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ABSTRACT

The theory of stimulated Rayleigh-wing scattering

in anisotropic molecular liquids is discussed. This theory

is extended to include liquid mixtures. When binary mixtures

are considered, a singularity is found in the threshold

condition in certain circumstances. This leads to the

possibility of measuring the anisotropic polarizability

difference for one of the liquids. In addition, the

appearance of the singularity suggests a method of determining

whether saturation plays an important role in stimulated

Rayleigh-wing scattering.
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REVIEW OF THE LITERATURE

Experimental

In May of 1965, Mash, Morozov, starunov, and Fabelinskii

reported the observation of a new type of stimulated light

scattering which they called "stimulated Scattering of Light

of the Rayleigh-Line Wing".l They found a Stokes-shifted

stimulated band with an intensity maximum displaced from the

frequency of the excitation light in the spectrum of carbon

disulfide, nitrobenzene, and salol* when a linearly polarized

pulse from a Q-switched ruby laser was focused into a cell

containing one of these liquids.** The liquids consist of

molecules having anisotropic polarizabilities. This stimulated

diffuse band will hereafter be referred to as the "stimulated

Rayleigh-wing" .

Later, Bloembergen and Lallemand found that the stimulated

Raman lines of cyclohexane were asymmetrically broadened,

favoring the Stokes side, when CS2 was added.2 This broadening

was identified as the stimulated Rayleigh-wing associated

with the stimulated Raman line. No displaced maximum was

reported, and they found the broadening to be proportional to

the relative concentration of CS2. They used a linearly

*Salol is the common name for 2-hydroxy Benzoic Acid
phenyl ester.

**Mash, et ale did not specify whether these results were
for forward or backward scattering.
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polarized laser source and observed forward scattered light.

By sending the stimulated Raman radiation of cyclohexane

through a cell containing anisotropic liquids of various

viscosities, they discovered that the broadening decreased

with increasing viscosity.

with the above experimental arrangement, Lallemand tested

the dependence on temperature of the broadening of stimulated

Raman lines in a number of liquids.3 He discovered that the

broadening increased with temperature.

In contrast to these broadening effects, Cho, et ale

observed a sharp Stokes-shifted line in the spectra of nitro-

benzene and m-nitrotoluene between the laser line and the

stimulated Brillouin line.4 They called this line the stimulated

Rayleigh-line in order to avoid confusion with the stimulated

Rayleigh-wing. The observations were made in the forward

direction using a circularly polarized laser beam. The

sharp Rayleigh-line was seen to be shifted from the laser

line by approximately 0.1 cm-l corresponding to a frequency

shift of T -1 where T is the orientational relaxation

time of the anisotropic molecules. They demonstrated that

the frequency shift was proportional to the ratio T/ T/ where

T is the temperature and 71 is the viscosity of the liquid.

wiggins, Cho, Foltz, and Rank, using linearly polarized

laser light, reported that a sharp line was never observed

in the forward direction but, instead, a diffuse band with a
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maximum at the laser frequency was observed.5 with circularly

polarized laser light, a sharp line was found displaced from

the laser frequency by T-1 in both the forward and backward

directions. The sharp line had circular polarization in a

sense opposite to the laser light.

Foltz, et ale reiterated the observations of the previous

report, but in addition, they demonstrated that the intensity

of the stimulated Rayleigh-line increased from zero to a

maximum as the incident light was changed from linear to circular

1 . . 6
po arJ.zatJ.on. They also found that, with a circularly polarized

laser beam, the intensity of the stimulated Rayleigh-line

increased with increasing laser power until a diffuse wing

began to appear. Further power increase caused the wing to

grow at the expense of the line until the line was not visible

at all. They identified this wing as the stimulated Rayleigh-

wing and noted that in the forward direction the maximum

occurred at the laser frequency. There was no anti-stokes

wing observed and the polarization of the wing was the same as

that of the laser.

Denariez and Bret measured gains for stimulated Rayleigh-

wing scattering at various Stokes frequencies in nitrobenzene

7and toluene. Measured gains were in agreement with the

predicted order of magnitude of 104 cm-l In addition, the

quantity 9 I , where 9 is the gain and I is the interaction

length, was found to be directly proportional to PL, the power
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density of the laser, in nitrobenzene at all frequencies

tested.

