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ABSTRACT
Pairwise Coulomb Interactions in Diverging
Electron and lon Sources

Dale Lennart Larson, Ph. D.
Oregon Graduate Center, 1986

Supervising Professor: Lynwood Swanson

The formation of high intensity electron beams by means of field
emission is well known. Recently, high intensity ion beams have been
formed by the application of electric fields of the order of 1 to 5V/A to
liquid metal surfaces. Intensities of greater than 20uA/sr have been
reported for various metals such as gallium, indium, aluminum and
bismuth. In focused beam applications such as scanning microscopy,
inspection and testing, ion implantation and mask repair, the energy
broadening and angular beam spreading are important parameters which
impose fundamental limits on the focused spot size. These parameters
depend on both deterministic and randomly produced forces, as well as
upon the geometry of the beam. The purpose of this investigation is to
stugy the energy exchange and trajectory perturbations attending the
Coulomb interaction between a pair of electrons or ions which happen, by

random fluctuation in the emission process to be in close proximity to

X



each other.

To this end, a numerical solution of the equations of motion of the
particles moving in the external field of an emitter was performed. Two
emitter field models were studied: the field produced by a spherical
conductor, and the field produced by a conducting sphere whose center is
at the apex of a conducting cone. By suitable choices of cone half-angle
and sphere radius, an equipotential can be found whose shape closely
approximates either a solid field electron emitter or the surface of a
liquid metal ion source. Emitter radii ry from 102 to 10% A and emitter
field strengths Fg from 0.01 to 1.0 V/A were examined.

The influence of initial relative position, particle mass m and
charge n on the energy and trajectory broadening was investigated for
electrons and the ionic species Li*, Alt, Ga™, Bi*, Bi*2 and Bi+3.
Relationships between the time spacing between emission events and
other parameters of interest were obtained. The sphere model was found
to predict the following dependencies for the energy spread:

AE o< |12 (mr,F )14 n34
where | is the total current. The SOC model was found to predict the
same current and mass dependencies, but a more complex relationship
for emitter radius, field strength and charge was obtained. The
functional relationship for these parameters depends on the emitter
shape and on the current.

A mechanism for the observed shift in peak energy was also found in

these studies: the conversion of the initial Coulomb potential energy
xi



between the pair into kinetic energy.
in summary, the pairwise Coulomb interaction is able to produce
energy and angular beam spreading of the magnitude observed in electron

and LMIS experimental data, even in the absence of beam crossovers.
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CHAPTER ONE

Introduction

The formation of high intensity electron beams by means of field
emission is well known. Recently, high intensity ion beams have been
formed by the application of electric fields of the order of 1 to 5 V/A to
liquid metal surfaces. lon emission has been obtained from liquid
gallium, cesium, indium, bismuth, gold, tin, silver, lead, aluminum,
mercury, silicon, germanium, uranium, platinum and iron.*4 In some
cases low melting point alloys have been used as a source for several
ionic species. Intensities of greater than 20 uA/sr have been reported
for various liquid metal ion sources (LMIS) such as gallium, indium,
aluminum ang bismuth from a film of the liquid metal supported by a
solid needle.

In focused beam applications such as scanning microscopy, mask
repair, microfabrication and iocn implantation, the energy broadening and
angular beam spreading are important parameters which impose
fundamental limits on the focused beam size. These parameters depend
on both deterministic and randomly produced forces, as well as upon the
geometry of the beam. Deterministic effects are those produced by
electric fields associated with the average current density distributed

throughout the beam. The primary result of these fields is the expansion



of the beam cross-section along the length of the beam. As shown by
Massey and co-workers® essentially no contribution to the energy
broadening is made by the distributed field which, being stationary and
conservative, accelerates all particles uniformly.

Random effects include microfluctuations of the particle density
which bring pairs of particles unusually close together such that their
mutual Coulomb repulsion is appreciable, as weli as the redistribution of
the initially tangential thermal energy according to the equipartition of
energy principle. Random effects contribute to both energy broadening
and beam divergence. In focused beam work, random Coulomb effects
occur in three regions of the beam: 1) in the acceleration region near the
emitter, 2) in the field free drift region and 3) in regions containing a
focal plane. Random events in Region 2 and Region 3 are collisional in
nature in that the particles involved are on trajectories that happen to
bring them into close proximity. In Region 1 the nearness of the
particles is the result of the statistical fluctuations in the emission
process. This region is also characterized by a rapidly changing external
electric field which modifies the effect of the pairwise Coulomb
interaction by controlling the length of time during which particles may
interact. In all three regions the magnitudes of the broadening effects
vary directly with the path length of the region. The effect of the
accelerating field is in addition to the path length effect.

The purpose of this investigation is to study the energy exchange

and trajectory perturbations attending the Coulomb interaction which



occurs in Region 1 for both sphere and cone shaped emitters and to
evaluate the sensitivity of these perturbations to changes in current,
charge, mass, field strength and emitter radius.

To this end the equations of motion of a pair of particles moving in
the external field of an emitter were derived for two diode geometries
and numerical solutions for these equations were determined. The
emitter models studied were the spherical conductor, and a conducting
sphere whose center is at the apex of a conducting orthogonal cone (SOC).
By suitable choices of cone half-angle and sphere radius, an
equipotential can be found whose shape closely approximates either a
solid field electron emitter, or the surface of an LMIS.

The particle parameters include their initial relative position, their
initial thermal energy, their mass and charge. Trajectories for electrons
and for the ionic species Lit, Al Gat, Int, Bit, Bit2 and Bi*3 were
calculated.

The remainder of this paper is organized as follows. A
chronelogical review of related literature is presented in Chapter 2. The
model equations are derived in Chapter 3 and a discussion of the
numerical methods used to sclve them is presented in Chapter 4. The
results of the model calculations are shown in graphical form in Chapter
5 and discussed at length in Chapter 6. A comparison of the model
predictions with experimentally obtained data is also presented in
Chapter 6 as well as a summary of the conclusions that may be drawn as

a result of this study. A set a flow charts of the trajectory caiculating



program is provided as an Appendix.



CHAPTER TWO
Review of Literature

2.1 Sommerfe!d Free Electron Theory

The work reported in the present paper was in large part prompted
by the studies performed by Bell and Swanson8 and others who reported
anomalous broadening of the total energy distribution (TED) of field
emitted electrons and very broad energy distributions for liquid metal
ion sources. In the case of the electron data, the anomalies are those
deviations of the experimental TED with respect to the
Fowler-Nordheim theory’ based on the Sommerfeld free-electron mode!
as modified by Good and Mdller8 to include the effect of temperature.
For the case of field ion emission there has not yet appeared an
undisputed explanation of the emission process, let alone a satisfactory
theory of the TED.

In a review paper by Gadzuk and Plummer® the historical
development of the theory is presented in some detail. Summarized here
are the major points of the derivation.

The TED for field emitted electrons is a measurement of a barrier
penetration problem. A supply function N(E,W) describing the density of

electrons within the metal incident upon the barrier with total energy E



and normal energy W is muitiplied by the barrier transmission

probability function D(W) and integrated over all normal energies:

d
2. N(E,W) D(W) dW (1)
dE

where dj/dE is the differential change in current density with respect to
energy at total energy E. The supply function is approximately equal to

the product of a Fermi function

1
f(E) = (2)
1+exp[(E-Ef)/KT]

times the arrival rate which is the normal component of the group
velocity times the normal component of a density of states.
Fowler and Nordheim used a wave matching technique in their
derivation of the penetration probability D(W) and later workers'® used
the WKB approximation. Others have refined the calculations of D(W) in
various ways''18, but the result obtained by Young'” has become the
standard form of the TED:
df = J e/ 1(e) (3)
de d

where

4rmed?
Jg = Texp[-0.683¢3/2v(y)/ﬂ
€= E-Ef

y = 3.79F 2/



and v({y) is a tabulated function, E; is the Fermi energy, F is the electric

field strength and ¢ is the work function.

2.2 Experimental TED Measurements for Electrons

2.2.1 The Energy Analyzer

In 1959 Young and Miller'® described a retarding energy analyzer
used to make their measurements of the TED of tungsten. Their analyzer
was the first to have sufficient accuracy to record a TED. It was Young
who realized in a companion paper'’ that the energy distribution being
measured was a total energy distribution as opposed to a normal energy
distribution as had previously been thought. In order to overcome some
of the disadvantages of this analyzer, Plummer and Young'3 developed a
cylindrically symmetric analyzer where the radially diverging beam is
collimated beneath the imaging screen and retarded by a series of rings
and a very fine flat mesh. The previous analyzer was spherically
symmetric and suffered from secondary emission from the retarding
elements, as well as poor sensitivity and a long time constant. Swanscn
and Crouser'® modified a design of van Qostrom?20 which is spherically
symmetric and employs a focusing element which creates a crossover
near the center of the collector. In 1968 Young and Kuyatt?! described a
method for determining the energy resolution of a field emission energy

analyzer. Lea and Gomer22 added an electron multiplier to the



Swanson-Crouser analyzer and were able to achieve an energy resolution

of about 0.030 eV, comparable to that of Plummer and Young.

2.2.2 TED Measurements

Using a thermionic cathode Bérsch23 took several energy
distribution measurements and calculated the apparent source
temperature from the Maxwell-Boltzmann theory which relates the width
of the energy distribution to the source temperature. He used a retarding
grid placed in front of a Faraday cup to obtain an integral curve. He made
measurements for emitter voltages between 20 kV and 100 kV, and
actual emitter temperatures from 2100°C to 3000°C as measured with an
optical pyrometer. For the low temperature, low current case he found
the distribution to be in agreement with the Maxwellian theory. At
higher beam currents the width of the distribution broadened to
approximately twice the predicted width. He found that the broadening
was a function of current density and current intensity, and showed that
focusing a beam increased the width of the distribution even though the
emitter temperature remained constant. He concluded that there was no
broadening in the acceleration region and postulated waves in the space
charge field emanating from the crossover regions.

Young ang Miller'® confirmed the presence of anomalous broadening
in their measurements on tungsten. They also noted that the

distributions being measured were total energy distributions which for



field emission are much narrower than the normal distribution which had
previously been thought to be the measured spectrum. Simpson and
Kuyatt?4 reported measurements on a planar thermionic emitter
operating in a much better vacuum environment than previous work.
Whereas Borsch, for example, was working at pressures in excess of 1.0
x 1078 Torr, Simpson and Kuyatt conducted their work with a vacuum
better than 1.0 x 1077 Torr. They reported however, that the energy
spread is independent of vacuum for the range 1.0 x 1075 to 1.0 x 1073
Torr. They concluded that the significant parameter is the current
density rather than current and that AE is proportional to J and inversely
proportional to the voltage. They expressed a great deal of uncertainty
in these dependencies, however. The dependence on voltage was
determined to be somewhere between V176 and V=372 and the
dependence on current density was estimated to be either J!, J172 or
Jir3

Beck and Mahoney?5 were unable to measure the Borsch effect.
Ichinokawa?® also had trouble finding the effect, and found the theories
of Bérsch23 and Loffler2? to be unsatisfactory, asserting instead that
the effect is caused by the analyzer and is not physically significant.

Lea and Gomer?28 found a high energy tail in the TED of electrons
emitted from tungsten even at 20°K, clearly in the field emission
domain. Gadzuk and Plummer published two papers in 197123:30 in which
they confirm the measurements of Lea and Gomer. Also in 1971 Lea and

Gomer?22 reported TED measurements from a tungsten cathode operating
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In 1977 Kawasaki and coworkers3! measured the TED for electrons
emitted from a TiC single crystal and found that it also was not in
accordance with the free electron theory, but rather exhibited a
broadened distribution with a hump which they speculated to arise from
band structure effects.

