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ABSTRACT

Gaussian Beam Propagation in Turbulent Supersonic Flow

Donald R. Emmons Jr., Ph.D.

Oregon Graduate Center, 1986

Supervising Professor: Richard A. Elliott

Due to advances in experimental techniques and numerical air flow

modeling, there has been a need for improved instruments capable of

measuring turbulence parameters in compressible (supersonic) gas flows.

A great deal of work has been done in recent years in applying various

optical methods as the basis for remote sensing instruments capable of

measuring these parameters to a high degree of accuracy. While both

active and passive techniques have been proposed and developed, passive

techniques tend to require only low power light sources with resultant

advantages in expense, complexity and ease of operation.

The work described in this dissertation involves the application of

theoretical and experimental methods first developed in the field of

atmospheric optics to the problem of passive remote sensing of fluid

density in the supersonic turbulent field produced in a Mach 1.8 wind

tunnel. A supersonic wind tunnel at NASA Ames Research Center was first

characterized using standard intrusive measurement techniques and then

used to test the validity of a theory based on the extended

Huygens-Fresnel (EHF) principle which has been useful in long path

atmospheric propagation. Experimental results demonstrated that the
x



extended Huygens-Fresnel-based theory may be used to model the effects

of supersonic turbulence on laser radiation to a high level of accuracy.

This result suggested two optical schemes for remote turbulence

measurement which were explored in the wind tunnel environment with the

basic instrumentation consisting of a low power (1 mY) He-Ne laser

capable of providing a diffraction limited, TEMOO beam and a simple

optical system capable of focusing the beam to several waist sizes.

xi
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CHAPTERI

AN INTRODUCTION TO THE PROJECT

A. Introduction

The past few years have seen a rapid expansion in the field of

supersonic fluid dynamics.1,2 As researchers in this area have refined

their craft, an important need for improved laboratory instrumentation

has become apparent.2 This need has spawned a wide variety of work

which includes the activities described in this dissertation.

Measurement of turbulence parameters in a compressible (supersonic)

gas flow presents a difficult problem for the experimentalist. When a

physical transducer is placed in such a flow, the compressible nature of

the gas, evident at flow rates in excess of Mach 1, causes a shock wave

to form around the up wind portion of a probe exposed to the flow.

Since the traditional methods of flow measurement have been intrusive in

nature, requiring transducers protruding into the flow, their

disadvantages have severely limited the collection of data on the nature

of transonic and supersonic air flows in either laboratory (wind tunnel)

or real-world environments.3

A very attractive alternative to these intrusive methods would be

to use electromagneticradiation(usuallybut not always in the form of
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light) to remotely probe the flow parameters of interest without the

need to place any physical transducer in the flow. Much attention has

been given to the development of this nonintrusive alternative in recent

years with the resulting implementation of several optical techniques

2
for the measurement of relevant flow parameters.

These optical methods typically fall into one of two overall

catagories depending on the basis of the technique.

B. Active Methods

These methods involve the absorption or scattering of

radiation by either the constituent molecules of the flow or by

seed molecules or particles added to the flow. These seed

quantities are needed to modify the spectroscopic properties of

the gas (working fluid) or to provide specific scattering sites

in the flow.

Several active techniques have been proposed and are either

with small particles which serve as scattering sites in the flow. Two

laser beams are crossed in the flow at the point of interest forming an

interference pattern which is then scattered out of the flow by the seed

particles. The fringes in the scattered interference pattern will

implemented or in an interim stage of development. Laser Doppler

Velocimetry (LDV) is probably the most widely used of the active

145
LDV requires the seeding of the working fluidmethods to date. ' ,
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appear to shift in space at a rate proportional to the velocity of the

particles doing the scattering thus providing a measure of the local

flow velocity (assuming the scattering particles to be small enough to

respond to localized changes in the flow velocity in a manner similar to

that of the molecules in the working fluid).4,5 The major disadvantage

of LDV stems from the need to seed the flow with particulate material.

This material has a sandblasting effect on the walls of a wind tunnel

and on any intrusive transducer that is placed in the flow. It also

makes it impossible to measure the flow velocity around any

discontinuities in the flow due to the fact that the particles will not

track a sharp change in contour. LDV, in addition, will provide no

information regarding density or temperature, both parameters of

. 4,5Interest.

Another active technique of recent development is that of Laser

Induced Fluorescence (LIF).6,7 This method may also involve the seeding

of the working fluid, but, in this case, a seed gas is used having

appropriate spectral characteristics for the absorption of laser light

of a convenient wavelength. The seed gas, or working fluid directly, is

bombarded with laser radiation tuned to an appropriate absorption band

and the broad band fluorescence radiation, emitted as the stimulated

molecules relax, is then collected. The total florescence power will be

proportional to the density of the working fluid (indirectly through the

seed gas) allowing a localized measurement to be made. Researchers at

NASA's Ames Research Center have recently used two stimulating beams

slightly detuned to probe the upper energy level electron population of
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the seed gas, thus measuring density and temperature simultaneously.

These measurements will allow the calculation of a local pressure

quantity and represents a major breakthrough in the remote sensing of

supersonic flows.8 The major drawback to LIF at present is again the

need for a seed gas. This makes the process difficult to apply to a

large scale wind tunnel or real world environment. York is presently

underway to correct this problem.

Several other techniques of actively sensing flow parameters are

also under present consideration. They include Coherent Anti-Stokes

Raman Scattering (CARS), a nonlinear scattering effect of particular

usefulness in flame measurements, and other nonlinear scattering and

wavelength shifting effects.9,lO

c. Passive Methods

The term "passive methods" describes those remote sensing tech-

niques which do not involve the absorption and re-emission of

radiation by either the working fluid or a seed material. Most

passive methods involve the sensing of the phase perturbations

of the radiation propagating in a supersonic turbulent field.

As a result, these techiniques, including those described in

this dissertation, are typically much less complicated in both

implementation and design than the active techniques. Since

the optical beam is usually viewed directly, a high signal-to-

noise ratio (SNR) is relatively easy to realize. The two major
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limitations of passive remote sensing are the requirement for

density perturbations to be present in the flow to distort the

phase of the optical wave and the fact that most passive

methods are sensitive only to the statistical moments of the

density perturbations. Other drawbacks, such as lack of

spatial resolution, appear to be tractable to at least some

extent.

Probably the two most common passive techniques are shadowgraph and

schlieren photography.11-13 Both methods record the far field

interference pattern produced by the turbulence induced phase

perturbations of a plane wave (collimated beam).ll While rarely used in

a quantitative manner, these methods provide two very easy and

convenient ways in which to visualize the path integrated density

perturbations in a compressible flow.14 In the case of a two-

dimensional flow, these methods are quite sensitive to shock wave

effects and are quite useful for displaying the presence of these

effects. Recent work has demonstrated a quantitative schlieren

technique very similar in philosophy to the project described here but

limited, at present, to two-dimensional flows.15 Crossed beam correlated

schlieren measurements have also proved useful in flame measurements for

providing limited spatial resolution. These techniques are limited,

however, by a very simple theoretical approach to beam turbulence

interaction.16,17 Multiple beam and wavelength holography have also

been applied with good results in several two-dimensional flow
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applications. As with most passive methods, holography suffers from a

lack of spatial resolution which limits its application in the case of

three-dimensional flow.18

Lastly, under the heading of passive methods are those coming from

techniques and theory first developed in the field of atmospheric

optics, which includes the work described in this disertation.

D. Atmospheric Techniques.

The past decade has seen a great deal of research carried out in

the field of laser beam propagation through the turbulent atmosphere in

h f " d 'I' 1" 19,20 Tht e context0 communlcatlons an ml ltaryapp lcatlons. ese

endeavors have included methods for remote wind sensing, measurements of

h ' d ' 11 ' 1 d ,21-23 S ' ,
1atmosp erlC enslty as we as partlcuate etectlon. tatlstlca

models have been developed which have been demonstrated to be capable of

describing the effect of random refractive index fluctuations on laser

radiation to a high level of accuracy.19,20 The overall nature of the

atmospheric problem is very similar to that of describing the effects of

turbulence in a compressible wind tunnel air flow and it is therefore

very tempting to apply atmospheric techniques (particularly the theory)

to the case of supersonic flow.

The theoretical treatment of the effects of random density (index

of refraction) fluctuations on propagating E.M. radiation involves a

perturbational solution of the wave equation and requires some rather

complicated calculations which can be accomplished only by restricting
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the degrees of freedom of both the turbulent field and the radiation

(see chapter IV).20 These restrictions can be quite severe in nature and

are capable of limiting the range of validity of a resulting model.

Since a few of these atmospheric restrictions are not strictly valid in

the case of compressible flow, there is no reason to suspect, a priori,

that a model based on such a theory would be capable of describing the

effects of a flow in, for example, a Mach 2 wind tunnel. However, the

absolute limits on the validity of the atmospheric theory have yet to be

explored in a complete and systematic fashion and it has not been clear

in the past that an application, such as the one described here, would

be without merit.

E. OGC/NASA Joint Reasearch Project

Yith this in mind, it was proposed in 1980 that a study be

undertaken to determine the feasibility of applying the theoretical

approach and experimental techniques of optical propagation in the

atmosphere to attempt to model the effects of the turbulent field in a

supersonic gas flow on Gaussian laser radiation. Any techniques capable

of providing sufficient spatial resolution for local measurements and

which could be inverted and thus form the basis of a remote sensing

scheme for density or temperature fluctuations would be of particular

interest. This would be a joint study undertaken by the Oregon Graduate

Center and NASA Ames Research Center in Mountain View, California,

allowing access to a laboratory scale supersonic wind tunnel with
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appropriate flow characteristics and provisions for beam optical

measurements.

Such a three-year study was funded in 1981 having the following

goals:

1. Using established intrusive measurement techniques (hot wire/

pi tot tube anemometry), completely characterize the flow in

a laboratory scale, supersonic wind tunnel. The ultimate goal

of this characterization will be a time resolved measurement

of the fluctuating density perturbations so that correlation

relationships and frequency spectra may be obtained.

2. Using the results of 1. above, model the effect of the

turbulence in the compressible flow on a propagating, TEMOO

laser beam using the theoretical techniques of optical

propagation in the atmosphere (extended Huygens-Fresnel

theory) .

3. Design and carry out a series of experiments capable of

measuring the perturbation of the beam parameters due to the

turbulence and compare these measured effects to those

predicted by the atmospheric theory based model. Such a

comparison will test the validity of the atmospheric theory in

describing the case of compressible flow.
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4. If possible, model the case of two laser beams simultaneously

propagating through the turbulent field and crossing in

various geometries. From this, determine the feasibility of

using multiple beams to remotely sense local density

fluctuations.

5. Design and carry out a series of experiments which will

determine the validity of the model described in 4. above.

6. Draw general conclusions based on the results of the pre-

ceding activities regarding the feasibility and desirability

of using these techniques to remotely measure turbulence

parameters in a compressible gas flow.

The undertakings described above were completed in a four-year time

frame extending from 1981 through 1985 and form the basis of this Ph.D.

dissertation. Of this time, approximately 2.5 years were spent in

residence at NASA Ames Research Center. The project was funded by NASA

under the auspices of its Graduate Student Research Program.
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CHAPTERII

WIND TUNNEL CONSIDERATIONS

As noted in the previous chapter, fluid flowing at velocities in

excess of Mach 1 exhibits compressibility effects. The fact that the

fluid may be compressed allows the formation of local perturbations in

the density, which greatly complicates the description of interactions

between the working fluid and any physical constraints placed on the

flow (such as wind tunnel walls, measurement transducers, models, etc.).

Of particular interest to researchers in the field of experimental fluid

dynamics is the behavior of the flow at path discontinuities since the

compressible nature of the working fluid can give rise to very strong

localized density gradients known as shock waves. The average citizen

in the 1950's and early 1960's became quite familiar with the "sonic

boom" produced by supersonic aircraft of the era due to the shock waves

induced by relative discontinuities in the shape of the airframe.

In general, any time a discontinuity is placed in the flow a shock

wave of some type will be produced. This state of affairs presents the

experimentalist with the classic problem of the measuring device so

perturbing the system that the measurement may be rendered meaningless.

It also presents problems in designing laboratory scale experiments

involving the use of flow nozzles and wind tunnels. While many areas of
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compressible flow phenomena are of current interest, an area of

particular concern for the experimentalist is turbulence in supersonic

flow produced by both viscous drag (wall type effects) and shock wave

production (flow separation). It is necessary, therefore, to develop

wind tunnels and flow nozzles capable of reproducing these effects on a

laboratory scale without the introduction of additional artifacts as a

result of the reduced scale of the flow. While this dramatically

complicates the design process and significantly increases the cost of

such a facility, attention to such details is an absolute necessity in

order to assure a sufficiently simple flow pattern capable of tractable

analysis.

The author was fortunate to be allowed almost unlimited access to a

well-designed tunnel at NASA Ames Research Center, Moffett Field ,Ca. A

block diagram of the entire facility is given in Figure 1. The heart of

the facility is a rectangular cross section flow nozzle capable of pro-

ducing nitrogen flow rates in excess of Mach 1.7 at a load pressure of

100 psi. The nozzle is operated in a Ludwieg tube (shock tube) config-

uration and the overall wind tunnel consists of four major components

(see figure 1). The working fluid reservoir consists of a thick-walled

pipe approximately 15 ft. in length with a cross sectional diameter of

approximately 6 in. The working fluid undergoes an adiabatic expansion

into a large volume (4 ft. diameter by 10 ft. in length) holding tank

which is evacuated by a vacuum pump to a pre-fire pressure of about 10

mTorr. The low pressure holding tank is separated from the flow nozzle

by a high speed,helium actuatedvalve capableof opening so
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rapidly that the removal of the valve constraint may be considered to be

instantaneous and thus the change in the boundary condition may be

approximated by a step function.

Three Z in. diameter fused silica windows capable of withstanding

high pressure have been mounted in the flow nozzle to form an optically

accessible test section (see figure 1). The material of these windows

transmits radiation into the near ultra-violet and is thus quite

adequate for this work which was done in the visible spectrum. Several

pressure cells have been mounted in the test section and at various

upstream locations to allow the monitoring of at least the low frequency

flow parameters. It is possible to introduce intrusive measurement

probes through any window port and, as part of this work, the author

modified the tube to allow access to the flow downstream of the test

section and thus reduce flow perturbation due to the shock waves

produced around probe mounting hardware. As previously noted, the

reservoir tube is loaded with nitrogen gas to an initial fill pressure

of 100 psi (with the tube at approximate thermal equilibrium) from

external high pressure tanks. One complete operational cycle consisting

of two runs (NZ fill, firing, N2 fill, firing and pump down of the

holding tank) requires 25-35 minutes.

Yhen the firing valve is suddenly opened, the pressurized nitrogen

working fluid undergoes a free expansion into the evacuated tank. The

opening of the firing valve also causes an expansion wave to propagate

upstream at the local speed of sound. Since the gas ahead of the

expansion wave in the reservoir does not know the firing valve has been
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opened (accoustic information cannot be transmitted in a medium at a

rate in excess of the speed of sound), conditions in the test section

remain fairly constant until the wave has traversed the entire length of

the reservoir and returned. The facility thus has a

pressure-versus-time response which takes the form of a stairstep

function.