The method used to determine the gain was a two cell

amplifier technique. In this technique, the backward

scattered stimulated Brillouin signal produced in one liquid

passes through a second liquid contained in a cell between

the laser and the first liquid. If the stimulated Brillouin

frequency is approximately the same as the stimulated Rayleigh-

wing frequency of the second liquid, one simply measures the

gain of the stimulated Brillouin signal in the second liquid.

The advantage of this technique is that it does not depend on

the amplification of noise signals, and hence, the laser

intensity can be kept low enough to avoid self-focusing which

causes erroneous results.

Theoretical

Mash, et al. included in their report a threshold

condition on the incident laser power for the onset of

stimulated Rayleigh-wing scattering.l For linearly polarized

laser light the condition is*

*The condition written here is due to the present author
and is not identical to that found in the paper by Mash, et al.
There is a discrepancy among authors as to the constant
factors which appear in the equation. To be consistent, the
author's results are quoted whenever this equation appears.
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where ELois the incident laser field,

n is the index of refraction of the liquid,

Y is the optical damping constant,

k is the Boltzmann constant,

T is the temperature,

n is the frequency of the scattered light,

r is the anisotropic relaxation time,

kRis the wave number of the scattered light,

N is the number of molecules per unit volume and

all' a.l are the principal polarizabilities of the molecule.

They predicted that the stimulated scattering will have a

stokes-shifted maximum displaced from the laser frequency

by r-1 , but they did not say whether their theory predicted

a diffuse wing or a sharp line. They also failed to state

explicitly whether their theory was for forward or backward

scattering.

Bloembergen and Lallemand considered forward scattered

light and predicted a Stokes-shifted maximum in the scattered

light displaced by r-1
2

Again, however, they did not comment

on whether a line or a wing was expected. In addition, they

stated that the gain for the case where both laser and

scattered light are plane polarized in the same direction is

four-thirds that for when they are polarized perpendicular to

each other.

Chiao, Kelly, and Garmire considered how a new phenomenon,

called stimulated four-photon or light-by-light scattering,
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influenced the observation of the stimulated Rayleigh-wing.8

In light-by-light scattering, two forward moving laser photons

scatter to produce two new photons moving at a small angle,

e , with respect to the incident laser light. one photon moves

at an angle of + 8 and the other at an angle of - e. These new

photons are amplified to produce the stimulated light-by-light

scattering effect. They showed that both the light-by-light

and stimulated Rayleigh-wing scattering effects have a

large gain in the forward direction but that light-by-light

scattering dominates. Due to the influence of light-by-light

scattering, which causes a Stokes--anti-Stokes coupling, they

predicted that there will be no displaced maximum in the

stimulated Rayleigh-wing observed in the forward direction,

using linearly polarized laser light, up to an angle (relative

to the incident laser direction) which they called eOpt

Beyond this angle, the maximum slowly shifts in the Stokes

direction from zero displacement to ,.,---1 for8= 1T' . *

Herman addressed himself to the questions raised by

wiggins, et ale concerning the appearance of the stimulated

Rayleigh-wing with linearly polarized laser light and the

stimulated Rayleigh-line with circularly polarized light.10,s

He suggested that these results were due to a saturation

effect; the molecules tend to line up rigidly due to dc fields

generated by the light beams in the liquid. considering

*starunov also took into account the Stokes--anti-Stokes
coupling in the forward direction with similar results.9
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forward scattered light, he predicted a stimulated Rayleigh-line

Stokes-shifted by r-1 for a linearly polarized, low power

incident laser beam and a stimulated Rayleigh-wing, also

Stokes-shifted by r-1, for higher powers. According to his

theory, "saturation" occurs in this case for

In agreement with previous results, Herman stated that the

gain for the parallel linear polarization case is four-thirds

of the gain for the perpendicular linear polarization case.

In addition, he predicted less of a saturation effect for the

perpendicular linear polarization case.