Also in 1877 Wolfe32 noted that the Bérsch effect was present even
without a crossover in the electron optics. He pointed out that the
acceleration region of a field emission gun was like a crossover in that
the full current intensity of the beam was present in a very small
cross-sectional area. Bell and Swanson® reported anomalous broadening
of the TED at high current densities for an efectron gun without a
crossover. They found deviations from the free electron model at
energies both above and below the Fermi energy.

In 1981 Essig and Geiger33 studied the field electron emission from
carbon fibers. At low currents on the order of 1.0 nA the measured
energy spread agrees with the free electron model at room temperature.
At higher currents they foungd broadened TEDs which they attributed to
Coulomb interactions in regions of high current density in the optical

system.

2.3 Experimental TED Measurements for lons

The first measurements of the energy distribution from an LMIS

were made by Krohn and Ringo' in 1975. They reported work on gallium,



mercury and cesium. In their experimental setup, they formed a cone on
a liguid surface at the end of a hollow needle by the application of an
approximately spherical electrostatic field. The ions were emitted from
the tip region of the cone. An interesting feature of their source was

that "it was frequently necessary to tap the source with a hammer in
order to start it."

Clampitt and Jeffries? described the use of a needle to support a
liquid metal film for obtaining ion emission. They noted that the
impression of an electrostatic force on a flat liquid surface leads to
cusp-like filamentary protusions. Curved surfaces reduce the voltage
required to produce the cusps, and can be shaped in such a way as to
encourage the formation of a single cusp. In their arrangement, the
needle protruded through the surface of a pool of liquid metal. They
pointed out that the radius of curvature of the needle and the length of
the shank protruding above the liquid surface are critical parameters, in
that multiple cusp formation is to be avoided, and the length must be
small enough to permit adequate viscous flow to replenish the emitting
region, while long enough to avoid problems with the meniscus at the
needle-pool interface. They were successful in obtaining emission from
Cs, Ag, Au, Ga, In, Sn, Pb, Al, Hg, Si, Ge, U, Pt, Fe and Bi. They did not
report any TED measurements.

In 1979 Seliger and coworkers34 produced a gallium source and
reported an intensity of 1.5 A/cm? in a 1000 A focused spot. The

following year, Swanson, Schwind and Bell® reported measurements of

11
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the energy and angutar broadening of liguid gallium ions as functions of
emission current. Their source configuration consisted of a tungsten
field emitter with a cone half angle and radius of 23 £ 2°and 5+ 2 uym
respectively. A film of gallium several microns thick was coated onto
the tungsten emitter. By warming the emitter above the melting point of
gallium, a liquid film was produced from which a cusp could be formed by
the application of an electrostatic field. They measured TED values for a
variety of current and temperature conditions. Values for the full width
at half maximum (FWHM) ranged from 4.5 eV for low current and
temperature to about 30 eV for high current and temperature. Swanson
and coworkers3® published energy and angular broadening results for both
a gallium and a bismuth LMIS. They have also been able to make similar
measurements on indium and aluminum.36

Dixon and coworkers* studied the ionic emission from a tin LMIS. In
this metal, multiply charged species are found in relatively great
abundance. They found that the energy spread for singly charged tin ions
was greater than that for doubly charged ions of the same mass, and also
investigated the relationship of mass to the energy spread for diatomic

species.

2.4 Energy Broadening Mechanisms

Discussion of the theories of broadening mechanisms that follows

will be restricted to the case of electrons emitted from a solid cathode.
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2.4.1 Internal Broadening Mechanisms

In 1970, T. Fischer3” suggested that the high energy tail found in the
field emission energy distribution was attributable to the Auger filiing
of holes in the Fermi gas which are produced when electrons with
energy less than the Fermi energy are field emitted. Lea and Gomer28
supported this theory which was further elaborated by Gadzuk and
Plummer29. Later, in 1973, Gadzuk and Lucas®® showed that the J2
dependence of the energy spread reported by Lea and Gomer and others
was not sufficient evidence to prove the multi-particle process theory.
They proposed that the energy spread arises from the uncertainty in the
tunneling lifetime of the electron through the surface potential barrier.
They summarized four different scenarios of the tunneling which
predict various lifetimes having the incredible range of 1to 1 x 10716
seconds. They favored an estimate on the order of 1 x 10772 seconds and
showed that the dependence on current density found experimentally for
the high energy tail can be derived from the quantum mechanical

uncertainty in the tunneling lifetime.

2.4.2 External Broadening Mechanisms

Bdrsch?? was, of course, the first to discuss the broadened electron
distribution. He found that the broadening was a function of current

density and showed that focusing a beam increased the TED width even
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though the cathode temperature remained constant. He concluded that
there was no broadening in the acceleration region, and postulated
waves in the space charge field emanating from the crossover regions in
the optical column.

Laffler2” suggested that the energy spread cbserved by Bbérsch was
the result of pairwise interactions at the crossover and gave an analytic
treatment . He assumed that the initial axial energy spread was zero
and that the axial separation between pairs of electrons remained
constant. He concluded that a relaxation of the thermal energy was not
needed to explain energy broadening, and that the largest contribution to
the broadening was from near-neighbor interactions. His analysis
predicts the following dependencies for AE;

AE o< [V2 VAT, (4)
where r, is the crossover radius and o, is the angle of divergence.
Loffler's analysis cannot be used to investigate energy spreading in a
beam having no crossover, such as in a field emission electron gun
(which does display energy broadening).

in 1970 Zimmerman3® produced a general theory of the Borsch
effect. He also showed that the Coulomb interaction between individual
electrons (as opposed to the interaction of a test electron with the
average space charge created by the surrounding electrons in the beam)
is primarily responsible for the energy spread in high current electron
beams. He discussed the equilibration of the transverse components of

the thermal energy which, because of the acceleration by the electric
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field, are more significant than the axial component. Knauer?® pointed
out by way of example in this context that the compression of the axial
energy spread from a cathode at 1750° K by an acceleration through 10
kV results in a thermal equivalent beam temperature of 0.35° K as
compared to the transverse thermal energy which, although initially is
approximately the same as the tip temperature, becomes 50,000 times
greater after acceleration. In the post acceleration region the Coulomb
interaction between the electrons will act to restore the equipartition
of the internal energy of the electrons.

M. Fischer®! proposed an alternate theory for the energy
distribution from hot cathodes. He restricted himself to the drift
region of the beam and assumed that the electrons were neutralized by a
positive background of stationary ions arising from the ambient gas in
the chamber. In his model the energy spread is the result of the noise
fed into the beam by resistors in the circuit and from the gun itself.

Crewe published two papers*2:43 in which he criticized Loffler for
his "many severe approximations" and for the reciprocal dependence on
the angle of convergence of the crossover. L6ffler?” and also
Zimmermann3® had analyzed multiple small-angle scatterings. Crewe
considered only single Coulomb deflections and arrived at the following

expression for the energy spread:

3
| Qg

AE =17.8 — (5)
Bo L of+3.14x107° 12/,°
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where B, is the ratio of the electron velocity to the speed of light.

El-Kareh and Smither*4 developed two computer models using Monte
Carlo techniques. In the first model, the beam is directed to converge to
a point, and the effect of the interactions is calculated for a series of
initial conditions. In the second program, an actual electron gun is
simulated, and the analysis of the Bdrsch effect made for a diverging
beam without crossover. In the first case, they found their model to be
in agreement with theory in predicting the space charge effects on the
beam at the crossover, and also compared their calculations with
Zimmermann's theory and found reasonable agreement. Their energy
broadening results were lower than Zimmermann's results because they
did not include any initial thermat energy. They then proceeded with
their second program to show that large amounts of spreading can occur
in a gun assembly which has no crossovers.

Knauerd® showed that “the number of large-angle deflections along
the length of a typical beam is less than one per particle, while the
number of small angle scattering events significantly exceeds one.
Furthermore, multiple scatterings are found to be far more effective in
transferring momentum." He therefore favored the approaches taken by
Loffler and Zimmermann over that taken by Crewe. Knauer also showed
that pairwise interactions are the dominant ones, and attempted to
clarify the role of the several competing processes and indicate the
types of beams and beam geometries for which they apply. He

considered external mechanisms only.



In 1979 another paper using Monte Carlo simulation appeared.
Groves, Hammond and Kuo#® constructed a model of the electron beam
which they described as being free of approximations. However they
excluded the acceleration region of the beam, and instead assumed a
uniform initial distribution of the electron energies in both the axial
and transverse directions. The electrons were randomly distributed in a
cone-shaped region of space, random in position and in velocity within
the limits of the energy distribution. The resuiting ensemble of
particles was then traced through an optical system and a record made
of the particle positions and energies at various locations. In this way
a distribution describing the spot size and beam energy characteristics
was obtained. The paper presented studies of the effect of source
magnification, of mutual repulsion and of the spherical and chromatic
aberrations on the spot size.

DeChambost and Hennion4® analyzed energy broadening in the tip
region and at a half-crossover, attempting to find a simple analytic
relationship involving easily measured column parameters. Their result
differed from experiment by a factor of two and they concluded that the
statistical model chosen to represent the electron density of the beam
strongly influences the resultant equation, and that differences in the
statistical models chosen by various authors accounts for the
disparities found in the literature. They also found that the geometry of
the beam, particularly in the tip region, must be accurately represented

in the calculations, in order to obtain useful results, contrary to the

17



calculations of Groves et al.

Rose and Spehr?” attributed the Bdrsch effect to statistical
fluctuations in the spatial distribution of the electrons, which by means
of Coulomb interactions between the particles alters the energy
distribution. With smali currents, there are few collisions and a
non-uniform transfer of energy and this leads to a non-gaussian energy
distribution. Crossovers especially favor a non-gaussian form. They
pointed out that because the TED is non-gaussian, the ratio of the FWHM
to the root-mean-square depends on the current density and on the form
of the crossover. For this reason the assignment of beam temperature
based on the distributions should not be made.

Massey and coworkers® studied the photoemission from a flat
surface and in their theoretical discussion distinguished between the
average and fluctuating forces acting upon the electrons. The average
force arising from the space charge of the ensemble of electrons leads
to broadening of the beam radius, but not to energy broadening. The
fluctuating component, on the other hang, leads to both energy and radial
beam broadening by way of both potential and thermal energy relaxation.
In a uniformly accelerating field they calculated AE and Ar by
considering fluctuations in the beam. The initial potential energy of the
electrons is converted to kinetic energy and this effect in their case is
large because of the energy provided by the exciting laser. Their
analysis, which is comparable to Knauer's*0 leads to the foliowing

expressions for the energy and radial broadening:
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AE = 0.61 (ney)S/6 m1/4 g13/12 D28 y112 ¢ -1/12

Arg = 0.61 (re,) S8 mi#4 112 D53 J112 ¢ 13/12

Arg = (J r D? /€ )(m/2e)12 ¢47372
where D is the diode spacing, ¢4 is the anode potential and r; is the
trajectory aberration arising from the fluctuating forces, and rq is the
trajectory aberration arising from the space charge.

In 1881 Knauer?® conducted an analysis of the energy spread from
point sources using a sphere model for the emitter. He considered both
electrons and ions. Because of the radial paths taken by the particles,
this model is collision free and the largest contribution to the energy
spread occurs in the inital acceleration region. Also in real
applications, apertures cut off much of the beam current downstream.

