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ABSTRACT

Optical Analysis of Microscope Images

Jonathan Biles Ph.D.
Oregon Graduate Center, 1986

Supervising Professor: F. Paul Carlson

Microscope images were analyzed with coherent and incoherent light using

analog optical techniques. These techniques were found to be useful for analyzing

large numbers of nonsymbolic, statistical microscope images.

In the first part phase coherent transparencies having 20-100 human multiple

myeloma nuclei were simultaneously photographed at 100 power magnification

using high resolution holographic film developed to high contrast. An optical

transform was obtained by focussing the laser onto each nuclear image and allow-

ing the diffracted light to propagate onto a one dimensional photosensor array.

This method reduced the data to the position of the first two intensity minima

and the intensity of successive maxima. These values were utilized to estimate the

four most important cancer detection clues of nuclear size, shape, darkness, and

chromatin texture.

In t!1e second part, the geometric and holographic methods of phase

incoherent optical processing were investigated for pattern recognition of real-time,

diffuse microscope images. The theory and implementation of these processors was

x
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discussed in view of their mutual problems of dimness, image bias, and detector

resolution.

The dimness problem was solved by either using a holographic correlator or a

speckle free laser microscope. The latter was built using a spinning tilted mirror

which caused the speckle to change so quickly that it averaged out during the

exposure.

To solve the bias problem low image bias templates were generated by four

techniques: microphotography of samples, creation of typical shapes by computer

graphics editor, transmission holography of photoplates of samples, and by spa-

tially coherent color image bias removal. The first of these templates was used to

perform correlations with bacteria images. The aperture bias was successfully

removed from the correlation with a video frame subtractor.

To overcome the limited detector resolution it is necessary to discover some

analog nonlinear intensity peak detector which would allow one sampling point to

determine if the correlation intensity was high anywhere in the correlation output.

Three specific medical uses for the intensity correlators are detailed.

xi



INTRODUCTION

Optical Information Processing (alP) usually involves a linear transformation

of the input object to an output image. Every imaging system does such a

transformation. The linear system theory used to describe an imaging process is

the basis of most first-order physics and engineering analysis methods, and is

described by the generic equation:

Out(Llx)= f1n(x)Re8p(x+Llx)dx

The impulse response (Resp) is the system's response to a delta ( 8 ) function

"spike". Llx is the translation of the Response relative to the Input. The impulse

response fully characterizes the transforming system.

alP has three definitive useful characteristics:

1) Effective large memory due to molecular level storage.

2) Simultaneous (or parallel) processing at the speed of light.

3) Associative processing by correlation.

These abilities make alP an ideal candidate for use in carrying out the many

rapid correlations required of pattern recognition. Our three-dimensional (3-D)

continuous real world is much vaster than just the countable integers, so it is not

surprising that it is difficult to reduce the real world to a finite string of computer

symbols. Going from an image of a real tree to the machine knowledge that there

is a tree in the image is always done by correlating the input image with images of

other trees, or with abstract shapes which can be combined to represent trees. It
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must be done with analog data to "symbolize" it. There will be no study here of

the validity of correlation for pattern recognition, the goal (of the second chapter)

is to achieve it by optical methods. Also, throughout this thesis the term "correla-

tion" may be used where "convolution" would be more appropriate, since these

two operations differ only by an inversion of one of the functions.

If the impulse response in the above equation is the image to be recognized,

then the output will be the correlation of the input with the impulse response. The

x and y coordinates of the output will be the values of the separations of the two

correlated functions (~x,~y). Intuitively, this means to lay them over each other

and see if they line up in the sense of having their values rise and fall together.

This simple measure of similarity is naturally sensitive to rotation and scaling

changes in the input. Even this simple correlation is a long calculation for a digital

computer, because the value at each correlation point (~x,~y) is made of many

pointwise multiplications which are all summed, then shifted, multiplied again,

summed again, and so on for every point in the correlation.

Crystallographers were the first to use geometrically based OIP systems to

correlate crystal structures. [1] The input image was looked at through a tran-

sparent image of a known crystal structure to be recognized (called a template)

and moved around until the template lined up with the input, at which point the

crystal was recognized. With the invention of the laser, spectacular results were

achieved in coherent OIP with transparencies, yet most scientists became very

disillusioned when no inexpensive alternative was found to having to use a tran-

sparency as an input. Computers were becoming so successful at information pro-

cessing in general that OIP with transparencies seemed a wasted research effort,
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although a few researchers did continue trying to use non-transparent (incoherent)

images as input. This thesis traces that path into new uses in microscope image

pattern recognition.

There is a great need for optical analysis of microscope images. The need to

evaluate microscope samples is worldwide. Microscopic analysis is essential in hos-

pitals and in many industrial situations such as water sanitation control. But, the

high numerical aperture objectives necessary in these applications have small areas

of view. [2] Thus to examine a single slide many images need to be analyzed. In

order for image analysis to be applied to flowing cell analyzers, 5000 cells/second

would need to be examined. [3] It would be very helpful if all these images could be

screened by analog optical correlations so that a human or computer need only

study the most important ones. This thesis identifies simple methods of accom-

plishing this prescreening process.

The outline of this thesis follows a chronological sequence. Two chapters

show a transition from the old coherent methods of Chapter 1 to the incoherent

processes of Chapter 2. The first chapter describes the early coherent pattern

recognition work done with Dr. Charles Miles on image analysis of photographs of

nuclei. The major problem encountered was the need for a photograph of the

nuclei, so it was decided to pursue further work analyzing the original incoherent

microscope image rather than a transparency.

The second chapter deals with this incoherent image analysis. It has two

means of implementation: holographic and geometrical. The holographic method

is based totally on diffraction, so its resolution is very good when using mono-

chromatic light. The geometrical method assumes that diffraction has no effect, so
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image detail is limited, but white light and colored slides may be used. These holo-

graphic and geometrical methods were experimentally examined and compared.

The results show promise for incoherent OIP, especially if an analog nonlinear

method of peak detection is discovered.
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Chapter I

SIZE, SHAPE, DARKNESS,AND TEXTURE OF HUMANCELL NUCLEI

DERIVEDFROM THE DIFFRACTION PATTERN OF

THEIR PHOTOGRAPHS

Abstract

Phase coherent transparencies having 20-100 human multiple myeloma nuclei

are simultaneously photographed at 100 power magnification using high resolution

holographic film developed to a high contrast gamma. An optical transform of the

nuclear images was obtained by focussing the laser onto each nuclear image and

allowing the diffracted light to propagate onto a one dimensional 1024 element

charge coupled device (CCD) array.

This method reduced the total data to a few values of the position of the first

two intensity minima and the intensity of successive maxima. These measurements

could be readily obtained from the data by null slope detectors. These measure-

ments were then utilized to create estimates of the four most important cancer

detection clues of nuclear size, shape, darkness, and chromatin texture. The calcu-

lations were simple, but a transparent image was required as input.
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1.2) Introduction

By use of a Fourier transform any naturally generated waveform can be

represented as a sum of its frequency domain components. In particular, an image

of a cell nucleus can be represented by a sum of grating-like spatial frequencies of

various amplitudes. While it is obvious that a frequency representation simplifies

periodic structures, frequency representations can also be shown to simplify sta-

tionary random data of large dimensionality [4]. Nuclear images, and especially

their texture, appear to be good candidates for spatial frequency domain analysis

due to the statistical nature of the many contributing variables.

The far-field optical diffraction pattern of an aperture is the frequency

domain representation (Fourier transform) of the aperture [5]. Since this fre-

quency representation is obtained at the speed of light by diffraction, it may be

very useful for flowing cell analyzers which must examine thousands of nuclei each

second.

Successful work has been done on spatial frequency representations of

nuclear images, the most complete work being done by Pernicke and colleagues [6].

The major problems were 1) that the cytoplasm's higher index of refraction acted

like a small lens to defocus the undiffracted light which then distorted the nuclear

diffraction pattern and made the information about the nucleus difficult to detect,

and 2) that the original dark nucleus on a clear background allowed the unblocked

portion of the focussed laser's gaussian intensity pattern to pass around the

nucleus, convolving a gaussian intensity (the far field diffraction of the original

gaussian) onto the nucleus' diffracted signal. One group of researchers managed to

extract nuclear size information from optical transforms of the actual nucleus, but
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with great difficulty because of the above two problems. [7]. Pernicke used an

expensive liquid crystal light valve [8] to "photograph" the nuclei in real-time.

The poor performance of this light valve was the weakest part of the process, and

they concluded their paper with a suggestion that: "Mention should be made of

the possibility of using high quality photographic copies of a complete smear rather

than photographing individual cells alone ... The contrast ratio available with film

makes the use of photography for the input medium an attractive feature." Imple-

mentation of such a device which photographs an entire field of cells is the first

contribution of this chapter.

The other contribution is the immediate reduction of transform data by sim-

pIe data sorting and calculation to form estimates of the four parameters of size,

shape, darkness, and texture which pathologists have learned can be used to

discriminate cancerous nuclei.



Figure 1.1 First optical transform setup.
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Figure 1.2 Microscope setup for making photoplates.
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Figure 1.3 The exposure increases from left to right on these IX negatives of four
photoplate exposures. The circular outline is from the microscope tube. In the
longest exposure only the purple nuclei have not sent enough light through the
green filter to expose the film.



Figure 1.4 A 20X negative enlargement of a
photoplate showing many nuclei.

- 10-

..r- .."'4

an .
.ij'.,

,
,

t g

4
4

:
JI I

,.. J

.
..-'. .

'. ;;



Figure 1.5 Improved optical transform setup.
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1.3) Materials and Methods

The apparatus used for initial measurement was similar to that previously

described, [9]except that the nuclear diffraction patterns were projected onto a one

dimensional charge coupled device (CCD) array as illustrated in figure 1.1 . Light

from a Helium Neon laser was spatially filtered, collimated, and sent through a

transparent object consisting of 1-4mm nuclear images. The diffraction pattern of

each nucleus was cast by the transform onto the CCD array.

