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1. Introduction

A document-preparation environment is a specialized editor for creating
and manipulating documents. The document is formatted on a terminal screen as it
is being created, and is also checked for many types of errors, ranging from speiling
through structural integrity to style. Documents are modeled by some structure,
which the user can traverse and manipulate in a variety of ways not available with

most current editors.

This thesis both develops ideas and provides a small prototype based on the
document-preparation environment suggested by Hamlet {Haml!86a]. Three major
reasons for prototyping a large software system are: to discover, but not necessarily
to solve, major problems; to demonstrate feasibility; and to provide building blocks
for the larger system; all without requiring a large time investment. The prototype

presented hers accomplishes these goals.

An editor i1s presented which models documents via a graph structure. The
editor is divided into three processes: Input, Editor and Display. The Input process
reads characters {rom an input device and sends messages to the Editor. The Editor
manipulates the graph and/or associated structures appropriately and sends mes-
sages to the Display describing the modifications. The Display determines how best
to show the modifications and updates the screen. To avoid confusion, the names
Input, Editor and Display will always be capitalized when referring to one of the

concurrent processes, and lower case when referring to some generic function.



Since this 1s a prototype, the user commands implemented are those that
demonstrate a particular feature, such as graph manipulation or display. User inter-
face considerations are left for future development. The user is restricted to insert-
ing objects and cursor movement. Legal objects for insertion are characters, para-
graphs and text blocks. Legal cursor movements are one character left or right or
one line up or down. The format of commands is shown in Appendix A. The com-

mand line syntax for running the editor is described in Appendix B.

When the prototype is invoked, it clears the screen and waits for keyboard
mput. At this point the user must create a structure, either a new block of text or 2
new paragraph, by typing the appropriate command. The Input process sends arp
appropriate message to the ditor process, which updates the graph and sends
appropriate messages to the Display process, which updates the screen. The cursor
is moved to the point on the screen where the structure’s text will reside on the

screen.

After the structure is created the user can either fill the structure with text
by typing characters, or can create a new structure by typing an appropriate com-
mand. In either case the Input process sends a message to the Editor, the graph is
upd_ated, messages are sent to the Display, and the screen is updated. Several struc-

tures can be created and filled with text to form a document.

The position of the cursor on the screen can be chaoged by one of the cur-
sor movement commands. The cursor will only move to positions on the screen

where the user can modify text, and not to positions automatically updated by edi-



tor formatting, such as paragraph indenting or vertical spacing after a paragraph

title.

When the document has been created the quit command will cause the pro-

totype to cease execution and control to be returned to the operating system.



2. Related Work

Document Environment Characteristics

A study by Shneiderman [Shne83a| suggests the following characteristics of

a good document-preparation environment:

(1) show only objects of interest,

(2) manipulate objects rapidly, and

(3) replace complex language syntax with direct manipﬁla.tion,

where an object is a paragraph, section, chapter, etc.

Previous and Current Work

Document preparation environments can be traced to two major begin-
nings, text-editors and text-formatters. Both editors and formatters began as simple
programs in which little thought was given to ease of use, and which were specific to
a task. Eventually they developed into programs that were completely general
meaning that editors could edit any text file and formatters could do almost any
type of formatting desired; however, they were not easy to use. Editors and for-
matters then began to merge, and, in order to provide more intelligence, beczme
more specific again. Currently being researched are entire environments devoted to

document-preparation, which are editors that automatically format documents,

allow the user to directly manipulate paragraphs, sections, chapters, tables, figures,



equations, etc., along with word processing tools such as spelling and style checkers.

Editors

Editors of ope sort or another have existed since programs were first
entered into a computer. At first editing was a process performed by toggling in a

new program, or retyping cards in a card deck, either process being both laborious

and manual.

With the advent of card images stored in 2 computer system, there came a
need for a program, called a batch editor, that could manipulate the images. These
editors were 2 step forward from the manual process since the editor provided global
search and replace functions. However, the display was to a line printer, and thus

manipulation was far from direct.

Teletypes brought about line editors which edited single lines of a file.
Although early line editors could only manipulate card images, later editors allowed
any line length, thus abstracting the display from the file contents. Text manipula-
tion was thus more direct than previous editors; however, the only object available

to the user was a line.

Display screens set the stage for screen editors, which displayed the con-
tents of a file on the screen, for example, visually Vi or vi [Joy80a]. A user could per-
form operations, such as character insertion, at an active position on the screen,
called the "cursor position”, resulting a in modified file. These editors were general

enough to manipulate any text file. but still only allowed users to manipulate low



level objects, such as characters and blocks of text.

This progression from batch to line to screen editors shows the development
of Shneiderman’s first two characteristics for a good document-preparation environ-
ment, namely showing and manipulating only objects of interest. Meyrowitz

[Meyr82a] presents a more detailed discussion of editor history.

Extensible editors, such as EMACS [Stal81a], can be tailored to a specific
application. Files are included with an extensible editor which define the interface,
and these files can themselves be modified by the editor. These editors are very gen-
eral but have problems when applied to document-preparation, since they do not
record and use the structure of the document, thus allowing the user to enter arbi-
trary text, including errors, while preventing direct manipulation of document

objects. Also, these basic editors have no provision for formatting tbe document.

Formatters

Text formatters have been available since the advent of line printers,
although the first formatters were very rudimentary, having no automatic features
such as numbering sections or tables, or filling in references. Output of these early

formatters went to line printers, which also lacked many capabilities.

Probably the first formatters of any note were RUNOFF and FORMAT
[Furu86al, both of which had some rudimentary object support, such as the ability to

number sections and format paragrapbhs. The control over the output format was

still very limited, partially due to the formatter and partially due to the output



device.

