The next free

node is found using the buddy system described earlier and passed to the buffer.

This free node address is also added to the hosts copy.

Collecting Garbage

The garbage collection algorithm used by the host is the modified reference

counting scheme described in the previous section. The set of nodes to be examined

for collectibility is obtained from three sources; 1) temporary nodes as described

above, 2) persistent nodes whose reference counts have been decremented by a trash,

and 3} persistent nodes whose references counts have been decremented as a result of

garbage collection. The host places the highest priority on allocating free nodes and

collecting temporary nodes and the lowest priority on examining persistent nodes

whose reference counts have been decremented. This priority scheme corresponds

with the demand of the G-machine.

Because of the parallel nature of the algorithm and its implementation, situa-

tions where read-modify-write collisions of shared data can occur. A collision occurs

when two processors simultaneously access a data element, modify it, and write out

their new value to memory. As a result, the new value is different than what would

be obtained if one processor performed the same data operations sequentially, and,

most importantly, is incorrect.
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The only shared data element that the host processor does not explicitly set or

clear is the reference count. Therefore, only the reference count is subject to read-

modify-write collisions. There are two occasions where the host modifies reference

counts of objects in memory; 1) when a node is immediately collectible and it con-

tains pointers to other nodes, and 2) when a node in a subgraph is uncollectible and

the nodes which point to it are collected. On these occasions, the host reads the

reference count, decrements it, and writes the new value out to memory. These

situations occur relatively infrequently when compared to the number of times refer-

ence counts are modified due to G-machine write and trash operations. Therefore,

detecting situations where a collision could occur is not a function of the host proces- .

sor, but a function of the component that maintains reference counts on G-machine

write and trash operations.

To assist the detection of collisions the host processor outputs an additional

signal during the time it is decrementing a reference count. This signal indicates

that the host is entering a sequence of operations where a collision could occur. If a

collision has occurred, then the component which has detected the collision will fault

and restart its memory access when the host has signaled it has completed.

In summary, the host performs several memory management functions. It col-

lects garbage nodes, maintains the free list and allocates new nodes when requested.

The memory requirements of the host processor, the garbage collection algorithm

and the G-machine can now be used to define the functional requirements, and thus

the architecture, of the memory.
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MEMORY ARCHITECTURE

Given the memory requirements of the G-machine, the concurrent garbage col-

lection algorithm, and the host processor, a memory architecture designed to meet

those requirements is specified. This section provides a high level description of that

architecture and thus lays the foundation for the microarchitecture and prototype

design.

Tagged Architecture

Both the G-machine and the memory management scheme require several data

items that are to be stored with each graph node. Figure 5 shows the size and pro-

vides a brief description of each of these data items. Since the local reference count,

is_collectible bit, and the allocated.Jlag are only used by the host, these fields are

stored in a memory bank accessible only to the host processor. The remainder of the

fields will be stored in a memory that is shared. Separating the data in this manner

reduces the amount of memory contention during processing.

In order to provide efficient access of shared data, memory is dual-ported.

This dual-ported memory includes a mechanism so that two independent busses (the

host bus and the G-machine bus) can access a common memory.
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Figure 5. Fields of a graph node.

Memory Functions

As with conventional memories, the memory must provide a mechanism for

data storage and retrieval for both the host processor and the G-machine. However,

in order to meet the requirements of the G-machine and the memory management

scheme, the role of the memory grows beyond that of conventional memories. As a

result, memory consists of a set of interacting units which form a complex whole, and

will be referred to as the Graph Memory System (GMS). The term memory will be

used to refer to that portion of the GMS that provides the conventional memory

Field Name :II:bits DescriDtion

local reference count 8 Holds local arc count during
sub-S!:raph traversal.

is_collectible 1 Indicates if node is collectible during
sub-S!:raph traversal.

allocated.Jlag 1 Set when node has been allocated

to the .G-machine.
reference count 8 Represents the number of references

from the active expression naph.

recently_visited 1 Set when reference count of node has
been modified bv G-machine operations.

persisten Cbit 1 Indicates if node is persistent
or temporarv.

forever_uncollectible 1 This bit is set when the
reference count field overflows.

is_evaluated 1 Indicates if node has been evaluated
bv a previous reference.

is.....pointerl 1 Indicates if first data field is a
pointer or a basic value.

datal 32 First data field.

is_poin ter2 1 Indicates if second data field is a
pointer or a basic value.

data2 32 Second data field.
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functions. Besides data storage and retrieval, other GMS functions include the

maintenance of reference counts and the buffering of data for the host and the G-

machine.

Maintaining Reference Counts

The garbage collection algorithm requires the maintenance of reference counts,

which can be an expensive operation if executed in software by the G-machine.

[Ung84] estimates that an additional twenty percent more CPU time is required to

maintain reference counts. This overhead certainly justifies the design of specialized

hardware to support reference counting and moving that task to the GMS.

The design of this hardware is simplified with the addition of a G-machine

trash instruction. The G-machine emits the trash instruction when it is about to

"update", or overwrite the contents of a node. This is the only instance where refer-

ence counts are decremented. As a result, the hardware will always increment refer-

ence counts on a write operation and decrement on a trash operation.

Buffering Data

The benefit of buffering is that it reduces the number of wait states and inter-

rupts that may be required during processing. There are three kinds of data that

are used in the memory management scheme that are buffered. The first type of

information that is buffered are the addresses of free nodes that are to be allocated

to the G-machine. Free node addresses are placed in the buffer, called the FIFO, by

the host processor and given to the G-machine upon request. A hardware buffer can

respond to an allocation request from the G-machine much faster than can the host
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processor.

A hardware buffer is also provided for signals emitted by the G-machine to

indicate a call, return or alloc. This information is required by the host processor to

control garbage collection. This buffer, which is called the Signal Queue, relieves the

G-machine from having to enter a wait state in order to synchronize the transfer of

data to the host. As long as the host processes these signals in the same order as

they are generated by the G-machine, the internal state of the host will accurately

trace that of the evaluation as it proceeds.

A third buffer, the Garbage Can, is used to store the addresses of persistent

nodes whose reference counts have been decremented. These nodes are identified and.

placed in the buffer by the reference counting hardware. They are retreived by the

host processor and examined for collectibility. This buffer allows the reference count-

ing hardware to continue to process write and trash operations without having to

wait for the host to determine the collectibility of a node it has previously identified

as potentially collectible.

Data and Signal Paths

Figure 6 shows the data paths and signals between the GMS, the host and the

G-machine that would be required to implement this functionality. The following

explains each of the signals shown in Figure 6:
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Figure 6. Data paths between the GMS,
the Host and the G-machine.

(1) siTLrdy. The value of sinJdy indicates the ready status of the Signal Queue.

If the Signal Queue is ready, then instructions can be enqueued for later pro-

cessing by the host.

(2) alloc. If memory is ready and sinJdy indicates that the Signal Queue is ready,

then the G-machine can emit the alloc signal. Alloc dequeues a new node

address from the FIFO, and is itself enqueued by the Signal Queue to be pro-

cessed later by the host.
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(3) call. If the Signal Queue is ready, the G-machine can emit the call signal.

If the Signal Queue is ready, then the G-machine can emit the return

Si~enq is used by the G-machine to enqueue instructions on the Signal

(6) memory_readyA. MemorYJeadyA is used to indicate the ready status of the

memory port that is used by the G-machine. The ready status of port A is

independent of the ready status of port B.

(7) readA. If port A of memory is ready, then the G-machine can emit a readA sig-

nal.

(8) writeA. If port A of memory is ready, then the G-machine can emit a writeA

signal. The writeA signal will be processed by the memory portion of the GMS

and the reference counting hardware.

(9) trash. The G-machine can emit a trash when port A of memory is ready.

Trash is processed by the reference counting hardware of the GMS.

(10) memory_readyB. MemorYJeadyB is used by the host processor to obtain the

ready status of its memory port.

(11) writeB.

(12) readB.

ready.

The host may write to memory when port B of memory is ready.

Similarly, the host may read from memory when port B of memory is

One bit of the hosts readB signal is used to indicate that the host is

modifying the reference count field. When this occurs, the reference counting

hardware of the GMS will enter a detect collision state.

(4) return.

signal.

(5) sJg_enq.

Queue.
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(13) grdy. The value of grdy indicates to the host processor that the Garbage Can

contains persistent nodes whose collectibility need to be determined.

(14) gcaTLdeq. The host uses the gcan_deq signal to dequeue nodes from the Gar-

bage Can.

(15) gfull. The value of the gfull signal indicates to the host the full status of the

Garbage Can. If the Garbage Can is full, then immediate attention is required.

(16) souLrdy. The value of soutJdy indicates to the host if G-machine instructions

have been buffered by the Signal Queue.

(17) sig_deq. If the Signal Queue contains instructions to be processed, then the

host processor uses si~deq to dequeue an instruction.

(18) sig. The value of sig represents the alloc, call, or return that was enqueued by

the Signal Queue.

