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ABSTRACT 

Mass spectrometry has become an important tool in proteomics. With the help of 

this technique we can study proteins at a much larger scale, which will aid further 

biological interpretations. However, Sophisticated algorithms that can interpret mass 

spectrometry data and robustly identify proteins, post-translational protein modifications 

and sequence variations present in a sample are needed. One of the problems with 

existing algorithms is that they often fail to identify unanticipated post-translational 

protein modifications and sequence variations. We present a novel mass-based alignment 

algorithm, implemented in OpenSea, which uses de novo sequencing results to robustly 

identify protein, post-translational protein modifications and sequence variations. 

OpenSea interprets the database protein sequences and the de novo peptide sequences 

(derived from a tandem mass spectrum) as a series of masses and the masses, rather than 

amino acid codes, are compared using a heuristic-based dynamic programming 

technique. Any unexplained mass shifts between the database peptide sequence and the 

de novo peptide sequence are automatically interpreted as post-translational protein 

modifications and sequence variations using an auto-interpretation routine. The 

identification of peptides and the location of identified post-translational protein 

modifications and sequence variations are validated using an independent rank-based 

correlation method. The performance of OpenSea was tested with three types of data: a 

mixture of ten known control proteins, a sample containing unknown and sequence 

modified human and rhesus monkey amniotic fluid proteins, and a 93 year old 

cataractous lens sample containing post-translationally modified proteins. In all the three 

cases we demonstrate that OpenSea can identify more peptides than existing algorithms 

5 



(SEQUEST, CIDentify) while accurately locating unanticipated post-translational protein 

modifications and sequence variations present in a high-throughput environment. 
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INTRODUCTION 

In the post-genomics era, much of the focus is now shifting to the study of 

proteins (proteomics). There are several interesting aspects of a protein to study: i.e. its 

sequence, three-dimensional structure, or biological function etc. However, studying the 

sequence of a protein (protein sequencing) is still of a basic requirement in proteomics 

[1]. This is emphasized by the fact that a large part of the euakryote proteome remains 

unknown [2]. Furthermore, a protein's overall structure and functional relationships are 

largely determined by its sequence [3]. The function of a protein not only depends on its 

sequence but also on the modifications that are present in that protein. After a protein is 

manufactured inside the cell, it is processed in a myriad number of ways before it is 

released out of the cell. One of the important post-translational steps is the addition of 

chemical modifications to the protein sequence [4]. These post-translational 

modifications determine the function of a protein to a large extent. It has also been 

suggested that accumulation of posttranslational modifications over time can have 

detrimental effects on the function of protein [3-5]. Thus, the identification of post­

translational modifications in proteins is an important part of protein sequencing. 

A protein can also exist in several different forms. If there are polymorphisms at 

the genetic level, then the resulting proteins can differ from their original forms in terms 

of amino acid composition [3-4]. The sequence variations between the original form and 

the mutant form of the protein can make the mutant protein unstable. For example, 

numerous mutants of the hemoglobin protein have been discovered so far [6] and the 

majority of these mutants don't disrupt the function of the hemoglobin molecule. 

However, some of these mutants, like the sickle cell variant, disrupt the oxygen-carrying 
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function of the hemoglobin molecule [6]. When a protein's natural function is disrupted 

by sequence variation, then a pathological condition could occur. Thus along with post­

translational modifications, identification of sequence variations in a protein is also an 

important aspect of protein sequencing. 

Several existing methods for protein sequencing fall into two different classes, 

low-throughput and high-throughput, based on the throughput of the corresponding 

method. One of the foremost methods developed for protein sequencing is Edman 

degradation [7]. In this method, a pure form of a protein is sequenced from its N­

terminus, amino acid after amino acid. However, this method cannot reliably identify the 

posttranslational modifications present in a protein. Furthermore, it requires a 

considerable amount of time to purify and sequence a protein using this method. The 

sensitivity of this method drops exponentially after sequencing the first thirty or forty 

amino acids of a protein, making this method less amenable to large-scale proteomics 

experiments. 

With the advent of peptide ionization methods like electro-spray and MALDI, 

mass spectrometry (MS) became an important tool in proteomics for protein sequencing 

and quantification [8]. Figure 1 shows a typical MS-based approach for protein 

sequencing. Generally, the biological samples contain a large number of proteins. 

Before the samples are subjected to further analysis, they are purified to remove any 

extraneous materials. The purified complex protein mixture (Figure 1a) is simplified by 

separating it into smaller fractions using a SDS-PAGE gel [9]. The proteins that are 

present in the fractions are further fragmented into peptides using a protease (Figure 1 b) 

[ 1 ,8]. The resulting peptide mixture is separated and ionized using reverse-phase liquid 

chromatography and electro spray ionization (ESI) technique (Figure lc) [1,8]. The 
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ionized peptide species are then analyzed by a mass spectrometer. The mass spectrometer 

acquires the mass spectrum (MS) of the ionized peptide species eluting at a specific time 

point (Figure 1d). Using this mass spectrum, the computer controlled mass spectrometer 

determines the most abundant protonated peptide species and subjects it to further 

fragmentation inside the mass spectrometer using low energetic collision, also known as 

collision induced dissociation (CID), against an inert gas wall [8]. After CID, the mass 

spectrometer acquires the mass spectrum (MS/MS) of the resulting fragment ions (Figure 

1e). The acquired MS and MS/MS spectra are stored for matching against protein 

sequence databases. The MS-based proteomics experiment can analyze multiple samples 

in a single day, making it suitable for high-throughput analysis. However, the stored 

unknown MS and MS/MS spectra have to be interpreted to find the peptides that are 

present from the proteins in the sample. Manual interpretation of such unknown spectra, 

on such a large scale, is not practical for high-throughput analysis. However, computer 

automation of such tasks is very effective. 

Software packages (such as SEQUEST) have been developed to identify the 

peptides (and therefore the proteins) present in the sample by matching the amino acid 

sequence information present in an unknown MS/MS spectrum against the protein 

sequence database [ 10-11]. These programs take a protein sequence database and 

generate a list of candidate peptides by performing a theoretical digestion of proteins 

present in the database using the same experimental protease. The candidate peptide 

sequences for the unknown MS/MS spectrum are selected from the list of theoretical 

peptides by using a whole peptide mass filter, where the masses of the candidate peptide 

sequences should match the mass of the experimental peptide with in a specified 

tolerance. A set of hypothetical spectra is generated for the selected candidate peptide 
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sequences. These hypothetical spectra are compared to the unknown experimental 

MSIMS spectra using cross-correlation. A match score for each hypothetical spectrum is 

generated based on the degree of correlation between itself and the unknown MS/MS 

spectra. The peptide associated with the hypothetical spectrum that matches the 

unknown experimental MS/MS spectrum is assumed to be in the sample. A list of 

proteins that are most likely to be present in the sample is compiled from the list of 

identified peptides. However, this type of search fails to identify the sample peptides if 

they differ from the database peptides due to sequence variations or posttranslational 

modifications. 

Such problems can be avoided by using alternative strategies. One such strategy 

is to create a database of proteins that contains all possible combinations of commonly 

occurring posttranslational modifications and sequence variations and to search the 

unknown spectra against the new database [12]. However, the size of a typical proteome 

and the number of possible posttranslational modifications and sequence variations make 

the search space prohibitively large. This technique is more effective when looking for a 

few user-defined modifications rather than unknown modifications. Since it is more 

probable that the modifications and sequence variations are present in the proteins that 

are already present in the sample, we can reduce the size of the new database by only 

considering the proteins identified in an initial database search [13-14]. This type of 

strategy has been implemented in the AutoMod subroutine of ProteinLynx [15]. 

However, this method requires the identification of at least one unmodified peptide in the 

initial database search. Furthermore, this method can only identify the modifications that 

are represented in the new database. 
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In order to identify peptides with unanticipated modifications, several different 

search strategies have been suggested. One such strategy derives the fragment ion series 

directly from the MS/MS spectrum [14,16]. The derived fragment ion series is then 

compared to peptide sequences without using any stringent parent ion mass filters. 