Results for the case of both laser beam and scattered

light having the same circular polarization were similar to

the linear parallel case. When the scattered light is

polarized with opposite circular polarization, saturation is

not as pronounced and a sharp line is expected even for

moderately high laser powers. Not until the scattered light

itself gains appreciable intensity will saturation occur. At

this point a wing will again appear. This prediction agrees

with the observation of Foltz, et al.6

In his discussion, Herman allowed for the possibility

that in some cases (e.g. the linear parallel case) saturation

may be so pronounced as to prevent the formation of a sharp

line at any power. He also pointed out that, in predicting



8.

a maximum in the forward scattered stimulated Rayleigh-wing

displaced by r-1 , he is at odds with the experimental facts.

Aside from the observations of Mash et al.,l no shift in the

stimulated Rayleigh-wing maximum has ever been reported in

the forward direction. As mentioned earlier, it is unclear

whether they were actually reporting results for forward or

backward scattering.

Chiao and Godine believe that Herman's saturation theory

represents a higher order effect than that immediately

responsible for the experimental observations. II They stated

that these phenomena were the result of the existence of

stokes--anti-stokes coupling in the forward direction and the

absence of it in the backward direction.

According to Chiao, Kelly, and Garmire,8 light-by-light

scattering in the forward direction must be taken into account

which Herman's theory did not do. Including light-by-light

scattering, Chiao and Godine correctly predicted zero shift

in the forward direction in the linear parallel case and a

shift ofr-1in the backward direction for the maximum of the

stimulated Rayleigh-wing.

using similar arguments for circularly polarized light,

they also correctly predicted that there would be a sharp

stimulated Rayleigh-line, displaced by r-1, in both forward

and backward directions. They did not, however, state how one

determined whether a line or a wing would be observed or why
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Foltz, et al.6 observed a change from a sharp line to a

diffuse wing.

The present work is concerned with the extension of some

of the theory of stimulated Rayleigh-wing scattering to liquids

consisting of mixtures of two or more anisotropic molecular

species. preceding this will be a discussion of the pertinent

theory of stimulated Rayleigh-wing scattering in simple liquids.
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THEORY OF STIMULATED RAYLEIGH-WING
SCATTERING IN SIMPLE LIQUIDS

The purpose of this section is to treat some parts of

the theory of stimulated Rayleigh-wing scattering. This

will result in a set of two simultaneous equations which

could be solved to give a threshold condition on the incident

laser intensity. This is done to lay the foundation for the

extension of the theory to liquid mixtures which follows

this section.

The discussion begins with two of Maxwell's equations:

VXE = L oH and
Cot

(1)

where it has been assumed that p = J = 0 and J.l = 1. combining

the second equationwith the curl of the first gives

VX(V XE) =_...!.. 025
C2 0 t2 .

Rea rrang ing and us ing V. E= 0 , one ha s

-'"
020 _ C2V2E = 0 .o t2

(2)

The polarization vector can be written as

-'" (E-1)...:..p= _ E. (3)
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E usually can be taken to be a constant. When it is

desirable to consider the influence of molecular orientation,

E must contain an additional term. After Fabelinskii,12E

can then be shown to be of the form

E = EO + oE SoS
(4)

where S is some measure of the molecular orientation. A

linear and a non-linear polarization can be defined by

substituting (4) into (3).

Then
:.. -'" :..

p = pL + pNL where

(5)

-'"

The relationship between D E , and
:..

p can be written as

(6)

where is the local field correction

factor. *13

*The quantity 1/4?T' 1t12 +2)/3r [0 E /oS] S E i~ called the non-linear
source polarization which is written as pNLS in Bloembergen1s
notation.
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Substitution of (6) into (2) gives

(7)

~

Since E is the total applied field, it can be written
~

as the sum of the laser field, EL , and the scattered field,

Equation (7) can then be written as

(8)

~

Since this derivation is for threshold conditions, ER

and S can be assumed to be small quantities. Then oth, 1st,

and 2nd order terms in (8) can be equated. The first order

terms yield

(9)

~

As a solution to this equation EL
~

ER' and S can be

assumed to take the following forms:

(10)
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It is desirable at this point to consider the quantity

S in more detail. According to Frenkel,14 for liquids

consisting of molecules having anisotropic polarizabilities

a" ' a.J. ' and aJ. ' the average distribution of molecular axes

in space can be specified by an "anisotropy tensor" defined

by the equation

(11)

where 6j is the angle between the molecular axis and the ith

(12)

where T is the orientational relaxation time.