He found AE proportional to the two thirds power of the current.
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CHAPTER THREE
The Pairwise Model

3.1 Introduction

Energy broadening in charged particle beams occurs primarily by
means of the relaxation of initial potential energy through energy
exchange between pairs of unusually close particles or by means of the
relaxation of initial transverse energy through collisional equilibrations.
In field electron and ion emission the primary means of energy
broadening is via potiential energy relaxation®®. For low currents, where
the average interparticle separation <§,> is greater than the beam radius,
the particles lie in what Knauer defines as the single file regime. it is
this regime which will be explored by means of a simple two-particle
numerical model.

In this model an electric field distribution is selected to represent
the field in space between the emitter and collector surfaces of a field
electron emitter or a liquid metal ion source. In these studies, analytic
expressions describing a spherical field, Figure 1, and the field of a
sphere-on-orthogonal-cone (SOC) geometry, Figure 2, were used.

A pair of charged particles representing a fluctuation in the

emission process are introduced into the electric field at the emitter



SPHERE MODEL

Figure 1. Spnerical Emitter Model. Tha radius of the sphere is r,, caticla 1 has traversed a

2
distance of 84 in time 5 and particle 2 ig shown at the moment of emission. Ths trajecteries of the

two padiicles are colinsar.
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SOC MODEL

Figure 2. Sphere on Orthogonal Cone (SOC) Model. The radius of the emitter is measured from the center
of the core sphere to the apex of the emitter surface. The particles are shown at same time 1 having been
amittar from points equidistant from the emitter apex lying in the same plane. The half-angle ¢f emission

is 6, the angular coordinatas of the particles are measured with respect to the center of the core sphere,

and 8 measures the difference in the radial coordinate between the two particles.
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surface, generally one at a time. The eguations of motion for the
particles are then solved numerically, as will be described in Chapter 4.

The overall emission process is assumed to follow a Poisson
distribution with the time between successive emission events being
exponentially distributed.#® Accordingly, the probability function for the
interevent time T, is given by

P(Ty) = 1-exp(-AT,) (9)
with A, the rate of emission, defined as

A =l/ne (10)
Aliso, with this assumption the probability density function, which is the
derivative dP(T,)/dT, is given by

f(Ty) = Aexp(-AT) (11)

Now from the probability density function for some parameter p, the

mean value of the parameter is given by

<p> = J?f(p)dp (12)

In these studies model calculations will be used to determine the
functional relationships of various quantities to the interevent time T,,.
By substitution into Equation (8), the probability density function (PDF)
for each quantity will then be determined and the mean value calculated
from Equation (12). Since all the quantities are functions of time, the
lower limit in Equation (12) becomes zero.

As an illustration of this procedure, the mean initial spacing



between particle pairs will be calculated. Each particle has charge ne,
mass m and for this example, is being accelerated by the electric field
outside a spherical emitter of radius a and electric potential V,. Within
time T, the first particle will traverse distance 8,. For the cases where
3y < a, the field F(r) can be approximated by F, = V/a so that

8, = neF,T,2/2m

Substitution of Equation (13) into Equation (8) and differentiating
yields the PDF of &,:

f(3o) = (k/2) 8,712 exp(-k §, 1)
where k = I(ne)™32 (2m/F,)'2. The expected value of the initial

interparticle spacing can be calculated from

<by>= fg: 1(8,)d5,

0

= J'FE/Q)SOW exp(-k8, 12)d3,
0

Substituting &, = x2 = g(x) and d§, = 2xdx results in

<dp>= mx/Z)exp(-kx)(Zx)dx

0
=kf;§exp(-kx)dx
0

= k(2/k?)
= (ne)® Fy/m/I2
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This example furnishes a means of relating the observed current | to the
initial particle spacing <3,>. The trajectories of pairs of electrons or
ions whose initial spacings are significantly less than the mean spacing
will be studied by means of the model calculations. However, it will be
assumed that the fluctuation in spacing used in the model may be
expressed as a percentage of the mean spacing, so that Equation (16)
applies with the inclusion of a proportionality factor.

For the remainder of this chapter the focus will be on the two
particle model itself, proceeding with a derivation of the equations of
motion of the particles traveling in an unspecified electric field,
followed by a description of the two fields considered in this present
work, and concluding with a discussion of the means of calculating the

energy spread in the two particle model.

3.2 Particle Equations of Motion

The expressions for the electric potential of a pair of point charges
in the presence of a conducting spherical emitter will now be derived
using a spherical emitter model to develop expressions that include

image charges. These image terms will also be approximately correct

for the SOC model because only emission on or near the axis of symmetry

will be considered where, for the distances over which the image terms
are non-negligible, the SOC surface is very nearly spherical. Although

the image terms were included in this part of the derivation for
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completeness, they were omitted from the machine calculations because
of their very limited contribution. Over the region where they are
significant, their influence can be thought of as balanced by an initial
radial kinetic energy. The effect of having a net radial or transverse
initial kinetic energy is best handled by Monte Carlo techniques and was
not studied with this two particle model.

According to the nature of the geometries of the problem, spherical
coordinates will be used. However, because of the azimuthal symmetry,
only the (r,8) coordinates need be considered. From Figure 3 the
following relationships are obtained:

fp=(r2 + 1,2 - 2r,r, coso,,)'?

fo = (142 + 1,2 - 2r,1, cOsH,,) 12

r's=(ry'? + 1,2 - 2r.'r, cosf,,) "2
Noting that r;" = r,2/r, and r,’' = ry2/r, the last two equations may be
rewritten as

Mo =12 + 1,412 - (2r,102/1,) €080, ]

r's = [rg*/r, 2 + 1,2 - (2r,r,2 /1) c0S6,, 1172
The electric potential at p,, the position of particle 1 arising from the

other particle and image charges is:

Q, Q,(-ry/ry) Q,ry/t,
by = + +
41IEOF12 41160(r1 - r1') 4ATELT (5
Q, Q7o Q,1g

Amegr,,  Amey(ry ~r2/ry)r, 4mEyT s
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SPHERE-ON-CONE MODEL

Figure 3. Geometry of the SOC Modal. Shown are the particles 1 and 2, and their image charges, 1'

and 2' along with the vectors joining them.
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1 Q Qqr Q,r
_ [ 2 o M2l } (17a)
dney LTy 12 - 12 Fof2
where Q, and Q, are the charges on particles 1 and 2. Similarly the
electric potential at p, is given by
1 Q, Q,r, Q,ry
9, = [ SR (17b)
dn€g L T, TS0 v M2
The equations of motion for the particles in an external electric
field can be obtained from the Lagrangian for the system:
L=T-V
where T, the total kinetic energy is given by
T={m 2+ (r8,)2]+ my[ .2+ (r,8,)2] }/2 (18)
and where V, the total potential energy is given by
V=Vei+Vi+V, (19)

where Vi is the potential energy of the external field, and V, and V,
are the potential energies of the two particles. The equations of motion

in r and 6 for each particle are then as follows:

d [aL } 3L d [aL J 3L
— | — [=—, — | —=— (20)
dt Lar | 8 dt [ 86, 1 e,

Substitution from Equations (17)-(19) into (20) for particle 1 results in:
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d [SL] 3L
— |— |=— =mF,
dt Lo,

- lpy ] (21a)

d [SL} oL . _
— |— |[=— =m,r,~6 +2m,r.r.0
dt 891 861 11 "1

.y OVey Q {rxerz
'de,  4ne,

- gy ]sine12 (21b)
F12

angd for particle 2:

d lBL} oL i
| |=— =my
dt L or, or, 22

oV

axt

- A2
—m262 r, +
T

Q, | (ry-ry cOSB,,)Q;

- - (21¢c)
4ne, ro> e
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-d [BL} aL oz N
—— |— |=—— =mM,r,°6, + 2m,r,r,0
ot 188, 36, 2'27V2 2'2"2%

—r avext QQ I: Iy r201
2 8e,  4mg,

- lgo }sine,z (21d)

Mo

where the image terms are

3
2r,Q, rofy - (rg°/rp) €OSB,5 o
Iy = Y +Q, " + +
(- 10%) f2 M2! %1y’
2 4
r My" V5 COSO r
0 o "2 12 0
[ > T ” (22a)
ALY My M
3 3
1 Faor
0 02
lgs = Qp (22b)
r2 ro,° r.2r,3
2 T2 1 My'2

and where I, and lg, are analogous to I, and Iy, (the subscripts on the

charges and radial variables being interchanged).

3.3 Electric Field Models

[n the present studies two types of electric field models were used:

the spherical charged conductor, and the sphere-on-orthogonal-cone
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(SOC) model. For the sphere model the particles were also confined to
single-file trajectories (6, = 8, = 0). The SOC model was selected in
order to more accurately represent the emitter surface of both electron
emitters and LMIS. For the SOC model, both single-file and off-axis
trajectories were produced.

The sphere model equations are presented first, and then the SOC
model equations are derived. From this point on the image terms of
Equation (22) will be omitted as discussed in Section 3.1.

For single-file emission, with a concentric spherical emitter/

collector field, Equations (21) become

aVsphere Q1 Q2 L
myry = + (

or, 4re, ry-1,) 2
Q,Er,2 Q.Q
- 40 0= (23a)
mr,2 4me o8,
Q,Er,2 Q.Q
myr, = 0. 172 (23b)

2
mr, 47t6060

where 3, =1, - r,. In these equations the zero potential is at infinity.
The SOC electric field model is a solution to a problem posed by
Smythe®¢. The problem statement and solution are as fotlows.

A conducting sphere of radius ry is supported by an orthogonal cone
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(also conducting) whose exterior half-angle is a. This system is
charged, with the zero potential surface on the conductors. The problem
is to find the potential V at an exterior point p.

in spherical coordinates V = 0 for r = r; and also for 8 = o.. Laplace's
equation in spherical coordinates is

3 3V 1 3V 1 32V
— | + sine — |+ =0 (24)
or or sind or sin%e 302

This equation can be solved by the separation of variables technigue, and
by applying power series solutions to the separated expressions.

Setting V = R(nN@(8)®(¢) = R(r)S(8,0), substituting V = RS and
dividing by RS yields

1 d dR 1 3 23S 1 32S
=i + — | sin® + =0 (25)
R dr dr Ssing 86 a6 Ssin?6  9¢2

Set the first term in r equal to K, and the last two terms in S equal to -K.

If a power series solution in r:

R = Zanrn |
is assumed, then

RK = zn(n + 1)ap™m

= D Kan™ (26)

Thus if K = n(n + 1), then R = a,r" and any sum Eanr” or integral [a,rVdv
is also a solution.

To find the second independent solution let

R* = 2, by
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Then
dir[ 2 Z—F: ] = 2 (m(1 - M)y ™
= 2 Kbpyr™
= 2 n(n + Vo™ (27)

Thus m(m - 1) = n(n + 1). Solving for m by means of the quadratic
formula gives the two roots m; =-n, m, = n + 1. The case m, is identical

to the previous solution, while the case m, can be written as

R =2 byrn-!
The general solution is then
R =2, (ap™M + by (28)

and any linear combination involving non-integral n is also a solution. if
the value K = n(n+1) is substituted into the eguation involving 6 and (D,

and then multiplied by S the result is

Ssind 08

n(n+ 1)S +

1 a[ 39S } 1 328
=0 (29)

sind — [+
36 Ssin26  A¢?

For the next step Equation (29) is divided by ®®d/sin28:
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siné d de 1 320
— SinG — + — =0 (30)
® do d6 ¢ O¢?

n(n + 1)sin28 +

Set the terms in ¢ equal to -K,, and the terms in 6 equal to +K|.