(19) fifo_enq. If the value of siq was alloc, then once the host has identified the next

node to be allocated to the G-machine, it uses fifo_enq to add the address of the

node to the FIFO.
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GRAPH MEMORY SYSTEM MICROARCHITECTURE

The Graph Memory System (GMS) architecture consists of 1) three FIFO

queues that provide buffering of data between the host and the G-machine, 2) a

dual-ported memory that allows two different busses to independently access the

memory, 3) an addressing scheme that supports tags and a list-structured memory,

and 4) a custom VLSI component whose main function is to maintain reference

counts. The GMS must be able to interface with the G-machine whose clock speed is.

expected to be 10 MHZ and the Host processor (the Motorola 68020 [Mot85]) whose

clock speed is 16 MHZ. Figure 7 shows the microarchitecture of the GMS. A

description of this microarchitecture and the hardware components which .were used

in the prototype design follows.

The Buffers

The GMS has three queues that buffer information passed between the Host

and the G-Machine. The component that implements these buffers is Monolithic

Memories First-In First-Out (FIFO) Cascadable Memory [Fir84]. The component is

asynchronous with a shift-in/shift-out rate of 10 MHZ. Not shown in Figure 7 are

the latches [Int84] required to tri-state the outputs of the FIFO and the Garbage

Can (GCAN). Functionality of each queue is as follows:
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Figure 7. Data paths with Graph Memory System expanded.

(1) SIGQ. This is the Signal Queue that buffers G-machine instructions that are to

be processed by the host.

(2) FIFO. The FIFO holds addresses of free nodes in memory and services alloca-

tion requests from the G-machine. When no valid output is available the

memorYJeady signal seen by the G-machine is unasserted. The Monolithic

Memories FIFO component has a 1.3 microsecond data throughput or "fall

through" time. Therefore, the FIFO queue should be filled by the host processor

before evaluation commences in order to avoid a lengthy delay.
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If the FIFO frequently becomes empty, then perhaps another component with a

shorter "fall through" time should be considered. The FIFO only becomes

empty when the G-machine emits several allocation requests in a short period

of time, or the host cannot keep up with garbage collection. Data from simula-

tions suggest that the SIGQ will fill up before the FIFO becomes empty. This

implies that the G-machine will wait more frequently for the availability of the

Signal Queue rather than for data to "fall through" the FIFO.

GGAN. The Garbage Can buffers the addresses of nodes that are potentially

collectible. These nodes are identified by the reference counting hardware.

The Dual-Ported Memory

The components that implement the memory portion of the GMS are Intel's

Advanced Dynamic RAM Controller i8207 [Adv84] and Texas Instruments 256K

Dynamic Random-Access Memory components [Tex84]. The i8207 provides the dual-

ported memory interface allowing two different busses to independently access

memory. The main functions of the i8207 are to arbitrate memory requests between

the two ports, provide the control for the dynamic RAMs, generate the refresh con-

trol given a refresh period, and generate the memory ready signals.

Since the i8207 can run at 10 MHZ, the G-machine/memory interface IS syn-

chronous and is designed as a no-wait state system [Rig84]. A no-wait state system

takes advantage of the fact that the components are synchronous and minimizes the

delay required for memory accesses based on their timing. The minimum number of

cycles for a G-machine memory access, from the time it sends the signal to memory

to the time it can latch the data, is three cycles (or 300 ns with a 10 MHZ clock).

(
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t
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The Host/memory interface is asynchronous and a bus controller (i82288

[Int84], for example) is required. The bus controller adds at least one cycle to the

memory access time. The acknowledge signal produced by the i8207 is also emitted

one cycle later than the acknowledge signal for its synchronous port. The delay in

the acknowledge signal is required to insure that valid data is on the address/data

bus before the host latches the data. A minimum of five cycles (or approximately 300

ns for a 16 MHZ clock) is required for a host memory access.

Memory Addressing Scheme

The portion of the graph node that is shared by the host, the G-machine, and

the reference counting hardware is divided into two parallel memories. The first area

is called the Graph Memory and contains the is_evaluated bit, the two data fields,

and the two is_pointer bits. These data are modified only by the G-machine, but

read by both the reference counting hardware and the host. The second area (the

Tags Memory) contains the remainder of the graph node; the reference count,

recently_visited bit, persistenLbit, and the forever_uncollectible bit. The G-machine

does not access these data. By thus partitioning the physical memory, memory con-

tention is significantly reduced.

Figure 8 shows how a memory module, holding up to 106 graph nodes would be

configured. The i8207 supports up to a maximum of four 256K memory banks that

are low-order interleaved. For four 2561< banks, twenty bits of address are required.

To support a list-structured memory, the data fields of the graph nodes must be indi-

vidually addressable. Therefore, two additional signals are required to select the

DRAM controller which controls the memory bank holding the desired data field.
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Since the tags are stored in a separately accessible area, one signal line must be used

to select the i8207 which controls access to that data.

----------------------------

25CK x 1

~

I
I

:

EJ
i8OO1 25CKx 11

: DRAM addreoo ().8 > ref.ct: I~Y18

I Omt. " bit i

: RAS/CAS 0.3> for une i'
I
I TAGS MEMORY----------------------------

Figure 8. A memory module.

If the signals needed to select the DRAM controllers on a memory access are

encoded as part of the address, then an initial 23 address bits are required for the

first memory module. Each additional memory module requires 3 additional address

bits to select the DRAMs as described above. Using this addressing scheme, a 32

bit-wide address will support up to 4 memory modules, or a total of approximately

40 Mbytes of real memory.

The Reference Counting Hardware (Ref-Chip)

The only component in the GMS requiring a customized design is the ref-chip.

Its main functions are: 1) to maintain reference counts, and 2) to identify potentially
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collectible nodes and pass them to the host (via the Garbage Can). The ref-chip is

synchronous with the G-machine (and thus with memory) and runs at 10 MHZ. The

ref-chip receives instructions from the G-machine and processes them one at a time

in the order they are received. If the ref-chip is in the process of executing an

instruction, a buffer of length one is included in the design which is able to store the

next instruction from the G-machine. When this buffer becomes full, the G-machine

must be inhibited from accessing memory until the ref-chip has completed processing

its current instruction. The ref-chip inhibits the G-machine from accessing memory

through the use of its rdy signal.

Because the graph node is divided into two separately accessible areas, the'

ref-chip has two ports; one which provides access to the Graph memory, and the

other which provides access to the Tags memory and the Garbage Can. The only

time the ref-chip accesses Graph memory is immediately after the receipt of a trash

instruction. The remainder of the time, only Tags memory or the Garbage Can is

accessed. By having two separate ports, the ref-chip can do most of its processing

and memory a.ccesses in parallel with the G-machine. The remainder of this section

describes how the ref-chip implements its functionality. A more detailed description

of the specifications for the ref-chip design is provided in Appendix A.
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G-machinel
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Figure 9. Sources and destinations of ref-chip signals.

Maintaining Reference Counts

Upon receiving a write signal from the G-machine, the ref-chip will latch the

value of the datum being written from its GPORT. If the datum being written is a

pointer, then the ref-chip will increment the reference count using its TPORT. Upon

receiving a trash, the ref-chip will again latch the address of the trash from its

GPORT. The ref-chip emits "not ready" to the G-machine prohibiting access by the

G-machine to this address in Graph memory until the ref-chip is able to read its con-

tents. If the data field of the node contains a pointer, reference counts for the node

to which it points are decremented using the ref-chips TPORT.

The reference count field is the only data stored in memory that is subject to

read-modify-write sequencesby both the host processor and the ref-chip. To avoid

GRDY RDT WRT RMW
GC-RDY Garbage CanTRDY

RDY

j<.:u..., Cool

G-machine

TPORT Tags MemoryREF-CHIP
I

GENQ GarbageCan
G-machinel

/1 GPORTGraph Memory
RDG WRG TRASH
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collisions, the ref-chip includes a mechanism to detect these situations. This

mechanism requires only one additional signal that is to be emitted by the host to

the ref-chip. This signal (RMU') is to remain valid during the entire time the host is

modifying a reference count. While this signal is asynchronous to the ref-chip, it is

assumed that the bus-controller for t.he host/memory interface will provide the

necessary synchronization.

The ref-chip samples the RMW signal every cycle. On the first cycle that the

signal is valid, the ref-chip latches the address from the host address/data bus. The

ref-chip enters a detect-collision state a.nd does not return to its original state until

the host signals it has completed.

If at any time during a read-modify-write sequence the ref-chip enters a

detect-collision state, then the ref-chip must determine if the host is accessing the

same memory address by testing the contents of the address it has latched. If the

host is accessing the same address and the ref-chip is in the read or modify stage of

the sequence, the ref-chip must fault and restart its action when the host indicates

that it has completed. If the ref-chip has already written the data, then no fault is

required.