High contrast photomicrographs of single nuclei on 35mm film supplied by Dr.

Miles were used initially. Later on in the research, a special photomicrographic

technique was developed to photograph an entire field of nuclei.

1.31) Photomicrograph of Multiple Nuclei

In order to get the microscope's intermediate real image to lie in a plane at

the top of the microscope tube, the eyepiece was raised slightly by a "bias ring".

When the virtual image of a cell was seen clearly by an eye which is relaxed to

focus at infinity, the eyepiece could be removed, Kodak 131 holographic plates

could be placed emulsion side down on top of the microscope tube, and exposed to

the focussed real image. The microscope illuminator was filtered into a comple-

mentary color strongly absorbed by the nuclear stain (usually green light for a pur-

ple hematoxylin stain) See figure 1.2. These photoplates were then developed in

Kodak D8 high contrast developer [10] which makes the image of the unstained

cytoplasm completely opaque. Since the images have been magnified 100 times by
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the single oil immersion lens, the result is that 20-100 cells in the large field are all

accurately recorded with the 2000 line/mm resolution of the holographic film.

This ensures that the limiting resolution is that possible with the oil immersion

lens. This resolution theoretically is:

1.22>"r=
2(numerical aperture)

This resolution equals .251 micron for .514 micron green light going through an oil

immersion objective with a numerical aperture of 1.25. A barely resolved feature

when magnified 100 times is 25 microns, fifty times larger than the half micron

resolution of the holographic film. See figures 1.3 and 1.4 for examples of these

photoplates.

1.32) Optical transform setup

On the microscope image plate each of the many nuclear images is a little less

than .5 mm. In order to get sufficient light through only a nucleus the laser must

be focussed onto that nucleus. The focus of the laser beam is called its waist, and

at this point the light waves are planes perpendicular to the light's direction of

travel. This beam waist diameter w is approximately equal to the F number of the

lens times the wavelength of the light. [111 To achieve this beam waist, the laser is

spatially filtered through a pinhole and then focussed onto the pivoting point of a

scanning mirror which is the focal point of a collimating lens. See figure 1.5. Since

all light coming from the focal point of a lens is collimated by the lens parallel to

the optical axis, this collimated beam can be shifted to illuminate any individual
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nucleus of the image plate by tilting the mirror. The translation invariance of the

Fourier transform ensures that all these shifted but parallel beams produce

transforms centered about the optical axis. The transforms are measured by a one

inch, 1024 linear element CCD array which drives the input to an oscilloscope.

A slide projector lens images the 1 inch diameter photoplate onto the CCD

array, allowing a nucleus to be measured directly as an object. A background field

of white light is added by a mirror with a hole for the laser, so the entire field of

many nuclei is projected onto a screen around the CCD array. This allows one to

examine a large area at once with speckle free white light, choose one nucleus, and

move the laser over to measure its diffraction pattern.

The diffraction pattern of an object which has a uniform index of refraction is

always symmetric about the origin. [12] Since the photographs of the nuclei are in

an index matching liquid gate [13] there is no phase variation, and only one half of

the transform needs to be examined. The oscilloscope traces of the intensity across

6 radii of a semi-circle of the transform were photographed. This was done by

rotating the image 30 degrees between each radius measurement and keeping the

CCD array fixed in the horizontal position. Six different nuclear diffraction pat-

terns were examined in detail and they are shown, along with their nuclei, in the

upper right of figures 1.9 - 1.14. Each of these nuclei has six oscillograms of its

radii at 30 degree spokes shown to the left on the same page.

The many small nuclear images on a photoplate cannot easily be rotated

about the optical axis, so a rotatable dove prism was used to rotate the image and

the transform. Alignment and use of such prisms requires care. [14] Dove prisms

are the same optically as refraction of light through a tilted plate of glass as thick
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as the prism is long. Such tilted plates produce astigmatism in non-collimated

wavefronts which decreases with increasing radius of curvature of the wavefront.

The dove prism was therefore placed after the slide projector lens because the dis-

tant image from this lens develops little astigmatism when its nearly parallel rays

pass through the dove prism, and the residual was corrected with a cylindrical eye-

glass lens.

1.41) Detection Theory

A physical pattern may be represented in the object domain by a photograph

of its image or in the frequency domain by the far field diffraction pattern of that

photograph. A point which is a 2-dimensionalvector Ie=RIefrom the center of this

diffraction pattern corresponds to an infinite plane wave grating in the original

image with wave vector R(Vie). Presence of diffracted light at this point Ieindicates

scattering edges in the photograph corresponding to a grating of period (Ilk) but

with any shifted phase, since we are detecting the intensity and not the phase of

the diffracted light.

Our nucleus tends to have more circular symmetry than rectangular, so a

polar (r,e) coordinate system works better than a cartesian (x,y) one. The

corresponding basic Fourier transform will then be a Bessel function and not a

sin(z) pattern.z

The intensity of the diffracted light from a round hole theoretically falls off



with radius as:

I(,)~ [k::r
where:

J1 = the first order Bessel function

k= 21T/ wavelength of the light

d= the diameter of the diffracting hole

z= the distance to the screen

2J, [ kd, 12z

Icdr
2z

- 16-
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Table 1.1 Values for the minima and maxima where :z; = ~:~~ r

Only the first few values of table 1.1 could be found from the literature, [15]

so the last ones were calculated directly from a power series expansion of the first

order Bessel function with a hand calculator. Using values from the above table,

we expect the diffraction rings to fall off with the following ratios:

max2/max1 = .00416/ .01750=.24

max3/max2 = .00160/ .00416= .38

max4/max3 = .00078/ .00160= .49

max5/max4 = .000436/ .00078= .56

max6/ max5 = .000303/ .000436= .70

2J1(1TX)
..

x max or min
1TX

0 1.0 center
1.220 .0 mm
1.635 .0175 maxI
2.233 .0 minI
2.679 .00416 max2
3.238 .0 min2
3.699 .0016 max3
4.710 .00078 max4
5.715 .000436 max5
6.718 .000303 max6
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Figure 1.6 Form of oscilloscope display from which all data is taken. It is the

intensity along one radius of the diffraction pattern of a circular aperture.

I Saturation

One Radius of
an Airy Ring

r

AB can be seen from figure 1.6, in our experiments we saturated our CCD

detector with both the central peak and the first ring, since these 2 are much larger

than the later rings. Our experimentally derived ratio for the intensity of the

diffraction maxima from a photograph of a perfectly clear round circle was in very

good agreement with the above theoretical values except for the second ratio (the

first one we measured) which was experimentally measured to be .33 instead of .38.

This and the other closer ratios were only achieved if 1) the very intense-on axis

undiffracted light was blocked before striking the CCD array, and 2) the incident

light was really a uniform intensity plane wave. One of these errors could still

account for the low value of the second ratio.
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1.42) Data Analysis

Name

6-
h

o
of

60
Nucleus

o
90 50

D D D D D D
c

maxsummIll sum
pleomorphism= maximin
Area Darkness

Figure 1.7 Data format

The data for each of the six nuclei is presented in figures 1.9 through 1.14 in

the above tabular form. The second row of the tables show the angles of the six

radial spokes of data from the nuclear images. The distances between the first two

minima for each radial spoke (ilrm)are shown in the third row. These will be used

to calculate both the pleomorphism and the area. The area will be used, along with

the light intensity at the origin, to calculate the average darkness of each nucleus.

Each diffraction ring's height values (h) will be analyzed to give a chromatin value

for each column of data of one angular spoke measurement. The individual values

will then be added to give the nucleus' chromatin value C.



- 20-

1.421) Nuclear Diameter

The distance between the first two minima of the transform of a circle of

diameter D is:

~rm = rm2- rml = 2.233}"..!.. -1.22}"..!.. :::::},...!.. = con$t.D D D D.

The constant was found from the diffraction pattern of a calibrated hole. Since our

nuclei are not perfect circles, we can only derive an approximate average diameter.

This diameter is the average separation of all edges perpendicular to the CCD

angle. Six approximate diameters of the diffracting nucleus (every 30 degrees)

were found from the 6 ~rl,...,~r6 of its diffraction pattern. This can be seen by

comparing the large size of all the ~rm for the elliptical and hexagonal nuclei with

the small size of all the ~rm for the two big triangular and oval nuclei. A quanti-

tative performance check was that the length to width ratio of the rectangular

nucleus =4.5/2.5 is close to the ratio of the largest null separation to the smallest

null separation of its diffraction pattern.= 16.6/8.4. The rest of the nuclei also

compared favorably with hand estimates of the average diameter of the magnified

nuclear images.



-21 -

Figure 1.8 Nuclear area approximated by six triangles.

. 100

Area. Const

1.422) Nuclear Area

The six radial diameters found above defined a polygon made of 12 triangles

(one every 30 degrees), whose opposites inverted about the center were identical

(because of the inversion symmetry of real valued object transforms). See Fig. 1.8

. The separation of the first two nulls was measured, squared, and summed for all 6

radii. This number was multiplied by 100 for easier representation. Magnified

nuclear images measured by hand on graph paper again indicated good predic-

tions. These measured areas, shown above their predicted areas are: small hexag-

onal nucleus = 20.5/4.4 = 4.6,small rectangular nucleus = 22.5/6.1=3.7, small

triangular nucleus = 21.5/5.9 = 3.6, large oval nucleus = 45/13=3.5, large tri-

angular nucleus with coarse chromatin = 53/8.6=6.2. All these ratios are within

15 percent of 4.0 except the large triangle with very coarse chromatin. This nucleus

is much larger than the separation of the nulls of its diffraction pattern suggests. If

the internal opaque chromatin is neglected in measuring the area of the nucleus,

then the ratio changes to 43/8.6=5, only 25 percent off of 4.0. One explanation of
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this deviation begins by noticing that in this nucleus the chromatin appears as

clumps attached to the side of the nuclear membrane. These effectively shorten

the estimated diameters, which lessen the estimated area.
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1.423) Darkness (Hyperchromasia)

Hyperchromasia is here defined as one over the average transmittance of a

nucleus. This will now be shown to be approximately the ratio of the square of the

nuclear size to the amount of on-axis light transmitted. This can be shown by

starting with the definition of the average value of a function:

f f:,,J (z ,y)dzdy
<1>=

f f"",dzdy

This integral can be related to the value of the transform of the amplitude

transmittance (+Vt) evaluated at the origin = V 1nten8ity on the optical azi8 .