Then

o2
30?2

= K, ®

K, =m then

D = 2 [cm cos(mo) + By, Sin(me), m=0

=Co+ D . m=0 (31)

In this problem V is independent of @ since there is azimuthal
symmetry. Therefore ® = D and m = 0. Inserting this result into Equation

(30) results in:

sind d de
— sing—-m2=0 (32)
©® dob de

n(n + 1)sin®e +

Multiplying by @/sin28 and making the substitution p = cos8, du = sinéds
yields

B
(@]

d l d@n]
nin+ 1O+ — |(1-u2) (33)

dy du
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which is Legendre's equation and which can be solved by series solution
to obtain ©, = Pr(u). Thus the electric potential
V = Reo
=D 2 [ay™ + by ™1 P(w)
Next the boundary conditions are to be applied. When 6 = o then V =
0, since the conducting surfaces are at ground potential. Thus
DY, [an™ +br 1] P(cos o) = 0
which implies that P,(cos a) = 0. But for o« # & and for arbitrary r the
potential V #0. Examination of the Legendre functions shows that for a
given a > /2 only one value of n will satisfy these boundary conditions
and that 0 > n > 1. Therefore the summation can be dropped to obtain
V=D 2 [y + byrN1] P (cosb) (34)
At = r, the potential also equals zero which leads to the condition
anfa" = -bprg ! (35)
and therefore
bn — _anrazn+1 (36)
Setting A = Dap, gives
V= Al - r 20+ N 1P (cosh) (37)
Suppose that an equipotential surface is fixed at some voltage VR
and passes through the point (r,6) = (R,0). P,(cos(0)) =1 and
VR = A[RN - r 2N+ (n-1]
This then determines the value of A to be

A = VR/[RN - r,2N+1 (-1 (38)



For R >> ry then R > - r 2N+ ¢ N1 and thus A = Vg/R™,

_In justification of this approximation, observe the following typical
examples. Forn=0.5ry=107mand R = 102m, r2"+1 ¢ N-1 - 101
while RN =107, Forn=0.15r5=10"mand R = 1072m, r 20+ (N1 =
1.6 x 1077 while R" = 0.5.

Substituting VR/RM for A gives

n P [ T P |
T e
ra r

Again at r = ry the parameter y = r, /r5 is defined and when 6 = 0

ol e [

Using this potential as the reference voltage resulis in

n ron r N+1
{ {—] - [i] ] Pn(cos8) - V,
ra r

The electric field components for this potential in the radial (r) and

o
ol

.
V=VR[1
R

tangential (8) directions may be found from the relations

-3V

Ep(r.8) = 3
1 aV
Ee(r,e) = - _r‘ —ae

The radial component is
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ra PP e P onet [ry *2
E,=-VR |— — || -— | Pn(cos8)
R rqa Lry ra r

For the tangential component the Legendre function may be
expressed in terms of the hypergeometric series:
Pp(cosB) = F{-n,1+n,1;(1-c0s6)/2}

where

®  a(a+1)(a+k-1) b(b+1)(b+k-1) 2K
Flab,cz} =1+ z
k=1 c(c+1)(c+k-1) k!

Now the derivative of F with respect to z, dF(a,b,c;z)/dz equals

(ab/c)F(a+1,b+1,c+1;z). With z(8) = (1-cos9)/2 the result is

dF(z(6)) dz dF sin6 ab
—=— — = — F(a+1,b+1,c+1;2)
dz do dz 2 C

Therefore the tangential component of the electric field is given by

\V} r n r n r N+1
oo |2 [ =27 ]
a

sin6 d I 1 - cosh ]

—F | -n,n+1.,1;
2 ae 2

VR [ra ]n
B ra R

(-n)(n+1)sind
X F | 1-n,n+2,2,

37
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1 - cosH
x SiNBF | 1-nn+2,2, ——— (44)
2
Substitution of Equations (43) and (44) into Equation (21) yields the
equations of motion for the SOC model
‘ Q.Q r,-r,cosd
Fo b2 12 1712 12
4nm, €, oS
Q.V r n ro -1 r n+2
LR [i] [n [—1] +(n+1) 2 P(cos8,) (452a)
myry R ra ry
) _ Q;Q, r, - 1, COS6,,
T2 = f2622 = =
4nm, €, ro
2 {i ] [n [J»} sn+1) |2 P (cos8,)  (45)
Mylg R ra ry
4 _ f,6, [ Q,Q,sinb,, (1,
, = -
r 4nm, €, rs°
Q,VR [ rg }” (n + n2) { { ry }”'1 {ra }”*‘2 ]
N X
myTyfq L R 2 5 ry
F[ 1-n, 2+n, 2; (1 - cos8,)/2 ] sing, (45¢)

L BB, [ Q,Q,sinB;, Ty,
62= =

3
r> 4nm260 2P



Q,VR [’a ]” (n + n2) [ [ Iy }’H [ra }”’fz}
- | — X

1 PA AP R 2 T3 rs

F[1-n, 2+n, 2; (1 - cosB,)/2 ] sind,

This system of second order differential equations, as well as
Equations (23) for the sphere model can be solved numerically by the
Runge-Kutta method if they are first transformed into an eguivalent
system of first order differential equations. The following simple

transformation yields such a system with time as the independent

variable:
dT/dT = 1 a6,/dT = vg,
dr,/dT = v,, d6,/aT = vy,
dr/dT = v, dvg,/dT = d26,/dT?
dv,,/dT = d?r /dT? dvg,/dT = d26,/dT?

dv,,/dT = d?r,/dT?

3.4 Energy Integrals

This chapter will now be closed with a discussion of the calculation
of the energy broadening for the two particle case.

The calculation of the energy spread AE entails the calculation of
the change in the kinetic energy experienced by each particle as it moves
under the infiluence of the forces generated by the emitter-collector

electric field, and by the Coulomb field of the other particle. The change
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in the kinetic energy of a particle moving from point A to point B under

the influence of external forces is given by the path integral:

B
AE=Eg-Ep-= JF-dI
Apath

which in spherical coordinates may be expressed as
AE = rFrdr + J.ErFede
Apath Apath

The energy change caused directly by the change in potential energy
between the emitter surface and the collector surface, which acts

equally on both particles is not of concern in this study. The imparted

energy is Q(Vg - V) where Q is the particles' charge and Vp and Vg are

the potentials at points A and B. |t is rather the effect of the Coulomb
force acting between the unusually proximate pair that is being

computed. For the SOC maodel, the forces acting on each particle are

given by:
F, = ma; =m[(r, - r,8,2)r + (r,6; + 2r,6,)8)]
Q,Q, :
= . [(rscos8,, - 1)L - (15 SiN64,)8]
ryo°4me,
Q,Q, :
F, = ————|[(r,c088,, - ry)r - (ry sind,,)6]

3
Mo 47:60
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The change in Kkinetic energy due to the Coulomb interaction for particle

1 and 2 is given by:

f r,cos0,,-r 8t r.r, sing
AE1=C{ f 2 1271 r, + J 12 SINBy5 de,}
.3 3
12

r
2
ro+250 850 !
fr,cos0,.,-r 8t r.r,sino
AE2=Cl J’r 1 12T o, + J' 2 12 d%}
3 3
12 P
"o 6o

where C = Q,Q, /4n€,, ry = emitter radius, ry = collector radius, &, =
radial separation (ry - r, ) whenr, =r,, 855 = 6, whenr, =r1,+ 8, 0 =
emission angle, 6s = final angle, 8,, = (6, - 6,) and r,, = (1,2 + 1,2 - 2r,r,
cos6,,) 2.

For the sphere model with the restrictions of colinear emission (8,

=0, = 0), Equations (50) simplify to

(Tt dr,
AE, =C

] (ry -r,2)

ro+9g

(Tt dr,
AE,=C

v (r1 'r22)

fo

The limits on the integrals reflect the fact that the Coulomb force acts
only when both particles are present.

The total energy spread AE of the two particles is

AE = AE, - AE,

At each point along the trajectories, values for the integrands
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(50a)

(50b)

(51a)

(51b)

(52)
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appearing in the energy spread Equations (50) or (51) were computed and
stored on disk along with the spatial and time coordinates of each

particle. Figure 4 shows the components AE, and AE, as a function of
distance for a typical set of gallium ion trajectories from an SOC model

emitter.



OE (eV)

0 L ] | ] | [ | )
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Figure 4. Components of Energy Spread. An Example of the contributions AE and AE, to the total

energy spread, AEt, is shown as a function of radial distance from the emitter core sphere. These

2

data are from Ga® ions emitted colinearly from an smitter of radius 4= 5x107“um, y=3.0, n=0.5

and dg= Sx10'3pm
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CHAPTER FOUR
Numerical Methods

4.1 Introduction

The major numerical techniques used in the solution of the
equations of motion (23) and (45), and the techniques used in the

integration of Equations (50) and (51) are discussed in this chapter.

4.2 The Runge-Kutta Algorithm

A fourth-order Runge-Kutta method>! was used to solve the system
of equations (23) and also (45). A Runge-Kutta method is designed to
approximate the Taylor series solutions of the system without explicit
definitions of, nor evaluations of derivatives other than the first. A
fourth-order method agrees with the Taylor series solution through
terms of order h% where h is the increment in the independent variable in
the series expansion.

Symbolically then, given the system of first order ordinary
differential equations:

X4 (1) = £,(t x (1), x5(1), ..., Xp(1))

Xo(1) = f5(t, x4 (t), X5(1), ..., Xp(1))

Xn(t) =t %, (1), X5(1), ..., Xpu(1)

44
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with the initial conditions x;(15) = Xj,, fori=1, ..., n, a Runge-Kutta
algorithm provides estimates x;&(t,+h) to the exact values x;(ty+h),
where his an arbitrary increment int. These estimates are equal to the

Taylor series expansion:

3 nk ax(ty)
X; (t0+h 2 —
k=0 kI d¥t

There are two disadvantages associated with Runge-Kutta methods.
A fourth-order method reqguires four evaluations of the expressions (53)
in order to advance the solution one incremental step in the independent
variable. Since the sphere model and the SOC mode! involve complicated
expressions for the derivatives, the Runge-Kutta method is relatively
time consuming in comparison to other methods such as
predictor-corrector methods. A second disadvantage is that estimation
of truncation errors arising from the limited number of terms computed
in the Taylor series is not obtained in the calculation procedure, and
errors are therefore difficult to estimate.

The first disadvantage is offset by the foliowing considerations. In
both the sphere and SOC models, the functions representing the
derivatives change very rapidly, and are functions of a variable whose
domain must therefore span as many as ten orders of magnitude. Since
the ultimate goal is not to produce particle trajectories as functions of
time, but rather to produce data from which other quantities of interest
are to be derived by integration, a major concern is the ability to easily

change step size whenever necessary for providing accurate data to the



integration algorithm. The Runge-Kutta method does allow changes in
the step size at any time, with basically no overhead. Furthermore itis
easy to set up meaningful criteria within the procedure for determining
when to make such changes dynamically while the solution advances.

Runge-Kutta methods are also self-starting, that is, the values for
the vector X need only be specified at one point in time. Other methods
of comparable accuracy require knowledge of the solution at four equally
spaced points in t. A Runge-Kutta method is often used to provide these
four sets of starting values and the second method used to continue the
solution. If the step size changes, four new sets of starting values are
required. Because the step size in this problem changes so often during
the solution, it is more convenient to use the Runge-Kutta method
throughout.

Furthermore, Runge-Kutta methods are stable: a small error at one
point in the calculations, such as a roundoff truncation error, will tend
to decay through successive iterations, rather than propagate.

The system of equations from which Runge-Kutta methods are
derived contain eight equations in ten unknown parameters. There are
therefore two degrees of freedom in specifying the solution of these
equations. By imposing one arbitrary condition, and expressing the
solution in terms of one of the unknowns, a particular Runge-Kutta
method is obtained. It is possible to select a condition which minimizes
the amount of computer memory required for execution of the algorithm,

and then select a value for the free parameter which reduces the
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truncation error. It is also possible to incorporate a "feed-back"”
technique which compensates for roundoff errors ! These features were
incorporated in the algorithm used in this study.