In the presence of a forcing term, the kinetic equation

for the anisotropy tensor becomes

dS"

k 1 S = Fk .

I + - "

k I- T Idt (13)

If Sik is a slowly varying function of time, then as a first

approximation,

(14)

spatial axis and < > denotes a statistical mechanical average.

The tensor is seen to be zero for a completely random

distribution. It relaxes in time according to the usual law,
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Returning to equation (11), if the assumption is made

that the light fields are completely plane polarized in the

z direction, all the terms vanish except Szz Then

(15)

where the subscript on (] has been dropped. <cos28> can be

determined from statistical mechanics. one has

(16)

1
" u

o e kTS1N(]d(]

where U is the potential energy of the molecule.

If each molecule in the liquid is oriented by the applied

field independently of all other molecules, then U can be

found with reference to F:ig ure 1.
p~ z
I
I
I
I
I
I
I

~ I
PI!

y

x

Figure 1
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The potential energy of the molecule is

u
...::. ~

-p . E - Pz E . (17)

The z component of the total dipole moment is

Pz = (all -a.t) E cos2 8 + alE.

Substituting equation (18) into equation (17) gives
2 2 2

U = -(all- al) lEI cos 8 - allEI .
using this expression for U , (16) becomes

(18)

<c OS2 8>
(19)

2

(all - al) lEI

where x = cos 8 and {3 = kT. (20)

Both of the integrands in (19) can be written in series form.

After the integrations are performed, one is left with

The right hand side of (21) can be simplified by assuming that

00 {3n

<cos2 8>
L n! (2n + 3)

= n=o (21)

00 {3n

L n! (2 n + 1)
n=O
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~« 1.* The series can then be approximated by their first

two terms. Therefore:

1 ~-+-
<cos2 e> - 3 5 _ 1 ~ ~

1+~ 3 - 9 + 5
3

or
1 4

< cos2e> - - + - 13 .3 45 (22)

From equations (15), (20), and (22) the expression for

the anisotropy becomes

5 - 4 (all - al.)IEI2
45 kT

(23)

As a first approximation the forcing term from (14) can be

written as

F
4- -
45

2
(all - al.) lEI

k T-r (24)

The kinetic equation for the anisotropy then becomes

1

5 + -5
..,.

- 4

45
(all - a1) IEI2

kTT

(25)

*This is a reasonable assumption for fields up to = 107vcm-l.
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Equations (9) and (25) are the two simultaneous equations

which, using the ansatz in equation (10), will yield the

threshold condition which appeared in chapter 1. At this

point, consideration will be given to the modifications

necessary to include liquid mixtures in this theory. This

will be followed by the actual derivation of the threhold

condition in liquid mixtures.
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THEORY OF STIMULATED RAYLEIGH-WING
SCATTERING IN LIQUID MIXTURES

The derivation of the threshold condition for stimulated

Rayleigh-wing scattering in liquid mixtures proceeds exactly

as in the simple liquid case. one, in fact, obtains two

simultaneous equations analagous to (9) and (25) of chapter

2, and postulates an analagous ansatz to equation (10) of

chapter 2. It is necessary, however, to reconsider the

quantity S

Each molecular species in a liquid mixture will correspond

to a differentvalue of S . It is possible to postulate that

the mixture as a whole will correspondto an average S defined

by the equation
S = r F .

If one assumes that the forcing terms for each species are not

appreciably different then

S = TF.

The kinetic equation for S becomes

_ 1

S+ rS= F

or, using equation (25) of chapter 2

S +
1
'T

S

2

4 (all - aJ.)lEI

45 kT ,..

(1)-

Equation (1) replaces equation (25) of chapter 2 as the

second equation necessary to find the threshold condition.
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The only other change necessary is to remember to replace S

by S in equations (9) and (10) of chapter 2. Notice that

this new set of equations is exactly the same as the set for

simple liquids if S is replaced by S , T is replaced by 'T

and a - a
II .L is replaced by all- a1

It is now possible to proceed with the derivation of the

threshold equation. In what follows the bars indicating

averages of S T, and all-al.will be dropped for convenience.