Another such strategy takes a short peptide motif and matches it against the experimental 

MS/MS spectrum [17]. Both these strategies can identify unknown posttranslational 

modifications, provided the modifications do not shift the sequence specific fragment 

ions of the ion series and the sequence motif. Because there is only a partial matching of 

the peptide sequence with the experimental MS/MS spectrum, both these approaches give 

a significant number of false positive matches. These techniques often only report mass 

shifts because of their inherent inability to locate the modification site. Hence, manual 

validation of the results is a requirement and these programs are not amenable for use in 

high-throughput proteomics experiments. 

An effective way to identify peptides with unanticipated modifications or 

sequence variations is direct interpretation of MS/MS spectrum, known as de novo 

sequencing, without the help of a protein sequence database [18]. Typically, an MS/MS 

spectrum contains a series of sequence specific fragment ions where the mass difference 

between these ions corresponds to the amino acids in the original peptide (Figure 1e). 

These amino acids can be linked together to form a complete peptide sequence. Due to 

the irregular fragmentation of the peptide or presence of posttranslational modifications 

on some amino acids, some areas of the MS/MS spectrum cannot be linked directly to the 

mass of a single known amino acid [19]. This results in a partial peptide sequence rather 

than a complete peptide sequence, as it is a common occurrence. Manual interpretation 

of the MS/MS spectrum is time consuming and error prone. However, there are many 
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commercial and free programs that automate the de novo sequencing process [20-23]. 

These programs consider the irregularities in the fragmentation patterns and the 

possibility of occurrence of posttranslational modifications thus making the process 

amenable for high-throughput proteomics experiments. 

De novo sequencers often produce several high scoring similar candidate peptide 

sequences for an experimental MS/MS spectrum. They also report sequence ambiguities 

for parts of MS/MS spectra in which either sequence specific fragment ion information is 

absent or an unanticipated modification is present. When using experimental MS/MS 

spectrum acquired on a low mass accuracy instrument such as a LCQ, these programs 

often fail to distinguish between isobaric amino acid residues. Also, structural isomers 

cannot be distinguished with low energy CID spectrum [21]. Hence, we need an error­

tolerant search engine that can resolve sequencing errors and posttranslational 

modifications by matching the de novo sequences to a protein database using a homology 

based search. 

Several search protocols for the BLAST sequence homology search engine have 

been developed to align de novo sequences with the proteins in the protein databases. 

For example, MS-BLAST uses a modified amino acid substitution matrix to account for 

single isobaric mistakes, sequence variations and possible modifications [24]. This 

method can be extended to account for ambiguous regions in the de novo sequences by 

further modifying the amino acid substitution matrix to include all possible combinations 

of amino acids that can add up to a single mass. However, as the number of ambiguous 

regions in a de novo sequence grows the number of combinations that need to be tested 

increase exponentially. This leads to increase time spent validating the results from such 

a search strategy and reduce throughput. 
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The popular FASTA sequence homology search algorithm has also been 

modified, known as FASTF, to search de novo sequences with ambiguous sites against 

protein sequence databases [25]. This algorithm determines the positional composition of 

the peptide using multiple similar de novo sequences. It uses the FASTA algorithm to 

find the peptide from the protein sequence database that has similar positional 

composition as the query sequences. This approach is useful in matching the ambiguous 

regions of a de novo sequence to a peptide sequence from the database. However, this 

approach cannot differentiate between de novo sequence errors and posttranslational 

modifications. Another program, CIDentify, attempts to correct for the de novo 

sequencing errors by employing a rescoring approach [26]. It initially matches the high 

confidence regions of the de novo sequence to a protein sequence using FAST A 

algorithm. After the initial alignment is made, unresolved consecutive mono and 

dipeptides can be matched to an adjacent section of the database sequence if they are 

isobars. This additional rescoring step helps to explain some common de novo 

sequencing errors and produce more accurate results. 

The sequence homology approaches discussed above is limited in several ways 

when used to align de novo sequences containing ambiguous regions to database protein 

sequences. First, they often fail to match de novo sequences that are derived from 

marginal MS/MS spectrum to a database sequence. Second, they also fail to distinguish 

between de novo sequence errors and sequence modifications. Third, their results often 

require extensive manual validation for assembling the identified peptides in to proteins. 

These disadvantages make the sequence homology based programs very ineffective to 

use in a high-throughput protein identification environment like an MS-based proteomics 

experiment. 
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In this thesis, we describe a new mass-based alignment algorithm that matches de 

novo sequences to proteins in the sequence databases and overcomes many limitations of 

the other homology-based search algorithms. This algorithm was designed to align de 

novo sequences of all experimental MS/MS spectrum of a MS-based proteomics 

experiment to database protein sequences, even when the de novo sequences cannot 

account for the entire peptide sequence. The algorithm can also identify the post­

translational modifications and sequence variations by interpreting the mass difference 

between the parent ion present in the experimental MS/MS spectrum and the identified 

peptide. The implementation of this algorithm is known as OpenSea, which can align de 

novo sequences derived from both high and low mass accuracy mass spectrometers. The 

performance of the algorithm was tested against other common database searching 

software using three types of datasets: a dataset of a known control proteins mixture, a 

dataset of unknown proteins with sequence variations, and a dataset of proteins with 

many known types of posttranslational modifications. 

EXPERIMENTAL SECTION 

OpenSea search algorithm aligns the de novo sequences derived from the MS/MS 

spectra to a protein sequence database. OpenSea search algorithm has six essential 

components. 

1. A mass-based alignment algorithm that aligns the de novo sequences derived from 

the MS/MS spectrum to a protein database using amino acid masses present in the 

de novo and database sequences. 

2. A scoring system that scores the peptides identified by the mass-based alignment 

between de novo and database sequence (mass-based alignment) to identify the 
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correct peptides present in the sample. It also contains a protein hits compiler that 

collates the peptide hits into a short and succinct list of proteins that may be 

present in the sample. 

3. A post-translational modification and sequence variation identification algorithm 

that identifies and localizes any modifications or sequence variations present in a 

peptide hit by considering the mass difference between the corresponding de novo 

peptide sequence and the theoretical database peptide sequence. 

4. An algorithm to cross-validate the identified peptide sequences with their 

corresponding MS/MS spectrum. 

5. A unified scoring system that ties the peptide identification and the validation into 

a single scoring system. 

6. An automated protein identification workflow that integrates the peptide, protein, 

post-translational modification, and sequence variation identification into a single 

step. 

Mass-Based Alignment Algorithm. OpenSea search algorithm uses a mass-based 

alignment algorithm to align the de novo sequences derived from the MSIMS spectra to a 

protein sequence database. In order to rapidly locate the candidate protein sequences, 

OpenSea uses a tag-based search, similar to the FASTA method [27]. During the tag­

based search OpenSea extracts the amino acids from short but high confidence regions of 

the de novo sequence. OpenSea locates the candidate proteins by using these short three 

to five amino acid tags to scan the protein database via a string search. De novo 

sequencers often fail to correctly determine isobaric amino acids from low energy CID 

MSIMS spectrum. Hence, they often report a representative amino acid residue for all 

isobaric amino acid residues (JJL and K/Q) instead of a correct amino acid residue. In 
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order to remedy this effect in the tag search, OpenSea replaces all isobaric amino acids in 

both the database sequence and the tag with a single representative symbol. 

