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Raman Tenneti 
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ABSTRACT 

Machine description tables and attr ibutes are  used to specify transla- 

tions from a n  intermediate representation (G-code) t o  a target  code represen- 

tat ion of programs (for a functional programming language like LML). Code 

generators were obtained for target  machines VAX 11/780, INTEL 286/310 

and MOTOROLA 68000 using machine description tables and attributes. A 

compiler built on this model can automatically perform some machine depen- 

dent optimizations. 



1. INTRODUCTION 

1.1 Motivation 

Since the early history of compilers, researchers have been trying t o  systema- 

tize and automate the production of compilers. The most successful aspect of this 

attempt has been syntax analysis. I t  is now a common place t o  use a table-driven 

syntax analyzer which is automatically constructed from a generalized context-free 

grammar specifying the syntax of the source language [AheUllman 77). 

During the past decade a number of attempts have been made a t  automating 

the process of building code generators for compilers. Code generation can be defined 

as  the process of mapping some intermediate representation of the source program 

into assembly or binary machine-code. Interest in this area is motivated by the fol- 

lowing factors. 

(1) Proliferation of architectures have led t o  the design and manufacture of a large 

number of similar computer architectures (Intel-8086, 2-8000, MG68000, T M S  

9900) which differ in details of instruction set, registers and addressing modes. 

(2) Several authors during the last decade have discussed the need for portable 

compilers [Graham 80, Wulf 801. They are needed t o  automate and simplify the 

process of code generation so as  t o  isolate target-machine specific aspects of 

translation. I t  is then possible t o  retarget the compiler by changing those por- 



tions of the compiler which concern the architecture of the  machine. 

(3) Portable compilers must rest on the formalization of machine-dependent 

aspects of compilation such as, 

(a) addressing units for storing source-language values (e.g. memory, 

registers and hardware stack), 

(b) addressing modes available t o  access and retrieve operands, 

(c) hardware abstractions t h a t  are  essential to code generation such as  

machine d a t a  types (the groups of bits t h a t  can participate as operands t o  instruc- 

tions e.g., byte, word, long, quad etc), 

(d) code-selection for intermediate representation, 

(e) machine-dependent optimizations such as auto-increment, auto- 

decrement, twolthree address instruction variants, specialized instructions. 

Goals for this thesis are  

(1) To define target  machine architectures by a table for code generation pur- 

poses. 

(2) To derive a n  efficient code generator from the  above machine description 

table by incorporating some machine-dependent optimizations. These optimizations 

include subsuming addition via auto-increment and similarly subsuming subtraction 

via auto-decrement. 



(3) To use part ial  simulation of target  machine s t a t e  in order to optimize code 

selection, and choice of addressing modes and t o  eliminate redundant loads and 

stores. 

(4) T o  retain compilation speed by using a single pass code generation scheme. 

1.8 Background and Code Generation Remearch 

For our purposes, previous research in code generation can be broadly 

classified into three categories: formal treatments, interpretive approaches and 

descriptive approaches. An extensive review critique of these approaches has been 

done by [Ganapathi  801. 

Formal treatments are  a t tempts  t o  deal with code generation mathematically, 

usually in order t o  produce optimal or  near-optimal code [Aho-Johnson 761. 

Research has been with idealized models of computers and thus far  i t  has  been con- 

centrated mainly on compilation of arithmetic expressions. Efficient algorithms for 

generating provably optimal code on a broad class of uniform register machines have 

been developed for expressions with no common subexpressions [Sethi and Ullman, 

1970; Aho and Johnson, 19761. Once common subexpressions are  encountered, or 

optimal code needs t o  be generated for machines with irregular architectures, then 

the problem of optimal code generation has been proven t o  be combinatorially 

difficult [Bruno and Sethi 1976; Aho, Johnson and Ullman, 1977a1, and heuristic tech- 

niques for generating good code have been theoretically analyzed [Aho, Johnson and 

Ullman 1977b3. The  other two classes of research have tended t o  focus on implemen- 

tat ion methods for real computers, often with loss in efficiency of the generated code, 



relative t o  idealized models [Glanville SO]. 

Interpretive approaches are improvements over ad-hoc code generation. In 

this approach, information about the target  computer is provided in procedural form 

using special purpose code generation languages and interpreters of the intermediate 

code of a compiled program. Examples of this approach are  UNCOL [Strong 58, Steel 

611, the PL/I optimizer of Elson and Rake [Elson 701, the method developed for PL/C 

[Wilcox 711, and the work of [Donegan 73, 791. These methods require considerable 

hand-coding of tedious low level details, making correctness difficult t o  ascertain and 

retargeting a chore [Glanville 801. Thus  retargeting requires development of a code 

generator for every new machine. 

In the third class of methods (descriptive approach) the target  machine archi- 

tecture is defined in a machine-readable descriptive form and the macro approach t o  

code generation can be considered par t  of this approach [Glanville 801. Fraser, Glan- 

ville, Ripken, Catell and Ganapathi  have tried to generate code generators automat- 

ically from a machine description. Our approach t o  code generation was stimulated 

by the  work of Ganapathi  and Fischer. 

Ganapathi  (19801 evaluates many of the earlier descriptive approaches. Fraser 

[1977] has  developed a code generator using rule based system. He uses machine- 

specific rules to perform storage allocation. His code generator is slow and often 

emits redundant loads and stores. 

Catell [1978] used axioms and recursive goal-directed heuristic search algo- 

rithm t o  derive code sequences. In his approach, subgoals are  created a s  search con- 

tinues. Heuristics are  used, both t o  order subgoal selection and also t o  order 



pat terns  when trying to match. Sometimes i t  is hard  and time consuming t o  derive 

certain code sequences [Ganapathi 801. He designed a complete code generator for an  

intermediate language called TCOL. 

Ripken [1977] used a dynamic programming algorithm (extending Aho and 

Johnson's algorithm) [Aho 761 t o  generate locally optimal code. An implementation 

of his dynamic programming algorithm is expected t o  be slow. 

Glanville [1978, Graham 801 used context-free parsing techniques t o  define a 

translation t o  machine code. The  input t o  the  code generator is a linearized (or 

flattened) tree representation of the source program. Every possible instruction vari- 

a n t  is described by a grammar rule. Pa t t e rn  matching is provided by simple SLR 

parsing. It is purely a syntactic approach t o  the instruction selection problem. The  

tree-pattern-matching is provided in a completely left-operand biased fashion. T h a t  

is, when generating code for an  entire sub-tree, the code for the left operand is 

selected without considering the right operand. For  example, consider the  string op A 

B. T h e  addressing mode for A is selected without seeing B. Thus  A could be a 

register-indirect addressing mode on a n  iAPX-286. Next, B happens t o  be a memory 

datum t h a t  gets one of the memory addressing modes. Now comes the time t o  select 

a machine op-code. The  code generator realizes t h a t  memory-to-memory operations 

cannot be performed in one instruction. Thus, i t  is forced to move A t o  a register 

[Ganapathi and Aho 19851. I t  is efficient because of context-free recognition and a 

single pass approach. Because of purely context-free matching, in certain cases it 

fails t o  generate optimized code. 
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Ganapathi[l982, 1984, 19851 has specified code translation rules set  by attr i-  

bute grammars instead of context-free grammars. Semantic at tr ibutes and predi- 

cates provide automated semantic handling for his code generator. Predicates are 

used to define the  architectural restrictions on the programming model. Attributes 

are used t o  track multiple instruction results. Addressing modes are described by 

separate individual productions and so are  opcodes.  Addressing mode selection is 

left-biased in the true tree-pattern matching sense, but selection of opcodes  is not 

biased toward any operand. Opcode  productions have symmetric operand patterns. 

This symmetry enables the code generator t o  delay decisions regarding destination 

requirements. In effect, this decision is made on seeing the entire sub-tree for the 

operator. Thus  the  target  machine code is produced t o  store the  result of evaluation 

[Ganapathi and Aho 19851. 

Kessler [I9861 has  implemented a retargetable LISP compiler. This compiler 

uses architectural description (AD) of the target  machine t o  increase portability and 

performs extensive optimizations. 



1.4 Our Strategy 

We have selected G-code as the  intermediate representation of a compiled, 

functional language. G-code is designed t o  run on a stack machine (G machine) t o  

realize a graph-reduction model of evaluation. The  stack is used t o  hold pointers in 

a run-time traversal of a graph t h a t  represents a n  applicative expression. We divide 

the translation from G-code t o  the target  machine code into two logical phases (as 

shown in Figure 1). The  execution of the  two phases is overlapped. During the first 

phase (simulation) we simulate the G machine on a single-assignment machine which 

has a n  infinite supply of registers. We call these pseudo-registers. During the second 

phase (code emission) we map pseuderegisters t o  actual  processor registers and 

memory locations. We define control of the two phases of translation by rules 

expressed in a table form. The  rules use at tr ibutes (which define the part ial  s ta tes  of 

both the stack machine and the  register machine) to obtain machine dependent 

optimizations and also use commands t o  direct the  simulation of the stack machine 

by the pseuderegister machine, and the simulation of the pseudo-register machine 

by the  actual  target  machine. 

T h e  code generator generator after parsing this machine description table will 

produce a header file (machdesc.h) which is included in the  machine independent 

source code of the code generator. 



~ i m u l a k  PSEUDO-REG code 
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TARGET 
G-MACHINE MACHINE emission MACHINE 

stack 
machine 

infinite register 
machine 

register 
machine 

SIMULATION: 
simulate stacks in pseudo-registers 

CODE EMISSION: 
map pseudo-registers t o  processor 
registers and memory locations 

Figure 1. Translation between G-code and target machine code 



1.6 Thesis Organisation 

The above mentioned phases have been presented in the  following manner in 

this thesis. 

(1) Chapter 2 discusses selection of intermediate represehation for the func- 

tional programming language LML. 

(2) Chapter 3 discusses design of the machine description table, attributes, 

pseudo-registers and action codes. 

(3) Chapter 4 discusses code selection process. This chapter also includes the  

examples t h a t  have been implemented on the  VAX 11/780. 

(4) Chapter 5 discusses machine-dependent optimization. 

(5) In Chapter 6 implementation results for the VAX 111780 and M68000 pro- 

cessors are  presented. 

(6) Ideas for improvements t o  our implementation and future research are  in 

Chapter 7. 

(7) Details of intermediate representation, the libraries t h a t  are compiled and 

the machine description tables for the VAX 111780 and M68000 processors are given 

in appendices. 



2. G-CODE AS INTERMEDIATE REPRESENTATION 

In a classical single-language, single-machine compiler an  intermediate form of 

program code is traditionally used for optimization [Ganapathi  821. Examples of 

intermediate forms are pseudecode quadruples, triples, flattened tree representation 

of programs. Flattened trees can be generalized t o  directed acyclic graphs [Aho 771 

in order to manifest shared values and avoid redundant computations. But these 

intermediate forms a re  inadequate for compiler portability. The  design of an  inter- 

mediate representation (IR) is critical t o  compiler portability and code generation 

[Ganapathi 821. T h e  level of an  IR determines the work t o  be redone in transporting 

a compiler t o  a new machine. If the  level is too high, language dependencies creep in. 

Similarly if the level is too low, machine dependencies seem unavoidable. 

Intermediate representation should reflect aspects of the model of computation 

(abstract architecture) but not of any target  computer (concrete architecture). Flat- 

tened trees (or DAG's) are very general. They don't represent any aspect of a n  

abstract  architecture. They leave too much of source-language dependency. So i t  

makes code generation harder (i.e., language dependent). Triples or  quadruples 

reflect the architecture of one register (triples) or  zero register (quadruples) RAM 

machines. 

G-code is appropriate t o  a different abst ract  architecture, t h a t  of the G- 

machine [Johnsson 841 which evaluates applicative-expression graphs (with value- 



sharing) by reduction. 

All language dependent and machine-independent issues are handled by this 

front-end compiler. The  back-end of the compiler (which is described by this thesis) 

translates the G-code (IR) t o  target  machine code. All of the  machine-dependent 

issues are  handled by this back-end. With this approach a compiler for a new 

machine can be easily generated just by changing the  control for the  G-code t o  tar- 

get machine code translation phase. 

2.1 Machine-Independent Phases Of Compiler 

The following are the machine-independent phases of any source language. 

(1) Lexical analysis (scanning). 

(2) Syntax analysis in which the string representation of programs is converted 

into a n  abst ract  syntax tree representation. 

(3) Semantic analysis which will d o  binding, type checking and source-tesource 

transformations t h a t  either optimize or simplify subsequent translation steps. 