Structured formatters such as TROFF (Ossa76a] with its preprocessors such
as Tbl |Lesk79a), were then devised which format many objects automatically.
Furthermore, with the advent of devices such as computer-driven typese;;ters, control
of output was greatly improved. TROFF, for instance, can handle preprocessor out-
put to draw pictures and format equations, or tables, and has macros for lists,
automatically numbering sections and figures, as well as intelligently placing objects
on a page.

The progression from unstructured formatters to structured formatters

shows development of object manipulation needed in a good document-formatting

environment. Furuta [Furu82a] gives a detailed history of text-formatters.

Current formatters are very general, yet, like editors, are deficient when
applied to document-preparation. Most of them require formatting commands to be
included in the text, so the file that is edited when modifying a document is hardly
readable. Also, the level of control is at such a low level that the user must be an
expert to use the system. The TROFF system is an example of a general formatter

with document-preparation deficiencies.

Syntax Directed Editors

Syntax-directed editors can be viewed as a combination of screen editor and

formatter, which impose editing constraints from a context free grammar, as

described by Morris [Morr8la. Usually these editors are applied to programs in a



particular language, although sds {Fras81a] edits any data structure described by a
hierarchical grammar, and BIOSTATION [Nana86a] edits biological genetic codes.
These editors are easily modified by changing their grammar-description file, and in
this way are similar to the extensible editors. Because they are specific to a particu-

lar problem, they are in some sense higher-level editors than general purpose editors.

Another advantage enjoyed by syntax directed editors is that pretty print-
ing, or formatting, can be done directly, with neither special formatting commands
inserted in the file nor a special parse computation. The editor "knows" the strue-
ture and objects making up the file, and allows them to‘be manipulated directly by
the user, and formatted correctly by the editor. Thus editor development has con-

tinued towards manipulating objects that the user is interested in.

All syntax directed editors face a basic problem: modification of a syntacti-
cally legal program that into another syntactically legal program may require going
through stages where the program is not legal. Z [Wood81a] solves the problem by
adding some synta;( directed features to a standard screen editor, allowing the user
to compile the program without leaving the editor, and to read the compiler error
output also within the editor. Syned [Horg84a] and SUPPORT |(Zelk84a] allow the
user to enter a program either by using standard syntax-directed techniques, mean-
ing the user is restricted to "legal" manipulations, or by using standard text editor
techniques, meaning that manipulations are unrestricted, after which the changed
text is reparsed, or some combination of the two. Thus arbitrary text can be

entered, and is syntactically checked later.



Document Editors

Document editors attempt to apply techniques from syntax directed editors
to structures that are not as rigid as programming languages, ie., textual docu-
ments. With these editérs, the user generally gets immediate feedback as to how the
document looks, a-nd can manipulate the document’s objects directly. None of these
editors are complete document environments—thbey all lack breadth—but each shows

techniques that could be used to develop such an environment.

An early editor of this type was JANUS |[Cham8la]. JANUS represents an
intermediate step between a general purpose editor with a batch formatter and a
true docurnent editor. It runs on a work-station with two screens, and requires the
user to place formatting commands in a file, similar to the general editor/batch for-

matter combination, but displays the formatted text on the second screen.

The next step towards a document editor is found in PEN [Alle8la]. PEN is
mostly aimed at editing mathematical documents, but can be used for other pur-
poses as well. Doc-uments have a hierarchical model, where nodes are “chapters,”
“sections,” "paragraphs,” etc. Nodes and their attributes are defined through a tem-
plate, which can be user modified. Both formatting and modification attributes are
associated with each node, determining how information in the node is to be format-
ted and bow the node can be modified. For instance, if a chapter can only have sec-
tions and paragraphs, then trying to add a chapter to a chapter would not be
allowed. One major drawback of PEN is that the templates are written in a difficult

language, requiring modification by an expert.
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Kimura’s paper [Kimu84a) has a good abstract model for documents along
with a prototype that uses the model to modify documents. Many of the following
editors are based on this model. Kimura models documents as a hierarchy of objects
which can be combined to make other objects. Each object contains a name, which
1s something similar to a type; data, the nonstructural information associated with
it; and composition, a list of other objects that make up the object. If the name is
an atornic object then the composition is empty. Thus a section would be
represented by an object where the name 1s the string “Section”, the data is the sec-
tion title, and the composition is the list of paragraphs and sections making up the
section. Nonhierarchical structures, cross references, for example, are represented by

explicit threads through the data structure.

Other editors that use this model are those by Cowan [Cowa86a], Coray
[Cora86a] and Quint [Quin86aj. Each of these editors takes as input more than just
the user keyboard entries; each also reads some sort of structural definition, called
the syntactic specification, and a formatting definition, called the semantics
specification. Text from the keyboard is formatted and displayed as it is typed. All
three of these editors also recognize that there are parts of a document that cannot
be represented by a simple hierarchy, and thus provide exphcit hinking threads. The
major pitfall of these systems is that they are hard to modify. Each requires an
expert user to set up the syntactic and semantic files, since both use a rather obscure
description language, although Coray [Cora86a] does provide for user definable

parameters in these two descriptions.
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Grif [Quin86a], Star [Furu82a,Meyr82a] and MacWrite {John84a|, are exam-
ples of What-You-See-Is-What-You-Get editors, meaning that the text is displayed
on the terminal exactly as it would be printed. These editors require a graphics
screen to display the document (because of tables, ﬁgures, and special characters),
which is both an advantage and a disadvantage. Since the user cap edit an exact
representation of what will be printed, the user is apt to make fewer errors, thus the
advantage. However, graphics screens are not universally available, and hence the

disadvantage.

Furuta [Furu86a] presents a What-You-See-Is-Aimost—\’Vhat-You-Get, mean-
ing that the text displayed on a screen is fairly close to what will be printed except
for diferences which will occur where the graphics capabilities of the printer output
device exceed that of the terminal. Thus, enough information is displayed on the
terminal screen to manipulate the document, without requiring a graphics display as
does Grif. The editor is basically hierarchically structured, but has provisions for
unstructured levels, which aids in storing structures that are not strictly hierarchi-

cal, such as tables, where the entries have multiple parents.