Substitution of the ansatz into equation (1) gives

.JL
[S

-j( K' r - {1 t)

]
+ .!

[S
- i 0< .r - n t )

]dt 0 e + c.c. Toe + C.C.

=-
45 kTT

where it has been assumed that second harmonic fields, sum

fields, and dc fields cannot act as sources for the anisotropy

wave. This equation further reduces to:

nt) + C.C.

kT

4

45

from which one obtains the momentum and energy conditions:

( 2)

From this same equation one also obtains the following
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expression for 50

Therefore, the equation for 5 in (9) of chapter 2 can be

rewritten as

Returning now to equation (9) of chapter 2 and using

the ansatz with equation (3) from above, one finds

where c'= c/n. performing the indicated differentiations,

one obtains
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~

Assuming that ERo(r) is a slowly varying functionof r ,

the above equation becomes

From this, one can find

VE (r).j(Ro R
(4)

where it is necessary to recognize that VERO(r)'kR is a

t h
. . t . th ~ ...>okvec or av~ng as ~ s ~ component VEROj(r)' R

~

with this in mind, one assumes a solution for ERo(r) of

the form
:..

ER (r) = E (0
)1\ ¥° Ro Z e

(5)

where 9 is the ga in per unit length and x is the coordinate
...::..

in the kR direction. Substitution of (5) into (4) and

simplifying, one has

Therefore:

9
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optical losses in the medium can be accounted for by adding

an optical damping term

9

where y is the optical damping constant.

The condition for positive gain is 9 > 0 , or

By rearrpnging this equation, one is left with a threshold

condition on the incident laser light:

(6)

where the bars denoting averages have been included.

The only quantity remaining to be determined in the

threshold equation is oe/oS Since S is a functionof all

and O£.l E will be obtained in terms of these quantities

first.

It is necessary to begin by considering the total

induced polarization in the liquid,

(7)

where N is the number of molecules per unit volume,

< > denotes a statistical mechanical average, the bar

over the O£ij is an average over the components of the

mixture and is the effective field. For a completely

random molecular distribution,
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E~ff = E. + 431Tp.I I J
(8)

where Ej is the applied field.1S Equations (7) and (8)

combine to give

The X component of P can be written explicitly as

In addition one can write for the X
~

componen t 0 f 0

with similar equations for Dy and Dz using these, one

finds the following equations for the components of P

(10)

combining (9) and (10) and rearranging yields
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[(1 N<a-Xx:::\f.E 1) N<aXY>E N<axz> E - N<a-J E
41T- 3 J"xx- - 3 yx- 3 zx XX] X

+[(i _ N<a-;x~\E_ N<a;r 'e -1) _ N<O:;z>e - N<a~J E
47T 3 J xy 3 \ yy 3 zy xy] y

(11)

Treating in the same manner the y and z components of P
one obtains two additional equations similar to (11).

The trivial solution is sought to the three simultaneous

equations since this would give the f.'5 as functions of the Ct'5

independent of the field components. Therefore, each

of the nine coefficients must be set equal to zero. Fortunately,

a general term can be written which represents all nine of

the coefficients. If the coefficients of the three equations

are considered as rows in a matrix having components Aij

then the general term is

( 12)

one simply sets Aij= 0 and solves for f.ij to obtain
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3

Ejj = Dij + 4;N [2 <aj' > + L <aik> EkiJ
.. (13)

) k=1

Note that in the limit of isotropic polarizabilities,

equation (13) reduces to the familiar Clausius-Mosotti

relation. Recalling that the only term of interest is

EZZ ,equation (13) becomes

The <~ > 's , which are measured in the laboratory

frame of reference, can be related to the principal

polarizabilities of the molecules through the equation

where R is the transformation matrix in the Euler angles,
16

0, </> and t/J, and

a. .body
I)

<CJji> can then be determined from the equation

!cR-1 ajjbOdYR) f(O)dod</>dt/J

/f(0) do d</>dt/J

(15)
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where the distribution function is H8) if randomness in cp

and ~ is assumed.