(4) D a t a  flow optimizations which can be accomplished at the time of generat- 

ing the intermediate code (ex. constant folding, removing loop-invariant computa- 

tions, etc.). 

2.2 G-CODE 

G-code instructions define a n  abstract  architecture, the G-machine. The  G- 

machine architecture was originally defined by Thomas Johnsson [Johnsson 841 as an 



evaluation model for a n  ML compiler. This is a machine model which supports 

evaluation of functional language programs by graph-reduction. In this abstract  

model, programs are  functions whose definitions have been given an  operational 

interpretation as code sequences for the G-machine. 

The  G-machine evaluates applicative expressions, i.e. applications of functions 

t o  argument expressions. Such expressions are  represented by a graph in a 

dynamically-allocated, list-structured memory(G-memory). During the  process of 

evaluation, the graph is mutated by a series of reduction steps until i t  reaches a nor- 

mal form. Graph reduction is accomplished through the manipulation of a traversal 

stack t h a t  contains pointers into memory. 

The  traversal stack contains pointers directly t o  the  argument expressions and 

t o  the principal application t h a t  is being reduced. T o  reduce the expression, a pr* 

gram compiled for the function jis executed. After reduction, the  principal applica- 

tion node is overwritten with the representation of i t s  value. 

A sequential evaluator has been developed a t  the Oregon Graduate  Center 

[Kieburtz 851 based on t h a t  abstract  model. This evaluator, which will be referred t o  

as  the G-machine, performs graph reduction where expressions are represented as 

graphs rather than  strings. The  G-machine uses a P (pointer) stack which holds the 

pointers t o  graph memory and a V (value) stack which holds the  intermediate values 

of basic types (integer, boolean, character) during expression evaluation, and G- 

memory which is a dynamically allocated list-structure memory. The  set  of G-code 

instructions and their meanings are  given in Appendix A. 



The following example is a LML program t o  compute the square of 5. The  G- 

code instructions t h a t  are  generated by the  front-end compiler and the execution of 

those instructions on the G-machine is given in Figure 2. 

let sqr = \x. x * x in sqr 5; 

i m p o r t s  : 
exports  : 
I n i t i a l  graph i m a g e :  

0: I N T  0 
5: FUN ( 1 )  24 

10: FUN ( 2 )  26 
15: I N T  5 

G - c o d e  t ex t :  
0: DEE-FUN 26 
4: PUSHCONST 15 
8: MOVEP 1 

10: P O P P  0 
1 2 :  JGLOBEUN 2 4  
16:  END-FUN 26 

DEE-FUN 
EVAL 
GET-FST 
GET-F ST 
MUL 
MOVEV 
P O P P  
RET- INT 
END-FUN 

PUSHCONST 15 instruction will push a pointer to I N T  5 in the  G-memory 

onto the P-stack. MOVEP 1 instruction will move P[O] t o  P[2] and pop the P-stack. 

The P O P P  instruction will pop the  P-stack again. The  first GETJST 0 instruction 

will push the  first of a graph node whose value is basic type into the  V-stack. MUL 

instruction multiplies the top  two elements of the V-stack and the  result is stored on 

top of the  V-stack. MOVEV 0 will move a value from V[O] t o  V[1] and pop the V- 



stack. RETJNT will update the result node with the basic value from V[O] and 

returns from the function. 

P STACK G MEMORY 

l 3 - O  RESULT 

PUSHCONST 15 

t-l-smT 

MOVEP 1 

POPP 



P STACK G MEMORY V STACK 

JGLOBFUN 24 
I I 

RESULT 

&' r\ INT msmT k4 



MOVEV 0 

POPP 0 

RETJNT 0 

P STACK G MEMORY V STACK 

RESULT 

top of V 14 
top of V 14 
top of V U 

Figure 2. Example of sqr 5 



3. MACHINE DESCRIPTION USING ATTRIBUTES AND ACTION CODES 

3.1 Machine Description Table 

Code generation requires the description of the following aspects of a machine 

architecture: 

(1) A fully automatic code generator might use a formal definition of the tar- 

get machine codes t o  infer a code sequence t h a t  gives a correct operational interpre- 

tation t o  the  intermediate code sequence of a program. Fully automatic code genera- 

tion is far  beyond the present s t a te  of the a r t ,  however. Instead, code generation is 

specified by translation sequences t h a t  give a correct operational interpretation t o  

individual instructions of the intermediate code. 

(2) the assembly formats for the  target  machine instructions, 

(3) addressable units for storing the source-language values (e.g memory, regis- 

ters and hardware stacks). The  number of registers available and storage allocation 

for the P stack and G memory have t o  be specified in a prefix file. 

Recall t h a t  we have simulated the stack machine (G machine) through a 

pseuderegister machine. This machine has infinitely many registers (inexhaustible 

supply of registers), and is a single variable assignment machine. We have specified 

the commands t o  simulate the stack machine on the pseuderegister machine in the 

machine description table. The machine description table also has  entries to map the 



pseudo-registers t o  the target  machine registers and memory locations. In this 

chapter we will discuss the  pseuderegisters and the commands to manipulate the 

stacks on a pseudo-register machine. 

In the  machine description table translation actions are defined by sequences 

of translation rules associated with individual G-code instructions. The  syntax of a 

translation description is shown in Figure 3. 

RANSLATION RUL 

1 
w 

< ACTION RULE 'ATTRIBUTE' - GcODEE 
GCODE instructions are llsted In APPENDIX A 

ATTRIBUTES are llsted in SECTION 3.3 

ACTION CODES are listed in SECTION 3.2 

Figure 3. Syntax of Translation Rules 

For each G-code instruction the G-code is first matched in the machine 

description table and the table can have a set  of rules for a G c o d e  instruction. For 

a G-code i t  will match the attributes. The  attr ibutes will enable t h a t  translation 



rule and i t  will execute the  action codes for t h a t  translation rule. 

The  generation of target  machine code is specified by the  machine description 

table. For each G-code instruction there could be one or  more of the following. 

1) The  attr ibutes t h a t  are t o  be matched for instruction selection. 

2) T h e  operations on the P and V stacks (e.g. pushing and popping). 

3) The  code t o  be delayed or  emitted if there is any. 

4) Register allocation if a n  instruction (ex. GETJST) requires 

a target  machine register. 

3.2 Action codes 

Action codes describe the action taken by the code generator in composing a 

translation sequence for a n  individual G-code instruction. These actions include 

(1) simulation actions, affecting the s t a te  of the  P and V stacks of the abst ract  G- 

machine, 

(2) simulation actions updating the  contents and  attr ibutes stored in pseud* 

registers of the  abst ract  machine, 

(3) code emission actions directing the  production of code sequences for the target  

machine, 

i 
(4) actions t o  allocate the  target  machine registers. 

Action codes can be divided into two categories: 

1) Commands which update the  contents of pseudo registers, 

2) Expressions which may refer t o  the contents of pseudo registers but do not 

update their contents. 



POP-v 

POP P 

PUSH-V 

The following symbols are used in the action codes 

either to denote a stack or a pseudo-register. 

Meaning 

Pseudo-register variables. These variables 
are given value by an ALLOC-SUDO command or 
by assignment. This is used in ADD 
instruction in the following manner 

$N = ALLOC-SUDO 
"addl2" V[O] V [ 1 ]  $N 

This variable stores the literal/constant 
value in the pseudo-register. This literal 
value then becomes an attribute of the 
pseudo-register that holds it, and may be 
tested by subsequent translation actions. 

This represents the target machine's 
hardware register whose index is stored 
in the pseudo-register. 

This is the instruction number that precedes 
each G-code instruction. 

Denotes the first operand of a G-code 
instruction. 

Denotes the second operand of a G-code 
instruction. In the FUN instruction opl is 
the number of arguments and op2 is the code 
address. 

Pops the simulated V stack one place. 

Pops the simulated P stack one place. 

Pushes a pseudo-register on top of the 
V stack. 

PUSH-V $N; 



or 
PUSH-V V [I] ; 

PUSHg Pushes a pseudo-register on top of the 
P stack. 

GET-IN-REG Allocates a target machine register. 

EM1 T Emits the code that follows it. For example 
VAX 11/780 code for ADD is: 

EMIT "addl 2 4 (%VS) , (%VS) " ; 

ALLOC-SUDO Allocates a pseudo-register. 

MACH-CODE Any string of characters that is embedded 
between quotes (") is considered as target 
machine code. 



The code generator will interpret the following action codes 

and will execute different functions to simulate the stack 

machine on a pseudo-register machine. 

ACTION CODE ---- > 

COMMANDS - - - - > 

POP-v 

POP-P 

PUSH-V 

PUSH-V 

PUSH-V 

PUSH-P 

PUSH-P 

PUSH-P 

PUSH-P 

MACH-CODE 

MACH-CODE 

MACH-CODE 

MACH-CODE 

EMIT 

DELAY 

COMMANDS I EXPRESSIONS 

0Pl 

p C 0Pl I 

$N 

0Pl 

V [ NUMBER ] 

V [ NUMBER 1 

V [ NUMBER 1 V [ NUMBER ] 

V [ NUMBER ] V [ NUMBER ] $N 

NUMBER $R.reg $N.reg 

MACH-CODE 

MACH-CODE 

EXPRESSIONS ----  > 

V [ NUMBER 1 = V [ NUMBER ] 



V [ NUMBER 

v C 0Pl I 

P [ NUMBER 

P [ NUMBER 

p C 0 ~ 1  1 

$N 

$N 

$N. cnst 

$N 

8 R  

$R. reg 

V [ NUMBER ] 

P [ NUMBER ] 

P [ NUMBER 1 

P [ NUMBER ] 

p C O P ~  1 

0Pl 

ALLOC-SUDO 

GET-IN-REG $R 

ALLOC-REG 



3.8 Attributes and Pseud-Regiaters 

We have used attr ibutes t o  propagate information about the  s t a t e  of the regis- 

ter  machine. Attr ibute values indicate the partial s t a t e  of the  machine. An abstract  

pseudo-register holds the value of a n  element of either the P or  V stacks. Any finite 

operation on either of the P or  V stacks can be simulated by loads and stores t o  the 

pseud-registers. The  P and V stacks are  represented in simulation by linked list 

structures. The  contents of each element of these list structures is a pointer t o  a 

pseudo-register. 

Each pseudo-register stores the  at tr ibutes of the value contained in the P or  V 

stack element t h a t  i t  represents. Attributes are  used t o  represent literal values, 

when they are  known, as well a s  target machine register assignments. 

Eight a t t r ibute  evaluation functions are used in the current implementation. 

In the following table these functions and their meanings are  given. V[n] represents 

the n th  element of the  V stack and V[O] represents the top of V stack. 

(1) op1-lit-0 : checks whether top of the V stack V[O] is known t o  be equal t o  

literal 0. 

(2) op2-lit-0 : checks whether V[l] is known t o  be equal t o  literal 0. 

(3) opl-lit-1 : checks whether V[O] is known t o  be equal t o  literal 1. 

(4) opt-lit-1 : checks whether V[1] is known t o  be equal t o  literal 1.  

( 5 )  arg-0 : checks whether the argument field of a G-code instruction is known t o  

be equal t o  literal 0. 



(6) arg-1 : checks whether the  argument field of a G-code instruction is known t o  

be equal t o  literal 1. 

(7) ISJQUALS : checks whether the top two elements of the V stack are known 

t o  be equal. 

(8) is-;&reg : checks whether a target  machine hardware register has been 

assigned t o  store the contents of an abstract  pseuderegister or  not. 

Each cell of the P stack logically contains a pointer t o  the G memory node. 

In our implementation a register is used t o  store the address of the memory 

location. - 

We have used the target  machine hardware registers for the  V stack elements 

in our implementation for VAX 11/780. 



8.4 Delayed Code Emission 

The  machine description table will specify whether for a particular G-code 

instruction emission of the target  machine code is t o  be delayed o r  immediate (this 

can be specified with the  action codes DELAY or  EMIT). We decided t o  delay the 

code whenever i t  is not compulsory t o  emit code. The code t h a t  is delayed is stored 

in the pseudo-register's code buffer. Each pseudo-register has  a dynamically allocated 

code buffer and each entry of the code buffer has a boolean t a g  t o  indicate whether 

code is delayed or  emitted. Code is emitted from the delayed code buffer at the end 

of each basic block (i.e., a t  the end of conditional expressions and a t  the end of func- 

tions) or  whenever there is an  access t o  G-memory. 

