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ABSTRACT

PairwiseCoulomb Interactionsin Diverging
Electronand Ion Sources

Dale Lennart Larson, Ph. D.
Oregon Graduate Center, 1986

SupervisingProfessor: LynwoodSwanson

The formation of high intensityelectron beams by means of field

emission is well known. Recently,high intensity ion beams have been

formed by the applicationof electric fields of the order of 1 to 5V/A to

liquid metal surfaces. Intensitiesof greater than 20~AIsr have been

reported for various metals such as gallium, indium,aluminum and

bismuth. In focused beam applicationssuch as scanning microscopy,

inspecti9n and testing, ion implantationand mask repair, the energy

broadeningand angular beam spreadingare important parameterswhich

impose fundamental limits on the focused spot size. These parameters

depend on both deterministicand randomlyproducedforces, as well as

upon the geometry of the beam. The purposeof this investigation is to

study the energy exchangeand trajectoryperturbationsattending the

Coulomb interaction betweena pair of electronsor ions which happen, by

random fluctuation in the emission processto be in close proximity to

x



each other.

To this end, a numericalsolution of the equations of motionof the

particles moving in the external field of an emitter was performed. Two

emitter field modelswere studied: the field producedby a spherical

conductor, and the field producedby a conducting sphere whose center is

at the apex of a conductingcone. By suitablechoices of cone half-angle

and sphere radius, an equipotentialcan be found whose shape closely

approximateseither a solid field electronemitter or the surface of a

liquid metal ion source. Emitter radii ra from 102to 104Aand emitter

field strengths Fefrom 0.01 to 1.0 VIA were examined.

The influenceof initial relativeposition, particle mass m and

charge n on the energy and trajectorybroadeningwas investigatedfor

electrons and the ionic species Li+, AI+, Ga+, Bi+, Bi+2and Bi+3.

Relationshipsbetween the time spacingbetweenemission events and

other parameters of interestwere obtained. The sphere modelwas found

to predict the followingdependenciesfor the energy spread:

~E ex:11/2(mraFe}1/4 n3/4

where I is the total current. The sacmodelwas found to predict the

same current and mass dependencies,but a more complex relationship

for emitter radius, field strengthand charge was obtained. The

functional relationshipfor these parametersdepends on the emitter

shape and on the current.

A mechanismfor the observedshift in peak energy was also found in

these studies: the conversion of the initial Coulombpotential energy
xi



between the pair into kinetic energy.

In summary, the pairwise Coulomb interaction is able to produce

energy and angular beam spreadingof the magnitudeobserved in electron

and LMIS experimentaldata, even in the absenceof beam crossovers.

xii
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CHAPTER ONE

Introduction

The formation of high intensityelectronbeams by meansof field

emission is well known. Recently,high intensity ion beams have been

formed by the applicationof electric fields of the order of 1 to 5 VIA to

liquid metal surfaces. Ion emission has been obtainedfrom liquid

gallium, cesium, indium, bismuth,gold, tin, silver, lead, aluminum,

mercury, silicon, germanium, uranium,platinumand iron.1-4 In some

cases low melting point alloys have been used as a source for several

ionicspecies. Intensitiesof greaterthan20J.1A/srhave been reported

for various liquid metal ion sources (LMIS)such as gallium, indium,

aluminum and bismuth from a film of the liquid metal supported by a

solid needle.

In focused beam applicationssuch as scanning microscopy,mask

repair, microfabricationand ion implantation,the energy broadening and

angular beam spreading are importantparameterswhich impose

fundamental limits on the focused beam size. These parametersdepend

on both deterministic and randomlyproducedforces, as well as upon the

geometry of the beam. Deterministiceffects are those produced by

electric fields associatedwith the averagecurrent density distributed

throughout the beam. The primary result of these fields is the expansion
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of the beam cross-sectionalong the lengthof the beam. As shown by

Massey and co-workers5essentiallyno contributionto the energy

broadening is made by the distributedfield which, being stationaryand

conservative, acceleratesall particles uniformly.

Random effects include microfluctuationsof the particle density

which bring pairs of particles unusuallyclose together such that their

mutual Coulomb repulsion is appreciable,as well as the redistributionof

the initially tangential thermal energy accordingto the equipartitionof

energy principle. Randomeffects contributeto both energy broadening

and beam divergence. In focused beam work, random Coulombeffects

occur in three regionsof the beam: 1) in the acceleration region near the

emitter, 2) in the field free drift regionand 3) in regionscontaining a

focal plane. Randomevents in Region2 and Region3 are collisional in

nature in that the particles involvedare on trajectoriesthat happen to

bring them into close proximity. In Region 1 the nearnessof the

particles is the result of the statistical fluctuations in the emission

process. This region is also characterizedby a rapidlychanging external

electric field which modifies the effect of the pairwiseCoulomb

interaction by controlling the length of time duringwhich particles may

interact. In all three regions the magnitudesof the broadeningeffects

vary directly with the path length of the region. The effect of the

accelerating field is in addition to the path lengtheffect.

The purpose of this investigationis to study the energy exchange

and trajectory perturbationsattendingthe Coulomb interactionwhich
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occurs in Region 1 for both sphere and cone shaped emitters and to

evaluate the sensitivityof these perturbationsto changes in current,

charge, mass, field strength and emitter radius.

To this end the equationsof motionof a pair of particles moving in

the external field of an emitterwere derived for two diode geometries

and numerical solutionsfor these equationswere determined. The

emitter models studiedwere the spherical conductor,and a conducting

sphere whose center is at the apex of a conducting orthogonalcone (SaC).

By suitablechoices of cone half-angleand sphere radius, an

equipotential can be found whose shape closely approximateseither a

solid field electron emitter, or the surfaceof an LMIS.

The particle parameters includetheir initial relativeposition, their

initial thermal energy, their mass and charge. Trajectories for electrons

and for the ionic species Li+, AI+, Ga+, In+, Bi+, Bi+2and Bi+3were

calculated.

The remainderof this paper is organizedas follows. A

chronological review of related literature is presented in Chapter 2. The

model equations are derived in Chapter3 and a discussion of the

numerical methods used to solve them is presented in Chapter 4. The

results of the model calculationsare shown in graphical form in Chapter

5 and discussed at length in Chapter6. A comparisonof the model

predictions with experimentallyobtaineddata is also presented in

Chapter 6 as well as a summaryof the conclusions that may be drawn as

a result of this study. A set a flow charts of the trajectory calculating
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program is provided as an Appendix.
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CHAPTER TWO

Reviewof Literature

2.1 Sommerfeld Free ElectronTheory

The work reported in the presentpaperwas in large part prompted

by the studies performedby Bell and Swanson6and others who reported

anomalous broadeningof the total energy distribution (TED) of field

emitted electrons and very broadenergy distributionsfor liquid metal

ion sources. In the case of the electrondata, the anomaliesare those

deviations of the experimentalTED with respect to the

Fowler-Nordheimtheory7based on the Sommerfeldfree-electron model

as modified by Good and MOilersto includethe effect of temperature.

For the case of field ion emissionthere has not yet appeared an

undisputedexplanation of the emission process, let alone a satisfactory

theory of the TED.

In a review paper by Gadzukand Plummer9the historical

development of the theory is presented in some detail. Summarized here

are the major points of the derivation.

The TED for field emitted electrons is a measurementof a barrier

penetration problem. A supply function N(E,W)describing the density of

electrons within the metal incidentupon the barrierwith total energy E
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and normal energy W is multipliedby the barrier transmission

probability function D(W) and integratedover all normal energies:
dj
- = N(E,W) D(W) dW (1)
dE

where dj/dE is the differential change in current density with respect to

energy at total energy E. The supply function is approximatelyequal to

the product of a Fermi function

1
f(E) =

1+exp[(E-Ef)/kT]
(2)

times the arrival rate which is the normal component of the group

velocity times the normal component of a density of states.

Fowler and Nordheim used a wave matching technique in their

derivation of the penetration probability D(W) and later workers10 used

the WKB approximation. Others have refined the calculations of D(W) in

various ways11-16,but the result obtained by Young17 has become the

standard form of the TED:

df = JoeE/d f( E)- -
dE d

(3)

where

41tmed2 exp[-O.683<j>3I2v(y)/F]
h3

E = E-Ef

Y = 3.79F112/<j>
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and v(y) is a tabulated function, Ef is the Fermi energy, F is the electric

fieldstrengthand4> is theworkfunction.

2.2 ExperimentalTED Measurements for Electrons

2.2.1 The Energy Analyzer

In 1959 Young and MOller18describeda retardingenergy analyzer

used to make their measurementsof the TED of tungsten. Their analyzer

was the first to have sufficientaccuracy to record a TED. It was Young

who realized in a companion paper17that the energy distribution being

measuredwas a total energy distributionas opposedto a normal energy

distribution as had previously been thought. In order to overcome some

of the disadvantagesof this analyzer, Plummerand Young13developed a

cylindrically symmetricanalyzerwhere the radiallydiverging beam is

collimated beneath the imaging screenand retarded by a series of rings

and a very fine flat mesh. The previousanalyzerwas spherically

symmetric and suffered from secondaryemissionfrom the retarding

elements, as well as poor sensitivityand a long time constant. Swanson

and Crouser19modifieda design of van Oostrom20which is spherically

symmetric and employs a focusing elementwhich creates a crossover

near the center of the collector. In 1968Young and Kuyatt21described a

method for determining the energy resolutionof a field emission energy

analyzer. Lea and Gomer22added an electron multiplier to the
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Swanson-Crouseranalyzer and were able to achieve an energy resolution

of about 0.030 eV, comparableto that of Plummerand Young.

2.2.2 TED Measurements

Using a thermionic cathode Borsch23took several energy

distribution measurementsand calculatedthe apparent source

temperature from the Maxwell-Boltzmanntheory which relates the width

of the energy distributionto the source temperature. He used a retarding

grid placed in front of a Faradaycup to obtain an integralcurve. He made

measurementsfor emitter voltages between20 kV and 100 kV, and

actual emitter temperaturesfrom 21OO°Cto 3000°C as measuredwith an

optical pyrometer. For the low temperature, low current case he found

the distribution to be in agreementwith the Maxwelliantheory. At

higher beam currents the width of the distributionbroadenedto

approximately twice the predictedwidth. He found that the broadening

was a function of current density and current intensity,and showed that

focusing a beam increasedthe width of the distributioneven though the

emitter temperature remainedconstant. He concludedthat there was no

broadening in the accelerationregionand postulatedwaves in the space

charge field emanating from the crossover regions.

Young and MOller18confirmedthe presenceof anomalous broadening

in their measurementson tungsten. They also notedthat the

distributions being measuredwere total energy distributionswhich for
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field emission are much narrower than the normal distribution which had

previously been thought to be the measuredspectrum. Simpson and

Kuyatt24 reported measurementson a planar thermionic emitter

operating in a much better vacuum environmentthan previouswork.

Whereas Borsch, for example,was working at pressures in excess of 1.0

x 10-6 Torr, Simpson and Kuyattconducted their work with a vacuum

better than 1.0 x 10-?Torr. They reported however,that the energy

spread is independentof vacuum for the range 1.0 x 10-5 to 1.0 x 10-9

Torr. They concluded that the significantparameter is the current

density rather than current and that ~E is proportionalto J and inversely

proportional to the voltage. They expresseda great deal of uncertainty

in these dependencies, however. The dependenceon voltage was

determinedto besomewherebetweenV-1/6 andV-3/2 andthe

dependenceon currentdensitywasestimatedto beeitherJ1, J1/2 or

J1/3.

Beck and Mahoney25were unableto measurethe Borsch effect.

Ichinokawa26also had trouble finding the effect, and found the theories

of Borsch23 and Loffler2?to be unsatisfactory,asserting instead that

the effect is caused by the analyzerand is not physicallysignificant.

Lea and Gomer28found a high energy tail in the TED of electrons

emitted from tungsten even at 20oK, clearly in the field emission

domain. Gadzuk and Plummerpublishedtwo papers in 197129.30in which

they confirm the measurementsof Lea and Gomer. Also in 1971 Lea and

Gomer22 reported TED measurementsfrom a tungsten cathode operating
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In 1977 Kawasakiand coworkers31measuredthe TED for electrons

emitted from a TiC single crystal and found that it also was not in

accordance with the free electron theory, but rather exhibited a

broadened distributionwith a humpwhich they speculatedto arise from

band structure effects.