Beginning with the Fourier transform generating an intensity power spectrum.

1(u,v) = {fL:~e-i21r("u+V~)dZdyr

Substituting u=O, v=O for on the optical axis.

1(0,0)= {fL:~dz dyr
The term in the brackets is equal to the above definition of average value for

1 = Vt multiplied by the area of the aperture.

{ < Vt >fL:dZdyr

{<Vt >(area01 aperture)r
Since both terms are positive:

= <Vt >2( area 01 aperture)2

Using the well known identity for the variance, (12=<z2 >- <z >2 and substituting

in vt for x gives (12= <t>- <Vt >2 . Assuming the variance is small, we can try

approximating <Vt >2 with <t >.
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1(0,0) = <t >(area of aperture)2

Hyperchroma3ia %= --L = area of nucleU32
<t> 1(0,0)

The area of the aperture contributes proportionately once for the total energy

transmitted and again due to its creating a lower F number which concentrates the

energy into a smaller spot around 1(0,0). 1(0,0) was measured by a photodiode on

the optical axis. It's value for a calibrated hole was used to normalize 1(0,0) for

other nuclei. The assumption of small variance will be good for the nuclei 1.9-1.12

which have no chromatin clumping. For the last two nuclei, which have clumped

chromatin, the assumption is less valid.

The photodiode doesn't really measure 1(0,0). It, having a finite area, meas-

f
other edge Th

'
d d I h d b

.
ures 1(x,y) do.. IS stu y use a ess than Imm2 p oto etector, ut Itone edge

may have integrated in some of the low spatial frequencies.
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1.424) Chromatin Texture

As lumps of chromatin appear in the image of the nucleus, they create high

spatial frequencies which cause light to diffract out to the periphery of the

transform in an irregular way. A measure of this irregularity is the variation from

the expected fall off of the Airy ring peaks. The inner diffraction pattern, pro-

duced by the low frequency of the nucleus' shape and size, is isolated from the

higher spatial frequencies of the chromatin texture.

Our measure of chromatin clumping, C, is the mean square variation from the

theoretical decay of the Airy ring peaks for a clear circle.

To calculate C for each array reading, the heights of the first 5 experimental

diffraction peaks were measured. Values under 1.0 mm were ignored because of

the inaccuracy of measuring them by hand with a ruler. The square of the

differences of experimental diffraction ring height ratios from the experimental

ratios of the diffraction from an ideal circle were measured for all peaks above 1

mm high.

C = L (hm+1 _ tm+1)2
..1/ peale. hm tm

Where the hm were experimental intensity heights for a nuclear image and the tm

were the experimental ratios found from an ideal circle. These square differences

were added together to give the chromatin differences (c) of each radial CCD scan.

These differences were then added together to give the chromatin value (C) for

that nucleus. The low chromatin values for the first three nuclei are because they

are chromatin free. Much lower chromatin values can be obtained by using the

average of the height ratios for these three chromatin free nuclei as the standard
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height ratios instead of those calculated theoretically above. The chromatin values

of the last three reflect Dr. Miles' feelings about the deformity of their chromatin

texture. The last nucleus, among the lumpiest ever found, had a chromatin value

over ten times larger than the others.

1.425) Pleomorphism

Pleomorphism is a pathologist's subjective estimation of the misshapenness

and amount of straight edges of a nucleus. Edges scatter light in a radial spoke,

which could easily be seen in the diffraction pattern of the small rectangular and

triangular nuclei. Each time the chromatin variation c was calculated for a radius,

the sum of the heights of the peaks was written down to be compared to those of

the five other radii. The largest sum divided by the smallest sum was used to quan-

tify pleomorphism. In the data tables these maximum and minimum values are

listed under their columns. The small hexagonal, rectangular, and both triangular

nuclei have two to 5 times higher pleomorphic values than the other ovals.

The pleomorphic nuclei of figures 1.10-1.12 have a normal intensity decay,

indicating no chromatin clumping, but the variation of the distance between their

first two minimums ilrm indicates their pleomorphism. Therefore, another possible

measure of pleomorphism would be the variation in the ilrm used to measure area.
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Figure 1.9a Photographs of (from right to left) small elliptical nucleus, its Fourier

transform, and the six radial intensity traces of its transform every 30 degrees.



Figure 1.9b Table of data and derived values for the small elliptical nucleus.
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Small Ellintical Nucleus

sample angle = o deg. 30 deg. 60 deg. 90 deg. 120 deg. 150 deg.
rm= 11.1 12.6 10.9 10.8 10.6 12.5

h2= 9 10.1 8.9 11.0 9.8 8.2
h3= 3.4 3.9 4.0 4.5 3.6 2.8
h4= 1.4 1.1 1.6 3.1 2.1 2.2
hl)= .9 1.9 1.0 1.1 1.1 1.0
h6= .6 .6 .7 .9 .6 .7
c = 18 19 14.8 22.5 52 23.5

max=20.6 min=14.9

Pleomorphism = 20.6 / 14.9 = 1.38 C = :Ecm = 91.3
Area = 4.67 Darkness = 1.06
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Figure 1.1Oa Photographs of (from right to left) small hexagonal nucleus, its

Fourier transform, and the six radial intensity traces of its transform every 30

degrees.
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Figure 1.1Ob Table of data and derived values for the small hexagonal nucleus.

Small Hexal!:onal Nucleus
sample angle = o deg. 30 deg. 60 deg. 90 deg. 120 deg. 150 deg.

rm= 12 11.5 10 11 15 12.0

h2= 4.1 1.7 2.4 4.3 1.0 2.0

h3= 1.7 1.0 .9 1.7 .6 1.5
h4, .9 .5 .9 .8

Cm = 6.3 11.7 2.2 5.2 13 23

max=6.9 min=1.6

Pleomorphism = 6.9 / 1.6 = 4.3 C = ECm = 61.4
Area = 4.42 Darkness = 1.29
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Figure 1.1la Photographs of (from right to left) small rectangular nucleus, its

Fourier transform, and the six radial intensity traces of its transform every 30

degrees.
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Figure l.11b Table of data and derived values for the small rectangular nucleus.

Small Rectangular Nucleus

sample angle = o deg. 30 deg. 60 deg. 90 deg. 120 deg. 150 deg.

Arm= 10.6 8.4 16.6 11.8 8.0 9.4

h2= 17.8 6.7 14.8 2.6 4.9 6.0
h3= 9.9 1.9 6.2 .9 4.0 2.0
h4= 4.1 1.8 3.4 1.1 1.2 .6
hs= .9 .9 .9 .6 1.9 .4
h6= .7 .8 .5 .6 .4
C = 18 19 14.8 22.5 52 23.5m

max = 31.4 min = 5.7

pleomorphism = 31.5 / 5.7 = 5.5 C = ECm = 149.8
Area = 6.1 Darkness =1.25
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Figure 1.12a Photographs of (from right to left) small triangular nucleus, its

Fourier transform, and the six radial intensity traces of its transform every 30

degrees.



Figure 1.12b Table of data and derived values for the small triangular nucleus.
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Small Triangular Nucleus

sample angle = o deg. 30 deg. 60 deg. 90 deg. 120 deg. 150 deg
Arm = 11 10.9 9.2 9.9 8.6 11.9

h2= 6.1 7.3 9.2 11.9 2.0 12.0
h3= 2.5 2.1 1.9 4.4 1.3 4.3
h4= 1.0 2.0 1.4 1.7 1.0 2.9
hs= .7 .6 .6 1.0
h6= .5

ci = 10 22.6 16.7 12.6 30 14.3
min=4.3 max=20

pleomorphism = 20.2 / 4.3 = 4.8 C = ECm = 116.2
Area = 6.0 Darkness = .84
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Figure 1.13a Photographs of (from right to left) large oval nucleus with coarse

chromatin, its Fourier transform, and the six radial intensity traces of its

transform every 30 degrees.
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Figure 1.13b Table of data and derived values for the large oval nucleus with

coarse chromatin.

Large Oval Nucleus with Coarse Chromatin

sample angle = o deg. 30 deg. 60 deg. 90 deg. 120 deg. 150 deg.

rm= 8.9 6.6 7.0 5.0 7.8 7.4

h2= 12.4 7.8 14.4 14 16.9 34

h3= 2.6 5 8.5 5.9 3 8.4
h4= 2.6 6.9 2.4 10.5 4 6

hs= 1.6 1.0 3.2 2.0 4.0 5.4
h6= .7 1.5 1.6 1.4 2.1 1.0
h7= 1.0 .6 1.2 1.5 1.3 2.4
hg= .3 .8 5 1.4 2 1.1
hg= .8 .6 3.4 1.3 1.6
hlO= 1.3

Cm= 24 61 36 44 40 29
min=24.2 max=58

pleomorphism = 58 / 24.2 = 2.4 C = E cm = 234
Area = 13 Darkness = 2.0
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Figure 1.14a Photographs of (from right to left) large triangular nucleus with

transform every 30 degrees.

coarser chromatin, its Fourier transform, and the six radial intensity traces of its
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1.5) Discussion

The parallel processing ability of optical Fourier transforms has been used to

simplify the reduction of the statistical data of nuclear images. This allows esti-

mates of size, shape, darkness, and texture to be made of each nuclear image with

a simple calculation. This ease occurs because the only required data, the radius of

the first two nulls and the heights of the diffraction rings, can be easily obtained

from the raw intensity data by looking for zero values and zero slopes. These few

values, because of the translation invariance of the Fourier transform, can always

be measured from a coordinate system fixed on the optical axis.