Figure 2 is a composite showing the stepwise nature of P vs. t and

a shadowgraph visualization of the turbulent field in the test section

as viewed across the flow through the optical access windows.
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CHAPTERIII

THE THEORY OF GAUSSIAN BEAM PROPAGATION IN A TURBULENT SUPERSONIC FLO~

A. Introduction

Over the past two decades, a statistical theory has been developed

to describe the effects of a turbulent medium on propagating

1 . d" 24,25
e ectromagnetlc ra latlon. The practical statement of this theory,

known as the extended Huygens-Fresnel formulation, has provided the

basis for the experimental use of laser beams as remote sensing

d . 26-28 B f h .. 1 b "
d deVlces. y measurement0 t e statlstlca pertur atlons In uce

on a Gaussian beam it is possible to determine various scale sizes

characterizing the turbulent flow, flow rate and the strength of the

turbulent field, thus characterizing the medium.

Several remote sensing applications have been modeled in detail for

. 21-23 29 30
values of turbulenceparameterstypIcalof the atmosphere. "

Atmospheric turbulence is, in general, of weak to moderate strength (for

short path lengths) with turbulent field scale sizes in the range of 0.1

to 100 cm.31 These applications have assumed the optical propagation

distance to be on the order of 10 to 1000 m with uniform or slowly

varying turbulence strength along the path and that the source and

receiver are both immersed in the turbulent field.31
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The author now describes the application of the extended Huygens-

Fresnel (EHF) theory to the problem of remotely sensing turbulence

parameters in a supersonic bounded (physically enclosed) flow. This

particular application is specifically concerned with modeling the

effects of the turbulent field produced in the NASA Ludwieg tube

facility described in chapter II but will also be examined to determine

the usefulness of the EHF theory in measuring other common flow

situations of general interest. The wind tunnel environment is

different from the problem of atmospheric propagation in several

important ways.

As noted in chapter II, the Ludwieg tube is rectangular in cross

section with the approximate dimensions of 6 x 4 cm. Nitrogen flowing

through this nozzle will form turbulent boundary layers along the nozzle

walls due to viscous drag and will, in general, be quite strong compared

to atmospheric turbulence even over relatively short optical path

lengths. The tubulence parameters will decrease fairly quickly in

magnitude as the distance from the wall increases leaving a near laminar

flow region near the center of the test section and thus the level of

turbulence varies rapidly over path length unlike the atmosphere. Since

the beam source and receiver must be outside the turbulent field, beam

egress effects (due primarily to the windows) must be considered. Also

the physical dimensions of the Ludwieg tube restricts the turbulent

scale sizes and optical path lengths to fractions of a meter. All of

these features represent significant departures from the work of

previous authors.
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This work will present first an overview of the extended Huygens-

Fresnel formalism and then proceed to apply this model to the case of an

empty Ludwieg tube (turbulence only on the walls) and also the case of a

"packet" of turbulence in the center of the nozzle as well as on the

walls. Analytic expressions for the mean intensity (irradiance),

intensity covariance and mean output intensity for an equal arm

interferometer will be determined by employing suitable approximations.

Numerical results will be presented in later chapters.

B. The Extended Huygens-Fresnel Theory

The Rayleigh-Sommerfeld formulation of the Huygens-Fresnel

principle has long been a powerful tool in the field of Fourier

optics.32 In physical terms, the principle states that the electric

field at any point in a receiver plane will consist of the

superposition of spherical wave fields originating at each point in a

source plane. These spherical waves are weighted appropriately to form

the spatial frequency spectrum of the source disturbance.

The field quantity (u) representing an optical wave must satisfy

the scalar wave equation.

(1)

The field strength u may be written in terms of a complex notation as:
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~ ~ i wt
u ( p, t ) =Re[u( p) e ] (2 )

~
where u(p) represents the complex field amplitude. Substituting Eq. (2)

into (1) yields an equation independent of time.

(3)

where k is the magnitude of the wave vector and is given by (2n/A). Eq.

(3) is the well-known Helmholtz equation which may be solved by means of

Green's theorem and the application of the appropriate Green's function.

The solution of Eq. (3) will be determined by the superposition
. I 32
Integra :

J
2~ ~ ~ ~ . ~ ~

d r uA(r) Gs(r:p) cos[n,lr - pi]

(input aperture)

(4)

where:

~ ~
G (r: p)s

ikli - pi I
~ ~

1
-1

e . r-p (5)
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The quantity uA is the field at the transverse distance r in the source

plane and cos[n, Ir pi] is the so called "obliquity factor."

If u represents a finite beam which has only a small transverse

extent and if u varies slowly over a wavelength distance, then the

obliquity factor reduces to -i/A and :32

(6)

Lutomirski and Yura have shown that Eq. (4) may be extended to

include the case of radiation propagating in a turbulent medium by

adding a random complex phase term to the spherical wave Green's

. 26 33
functIon. '

~ ~ ~ ~ ~ ~ ~ ~
G (r:p) = Exp[iklr - pi + ~(r,p)]/Ir - pis (7)

~(r,p) describes the effects of small random fluctuations in the

refractive index on the propagating spherical wave. If the index of

refraction of the turbulent medium is written in the form:

~
n(r) (8)
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-(where In11 « 1 and is a random variable), then ~ is the solution of:

(9)

~ may be expanded in a power series as a funtion of n1 and, to second

order, may be written in the form:

~ = ~1 + ~2 (10)

where ~l - n1 and ~2 - n12. Hence the field strength (and consequently,

all statistical moments of the field) may be written in terms of Eq.

(6).

Note, however, that in this development the determinism of the

various quantities and mathematical functions has been lost due to the

need to model the turbulence as a randomly occurring statistical

phenomenon in order to pose a tractable problem. In the application of

the Huygens-Fresnel principle in Fourier optics, the quantities u(p) and

*
u(p)u (p) have rather straightforward deterministic interpretations but

when the theory is extended to include a randomly turbulent medium, only

the statistical moments (brackets < > denote ensemble averaging ) of the

*
field quantities <u(p» or <u(p)u (p» have meaning since they alone are

observable.
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C. Calculation of the Mean Output Irradiance (Intensity)

Since the output field quantities are specified by the extended

Huygens-Fresnel theory, the mean irradiance of a Gaussian laser beam

passing through the Ludwieg tube and observed in a specific far field

plane may be calculated from the second moment of the field strength:

~
u(p).

(11)

~ ~ * ~
<I(p» = <u(p)u (p» (12)

Using equation (6):

Using equation (7):
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Employing the paraxial approximation appropriate for the case of a

finite beam, Eq. (14) becomes:

-+-+ -+-+ . -+ -+ -+ -+ -+

<Gs(r1,p)Gs*(r2,p» = EXp{(lk/2z)[r12 - r22 - 2p . (r1 - r2»))

-+-+-+ 2
F(r1,r2;p)/z (15)

where r. and p are vectors transverse to the propagation axis and lie in1

the source (z = 0) and receiver (z) planes respectively. Also:

33
Yura has shown:

(17)

where w1 is the first order solution of Eq. (9) and is given by:

(18)



Z4

in the paraxial approximation. The vector xl is specified by:

(19)

Therefore:

(ZOa)

where:

By definition, the refractive index covariance function is given by:

-+ -+ Z
f1 = (P1 - r1) /(Zzl)

-+ -+Z
fZ = (P1 - p) /[Z(z - zl)]

-+ -+ Z
f3 = -(PZ - rZ) /(ZzZ)

-+ -+Z
f4 = -(PZ - p) /[Z(z - zl)] (ZOb)



25

(21)

The strength of the turbulence will be a function of propagation

distance (z) inside the nozzle. Since the thickness of the turbulent

layer on each wall must be on the order of the outer scale size (La)'

the theory of a locally homogeneous field with a slowly varying mean, as

developed by Tatarskii is not strictly valid.25 Its use in this

calculation, however, will serve a two-fold purpose the first of which

will be to provide a "zero'th" order approximation of the complete model

to allow various experimental methods to be compared and the second is

to test the limits on the validity of the atmospheric theory in other

situations. After Tatarskii, the refractive index covariance function

may be written in terms of its two-dimensional Fourier transform:

~ ~ ~
. Exp {-iK . (PI - P2)}

(22)

Therefore:

2 4 ~ ~ 2 ~ ~ 2
(z k 14n)Exp{(-ik/2z)[(r1 - p) - (r2 - p) ]}

J d2~ Q(~)
(23)



where:

~
Q(K)

J

3~

J

3~ ~
= d xl d x2 Fn(K,[zl- z2],[zl +

Exp{i(k/2z1)(p; - r;)2 + [ik/(2[z

26

(24)

Using the expression for the volume element in cylindrical coordinates:

Eq. (24) may be written as:

(25)
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.Q(K) = 4nExp(ik/2)[r12/z1 - r22/zz]}

. Exp(ik/Z)[l/(z - zl) - l/(z - zZ)]}

[dZ1 [dZZ rdP1 P1 rdPZpz . Fn(~' [zCzZJ. [zlHZ ]/2)000 0
-1, -+2

[zlz2(z - zl)(z - zZ)] . EXp(lk/2)[1/z1 - l/(z - zl)]P1 }

-+2

I

n ,-+ -+
Exp(-(ik/Z)[1/z2 - l/(z - z2)]P2}. del EXp(-lP1 . [k/z1]r1}

Exp (i~l . [k/(z - Zl)]P - ~). J:dez ~XP(i~Z . (k/ZZ)fZJo

. EXP(i~2 . [k/(z - Zz)]p + ~} (26)

Note that the limits on the P integrations may be extended to infinity

because the finite transverse extent of the Gaussian beam will drive the

integrand of Eq. (26) to zero for large P values.

If 11 and IZ are defined as the integrals over e1 and e2 from Eq.

(26) above, then:

(27)

Since:

J:de Exp(ti~ . aJo
(Z8)
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is an integral representation of the zero'th order Bessel function.34

Thus the evaluation of Eq. (26) will require taking integrals of

the form:

m

I - I doo Exp('i.~} Jo(ao)o

(29)

This integral form is well known and the result has been tabulated in

34
closed form.

I (30)

After substituting Eqs. (28) and (30) in (26) and performing some

simplifications:

~

Fn(K,[zl - z2J,[zl + z2J/2)

EXP{(iK2/2kz)[z2(z - z2) - zl(z - zl)JJ
~ ~

Exp{(ik/2z)[(z2 - zl)P + (z - z2)r2 - (z (31)
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This expression may be evaluated by employing the Markov

. . 24,25
approxImatIon:

where t is the three-dimensional spectrum of the refractive indexn

fluctuations as a function of turbulence strength along the path

described by the [zl + z2]/2 fuctional dependence. If zl = z2 Eq. (31)

simplifies to:

~ 3 2 . ~ ~2 ~ ~2 r ~

Q(K) = (Bn /k )EXp{(lk/2[(r1 - p) - (r2 - p) ]} . Jndt tn(K,tZ)o

(33)

where zl = z2 = z' and t = (z'/z).

Substituting Eq. (33) in Eq. (23) yields:

~ .~
t (K, tZ)EXp{lKn

(34)

The turbulent field will be assumed to be isotropic in any plane normal
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to the z axis, thus t may be written in the form:n

-+
t (K,tZ)n

2 0
t (K,tZ)= C (tz)t (K)n n n (35)

where t 0 is the modified von Karman spectrum given below.n

(36)

C 2(tz) models the change in turbulence strength as a function ofn

position along the propagation path. Km and KO are given by 2n/10 and

2n/LO respectively where 10 is the inner scale of the turbulence and LO

is the outer scale.24,25 Substituting Eq. (35) in Eq. (34) yields:

(37)

-+ -+

where r = Ir1 - r21 and a = (1 - t)r.

In the following discussion, the term I will refer to the

integration over d2K in Eq. (37). Due to the complexity of this

relationship it is not possible to evaluate I in closed form. Note

however, that the integrand of I goes to zero for values of K »K andm

thus appropriate approximations may be employed. Previous work done at

NASA-Ames indicates that the inner and outer scale sizes of the

turbulence are on the order of 0.2 mm and 1.0 cm respectively and thus
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K - 104 m-1 and since r < 1.0 cm, ak < 102. This means that them

Gaussian exponential in ~ varies slowly over the nonzero range of then

integrand in I. The exponential term may be expanded and the resulting

series expansion of I be evaluated term by term to yield:35

5/6
I = [1/r(11/6)](a/2KO) K_5/6(aKO)

= (3/5)K05/3[1 - 1.86(aKO)5/3] (38)

Therefore:

~ ~ ~ ~ 2 2 5/3 r 2

<~1(r1,p)~1(r2,p» = (6/5)(n k a/KO ) Jodt Cn (zt)

5/3
. [1 - 1.86(KOa) ] (39)

Now consider the form of C 2. Since the strength of the turbulencen

will be at a maximum near the walls of the wind tunnel and decrease

rapidly with distance away from the walls, the strength function will be

modeled using two Gaussian terms.

C 2n (40)

where LO is the outer scale length, D is the width of the flow nozzle

and C 2 is a proportionality constant yet to be evaluated thatn

represents the maximum turbulence strength found at the walls.
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By definition:24,25

2 -+
<n1 (x» B (0)n (41)

where B is the refractive index covariance function. For the region ofn
. 24 25

maXlmum turbulencenear the walls: '

(42)

Eq. (42) may be evaluated by elementary means yielding:

<n 2>1

C 2n

= 15. 9Cn 2 I KO 213

0.063KO 2I3<n12> (43)

The evaluation of Eq. (39) will require integrals of the form:

r 5/3 2 2 2 2 2

12 = J~dt(l- t) . Exp{-4(z t ILO + [zt - D] ILO )}o

(44)
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Since z » LO' 11 may be evaluated using elementary methods:

(45)

Noting that the integrand of 12 will be nonzero only over the ranges 0 S
5/3

S LO/z and (D - LO)/z S t S D/z, the term (1 - t) may be expanded

D/z in powers of t (assuming z > D) and 12 evaluated.

1/2 2
12 = [(n) LO/4z]Cn ~

1/2

~ = 1 - (5LO/6[n] z) +
1/2

+ (5LO/3[n] z)(l

2(1 - D/z)5/3 + (5D/3z)(1 _ D/z)2/3

D/z)2/3 (46)

Using Eqs. (45) and (46):

- 5/3
F = Exp{-Ar }

- 5/2 2 2
A = 1.12n k LOCn ~ (48)

Substituting Eq. (48) into Eq. (13), employing the paraxial

approximation (p = [p,z]) and changing integration variables to r = r1 -

r2 and R = (r1 + r2)/2, yields:
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J

-+

J
-+ 2 2 2 2 - 5/3 2-+ -+ -+ * -+ -+

<I(p» = (k 14n z) d r Exp{-Ar } d R UA(R + r/2)UA (R - r/2)

. Exp{(ik/2)[i . (R - p)]} (49)

The exponential term Exp{_Ar5/3} prevents a closed form evaluation

of Eq. (49). In order to proceed from this point, the offending term

will be approximated by a Gaussian exponential of the form Exp{-Ar2) as

defined by:

J
- 5/3 2

dr (Exp{-Ar } - Exp{-Ar }) = 0 (50)

This type of approximation has been previously employed by Fante, who

matched the r5/3 exponential with a Gaussian at the lie point, and also

by Leader.36,37 This substitution forces the structure function to have

a quadratic dependence on r and, consequently, is incapable of modeling

some turbulence effects. Yandzura has shown that a quadratic structure

function is equivalent to a linear phase perturbation superimposed on

the original spherical waveform.38 A perturbation of this form is

capable of modeling only random phase tilts and cannot provide

information pertaining to such effects as short term beam spread, beam

breakup in strong turbulence and scintillation.38 It is quite useful,

however, for modeling wander of a narrow beam induced by the turbulent

field. It will be shown in Chapter V that such deflections can be used

to test the validity of the extended Huygens-Fresnel theory to model the
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effects of a supersonic turbulent field and also provide a flexible

remote sensing technique. For the purpose of this work, no practical

loss of generality will be incurred by using the quadratic structure

function.