An example of usage of the at tr ibutes and action codes for G-code instructions 

ADD and SUB is given below. 

ADD 'opl-lit-1' : "incl" V[1]; 
V[O] = V[l];; 

ADD 
"addl2" V[O] V[1] $N;; 

In the above example, ADD is the G-code for which the translation is being 

specified in the machine description table. 'opl-lit-1' is the  a t t r ibute  which checks 

whether V[O] is known t o  be equal t o  1 or  not. "incl" V[1] is the action code which 

specifies delay the code t o  do auto-increment on V[1] and the action code V[O] = V[l]  

indicates t h a t  V[O] should point to the V[l]'s pseudo-register. If V[O] is not equal t o  1 

then the default action code "addl2" V[O] V[1] $N will be executed. 



SUB IS-EQUALS : l l~ l r l l '  V[O];; 

In the above example ISXQUALS is an  attr ibute which indicates t h a t  if the 

two operands of arithmetic operation SUB are known t o  be equal then perform the 

action codes specified af ter  colon (:). The above attr ibute checks the constant values 

of the top  two  elements of the V stack. These constant values are stored in the 

abstract  pseuderegisters, and if they are  equal "clrl" code will be delayed in the  code 

I t  is advisable t o  define a default entry for each G code instruction. When 

none of the at tr ibutes match for an  instruction the code generator generator will 

perform the action codes specified in the  default entry. The  target  machine code is 

generated from the specifications of the machine description table. The  machine 

description table can be used either for a simple macro expansion process or t o  gen- 

erate efficient code based on attr ibutes and simulation of stacks. By using and p r e  

pagating attr ibutes we could achieve machine-dependent optimization and thus were 

able t o  generate better target  machine code. 



8.5 Instruction Formats 

In this implementation the user has t o  provide the code generator generator 

with the structure of the  target  machine instruction set (if he is not doing simple 

macro expansion). The  user is given different formats so t h a t  the code generator can 

frame the  target  machine instructions. T h e  user will specify what format each target  

machine instruction belongs to. This information is used while parsing the  machine 

description table. The  following is a list of format numbers t h a t  are used t o  define 

the VAX 111780 instructions. 

Format 1 rO 

Format 2 rO, r l  

Format 3 r0, r l ,  r2 

rO, r l ,  r2  represent target  machine registers. In the above formats, the results 

are stored in the  last register. 

Example to illustrate the  format table (Appendix G): 

ADD "addl2" V[O] V[1] $N;; 

In the  above example "addl2" instruction is stored in the code buffer. I t s  for- 

m a t  is #. If V[O].reg = 'r5' and V[l].reg = 'r7' then the code generator will frame 

the target  machine instruction as  add12 r5, r7. 

In summary, the components of target  architectures needed for instruction 

selection a re  described t o  a code generator generator in the form of tables. The next 

chapter describes translation of the G-code t o  target  machine code using the transla- 

tion tables. 



4. PROCESS OF CODE SELECTION 

4.1 Code-Generator Generator 

Code generation is the process of transforming the intermediate representation 

of the source program (LML) into assembly or binary machine-code [Ganapathi 801. 

Generation of a code generator for a target  machine is a two s tep process. The tar- 

get machine is described using attr ibutes and action codes in the form of a table. In 

the first step, this machine description table is input to the  code-generator generator 

(CGG). The  CGG after parsing this table will create an include file (machdesc.h). 

The second s tep is t o  recompile the code generator with the newly generated 

machdesc.h file. T h e  code generator consists of a driver t h a t  accepts G-code and a 

set of functions t o  perform action codes as  specified by the machdesc.h file. The 

block diagram of code generator generator is shown in Figure 4. 



GENERATOR 
GENERATOR 

I 

CODE GENERATOR 

LML ANALYZER GCODE 
PROG , 

GCODE ASSEMBLER 
GENERATOR OBJECT 

CODE 

Figure 4. Block diagram of code generator generator 



4.2 Instruction Selection B e d  on Patterns and Attributes 

The  target  machine description table should contain one or  more entries for 

each G-code instruction. For each G-code instruction the  RHS of a n  action rule has 

action codes and the LHS of the action rule has  the at tr ibutes t h a t  are  t o  be 

satisfied. The  user writing the target  machine description table can prescribe multi- 

ple action codes for a G-code instruction. The  user has the flexibility t o  generate 

different target  machine instructions for a G-code instruction based on attr ibute 

matching in the  left hand side of an  action rule. The  target  machine description 

table dictates a target  machine instruction selection when a pat tern  is matched (so 

this can be considered a s  a sequence of pattern-action statements). 

Within the machdesc.h file, the G-code instructions are stored in the  form of 

opcodes.  T h e  CGG also stores the  bit vectors representing the  at tr ibutes and the 

function indexes of action codes in the machdesc.h file. The  code generator looks up 

the target  machine description table t o  match the G-code t h a t  is t o  be compiled and 

selects the first entry whose attr ibutes are matched. 

A non-optimized machine description table can be generated with little effort, 

if the  user who is writing the machine description table has  a good understanding of 

both the G-code and the target  machine code. With some additional effort an  

optimized machine description table can be obtained. 



t 

4.3 Examplee of Translating G-code using Attributes 

f 
The  following is a function t o  compute square of the number 5. The  syntax for 

the following source language is LML. This function has been compiled using Prof. 

Richard Kieburtz's LML compiler which generates G-code (intermediate code). The 

G-code is also given below and the explanation of each G-code instruction is given in 

Appendix A. The  machine description table tha t  translates G-code t o  the VAX 

11/780 code is given in appendix C. 

let sqr = \x. x * x in sqr 5; 

Inst. G-CODE VAX 11/780 CODE 
no 

i 
0: I N T  0 

I 1 
! 2 

5: F U N  24 
3 
4 

10: F U N  26 
5 
6 

15: I N T  5 
7 
8 

DEF-FUN 26 
9 
10 
11 

P U S H C O N S T  15 

MOVEP 1 

P O P P  0 

J G L O B F U N  24 

MLO : 
.long 1 ,0 ,0  

. text 

.glob1 - M L 2 6  
-MIL26 : 

movl $ M L 1 5 ,  - ( % P S )  

jsb - M L 2 4  



DEE-FUN 24 

EVAL 
2 0  

GET-EST 0 
2 1  
2 2  

GET-E S T  0 
2 3  

MUL 1 
2 4  

P O P P  
2 5  

RET-INT 
2 6 
2 7  
2 8  
2 9  
30 

jsb -eval 

m o v l  ( X P S ) ,  r O  
m o v l  4 ( r 0 )  , r l  

movl  4 ( r 0 )  , r 2  

mu112 r l ,  r 2  

m o v l  ( X P S ) ,  r 6  
m o v l  $VAL, ( r 6 )  
m o v l  r 2 ,  4 ( r 6 )  
m o v l  $ 0 ,  8 ( r 6 )  
rsb 

In the above example the program should s t a r t  executing from D E F I U N  26. 

The instructions prior t o  t h a t  are  used t o  initialize graph memory. 

In our implementation we have used memory locations t o  implement the P 

stack and G memory. A cell of G memory node contains 3 words. The  1st word 

stores the  t a g  of the node and the  next two words store the d a t a  values (integer, 

boolean, pointer etc) as shown in Figure 5. 



1st NODE 2nd NODE 3rd NODE 

I integer 

I APPLY (2) pointer pointer 

FUN (3) func descr. # of args 

I pointer I pointer I 
Figure 5. G-memory formats 

The P stack stores pointers t o  the G memory. In the  above example %PS 

indicates the top of P stack. rO, r l ,  r2 are VAX 11/7807s target machine registers. 

The action codes tha t  are executed for the G E T T S T  0 instruction will be 

explained below. 

The GETJST instruction (as indicated in Appendix A) fetchs the contents of 

the first cell of the G node pointed t o  by the top of P stack onto the V stack. This 

operation on the VAX 11/780 requires loading of top of the P stack into a register 



and indexing from the  contents of t h a t  register [ 4(r0) ] t o  get the  first element. 

T h e  machine description table has the following entries for the GETJST 

instructions (appendix C). 

GCODE ATTRIBUTES 

G E T J S T  ' i s i n r e g '  

ACTION CODES 

GETJST 

$R = P[opl]; 
$N = ALLOCSUDO ; 
$N.reg = ALLOCJtEG ; 
PUSH-V $N; 
"movl" 4 $R.reg $N.reg;; 

$R = P[opl]; 
$R.reg = GETJNJtEG $R; 
$N = ALLOCSUDO ; 
$N.reg = ALLOCJlEG ; 
PUSH-V $N; 
"movl" 4 $R.reg $N.reg ;; 

When the  compiler encounters the GETJST 0 instruction i t  will look in the 

machine description table for the translation. The  first entry in the machine descrip- 

tion table for the GETJST instruction indicates t h a t  if the ' i s i n r e g '  at tr ibute is 

true then execute the action codes specified after the colon. The  ' i s i n r e g '  at tr ibute 

executes a function which will check whether the  simulated P[O]'s pseudo register has 

been assigned t o  a target  machine register or  not. 

T h e  compiler checks the simulated P stack's 0 th  element's ' i s i n r e g '  at tr i-  

bute. If t h a t  at tr ibute is true, then C G G  will execute the  action codes specified 

accordingly. In the above case i t  is not true, so i t  will take the default case. We have 

explained the action codes for the default entry in the following paragraphs. 



1.  $R = P[opl] In this action code $R represents a temporary pseudo-register 

and this will point t o  P[O] (because operand 1 is 0). This  action code doesn't gen- 

era te  any machine code as shown in Figure 6. 

2. $R.reg = GETJNJEG $R This action code indicates t h a t  the  value of $R 

(in this example $R and P[O] point t o  the same pseuderegister) is t o  be loaded into 

the target  machine's hardware register. The G E T J N J l E G  action code will get a 

free register (if no register is free an algorithm t o  get a free register is executed 

which is discussed in chapter 5) and will se t  the  a t t r ibute  ' i s i n r e g '  t o  t rue  for P[O]. 

The  code t h a t  is delayed because of this action is movl (%PS), r0. 

3. $N = ALLOC-SUDO This action code will get a new pseudo-register and 

$N represents this new pseudo-register. This action doesn't generate any machine 

4 .  $N.reg = ALLOCJEG This action code is supposed to allocate a target  

machine register for the  V stack. This action will return 'rl '  a s  the register in which 

the V stack element is t o  be stored. 

5. PUSH-V $N This action code will push the  newly obtained pseudo-register 

on top  of the simulated V stack.  This action doesn't generate any machine code. 

6. "movr' 4 $R.reg $N.reg This action code delays the  code t o  move the P 

stack's element t o  the  V stack. Delaying the code emission is a default and i t  is very 

easy to delay the code rather than deciding when t o  emit or  delay the code. The 

code t h a t  is delayed because of this action is movl4(rO), r l .  



P STACK PSEUDO-REG 1 temp register 

i s J n ~ e g  - true 

machjeg  = rO 

P STACK PSEUDOBEG 1 movl (%PS), rO 

3) SN - ALLOCSUDO 

isjn-reg  = true 

r n a c h ~ e g  - r l  

PSEUDO-REG 2 

U -, i s i n ~ e g  - true 

V STACK PSEUO-REG 2 

6) movl 4 $R.reg $N.reg 

I I 
isJn_reg = true 

V STACK PSEUDO-REG 2 

Figure 0. Explanation of ACTION CODES for GETJST 

The consequence of the above action codes is the following target machine 

code. 



When the  compiler comes across the next G E T J S T  0 instruction the 

' i s i n x e g '  a t t r ibute  of P[O] will be true. Because of t h a t ,  the  compiler matches the 

first entry for GETJST, and generates only the  following code. 

movl 4(r0), r2 

The  action codes for the  first entry of the G E T I S T  instruction are  same a s  

, the default entry except for the action code# 2 ($R.reg = GETJNJlEG $R). 

We have done similar optimizations for the V stack.  A non-optimized target  

machine table (or code generated by simple macro expansion or  pattern matching 

techniques) wouldn't have been able t o  generate the above code. 

In summary, G-code is translated t o  the target  machine code by CGG using 

the target  machine description table. With the help of at tr ibutes and the simulation 

of the P and V stacks through pseudo-registers, the code generator can produce tar-  

get machine code. A basic code generator can be implemented by specifying a single 

action code sequence for each G-code. Machine dependent optimizations can be 

achieved by adding attribute-guarded action code sequences t o  the  machine descrip- 

tion table. 