However, there are several approximations made to achieve these estimates,

and six nuclei are too few for a thorough test. But it is important to try to meas-

ure these classical clues, because they mean so much more to pathologists than spa-

tial frequencies do. Previous researchers [6] had too much data and too little

knowledge that fit into the pathologist's culture, or they [9] had only verbal

descriptions of "spikes" from misshappen pleomorphism or "mottled appearance"

from chromatin.

The major problem preventing implementation of this near real-time hybrid

device is the requirement of a photographic input instead of the actual cell. A

solution other than an unsatisfactory Liquid Crystal Light Valve is actively being

researched, but because of the particularly high data rates required for microscopic

image analysis, there is little chance of using a coherent light valve to photograph

the cells rapidly enough.

Since we are only interested in the real-valued intensity of the image, a way

may be able to be found which ignores the optical phase variations of an actual
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cell. This would make a coherent light valve unnecessary. The next chapter inves-

tigates this possibility.
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Chapter II

OPTICAL ANALYSIS OF INCOHERENT MICROSCOPE IMAGES

Abstract

The geometric and holographic methods of phase incoherent optical process-

ing were investigated for pattern recognition of real-time, diffuse microscope

images. The theory and implementation of these processors is discussed in view of

their mutual problems of dimness, image bias, and detector resolution.

The dimness problem was solved by either using a holographic correlator or a

speckle free laser microscope. The latter was built using a spinning tilted mirror

which caused the speckle to change so quickly that it averaged out during the

exposure.

To solve the bias buildup problem low image bias template patterns were gen-

erated by four techniques labeled here as: microphotography of samples, creation

of typical shapes by computer graphics editor, transmission holography of photo-

plates of samples, and by spatially coherent color image bias removal. The first of

these templates was used to perform correlations with bacteria images. The aper-

ture bias was successfully removed from the correlation with a video frame sub-

tractor.

To overcome the limited detector resolution it is necessary to discover some

analog nonlinear intensity peak detector, such as optical bistability. Without such
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a device, the output detector must sample many points of the correlation to deter-

mine whether there is a good correlation anywhere. An analog nonlinear intensity

peak detector would allow one detector sampling point to determine if the correla-

tion intensity was high anywhere in the correlation output, that is, for any separa-

tion of the correlated functions.

Three specific medical uses for the intensity correlators are presented.
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2.2) Theory of Incoherent Optical Information Processing

Coherent image processing performs a full Fourier transform on its input

image. Non-transparencies (such as a printed page, CRT, or any real image) have

a random phase function that multiplies the transmittance which usually contains

the valued information. When transformed, the transform of the random phase

function (speckle) is convolved with the transform of the transmittance amplitude

of interest, making it undetectable.

Incoherent image processing is sensitive only to the intensity of the image, and

so the random phase function of non-transparent images is ignored. This ability to

use such inputs as a printed page, CRT, or any real image greatly enhances the

usefulness of the system. However, as will be shown, the problems of bias, light

throughput, and detector resolution hinder the application of incoherent image

processing's full powers.

Unlike the highly collimated light of coherent optics, incoherent inputs

theoretically need to send light out equally in all directions, but usually a narrow

cone centered perpendicular to the plane of the input diffuser is all that is uniform.

Our diffusers fulfilled this function well for a cone angle of about 10 degrees. A

CRT works much better, putting light out in all directions almost equally.

Space bandwidth product (SB) is a measure of the maximum data storage

capability. A 100 line per mm grating can be thought of as a bit stream in which

individual grating lines could be turned on or off. If a 100 In/mm lens is good over

a lOmm field of view then each dimension of its image could store no more than

1000 points. A square image with lOmm sides (1000 points) could store one million

points in a checkerboard data page.
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Space bandwidth frequency (SBF) is an even more significant figure of merit

for data processing ability, since the shorter the data processing cycle, the better

the device performance. Image processing systems produce very high SBF quality

values because light moves 30cm in a nanosecond.

An excellent review of intensity correlators is given in [16] and in [17]. A few

of the important types will be discussed here.

The simplest incoherent optical processor is the scanning correlator. Here the

input is imaged onto the template. Either image is then moved to change the ~:t of

the correlation and the total amount of light passed is detected by a photocell. The

drawback of this technique is that mechanical scanning is required, but this scan-

ning may already be provided by some moving systems, such as a spinning optical

memory disk or a flowing cell analyzer.
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2.1) Shadow Casting Geometrical Correlators

y f{x,y) Y h{x,y)
y g{x,y)

Figure 2.1 Basic geometry for shadow casting correlator.

The simplest nonscanning correlator is shown in figure 2.1. It was first pro-

posed by Bragg. [1] Geometrical rays of light emanate in all directions from the

input f(x,y). All light that arrives at a point (xo,Yo) in the correlation plane g(x,y)

had to go through the template h(x,y). If the input is similar to a properly scaled

and rotated version of the template, then a maximum of light intensity will be

found at a point (xo,Yo) in the correlation plane whose coordinates correspond to

the separation which makes the correlation of f and h a maximum. In our study

the template was always the negative of the object to be detected, so a minimum

of light intensity was sought.

The literature gives scaling relationships for shadow casting correlators as:

[18].

ff
oo a b a b

g(xo,yo)= _oo/((x-xo a+b)1a+b'(Y-Yo a+b)1a+b) h(x,y) dxdy

The best way to understand the scaling of this system is by thinking of point

sources as delta functions. Correlation with a delta function returns just the origi-
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nal function. A delta function (pinhole) as input is a point source projector. See

figure 2.2. A delta function in the template is just a pinhole camera. See figure

2.3. A geometrical correlator is a combination of the two.

Figure 2.2 is a point projecting a shadow of the template onto the correlation

plane.

Point Projector

1 t c

d.1

M projected image size at correlation plane
templa te size

de
1 +

d.1
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Figure 2.3 is a pinhole camera made with a delta function (pinhole) in the tem-

plate.

Pinhole Camera

.
1 t c

d.1

M image size at correlation plane
input size

dc

d.1

The pinhole camera and projector can be used to explain correlation. Imagine

two pinholes were the input of the pinhole projector instead of one; the two images

of the template would be cast onto the correlation plane. Likewise, two pinholes in

the template would give two inverted images projected onto the correlation plane.
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For a superposition of input points you would get a correlation of the input with

the template. Thus each point of the input or template has the other's image

superimposed on it. This duality is an illustration of correlation's mathematical

commutability.

In practice our templates were high contrast photographs usually held directly

against a single lens reflex camera body in the same way as a lens would normally

be used. The correlation plane was the film plane, and the correlation could be seen

through the viewfinder or exposed with the normal shutter action.

Proper scaling was found by putting an aluminum foil pinhole alternatively in

both the input and template planes, and by moving the object towards or away

from the camera and template until the two images being correlated were in

proper scale. Usually a pinhole was used in the template to act as a camera to

show the input scene next to the two dimensional correlation patterns. Figure 2.18

has one of these pinhole cameras in its correlation.

Although this simple lensless projection described above was found to be most

useful by this thesis, the usual method of geometrical ntemplate matching n

involves a lens. With such a lens setup, no two of the three input, template, and

correlation planes are in a normal image relationship. Most of the geometrical

correlator research (to be described in the next few paragraphs) has been done with

lens correlators, for a reason not explained in their papers nor understood by this

thesis. Lens correlators usually suffer from the aberrations and limited space-

bandwidth of the lens. Worse however, is that use of a lens usually results in

different parts of the template seeing different parts of the input image. That is,

the input is not the same for all parts of the template. While this problem has been
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ignored by previous researchers, the reader can investigate this problem with a

careful ray tracing to show that the input function remains the same over the

entire correlation plane only if the template is held directly against an ideal thin

lens.

In a recent letter, [19] scaling relationships were derived for this general type

of lens based correlator by the same method as used in this thesis: inserting

pinholes in the input and template planes and determining the sizes of the images.

The second of these lens correlator papers [20] pointed out that, just as in

coherent spatial filtering, incoherent correlation peaks may be allowed to pass on

through the rest of an optical system to reconstruct an image of the input and tem-

plate superimposed. This is best understood by thinking of the correlator as an

imaging system. The smaller the aperture around the correlation peak, the larger

the depth of focus of the imaging system, and the sharper the two images of the

input and template can be focussed simultaneously.

The effect of diffraction on resolution was studied by the third author, [21]

who showed that the number of analog multiplications was proportional to the

number of degrees of freedom of a light beam (= aperture area x solid angle /

square of wavelength). He also showed that the number of resolvable directions

increases with the separation of the transparencies at the cost of including fewer

products in each summation approximating the correlation function. Although he

worked with lens correlators, the results appear to hold for lensless correlators,

with the aperture stops of the system being the apertures of the input and tem-

plate.
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Green was the only author to give an example of correlation, and his was an

academic five pointed star. None of these three authors mentioned methods of

preparing templates, reducing bias, or increasing light throughput.
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2.2)Holographic Correlators
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Figure 2.4 Holographic correlator

A major breakthrough was made in 1968when A. Lohman used holograms as

incoherent correlators. [22]Basically, the hologram's image shown in figure 2.4 can

be thought of as the impulse response of a linear system to the reconstructing point

source which acts like a delta function. If the reconstructing source is an extended

source rather than a point impulse, then the output of the hologram is the correla-

tion of the hologram's image with the input. This is why holograms blur when

reconstructed with diffuse lights; the image of the diffuse source is superimposed

onto each point of the reconstructed image. Once again, there is a bias problem

since the intensity impulse response of the hologram must be positive everywhere.
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When light propagates from the input image to a distant hologram or lens,

the Huygens-Fresnel principle implies that the image is Fourier transformed. [23]

Since the hologram records and manipulates information in this frequency domain,

the correlation spoken of above must correspond to a multiplication of the holo-

gram with the transform of the input image. This is indeed what a transmittance

function does to the light going through. Correlation is physically realized by mul-

tiplying light intensities with transmittance values in the frequency domain.