Also in 1977Wolfe32noted that the Borscheffectwas present even

without a crossover in the electronoptics. He pointed out that the

acceleration regionof a field emissiongun was like a crossover in that

the full current intensityof the beam was present in a very small

cross-sectional area. Bell and Swanson6reported anomalousbroadening

of the TED at high current densities for an electron gun without a

crossover. They found deviations from the free electron model at

energies both above and below the Fermi energy.

In 1981 Essig and Geiger33studied the field electronemission from

carbon fibers. At low currents on the order of 1.0 nA the measured

energy spread agrees with the free electron model at room temperature.

At higher currents they found broadenedTEDs which they attributed to

Coulomb interactions in regions of high current density in the optical

system.

2.3 Experimental TEDMeasurements for Ions

The first measurements of the energy distribution from an LMIS

were made by Krohn and Ringo1 in 1975. They reported work on gallium,
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mercury and cesium. In their experimentalsetup, they formed a cone on

a liquid surface at the end of a hollow needle by the applicationof an

approximately sphericalelectrostaticfield. The ions were emitted from

the tip region of the cone. An interestingfeature of their sourcewas

that "it was frequently necessaryto tap the source with a hammer in

order to start it."

Clampitt and Jeffries2described the use of a needle to support a

liquid metal film for obtaining ion emission. They noted that the

impressionof an electrostaticforce on a flat liquid surface leads to

cusp-like filamentary protusions. Curvedsurfaces reduce the voltage

required to producethe cusps, and can be shaped in such a way as to

encourage the formation of a single cusp. In their arrangement,the

needle protrudedthrough the surface of a pool of liquid metal. They

pointed out that the radius of curvatureof the needle and the length of

the shank protrudingabove the liquid surface are critical parameters, in

that multiplecusp formation is to be avoided,and the length must be

small enough to permit adequateviscous flow to replenishthe emitting

region, while long enough to avoid problemswith the meniscusat the

needle-pool interface. They were successful in obtainingemission from

Cs, Ag, Au, Ga, In, Sn, Pb, AI, Hg, Si, Ge, U, Pt, Fe and 8i. They did not

report any TED measurements.

In 1979 Seliger and coworkers34produceda gallium source and

reported an intensityof 1.5 A/cm2 in a 1000 Afocused spot. The

following year, Swanson, Schwindand 8ell3 reported measurementsof

11
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the energy and angular broadeningof liquid gallium ions as functions of

emission current. Their source configurationconsisted of a tungsten

fieldemitterwitha conehalfangleandradiusof 23:t 2° and 5:t 2 J.1m

respectively. A film of gallium several micronsthick was coated onto

the tungsten emitter. By warming the emitter above the melting point of

gallium, a liquid film was producedfrom which a cusp could be formed by

the application of an electrostaticfield. They measuredTED values for a

variety of current and temperatureconditions. Values for the full width

at half maximum (FWHM)ranged from 4.5 eV for low current and

temperature to about 30 eV for high current and temperature. Swanson

and coworkers35publishedenergy and angular broadening results for both

a gallium and a bismuth LMIS. They have also been able to make similar

measurementson indium and aluminum.36

Dixon and coworkers4studiedthe ionic emissionfrom a tin LMIS. In

this metal, multiplycharged species are found in relativelygreat

abundance. They found that the energy spread for singly charged tin ions

was greater than that for doubly charged ions of the same mass, and also

investigated the relationshipof mass to the energy spread for diatomic

species.

2.4 Energy Broadening Mechanisms

Discussionof the theories of broadeningmechanismsthat follows

will be restricted to the case of electronsemitted from a solid cathode.
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2.4.1 Internal Broadening Mechanisms

In1970,T. Fischer37suggestedthat the high energy tail found in the

field emission energy distributionwas attributable to the Auger filling

of holes in the Fermigas which are producedwhen electrons with

energy less than the Fermi energy are field emitted. Lea and Gomer28

supported this theory which was further elaboratedby Gadzuk and

Plummer29.Later, in 1973,Gadzukand Lucas38showed that the J2

dependence of the energy spread reportedby Lea and Gomer and others

was not sufficient evidenceto prove the multi-particleprocesstheory.

They proposed that the energy spread arises from the uncertainty in the

tunneling lifetime of the electronthrough the surface potential barrier.

They summarizedfour different scenariosof the tunneling which

predict various lifetimes having the incrediblerangeof 1 to 1 X 10-16

seconds. They favored an estimate on the order of 1 x 10-12seconds and

showed that the dependenceon currentdensity found experimentallyfor

the high energy tail can be derived from the quantum mechanical

uncertainty in the tunneling lifetime.

2.4.2 External Broadening Mechanisms

Borsch23was, of course, the first to discuss the broadenedelectron

distribution. He found that the broadeningwas a function of current

density and showed that focusing a beam increasedthe TED width even
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though the cathode temperature remainedconstant. He concluded that

there was no broadening in the accelerationregion, and postulated

waves in the space charge field emanatingfrom the crossover regions in

the optical column.

Loffler27suggestedthat the energy spread observed by Borschwas

the result of pairwise interactionsat the crossoverand gave an analytic

treatment. He assumedthat the initial axial energy spread was zero

and that the axial separationbetweenpairs of electrons remained

constant. He concluded that a relaxationof the thermal energy was not

needed to explain energy broadening,and that the largest contributionto

the broadeningwas from near-neighborinteractions. His analysis

predicts the followingdependenciesfor ~E:

6.E ex:pl2 N1/4ro <Xo (4)

where ro is the crossover radius and <Xois the angle of divergence.

Loffler's analysis cannot be usedto investigateenergy spreading in a

beam having no crossover,such as in a field emission electrongun

(which does display energy broadening).

In 1970 Zimmerman39produceda general theory of the Borsch

effect. He also showed that the Coulomb interactionbetween individual

electrons (as opposed to the interactionof a test electronwith the

average space charge created by the surroundingelectrons in the beam)

is primarily responsiblefor the energy spread in high current electron

beams. He discussed the equilibrationof the transversecomponentsof

the thermal energy which, becauseof the accelerationby the electric
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field, are more significant than the axial component. Knauer4°pointed

out by way of example in this context that the compressionof the axial

energy spread from a cathode at 17500 K by an accelerationthrough 10

kV results in a thermal equivalent beamtemperature of 0.350K as

compared to the transverse thermal energywhich, although initially is

approximately the same as the tip temperature,becomes 50,000 times

greater after acceleration. In the post acceleration region the Coulomb

interaction between the electronswill act to restorethe equipartition

of the internal energy of the electrons.

M. Fischer41proposed an alternatetheory for the energy

distribution from hot cathodes. He restrictedhimself to the drift

region of the beam and assumedthat the electronswere neutralizedby a

positive backgroundof stationary ions arising from the ambient gas in

the chamber. In his model the energy spread is the result of the noise

fed into the beam by resistors in the circuit and from the gun itself.

Crewe publishedtwo papers42,43in which he criticized Loffler for

his "many severe approximations"and for the reciprocaldependence on

the angle of convergenceof the crossover. Loffler27and also

Zimmermann39had analyzedmultiplesmall-anglescatterings. Crewe

considered only single Coulombdeflectionsand arrived at the following

expression for the energy spread:

I

[

(1.03

~E = 17.8 Po (1.4+ 3.14 x 10-9 12/1306 ]
(5)
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where 130is the ratio of the electronvelocity to the speed of light.

EI-Karehand Smither44developedtwo computer models using Monte

Carlo techniques. In the first model, the beam is directed to converge to

a point, and the effect of the interactionsis calculated for a series of

initial conditions. In the second program,an actual electrongun is

simulated, and the analysis of the Borscheffect made for a diverging

beam without crossover. In the first case, they found their model to be

in agreementwith theory in predictingthe spacecharge effects on the

beam at the crossover, and also comparedtheir calculationswith

Zimmermann's theory and found reasonableagreement. Their energy

broadening results were lower than Zimmermann'sresults becausethey

did not include any initial thermal energy. They then proceededwith

their second program to show that large amounts of spreadingcan occur

in a gun assemblywhich has no crossovers.

Knauer4°showed that "the numberof large-angledeflections along

the length of a typical beam is less than one per particle, while the

number of small angle scatteringevents significantlyexceeds one.

Furthermore,multiplescatteringsare found to be far more effective in

transferring momentum." He therefore favored the approachestaken by

Loffler and Zimmermannover that taken by Crewe. Knaueralso showed

that pairwise interactionsare the dominantones, and attempted to

clarify the role of the several competing processesand indicate the

types of beams and beam geometries for which they apply. He

considered external mechanismsonly.
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In 1979 another paper using MonteCarlo simulationappeared.

Groves, Hammondand KU045constructeda model of the electron beam

which they described as being free of approximations. However they

excluded the acceleration regionof the beam, and instead assumed a

uniform initial distribution of the electronenergies in both the axial

and transverse directions. The electronswere randomlydistributed in a

cone-shaped region of space, random in positionand in velocity within

the limits of the energy distribution. The resultingensembleof

particles was then traced through an optical system and a record made

of the particle positions and energies at various locations. In this way

a distribution describingthe spot size and beam energy characteristics

was obtained. The paper presentedstudies of the effect of source

magnification,of mutual repulsionand of the spherical and chromatic

aberrations on the spot size.

DeChambostand Hennion46analyzedenergy broadening in the tip

region and at a half-crossover,attemptingto find a simple analytic

relationship involvingeasily measuredcolumn parameters. Their result

differed from experiment by a factor of two and they concluded that the

statistical model chosen to representthe electrondensity of the beam

strongly influencesthe resultantequation,and that differences in the

statistical modelschosen by various authorsaccounts for the

disparities found in the literature. They also found that the geometry of

the beam, particularly in the tip region, must be accurately represented

in the calculations, in order to obtain useful results, contrary to the
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calculations of Groves et al.

Rose and Spehr47attributedthe Borscheffect to statistical

fluctuations in the spatial distributionof the electrons,which by means

of Coulomb interactionsbetween the particles alters the energy

distribution. With small currents, there are few collisions and a

non-uniformtransfer of energy and this leads to a non-gaussianenergy

distribution. Crossoversespeciallyfavor a non-gaussianform. They

pointed out that because the TED is non-gaussian,the ratio of the FWHM

to the root-mean-squaredepends on the current density and on the form

of the crossover. For this reasonthe assignmentof beam temperature

based on the distributionsshould not be made.

Masseyand coworkers5studied the photoemissionfrom a flat

surface and in their theoreticaldiscussiondistinguishedbetween the

average and fluctuating forces acting uponthe electrons. The average

force arising from the spacecharge of the ensembleof electrons leads

to broadening of the beam radius,but not to energy broadening. The

fluctuating component,on the other hand, leads to both energy and radial

beam broadeningby way of both potential and thermal energy relaxation.

In a uniformly acceleratingfield they calculated ~E and ~r by

considering fluctuations in the beam. The initial potential energy of the

electrons is converted to kinetic energy and this effect in their case is

large because of the energy providedby the exciting laser. Their

analysis, which is comparableto Knauer's40leads to the following

expressions for the energy and radial broadening:



L\E=0.61 (1tEot5/6 m1/4 e13/12 D2I3J1/2 <l>a-1/12

L\rf=0.61 (1tEot5/6 m1/4e 1/12D5/3J1/2 <l>a-13/12

L\rs = (J r D2/EoHm/2e)1/2 <l>a-3/2

where D is the diode spacing, <l>ais the anode potential and rf is the

trajectory aberration arising from the fluctuating forces, and rs is the

trajectory aberration arising from the space charge.

In 1981 Knauer48 conducted an analysis of the energy spread from

point sources using a sphere model for the emitter. He considered both

electrons and ions. Because of the radial paths taken by the particles,

this model is collision free and the largest contribution to the energy

spread occurs in the inital acceleration region. Also in real

applications, apertures cut off much of the beam current downstream.

He found L\Eproportional to the two thirds power of the current.

19
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CHAPTER THREE

The PairwiseModel

3.1 Introduction

Energy broadening in charged particlebeams occurs primarily by

means of the relaxationof initial potential energy through energy

exchange between pairs of unusuallyclose particlesor by meansof the

relaxation of initial transverseenergy through collisional equilibrations.

In field electron and ion emissionthe primary meansof energy

broadening is via potiential energy relaxation4o.For low currents,where

the average interparticleseparation<00>is greater than the beam radius,

the particles lie in what Knauerdefines as the single file regime. It is

this regime which will be explored by meansof a simple two-particle

numerical model.