The quadratic fit of Eq. (50) provides a better match over the

- 5/3
range where Exp(-Ar ) - 1 than the method employed by Fante and does

not significantly alter the cutoff point of the integrand in Eq. (49).36

The evaluation of Eq. (50) yields:

A (51)

substituting this Gaussian approximation in Eq. (49) gives an

expression which may be evaluated by elementary methods and the use of

appropriate integral tables. UA is the electric field across the input

(or source) plane and has been taken to be in the form of a TEMOO laser

beam. The average irradiance in the observation plane is thus given by:

<I(p» = (k2/z2)[ luAI2/(l + 4f2/b2)] . (1I4By)
2 2 2 2. Exp(-(k /4Bz )[1 - N /4By]p )

= (k2/z2)[ luAI2/(1 + 4f2/b2)] . [1/(N2 + 16BT)]
2 2 2 2. Exp(-(k /4Bz )[1/(1 + N /16BT)]p ) (52)

where f is the distance from the source plane to the beam waist and:
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2
b = kvO (beam confocal parameter)

T = kb/[2(b2 + 4f2)]

N = k[(l/z) - (4f/{b2 + 4f2})]

B = A + T

2
y = 4t + N /4B (53)

D. Mean Output Irradiance vith Centerline Turbulence

It is possible to generalize the above result to include a region

of turbulent flow near the center of the Ludwieg tube. For the purpose

of this calculation, the strength of the turbulence in the center will

be taken to be a Gaussian function of the following form:

2 2 2 2 2 2
C (T) = C [Exp{-4T /LO } Exp{-16(T - D/2) /d }n n

2 2
Exp{4(T - D) /LO }] (54)

where d viII be called the width of the center turbulence packet. Note

that this quantity is not a measure of half vidth at half maximum

amplitude.

The methods of analysis required for this calculation are virtually

identical to those used in the mean irradiance case vith the exception

*
of the expressionfor <W1(r1,p)W1 (r2,p». Eq. (39) may be employed.

This definition provides a better match over the range where

Exp{_Ar5/3} - 1, and does not significantly alter the cutoff point of
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the integrandin Eq. (49).

If C 2(zt) is now given by (54). Evaluationof this new expressionn

will require integrals of the form:

r 22 2 22 2 2

I = JndtExp{[-4zt /LO ] - [16(zt - D/2) /d ] - [4(T - D) /LO ]}o

. (1 - t)5/3 (55)

Equation (55) may be evaluated term by term by expanding the function

(1 - t)5/3 about the points 0, D/2z, and D/z. Using the facts that z is

much greater than LO' and d less than or on the order of D/3, F may be

written in the form:

= EXP{-A1r5/3} (56)

where:
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5/3 2/3 2 2
a1 = (1 - D/2z) +(5D/6z)(1 - D/2z) + (5d /36z )(1

(5/3)[(1 - D/2z)2/3 + (D/3z)(1 _ D/2z)-1/3]

-113
a3 = (5/9)(1 - D/2z)

_ D/2z)-1I3

(58b)

(1 - D/z)5/3 + (5D/3z)(1 _ D/z)2/3

2/3
c2 = (-5/3)(1 - D/z) (58c)

If F is approximated by the Gaussian exponential EXP{-A1r2}, where

Ai is defined by the relation given in Eq. (50), the result is a form

identical to Eq. (52) with:

(59)

2
y = 4T + N /4B (60)

E. Intensity Covariance Function

The formulation of the intensity covariance function requires an

expression of the form:

~ ~ ~ *~ ~ *-+
<I(pl)I(p2» = <U(pl)U (p1)U(p2)U (p2» (61)
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which may be written in terms of the extended Huygens-Fresnel theory:

= (k4/2n2) J d2i!

~ * ~
UA(r3)UA (r4)

. ~ Z
Exp {( lk/Zz){r 3

J
Z~

J
Z~

J
Z~ ~ * ~

d rZ d r3 d r4 UA(r1)UA (rZ)

. Z Z ~ ~

EXp{(lk/Zz)[r1 - rZ +ZPl . (rZ
~Z ~ ~ ~

- r4 + ZPZ . (r4 - r3)]} . F'

where:

(63)

3ZAfter Yura:

Z ~~ *~~ ~~ ~~

F' = Exp{-[Z<lw11 > - <Wl(r1,Pl)W1 (rZ,Pl» - <w1(r1,Pl)w1(r3,PZ»
~~ *~~ *~~ ~~

<Wl(r1,Pl)wl (r4,PZ» - <wl (rZ,Pl)Wl(r3,PZ»
*~~ *~~ ~~ *~~

<w1 (rZ,Pl)wl (r4,PZ» - <w1(r3,PZ)wl (r4,PZ»]} (64)

Using the techniques of the preceding calculations along with the

Markov and paraxial approximations, each term in Eq. (64) may be shown

to be proportional to a function of the form:
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f
J

~ ~
dK Q( K) (65)

where:

(66)

and:

~ ~ ~ ~
a = l(z'/z)(p. - Ph ) + (1 - z'/z)(r. - r ) IJ 1 e

x = Z'(l - z'/z)/2k (67)

the subscripts in Eq. (67) correspond to the subscripts on rand p in

each term of Eq. (64). t is given by:n

~
t (K,Z')n (68)

where c 2 and t 0 are given by Eqs. (40) and (36) respectively.n n C 2n

will be nonzero only over small ranges centered on the points z' = 0 and

z, = D. Over these ranges, x « 1 and K . (a + XK) - aK. Therefore:
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If Pz is taken to be on the propagation axis (PZ = 0),

Since aK »1:m

f = (3/5)K05/3[1- 1.S6K05/31tp + (1 - t)iill5/3] (70b)

and each argument term in Eq. (64) will depend on an integral of the

form:

r z 4 4 5/3

I = Jndt Cn (zt)ltp + (1 - t)rillo

= ri1S/3[d' (1 - ,)S/3EXP(_4z2,2/L02)o

+ pS/3[d' ,S/3Exp(4(2' _ D)2/L02]o

(71)

(72)

Methods for the evaluation of Eq. (72) have been given in the previous

calculations. F' may be written in closed form as:
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where A is specified by Eq. (48). If each s/3'rds power term in the

exponential is approximated by a Gaussian as done in the previous

calculations, it is possible to arrive at a closed form expression for

<I(p)I(O». (See section C for a discussion of the limitations imposed

on the theory by this approximation.)

<I(p)I(O» = (k4/z4)[ IUo12/(l + 4f2/b2)] . [1/16Bf:3I3'f3"]

Exp{ _(k2p2 14Bz2)[B/f:3 _ N2A2 1413' f:32B _ N2B/4f:3"f:32])

Exp {_(k2p2 1 4Bz2 )N4A2 1 4f:3"13' f:33B - N6 A 4 164f:3" 13'2f:34B2]) (74)

where:

B = A + T

2
f:3= B - A IB

f:3' = 4T + N2/4B + n2A2/4f:3B2

f:3"= 4T+ N2/4f:3- N4A2/1613'f:32B2 (75)

A necessary condition for the validity of Eq. (74) is that f:3"> O. By

definition:
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(76)

Thus the intensity covariance function may be formed using Eqs. (52) and

(74) along with definition (76).

F. Equal Path Length Interferometer

The final case that will be considered consists of inserting the

flow nozzle into one arm of an equal path length interferometer. The

complex field amplitude at a point p in the receiver plane will be the

superposition of the two fields transmitted by each arm of the

interferometer.

(77)

If the Ludwieg tube is placed in arm 1 of the interferometer, each field

component may be written in terms of the extended Huygens-Fresnel

theory.

(78)

(79)
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where:

-+ -+
p = (p,z) (80)

Thus:

(81)

From previous calculations:

IO(P) = (k2fz2)[ IU12f(1 + 4f2/b2)]

Exp{_(k2p2/4Tz2) [16T2f(N2

[1I(n2 + 16T2)]

+ 16T2)]}

<I1(P» = (k2fz2)[ luI2/(1 + 4f2/b2)] . [1/(N2 + 16 BT)]
22222. Exp(-(k p /4Bz [16T f(N + 16BT)]} (82)

Using Eqs. (78) and (79):

-+ * -+ 2 2 2

J
2-+

J
2-+ -+ *-+

<U1(p)UO (p» = (k /4n z d r1 d r2 UA(r1)UA (r2)

. -+2 -+2 -+ -+ -+
EXp{(lkf2z)[r2 - r1 + 2p . (r1 - r2)]} . F" (83)



where:

F"
~ ~

<Exp{lj1(r1,p)}>

33
After Yura:

Therefore:

From the previous calculations:

evaluated at:

2 2 f1 2

= 4n k ZJ~dt Cn (zt)o

. JO[(1 - t)r12K]

45

(84)

(85)

(86)

(87)

(88)
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(89)

Thus:

C 2(zt)n t 0( K)n (90)

where C 2 and t 0 have been previously defined. 11 will be defined asn n

the integration over dt in Eq. (90) and 12 will be defined as the

integration over dK. 11 has been previously evaluated and 12 may be

evaluated with the help of a previously tabulated form.39

(91)

where:

« = 1 + D/2LO (92)

Thus:

(93a)
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where:

(93b)

Using the methods employed in the previous calculations:

4 * 4 222 2 2
<U1(p)UO (p» = (k/z )[ Iuol /(1 +4f /b )] . Exp{-~2}

22222 2
. Exp{-(k P /4Tz )[16T /(N + 16T ]} (94)

and likewise:

(95)

Thus using Eqs. (82), (94) and (95), (81) may be written in the form:

4 22
1

2 22 2 2
<Ir(p» = (k/z )[ uol /(1 + 4f /b )] . [(1 - 2Exp{-~})/(N + 16 T )]

222 2 222 2 2
Exp{-(k p /z )[4T/(N + 16BT)]} . Exp{-(kp /z )[4T/(N + 16T )]}

Exp{1/(N2 + 16BT)} (96)

G. Conclusions

It is apparent from the form of the preceding calculations that all

the cases treatedare capableof providinginformationabout the
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existence of turbulence in the Ludwieg flow nozzle and limited

statistical information about the characteristics (Cn2,LO and 0). None

of the cases presented here can form the basis for a "turbulence meter",

capable of providing spatially resolved measurements, on its own. This

is due to the fundamental scale sizes of the turbulent field and their

effects on the spatial filter functions as summarized by Ishimaru27,28

and evident in the functional nature of A.

In all cases, the measurable quantities reflect a complicated

superposition of effects from each differential length element, dz,

along the optical path z. There is no apparent method to separate the

effects produced by turbulence at one point along the path from those

produced by turbulence at any other point, and thus there is no way to

probe the turbulence within the flow nozzle with any spatial resolution.

Also, although it is quite feasible to measure A, these methods

will not allow the direct measurement of C 2,n Knowing the

value of A provides one only with a knowledge of the product of the

parameters of interest (see Eq. (48) for example). Since the dependence

of each method on the turbulence parameters is identical, no one method

or combination of methods will allow the determination of the individual

parameters. It is quite possible, however, that these models in

conjunction with the use of multiple beams and appropriate calibration

methods may contribute to the design of a practical technique for the

remote measurement of turbulent fields in a compressible flow.

It is also apparent that anyone of the cases treated here could

provide the basis for an experiment to test the validity of the extended
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Huygens-Fresnel formalism in modeling the effects of a known supersonic

turbulent field on laser beam propagation and thus determine the

usefulness of the "atmospheric" approach to remote wind tunnel

measurements. Figure 27 provides a schematic diagram of one possible

single beam experiment using a low power laser and uncoated,

off-the-shelf optics. The TEMOO beam propagates through the turbulent

field in the flow nozzle and then is incident upon a circular aperture

having a radius approximately equal to that of the beam. Figure 31

plots the time-averaged power (Eq. (52) integrated over the blocking

aperture) as a function of the distance (Z) between the input window of

the flow nozzle and the plane of the aperture. The symbol b represents

the confocal parameter of the beam:

(97)

and is a very useful figure of merit indicating the "tightness" of the

focusing and, consequently, the spot radius of the beam.40 It is

obvious that the detailed structure shown in Fig. 31 may be compared to

experimental data directly with a good match providing very strong and

unambiguous evidence of a valid theoretical model.

This is, in fact, just the approach employed in chapters V and VI

to draw conclusions not only regarding the validity of EHF theory but

also to suggest possible experimental schemes that have the potential

for providing the physical basis of a remote turbulence "meter" suitable

for use in bounded, supersonic flows.
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CHAPTERIV

PITOT TUBE/HOT YIRE ANEMOMETRY OF THE LUDYIEG TUBE FLOY

A. Introduction

As noted in the previous chapters, one of the most fundamental

goals of this work is the determination of the validity of extended

Huygens-Fresnel formalism in modeling the turbulent field in a bounded,

supersonic flow such as that produced in a laboratory scale wind tunnel.

Chapter III has suggested several experiments capable of such a

determination, but all such experiments depend upon having access to a

well-characterized turbulent flow where the important turbulence

parameters have been measured by some independent, outside technique.

The accuracy with which the flow can be characterized will, in turn,

determine the accuracy of the conclusions drawn from these experiments.

For decades, researchers in the field of fluid dynamics have

characterized both compressible and incompressible fluid flows using two

intrusive measurement techniques known as pi tot tube and hot wire

anemometery.41-46 These methods require the presence of physical

transducers in the flow path and, consequently, have a rather limited

usefulness when applied to supersonic (compressible) flow. (See Chapters

I and II for a discussion of the reasons for these limitations). It is
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possible to use these techniques in the case of the Ludwieg tube flow

nozzle described in Chapter II, albeit at the expense of some high

frequency information, with quite reasonable accuracy. It is not,

however, a trival matter to design the necessary hardware to allow the

positioning of a hot wire transducer in a supersonic flow without

drastically altering the characteristics of the flow.43

A pi tot tube (see Figure 3) consists of a hollow tube with a fairly

small outer diameter compared to the dimensions of the turbulent field.