6. MACHINE-DEPENDENT OPTIMIZATION AND REGISTER ALLOCATION 

Compilers t h a t  d o  optimization produce a more efficient representation of user 

programs. The  optimization phase normally aims both for compact object code size 

I and execution speed [Ganapathi 801. A large number of these optimizations are 

6 machine-dependent. The  optimization strategies include: 

(1) Using special instructions t o  subsume additions and subtractions of a con- 

s t a n t  value (e.g., using au to  increment and au to  decrement) [Ganapathi 801. 

(2) Peephole optimizations (for instance, the UNIX C compiler makes a 

separate pass over assembly code t o  improve short code sequences [Ritchie 781). 

Fraser recently has implemented a machine-independent peephole optimizer t h a t  

tries to optimize adjacent pairs of assembler instructions [Fraser 801. For a window 

of more than two instructions, peephole optimization is very slow and requires more 

'context' information [Ganapathi 801. Attributes are  a good means of maintaining 

the contextual information. 

(3) Avoiding redundant loads and stores into or from target  machine registers 

and using target  machine registers in preference t o  memory locations. 



T h e  problem with older compiler design is t h a t  there were lot of hand-coded 

optimizations in code generators. I t  is difficult t o  follow and debug the code of the 

compiler when i t  is written in this manner. Expressing machine-dependent optimiza- 

tions using attr ibutes can make it easier t o  write and debug a compiler. 

In our code generator we implemented the following optimizations of the tar-  

get machine code. 

(1) Identifying opportunities for special machine-dependent instructions ( a u t e  

increment and autedecrement  for VAX 11/780) through attributes. 

(2) A ~ o i d i n g  redundant loads and stores into registers. 

(3) representing V-stack cells with machine registers avoids code for a 

memory-mapped stack. 



6.1 Special instructions 

In this implementation the code generator uses at tr ibutes in order to identify 

opportunities t o  generate special instructions. Simulation of the P and V stacks helps 

t o  schedule instructions. Because of at tr ibutes like 'oplJit-1' 'op2Jit-1' the  code 

generator can subsume addition and subtraction via aute increment  and a u t e  

decrement. T h e  following entries of machine description table indicate how a u t e  

increment and autedecrement  can be used for ADD and SUB instructions. 

"incl" V[O]; ; 

In the  above instructions the at tr ibute 'opl-lit-1' means t h a t  the content of 

V[O] is constant 1. For example in the case of the SUB instruction, if V[O] is equal t o  

1, the  code generator can emit a special instruction t o  decrement (decl) V[1] by 1. 



6.2 Deleting Redundant Code 

T h e  code generator t h a t  is generated from the  machine description table suc- 

cessfully avoids many redundant loads and stores. Sometimes the code generator 

doesn't even generate any code (e.g. the MOVEV instruction doesn't generate any 

code. It ac t s  t o  pop the simulated V stack. When the code generator comes across a 

MOVEV instruction, i t  will assign V[O] t o  V[1] and i t  will pop the V stack and 

releases the  hardware register t h a t  is assigned t o  V[l]). 

By delaying code the  code generator can determine where is the  last use of a P 

stack element and the  register allocation algorithm will reuse a register based on i ts  

last use. In the example t h a t  is discussed in section 4.3 the second GETJST 0 

instruction doesn't load the P stack element into a register again because the 

' i s i n ~ e g '  a t t r ibute  of P[O] is true (a  preceding G E T J S T  0 instruction would have 

loaded the P stack element from memory into a register 9-0'). 



6.8 Register Allocation 

T h e  machine description table has a n  action code G E T J N B E G ,  which will 

move the  contents of the  P stack from memory into a register. This is t o  take 

advantage of the cheaper address path.  The  s ta tus  of register usage is maintained 

in the  form of a bit vector (e.g., if registers 1 and 3 are  being used out  of the 8 avail- 

able registers, then bits 1 and 3 will be set  t o  1 and the  rest of the bits will be zero). 

The  function t h a t  implements G E T A N B E G  will check the bit vector t o  determine 

whether there a re  any free registers. If there is no free register available then the 

register allocation algorithm is invoked. Otherwise, i t  will allocate the first available 

free register, set  the  corresponding bit t o  indicate t h a t  the particular register is 

occupied, and se t  the a t t r ibute  ' i s i n r e g '  t o  true for the  pseud-register t h a t  

represents the  P stack's contents. If there is no free register available then the code 

generator has t o  dump the  contents of a register t h a t  is being used (if the  contents 

of the  register are  not in the memory), so t h a t  a free register can be obtained. In this 

implementation a free register is obtained when the  following conditions are met. 

(1) Free a register at i t s  last use. 

I (2) To free all registers a t  the end of a conditional branch. 

t (3) Free the  register t h a t  will not be used for the longest time (this is p reemp 

tive). 

Some of the special instructions t h a t  are handled by the  C G G  are  conditional 

t expressions. The code generator saves the simulated P and V stacks and the  register 

I usage bit vector, before traversing the true branch of the conditional expression. I t  



will simulate the P and V stacks through pseuderegisters during this branch. But 

before traversing the false branch of the conditional expression, the P and V stacks 

and register usage bit vector are  restored and register allocation will continue. At 

the end of the conditional expression, the code is emitted and all the registers are 

freed. 

The above register allocation algorithm has been implemented in the following 

manner. One of the critical factors is t o  find the last use of a pseudo-register (the P 

and V stack elements point t o  pseuderegisters). T o  determine the last use of an ele- 

ment in a block, the code generator will store the G-code instructions in a code 

buffer and will simulate the P and V stacks (shadow stacks) through pseudo- 

registers. During this phase target machine code is delayed, not emitted, but the 

instruction number a t  which a pseudo-register is used is updated (i.e., each pseudo- 

register has the last instruction number a t  which it is used). When the code genera- 

tor comes across ENDJUN instruction it will go through the G-code buffer t o  gen- 

erate target machine code and will simulate the P and V stacks with pseudo- 

registers. When the code generator has t o  get a free register it will check the shadow 

P stack's pseudo-registers to  determine which register is not used for the longest 

time and will dump its contents into memory and will set it's ' i s indeg '  attribute t o  

false and will free the register for re-use. 

In summary because of attributes and because of simulating the P and V 

stacks through pseuderegisters we were able t o  do machine-dependent optimizations 

and we have avoided redundant code. We have implemented a simple register alloca- 

tion algorithm. The code generator is able t o  avoid redundant loads and stores and 



is also able t o  take advantage of cheaper addressing modes. The compiler is also able 

t o  generate special machine-dependent instructions (e.g., subsuming of addition via 

auto increment and auto decrement). 



6. IMPLEMENTATION AND RESULTS 

We have implemented the code generator for the VAX 11/780 and the SUN 

Workstation. The  code generator has produced efficient code and is not slow in gen- 

erating code. An un-optimized code generator (macro expansion) for G-code has p r e  

duced 10-30% more code than the optimized code generator. The amount of optimi- 

zation t h a t  .is achieved is entirely program dependent, but  the code generator is able 

t o  produce on the average 10% less code. The goals of the implementation are 

(1) use one-pass parsing t o  generate code so t h a t  efficiency of code generation 

is not lost. 

(2) flexibility t o  add optimizations incrementally; all optimizations are 

(3) to take advantage of at tr ibutes t o  generate target  machine code. 

The  following pages contain a listing of the code generated by the  optimized 

code generator and unoptimized code generator on VAX 111780. The  machine 

description table for the optimized code generator is given in appendix C and the 

table for the  unoptimized code generator is given in appendix D. 

I 

I 



In the following examples the number before the target 
machine instruction indicates the type of optimization 
that was obtained. 

1 --- Constant folding. 

2 --- Registers are used instead of memory locations. 

3 --- Deletion of code during optimization. 

4 ---  Specialized instructions were used 
(auto-increment, auto-decrement) . 

letrec linfib = \x.\y.\n. 

if n = 0 then x 
else 
if n = 1 then y 
else 
linfib y (x+y) (n-1) 

in linfib 0 1 10 



VAX 11/780 CODE WITHOUT OPTIMIZATION 

.glob1 -Fmain 
-Fmain: 
jsb ,a34 
rsb 

0: INT 0 
MLO : 
.long 1,0,0 

5: INT 0 

MLlO: 
. long 3,,ML24,3 

. text 
- a 2 4  : 

movl 4*2 ( p S )  , - (%Ps) 

jsb -eval 

1 movl 4*2 (%PS) , rO 
2 movl 4(r0), -(%VS) 

10: FUN (3) 24 

15: FUN (1) 32 

20: FUN (2) 33 

25: FUN (2) 34 

30: INT 10 

35: INT 1 

40: INT 0 

0: DEE-FUN 

4: COPYP 

6: EVAL 

8: POPP 

10: GET-EST 



1 2 :  GET-BYTE 

14: SUB 

16: MQVEV 

2 2 :  MOVEV 

18: JNOT-ZERO 

2 4 :  COPYP 

2 6 :  EVAL 

2 8  : UPDATE-P 

movl $ 0 ,  - ( W S )  

jneq -MLL28 

movl 4 * 0  (%PS) , - ( p S )  

jsb -eval 

movl 4 * 4  ( O P S ) ,  r l  
movl (%PS) +, r O  
movl ( r O ) ,  ( r l )  
movl 4 ( r 0 ) ,  4 ( r l )  
movl 8 ( r 0 ) ,  8 ( r l )  

30: POP2  

3 2 :  POPP 

34: RET 

36: LABEL 

40: GET-EST 

rsb 

movl 4 * 2  (%PS) , r O  
movl 4 ( r 0 )  , - (%VS) 

4 2 :  GET-BYTE 

44: SUB 

46: MOVEV 

5 2 :  MOVEV 

48: JNOT-ZERO 

54: COPYP 

56: EVAL 

58: UPDATE-P 

movl $ 1 ,  - (%VS) 

movl (%VS) + , 4 *  0 (XVS) 

jneq -MLL30 

movl 4 * 1  (%PS) , - (%PS) 

jsb -eval 



m o v l  4*4  (WS) , r l  
m o v l  (WS) +, r O  
m o v l  (rO) , ( r l )  
m o v l  4 ( r 0 ) ,  4 ( r l )  
m o v l  8 ( r 0 ) ,  8 ( r l )  

r s b  

m o v l  4*2 (%PS) , - (%PS) 

m o v l  $ML15, - (WS) 

m o v l  $APPLY, (%GM) + 
m o v q  (WS) +, (%GM) + 
m o v a l  - 12  (%GM) , - (WS) 

m o v l  4 * 1  (%PS) , - (WS) 

m o v l  4*2 ( P S )  , - (%PS) 

m o v l  4*2 (WS) , - (%PS) 

m o v l  SML20, - (%PS) 

m o v l  $APPLY, (%GM) + 

m o v q  (WS) +, (%GM) + 

m o v a l  -12 (%GM) , - (%PS) 

m o v l  @APPLY, (%GM) + 
m o v q  (%PSI+, (%GM)+ 
m o v a l  -12 (%GM) , - ( P S )  

60: POP2 

62:  POPP 

64: RET 

66: LABEL 

70: COPYP 

72: PUSHCONST 

76:  MK-APP 

78: MOVEP 

80: COPYP 

82:  COPYP 

84:  COPYP 

86: PUSHCONST 

90: MK-APP 

92: MK-APP 

94: MOVEP 

96: MOVEP 

98: JGLOBFUN 
j s b  ,ML24 



0: DEF-FUN . t e x t  
-ML33: 

movl 4 * 1  (%PS)  , - (%PS)  

jsb -eval 

jsb -eval 

movl 4 * 0  (%PS)  , r O  
movl 4 ( r 0 ) ,  -(%VS) 

movl 4 * 1  (%PS) , r O  
movl 4 ( r 0 ) ,  - ( W S )  

movl ( P S ) ,  r l  
movl $VAL, ( r l )  
movl (%VS) + , 4 ( r l )  
movl $ 0 ,  8 ( r l )  
rsb 

movl 4 * O ( % P S ) ,  r O  
movl 4 ( r 0 )  , - (%VS) 

movl $1, - (%VS) 

4: COPYP 

6:  EVAL, 

8: P O P P  

10: EVAL, 

1 2 :  GET-FST 

14: GET-EST 

1 6 :  ADD 

18 : MOVEV 

2 0 :  P O P 2  

2 2 :  RET-INT 

0: DEF-FUN 

4: GET-EST 

6:  GET-BYTE 

8: SUB 

10: MOVEV 

1 2 :  P O P P  

14: RET-INT 
movl ( P S ) ,  r l  
movl $VAL, ( r l )  