The amount of processing time that is lost when a collision between the host

and the ref-chip occurs is quite high ( just accounting for memory access time by the

host, a minimum of approximately 900 ns). However, if each address in a memory

module is equally likely to be used, then the probability of a collision occurring is

about one in a million.
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Identifying Potentially Collectible Nodes

When the ref-chip decrements the reference count of a node, it tests the per-

sistence bit to determine if the node should be passed to the Garbage Can. If the

persistenLbit is not set, then this indicates that the node is a temporary node and

will eventually be examined by the host. If the persistenLbit is set, then the

TPORT is used to pass the node to the Garbage Can.

.

i
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SIM:ULATING THE GMS DESIGN

An initial simulation of the garbage collection algorithm was conducted by

[Fos85] in order to evaluate the performance and correctness of the algorithm.

Included in the simulation was a dynamic graph image created by a mutator (the

G-machine), and a host that performed the garbage collection. Analysis of equili-

brium conditions in the simulation showed that the amount of processing required by

the host was not excessive. What was not included in the simulation model by.

[Fos85] were delays introduced in mapping the algorithm to a hardware

configuration, and the impact of memory contention. Therefore, the main purposes

of simulating this memory design were to ai~ in validating the architecture and to

measure the impact of resource contention upon performance. Simulation was also

used as a tool for analyzing the relative performance of different design

configurations.

The simulation was written in C and used the Teamwork [Tea86] subroutine

library. Teamwork allows one to build programs as a set of concurrent cooperating

tasks with scheduling and communication provided by Teamwork primitives. C

augmented with the Teamwork library was chosen as the simulation language over

others (particularly N.2) because of the freedom in the level of abstraction used to

model the architecture. Also, it is much faster than N.2, so thousands of simulation

cycles could be executed fairly quickly.
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Since the purpose of simulation was to validate the design and evaluate the

effect of resource contention upon performance, a detailed simulation of the graph

and the garbage collection algorithm was not necessary. Instead, graph reduction by

the G-machine and and garbage collection by the host were modeled stochastically

by the frequency of memory accesses. On the other hand, the timing of the GMS

hardware and the signals between the various functional units were modeled accu-

rately. A few concessions had to be made due to the way Teamwork passes mes-

sages between tasks, but for the most part, the simulation is phase accurate for the

signals generated during processing.

The remainder of this section discusses how the workload was defined for the.

simulation, ~he assumptions that were made in the model, and the effect of those

assumptions upon the simulation results. A more detailed description of how the

design was modeled.is provided in Appendix B.

Defining a Workload

The G-machine has two types of instructions; CISC instructions and RISC

instructions. The CISC instructions are those instructions that are generated by the

compiler and are to be executed by the G-machine. The Instruction Fetch and

Decode Unit [Kie85,Ran86A] of the G-machine expands the CISC instructions into a

sequence of one or more RISC instructions. These RISC instructions are sent to the

Processor Control Unit (PCU), which dispatches control signals on a cycle-by-cycle

basis [Ran86B]. The signals emitted to the GMS are based on the RISC instructions

processed by the PCU. Therefore, the workload for the GMS is defined as the fre-

quency of those RISe instructions that would emit the GMS signals call, return,
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Unfortunately, dynamic RISe sequences produced during evaluation were not

available. Therefore, a static analysis of the RISe sequences defined for each else

instruction in [GAH86] was used to derive the frequency of instructions. If each

Clse instruction was processed exactly once, then out of the expected total number

of cycles required to execute these instructions, approximately 16 percent of the

cycles would include a signal sent to memory. For these memory signals, the relative

frequency of each type of signal is shown in Figure 10.

Instruction

read
write
trash
alloc
call

return

Total

Percent

28.1
42.1
12.3
10.5
3.5
3.5

100.0

Figure 10. Relative frequency of GMS instructions.

The length of the simulation was defined by specifying the number of G-

machine RISe instructions to be "executed". The workload for the GMS is the per-

centage of those RISe instructions that emit signals to memory. This percentage

was defined by specifying a rate of G-machine allocations per second. Increasing the

allocations per second increased the percentage of instructions executed by the GMS,

but the relative percentage of each of the GMS instructions remained constant.

Although an approximate rate of up to lOOK allocations per second is expected for

the G-machine, the actual rate is a function of the program and can vary. There-

fore, the allocations rate was a simulation parameter that could be varied. Varying
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the allocation rate provided valuable information about the sensitivity of perfor-

mance to the frequency of allocations.

Simulation Assumptions

Since the simulation did not include an actual memory or the creation of an

actual graph image, several assumptions about the graph image had to be made.

These assumptions were expressed as probabilities so that decisions in the simulation

could be made using the value of a random variable. Simulation assumptions

regarding the characteristics of the expression graph are as follows:

(1) When the Ref-chip receives a write or a trash, 50 percent of the time the node

is a pointer and reference counts need to be modified.

(2) When processing a trash and the node is a pointer, the node whose reference

count is decremented is always sent to the Garbage Can. This makes the

model more pessimistic in terms of the number of nodes requiring examination

by the host.

(3) The assumptions regarding the size of the sub-graphs traversed by the host

were largely based on a crude analysis of data provided by [Fos85]. The data

consisted of a series of time interval checkpoints where the number of root.

nodes, the number of nodes visited and the number of nodes collected for both

temporary nodes and persistent nodes from the Garbage Can were provided.

For each of these checkpoints, the average number of nodes visited (sub-graph

size) and the average number of nodes collected per graph was calculated. Fig-

ure 11 shows the probability distributions of sub-graph sizes that were obtained

from this analysis.
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Figure 11. Probability distributions of sub-graph sizes.

As can be seen, the number of nodes visited by the host during graph traversal

is expected to be quite small. Since no actual data was available to verify this

information, it would be helpful to have information about the sensitivity of the

garbage collection scheme to the average sub-graph size. To provide this infor-

mation, simulations could be run using the above probabilities, or probabilities

could be derived from Poisson distributions. The Poisson distribution was

chosen because it could be defined to have an appearance similar to the distri-

butions shown above, or by varying the parameter m, the distribution could be
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shifted to the right or left.

(4) Analysis of the [Fos85] data also showed that an average of .95 nodes were col-

lected for each temporary root whose sub-graph size was zero. Similarly, an

average of .80 nodes were collected for those persistent node roots with nil sub-

graphs.

(5) During the Traversal 3 of a sub-graph by the host, 50 percent of the time a

node is reached that is uncollectable and its reference count must be decre-

mented.

Providing an accura.te model of the host processor was also difficult. Since

operations performed by the host processor are executed in software, including"

instruction execution times in the model would have been the best approach. Unfor-

tunately, the design of the MC68020 makes it very difficult to calculate exact

instruction timing. The" combined effects of the on-chip cache, instruction prefetch,

operand misalignment, and instruction execution overlap result in varying execution

times from one context to a.nother. Not only does the MC68020 overlap instructions,

it has an internal bus controller that can perform bus operations in parallel with

internal processor operations. Since the processing required by the memory manage-

ment scheme is dominated by memory accesses, it was concluded that memory

access time would be the limiting factor in the hosts performance. Therefore, the

memory management functions of the host processor were modeled as sequences of

memory accesses.

The two assumptions that have the largest impact on the accuracy of the

simulation are 1) the manner in which workload was defined,and 2) the a58umptioDS
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regarding sub-graph size. Both of these aspects of the model were included as simu-

lation parameters. The ability to vary the workload and the size of the sub-graph in

simulations provides information about the performance of the design under varying

conditions.
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SIMULATION RESULTS

The purpose of simulating the design was twofold; 1) to aid in validating the

architecture, and 2) to provide information about the impact of resource contention

upon performance. Simulation was quite effective as a validation tool. The architec-

ture described herein is the result of several iterations in which flaws were discovered

through simulation. In order to provide information about the impact of resource

contention, the simulation was designed so that a variety of statistics could be gath-

ered. This section presents an analysis of some of those statistics with respect to

their implications about performance.

Analysis of the Design

The throughput of the G-machine was used to compare the effectiveness of the

design under various conditions. This throughput was measured as the simulated

time required to execute 500K G-machine RISe instructions. Several simulations

were executed to find the point where various simulation statistics converged and

became stable. At approximately 400K RISe instructions convergence was observed

in the average number of cycles the G-machine waited for a memory ready signal

and the average number of cycles for a G-machine memory access. Therefore, 500K

was chosen as the number of instructions to simulate.

To compare the relative impact of the reference counting hardware and graph

traversal by the host upon the throughput of the G-machine, three models were
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simulated. These models were:

(1) G-machine only. No garbage collection was performed at all.

(2) Reference count collection only. Garbage collection was based only on the value

of reference counts (no sub-graph traversal to detect cyclic structures). This

model was used to provide information about the cost of the hardware sup-

ported reference counting.

(3) Graph traversal. The full garbage collection scheme was simulated.

Several simulation parameters could be specified to analyze different design

configurations. Two memory modules could be simulated instead of one, and the

arbitration algorithm used by the i8207 could be varied. For all simulations

presented here, however, only one memory module was simulated and the PortA

Priority algorithm for arbitration was used (earlier simulations had shown that these

parameters had relatively little impact upon overall performance). Graph sizes were

generated using the data provided by [Fos85] unless otherwise specified.