Yhen inserted in the flow region, the pressure in this tube can be

related to the local "instantaneous" pressure of the working fluid at

the point of insertion. From this pressure measurement, and a knowledge

of some of the basic thermodynamical principles governing the flow (such

as adiabatic or non-adiabatic isolation, free or driven expansion of the

working fluid through the firing valve, etc.), the basic flow parameters

may be computed. These parameters include pressure, density,

temperature, velocity and, in the case of compressible flow, the Mach

number. Yhile this device is capable of providing a highly linear

dynamic response,even a small pitot tube has a very limited frequency

bandwidth on the order of 1-5 kHz (hence the use of quotation marks in

the sentence above) and thus it is capable of measuring only the average

(low frequency component) of the fluctuating flow parameters. This

means that pitot tube anemometry alone will not be sufficient to

adequately characterize the flow for the purposes of this work, but may

be used in conjunction with another, higher speed measurement technique

known as hot wire anemometery to glean the necessary knowledge of the
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turbulence parameters.

As its name implies, the hot wire anemometer is based on a small

heated filament with dimensions greater than or on the order of 5um

diameter by 1mm in length (see Figure 4). The device senses the

exchange of heat between the wire and its local surroundings with an

external bridge circuit and thus provides the basic information from

which the important flow parameters may be calculated.47 While this

heat exchange information is an integrated measurement over the length

of the wire and the exposed up-wind surface area, the very small

physical dimensions of the wire provide at least limited spatial

resolution in the flow. The hot wire anemometer is capable of providing

at least an order of magnitude improvment in frequency response over

that of the pitot tube instrument (on the order of 70-100 kHz), but

suffers from the fact that it has a highly nonlinear dynamic response

with an output that requires at least a two-step data reduction in order

to measure the important flow parameters (density, temperature,

velocity, etc.}.41-47 These facts serve to drastically complicate a

theoretical analysis of the response of the hot wire anemometer in a

compressible flow, and thus require the development of an appropriate

lO b 0 h 0 47
ca 1 rat10n tec n1que.

While the pitot tube instrument does not have the frequency

response to measure more than the mean of the fluctuating quantities,

this averaged information may be conveniently used to calibrate the hot

wire anemometer with its correspondingly higher frequency response.

Over the years, the two techniques have been merged to become probably
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the most commonly used intrusive measurement method in the field of

experimental fluid dynamics.

B. Analysis and Results of the Measurement of the Ludwieg Tube Flow

using a Pitot Tube Anemometer

A schematic representation of the experiment is shown in Figure 5.

The basic flow nozzle was modified with a down-stream access port which

allowed the insertion of a raked pitot tube (see Figure 6). The pitot

tube was positioned to sample the local flow in the region of the

optical windows and could be scanned in transverse location with a

micrometer translation stage (see Figure 6).

The original design called for a knife edge support which was 1/8

in. in thickness to minimize flexing of the mount in the flow. This was

impossible to achieve, however, as this particular flow nozzle was

designed with very little excess longitudinal taper and thus a foreign

object of greater than 1/16 in thickness caused the flow to "choke off",

that is, the flow velocity became subsonic with a resultant thickening

of the turbulent boundary layers to encompass the entire cross sectional

area of the nozzle. Figure 7 presents a series of shadowgraph photos

(see Chapter I) showing the unobstructed flow, the flow perturbations

produced by the presence of a 1/8 in.-thick knife edge alone, and the

flow produced by the final pi tot tube/knife edge design.

As illustrated in Figure 3, the pressure in the tube is detected by

means of a pressure transducer which senses the change in the

capacitanceof a parallelplate capacitoras one plate is deflectedby
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the pressure in the tube. This change in capacitance is, in turn,

converted to a fluctuating voltage signal by making the pressure

transducer one arm of an external capacitance bridge circuit. In the

experiment described here, this voltage signal was scaled using an

analog amplification stage (see Figure 5) and then digitized using a

Physical Data 515 transient digitizer sampling at a frequency of 200

kHz. The digitized signal was then transferred to an H-P 9830 desktop

computer via an HPIB (IEEE 488) parallel interface bus and stored on

magnetic tape for further analysis.

(As noted in Chapter II (see Figure 2 ), the Ludwieg tube flow

nozzle is operated in a shock tube (pulsed) configuration with each

plateau in the resultant pressure curve representing an approximately 50

ms time interval of equilibrium flow. The optimum sample interval is on

the first plateau, if for no other reason than signal-to-noise

considerations. Yhile this was attempted at first, the hot wire data

revealed a very strong, transient starting effect occurring at the

beginning of the first plateau and significantly perturbing the

equilibrium flow. For this reason, the following results represent

measurements taken from intervals in the second plateau which exhibited

quite stable equilibrium flow.)

The following very detailed and convenient pi tot tube data

reduction scheme has been developed and summarized by Mr. Daryl Monson

at NASA Ames Research Center and the author is very grateful for the use

of this method.48 This analysis procedure requires the measurement of

the following parameters using both a pitot tube and some additional
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instrumentation (see Figure 8):

1. PT1 - the pressure upstream of the flow nozzle.

(Measured using a static port coupled to a pressure

transducer).

2. TT1 - the absolute temperature upstream of the flow

nozzle. (Measured using a thermocouple).

3. P - the static pressure at the wall in the testw

section. (Measured using a static port).

4. PT2 - the pressure measured by the pitot tube.

The following common assumptions are also employed:

1. TT(z) = TT1 = Const. Yhere TT(z) is the total

temperature as a function of displacement at right

angles to the wall. The total temperature is the

temperature that would exist if the flow could be

suddenly brought to a rest isentropically.48

2. P = P = Const. Yhere P is the free stream
Q) w Q)

pressure that exists at the center (laminar flow)

. f h . 48
regIon 0 t e test sectIon.

The local and mean Mach number may be calculated from the Rayleigh
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. . f 1 48,49
supersonlCpltot orum a:

(la)

Yhere:

a = 2y/(y + 1)

b = (y - l)/(y + 1)

c = (y + 1)/2

p = l/(y - 1)

q = y/ (y - 1)

y = cp/cV = 1.4 for a diatomic gas such as N2 (lb)

Since Eq. (la) is transcendental in Mach number (M), it may be solved

using appropriate numerical methods or tabulated solutions of the

1 .
d . 49

norma lze equatlon.

Using Eq. (la) and measuring PT2 at the centerline of the flow

nozzle allows the calculation of the free stream (laminar flow) Mach

number (M) which may be compared to the value given by:~
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Pm/PT1 ={1 + [(y - 1)/2]Mm2}y/(y - 1) (2)

to test the consistency of the experimental measurements.

Figure 9 is a plot of the local Mach number (M) plotted as a

function of normalized distance away from the wall (y/H), where H is

distance from the wall to the centerline). The boundary layer thickness

is defined to be the distance away from the wall at which the Mach

number has achieved 90% of the free stream value. As noted on Figure 9,

this number (&) is 1.43 cm for this particular flow nozzle.

The local velocity (u), as a function of y/H, may be calculated

from:

*
(u/a)

2
{(y + 1)/[(2/M ) + y - 1)} (3a)

*
where a is the so called "critical velocity" or the local speed of

sound. This quantity may be calculated from:

*2a 2
yRTT1 / {1 +[(y - 1)/2]M } (3b)

where R is the ideal gas constant. Once again, the centerline

measurement provides the free stream value of the parameter, in this

case the velocity (um) value. Figure 10 shows a plot of normalized

velocity (u/um) as a function of normalized transverse position (y/H).
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Similarly, Figure 11 shows a plot of normalized temperature (T/Too)

as a function of normalized distance (y/H) computed from:

{1 +[(y _ 1)/2]M2}-1 (4)

Lastly, the local normalized density (p/poo) is plotted in Figure 12

as a function of normalized distance (y/H) computed using:

pi p_ = P T IP T- w IX> IX>
(5)

Not only do these curves illustrate the average nature of the flow,

but they also provide the basic ingredients necessary for the

calibration of the hot wire instrument which will be capable of at least

limited time-resolved measurements.

C. Analysis and Results of the Measurement of the Ludwieg Tube Flow
using a Hot Yire Anemometer

As shown in Figure 4, the hot wire anemometer is based on a small

heated wire filament placed in the flow path. If an electric current is

forced to flow in the filament, the voltage subsequently induced will

depend on the resistance of the wire.47 This resistance will, in turn,

be a function of the instantaneous temperature of the wire. As the

turbulent eddies, consisting of perturbations in density, temperature

and velocity, are convected past the heated filament by the mean



67

0'

0.

0.
- . .

0.

-
SLo.crl ::x:"-

I"'- I"'- LD >.
U1 ° U1 0. °
N - - tI)

11
>

"8
II Q1-
8

s...
.... ='

L 0. ....
cu
s...
Q1
c..
e

:I: Q1

0. ........
Eo<

>- "'0
Q1
N

0f"'i
r-4
cu

0. e
s...
0

Z

°
.-4

0. .....

a::

t.:)
1-1

0.
rz..

° ° ° ° . . . .N - - - - - - - -

8
........



68

2S.'

,56°a

.
r-ol

rl
rt) !.rlE
"'- E0' E :I ==- ......
0 (7) 10 IL:a >.

([) I'- I'- .- - CI)-
rr> ol >

II.. >.

Ji II ...
2ra .....

I CI). CQI. oSS°S Q

. I '"
QI

°2 "'- N
. I >- ....

.....
'31°1

n3
E
I.<
0

'.S z

.
,5£.S N

.-4

°1

t.:)
1-1

'os

'SI.S

I It Ii . Ii et ; . .. 'I
po. N -. .N - - - - - - - - - -
£w/5>i c A1ISN3G



69

velocity of the flow, heat energy will be either gained or lost by the

wire altering its thermal state and thus inducing a slight, time

dependent perturbation of the resistance.47 This perturbation will be

manifested as a fluctuation in the voltage drop across the wire and can

be easily detected, with a good signal-to-noise ratio, by means of an

A.C. bridge circuit.47,50-54 With the proper analysis of the hot wire

dynamic response and appropriate data reduction techniques, it is

possible to measure the turbulence parameters of interest.

Several authors have treated the theoretical dynamic response of a

h ' ,
d

' 1 41-47,50-54 I " hot W1re anemometer 1n eta1 . t 1S qU1te apparent t at

this instrument is sensitive to many fluctuations and processes in the

turbulent working fluid and thus a completely theoretical analysis of

the hot wire response is very complicated and so qualified as to be of

1 . ' d '
1 47 I '

d
' ,

l
'

f
'

d1m1te pract1ca use. t 1S most pro uct1ve to use a slmp 1 1e

dynamic analysis in conjuction with a calibration technique based on the

averaged data provided by pitot tube measurements.

In general, the fluctuating signal (e') may be written in the

f 11 ' ' f 50-54
o oW1ng conven1ent orm:

(6)

where u denotes flow velocity, p denotes density and Tt denotes total

temperature. The bar (-) denotes time averaging and the prime symbol

(') denotes fluctuating quantities. S represents the response
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sensitivity to a specific variable and is defined as:

S = (0 In e)/(o Inu), holding p, T t
and R constant.u w (7a)

S = (0 In e)/(o In p), holding u, Tt and R constant.
p w

(7b)

(0 In e)/(o In Tt), holding u, p and Rw constant. (7c)

(R denotes wire resistance.)50w

For compressible flows in excess of Mach 1.2, it is possible to

, l'f E (6) t 47,50,53,54
Slmp 1 y q. 0:

(8)

where the product (pu) is known as the mass flux of the flow. The wire

overheat ratio (a ) is defined as:w

(9)

where R represents the resistance of the heated wire and R representsw r

the resistance of the wire at ambient or room temperature. At fairly

high overheat ratios (aw > 0.8), the total temperature sensitivity (STt)
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becomes small and the total temperature fluctuations (T't) are small in

the case of adiabatic flow. 50 It is thus possible to neglect the total

temperature term in Eq. (9) and write the mass flow as a direct

proportionality to the normalized hot wire signal. Taking the R.M.S.

average (denoted by brackets «») of both sides of the resulting

relationship yields:

«pu)'>/pu = (liS )«e'>/e)
pu

(10)

Two fundamental approximations allow the further reduction of Eq.

(10).41-47,50-54 As noted above, the total temperature fluctuations

(Tt) may be neglected if sufficiently high overheat ratio is employed.

Several authors have indicated that pressure fluctuations (P') are also

small enough to be neglected in this application without serious loss of

accuracy. 50-54 (Numerical estimates of the probable error introduced by

this approximation will be presented later in this chapter.) Under

these assumptions, it is possible to write the normalized static

temperature fluctuations in terms of the normalized velocity

fluctuations.

(11)

The following expressions may then be derived using Eq. (10) as a
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starting point:

<u'>/u = (1/A)«(pu)'>/pu) (12)

< p' > I p = [( A - 1) I A][ < ( pu) , > I pu] (13)

<T'>/T = [(1 - A)/A][«pu)'>/pu] (14)

where:

2
A ==1 + (y - 1)M (15)

For this application, A will be less than or on the order of 2.3. The

maximum error introduced by the neglect of pressure fluctuations will be

on the order of I<P')/PI.41,50-52 Preliminary measurements of a similar

Ludwieg tube flow using laser-induced fluorescence techniques (LIF), see

chapter I) indicate this quantity to be on the order of 2-3%, which is

quite acceptable error for the purposes of this measurement. 55

A schematic representation of the experiment is shown in figure 5.

The hot wire probe shown in Figure 4 was inserted into the Ludwieg tube

flow via the access port shown in Figure 6 and positioned in the

window region of the test section. The probe was scanned at right

angles to the wall by means of a micrometer-driven translation stage.

The raw signal from the hot wire probe was input to one arm of a

commercial A.C. bridge analyzer. The bridge output was scaled to TTL
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levels using an analog pre-amplifier and then input to a Physical Data

515 transient digitizer. The bridge signal was then digitized at a

sampling rate of 200 kHz. The digital data was then transferred to an

H. P. 9830 computer via an HPIB (IEEE 488) interface bus and stored on

magnetic tape for further analysis. A Prime 350 computer was later used

for more complex and detailed data reduction, including fast Fourier

transform (FFT) analysis.

An oscilloscope photo of a typical run response is shown in Figure

13. Note the severe oscillatory anomaly occurring on the first plateau

of the shock tube operation. This transient effect made it impossible

to use data generated during approximately the first 50 ms of the run.

As noted previously, all experimental data was recorded during the

second plateau of the shock tube operation. A typical digitized raw

data set, taken on the second plateau, is shown in Figure 14.

The hot wire anemometer was calibrated using the pitot tube data.

Two methods of calibration are in common use. The first method requires

averaged pitot tube measurements of the density (p) and the flow

velocity (u) taken on the centerline. By varying the load pressure of

the N2 working fluid (the pressure in the holding tube, see chapter 2,

just before the firing valve is opened), it is possible to vary the mass

flux (pu product). If the averaged hot wire response is then measured

on the centerline for the same load pressure values, a calibrated

response curve (In[e] versus In[(pu) ]) may be drawn. A secondav av

method involves a "dynamic" calibration technique requiring averaged

mass flux data from pitot tube measurements taken at various points in
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the turbulent boundary layer. If the hot wire response is then measured

at the same points in the boundary layer, a similar calibrated response

curve to the one resultant from the first method may be plotted. Yhile

in theory these two methods should yield equivalent response curves, it

became apparent quite early that such was not the case.