In this model an electric field distribution is selectedto represent

the field in space betweenthe emitter and collector surfaces of a field

electron emitter or a liquid metal ion source. In these studies, analytic

expressionsdescribing a spherical field, Figure 1, and the field of a

sphere-on-orthogonal-cone(SaC) geometry, Figure 2, were used.

A pair of charged particles representinga fluctuation in the

emission process are introduced into the electric field at the emitter
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SPHERE MODEL

80
0

2 I

Figure 1. Spherical Emitter Model. Thl3 radius of the sphere is ra' pai1icla 1 has traversed a

distance of 80 in time 'to and particle 2 is shown at tha moment of er.Jission. Ths trajectories of the

two particles are colir.1Jar.
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sac MODEL

Figure 2. Sphere on Orthogonal Cone (SOC) Model. The radius of the emitter is measured from the center

of the core sphereto the apexof the emittersurface. The particlesareshownat sometime't havingbeen

emitter from points equidistant from the emitter apex lying in the same plane. The half-angle of emission

is 80' the angular coordinates of the particles are measured with respect to the center of the core sphere.

and ~ measures the difference in the radial coordinate between the two particles.



surface, generally one at a time. The equationsof motion for the

particles are then solved numerically,as will be described in Chapter 4.

The overall emission process is assumedto follow a Poisson

distribution with the time betweensuccessiveemission events being

exponentially distributed.49 Accordingly,the probabilityfunction for the

interevent time 'to is given by

P('to) = 1 - exp(-A'to)

with A, the rate of emission, defined as

A = line

Also, with this assumption the probability density function, which is the

derivative dP('to}/d'to is given by

f('to) = Aexp(-A'to)

Now from the probability density function for some parameter p, the

mean value of the parameter is given by

<p> :oF(PJdP

In these studies model calculationswill be used to determine the

functional relationshipsof variousquantities to the intereventtime 'to.

Sy substitution into Equation (9), the probabilitydensity function (PDF)

for each quantity will then be determinedand the meanvalue calculated

from Equation (12). Since all the quantities are functions of time, the

lower limit in Equation (12) becomeszero.

As an illustrationof this procedure,the mean initial spacing

23
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between particle pairs will be calculated. Each particle has charge ne,

mass m and for this example, is being accelerated by the electric field

outside a spherical emitter of radius a and electric potential Vo. Within

time 'to the first particle will traverse distance 00' For the cases where

00< a, the field F(r) can be approximated by Fo = Vala so that

00= neFo'C0212m (13)

Substitution of Equation (13) into Equation (9) and differentiating

yields the PDF of 00:

f(oo) = (1</2)°0-112exp(-k 00112) (14)

where k = l(net3/2 (2m/Fop/2. The expected value of the initial

interparticle spacing can be calculated from

= fW2)00 112exp(-koo-112)doo
o

(15)

Substituting 00= x2 = g(x) and dOo= 2xdx results in

<00>= j;x/2)eXp( -kx)(2x)dx
o

=kFexp(-kx)dxo

= k(2/k3)

= (ne)3 Falm/12 (16)
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This example furnishes a means of relating the observed current I to the

initiaLparticlespacing<80>, Thetrajectoriesof pairsof electronsor

ions whose initial spacings are significantly less than the mean spacing

will be studied by meansof the modelcalculations. However, it will be

assumed that the fluctuation in spacing used in the model may be

expressed as a percentageof the mean spacing, so that Equation (16)

applies with the inclusionof a proportionalityfactor.

For the remainderof this chapter the focus will be on the two

particle model itself, proceedingwith a derivationof the equations of

motion of the particles traveling in an unspecifiedelectric field,

followed by a description of the two fields considered in this present

work, and concludingwith a discussionof the meansof calculating the

energy spread in the two particle model.

3.2 Particle Equations of Motion

The expressionsfor the electric potential of a pair of point charges

in the presence of a conducting sphericalemitterwill now be derived

using a sphericalemitter model to develop expressionsthat include

image charges. These imageterms will also be approximatelycorrect

for the sac model because only emissionon or near the axis of symmetry

will be consideredwhere, for the distancesover which the image terms

are non-negligible,the sac surface is very nearly spherical. Although

the image terms were included in this part of the derivation for
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completeness, they were omitted from the machinecalculations because

of their very limitedcontribution. Over the regionwhere they are

significant, their influencecan be thought of as balanced by an initial

radial kinetic energy. The effect of havinga net radial or transverse

initial kinetic energy is best handledby MonteCarlo techniques and was

not studied with this two particle model.

According to the nature of the geometriesof the problem,spherical

coordinates will be used. However,becauseof the azimuthal symmetry,

only the (r,a)coordinates need be considered. From Figure 3 the

following relationshipsare obtained:

r12 = (r12+ rl- 2r1r2cosa12)1/2
,

( 2 '2 2 ' a )1/2
r12 = r1 + r2 - r1r2 cos 12

,
( '2 2 2 ' a )1/2

r12 = r1 + r2 - r1 r2 cos 12

Noting that r1'= ro2/r1 and r2'= ro2/r2the last two equations may be

rewritten as

r12' = [r12 + ro4/rl- (2r1ro2/r2) cosa12p/2

r1'2 = [ro4/r12+ rl- (2r2ro2/r1)cosa12p/2

The electric potential at P1'the positionof particle 1 arising from the

other particle and imagecharges is:

<1>1 =
°2 °1 (-rolr1) 02r oIr2

+ +
41tEor12 41tEo(r1 -r1') 41tEor12'

°2 °1ro °2rO=
41tEor12 41tEo(r1 - ro2/r1)r1 41tEor12'
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SPHERE-ON~CONE MODEL

Figure 3. Geometry of the see Model. Shown are the particles 1 and 2, and their image charges, l'

and 2'alongwiththevectorsjoiningthem.



1
=

where Q, and Q2 are the charges on particles 1 and 2. Similarly the

electric potential at P2is given by

1

[
Q, Q2r0

<I> - --2 - 2 2
41tEo r'2 r2 - ro

The equationsof motion for the particles in an external electric

field can be obtained from the Lagrangianfor the system:

L=T-V

where T, the total kinetic energy is given by
. 2 (

.
)2 . 2 (

.
)2

T = { m,[ r, + r,e, ] + m2[ r2 + r2e2 ] }/2

and where V, the total potential energy is given by

V = Vext + V, + V2

where Vext is the potential energy of the external field, and V, and V2

are the potential energies of the two particles. The equations of motion

in rand e for each particle are then as follows:

d

[

SL

]

SL
- ---

dt Sri - Sri'

Substitution from Equations (17)-(19) into (20) for particle 1 results in:

28

(17a)

(17b)

(18)

(19)

(20)



and for particle 2:

-I" ]
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(21a)

(21b)

(21c)



where the image terms are

and where Ir2 and 182are analogous to In and 181(the subscripts on the

charges and radial variables being interchanged).

3.3 Electric Field Models

In the present studies two types of electric field modelswere used:

the spherical charged conductor,and the sphere-on-orthogonal-cone

30

(21d)

(22a)

(22b)



31

(sac) model. For the sphere model the particleswere also confined to

singl~~filetrajectories (81= 82= 0). The sac modelwas selected in

order to more accurately representthe emitter surface of both electron

emitters and LMIS. For the sac model, both single-file and off-axis

trajectories were produced.

The sphere model equationsare presentedfirst, and then the sac

model equations are derived. From this point on the image terms of

Equation (22) will be omitted as discussed in Section3.1.

For single-file emission,with a concentricsphericalemitter/

collector field, Equations (21) become

= (23a)

(23b)

where 00= r2- r1. Intheseequationsthe zeropotentialisat infinity.

The sac electric field model is a solution to a problem posed by

Smythe5o.The problem statement and solutionare as follows.

A conducting sphere of radius ra is supportedby an orthogonal cone
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(also conducting)whose exterior half-angle is a. This system is

charged, with the zero potential surface on the conductors. The problem

is to find the potentialV at an exterior point p.

InsphericalcoordinatesV = 0 for r = ra andalsofor e = a. Laplace's

equation in spherical coordinates is

~
[

r2 av
]

+ ~
[

sineav
]

+ ~
ar ar sine ar

(24)

This equation can be solved by the separationof variables technique, and

by applying power series solutionsto the separatedexpressions.

Setting V = R(r)e(e)<I>(<j»= R(r)S(e,<j»,substitutingV = RS and

dividing by RS yields

1 d

[

dR

]

1 a
[

as

]

1
-- r2- + - sine- +-
Rdr dr Ssine ae ae Ssin2e

(25)

Set the first term in r equal to K, and the last two terms in S equal to -K.

If a power series solution in r:

R = Lanrn

is assumed, then

RK = Ln(n + 1)anrn

= LKanrn (26)

Thus if K = n(n + 1), then R = anrn and any sum Lanrn or integral favrvdv

is also a solution.

To find the second independentsolution let

R*= L bmrm



Then

Thus m(m - 1) = n(n + 1). Solving for m by meansof the quadratic

formula gives the two roots m1 = -n, m2 = n + 1. The case m1 is identical

to the previous solution, while the case m2 can be written as

R = L bnr-n-1

The general solution is then

R = L (anrn + bnr-n-1)

and any linear combination involving non-integral n is also a solution. If

the value K = n(n+1) is substituted into the equation involving e and <\>'

and then multiplied by S the result is

1 a
[

as

]

1
n(n + 1)S + - sine - +

Ssine ae ae Ssin2e

For the next step Equation (29) is divided by 8<I>/sin2e:
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(27)

(28)

(29)



sine d de 1 82cI>

n(n + 1)sin2e+- - sine-+ --= 0
. . e de de cp 8<1>2

Set the terms in <I>equal to -K1, and the terms in e equal to +K1"

Then

If K1 = m then

<1> = L [cm cos(m<l»+ dm sin(m<l», m * 0

= Ccp+D

In this problem V is independent of cI>since there is azimuthal

symmetry. Therefore cI>= D and m = O. Inserting this result into Equation

(30) results in:

sine d de
n(n + 1)sin2e+ - - sine-- m2= 0

e de de

Multiplying by e/sin2e and making the substitution /.l = cose, d/.l = sinede

yields

d

[
den

]n(n + 1)e + - (1 - /.l2) - = 0
d/.l d/.l
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(30)

(31)

(32)

(33)



35

which is Legendre's equation and which can be solved by series solution

to obtain en = Pn(Jl). Thus the electric potential

V = Re<1>

= D I [anrn + bnr-n-1]P(Jl)

Nextthe boundaryconditionsareto beapplied.Whena = ex then V =

0, since the conducting surfacesare at ground potential. Thus

DI [anrn + bnr-n-1] P(cosex)= 0

which implies that Pn(cosex)= O. But for ex'* a and for arbitrary r the

potential V '* O. Examinationof the Legendrefunctions shows that for a

given ex> 1[/2only one value of n will satisfy these boundaryconditions

and that 0 > n > 1. Therefore the summationcan be dropped to obtain

V = D I [anrn + bnr-n-1]Pn(cosa)

At r = ra the potential also equals zero which leads to the condition
n b -n-1

anra = - nra

and therefore

bn = -anra2n+1 (36)

(34)

(35)

Setting A = Dan gives

V = A[rn - ra2n+1 r-n-1]Pn(cosa) (37)

Suppose that an equipotential surface is fixed at some voltage VR

and passes through the point (r,a) = (R,O). Pn(cos(O)) = 1 and

VR = A[Rn - ra2n+1 r-n-1]

This then determines the value of A to be

A = VR/[Rn - ra2n+1 r-n-1] (38)



For R» ra then Rn» - ra2n+1 r-n-1 and thus A = VR/Rn.

In justification of this approximation, observe the following typical

examples. Forn = 0.5, ra = 10-7m and R = 10-2m, ra2n+1 r-n-1 = 10-11

while Rn = 10-1. For n = 0.15, ra = 10-7m and R = 10-2m, ra2n+1 r-n-1 =

1.6 x 10-7 while Rn = 0.5.