The matches found in the tag search are further subjected to a mass-based 

alignment (Figure 2a). For each match, all the amino acids in both the database sequence 

and the de novo sequence are converted into strings of either mono-isotopic or average 

masses (according to the mass spectrometer used in the experiment). A series of 

consecutive local alignments are made on either side of the tag match to generate a 

complete alignment. At each local alignment all possible combinations of the next three 

masses are compared using a "breadth-first search algorithm" (Figure 2b). OpenSea first 

tries to compare the single next mass using a user specified mass tolerance. If the masses 

are unequal then the comparison is repeated one level deeper, where the mass of a single 

database residue is compared to the combined mass of two successive de novo sequence 

residues, followed by combined mass of two database residues verses one de novo 

sequence residue and combined mass of two database residues verses the combined mass 

of two de novo sequence residues. For example, when aligning the amino acid residues, 

threonine (T), leucine (L), valine (V), and aspartic acid (D), first the mass ofT (101.0 

AMU) is compared to the mass of V (99.1 AMU). Since this is not a mass match, the 

combined mass of V + L (214.1 AMU) is compared to the mass ofT (101.0 AMU), and 

finally the combined mass ofT+ L (214.1 AMU) to the combined mass of V + D (241.1 

AMU). The algorithm doesn't try to perform all possible combinations of mass 

comparisons. For example, it precludes the possibility of comparing the combined mass 

ofT+ L (214.1 AMU) to the mass of V (99.1 AMU), since comparing the mass ofT 

(101.0 AMU) to the mass of V (99.1 AMU) establishes the former comparison as a 

potential failure. This breadth-first search continues up to three levels deep until it finds 
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a mass match. However, the user can alter the depth of the search by changing a "search 

depth" parameter. 

Figure 2b illustrates that the algorithm can correct for errors in the de novo 

sequence, when the sequencer failed to determine the correct order of the amino acids in 

a particular section of the MS/MS spectrum due to lack of proper fragment ion 

information. Figure 2c demonstrates that the algorithm can also correct for the errors in 

the de novo sequence, when the sequencer failed to sequence sections of the MS/MS 

spectrum due to noise or insufficient fragment ion information. When a mass match can't 

be made after three levels of search depth, OpenSea algorithm assumes that either a 

modification or substitution has occurred at that position (Figure 2d) and reports a mass 

mismatch error. OpenSea continues to make local alignments until it can account for the 

entire section of the de novo sequence. Although the search time grows when more 

levels are searched, some algorithmic and heuristic-based optimizations have been 

employed to reduce the search time. OpenSea can be configured to search for residue 

specific variable modifications by adding both the modified and unmodified mass to the 

residue. 

Scoring of Mass-based Alignments and Identification of Proteins. Each local 

alignment is scored separately and the scores are summed to create an overall peptide 

alignment score. If a mass match has been made in a local alignment, then the score for 

that local alignment is the average identity scores for the database amino acid residues 

taken from the Blosum-90 substitution matrix [28]. If a variable modification has been 

found on any of the database amino acid residues, in the mass match, then the log odds 

score for that modification is used in the local alignment score calculation. The scoring 

algorithm for mass mismatches assumes that all the mismatches are due to substitutions. 
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Thus, if a mass mismatch has been made in a local alignment then the score for that local 

alignment is the substitution matrix score between the database residue and the de novo 

sequence residue. On the other hand, if the de novo sequence region in the mass 

mismatch has a mass instead of an amino acid symbol, then the average non-identity 

value (ANV) of the substitution matrix is used as the local alignment score. Gapped 

matches are also scored as mass mismatches. Since the peptide alignments are small, 

when compared to the whole protein alignments, gaps are allowed only at the beginning 

and end of the database sequence. 

Local alignment mass matches are broken into primarily three categories: one-to-

one, one-to-many (or many-to-one), and many-to-many matches, which refer to the 

number of amino acids in the database and the de novo sequences, respectively. Local 

alignment mass mismatches are broken into two categories: common substitutions (with 

score > 0) and uncommon substitutions (with score :$; 0). The peptide alignment score, 

also known as OpenSea Alignment Score (OSAS), is a linear combination of the summed 

local alignment scores for the above-mentioned groups 

(1) OS AS = a ( "' 1 -to - 1) + fJ ("' 1 -to - m) + X ( "' m - to - m) L.J matches L.J matches L.J matches 

+8 ("' common ) _ c ("' uncommon ) _ f/J ("' gapped ) 
L.J substitutions L.J substitutions L.J matches 

where the parameters a; fl, z, 8, c, fjJ are determined empirically, as 1.2, 1.1, 0.9, 1.0, 5.0, 

and 5.0 respectively, based on the optimal separation of correct and incorrect protein hits 

in the known control protein mixture. The candidate peptide alignment scores are 

adjusted for the presence or absence of the tryptic cleavage site (at lysine and arginine). If 

the candidate peptide alignment represents a perfect tryptic peptide then the score is 

augmented by 3.0 * average identity value (AIV) of the substitution score matrix. 

18 



Otherwise, the score is decreased by 4.0 * ANV of the substitution matrix. If the 

candidate peptide alignment has internal tryptic residues then the alignment score is 

decreased by ANV of the substitution matrix for each residue. Peptide matches with an 

alignment score over a particular score threshold (discussed in results) are accepted as 

correct identifications. 

OpenSea uses an automated results compiler to identify the most probable 

proteins present in the sample. The results compiler, which is similar to ProteinProphet, 

uses an "Occum's Razor" approach to combine complex peptide identifications into 

protein hits [29]. The underlying principle of the Occum's Razor approach is to find the 

simplest possible combination of proteins that can explain most of the peptide hits 

(Figure 3). To find the simplest possible combination of the proteins, OpenSea first 

identifies the list of spectra that can be assigned to a list of proteins unambiguously. This 

is achieved by ranking the peptide hits above the score threshold by a "delta score" 

measure, which is the difference between the scores of the first and second best 

alignments for that spectrum. The spectrum with largest delta score is assigned to the 

protein corresponding to its best alignment. However, if the delta score is less than 20 

percent of the score threshold then it is assumed that the proteins of both first best 

alignment and second best alignment for that spectrum are equivalent, and the spectrum 

is assigned to both of them. All other spectra that matched to the protein(s) in question 

within the delta score threshold are assigned to that protein(s). Of the remaining spectra, 

the spectrum with the next largest delta score is considered and the above procedure is 

repeated. This process is repeated until there are no further spectra for consideration. 

Due to this procedure, peptides that match multiple proteins equally well are assigned to 

the protein with strongest evidence (greatest delta score). This procedure also has an 
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inherent ability to identify proteins that have only a single good peptide hit (delta score 

above the delta score threshold). A cumulative protein score is calculated by adding the 

scores of the alignments that match independent regions of the protein. If more than one 

de novo sequence matches to a single region of the protein then only 10% of their scores 

are added to the protein score. Proteins that match the same set peptides with identical 

scores are considered as "degenerate" and are grouped together. 

Identification of Post-translational Modifications and Sequence Variations. 

Any mass mismatches between the de novo sequence and the database sequence in a 

peptide alignment are processed by an auto-interpretation procedure in order to identify 

post-translational modifications or sequence variations. It is assumed that having 

multiple modifications on successive amino acids is very unlikely. Hence, the auto­

interpretation procedure starts by grouping the successive mass mismatches into a single 

mass mismatch (Figure 4a, 4b ). It uses the unexplained mass shift and the amino acids in 

the database sequence to determine the possible modification or sequence variation 

through a table lookup (Figure 4c). This lookup table contains the list of known 

posttranslational modifications and sequence variations, indexed by their corresponding 

masses, amino acids that can have that modification or sequence variation, and the 

likelihood of finding that modification or sequence variation in the biological sample. 

The log odds for the modifications are estimated based on the frequency of occurrence of 

sample processing artifacts and previously known human lens modifications. The 

Blosum90 substitution matrix provides the log odds score for substitutions. The 

sequence variation or modification suggested by the table lookup is inserted into the 

alignment. The alignment is rescored as if a new amino acid were identified at the 

location of the identified modification or sequence variation (Figure 4d). If the table 
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lookup fails to suggest a modification or a sequence variation then the alignment is 

rescored as if a mass mismatch has occurred in the alignment and an unknown mass shift 

is reported. Any ambiguity in the location of the suggested modification or sequence 

variation (Figure 4c) is resolved using a Smooth Rank Scoring (SRS) algorithm. 