The W editor [King86a) is the most complete document editor of any
described here. It also uses a hierarchy to model the document, but can handle text,
mathematical formulae, and graphics. The syntactic and semantic structure can be
modified by the editor without requiring the skill of an expert user. Instead of using
description languages, the descriptions are represented within the editor as struc-

tured documents, where changing the structure changes the description.
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One major downfall of Kimura’s document model and the editors based on
it 1s its hierarchical nature. Some views of a document are indeed hierarchical, the
table of contents, for instance, while other views are not, for example, the cross
references and bibliography. Kimura gets around these by introducing explicit
threads through the document tree. Another, more general solution would be to
modify the document model to be & graph; references and bibliographies could then

use the same structure as the table of contents hierarchy.

Document Systems

A document system is one that stores relations between documents, and
allows one to follow, and perhaps modify, these relations. They are of interest both
because they use general graphs to store the arbitrary relations, and because they

present more of an environment than an editor.

CONCEPT BROWSER [Cord86a] allows a user to interactively create and
move through a set’ of dynamic “"documents.” These "documents” could be as simple
as single ob)ects, such as a paragraph, section, or chapter, or could be entire papers.
Thus this system could be used to create a single document, modeled as a graph, or
‘many papers related by bibliography or subject. Relations are stored as arcs of a
graph, where nodes are the documents. The complication of graph traversal, how-
ever, is side-stepped by the fact that only one node and its associated arcs are
displayed on the screen at any one time. Traversal decistons are left to the user,

who must specify which arc to follow, and thus this browser is awkward to wse in
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creating a document.

TEXTNET [Trig83a] is a system similar to CONCEPT BROWSER. In
TEXTNET, relations between scientific documents are stored via a general graph.
Provision is made for making critiques of a paper, and allowing the author to cri-
tique the critiques, ad infinitum. The similarity to CONCEPT BROWSER is that
the documents can be single objects, and thus the system can be used to create new
documents. It 1s superior in that it can automatically traverse hierarchical sub-

graphs; however, its fixed set of relational types make it overly restrictive.

Constraint Editors

Constraint editors are editors written using a constraint language.
ThingLab [Born81a| is a constraint editor biased towards manipulation of graphics
objects. The user edits objects onto a screen, constrains the objects to certain pro-
perties, and can then manipulate the objects. The editor ensures that the con-

straints are always met.

These editors are still in their infancy and have not yet been extensively
researched. Their relation to document editing is as yet unclear. One can imagine
constraining nodes of the document graph to pla;:es on a screen and having the
screen be "automatically” updated on succeeding changes to the node. It is 2 matter

of research to see if, and how, this could be accomplished.
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Document Environments

A variety of Document environments have recently been proposed. The

work described in this thesis is an example of a prototype document environment.

Walker [Walk81a] discusses ideas for a document environment based on 2
bierarchical document model. The structural restrictions and automatic formatting
of 2 document editor are combined with other tools to form an environment. Many
tools are suggested which are grouped into three categories: writing aids, such as
spelling and style checkers, structure editing 2ids, such as deleting or inserting an
object, and document management aids, such as cross references and indexing. The
environment consists of a top-level document editor which invokes these tools as
needed. The many tools available make this a document environment, although it

has problems similar to document editors since it is based on a hierarchical model.

Another type of document environment is suggested by Hamlet [Hamli86a]
who presents a document environment combining a document editor with a docu-
ment system. Also included would be other tools: a spelling checker, style writing
alds, etc. The environment would consist of several editors, of which this thesis pro-
totypes the Input editor. This Input editor would function much like a document
editor, incorporating localized writing aids such as spelling checks, where the docu-

ment is modeled as a graph rather than a hierarchy.
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3. Prototype Description

3.1. Specifications

This thesis prototypes the Input editor described in [Haml86a)]. The

specifications are to
(1) use a graph rather than a hierarchal structure to model documents.

(2) have simple, consistent data structures in order to reduce complexity, and keep

the number of manipulative functions to a minimum.

)

(3) be small, so cnly a few different document objects are legal: a paragraph and a

text block; and only one user function is available, namely insert.

(4) use coding techniques that will make it expandable, since one use of a prototype

is to bave something to modify and expand at a later time.

3.2. Coding Techniques

Since the editor described in this thesis is a prototype, it should be both
easy to modify and should provide building blocks easily extracted from the proto-
type environment. Two coding techniques used to provide these features are data

abstraction and concurrent processes. There are also internal debugging aids.
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3.2.1. Data Abstraction

Data abstraction [Parn72a,Gutt78a] is a technique whereby the representa-
tion of a data structure is abstracted from most of the code. A data structure is
represented by both values and a set of operations performed on them. The conven-
tional technique for coding data structures is to explicitly declare the memory
configuration for the structure, but to leave the conceptual operations implicit in the
code. However, if all conceptual operations are explicit functions, and the only
manipulation of the data structure is by these functions, then the method used to
store the data structure can change completely and require changing only the func-

tions.

One inherent difficulty with data abstraction is that performance may be
decreased, since a function invocation must be used to reference an item of a strue-
ture, as opposed to the usual in-line reference. However, flexibility is more impor-
tant than performance for a prototype, so data abstraction techniques were used

extensively.

3.2.2, Concurrent Processes

Dividing the overall editor into concurrent processes is a prototyping tech-
nique with these benefits: very clear interfaces between the high level [unctions, ease
of future modifications or additions, and a more disciplined coding environment.
This technique is also used in Coray’s document editor [Cora86a] and King’s W edi-

tor [King86al, the three processes of this editor being similar to those of King.
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Each function is clearly delineated, being a separate process; each takes a
very limited set of inputs and generates a very limited set of outputs. Further,

errors in one function do not propagate to other functions.