2 movl (%VS) +, 4 ( r l )  
movl $ 0 ,  8 ( r l )  
rsb 

movl $ML30, - (%PS) 

movl SML35, - (%PS) 

movl $ML40, - (%PS) 

0: DEF-FUN 

4: PUSHCONST 

8: MOVEP 

10: PUSHCONST 

14: MOVEP 

16 :  PUSHCONST 

2 0 :  JGLOBFUN 
jsb 3 L 2 4  
rsb 



VAX 11/780 CODE WITH OPTIMIZATION 

.glob1 ,Fmain 
,Fmain: 
jsb -ML34 
rsb 
MLO : 
.long 1,0,0 
ML5 : 
.long 1,0,0 
ML10: 
.long 3,-ML24,3 
ML15: 
.long 3,-ML32,l 
ML20: 
.long 3,-ML33,2 
ML25 : 
.long 3,-ML34,2 
ML30 : 
.long 1,10,0 
ML35: 
.long 1,1,0 
ML40 : 
.long 1,0,0 
. text 
-ML24: 
movl 4* 2 ( W S )  , - ( O f l s )  

jsb -eval 
add12 4r4, p S  

1 movl 8 (XPS), rO 
2 movl 4(r0), rl 
2 sub13 $O,rl,rl 

jneq -MLL28 
1 movl (XPS), - (%PS) 

jsb -eval 
movl 4*4 (ZPS), r7 
movl ( W S )  +, r6 
movl (r6), (r7) 
movl 4 (r6) , 4 (r7) 
movl 8 (r6), 8 (r7) 
add12 $8, %PS 
addl2 $4, p S  
rsb 
,MLL28 : 

1 movl 8 (%PS) , rO 
2 movl 4(r0), rl 



decl rl 
jneq ,MLL3O 
movl 4 (pS) , - (%PS) 
jsb ,eval 
movl 4*4(pS), r7 
movl (WS) +, r6 
movl (r6), (r7) 
movl 4 (r6), 4 (r7) 
movl 8 (r6), 8 (r7) 
add12 $8, p S  
add12 $4, p S  
rsb 
,MLL30 : 
movl 4*2 (XPS), - (%PS) 
movl $ML15, - (%PS) 
movl $APPLY, (%GM) + 
m o w  +, (%GM) + 

moval -12 (%GM) , - (%PS) 
movl (%PS)+, 4*2(%PS) 
movl 4 (%PS) , - (%PS) 
movl 4*2 (%PS) , - (%PS) 
movl 4*2 (%PS) , - (%PS) 
movl $ML20, - (pS) 
movl $APPLY, (%GM) + 
movq (WS) + , (%GM) + 
moval - 12 (%GM) , - (pS) 
movl $APPLY, (%GM) + 
movq (%PS) +, (%GM) + 
moval - 12 (%GM) , - (%PS) 
movl (%PS) +, 4* 2 (%PS) 
movl (%PS) +, (%PS) 
jsb -ML24 
rsb 
.text 
Am33 : 
movl 4 (%PS) , - (%PS) 
jsb -eval 
add12 $4, p S  
jsb ,eval 
movl (pS), rO 
movl 4(pS), r2 
add12 68, W S  
movl 4(r0), rl 
movl 4(r2), r3 
addl2 rl,r3 
movl (XPS), r6 



movl $VAL, ( r6 )  
2 movl r 3 ,  4 ( r6 )  

movl $ 0 ,  8 ( r 6 )  , . 
r s b  

I . t e x t  

1 movl ( V S ) ,  r O  
add12 $4 ,  %PS 

2 movl 4 ( r 0 ) ,  r l  
4 decl r l  

movl ( V S ) ,  r 6  
movl $VAL, ( r6 )  

2 movl r l ,  4 ( r 6 )  
movl $0,  8 (r6)  
r s b  
. t e x t  
-ML34: 
movl SML30, - (%PS) 
movl (WS)  +, 4(%PS) 
movl $ML35, - (%PS) 
movl (%PSI + a  (%PS) 
movl SML40, - ( P S )  
j s b  -ML24 
r s b  



T h e  unoptimized version of the above example for the VAX 11/780, which does 

simple macro expansion, occupies 17% more space than  the optimized version. One 

of the  main differences between these two code generators is usage of registers for 

the  V stack elements. Another optimization t h a t  is obtained in this implementation 

is: whenever the V stack is popped, free the  target  machine register it occupies. 

Here the optimized code generator need not emit code, whereas the unoptimized code 

generator must pop the  stack. In the  unoptimized version, the V stack was imple- 

mented using memory locations, whereas in the optimized version, registers are used. 

The  optimized code generator has used a n  auto-decrement instruction instead of the 

two address add instruction. 

T h e  time taken by the above programs is not large enough t o  be significantly 

compared. Ideally, a comparison could be made using instruction execution times 

published by the manufacturer, but this is beyond the scope of this thesis. Further- 

more, issues such a s  cache usage may obscure such a comparison. 



T h e  following table contains the function name and the number of move 

instructions t h a t  were saved by the  optimized code generator. The  following table 

doesn't include the savings obtained because of auto-increment, auto-decrement and 

usage of registers instead of memory locations. 

COL A : Space occupied by the  code generated from the  optimized 
code generator 

COL B : Space occupied by the code generated from the  unoptimized 
code generator 

COL C : Percentage savings in the  space occupied 

COL D : Number of move instructions executed by the optimized 
code generator 

COL E : Number of move instructions executed by the unoptimized 
code generator 

COL F : Number of move instructions execution saved by the  
optimized code generator 

COL G : Percentage savings in the number of instructions executed 
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function space occupied execution statistics 
(args) A B C D E F G 
factorial 
(20) 867 1095 22% 65 1 794 143 18%.  
Linear Fibonacci 
(100) 1554 1877 17% 5661 6558 897 14%.  
Strict Fibonacci 
(100) 1060 1379 23% 2193 3090 897 29% , 

ackermann 
(2 6) 1683 2116 20% 4254 5148 894 1 6 % .  
tak 
(10 9 8) 2214 2491 11% 195 211 16 8% 
towers of hanoi 
(1 2 3 5) 2363 2682 12% 2380 2672 292 11% 

random numbers 
(50) 2332 2594 10% 6994 7546 552 7% . 
sor t 
(10 numbers) 3089 3277 6% 2244 2320 76 3% 
primes 
(100) 3204 3512 9% 23598 26512 2914 11% 



7. CONCLUSIONS 

By using the methods developed in this thesis i t  is easy t o  develop and main- 

tain a n  unoptimized target  machine description table for a new machine. 

Machine-dependent optimizations have been incorporated by the  use of at tr i-  

butes. Using machine-dependent optimizations the code generator produces better 

code than a compiler t h a t  uses simple macro expansion. The  results obtained during 

this implementation indicate t h a t  the code t h a t  was produced occupies 10-30% less 

space than  a macro expansion version. This optimization has been achieved pri- 

marily by avoiding redundant loads and stores into target  machine registers, using 

specialized instructions (e.g. auteincrement/decrement) and not generating code for 

some instructions altogether. Usage of registers for temporary storage and keeping 

track of the life of a variable in a block allowed us t o  maximize the  usage of regis- 

ters. By incrementally adding new attr ibutes the machine description table can be 

improved t o  produce even better code. 

All the above optimizations and retargetability are obtained in a single-pass 

code generation scheme. 



7.1 Further Research 

Instead of freeing all registers a t  the end of a basic block, the code generator 

could allocate and save registers based on global flow analysis of variables that  are 

live or dead across blocks (i.e. across modules). The garbage collector library (written 

in G-code) has to  be ported. Attributes to  do run-time optimizations could be added. 
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APPENDIX A: G-CODE 

G-machine instructions are  defined in terms of transformations on an  abstract  

register model. Components of this model are: 

C -- Control sequence 
P -- Pointer stack 
V -- Value stack 
G -- expression Graph 

T h e  control, C,  represents the  dynamic instruction sequence. In a hardware 

implementation, C might be realized by the program counter of a von Neumann 

machine. 

T h e  pointer stack,  P, holds pointers t o  available components (subexpressions) 

throughout traversal and reduction of expression graph. 

The  value stack, V, holds intermediate values of a basic type (integer, boolean, 

character) during expression evaluation. 

T h e  expression graph, G ,  is the image of in G-memory of a n  expression under 

evaluation. For a detailed explanation please refer t o  [Kieburtz 851. 



G-CODE DESC 

ALLOC allocate a node without a value 
<ALLOC -.C,P,V,G> => <C,n.P,V, [n:(-,-)]+G> 

binops 
ADD 
SUB 
MUL 
DIV 
AND 
OR 

add integers V[O] = V[O] + V[1] 
subtract integers 
product of integers 
quotient of integers 
logical and 
logical or 
<opc j.C,P,i, ... ij.V,G> => <C,P1opc(ij ,io)..ij .V,G> 
where opc is one of ADD,SUB,MUL,DIV,AND,OR 

CALLGLOBFUN 
COPYP 

call the function whose address is given as  an argument 
copy indexed cell of P-stack to  top of stack 
<COPYP m.C,n ,...n,.P,V,G> ==> 
<C,n, .no...n, .P,V,G> 
copy indexed cell of V-stack to  top of stack 
<COPYV m.C,P,v ,... v,.V,G> ==> 
<C,P,u, .v ,... v, .V,G> 
decrement value at top of V-stack 
<DECR -.C,P,i.V,G> ==> <C,P,(i-l).V,G> 
s ta r t  of a function 
end of a function 

COPYV 

DECR 

DEFJUN 
ENDJUN 
EVAL evaluate a function t o  normal form 

<EVAL j.C,n ,... nj.P,V,[nj:@(P1,P2)]+G> ==> 
<C,n.P,V,[nj:v]+G> 
initialize the heap with a function descriptor 
get literal value of argument into V-stack 
<GETBYTE b.C,P,V,G> => <C,P,b.V,G> 
first of a pair(va1ue is basic type) into V-stack 
<GETJST j.C,n ,... nj.P,V,[nj:@(vl,n2)]+G> ==> 
<C,n ,... nj.P,vl.V,[n:@ul,n2)]+G> 
second of a pair(va1ue is basic type) into V-stack 
<GETSND j.C,n ,... nj.P,V,[nj:@(n1,u2)]+G> ==> 
<C,n o... nj.P,v2.V,[n:~n~,v2)]+G> 
increment value a t  top of V-stack 
<INCR -.C,P,i.V,G> ==> <C,P,(i+l).V,G> 

FUN 
G E T B Y T E  

G E T S N D  

INCR 

INT 
JMF' 
JFUN 
J N O T J E G  
JNEG 
J N O T Z E R O  
JZERO 

- .  
initialize the heap with an integer value 
an unconditional jump t o  argument label 
jump t o  the argument label 
jump t o  label on non-negative value . . 

jump t o  label on negative value 
- - 

jump to  label on non-zero value 
jump to  label on zero value 



JGLOBFUN 
LABEL 
MICAPP 

W A L  

MOVEP 

MOVEV 

NEG 

NOT 

POPP 

POPV 

PUSHCONST 

FST 

RET 
RETJNT 
SND 

UPDATE 

jump to  global function 
a symbolic label 
make an application node 
< W P - . C , n  ,... n,.P,V,G> ==> 
<C,n.P,V,[n:@n,,n,)]+G> 
make a constructed pair 
< W R  j .C,n,.n,.P,V,G> => 
<C,n.P,V,[n:@(n,,n,)]+G> 
make a basic node form the value a t  V[O] 
<MK-VAL -.C,P,v.V,G> ==> <C,n.P,V,[n:(v,O)]ffi> 
move a pointer from P[O] to  cell indexed argument + 1 
<MOVEP m.C,n ,... n, .n,+,.P,V,G> ==> 
<C,n l...nm .no.P,V,G> 
move a value from V[O] t o  cell indexed argument + 1 
<MOVEV m.C,P,v ,...urn .vm+,.V,G> ==> 
<C,P,v ,... vm .v,.V,G> 
negate integer value a t  top of V-stack 
<NOT -.C,P,i.V,G> ==> <C,P,(-i).V,G> 
bitwise(one's) complement of top of V-stack 
<NOT -.C,P,b.V,G> => 
<C,P,(lYs complement b).V,G> 
pop P-stack 
<POPP m.C,n,.P,V,G> ==> <C,P,V,G> 
pop V-stack 
<POPV m.C,P,v,.V,G> ==> <C,P,V,G> 
pop P-stack twice 
pop P-stack four times 
pop P-stack eight times 
push literal value of argument into V-stack 
<PUSHLIT i.C,P,V,G> ==> <C,P,i.V,G> 
push pointer t o  global constant onto P-stack 
<PUSHCONST addr.C,P,V,G> ==> <C,addr.P,V,G> 
first element of a pair (non-basic type) 
<FST -.C,n.P,V,[n:(v,,n,)]+G> ---=> 
<C,nl.P,V,[n:~vl,nJ]+G> 
return from function call 
update(arg) with basic value from V[O];RET 
second element of a pair (non-basic type) 
<FST -.C,n.P,V,[n:(v,,n,)]+G> ==> 
<C,n,.P,V,[n:@v,,n,)]+G> 
update cell pointed t o  by indexed element of P-stack 



APPENDIX B: PREFIX AND LlBRARlES 

The user defines the prefix t o  the code generator which contains certain stan- 

dard register names (e.g the P stack is denoted as  PS). An example of prefix for VAX 

11/780 is attached below. 