Figure 2.5 Example of holographic impulse response

The figure 2.5 is a 2X image of the response of a transmission hologram made

by a PAAP developer with bromine bleach. [24] This unique holographic developer

uses ascorbic acid to reduce the latent image silver without releasing reaction pro-

ducts which oxidize and harden the gelatin emulsion. The addition of a small

amount of silver-halide solvent (.5gjl ammonium thiocyanate) allows for the unex-

posed silver halide to be dissolved and precipitated onto the fringes as reduced

silver.
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The hologram produced by this method had an 11 percent diffraction

efficiency and good image quality. Along with the nuclear images is a 100 dot/inch

halftone screen for image quality investigation. Both reference (input) and object

(correlation) beams were 500 mm away and 45 degrees to the 2.5"X 4" holo-

graphic plate.

Holographic correlators have been of more recent research interest than

geometrical correlators have. A.W. Lohman launched the field with two pioneer-

ing papers. The first, labelled "Matched Filtering with Self-Luminous Objects",

was a difficult to understand theoretical work, probably because the concept was

still so intertwined with the concept of the coherent matched filter. [22] By the

second paper, [25] he made two suggestions to solve the bias and light throughput

problems. The first was "suppression of the useless low spatial frequencies ...for

better target discrimination." The second was imaging the input source onto the

input, for example onto an opaque print, in order to increase the input intensity.

The next paper was by Bieringer, "Optical Correlation Using Diffuse

Objects". [26]. Its major contribution was an indication that this application of

linear system theory could be applied to all off-axis, diffuse object beam holograms,

although he did not use the equal reference and object angles that were found

necessary in this thesis. This paper was very useful for this thesis because it corre-

lated arrays of circles and lines (figure 5 of his paper), which looked similar to the

microscope photoplates used in this thesis.

Maloney published two works in 1971 [27] the first, "Lensless Holographic

Recognition of Spatially Incoherent Patterns in Real-Time" used multiple, spa-

tially offset holograms to recognize code features in alphabetic letters. The
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features were small pieces of a letter, so the author could avoid discussing the bias

problem. This paper described the first peak-detection scheme using detectors

behind pinholes. This technique gives up shift invariance, i.e. the correlation spike

moves off the pinhole if the input shifts. His second paper "Real- Time Holographic

Filtering of Oscilloscope Traces" [28], applied the same optical processor to input

from an oscilloscope CRT. He was the first to use CRTs with phosphors emitting

narrow spectra. This was necessary since he was using a holographic correlator.

"Direct Matched-Filtering of Pen Recordings Using Sodium Light", [29] used

the paper output of an EEG machine illuminated with sodium light for input.

Using this raw input, the device was capable of recognizing a certain brainwave

pattern. The major contribution in this paper was the use of the negative of the

function to be detected as the template to greatly reduce the bias. This thesis gen-

eralized this bias reduction technique to color inputs.

Finally in 1983, after this thesis' work on incoherent correlators was well

under way, a group of five authors published a holographic incoherent correlator

system for industrial pattern recognition of hand tools. [30] They lowered the

correlation bias with an electronic time differentiation of the input video signal.

This novel solution worked well for vertical edges, but not as well for horizontal

edges, since the time derivative of the video signal would not pick up horizontal

lines as sudden edges. The template images were created by the same technique,

and photographs of their video display were taken. Transmission holograms in

dichromated gelatin were made of these photographs and put on a rotating wheel

in front of a narrow band phosphor CRT. The correlation was detected with a

video camera.
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2.21) Scaling in Holographic Incoherent Optical Information Processing

When a hologram of an object is reconstructed by another object which is

being used in the location of the original reference beam, the reconstructed image

will be the correlation of the original object used to record the hologram and the

object currently being used to reconstruct the hologram.

As long as the hologram is thin enough to still reconstruct, an angular devia-

tion about the reference translates into an angular deviation about the recon-

structed image angle. Perpendicular to the plane formed by the reference and

object beams, these angles are always equal, but in this plane we must derive the

exact displacement by starting with the grating equation:

sinE> + sinE> = ~
rOd'

where E>randE>oare the reference and object beam angles relative to the hologram

perpendicular. Applying the differential operator ~ yields:do r

dE>
cosE> + cosE> ~ = 0

r 0 dE>r

Therefore rearranging,

dE> -cosE>~= r
dE>r cosE>o

So long as the hologram is made with E>o=E>r, the angular deviations are equal (but

opposite ).

The size of the object and reference displacements ~80 and ~8r divided by the

distance to them from the hologram are the angles which are equal.
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IT they are different sized images of the same object, "being in scale" means that

translation of the reference object by a distance equal to its size will cause a trans-

lation of the hologram's image by a distance equal to its size. We can then set

~80 =80 the object size and ~8r =8r the reconstruction object (input) size.

~=2...
dr do

The hologram was originally exposed with a certain object size 80 a certain dis-

tance do away. These give us the input distance dr needed for any given recon-

struction size IJr which may be varied. In terms of the microscope magnifications

used to create both images this becomes:

So if the hologram was made of a transparency 10 cm away which is a 100X

magnification microscope image, a 200X input image used to reconstruct the holo-

gram should be 20 cm away to keep the images in scale. The original hologram

should be made with this reference distance. ITthe reconstructing input must be a

different distance away than the original reference, then the hologram's output

image location will change. A hologram of a real converging image can be thought

of as a lens, and the thin lens equation is useful for figuring image positions if the

reconstruction distance changes. The focal length of the hologram corresponds to

how fast its spatial frequency changes when moving in a radial direction from the

optical axis and is inversely dependent on the wavelength used. [31]
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2.23)Light Throughput

The parallel way incoherent processors work necessitates that light emanate

from the input object in all directions, since all template images must receive some

light. One of the drawbacks of geometrical templates is that light can go through

only where there is some transmittance, and there isn't much of it when using the

usual opaque template with small clear images as in figures 2.5 and 2.16. This

means very little light gets through the small template images to reach the detec-

tor. One of the advantages of the holographic system is that light hitting the

entire area of the hologram is used to make a consequently high intensity impulse

response. However, a problem with holograms is the low diffraction efficiency (10-

20 percent) of most high signal to noise ratio silver halide holograms. For all holo-

graphic materials there is an inverse relationship between diffraction efficiency and

signal to noise ratio, and dichromated gelatin is the only material capable of 50

percent diffraction efficienciesat a 50 to 1 signal to noise ratio. [32] Dichromated

gelatin unfortunately requires very careful preparation, exposure, and processing

[33] with techniques that must be taken solely from the literature, since there are

so few active researchers. The literature techniques must be modified for each

laboratory's humidity, gelatin, and processing need. [34] More information on

dichromated gelatin, including a favorite technique, can be found in appendix G.
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2.24) Bias Reduction

The bias problem of phase incoherent processing is illustrated by figure 2.6.

Since both the object and template must have non-negative transmittances over

their entire surface, if you integrate them there is a net bias to each one. When

these average values are cross-correlated, they yield a triangular shape with more

dynamic range than the correlation information. A more realistic waveform is

shown dotted over the bias triangle.

Narrowing the size of the input is a good way to make the bias cross-

correlation have a constant value which can be subtracted out globally from the

entire correlation. [35] The bias subtraction discovered in this thesis (see section

2.35) is similar, but involves a more sophisticated pointwise subtraction of the bias

function instead of a bias constant. However, in both cases the dynamic range of

the detector is still wasted.

Another solution, proposed by Lohman, is to minimize the impulse response

bias by putting the template transparency in a Fourier transform diffractometer

and blocking the undiffracted light in the focal plane. [25] Since this undiffracted

light corresponds to very low spatial frequencies in the image, this has the effect of

edge enhancing the resultant image. This image could then be made into a holo-

gram.

A still better solution is to bandpass only those spatial frequencies which are

most characteristic of that class of object and which are different from the back-

ground noise. Most natural signals have a l/f type power spectrum, [36]so most of

the bias can be eliminated by blocking the low frequencies. This explains why edge

enhancement had been found to be useful by Lohman.
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The work with Dr. Miles, discussed in the first chapter, has shown that infor-

mation about the size and shape of human nuclei is contained in the middle fre-

quency range, and that the high frequencies contain the texture information. It is

emphasized in this thesis that bandpassing these spatial frequency ranges when

generating the template makes the correlation process a Weiner power spectral

filter as well. [5]This is the old trick of bandpassing the signal to reduce the noise.
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2.241) Spatial filtering

image

~ laser
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mirror
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Figure 2.7 Handy spatial filtering setup.

A transparent image of the nuclei is put into a Fourier Transform

diffractometer. [5] Most optical transformers are spread out in a line, and with long

focal length lenses it is impossible to see the object, transform, and image planes

simultaneously. The folded setup shown in figure 2.7 was developed to make spa-

tial filtering more convenient. It has all three planes within arms reach, and uses

only one expensive transform lens instead of the usual two. A portion of the object

transparency can easily be moved over to the input aperture while examining its

transform projected onto the screen. The transform can be easily filtered by draw-

ing on the glass plate with a black pen to block unwanted spatial frequencies.

Upon removal of the viewing screen, the transform reflects off the mirror, goes
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back through the transform lens, and the re-transformed, filtered image is pro-

jected onto the screen where it can be examined with a hand-held magnifying

glass.

The transform mirror has a small hole drilled into its center so the intense

spot of on-axis undiffracted light, which corresponds to the bias, is not reflected

back into the image. A hologram is then made whose impulse response is the edge

enhanced image. This one-lens folded technique suffers slight aberrations due to

the non-paraxial rays, so it is best for explorative work only.

The phase noise of the photographic film emulsion necessitates use of a liquid

gate. [13] Xylene or mineral oil was so difficult to use that a number of alternatives

were investigated, and complete success was found by cementing the transparency

between two glass microscope slides with light curing epoxy. [14]
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Figure 2.8 20X Magnification of coherently edge enhanced images.