The simulated time required to execute 500K G-machine RISe instructions for

each of these models is shown in Figure 12. The allocation rate was set at the

expected level of lOOK nodes/second. From the data it can be observed that a tradi-

tionaJ reference counting scheme could be implemented with little impact on the

throughput of the G-machine. Also, most of the overhead of the full-traversal model

is due to the cycle-detection portion of the algorithm.

Similar information for the Symbolics ephemeral garbage collector in [Mo084]

is also provided in Figure 12. The Symbolics machine is a commercial LISP machine

which uses a demand paged virtual memory. For garbage collection, a modified
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version of Bakers algorithm is used where the garbage collector process is interleaved

with the user program. Memory is divided into spaces and hardware support is pro-

vided for a barrier which exists between oldspace and other spaces. This barrier

prevents the uncontrolled propagation of references to oldspace. The barrier

operates in parallel with the user process unless a word is read from memory that

contains an oldspace address. When that happens, a transport trap occurs and the

memory location is replaced with the new address or the object is copied.

The ephemeral collector used by the Symbolics machine divides objects into

three categories; static, dynamic, and ephemeral objects. Ephemeral objects are

those object~ that are assumed to be likely to become garbage soon after they are.

created. Ea.ch category is collected independently with the collector concentrating

its effort on ephemeral objects. A table of references to ephemeral objects is main-

tained which is used as a root set for the ephemeral scavenge. The hardware barrier

also maintains this table.

The statistics shown in Figure 12 for the Symbolics collector are for two test

programs each of which are designed to run for approximately one hour. Compiler

compiles a medium size file 100 times and Boyer is the kernel of a theorem-prover.

The statistics for the Boyer program with no garbage collection were extrapolated.

Although the Symbolics machine uses a virtual memory which presents a

different set of problems with regards to garbage collection, it is a machine where a

mix of hardware and software is used to perform garbage collection. It that sense, it

represents the state-of-the-art and data regarding the performance of its garbage

collector can be u:sed to evaluate the relative performance of the GMS. Even with
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the consideration that the simulation data may be optimistic, the information in

Figure 12 shows that the G-machine garbage collection scheme can effectively

manage the higher allocation rate with approximately the same relative performance

of the ephemeral garbage collector.

Figure 12. Execution times of simulations and
Symbolics garbage collector.

More revealing is data produced by simulation of each of the three models

with varying allocation rates. Figure 13 shows the total number of simulated mil-

liseconds required to execute 500K G-machine instructions. (If each G-machine

instruction took only one cycle, 500K instructions would be executed in 50 mil-o

liseconds.)

Performance of Simulation Models
Simulation Number Relative Allocation

Model of Milliseconds Time Rate/second

G-machine only 53.12 1.00 lOOK
Ref. count only 53.78 1.01 lOOK
Full traversal 73.46 1.38 lOOK

Performance of Svmbolics Collector

Benchmark GC Number Relative Allocation
ProS!:ram TVDe of Seconds Time Rate /second

Compiler none 3,134 1.00 2.5K
ephemeral 3,244 1.04

Boyer none 3,535 1.00 19K
ephemeral 6.853 1.93
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Figure 13. Execution time of 500,000 G-machine instructions.

As shown by the graph, the impact on the throughput of the G-machine of reference

counting is relatively small. In addition, its impact on performance increases at a

constant rate with respect to the allocation rate. This implies that the mechanism

for maintaining reference counts is quite effective and interferes little with the pro-

cessing of the G-machine.
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On the other hand, the curve which represents the total execution time of the

traversal model has a steep slope. The slope of the curve is different for allocation

rates less than approximately lOOK than for allocation rates greater than lOOK.

For allocation rates less than or equal to 75K nodes/second, the impact on the

throughput of the G-machine of the graph traversal model can be attributed to

resource contention. For allocation rates greater than lOOK nodes/second, it is the

workload of the host processor which becomes the dominant factor in defining the

processing time. These conclusions were drawn from the following observations:

(1) For each simulation, the number of cycles that both the Tags and Graph

memories were not servicing a memory request was recorded. This number was

at a minimum when the allocation rate of 75K nodes/second was simulated

(296K and 230K cycles for the Tags and Graph memories respectively). As the

allocation rate increased beyond 75K per second, the number of free cycles for

both memories increased as well. This increase was due to the fact that the

host processor was not able to keep up with demand and the Signal Queue and

the Garbage Can buffers were allowed to fill up. When this occurred, the G-

machine was prohibited from accessing memory until these resources became

available.

(2) For allocation rates less than lOOK nodes/second, the average number of

nanoseconds for the host to read from memory steadily increased from 479 to

513 nanoseconds. This increase could be attributed to the effect of resource con-

tention. For allocation rates greater than lOOK nodes/second, the average

number of nanoseconds for a read from memory remained at about 519simu-

"
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Figure 14. Execution time of 500,000 instructions using
a Poisson distribution for sub-graph size probability.

In addition to the allocation rate of the G-machine, another aspect which IS

critical in defining the workload of the host processor is the size of the sub-graphs

that are traversed. Figure 14 shows the number of cycles it took to "execute" 500K

G-machine instructions for various sub-graph size probability distributions. The pro-

bability distributions were derived from Poisson distributions, and the probabilities

were the same for both temporary and persistent nodes. Using a Poisson distribution

to obtain probabilities and having the same probability for both types of nodes is an

oversimplification of the model. However, this data highlights the sensitivity of the

design to this aspect of the garbage collection scheme.
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Optimization

Simulation results show that the performance of the design and the garbage

collection scheme is sensitive to the workload of the host. The hosts workload is, in

turn, sensitive to the size of the sub-graphs that are traversed. Therefore, if the

number of sub-graphs requiring traversal were reduced, the memory management

scheme would perform better at higher allocation rates.

One optimization that has been suggested in [Kie86] is the use of a threshold

bit. The threshold bit is an additional graph node tag that is set when a node is first

allocated. If the threshold bit is set to one, then the node might be a root of a cyclic

sub-graph. When the host. examines a node for collectibility, it tests the value of the

threshold bit. If the reference count of the node is not zero, then the host decides if

traversal is necessary based on the value of the threshold bit. If only a small frac-

tion of all nodes are expected to be roots of cyclic structures, then the reduction in

the number of sub-graph traversals would be significant.

In addition, adding the threshold bit to the design is simple. An additional bit

is added to the G-machine instruction alloc. This bit indicates the value to which

the threshold bit should be set for the newly allocated node (all recursive functions'

would be identified by the compiler as potentially cyclic). When the G-machine

emits an alloc signal, the ref-chip will test the operand bit and set the threshold bit

for the newly allocated node in Tags memory. No additional memory accesses are

required by the host to read the threshold bit. It merely reads the threshold bit along

with the reference count at the beginning of its collection processing.
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Figure 15 shows the same information as Figure 13 except that data for the

graph traversal model includes thresholding. For these simulations, twenty percent of

the nodes examined by the host for collectibility have their threshold bit set.

/
/

/
/

00
~
1"

--------

.----'-' '-'-'
-.-.-"

- - -.': ':-

16K 26K ooK 76K lOOK 126K lOOK 175K 200K 226K

allocations/second

-.---.--- G-machine only
Rererence count collection only
Traver.al or sub-graphs, tbresholding added

Figure 15. Execution time with thresholding added.
20% of the nodes have the threshold bit set.

The addition of one bit, the threshold bit, has a significant impact on the per-

formance of the design. The workload of the host processor is reduced so that it is

able to handle allocation rates greater than lOOK nodes/second. In addition, since
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fewer sub-graphs are traversed, the performance would become less sensitive to vari-

ations in the sizes of the sub-graphs. Adding the threshold bit would certainly make

the memory management scheme more robust and able to handle programs with a

variety of memory management demands.
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SUMMARY AND CONCLUSIONS

A dual-ported real memory architecture that meets the requirements of the

G-machine has been designed and evaluated. Since the G-machine is expected to

have a high allocation rate, a main requirement of its memory is that garbage coHec-

tion be fast, which is accomplished best by having a parallel collection process.

Therefore, a concurrent, modified reference counting algorithm was used. As a

result, both the memory requirements of the G-machine and those of the collector

were considered in the development of a design.

The architecture of the G-machine and the manner in which it evaluates a

graph was also considered in the development of a memory management scheme.

The fact that the G-machine only overwrites the contents of a node at the end of a

reduction is exploited by the trash instruction. The trash instruction simplifies the

number of operations required to maintain reference counts. Also, a stack allocation

scheme was included in the d~sign so that graph references from the G-machine

traversal stack need not be maintained.