To find Ezz from (14) we need only cons ider three

averages of the form (15). They turn out to be

<azx> = <aZY> = 0 (16A)

and

(16B)

using equation (15) of chapter 2, (16B) can be written as

or (17)

combining (16) and (17) and (14) and rearranging results

in

fu=

Differentiating with respect to S gives

= 47TN(ali -a.L}

G_43N {(h+~a,,) +[a,,-aJS}]'oS
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This becomes in the first approximation

(18)

combining (18) and (6), the final form of the threshold

equation is obtained:

(19)

By differentiating (19) with respect to n , a

minimum in threshold power (i.e. a maximum in the gain) is

found for n = ,-1. This corresponds to a maximum in the

Rayleigh-wing displaced by an amount ,-1 from the laser

frequency. The gain curve has the form of Figure 2.

9

Figure 2
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There is some question as to whether this theory could

be applied to forward scattered light since Stokes--anti-Stokes

coupling was not considered. 8, 9, 11 In addition, the theory

presented here does not explicitly predict whether a sharp

line or a diffuse wing is to be expected.

The next chapter deals specifically with binary liquid

mixtures. The threshold condition is examined for a number

of different types of these mixtures.
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APPLICATION OF THE GENERAL THEORY OF
STIMULATED RAYLEIGH WING-SCATTERING

TO BINARY LIQUID MIXTURES

when applying the threshold condition (equation (19)

chapter 3) to binary liquid mixtures, the averages which

appear can be defined according to the following equations:

(1)

If one considers the threshold at the frequency of the

maximum of the stimulated Rayleigh-wing(U= ,-1, then the

threshold equation can be written in simple form as

c .

- (all-al

(2)

Note that there is a singularity in this equation for

(3)

implying that the gain.is zero for this particular mixture.

T - X1 r1 + (1-X1)r'-

where a', , al are the principal polarizabilities of component 1,

2 2-

are the principal polarizabilities of component 2,all , al.

X1is the mole fraction of component 1,

r1is the relaxation time of component 1 and

is the relaxation time of component 2.
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Equation (3) can be rewritten as

Solving for X1' one finds

1 -
(4)

Since X1 , is a mole fraction, it must satisfy the condition:

Therefore:

1
« 1

where and A 2 2
a ~ = all - a.l'

This condition is satisfied for

(5)

When equation (5) is satisfied, there will be some mixture of

the two components (specified by equation (4» for which the

threshold power for stimulated Rayleigh-wing scattering becomes

infini te.
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There are four general relationships between the principal

po1arizabi1ities of the two components to be considered.

case 1. ctll *an , al * al

Equation (5) will be satis fied for c{ > a11 or J.L ~ a1i .

case 1 a111= afI , al* al

Equation (5) is satis fied here for al 2 a111or ~ > a111

1 '2. ~ ~
case 1. all* all , a.L = u.L

For these values, equation (5) is satisfied for al >

For these three cases, a plot of threshold power versus

X1 can be made. In each instance the results will be similar

in appearance to either Figure 1 or Figure 2. Figure 1 is for

the case where condition (5) is not met; Figure 2 is for the

case where condition (5) is met for some value of X1 .
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Condition (5) is not satisfied

10
10

....

Q)

:=
o

a..

Q)
>
-co
Q)
a:

Figure 1*

*Figures 1 and 2 have been drawn using hypothetical
values of the principal polarizabilities and the threshold
power has been normalized to unity for X1=1.



Condition (5) is satisfied

10

~

Q)

~
o
a..

-c

o
.c:
CIJ

Q)
~

.c:

I-

Q)
>

-
co

Q)
a:

Figure 2

33.

10
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case 4--
Equation (5) cannot be satisfied for any values of alland al.'

In this instance a plot of relative threshold power vs. X1

would appear as in Figure 3.*

Mixtures having more than two components will not be

considered in the present paper. Such a treatment would

begin with the threshold equation as in the case of binary

mixtures. The polarizability and the relaxation time

averages would have to be redefined, but equation (3) would

remain as the condition for a singularity.

*one would also obta in this graph from case 1 if ~a1 =~a1.
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Case (~)

Q)

~
o
a..