Another reason for coding with concurrent processes is the ease of modily-
ing the editor to use a very diflerent input device, like a terminal with a mouse, or
another output device, like a laser printer. A new Input process, Display process, or
Editor process for that matter can be written without having to rewrite any of the

other processes, as long as the new process preserves the interfaces.

The coding environment is more disciplined with concurrent processes than
with subroutines because each process has a separate state, as opposed to subrou-
tines which share states. Since all communication between processes must be done
by means of messages, the information exchanged tends to be much smaller. Subrou-
tine state sharing tends to lead to exchanging, perhaps implicitly, large quantities of
information. Also, there tend to be fewer assumptions made about how and when
information is processed, resulting in cleaner interfaces; a concurrent system is
viewed as Jess coupled than a subroutine system. Thus the interface between

processes is usvally cleaner than between subroutines.

There are drawbacks with using concurrent processes. Extra software must
be written for message passing. Performance may be degraded since message passing
is usually slower than parameter passing. Also, when using subroutines a large data
structure can be shared, whereas with concurrent processes two (or more) processes

have to each keep a copy of the structure. Hence processing may be duplicated
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between processes.

3.2.3. Debugging Aida

There are three debugging aids written into the editor: tracing, parameter

validation and conditional compilation.

Each process has a set of global trace values defining the trace file and
items to be traced at run-time. All trace messages are written to the trace file.

Traceable items are:

(1) the call/return sequence of all functions

{(2) the values of formal parameters for all functions

(3) the messages sent/received by /for the process, along with the time of day.

Trace values are selected by the user from the command line; see Appendix B for the

manval page.

Where appropriate, formal parameters are validated and error messages
written to the trace file if the parameters are invalid. Pointers are checked for
NULL if they must be pointing to an object, integers are checked to make sure they

fall within a possible range.

Conditional compilation is used with the trace statements in the low level

routines to cut down on the amount of trace output.
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4, Data Structures

4.1. Message Structure
There are six components of a message:
(1) the sending process,
(2) the intended recipient process,
(3) an identifier for the message,
(4) a reference identifier,
(5) a command,
(6) and parameter values associated with the command.

The first two components, the sending and receiving process, are used for
message tracing while debugging. Furthermore, the receiving process component is
used toO ensure a message is not sent to the wrong process. If by some mishap a pro-
cess does receive a fnessage not intended for it, then an error is printed to the trace

file, but the message is still processed.

The third and fourth components, the message and reference identifiers, are
used to uniquely identify the message and to respond to a message, respectively.
When a message is created it is given a unique identifier. If a message, call it A’ is
1n direct response to another message, call it 'B’, then the reference identifier of A’

is the message identifier of 'B’.
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The fifth and sixth components, the command and parameter values, tell
what action is to be taken apd give any extra information, respectively. For
instance, if a command t¢ the Editor is to insert & new character, then the parame-

ter value would be the new character.
Functions needed to manipulate messages are:
(1) Make or remove a message
(2) Get a unique message identifier
(3) Get a component of a message
(4) Read a message
(5) Write a message

Messages are immplemented as a data structure with the six fields shown in
Table 4.1. To facilitate sending, receiving and tracing messages all fields are charac-

ter strings. The From and To fields represent the names of processes, i.e., "Input”,

Field Name Description

From Process sending message
To Intended recipient process
Id Unique message identifier
Reference Id | Reference identifier
Command Action request

Text Parameter values

Table 4.1: Message Fields
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"Editor", or "Display”. Id and Reference Id are time-date stamps, which are unique
if there is 8 fine enough timing division. Command is the command, for example
"InsertChar” for fnsert character. Text is a character string containing the parame-

ter values.

It was decided early in the design of the prototype that messages should
have identifiers, and that some messages would be in direct response to 8 query mes-
sage, hence the Id and Reference Id fields. However, as the coding progressed it
became apparent that there would be no query messages, so the identifier fields are

never used to process a message. They are left in for future development.

To transfer a message the sending process concatenates all fields into one
character string, adding a byte count at the beginning of the string and special char-
acters at the field boundaries. The new string is written to the receiving process,
which reads the message byte by byte, first decoding a byte count, then reading the
rest of the characters. Translfer is complete when the receiving process has parsed

the string into a message structure.

Figure 4.1 shows the function GetMesId that gets the identifier of a mes-
sage. This function takes a pointer to a message structure and returns a character
string pointer to the message’s identifier. It demonstrates both the simplicity of the
message functions, and the volume of code added because of the debugging tech-

niques.
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char *GetMeslg (Mes)
MESSAGE *Mes; /* Message to be read */

{
/* Local variables ¢t/

char *Results; /* Functlon return value */

#1ifdef DEBUG
i1f (TraceCall)
fprintf (TraceFd, "GetMesId\n"):
#endif

Results = NULL:

if (Mes == NULL) {

fprintf (TraceFd, "Error GetMesId\n"):

fprintf (TracefFd, " Message pointer is NULL\n");
}
else

Results = Mes->Id;
#1fdef DEBUG
1f (TraceCall)
fprintf (TracefFd, "GetMesId returning\n"):;
#endlf

return (Results):

Figure 4.1: Get Message 1dentifier Example

4.2. Graph Structure

The graph structure is based on Kimura’s document model, modified from a
hierarchy to a general graph. Since this is a prototype, one of the criteria for the
graph is simplicity, meaning that it sbould comprise only a [ew node types. If every
node of the graph has the same structure, then a few simple functions can perform

all graph manipulations.
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There are four cornponents of each graph node:
{(1) the document object represented by the node,
(?) data associated with the object,
(3) list of incoming arcs,
(4) list of outgoing ares.

Each node represents an object of a document, e.g., a section, each of which has data

associated with it, e.g., a title.