Substituting VR/Rn for A gives

Again at r = ro the parameter y = roIra is defined and when S = 0

Using this potential as the referencevoltage results in

The electric field componentsfor this potential in the radial (r) and

tangential (S)directions may be found from the relations

-av

ar

1 av

Es(r,S)= - -;- as

The radial component is
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(39)

(40)

(41)

(42a)

(42b)
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r

]

n

[

n

[

r

]

n-1 n+1

[

r

]

n+2

]Er =-VR: ra -;;;- -~ ~ Pn(cose)

For the tangential component the Legendre function may be

expressed in terms of the hypergeometric series:

Pn(cose) = F{-n,1+n,1 ;(1-cose)/2}

where

00 a(a+1)"'(a+k-1) b(b+1)"'(b+k-1) zk
F{a,b,c;z} = 1 + L

k=1 c(c+1)'''(c+k-1) k!

Nowthe derivative of F with respect to z, dF(a,b,c;z)/dz equals

(ab/c)F(a+ 1,b+1,c+1;z). With z(e) = (1-cose)/2 the result is

dF(z(e)) dz dF sine ab
- -F(a+1,b+1,c+1;z)

2 c
- ---- -

dz de dz

Therefore the tangential component of the electric field is given by

VR

[

r

]

n

[ [

r

]

n

[

r

]

n+1

]Ee(r,e)= --;-: ~ - -:-

]

=<: [~r[ [~r- [~r2]

sine d

[

1 -cose
x -F -n,n+1,1;

2 de 2

(-n)(n+1)sine
x

2 F [1-n,n+2'2; 1 -case2 ]

37

(43)
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Substitution of Equations (43) and (44) into Equation (21) yields the

equations of motion for the sac model

(45b)

F[ 1-n, 2+n, 2; (1 - cose1 )/2 ] sine1 (45c)

+

VR

[r: r n:+n[[r- [r2]
--

ra

[ 1-n,n+2,2;

1 - cose

]x sineF (44)
2

o VR [r n [r r [r r2]2 n + (n+ 1) Pn<cose2)
m2ra R ra

8, = I,e, _ [ 0,02 sine, 2

r1r2
+

r1 41tm1Eo
3

r12

O,VR [r<n+n2) [ [2 r- [r2]xm1r1ra R 2 ra r1
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F[ 1-n, 2+n, 2; (1 - cose2)/2 ] sine2 (45d)

This system of second order differential equations, as well as

Equations (23) for the sphere model can be solved numerically by the

Runge-Kutta method ifthey are first transformed into an equivalent

system of first order differential equations. The following simple

transformation yields such a system with time as the independent

variable:

d't/d't = 1 deld't = ve1

de2/d't = ve2

dVe1/d't = d2e1/d't2

dVez'd't = d2ez'd't2

dr/d't = vn

drz'd't = vr2

dvr/d't = d2r1/d't2

dvrz'd't = d2rz'd't2 (46)

3.4 Energy Integrals

This chapter willnow be closed witha discussion of the calculation

of the energy broadening for the two particlecase.

The calculation of the energy spread ~E entails the calculation of

the change in the kineticenergy experienced by each particle as it moves

under the influenceof the forces generated by the emitter-collector

electric field,and by the Coulombfieldof the other particle. The change
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in the kinetic energy of a particle movingfrom point A to point B under

the influence of external forces is given by the path integral:
--

dE = ES - EA =A f~.d'
path

which in spherical coordinates may be expressedas

dE = A fF,dr+ A rFede
path path

(47)

The energy change caused directly by the change in potential energy

between the emitter surface and the collector surface,which acts

equally on both particles is not of concern in this study. The imparted

energy is Q(VB -VA) where Q is the particles'charge and VA and VB are

the potentials at points A and B. It is rather the effect of the Coulomb

force acting between the unusuallyproximatepair that is being

computed. For the sac model, the forces acting on each particle are

given by:

F1 = m181 = m[(r1 - r1912)r+ (r191+ 2r191).e]

(48)

(49)
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where C = 0102 /41tEo'ro = emitter radius, rf = collector radius, 00 =

radial separation (r1 - r2 ) when r2 = ro' 800= 81 when r1 = ro+ 00' 80=

emission angle, 8f = final angle, 812 = (81 - 82) and r12 = (r12 + rl- 2r1r2

cos812) 1/2.

For the sphere model with the restrictions of colinear emission (81

= 82 = O), Equations (50) simplify to

[f dr1
L\E1= C

(r1-rl)
r0+00

[f dr2
L\E2= C

(r1 -r22)
ro

The limits on the integrals reflect the fact that the Coulomb force acts

only when both particles are present.

The total energy spread L\Eof the two particles is

L\E = L\E1 - L\E2 (52)

At eachpointalongthetrajectories,valuesfor the integrands

(51a)

(51b)

The change in kinetic energy due to the Coulomb interactionfor particle

1 and 2 is given by:

E1 = C [ J'
r2cos812 - r1

dr1 +
fO!

r1r2 sin812

d01 ]
(50a)3 3

r0+00
r12

800
r12

E2 = C [ J'
r1cos812 - r2

dr2+ f'
r1r2 sin812

d02]
(50b)3 3

r12 r12
ro 80
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appearing in the energy spread Equations(50) or (51) were computed and

stored on disk alongwith the spatial and time coordinates of each

particle. Figure4 shows the components~E1and ~E2as a function of

distance for a typical set of gallium ion trajectoriesfrom an sac model

emitter.
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10-7 10-6 10-5 10-4 10-3

LOG (Distance from Emitter, m)

Figure 4. Components of Energy Spread. An Example of the contributions ~E1 and ~E2 to the total

energy spread, ~ETot is shown as a function of radial distance from the emitter core sphere. These

data are from Ga+ ions emitted colinearly from an emitter of radius ra= 5x1 0-2J.UT1, ')'=3.0, n=0.5

and 00= 5x10-3J.UT1.
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CHAPTER FOUR

NumericalMethods

4.1 Introduction

The major numericaltechniques used in the solution of the

equations of motion (23) and (45), and the techniques used in the

integration of Equations (50) and (51) are discussed in this chapter.

4.2 The Runge-KuttaAlgorithm

A fourth-order Runge-Kutta method51 was used to solve the system

of equations (23) and also (45). A Runge-Kutta method is designed to

approximate the Taylor series solutions of the system without explicit

definitions of, nor evaluations of derivatives other than the first. A

fourth-order method agrees with the Taylor series solution through

terms of order h4 where h is the increment in the independent variable in

the series expansion.

Symbolically then, given the system of first order ordinary

differential equations:

x1(t) = f1(t, x1(t), x2(t), ..., xn(t))

x2(t) = f2(t, x1(t), x2(t), ..., xn(t))

xn(t) = fn(t, x1(t), x2(t), ..., xn(t))

(53)
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with the initial conditions Xj(lo) = xio; for i = 1, ..., n, a Runge-Kutta

algori.thm provides estimates xie(lo+h) to the exact values xi(lo+h),

where h is an arbitrary increment in 1. These estimates are equal to the

Taylor series expansion:
4 hk dXi(lo)

x.e(t +h) = L-
I 0 _ kl dktk-O .

There are two disadvantagesassociatedwith Runge-Kuttamethods.

A fourth-order method requiresfour evaluationsof the expressions (53)

in order to advance the solutionone incrementalstep in the independent

variable. Since the sphere model and the sac model involvecomplicated

expressions for the derivatives, the Runge-Kuttamethod is relatively

time consuming in comparisonto other methodssuch as

predictor-correctormethods. A seconddisadvantage is that estimation

of truncation errors arising from the limited numberof terms computed

in the Taylor series is not obtained in the calculation procedure,and

errors are therefore difficult to estimate.

The first disadvantage is offset by the followingconsiderations. In

both the sphere and sac models,the functions representingthe

derivatives change very rapidly, and are functions of a variable whose

domain must therefore span as many as ten orders of magnitude. Since

the ultimate goal is not to produce particletrajectoriesas functions of

time, but rather to producedata from which other quantities of interest

are to be derived by integration,a majorconcern is the ability to easily

change step size whenever necessaryfor providingaccurate data to the
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integration algorithm. The Runge-Kutta method does allow changes in

the s~epsize at any time, with basically no overhead. Furthermore it is

easy to set up meaningful criteria within the procedure for determining

when to make such changes dynamically while the solution advances.

Runge-Kutta methods are also self-starting, that is, the values for

the vector x need only be specified at one point in time. Other methods

of comparable accuracy require knowledge of the solution at four equally

spaced points in t. A Runge-Kutta method is often used to provide these

four sets of starting values and the second method used to continue the

solution. If the step size changes, four new sets of starting values are

required. Because the step size in this problem changes so often during

the solution, it is more convenient to use the Runge-Kutta method

throughout.

Furthermore, Runge-Kutta methods are stable: a small error at one

point in the calculations, such as a roundoff truncation error, will tend

to decay through successive iterations, rather than propagate.

The system of equations from which Runge-Kutta methods are

derived contain eight equations in ten unknown parameters. There are

therefore two degrees of freedom in specifying the solution of these

equations. By imposing one arbitrary condition, and expressing the

solution in terms of one of the unknowns, a particular Runge-Kutta

method is obtained. It is possible to select a condition which minimizes

the amount of computer memory required for execution of the algorithm,

and then select a value for the free parameter which reduces the
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truncation error. It is also possibleto incorporatea "feed-back"

technique which compensatesfor roundofferrors.51These features were

incorporated in the algorithm used in this study.

One procedurefor estimatingtruncationerrors is to perform the

calculations using two different step sizes over the same interval. The

truncation errors are then approximately[xi(h1)- xi(h2)]/15. It was

determined that the truncation errors were negligibleduring the

computations for both the sphere and sac models.

There are two requirementspertainingto step size selection. The

step size must be small enough to allow the Runge-Kuttasolution to

accurately reproducethe particle trajectories in regionswhere they are

rapidly changing, and also to allow the energy integrationsto be

accurately performed. In order to meet these requirements,the step size

was adjusted logarithmicallyaccordingto the following scheme. Within

a preselecteddistance rs from the emitter surface, usuallywithin one

emitter radius, the time incrementwas selectedsuch that for each

decade of distance 300 samplesof the trajectorywere computed. The

first 100 were equally spaced out to 20% of the distance. The second

were equally spaced between20% and 50% of the distance, and the last

100 samples spanned the last half of the distance. Beyond rs 100

samples per decade of distance out to the collector surface were taken,

except that 100 closely spaced sampleswere taken in the neighborhood

of the collector surface.

In order to determine the amountof time requiredto traverse each
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distance, an estimate, based on the velocity of particle 1, was made for

the time to traverse the distance in twenty steps. The estimate was

iteratively refined until it was within 1% accuracy and then the solution

was recomputedwith one fifth of the step size. For the special case of

attaining 00' the accuracyof the step size was set to 10 ppb.

4.3 Integration Using a Cubic Spline Algorithm

The integrationsof the outputdata of the Runge-Kuttaprogram

were performed by a second, independentprogram also developed by the

author. This program providesgeneral purpose interactivegraphical and

numericaldata processingcapabilities. Integrationsavailablewith this

program are performed by means of the integralformulas for a cubic

spline approximationto given data sets. The cubic spline algorithm used

in this program was adaptedfrom a subroutineused by Hesse and

coworkers52for backgroundsubtractionand area determinations in

quantitative Auger electron spectroscopy. A spline function is a

composite formula consistingof a sequenceof low-orderpolynomials

interpolatingon a given set of ordered pairs53.This is as opposed to a

single high order polynomialfit over the entiredomain of the data. In

the case of a cubic spline, each elementof the sequence is a cubic

equation covering a four-point subintervalof the data set:

fk(x) = ak(x -xk)3 + bk(x - xk)2+ ck(x - xk) + dk;

k = 1, 2, ..., n - 1

(54)



where n is the number of data pairs (xk'Yk) in the given set. The cubic

splin~ interpolating function is then:

In order to determine the coefficientsak' bk' ck and dk several

conditions must be applied. Differenttypes of conditions are possible

and lead to differences in the behaviorof the spline function at the ends

of the data intervaland near discontinuitieswithin the data. Among the

conditions applied in this study, the followingare of importance.

Three levelsof continuity are requiredfrom one subinterval to the

next, namely continuity in the function,and in its first and second

derivatives:

Yk = fk(xk)

= fk-1(xk)

fk-1 (xk) = fk(xk)

f"k-1(xk) = f"k(xk)

k = 1, ..., n - 1

k = 2, ..., n

k = 2, ..., n - 1

k = 2, ..., n - 1

A fourth condition incorporates a set of smoothing factors, Pk' into

the algorithm for determining F(x). This allows for some control over

the accuracy with which the spline function approaches the given data

base. This condition is expressed as follows:

49

(55a)

(55b)

(55c)
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d3fk(Xk)

dx3

d3fk(xk) d3fk_1(xk)

dx3 dx3

d3fk_1(xk)

dx3

k = 2, ..., n - 1 (56)

k=n

This condition maximizes the integral

subject to the condition that

n

L [fk(xk) - Yk]Pk < E
k=1

where Eis some given optional amount. In Hesse'sapplication to Auger

spectra, random noise in the measurementcould be smoothed out while

retaining the peak structure by careful selectionof the Pk' In the

present study, the Pkwere alwayschosen so as to reproducethe

Runge-Kuttaprogram output as accuratelyas possible.