Validation of Peptide Identifications and Localization of Identified 

Modifications. The peptide identifications made by the OpenSea mass-based alignment 

algorithm are validated against the corresponding experimental spectrum using a rank­

based scoring mechanism. This rank-based scoring scheme computes a quantity similar 

to the covariance between the ranked peaks of the experimental tandem mass spectrum 

and a hypothetical tandem mass spectrum derived from the identified peptide and the 

fragmentation model suggested in Table 1 [10]. To derive the ranks of peaks in the 

experimental tandem mass spectrum, the precursor ion is removed, and each peak in the 

mass spectrum is normalized by dividing the peak intensity by the mean of all visible 

peaks in a +/- 100 AMU range. The top 50 normalized peaks of the tandem mass 

spectrum are retained and ranked by their intensities, where the most intense peak is 

assigned the rank of 50 and the least intense peak is assigned the rank 1. A vector X 

corresponding to the integer values from 1 to MH+ (mass of peptide with an additional 

proton) is created. The value of the vector X is zero except for the rnlz values of the top 

50 ranked peaks, where it is equal to the rank of the peak. The generated vector is 

normalized to the value one. 

A hypothetical tandem mass spectrum is generated using the candidate peptide 

sequence and the fragmentation rules listed in Table 1. The hypothetical tandem mass 

spectrum vector, Y, is obtained in a same way as the experimental tandem mass spectrum 
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vector X. The normalized vectors X and Y are used to compute the Smooth Rank Score 

(SRS) given as: 

(2) SRS [I [Xi -X] [I:- y ]] + { I 2 
i=l 1-(n-1) 

for n = 0 

for n > 0 

where X; and Y; are the normalized tandem mass spectrum rank value and hypothetical 

spectrum rank value, respectively, X and Y are the mean rank values in the respective 

rank vectors, and n is the total number of modifications and substitutions. The first term 

in the SRS score computes the covariance between the ranked peaks of the experimental 

tandem mass spectrum and a hypothetical tandem mass spectrum derived from the 

candidate peptide sequence. The second term is used to penalize the SRS score 

depending upon the number of modifications (n) identified in the candidate peptide 

sequence. The advantage of using a rank-based covariance, over a traditional cross-

correlation method, is its robustness for non-normally distributed data like the intensities 

of the MS/MS peaks. Peptide identifications that score above a particular score threshold 

(discussed in results section) are accepted as valid identifications. 

The SRS scoring system is also used to localize the ambiguous modification sites 

that are identified by the auto-interpretation procedure. Several alternatives are possible 

when the suggested modification can occupy more than one possible site in the 

alignment. These alternative interpretations differ from each other in the location of the 

suggested modification in the candidate peptide sequence. These alternative 

interpretations are validated by computing the SRS score between the experimental 

tandem mass spectrum and the corresponding candidate peptide sequences. The 

interpretation that has the highest SRS score is reported as the best interpretation, thus 

effectively localizing the modification to a single location. For example, an auto-
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interpretation table lookup (Figure 4c) for the human gamma-S crystallin peptide shown 

in Figure 4b suggested a methylation (+14 AMU) modification on one of the Cysteine 

amino acid residues. However, there are two possible locations for the methylation 

modification (m), C24 and C26, in the local alignment. In this case, OpenSea algorithm 

generated two candidate peptide sequences, "YDCD[Cm]DCADFHTYLSR" (for 

methylation on C24) and "YDCDCD[Cm]ADFHTYLSR" (for methylation on C26), and 

validated each of them against the experimental tandem mass spectrum using the SRS 

score. The candidate peptide sequence with the highest SRS score (12.5 for 

"YDCD[Cm]DCADFHTYLSR") was selected as the best interpretation thus, in this case, 

localizing the methylation modification to C24. 

Combined Protein Identification Score and Protein Identification Workflow. 

OpenSea algorithm combines the peptide identification score (OSAS) and the validation 

score (SRS) into a Combined Alignment Score (CAS). OSAS measures the extent of 

mass-based sequence homology between the de novo sequence and the database 

sequence, where as the SRS score measures the similarity between the normalized 

experimental tandem mass spectrum and the hypothetical fragmentation model of the 

identified peptide. The two scores are linearly combined, as CAS, for the optimal 

separation of the correct and incorrect peptide hits based on the analysis of a known 

control protein mixture: 

(3) 
0.9 * OSAS +6.0 * SRS CAS=--------

100 
OpenSea uses a generalized three step automated workflow for high-throughput 

identification of proteins, sequence variations and posttranslational modifications that are 

present in a sample. In the first step of the workflow, Open Sea performs a fast scan of 
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the database, with stringent scoring parameters, to find all the identifiable proteins 

present in the sample. In the second step of the workflow, OpenSea performs an in-depth 

search of the remaining unidentified de novo sequences against a much smaller database 

of proteins that were identified in the first step. The search space for the second search 

is enlarged by decreasing the length of tag used in the tag search and increasing the depth 

of the "breadth-first search". The enlarged search space in the second step helps in the 

identification of peptides derived from poor quality tandem mass spectra. In the third 

step of the workflow, OpenSea searches the same smaller database of proteins looking 

specifically for the peptides that have similar modifications that were identified in the 

first and the second step of the workflow. This third step aids in the identification of 

peptides that have ambiguous mass gaps that were not identified in the second step. 

Although the scoring system for all the three steps is kept constant, the enlarged search 

space for the second and the third step of the workflow could help in the identification of 

new peptides. On a single Intel Pentium 4 2.0 GHz processor with 64 MB RAM, 

OpenSea takes approximately 14 seconds to search a single de novo sequence against the 

SwissProt database (Version 4.11 containing 127,873 entries) and to interpret any 

modifications or substitutions that may be present. 

Sample Preparation and MS/MS Spectra Acquisition. OpenSea was tested 

using three sets of samples. 

1. A mixture of ten known control proteins that was used to test and compare 

the peptide and protein identification of OpenSea with other existing 

programs. 
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2. Homo sapiens and Macca mulatta amniotic fluid samples, containing 

unknown, sequence-modified proteins, which were used to test the 

sequence variation identification capabilities of OpenSea algorithm. 

3. A lens sample from a 93-year-old male human with nuclear cataracts 

containing post-translationally modified proteins that was used to test the 

post-translational modification identification capabilities of OpenSea 

algorithm. 

The known protein control mixture was obtained by combining ten purified 

proteins of varying molecular weight and physicochemical properties including, Bos 

taurus insulin, ubiquitin, cytochrome c, superoxide dismutase, beta-lactoglobulin A, 

serum albumin, and immunoglobulin G, as well as Equus caballus myoglobin, Armoracia 

rusticana peroxidase, and Gallus gallus conalbumin (obtained from Ciphergen, Fremont, 

CA). The sample preparation and digestion protocols have been described elsewhere 

[30-31]. 

Homo sapiens and Macaca mulatta amniotic fluid samples were obtained from the 

Oregon Health & Sciences University. Proteins were separated by one-dimensional gel 

electrophoresis and were visualized by Coomassie staining. A high-molecular weight 

band from each sample was chosen for MS/MS analysis. Precise protocols used for 

sample preparation, gel electrophoresis and digestion have been described elsewhere [30-

31]. 

The lens sample was obtained from the Oregon Lyons Eye Bank with Institutional 

Review Board approval from the Oregon Health & Sciences University. The sample 

preparation, fractionation and digestion protocols have also been described elsewhere 

25 



[30-31]. All samples were obtained with proper approval from Institutional Review 

Board. 

Q-TOF MSIMS spectra were acquired with a MicroMass QTOF-2 (Waters) 

quadrupole/time-of-flight hybrid mass spectrometer with an online capillary liquid 

chromatography (Waters). Peptides were injected in to the QTOF mass spectrometer 

using a nanospray source. Ion trap MS/MS spectra were acquired on a LCQ classic ion 

trap mass spectrometer (ThermoFinnigan, San Jose, CA) with an Agilent 1100 series 

capillary liquid chromatography system (Agilent Technologies, Palo Alto, CA). Peptides 

were injected into the ion trap mass spectrometer using a standard electro spray source 

modified with a 34 G metal needle. Detailed descriptions of the equipment used for 

desalting the peptide mixture have been described elsewhere [30-31]. 