One procedure for estimating truncation errors is to perform the
calculations using two different step sizes over the same interval. The
truncation errors are then approximately [xj(h,) - xj(h,))/15. It was
determined that the truncation errors were negligible during the
computations for both the sphere and SOC models.

There are two requirements pertaining to step size selection. The
step size must be small enough to allow the Runge-Kutta solution to
accurately reproduce the particle trajectories in regions where they are
rapidly changing, and also to allow the energy integrations to be
accurately performed. [n order to meet these requirements, the step size
was adjusted logarithmically according to the following scheme. Within
a preselected distance rg from the emitter surface, usually within one
emitter radius, the time increment was selected such that for each
decade of distance 300 samples of the trajectory were computed. The
first 100 were equally spaced out to 20% of the distance. The second
were equally spaced between 20% and 50% of the distance, and the last
100 samples spanned the last half of the distance. Beyond rg 100
samples per decade of distance out to the collector surface were taken,
except that 100 closely spaced samples were taken in the neighborhood
of the collector surtace.

In order to determine the amount of time required to traverse each
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distance, an estimate, based on the velocity of particle 1, was made for
the time to traverse the distance in twenty steps. The estimate was
iteratively refined until it was within 1% accuracy and then the solution
was recomputed with one fifth of the step size. For the special case of

attaining 8,4, the accuracy of the step size was set to 10 ppb.

4.3 Integration Using a Cubic Spline Algorithm

The integrations of the output data of the Runge-Kutta program
were performed by a second, independent program also developed by the
author. This program provides general purpose interactive graphical and
numerical data processing capabilities. Integrations available with this
program are performed by means of the integral formulas for a cubic
spline approximation to given data sets. The cubic spline algorithm used
in this program was adapted from a subroutine used by Hesse and
coworkers®2 for background subtraction and area determinations in
quantitative Auger electron spectroscopy. A spline function is a
composite formula consisting of a sequence of low-order polynomials
interpolating on a given set of ordered pairs>. This is as opposed to a
single high order polynomial fit over the entire domain of the data. In
the case of a cubic spline, each element of the sequence is a cubic
equation covering a four-point subintervat of the data set:

fi(X) = ag(x - X3 + b (X - X)2 + C(x - xy) + dyg;

k=1,2 ...,n-1
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where n is the number of data pairs (xy.yk) in the given set. The cubic

spline interpolating function is then:

f4(x) X < X4
f(x) = fk(X) X <X < Xiepq
fr.4(X) Xp-1 < X

In order to determine the coefficients ay, by, ¢k and dy several
conditions must be applied. Different types of conditions are possible
and lead to differences in the behavior of the spline function at the ends
of the data interval and near discontinuities within the data. Among the
conditions applied in this study, the following are of importance.

Three levels of continuity are reguired from one subinterval to the

next, namely continuity in the function, and in its first and second

derivatives:
Yk = f(Xy) k=1, ..,n-1
= i1 (%) k=2,..,n (55a)
Py (xie) = Fre(Xse) k=2, .,n-1 (55D)
Pl (%) = Filxi) k=2,..,n-1 (55¢)

A fourth condition incorporates a set of smoothing factors, py, into
the algorithm for determining F(x). This allows for some control over
the accuracy with which the spline function approaches the given data

base. This condition is expressed as follows:



[ 33, (x)
— KK K =1
dx3
dafk(xk) de’fk_ﬂxk)
fkXk) - Yk Pk = - k=2,..,n-1
KTk Tk Pk dx3 dx3
-1 (xk)
e k=n
dx3

This condition maximizes the integral

rn [ d2F(x) }2
dx
dx?

X3

subject to the condition that

n
2 [f - <
k=1[ k(Xk) - YKIPk < €

where € is some given optional amount. [n Hesse's application to Auger
spectra, random noise in the measurement could be smoothed out while
retaining the peak structure by careful selection of the pk. In the
present study, the py were always chosen so as to reproduce the
Runge-Kutta program output as accurately as possible.

The representation of a set of data in terms of the cubic spline
function renders the numerical evaluation of the integrals and
derivatives particularly easy. Writing hj = Xj, ¢ - X}, hiyq = X - X4 @nd

referring to Equations (54) and (55), the integral formula is:
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k-1
rf(x)dx = 2 (ajhj4/4 + bjhj3/3 + thj2/2 + djhj) +
X1 j=1

8k+1hk 14 + by 1y 18 + C1hg 1272 +
dks1Nk41

for k such that x4 < X < X, » @and for x < xp,.

The derivative formula is given by:

f(X) = 3ay(x - X)) + 2Dy (X - Xy) + Ci Xk < X < Xy q
for the range x4 < x < X4. The program developed by the author provides
interactive access to any of the operations of interpolation, integration
and differentiation, each with controllable smoothing, and each capable
of handling any data set from four data points to five thousand or more
data points.

The program provides the standard error of the estimate as a
measure of the accuracy of the spline fit. The standard error of the

estimate is defined as:

1

% 172
= —— - f 2
€g . [k=1[YK (Xk)] :l

During the investigation of the sphere maodel program it was found
that, because of the extreme variations in magnitude displayed by the
model output over very short intervals, the model data resembles a
discontinuous function in some regions of interest. A single cubic spline
function covering the whole domain was not capable of adequately

representing the model output. In view of this fact, provision was made

o1

(58)

(59)
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fo partition a given data set into as many as thirty-two subsets, and the
integration was performed in piecewise fashion using a separate spline
fit for each subset. The value of the integral and error €¢ are displayed
for each subinterval and the integral values are accumulated towards a
total value for the entire set by the program. In this way €¢ could be
reduced to less than 0.1 ppm.

A demonstration of the accuracy of the entire method of solution to
the energy integral evaluation was provided by a comparison of the
potential energy between the particles at the moment particle 2 is
emitted, and the net kinetic energy of the particles at the collector
surface. From the shape of the integral curve, Equations (50) or (51),
those cases where essentially all of the potential energy had been
converted to kinetic energy could be distinguished by their constant
amplitude near the extractor electrode surface, which is evidenced by
the insignificance of the contributions of the areas of the last few
subintervals in time to the value of the total integral. In these cases,
the net final kinetic energy, to at least four digits of accuracy, was
equal to the initial potential energy arising from the Coulomb force at
the moment of emission of the second particle. This observation will be

discussed in more detail in Section 5.2.

4.4 Difficulties in Using the Numerical Methods

Most of the features of the numerical methods employed have been



explained in detail in the preceding section. Noted here are some of the
difficulties which were encountered, first during the development of the
Runge-Kutta algorithm, and then during the integration procedure. The
extreme differences in scale presented by both the electric field model
geometries create the need for frequent changes in the step size of the
advancing solution. The Runge-Kutta technique handles varying step
sizes easily, but does not, of course, suggest appropriate step size
values. Furthermore, the rapidly changing acceleration caused by the
spherical field coupled with Coulomb interaction severely limited the
predicting capabilities of known quantities to a very local neighborhood.
The following scheme was devised to overcome these difficulties.
An attempt was made to advance the solution to a given distance, usually
to a point lying an order of magnitude (less in the tip region) away from
the present position. An estimate was made of the step size required for
a total of twenty steps to cover the distance. This estimate was based
on present acceleration and velocity. The Runge-Kutta algorithm was
written as a subroutine whose calling sequence contains several control
parameters. The step size and number of steps to advance the solution
are supplemented by a key identifying one of the dependent variables in
the system of equations, and by a constant. The subroutine was designed
S0 that at every step of the solution, the key variable was compared to
the constant. If the key variable was found to be greater than or equal to
the constant, the Runge-Kutta subroutine immediately returned to the

calling procedure; otherwise it continued to advance the solution until
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the requested number of steps had been computed.

By means of these control variables, the main program could search
for the step size required to advance the solution a specified distance In
a given number of steps automatically.

Another problem occurred with small values of 5,. A limit is
reached when the Coulomb force overcomes the force exerted by the
cathode thereby driving the second particle back into the emitter. This
effect places an upper {imit on the tota! current able to be modelled by
single-file emission. When angular separations are permitted, this limit
varies depending on the emitter radius.

A third problem with early versions of the Runge-Kutta program
occurred at large values of 3, and small radius emitters. Subdivisions of
the trajectory had been based on the position of particle 1. For large
values of 3, the force exerted by the emitter on particle 2 greatly
exceeded the force on particle 1, and during the iteration process
particle 2 would unexpectedly have overtaken particle 1. In single-file
emission, this is clearly not possible. It was this problem that led to
the finer resolution based on the position of particle 2 within the region
between the emitter and 3,. This and other refinements in the
interpolation technigues eliminated this problem.

With respect to the cubic spline integration procedure, the major
problems centered around obtaining a highly accurate fit to the
Runge-Kutta data. The effect of the smoothing factors py depends on the

magnitude of the domain and range of the input data and on the spacing
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between consecutive data points.

Preprocessing of input data was incorporated into the spline
algorithm which rescales the data into a neighborhood around 1 in order
to standardize the effect of py as much as possible. The scaling factors
used were always powers of ten. Negative powers of ten are irrational
numbers when expressed in the binary system of the computer, but
positive powers are not. Therefore, division by the reciprocal of the
factor was used if the factor was less than 1, otherwise multiplication
by the factor was used in order 10 retain the maximum accuracy of
representation of the source data.

The smoothing factors behave acceptably for data sets which span
less than about three orders of magnitude. The Runge-Kutta data
typically span sixteen to twenty orders of magnitude. The host program
in which the spline algorithm is implemented is able to split its data
storage into independent sets. Therefore, consideration was given to
dividing the Runge-Kutta data into sections, integrating each section and
then summing the result. In so doing each section was able to be
accurately fitted and an integral obtained. However, the sum of the
integrals of each set does not give the correct total for the entire
domain unless special care is taken to include the pieces of the curve
which lie between the sets. Provision for the inclusion of these pieces
was therefore incorporated into the procedure for performing piecewise
integrals.

The calculations of the Runge-Kutta program were all carried out in



double precision arithmetic whereas the final integrations were carried
out in single precision arithmetic. Because of this reduction in

precision, occasionally two or more data points near the beginning of the
trajectories were spaced so closely in distance that, in single precision
they became equal. The spline algorithm used in the integrations
requires that input data represent a function in the algebraic sense: for
each abscissa there must be one and only one ordinate. When multiple
ordinates were presented to the spline algorithm, and optional feature
was invoked to discard all but the first of the multiple points. This was
done rather than, say, taking an average value for the abscissae in order

to preserve the lower limit of the integration.
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CHAPTER FIVE
Presentation of Model Data

5.1 Introduction

The presentation of the various cases put to the model equations for
solution will now be given. The two particles, whose trajectories were
being determined, could be characterized by their charge and mass, and
by their initial positions and velocities. The particle types used with
the model studies include e, Li*, Al*, Ga*, In*, Bi*, Bi*2 and Bi*S.

The initial position of all particles in all test cases was a point
lying on the emitter surface. For the sphere model studies, all particles
were emitted from the same point on the sphere and traced colinear
trajectories. Colinear studies were performed with the SOC model with
trajectories lying on the axis of symmetry of the emitter, for
comparison with the sphere model results. Emission points lying off the
axis of symmetry were also tested with the SOC model.