Once the data and the memory requirements of the host and the G-machine

were defined, the memory architecture could be addressed. The design included

three hardware buffers that queue the information passed between various units dur-

ing processing. This buffering reduced the number of wait states and allowed the

units to continue processingat their own pace (if the buffersdo not becomefull).
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The memory itself was made up of banks of dynamic RAMs which are con-

trolled by Intel's 8207 Advanced Dynamic RAM Controller. The 8207 provides sup-

port for two di.fferent busses to independently access memory, creating a dual-ported

memory. An addressing scheme was included to support a tagged memory and the

individually accessible data fields of the graph nodes. Using an encoded addressing

scheme, a 32-bit address supported 4 memory modules, or approximately 40 Mbytes

of real memory.

The graph node was divided into two separately accessible areas; data which

is used to represent the expression graph was stored in the Graph memory, and data

that was used only for memory management was stored in Tags memory. Storing

data in this manner reduced the contention for memory between those memory

accesses required by the G-machine for evaluation, and those used in memory.

management.

Off-the-shelf components could be used to realize the memory system, with the

exception of one custom VLSI component. The function of that component was to

maintain the reference counts based on the memory instructions of the G-machine.

This component exploited the fact that the graph node was divided into two

separately accessible areas and had two ports; one which accessed Graph memory,

and the other which provided access to the Garbage Can and Tags memory. There-

fore, much of the processing required to maintain reference counts could be done in

parallel with memory accessed by the G-machine.

Simulation of the design showed that it is effective in supporting the expected

high allocation rate of the G-machine. In particular, the use of hardware supported
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reference counting had little impact on the throughput of the G-machine. Given the

assumptions regarding the subgraph size and the workload, the cycle detection por-

tion of memory management was effective as well. The design was, however, sensi-

tive to high allocation rates and variations in sub-graph size. In order to make the

memory management scheme more robust, the use of a threshold bit to aid in identi-

fying potential cyclic structures was studied and found to be effective.

Further Research

A portion of the design that requires validation through a more detailed

analysis is the collision detection mechanism of the reference counting hardware. It

is unclear that the hosts bus controller will be able to provide a signal in time to

insure that a collision does not occur. This aspect of the design should be explored

to determine if external "glue logic" is adequate for signal synchronization, or if the

reference chip design needs to include its own synchronization mechanisms.

Perhaps the most exciting outcome of this research is that this memory

management scheme has practical real-time list-processing potential. The memory

can be realized in mostly off-the-shelf components, so the cost of building such a sys-

tern should not be excessive. The most fruitful research would be an analysis of the

design to see if it can be used for different kinds of processors and environments. Are

the portions of the design that tailor it to the G-machine intrinsically tied to the

performance of the system and its feasibility? Are there similar situations on a LISP

processor where an instruction like trash can be used? Can the scheme be used in a

virtual memory system? The possibilities certainly warrant further research.
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APPENDIX A: DESIGN SPECIFICATIONS

FOR THE REFERENCE CHIP

The main function of the Reference Chip (ref-chip) is to maintain reference

counts and to pass potentially collectible nodes to the Garbage Can. The signals the

ref-chip receives from the G-machine determines the sequence of operations the ref-

chip performs. For the G-machine instruction write, reference counts may be incre-

mented and for the trash instruction, reference counts may be decremented. If the

node is marked as persistent when its reference count is decremented, the ref-chip

passes its address to the garbage can.

A key to the ref-chip design is that it is synchronous to the G-machine and

memory. A synchronous design simplifies the internal logic with respect to interfac-

ing with other components and is the most efficient in terms of the number of wasted

"wait states" cycles. This requires that the G-machine, memory, and ref-chip all

operate at the same frequency of 10 MHZ. This 10MHZ clock is divided into two

non-overlapping phases, 4»1and 4»2.

Because the design is synchronous to the G-machine and memory, signals to

and from the G-machine are sent and received during one phase of the clock, and

memory signals are sent and received during the other phase. To aid in explanation

of the functions of the ref-chip, G-machine signals are assumed to be valid during 4»1,

and memory signals are valid during ~2,
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Inputs and Outputs

Trdy readt writet RMW Haddr

rdy GCrdy

REF-CHIP

clock

reset GCenq

Grdy readg writeg
!

tras!!

Figure AI. Ref-chip inputs and outputs.

Figure Al shows the inputs and the outputs of the ref-chip. The following

explains each of these signals:

(1) clock. The clock runs at a frequency of 10 MHZ. The two non-overlapping

phases, q,I and q,2, are generated internally.

(2) reset. Initializes all internal states and registers to place the chip in a known

state.

(3) Grdy. This signal is the memory ready signal output by that portion of

memory called the Graph memory. The Grdy signal is used to determine the

value of the internal state "graph memory ready." This signal is valid during

q,2.
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(4) readg. The majority of the time, readg is an input signal from the G-machine

that is sampled every cycle during <,b1.If the value of readg indicates that the

G-machine is accessing memory, then the ref-chip sets its internal state "graph

memory ready" to false. The only time that readg is used as an output is when

the ref-chip needs to read the contents of a node address that was the argu-

ment of a trash instruction. When this occurs, the G-machine is prohibited

from accessing memory (and using this signal) by the value of the ref-chip rdy

signal. The ref-chip can then use the readg signal to access Graph Memory.

(5) writeg. Writeg is valid during ~1 and sampled every cycle. When the value of

the signal indicates that the G-machine is conducting a ~rite to Graph

memory, it is also stored as an instruction to be processed by the ref-chip.

When the ref-chip receives a write instruction it sets its "latch data" (data will

be latched on .the next cycle) and "graph memory ready" (graph memory not

ready) states.

(6) trash. Trash is the signal emitted by the G-machine to indicate the contents of

a node are about to be overwritten and is valid during ~1. The ref-chip stores

the trash to be processed later and sets its "latch data" state (the node address

will be latched on the next cycle) and its own "ready" state to false.

(7) GCenq. GCenq is the signal used by the ref-chip to add a node to the Garbage

Can. The ref-chip also sets its "garbage can ready" state to false at this time.

Like all memory related signals, this signal is valid during ~2.

(8) Tport. Tport is a 32-bit wide address/data bus which provides access to the

Tags memoryand the Garbage Can. Contents of this busare valid during tP2.
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(9) GCrdy. The ref-chip samples the GCrdy signal every cycle during tP2 and its

value is used in determining the "garbage can ready" state.

(10) Haddr. Haddr provides access to the hosts address/data bus. If the ref-chip is

not in a "detect collision" state, then the contents of this port are latched every

cycle during tPl. The number of host address bits latched by the ref-chip can be

varied, but the probability of a "detect collision" state occurring is directly pro-

portional to the number of address bits that are sampled.

(11) RMW. This signal is output by the host processor and indicates that the host

is entering a read-modify-write sequence. This signal is sampled every tPl, and

the value of this signal sets the internal "detect collision" state. The Haddr

and t.he RMW sigl1als are the only signals that are asynchronous to the ref-

chip. The current design relies on external logic to insure that the signals are

stable before they are seen by the ref-chip (the host bus-controller would per-

form this function). However, it is uncertain that the ref-chip will see the sig-

nals in time to insure that a collision will not occur. When the host/memory

interface is defined in more detail, then this aspect of the design should be reex-

amined to determine whether external logic is adequate. Otherwise, the ability

to handle asynchronous logic should be included in the ref-chip design.

(12) writet. The ref-chip uses this signal to write to Tags memory.

(13) readt. The ref-chip uses readt to read from Tags memory. Use of both the wri-

tet and readt signals affects the "tags memory ready" state.

(14) Trdy. The Trdy signal indicates the ready status of Tags memory. This signal

is valid during tP2and is used to set the "tags memory ready" state.
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(15) rdy. The ref-chip has its own status signal that is sampled by the G-machine

(rdy is to be combined with status signals output by other memory com-

ponents). There are two conditions where the ref-chip emits a "not ready" sig-

nal; the first is when its buffer of G-machine instructions is full, and the second

is when it has received a trash instruction. This signal is valid during 4>1.

(16) Gport. The Gport is a 33-bit wide address/data bus. The ref-chip latches data

from this bus one cycle after it receives the G-machine signals write or trash.

The ref-chip also uses the Gport when reading from Graph memory. The Gport

is the only port that is tri-stated so that the port can be disabled when not in

use.

Functional Description

The internal logic of the ref-chip can be divided into two main areas of func-

tionality. The first manages the queueing of instructions received from the G-

machine and the latching of the contents of the G-machine address/data bus. This

portion of the logic will be referred to as the G-Machine Interface Logic.

The instruction queue can only hold two instructions at a time; the current

instruction, and the next instruction. As instructions are received from the G-

machine they are placed in this queue, always filling the current instruction first.

When the current instruction has been removed from the queue, the next instruction

is advanced to take its place.
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Figure A2. Ref-chip block diagram.

When an instruction is received from the G-machine, the G-machine Interface

Logic sets a "latch data" state to indicate that data will be latched from the G-

machine address/data bus on the next cycle. For the write instruction, the contents

of the bus will be the data being written by the G-machine, and for trash it will be

the address of the node to be overwritten. When the data is latched it is placed in

the queue along with the instruction. Once the data has been latched, the instruc-

tion is marked as valid and ready for processing.