De novo Sequencing and Database Searching: All Q-TOF MS/MS spectra 

were de novo sequenced using Peaks Batch (Version 2.2, Bioinformatics Solutions, 

Waterloo, ON Canada) de novo sequencer using a mass accuracy of 0.1 AMU. Peaks 

software reports full sequences without unknown mass regions [20]. However, it reports 

the confidence levels of individual amino acids in the sequence. Sequence regions in 

which the amino acids have a confidence level below 50% are replaced by their 

combined mass. However, if the average confidence of the entire sequence is below 50% 

then only the amino acid regions that have a confidence level below the average 

confidence are replaced by their combined mass. All of the sequences were searched 

with the OpenSea algorithm using mono-isotopic masses with a fragment ion mass 

tolerance of 0.25 AMU. 

Ion trap MS/MS spectra were de novo sequenced with LutefiskXP using parent 

ion and fragment ion mass tolerances of 1.2 AMU and 0.4 AMU [32], respectively. 

26 



LutefiskXP was configured to consider a maximum of 500 subsequences and 2000 final 

sequences for speed considerations. Further, LutefiskXP was configured to report a 

maximum of five sequences with a score above 0.01 Pr(c) per MS/MS spectrum. All 

sequences were searched with OpenSea using average masses and a fragment ion mass 

tolerance of 0.5 AMU. 

All MS/MS spectra that were generated from the control protein mixture were 

searched against the Swissprot database (Version 41.11 containing 128055 entries) that 

was modified to include the control protein sequences from PIR-NREF database (release 

39) [33,34]. OpenSea analysis was compared to both SEQUEST (ThermoFinnigan) and 

CIDentify results [10,26]. Considering our sample processing protocols, SEQUEST was 

configured to search for variable oxidation and carbamylation. Peptide identifications 

with cross correlation scores greater than 1.8, 2.5, and 3.5 for singly, doubly, triply 

charged peptides respectively, and DeltaCN greater than 0.08 were accepted as correct 

SEQUEST identifications [10]. CIDentify was configured to search with fixed 

alkylations of cysteine and peptide identifications with a Z-score, which is defined as -

log(E-score)/log(lO), greater than 3.5 were accepted as correct identifications [26]. 

OpenSea was configured to look for fixed alkylations of cysteine. OpenSea was not 

configured to look specifically for any protein modifications. Proteins with multiple 

peptide hits having CAS scores greater than 0.9 were accepted as correct identifications. 

OpenSea was used to analyze the data from the 93-year-old human lens sample by 

searching against the SwissProt database selected for human proteins (9615 entries). 

Peptide identifications with CAS scores greater than 0.9 and protein identifications with a 

protein score greater than 1.5 were accepted for further analysis. Posttranslational 

modifications identified by OpenSea in the lens sample were accepted only if they were 
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identified in at least two MS/MS spectra. Furthermore, all identified modifications were 

manually confirmed by at least one independent researcher. 

RESULTS AND DISCUSSION 

Identification of Proteins in Control Protein Mixture: A mixture of ten known 

proteins was used to test OpenSea. The control protein mixture was run on both high 

mass accuracy instrument (QTOF) and a low mass accuracy instrument (LCQ). A total 

of 10,685 tandem mass spectra from 35 LC/MS/MS runs of the control proteins were 

obtained from QTOF, where as a total of 14,469 tandem mass spectra from 20 

LC/MS/MS runs of the same mixture were obtained from LCQ. Both datasets were 

processed with Peaks (QTOF) or LutefiskXP(LCQ) and then OpenSea. 

One of the major requirements of high-throughput MS/MS analysis is an accurate 

peptide scoring system that can distinguish between correct and incorrect peptide 

identifications. The accuracy of the OSAS scoring system, for both QTOF and LCQ, was 

estimated by searching the de novo sequences generated from all LC/MS/MS runs of 

control protein mixture, acquired on both QTOF and LCQ, against the SwissProt protein 

database (version 4.11 containing 127,863 entries) modified to include control protein 

sequences from PIR-NREF database. Peptide assignments to the ten control proteins 

were considered as correct identifications and the rest of the peptide identifications were 

considered as incorrect identifications. As shown in Figure 5a, for high mass accuracy 

data, OpenSea mass-based alignment scoring system (OSAS) clearly distinguishes 

correct identifications from incorrect identifications when compared to other database 

searching software like SEQUEST (Figure 5b) and CIDentify (Figure 5c ). At a cutoff of 

85 OSAS scoring system has a sensitivity of 89% and specificity of 95%. For 
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comparison, SEQUEST has a sensitivity of 80% and specificity of 86% at Xcorr score 

cutoff of 2.5 (Figure 5b), where as CIDentify has a sensitivity of 76% and specificity of 

70% at a Z-Score cutoff of 3.5 (Figure 5c). OpenSea mass-based scoring system (OSAS) 

was also tested for its accuracy when using low mass accuracy data from an ion trap 

instrument. As shown in Figure 6a, OpenSea mass-based alignment scoring (OSAS) 

system clearly distinguishes between correct and incorrect identifications even when 

using low mass accuracy data. At a cutoff of 85 OSAS scoring system has a sensitivity 

of 78% and specificity of 98%. For comparison, SEQUEST has a sensitivity of 74% and 

specificity of 91% at Xcorr score cutoff of 2.5 (Figure 6b), where as CIDentify has a 

sensitivity of 61% and specificity of 80% at a Z-Score cutoff of 3.5 (Figure 6c). The 

drop in the sensitivity of OSAS is not unexpected. When using LCQ data, low mass 

accuracy, interspersion of b and y fragment ions, and lack of both low rn/z and high rn/z 

peaks introduces more errors in the de novo sequences, which are beyond the correction 

capabilities of OpenSea algorithm. OpenSea uses an independent scoring (SRS) 

mechanism to validate the peptide identifications made by the OSAS. Both OSAS and 

SRS scoring systems were linearly combined in to a Combined Scoring System (CAS) 

based on the optimal separation of correct and incorrect peptide assignments (Figure 7a 

and 7b) of the pep tides in the control protein mixture. When using the high mass 

accuracy data, the linear combination is justified by the higher sensitivity (97%) and 

specificity (98%) values of the CAS when compared to the sensitivity and specificity of 

OASS (89% and 95%) and SRS (99% and 71%) alone. The same CAS scoring 

parameters can be used for analyzing low mass accuracy data from ion traps. Since the 

sensitivity (97%) and specificity (87%) values of the CAS score were reasonable, no 

further tuning of the parameters was performed for ion trap data. This makes OpenSea 
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amenable for analyzing MS/MS data from both high mass accuracy and low mass 

accuracy instruments without any further tuning of the program. 

A second requirement for high-throughput MS/MS analysis is accuracy and ease 

of interpreting protein identifications from peptide matches. The Occum's razor approach 

used by OpenSea algorithm to derive candidate protein hits from unambiguous spectra 

identifications has several advantages. One of the advantages is that a single spectrum is 

assumed to match to a single protein. In case the peptide matches several proteins 

equally well then it is assigned to the protein with greatest evidence. This reduces a lot of 

degeneracy in protein hits, which is a very desirable feature in high-throughput MSIMS 

analysis programs, especially in the case of large experiments. Furthermore, protein 

evidence is generated based on how exclusively a single spectrum matches, using the 

delta score, to that protein. Another advantage of the approach used by OpenSea is that if 

a peptide matches an over-all low coverage protein with a high confidence (very high 

delta score) then the low coverage protein is reported, even though the same peptide 

matched to other high coverage proteins. This helps in the identification of low 

abundance proteins that often have only one good peptide hit. However, if the sample 

contains homologous proteins then OpenSea can be configured to report all the 

degenerate proteins without any filtering. 

A third desirable feature of a high-throughput MS/MS analysis program is to 

automatically interpret the mass differences between the parent ion of an experimental 

tandem mass spectrum and the identified peptide as posttranslational modifications or 

sequence variations. The auto-interpretation routine of OpenSea combined with its mass­

based alignment algorithm gives it the capability of identifying and interpreting 

unanticipated posttranslational modifications and sequence variations present in 
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experimental tandem mass spectra from both high and low mass accuracy instruments. 

OpenSea can also localize the identified modifications and sequence variations whenever 

such discriminating information is present, to correct locations of the MS/MS spectrum, 

thus reducing the demands on the manual interpretation and validation of the identified 

modifications. 

Comparison of OpenSea to Other MS/MS Protein Identification Software. 

