
CODE GENERATION AND OPTIMIZATION USING
A MACHINE DESCRIPTION TABLE AND ATTRIBUTES

Raman Tenneti
M.E., I.I.Sciences, Bangalore, India, 1979.

A thesis submitted to the faculty
of Oregon Graduate Center
in partial fulfillment of the

requirements for the degree of
Master of Science

in
Computer Science & Engineering

October, 1986

T h e thesis "Code generartion and optimization using a machine description table

and attributes" by Raman Tenneti has been examined and approved by the following

Examination Committee:

RKhhard B. GebTi tz , Thesis ~ese j f rch Advisor
Professor and Chairman,
Department of Computer Science and Engineering

- -
Richard ~ a m f e t
Professor,
Department of Computer Science and Engineering

-
Dan Hammerstrom
h c i a t e Profeesor,
Department of Computer Science and Engineering

Tektronix, Inc.

ACKNOWLEDGEMENTS

I would like t o express my deep gratitude to Prof. Richard B. Kieburtz for giv-

ing me an opportunity t o work on this thesis. He was the creative force behind this

thesis and he has spent more time teaching and guiding me on a one on one basis

than anyone in my whole college career. He provided motivation, encouragement and

always had a solution t o my problems. I would like t o thank him once again for his

patience, time and creativity.

I would like t o thank the members of my thesis committee for their sugges-

tions and time. I would like t o thank Mark Foster, Jianhua Zhu, Keith Billings, Boris

Agapiev and Uppili Srinivasan for providing me with help during implementation

with their ideas. I would like t o thank everyone a t Intersoft Systems Inc. especially

Dan Cotton, Tom Funk, Larry Ward and Mike Cole for making i t possible t o work

and go t o school for the last three years.

I thank the LORD for making this all happen and would like t o dedicate this

t o Him.

iii

TABLE OF CONTENTS

List of Figures .. :
1 . Introduction ..
2 . G Code as Intermediate Representation ...
3 . Machine Description Using Attributes and Action Codes
4 . Process of Code Selection ..
5 . Machine-Dependent Optimizations and Register Allocation
6 . Implementation and Results ...
7 . Conclusions ..
References ...
Appendix A: G Code ..
Appendix B: Prefix and Libraries ..
Appendix C: Machine Description Table For VAX 11/780
Appendix D: Macro Expansion Table For VAX 11/780
Appendix E: Machine Description Table For Sun Workstation
Appendix F: Machine Description Table For Intel 286/310
Appendix G: Target Machine Instruction Table ...

LIST OF FIGURES

............... 1 . Translation between G-code and target machine code 8

2 . Example of sqr 5 ... 16

3 . Syntax of translation rules .. 18

................................... 4 . Block diagram of code generator generator 30

5 . G-memory formats .. 34

6 . Explanation of ACTION CODES for GETJST 37

CODE GENERATION AND OPTIMIZATION USING
A MACHINE DESCRIPTION TABLE AND ATTRIBUTES

Raman Tenneti

Under the supervision of

Professor Richard Kieburtz

ABSTRACT

Machine description tables and attr ibutes are used to specify transla-

tions from a n intermediate representation (G-code) t o a target code represen-

tat ion of programs (for a functional programming language like LML). Code

generators were obtained for target machines VAX 11/780, INTEL 286/310

and MOTOROLA 68000 using machine description tables and attributes. A

compiler built on this model can automatically perform some machine depen-

dent optimizations.

1. INTRODUCTION

1.1 Motivation

Since the early history of compilers, researchers have been trying t o systema-

tize and automate the production of compilers. The most successful aspect of this

attempt has been syntax analysis. I t is now a common place t o use a table-driven

syntax analyzer which is automatically constructed from a generalized context-free

grammar specifying the syntax of the source language [AheUllman 77).

During the past decade a number of attempts have been made a t automating

the process of building code generators for compilers. Code generation can be defined

as the process of mapping some intermediate representation of the source program

into assembly or binary machine-code. Interest in this area is motivated by the fol-

lowing factors.

(1) Proliferation of architectures have led t o the design and manufacture of a large

number of similar computer architectures (Intel-8086, 2-8000, MG68000, T M S

9900) which differ in details of instruction set, registers and addressing modes.

(2) Several authors during the last decade have discussed the need for portable

compilers [Graham 80, Wulf 801. They are needed t o automate and simplify the

process of code generation so as t o isolate target-machine specific aspects of

translation. I t is then possible t o retarget the compiler by changing those por-

tions of the compiler which concern the architecture of the machine.

(3) Portable compilers must rest on the formalization of machine-dependent

aspects of compilation such as,

(a) addressing units for storing source-language values (e.g. memory,

registers and hardware stack),

(b) addressing modes available t o access and retrieve operands,

(c) hardware abstractions t h a t are essential to code generation such as

machine d a t a types (the groups of bits t h a t can participate as operands t o instruc-

tions e.g., byte, word, long, quad etc),

(d) code-selection for intermediate representation,

(e) machine-dependent optimizations such as auto-increment, auto-

decrement, twolthree address instruction variants, specialized instructions.

Goals for this thesis are

(1) To define target machine architectures by a table for code generation pur-

poses.

(2) To derive a n efficient code generator from the above machine description

table by incorporating some machine-dependent optimizations. These optimizations

include subsuming addition via auto-increment and similarly subsuming subtraction

via auto-decrement.

(3) To use part ial simulation of target machine s t a t e in order to optimize code

selection, and choice of addressing modes and t o eliminate redundant loads and

stores.

(4) T o retain compilation speed by using a single pass code generation scheme.

1.8 Background and Code Generation Remearch

For our purposes, previous research in code generation can be broadly

classified into three categories: formal treatments, interpretive approaches and

descriptive approaches. An extensive review critique of these approaches has been

done by [Ganapathi 801.

Formal treatments are a t tempts t o deal with code generation mathematically,

usually in order t o produce optimal or near-optimal code [Aho-Johnson 761.

Research has been with idealized models of computers and thus far i t has been con-

centrated mainly on compilation of arithmetic expressions. Efficient algorithms for

generating provably optimal code on a broad class of uniform register machines have

been developed for expressions with no common subexpressions [Sethi and Ullman,

1970; Aho and Johnson, 19761. Once common subexpressions are encountered, or

optimal code needs t o be generated for machines with irregular architectures, then

the problem of optimal code generation has been proven t o be combinatorially

difficult [Bruno and Sethi 1976; Aho, Johnson and Ullman, 1977a1, and heuristic tech-

niques for generating good code have been theoretically analyzed [Aho, Johnson and

Ullman 1977b3. The other two classes of research have tended t o focus on implemen-

tat ion methods for real computers, often with loss in efficiency of the generated code,

relative t o idealized models [Glanville SO].

Interpretive approaches are improvements over ad-hoc code generation. In

this approach, information about the target computer is provided in procedural form

using special purpose code generation languages and interpreters of the intermediate

code of a compiled program. Examples of this approach are UNCOL [Strong 58, Steel

611, the PL/I optimizer of Elson and Rake [Elson 701, the method developed for PL/C

[Wilcox 711, and the work of [Donegan 73, 791. These methods require considerable

hand-coding of tedious low level details, making correctness difficult t o ascertain and

retargeting a chore [Glanville 801. Thus retargeting requires development of a code

generator for every new machine.

In the third class of methods (descriptive approach) the target machine archi-

tecture is defined in a machine-readable descriptive form and the macro approach t o

code generation can be considered par t of this approach [Glanville 801. Fraser, Glan-

ville, Ripken, Catell and Ganapathi have tried to generate code generators automat-

ically from a machine description. Our approach t o code generation was stimulated

by the work of Ganapathi and Fischer.

Ganapathi (19801 evaluates many of the earlier descriptive approaches. Fraser

[1977] has developed a code generator using rule based system. He uses machine-

specific rules to perform storage allocation. His code generator is slow and often

emits redundant loads and stores.

Catell [1978] used axioms and recursive goal-directed heuristic search algo-

rithm t o derive code sequences. In his approach, subgoals are created a s search con-

tinues. Heuristics are used, both t o order subgoal selection and also t o order

pat terns when trying to match. Sometimes i t is hard and time consuming t o derive

certain code sequences [Ganapathi 801. He designed a complete code generator for an

intermediate language called TCOL.

Ripken [1977] used a dynamic programming algorithm (extending Aho and

Johnson's algorithm) [Aho 761 t o generate locally optimal code. An implementation

of his dynamic programming algorithm is expected t o be slow.

Glanville [1978, Graham 801 used context-free parsing techniques t o define a

translation t o machine code. The input t o the code generator is a linearized (or

flattened) tree representation of the source program. Every possible instruction vari-

a n t is described by a grammar rule. Pa t t e rn matching is provided by simple SLR

parsing. It is purely a syntactic approach t o the instruction selection problem. The

tree-pattern-matching is provided in a completely left-operand biased fashion. T h a t

is, when generating code for an entire sub-tree, the code for the left operand is

selected without considering the right operand. For example, consider the string op A

B. T h e addressing mode for A is selected without seeing B. Thus A could be a

register-indirect addressing mode on a n iAPX-286. Next, B happens t o be a memory

datum t h a t gets one of the memory addressing modes. Now comes the time t o select

a machine op-code. The code generator realizes t h a t memory-to-memory operations

cannot be performed in one instruction. Thus, i t is forced to move A t o a register

[Ganapathi and Aho 19851. I t is efficient because of context-free recognition and a

single pass approach. Because of purely context-free matching, in certain cases it

fails t o generate optimized code.

6

Ganapathi[l982, 1984, 19851 has specified code translation rules set by attr i-

bute grammars instead of context-free grammars. Semantic at tr ibutes and predi-

cates provide automated semantic handling for his code generator. Predicates are

used to define the architectural restrictions on the programming model. Attributes

are used t o track multiple instruction results. Addressing modes are described by

separate individual productions and so are opcodes. Addressing mode selection is

left-biased in the true tree-pattern matching sense, but selection of opcodes is not

biased toward any operand. Opcode productions have symmetric operand patterns.

This symmetry enables the code generator t o delay decisions regarding destination

requirements. In effect, this decision is made on seeing the entire sub-tree for the

operator. Thus the target machine code is produced t o store the result of evaluation

[Ganapathi and Aho 19851.

Kessler [I9861 has implemented a retargetable LISP compiler. This compiler

uses architectural description (AD) of the target machine t o increase portability and

performs extensive optimizations.

1.4 Our Strategy

We have selected G-code as the intermediate representation of a compiled,

functional language. G-code is designed t o run on a stack machine (G machine) t o

realize a graph-reduction model of evaluation. The stack is used t o hold pointers in

a run-time traversal of a graph t h a t represents a n applicative expression. We divide

the translation from G-code t o the target machine code into two logical phases (as

shown in Figure 1). The execution of the two phases is overlapped. During the first

phase (simulation) we simulate the G machine on a single-assignment machine which

has a n infinite supply of registers. We call these pseudo-registers. During the second

phase (code emission) we map pseuderegisters t o actual processor registers and

memory locations. We define control of the two phases of translation by rules

expressed in a table form. The rules use at tr ibutes (which define the part ial s ta tes of

both the stack machine and the register machine) to obtain machine dependent

optimizations and also use commands t o direct the simulation of the stack machine

by the pseuderegister machine, and the simulation of the pseudo-register machine

by the actual target machine.