The conceptual operations for the graph are:
(1) Make or Remove a node
(2) Get or Change a component of a node

The abstract graph above is implemented as a data structure with the four
fields shown in Table 4.2. The Id field is a unique integer identifier used to validate

graph references. The Type field is a character string for the document object

Field Name Description

1d Unique Identifier
Type Object

Data Associated Data
Backward List of Incoming Arcs
Forward List of Outgoing Arcs

Table 4.2: Graph Node Information




24

represented by tbe node. The orly objects for this prototype are "Head", "Para-
graph” and "Text", where "Head" is an object that does not have any incoming arcs
and is thus the first node in the graph, "Paragraph” represents a2 paragraph, and
“Text" represents a block of text, constrained to only be part of 2 paragraph node.
The Data field is a character string storing the objects associated data. For a type
"Head" node there is presently no data. Backward and Forward fields are the incom-
ing and outgoing arcs, respectively. They are pointers to ordered lists of arc nodes,
where an arc node consists of a pointer to a graph node and a pointer to the next
arc in the list, see Table 4.3. The ordering is necessary since the user must be able

to determine whether a given paragraph precedes or succeeds another paragraph,

Graph traversal is a complex problem. It was decided early in the coding of
this prototype not to pay much attention to graph traversal, but rather to develop
message passing and display; hence graph traversal was ignored. The graph is
assumed to be an n-ary tree where the issue of graph traversal appears in the code,
since the commands avetilable to the user can only be used to create a n-ary tree.

Documentation has been provided where this simplification aflects the code.

Field Name Description
Next Next Arc Node
Node Associated Graph Node

Table 4.3: Arc Node Information
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Figure 4.2 shows the graph structure of a document that has two para-

graphs, named "Parag 1" and "Parag 2", and "Parag 1" has a block of text, "The cat

and the dog”
» Type »Head
Data |—»NULL
Fwrd > Next > Next }—=NULL
Back —NULL Node Node
» Type —»>Paragraph » Type —Paragraph
Data —»Parag 1l Data —sParag 2
Fwrd Fwrd —=NULL
Back N Next —=NULL Back > Next —>NULL
Node Node
w Next —»NULL L—w Type —=Text
Node Data —~>The cat and the dog
Fwrd —NULL
Back Next +—-NULL
Node

Figure 4.2: Graph Example
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In order to validate graph node pointers, all node pointers external to the
graph operations do not point directly to a graph node, but rather to a wrapper
which both points to the graph node, and contains a copy of the graph node’s Id. If
the wrapper’s Id and the corresponding graph node’s Id are not equal, then the
pointer is invahd. This technique is used to catch several types of internal errors

when a graph operation is invoked:

(1) A pointer is passed to the operation that does not point to a wrapper, for
example, 1t has been overwritten. In this case the validation is not foolproof,

but there is a very low probabitity that the Id fields will match.

(2) The pointer points to a wrapper that points to a deleted graph node. In this
case the 1d fields will not match, since the operation that removes a graph node

sets the Id field to an illegal 1d.

Figure 4.3 shows the function GetNdData that gets a graph node’s data.
This function takes a graph node and returns the associated data if the node is
valid. A NULL is returned if the node is invalid so that the caller can check for
errors. This is not a [oolproof error check, since the node’s data field may be NULL,
Note that double indirection is needed since the parameter is a pointer to 2 wrapper,

which in turn points to the actuval graph node.

Figure 4.4 shows the function ChgNdData that modifies the data of an
existing graph node. This function takes a graph ncde and modifies its associated
data field if the node is 2 valid graph node. This function returns a NULL 1f and

only if the node pointer is invalid. The caller can use this feature to check for
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char *GetNdData (Node)
GRAPHNODE #*Node; /* Node to process */

/* Local variables */
char *Results; /* The value passed back */

/* External functions */
int PrtGphNd():; /* Print a graph node */
int ValldateNd{): /* Validate a graph node */

#ifdef DEBUG
1f (TraceCall)
fprintf (TraceFd, '"GetNdData\n'"):
1f (TraceParm) { ,
fprintf (TraceEFd, '"GetNdData Node:\n"):
PrtGphNd (Node):
}:
#endif

/* FEirst check the node for validity */
Results = NULL;
Lf (!1ValidateNd (Node)) {

fprintf (TraceEd., "Error GetNdData\n"):

fprintf {(TraceEFd, " Invalid node\n") :
}
else {

/* Now get the data */

Results = Node->GNode->Data;
}:

#ifdef DEBUG
£f (TraceCall)

forintf (TraceEd, "GetNdData returning\n');
#endif '

return {Results):;

Figure 4.3: Get Data From Graph Node
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GRAPHNODE *ChgNdData (Node, Data)
GRAPHNODE *Node; /* Node to change types */
char *Data; /* Data to change it to */

/* Local wvariables */
CRAPHNODE *Results; /* The value passed back */

/* External functions */
int PrtGphNd() /* Print a graph node */
int ValidateNd(); /* Validate a graph ncde */

#ifdef DEBUG
if (TraceCall)
fprintf (TraceFd, "ChgNdData\n'");
if (TraceParm) { ,
fprintf (Tracefd, 'ChgNdData Node:\n'"):
PrtGphNgd (Node) ;
fprintf (Tracefd, '"ChgNdData Data: ¥%s\n", Data):
}:
#endi

/* First check the node for vallidity */
Results = NULL;
1€ (!'ValidateNd (Node}) {

forintf (TraceEd, "Error ChgNdData\n"):

fprintf (TraceFd, " Invalid node\n");
}
else {

/* Now make the change */

Results = Node;

Node->GNode->Data = Data;
}:

#1fdef DEBUG
1f (TraceCall)

fprintf (TraceFd, '"ChgNdData returning\n"):
#endlf
return (Results);

¥

Figure 4.4: Change Data of a Graph Node
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€rTors.