PREFIX FILE 

.data 

. text 
Executable 

# 
.set PS, 11 
.set GM, 10 
.set hp, 09 
.set VS, 08 

Register names 

# .Allocate memory size 
.set HPMEMORYSIZE, 10000 
.set APMEMORYSIZE, 10000 
.set SPMEMORYSIZE, 10000 

.set GMMEMORYSIZE, 10000 

.set PSMEMORYSIZE, 10000 

.set VSMEMORYSIZE, 10000 

.setNIL, 0 

.set VAL, 1 

.set APPLY, 2 

.set FUN, 3 

.set PAIR, 4 

.set INJECT, 5 

.set printcnt, 0 

G memory node types 



# 
.data 
. text 
.align 1 

Machine required information 

GL6 : 
.long 3, -hd,l 
GL7 : 
.long 3, -tl,l 
GL8 : 
.long 3, -null,l 
GL9 : 
.long 3, ,fst,l 
GL10 : 
.long 3, -snd,l 
GL21: 
.long 3, ,fail,l 
GI NP : 
. long 3, -Finput, 1 

# MA1 N 
.glob1 -main 
. globl collect-gar 
.glob1 err1 
. globl end1 

push1 SHPMEMORYSIZE 
calls $1.-malloc 
movl rO, %hp 
add12 SHPMEMORYSIZE , %hp 

push1 8GMMEMORYSIZE 
calls $l,,malloc 
movl rO, %GM 

push1 $PSMEMORYSIZE 
calls $1. -malloc 
movl rO, %PS 
add12 QPSMEMORYSIZE, %PS 

push1 SVSMEMORYSIZE 
calls $1,-malloc 
movl rO, %VS 



movl $APPLY, (%GM) + 
add12 $8, %GM 
moval - 12 (%GM) , - (%PS) 
movl $APPLY, (%GM) + 
addl2 $8, %GM 
moval -12 (%GM) , - (%PS) 
movl $APPLY, (%GM) + 
movl $GINP, (%GM)+ 
movl $NIL, (%GM) + 
moval - 12 (%GM) , - (%PS) 

moval PR , - (sp) 

PR : 
.data 1 
PRl 
.ascii "12Result is : %dl2 " 

INP: 
. ascii I' 

.text 

jsb -Fmain 
jmp -1print 



SUFFIX FILE 

. globl -1print 
-1print : 
cmpl $VAL, (rO) 
jneq -skip2 
movl (WS) +, rl 
movl 4(rl), rO 
pushl rO 
pushl $PR1 
calls $2,-printf 
jmp end1 
-skip0 : 
movl (XPS), rO 
cmpl $NIL, (rO) 
jeql end1 
cmpl $APPLY, (rO) 
jneq -skip1 
jsb -eval 
-skip1 : 
cmpl $VAL, (rO) 
jneq -skip2 
movl (PS) +, rl 
movl 4 (rl) , rO 
pushl rO 
pushl $PRl 
calls $2,-printf 
decl Xprintcnt 
cmpl $0, Zprintcnt 
bleq end1 
jmp ,skip3 
-skip2 : 
movl (PS) +, rO 
movl 8 (r0) , - (WS) 
movl 4 (r0) , - (PS) 
add12 $2, Xprintcnt 
-skip3 : 
cmpl $0, Xprintcnt 
jeql end1 
jmp ,skip0 

. text 

. globl -Finput 
-Finput : 



movl $0, (%GM)+ 
add12 $8, %GM 
mova 1 - 12 (%GM) , - (ODs) 
movl 8 (WS) , - (%PS) 
movl (%PS) +, r6 
movl (XPS), r7 
movl (r6), (r7) 
movl 4 (r6) , 4 (r7) 
movl 8(r6), 8 (r7) 
movl $VAL, (%GM) + 
movl %GM, rO 
pushl rO 
pushl $ I N P  
calls $2,-scanf 
add12 $4, %GM 
movl $0, (%GM) + 
moval -12(%GM), - (%PS) 
movl 12 (XPS), r7 
movl QPAIR, (r7) 
movl (PS) +, r6 
movl r6, 4 (r7) 
movl (=S)+, r6 
movl r6, 8(r7) 
add12 $4, %PS 
rsb 

# 
collect-gar: 

Global collect garbage 

Error function 

End of program 

end1 : 
calls $0, -exit 



Misc variables 

# save P stack 

End of program 



end1 : 
calls $0, -exit 

The shell script to create the archive is given below. 

# !  /bin/csh -f 
# assembles and appends file to archive file in a 
# verbose manner 
# and insures random access with ranlib 
as -J $argv[l] -0 $argv[l] .o 
ar qv archive $argv [1] . o 
ranlib archive 

The shell script to assemble is given below. 

# !  /bin/csh -f 
# assembles and loads file 
as -J $argv[l] -0 $argv[l] .o 

# only load the archive file if it exits 
if (-e archive) then 
Id -X /lib/crtO. o $argv [1] . o -0 $argv [1] .out -1c archive 
else 
Id -X /lib/crtO.o $argv[l] .o -0 $argv [1] .out -1c 
endi f 

# exec and clean up 
$argv[l] .out 1 more 
rm Bargv [I] .out 
rm $argv [l] .o 



APPENDIX C: MACHINE DESCRIPTION TABLE FOR VAX 11/780 

GCODE ATTRIBUTES ACTION CODES 

ADD 

ADD 

ADD 

ADD 

ADD 

MOD 

NEG 

'opl-lit-1' 
"incl" V[1] ; 
V[O]=V[l] ; ; 

$N = ALLOC-SUDO; 
"addl2" V[O] V[1] $N: 
V[O] = $N: ; 

$N = ALLOC-SUDO; 
"modl3" V[O] V[1] $N; 
V[O] = $N;; 

QN = ALLOC-SUDO; 
"mnegl" V[O] $N: 
V[O] = $N: ; 



GCODE ATTRIBUTES ACTION CODES 

NOT 'opl-lit-0' 

NOT topl-lit-18 

NOT 
8N = ALLOC-SUDO: 
"subl2" V[O] V[1] $N; 
V[O] = 8N; : 

AND 
8N = ALLOC-SUDO: 
"bitl3" V[O] V[1] $N; 
V[O] = $N;: 

8N = ALLOC-SUDO: 
"bisl3" V[O] V[1] $N; 
V[O] = $N:; 

I NCR 

DE CR 

"incl" V [O] ; : 

"decl" V[O] ; ; 

GET-FST 'is-in-reg' 
$R = P [opl] : 
$N = ALLOC-SUDO : 
$N.reg = ALLOC-REG : 
PUSH-V SN: 
"movl" 4 $R. reg $N. reg; : 

GET-F ST 
$R = P [opl] : 
8R.reg = GET-IN-REG $R; 
$N = ALLOC-SUDO ; 
$N.reg = ALLOC-REG ; 
PUSH-V $N; 
"movl" 4 $R.reg $N.reg ;; 



GCODE ATTRIBUTES ACTION CODES 

GET-SND 'is-in-reg' 
$R = P [opl] ; 
$N = ALLOC-SUDO ; 
$N.reg = ALLOC-REG ; 
PUSH-V $N: 
"movl" 8 $R.reg $N. reg; ; 

GET-SND 

GET-BYTE 

$R = P [opl] ; 
$R.reg = GET-IN-REG $R; 
$N = ALLOC-SUDO ; 
$N.reg = ALLOC-REG ; 
PUSH-V $N; 
"movl" 8 $R.reg $N.reg ; ; 

8N = ALLOC-SUDO; 
$N.cnst = opl; 
PUSH-V $N;; 

FST 
$N = ALLOC-SUDO : 
PUSH-P $N; 
P[1] = P[O]: 
POP-P : 
EMIT "movl (%PS) +, r5"; 
EMIT "movl 4 (r5) , - (%PS) " : ; 

SND 

$N = ALLOC-SUDO ; 
PUSH-P $N; 
P[1] = P[O]; 
POP-P ; 
EMIT "movl (%PS)+, r5"; 
EMIT "movl 8 (r5), - (%Ps) "; ; 



GCODE 

POPP 

ATTRI BUTES 

POPV 

COPYP ar  g-0 ' 

COP- arg-1 ' 

COPYP 

COP W 

ACTION CODES 

EMIT "add12 $4, O f i s " ;  

POP-P ; : 

FREE-REG V [0] : 
POP-v; : 

PUSH-P P [opll : 
EMIT 
"mov l  (ODs) , - (%PS) ": ; 

PUSH-P P [opl] ; 
EMIT 
" m o v l  4 (%PS) , - (%PS) "; ; 

PUSH-P P [opl] : 
EMIT "mov l  4*" opl  

" ( P S ) ,  - ( % P S ) " ; ;  

PUSH-V V [ o p l ]  ; ; 



GCODE ATTR I BUTE S A C T I O N  CODES 

MOVEP ' ar g-0 ' 

MOVEP ' arg-1 ' 

MOVEP 

MOVEV 

ALLOC 

EM1 T 
" m o v l  (%PS)  + , (%Ps) l1 ; 
prop1 + 11 = P [ O ] ;  
POP-P ; ; 

E M I T  
" m o v l  (%PS)  +, 4 (%PS)  " ; 
PCopl + 11 = P [ O ]  ; 
POP-P; ; 

E M I T  " m o v l  ( % P S )  +, 4*" 
o p l  " (%PS)  " ; 

P [opl + 11 = P [0] ; 
POP-P; ; 

FREE-REG V [O] : 
V [ 1 ]  = V[O] ; 
POP-v: ; 

S N  = ALLOC-SUDO: 
PUSH-P 8N;  
E M I T  

" m o v l  8 " opl  " , (%GM) +"  ; 
E M I T  "add12 $8, %GM1'; 
E M I T  

" m o v a l  - 1 2  (%GM) , - ( % P S )  " ; ; 



GCODE ATTR I BUTE S 

MK-APP 

ACTION CODES 

POP-P 2: 
$N = ALLOC-SUDO; 
PUSH-P $N; 
EM1 T 
" m o v l  $APPLY, (%GM) +"; 
EMIT 
" m o v q  ( P S )  + , (%GM) + : 
E M I T  
" m o v a l  - 1 2  (XGM) , - ( W S )  "; ; 

EMIT V; 
E M I T  
" m o v l  $VAL, (%GM) +I1; 
E M I T  
" m o v l  ( W S )  + , (%GM) +It;  
EMIT " m o v l  $ 0 ,  (%GM) +"; 
EM1 T 
" m o v a l  - 1 2  (%GM) , - (%PS)  " ; 
FREE-REG V [0] : 
POP-v; 
PUSH-P V [0] : ; 

POP-P 2 ;  
$N = ALLOC-SUDO; 
PUSH-P $N: 
EM1 T 
" m o v l  $ P A I R ,  (%GM) +It;  
EMIT 
" m o v q  (%PS)  +, (%GM) +"; 
EMIT 
" m o v a l  - 1 2  (%GM) , - (%PS) ; ; 



GCODE ATTRI  BUTE S 

PUSH-LIT 

ACTION CODES 

$N = ALLQC-SUDO; 
8 N . c n s t  = opl: 
PUSH-V $N;; 

PUSHCONST 

PUSHGLOBAL 

$N = ALLOC-SUDO : 
PUSH-P $N; 
EMIT 

" m o v l  $MLW op l  ", - (%PS) ": : 

8N = ALLOC-SUDO : 
PUSH-P $N: 
E M I T  " m o v l  $ 3 ,  (%GM) +": 
EM1 T 
" m o v l  $,ML" opl ", (%GM)+": 
EMIT " m o v l  $ 1 ,  (%GM) + " ; 
EMIT 
" m o v a l  - 1 2  (%GM) , - (ODs)  " : : 