One LC/MS/MS run of the control protein mixture acquired on both QTOF (328 MS/MS 

spectra) and LCQ (707 spectra) was examined in order to benchmark the number of 

accurately identified spectra by OpenSea, as compared to the other common protein 

identification software. Protein identifications from the QTOF and LCQ data sets were 

made by SEQUEST, and by two de novo sequence alignment programs, OpenSea and 

CIDentify. Peaks and LutefiskXP were used to provide de novo sequences for both 

OpenSea and CIDentify. The total number of visually verified spectra, in both LCQ and 

QTOF data sets, identified by various programs (or combination of programs) was 

tabulated in Table 2. 

In the control protein mixture sample run acquired on the QTOF instrument, 

OpenSea/Peaks, CIDentify/Peaks and SEQUEST were able to identify one of the two 

tryptic pep tides from bovine insulin that are in the mass range of the experiment (data not 

shown). However, the matches were difficult to verify because only one peptide from 

insulin was found. In the same data set, OpenSea, when using de novo sequences derived 

by Peaks, identified 48% more spectra than CIDentify. However, SEQUEST was able to 

identify more MS/MS spectra than either OpenSea or CIDentify alone, as it is more 

sensitive towards poor quality MS/MS spectra. In contrast, most of the de novo 

sequencers fail to produce even acceptable de novo sequences for poor quality spectra, 
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which results in the lower number of spectra identifications by both OpenSea and 

CIDentify. CIDentify identified more MS/MS spectra when using de novo sequences 

from LutefiskXP, rather than Peaks. This is due to the fact that CIDentify is less 

sensitive to the lower quality de novo sequences (due to its assumption that de novo 

sequences are often correct and sequence variations thus found in the database search are 

often real) coupled by the fact that LutefiskXP produces better de novo sequences than 

Peaks [26,32]. 

When analyzing the control protein mixture run acquired on LCQ, none of the 

programs found any peptide from bovine insulin. This might be because both tryptic 

peptides in the bovine insulin are long peptides with multiple basic residues in them. 

This might result in higher charge states for their parent ions, whose MS/MS spectra are 

difficult to analyze through de novo sequencing, especially when acquired on a low mass 

accuracy instrument such as a LCQ. OpenSea, when using de novo sequences derived 

from LutefiskXP, identified 73% more spectra than CIDentify from the LCQ data. 

Further confirming the superior sensitivity of SEQUEST towards poor quality spectra, 

the SEQUEST algorithm identified more MS/MS spectra from the LCQ data set than 

OpenSea and CIDentify. Confirming previous reports [26-32], OpenSea identified 18% 

more MS/MS spectra when using de novo sequences from LutefiskXP, rather than 

Peaks, in the database search. CIDentify identified twice as many MS/MS spectra when 

de novo sequences from LutefiskXP, rather than Peaks, were used in the database search. 

OpenSea's increased accuracy in deciphering de novo sequences, as compared to 

CIDentify, could be due to three major factors. First, OpenSea does not limit the length 

of the alignments to single or pairs of residues, and the further interpretation often results 

in higher alignment scores for correct matches. Second, all alignments must pass 
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stringent, empirically derived criteria requiring that the entire de novo sequence should be 

accounted for, allowing only one consecutive sequence modification, and the requirement 

that each alignment must contain at least one accurately matching sequence tag. Third, 

OpenSea scoring system separates correct identifications from incorrect identifications 

more accurately than CIDentify, leading to the better identification de novo sequences 

derived from poor quality MS/MS spectrum without introducing false positives in the 

identifications. 

Identification Of Unknown Homologous Proteins And Sequence Variations. 

OpenSea can identify proteins from organisms whose proteome has not been completely 

sequenced, provided they share reasonable close sequence homology to other well­

sequenced proteomes. To test this hypothesis, OpenSea was used to identify proteins 

from two unknown samples, human and rhesus monkey amniotic fluid, using an adult 

human protein database. Human amniotic fluid contains proteins that are homologous to 

adult human proteins with sequence modifications. For example, the y chain of fetal 

human hemoglobin contains 39 sites of sequence variations from the adult J3 chain [35]. 

The rhesus monkey proteome was also not well sequenced. However, most of the rhesus 

monkey proteins are also homologous to adult human proteins with some sequence 

modifications. 

One LC/MS/MS run of Homo sapiens amniotic fluid sample from a high­

molecular weight lD gel band was analyzed on QTOF (311 MS/MS spectra). The 

spectra were de novo sequenced using Peaks software and the resulting sequences were 

used by OpenSea to search the Swiss-Prot protein database selected for human proteins 

(9426 spectra). The same spectra were also processed using CIDentify/Peaks and 

Sequest. Protein identifications from each search engine were manually validated (Table 
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3a). Sequence variations suggested by OpenSea/Peaks were accepted only if the 

corresponding MS/MS spectra showed a strong presence of sequence-specific fragment 

ions around the site of the variation. As expected, Sequest was able to find a few 

unmodified peptides from these samples. CIDentify identified a subset of peptides 

identified by OpenSea. The OpenSea algorithm, with the help of the mass-based 

alignment and Auto-Interpretation routine, was able to identify a greater number of 

proteins along with any sequence variations that were present between the adult and fetal 

form of the proteins. 

To further test this hypothesis, one LC/MS/MS run of Maraca mulatta amniotic 

fluid sample from a corresponding high-molecular weight band was analyzed on QTOF 

(315 MS/MS spectra). The spectra were analyzed and the identified proteins and 

sequence variations were validated in a similar fashioned outlined for the Homo sapiens 

amniotic fluid sample run (Table 3b ). As expected, OpenSea routinely identified 

peptides with sequence variations from their human homologues, again outperforming 

both Sequest and CIDentify. A major advantage of OpenSea algorithm over other similar 

programs is its ability to distinguish between de novo sequence errors and actual 

sequence variations. Because OpenSea' s mass-based alignment can align isobaric 

residues of arbitrary length, it can account for common errors found in de novo 

sequences, while at the same time identifying real sequence variations present in the 

peptide. 

Identification Of Co- and Posttranslational Modifications In Human 

Cataractous Lens Tissue. Eleven crystallin proteins represent the majority of total 

human lens tissue protein by mass [36]. Pristine crystallins form highly regular 

aggregates, which produce the requisite optical properties (transmittance, reflectance, and 
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refraction) of the lens [37]. Crystallin proteins in human lens do not tum over and, as the 

tissue ages, they accumulate substantial modifications. As they accumulate age-related 

modifications, crystallins dissociate from the highly regular aggregates and start to form 

irregular conglomerations. It is suspected that these conglomerations change the optical 

properties of the human lens, by increasing reflectance and decreasing refraction and 

changing other optical properties, leading to cataractogenesis [38]. An extensive catalog 

of protein modifications in human lens includes carbamylations, acetylations [39], 

phosphorylations [40], oxidations [41-43], methylations [38,44], and deamidations [41-

43]. In particular, deamidations and carbamylations of the crystallins have been linked 

with aging and cataractogenesis [37-39]. As human lens tissue has relatively low protein 

complexity and many modifications in the lens proteins have already been well 

characterized, the lens tissue is an ideal choice to test our techniques that can identify co­

and posttranslational modifications. 

In this study, a 93-year-old human male lens tissue containing an age-related 

nuclear cataract was separated into water-soluble and water-insoluble fractions. Both of 

these fractions were digested and fractionated via cation exchange HPLC. All of the 

fractions were reverse phase separated and analyzed on both QTOF and LCQ 

instruments. The tandem mass spectra from both the instruments were analyzed for 

modifications using the OpenSea algorithm, as outlined in the experimental section. 