4.3. Virtual Screen Structure

Part of the design constraint of this. prototype is to relegate all screen deci-
sions to the Display process, and all graph information to the Editor process. As the
graph is manipulated by the Editor process, it also must be displayed by the Display
process on a terminal screen, with perhaps several different views on the screen at
the same time. A view might be the entire graph, or 2 table of contents (the viewed
graph to a particular level), or only nodes directly rela,te‘d to some given node (only
its outgoing arcs). The two processes need some common ground for communication,
having the properties of the Editor being able to ignore the details of the output dev-
ice, and the Display not having to know anything about the graph. The concept of a
Virtual Screen (VS) was created and implemented to facilitate information exchange

between the Editor and Display processes.

A VS cont;a,ins information about the graph’s data, about formatting the
graph’s data and about the ordering of the graph’s data. The VS is associated with
both a view of the graph and a window on the screen, and thus there could be
several simultaneous VS’s. VS’s are linked together to form a list, the ordering of
the list determining the overlap of the windows. The Edjtor determines what infor-
mation goes into, or should be taken out of, 2 VS by examining the graph, and sends
that information to the Display, without knowing whether or not the information

will appear on the screen. The Display determines what information from the VS to
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display on the screen, and how to display it based on the formatting information and
the window on the screen, without knowing the graph structure. For the most part,
the Editor and Display have the same representation for a VS. This VS concept
works well at keeping the Editor and Display separate, but the two processes end up

performing the same processing in many cases.
There are four components comprising a VS:
(1) a unique identifier,
(2) a list of Virtual Lines, (VLs),
(3) the preceding VS, and
(4) the succeeding VS.
There is one additional component used by the Display process:

(5) information to map the VS to the screen. This mapping information contains a
window pointer, the location in the VS appearing in the upper left hand corner

of the window, and the row and column size of the window.

The identifier is set by the Editor process, and is used to determine the active VS,
1.e., the VS being modified. The VL list represents the data from the graph in a
linear order. The preceding and succeeding VS components form the list of VS’s.
Mapping information is needed by the Display process to map the VS to a window on

the screen,

Bach VL represents one node of the graph, and is a structure with two com-

ponents:
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(1) data from the graph
(2) a list of physical line breaks and formatting information

Data {rom the graph is a direct graph reference for the Editor process, but it is a
copy of the data in the Display process. Since one graph object may map to several
lines on the screen, and each line may be formatted differently, line break and for-
matting information associated with the lines must be stored. (A text block for
example, iIf occurring after a paragraph, will have the first line indented five spaces

and succeeding lines along the left margin).
The VS operations common to the Editor and Display process are:
(1) Create a new VS,
(2) Get and Set the Id of a VS,
(3) Get the list of VL lines, and
(4) Link VS structures together.
In addition to these the Editor uses:
(5) Create a new Id for 2 VS and
(6) Modify a VS to reflect addition of new graph nodes.
The Display needs in addition:
{5) Get and Set the mapping information of a VS,
(6) Set the VL list for a VS.

Further, both processes need operations that modify information in a VL.
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An abstract VS is implemented as a data structure with the five fields
shown in Table 4.4. Jd is the identifier for the VS, Lines is a pointer to the list of
VLs, Map is a pointer to the screen mapping information, and Nezt and Prev form

the doubly linked list. The Map field appears only in the Display’s copy of the VS.

Figure 4.5 shows the Editor code that links a VS into an existing VS list as
an example of the error checking in the VS operations. This function, LinkVS,
prepends a VS element to an existing list of VS’s. The VS list may be NULL, an
empty list, or may be a pointer to the middle of a list. LinkVS begins by checking
the input parameters for errors, but only those that would cause its abnormal termi-
nation, i.e., a NULL pointer reference to a VS. After error checking LinkVS does the
link. A VS list is a doubly linked list of VS elements, and so this function does a sim-
ple insertion of an element at the front. Note that the VS list pointer may be INULL

or it may be the first element in a list, both special cases.

Field Name Description

Id Unique VS identifier
Lines VL list

Map Screen mapping
Nezt Succeeding VS

Prev Preceding VS

Table 4.4; VS Fields
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VSLIST *LinkVS (VS1, VS2)

VSLIST *VSl; /* The first VS node */
VSLIST *VS2; /* The second VS node */

if (TraceCall)
fprintf (TracefEd, '"LinkVsS\n"):

/* Check the inputs */
£ (VSL == NULL) {

fprintf (Tracefd, "Error LinkVs\n");

fprintf (TraceEd, " First VS pointer is NULL\n"):
¥

else {
if (VS2 == NULL) {
VS1->Next = NULL;
VS1->Prev = NULL;
}
else {
VS1->Next VS2;
VS1->Prev = VS2->Prev:
if (VS2->Prev != NULL)
VS2->Prev->Next = VS1;
VS2->Prev = VS1:
}:
3

if {TraceCall)
fprintf (TraceFd, "LinkVS returning\n");

return (VS1);

Figure 4.5: Link Virtual Screens

This prototype does not fully implement multiple VS's. The user commands
do not allow the creation or manipulation of windows on the screen. Only d uring

initialization i1s a2 mew VS created, and then the Display process opens the entire
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screen as one window.

4.4. Cursor Structure

A cursor is a complicated mechanism in this editor because of the three
structures it needs to reference: VS’s, the graph and the screen. Furthermore, if
graph traversal was fully implemented, one node of the graph may occur in several
VS structures, and several! times on the screen. Thus multiple cursors are needed,

although only one cursor is visible on the screen.

The cursor is slightly different between the Editor and Display processes.

Comporents that are the same are:

(1) a V§,

(2) aVL,

(3) an offset into the graph data of the VL,
(4) a physical line in the VL, and

(5) an offset into the physical line.

The Editor process also uses:

(6) a graph node.