CALLGLOBFUN 
' i f - i m p o r t  ' : EMIT 

" m o v l  $GLW op l  ", r6": 
E M I T  " jsb *4  ( r 6 )  ": ; 

CALLGLOBFUN 
EMIT " jsb -ML" op l  : : 

EMIT ".textu ; 
EMIT ".glob1 ,ML" opl: 
EMIT "-ML" op l  ":" : ; 



GCODE ATTRI BUTE S 

JFUN 

JNOT-NEG 

JNEG 

ACTION CODES 

EMIT " jmp  ,MLLw opl  ; ; 

EMIT V; 
EMIT "jleq ,MLL1' opl  :; 

EMIT V: 
EMIT " j leq ,MLLW opl  : : 

JNOT-ZERO 

EMIT V: 
EMIT " jneq -MLL" op l  : ; 

JZERO 

EMIT V: 
EMIT "jeql -MLL" op l  :: 

JGLOBFUN 
' i f - i m p o r t  ' EMIT 

"movl  SGL" opl ", r 6 " ;  
EMIT "jsb * 4 ( r 6 ) " ; ;  

JGLOBFUN 

EMIT " jmp  -ML" opl ;; 

EM1 T 
"sub13 $APPLY, ( r 5 )  , r6"; 

EMIT "jlss -MLL" o p l ; ;  

EMIT 
"sub13 $APPLY, ( r 5 )  , r6"; 

EMIT " jgeq -MLLal opl ;  : 



GCODE ATTRI  BUTE S 

UPDATE arg-1 ' 

UPDATE 

R E T  

RET-I NT 

EVAL 

FUN 

P[opl] = P[O]: 
POP-P ; 
EMIT " m o v l  ( % P S ) + ,  r6"; 
EMIT " m o v l  (%PS)  , r7"; 
EMIT " m o v l  ( r 6 )  , ( r 7 )  "; 
E M I T  
" m o v l  4 ( r 6 )  , 4 ( r 7 )  "; ; 

P[opl] = P[O]: 
POP-P ; 
EMIT " m o v l  4*" opl  

" ( % P S ) ,  r7": 
EMIT " m o v l  (%PS) +, r6"; 
EMIT " m o v l  ( r 6 ) ,  ( r 7 ) " :  
EMIT 
" m o v l  4 ( r 6 )  , 4 ( r 7 )  ": ; 

EMIT "rsb"; ; 

EMIT V: 
EMIT " m o v l  (%PS) , r6"; 
EMIT " m o v l  $VAL, ( r 6 )  "; 
EMIT 
" m o v l  (%VS) + , 4 ( r 6 )  I' : 
EMIT "rsb" : 
FREE-REG V [0] ; 
POP-v: : 

E M I T  "ML" d-label " : I 9  ; 
EMIT " . long 1," 

ACTION CODES 

EMIT " jsb -evalW;; 

PUSH-P opl: 
EMIT "ML" d-label ":" ; 
EMIT " . long 3,  -ML" 

I* o p 2  ", opl; ;  





APPENDIX D MACRO EXPANSION TABLE FOR VAX 11/780 

GCODE ACTION CODES 

ADD 

SUB 

MUL 

D I V  

MOD 

EMIT "add12 4 (%VS) , (%VS) I*; ; 

EMIT "sub13 ( W S )  , 4 ( W S )  , (%VS) " : : 

EMIT "mu1 12 4 (%VS) , (%VS) " ; ; 

EMIT "divl3 (%VS) , 4 (%VS) , r O "  : 
EMIT "mu112 ( O D s ) ,  rO"; 
EMIT "sub13 r O ,  4 (%VS) , (%VS) " ; ; 

EMIT "mnegl ( W S )  " ; : 
NOT 

EMIT "sub13 (%VS) , $1, (%VS) " : ; 
AND 

EMIT "bit12 4 (%VS) , ( W S )  ": : 

EMIT "bisl2 4 (%VS) , (%VS) " ; ; 
INCR 

EMIT "incl (%VS) "; ; 

EMIT "decl ( W S )  ";: 
GET-EST 

EMIT "movl 4*" opl " ( X P S ) ,  row; 
EMIT "movl 4 (r0) , - ( W S )  " : : 

GET-SND 
EMIT "movl 4*" opl " (%PS) , row; 
EMIT "movl 8 ( r 0 )  , - (%VS) "; : 



GCODE ACTION CODES 

F S T  

SND 

GET-BYTE 

P O P P  

P O P  2 

P O P 4  

POPV 

COP W 

MOVEP 

MOVEV 

ALLOC 

EMIT " m o v l  ( W S )  +, r O "  ; 
EMIT " m o v l  4 ( r o )  , - ( p s )  ": : 

EMIT " m o v l  ( W S )  +, r O " ;  
EMIT " m o v l  8 ( r 0 )  , - (%PS) "; ; 

I I  E M I T  " m o v l  8" opl  , - (%VS) ": : 

EMIT " a d d 1 2  $ 4 ,  %PSt':: 

EMIT " a d d 1 2  $8, p S " ;  ; 

EMIT " a d d 1 2  $16, %PSW;; 

EMIT " a d d 1 2  $ 3 2 ,  %PSW;; 

E M I T  " a d d 1 2  $ 4 ,  %VSt*;;  

EMIT " m o v l  4 * "  opl  " ( X P S ) ,  - (%PS)  ": ; 

EMIT " m o v l  4 * "  opl " (%VS) , - (%VS) I*: : 

EMIT " m o v l  ( p s )  +, 4*19 opl l8 (%PSI w ; ;  

EMIT " m o v l  (%VS) +, 4 * "  opl  I' (%VS) ": ; 

E M I T  " m o v l  $" opl ", (%GM)+"; 
E M I T  " a d d 1 2  $8, %GM8'; 
E M I T  " m o v a l  - 1 2  (%GM) , - (%PS)  * I ;  : 

E M I T  " m o v l  SAPPLY, (%GM) +" ; 
EMIT " m o v q  ( W S )  +, (%GM) +I f ;  
EMIT " m o v a l  - 1 2  (%GM) , - (%PS) "; ; 

EMIT " m o v l  $VAL, (%GM) +"; 
EM1 T " m o v l  (%VS) + , (%GM) + " ; 
EMIT " m o v l  $ 0 ,  (%GM)+"; 
EMIT " m o v a l  - 1 2  (%GM) , - (%PS) " : : 

EMIT " m o v l  $ P A I R ,  (%GM)+"; 
EM1 T " m o v q  (%PS) + , (%GM) + " ; 
EMIT " m o v a l  - 1 2  (%GM) , - (%PS) " ; ; 



GCODE 

PUSH-LIT 

ACTION CODES 

PUSHCONST 
EMIT "movl $ML" o p l  I * ,  - (%PS) " : : 

CALLGLOBEUN 
EMIT " jsb -MLW o p l  :; 

DEF-FUN 
EMIT " . t ex tw;  
EMIT "-ML" opl  I*:"  : : 

JFUN 

JMP 

JNEG 

JNOT-ZERO 

JZERO 

JGLOBEUN 

J-I F-PTR 

EMIT " jmp -MLL" opl : ; 

EMIT " jeq -MILL" opl ; : 

EMIT "jleq ,MLL9' o p l  :: 

EMIT "jneq J I L L "  opl  :: 

EMIT "jeql JLL" opl  :: 

EMIT " jsb ,MLW opl  ; 
EMIT "rsb":: 

EMIT "sub13 $APPLY, ( rO)  , r 6 " :  
EMIT "jlss ,MLL" opl; :  

EMIT "sub13 $APPLY, ( r O )  , r 6 " :  
EMIT "jgeq -MLLM opl; :  



GCODE ACTION CODES 

UPDATE 
EMIT "mov l  4*"  opl  " (%PS) , rl"; 

, EMIT "mov l  (%PS) +, row;  
EMIT "mov l  ( r O )  , ( r l )  ": 
EMIT "mov l  4 ( r 0 )  , 4 ( r l )  ": 
EMIT " m o v l  8 ( r 0 )  , 8 ( r l )  ": ; 

UPDATE-PR 

RET 

RET-INT 

EVAL 

FUN 

LABEL 

EXPORT 

IMPORT 

EMIT " m o v l  4*11 opl " ( % P S ) ,  rl": 
EMIT " m o v l  $PAIR,  ( r l )  ": 
EMIT "mov l  ( W S )  +, rO";  
EMIT " m o v l  r O ,  4 ( r l )  "; 
EMIT "mov l  ( W S )  +, rO";  
EMIT "mov l  r O ,  8 ( r l )  ";: 

EMIT "rsbl'; : 

EMIT "mov l  4*"  op l  " ( W S ) ,  rl"; 
EMIT "mov l  $VAL, ( r l )  "; 
EMIT "mov l  (%VS) +, 4 ( r l )  " ; 
EMIT "rsb": : 

EMIT " jsb -evall':: 

EMIT "ML" d-label ":" ; 
EMIT " . long 3, -ML" o p 2  ", " opl : ; 

EMIT "ML" d-label ":" : 
11 EMIT " . long 1," op l  ,O1' ; ;  

EMIT "-MLL" op l  ":" ; ; 

EMIT ".glob1 ," opl : 
EMIT I*-" opl  " : I 1  ; 
EMIT " jsb -ML" o p 2 :  
EMIT "rsb"; ; 

EMIT "GL" o p 2  " : "; 
EMIT " . l o n g  3,  ," o p l  ",1" ;; 



GCODE ATTRIBUTES ACTION CODES 

APPENDIX E MACHINE DESCRIPTION TABLE FOR SUN WORKSTATION 

ADD 

ADD 

ADD 

v [O] =v [l] : ; 

$N = ALLOC-SUDO; 
"addl" V[O] V[1] $N: 
V[O] = $N; ; 

NEG 

NOT 

NOT 

$N = ALLOC-SUDO; 
"negl" V[O] $N: 
V[O] = $N;; 

"clrl" V[O] ; ; 

$N = ALLOC-SUDO: 
"subl" V[O] V[1] $N; 
V[O] = $N;; 

AND 
$N = ALLOC-SUDO; 
"andl" V[O] V[1] $N; 
V[O] = $N:; 

I NCR 

DE CR 

$N = ALLOC-SUDO; 
"orl" V[O] V[1] SN; 
V[O] = $N;; 

"subl #1, " V [O] ; : 





GCODE ATTRIBUTES 

MOVEP 

l 

a 
t 
r 

it 

ALLOC 

: E M I T  " m o v l  P S @ + ,  PS@ (4*" 
opl  ")"; 

P [opl + 11 = P [O] ; 
POP-P ; ; 

: v [opl + 11 = v [O] ; 
POP-v; ; 

: E M I T  " m o v l  P S @ + ,  aO";  
E M I T  " m o v l  P S @ + ,  as": 
E M I T  " m o v l  a O ,  PS@-'I; 
E M I T  " m o v l  a5, PS@-"; 
$N = ALLOC-SUDO; 
PUSH-P $N; 

P [O] = P [2] ; 
P [2] = P [l] : 
P [l] = P [O] : 
POP-P ; ; 

: $N = ALLOC-SUDO; 
PUSH-P $N; 
E M I T  " m o v l  GM, PS@-";  
E M I T  " m o v l  #" op l  ", GM@+"; 
E M I T  " m o v l  #0, GM@+"; 
E M I T  " m o v l  #0, GM@+"; ; 

: POP-P 2 ;  
$N = ALLOC-SUDO; 
PUSH-P $N; 
E M I T  " m o v l  #APPLY, GM@+": 
E M I T  " m o v l  P S @ + ,  GM@+"; 
E M I T  " m o v l  P S @ + ,  GM@+"; 
E M I T  " m o v l  GM, PS@-";  
E M I T  "sub1 # 1 2 ,  PS@";; 

ACTION CODES 



GCODE ATTRIBUTES 

MK-VAL 

1 .  PUSH-LIT 

PUSHGLOBAL 

PUSHCONST 

ACTION CODES 

EMIT "mov l  #VAL, G M @ I + ~ ;  
EMIT V; 
EMIT "mov l  VS@+, GM@+I1: 
EMIT "mov l  #0, GM@+"; 
EMIT "mov l  GM, PS@-"; 
EMIT "subl # 1 2 ,  PS@"; 
PUSH-P V [0 ] ; ; 

POP-P 2 ;  
$N T ALLOC-SUDO; 
PUSH-P $N; 
EMIT "movl #PAIR, GM@+"; 
EMIT "mov l  PS@+, GM@+"; 
EMIT " m o v l  PS@+,  GM@+19; 
EMIT "mov l  GM, Ps@-It; 
EMIT "subl # 1 2 ,  PS@";; 

$N = ALLOC-SUDO; 
$ N . c n s t  = opl;  
PUSH-V $N;; 

$N = ALLOC-SUDO ; 
PUSH-P $N; 
EMIT "movl #ML1' opl  
I1 , PS@-":; 

$N = ALLOC-SUDO ; 
PUSH-P $N; 
EMIT " m o v l  #GL" opl  

II , PS@-" ;; 

CALLGLOBFUN ' i f - i m p o r t '  : EMIT "mov l  #GLq' op l  ' I ,  a5": 

EMIT "mov l  a5@ (4) ,  a5"; 

CALLGLOBFUN 
EMIT " jsr a5@"; : 

EMIT "jsr -ML" op l  ;; 

EMIT 'I.  t ex t"  ; 
EMIT "-ML" op l  11 - 1 8 . .  