Although the algorithm provided the capability for using non-zero
initial radial and tangential velocities, this feature was not invoked in

the present studies. The principal reason for studying initial velocity



effects is the characterization of the virtual source size, as in the work
of Weisner>4, and requires a large number of trajectory calcuiations.
Multi-particle Monte-Carlo methods are better suited for this kind of
study and were not attempted in the present work. Qualitatively, if
particle 1 is given an initial radial velocity relatively greater than that

ot particle 2, then the effect would be similar to increasing the initial
particle spacing. Directing the particles tangentially away from each
other would have an effect similar to increasing their initial angular
separation. Both of these examples would diminish the potential energy
exchange and weaken the observed energy and radial beam spreading.

The electric potential models are characterized by the radius of the
emitter, the electric field strength at the emitter surface, the emitter
to collector separation and, in the case of the SOC model, by the values
of n and vy, where, as discussed in Chapter 3, the parameter n selects
from among the family of solutions for the SOC electric potential and vy
is the ratio of the emitter axial radius to the radius of the core sphere.
The ranges selected for each of these model parameters is discussed in
the following paragraphs.

The emitter radii chosen for study range in value from 0.01 to 1.0
microns in accordance with the values used in electron field emitters
and suspected in LMIS. Electric field strengths in the range of 0.05 to
1.0 V/A were used paralleling practical values.

As mentioned previously, the values measured for the energy and

angular beam broadening depend on the path length of the trajectories.
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Although the location of the collector surface could be set to any
position during the execution of the Runge-Kutta program, early studies
with the sphere model indicated that nearly all of the potential energy
stored in the system by virtue of the initial particle separations is
converted to kinetic energy within about 10 microns of the emitter
surface. An emitter-collector separation of 10 mm was therefore
chosen to further guarantee that the energy exchange would be complete
and was also chosen as representative of spacings in practical focusing
systems. As will be shown, this distance is not sufficient for complete
potential energy relaxation for all choices of n and y for the SOC model.
Nonetheless, the value of 10mm was used throughout these studies.

The SOC mode! parameters n and y described above were determined
for this work by comparing plots of the equipotential shapes to SEM
micrographs of field emitter tips and optical photographs of the liquid
surface of an LMIS during ion emission. For the field electron studies the
selected values are n = 0.15 and y = 2.0, while for the ion emission
studies the values are n = 0.5 and y = 3.0. Figure 5 compares the SOC
equipotentials with the sphere model.

In addition to the parameters characterizing the electric potential
models, other parameters that are controllable during execution of the
trajectory calculation program include the particle mass and charge and
the initial radial and angular separation between the particles. The
program itself regards time as the fundamental independent parameter,

and therefore provides the ability to measure the time between emission
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Figure 5. Emitter Profiles. This diagram comparss the profiles of a sphers and two SOC amittars having

the same apex radius.
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events.

The remainder of this chapter is subdivided according to the model
used:- Section 5.2 covers sphere model results, Section 5.3 covers the
SOC model results for non-colinear emission, and Section 5.4 covers the SOC
model results for non-colinear emission. Within each section energy
broadening data is presented first, followed by energy shift data. In Section
5.4 data for angular broadening is also presented after the energy shift data.
Finally, within each of these subdivisions electron data is presented first,
followed by data for Ga* ions (as representative of the ionic studies as a
group) and then data showing the results for various ionic species are given.

Discussion and interpretation of the data are reserved for Chapter 6.

5.2 Sphere Model Studies

The first electric field model investigated in this project was the
sphere model described in Chapter 3. The primary objectives in this
phase of the study were twofold: to develop the numerical methods for
handling problems of this nature, and to compare the model results for
the energy spread with experimental data published by Bell and Swanson®
for electrons. Such parameters as total current, field strength and
emitter ragdius were particularly of interest.

An unexpected result was obtained from the sphere model with
respect to the observed shift in the peak position in the energy

distribution measurements. The sphere model predicts that the exchange



of energy between two particles is asymmetric: the first particle
acquires more energy than the second particle loses when compared to
the ehergy they each acquire as they traverse the electric potential field
between the emitter and the collector surfaces.

The energy broadening data for electrons and for ions, which were
also studied with the sphere model are presented in Section 5.2.1. The

energy peak shift data are presented in Section 5.2.2.

5.2.1 Energy Broadening Studies

in Figure 6 the component of the energy spread contributed by the
first emitted electron AE, as a function of its radial distance from the
center of the emitting sphere is shown. Each of the curves shown
represents data for a different initial inter-particle separation. The
curve with the highest energy values derives from the shortest initial
separation.

Figure 7 shows the total energy spread AE (from Equation (52)) for
three different emitter radii, while Figure 8 presents similar data for

four different values of emitter field strength.

Figure S is analogous to Figure 6 in showing the development of AE,

with distance from the emitter, this time for the case of Ga* ion
emission. Corresponding to Figures 7 - 8 are the data for Ga* ions

presented in Figures 10 - 11, where the dependence of AE first on
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Figure 6. Sphere Model Electron Energy Spread vs. Dislance. The contribution, AE4, to the energy

4

spread is shown as a function of distance for values of 85 ranging from 0.1um to 5x10™pm. The data

are for electrons with an emitter electric field strangth of =1 .OV/A on a sphere of radius 71,=0.01pum.
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emitter radius and then on emitter field strength are shown.

Choosing an emitter radius of 0.01 microns and a field strength of
1.0V/A, results in the data of Figure 12 which shows the dependence of AE
on the mass. Figure 13 shows AE as a function of the interevent time for
four combinations of charge species. In this case bismuth ions were
used. The four combinations shown, in order from lowest to highest curve
are (+2,+1), (+1,+1), (+2,42) and (+1,+2) where the first number in each
ordered pair represents the charge on the first particle and the second

represents the charge on the second particle emitted.

5.2.2 Average Energy Shift Studies

In this section data is presented on the shifts in the energy peak as
functions of various parameters of interest. The change in the average
Kinetic energy of the two particie system is

@ = (AE; + AE,)/2

Figure 14 is a plot of @ as a function of distance from the center of
the emitting sphere for the case where the sphere radius is 0.01 microns
and the field strength is 1.0V/A.

The data provided by the sphere model program show that the
average energy shift @ is independent of the emitting sphere radius, and
therefore plots of the energy shift for various sphere radii will be

omitted.
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Figure 15 shows @ for four values of emitter field strength at an
emitter radius of 0.01 microns.

The shape of the curve for the energy shift experienced by the first Ga*
ion as a function of radial distance from the emitter center is exactly the
same as the electron curve, and therefore will not be shown separately.

Figure 16 presents the average energy shift as a function of the
interevent time for ions of five different masses. The inset shows the
dependence of @ on mass at an interevent time of 1.0 picosecond.

Figure 17 shows @ for bismuth with charges of (+1,+1), (+2,+1) and
(+2,+2).

5.3 SOC Model Studies |: Colinear Emission

The first enhancement to the model calculations was the
incorporation of & more realistic equipotential model for the emitting
surface. The Sphere-on-Orthogonal-Cone equipotential model has been
described in detail in Chapter 3. A major purpose of this part of the
study was to determine the etfect of including the emitter shank on the
pairwise model results. Therefore, the same series of model
experiments were conducted using the SOC model program that were
conducted with the sphere model program. As before, the energy
broadening AE data will be presented first and then the average energy

peak shift datg ®.
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Figure 15. Sphere Model Elacton Enargy Shift vs. Field Strength. The energy shift data for a sphere of

radius r,=0.01pm and field strengths of Fy=1.0, 0.5, 0.1 and 0.05V/A are shown.
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Figure 16. Sphere Modal Energy Shift vs. lonic Mass. The ensargy shift data for the five ionic species Li*,
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5.3.1 Energy Broadening Studies

Figure 18 shows the component of the total energy spread
contributed by the first emitted electron as a function of its radial
distance from the center of the core sphere. The values of n and vy for the
electron model are 0.15 and 2.0 respectively. As in Figure 6, the curve
with the highest energy values derives from the calculations using the
smallest initial separation.

Figure 19 presents AE for electrons for three different emitter radii
at a field strength of 1.0 V/A. Figure 20 shows the AE results for four
different values of the field strength at an emitter radius of 0.01
microns.

Turning to the data modeling the liquid metal ion emission, Figure
21 shows the component of the energy spread contributed by the first
Ga* ion as a function of its radial distance from the center of the core
sphere. The values of n and y for this and all the ion studies are 0.5 and
3.0 respectively. Once again, the curve with the highest energy values
derives from the calculations using the shortest initial separation.
However, in contrast to the sphere model results of Figure 9, the value of
AE, continues to increase with radial distance.

Figure 22 presents AE data for four different emitter radii at a field

strength of 1.0 V/A. Figure 23 presents the AE results for four different
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Figure 18. SOC Model Electron Ensrgy Spread vs. Distance. The contribution, AE,, 10 the ensrgy spread
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electrons amitting from a SOC tip with r,=0.01um, n=0.15, v=2.0 and Fy=1V/A.
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smitters of apex radius r,=0.5. 0.05 and 0.01um ars shown. Other parameters are n=0.15, y=2.0 and

Fo=1V/A.
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Figure 20. SOC Model Electron Energy Spread vs. Field Strength. Total enargy spread data for an SOC
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84

values of the field strength for an emitter radius of 0.01 microns. Both of
these graphs show data for Ga* ions.

The effect of mass on AE is shown in Figure 24 where curves for Li*,
Al*, Ga*, Int and Bi+ are displayed. As before the values for the emitter
radius and field strength for these graphs are 0.01 microns and 1.0 V/A,
respectively.

Figure 25 shows the energy spread as a function of the interevent time
for six combinations of charge using bismuth ions. In this graph, unlike the
data presented in Figure 13, the charge species included all combinations of

+1, +2 and +3 ionic species.

5.3.2 Average Energy Shift Studies

The shift in the average energy was measured for the SOC model
data as well as for the sphere model data. The sphere model data
revealed that @ is independent of the emitting sphere radius. The SOC
model further shows that @ is insensitive to emitter shape, at least for
the two emitter equipotentials used in this study. Figure 26 shows @ as
a function of distance from the center of the core sphere for Ga* ions.
The shape of the curve for electrons is essentially the same. The radius
of curvature at the emitter apex was 0.01 microns, and the field strength
on the emitter was 1.0V/A for these data.

Figure 27 shows @ for electrons at four values of field strength for

an emitter of apex radius r;=0.01 microns. Figure 28 shows @ as a
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Figure 24. SOC Model Energy Spread vs. lonic Mass. Total energy spread data for the five ionic species
Li*, AI*, Ga¥, In* and Bi* are plotted. An SOC emitter of r,=0.01um, n=0.5, y=3.0 and Fy=1.0V/A was

used.
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89

l 1 |]TII1I] v UUTTIT T T 7

T T TTTIT
IR

L | psec

% R
— 0.l =
© F .
10— TTT] ] | B — _:_ :
5:‘Li+ Al* 6a'1n Bt _ C 11l i |
= - ] 10 100 500
= 7 MASS (A.U)
. ||||| I I { L L
| = —
~ f :
S 05+ —
13} — -
LS
Ol -
0.05 - —
0.0 L1l ! L1 1l ) A N N
0.l | 10

T, (psec)
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function of mass for five different singly charged species. Figure 29
presents @ corresponding to the charge species whose energy broadening
data are shown on Figure 25. Figure 30 shows the same data as in Figure 29
except that the independent variable is §, instead of T,

This concludes the presentation of data for the SOC model colinear
emission studies. The next section continues with trajectories having an

initial angular separation emanating from an SOC model emitter.