The representationof a set of data in terms of the cubic spline

function renders the numericalevaluationof the integralsand

derivatives particularlyeasy. Writing hj = Xj+1- Xj,hk+1= X- xk+1 and

referring to Equations (54) and (55), the integralformula is:
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f
k-1

f(x)dx - L (a'h.4/4 + b.h.3/3 + c'h.2/2 + d'h' ) +-
J'- 1 J J J J J J J J

X1 -
ak+1hk+14/4 + bk+1hk+13/3 + ck+1hk+12/2 +

dk+1hk+1 (57)

for k such that xk+1 < x < xk+2 and for x < xn.

The derivative formula is given by:

f(x) = 3ak(x-xk)2 + 2bk(x -xk) + ck; xk < x < xk+1 (58)

for the range x1 < x < xn. The program developed by the author provides

interactive access to any of the operations of interpolation,integration

and differentiation,each withcontrollablesmoothing, and each capable

of handling any data set fromfour data points to fivethousand or more

data points.

The program provides the standard error of the estimate as a

measure of the accuracy of the spline fit. The standard error of the

estimate is defined as:

r (59)

During the investigation of the sphere model program it was found

that, because of the extreme variations in magnitude displayed by the

model output over very short intervals, the model data resembles a

discontinuous function in some regions of interest. A single cubic spline

function covering the whole domain was not capable of adequately

representing the model output. In view of this fact, provision was made
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to partition a given data set into as many as thirty-two subsets, and the

integrationwas performed in piecewisefashion using a separate spline

fit for each subset. The value of the integral and error Esare displayed

for each subinterval and the integralvalues are accumulatedtowards a

total value for the entire set by the program. In this way Escould be

reduced to less than 0.1 ppm.

A demonstrationof the accuracyof the entire methodof solution to

the energy integral evaluationwas providedby a comparisonof the

potential energy betweenthe particlesat the moment particle2 is

emitted, and the net kinetic energy of the particles at the collector

surface. Fromthe shape of the integralcurve, Equations(50) or (51),

those cases where essentiallyall of the potential energy had been

converted to kinetic energy could be distinguishedby their constant

amplitude near the extractor electrodesurface,which is evidenced by

the insignificanceof the contributionsof the areas of the last few

subintervals in time to the value of the total integral. In these cases,

the net final kinetic energy, to at least four digits of accuracy,was

equal to the initial potential energy arising from the Coulomb force at

the moment of emissionof the secondparticle. This observation will be

discussed in more detail in Section5.2.

4.4 Difficulties in Using the Numerical Methods

Most of the features of the numericalmethodsemployed have been



53

explained in detail in the precedingsection. Noted here are some of the

difficulties which were encountered,first during the development of the

Runge-Kuttaalgorithm, and then during the integrationprocedure. The

extreme differences in scale presentedby both the electric field model

geometries create the need for frequent changes in the step size of the

advancing solution. The Runge-Kuttatechnique handlesvarying step

sizes easily, but does not, of course, suggest appropriatestep size

values. Furthermore,the rapidlychanging accelerationcaused by the

spherical field coupled with Coulomb interactionseverely limited the

predicting capabilities of known quantities to a very local neighborhood.

The following scheme was devised to overcomethese difficulties.

An attempt was madeto advancethe solutionto a given distance, usually

to a point lying an order of magnitude (less in the tip region)away from

the present position. An estimatewas madeof the step size required for

a total of twenty steps to cover the distance. This estimatewas based

on present accelerationand velocity. The Runge-Kuttaalgorithmwas

written as a subroutinewhose calling sequencecontains several control

parameters. The step size and number of steps to advance the solution

are supplemented by a key identifyingone of the dependentvariables in

the system of equations, and by a constant. The subroutinewas designed

so that at every step of the solution, the key variable was compared to

the constant. If the key variablewas found to be greater than or equal to

the constant, the Runge-Kuttasubroutine immediatelyreturnedto the

calling procedure; otherwise it continuedto advance the solution until
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the requested number of steps had been computed.

By means of these control variables, the main programcould search

for the step size requiredto advancethe solution a specifieddistance in

a given number of steps automatically.

Another problem occurredwith small values of 00. A limit is

reached when the Coulomb force overcomesthe force exerted by the

cathode thereby driving the second particle back into the emitter. This

effect places an upper limit on the total current able to be modelled by

single-file emission. When angular separationsare permitted, this limit

varies depending on the emitter radius.

A third problem with early versions of the Runge-Kuttaprogram

occurred at large values of 00and small radius emitters. Subdivisionsof

the trajectory had been based on the positionof particle 1. For large

values of 00the force exerted by the emitter on particle 2 greatly

exceeded the force on particle 1, and during the iteration process

particle 2 would unexpectedlyhave overtaken particle 1. In single-file

emission, this is clearly not possible. It was this problem that led to

the finer resolutionbased on the positionof particle2 within the region

between the emitter and 00. This and other refinements in the

interpolationtechniques eliminated this problem.

With respect to the cubic spline integrationprocedure,the major

problemscentered around obtaining a highly accurate fit to the

Runge-Kuttadata. The effect of the smoothingfactors Pkdepends on the

magnitudeof the domain and rangeof the inputdata and on the spacing
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between consecutive data points.

Preprocessingof input data was incorporated into the spline

algorithm which rescalesthe data into a neighborhoodaround 1 in order

to standardize the effect of Pkas muchas possible. The scaling factors

used were always powers of ten. Negativepowers of ten are irrational

numberswhen expressed in the binary system of the computer, but

positive powers are not. Therefore,division by the reciprocalof the

factor was used if the factor was less than 1, otherwise multiplication

by the factor was used in order to retain the maximumaccuracyof

representationof the source data.

Thesmoothingfactorsbehaveacceptablyfor data sets which span

less than about three orders of magnitude. The Runge-Kuttadata

typically span sixteen to twenty orders of magnitude. The host program

in which the spline algorithm is implementedis able to split its data

storage into independentsets. Therefore,considerationwas given to

dividing the Runge-Kuttadata into sections, integratingeach section and

then summing the result. In so doing each sectionwas able to be

accurately fitted and an integral obtained. However,the sum of the

integrals of each set does not give the correct total for the entire

domain unless special care is taken to includethe piecesof the curve

which lie between the sets. Provisionfor the inclusionof these pieces

was therefore incorporatedinto the procedurefor performingpiecewise

integrals.

The calculationsof the Runge-Kuttaprogramwere all carried out in
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double precision arithmeticwhereas the final integrationswere carried

out in single precisionarithmetic. Becauseof this reduction in

precision, occasionallytwo or more data points near the beginningof the

trajectories were spaced so closely in distance that, in single precision

they became equal. The spline algorithmused in the integrations

requires that input data representa function in the algebraic sense: for

each abscissa there must be one and only one ordinate. When multiple

ordinateswere presented to the spline algorithm,and optional feature

was invoked to discard all but the first of the multiplepoints. This was

done rather than, say, taking an averagevalue for the abscissae in order

to preserve the lower limit of the integration.
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CHAPTER FIVE

Presentationof Model Data

5.1 Introduction

The presentationof the various cases put to the model equationsfor

solution will now be given. The two particles,whose trajectorieswere

being determined, could be characterizedby their charge and mass, and

by their initial positions and velocities. The particle types used with

the model studies include e-, Li+,AI+,Ga+,In+,Bi+,Bi+2and Bi+3.

The initial position of all particles in all test cases was a point

lying on the emitter surface. For the sphere model studies, all particles

were emitted from the same point on the sphereand traced colinear

trajectories. Colinear studieswere performedwith the sac model with

trajectories lying on the axis of symmetryof the emitter, for

comparison with the sphere model results. Emissionpoints lying off the

axis of symmetrywere also tested with the sac model.

Although the algorithm providedthe capability for using non-zero

initial radial and tangential velocities, this feature was not invoked in

the present studies. The principal reasonfor studying initial velocity
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effects is the characterizationof the virtual source size, as in the work

of Weisner54,and requiresa large number of trajectorycalculations.

Multi-particle Monte-Carlomethodsare better suited for this kind of

study and were not attempted in the presentwork. Qualitatively, if

particle 1 is given an initial radial velocity relativelygreater than that

of particle 2, then the effect would be similar to increasingthe initial

particle spacing. Directingthe particlestangentially away from each

other would have an effect similar to increasingtheir initial angular

separation. Both of these exampleswould diminish the potential energy

exchange and weaken the observedenergy and radial beam spreading.

The electric potential modelsare characterizedby the radius of the

emitter, the electric field strengthat the emitter surface, the emitter

to collector separationand, in the case of the sac model, by the values

of nand y, where, as discussed in Chapter3, the parametern selects

from among the family of solutionsfor the sac electric potential and y

is the ratio of the emitter axial radius to the radiusof the core sphere.

The ranges selected for each of these model parameters is discussed in

the following paragraphs.

The emitter radii chosen for study range in value from 0.01 to 1.0

microns in accordancewith the values used in electronfield emitters

and suspected in LMIS. Electric field strengths in the range of 0.05 to

1.0 V/Awere used paralleling practical values.

As mentioned previously, the values measured for the energy and

angular beam broadening depend on the path length of the trajectories.
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Although the location of the collector surface could be set to any

position during the execution of the Runge-Kuttaprogram,early studies

with the sphere model indicatedthat nearly all of the potential energy

stored in the system by virtue of the initial particleseparations is

converted to kinetic energy within about 10 micronsof the emitter

surface. An emitter-collectorseparationof 10 mm was therefore

chosen to further guarantee that the energy exchangewould be complete

and was also chosen as representativeof spacings in practical focusing

systems. As will be shown, this distance is not sufficient for complete

potential energy relaxationfor all choices of nand 'Yfor the sac model.

Nonetheless, the value of 1Ommwas usedthroughout these studies.

The sac model parametersnand 'Ydescribed above were determined

for this work by comparingplots of the equipotentialshapes to SEM

micrographsof field emitter tips and optical photographsof the liquid

surface of an LMIS during ion emission. For the field electron studies the

selectedvaluesaren = 0.15 and 'Y= 2.0, while for the ion emission

studies the values are n = 0.5 and 'Y= 3.0. Figure5 comparesthe sac

equipotentialswith the sphere model.

In addition to the parameterscharacterizingthe electric potential

models, other parameters that are controllableduring execution of the

trajectory calculation program includethe particle mass and charge and

the initial radial and angular separationbetweenthe particles. The

program itself regards time as the fundamental independentparameter,

and therefore provides the ability to measurethe time between emission
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Figure 5. Emitter Profiles. This diagram compares the profiles of a sphere and two soe emitters having

the same apex radius.
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events.

The remainder of this chapter is subdivided according to the model

used: Section 5.2 covers sphere model results, Section 5.3 covers the

sac model results for non-colinear emission, and Section 5.4 covers the sac

model results for non-colinear emission. Within each section energy

broadening data is presented first, followed by energy shift data. In Section

5.4 data for angular broadening is also presented after the energy shift data.

Finally, within each of these subdivisions electron data is presented first,

followed by data for Ga+ ions (as representative of the ionic studies as a

group) and then data showing the results for various ionic species are given.

Discussion and interpretation of the data are reservedfor Chapter 6.

5.2 Sphere Model Studies

The first electric field model investigatedin this projectwas the

sphere modeldescribed in Chapter3. The primaryobjectives in this

phase of the study were twofold: to develop the numericalmethods for

handling problems of this nature,and to compare the model results for

the energy spread with experimentaldata publishedby Bell and Swanson6

for electrons. Such parametersas total current, field strength and

emitter radius were particularlyof interest.

An unexpected resultwas obtainedfrom the sphere model with

respect to the observed shift in the peak position in the energy

distribution measurements. The sphere model predicts that the exchange
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of energy between two particles is asymmetric: the first particle

acquires more energy than the second particle loses when compared to

the energy they each acquire as they traversethe electric potential field

between the emitter and the collector surfaces.