# ,  



GCODE ATTR I BUTE S ACTION CODES 

JFUN 

JMP 

JNOT-NEG 

JNEG 

JNOT-ZERO 

JZERO 

JGLOBFUN ' i f-import ' 

JGLOBFUN 

J-NOT-PTR 

EMIT " jmp -MLLW opl ; ; 

EMIT V: 
EMIT "jge -MLL" opl :: 

EMIT V: 
EMIT " jle -MLL" opl ; ; 

EMIT V; 
EMIT "jne -MLL" opl ;; 

EMIT V: 
EMIT "jeq -MLL" opl ; ; 

I I  EMIT *'movl #GL" opl , a5"; 
EMIT "movl a5@(4) ,  a5"; 
EMIT "jsr a5@";: 

EMIT " j s r  -ML" opl ;: 

EMIT "movl PS@, asn;  
EMIT "cmpl #APPLY, a5@It: 
EMIT "jne -MLL" opl: 
EMIT "cmpl #PAIR,  a5@"; 
EMIT "jne -MLLW opl:: 

EMIT "movl PS@, as"; 
EMIT "cmpl #APPLY, a5@"; 
EMIT "jeq ,MLL" opl: 
EMIT "cmpl #PAIR,  a5@": 
EMIT "jeq -MLL" opi: ; 



GCODE ATTRI BUTE S 

UPDATE arg-1 ' 

ACTION CODES 

P [opl] = P [O] : 
POP-P ; 
EMIT " m o v l  PS@+, aO"; 
EMIT "mov l  PS@, as": 
EMIT " m o v l  aO@, a5@"; 
EMIT "mov l  a0@ ( 4 )  , a5@ ( 4 )  ": : 

UPDATE 

P [ o p l ]  = P [0] ; 
POP-P ; 
EMIT " m o v l  PS@ ( 4 * "  o p l  

'I) , a5"; 
EMIT " m o v l  PS@+,  aO": 
EMIT " m o v l  aO@, a5@"; 
EMIT "mov l  a0@ ( 4 )  , a5@ ( 4 )  " : ; 

UPDATE-PR 

P [opl] = P [O] : 
POP-P 2;  

RET 

RET-INT 

EVAL 

EMIT "mov l  PS@ ( 4 * "  opl 
") , a5" : 

EMIT " m o v l  #PAIR,  a5@"; 
EMIT " m o v l  PS@+, aO": 
EMIT " m o v l  aO,  a5@ ( 4 )  "; 
EMIT " m o v l  PS@+, aO"; 
EMIT " m o v l  aO,  a5@ (8) "; ; 

EMIT "rts"; : 

PUSH-P V [0] ; 
EMIT " m o v l  PS@, as": 
EMIT " m o v l  #VAL, as@"; 
EMIT "mov l  VS@+, a5@ ( 4 )  "; 
EMIT "rts"; : 

EMIT "jsr -evalW; ; 





APPENDIX F MACHINE DESCRIPTION TABLE FOR INTEL 286/310 

GCODE ATTRIBUTES ACTION CODES 

ADD 

MOD 

: EMIT "mov ax , [di]"; 
EMIT "add [di-21 , ax"; 
EMIT "sub di , 2";; 

: EMIT "mov ax , [di] "; 
EMIT "div [di-21"; 
EMIT "mov [di-2) , ax"; 
EMIT "sub di , 2";; 

NEG : EMIT "neg [di] ";; 

I NCR : EMIT "add [di] , WORD PTR 1"; ; 

GET-EST 

F S T  

GET-BYTE 

: EMIT "mov si , [bx-2*" opl "I"; 
EMIT "mov ax , [si+2] "; 
EMIT "mov [di+2] , ax": 
EMIT "add di , 2";; 

: EMIT "mov si , [bx] " ; 
EMIT "mov ax , [si+2] "; 
EMIT "mov [bx] , ax"; 
EMIT "mov ax , [si] "; 
EMIT "mov [di+2] , ax"; 
EMIT "add di , 2" ; ; 

: EMIT "mov [di+2] , WORD PTR " opl; 
EMIT "add di , 2":: 



GCODE ATTRI BUTE S ACTION CODES 

POPP : EMIT "sub bx , 2";; 

POPV 

MOVEP 

MOVEV 

COP- 

: EMIT "sub di , 2"; ; 

: EMIT "mov ax , [bx ] " ; 
EMIT "mov [bx-2* (l+" opl ") ] , ax": 
EMIT "sub bx , 2";: 

: EMIT "mov ax , [di]"; 
EMIT "mov [di-2* (l+" opl ") 1 , ax1'; 
EMIT "sub di , 2";; 

: EMIT "mov ax , [bx-2*" opl "1 ": 
EMIT "mov [bx+2] , ax": 
EMIT "add bx , 2":; 

COP W 

LABEL 

ALLOC 

: EMIT "mov a x ,  [di-2*" opl "]": 
EMIT "mov [di+2] , ax"; 
EMIT "add di , 2";; 

: EMIT "mov si , G-mem-ptr": 
EMIT "mov [bx+2] , si"; 
EMIT "add G-mem-ptr , 6": 
EMIT "add bx , 2";; 

: EMIT "mov si , G-mem-ptr"; 
EMIT "mov [si] , WORD PTR BAS"; 
EMIT "mov ax , [di ] ": 
EMIT "mov [si+2] , ax": 
EMIT "mov [si+4] ,WORD PTR NIL";  
EMIT "mov [bx+2] , si": 
EMIT "sub di , 2"; 
EMIT "add bx , 2"; 
EMIT "add G-mem-ptr , 6";: 
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MK-APP 
: EMIT "mov si , G-mem-ptr"; 

EMIT "mov [si] , WORD PTR APPLY"; 
EMIT "mov ax , [bx]"; 
EMIT "mov [si+2] , ax"; 
EMIT "mov ax , [bx-21"; 
EMIT "mov [si+4] , ax"; 
EMIT "mov [bx-21 , si"; 
EMIT "sub bx , 2"; 
EMIT "add G-mem-ptr , 6";; 

: EMIT "mov si , G-mem-ptr": 
EMIT "mov [si] , WORD PTR PR"; 
EMIT "mov ax , [bx] "; 
EMIT "mov [si+2] , ax"; 
EMIT "mov ax , [bx-21"; 
EMIT "mov [si+4] , ax": 
EMIT "mov [bx-21 , si"; 
EMIT "sub bx , 2"; 
EMIT "add G-mem-ptr , 6";; 

PUSH-LIT 

PUSHCONST 

: EMIT "mov [di+2] , WORD PTR " opl; 
EMIT "add di , 2";; 

: EMIT 
"mov [bx+2] , OFFSET ,DATA:FDW opl; 
EMIT "add bx , 2";; 

PUSHGLOBAL 
: EMIT 

"mov [bx+2] , OFFSET -DATA: GD" opl: 
EMIT "add bx , 2";; 

DEF-FUN 

JFUN 

JMF' 

: EMIT "L" opl ":" ; ; 

: EMIT "jmp L" opl ; ; 

: EMIT "jmp L" opl ;; 
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JGLOBFUN ' i f - i m p o r t  ' 
: EMIT "mov si  , OFFSET -DATA:GDW opl ;  

EMIT "mov ax , [si+4] "; 
EMIT "call  dx" : : 

JGLOBFUN 
: EMIT " j m p  L" op l  : ; 

JNOT-ZERO 
: EMIT "jne LL" op l  :: 

JZERO 
: EMIT "je LLn  o p l  ;: 

JNOT-NEG 
: EMIT " jae LL" opl  ; ; 

JNEG 
: EMIT " jb  LL" o p l  ;: 

J-NOT-PTR 
: EMIT "mov ax , [di]  "; 

EMIT "sub d i  , 2"; 
EMIT "sub ax , WORD PTR APPLY": 
EMIT " jb  LL" op l  :; 

J-IF-PTR 
I 

: EMIT "mov ax , [di] "; 
i EMIT "sub d i  , 2": 
1 EMIT "sub ax , WORD PTR APPLY"; 

EMIT " jae LL" op l  : : 
i CALLGLOBFUN ' i f - i m p o r t  ' 
* .  : EMIT "mov si , OFFSET -DATA:GDW opl:  
i EMIT "mov ax , [si+4] "; 
I EMIT "ca l l  dxs9;; 

CALLGLOBFUN 
: EMIT "mov cx  , [di]  ": 

EMIT "inc cx"; 
EMIT "add bx , 2"; 
EMIT "mov si , bx"; 
EMIT "LT" opl  " : "; 
EMIT "mov ax , [ s i - 2 1 " ;  
EMIT "mov [si] , ax": 
EMIT "sub si  , 2"; 
EMIT " loop LT" o p l  : 
EMIT "mov [si] , WORD PTR NIL": 
EMIT "ca l l  L" op l  ; : 



GCODE ATTRI BUTES ACTION CODES 

UPDATE 
: EMIT "mov cx , di": 

EMIT "mov si , [ b x - 2 * "  op l  "1 "; 
EMIT "mov d i  , [bx]"; 
EMIT "mov ax , [di]  "; 
EMIT "mov [si] , ax" ; 
EMIT "mov ax , [ d i + 2 I w ;  
EMIT "mov [ s i + 2 ]  , ax": 
EMIT "mov ax , [d i  +4] " ; 
EMIT "mov [si+4] , ax"; 
EMIT "mov d i  , cx": 
EMIT "sub bx , 2"; : 

UPDATE-PR 
: EMIT "mov si  , [ b x - 2 * "  op l  "1"; 

EMIT "mov [si] , WORD PTR PR": 
EMIT "mov ax , [bx] " ; 
EMIT "mov [ s i + 2 ]  , ax"; 
EMIT "mov ax , [bx-21" :  
EMIT "mov [ s i + 4 ]  , ax"; 
EMIT "sub bx , 4":; 

RET 
: EMIT "mov ax , [bx] ": 

EMIT "mov [bx -21  , ax": 
EMIT "sub bx , 2"; 
EMIT "ret": ; 

: EMIT "mov si , [bx] ": 
EMIT "mov [si] , WORD PTR BAS": 
EMIT "mov ax , [di]  "; 
EMIT "mov [ s i + 2 ]  , ax": 
EMIT "mov ax , [bx] " : 
EMIT "mov [ b x - 2 1  , ax"; 
EMIT "sub bx , 2": 
EMIT "ret": ; 
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EVAL 

I N I T  

GCODE 

FUN 

I NT 

EXPORT 

IMPORT 

: EMIT "call -evaln:: 

: EMIT "-DATA SEGMENT WORD" ; : 

: EMIT "-DATA ENDS": : 

: EMIT "FD" d-label dw 1, " 
opl " , O F F S E T  -TEXT:LV' op2;; 

: EMIT "FD" d-label " dw 1, " 
I1 opl ", op2;; 

EMIT "L" opl ". 11. , 
EMIT "jmp L" op2; 
EMIT "ret":; 

: EMIT "GD" d-label " dw 1, " 
opl ' ' ,OFFSET -TEXT:LU op2;; 



APPENDIX G: TARGET MACHINE INSTRUCTION TABLE 

r 

The following is a list of format numbers that  are used t o  define the VAX 

111780 instructions. 

Format 1 rO 

Format 2 rO , r l  

Format 3 r0, r l ,  r2 

rO, r l ,  r2 represent target machine registers. In the above formats results are 

stored in the last register. 

The following table contains the instructions and their format numbers. 

VAX 111780 instruction Format no. 

incl 
mnegl 
decl 
clrl 
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