The G-machine Interface Logic also maintains on a cycle-by-cycle basis the

ready state of the ref-chip. This ready state is a function of the type of instructions
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m the queue and whether both current and next are occupied. If the queue of

instructions is full the ready state is set to false. In addition, when a trash instruc-

tion is placed in the current position of the queue, the ready state is again set to

false. The ready state remains false until the ref-chip reads the contents of the node

to be trashed from graph memory. To minimize the number of G-machine wait

states, the ready status of the ref-chip should be emitted immediately (during the

same phase) after the receipt of a G-machine instruction.

The second part of the internal logic, the Memory Interface Logic, controls the

actions required to process each G-machine instruction. This logic mostly sequences

through a series of memory accesses based upon the value of the instruction and the

data that has been read from memory. Four internal states are maintained on a

cycIe-by-cycIe basis which are used to determine the actions of the sequencer: 1)

graph memory ready, 2) tags memory ready, 3) garbage can ready, and 4) detect col.

lision.

If the current instruction is a write, the data that was latched from the G-

"machine address/data bus for the instruction is tested to see if it is a pointer. If it is

a pointer, then a read-modify-write sequence is entered. Otherwise, since no action

is required, the Memory Interface Logic is finished with the current instruction and it

is removed from the queue.

If the contents of the current instruction is a trash, Graph memory is accessed

to obtain the contents of the node to be overwritten. The address used to access

memory is the data that was placed in the instruction queue. Again, if the node is a

pointer, a read-modify-sequenceis entered. Otherwise, the instruction is removed
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from the queue.

During a read-modify-write sequence, the ref-chip accesses Tags memory only.

The data that are read from Tags memory includes the reference count,

forever_uncollectible bit, and the persistenLbit. For a trash instruction the refer-

ence count is decremented, for a write instruction it is incremented. If the reference

cou~t overflows, the forever_uncollectible bit is set. After the reference count has

been modified, the new reference count, forever uncollectible bit, and a logic value of

one for the recently_visited bit are written back out to tags memory. If the current

instruction is a trash, the persistenLbit and forever_uncollectible bit are tested. If

the node is persistent and its forever_uncollectible bit is not set, the Memory Inter

face Logic emits the proper signals to add the node to the Garbage Can (once the

garbage can is ready). The Memory Interface Logic then removes the current

instruction from the queue making room for the next instruction.

If during the read-modify portion of a read-modify-write sequence the ref-chip

enters a "detect-collision" state, the Memory Interface Logic is interrupted. At this

point the address being used for Tags memory access must be compared to the

address the host is using to access Tags memory. If the addresses are not equal,

then the ref-chip can continue. Otherwise, the ref-chip will re-start the read-

modify-write sequence when a signal is received that the host has completed.

While the configuration of memory and the "glue" logic required to interface

with it will ultimately define the signal requirements for accessing memory, the steps

required for a memory access that have been assumed for this design are as follows;
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(1) read from memory. If memory is ready, the ref-chip emits the read signal and

places the address on the address/data bus at the same time. The memory

ready state at this time is set to false as well. The ref-chip waits one cycle

before testing the memory ready signal and must continue waiting until it

receives a signal that memory is ready. Once it receives a memory ready signal

it can latch the contents of the address/data bus.

(2) write to memory. If memory is ready, the ref-chip emits the write signal and

places the address on the address/data bus at the same time. One cycle later,

the data to be written is placed on the address/data bus. At that point the

memory ready state is set to false. The ref-chip does not have to wait for

memory to be ready to continue processing, but it must continue to test the

memory ready signal to reset its internal memory ready state.
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APPENDIX B: MODELING AND SIMULATING THE ARCHITECTURE

The architecture is simulated to validate the design and measure the impact

of memory contention upon the throughput of the G-machine. Detailed simulation of

the graph and the garbage collection algorithm is not necessary, so the activities of

the host and the G-machine are parameterized. The hardware timing is modeled

accurately, however.

To explore the performance of different models and .cqnfigurations, several

parameters can be specified. These parameters are:

(1) Number of G-machine RISC instructions that acce'ss memory or are processed

by the host. This number is expressed as an allocation rate per second.

(2) Several simulation models are available, some of which are designed to provide

benchmark information. Benchmark models are a) G-machine only, b) G-

machine and reference count maintenance only, and c) reference count garbage

collection (no attempt to identify and collect cyclic structures). Other models

include simulation of the full incremental garbage collection algorithm, and the

addition of thresholding.

(3) The Intel Advanced Dynamic Controller (i8207) has two algorithms for arbitra-

tion of memory requests, Port A Priority and Alost Recently Used. Either of

these algorithms can be simulated.
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(4) The number of nodes visited for each sub-graph traversed by the collector are

derived from probability distributions. These distributions can be based on the

data generated from IFos85] simulations or a Poisson distribution.

(5) One or two memory modules can be used in the simulation. When two memory

modules are used, it is assumed that addresses are low-order interleaved

between the modules.

command message

----- acknowledge message

--.-.-.--- acknowledge/command message

Figure Bl. Functional simulation blocks.

---------------,
I

,.....---.-.---.-----) HOST
I

cE---------,
I
I

I I
I I
I I

If' I I
I I I
I I I
I I , ,

I
I

i I TAGS
.. i .. .. I GCAN

MEMORY

GRAPH I J J
SIGQ FIFO I I

MEMORY I I
- --, I I

H I. , I , I
t I I I I
I I , I I
I I I
I , I
I I I

--{;}-

I

>-_ _ _ REF-CHIP
(------'

RDY

I I'

I
I

W
I
I

-
I
- - - - - - - - -) G-MACHINE



72

The simulation consists of nine tasks, one for each of the functional blocks

shown in Figure Bl. Two additional memory tasks, one each for the Graph and

Tags memories, can be added to simulate two memory modules. Two kinds of mes-

sages are passed between tasks representing data or commands emitted during pro-

cessing, or status or acknowledge signals.

With the exception of the host task, all tasks in the simulation are "synchro-

nous" with their processing time relative to a simulated 10 MHZ clock cycle. The

host clock speed is simulated to be 16 MHZ. System clocks and the processing time

of the hardware are simulated by suspending the tasks for regular intervals. Tasks

are synchronized by the sirriulated clocks and the messages passed between tasks.

The remainder of this appendix describes each of the nine tasks and how they

modeled the architecture. For simplicity, only one simulation model is described; the

model which simulated the full garbage collection algorithm. Only small changes to

this basic model are required to obtain the other models that are simulated.

The G-machine Task

The G-machine task is the "main" process of the simulation in that the length

of the simula.tion is defined by the number of G-machine RISe instructions to be

"executed". The instructions generated by the G-machine are read, write, al/oc,

trash, call, return, and other. All other instructions are assumed to be single cycle

instructions. The frequency of each of these instructions is defined by a probability

distribution and the "allocations per second", a simulation parameter.

G-machine instructions to be processed by other units are sent as command

messages at the end of its clock cycle, and are read by the receiving task at the
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beginning of the next clock cycle. The G-machine also maintains an internal state

which holds the ready status of memory and the signal queue. The following

pseudo-code describes the G-machine task algorithm:

begin /* G-Machine */
wait one clock cycle
check for memory acknowledge message
check for signal queue acknowledge message
generate command using allocation rate
it command goes to host then

/* call, return or alloc */
while (signal queue is not ready) wait one cycle
send command message to signal queue
set state: signal queue not ready

endit

it command goes to memory then
/* read, write, trash or alloc */
while (memory is not ready) wait one cycle
ease (command)

write: send command message to ref-chip & graph memory
set state: memory not ready

trash: send command message to ref-chip
set state: memory not ready

alloc: send command message to fifo
set state: memory not ready

read: send command message to ref-chip & graph memory
set state: memory not ready
while memory not ready

wait one cycle
check for acknowledge message from memory
update state

end
end case

endit
go to begin

end /* G-Machine */

The conditions that place the G-machine task in a wait state are 1) when the

G-machine has a command that goes to the host and the signal queue is not ready,

2) when the G-machine is reading from memory, and 3) the G-machine has a

memory command and memory is not ready.
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The And-Rdy Task

The and-rdy task reads the acknowledge messages coming from the fifo, graph

memory and the ref-chip. The and-rdy task sends an acknowledge message to the

G-machine which simulates the G-machine "memory ready" signal. The value of this

"memory ready" signal is the logical and of the acknowledge messages the and-rdy

task has received.

The Ref-Chip Task

The ref-chip task simulates the custom VLSI reference counting chip which is

described in detail in Appendix A. Since the ref-chip interfaces with both the G-

machine and memory tasks, both phases of the 10 MHZ clock cycle are simulated.

(the G-machine sends messages during ~2, the memory tasks and queues during ~1).