The energy broadeningdata for electronsand for ions, which were

also studied with the sphere model are presented in Section 5.2.1. The

energy peak shift data are presented in Section5.2.2.

5.2.1 Energy BroadeningStudies

In Figure 6 the component of the energy spread contributed by the

first emitted electron ~E1 as a function of its radial distance from the

center of the emitting sphere is shown. Each of the curves shown

represents data for a different initial inter-particle separation. The

curve with the highest energy values derives from the shortest initial

separation.

Figure 7 shows the total energy spread ~E (from Equation (52)) for

three different emitter radii, while Figure 8 presents similar data for

four different values of emitter field strength.

Figure 9 is analogous to Figure 6 in showing the development of ~E1

with distance from the emitter, this time for the case of Ga+ ion

emission. Correspondingto Figures7 - 8 are the data for Ga+ions

presented in Figures 10 - 11,where the dependenceof ~E first on
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Figure 6. Sphere Model Electron Energy Spread vs. Distance. The contribution, AE1' to the energy

spread is shown as a function of distance for values of 50 ranging from O.1~ to 5x10-4~m. The data

are for electrons with an emitter electric field strength of Fa=1.0V/A on a sphere of radius ra=a.01~m.
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Figure 8. Sphere Model Electron Energy Spread vs. Field Strength. Total energy spread data for a sphere

of radius ra=0.01~m and field strengths of FO=1.0,0.5, 0.1 and 0.05V/A are shown.
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Figure 9. Sphere Model Ga+ Energy Spread vs. Distance. The contribution, ~E1, to the energy spread is

shown as a function of distance for values of So ranging from 0.1~m to 5x1 0-4~. The data are for

gallium ions with an emitter electric field strength of Fo=1.0v/A on a sphere of radius ra=0.01~m.
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Figure 10. Sphere Model Ga+ Energy Spread vs. Emitter Radius. Total energy spread data for spheres of

radius ra=0.5, 0.05 and 0.01J.I.ITIwith Fo=1.0VlAare shown.
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Figure 11. Sphere Model Ga+ Energy Spread vs. Field Strength. Total energy spread data for a sphere of

radius ra=0.01J1mand field strengths of FO=1.0,0.5, 0.1 and 0.05V/Aare shown.
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emitter radius and then on emitter field strength are shown.

Choosing an emitter radius of 0.01 microns and a field strength of

1.ov/A, results in the data of Figure 12 which shows the dependence of ~E

on the mass. Figure 13 shows ~E as a function of the interevent time for

four combinations of charge species. In this case bismuth ions were

used. The four combinations shown, in order from lowest to highest curve

are (+2,+1), (+1,+1), (+2,+2) and (+1,+2) where the first number in each

ordered pair represents the charge on the first particle and the second

represents the charge on the second particle emitted.

5.2.2 Average Energy Shift Studies

In this section data is presented on the shifts in the energy peak as

functions of various parameters of interest. The change in the average

kinetic energy of the two particle system is

<1>= ( ~E1 + ~E2)/2

Figure 14 is a plot of <1> as a function of distance from the center of

the emitting sphere for the case where the sphere radius is 0.01 microns

and the field strength is 1.OV/A.

The data provided by the sphere model program show that the

average energy shift <1>is independent of the emitting sphere radius, and

therefore plots of the energy shift for various sphere radii will be

omitted.
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Figure 12. Sphere Model Energy Spread vs. IonicMass. Total energy spread data forthe fIVeionic

species U+, AI+, Ga+, In+ and Bi+ are plotted. An emitting sphere of radius ra=O.01~ with a field

strength of FO=1.0VlA was used.
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Rgure 13. Sphere Model Energy Spread vs. Charge. Total energy spread data for four combinations of

bismuth charge species are presented. A sphere of radius ra=O.01jJJT1with a field strength of FO=1.0v/A

was used. The charged pairs shown are (n1,n2)=(+1,+1), (+1,+2), (+2,+1) and (+2,+2).
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Figure 14. Sphere Model Energy Shift VS.Distance. The energy shift, cI>,is shown as a function of

distance for 60=sA. The data are for gallium ions with an emitter electric field strength of Fo=1.0v/A

on a sphere of radius ra=O.01J.l.m.
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Figure 15 shows <1> for four values of emitter field strength at an

emitter radius of 0.01 microns.

The shape of the curve for the energy shift experienced by the first Ga+

ion as a function of radial distance from the emitter center is exactly the

same as the electron curve, and therefore will not be shown separately.

Figure 16 presents the average energy shift as a function of the

interevent time for ions of five different masses. The inset shows the

dependence of <1> on mass at an intereventtime of 1.0 picosecond.

Figure17 shows<1> for bismuthwith chargesof (+1,+1), (+2,+1) and

(+2,+2).

5.3 SOC Model Studies I: Colinear Emission

The first enhancement to the model calculations was the

incorporation of a more realistic equipotential model for the emitting

surface. The Sphere-on-Orthogonal-Cone equipotential model has been

described in detail in Chapter 3. A major purpose of this part of the

study was to determine the effect of including the emitter shank on the

pairwise model results. Therefore, the same series of model

experiments were conducted using the SOC model program that were

conducted with the sphere model program. As before, the energy

broadening ~E data will be presented first and then the average energy

peak shift data <1>.
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Figure 15. Sphere Model Electon Energy Shift vs. Field Strength. The energy shift data for a sphere of

radius ra=O.01J1mand field strengths of FO=1.0. 0.5, 0.1 and 0.05V/A are shown.
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Figure 16. Sphere Model Energy Shift vs. Ionic Mass. The energy shift data for the five ionic species U+,

AI+, Ga+, In+ and Bj+ are shown. An emitting sphere of radius ra=O.01~ with a field strength of

FO=1.0VlA was used.
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Figure 17. Sphere Model Energy Shiftvs. Charge. The energy shift data for three combinations of

bismuth charge species are presented. A sphere of radius ra=O.01~ with a field strength of Fo=1.0v/A

was used. The charged pairs shown are (n1.n2)=(+1.+1). (+2.+1) and (+2.+2).
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5.3.1 Energy BroadeningStudies

Figure 18 shows the componentof the total energy spread

contributed by the first emitted electronas a function of its radial

distance from the center of the core sphere. The values of nand y for the

electron model are 0.15 and 2.0 respectively. As in Figure 6, the curve

with the highest energy values derives from the calculations using the

smallest initial separation.

Figure 19 presentsLlEfor electronsfor three different emitter radii

at a field strength of 1.0 VIA. Figure20 showsthe LlEresults for four

different values of the field strength at an emitter radius of 0.01

microns.

Turning to the data modelingthe liquid metal ion emission, Figure

21 shows the component of the energy spread contributed by the first

Ga+ion as a function of its radialdistance from the center of the core

sphere. The values of nand y for this and all the ion studies are 0.5 and

3.0 respectively. Once again, the curve with the highestenergy values

derives from the calculations using the shortest initial separation.

However, in contrast to the sphere model resultsof Figure9, the value of

LlE1 continuesto increasewithradialdistance.

Figure 22 presents LlEdata for four different emitter radii at a field

strength of 1.0 VIA. Figure23 presentsthe LlEresults for four different
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Figure 18. see Model Electron Energy Spread vs. Distance. The contribution, &E1, to the energy spread

is shown as a function of distance for values of 00 ranging from 0.1JUTIto 5x10-4JJ,m.The data are for

electrons emitting from a see tip with ra=o.01JJ,m,n=O.15,"(=2.0 and Fo=1V/A.
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Figure 19. soe Model Electron Energy Spread vs. Emitter Radius. Total energy spread data for soe

emittersof apex radiusra::O.5,0.05 and 0.01~ are shown. Otherparametersare n=0.15,')'=2.0and

FO=1V1A.
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Figure 20. see Model Electron Energy Spread vs. Field Strength. Total energy spread data for an see

emitterof n=0.15,"(=2.0and ra=0.01J.I.In and field strengths of FO=1.0, 0.5, 0.1 and 0.05V/A are shown.
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Figure 21. see Model Ga+ Energy Spread vs. Distance. The contribution. ~E1. of the first emitted Ga+

ion to the energy spread is shown as a function of distance for values of ~Oranging from 0.1 to
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Figure 23. sac Model Ga+ Energy Spread vs. Field Strength. Total energy spread data for a sac emitter

of ra::o.01J1m,n=0.5, 1=3.0 and field strengths of FO=5.0, 1.0,0.5, and 0.1VIA are shown.
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values of the field strength for an emitter radius of 0.01 microns. Both of

these graphs show data for Ga+ions.

The effect of mass on.1E is shown in Figure24 where curves for Li+,

AI+,Ga+, In+and Bi+are displayed. As before the values for the emitter

radius and field strength for these graphs are 0.01 micronsand 1.0 VIA,

respectively.

Figure 25 shows the energy spread as a function of the interevent time

for six combinations of charge using bismuth ions. In this graph, unlike the

data presented in Figure 13, the charge species includedall combinationsof

+1, +2 and +3 ionic species.

5.3.2 Average Energy Shift Studies

The shift in the average energy was measured for the sac model

data as well as for the sphere model data. The sphere model data

revealed that <1> is independentof the emittingsphere radius. The sac

model further shows that <1> is insensitiveto emitter shape, at least for

the two emitter equipotentialsused in this study. Figure26 shows <1> as

a function of distance from the center of the core sphere for Ga+ ions.

The shape of the curve for electrons is essentially the same. The radius

of curvature at the emitter apex was 0.01 microns, and the field strength

on the emitter was 1.0V/A for these data.

Figure 27 shows <1> for electronsat four values of field strength for

an emitter of apex radius ra=0.01 microns. Figure 28 shows <1>as a
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Figure 24. see Model Energy Spread vs. Ionic Mass. Total energy spread data for the fIVeionicspecies

U+, AI+,Ga+, In+ and Bi+are plotted. An see emitter of ra=0.01J.LIT1.n=0.5, y.:3.0 and Fo=1.0v/Awas
used.

10

5r-

- L

Li+ A 1+Go+In+Bi

>
cu-
w
<J I

0.01 0.1 I

100
TO (psec)

10

50



500

100

10-
>
cp-

lJJ

<]

0.1

0.5
0.0\

86

(+3, +3)

(+2, +2)

(+ \, +\

(+3,+2)

0.\

TO (psec)

Figure 25. sec Model Energy Spread vs. Charge. Total energy spread data for six combinations of

bismuth charge species are presented. An sec emitter of ra=0.01~m. n=0.5. ')'=3.0and FO=1.0v/A

was used. The charged pairs shown are (n1.n2)=(+1.+1). (+1.+2). (+2.+1) and (+2.+2).
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Figure 26. see Model Energy Shift VS.Distance. The energy shift, cIJ,is shown as a function of distance

with sO=5Afor galliumions. The radiusof the see emitteris 0.011J1T1 and its other parameters are

n=0.5, y.=3.0and FO=1.0V/A.
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Figure 27. see Model EJecton Energy Shift vs. Field Strength. The energy shift data for an see emitter

of n=0.15, ')'=2.0, ra=0.01J1mand field strengths of FO=1.0,0.5, 0.1 and 0.05V/Aare shown.
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Figure 28. sec Model Energy Shift VS.Ionic Mass. The energy shift data for the fIVe ionic species U+,

AI+, Ga+,ln+ and Bi+ are shown. An sec emitter of ra=0.01IJ1T1,n=0.5, "(=3.0 and FO=1.0V/A was used.
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function of mass for five different singly charged species. Figure 29

presents <1> corresponding to the charge species whose energy broadening

data are shown on Figure25. Figure30 shows the same data as in Figure29

except that the independentvariable is (50insteadof 'to.

This concludes the presentationof data for the sac model colinear

emission studies. The next sectioncontinueswith trajectories having an

initial angular separationemanatingfrom an sac model emitter.

5.4 sac Model Studies II: Non-colinear Emission

The second enhancement to the model calculations was the inclusion

of an initial angular separation, eo' between the particles in addition to

the radial separation, (50.From the expression for the hypergeometric

expansion for the Legendre function following Equation (43) in Section

3.3, for the case of colinear axial emission, where e, de/dt and d2e/dt2

are all zero, the value of the Legendre function is equal to one. Thus the

Equations (45c) and (45d) are not needed, the first terms drop out of

Equations (45a) and (45b), and the hypergeometric expansions do not need

to be evaluated. These simplifications were exploited for the colinear

emission studies. When off-axial emission is permitted, however,

Equations (45) cannot be simplified in these ways.