OpenSea was able to identify 80 sites of modifications in eleven crystallins, as 

cataloged in Table 4. All of the reported modification sites were confirmed with both 

QTOF and LCQ data. Table 4a confirms 44 sites of phosphorylation, acetylation, 

oxidation, methylation and deamidation that were previously reported in literature [37-

44]. Table 4b reports 36 new modifications discovered in this study. Although there is a 
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significant difference in fragmentation of peptides between the instruments, 85% of the 

reported modifications in table 4 were identified in both instruments, which gives 

credibility to our results. Furthermore, 210 MS/MS spectra from the soluble fraction and 

587 spectra from the insoluble fraction were assigned to deamidated peptides. Using the 

spectra count as a rough estimate for relative abundance [45], this suggests a three-fold 

increase in the overall extent of deamidation in the insoluble fraction as compared to the 

soluble fraction, which is consistent with previously reported values, lending further 

credibility to our results [41-42]. 

Along with the modifications listed in Table 4, seventy-five N-terminal 

carbamylation sites were found represented by 526 QTOF and LCQ spectra. However, 

no lysine carabamylation sites were identified in this study, as suggested in previous 

studies, suggesting a strong N-terminal preference [38]. Furthermore, twenty-three sites 

of pyroglutamic acid [46] and N-terminal S-carbamyl methyl cysteine cyclization [47] 

sites were identified. These cyclized forms are common in vitro modifications. There 

was a +38 AMU mass shift identified in seventeen acidic sites. Most of the spectra with 

this modification showed a charged neutral loss of +38 AMU from the parent ion. As 

350 mM KCL was used during the strong cation exchange separation, it is possible that 

the potassium cation was bound to the acidic residues in some peptides. 

The +28 AMU mass shift reported in Table 4b was unanticipated and was found 

on serine and histidine residues. This modification could be either a dimethylation 

modification as suggested by Hansen et al. [41] in a previous lens study or an in vitro 

formylation. Although 5% formic acid was use to stop the digestion, formylation was not 

observed in any of the control protein mixture samples, which were processed using a 

similar protocol. Further analysis is needed to characterize the unanticipated 
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modifications. Further studies are also needed to test any biological significance of the 

new modifications identified in this study. 

CONCLUSION 

Mass-based alignment of de novo sequences can accurately identify sequence 

modifications, thus allowing the approach to be used in high-throughput proteomics 

experiments. No previous study has been able to identify as many new posttranslational 

modifications in human lens as this study, which demonstrates the effectiveness of the 

mass-based alignment approach in high-throughput proteomics experiments. The major 

advantages of the OpenSea algorithm are in the sophistication of its scoring function for 

mass-based alignments, cross validation of the peptide identifications, automated 

interpretation of mass-mismatches between de novo sequence and the database peptide 

sequence as posttranslational modifications and sequence variations using a lookup table, 

and a simple Occum's razor based protein results compiler. OpenSea can simultaneously 

search for over 75 euakaryote co- and posttranslational modifications. An equivalent 

search is either impossible or unproductive when using other protein database search 

engines. 

OpenSea is batch-scriptable and the protein identification results are reported as 

XML files, which facilitates further processing of results. OpenSea was written in Java 

and it will run on any platform that can run Java Runtime Environment (1.3). OpenSea 

has been tested on Windows and Linux platforms. 
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TABLE 1 

lon Type a 

b- or y-type 
b- or y-type + 1 AMU 
b- or y-type -1 AMU c 
b- or y-type -H20 
b- or y-type -NH3 
a-type 
b- or y-type +2H d 

Neutral loss of modification e 

Intensity b 

50 
25 
25 
10 
10 
10 
25 
50 

a Ion types used in the SRS peptide fragmentation model. b The intensity of each ion type. 
This model is similar to the fragmentation model described in ref 10. c b- or y-type -1 
AMU are only incorporated into the model when average masses are used to calculate the 
mass of ions. ct +2 charged b- and y-type ions are incorporated only for peptides of +3 
charge or higher. e If a protein modification is expected and that modification has a 
known labile bond, the neutral loss of the modification from the parent ion is also 
included in the fragmentation model. 
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TABLE2 

The number of correctly assigned MS/MS spectra from the control protein mixture 
acquired on the QTOF or LCQ. 

QTOFb LCQC OpenSea d CIDentify e SEQUEST Open Sea CIDentify SEQUEST Peaks 
Protein a g LutefiskXP h Peaks LutefiskXP Peaks LutefiskXP Peaks LutefiskXP Bovine Serum Album in 54 49 24 35 57 49 57 17 31 85 Bovine Cytochrome C 5 4 5 2 6 4 0 1 2 8 Bovine lmmunoqlobulin G 29 22 15 19 32 30 35 6 16 34 Bovine Beta-Lactoglobulin 11 10 5 7 10 6 7 2 6 9 Equine Myoglobin 11 11 4 8 9 9 7 5 3 11 Chicken Conalbumin 31 28 14 21 30 28 36 8 20 44 Horseradish Peroxidase 4 5 3 5 6 7 9 3 6 9 .ovine Superoxide Dismutase 5 7 1 4 9 5 9 1 6 10 Bovine Ubiquitin 4 3 1 3 3 6 9 0 6 10 Bovine Insulin 0 0 0 0 0 0 0 0 0 0 Total Peptide Identifications 154 139 72 104 162 144 169 43 96 220 

a Proteins present in the control protein mixture. Tandem MS/MS spectra from both a 
high mass accuracy instrument b (328 MS/MS spectra) and a low mass accuracy 
instrument c (707 MS/MS spectra) were used to compare the programs. OpenSea d and 
CIDentify e are two de novo sequence alignment programs, where as SEQUEST f is a 
commonly used database search program. Peaks g and LutefiskXP h were used to provide 
de novo sequences for OpenSea and CIDentify. At least two peptide hits for a protein 
were required for identification. 
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TABLE3 

The number of MS/MS spectra from human (a) and rhesus monkey (b) amniotic fluid 
samples that were assigned to adult human proteins. 

a 

Open Sea/ CIDentify/ Verified Substitutions Found Protein Name Peaks a Peaks a Sequesta by QpenSea/Peaksb Lactotransferin 21 13 5 5 Glia-derived nexin 17 5 5 0 Serotransferin 8 4 2 2 Serum Albumin 7 0 5 3 Alpha-1-acid Glycoprotein 3 2 2 0 Alpha-1-antichymo Trypsin 5 0 2 2 Histidine Rich Glycoprotein 2 0 0 1 Meosin 2 0 2 0 total 65 24 23 13 

b 
Open Seal CIDentify/ Verified Substitutions Found by Protein Name Peaks a Peaks a Sequesta OpenSea/Peaksb Lactotransferin 26 13 5 10 Glia-derived nexin 13 5 5 1 Collagen Alpha 2(1) chain 7 3 0 9 Alpha-1-antitrypsin 6 2 2 4 Serum Albumin 4 0 3 0 92 kDa type IV collagenase 2 0 2 0 Alpha-1-antichymo Trypsin 0 2 0 0 Total 58 25 17 24 

a OpenSea/Peaks, OpenSea/CIDentify, and Sequest were used to identify analogous 
human adult proteins when searching with proteins in human and rhesus monkey 
amniotic fluid samples. At least two spectra identifications were required for the 
identification of the protein by every identification program. b The number of amino acid 
sequence variations found between adult proteins and homologous amniotic fluid proteins 
by OpenSea/Peaks and confirmed manually by visual inspection of all the MS/MS 
spectra with corresponding sequence variations. 
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TABLE4 

Summary of identified modifications and sites in 93-year old cataractous human lens. 