Edge enhanced nuclear images, made on a normal Fourier transform

diffractometer, are shown in figure 2.8. Compare them to those in figure 1.4. Too

much bias was removed and artificial edges were created. It was impossible to con-

tinuously vary the bias, because a hole in the mirror does not have a continuous

variability. Ideally, a liquid crystal light valve could be used in the transform

plane. This $50,000 device is manufactured by Hughes Aircraft and is capable of
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real-time electronic photography. [37] This would allow any bandpassing function

to be written onto the light valve by exposure with a cathode ray tube. Since only

one light valve would be needed in the lab to make the mass-producible templates,

the high cost of such a device would not be prohibitive. However, as will be dis-

cussed later, there is plenty of time to bandpass the template with a computer,

since time must also be taken to develop the template into a transparency. It is the

correlation of the input with the template that is rapidly processed optically.

2.242) Color Edge Enhance

A13the microscope research progressed with clinical tissue, it became clear

that color was essential for differentiating the biological images. Red blood cells

are the same size and shape as human nuclei and only slightly larger than bacteria.

In a monochromatic system, such as the 514nm laser microscope (discussed later in

section 2.311), they are very difficult to distinguish. Using color makes it easier to

distinguish the red blood cells from both bacteria and nuclei which stain blue. The

geometrical method can, in theory, work just as well using color transparencies as

templates, but there have been no attempts in the literature to use color slides

directly as templates. Since they would still suffer from bias buildup, attempts

were made to lower the bias of color slides (edge enhancement).

A tungsten iodide incandescent bulb (high brightness) is imaged onto a

pinhole, so only the brightest point of the filament is passed as a uniform,

spatially-coherent, white light beam. This beam passes through the transparency
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Figure 2.9 Setup for coherent color edge enhancement.
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to be filtered, which is epoxied between glass slides to eliminate phase distortions.

This slide is imaged by a projector lens onto the color film. In the focal plane of

this lens a small (about .5mm) opaque dot is positioned carefully to block the

undiffracted light that constitutes the bias of the image.

An example of an edge enhanced color 35 mm slide is shown in figure 2.11.

The original photograph is shown in figure 2.10. Note how dark the background

hills or the bricks of the wall are. The yellow strip around the sign in the upper

corner shows the spatial period corresponding to the inverse of the diameter of the

spatial frequency block in the focal plane. The spacing of the stones of the white

building in the background matches this spatial period. This white light coherent



Figure 2.10 Initial image

Figure 2.11 Low spatial frequency blocked image
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2.3) Experiment

2.31) Microscope set-up

High power microscopes must be used to magnify the nuclei or bacteria to a

size that incoherent optical processors can use. The quality of the input image

depends on understanding how to build a good microscope.

A fundamental relationship in microscopy is the uncertainty principle

!:J.p !:J.z ~ constant. To improve resolution (smaller!:J.z)requires a lens of high numeri-

cal aperture which brings light in from a wide angle (large!:J.pz). For maximum

resolution an oil immersion lens and condenser are used. Our condenser was a

hemispherical lens oiled against a diffuser which was against the bottom of the

microscope slide. The diffuser serves to reduce "coherent artifact noise" by ran-

domizing the light rays' directions and filling all the imaging channels. A con-

denser iris allows the numerical aperture of the illuminating light to be kept the

same as the objective, ensuring the best contrast with no sacrifice in resolution.

[38] The distance to the objective's image plane must be close to the 160 mm for

which the aberrations of all microscope objectives have been corrected. Older

objectives and eyepieces, such as the ones used in this study, must also be from the

same manufacturer, since they correct each other's aberrations.
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2.311) Speckle Reduction in Laser Microscopy

Because of the low light throughput problem of incoherent processors, an

argon and helium neon laser were used to illuminate a microscope. The resultant

image was so intense that a 1-2 meter diameter image could be projected onto the

wall and seen with muted room light. But because the specimen is so small in laser

microscopy, speckle was particularly acute and completely destroyed the image. A

solution to speckle in coherent imaging of a transparency was demonstrated by

Bowman in 1968. [39]. This involved sending the illuminating laser through a

rotating wedge of plastic, so the light beam is scanned around in a cone which is

then imaged onto the transparency. Each ray of the cone produces the same image

but a different speckle pattern, so the speckle is washed out by time averaging as

the wedge spins the ray around the cone.

This study uses a more convenient spinning mirror (figure 2.12) to produce

speckle free high resolution microscope images. A 1/4-20 bolt goes through a nut

that is epoxied to the flywheel for balancing.

Figure 2.13 shows the laser reflected onto the center of the rotating mirror.

This mirror is angled so that the beam reflects off at different angles depending on

the rotation of the mirror. The condensing lens images the laser spot on the mirror

onto the microscope slide and objective. This produces the same effect as with

Bowman's prism, but is much easier to implement.

Using an oil immersion lens with a 1.25 numerical aperture (N.A.), the speckle

of the argon laser made the image completely unrecognizable, but as soon as the

mirror was spun, a speckle free image appeared. The image was nearly perfect

except for a small loop of light arising from reflections off the front and back of the
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condensing lens. Anti-reflection coatings would remove this noise. This setup pro-

duced intense high contrast images of stained nuclei with 514 nm light and stained

bacterias with 633 nm light. The 633 nm light was useful for not detecting red

blood cells. A fly's wing magnified by this method is shown in figure 2.14.

2.312) Arc Lamp Microscope

The microscope images made with xenon and mercury arc lamps were not as

bright as the laser's, but they were in color, and they were much more convenient

and cheaper to produce than the laser's. Xenon's color is surprisingly uniform over

the visible spectrum, and mercury is concentrated in 4 main lines. Some bacteria

images taken with the mercury arc are shown in figure 2.15. The eyepiece used

was not made for flat field, so only the center is focussed. The long exposure of the

color photograph masks the dimness of the original image. This dimness would

probably make the arc lamp microscope useful only for high efficiency holographic

correlators.
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Figure 2.12 Front and side view of spinning mirror.
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Figure 2.14 Laser microscope's speckle-free image of a fly's wing.

Figure 2.15 Mercury arc lamp microscope's image of bacteria.
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2.32) Preparing Templates

Since it proved difficult to control the amount of bias left in the image with

optical edge enhancements, it is lucky that the high contrast photos that are clear

where the object is and opaque elsewhere have a low bias to start with. Use of

such a negative template to lower the correlation bias was first suggested by

Armstrong in his recognition of black and white EEG printouts. This thesis

demonstrated that such a technique for producing low bias templates could be gen-

eralized for color selectivity by exposing samples of the object to be identified with

light of a color strongly absorbed by the object, as was done in chapter 1 with the

nuclei. This provided an "opaque-if-not-object to be recognized" template neces-

sary for low correlation bias.

Templates of streptococci bacteria [40] were generated by this method at a

1/2 scale from an original color slide. A 5X negative of this template is shown in

figure 2.16.

The author also used a computer graphic editor (GREMLIN) to generate a

template of the same bacteria, but the result was so poor in its similarity to the

bacteria that it was never used. A negative of it is shown in figure 2.17 only

because of the importance of the computer generated technique. Note what good

packing density and rotational sampling it provides.

The photographically generated template of figure 2.16 will now be used in a

geometrical incoherent optical correlator.
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Figure 2.16 Negative of bacteria template photographed from an actual microscope

slide.

Figure 2.17 Negative of bacteria template made with a computer graphic editor.
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2.33) Correlations with bias

An iris in front of a modified slide projector provided light to a ground glass

diffuser. The 35mm color slide of the input scene was placed against this diffuser.

Three inches away was the template, and three more inches away was the film or

video correlation detector. These two distances were equal because the template

was half the size of the original bacteria images. There was no lens used: the corre-

lation was of the geometrical type shown in figure 2.1.

Optical correlations between input scenes and the bacteria template can be

seen in figures 2.18,2.19,2.20. The input scene is correlated about the pinhole cam-

era dot in the lower middle of the template. The inputs to the first two are bac-

teria. ABexpected, they correlate well with parts of the template that match their

shape. The white region is the bias added from the open input aperture. Correla-

tion peaks cannot be detected by blindly thresholding, because the open input con-

tributes a bias which dominates the bacteria's correlation signal.
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Figure 2.18-2.20 Correlations with bias

Figure 2.18 Note the indicated pinhole camera scene of 5 bacteria bodies attached

together like a bent letter A. This image is convolved onto every point of the tem-

plate.
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Figure 2.19 Correlation with a bacteria string cupped to the lower left for input.

Figure 2.20 Correlation with a collapsed red blood sack for input.
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2.34) Lowering the Bias of Inputs

Special application microscope techniques such as dark field [38], phase con-

trast [38], crossed polaroids, and fluorescence can provide a low background in ten-

sity bias in the input. Dark field is the easiest; here only light scattered off the

sides of the object is seen, but small objects, like bacteria, only look like points of

light. Phase contrast is commonly used because of its ability to examine unstained

samples, but it greatly increases the cost of the microscope. Crossed polarizers

would work for samples which rotate light's polarization sufficiently, but the

natural optical rotation of bacteria is probably too small for any significant image

contrast. Fluorescence is one of the best techniques because of the versatility of

antibodies and stains. The brightness of the image and the total loss of back-

ground bias by use of an interference filter makes fluorescence even more attrac-

tive.

2.35) Subtracting Out the Bias

Video frame grabbers can be used to digitize a television camera's signal for a

computer. Two images can then be subtracted in the computer. It will now be

shown that this allows the removal of the bias.
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The distribution of addition over correlation can be easily proven.

image * template = (a+s)*t = f(a(x)+s(x))t(x+k)dx

=f a(x)t(x+k)dx+ fs(x)t(x+k)dx

The input can be broken into two parts, the aperture (a) and the signal (s). The

bias correlation of the aperture and the template (a*t) can be stored once and sub-

tracted point-for-point from each biased correlation to yield the signal correlated

with the template with no bias (s*t).