T h e code generator generator after parsing this machine description table will

produce a header file (machdesc.h) which is included in the machine independent

source code of the code generator.

~ i m u l a k PSEUDO-REG code
B 9

TARGET
G-MACHINE MACHINE emission MACHINE

stack
machine

infinite register
machine

register
machine

SIMULATION:
simulate stacks in pseudo-registers

CODE EMISSION:
map pseudo-registers t o processor
registers and memory locations

Figure 1. Translation between G-code and target machine code

1.6 Thesis Organisation

The above mentioned phases have been presented in the following manner in

this thesis.

(1) Chapter 2 discusses selection of intermediate represehation for the func-

tional programming language LML.

(2) Chapter 3 discusses design of the machine description table, attributes,

pseudo-registers and action codes.

(3) Chapter 4 discusses code selection process. This chapter also includes the

examples t h a t have been implemented on the VAX 11/780.

(4) Chapter 5 discusses machine-dependent optimization.

(5) In Chapter 6 implementation results for the VAX 111780 and M68000 pro-

cessors are presented.

(6) Ideas for improvements t o our implementation and future research are in

Chapter 7.

(7) Details of intermediate representation, the libraries t h a t are compiled and

the machine description tables for the VAX 111780 and M68000 processors are given

in appendices.

2. G-CODE AS INTERMEDIATE REPRESENTATION

In a classical single-language, single-machine compiler an intermediate form of

program code is traditionally used for optimization [Ganapathi 821. Examples of

intermediate forms are pseudecode quadruples, triples, flattened tree representation

of programs. Flattened trees can be generalized t o directed acyclic graphs [Aho 771

in order to manifest shared values and avoid redundant computations. But these

intermediate forms a re inadequate for compiler portability. The design of an inter-

mediate representation (IR) is critical t o compiler portability and code generation

[Ganapathi 821. T h e level of an IR determines the work t o be redone in transporting

a compiler t o a new machine. If the level is too high, language dependencies creep in.

Similarly if the level is too low, machine dependencies seem unavoidable.

Intermediate representation should reflect aspects of the model of computation

(abstract architecture) but not of any target computer (concrete architecture). Flat-

tened trees (or DAG's) are very general. They don't represent any aspect of a n

abstract architecture. They leave too much of source-language dependency. So i t

makes code generation harder (i.e., language dependent). Triples or quadruples

reflect the architecture of one register (triples) or zero register (quadruples) RAM

machines.

G-code is appropriate t o a different abst ract architecture, t h a t of the G-

machine [Johnsson 841 which evaluates applicative-expression graphs (with value-

sharing) by reduction.

All language dependent and machine-independent issues are handled by this

front-end compiler. The back-end of the compiler (which is described by this thesis)

translates the G-code (IR) t o target machine code. All of the machine-dependent

issues are handled by this back-end. With this approach a compiler for a new

machine can be easily generated just by changing the control for the G-code t o tar-

get machine code translation phase.

2.1 Machine-Independent Phases Of Compiler

The following are the machine-independent phases of any source language.

(1) Lexical analysis (scanning).

(2) Syntax analysis in which the string representation of programs is converted

into a n abst ract syntax tree representation.

(3) Semantic analysis which will d o binding, type checking and source-tesource

transformations t h a t either optimize or simplify subsequent translation steps.

(4) D a t a flow optimizations which can be accomplished at the time of generat-

ing the intermediate code (ex. constant folding, removing loop-invariant computa-

tions, etc.).

2.2 G-CODE

G-code instructions define a n abstract architecture, the G-machine. The G-

machine architecture was originally defined by Thomas Johnsson [Johnsson 841 as an

evaluation model for a n ML compiler. This is a machine model which supports

evaluation of functional language programs by graph-reduction. In this abstract

model, programs are functions whose definitions have been given an operational

interpretation as code sequences for the G-machine.

The G-machine evaluates applicative expressions, i.e. applications of functions

t o argument expressions. Such expressions are represented by a graph in a

dynamically-allocated, list-structured memory(G-memory). During the process of

evaluation, the graph is mutated by a series of reduction steps until i t reaches a nor-

mal form. Graph reduction is accomplished through the manipulation of a traversal

stack t h a t contains pointers into memory.

The traversal stack contains pointers directly t o the argument expressions and

t o the principal application t h a t is being reduced. T o reduce the expression, a pr*

gram compiled for the function jis executed. After reduction, the principal applica-

tion node is overwritten with the representation of i t s value.

A sequential evaluator has been developed a t the Oregon Graduate Center

[Kieburtz 851 based on t h a t abstract model. This evaluator, which will be referred t o

as the G-machine, performs graph reduction where expressions are represented as

graphs rather than strings. The G-machine uses a P (pointer) stack which holds the

pointers t o graph memory and a V (value) stack which holds the intermediate values

of basic types (integer, boolean, character) during expression evaluation, and G-

memory which is a dynamically allocated list-structure memory. The set of G-code

instructions and their meanings are given in Appendix A.

The following example is a LML program t o compute the square of 5. The G-

code instructions t h a t are generated by the front-end compiler and the execution of

those instructions on the G-machine is given in Figure 2.

let sqr = \x. x * x in sqr 5;

i m p o r t s :
exports :
I n i t i a l graph i m a g e :

0: I N T 0
5: FUN (1) 24

10: FUN (2) 26
15: I N T 5

G - c o d e t ex t :
0: DEE-FUN 26
4: PUSHCONST 15
8: MOVEP 1

10: P O P P 0
1 2 : JGLOBEUN 2 4
16: END-FUN 26

DEE-FUN
EVAL
GET-FST
GET-F ST
MUL
MOVEV
P O P P
RET- INT
END-FUN

PUSHCONST 15 instruction will push a pointer to I N T 5 in the G-memory

onto the P-stack. MOVEP 1 instruction will move P[O] t o P[2] and pop the P-stack.

The P O P P instruction will pop the P-stack again. The first GETJST 0 instruction

will push the first of a graph node whose value is basic type into the V-stack. MUL

instruction multiplies the top two elements of the V-stack and the result is stored on

top of the V-stack. MOVEV 0 will move a value from V[O] t o V[1] and pop the V-

stack. RETJNT will update the result node with the basic value from V[O] and

returns from the function.

P STACK G MEMORY

l 3 - O RESULT

PUSHCONST 15

t-l-smT

MOVEP 1

POPP

P STACK G MEMORY V STACK

JGLOBFUN 24
I I

RESULT

&' r\ INT msmT k4

MOVEV 0

POPP 0

RETJNT 0

P STACK G MEMORY V STACK

RESULT

top of V 14
top of V 14
top of V U

Figure 2. Example of sqr 5

3. MACHINE DESCRIPTION USING ATTRIBUTES AND ACTION CODES

3.1 Machine Description Table

Code generation requires the description of the following aspects of a machine

architecture:

(1) A fully automatic code generator might use a formal definition of the tar-

get machine codes t o infer a code sequence t h a t gives a correct operational interpre-

tation t o the intermediate code sequence of a program. Fully automatic code genera-

tion is far beyond the present s t a te of the a r t , however. Instead, code generation is

specified by translation sequences t h a t give a correct operational interpretation t o

individual instructions of the intermediate code.

(2) the assembly formats for the target machine instructions,

(3) addressable units for storing the source-language values (e.g memory, regis-

ters and hardware stacks). The number of registers available and storage allocation

for the P stack and G memory have t o be specified in a prefix file.

Recall t h a t we have simulated the stack machine (G machine) through a

pseuderegister machine. This machine has infinitely many registers (inexhaustible

supply of registers), and is a single variable assignment machine. We have specified

the commands t o simulate the stack machine on the pseuderegister machine in the

machine description table. The machine description table also has entries to map the

pseudo-registers t o the target machine registers and memory locations. In this

chapter we will discuss the pseuderegisters and the commands to manipulate the

stacks on a pseudo-register machine.

In the machine description table translation actions are defined by sequences

of translation rules associated with individual G-code instructions. The syntax of a

translation description is shown in Figure 3.

RANSLATION RUL

1
w

< ACTION RULE 'ATTRIBUTE' - GcODEE
GCODE instructions are llsted In APPENDIX A

ATTRIBUTES are llsted in SECTION 3.3

ACTION CODES are listed in SECTION 3.2

Figure 3. Syntax of Translation Rules

For each G-code instruction the G-code is first matched in the machine

description table and the table can have a set of rules for a G c o d e instruction. For

a G-code i t will match the attributes. The attr ibutes will enable t h a t translation

rule and i t will execute the action codes for t h a t translation rule.

The generation of target machine code is specified by the machine description

table. For each G-code instruction there could be one or more of the following.

1) The attr ibutes t h a t are t o be matched for instruction selection.

2) T h e operations on the P and V stacks (e.g. pushing and popping).

3) The code t o be delayed or emitted if there is any.

4) Register allocation if a n instruction (ex. GETJST) requires

a target machine register.

3.2 Action codes

Action codes describe the action taken by the code generator in composing a

translation sequence for a n individual G-code instruction. These actions include

(1) simulation actions, affecting the s t a te of the P and V stacks of the abst ract G-

machine,

(2) simulation actions updating the contents and attr ibutes stored in pseud*

registers of the abst ract machine,

(3) code emission actions directing the production of code sequences for the target

machine,

i
(4) actions t o allocate the target machine registers.

Action codes can be divided into two categories:

1) Commands which update the contents of pseudo registers,

2) Expressions which may refer t o the contents of pseudo registers but do not

update their contents.

POP-v

POP P

PUSH-V

The following symbols are used in the action codes

either to denote a stack or a pseudo-register.

Meaning

Pseudo-register variables. These variables
are given value by an ALLOC-SUDO command or
by assignment. This is used in ADD
instruction in the following manner

$N = ALLOC-SUDO
"addl2" V[O] V [1] $N

This variable stores the literal/constant
value in the pseudo-register. This literal
value then becomes an attribute of the
pseudo-register that holds it, and may be
tested by subsequent translation actions.

This represents the target machine's
hardware register whose index is stored
in the pseudo-register.

This is the instruction number that precedes
each G-code instruction.

Denotes the first operand of a G-code
instruction.

Denotes the second operand of a G-code
instruction. In the FUN instruction opl is
the number of arguments and op2 is the code
address.

Pops the simulated V stack one place.

Pops the simulated P stack one place.

Pushes a pseudo-register on top of the
V stack.

PUSH-V $N;

or
PUSH-V V [I] ;

PUSHg Pushes a pseudo-register on top of the
P stack.

GET-IN-REG Allocates a target machine register.

EM1 T Emits the code that follows it. For example
VAX 11/780 code for ADD is:

EMIT "addl 2 4 (%VS) , (%VS) " ;

ALLOC-SUDO Allocates a pseudo-register.

MACH-CODE Any string of characters that is embedded
between quotes (") is considered as target
machine code.

The code generator will interpret the following action codes

and will execute different functions to simulate the stack

machine on a pseudo-register machine.