Like the G-machine task, the ref-chip task maintains internal states regarding the

status of memory and the garbage can. Additional state information is stored in an

array of two records where current and next are indices into the array. This array

stores the G-machine commands and holds the state information regarding how

much processing had been completed for each instruction. If the array is either full

or empty, then current and next are equal. The following pseudo-code shows how

the ref-chip is simulated:
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signaLmemory( command)
begin

case (command)
readt: send command message to tags memory

set state: tags memory not ready
write: send command message to tags memory

set state: tags memory not ready
readg: send command message to graph memory

set state: graph memory not ready
endcase

end j* signaLmemory *j

geLnexLinstruction()
begin

j* data for next instruction (if it exists) already latched *j
reg[nextJ.state = latch
current = (current + 1) mod 2
if reg[current].ins != trash then

set state: ready = true

end j* getJlextJnstruction · j

begin j* ref-chip *j
j* q,1 processing *j
wait one phase
if command message from G-machine then

case (command)
write: set state: graph memory not ready

reg[next}.ins= write .
reg[next}.state = init
next = (next + 1) mod 2

trash: set state: ready = false
reg[next].ins = trash
reg[next].state = init
next = (next + 1) mod 2

read: set state: graph memory not ready
endcase

if reg[current].ins and reg[next].ins are valid then
set state: ready = false

endif
if ready state has changed then

send acknowledge message to and-rdy

j* tP2processing */
wait one phase
check for tags memory acknowledge messa.ge
check for graph memory acknowledge message
check for garbage can acknowledge message
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ease (reg[currentJ.ins)
write:

ease (reg[currentJ.state)
init: j* one cycle before data can be latched *j

reg[currentJ.state = latch
latch:

if data is a pointer then
j* read reference count *j
if tags memory is r'eady then

signaLmemory( readt)
reg[currentJ.state = readt

else

reg[currentJ.state = wait
end if

else

j* data is not a pointer *j
geLnexLinstruction()

endif
wait:

if tags memory is ready then
signaLmemory( read t)
reg[currentJ.state = readt

endif
readt:

if tags memory is ready then
j* send write signal with address *j
j* increment data *j
signaL) nemory( write)
reg[cur:'entJ.state = incr

endif

incr: j* data is sent to memory *j
j* ready for next instruction *j
getJl exLinstru ction ()

endcase
trash:

ease (reg[currentJ.state)
init: j* one cycle before data can be latched *j

reg[currentJ.state = latch
latch: j* read node from graph memory *j

if graph memory is ready then
signaLmemory( readg)
ins[currentJ.state = readg

endif
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readg: /* latch data and test is-pointer bit · /
if graph memory ready then

/* G-machine can now use graph memory */
set state: ready = true
if data is a pointer then

/* read the reference count */
if tags memory is ready then

signaLmemory(readt)
reg[currentJ.state ;,. readt

else

reg[currentJ.state = wait
endif

else geLnextjnstructionO
endif

wait:

if tags memory is ready then
signaLmemory( read t)
ins[currentJ.state = readt

endif
readt:

if tags memory is ready then
/* decrement data */
signaLmemory( write)
reg[currentJ.state = decr

endif

decr: /* data is decremented & sent to memory */
reg[currentJ.state = enq

enq:
if garbage can is ready then

send enqueue signal to garbage can
set state: garbage can is not ready
geLnextjnstructionO

endif
endcase

endcase
go to begin

end

The ref-chip emits "ready" and "not ready" acknowledge messages which are

"anded" with the ready status of the fifo and memory tasks by the and-rdy task.

Therefore, a "not ready" status of the ref-chip is seen by the G-machine task as

"memory not ready" and prohibits the G-machine task from executing any alloc,

read, write, or trash instructions. Like the actual hardware, there are three situa-

tions when this can occur. The first when the ref-chip receives a trash command
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from the G-machine. When this happens, the ref-chip does not send a "ready" ack-

nowledge message until it has completed its graph memory access.

The second situation where the ref-chip would send a "not ready" acknowledge

message is when the ref-chip is processing a write or a trash and has received

anDther write or trash from the G-machine. In that case, both current and next ele-

mtnts of the array are full, and the G-machine must not send another command

message until the ref-chip is able to receive it.

The third situation occurs when there is a bottleneck in the garbage collection

process. If the host task is unable to keep up with the garbage collection demands,

the garbage can queue fills up. When that occurs, the ref-chip can no longer enqueue

ancynew garbage nodes and therefore process any new instructions it receives from

the G-machine.

"Not included in the simulation is the logic related to read-modify-write colli-

sions with the host processor" The ability to detect collisions only affects the perfor-

mance of the ref-chip when a collision occurs. With one memory module the chance

of a collision occurring is assumed to be about one in a million (each module holds

one million graph nodes). Therefore, it was concluded that adding the logic to the

simulation would not significantly affect the data.

TheTagsand Graph Memory Tasks

All memory processes simulate the behavior of the dual-ported memory and

are based on the specifications of the Intel Advanced Dynamic RAM Controller i8207.

[Adv84] and Texas Instruments 256k dynamic random-access memories [Tex84]. The

main functions of the i8207 are to arbitrate memory requests between two ports
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(PortA and PortH), provide control for dynamic RAMs, generate refresh control

given a refresh period, and provide acknowledge signals. The simulation model has

the same functionality with the exception of providing explicit DRAM control.

DRAM access is modeled as a number of cycles before the next memory request can

be serviced.

Arbitration

Each memory task has three ports from which memory requests can originate:

1) PortA, the synchronous port, receives command messages from the G-machine and

the Ref-chip, 2) PortB, the a.synchronous port, receives command messages from the'

Host, and 3) PortO is the internal port where refresh requests are generated. These

ports are checked for messages every simulated cycle. Reflecting the specifications of

the i8207, arbitration between outstanding requests is called as early as two cycles

after the start of a memory cycle. Arbitration is repeated every cycle thereafter

until a new memory cycle begins. The i8207 arbitration algorithm used in the simu-

lation, either PortA priorilll or Most Recently Used, can be specified as a simulation

parameter.

For the i8207, the main function of arbitration is selection of the next port

(and thus the next instruction). The simulation includes this functionality and also

calcula.tes the number of cycles required to complete the instruction at that point.

The i8207 requires four cycles to complete a memory cycle, but if the memory

requests are for different ba.nks, memory cycles can be overlapped one cycle. For

each memory task, each of the four DRAM chips have an equal probability of being

accessed. If two sequential memory requests are for the same DRAM chip, the
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memory cyde requires four simulation cycles. Otherwise, three cycles are required.

In order to accurately simulate the memory access time of the i8207, the simu-

lation also includes the port MUX switching time. When a different port is selected,

an additional two cycles a.re required by the i8207 to emit the MUX control for the

ports. These two cycles can be overlapped with the execution of a previous instruc-

tion. The simulation includes this switching time in obtaining the number of cycles

required to complete a memory access.

Refresh

The DRAMS modeled in the simulation have a long refresh period of four mil-

liseconds. Given a 10% leeway, a refresh cycle is requested every 132 simulation

cycles.

Memory Ready Signals

The G-machine/Graph memory interface is a no-wait system as described in

[Rig84]. The PortA ready signal is the EAACK signal (early acknowledge) which is

sent as an a.cknowledge message one cycle after the start of a memory cycle. Since

PortB is the asynchronous port, the LAACK signal (late acknowledge) is simulated.

This signal occurs two cycles after the start of a memory cycle.

Memory Task Pseudo Code
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begin /* Memory */
/* memory outputs at end of 4Jl */
wait one phase
loop

wait one cycle
if time for a refresh then

add refresh command to request queue
if PortA message then

add PortA command to request queue
if PortB message then

add PortB command to request queue
if not in a memory cycle and there is a request then

arbitrate requests
get next instruction

endif

if in a memory cycle
case (cycle)

0: cycle = cycle + 1
1: if instruction from PortA then

send ready message to PortA
cycle = cycle + 1

2: if instruction from PortB then
send ready message to PortB

cycle = cycle + 1
arbitrate requests

default:
arbitrate requests
if done with this memory cycle then

get next instruction
else

cycle = cycle + 1
endif

endcase
endif

go to loop
end /* Memory */

The Queue Tasks

The FIFO, Signal Queue, and the Garbage Can are all first-in first-out cascad-

able memories. The simulation model is based on the specifications for Monolithic

Memories FIFO [Fir84]. All queues are 16 words deep and a 10 MHZ shift-out/shift-

in rate is simulated. While the actual hardware queue is 64 words deep, a depth of
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16 was used in the simulation so that stable simulation data could be obtained in a

fewer number of simulation cycles. Simulations were conducted for queue lengths of

16, 32, and 64 in order to insure that performance of the design was independent of

qleue length.