This is similar to work done by Kelly [41]where negative portions of a bipolar

impulse response were generated using the Herschel photographic effect. This is an

effect, discussed by Kelly, in which film can be darkened normally by blue light,

but also lightened with exposure to yellow light. The positive portions of the

impulse response were darkened by exposure to UV light, and the negative ones by

exposure to a great deal of yellow light. We finally obtained samples of this type of

film (AC4 autopositive) from Kodak, but it was much too slow for the low light

throughput of the incoherent system, and the UV needed to darken it was

absorbed by all the dyes in a color transparency. A more successful technique

involved video subtraction.

2.351) Digital Subtraction With Video Camera

Video image subtraction can be performed at real-time rates. The same digi-

tal video camera can also perform peak detection. Such a system replaced the SLR
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camera used in the incoherent system previously described. An Ikegami lTC-52

video camera and a "Robot" frame grabber [421were connected to an apple com-

puter running an image subtraction and thresholding program. [43] This system

without the microscope would cost five or six thousand dollars.

First the correlation of the empty aperture and the template (a*t) was

recorded. The correlation with the inputs of bacteria (a+s)*t and of blood (a+n)*t

were recorded, and subsequently had the a*t scene subtracted from them to yield

the bias-free input correlated with the template. In practice the subtraction was

reversed: a*t - (a+s)*t = -(s*t) causing the previous dark detection "stake" to

become light detection "spike". The printing process reversed this light-dark

polarity again. The template itself was usually also recorded by putting a pinhole

in the input and projecting a shadowgram of the template onto the video camera's

photosensor. This is as shown in figure 2.2.

2.352) Color Filtering

A red filter in front of the video camera greatly reduces response to red blood

cells and enhances bacteria detection. It was not used however, so that the spatial

correlation alone could be examined. Our video camera was equally sensitive to

the blue of bacteria and the red of blood cells, so the white light of the slide projec-

tor was all that was used.
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2.36) Experiment

The previous setup was used with a video camera (template put where the

lens is normally). Three sets of images were recorded. The first five (figures 2.21-

2.25) show the input, template, correlation with bias, the correlation with the (a*t)

bias subtracted out, and a thresholded version of the previous, bias free correla-

tion. The next four figures (2.26-2.29) show the second template and its no-bias

correlation with bacteria and circular blood cell sacks. The last photographs of

each group (figures 2.25 and 2.29), are of figures 2.24 and 2.27 thresholded at

greylevels 10 and 8, with the darkest possible level being 64. In figure 2.25 only the

portions of the template parallel to the input bacteria strand have a good enough

correlation to be darker than level 10. Figure 2.29 was thresholded at a level (8)

which completely excluded any of the red blood cell correlation (figure 2.28).

2.4) Discussion

Mter discussing figures 2.21-2.29, the two problems still remaining before

incoherent optical information processing can achieve its potential will be dis-

cussed. These are: 1) normalization of the input and template signals, and 2) peak

detection of the correlation. After these are discussed, computer generated tem-

plates and input/output devices are examined. The holographic and geometrical

techniques of incoherent optical information processing are then compared.

Finally, three possible microscope image analyzing products are discussed.
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Figure 2.21 is the original signal input of the tilted bacteria strand. Its diagonal
line is nearly removed from the linear portion (into saturation) of the grey scale by
the dark, circular aperture bias.
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Figure 2.22 is the template projected with a point source as in figure 2.2. The indi-
vidual circles are individual bacteria (circular=cocci), and their groupings are
characteristic of their type (strep). The limited space-bandwidth of video only
allows a few colonies to be recorded on the template.
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Figure 2.23 is the full (aperture+ signal) input correlated with the template. The
correlation of the signal with the template can barely be seen as light, diagonal
lines in the areas where the template's bacteria were tilted at the same angle as the
input. The larger dark areas are from the correlation of the empty aperture and
the template, and this bias obscures the bacteria's correlation.

-.
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Figure 2.24 is the signal-correlated-with-the-template, and it is produced by sub-
tracting off the aperture-correlated-with-the-template from the biased correlation
of figure 2.23. The large, dark bias areas have been removed from the image, show-
ing only the desired correlation. Inside the circled area are both good and poor
correlations. Where the template is tilted at the same angle as the input signal,
there is a concentration of darkness. To the lower right, where the template is per-
pendicular, the poorer correlation is more spread out.
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Figure 2.25 is a thresholded image of the previous figure 2.24. Any grey value
under 10 (out of 63) was cancelled with a zero at that spot. Grey values greater
(darker) than the threshold of ten are passed unchanged. Only those parts of the
correlation which correspond to the template being oriented at the same angle as
the input have darker values than ten.
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Figure 2.26 Second bacteria template.
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Figure 2.27 is the second template (figure 2.26) correlated (*) with a vertical bac-

teria input. The darkness is concentrated where the template images were vertical.
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Figure 2.28 is the template correlated (*) with a round red blood cell. Nowhere is

the darkness as concentrated as in the more similar bacteria template shown in the

previous figure.
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Figure 2.29 is the previous figure 2.27 thresholded at grey value 8 out of 63. The
same orientation selectivity is shown here as in figure 2.25. No points of figure
2.28, the correlation with the blood cell, are darker than 8, so a photograph of this
correlation would be a wasted blank. This illustrates how successfully this system
can locate bacteria in blood even without color selectivity.
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2.41) Normalization

It is useful to treat images as vectors in a function space defined over a two

dimensional, continuous, real domain (x,y). Using this notation, we start with

correlation of the input i and template t:

i * f = ii * tt = it (i * t)

It is the correlation with the unit vectors i and t that interests us. The scalars i

and t, representing the relative intensity or transmittance of the input or template,

need to be "normalized" out. This can be done easily for t by making all the tem-

plate images have the same total "energy":

ft(x,y)dxdy = a constant for all images if and only if f=t

It is more difficult for i , the input image, since its unknown nature requires

feedback during or after the measurement. If 0:=0(no bias) then the illumination

can be controlled to keep fi = (the total image energy) constant, as is done in the

fluorescent urine analyzer to be discussed. If 0:* 0,then such feedback would also

vary f 0:= (the energy the empty aperture), so that a different bias correlation (a *r)

would have to be subtracted out by the frame grabber. Unfortunately, big or

small input intensity values would go into non-linear ranges of the image detector,

which records a finite number of grey levels. The frame grabber we used recorded

64 grey levels.

.
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2.42) Peak Detection

Autocorrelation will always provide a higher peak value than cross-

correlation: max(J*J)? max (J*g) . The detection of this peak is the major

bottleneck in optical information processing. In this study it was done by com-

puter after video detection, so the camera must sample many points of each corre-

lation to detect a peak. This restricts the correlator to the low space-bandwidth-

frequency product (SBF) of the video system which, in this thesis, produced poor

resolution correlations with tens of template sub-images. There is no reason to go

to the higher information densities of the holographic templates as long as this

video bottleneck exists.

In order to use the extremely high SBF products of holographic correlators, a

nonlinear, analog peak detection technique is required. The nonlinearity would

cause those archetypes with high correlation peaks to produce more total light.

Then, each pixel of the video detector could examine whether there was a good

correlation with a single archetype. A 512 X 512 detector could examine the input

correlated with (512)2= 262,144high resolution micro-imagesfor the analog corre-

lation process.

Possible candidates for this important analog peak detection are: fluores-

cence, optical bleaching, second harmonic generation (SHG), and optical bistabil-

ity. Fluorescence is unfortunately linear. Optical bleaching and SHG require

much too high powers. Optical bistability is an active area of research and hope-

fully will provide a solution. [441

.
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2.43) Computer Generated Template

Since templates must usually be developed into transparencies or holograms,

there is enough time to use a computer to generate the individual images. Each

image will be enhanced with those colors and spatial frequencies which make it

different from the noise. This accentuation is why the individual template images

ts are called archetypes. The computer will also normalize the individual template

images, and pack them closely together.

The hologram can hold so many images that each archetype might be repli-

cated many times on the template, each one rotated or scaled slightly differently.

2.44) Input / Output

Video is certainly the most mature image I/O technology. Real time frame

sub tractors and thresholders allow the bias to be removed and peaks detected in

real-time. [45]CRT phosphors can also be made with narrow color spectra for use

as inputs for holographic correlators. [28] The well-known but expensive liquid cry-

stal light valve can be used as a real-time transparency template. However, two

new devices show great promise.

The optical RAM [461 uses actual computer memory as the photosensor

material. The image is cast through a window on the top of the chip onto the

memory. 64k memory is standard now, but the company producing them plans to

continue to move up in size as the standard chips do, so there should De one mega-

byte image chips soon. Unlike normal methods of computer communication
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between memory and processor, an image cast onto memory has no input

bottleneck. The software interface is just a BASIC PEEK statement. Optical

RAMS are as cheap as normal memory chips, and can be memory strobed [47] at

different speeds to provide grey levels. That is, to sample for very intense areas,

the computer can strobe in rapid succession and not give the individual photosen-

sors of the RAM enough exposure time to increase their voltage sufficiently to turn

on. To sample for low intensity areas, the computer strobes the memory in slow

succession to give the individual photosensors a long exposure time. Unfortunately,

the memory must be strobed at least once a second or the accumulated charge in

one pixel leaks into its neighbors. This means that bright room lighting is neces-

sary to obtain an image when the optical RAM is used as a normal camera, making

it too insensitive for incoherent optical information processing. Fortunately, mili-

tary work [48] on image intensification with microchannel plates may solve this

problem for optical RAMs.

Liquid crystal television sets for the consumer market can be used as inexpen-

sive light valves. Color liquid crystal television sets are now readily available, and

their images are stable enough to record holograms [49].

..
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2.45) Comparison of Holographic and Geometric Correlators

As was shown earlier, both holographic and geometrical systems would allow

scaling of the images.

Geometrical templates have poor light throughput, but multi-color templates

are easily made with color film. Holographic templates have good light

throughput, but color control is more difficult with holograms, involving reflection

holograms exposed with a dye laser or multiple transmission holograms, each with

its own color selective filter.

Information densities are thousands of times higher in holograms, but the low

resolution of geometrical templates can be compensated for by enlarging the tem-

plate until it can hold all of the required archetypes.