The first, or "centerline" method, results in mass flux numbers

much higher than any comparative measurement could detect, while the

dynamic method agreed quite well with other related work in a similar

flow. This prompted a great deal of discussion and work in an attempt

to explain this phenonenon with mixed results. It is beyond the scope

of this work to attempt to address this problem in detail, but suffice

it to say that the consensus among respected researchers in the field of

fluid dynamics is that the dynamic method is the much more accurate and

representative calibration technique. The centerline method simply does

not see the perturbational processes that are dominant in the turbulent

boundary layer. Indeed, the dynamic method provided the first

confirmation of the LIF measurements (taken in a very similar test

section at essentially identical Mach number) which had been plaguing

several workers for an extended period of time. The dynamic calibration

technique was also confirmed by the optical data taken in this work and

presented in later chapters. Figure 15 shows the dynamic calibration

curve measured in the Ludwieg tube test section.

The RMS perturbation in mass flux versus normalized transverse

displacement relative to the wall is plotted in Figure 16. This curve

demonstrates the classic "flat plate" boundary layer structure with the
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maximum mass flux perturbation being about 9.5%. The symbol delta (0)

represents the boundary layer thickness (1.43 cm in this case). The raw

hot wire data was also subjected to intensive Fourier analysis which

will be presented in a following chapter.

Figure 17 shows the RMS density fluctuations as a function of

position and Figure 18 shows a comparison of RMS temperature

fluctuations compared to those values measured using LIF in an

essentially identical flow nozzle operated at Mach 2.05 in a closed

expansion or "blow down" mode.
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CHAPTERV

THE DESIGN OF A SINGLE BEAM EXPERIMENT TO TEST THE APPLICABILITY OF THE

EXTENDED HUYGENS-FRESNEL THEORY TO THE CASE OF SUPERSONIC FLOW

A. Introduction

The calculations of Chapter III provide several possible approaches

to the design of an experiment capable of testing the validity of the

extended Huygens-Fresnel theory in modeling the turbulent field produced

in a supersonic, bounded flow. The most desirable experimental approach

was one involving the use of a visible, low power « lOmW), TEMOO

Gaussian laser beam in a manner that is insensitive to mechanical

perturbations, such as mount vibration or acoustic noise coupling

effects, and also capable of providing low noise data in the rather

dirty environment of the typical laboratory wind tunnel. Several

practical considerations were also placed on the design of such an

most important of which was the use of existing data

analysis equipment (described in detail in Chapters II

mind all of these considerations, the most straight-

forward method of testing the extended Huygens-Fresnel theory in a

supersonic environment consists of measuring the effects of the

turbulentfield on a singleTEMOO laser beam propagatingthrough the

experiment, the

acquisition and

and VI).

Bearing in
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field. Since these effects consist primarily of phase perturbations of

the optical wavefront, and not energy attenuation, it is possible to

design high speed optical and measurement systems based around a low

power He-Ne laser beam and existing NASA electronics.20,24,S6

It is possible to develop an intuitive picture of the effects

induced on the beam in a turbulent field by considering two extreme

cases. If a laser beam is expanded to a diameter which is large when

compared with the smallest turbulent eddy size, 10 (see Chapter III for

further details), the interaction of the beam with the eddies in the

turbulent field will produce a distorted, but relatively undeflected,

far field spot (see Figure 19). If, on the other hand, the beam is

focused so that it is small when compared to the minimum eddy size, then

the dominant effect of the beam-turbulence interaction will be to induce

a fairly uniform tilt in the entire optical phase front and hence cause

a deflection of the beam while leaving the far field spot relatively

circular and unperturbed (see Figure 19).20 While measurement of a

distorted (or phase scrambled) wave front will typically require the use

of interferometric techniques requiring rather sophisticated and noise

sensitive equipment, many quite simple methods exist (as shall be

discussed shortly) for the measurement of beam deflection or wander.

The simplicity of experimental design, in conjunction with the

development of a closed form model of the situation using the extended

Huygens-Fresnel theory, made the beam deflection experiment most

desirable.



1
Source
Plane

Laser
Beam

Beam Radius « l

Q
\ J
'- /

Turbulent

Eddy

7
Observation

Plane

Beam Radius -l

t]"
/' \
\ /

FIGURE 19. The Effect of Beam Size on the Far Field Spot

00
::--



85

B. The Calculation of the Refractive Index Spectrum and the Structure

"Constant" from the Hot Vire/Pitot Tube Measurements

Section C of Chapter III presents a detailed calculation of the

mean output irradiance (or intensity) of a laser beam propagating in an

idealized approximation to the turbulent field existing in NASA's

Ludwieg tube facility. (See Eq. (52) in Chapter III.) Using the

results of the hot wire/pi tot tube measurements reported in Chapter IV,

it is possible to employ the extended Huygens-Fresnel theory to model

the output intensity of a laser beam propagating in the real-world

turbulent field. The two fuctions of prime interest in the

determination of this model are the spectrum (~ O[K) of the refractiven

index covariance function (B ) and the structure "constant" (C 2) ,an n

function of position in this case. The measurement of time-resolved

density fluctuations, using the previously described methods of hot

wire/pitot tube anemometery, allows the calculation of these two prime

functions by employing the proper data reduction techniques.

As shown in Chapter IV, the response of a hot wire anemometer (for

Mach numbers greater than 1.2 and for high wire overheat ratios) may be

. . h f 48
wrltten ln t e orm:

e' / e = S [ ( pu) , I pu )pu
(1)

where:

e denotes the voltage signal from the hot wire anemometer.
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p denotes the density of the working fluid.

u denotes the velocity of the working fluid.

S is a proportionality constant (see Chapter IV).

denotes local fluctuating quantities.

denotes local time-averaged quantities.

It has also been shown (see Chapter IV) that, neglecting pressure

fluctuations:

( pu) , / pu ex p' / p (2)

The turbulence induced perturbation in the index of refraction (n1) of

the working fluid may be related directly to the normalized density

fluctuations (the right-hand side of Eq. (2» by the Gladstone-Dale

1 . 57
re atlon. Thus a knowledge of the local normalized density

fluctuations allows the calculation of n1(r) and Bn and hence the

determination of the desired function C 2(K). Figure 20 shows an

schematic representation of the data reduction necessary to calculate

the form of C 2(K) from raw density data measured from the anemometer.n

Referring to Figure 20, it is possible to generate a plot of the

refractive index perturbation (n1) as a function of time from the

normalized local density measurements of the hot wire anemometer. It is

further possible to scale the time axis of this plot such that length-

scale information is presented. This is done by multiplying the time

axis by the mean local velocity of the working fluid at the position of

the hot wire probe. This data is available from the pitot tube
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measurements. Assuming that Taylor's frozen flow hypothesis is valid

for the case of the Ludwieg tube flow and, hence, turbulent eddies are

neither created or destroyed over the temporal span of the measurement,

the one-dimensional refractive index covariance function (B ) may ben

determined by performing length-shifted correlation (the spatial analog

of time-delayed correlation in temporal Fourier analysis) on the n1

versus 1 data. The Fourier transform of the covariance function Bn

(which is <n1(0)n1(1» by definition) versus 1 data may now be employed

to determine the spectrum of the refractive index fluctuations.

A typical result of this data reduction procedure is the spatial

spectrum of the refractive index fluctuations as shown in Figure 21 (y/o

= 0.5). The well-defined high frequency peaks readily apparent in

Figure 21 are due to standing and traveling shock waves produced by

surface irregularities in the Ludwieg tube and may be neglected for the

purposes of this calculation.

It is a reasonable a priori assumption that the modified von Karman

spectrum (see Chapters I and III) should provide an adequate description

of the spectrum of the refractive index covariance function.20,24,56

The modified von Karman spectrum is given by:58

(3)

where:
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(4a)

K
m

(4b)

The turbulence parameters Km and KO may be estimated by noting that

the outer, or largest, turbulence scale length (LO) can be no larger

than the boundary layer thickness (0) and that the inner, or smallest,

turbulence scale length will be on the order of 1/100 the outer scale

length (if the turbulence in the wind tunnel scales in approximately the

same fashion as atmospheric turbulence).20,S6 For the case of NASA's

Ludwieg flow nozzle, 0 - 1.5 cm and thus:

Since Km » KO' it is possible to approximate the von Karman spectrum

as:

(6)

In order to compare this three-dimensional spectrum to the

one-dimensional information provided by the reduction of the hot wire

K _ 104 m-1 (Sa)
m

KO - 400 m
-1

(Sb)
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data, it will be necessary to find an expression for the one-dimensional

spectrum (ltnO) in terms of

Tatarskii has shown that:2S

the three-dimensional spectrum (t 0).n

<fin
(7)

Thus, solving Eq. (8) for 1tnO yields:

(8)

Substituting Eq. (6) into Eq. (8) and using methods from elementary

calculus gives:

t °
1 n = (6/S)n(K2 + K02)-S/6 + C (9a)

Since as K 4 m, t ° and 1t ° 4 0; C must be zero. Therefore Eq. (9a)n n

becomes:

t °
1 n

(9b)

A comparison of the one-dimensional modified von Karman spectrum

with the data measured by the hot wire anemometer is shown in Figure 22.

Note that the fit is quite good except for the previouslynoted and
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unimportanthigh frequency peaks. As noted in Chapter IV, even the hot

wire anemometer does not have a sufficiently large bandwidth to resolve

the high frquency (- 10 MHz) components of the turbulence field, and

thus the hot wire spectrum "rolls off" at high (spatial) frequency. The

overall agreement of the one-dimensional von Karman spectrum with the

hot wire spectral data justifies the use of the three-dimensional von

Karman spectrum in the extended Huygens-Fresnel calculations which

follow.

It is also possible to calculate the functional form of C 2 as an

function of propagation path from the R.M.S. density data measured by

the hot wire anemometer. From the definition of the refractive index

covariance function, it may be shown that:

(10)

Following the notation presented in Chapter III,

(11)

Thus,

(12)
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where the proportionality constants have been previously determined in

Chapter III (see Eq. (43), Chap. III). A plot of C 2 as a function ofn

y/o is shown in Figure 23. It is possible, at this point, to

quantitatively test the validity of the reduced hot wire/pi tot tube data

in two ways.

Figure 24 shows the power spectra of the fluctuating hot wire

signal (E') for three values of y/o and, consequently, three different

values of the Mach number (velocity). It is readily apparent that the

general form of the three spectra is the same with the exceptions that

the detailed structures in the curves (peaks) are shifted toward lower

frequencies and that the peaks tend to be broadened with decreasing

velocity (decreasing y/o). This is most easily seen by comparing the

location and width of the same shock-induced peak in the three spectra

as illustrated in Figure 24.

The frequency composition of the signal will be determined by both

the range of turbulent eddy sizes and the local flow velocity at the

specific probe locations. If, as a first approximation, the range of

eddy sizes is assumed to be fairly constant over the turbulent boundary

layer, then the faster these eddies are convected past the hot wire

probe, the larger the frequency bandwith of the resulting signal. Since

the local velocity perturbations are small compared to the local mean

velocity, the bandwidth of the spectra should scale, at least to first

order, with the local mean velocity. Local mean velocity information

has already been presented in Chapter IV as a result of the pitot tube

measurements (see Figure 10) and is presented in Figure 25 in a slightly
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different form.

Given the rationale outlined above,the structure of the spectra

should scale with local mean velocity in just the manner illustrated by

the curves in Fig. 24. A given shock-induced peak should occur at a

smaller frequency value for a lower mean velocity due to the fact that

it is being convected more slowly past the hot wire probe and will thus

affect the signal for a longer period of time. The width of the

spectral peak will tend to increase with a smaller local mean velocity

for the same reason.

Certainly these spectra conform to the expected results in a

qualitative fashion, but it is also possible, using the data presented

in Figures 24 and 25, to test the validity of the spectral results in a

quantitative manner as well. The relationship between frequency and

mean velocity is given by:

f exV (13)

where f is the peak frequency of a shock induced-spectral artifact and

V is the local mean velocity at the given point y/o. Thus:

f . If. = V. IV .

1 J 1 J
(14)

Log(f.) - Log(f.)
1 J

Log(V ./V .)
1 J

(15)

This result may be tested by substituting the numbers shown in
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Figures 24 and 25 in Eq. 15. Using the values for the two points y/o on

the centerline and y/o = 0.42, the left side of Eq.( 15) is evaluated at

0.060 while the right side is 0.058. Thus the frequency behavior of the

spectral data scales with mean velocity as expected from the basic

physics of the problem.

A second quantitative test of the spectral results may be

accomplished by comparing the low frequency average of the spectral data

to the C 2 curve presented in Figure 23. Since the C 2 information wasn n

generated by the RMS averaging of the refractive index perturbation

probe location.

Figure 26 shows a quantitative plot of the spectra described above

(taken at y/o = 0.42, 1.00 and the centerline). These spectra have been

normalized, for comparative purposes, by the amplitude of the y/o = 0.42

spectrum and plotted on a standard log-log scale. In order to minimize

the effect of scale error, consider the difference between the

amplitudes of the y/o = 0.42 and the centerline spectra. This is

measured to be -0.45. C 2 values at these spatial locations may ben

obtained from Figure 24. The difference in the log of the normalized

C 2 values is measured to be -0.48. Thus the amplitude of the spectraln

information also behaves just as one would expect from the physics of

the problem.

values (n1) generated from the hot wire/pitot tube survey,
the

"amplitude" of the spectra (or the spectral values averaged over the

lower frequencies) should be proportional to the value of C 2 at then
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C. A Theoretical Model of the Single Beam Experiment using the
Extended Huygens-Fresnel Theory

Using the results of the preceding chapters, it is possible to

model a single beam experiment using the extended Huygens-Fresnel

theory. A block diagram of the experimental arrangement is shown in

Figure 27.

The experiment consists of a focused He-Ne laser propagating

through the cross-section of the Ludwieg tube with the waist of the beam

being incident upon an aperture of, at present, arbitrary diameter. The

power transmitted by the aperture is collected in a light pipe and

transmitted, with negligible loss, to a high speed photodiode. The

waist size of the beam and the distance between the input window of the

wind tunnel and the aperture (z) are assumed to be variable. Power (as

a function of time) is measured by the photodiode, digitized and

transmitted to an on-line computer for storage and processing.

Referring to the theoretical development presented in Chapter III,

the first calculation involving the functional forms of t and C 2n n

occurs in Equation (37) (Chap. III), presented here in slightly modified

form:
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where:

(16b)

It has been shown from the results of the hot wire/pi tot tube survey

that the spectrum of the refractive index fluctuations may be written in

the form:

~ 0n (17)

The integration over K in Eq. (16) (IK) may be reduced to:

(18)

where a = tr. Eq. (18) may be integrated in closed form to yield :59

(19)

where K refers to the modified Bessel function of the second kind.