ACTION CODE ---- >

COMMANDS - - - - >

POP-v

POP-P

PUSH-V

PUSH-V

PUSH-V

PUSH-P

PUSH-P

PUSH-P

PUSH-P

MACH-CODE

MACH-CODE

MACH-CODE

MACH-CODE

EMIT

DELAY

COMMANDS I EXPRESSIONS

0Pl

p C 0Pl I

$N

0Pl

V [NUMBER]

V [NUMBER 1

V [NUMBER 1 V [NUMBER]

V [NUMBER] V [NUMBER] $N

NUMBER $R.reg $N.reg

MACH-CODE

MACH-CODE

EXPRESSIONS ---- >

V [NUMBER 1 = V [NUMBER]

V [NUMBER

v C 0Pl I

P [NUMBER

P [NUMBER

p C 0 ~ 1 1

$N

$N

$N. cnst

$N

8 R

$R. reg

V [NUMBER]

P [NUMBER]

P [NUMBER 1

P [NUMBER]

p C O P ~ 1

0Pl

ALLOC-SUDO

GET-IN-REG $R

ALLOC-REG

3.8 Attributes and Pseud-Regiaters

We have used attr ibutes t o propagate information about the s t a t e of the regis-

ter machine. Attr ibute values indicate the partial s t a t e of the machine. An abstract

pseudo-register holds the value of a n element of either the P or V stacks. Any finite

operation on either of the P or V stacks can be simulated by loads and stores t o the

pseud-registers. The P and V stacks are represented in simulation by linked list

structures. The contents of each element of these list structures is a pointer t o a

pseudo-register.

Each pseudo-register stores the at tr ibutes of the value contained in the P or V

stack element t h a t i t represents. Attributes are used t o represent literal values,

when they are known, as well a s target machine register assignments.

Eight a t t r ibute evaluation functions are used in the current implementation.

In the following table these functions and their meanings are given. V[n] represents

the n th element of the V stack and V[O] represents the top of V stack.

(1) op1-lit-0 : checks whether top of the V stack V[O] is known t o be equal t o

literal 0.

(2) op2-lit-0 : checks whether V[l] is known t o be equal t o literal 0.

(3) opl-lit-1 : checks whether V[O] is known t o be equal t o literal 1.

(4) opt-lit-1 : checks whether V[1] is known t o be equal t o literal 1.

(5) arg-0 : checks whether the argument field of a G-code instruction is known t o

be equal t o literal 0.

(6) arg-1 : checks whether the argument field of a G-code instruction is known t o

be equal t o literal 1.

(7) ISJQUALS : checks whether the top two elements of the V stack are known

t o be equal.

(8) is-;® : checks whether a target machine hardware register has been

assigned t o store the contents of an abstract pseuderegister or not.

Each cell of the P stack logically contains a pointer t o the G memory node.

In our implementation a register is used t o store the address of the memory

location. -

We have used the target machine hardware registers for the V stack elements

in our implementation for VAX 11/780.

8.4 Delayed Code Emission

The machine description table will specify whether for a particular G-code

instruction emission of the target machine code is t o be delayed o r immediate (this

can be specified with the action codes DELAY or EMIT). We decided t o delay the

code whenever i t is not compulsory t o emit code. The code t h a t is delayed is stored

in the pseudo-register's code buffer. Each pseudo-register has a dynamically allocated

code buffer and each entry of the code buffer has a boolean t a g t o indicate whether

code is delayed or emitted. Code is emitted from the delayed code buffer at the end

of each basic block (i.e., a t the end of conditional expressions and a t the end of func-

tions) or whenever there is an access t o G-memory.

An example of usage of the at tr ibutes and action codes for G-code instructions

ADD and SUB is given below.

ADD 'opl-lit-1' : "incl" V[1];
V[O] = V[l];;

ADD
"addl2" V[O] V[1] $N;;

In the above example, ADD is the G-code for which the translation is being

specified in the machine description table. 'opl-lit-1' is the a t t r ibute which checks

whether V[O] is known t o be equal t o 1 or not. "incl" V[1] is the action code which

specifies delay the code t o do auto-increment on V[1] and the action code V[O] = V[l]

indicates t h a t V[O] should point to the V[l]'s pseudo-register. If V[O] is not equal t o 1

then the default action code "addl2" V[O] V[1] $N will be executed.

SUB IS-EQUALS : l l~ l r l l ' V[O];;

In the above example ISXQUALS is an attr ibute which indicates t h a t if the

two operands of arithmetic operation SUB are known t o be equal then perform the

action codes specified af ter colon (:). The above attr ibute checks the constant values

of the top two elements of the V stack. These constant values are stored in the

abstract pseuderegisters, and if they are equal "clrl" code will be delayed in the code

I t is advisable t o define a default entry for each G code instruction. When

none of the at tr ibutes match for an instruction the code generator generator will

perform the action codes specified in the default entry. The target machine code is

generated from the specifications of the machine description table. The machine

description table can be used either for a simple macro expansion process or t o gen-

erate efficient code based on attr ibutes and simulation of stacks. By using and p r e

pagating attr ibutes we could achieve machine-dependent optimization and thus were

able t o generate better target machine code.

8.5 Instruction Formats

In this implementation the user has t o provide the code generator generator

with the structure of the target machine instruction set (if he is not doing simple

macro expansion). The user is given different formats so t h a t the code generator can

frame the target machine instructions. T h e user will specify what format each target

machine instruction belongs to. This information is used while parsing the machine

description table. The following is a list of format numbers t h a t are used t o define

the VAX 111780 instructions.

Format 1 rO

Format 2 rO, r l

Format 3 r0, r l , r2

rO, r l , r2 represent target machine registers. In the above formats, the results

are stored in the last register.

Example to illustrate the format table (Appendix G):

ADD "addl2" V[O] V[1] $N;;

In the above example "addl2" instruction is stored in the code buffer. I t s for-

m a t is #. If V[O].reg = 'r5' and V[l].reg = 'r7' then the code generator will frame

the target machine instruction as add12 r5, r7.

In summary, the components of target architectures needed for instruction

selection a re described t o a code generator generator in the form of tables. The next

chapter describes translation of the G-code t o target machine code using the transla-

tion tables.

4. PROCESS OF CODE SELECTION

4.1 Code-Generator Generator

Code generation is the process of transforming the intermediate representation

of the source program (LML) into assembly or binary machine-code [Ganapathi 801.

Generation of a code generator for a target machine is a two s tep process. The tar-

get machine is described using attr ibutes and action codes in the form of a table. In

the first step, this machine description table is input to the code-generator generator

(CGG). The CGG after parsing this table will create an include file (machdesc.h).

The second s tep is t o recompile the code generator with the newly generated

machdesc.h file. T h e code generator consists of a driver t h a t accepts G-code and a

set of functions t o perform action codes as specified by the machdesc.h file. The

block diagram of code generator generator is shown in Figure 4.

GENERATOR
GENERATOR

I

CODE GENERATOR

LML ANALYZER GCODE
PROG ,

GCODE ASSEMBLER
GENERATOR OBJECT

CODE

Figure 4. Block diagram of code generator generator

4.2 Instruction Selection B e d on Patterns and Attributes

The target machine description table should contain one or more entries for

each G-code instruction. For each G-code instruction the RHS of a n action rule has

action codes and the LHS of the action rule has the at tr ibutes t h a t are t o be

satisfied. The user writing the target machine description table can prescribe multi-

ple action codes for a G-code instruction. The user has the flexibility t o generate

different target machine instructions for a G-code instruction based on attr ibute

matching in the left hand side of an action rule. The target machine description

table dictates a target machine instruction selection when a pat tern is matched (so

this can be considered a s a sequence of pattern-action statements).

Within the machdesc.h file, the G-code instructions are stored in the form of

opcodes. T h e CGG also stores the bit vectors representing the at tr ibutes and the

function indexes of action codes in the machdesc.h file. The code generator looks up

the target machine description table t o match the G-code t h a t is t o be compiled and

selects the first entry whose attr ibutes are matched.

A non-optimized machine description table can be generated with little effort,

if the user who is writing the machine description table has a good understanding of

both the G-code and the target machine code. With some additional effort an

optimized machine description table can be obtained.

t

4.3 Examplee of Translating G-code using Attributes

f
The following is a function t o compute square of the number 5. The syntax for

the following source language is LML. This function has been compiled using Prof.

Richard Kieburtz's LML compiler which generates G-code (intermediate code). The

G-code is also given below and the explanation of each G-code instruction is given in

Appendix A. The machine description table tha t translates G-code t o the VAX

11/780 code is given in appendix C.

let sqr = \x. x * x in sqr 5;

Inst. G-CODE VAX 11/780 CODE
no

i
0: I N T 0

I 1
! 2

5: F U N 24
3
4

10: F U N 26
5
6

15: I N T 5
7
8

DEF-FUN 26
9
10
11

P U S H C O N S T 15

MOVEP 1

P O P P 0

J G L O B F U N 24

MLO :
.long 1 ,0 ,0

. text

.glob1 - M L 2 6
-MIL26 :

movl $ M L 1 5 , - (% P S)

jsb - M L 2 4

DEE-FUN 24

EVAL
2 0

GET-EST 0
2 1
2 2

GET-E S T 0
2 3

MUL 1
2 4

P O P P
2 5

RET-INT
2 6
2 7
2 8
2 9
30

jsb -eval

m o v l (X P S) , r O
m o v l 4 (r 0) , r l

movl 4 (r 0) , r 2

mu112 r l , r 2

m o v l (X P S) , r 6
m o v l $VAL, (r 6)
m o v l r 2 , 4 (r 6)
m o v l $ 0 , 8 (r 6)
rsb

In the above example the program should s t a r t executing from D E F I U N 26.

The instructions prior t o t h a t are used t o initialize graph memory.

In our implementation we have used memory locations t o implement the P

stack and G memory. A cell of G memory node contains 3 words. The 1st word

stores the t a g of the node and the next two words store the d a t a values (integer,

boolean, pointer etc) as shown in Figure 5.

1st NODE 2nd NODE 3rd NODE

I integer

I APPLY (2) pointer pointer

FUN (3) func descr. # of args

I pointer I pointer I
Figure 5. G-memory formats

The P stack stores pointers t o the G memory. In the above example %PS

indicates the top of P stack. rO, r l , r2 are VAX 11/7807s target machine registers.

The action codes tha t are executed for the G E T T S T 0 instruction will be

explained below.

The GETJST instruction (as indicated in Appendix A) fetchs the contents of

the first cell of the G node pointed t o by the top of P stack onto the V stack. This

operation on the VAX 11/780 requires loading of top of the P stack into a register

and indexing from the contents of t h a t register [4(r0)] t o get the first element.

T h e machine description table has the following entries for the GETJST

instructions (appendix C).

GCODE ATTRIBUTES

G E T J S T ' i s i n r e g '

ACTION CODES

GETJST

$R = P[opl];
$N = ALLOCSUDO ;
$N.reg = ALLOCJtEG ;
PUSH-V $N;
"movl" 4 $R.reg $N.reg;;

$R = P[opl];
$R.reg = GETJNJtEG $R;
$N = ALLOCSUDO ;
$N.reg = ALLOCJlEG ;
PUSH-V $N;
"movl" 4 $R.reg $N.reg ;;

When the compiler encounters the GETJST 0 instruction i t will look in the

machine description table for the translation. The first entry in the machine descrip-

tion table for the GETJST instruction indicates t h a t if the ' i s i n r e g ' at tr ibute is

true then execute the action codes specified after the colon. The ' i s i n r e g ' at tr ibute

executes a function which will check whether the simulated P[O]'s pseudo register has

been assigned t o a target machine register or not.