The Display process adds:

(6) VS row and column, and

(7) row and column in the screen window.
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A cursor includes its associated VS, the VL in that VS, and the physical line
in that VL, so that when characters are inserted the line break information can be
updated. It further includes an offset into the graph node data so that when infor-
mation js inserted the graph node data can be modiﬁed.‘ Cursors in the Editor pro-
cess must have an associated graph node so that the graph can be modified when
document objects are inserted at the cursor location. Cursors in the Display process

must be mapped to the screen, hence they need row and column components.

Operations needed for cursors also differ between the Editor and Display

processes. Operations that are the same are:

(1) make and remove a new cursor, and

(2) get and set a component.

Additional Editor operations are:

(3) set the associated graph node.

(4) generate a list of cursor positions

Additional Display operations are:

(3) set the position of the visible {active) cursor,

(4) write a character to the screen at the active cursor position.

In the Editor process a cursor is stored as a data structure with the three
fields shown in Table 4.5. Since this prototype allows the user to create only one VS,

all cursors are assumed to reference this VS.
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Field Name

Description

VL
Physical
Offset

Associated VL
Physical line in the VL
Offset into the physical line

Table 4.5: Editor Cursor Fields

In the Display process a cursor is stored as a data structure with the three

fields shown in Table 4.6.

Field Name Description
Vs Associated VS

VL VL in the VS

Offset

Offset into the VL’s graph data

Table 4.6: Display Cursor Fields
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5. Processes

There are three processes, Input, Editor and Display, making up this proto-

type.

5.1. Input

The Input process reads characters from the input device, recognizes com-
mands by means of a table driven Discrete Finite Automaton (DFA), and sends an
appropriate command to the Editor process. See Appendix A for a list of commands
recognized by the Input process. An error message is sent to the Editor if a charac-

ter results in an unrecognized command.

5.2. Editor

The Editor process is responsible for responding to messages from the Input
process, maintaining the graph and a copy of each VS, and sending messages to the

Display process.

5.2.1. Messages

Table 5.1 lists legal values of the Command field of a message for the Editor
process. The first nine commands correspond directly a sequence recognized by the
Input process. NewVS is sent by the Input process during initialization to create the

VS. The Input process sends Message when there is an unrecognized input sequence,
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Command Description

CursUp Move the cursor up one line

CursDn Move the cursor down one line

CursLf Move the cursor left one character

CursRt Move the cursor right one character

InsertChar | Insert a character at the current cursor position

NewLine Create a new line at the current cursor position
NewChPar | Create a new paragraph as a child to the current structure
NewSbPar | Create a new paragraph as a sibling to the current structure
NewText Create 2 new text block

NewVS Create a2 new Virtual Screen

Message Put an informative message on the screen

Quit Cease execution

Table 5.1: Editor Process Commands

and Quit for either the quit or abort sequence.

5.2.2. Graph Usage

The Editor’s primary purpose is to manipulate the graph structure
described in section 4.2. As an example, Figure 5.1 is a projected design that uses
graph operations to insert a new character at the current cursor location. The func-
tion EdInsChar inserts a character at the current cursor position only if the
corresponding graph node can have a character added to its data field. The charac-
ter is inserted in the graph node’s data field, a message is sent to the Display process
inforrning it of the change and the cursor position in updated. The Display process

may or may not change the screen, depending on what part of the graph is currently
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EdInsChar (Chr, ToDisplay)
char Chr;
int ToDisplay;

Get the cursor's graph node.
1 f (the graph node can accept more characters) {
Get the graph node's data.
Get the cursor offset in the graph node's data.
Insert Chr into the graph node's data at the offset,
Write "InsertChar" message to ToDisplay.
Change the graph node to have the new data.
Update the cursor to just after the inserted character.
Write "CursorOffset'" message to ToDisplay.

~
N

Figure 5.1: Graph Operations Example

being displayed.

5.2.3. VS8 Usage

Corresponding to every graph manipulation the Editor process must also
modify its version of the VS and send appropriate messages to the Display process.
As an example, Figure 5.2 shows the design for the Editor code which uses the VS
operations to create and initialize a new VS. This function, EdNewVS, creats 2 new
VS for the Editor process, links it in with the list of existing VS’s, tells the Display

process about the new VS and initializes the VS with data.
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EdNewVS (ToDisplay)
int ToDisplay;

Create the new VS

Link the new VS into the existing list of VS's

Get an Id for the VS

Set the VS to the new I1d

Write a "NewVS'" message to ToDisplay

Traverse the graph

For each graph node not represented by a VL in the VS

Insert a new VL into the VS
Write a '"NewVL" message to ToDisplay

Set cursor to the VL that represents the "Head”" graph node

Write a "CursorList" message to ToDisplay

Figure 5.2: Editor VS Operations Example

5.3. Display

The Display process responds to messages sent by the Editor process, updat-

ing its VS and the screen accordingly.

5.3.1. Messages

Table 5.2 hsts legal values of the Command field of 2 message for the
Display process. The first five commands have little correspondence to an Editor
command, which i1s to be expected since the Editor maps abstract manipulations to
more concrete ones. The Editor process sends 2 Message command to write 2 mes-
sage to the bottom of a VS window. NewVS is sent to create a new VS in the

Display process. The Quit command causes the Display process to cease execution.
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Command Description
CursorList Change the list of cursors
CursorOffset | Update the cursor offset
InsertChar Insert a character at the current cursor position
NewVL Create a new Virtual Line
ReplaceFmt¢ Replace the format of a Virtual Line
Message Put an informative message on the screen
NewVSs Create a new Virtual Screen
Quit Cease execution

Table 5.2: Display Process Commands

5.3.2. VS Usage

The primary purpose of the Display process is to manipulate the screen and

its VS’s. As an example, Figure 5.3 shows the design for the Display code which uses

the VS operations to create and initialize a new VS. This function, DisNewVS,

DisNewVS (Id)

Create a new window on the screen

Create a new mappling structure and set apprcpriate information

Link the new VS with the current VS list

char *Id:
{
Create the new VS
Set new VS identifiler to Id
Set new VS mapping
Empty out VL list for the VS
}

Figure 5.3: Display VS Operations Example
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creats a new VS for the Display process, sets up mapping information to a window

on the screen, and links it in with the list of existing VS’s.