In all non-colinear cases studied, the launch angles for the two

particles were equal in magnitude and of opposite sign. That is, the cone

axis of symmetry bisects the angle between the two launch sites. Also,
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Figure 29. sec Model Energy Shift vs. Charge. The energy shift data for six combinations of bismuth

charge species are shown as a function of 'to' An sec emitter of ra=0.01JUTI,n=0.5, 1=3.0 and

FO=1.0V/Awas used. The charged pairs shown are (n1,n2)=(+1,+1), (+2,+1), (+3,+1), (+2,+2),

(+3,+2) and (+3,+3).
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Figure 30. sec Model Energy Shift vs. Charge. The energy shift data for six combinations of bismuth

charge species are shown with 60 as the independent variable. An sec emitter of ra=0.01 J.UTI, n=0.5,

1=3.0 and Fo=1.0VlA was used. The charged pairs shown are (n1 ,n2)=(+1 ,+1), (+2.+1), (+3,+1),

(+2,+2), (+3,+2) and (+3,+3).
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only Ga+ions were used in these studies. Furthermore,having already

explored the effects of emitter radius and field strength on the energy

broadening and energy shift, only one combinationof radius and field

strength was used: an emitter radiusof 0.01 micronswith a field strength

of 1.ov/A.

Since the data of this section are of such limited scope, this section

will not be subdivided further, however, the order of presentation

established in the preceding sections will be maintained. The energy

broadening data will be shown first, followed by data on the average energy

shift. Finally, the results of studies of the angular beam spreading will be

presented.

Figure 31 presents energy broadening versus 'to data as a function of

the emission half-angle, 80and Figure 32 shows <I> also as a function

of 80, The data in Figure 32 covers a somewhat broader range of 80than

does the data of Figure31 in order to show how <I> falls off with distance.

For the next set of data showingangular beam spreading, a series of

model calculationswere conductedwith the same set of initial conditions,

but with the Coulomb interactionforce set to zero.

The values of .18in Figure33 are the amounts of angular dispersion

without the pairwise interaction,(82-81}wo'subtracted from the angular

dispersion with the pairwise interaction, (82-81}c'at a distance of rf = 1.0

cm. That is, Figure 33 shows the amountof angular broadening arising solely

from the Coulomb interaction.
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Figure 31. see Model Energy Spread vs. Emission Angle. The total energy spread data is shown for six

values of emission half-angle, 90, Ga+ ions were emitted from an see emitter of radius ra=o.01J.l.m.

n=0.5, 1=3.0 and Fo=1.0V/A. The values of 90 are 0°, 0.02°, 0.05°, 0.1°, 0.2° and 0.4°.



10

-
>
Q)-

0.1
0.01

95

0.1 10

80 (degrees)

Figure 32. see Model Energy Shiftvs. Emission Angle. The energy shift data is shown as a function of

emissionhalf-angleoverthe range 90=0.02°to 10.00for'to=0.25psec. Ga+ ionswere usedwith emitter

parametersof ra=0.01~m.n=0.5,1=3.0 andFO=1.0v/A.
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Figure 33. soe Model Angular Spread vs. Emission Angle. The net angular spread arising from the

coulomb interaction is shown for fivevalues of emission half-angle, 90=0.02°, 0.05°, 0.1°,0.2° and 0.4°.

Ga+ ions were used with emitter parameters of ra=0.01~m. n=0.5, "(=3.0and Fo=1.0V/A.
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This completes the presentationof the model calculations undertaken

during the course of this study. A discussionof these data will be given in

the next chapter. In the final section of the current chapter some

experimental data for comparisionwith these theoretical studies will be

presented.
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CHAPTER SIX

Resultsand Discussion

6.1 Introduction

In Chapter 3 the emission processwas discussed in terms of a

Poissondistribution with respect to the time betweenemission events.

The probability function for the intereventtime, 'to' accordingto the

assumption of an exponentialdistribution is given by

P{'to)=1-e-A'to (60)

From the data presented in Chapter5 empirical relationshipswill be

extracted for the total energy spread, .1E,the energy shift, <I>and the

angular beam spread, .18,as functions of the interevent time 'to' the

emitter radius (or apex radius), ra, the electric field strength, Fo'the

atomic mass, m, and the charge, n. These empirical relationshipswill

then be inserted into Equation(60) and the correspondingprobability

density functionswill be derived. Then Equation (12) will be used to

determine the model predictionsfor the averagevalues of .1E,<I>and .18

as functions of experimentallymeasurablequantities such as current and

atomic mass. These predictionswill then be compared to experimental

results.
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6.2 Sphere Model Results

From Figures6 and 9 the change in kinetic energy arising from the

Coulomb interaction becomesessentially independentof distance for

both electrons and ions for distancesgreater than about 0.1mm from the

emitting sphere. The particles are interactingonly very weakly in this

region of the beam, indicatingthat the inter-particleseparation,8, has

become large. Figure 14 shows that the processcausing the average

energy shift phenomenonoccurs even closer to the emitting sphere.

About 90% of the final magnitude is attainedwithin a few hundred

Angstroms from the emitting sphere.

6.2.1 Energy Broadening Results

The curves in the upperplots of Figures7 and 8 representdata taken

directly from model simulations. The curves in the lower plots are data

extracted from the upper curves at the selectedtimes shown. From

measurementsof the slopesof these curves, the dependenceof the

energy broadeningon the intereventtime, the emitter radius and the

field strength for electrons is found to be exactly

~E oc 't -112 (r F )1/4
o a 0

The same functional relationships may similarly be obtained from the

data for gallium ions shown in Figures 10 and 11.
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The dependence of the energy spread on ionic mass measuredfrom

the slope of the line in the bottomgraph of Figure 12 is

~E oc m1/4

The data of Figure 13 indicatea fairly complex relationshipbetween

the energy spread and the charges on the pair of interacting ions. In

comparing the case where both ions have a single charge to the case of

one of the ions carrying a double charge, the model predicts that the

energy spread is very sensitive to the order of emission. This is

primarily a result of the difference in accelerationbetween the

particles in the electric field of the diode. If the second particles

carries the double charge, then it will be driven toward the first

particle, opposing their mutual repulsionand causing the Coulomb

interactionto persist over a greater portionof the beam length. This

will result in a corresponding increase in the energy broadening.

However, if the first particlecarries the double charge, then the

converse will be observed. The particleswill spend less time in close

proximity and the strengthof the Coulombrepulsionwill be weaker.

This is shown dramatically in Figure 13.

If only the two cases where both ionscarry the same charge are

considered, then the measureddependenceof the energy spread on charge

seen in Figure 13 is

~E oc n5/4

Except for the tin LMIS4, the relative abundance of multiply charged

species is usually quite low, and the probability of an interaction event
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between two multiplycharged particles is very small. A Monte-Carlo

study-involving a distribution of charge specieswould better be able to

characterize the charge dependenceof the energy spread than the present

two-particle simulations, however,the effects of spacing and geometry

can be clearly seen with the present model.

Combining the results of the precedingparagraphsgives the

following empirical relationships:

~E oc 't -1/2 (r F m)1/4 n5/4o a 0

Solving for 'to yields

't - c (r F m)1/2 n5/2 ~E-20- 1 a 0

= KE~E-2 (61)

By substituting this expression for 'to into Equation (60) and taking the

derivative with respect to ~E, the following expression for the

probability density function in terms of the total energy spread is

obtained:

f(~E) = 2KE A ~E-3 exp(-KE A ~E-2) (62)

The mean value of ~E for this distribution is then given by
00

<6E> :f~E f(~E) d{~E)
(63)

If the integration is carried out the following relationship for <~E> is

obtained:

<~E> = (AKE7t)1/2

= c(raFom)1/4 n3/4j1/2 (64)
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where c = (1tc1/e)1/2.By expressing the field strength at the emitter

surface, Fo, in terms of a voltage Vo' Equation (64) may be written as

<L\E> = c(Vom)1/4n3/411/2 (65)

Thus the sphere model predicts a simple relationship between <L\E>

and the given measurable experimental parameters for electron beams

and for LMIS.

6.2.2 Energy Shift Results

As pointed out in Section 5.2.2 the energy shift was found to be

independent of emitter radius over the range 0.01 to 1.0~m. Again, by

measuring the slopes of the lines shown in Figures 15 through 17, the

following empirical relationship is obtained:

<I> oc 't -2 F -3/4mno 0

By solving for 'to the following relationship is obtained:

'to = c2(mn/Fo3/4 <1»1/2

= K<I><1>-112 (66)

By substituting this expression into Equation (60) and taking the

derivative with respect to <1>, the following expressionfor the

probability density function in terms of <I> is obtained:

f(<I» = (K<I>A. <1>-3/2 /2) exp[-K<I> A.<1>-1/2] (67)

The average value of <I> is obtainedfrom the integral
00

<<I» :f <I> f(<I» d(<I»

(68)



103

As pointed out by Gesley et a1.49,the integral of Equation (68) is

divergent and it is necessaryto place an upperbound on <I> which is

equivalent to limiting the current. In the limit of 1-+0they obtain

Iim<<I» = c2(nm/47tEood1/2 I (69)
1-+0

where a limitingvalue equal to the initial Coulombpotential energy

<I>c= (ne)2 /47tEo0c (70)

was used, with 0c equal to some minimum allowable initial separation.

In this development, an additional factor of Fo-3/8 is obtained as a result

of the inclusion of a more complete set of model data, so that

Iim<<I» - c (nm/F 3/447tE ° )1/2 I (71)- 2 0 0 c

1-+0

6.2.3 Comparisons with Experimental Data

Figure 34, reproducedfrom Bell and Swanson6shows experimentally

measureddata for the dependenceof electron energy spread as a function

of a field factor f3which is inverselyproportionalto the emitter radius.

Measurementsof the slopes of the lines of these data plotted on

logarithmic axes show that.1E oc ra-2/3,which does not agree well with

the sphere model result of.1E oc ra1/4. In the next section it will be

found that when the emitter shank is includedwith the sac model, an

inverse relationship is predictedfor high currents, although for low

currents the sac model agrees with the sphere model in predicting a
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Figure 34. Experimental Energy Spread vs. Field Factor. The data in this figure are taken from Reference

6, and show the dependence of the FWHM of the energy distribution on the field factor ~which is

proportional to 1/ra.
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direct dependence.

Turning to the field dependence, Figure 35, also reproduced from Bell

and Swanson6 shows experimental electron energy spread data as a function

of emitter field strength. However, these data are not at constant current

as are the data presented in Figures 8 and 11 for the sphere model, and it is

therefore difficult to make a correlation. From

Loffler's theoretical analysis27 of the sphere model an Fo.1/4dependence

would be expected, whereas the sphere model calculations exhibit an Fo1/4

relationship. As in the case with the tip radius dependence, the sac model

calculations exhibit either a direct or inverse relationship, depending on the

emitter shape and the total current.

Figures 36 through 38 are reproduced from Gesley, Larson and Swanson

49 Figure 36 shows plots of experimental total energy broadening for

several singly charged ionic species from LMIS, and Figure 37 shows similar

plots for doubly charged ionic species. Their comparison of model

predictions to experimental data with respect to mass, charge and current

takes into account the intrinsic energy spread <~E>int associated with the

ion formation process. Using a value of <~E>int = 5 eV for all species except

Ga++ where a value of 1 eV was used they obtained the results reproduced in

Figure 38. The sphere model was found to agree with experiment in

predicting ~E oc P/2 m1/4and disagree with respect to the charge

dependence. The model predicts~E oc n3/4whereas the observed dependence

is n-1/2. A glance at Figure 13 shows that the disagreement with respect to

the charge dependence
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Figure 36. Experimental Energy Spread vs. Mass. Experimental data for AI+, Ga+, In+ and Bi+ are shown

as a function of total current for LMIS emission. This figure was reproduced from Reference 49.
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Figure 37. Experimental Energy Spread vs. Mass. Experimental data for AI++and Ga++ are shown as a

functionoftotalcurrentfor LMISemission. Thisfigurewas reproducedfromReference49.
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Figure 38. Corrected Experimental vs. Sphere Model Predicted Energy Spread. Plots of experimental

values of the corrected energy spread versus the sphere model predictions based on Equation (65). This

figurewas reproducedfrom Reference49.
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is to be expected in view of the complexities involvedwith the mixed

charge data, and that only pairs of equally charged particleswere used in

arriving at these model predictions.