T h e compiler checks the simulated P stack's 0 th element's ' i s i n r e g ' at tr i-

bute. If t h a t at tr ibute is true, then C G G will execute the action codes specified

accordingly. In the above case i t is not true, so i t will take the default case. We have

explained the action codes for the default entry in the following paragraphs.

1. $R = P[opl] In this action code $R represents a temporary pseudo-register

and this will point t o P[O] (because operand 1 is 0). This action code doesn't gen-

era te any machine code as shown in Figure 6.

2. $R.reg = GETJNJEG $R This action code indicates t h a t the value of $R

(in this example $R and P[O] point t o the same pseuderegister) is t o be loaded into

the target machine's hardware register. The G E T J N J l E G action code will get a

free register (if no register is free an algorithm t o get a free register is executed

which is discussed in chapter 5) and will se t the a t t r ibute ' i s i n r e g ' t o t rue for P[O].

The code t h a t is delayed because of this action is movl (%PS), r0.

3. $N = ALLOC-SUDO This action code will get a new pseudo-register and

$N represents this new pseudo-register. This action doesn't generate any machine

4 . $N.reg = ALLOCJEG This action code is supposed to allocate a target

machine register for the V stack. This action will return 'rl ' a s the register in which

the V stack element is t o be stored.

5. PUSH-V $N This action code will push the newly obtained pseudo-register

on top of the simulated V stack. This action doesn't generate any machine code.

6. "movr' 4 $R.reg $N.reg This action code delays the code t o move the P

stack's element t o the V stack. Delaying the code emission is a default and i t is very

easy to delay the code rather than deciding when t o emit or delay the code. The

code t h a t is delayed because of this action is movl4(rO), r l .

P STACK PSEUDO-REG 1 temp register

i s J n ~ e g - true

machjeg = rO

P STACK PSEUDOBEG 1 movl (%PS), rO

3) SN - ALLOCSUDO

isjn-reg = true

r n a c h ~ e g - r l

PSEUDO-REG 2

U -, i s i n ~ e g - true

V STACK PSEUO-REG 2

6) movl 4 $R.reg $N.reg

I I
isJn_reg = true

V STACK PSEUDO-REG 2

Figure 0. Explanation of ACTION CODES for GETJST

The consequence of the above action codes is the following target machine

code.

When the compiler comes across the next G E T J S T 0 instruction the

' i s i n x e g ' a t t r ibute of P[O] will be true. Because of t h a t , the compiler matches the

first entry for GETJST, and generates only the following code.

movl 4(r0), r2

The action codes for the first entry of the G E T I S T instruction are same a s

, the default entry except for the action code# 2 ($R.reg = GETJNJlEG $R).

We have done similar optimizations for the V stack. A non-optimized target

machine table (or code generated by simple macro expansion or pattern matching

techniques) wouldn't have been able t o generate the above code.

In summary, G-code is translated t o the target machine code by CGG using

the target machine description table. With the help of at tr ibutes and the simulation

of the P and V stacks through pseudo-registers, the code generator can produce tar-

get machine code. A basic code generator can be implemented by specifying a single

action code sequence for each G-code. Machine dependent optimizations can be

achieved by adding attribute-guarded action code sequences t o the machine descrip-

tion table.

6. MACHINE-DEPENDENT OPTIMIZATION AND REGISTER ALLOCATION

Compilers t h a t d o optimization produce a more efficient representation of user

programs. The optimization phase normally aims both for compact object code size

I and execution speed [Ganapathi 801. A large number of these optimizations are

6 machine-dependent. The optimization strategies include:

(1) Using special instructions t o subsume additions and subtractions of a con-

s t a n t value (e.g., using au to increment and au to decrement) [Ganapathi 801.

(2) Peephole optimizations (for instance, the UNIX C compiler makes a

separate pass over assembly code t o improve short code sequences [Ritchie 781).

Fraser recently has implemented a machine-independent peephole optimizer t h a t

tries to optimize adjacent pairs of assembler instructions [Fraser 801. For a window

of more than two instructions, peephole optimization is very slow and requires more

'context' information [Ganapathi 801. Attributes are a good means of maintaining

the contextual information.

(3) Avoiding redundant loads and stores into or from target machine registers

and using target machine registers in preference t o memory locations.

T h e problem with older compiler design is t h a t there were lot of hand-coded

optimizations in code generators. I t is difficult t o follow and debug the code of the

compiler when i t is written in this manner. Expressing machine-dependent optimiza-

tions using attr ibutes can make it easier t o write and debug a compiler.

In our code generator we implemented the following optimizations of the tar-

get machine code.

(1) Identifying opportunities for special machine-dependent instructions (a u t e

increment and autedecrement for VAX 11/780) through attributes.

(2) A ~ o i d i n g redundant loads and stores into registers.

(3) representing V-stack cells with machine registers avoids code for a

memory-mapped stack.

6.1 Special instructions

In this implementation the code generator uses at tr ibutes in order to identify

opportunities t o generate special instructions. Simulation of the P and V stacks helps

t o schedule instructions. Because of at tr ibutes like 'oplJit-1' 'op2Jit-1' the code

generator can subsume addition and subtraction via aute increment and a u t e

decrement. T h e following entries of machine description table indicate how a u t e

increment and autedecrement can be used for ADD and SUB instructions.

"incl" V[O]; ;

In the above instructions the at tr ibute 'opl-lit-1' means t h a t the content of

V[O] is constant 1. For example in the case of the SUB instruction, if V[O] is equal t o

1, the code generator can emit a special instruction t o decrement (decl) V[1] by 1.

6.2 Deleting Redundant Code

T h e code generator t h a t is generated from the machine description table suc-

cessfully avoids many redundant loads and stores. Sometimes the code generator

doesn't even generate any code (e.g. the MOVEV instruction doesn't generate any

code. It ac t s t o pop the simulated V stack. When the code generator comes across a

MOVEV instruction, i t will assign V[O] t o V[1] and i t will pop the V stack and

releases the hardware register t h a t is assigned t o V[l]).

By delaying code the code generator can determine where is the last use of a P

stack element and the register allocation algorithm will reuse a register based on i ts

last use. In the example t h a t is discussed in section 4.3 the second GETJST 0

instruction doesn't load the P stack element into a register again because the

' i s i n ~ e g ' a t t r ibute of P[O] is true (a preceding G E T J S T 0 instruction would have

loaded the P stack element from memory into a register 9-0').

6.8 Register Allocation

T h e machine description table has a n action code G E T J N B E G , which will

move the contents of the P stack from memory into a register. This is t o take

advantage of the cheaper address path. The s ta tus of register usage is maintained

in the form of a bit vector (e.g., if registers 1 and 3 are being used out of the 8 avail-

able registers, then bits 1 and 3 will be set t o 1 and the rest of the bits will be zero).

The function t h a t implements G E T A N B E G will check the bit vector t o determine

whether there a re any free registers. If there is no free register available then the

register allocation algorithm is invoked. Otherwise, i t will allocate the first available

free register, set the corresponding bit t o indicate t h a t the particular register is

occupied, and se t the a t t r ibute ' i s i n r e g ' t o true for the pseud-register t h a t

represents the P stack's contents. If there is no free register available then the code

generator has t o dump the contents of a register t h a t is being used (if the contents

of the register are not in the memory), so t h a t a free register can be obtained. In this

implementation a free register is obtained when the following conditions are met.

(1) Free a register at i t s last use.

I (2) To free all registers a t the end of a conditional branch.

t (3) Free the register t h a t will not be used for the longest time (this is p reemp

tive).

Some of the special instructions t h a t are handled by the C G G are conditional

t expressions. The code generator saves the simulated P and V stacks and the register

I usage bit vector, before traversing the true branch of the conditional expression. I t

will simulate the P and V stacks through pseuderegisters during this branch. But

before traversing the false branch of the conditional expression, the P and V stacks

and register usage bit vector are restored and register allocation will continue. At

the end of the conditional expression, the code is emitted and all the registers are

freed.

The above register allocation algorithm has been implemented in the following

manner. One of the critical factors is t o find the last use of a pseudo-register (the P

and V stack elements point t o pseuderegisters). T o determine the last use of an ele-

ment in a block, the code generator will store the G-code instructions in a code

buffer and will simulate the P and V stacks (shadow stacks) through pseudo-

registers. During this phase target machine code is delayed, not emitted, but the

instruction number a t which a pseudo-register is used is updated (i.e., each pseudo-

register has the last instruction number a t which it is used). When the code genera-

tor comes across ENDJUN instruction it will go through the G-code buffer t o gen-

erate target machine code and will simulate the P and V stacks with pseudo-

registers. When the code generator has t o get a free register it will check the shadow

P stack's pseudo-registers to determine which register is not used for the longest

time and will dump its contents into memory and will set it's ' i s indeg ' attribute t o

false and will free the register for re-use.

In summary because of attributes and because of simulating the P and V

stacks through pseuderegisters we were able t o do machine-dependent optimizations

and we have avoided redundant code. We have implemented a simple register alloca-

tion algorithm. The code generator is able t o avoid redundant loads and stores and

is also able t o take advantage of cheaper addressing modes. The compiler is also able

t o generate special machine-dependent instructions (e.g., subsuming of addition via

auto increment and auto decrement).

6. IMPLEMENTATION AND RESULTS

We have implemented the code generator for the VAX 11/780 and the SUN

Workstation. The code generator has produced efficient code and is not slow in gen-

erating code. An un-optimized code generator (macro expansion) for G-code has p r e

duced 10-30% more code than the optimized code generator. The amount of optimi-

zation t h a t .is achieved is entirely program dependent, but the code generator is able

t o produce on the average 10% less code. The goals of the implementation are

(1) use one-pass parsing t o generate code so t h a t efficiency of code generation

is not lost.

(2) flexibility t o add optimizations incrementally; all optimizations are

(3) to take advantage of at tr ibutes t o generate target machine code.

The following pages contain a listing of the code generated by the optimized

code generator and unoptimized code generator on VAX 111780. The machine

description table for the optimized code generator is given in appendix C and the

table for the unoptimized code generator is given in appendix D.

I

I

In the following examples the number before the target
machine instruction indicates the type of optimization
that was obtained.

1 --- Constant folding.

2 --- Registers are used instead of memory locations.

3 --- Deletion of code during optimization.