5.4. Example

Consider the process interaction when a user types the character Figure 5.4
shows a pictorial description of the interaction. The Input process reads this charac-
ter and sees it as a legal pattern and sends the InsChar command, where ’x’ is the

text field of the message, to the Editor process.

The Editor process receives the message from the Input process and decodes
it. The cursor position is calculated within the current VS and the associated graph
node is found. If the graph node can have a character inserted then the character
'x’ is inserted into the character string of the node’s data, and a InsChar message is
sent to the Display process informing it of the modification. The cursor position is

updated and Display informed via a CursOff message. If the graph node cannot

Keyboard X > Input msert x| Editor nsert x. Display
x inserted X inserted
\
Graph Screen

Figure 5.4: Insert Example
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have a character inserted then an error is reported via a Message command to the

Display process.

The Display process receives one of two messages from the Editor. If Mes-
sage is received the text_of the message is displayed on the screen. If InsChar is
received then the character ’x’ is picked out of the text part of the message and is
inserted into the current VS at the current cursor location. The cursor position is
examined, and if it lies within the VS’s screen window then 'x’ is also inserted on the
screen. The Display process receives the succeeding CursOff, parses the new cursor

coordinates from the text part of the message, and sets the cursor to the new coordi-

nates.
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6. Conclusion

This prototype demonstrates weaknesses and strengths of major design

decisions as well as pointing out areas of future development.

It is questionable whether concurrent processes were an advantage in this
prototype since they required the development of message passing software, slowed
down execution, and complicated the mapping of graph to screen. The first two
disadvantages were expected, and were expected to be offset by the more disciplined
coding environment. However, mapping the graph to the screen required developing
the VS, which greatly complicated implementation of the cursor. Furthermore, VS
Editor processing had to be duplicated in the Display. VS and cursor processing is
significant, accounting for almost two-thirds the total code. Perhaps a better
approach would have been to use subroutines in this prototype, switching to con-

current, processes in some future development when the code is better understood.

Data abstraction and the debugging aids greatly increased the amount of
code. To implement data abstraction every reference to a data structure required a
function mvocation. The function would normally consist of a single line of code,
but, because of the debugging aids, might require ten or twelve lines. However, data
abstraction did provide clean interfaces and allow easy modification of data struc-
tures, and the debugging aids were useful when debugging the code. It seems that

these techniques are useful, but not without their costs.

Graph traversal is a major problem that must to be solved before a robust

system can be built. Traversal problems appeared whenever traversal had to stop
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and the position be saved for future traversal. Cursor position and graph display are
two instances. If the document represented by the graph is to be displayed on the
screen and printed on a printer in the traditional linear manner, then some linear

ordering of the graph’s nodes is required. Thus the graph must be traversed.

When traversing a cyclic graph each node traversed must somehow be
marked, so that future traversal paths through the node can be balted before cyclic
behavior begins. Explicit marking seems undesirable, since the graph may need to be
traversed several times simultaneously. Displaying the document on the screen and
searching for ap occurrence of a string are examples of simultaneous traversals.
Creating a list of nodes visited and storing this list as the current place in the graph

works well until a node of the graph is deleted, requiring all lists to be recreated.

It could be better to revert to a hierarchal structure with labeled arcs. A
hierarchal structure would eliminate the graph traversal problem, while labeled arcs
would allow the document to be structured many different ways. The document-

environment would have to keep track of which hierarchy was being traversed.

Along with pointing out problems, this prototype also shows some areas of
future development, many of which could be taken in parallel. One area is to find a
solution to the graph traversal problem stated above. A second path is to clean up

the display and cursor problems.

Further, more interesting, expansion of the following editor capabilities

could occur:
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deleting objects,
retaining information on disk,
to allow multiple simultaneous views the graph,

supporting more objects, such as sections and chapters, which introduces prob-

lems with automatic numbering,

improving the user interface.
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Command Description
<CNTL>Y Abort the editor
<CR> Insert a new line
<ESC>Q Quit the editor
<ESC>NT Start a new block of text
<ESC>NPC Insert a new paragraph as a child to the current structure
<ESC>NPS Insert a new paragraph as a sibling to the current structure
<ESC>{A Move the cursor up one line
<ESC>[B Move the cursor down one line
<ESC>|[C Move the cursor right one character
<ESC>D Move the cursor left one character

Table A.1: Prototype Commands



NAME
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Appendix B
Manual Page

ge - graphical editor

SYNOPSIS

ge [option] |option] ...

DESCRIPTION

FILES

BUGS

ge 1s a combination text-editor and text-formatter. It is intelligent, allowing
the user to manipulate high level text items and formatting issues, and at the
same time disassociates the user from the low level issues.

The following debug options are available:

-input={suboption|suboption).. ]
these are debug traces for the Input process. All debug information is
printed to the file "input.trace”.

-editor=[suboption|suboption].. ]
these are debug traces for the Editor process. All debug information
is printed to the file “editor.trace”.

-display=|suboption,[suboption]...]
these are debug traces for the Display process. All debug information

is printed to the file "display.trace".

Suboptions can be one of the following:

mes

print a diagnostic message for each message.
call

print a diagnostic when a function is called and when it returns.
parm

print all traceable formal parameters to functions.

tnpufl.trace
editor.trace
display.trace

There are only a few structures supported (just a paragraph and block text).



There is no way to save information to disk.
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