5.4 SOC Model Studies lI: Non-colinear Emission

The second enhancement to the model calculations was the inclusion
of an initial angular separation, 8,, between the particles in addition to
the radial separation, §,. From the expression for the hypergeometric
expansion for the Legendre function following Equation (43) in Section
3.3, for the case of colinear axial emission, where 8, d6/dt and d28/dt2
are all zero, the value of the Legendre function is equal to one. Thus the
Equations (45¢) and (45d) are not needed, the first terms drop out of
Equations (45a) and (45b), and the hypergeometric expansions do not need
to be evaluated. These simplifications were exploited for the colinear
emission studies. When off-axial emission is permitted, however,
Equations (45) cannot be simplified in these ways.

In all non-colinear cases studied, the launch angles for the two
particles were equal in magnitude and of opposite sign. That is, the cone

axis of symmetry bisects the angle between the two launch sites. Also,
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Figure 30. SOC Model Enargy Shift vs. Charge. The ensargy shift data for six combinations of bismuth

charge specises are shown with 84 as the independent variable. An SOC emitter of r,=0.01um. n=0.5,

¥=3.0 and F0=1.0V/A was used. The charged pairs shown are (ny,npo)=(+1.+1), (+2.+1), (+3,+1),
(+2,+2), (+3,+2) and (+3,+3).



only Ga* ions were used in these studies. Furthermore, having already
explored the effects of emitter radius and field strength on the energy
broadening and energy shift, only one combination of radius and field
strength was used: an emitter radius of 0.01 microns with a field strength
of 1.0V/A.

Since the data of this section are of such limited scope, this section
will not be subdivided further, however, the order of presentation
established in the preceding sections will be maintained. The energy
broadening data will be shown first, followed by data on the average energy
shift. Finally, the results of studies of the angular beam spreading will be
presented.

Figure 31 presents energy broadening versus T, data as a function of
the emission half-angle, 8, and Figure 32 shows ® also as a function
of 5. The data in Figure 32 covers a somewhat broader range of 6, than
does the data of Figure 31 in order to show how @ falls off with distance.

For the next set of data showing angular beam spreading, a series of
model calculations were conducted with the same set of initial conditions,
but with the Coulomb interaction force set to zero.

The values of A8 in Figure 33 are the amounts of angular dispersion

without the pairwise interaction, (8,- 6,),,,, Subtracted from the angular

wo’
dispersion with the pairwise interaction, (8,- 6,)., at a distance of r;= 1.0
cm. That is, Figure 33 shows the amount of angular broadening arising solely

from the Coulomb interaction.
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Figure 31. SOC Mcdel Energy Spread vs. Emission Angie. The total energy spread data is shown for six
values of emission half-angle. 8. Ga™ ions were emitted from an SOC emitter of radius r,=0.01pum,

n=0.5, y=3.0 and Fp=1.0V/A. Tha values of 84 ars 0°, 0.02°, 0.05°, 0.1°, 0.2° and 0.4°.
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Figure 33. SOC Modsl Angular Spread vs. Emission Angle. The nat angular spread arising from the
coulomb interaction is shown for five values of emission half-angle, 8,=0.02°, 0.05°, 0.1°, 0.2° and 0.4¢.

Ga™ ions were used with emitter parameters of r,=0.01um, n=0.5, y=3.0 and Fy=1 OV/A.
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This completes the presentation of the model calculations undertaken
during the course of this study. A discussion of these data will be given in
the next chapter. In the final section of the current chapter some
experimental data for comparision with these theoretical studies will be

presented.



CHAPTER SIX
Results and Discussion

6.1 Introduction

In Chapter 3 the emission process was discussed in terms of a
Poisson distribution with respect to the time between emission events.
The probability function for the interevent time, T, according to the
assumption of an exponential distribution is given by

P(Ty)=1-e 1o
From the data presented in Chapter 5 empirical relationships will be
extracted for the total energy spread, AE, the energy shift, ® and the
angular beam spread, A8, as functions of the interevent time T, the
emitter radius (or apex radius), r,, the electric field strength, F, the
atomic mass, m, and the charge, n. These empirical relationships will
then be inserted into Equation (60) and the corresponding probability
density functions will be derived. Then Equation (12) will be used to
determine the model predictions for the average values of AE, @ and A9
as functions of experimentally measurable quantities such as current and
atomic mass. These predictions will then be compared to experimental

results.

o8

(60)



6.2 Sphere Model Results

From Figures 6 and 2 the change in kinetic energy arising from the
Coulomb interaction becomes essentially independent of distance for
both electrons and ions for distances greater than about 0.1mm from the
emitting sphere. The particles are interacting only very weakly in this
region of the beam, indicating that the inter-particle separation, 8, has
become large. Figure 14 shows that the process causing the average
energy shift phenomenon occurs even closer to the emitting sphere.
About 90% of the final magnitude is attained within a few hundred

Angstroms from the emitting sphere.

6.2.1 Energy Broadening Results

The curves in the upper plots of Figures 7 and 8 represent data taken
directly from model simulations. The curves in the lower plots are data
extracted from the upper curves at the selected times shown. From
measurements of the slopes of these curves, the dependence of the
energy broadening on the interevent time, the emitier radius and the
field strength for electrons is found to be exactly

AE o< 10-1/2 (rapo)mt
The same functional relaticnships may similarly be obtained from the

data for gallium ions shown in Figures 10 and 11.

39



The dependence of the energy spread on ionic mass measured from
the slope of the line in the bottom graph of Figure 12 is

AE oc m1/4

The data of Figure 13 indicate a fairly complex relationship between
the energy spread and the charges on the pair of interacting ions. In
comparing the case where both ions have a single charge to the case of
one of the ions carrying a double charge, the model predicts that the
energy spread is very sensitive to the order of emission. This is
primarily a result of the difference in acceleration between the
particles in the electric field of the diode. If the second particles
carries the double charge, then it will be driven toward the first
particle, opposing their mutual repulsion and causing the Coulomb
interaction to persist over a greater portion of the beam length. This
will result in a corresponding increase in the energy broadening.
However, if the first particle carries the double charge, then the
converse will be observed. The particles will spend less time in ¢close
proximity and the strength of the Coulomb repulsion will be weaker.
This is shown dramatically in Figure 13.

If only the two cases where both ions carry the same charge are

considered, then the measured dependence of the energy spread on charge

seen in Figure 13 is
AE oc n5/4
Except for the tin LMIS4, the relative abundance of multiply charged

species is usually quite low, and the probability of an interaction event

100



between two multiply charged particles is very small. A Monte-Carlo
study involving a distribution of charge species would betier be able to
characterize the charge dependence of the energy spread than the present
two-particle simulations, however, the effects of spacing and geometry
can be clearly seen with the present model.

Combining the results of the preceding paragraphs gives the
following empirical relationships:

AE o< Ty 12 (r Fym)4 nS4
Solving for T, yields

Tp = Cy(raFgm)12 n2 AE2

= KgAE?

By substituting this expression for T, into Equation (60) and taking the
derivative with respect to AE, the following expression for the
probability density function in terms of the total energy spread is
obtained:

f(AE) = 2Kg A AE™3 exp(-Kg & AE?)

The mean value of AE for this distribution is then given by

(o ]
<AE> =JAE f(AE) d(AE)
0
If the integration is carried out the following relationship for <AE> is
obtained:
<AE> = (AKgm)'/2

= G(r Fgm)!74 n3/4 172

101
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where ¢ = (nc,/e)'2. By expressing the field strength at the emitter

surface, F,, in terms of a voltage V,, Equation (64) may be written as
<AE> = c(Vym)/4 nd/4 |172 (65)
Thus the sphere model predicts a simple relationship between <AE>

and the given measurable experimental parameters for electron beams

and for LMIS.

6.2.2 Energy Shift Results

As pointed out in Section 5.2.2 the energy shift was found to be
independent of emitter radius over the range 0.01 to 1.0um. Again, by
measuring the slopes of the lines shown in Figures 15 through 17, the
following empirical relationship is obtained:

® o< Ty2 Fp¥34 mn
By solving for T, the following relationship is obtained:

Tp = Co(mn/F 34 @)172

=Kgp @72 (66)

By substituting this expression into Eguation (60) and taking the
derivative with respect to @, the following expression for the
probability density function in terms of @ is cbtained:

f(®) = (Kg 2 d 32 /2) exp[-Kg A @/2] (67)

The average value of @ is obtained from the integral

o0

<> =J @ (D) d(D) (68)
0



As pointed out by Gesley et al.#9, the integral of Equation (68) is
divergent and it is necessary to place an upper bound on @ which is
equivalent to limiting the current. In the limit of -0 they obtain

lim<®> = c,(Nm/4ney 5.)"? |

I—0
where a limiting value equal to the initial Coulomb potential energy

@ = (ne)? /4m€, 8,
was used, with §, equal to some minimum allowable initial separation.
in this development, an additional factor of F,¥8 is obtained as a result
of the inclusion of a more complete set of model data, so that

lim<®> = c,(nm/F,34 4ne, 8.)172 |

|—-0

6.2.3 Comparisons with Experimental Data

Figure 34, reproduced from Bell and Swanson® shows experimentally

measured data for the dependence of electron energy spread as a function

of a field factor 8 which is inversely proportional to the emitter radius.
Measurements of the slopes of the lines of these data plotted on
logarithmic axes show that AE o< ra'2/3, which does not agree well with
the sphere model result of AE e< r4/4. In the next section it will be
found that when the emitter shank is included with the SOC model, an
inverse relationship is predicted for high currents, aithough for low

currents the SOC model agrees with the sphere model in predicting a

103
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direct dependence.

Turning to the field dependence, Figure 35, also reproduced from Bell
and Swanson® shows experimental electron energy spread data as a function
of emitter field strength. However, these data are not at constant current
as are the data presented in Figures 8 and 11 for the sphere model, and it is
therefore difficult to make a correlation. From
Lotfler's theoretical analysis®” of the sphere model an Fy V4 dependence
would be expected, whereas the sphere model calculations exhibit an FO’/4
relationship. As in the case with the tip radius dependence, the SOC model
calculations exhibit either a direct or inverse relationship, depending on the
emitter shape and the total current.

Figures 36 through 38 are reproduced from Gesley, Larson and Swanson
49 Figure 36 shows plots of experimental total energy broadening for
several singly charged ionic species from LMIS, and Figure 37 shows similar
plots for doubly charged ionic species. Their comparison of model
predictions to experimental data with respect to mass, charge and current
takes into account the intrinsic energy spread <AE>;,t associated with the
ion formation process. Using a value of <AE>j,; = 5 eV for all species except
Ga** where a value of 1 eV was used they obtained the results reproduced in
Figure 38. The sphere model was found to agree with experiment in
predicting AE o< 12 m'/4 and disagree with respect to the charge
dependence. The model predicts AE o< n34 whereas the observed dependence
is "2 A glance at Figure 13 shows that the disagreement with respect to

the charge dependence
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is to be expected in view of the complexities involved with the mixed
charge data, and that only pairs of equally charged particles were used in
arriving at these model predictions.

In summary, a spherical model for the emitter shape together with the
limitations of single file emission and pairwise interactions gives good
qualitative agreement with experiment for the current and mass dependence
of the energy spread in electron and ion beams.

A discussion of the comparison between the model predictions for the
average energy shift and the experimental results wilt be deferred until the

end of Section 6.3.

6.3 SOC Model Results

The investigation of the sphere on orthogonal cone electric field
model, revealed some interesting differences from the sphere model
results. Inthe electron studies values of n = 0.15 and y = 2.0 were
selected. Figure 18 shows the development of the contribution to the
energy spread from the first particle. Comparing this with the
corresponding sphere model data of Figure 6 shows two things. Firstly,
although the interaction has again become negligible by the time the
particles have reached the collector, the region of significant
interaction has extended further away from the emitter surface.

Secondly, the values of AE attained with the SOC model are generally



higher than those attained with the sphere model. This, of course, is
because the particles are interacting throughout a larger region in space.