4 --- Specialized instructions were used
(auto-increment, auto-decrement) .

letrec linfib = \x.\y.\n.

if n = 0 then x
else
if n = 1 then y
else
linfib y (x+y) (n-1)

in linfib 0 1 10

VAX 11/780 CODE WITHOUT OPTIMIZATION

.glob1 -Fmain
-Fmain:
jsb ,a34
rsb

0: INT 0
MLO :
.long 1,0,0

5: INT 0

MLlO:
. long 3,,ML24,3

. text
- a 2 4 :

movl 4*2 (p S) , - (%Ps)

jsb -eval

1 movl 4*2 (%PS) , rO
2 movl 4(r0), -(%VS)

10: FUN (3) 24

15: FUN (1) 32

20: FUN (2) 33

25: FUN (2) 34

30: INT 10

35: INT 1

40: INT 0

0: DEE-FUN

4: COPYP

6: EVAL

8: POPP

10: GET-EST

1 2 : GET-BYTE

14: SUB

16: MQVEV

2 2 : MOVEV

18: JNOT-ZERO

2 4 : COPYP

2 6 : EVAL

2 8 : UPDATE-P

movl $ 0 , - (W S)

jneq -MLL28

movl 4 * 0 (%PS) , - (p S)

jsb -eval

movl 4 * 4 (O P S) , r l
movl (%PS) +, r O
movl (r O) , (r l)
movl 4 (r 0) , 4 (r l)
movl 8 (r 0) , 8 (r l)

30: POP2

3 2 : POPP

34: RET

36: LABEL

40: GET-EST

rsb

movl 4 * 2 (%PS) , r O
movl 4 (r 0) , - (%VS)

4 2 : GET-BYTE

44: SUB

46: MOVEV

5 2 : MOVEV

48: JNOT-ZERO

54: COPYP

56: EVAL

58: UPDATE-P

movl $ 1 , - (%VS)

movl (%VS) + , 4 * 0 (XVS)

jneq -MLL30

movl 4 * 1 (%PS) , - (%PS)

jsb -eval

m o v l 4*4 (WS) , r l
m o v l (WS) +, r O
m o v l (rO) , (r l)
m o v l 4 (r 0) , 4 (r l)
m o v l 8 (r 0) , 8 (r l)

r s b

m o v l 4*2 (%PS) , - (%PS)

m o v l $ML15, - (WS)

m o v l $APPLY, (%GM) +
m o v q (WS) +, (%GM) +
m o v a l - 12 (%GM) , - (WS)

m o v l 4 * 1 (%PS) , - (WS)

m o v l 4*2 (P S) , - (%PS)

m o v l 4*2 (WS) , - (%PS)

m o v l SML20, - (%PS)

m o v l $APPLY, (%GM) +

m o v q (WS) +, (%GM) +

m o v a l -12 (%GM) , - (%PS)

m o v l @APPLY, (%GM) +
m o v q (%PSI+, (%GM)+
m o v a l -12 (%GM) , - (P S)

60: POP2

62: POPP

64: RET

66: LABEL

70: COPYP

72: PUSHCONST

76: MK-APP

78: MOVEP

80: COPYP

82: COPYP

84: COPYP

86: PUSHCONST

90: MK-APP

92: MK-APP

94: MOVEP

96: MOVEP

98: JGLOBFUN
j s b ,ML24

0: DEF-FUN . t e x t
-ML33:

movl 4 * 1 (%PS) , - (%PS)

jsb -eval

jsb -eval

movl 4 * 0 (%PS) , r O
movl 4 (r 0) , -(%VS)

movl 4 * 1 (%PS) , r O
movl 4 (r 0) , - (W S)

movl (P S) , r l
movl $VAL, (r l)
movl (%VS) + , 4 (r l)
movl $ 0 , 8 (r l)
rsb

movl 4 * O (% P S) , r O
movl 4 (r 0) , - (%VS)

movl $1, - (%VS)

4: COPYP

6: EVAL,

8: P O P P

10: EVAL,

1 2 : GET-FST

14: GET-EST

1 6 : ADD

18 : MOVEV

2 0 : P O P 2

2 2 : RET-INT

0: DEF-FUN

4: GET-EST

6: GET-BYTE

8: SUB

10: MOVEV

1 2 : P O P P

14: RET-INT
movl (P S) , r l
movl $VAL, (r l)

2 movl (%VS) +, 4 (r l)
movl $ 0 , 8 (r l)
rsb

movl $ML30, - (%PS)

movl SML35, - (%PS)

movl $ML40, - (%PS)

0: DEF-FUN

4: PUSHCONST

8: MOVEP

10: PUSHCONST

14: MOVEP

16 : PUSHCONST

2 0 : JGLOBFUN
jsb 3 L 2 4
rsb

VAX 11/780 CODE WITH OPTIMIZATION

.glob1 ,Fmain
,Fmain:
jsb -ML34
rsb
MLO :
.long 1,0,0
ML5 :
.long 1,0,0
ML10:
.long 3,-ML24,3
ML15:
.long 3,-ML32,l
ML20:
.long 3,-ML33,2
ML25 :
.long 3,-ML34,2
ML30 :
.long 1,10,0
ML35:
.long 1,1,0
ML40 :
.long 1,0,0
. text
-ML24:
movl 4* 2 (W S) , - (O f l s)

jsb -eval
add12 4r4, p S

1 movl 8 (XPS), rO
2 movl 4(r0), rl
2 sub13 $O,rl,rl

jneq -MLL28
1 movl (XPS), - (%PS)

jsb -eval
movl 4*4 (ZPS), r7
movl (W S) +, r6
movl (r6), (r7)
movl 4 (r6) , 4 (r7)
movl 8 (r6), 8 (r7)
add12 $8, %PS
addl2 $4, p S
rsb
,MLL28 :

1 movl 8 (%PS) , rO
2 movl 4(r0), rl

decl rl
jneq ,MLL3O
movl 4 (pS) , - (%PS)
jsb ,eval
movl 4*4(pS), r7
movl (WS) +, r6
movl (r6), (r7)
movl 4 (r6), 4 (r7)
movl 8 (r6), 8 (r7)
add12 $8, p S
add12 $4, p S
rsb
,MLL30 :
movl 4*2 (XPS), - (%PS)
movl $ML15, - (%PS)
movl $APPLY, (%GM) +
m o w +, (%GM) +

moval -12 (%GM) , - (%PS)
movl (%PS)+, 4*2(%PS)
movl 4 (%PS) , - (%PS)
movl 4*2 (%PS) , - (%PS)
movl 4*2 (%PS) , - (%PS)
movl $ML20, - (pS)
movl $APPLY, (%GM) +
movq (WS) + , (%GM) +
moval - 12 (%GM) , - (pS)
movl $APPLY, (%GM) +
movq (%PS) +, (%GM) +
moval - 12 (%GM) , - (%PS)
movl (%PS) +, 4* 2 (%PS)
movl (%PS) +, (%PS)
jsb -ML24
rsb
.text
Am33 :
movl 4 (%PS) , - (%PS)
jsb -eval
add12 $4, p S
jsb ,eval
movl (pS), rO
movl 4(pS), r2
add12 68, W S
movl 4(r0), rl
movl 4(r2), r3
addl2 rl,r3
movl (XPS), r6

movl $VAL, (r6)
2 movl r 3 , 4 (r6)

movl $ 0 , 8 (r 6) , .
r s b

I . t e x t

1 movl (V S) , r O
add12 $4 , %PS

2 movl 4 (r 0) , r l
4 decl r l

movl (V S) , r 6
movl $VAL, (r6)

2 movl r l , 4 (r 6)
movl $0, 8 (r6)
r s b
. t e x t
-ML34:
movl SML30, - (%PS)
movl (WS) +, 4(%PS)
movl $ML35, - (%PS)
movl (%PSI + a (%PS)
movl SML40, - (P S)
j s b -ML24
r s b

T h e unoptimized version of the above example for the VAX 11/780, which does

simple macro expansion, occupies 17% more space than the optimized version. One

of the main differences between these two code generators is usage of registers for

the V stack elements. Another optimization t h a t is obtained in this implementation

is: whenever the V stack is popped, free the target machine register it occupies.

Here the optimized code generator need not emit code, whereas the unoptimized code

generator must pop the stack. In the unoptimized version, the V stack was imple-

mented using memory locations, whereas in the optimized version, registers are used.

The optimized code generator has used a n auto-decrement instruction instead of the

two address add instruction.

T h e time taken by the above programs is not large enough t o be significantly

compared. Ideally, a comparison could be made using instruction execution times

published by the manufacturer, but this is beyond the scope of this thesis. Further-

more, issues such a s cache usage may obscure such a comparison.

T h e following table contains the function name and the number of move

instructions t h a t were saved by the optimized code generator. The following table

doesn't include the savings obtained because of auto-increment, auto-decrement and

usage of registers instead of memory locations.

COL A : Space occupied by the code generated from the optimized
code generator

COL B : Space occupied by the code generated from the unoptimized
code generator

COL C : Percentage savings in the space occupied

COL D : Number of move instructions executed by the optimized
code generator

COL E : Number of move instructions executed by the unoptimized
code generator

COL F : Number of move instructions execution saved by the
optimized code generator

COL G : Percentage savings in the number of instructions executed

58

function space occupied execution statistics
(args) A B C D E F G
factorial
(20) 867 1095 22% 65 1 794 143 18%.
Linear Fibonacci
(100) 1554 1877 17% 5661 6558 897 14%.
Strict Fibonacci
(100) 1060 1379 23% 2193 3090 897 29% ,

ackermann
(2 6) 1683 2116 20% 4254 5148 894 1 6 % .
tak
(10 9 8) 2214 2491 11% 195 211 16 8%
towers of hanoi
(1 2 3 5) 2363 2682 12% 2380 2672 292 11%

random numbers
(50) 2332 2594 10% 6994 7546 552 7% .
sor t
(10 numbers) 3089 3277 6% 2244 2320 76 3%
primes
(100) 3204 3512 9% 23598 26512 2914 11%

7. CONCLUSIONS

By using the methods developed in this thesis i t is easy t o develop and main-

tain a n unoptimized target machine description table for a new machine.

Machine-dependent optimizations have been incorporated by the use of at tr i-

butes. Using machine-dependent optimizations the code generator produces better

code than a compiler t h a t uses simple macro expansion. The results obtained during

this implementation indicate t h a t the code t h a t was produced occupies 10-30% less

space than a macro expansion version. This optimization has been achieved pri-

marily by avoiding redundant loads and stores into target machine registers, using

specialized instructions (e.g. auteincrement/decrement) and not generating code for

some instructions altogether. Usage of registers for temporary storage and keeping

track of the life of a variable in a block allowed us t o maximize the usage of regis-

ters. By incrementally adding new attr ibutes the machine description table can be

improved t o produce even better code.

All the above optimizations and retargetability are obtained in a single-pass

code generation scheme.

7.1 Further Research

Instead of freeing all registers a t the end of a basic block, the code generator

could allocate and save registers based on global flow analysis of variables that are

live or dead across blocks (i.e. across modules). The garbage collector library (written

in G-code) has to be ported. Attributes to do run-time optimizations could be added.

References

[Aho and Johnson 761
A.V. Aho and S.C. Johnson, "Optimal code generation for expression tress",
J.ACM, 23, 3, 1976, 488-501.

[Aho, Johnson and Ullman 77a]
A.V. Aho, S.C. Johnson and J.D. Ullman, "Code generation for expression with
common subexpressions", J.ACM, 24, 1, 1977, 146-160.

[Aho, Johnson and Ullman 77b]
A.V. Aho, S.C. Johnson and J.D. Ullman, "Code generation for machines with
multiregister operations", Fourth ACM Symposium on Principles of Program-
ming languages, 1977, 21-28.

[Aho 771
A.V. Aho and J.D. Ullman, "Principles of Compiler Design", Addison-Wesley
publishing Co., 1977.

[Aho and Ganapathi 851
A.V. Aho and Mahadevan Ganapathi, "Efficient Tree Pattern Matching: an Aid
t o Code Generation", Communications of the ACM, Jan., 1985, 334-339.

[Bruno and Sethi 761
J.Bruno and R.Sethi, "Code generation for a one-register machine", J.ACM, 23,
3, 1976, 502-510.