In summary, a sphericalmodel for the emitter shape together with the

limitationsof single file emission and pairwise interactionsgives good

qualitative agreementwith experimentfor the current and mass dependence

of the energy spread in electronand ion beams.

A discussion of the comparisonbetweenthe model predictionsfor the

average energy shift and the experimental resultswill be deferred until the

end of Section 6.3.

6.3 sac Model Results

The investigationof the sphere on orthogonalcone electric field

model, revealed some interestingdifferencesfrom the sphere model

results. In the electronstudies values of n = 0.15 and y = 2.0 were

selected. Figure 18 shows the developmentof the contribution to the

energy spread from the first particle. Comparingthis with the

corresponding sphere modeldata of Figure6 shows two things. Firstly,

although the interaction has again becomenegligibleby the time the

particles have reachedthe collector, the regionof significant

interaction has extended further away from the emitter surface.

Secondly, the values of.1E attainedwith the sac modelaregenerally
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higher than those attainedwith the sphere model. This, of course, is

because the particles are interactingthroughouta larger region in space.

In the ion studies values for nand 'Yof 0.5 and 3.0, respectively,

were chosen and here the effect just beginningto appear in the electron

case is even more pronounced. In Figure21, which shows data for gallium

ions, the Coulomb interaction is not over even at a typical practical

working distance of 1.0 cm, particularlyfor largervalues of 00which

correspond to low current values accordingto Equation (16). The effect

appears to be more a matter of emitter shape than of particle mass.

More particularly, the model studiessuggest that not only the magnitude

of the electric field but also the shape of the electric field in the region

close to the emitter strongly influencesthe degree to which the Coulomb

interaction broadensthe energydistribution in the beam.

A comparison of Figure21 to the sphere model gallium ion data of

Figure 9 shows that, as in the electron studies, the total energy spread

attains much highervalues with the sac model than with the sphere

model because the ions in the sac model interact over a much larger

distance.

The simple models used in this study do not includethe capability of

inserting lensesor apertures in the tip region. Such electric field

altering devices are used, however, in many practicalapplications,and

the model data suggest that these will influencethe magnitudeof the

energy spread in a beam of electronsor ions.
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6.3.1 Energy BroadeningResults

From measurementsof the slopes of Figure 19 the dependence of the

electron energy broadeningon both the intereventtime and the emitter

radius vary slightly about the values found from the sphere model data of

Figure7. Thedependenciesareagaingivenapproximatelyby~E oc

'to1/2ra1/4. The dependence on field strength as measuredfrom the slope

of the line on the bottom half of Figure20, however,has grown from

Fa1/4for the sphere data of Figure 8 to Fa1/3for the sac data.

An examination of the sac modeldata for gallium ions, shows that

the situation is quite different from the sphere model results. It is no

longer possible to find a simple power law relationshipbetween the

total energy spread and either the emitter apex radius or the field

strength. Figures22 and 23 show that ~E increaseswith ra and Fafor

higher current (lower 'to)' but decreaseswith ra and Fafor lower

currents. If it is assumedthat the total energy spread for a given set of

initial conditions will asymptoticallyapproacha limitingvalue, the

behavior in Figures22 and 24 results from placing the collector in a

position that yields different percentagesof the limitingvalue for

different values of 'to. This is clearly the import of Figure 21. A similar

effect could have been observedwith the sphere model data had the

collector been positionedat 0.5~m from the emitter rather than 1.0cm.

This serves to point out the limitationsof modelinga real electron or
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ion optical problem with a simple sphere model, and the care that must

be taken in selecting a more appropriateelectric field model.

Figures24 and 25 show the massand charge dependence of the

energy spread. Like the dependenceon ra and Fo,the mass dependence is

influenced by the emitter geometry,althoughto a lesser extent. The

mass dependence rangesfrom almost no dependencefor high currents to

~E oc m1/2for lower currents. The dependenceon charge for the cases of

both ions having the same charge is the same for the sac model as for

the sphere model, namely~E oc n5/4.

In summary, then, the emitter geometry appears to playa

significant role in determining the behavior of the energy broadening on

other parameters. For the assumed electron emitter shape with no

nearby electron optical elements, the energy broadening is comparable to

the sphere model results. But for the assumed LMIS shape, the mass,

field strength and emitter radius dependencies are complicated functions

of the emitter-collector spacing and of the beam current. This may help

to explain some of the differences in experimental dependencies reported

in the literature.

The magnitudeof the predictedenergy spread is higher for both sac

models than for the sphere model emitter.

6.3.2 Energy Shift Results

Figure 26 shows the energy shift as a function of distance from the
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emitter for gallium ions. The shape of the curve for electrons, as

mentioned in Section 5.3.2 is essentiallythe same. Note that the energy

shift remains constant for both electronsand ions for distances greater

than about 0.1mm just as it did in the sphere model studies. This is in

contrast to the sac model resultsdiscussed in the preceding section.

Comparing Figures27-29with the correspondingsphere model data

of Figures 15-17 revealsthat the same empirical relationshipshold for

both sets of data, namely

<1> oc 'to-2 Fo-3/4 mn.

In other words, the energy shift is independentof emitter shape as well

as emitter size.

In the data presented thus far 'to has been used as the independent

variable in accordance with the program set forth in Chapter 3 and in the

introduction to this chapter. However, in view ot the independence of the

energy shift on the emitter parameters, and the inverse square law

dependence on 'to' intuition suggested plotting energy shift data as a

function of the initial interparticle spacing °0. The results are shown in

Figure 30, for the same six combinations of charge plotted in Figure 29.

By plotting the data in this way it becomes immediately obvious that

<1>oc n1nio (72)

and that the proportionality constant is, in fact e2/41tEo which is to say

that the observed energy shift is identically equal to the initial Coulomb

potential energy of the two particle system at the instant of the

creation of the second particle. Experimentally measured values of <1>
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thus provide a means of determining 00' the initial spacing between the

particles dominating the Coulomb interactions within the beam.

The massdependence of <I> arises from the fact that the conversion

of the electical potential energy into kinetic energy imparts a velocity

which is inversely proportional to the mass of the particles. As an

illustration of this, the model predicts that the first bismuth ion

requires approximately 1.4 psec to reach a distance of 50A accelerating

from rest in the field of the emitter. In the same amount of time in the

same field, a lithium ion would have travelled 1000A. The Coulomb

potential energy between the bismuth ions would be 20 times greater

than the energy between the lithium ions which are further apart, even

though the total current, which is inversely proportional to time, would

be about the same. Thus it would be expected that a beam of bismuth

ions would have an energy shift twenty times greater than a beam of

lithium ions at the same current. By the same reasoning, the model

predicts that bismuth would show an energy shift five times larger than

gallium and twice as large as indium.

6.3.3 Comparisons with Experimental Data

With respect to the energy broadeningdata of Figures34 and 36, one

of the main differences betweenthe sac model and the sphere model is

that the magnitudeof energy broadeningwith the sac model is

comparable to the experimentallymeasuredvalues. Knauer48defines the
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single file regime as those currents that correspondto an average initial

interparticle spacing <80>greater than the beam radius. The spacings

used in the single file emission model studieswere in the range O.5nmto

100nm. According to the assumed LMIS conditions49,<°0> must be

greater than 0.8nm to satisfy Knauer'scriterion. Only the very smallest

initial spacing used in these studieswas less than O.8nm,and since the

spacings used represent unusuallyclose pairs that are fluctuations from

the average, it is clear that these resultssupport Knauer'sconclusion

that field emission sources belong in the single file regime shown in

Figure 39 reproducedfrom his paper.

The other main result is that the functional relationshipspredicted

by the SOC model are largely the same as for the sphere model for the

emitter shape used with the electronstudies,but become more

complicated with larger cone angles,allowingfor the possibilityof

bringing the dependencieson emitter radius and field strength, as well

as the current and mass relationships,into agreementwith experiment.

In the concluding remarksof Section6.3.2 several predictionswere

made with respect to the relative values of energy shift in LMIS beams

of different mass. These predictionsdepend on the conclusionthat the

apparent mass dependence of cI>is caused by the implicit mass

dependence of 0c' the minimumallowable initial interparticleseparation

discussed in connectionwith Equation (69). Examinationof Figure 40

shows that these predictionsare indeedcorrect. It is concluded,

therefore, that the shift in average peak energy observed in LMIS
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Rgure 39. Electron Collision Regimes. This figure is taken from Reference 48 and shows various

emission processes and the degree to which generated particles interact with one another. Electron field

emission sources are found inthe "singlefile"regime.
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emission is entirely the result of the relaxationof the initial Coulomb

potential energy between pairs of ions into kinetic energy.

6.4 SOC Model Non-colinear Results

Figures31 and 32 show that the total energy spread and energy

shift can attain significantvalues even when the condition of colinear

emission is relaxed, allowing an angular separationbetween the

interacting pair. The energy broadeningfalls off approximatelyas 80"1/2,

while the energy shift, arising as it does from the initial Coulomb

potential energy, depends

on 80according to

cI> oc (r 2 + r 2 - 2r r cos 8 )"1/2 (73)1 2 1 2 12

where r1and r2 are the radial coordinatesof the two particles and 812is

the angle 81- 82= 280in these studies.

From Figure 33 the amount of angular beam broadeningcaused by the

Coulomb interactionvaries as 'to"2for most of the data covered. The

dependence of ~8 on initial angular separation is less straight forward.

At low values of 'to' ~8 oc 80,but at high values ~8 is almost

independentof 80, For the high current value case (low 'to)

~8 oc 'to.280 (74)

In order to relate the angular broadeningto beam current, it would

be necessary to develop a multi-dimensionalprobabilitydensity function

based on the assumptionsthat the emission processfollows a Poisson
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distribution in time as in the colinear studies,and that a similar spatial

distribution exists over the emission region of the LMIS. Such a

treatment is far too sophisticatedfor usewith the simple two particle

system and will be omitted. However, it may be noted that qualitative

agreementwith the experimentaldata of Figure41 is obtained with the

pairwise model. From the data of Figure41 showing experimental

angular broadeningfor gallium, indiumand bismuth as a function of

current,a dependenceof .18oc 1114is obtained. Thesac modelpredicts

that .18does increasewith current.

6.5 Summary

In summary, a sphericalmodel for the emitter shape together with

the limitationsof single file emissionand pairwise interactionsgives

good qualitative agreementwith experimentfor the current and mass

dependence of the energy spread in electronand ion beams.

The sac model providesquantitativeagreementwith experimental

energy spread magnitudes. By incorporatingthis emitter shape into a

more general electron/ion optical program it is expectedthat the

dependencies on emitter radius and field strength,as well as the current

and mass relationships,can be brought into agreementwith experiment.

The pairwise Coulomb interaction usedthroughout these studies

provides a simple mechanismfor elucidatingthe observedenergy shift



1500

1400

1300

1200

1100

121

BISMUTH

.

700

600

500

400

300
o 4 8 12 16 20 24

TOTAL CURRENT (fLA)

3228

Figure 41. Experimental Angular Spread vs. Mass. Experimental values of the FWHM of the angular beam

spread for gallium, indium and bismuth LMIS are plotted as a function of current.

1000
E-
:E 900
:I:

I J / GALLIUM
LL

800



._- ---- -- - .. --.-.

122

phenomenon observed in LMIS beams. The shift in the peak of the energy

distrit;>utionsobserved in LMIS emission is entirely the result of the

relaxation of the initial Coulombpotential energy between pairs of ions into

kinetic energy.

The Coulomb interactionalso providesa mechanismfor the angular

beam spreading observed in electronand ion beams. The energy spread

arises from the radial componentof the Coulombrepulsionforce between

pairs of particles. The angular spreadarises from the lateralcomponent of

the same force.
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APPENDIX

This appendix providesa function flow diagram for the Runge-Kutta

trajectory programwhich generatesdata for the pairwisecoulomb

interactions.
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Trajectory Program
for Pairwise Coulomb

Interactions

Initialize Program
Control Parameters

load Starting Values
into State Vector

launch First Particle
Determine Time to

Reach 80

launch Second
Particle

Set Stopping Plane



Prepare and Output
Energy Integrand

Values from Stored
Data

Program Termination
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Estimate~T for
Reaching Stopping
Plane in 20 Steps

Solve Particle
Equations of Motion

Recalculate
Trajectory with

100 Steps

Store Trajectory
Data
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