Using the definition of this function, it may be shown that:60

K = K
-\I \I [n/2sin(\ln)] . (I - I )-\I \I

(20)
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where I refers to the modified Bessel function of the first kind and may

be expressed as the following infinite series:60

I (z) =
'\)

'\) (X) -1 2 k

(z/2) kEo [k!r(1 + ,,+ k») . (z /4)
(21)

By combining Equations (19), (20) and (21) it is possible to show that

the kth term of K will depend on the quantity:

KS/6(z) « [(z/2)2k/(k!r(k + 1/6) - (z/2)2(k + 5/6)/(k!r(k + 11/6») (22)

where:

(23)

It is possible to estimate both the upper and lower bounds of z by

noting that:

KO - 2n/~ = 440 m-1 (24)

where ~ is the turbulent boundary layer thickness (see Chapter IV). The

integrands of the extended Huygens-Fresnel theory will fall to zero

rapidly for values of r > 2w where w is the radius of the Gaussian beam.
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For this experiment, the maximum value of r will be about 2mm. Thus:

Substituting this result in Eq. (22) yields:

K5/6(z) a [1/r(1/6) - (z/2)5/6/r(11/6) + (z/2)2/2r(7/6) +O( 1<2%1)] (26)

It is desirable to approximate the second term in Eq. (26) as a

quadratic function of z as this will allow the evaluation of the Fresnel

integrals in closed form. Figure 28 shows that the function S, defined

below, provides an adequate representation of the second term over the

range of interest.

S(z)
2

~ [1.30/[(11/6)] . (tKOr/2)
(27)

K may then be reduced to:

-5/6 2
K5/6= [n/r(1/6)](z/2) (1 - 1.17z ) (28)

Substituting Eq. (28) in Eq. (18) yields:

(29)
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and, thus, Eq. (16) may be reduced to:

Again referring to Chapter III (Eq. (16):

(31)

The argument of Eq. (31) may be evaluated using Eq. (30).

(32)

Figure 23 shows the measured variation in C 2 with the normalizedn

length coordinate y/&, where & refers to the boundary layer thickness.

In order to derive an analytical representation of this function, a

quadratic equation in y/& has been fit to the curve of Fig. 23. Figure

29 shows the detail of the resultant fit while Figure 30 shows the

complete variation in C 2 along a cross section of the Ludwieg tube.n

The two peaks represent the maximum turbulence levels in the boundary

layers on each wall while the small constant turbulence level in the

center of the nozzle represents the near laminar flow in that region.
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C 2(y/S) may be written in the form:
,n

7[1 - 3.19(y/S - 0.56)2J 0 ~ y ~ 1.10S

Cn2(y/S)/(10-10 m-2/3) = 0.45 1.10S ~y ~3.34S (33)
2

7[1 - 3.19(y/S - 3.88) J 3.34S ~ y ~ 4.440

Eq. (33) may now be substituted in Eq. (32) and the integration

over t carried out. Yhile this is a tedious process, the solution

involves only the use of elementary methods and will not be presented in

detail. This evaluation of the integration over t (It) in Eq. (32)

yields:

C 2 ( 0/ Z ) IXn (34a)

where:

2
IX = 1 - 4.42(S/z) + 7.42(S/z) (34b)

Eq. (32) may thus be written in the form:

(35a)

where:



Thus:

F 2
Exp{-Ar )

As shown in Chapter III, the average light intensity at the

transverse point p «I(p») may be written as:

J 1

00

2~ ~2 2

<I(p» ~ d r Exp{-4Tr) Odr rExp{-(A+ T)r )JO(rx)

where:

2 2
T = kb/[2(b + 4z )]

z is the distance between the source and observation planes, b is the

confocal parameter of the laser beam (see Chap. III) and JO is the

zeroth order Bessel function.

The calculation of the average power transmitted by the aperture

111

(35b)

(36)

(37)
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may be accomplished by integrating Eq. (37) over the area of the

aperture.

(38)

Thus the average power, normalized by the power transmitted by the

aperture in the absence of turbulence, is given by:

2 2 2 2 2
= (1 - Exp{-k /4z )[16T/(16TB + N »)}6 )/(1 - Exp{-262/wO }) (39)

where:

(40)

6 is the radius of the aperture and wo is the radius of the Gaussian

laser beam. Eq. (39) becomes unity in the absence of turbulence.

The average power ratio given in Eq. (39) may be measuredin a

laboratory environment with a large signal-to-noise ratio. Thus the

comparison of the measured values of <P>/PO' as a function of both z

and b (wO), with Eq. (39), will make a definitive statement regarding

the ability of the extended Huygens-Fresnel theory to model the effect

of supersonic turbulence on optical radiation.

Figure 31 shows <P>/PO as a function of z for three values of the
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beam confocal parameter (b). The range of b extends from rather weak

focusing (b = Bcm) to very strong focusing (b = 7mm). It is evident

from the basic physics of the problem that the normalized average power

transmitted by the aperture should decrease directly (approximately)

with z and inversely with b. The z dependence is due to the fact that

the absolute beam position on the aperture will be determined by the

product of the deflection angle introduced by the turbulence and the

distance between the point of perturbation and the aperture which will

increase (less power incident on the aperture) as z. The b dependence

is due to the fact that, for larger values of Wo (b), the smaller

turbulent eddies will not be large enough to deflect the entire beam,

but will tend to "scramble" the laser spot while still keeping the power

concentrated near the clear aperture of the pinhole (see Fig. 19), and

thus transmitting a relatively large portion of the total beam power.

These trends are quite evident in Figure 31, indicating that the

theoretical model is correctly predicting the gross qualitative nature

of the average power.

The implementation of a series of experiments based on the above

development and the results of these experiments are discussed in the

following chapter.
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CHAPTERVI

THE RESULTS OF THE SINGLE BEAM EXPERIMENT

A. Introduction

The engineering details of the actual single beam experiment

performed in the NASA Ludwieg tube are shown in Figure 32.

The light source for the experiment was a Spectra Physics Model 133

He-Ne laser having a TEMOO output power of 1 mY (nominal). The beam

waist radius was 0.4 mm at the output coupler of the laser. An optical

multichannel analyzer (OMA) was used to observe the near-field intensity

distribution, and the results indicated that it would be necessary to

"clean" the raw output beam using a spatial filter in order to obtain a

Gaussian intensity distribution.

The raw laser beam was expanded and cleaned by means of the two-

element beam expander shown in Figure 32. A 55 mm focal length positive

lens was employed to focus the raw beam to a diffraction limited spot

size of approximately 28 um (the term spot size refers to the 1/e2

radius of the beam). An aperture having a diameter of 150um placed at

the waist location was used to filter the non-diffraction limited

component of the raw beam. The result of this spatial filtering was a

0.93 mY beam having an intensitydistributionmatchinga Gaussian to
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sizes propagating across the flow nozzle. The resulting collimated beam

had a Rayleigh range of not less than 6 m and thus the beam divergence

could be neglected over the distance scales used in this

experiment.38 The flexibility provided by this arrangement allowed the

scanning of the objective lens/aperture combination so that the average

power transmitted by the aperture could be measured as a function of z

(see Fig. 31).

An objective lens having a focal length of 510 mm was employed to

focus the collimated beam to a waist location about 50 cm away from the

lens as shown in Figure 32. The objective lens (and the resulting focal

distance) was held constant over the three beam waist sizes used in this

experiment. By holding the focal distance constant, it was possible to

carry out identical scans across a section of the flow nozzle for each

waist value.

The Gaussian beam was focused through the Ludwieg tube and onto an

aperture of approximately equal to the diameter of the waist. The power

transmitted by the aperture was collected by a brass lightpipe and

conducted, by internal reflection in the pipe, onto the active area of a

United Detector Technology PIN-10 photodiode. The photodiode was

operated in the photoconductive mode, using a back bias of 9V and a 50Q

load resistor. This resulted in a frequency response of the photodiode

better than 5% as verified by OMA data. A second positive lens was

placed at a distance of one focal length from the waist-aperture

location to collimate the Gaussian beam. The focal length of this lens

was varied, as described later, to provide three different beam spot
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in excess of 2 MHz, meaning that the overall frequency cutoff of the

data acquisition system was determined by the sampling rate of the

external sample-and-hold device.

A Physical Data 515A transient digitizer was employed as the

sample-and-hold device. Sampling at various rates showed that the

optical signal had little or no frequency components above 200-250 kHz

and, therefore, 400 kHz was chosen as the sampling rate for data

acquisition. The PD 515A is capable of acquiring four channels of data

simultaneously, with each channel having 4096 eight bit words of storage

available so at this sampling rate, approximately 10 ms, or one fifth,

of the steady state flow could be examined (See Chapter II).

As described in previous chapters, the data stored in the transient

digitizer memory was transfered to an H-P 9830 desktop computer via an

IEEE 488 bus for off-line analysis. In this case, the analysis

consisted simply of averaging the digitized power signal, normalizing

and plotting the results.

The objective lens, aperture, lightpipe and photodiode were all

mounted on a movable track which could be scanned with one millimeter

accuracy. As shown in Figure 32, this meant that the distance from the

input window of the wind tunnel to the blocking aperture (z in the

analysis of Chapter V) could be varied over an approximately 20 cm

range. Yhile this scanning range appears at first glance to be small,

it represents about three times the entire width of the flow nozzle and

is quite adequate for this purpose.

Three different objective lenses were chosen with focal lengths of
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520 mm, 310 mmand 156 mm. These lenses were used to produce Gaussian

beams having waist sizes (confocal parameters) of 27 urn (b = 7.35 mm),

46 urn (b = 2.05 cm) and 90 urn ( b = 8.02 cm) respectively, coresponding

roughly to the range of confocal parameters shown in Figure 31. Figure

33 shows a typical data run as viewed on a monitor oscilloscope showing

the digitized data after storage in the memory of the transient

digitizer.

B. Vibrational Noise Evaluation

The laboratory wind tunnel environment, by its very nature, harbors

many sources of mechanical and acoustical vibrations, all of which are

potential noise sources. In order to eliminate the major vibrational

noise sources and evaluate the overall signal to noise ratio of the

apparatus, the experimental configuration shown in Figure 34 was

employed. The beam was diverted around the flow nozzle by means of two

turning mirrors. The wind tunnel could then be operated in a normal

fashion while any time variation in the transmitted power could be

attributed directly to vibrational noise.

Figure 35 shows the results of this test. The reference signal is

the response of the photodiode, as viewed by the transient digitizer,

while the tunnel is not in operation. The apertured signal is the

response of the photodiode during the firing of the wind tunnel. As can

be seen from the oscilloscope photos, the vibrational noise induced on

the data due to the mechanical operation of the wind tunnel is
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negligibly small. Quantitative analysis shows that the noise is on the

order of five counts out of 1024 full scale (8-bit AID conversion)

yielding a signal-to-noise ratio in excess of 200:1.

C. Correction of the Data for the Effects Introduced b~ the Vindows

in the Flow Nozzle

The 0.5 in.-thick fused silica windows which allow optical access

to the flow introduce the possibility of two types of error in the data.

First of all, a Gaussian beam incident on a window may be imagined as a

collection of rays, each having a slightly different angle of arrival at

the window. Since the window presents a slab of refracting material to

the beam, the beam will be spread slightly as it passes through the

window. It is possible to quantitatively estimate the error introduced

in the power measurement by calculating the increase in the waist size

of the focused Gaussian beam due to the presence of the window. Since

the beam deflection produced by the turbulent field in the flow nozzle

will be small, the laser beam will be incident on the window at near

normal incidence. The beam spread introduced by the window may be

modeled using standard paraxial Gaussian beam theory.

The paraxial propagation of a laser beam through various optical

elements may be described using the complex function q defined by:40

q = (1/R) - i(1/Z )r (1)
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(2)

where A,B,C and D are the elements of the ray matrix describing the

propagation of the phase front through a slab of material having a

f . . d f 40
re ractlve ln ex 0 n.s

The geometry of the calculation is shown in Figure 36. A TEMOO

Gaussian beam propagates through a slab of fused silica as it is focused

to a waist. The slab of material depicted in Figure 36 represents the

exit window of the flow nozzle. The entrance window may be neglected as

the beam spread introduced there will not be a function of the turbulent

field parameters and thus will be normalized out when constructing the

ratio <P>/PO. If the turbulent eddies cause the beam to spread or

shrink, the angular spectrum of the ray bundle forming the laser beam

will change. This will also produce a change in the refractive effects

introduced by the exit window since the angle of incidence of any given

ray in the bundle will change.

By employing the ABCD law, the refractive effects of the window may

be determined. As shown in Figure 36, the ray matrix elements

where R is the radius of curvature of the optical phase front, and Z isr

the Rayliegh range of the beam.
40

The well known ABCD law may be

employed to describe the effect of the window on the function q. The

mathematical form of this law is given by:
40



Fused

Silica

Window

rL-",.Point

a

o

l+a

o

FIGURE36. Window/Beam Geometry

o

-
o

125

i

f

L



126

describing the propagation of the beam are given by:40

where 1 is the distance from the air side of the exit window to the beam

waist and t is the thickness of the window. Substituting Eqs. (3) into

Eq. (2) yields:

(4)

where:

(5)

and L is the total optical path length between the nozzle side of the

window and the waist location (1 + n t). The subscripts refer to thes

regions shown in Figure 36. Since q3 is evaluated at the focused waist

of the beam, R3 ~ ro and:

A = 1 (3a)

B = 1 + n t (3b)s

C = 0 (3c)

D = 1 (3d)
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(6)

One further useful fact is that since 1 » Zr3 for all cases considered

in this experiment, R1 - 1.1 Using this along with Eqs. (4), (5) and

(6), it is possible to show that:

(7)

If the window was removed from the beam path:

w'03 exZ'r3 (8)

Thus,

(L/l) 1/2 (9)

substituting the values of the parameters for the NASA flow nozzle

yields a beam spread ratio (Eq. (9) ) of about 1.03. Thus, the effect

of the exit window is negligible assuming the beam does not undergo

gross distortion by the turbulent field. This is assured by the design

of the experiment (see Chapter V).

There is also a secondwindow perturbationwhich must be
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considered. The primary effect of the turbulent field will be to

randomly tilt the entire phase front of the light and thus cause the

beam to deflect. This means that the central ray of the beam will

exhibit a nonzero, time dependent, angle of incidence on the nozzle side

of the exit window (once again the entrance window may be neglected).

Since the window will act as a refracting slab, it will affect the angle

of arrival on the aperture (as a function of incidence angle) and

consequently the instantaneous power transmitted to the photodiode. The

refractive effect of the window may best be determined by a ray model.

Figure 37 shows the propagation of the central ray of the beam

propagating through the window and to the detector plane for an

arbitrary incidence angle e.. Snell's law, in the small angle1
. . . . b 11

approXImatIon, IS gIven y:

n.e.
1 1

(10)

and,

= 0.6ge.
1 (11)

for fused silica. It is possible to show (referring to Figure 37):
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(12)

Referring again to the geometry shown in Fig 37, it may be shown that:

y' = [1 + (y - l)t]e. 1 (13)

and,

(y - l)te. 1 (14)

where y is 0.69 for fused silica.

Since the beam will be deflected only over a very small angle (on

the order of milliradians) the elipticity in the projection of the beam

on the aperture may be neglected and the perturbed beam, at an instant

in time, may be modeled on the aperture as two overlapping circles as

shown in Figure 38.

In order to estimate the effect of window refraction on the

transmitted power, it will be necessary to integrate the truncated

Gaussian beam in a very inconvenient geometry. While this is a

straightforward calculation, it is very tedious and only an overview

will be presented here.