Only simulation of the Signal Queue includes the queueing of actual data (the

G-machine instructions buffered by memory for the host). Enqueueing and dequeue-

ing of data for the FIFO and the Garbage Can is simulated by incrementing and

decrementing the number of nodes in the queue. While all three queue processes are

slightly different, the basic functionality is the same:

,

begin /* Queue */
/* queue outputs at end of tPl */
wait one phase
loop

wait one cycle
if outputJeady = true then

send acknowledge message
if inputJeady = true then

send acknowledge message

outputJeady = false
inputJeady = false
if there is a dequeue command message then

if length = 64 then inputJeady = true
length = length -1
if length> 0 then outputJeady = true

endif
if there is a enqueue command message then

length = length + 1
if length != 64 then inputJeady = true
if length = 1 then outputJeady = true

endif

go to loop
end /* Queue */
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The Host Task

The host task simulates a micro-processor (the Motorola MC68020) whose

clock speed is 16 MHZ. The workload of the host task is defined by the type of

instructions that it obtains from the Signal Queue, and the number of nodes it

dequeues from the Garbage Can. An internal buffer which stores the persistent

nodes whose reference counts are decremented during collection is also simulated.

Instructions from the Signal Queue are processed first unless the Garbage Can or the

internal buffer of garbage nodes is full.

Processing of G-machine instructions and the collection of garbage is simu-

lated by parameterizing these functions as a series of memory accesses. Conditional

branches to be taken during processing are determined by using a random variables

to access probability distributions. Simulation parameters such as the size of the

sub-graphs, collectibility of a node, number of memory accesses required to allocate a

node, are determined in tbis manner.

The host processor stores some data related to garbage collection in its own

private memory. All memory accesses to its own memory require three cycles. In

addition, no assumptions are made about the ability of the host to combine memory

accesses to its own memory and Graph or Tags memories. When two or more data

items are required that reside in different memories, then two separate memory

accesses are simulated.

Since the Graph and Tags memories are asynchronous to the host, the host

task includes delays that would be introduced by a bus controller [Int84] when these

memories are accessed. The bus controller has an internal clock that is half that of
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the micro-processor, and commands are accepted only during 4>1of that clock. On a

memory access the host task uses a random variable to determine the clock phase of

the bus controller. The bus controller also requires that memory signals be valid for

two cycles, and this delay is simulated as well.
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signaLmemory( command)
check for tags memory acknowledge message
check for graph memory acknowledge message
if bus phase = ~2then

wait one cycle
/* bus controller will signal memory after one cycle *j
wait one cycle
case (command)

write: send command message to tags memory
set state: tags memory not ready
wait two cycles /* send data to memory */

readt: send command message to tags memory
set state: tags memory not ready
while (tags memory not ready) wait one cycle
update state
wait one cycle /* to latch data */

readg: send read message to graph memory
set state: graph memory not ready
while (graph memory not ready) wait one cycle
update state
wait one cycle /* to latch data */

endcase

end j* signaLmemory */

collecLimmediate()
foreach data field of node /* there are two */

j* read data from graph memory */
signaLniemory( readg)
if data is a pointer then

j* decrement reference count */
signaLmemory( readt)
wait one cycle
signaLmemory( write)
if node is persistent then

if reference count !=0 then

add to internal garbage can
else

collecLimmediate()
endif

endif
endif

end /* foreach */
wait three cycles /* clear allocated flag in own memory *j

end j*collectjmmediate */
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collecLpersistentO
begin

1* read reference count *1
signaLmemory(readt)
generate sub-graph size
if size = 0 then

if immediately collectible then
1* 80 percent probability *1
collecLiinmediate()

else

traverseJub-sraphO
endif

end 1* collecLpersistent *1

tra verseJub-sraphO
begin

1* Traversal 0 *1
foreach node in subgraph

signaLmemory(readg) 1* read left data field *1
wait three cycles 1* read local reference count *1
wait three cycles 1* clear local reference count *1
signaLmemory(write) 1* clear recently visited bit *1
signaLmemory(readg) 1* read right data field *1

end I*foreach *1

1* Traversal 1 *1
foreach node in subgraph not recently visited

signaLmemory(readg) 1* read left data field *1
signaLmemory(readt) 1* read recently visited bit *1
wait three cycles 1* read local reference count *1
wait three cycles 1* write local reference count *1
signaLmemory(readg) 1* read right data field *1

end I*foreach *1

1* Traversal 2 *1
foreach node in subgraph

signaLmemory(readg) 1* read left data field *1
signaLmemory(readt) 1* read reference count *1
wait three cycles 1* read local reference count *1
wait three cycles 1* write collectible bit *1
signaLmemory(readg) 1* read right data field *1

end I*foreach *1



j* Traversal 3 *j
foreach node in subgraph

signaLmemory(readg) j* read left data field *j
wait three cycles j* read allocated & collectible bits *j
wait three cycles j* clear allocated flag *j
signaLmemory(write) j* clear reference count *j
signaLmemory(readg) j* read right data field *j

end j*foreach *j
if an uncollectible node in sub-graph then

signaLmemory(readt) j* read reference count *j
signaLmemory(write) j* reference count & persistence bit *j

endif
end j* traverseJub..graph *j

begin j* Host *j
j* priority scheme */
if garbage can is full then

priority = externaLgcan
else

if internal garbage can is full then
priority = internal..gcan

else
if signal queue is ready then

priority = signaLqueue
else

if garbage can ready then
priority = external..gcan

else
if internal garbage can is ready then

priority = internal..gcan
else priority = cycle

case (priority)
signaLqueue:

send dequeue command message
wait two cycles j* time to get data *j
case (instruction)

alloc:
increment number of nodes in context

/* access own memory to find next node to allocate *j
/* 1 to 4 cycles *j
wait x cycles
signaLmemory(write) j* clear P and R bits *j
send enqueue message to FIFO
wait two cycles j* time to send data *j

81
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call:
push new context frame on stack
wait one cycle

return:
foreach node in current context

j* read allocated flag *j
wait three cycles
j* read persistent bit, recently visited bit,

& reference count */
signaLmemory( readt)
generate sub-graph size
if size = 0 then

if immediately collectible thtm
j* 95 percent probability *j
collectjmmediate()

else

traverse sub-f;raphO
endif

end j* Coreach*j
pop current context off stack

endcase
externaL.gcan:

j* get a node from the Garbage Can *
send dequeue command to garbage can
j* wait to receive data */
wait two cycles
colIecLpersisten to

internal.gcan:
get node from internal garbage can
collecLpersistentO

cycle:
wait one cycle

endcase
go to begin

end j* Host *j
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APPENDIX C: STATIC ANALYSIS OF RISC MIC~OSEQUENCES

A G-machine program is made up of a series of instructions which are

called clse instructions. These else instructions are expanded by the Instruc-

tion Fetch and Translation Unit (IFTU) of the G-machine into a sequence of

one or more RISe instructions which are dispatched for execution by the Pro-

cessor Control Unit. The instructions executed by the Graph Memory System

(read, write, trash, aUoe, eall and return) are all RISe instructions. Therefore,

the workload of the Graph Memory System is the number of times these

instructions occur during the execution of a G-machine program.

A static analysis of the RiSe sequences for each clse instruction in

[GAH86] was conducted in order to obtain this frequency. The table at the end

of the appendix shows the number of memory instructions that occur in the

RIse sequence for each else instruction of the G-machine. Also shown is the

expected number of cycles required to execute the instructions in the sequence

that are not memory instructions. All instructions execute in a single cycle

with the exception of ALU operations, which require three.

Static analysis of the RiSe microsequences was also used to obtain a

crude estimate of the expected allocations rate per second of the G-machine. If



90

,each CISe instruction was executed only once, and each memory instruction

took only one cycle, then allocations would occur in about 1.17 percent of the

'total cycles. Given a 10 MHZ clock cycle, that would be an allocations rate of

117K words per second. Therefore, it was concluded that the memory manage-

ment scheme for the G-machine should' perform well for allocation rates up to

125K words per second.

else Ins. call return alloc read write trash Other( cvcles)

add 3

:addc 3

:alloc 1 1

!and 3

calldobfun 1 11

ClfC 1

copyp 1

eopyv 1

decr 3

div 50

eval 5 60

fst 1 1

eLbyte 1

zgetJst 1 2

!ltet.Jmd 1 2

!IDcr 3

insert byte 10

jcarry 1

imp o (executed bv IFTU)
lnotJlelt 1

jnelt 1

inoLzero 1

jovr 1

Jzero 1
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olse Ins. call return alloc read writ.e trash Other{cvcles)

j-.if .ptr 1

jJ10Lptr 1

mk app 1 2 7

mk .pr 1 2 7
mk val 1 2 6

mk vI .pr 1 2 6

rnk vaLpr 1 2 5
mod 50

movep 1
movev 1
mul 30
nell: 3
not 3
or 3
DOPP 1
popv 1

pop2 2
pop4 4

pop8 8

popI6 16

pushconst 1

pushliteral 1

ret 1 3 65

reLint 1 2 2 14

rotp 1

rotv 1

shla 1

shra 1

shrl 1

sill:nal 1

slidep 1

slidev 1

snd 1 1

sub 3
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clse Ins. call return alloc read write trash Other( cvcles)

subb 3

update 2 2 1 8

update _pr 2 1 5

update vI 1 2 1 5

update v _pr 2 1 5

update_poly 1 4 1 15

vrotp 2

TOTAL 1 2 6 16 24 7 454
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