[Cattell 78)
R.G.G. Cattell, "Formalization and Automatic Derivation of Code Generators",
Phd thesis, Carnegie Mellon University 1978.

[Cattell 791
R.G.G. Cattell, J.M. Newcomer and B.W. Leverett, "Code Generation in a
Machine-Independent Compiler", ACM Sigplan Symp. on Compiler Construc-
tion, Boulder, Colo., Aug. 1979.

[Cattell 801
R.G.G. Cattell, "Automatic Derivation of Code Generators from Machine
Descriptions", ACM Trans. on Programming Languages and Systems, Vol. 2 No.
2 pp. 173-190, April 1980.

[Donegan 731
M.K. Donegan, "An Approach to the Automatic Generation of Code Gen-
erators", Phd thesis, Rice University, Houston, Texas, 1973.

M.K. Donegan e t al., "A Code Generator Language", ACM Sigplan Symp. on
Compiler Construction, Boulder, Colo., Aug. 1979.

M. Elson and S.T. Rake, "Code Generation Technique for Large Language Com-
pilers", 1.B.M Systems Journal Vol. 9 No. 3 pp. 166-188, 1970.

C.W. Fraser, "Automatic Generation of Code Generators", Phd thesis, Yale
University, New Haven, Conn., 1977.

C.W. Fraser, "A Compact Machine Independent Peephole Optimizer", Principles
of Programming Languages, 1979.

C.W. Fraser and J.W. Davidson, "The Design and Application of a retargetable
Peephole Optimizer", ACM Trans. on Programming Languages and Systems,
Vol. 2 No. 2 pp. 173-190, April 1980.

G-Machine Architecture/Programmers Handbook, Oregon Graduate Center,
February 1986. Unpublished document.

M. Ganapathi , "Retargetable Code Generation and Optimization using Attri-
bute Grammars", Phd thesis, University of Wisconsin, Madison, 1980.

M. Ganapathi and C.N. Fischer, "Description-Driven Code Generation using At-
tr ibute Grammars", Communications of the ACM January, 1982, pp. 108-117.

M. Ganapathi and C.N. Fischer, "Attributed linear intermediate representation
for retargetable code generators" Software Practice and experience, Vol. 14, No.
4, April 1984, pp. 347-364.

R.S. Glanville , "A Machine Independent Algorithm for Code Generation and i ts
Use in Retargetable Compilers", Phd thesis, University of California, Berkeley,
Dec. 1977.

[Glanville 781
R.S. Glanville and S.L. Graham, "A New Method for Compiler Code Genera-
tion", Conf. Record Fifth ACh4 Symp. Principles of Programming Languages,
Jan. 1978.

[Graham 801
S.L. Graham, 'Table-Driven Code Generation", IEEE Computer, Vol. 13 No. 8
pp. 25-34, Aug. 1980.

[Johnson 751
S.C. Johnson, "YACC - Yet Another Compiler Compiler", C.S. Tech Report#
32, Bell Telephone Laboratories, Murray Hill, New Jersey, 1975.

[Johnson 781
S.C. Johnson, "A Portable Compiler: Theory and Practice", Proc. 5th ACM
Symp. Principles of Programming Languages, pp. 97-104, Jan. 1978.

[Johnson, T. 841
T. Johnson, 'Efficient compilation of lazy evaluation", Proc. 1984 ACM SIG-
PLAN conf. on compiler construction., June, 1984.

[Kessler 861
R. R. Kessler etc., "EPIC - A retargetable, highly optimizing LISP compiler,
Proc. of SIGPLAN 86 Symposium of compiler construction Vol 21, No.7, July
1986 pp. 118-130.

[Kieburtz 851
R. B. Kieburtz, 'The G-machine: A fast-graph-reduction evaluator", Tech. Rep.
CS/E85-002, Oregon Graduate Center, Beaverton, OR, January, 1985.

[Kieburtz 861
R. B. Kieburtz, "Incremental collection of dynamic, list-structure memories",
Tech. Rep. CS/E85-008, Oregon Graduate Center, Beaverton, OR, January,
1986.

[Knuth 681
D. E. Knuth, "Semantics of Context-free Languages", Math. Systems Theory,
Vol. 2 No. 2 pp. 127-145, June 1968.

[Lesk 791
M.E. Lesk, "Lex - A Lexical Analyzer Generator", UNIX Programmer's Manual
2, Section 20, 1979.

[Ripken 771
K. ripken, "Formale Bescheribun von Maschinen, Implementierungen und Op-
timierender Maschinen-codeerzeugung aus Attributierten Programmgraphe",
Technische Univer, Munchen, Munich, Germany, July 1977.

Pi tchie 781
D.M. Ritche and B.W. Kernighan, "The C Programming Language", Prentice-
Hall, Englewood Cliffs, New Jersey, 1978.

[Sethi and Ullman 701
R.Sethi and J.D. Ullman, 'The generation of optimal code for arithmetic expres-
sions", J.ACM, 17, 4, 1970, 715-728.

[Steel 611
T.B. Steel, Jr., "A First Version of UNCOL", Proceedings WJCC, 19, pp. 371-
378, 1961.

[Strong 581
J. Strong e t al., 'The Problem of Programming Communication With Changing
Machines: A Proposed Solution", CACM Vol.1 No. 8, pp. 12-18, 1958.

[Wilcox 711
T.R. Wilcox, "Generating Machine Code for High Level Programming
Languages", Tech. Report 71-103, Phd thesis, Dept. of Computer Sciences, Cor-
nell University, 1971.

[Wulf 80a]

W. Wulf e t al., "TCOLAda: Revised Report on An Intermediate Representation
for the Preliminary Ada Language", Tech. Report CMU-CS-80-105, Dept. of
Computer Sciences, Carnegie-Mellon University, Feb. 1979.

[Wulf 80b]
1 W. Wulf e t al., "An Overview of the Production-Quality Compiler-Compiler

Project", IEEE Computer Vol. 13 No. 8 pp. 38-49, Aug. 1980.

APPENDIX A: G-CODE

G-machine instructions are defined in terms of transformations on an abstract

register model. Components of this model are:

C -- Control sequence
P -- Pointer stack
V -- Value stack
G -- expression Graph

T h e control, C, represents the dynamic instruction sequence. In a hardware

implementation, C might be realized by the program counter of a von Neumann

machine.

T h e pointer stack, P, holds pointers t o available components (subexpressions)

throughout traversal and reduction of expression graph.

The value stack, V, holds intermediate values of a basic type (integer, boolean,

character) during expression evaluation.

T h e expression graph, G , is the image of in G-memory of a n expression under

evaluation. For a detailed explanation please refer t o [Kieburtz 851.

G-CODE DESC

ALLOC allocate a node without a value
<ALLOC -.C,P,V,G> => <C,n.P,V, [n:(-,-)]+G>

binops
ADD
SUB
MUL
DIV
AND
OR

add integers V[O] = V[O] + V[1]
subtract integers
product of integers
quotient of integers
logical and
logical or
<opc j.C,P,i, ... ij.V,G> => <C,P1opc(ij ,io)..ij .V,G>
where opc is one of ADD,SUB,MUL,DIV,AND,OR

CALLGLOBFUN
COPYP

call the function whose address is given as an argument
copy indexed cell of P-stack to top of stack
<COPYP m.C,n ,...n,.P,V,G> ==>
<C,n, .no...n, .P,V,G>
copy indexed cell of V-stack to top of stack
<COPYV m.C,P,v ,... v,.V,G> ==>
<C,P,u, .v ,... v, .V,G>
decrement value at top of V-stack
<DECR -.C,P,i.V,G> ==> <C,P,(i-l).V,G>
s ta r t of a function
end of a function

COPYV

DECR

DEFJUN
ENDJUN
EVAL evaluate a function t o normal form

<EVAL j.C,n ,... nj.P,V,[nj:@(P1,P2)]+G> ==>
<C,n.P,V,[nj:v]+G>
initialize the heap with a function descriptor
get literal value of argument into V-stack
<GETBYTE b.C,P,V,G> => <C,P,b.V,G>
first of a pair(va1ue is basic type) into V-stack
<GETJST j.C,n ,... nj.P,V,[nj:@(vl,n2)]+G> ==>
<C,n ,... nj.P,vl.V,[n:@ul,n2)]+G>
second of a pair(va1ue is basic type) into V-stack
<GETSND j.C,n ,... nj.P,V,[nj:@(n1,u2)]+G> ==>
<C,n o... nj.P,v2.V,[n:~n~,v2)]+G>
increment value a t top of V-stack
<INCR -.C,P,i.V,G> ==> <C,P,(i+l).V,G>

FUN
G E T B Y T E

G E T S N D

INCR

INT
JMF'
JFUN
J N O T J E G
JNEG
J N O T Z E R O
JZERO

- .
initialize the heap with an integer value
an unconditional jump t o argument label
jump t o the argument label
jump t o label on non-negative value . .

jump t o label on negative value
- -

jump to label on non-zero value
jump to label on zero value

JGLOBFUN
LABEL
MICAPP

W A L

MOVEP

MOVEV

NEG

NOT

POPP

POPV

PUSHCONST

FST

RET
RETJNT
SND

UPDATE

jump to global function
a symbolic label
make an application node
< W P - . C , n ,... n,.P,V,G> ==>
<C,n.P,V,[n:@n,,n,)]+G>
make a constructed pair
< W R j .C,n,.n,.P,V,G> =>
<C,n.P,V,[n:@(n,,n,)]+G>
make a basic node form the value a t V[O]
<MK-VAL -.C,P,v.V,G> ==> <C,n.P,V,[n:(v,O)]ffi>
move a pointer from P[O] to cell indexed argument + 1
<MOVEP m.C,n ,... n, .n,+,.P,V,G> ==>
<C,n l...nm .no.P,V,G>
move a value from V[O] t o cell indexed argument + 1
<MOVEV m.C,P,v ,...urn .vm+,.V,G> ==>
<C,P,v ,... vm .v,.V,G>
negate integer value a t top of V-stack
<NOT -.C,P,i.V,G> ==> <C,P,(-i).V,G>
bitwise(one's) complement of top of V-stack
<NOT -.C,P,b.V,G> =>
<C,P,(lYs complement b).V,G>
pop P-stack
<POPP m.C,n,.P,V,G> ==> <C,P,V,G>
pop V-stack
<POPV m.C,P,v,.V,G> ==> <C,P,V,G>
pop P-stack twice
pop P-stack four times
pop P-stack eight times
push literal value of argument into V-stack
<PUSHLIT i.C,P,V,G> ==> <C,P,i.V,G>
push pointer t o global constant onto P-stack
<PUSHCONST addr.C,P,V,G> ==> <C,addr.P,V,G>
first element of a pair (non-basic type)
<FST -.C,n.P,V,[n:(v,,n,)]+G> ---=>
<C,nl.P,V,[n:~vl,nJ]+G>
return from function call
update(arg) with basic value from V[O];RET
second element of a pair (non-basic type)
<FST -.C,n.P,V,[n:(v,,n,)]+G> ==>
<C,n,.P,V,[n:@v,,n,)]+G>
update cell pointed t o by indexed element of P-stack

APPENDIX B: PREFIX AND LlBRARlES

The user defines the prefix t o the code generator which contains certain stan-

dard register names (e.g the P stack is denoted as PS). An example of prefix for VAX

11/780 is attached below.