A: Confirmation of Previously Reported Protein Modifications I Protein I Accession Number • Deamidation Oxidation Methylation Phosphorylation Acetylation ~rystallin, aA chain (P02489) 06,090,0147 M1 
8122 n1 ~rystallin, a8 chain (P02511) N146 M1, M68b 
859 n1 ~rystallin, ~A3 (P05813) 042, N54, N103, M126b C82, C117, C185 n1 

N120, 0164 
~rystallin, ~A4 (P53673) M13 

n1 b Crystallin, ~81 (P53674) N157, N161 M112b M136, W192, 
M225 

~rystallin, ~82 (P43320) M121, W150 
n1 ~rystallin, ~83 (P26998) 
n1b. d ~rystallin, y8 (P07316) 

Crystallin, yC (P07315) 
C22 

Crystallin, yO (P07320) 
C110 

Crystallin, y8 (P22914) N14, 016, 063, 
M58, M73 C24,C26 N76, 0120 

B: Newly Identified Protein Modifications I Protein I Accession Number • Deamidation Oxidation Methylation +28AMU8 ~rystallin, aA chain (P02489) N123 W9b 
820,H79 ~rystallin, a8 chain (P02511) W9 
H83b ~rystallin, ~A3 (P05813) N40, N62, N133 M46, W96, W99,b W168 

~rystallin, ~A4 (P53673) N82,N113 

~rystallin, ~81 (P53674) N57, N67, 069, N124 W100c 
8151, H214b Crystallin, ~82 (P43320) N115,0162 M192b 

Crystallin, ~83 (P26998) N155 
Crystallin, y8 (P07316) 

M102 
Crystallin, yC (P07315) N24, 066 M101 or M102' 
~rystallin, yO (P07320) 012, N49,c N160 W156 
~rystallin, y8 (P22914) 

W162 C114 

a Protein sequences are referenced to their SwissProt database accession number. b 

Modification observed only in ion trap data. c Modification observed only in Q-TOF 
data. dN-terminally acetylated without initial methionine residue. eThe +28 AMU mass 
shift modification does not agree with any previously reported lens modifications. f 

Modification could be either MlOl or M102. 
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A schematic diagram of a typical MS-based proteomics experiment. The complex protein 
mixture (a) is separated into small fractions using either SDS-PAGE or liquid 
chromatography. The proteins in each fraction are subjected to trypsin digestion (b). 
The peptides in the resulting peptide mixture are separated and ionized using reverse-
phase liquid chromatography and electro spray ionization technique (ESI) (c). After the 
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multiply-protonated peptides enter the mass spectrometer, a mass spectrum of those 

peptides is acquired (d). A highly abundant protonated peptide species is selected and 

subjected to further fragmentation by a low energetic collision with an inert gas. Finally, 

a tandem mass spectrum (MS/MS) of the generated fragment ions is acquired (e). The 

MS and MS/MS spectrum are stored for matching against protein sequence databases. 

The database matching will identify the peptides and therefore the proteins that are 

present in the fraction. 
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FIGURE2 
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Mass-based de novo sequence alignment scheme. Here the de novo sequence 

"T[199.1]TAGVD[174.1]AS[313.1] R" is aligned to a database peptide sequence 

"TAQTAGTLSSTSGQQR" using the "breadth-first search" method with a depth of two 

amino acids. A tag match (a) is used to initiate a mass-based alignment where the boxes 

in each column (b-d) represent the mass-based comparisons that must be computed to 

make a single local alignment. Bold bordered boxes signify the path through the search 

space taken by the mass-based alignment algorithm to produce a complete alignment. 

Accurate mass-based local alignments are signified by "I", whereas mass mismatches are 

signified by "X". Open Sea can group residues and masses in the de novo sequence 

(indicated in parentheses) if the mass of the group matches the mass of a corresponding 

sequence in the database. See text for further discussion. 
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FIGURE3 

a 
Peptides 
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Proteins 

A schematic diagram of OpenSea results compiler. The peptides (a) A, B, and C are 

matched to the proteins (b) I, II and ill. The alignment scores (c) for each peptide are 

also shown in the figure. The peptides A and B are assigned to protein II and the peptide 

C is assigned to protein ill using Occum's Razor approach (See text for further 

discussion). The peptide score threshold and the delta score threshold were assumed as 75 

and 15. OpenSea results compiler can detect proteins with at least one significant peptide 

hit. 
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FIGURE4 
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GRRYO(Cc)D( CmDCc ) AD(FH)TY( LS )RCNS 
I I I I II I II I I 
YD(Cc)D(D [220. 00] G)AD(HF)TY( [ 2·00. 00])R 

Node Scores: 9.6, 8.4, 10.8, 8.4, 3.!", 6.0, 8.4, 6.3, 7.2, 9.6, 5.5~ 7.2 
OSAS: 119.1 SRS: 12.25 

A schematic example of an auto-interpretation procedure, implemented in OpenSea, 

using a methylated peptide of human gamma crystallin S protein. The mass-based 

alignment with mass mismatch errors (a) is considered and consecutive mass mismatches 
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are grouped together as a single mass mismatch (b). The local alignment node scores for 

the alignment before and after the mass mismatch (a,b) are also shown in the figure. The 

mass difference between the database sequence region and the de novo sequence region 

of the alignment nodes are calculated (b). The resulting unexplained mass shift and the 

database amino acids Cystiene and Aspartic acid are used a determine the possible 

modification as a methylation on Cystiene, represented as "Cm" in the alignment (c). 

The ambiguous location of the modification is localized using Smooth Rank Score (SRS) 

algorithm (c). The resulting alignment (d) is rescored as if a new amino acid was 

identified at the site of the modification using the log odds score for methylation 

modification. 
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CIDentify Z-Score 

Score distributions for Sequest, CIDentify/Peaks, and OpenSea/Peaks (Mass-based 

Alignment Score-OSAS) when analyzing 10611 MS/MS spectra from the control protein 

mixture, acquired on a high mass accuracy instrument (QTOF). Correct spectra 

identifications were shown in solid line, whereas incorrect spectra identifications are 

shown in broken line. OpenSea mass-based alignment score (OSAS) distribution (c) was 

obtained by placing the matches in OSAS score bins of width 10. An OSAS score of 85 

was used as cutoff as shown in the figure with a vertical solid line. Sequest Xcorr scores 

(b) were normalized for different parent ion charge states (+0.7 for singly charged and-

1.0 for triply charged) to reflect the differences of scoring thresholds that were used. The 

distributions were obtained by placing the matches in Xcorr score bins of 0.2. The 

normalized Xcorr cutoff is shown in the figure by a vertical solid line. CIDentify score 

distribution (c) was obtained by placing the matches in Z-Score bins of width 0.35. A Z-

score of 3.5 was used as a cutoff as shown in the figure with a vertical solid line. The 
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improved separation of correct and incorrect matches by OSAS score on other techniques 

helps OpenSea in the accurate identification of low-scoring but correct peptide matches. 
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CIDentify Z-Score 

Scoring distributions of Sequest, CIDentify/Peaks and OpenSea!Peaks (OpenSea Mass-

based Alignment Score-OSAS) when searching 14469 MS/MS spectra of control protein 

mixture, acquired on a low mass accuracy instrument (LCQ). Correct spectra 

identifications were shown in solid line, whereas incorrect spectra identifications are 

shown in broken line. OpenSea mass-based alignment score (OSAS) distribution (a) was 

obtained by placing the matches in OSAS score bins of width 10. An OSAS score of 85 

was used as cutoff as shown in the figure with a vertical solid line. Sequest Xcorr scores 

(b) were normalized for different parent ion charge states (+0.7 for singly charged and-

1.0 for triply charged) to reflect the differences of scoring thresholds that were used. The 

distributions were obtained by placing the matches in Xcorr score bins of 0.2. The 

normalized Xcorr cutoff is shown in the figure by a vertical solid line. CIDentify score 

distribution (c) was obtained by placing the matches in Z-Score bins of width 0.35. A Z-

score of 3.5 was used as a cutoff as shown in the figure with a vertical solid line. 
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Although the separation of correct and incorrect spectra identifications is not very 

precise, as with the case of QTOF data, OSAS was able to distinguish the correct spectra 

identifications from incorrect spectra identifications without any further tuning of the 

OSAS score for low mass accuracy data (LCQ). 
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FIGURE7 
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Scoring plots for Combined Alignment Score (CAS) when searching using both high 

mass accuracy data (10 611 MS/MS spectra from 35 LC/MS/MS runs) and low mass 

accuracy data (14 469 MS/MS spectra from 20 LC/MS/MS runs). Scatter plots between 

OSAS and SRS scoring system was obtained by analyzing both QTOF MS/MS data (a) 

and LCQ MS/MS data (b) by placing the OSAS sores in bins of width 5.0 and SRS 

scores in bins of width 0.1. The correct identifications are shown in blue color circles, 

whereas the incorrect identifications are shown in red color circles. A score threshold of 

1.0 for the combined alignment score (CAS) was also shown in the figure with a solid 

line. 
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