The Gaussian intensity profile of the beam (in polar coordinates)

. . b 61
1S glven y:
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I (15)

where w is the spot size of the beam on the aperture, AO is the on-axis

intensity and the coordinate r1 is shown in Fig. 38. The apertute may

be described in space by:

(16)

where & is the radius of the aperture and p is measured from the center

of the aperture as shown in Fig. 38. The magnitude of the radius vector

p may be related to r1(again referring to Fig. 38) by the following:

2= r 2
+ p -2rpcos8 (17)

Substituting Eq. (17) into Eq. (15) and integrating the resultant

intensity expression over the area of the aperture gives the transmitted

. h f 61
power ln t e orm:
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pn
I
s 2 2 2

Pt = AOJo de odpp Exp{-2(r + p - 2epcose)/w }

2 2

I
s 2 2 pn 2

AOExp{-2r /w ) Odpp Exp{-2p /w }Jo de Exp{4rpcose/w } (18)

By employing an integral representation of the Bessel function, it is

possible to write Eq. (18) in the form:59

22

I
s 22 2

Pt = 2JtAOExp{-2r /w } Odpp Exp{-2p /w }IO(4rp/w )
(19)

where 10 is the modified Bessel of the first kind. Changing the

integration variable in Eq. (19) by the substitution u = 2p2/w2 yields:

2 2
2 2 2 pS /w 1/2

(n/2)w AOExp{-2r /w }Jo du Exp{-u}IO[2(2u) r/w]
(20)

Since S ~ wand r ~ w for all cases of interest here:

(21a)
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and so:

(21b)

Yhile the integration in Eq. (20) may not be carried out in closed form,

it is possible to develop a series expression for the result by noting

that, for 0 ~ p ~ 4, IO(p) may be accurately approximated by the

following polynomial:59

2 4 6 8 101 + 3.156t + 3.090t + 1.207t + 0.266t 0.0361t

+ 0.0046t12 (22)

where t = p/3.75 and 1£1 ~ 10-6.

By substituting Eq. (22) into Eq. (20) and carrying out some

tedious but straightforward simplification, it is possible to write a

series expression for the normalized power transmitted by the aperture

containing only a few terms and accurate to < 1%.

222
Pt/PO = Exp{-2x }[1 - Exp{-2z } + 0.403x (1

2 2
. Exp{-2z }[1 + 2z ])] + £1 (23)
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Referring to Figure 38, it may be shown that the distance between

the center of the beam and the center of the aperture in the absence of

the window (r') can be related to the value measured with the window in

the system (r) by:

r = r'[l - O.31t/(Z - d)] (24)

(for fused silica) where Z is the distance between the input surface of

the first window and the aperture and d is the width of the flow nozzle

( = 6 cm) measured between the two inner window surfaces.

In order to estimate the magnitude of the refractive effect, the

worst relative case will be considered. It is evident from the form of

Eq. (24) that the second term will be at its maximum when Z is

minimized. For this experiment, Z ~20 cm. Since the turbulence-

induced beam deflection is small, r will be in the range 0 ~ r ~ w.

Substituting these values into Eq. (24) yields:

r O.977r' (25)

Since x' ( = r'/w) = z = 1, the evaluation of Eq. (23) gives a

value of Pt/PO = 0.149 which is the normalized power transmitted by the

aperture neglecting the effect of the window. The evaluation of Eq.

(23) for the parameters x = 0.977, z = 1 yields the value of Pt/PO =
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0.162 which is the transmitted power in the presence of the window.

Since these values differ by about 9%, it was evident that the

experimental data would have to be corrected for the refractive effect

of the exit window.

This was accomplished in the data reduction software by first using

the measured value of Pt/PO to calculate the refracted value of r using

Eq. (20), Eq. (24) was then employed to calculate the unrefracted

coordinate r' and Eq. (20) was then used a second time to calculate the

normalized transmitted power corrected for the effect of the window.

D. Experimental Results

The single beam experiment was performed in the NASA wind tunnel

for the range of focusing mentioned earlier. The results of the

experiment are shown in Figure 39 which is a plot of the average

normalized transmitted power «P>/PO) as a function of the distance

between the input window and the aperture. The solid lines represent

the predictions of the extended Huygens-Fresnel model developed in

Chapters IV and V. It is readily apparent that this model is quite

capable of predicting the effect of bounded turbulent fields in a

supersonic flow on Gaussian optical radiation. Its quantitative

accuracy rarely exceeds the measurement error in the individual data

points.

It should be pointed out, however, that the range of the closed

form model (as presented in Chapter V) is limited to turbulent fields
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having a thickness which is small when compared to the optical path

length. Yhen the boundary thickness becomes a significant fraction of

the optical path, several of the approximations which allowed a closed

form solution are no longer valid and a closed form, analytical solution

becomes impossible. A treatment of this case is a formidable problem in

numerical analysis.
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CHAPTERVII

THE DESIGN OF A TWO BEAM EXPERIMENT

A. Introduction

The results of the single beam experiment, presented in Chapter VI,

show that the extended Huygens-Fresnel theory of atmospheric optics is

capable of modeling the effects of a turbulent boundary field in a

supersonic flow. As the basis for a remote sensing device, the single

beam approach has the drawbacks that, due to the statistical nature of

the theory, real time measurements are not possible and that, due to the

path integration inherent in the theory, it is not possible to achieve

spatially-resolved measurements. The first drawback is due to a

fundamental property of the theory and may not be circumvented.

Methods of achieving spatial resolution have been explored in

atmospheric turbulence,and it is proposed that these methods be applied

to the case of supersonic flow.

Several authors have explored the concept of crossed beam

correlation as a remote sensing technique which is capable of providing

at least limited spatial resolution.16,30,62 The basic concept of this

approach is shown in Figure 40. As stated in Chapter III, turbulent

eddy size is defined as the distance in space (a sphere in three
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dimensions) in which the density of the working fluid remains constant.

In other words, eddy size is a correlation length. LO (the outer scale

size) represents the largest sphere of density correlation within the

flow.

If two small beams propagate through the turbulent field as shown

in Fig. 40, the major effect of the turbulence will be to cause beam

deflections as described in Chapter V. If the deflection of each beam

is measured and the two signals correlated, it is clear that the

turbulence along the paths lying more than a distance LO from the

crossing point will not contribute to the correlation, thus allowing the

measurement of information with at least partial spatial resolution.

Several authors have applied this technique in conjunction with a

schlieren deflection measurement to the problem of remote sensing in

. 16 63
rather large scale flows wIth some success.' The results have

tended to be somewhat limited quantitativly due to rather crude

theoretical modeling of the problem. One of the goals of this work was

to explore the feasibility of using this technique, in conjunction with

extended Huygens-Fresnel theory, as the basis for a remote sensing

device for use in a supersonic environment. For this to be successful,

several problems must be overcome.

The model shown in Figure 40 has only limited spatial resolution

due to the distribution of eddy sizes within the flow. Obviously, the

effect of a small scale eddy within the correlation volume may be

"washed" out by the presence of a larger scale eddy nearby as shown in

Figure 41. This presents a severe problem for remote sensing in a small
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bounded flow, such as found in the NASA test nozzle, since LO is on the

order of the boundary layer thickness thus rendering impossible any

spatially resolved measurements within the layer.

It has been shown that the beam focusing parameters can have a

drastic effect on this response, even over a short path length, and thus

it was the hope of the author that the use of focused beams might

present a way around this difficulty. This technique will be discussed

in detail in a later section of this chapter.

Another approach involved modeling the turbulent boundary layer as

a series of two dimensional flow fields (phase screens) stacked one

after the other.56 If the turbulent field behaves in this manner, it

means that the maximum correlation distance along the optical

propagation path is quite small and not a significantly limiting factor.

There is some evidence for this in the results of the single beam

experiment due to the successful use of the C 2(z) function in then

extended Huygens-Fresnel theory (see Chapter III). This technique has

C 2(z) varyingnbeen employed in atmospheric optics only for the case of

over distances in excess of the outer scale size (LO).

was, of necessity, relaxed in the Ludwieg tube model, and the resultant

This condition

success of this model is evidence that the effective outer scale size

along the propagation path may be much smaller than the boundary layer

thickness (~). An experiment using two hot wire probes simultaneously

present in the flow to measure the longitudinal correlation length (and

thus determine the applicability of the phase screen model), failed due

to cross-talk (shock wave interference) between the two intrusive
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probes. The applicability of this approach was also rendered

indeterminate by problems with the optical experiments which will be

presented later.

One final problem with the traditional atmospheric theory is the

need to separate the phase and amplitude information carried by the

, 1 d' , 58
optlca ra latlon. As will be shown shortly, this requirement is due

to the basic formalism of the atmospheric optics model. It was the hope

of the author that a similar theoretical approach could be used to model

the intensity of the arriving radiation, as was done in the single beam

theory, and consequently achieve adequate spatial resolution by a direct

optical power measurement.

The various techniques and ideas presented above will be analyzed

in detail in the following sections of this chapter. It is unfortunate

that, due to a combination of logistics and the inexperience of the

author with the nuances of the atmospheric theory, these sections will

mostly be concerned with demonstrating that these simple techniques are

not adequate for remote sensing in a supersonic flow. They do, however,

serve the purposes of casting the atmospheric theory in terms much more

applicable to wind tunnel modeling and pointing out the theoretical work

necessary to develop an adequate remote sensing technique.

B. The Application of Yura's Formalism to the Case of Crossed Beam

Correlation

Since the extended Huygens-Fresnel theory and the formalism
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presented by Yura has been successful in modeling the case of single

beam propagation through a turbulent supersonic flow, it may be applied

to the case of dual beam propagation and correlation.33 In order to

provide point measurements in the flow, a crossed beam experiment will

be considered where the measured quantities will consist of the position

of the beam centroid as a function of time as shown in Figure 42. The

detectors D1 and D2 are position-sensing photodiodes having a wide

frequency bandwidth (- 500 kHz) and are thus capable of resolving the

so-called "short term" location of the beam centroid. This position is

defined as:

(la)

where:

(lb)

The beam centroid correlation function may be written in the form:20
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where the correlation <I(P1,zl)I(P2,z2» is defined as the fourth order

mutual coherence function (MCF) by Yura and given the designation r4.33

The MCF may be written in terms of the optical field amplitudes:

-+ -+

r4(p1,zl;p2,z2) (3)

assuming that the beams are crossed at the waist and have identical

confocal parameters. As shown in Chapter III:

-+

U(p,z)

(4a)

where:

-+ -+

G(p,r)
. -+ -+ -+ -+ -+ -+

EXp{lklp - rl + w(r,p)}/lp - rl (4b)

where W is the phase perturbation of the spherical wave as introduced in

Chapter III. The expectation value of the product of Green's functions

in Eq. (4) may be written in the form:
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4 4 4 4 4 4 4 4

(lp1-r11. Ip1-rZI. Ipz-r31. Ipz-r41)

F4 (5)

where:

(6)

The functions ~ may be expanded in terms of ~1 and ~Z where ~1 - n1

and ~Z - n12 (see Chapter III) and n1 is the randomly fluctuating part

of the refractive index of the working fluid.6 Thus the exponent in Eq.

(6) may be written in the form:

(7)

For an exponential function of the form Exp{f}, Yura has shown that:33
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2 2
<Exp{f}> = Exp{<f> + <f >/2 -<f> /2} (8)

to second order. By substituting Eq. (7) into Eq. (8) and simplifying

the result in the manner used in Chapter III, it may be shown that:

f

to second order in n1, where:

(10)

" k'
Terms of the form <~11J~1 J> may be evaluated using the methods of

Chapter III and pose no special problem as most of these terms will be

eliminated by the normalization in Eqs. (1). A slightly different

approach will be taken in evaluating the terms of the general form

Yura has shown that:
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(11)

where Uo is the functional form of the optical field in the observation

plane and B is the refractive index correlation function defined to ben

<n12>. Tatarskii has shown that the refractive index correlation

function may be related to the three-dimensional spectrum of the index

fluctuations (see Chap. III) by the following (for isotropic

24
turbulence):

(12)

where K is the spatial frequency coordinate defined as 2n/r. The low

frequency formulation of the modified von Karman spectrum from Chapter

III will again be used to represent the statistical turbulent field in

the flow nozzle.

'n = Cn2/(K2 + K02)-11/6 (13)

where cn2 is the structure constant and K is defined as 2n/LO'

Substituting Eq. (13) into Eq. (12), the area integration over K may be

carried out using well known and tabulated formulae.64
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(14a)

where K1/3 is the modified Bessel function of the second kind and:58

(14b)

As shown in Figure 43, B may be closely approximated using then

functional form Exp{-«KOr) where « is a constant. This form is much

more intuitive than the Bessel function and will be employed for clarity

in the following discussion.

In order to evaluate Eq. (11) it will be necessary to select a

reference system for the experiment. For the sake of simplicity, the

geometry shown in Figure 44 will be used for this calculation. Even

though this arrangement is not possible given the configuration of the

test nozzle, it will serve to illustrate the fundamental limitations of

this approach. The optical fields are assumed to be two spherical waves

emitted from the points (-L/2,O,O) and (O,L/2,O) and viewed at the

points (L/2,O,O) and (O,-L/2,O). The distance from the source to the

observation plane is L in both axis.

Since the waves will both be observed near the respective

propagation axis, the paraxial approximation (see Chap. III) may be

employed and thus:
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2 2
= (xl + L/2) + (Y1 + zl )/[2(x1 + L/2)] (15)

If the other magnitude terms in Eq. (11) are evaluated in a similar

*
manner, it is possible to show that calculations of the form <~1~1 > may

be written in the form:

*

J

3~

J

3~ ~ ~ 2 2 2 2
<~1~1 >« d Xl d X2 Bn( IX1 - x21/[(L 14 - xl )(L 14 - Y2 )]

. 2 2 2 2
Exp{(21k/L)(Y1 + zl - x2 - z2 )} (16)

Since the only significant contribution to the result will come from

points very near the origin, Eq. (16) may be simplified to the form:

Z22)}

(17)

It is evident from Eq. (17) that the correlation <~1~1*> will

receive contributions over the nonzero range of B. It is also apparentn
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from Figure 43 that B will be negligibly small only for values of rn

greater than about half the boundary layer thickness (&/2). This will

not provide a sufficiently small correlation volume to be of use in

laboratory scale wind tunnels and thus this approach will not be

applicable to the point-resolved remote sensing of turbulence in

supersonic fields.

C. The Application of Log Amplitude Techniques to the Problem of

Remote Sensing in a ~ind Tunnel

An approach to point-resolved remote sensing in the atmosphere has

been developed by ~ang, Clifford and Ochs.30 It follows the traditional

formalism of atmospheric optics and requires the separation of the

amplitude and phase of the optical wave after propagation through a

random turbulent field.56 It was the hope of the author that this

technique could also be applied in the case of turbulence in a

supersonic flow even though the amplitude/phase separation would require

more complicated receiving instrumentation and analysis process than the

method of the previous section.