PREFIX FILE

.data

. text
Executable

.set PS, 11
.set GM, 10
.set hp, 09
.set VS, 08

Register names

.Allocate memory size
.set HPMEMORYSIZE, 10000
.set APMEMORYSIZE, 10000
.set SPMEMORYSIZE, 10000

.set GMMEMORYSIZE, 10000

.set PSMEMORYSIZE, 10000

.set VSMEMORYSIZE, 10000

.setNIL, 0

.set VAL, 1

.set APPLY, 2

.set FUN, 3

.set PAIR, 4

.set INJECT, 5

.set printcnt, 0

G memory node types

.data
. text
.align 1

Machine required information

GL6 :
.long 3, -hd,l
GL7 :
.long 3, -tl,l
GL8 :
.long 3, -null,l
GL9 :
.long 3, ,fst,l
GL10 :
.long 3, -snd,l
GL21:
.long 3, ,fail,l
GI NP :
. long 3, -Finput, 1

MA1 N
.glob1 -main
. globl collect-gar
.glob1 err1
. globl end1

push1 SHPMEMORYSIZE
calls $1.-malloc
movl rO, %hp
add12 SHPMEMORYSIZE , %hp

push1 8GMMEMORYSIZE
calls $l,,malloc
movl rO, %GM

push1 $PSMEMORYSIZE
calls $1. -malloc
movl rO, %PS
add12 QPSMEMORYSIZE, %PS

push1 SVSMEMORYSIZE
calls $1,-malloc
movl rO, %VS

movl $APPLY, (%GM) +
add12 $8, %GM
moval - 12 (%GM) , - (%PS)
movl $APPLY, (%GM) +
addl2 $8, %GM
moval -12 (%GM) , - (%PS)
movl $APPLY, (%GM) +
movl $GINP, (%GM)+
movl $NIL, (%GM) +
moval - 12 (%GM) , - (%PS)

moval PR , - (sp)

PR :
.data 1
PRl
.ascii "12Result is : %dl2 "

INP:
. ascii I'

.text

jsb -Fmain
jmp -1print

SUFFIX FILE

. globl -1print
-1print :
cmpl $VAL, (rO)
jneq -skip2
movl (WS) +, rl
movl 4(rl), rO
pushl rO
pushl $PR1
calls $2,-printf
jmp end1
-skip0 :
movl (XPS), rO
cmpl $NIL, (rO)
jeql end1
cmpl $APPLY, (rO)
jneq -skip1
jsb -eval
-skip1 :
cmpl $VAL, (rO)
jneq -skip2
movl (PS) +, rl
movl 4 (rl) , rO
pushl rO
pushl $PRl
calls $2,-printf
decl Xprintcnt
cmpl $0, Zprintcnt
bleq end1
jmp ,skip3
-skip2 :
movl (PS) +, rO
movl 8 (r0) , - (WS)
movl 4 (r0) , - (PS)
add12 $2, Xprintcnt
-skip3 :
cmpl $0, Xprintcnt
jeql end1
jmp ,skip0

. text

. globl -Finput
-Finput :

movl $0, (%GM)+
add12 $8, %GM
mova 1 - 12 (%GM) , - (ODs)
movl 8 (WS) , - (%PS)
movl (%PS) +, r6
movl (XPS), r7
movl (r6), (r7)
movl 4 (r6) , 4 (r7)
movl 8(r6), 8 (r7)
movl $VAL, (%GM) +
movl %GM, rO
pushl rO
pushl $ I N P
calls $2,-scanf
add12 $4, %GM
movl $0, (%GM) +
moval -12(%GM), - (%PS)
movl 12 (XPS), r7
movl QPAIR, (r7)
movl (PS) +, r6
movl r6, 4 (r7)
movl (=S)+, r6
movl r6, 8(r7)
add12 $4, %PS
rsb

collect-gar:

Global collect garbage

Error function

End of program

end1 :
calls $0, -exit

Misc variables

save P stack

End of program

end1 :
calls $0, -exit

The shell script to create the archive is given below.

! /bin/csh -f
assembles and appends file to archive file in a
verbose manner
and insures random access with ranlib
as -J $argv[l] -0 $argv[l] .o
ar qv archive $argv [1] . o
ranlib archive

The shell script to assemble is given below.

! /bin/csh -f
assembles and loads file
as -J $argv[l] -0 $argv[l] .o

only load the archive file if it exits
if (-e archive) then
Id -X /lib/crtO. o $argv [1] . o -0 $argv [1] .out -1c archive
else
Id -X /lib/crtO.o $argv[l] .o -0 $argv [1] .out -1c
endi f

exec and clean up
$argv[l] .out 1 more
rm Bargv [I] .out
rm $argv [l] .o

APPENDIX C: MACHINE DESCRIPTION TABLE FOR VAX 11/780

GCODE ATTRIBUTES ACTION CODES

ADD

ADD

ADD

ADD

ADD

MOD

NEG

'opl-lit-1'
"incl" V[1] ;
V[O]=V[l] ; ;

$N = ALLOC-SUDO;
"addl2" V[O] V[1] $N:
V[O] = $N: ;

$N = ALLOC-SUDO;
"modl3" V[O] V[1] $N;
V[O] = $N;;

QN = ALLOC-SUDO;
"mnegl" V[O] $N:
V[O] = $N: ;

GCODE ATTRIBUTES ACTION CODES

NOT 'opl-lit-0'

NOT topl-lit-18

NOT
8N = ALLOC-SUDO:
"subl2" V[O] V[1] $N;
V[O] = 8N; :

AND
8N = ALLOC-SUDO:
"bitl3" V[O] V[1] $N;
V[O] = $N;:

8N = ALLOC-SUDO:
"bisl3" V[O] V[1] $N;
V[O] = $N:;

I NCR

DE CR

"incl" V [O] ; :

"decl" V[O] ; ;

GET-FST 'is-in-reg'
$R = P [opl] :
$N = ALLOC-SUDO :
$N.reg = ALLOC-REG :
PUSH-V SN:
"movl" 4 $R. reg $N. reg; :

GET-F ST
$R = P [opl] :
8R.reg = GET-IN-REG $R;
$N = ALLOC-SUDO ;
$N.reg = ALLOC-REG ;
PUSH-V $N;
"movl" 4 $R.reg $N.reg ;;

GCODE ATTRIBUTES ACTION CODES

GET-SND 'is-in-reg'
$R = P [opl] ;
$N = ALLOC-SUDO ;
$N.reg = ALLOC-REG ;
PUSH-V $N:
"movl" 8 $R.reg $N. reg; ;

GET-SND

GET-BYTE

$R = P [opl] ;
$R.reg = GET-IN-REG $R;
$N = ALLOC-SUDO ;
$N.reg = ALLOC-REG ;
PUSH-V $N;
"movl" 8 $R.reg $N.reg ; ;

8N = ALLOC-SUDO;
$N.cnst = opl;
PUSH-V $N;;

FST
$N = ALLOC-SUDO :
PUSH-P $N;
P[1] = P[O]:
POP-P :
EMIT "movl (%PS) +, r5";
EMIT "movl 4 (r5) , - (%PS) " : ;

SND

$N = ALLOC-SUDO ;
PUSH-P $N;
P[1] = P[O];
POP-P ;
EMIT "movl (%PS)+, r5";
EMIT "movl 8 (r5), - (%Ps) "; ;

GCODE

POPP

ATTRI BUTES

POPV

COPYP ar g-0 '

COP- arg-1 '

COPYP

COP W

ACTION CODES

EMIT "add12 $4, O f i s " ;

POP-P ; :

FREE-REG V [0] :
POP-v; :

PUSH-P P [opll :
EMIT
"mov l (ODs) , - (%PS) ": ;

PUSH-P P [opl] ;
EMIT
" m o v l 4 (%PS) , - (%PS) "; ;

PUSH-P P [opl] :
EMIT "mov l 4*" opl

" (P S) , - (% P S) " ; ;

PUSH-V V [o p l] ; ;

GCODE ATTR I BUTE S A C T I O N CODES

MOVEP ' ar g-0 '

MOVEP ' arg-1 '

MOVEP

MOVEV

ALLOC

EM1 T
" m o v l (%PS) + , (%Ps) l1 ;
prop1 + 11 = P [O] ;
POP-P ; ;

E M I T
" m o v l (%PS) +, 4 (%PS) " ;
PCopl + 11 = P [O] ;
POP-P; ;

E M I T " m o v l (% P S) +, 4*"
o p l " (%PS) " ;

P [opl + 11 = P [0] ;
POP-P; ;

FREE-REG V [O] :
V [1] = V[O] ;
POP-v: ;

S N = ALLOC-SUDO:
PUSH-P 8N;
E M I T

" m o v l 8 " opl " , (%GM) +" ;
E M I T "add12 $8, %GM1';
E M I T

" m o v a l - 1 2 (%GM) , - (% P S) " ; ;

GCODE ATTR I BUTE S

MK-APP

ACTION CODES

POP-P 2:
$N = ALLOC-SUDO;
PUSH-P $N;
EM1 T
" m o v l $APPLY, (%GM) +";
EMIT
" m o v q (P S) + , (%GM) + :
E M I T
" m o v a l - 1 2 (XGM) , - (W S) "; ;

EMIT V;
E M I T
" m o v l $VAL, (%GM) +I1;
E M I T
" m o v l (W S) + , (%GM) +It;
EMIT " m o v l $ 0 , (%GM) +";
EM1 T
" m o v a l - 1 2 (%GM) , - (%PS) " ;
FREE-REG V [0] :
POP-v;
PUSH-P V [0] : ;

POP-P 2 ;
$N = ALLOC-SUDO;
PUSH-P $N:
EM1 T
" m o v l $ P A I R , (%GM) +It;
EMIT
" m o v q (%PS) +, (%GM) +";
EMIT
" m o v a l - 1 2 (%GM) , - (%PS) ; ;

GCODE ATTRI BUTE S

PUSH-LIT

ACTION CODES

$N = ALLQC-SUDO;
8 N . c n s t = opl:
PUSH-V $N;;

PUSHCONST

PUSHGLOBAL

$N = ALLOC-SUDO :
PUSH-P $N;
EMIT

" m o v l $MLW op l ", - (%PS) ": :

8N = ALLOC-SUDO :
PUSH-P $N:
E M I T " m o v l $ 3 , (%GM) +":
EM1 T
" m o v l $,ML" opl ", (%GM)+":
EMIT " m o v l $ 1 , (%GM) + " ;
EMIT
" m o v a l - 1 2 (%GM) , - (ODs) " : :

CALLGLOBFUN
' i f - i m p o r t ' : EMIT

" m o v l $GLW op l ", r6":
E M I T " jsb *4 (r 6) ": ;

CALLGLOBFUN
EMIT " jsb -ML" op l : :

EMIT ".textu ;
EMIT ".glob1 ,ML" opl:
EMIT "-ML" op l ":" : ;

GCODE ATTRI BUTE S

JFUN

JNOT-NEG

JNEG

ACTION CODES

EMIT " jmp ,MLLw opl ; ;

EMIT V;
EMIT "jleq ,MLL1' opl :;

EMIT V:
EMIT " j leq ,MLLW opl : :

JNOT-ZERO

EMIT V:
EMIT " jneq -MLL" op l : ;