Q)

>-
tU

Q)
a:

X1 = I
X1 =0

Figure 3
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CONCLUSIONS

The theory of stimulated Rayleigh-wing scattering

in liquids has been extended to include mixtures of liquids

consisting .of sYffiffietrictop molecules. This general theory

has been applied to the case of binary liquid mixtures

and three important results found. First, it was found

that, in certain circumstances, singularities arose in the

threshold equation. For these particular mixtures, no

stimulated Rayleigh-wing scattering should be observed.

Second, a measurement of the concentration at which the

threshold is infinite enables one to calculate the

polarizability difference of one of the liquids in a binary

mixture relative to the other.

Finally, using binary mixtures it should be possible

to resolve the question of whether Herman's saturation

theory is directly applicable to stimulated Rayleigh-wing

scattering or whether it is indeed a higher order effect

as Chiao and Godine claim. For circularly polarized laser

light, Herman states that the saturation-to-threshold

power ratio can be either greater or less then unity depending

on laser power. The mixture extension suggests that this

ratio can also be varied by changing concentrations while



37.

maintaining a constant laser power. This result follows

from the fact that Herman's saturation and threshold power

expressions do not have the same all_ a~dependence, so that

the saturation-to-threshold ratio is a function of all- a.l'

which can be adjusted by concentration.

In obtaining the results of this paper, a number of

restrictions have been made. It is desirable at this point

to examine some of these restrictions and to suggest improve-

ments in the theory.

The first restriction to be considered is that the

molecules must be axially symmetric. A more general theory

could be constructed to include non-symmetric top molecules

which would reduce to the symmetric top case under appro-

priate assumptions. This would necessitate generalizing

the quantity S which specifies the orientation of molecular

axes.

In addition, no provision was made in the theory for

polar molecules. This case in particularly interesting

since it would enable one to consider stimulated Rayleigh-

wing scattering in water. once the theory has been extended

to include water then aqueous solutions could be considered.

The consideration specifically of electrolytic solutions

would necessitate further reexamination of some assumptions.

Since the ions in the solution orient the water molecules

nearby, one could no longer assume that the molecules in
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the liquid are oriented by the field independently of all

other molecules. Also, there would be a fluctuating charge

density, p, in the liquid which is not accounted for.

When considering the theory in liquid mixtures, the

assumption was made that the forcing terms, which appeared

in the kinetic equation for S ,were not significantly

different for each species. The theory based on this

assumption correctly reduces to the simple liquid case.

However, it might be more accurate to derive the threshold

equation eliminating this assumption. The degree of accuracy

of this assumption could be determined by experiment.

There are a number of experiments which can be suggested

on the basis of the results found in this work. First,

experiments should be run to determine whether the threshold

power does indeed become infinite for certain binary mixtures.

For example, with a binary mixture of CS2 and benzene, a

singularity should be found for X1~3~where X1 refers to the

concentration of CS2). Since the theory predicts a rapid

rise in threshold power near the singular point, such

experiments might best be performed using the two-cell

amplifier technique of Denariez and Bret.7 In that case

one would look for the point where the gain dropped to

zero. using this same technique, it would be possible to

experimentally determine the ~a of one of the liquids.
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An experiment could also be performed to determine

whether Herman's saturation theory correctly predicts a

change from a line to a wing for a change in concentration

at constant laser power. This could be accomplished

by adjusting the relative concentration of appropriate

liquids to determine if a change from a line to a wing

is observed. This should correspond to a change in the

saturation-to-threshold power ratio from < 1 to > 1. If

the relative concentration at which this occurs is correctly

predicted by Herman's theory, then this would support

his conclusions.

Results of stimulated Rayleigh-wing scattering

experiments given in various papers are often not correlated

with one another. For example, various authors find a

diffuse wing displaced from the laser frequency; others

find a line displaced from the laser frequency; and still

others measured a gain with a maximum also displaced.

The theory predicts that all of these displacements are

the same and are equal to ,-1. The present author would

like to suggest that experiments be performed to determine

whether all of these displacements are actually the same.

In addition, further work might be performed to determine

how one can decide whether, given a particular gain curve,

a sharp line or a diffuse wing is expected.
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