In order to illustrate the techniques involved, consider the form

of the wave equation applicable to propagation in a medium having a

randomly fluctuating index of refraction.
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(18)

where U is the electric field of the optical radiation, k (= 2n/A) is

the magnitude of the wave vector and n1 is the randomly fluctuating part

of the index of refraction. 56 It will be assumed that n1 is small

2
enough that (1 + n1) = 1 + 2n1.

Using Ishimaru's notation, the first iteration solution using the

Rytov method is given by:

(19a)

(19b)

-+-+ 2 -+ -+ -+ -+

h(r,r') = 2k G(r - r')UO(r')/UO(r) (19c)

where G is the spherical wave Green's function defined in Eq. (5). ~1'

as in the previous calculations, represents the first order (in n1)

phase perturbation induced by the turbulent field and may be written in

the form:

~1 X + is (20)
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where X is the log of the field amplitude and S is the phase

fluctuation.

Yang et al. have modeled the crossed beam problem shown in Figure

45 where two spherical waves (Gaussian beams in the far field) are

emitted from the points (0,pt/2,0) and (0,-pt/2,0) and are detected by

receivers at the points (0'YO/2,L) and (0, -YO/2,L) respectively. 30 If

the total propagation path is short (as is the case for the Ludwieg

tube) the detector R will see radiation only from T and the same willa a

hold true for Rb and Tb' By modeling the turbulence as a sinusoidal

phase perturbing slab of thickness ds (following the previous work done

by Lee and Harp) and then integrating over ds, the authors have shown

that the log amplitude correlation function for the two signals, Cab'

may be written in the following form:

1
C2C b a ds Y b (s)

a ° a n
(21a)

1

=
-8/3 . 2 2

Yab a OdKK Sln [K s(l - s)/2kL] . JO{K[Pt(l - s/L) - yos/L]} (21b)

where K is the spatial frequency of the turbulent field, and JO is the

zero'th order Bessel function. The Kolmogorov spectrum, given by:
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4> (K)n 0.033Cn2(s)K-11/3 (22)

has been employed in this calculation.24

Vhile the relation for Vab (the so-called "weighting function")

cannot be evaluated in closed form, it represents a function peaked

about the crossing point of the two beams (s/L = 0.5).30 The width of

the peak may be made almost arbitrarily small by varying the crossing

angle (Pt and YO) of the beams, thus providing a weighting function on

the integration over the optical path s and giving very good spatial

resolution.

Vhile this formulation appears, at first glance, to provide an

excellent theoretical base for a crossed beam remote sensing device,

there it is severely limited in its application by the paraxial

approximation used in its development.

Vhen deriving the basic formulation of this approach, Lee and Harp

employed the restriction that the beams be viewed at transverse

distances that are small when compared to the propagation length L.

They also showed that this condition may be expressed as the following

. 1/2 62
functlon of the Fresnel zone ([LA] ):

(23)

Since L, in the case of the Ludweigtube flow nozzle, is only about 6
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em, this limits the separation distance of the receivers to no more than

a few millimeters. In fact, the crossing angle of the successful

atmospheric experiment conducted by Yang et al. was less than 10 urad.30

This small crossing angle is not only impossible to achieve from an

engineering viewpoint, it also results in a very broad path weighting

function (Yab) which is not capable of providing sufficient spatial

resolution to permit point-resolved measurements in the turbulent

boundary layer.

Since this method is capable of providing spatial resolution in the

paraxial limit, it is natural to assume that it may be capable of

providing such resolution outside this limit as well. The proof of this

assumption will require a reformulation of the path weighting function

(Yab) and extensive computer analysis since it will not be possible to

carry out any of the integration steps in closed form. This effort was

beyond both the funding and the intent of this project.

D. Conclusions

It is clear from the previous analysis that a dual beam experiment

based on a simple optical power measurement is not adequate for point-

resolved remote sensing of the supersonic turbulent field in a

laboratory scale wind tunnel. The log amplitude measurement must remain

indeterminate until the ramifications of relaxing the paraxial

approximation on the observation points are understood.

At this point, the best suggestion that can be made for the design
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of a crossed beam experiment in the Ludwieg tube would be to use the

basic geometry of Figure 42, but employ a schlieren-based receiver

system capable of providing log amplitude information.
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CHAPTERVIII

THE RESULTS OF THE CROSSED BEAM EXPERIMENT

A. A Detailed Description of the Experiment

As discussed in Chapter VII, the logistics and timing of the

laboratory work done at NASA Ames was such that it was necessary to

carry out a crossed beam experiment before an adequate theoretical model

could be developed. The basic decision was either make a "best guess"

attempt at a dual beam experiment or give up the idea altogether. As a

result of this, an experiment was devised to measure and correlate the

deflections of two He-Ne laser beams crossed in the turbulent boundary

layer at a point which could be easily scanned through the layer. It

has been shown in Chapter VII that such an experiment was certain to

fail from the start unless the longitudinal density correlation length

was small compared to the boundary layer size, but this fact was not

known at the time of the actual experimental work.

The basic concept of the experiment has been presented in Chapter

VII (see, in particular, Figure 42). The general experimental layout is

shown in Figure 46.

The beam from a Spectra Physics Model 133 He-Ne laser was expanded,

using the same basic beam expander design employed in the single beam
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work (see Chapter VI). The collimating lens of the expander had a focal

length of 310 mm and thus the output beam had a radius of 2.3 mm. This

beam was focused by a 510 mm focal length objective lens and split into

two identical beams using a 50/50 polarizing beam splitter as shown in

Figure 46. This arrangement produced beams with a focused waist size of

46 um and a Rayleigh range of about 1 cm.

The two beams were then directed using adjustable turning mirrors

to a crossing point forming an angle of approximately 37°. This angle

was fixed by the diameter (2 in) of the windows in the flow nozzle and

the width of the test section (6.35 cm).

Two United Technology SC-10D position sensing photodiodes were

chosen as the detectors. These detectors make use of the dependence of

semiconductor photoelectron transport on the position at which the

photoelectron is created to produce output signals which are a function

of the position of the beam centroid. Vhen operated in photoconductive

mode, as was the case for this experiment, the devices have excellent

high frequency response with rise times on the order of a few hundred

nanoseconds easily obtainable. Each detector has five output leads

corresponding to +x, -x, +y, and -y signals along with a case ground.

These signals may be summed using the appropriate analog circuitry (see

Figure 47) to produce signals which are of the following form:

S exIx
x (la)

(1b)
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where x and yare the Cartesian coordinates of the beam centroid and I

is the output intensity of the laser beam. In order to produce output

signals free from laser power effects, it is, strictly speaking,

necessary to normalize out the intensity dependence. This operation

would require two more reference signals carrying only intensity

information and an analog divide section in the analysis circuitry. Not

only would this add another level of complication to the

instrumentation, it would also severely limit the frequency response of

the system due to the fact that analog dividers intrinsically have a

high frequency roll-off on the order of 30-50 kHz. Since the He-Ne

laser is capable of providing an output power level which is highly

stable over long time periods, I may be treated as a constant in this

experiment and the analog division is not necessary.

The original design of the analysis circuitry provided a signal

gain of about 106 which would have been adequate to measure the

position fluctuations of each beam with a signal to noise in excess of

500:1. For reasons which are still unclear, the detection system in

actual operation could only provide gain on the order of about 104_105

which limited the overall signal to noise ratio of the measurement to

about 10-25:1. Even to achieve this reduced SNR, it was necessary to

extend the optical lever arm of the measurement to over 10 m and add the

collection and steering lenses shown in Figure 46.

The entire beam splitter/objective lens assembly was mounted on a

jack-screw-driven translation stage so that the beam crossing point
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could be accurately scanned through the boundary layer. This assembly

was manufactured in a manner which allowed the crossing plane of the

beams to be rotated through 90° so that the boundary could be scanned in

a horizontal fashion, as shown in Figure 46, or in a vertical manner.

The x and y signals from the two detectors were digitized and

stored in a Physical Data 515a transient digitizer and then transferred

to an HP 9830 computer for storage and analysis. This was accomplished

in a manner similar to the data collection in the single beam experiment

(see Chapters V and VI).

The two beams were crossed at their waists by means of an aperture

placed at the waist location having a radius of approximately half that

of the beam spot. By maximizing the power transmitted by this aperture,

the two beams could be overlapped to within 5% of the waist radius.

The entire apparatus was tested for vibrational noise levels in a

manner similar to that employed in the single beam case (see Chap. VI).

The overall signal-to-noise ratio of the detector system was measured by

causing a known fixed deflection in the beams and measuring this

deflection while the wind tunnel was in operation but with the beams

being steered clear of the test section. The frequency response of the

detector circuitry and data collection electronics was determined by

driving the system with a simulated signal produced by an electronic

function generator. The high frequency roll-off of the system was

measured to be in excess of 500 kHz.

Data was collected for eight locations of the beam crossing point

in the test nozzle over the range 0 ~y/S ~1.05. Both vertical and
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horizontal scans were taken.

B. The Experimental Results

Vhile a large volume of data was collected and analyzed, the

results are adequately represented by the graph shown in Figure 48.

This is a plot of the un-normalized correlation coefficient (in

arbitrary units) versus y/S calculated from the formula:

c = (t Sx.)/Nx 1 1 (2)

where Sx. is the i-th data point stored in the transient digitizer1

memory and N is the total number of memory locations (4096 for this

experiment). The curve shows the results of two identical scans plotted

on the same axis.

The correlation results for the y axis showed no repeatability

whatsoever from point to point or run to run. The reason for this is

not known but it was probably due to an electrical component failure in

the analog analysis circuitry which was not apparent from viewing the

raw data.

Vhile all the x scans showed the same coarse features as a function

of y/S, these results cannot be interpreted as having any logical

relation to the turbulent field in the flow nozzle, in particular the

strong negative value occurring near the y/o = 0.5 location. If this

was an indication of a real artifact of the flow, it was probably
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due to a weak shock wave being produced by the window/wall interface and

extending downstream.

The solid line plot in Fig. 48 shows the absolute value of one of

the correlation coefficients. The shape of this curve is similar in

form to that of C 2(Z) and it is tempting to seek a justification forn

using the absolute value. Since it was not possible to find a

theoretical approach capable of modeling the crossed beam correlation,

several arguments may be advanced for doing just that.

It should be noted, however, that the experiment presented here was

specifically designed so that the response of the two beams to

turbulence localized about the crossing point would be positive. There

should be no need to employ the absolute value of the correlation

coefficient if the experiment had indeed provided spatially resolved

measurements.

These results are very disappointing and are in stark contrast to

the rather happy outcome of the single beam experiments. The failure of

the data to provide any meaningful information about the flow still

leaves the modest question of the scale of the longitudinal density

correlation unanswered.

The overwhelming reason for the failure of this undertaking is due

to the severe time constraints imposed on the work by the funding and

logistics. There simply was not enough time to complete the experiment

in a proper manner and the results are reflective of this.

From an engineering point of view, the major problems in this work

were probably introduced by the analysis circuitry. This system never
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did perform anywhere near its design parameters over the course of the

entire experiment and was simply not adequate for the job at hand. The

design of this system represented the first attempt at building a

suitable measurement system, and the necessary rush to complete the

experiment left no time for the development of a second generation

system.
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CHAPTERIX

CONCLUSIONS AND SUGGESTIONS FOR FURTHER YORK

A. Conclusions

The results of the single beam work described in this document show

conclusively that the extended Huygens-Fresnel theory and the formalism

developed by H. T. Yura are quite capable of quantitatively modeling the

effects of turbulence in a three-dimensional supersonic boundary layer

on propagating optical radiation. T. Grandke has recently verified

these results for the less complicated case of a two-dimensional

turbulent field with equally encouraging results. is The theory

presented here is of a more general nature and thus capable of modeling

a much wider variety of situations than a strictly two-dimensional

approach.

The basic elements of the single beam measurements described here

have been applied, by the author, to the design of a laser based remote

sensing device for the measurement of turbulent burst phenomena in a

supersonic wind tunnel. This instrument is not only capable of

detecting the presence and spatial extent of the burst, but can also

estimate the statistical moments of the density fluctuations in the

perturbed flow region with a high signal-to-noise ratio.
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There are two basic limitations on the applicability of the models

developed in Chapter III. The modified von Karman spectrum

(particularly the low frequency formulation presented in this work) is

not capable of describing the refractive index correlations in all flows

of interest and it is not possible, at this point, to make an a priori

determination of the turbulence characteristics for an arbitrary flow.

While this is a significant problem for experimentalists, it is not

insurmountable in even the most general case since it is possible to

make at least a rough determination of the refractive index correlation

spectrum using intrusive techniques similar to those described in

Chapter IV. The intrusive devices, and their perturbing influences, may

then be removed from the flow and the optical technique employed to

remotely sense the flow unintrusively with much higher signal-to-noise

and frequency response than can be achieved with physical probes. If

the von Karman spectrum is known to apply in a given flow, and a growing

volume of evidence indicates that this may generally be the case, then

there is no need to use any intrusive sensing for statistical density

measurements.

The approximations employed in Chapter III will not be generally

applicable to a wide variety of real-world flow situations of interest.

This means that it will not be possible to reduce the integral

formulations inherent in the extended Huygens-Fresnel theory to closed

form results. Since the analysis of the optical data cannot be carried

out in real time in any case, the use of high speed computer integration

algorithms are the solution to this problem.
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Since the crossed beam work described here is a classic example of

how not to carry out an experiment, very little can be concluded

generally about the use of the extended Huygens-Fresnel theory in this

application. Further theoretical and experimental work is necessary

before the underlying questions can begin to be answered.

B. Suggestions for Further York

As mentioned in the previous section, the formalism presented in

Chapter III should be written in terms of computer analysis involving

efficient integration algorithms. This will eliminate the need for

several approximations introduced in the models developed here and

provide a theory capable of modeling much more general flow situations

that the one encountered in the NASA Ludwieg tube.

As shown in Chapter V, the fundamental nature of laser

beam/turbulent eddy interaction is dependent on the size of the beam

relative to the eddy scale (see Figure 19). By using very small beams

(waist spot sizes on the order of 5-10 urn) and relatively long

wavelength optical radiation such as that produced by an infrared He-Ne

laser (1.15 urn), it is possible to generate highly divergent beams which

have an appreciable increase in spot size of the dimensions of even a

small turbulent boundary layer such as the one in the Ludwieg tube flow

nozzle (- 1,5 cm). This means that the beam response to a given

turbulent scale will be a function of path length and thus this may be a

method for carrying out single beam measurements with at least limited



175

spatial resolution. This scheme should be modeled using the extended

Huygens-Fresnel theory so that the ramifications can be understood. It

may also be possible to apply the general idea of highly divergent beams

to the log amplitude filter functions as presented by Ishimaru with

similar results. 56 This too should be investigated.

In the case of the crossed beam work, the theory developed by Lee

and Harp should be examined with the goal of removing the paraxial

restriction in the final result.60 This will also require extensive

computer work as the integrals critical to this formalism probably

cannot be evaluated in closed form.

Once a sound theoretical foundation has been established, it will

be possible to make an informed attempt at designing a suitable crossed

beam experiment to test the resultant model. This experiment will

probably be very similar to the layout presented in Chapter VIII but

with a schlieren-based detection system providing log amplitude

information as opposed to total power measurements.
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