.
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2.46) Three Possible Microscope Image Analysis Products Based on

IOIP

1) Urine Analyzer for Dysplastic Cell Nuclei

Kidney, bladder, and prostate problems can often be detected by examination

of cells found in the urine. To analyze urine, it would be first treated with fluores-

cent nuclear stain. Excited by a mercury vapor lamp, only the fluorescence would

transmit through an interference filter to the detector. Since there is no bias, the

input energy can be normalized by a photosensor controlling the mercury lamp's

current. A transparent template could be used, or a holographic one if the fluores-

cense of the stain was narrow enough. The detection would be done by video.

This would allow 30 cells/second to be correlated with at least tens of other

nuclear images.

2) Bacteria Detector.

Bacteria often need to be detected. Two cases we will deal with here are in

blood and drinking water.

The system developed in this thesis for detecting bacteria in blood worked

well even though it used only spatial correlation. With the addition qf a red filter,

the blue bacteria darken the correlation even more, but the red blood cells hardly
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register.

Such a bacteria locator is important for hospitals. Even the sickest patients

have very few live bacteria in their blood, and the microbiologist would be wasting

his time to look for enough bacteria for a diagnosis. [40] Instead, blood is taken

from the patient and incubated for 18 hours. This is long enough for the bacteria,

free from the body's defenses, to grow numerous enough for the microbiologist to

diagnose. This is an unfortunate delay in the beginning of treatment.

It would therefore be useful if an incoherent correlator similar to the one

developed in this thesis could be mounted on a microbiologist's microscope to allow

it to store the video images which are likely to have bacteria. The microbiologist

could then examine these images to make the diagnosis.

Bacteria in drinking water cannot be stained if continuous monitoring of the

flow is needed. Phase contrast could provide an image, which would be examined

by frame subtraction methods used in this thesis. The correlation value would

control the amount of chlorine released.

3) Tissue Analyzer

Because of the small field of view of a microscope, a square inch of tissue

represents an unwieldy amount of information. A simple "map" of the tissue,

categorizing different areas of the slide, would greatly help the pathologist by ord-
.

ering the voluminous information. To accomplish this, a standard microscope slide

would be moved by a digitally controlled stage to scan the entire slide over the
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input. An optical correlator would classify tissue areas of the slide, producing a

contour map showing percent correlation with different tissue archetypes.

Different templates could be inserted for different organs.

A color video camera would look at the input through a color template.

There would be no video frame subtraction, since the whole aperture would be

filled with tissue and thus there is no aperture to subtract out. The best that can

be done is for the computer to look for correlation information on the expected

triangular bias.

Only experiment will tell how well the color and spatial frequency enhanced

templates discriminate different tissue states, but they probably would be able to

help a computer attempting the same task.

.
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III) CONTRIBUTIONS AND ACHIEVEMENTS OF THIS THESIS

1) In the first chapter the researcher developed theoretical models of the opti-

cal diffraction pattern of a photograph of a human cell nucleus to create techniques

which rapidly estimated the nucleus' four important descriptors of size, shape,

darkness, and texture. These techniques were successfully implemented on optical

equipment which the researcher designed and constructed.

2) In Chapter 2, the researcher was the first to apply incoherent optical infor-

mation processing techniques to pattern recognition of microscopic cell images.

This thesis also contains the first explanation of the value of this application.

3) The high resolution and high contrast technique that was invented in

Chapter 1 for photographing an entire field of nuclei, led in Chapter 2 to the pro-

duction of high quality templates for incoherent image correlation.

4) The discovery in Chapter 1 that image information about nuclear size and

shape was contained in the medium spatial frequencies and texture information

was contained in the higher spatial frequencies led, in Chapter 2, to the idea of

spatially band passing certain spatial frequencies of the templates to make them

more selective to the characteristics of the cells to be detected.

5) The geometrical requirement of equal reference and object angles for

proper functioning of holographic correlators was discovered, as were the

correlator's scaling properties. High quality holographic templates were made of

human nuclei.

6) In order to add color selectivity as well as spatial frequency ~electivity, a
~

new method of edge enhancing color slides was developed using spatially coherent
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white light. ABpart of this research a convenient new folded transform setup and

new liquid gate were also developed for coherent image processing.

7) Light throughput problems inherent in incoherent optical information pro-

cessing were examined, and the researcher concluded that dichromated gelatin

(DCG) technology would be useful. The researcher then acquired that technology.

See appendix G for theory and recipe.

8) The exacting requirements of a classical, high-resolution microscope were

achieved using basic components. Then, to get an intense input image, a laser

microscope was built, and a convenient spinning tilted mirror technique was

invented to remove the speckle noise which plagues laser microscopes.

9) The problem of build-up of the input image bias was solved by noting the

linearity of correlation and breaking the input into two parts: aperture and signal,

and then subtracting out most of the bias (a*t). Methods of lowering the bias of

the input were also discussed.

10) Three possible new commercial medical products using incoherent optical

information processing were suggested in detail.

11) Finally, an analog method of peak detection was identified as an essential

breakthrough before incoherent optical information processing could achieve its

poten tial.

In summary this researcher independently:

- identified an important area of application,

- obtained assistance from physicians and learned more about t~eir specific

needs,
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-used a coherent optical technique to approximate the four most important

diagnostic clues of human nuclei, but rejected this easier coherent technique

because of the poor performance of light valves,

-unified the different kinds of incoherent correlators.

-developed techniques for producing quality templates for incoherent correla-

tors,

-built prototype incoherent correlator systems,

-and used one such system to successfully locate bacteria in blood.

While many of the investigated prototype systems may prove useful eventually,

the system used to locate bacteria in blood is ready to be upgraded for automated,

real-time clinical use in hospitals..

..
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Conclusion

Present day computers rest on great mathematical achievements in the areas

of logic, combinatorics, and algebra. An equally rich mathematical legacy for opti-

cal information processing has been provided by quantum mechanics and linear

system theory. OIP provides the means for accomplishing inner products. This

allows linear transformation or pattern recognition to be accomplished in parallel

over gigantic memories at the speed of light. Images are also convenient data types

because humans rely so heavily on their eyes, and there is a great deal of technol-

ogy developed for recording and displaying images.

The hardware potential is staggering: processing rates many orders of magni-

tude larger than what we dream of in static memory. However, some technique

must be found for analog peak detection, because without it the large space

bandwidth frequency (SBF) of optical information processing must pass through a

much smaller SBF of video peak detection.

-
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Appendix G: Dichromated Gelatin

Gelatin is made by dissolving collagen in hot acid or base. The structural pro-

tein collagen makes up 90 percent of a mammal's protein. Each collagen molecule

is a triple helix of protein chains. Like most proteins, gelatin has a COOH group

on one end and a NH2 group on the other. The COOH looses a proton in a basic

solution, and the NH2 gains a proton in an acidic solution. These ions, spread

throughout the gelatin, repel each other. This causes very large swelling at ph

values far from the isoelectric ph of 4.5 .

Hardening = crosslinking of gelatin = less swelling & higher melting point.

The process of "hardening" or "tanning" of gelatin or collagen is ancient. Indeed,

tanned collagen was our first plastic. Some leather processes hardened the collagen

with Cr.+3 ions (usually as Chromium Potassium Sulphate). It was also known

that the Cr+3 could be produced by blue light hitting dichromate Cr +6 ions.

Talbot began using this effect as a resist in the mid 1800s, and many high resolu-

tion photoresists were made by varying the solubility of soft gelatin. Holograms

are recorded when light reduces dichromate ions in the gelatin to triply charged

chromium atoms which crosslink COOH groups of the gelatin.

Felt Model

When put in water, the gelatin is constrained from swelling by the cross links

formed by the exposure of the periodic interference pattern. The gelatin molecules

connected by these crosslinks can be viewed as a spaghetti held together by many

small springs which stretch and break as the gelatin swells. Swelling abd solubility

can be increased by higher temperatures or by extreme ph values. Soft gelatin can
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be dissolved or pulled toward the harder regions. In a fully swelled "developed"

gelatin "felt" the mass density, which is proportional to the index of refraction, is

now roughly proportional to the original periodic exposure intensity. The gel is

dried in increasing alcohol/water concentrations of increasing temperature to keep

the felt of gelatin from collapsing. Exposing the dried hologram to humidities >

85 percent will swell and destroy the image. Applying pressure to the gelatin will

cause the periodic layers to collapse and destroy the image.

The thickness of the emulsion can be controlled, along with the reconstruction

wavelength and bandwidth. DCG holograms can be as nearly noise-free as a glass

plate and have diffraction efficiencies in the 50-100 percent range. When properly

sealed they will probably last forever.

Dichromated Gelatin Experimental Technique

Several experimental procedures for coating, developing, and exposing were

tried. This one was found to produce the best results. It is similar to other recipes.

[34]

1) 7 percent gelatin

2 percent Ammonium Dichromate (very dangerous oxidizer!)

coated onto 2"x3" microscope slides with a modified doctor blade con-

sisting of a steel spring which has a 1/4" steel rod going through it. The

blade was swept across the gelatin in about 2 seconds.

2) Dried horizontally

3) Expose 30 mjjsq.cm at 488nm.

4) Develop

..
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a) Rapid fix with hardener 10 sec.- 2 min. In the first 10 seconds

the hypo in the fixer reduces the residual dichromate, hardening

the gelatin and removing the yellow stain. The fixer is also

buffered by Boric acid to ph=4.5, ensuring the initially soft gelatin

doesn't swell apart.

b) Wash in water 2 min. (68-90 degree F.)

Higher temperature swells the emulsion more, producing a

brighter image but with more scattered noise.

c) Dehydrate

1) 70 percent water / 30 percent isopropanol

2) 70 percent isopropanol/ 30 percent water

3) 100 percent isopropanol

4) Dry quickly with hot air gun.

5) To seal properly, 3/8" edges must be scraped free of gelatin and a glass

plate glued on

.
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