In the ion studies values for n and y of 0.5 and 3.0, respectively,
were chosen and here the effect just beginning to appear in the electron
case is even more pronounced. In Figure 21, which shows data for gallium
ions, the Coulomb interaction is not over even at a typical practical
working distance of 1.0 cm, particularly for larger values of 5, which
correspond to low current values according to Equation (16). The effect
appears to be more a matter of emitter shape than of particle mass.
More particularly, the model studies suggest that not only the magnitude
of the electric field but also the shape of the electric field in the region
close to the emitier strongly influences the degree to which the Coulomb
interaction broadens the energy distribution in the beam.

A comparison of Figure 21 to the sphere model gallium ion data of
Figure 9 shows that, as in the electron studies, the total energy spread
attains much higher values with the SOC modef than with the sphere
model because the ions in the SOC model interact over a much larger
distance.

The simple models used in this study do not include the capability of
inserting lenses or apertures in the tip region. Such electric field
altering devices are used, however, in many practical applications, and
the model data suggest that these will influence the magnitude of the

energy spread in a beam of electrons or ions.
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6.3.1 Energy Broadening Results

From measurements of the slopes of Figure 19 the dependence of the
electron energy broadening on both the interevent time and the emitter
radius vary slightly about the values found from the sphere model data of
Figure 7. The dependencies are again given approximately by AE o<
To'/2rg"4. The dependence on field strength as measured from the slope
of the line on the bottom half of Figure 20, however, has grown from
F,'/4 for the sphere data of Figure 8 to F,'”® for the SOC data.

An examination of the SOC model data for gallium ions, shows that
the situation is quite different from the sphere model results. Itis no
longer possible to find & simple power law relationship between the
tofal energy spread and either the emitter apex radius or the field
strength. Figures 22 and 23 show that AE increases with ry and Fj for
higher current (lower T;), but decreases with ry and F, for lower
currents. If it is assumed that the total energy spread for a given set of
initial conditions will asymptotically approach a limiting value, the
behavior in Figures 22 and 24 results from placing the collector in a
position that yields different percentages of the limiting value for
different values of ;. This is clearly the import of Figure 21. A similar
effect could have been observed with the sphere model data had the
collector been positioned at 0.5um from the emitter rather than 1.0cm.

This serves to point out the limitations of modeling a real electron or
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ion optical problem with a simple sphere model, and the care that must
be taken in selecting a more appropriate electric field model.

Figures 24 and 25 show the mass and charge dependence of the
energy spread. Like the dependence on ry and Fj, the mass dependence is
influenced by the emitter geometry, although to a lesser extent. The
mass dependence ranges from almost no dependence for high currents {o
AE o< m'2 for lower currents. The dependence on charge for the cases of
both ions having the same charge is the same for the SOC model as for
the sphere model, namely AE oc n>/4,

In summary, then, the emitter geometry appears to play a
significant role in determining the behavior of the energy broadening on
other parameters. For the assumed electron emitter shape with no
nearby electron optical elements, the energy broadening is comparable to
the sphere model results. But for the assumed LMIS shape, the mass,
field strength and emitter radius dependencies are complicated functions
of the emitter-collector spacing and of the beam current. This may help
to explain some of the differences in experimental dependencies reported
in the literature.

The magnitude of the predicted energy spread is higher for both SOC

models than for the sphere model emitter.

6.3.2 Energy Shift Resulis

Figure 26 shows the energy shift as a function of distance from the



emitter for gallium ions. The shape of the curve for elecirons, as
mentioned in Section 5.3.2 is essentially the same. Note that the energy
shift remains constant for both electrons and ions for distances greater
than about 0.1mm just as it did in the sphere model studies. This is in
contrast to the SOC model results discussed in the preceding section.

Comparing Figures 27-29 with the corresponding sphere mode! data
of Figures 15-17 reveals that the same empirical relationships hold for
both sets of data, namely

® o< T2 Fy34 mn,

In other words, the energy shift is independent of emitter shape as well
as emitter size.

In the data presented thus far T, has been used as the independent
variable in accordance with the program set forth in Chapter 3 and in the
introduction to this chapter. However, in view ot the independence of the
energy shift on the emitter parameters, and the inverse square law
dependence on T, intuition suggested plotting energy shift data as a
function of the initial interparticle spacing §,. The results are shown in
Figure 30, for the same six combinations of charge plotted in Figure 29.
By plotting the data in this way it becomes immediately obvious that

® o< nyny/d
and that the proportionality constant is, in fact e%/4ne, which is to say
that the observed energy shift is identically equal to the initial Coulomb
potential energy of the two particle system at the instant of the

creation of the second particle. Experimentally measured values of @
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(72)



thus provide a means of determining &, the initial spacing between the
particles dominating the Coulomb interactions within the beam.

The mass dependence of @ arises from the fact that the conversion
of the electical potential energy into kinetic energy imparts a velocity
which is inversely proportional to the mass of the particles. As an
illustration of this, the model predicts that the first bismuth ion
requires approximately 1.4 psec to reach a distance of S0A accelerating
from rest in the field of the emitter. In the same amount of time in the
same field, a lithium ion would have travelled 1000A. The Coulomb
potential energy between the bismuth ions would be 20 times greater
than the energy between the lithium ions which are further apart, even
though the total current, which is inversely proportional to time, would
be about the same. Thus it would be expected that a beam of bismuth
ions would have an energy shift twenty times greater than a beam of
lithium ions at the same current. By the same reasoning, the model
predicts that bismuth would show an energy shift five times larger than

gallium and twice as large as indium.

6.3.3 Comparisons with Experimental Data

With respect to the energy broadening data of Figures 34 and 36, one
of the main differences between the SOC model and the sphere model is
that the magnitude of energy broadening with the SOC model is

comparable to the experimentally measured values. Knauer?® defines the
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single file regime as those currents that correspond to an average initial
interparticle spacing <8,> greater than the beam radius. The spacings
used in the single file emission model studies were in the range 0.5nm to
100nm. According to the assumed LMIS conditions*®, <§,> must be
greater than 0.8nm to satisfy Knauer's criterion. Only the very smallest
initial spacing used in these studies was less than 0.8nm, and since the
spacings used represent unusually close pairs that are fluctuations from
the average, it is clear that these results support Knauer's conclusion
that field emission sources beiong in the single file regime shown in
Figure 39 reproduced from his paper.

The other main result is that the functional relationships predicted
by the SOC moadel are largely the same as for the sphere modetl for the
emitter shape used with the electron studies, but become more
complicated with larger cone angles, allowing for the possibility of
bringing the dependencies on emitter radius and field strength, as well
as the current and mass relationships, into agreement with experiment.

{n the concluding remarks of Section 6.3.2 several predictions were
made with respect to the relative values of energy shift in LMIS beams
of different mass. These predictions depend on the conclusion that the
apparent mass dependence of @ is caused by the implicit mass
dependence of 8., the minimum allowable initial interparticle separation
discussed in connection with Equation (69). Examination of Figure 40
shows that these predictions are indeed correct. it is concluded,

therefore, that the shift in average peak energy observed in LMIS
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emission processes and the degres to which gensrated particles interact with one another. Eifectron field

emission sources are found in the "single file” regime.
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emission is entirely the result of the relaxation of the initial Coulomb

potential energy between pairs of ions into kinetic energy.

6.4 SOC Mode! Non-colinear Results

Figures 31 and 32 show that the total energy spread and energy
shift can attain significant values even when the condition of colinear
emission is relaxed, allowing an angular separation between the
interacting pair. The energy broadening falls off approximately as 6,72,
while the energy shift, arising as it does from the initial Coulomb
potential energy, depends
on 6, according to

® o< (r,2 41,2~ 21,1, COS 6,,)"72 (73)
where r, and r, are the radial coordinates of the two particles and 6,, is
the angle 6, - 8, = 28, in these studies.

From Figure 33 the amount of angular beam broadening caused by the
Coulomb interaction varies as ’50'2 for most of the data covered. The
dependence of A8 on initial angular separation is less straight forward.

At low values of T, A8 o< 6, but at high values A is almost
independent of 8,. For the high current value case (low Tp)

AQ o< Ty2 8, (74)

In order to relate the angular broadening to beam current, it would
be necessary to develop a multi-dimensional probability density function

based on the assumptions that the emission process follows a Poisson
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distribution in time as in the colinear studies, and that a similar spatial
distribution exists over the emission region of the LMIS. Such a
treatment is far too sophisticated for use with the simple two particle
system and will be omitted. However, it may be noted that qualitative
agreement with the experimental data of Figure 41 is obtained with the
pairwise model. From the data of Figure 41 showing experimental
angular broadening for gallium, indium and bismuth as a function of
current, a dependence of Ag o< |4 js obtained. The SOC model predicts

that A8 does increase with current.

6.5 Summary

in summary, a spherical model for the emitter shape together with
the limitations of single file emission and pairwise interactions gives
good qualitative agreement with experiment for the current and mass
dependence cof the energy spread in electron and ion beams.

The SOC model provides quantitative agreement with experimental
energy spread magnitudes. By incorporating this emitter shape into a
more general electron/ion optical program it is expected that the
dependencies on emitter radius and field strength, as well as the current
and mass relationships, can be brought into agreement with experiment.

The pairwise Coulomb interaction used throughout these studies

provides a simple mechanism for elucidating the observed energy shift
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phenomenon observed in LMIS beams. The shift in the peak of the energy
distributions observed in LMIS emission is entirely the result of the
relaxation of the initial Coulomb potential energy between pairs of ions into
Kinetic energy.

The Coulomb interaction also provides a mechanism for the angular
beam spreading observed in eleciron and ion beams. The energy spread
arises from the ragial component of the Coulomb repulsion force between
pairs of particles. The angular spread arises from the lateral component of

the same force.
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APPENDIX

This appendix provides a function flow diagram for the Runge-Kutta
trajectory program which generates data for the pairwise coulomb

interactions.



Trajectory Program
for Pairwise Coulomb
Interactions

i

[nitialize Program
Contro! Parameters

l

Load Starting Values
into State Vector

l

Launch First Particle
Determine Time to
Reach 3,

l

Launch Second
Particle

l

Set Stopping Plane

Collector Plane?

127



Prepare and Output
Energy Integrand
Values from Stored

Data

Any Control Para-
meter Modifications for
Another Trajectory?

[ Program Termination j

128



129

Estimate AT for
Reaching Stopping |€——
Plane in 20 Steps

l

Solve Particle
Equations of Motion

First Paricle
within Ar of Stopping
Plane?

no

Recalculate
Trajectory with
100 Steps

l

Store Trajectory
Data




130

BIOGRAPHICAL NOTE

The author was born November 6, 1953 in Jamestown, New York, and
lived in Sinclairville, New York throughout his grammar and high school
years. He graduated in 1871 from Cassadaga Valley Central School as
salutatorian. He attended the State University College of Arts and Science
at Plattsburgh, New York, where he received a Bachelor of Arts degree in
May, 1975 where he was named a Hudson Scholar.

In September, 1975 he began graduate studies at the Oregon Graduate
Center, which were continued untii August, 1982 when he accepted a
position as Staff Scientist at Electron Beam Corporation in San Diego,
California. In November, 1984 the author accepted a position as Senior
Engineer at the Space Systems Division of General Dynamics where he is
presently employed. He completed the requirements for the degree Doctor of
Philosophy in July, 1986.

The author has been married seven years to the former Lori Ann Phipps

and they have two children, Linnea Kristen, age 3, and Ingebritt Elin, age 1.



	198610.larson.dale to p. 60.pdf
	198610.larson.dale to p. 130.pdf