JZERO

EMIT V:
EMIT "jeql -MLL" op l ::

JGLOBFUN
' i f - i m p o r t ' EMIT

"movl SGL" opl ", r 6 " ;
EMIT "jsb * 4 (r 6) " ; ;

JGLOBFUN

EMIT " jmp -ML" opl ;;

EM1 T
"sub13 $APPLY, (r 5) , r6";

EMIT "jlss -MLL" o p l ; ;

EMIT
"sub13 $APPLY, (r 5) , r6";

EMIT " jgeq -MLLal opl ; :

GCODE ATTRI BUTE S

UPDATE arg-1 '

UPDATE

R E T

RET-I NT

EVAL

FUN

P[opl] = P[O]:
POP-P ;
EMIT " m o v l (% P S) + , r6";
EMIT " m o v l (%PS) , r7";
EMIT " m o v l (r 6) , (r 7) ";
E M I T
" m o v l 4 (r 6) , 4 (r 7) "; ;

P[opl] = P[O]:
POP-P ;
EMIT " m o v l 4*" opl

" (% P S) , r7":
EMIT " m o v l (%PS) +, r6";
EMIT " m o v l (r 6) , (r 7) " :
EMIT
" m o v l 4 (r 6) , 4 (r 7) ": ;

EMIT "rsb"; ;

EMIT V:
EMIT " m o v l (%PS) , r6";
EMIT " m o v l $VAL, (r 6) ";
EMIT
" m o v l (%VS) + , 4 (r 6) I' :
EMIT "rsb" :
FREE-REG V [0] ;
POP-v: :

E M I T "ML" d-label " : I 9 ;
EMIT " . long 1,"

ACTION CODES

EMIT " jsb -evalW;;

PUSH-P opl:
EMIT "ML" d-label ":" ;
EMIT " . long 3, -ML"

I* o p 2 ", opl; ;

APPENDIX D MACRO EXPANSION TABLE FOR VAX 11/780

GCODE ACTION CODES

ADD

SUB

MUL

D I V

MOD

EMIT "add12 4 (%VS) , (%VS) I*; ;

EMIT "sub13 (W S) , 4 (W S) , (%VS) " : :

EMIT "mu1 12 4 (%VS) , (%VS) " ; ;

EMIT "divl3 (%VS) , 4 (%VS) , r O " :
EMIT "mu112 (O D s) , rO";
EMIT "sub13 r O , 4 (%VS) , (%VS) " ; ;

EMIT "mnegl (W S) " ; :
NOT

EMIT "sub13 (%VS) , $1, (%VS) " : ;
AND

EMIT "bit12 4 (%VS) , (W S) ": :

EMIT "bisl2 4 (%VS) , (%VS) " ; ;
INCR

EMIT "incl (%VS) "; ;

EMIT "decl (W S) ";:
GET-EST

EMIT "movl 4*" opl " (X P S) , row;
EMIT "movl 4 (r0) , - (W S) " : :

GET-SND
EMIT "movl 4*" opl " (%PS) , row;
EMIT "movl 8 (r 0) , - (%VS) "; :

GCODE ACTION CODES

F S T

SND

GET-BYTE

P O P P

P O P 2

P O P 4

POPV

COP W

MOVEP

MOVEV

ALLOC

EMIT " m o v l (W S) +, r O " ;
EMIT " m o v l 4 (r o) , - (p s) ": :

EMIT " m o v l (W S) +, r O " ;
EMIT " m o v l 8 (r 0) , - (%PS) "; ;

I I E M I T " m o v l 8" opl , - (%VS) ": :

EMIT " a d d 1 2 $ 4 , %PSt'::

EMIT " a d d 1 2 $8, p S " ; ;

EMIT " a d d 1 2 $16, %PSW;;

EMIT " a d d 1 2 $ 3 2 , %PSW;;

E M I T " a d d 1 2 $ 4 , %VSt*;;

EMIT " m o v l 4 * " opl " (X P S) , - (%PS) ": ;

EMIT " m o v l 4 * " opl " (%VS) , - (%VS) I*: :

EMIT " m o v l (p s) +, 4*19 opl l8 (%PSI w ; ;

EMIT " m o v l (%VS) +, 4 * " opl I' (%VS) ": ;

E M I T " m o v l $" opl ", (%GM)+";
E M I T " a d d 1 2 $8, %GM8';
E M I T " m o v a l - 1 2 (%GM) , - (%PS) * I ; :

E M I T " m o v l SAPPLY, (%GM) +" ;
EMIT " m o v q (W S) +, (%GM) +I f ;
EMIT " m o v a l - 1 2 (%GM) , - (%PS) "; ;

EMIT " m o v l $VAL, (%GM) +";
EM1 T " m o v l (%VS) + , (%GM) + " ;
EMIT " m o v l $ 0 , (%GM)+";
EMIT " m o v a l - 1 2 (%GM) , - (%PS) " : :

EMIT " m o v l $ P A I R , (%GM)+";
EM1 T " m o v q (%PS) + , (%GM) + " ;
EMIT " m o v a l - 1 2 (%GM) , - (%PS) " ; ;

GCODE

PUSH-LIT

ACTION CODES

PUSHCONST
EMIT "movl $ML" o p l I * , - (%PS) " : :

CALLGLOBEUN
EMIT " jsb -MLW o p l :;

DEF-FUN
EMIT " . t ex tw;
EMIT "-ML" opl I*:" : :

JFUN

JMP

JNEG

JNOT-ZERO

JZERO

JGLOBEUN

J-I F-PTR

EMIT " jmp -MLL" opl : ;

EMIT " jeq -MILL" opl ; :

EMIT "jleq ,MLL9' o p l ::

EMIT "jneq J I L L " opl ::

EMIT "jeql JLL" opl ::

EMIT " jsb ,MLW opl ;
EMIT "rsb"::

EMIT "sub13 $APPLY, (rO) , r 6 " :
EMIT "jlss ,MLL" opl; :

EMIT "sub13 $APPLY, (r O) , r 6 " :
EMIT "jgeq -MLLM opl; :

GCODE ACTION CODES

UPDATE
EMIT "mov l 4*" opl " (%PS) , rl";

, EMIT "mov l (%PS) +, row;
EMIT "mov l (r O) , (r l) ":
EMIT "mov l 4 (r 0) , 4 (r l) ":
EMIT " m o v l 8 (r 0) , 8 (r l) ": ;

UPDATE-PR

RET

RET-INT

EVAL

FUN

LABEL

EXPORT

IMPORT

EMIT " m o v l 4*11 opl " (% P S) , rl":
EMIT " m o v l $PAIR, (r l) ":
EMIT "mov l (W S) +, rO";
EMIT " m o v l r O , 4 (r l) ";
EMIT "mov l (W S) +, rO";
EMIT "mov l r O , 8 (r l) ";:

EMIT "rsbl'; :

EMIT "mov l 4*" op l " (W S) , rl";
EMIT "mov l $VAL, (r l) ";
EMIT "mov l (%VS) +, 4 (r l) " ;
EMIT "rsb": :

EMIT " jsb -evall'::

EMIT "ML" d-label ":" ;
EMIT " . long 3, -ML" o p 2 ", " opl : ;

EMIT "ML" d-label ":" :
11 EMIT " . long 1," op l ,O1' ; ;

EMIT "-MLL" op l ":" ; ;

EMIT ".glob1 ," opl :
EMIT I*-" opl " : I 1 ;
EMIT " jsb -ML" o p 2 :
EMIT "rsb"; ;

EMIT "GL" o p 2 " : ";
EMIT " . l o n g 3, ," o p l ",1" ;;

GCODE ATTRIBUTES ACTION CODES

APPENDIX E MACHINE DESCRIPTION TABLE FOR SUN WORKSTATION

ADD

ADD

ADD

v [O] =v [l] : ;

$N = ALLOC-SUDO;
"addl" V[O] V[1] $N:
V[O] = $N; ;

NEG

NOT

NOT

$N = ALLOC-SUDO;
"negl" V[O] $N:
V[O] = $N;;

"clrl" V[O] ; ;

$N = ALLOC-SUDO:
"subl" V[O] V[1] $N;
V[O] = $N;;

AND
$N = ALLOC-SUDO;
"andl" V[O] V[1] $N;
V[O] = $N:;

I NCR

DE CR

$N = ALLOC-SUDO;
"orl" V[O] V[1] SN;
V[O] = $N;;

"subl #1, " V [O] ; :

GCODE ATTRIBUTES

MOVEP

l

a
t
r

it

ALLOC

: E M I T " m o v l P S @ + , PS@ (4*"
opl ")";

P [opl + 11 = P [O] ;
POP-P ; ;

: v [opl + 11 = v [O] ;
POP-v; ;

: E M I T " m o v l P S @ + , aO";
E M I T " m o v l P S @ + , as":
E M I T " m o v l a O , PS@-'I;
E M I T " m o v l a5, PS@-";
$N = ALLOC-SUDO;
PUSH-P $N;

P [O] = P [2] ;
P [2] = P [l] :
P [l] = P [O] :
POP-P ; ;

: $N = ALLOC-SUDO;
PUSH-P $N;
E M I T " m o v l GM, PS@-";
E M I T " m o v l #" op l ", GM@+";
E M I T " m o v l #0, GM@+";
E M I T " m o v l #0, GM@+"; ;

: POP-P 2 ;
$N = ALLOC-SUDO;
PUSH-P $N;
E M I T " m o v l #APPLY, GM@+":
E M I T " m o v l P S @ + , GM@+";
E M I T " m o v l P S @ + , GM@+";
E M I T " m o v l GM, PS@-";
E M I T "sub1 # 1 2 , PS@";;

ACTION CODES

GCODE ATTRIBUTES

MK-VAL

1 . PUSH-LIT

PUSHGLOBAL

PUSHCONST

ACTION CODES

EMIT "mov l #VAL, G M @ I + ~ ;
EMIT V;
EMIT "mov l VS@+, GM@+I1:
EMIT "mov l #0, GM@+";
EMIT "mov l GM, PS@-";
EMIT "subl # 1 2 , PS@";
PUSH-P V [0] ; ;

POP-P 2 ;
$N T ALLOC-SUDO;
PUSH-P $N;
EMIT "movl #PAIR, GM@+";
EMIT "mov l PS@+, GM@+";
EMIT " m o v l PS@+, GM@+19;
EMIT "mov l GM, Ps@-It;
EMIT "subl # 1 2 , PS@";;

$N = ALLOC-SUDO;
$ N . c n s t = opl;
PUSH-V $N;;

$N = ALLOC-SUDO ;
PUSH-P $N;
EMIT "movl #ML1' opl
I1 , PS@-":;

$N = ALLOC-SUDO ;
PUSH-P $N;
EMIT " m o v l #GL" opl

II , PS@-" ;;

CALLGLOBFUN ' i f - i m p o r t ' : EMIT "mov l #GLq' op l ' I , a5":

EMIT "mov l a5@ (4) , a5";

CALLGLOBFUN
EMIT " jsr a5@"; :

EMIT "jsr -ML" op l ;;

EMIT 'I. t ex t" ;
EMIT "-ML" op l 11 - 1 8 . .

,

GCODE ATTR I BUTE S ACTION CODES

JFUN

JMP

JNOT-NEG

JNEG

JNOT-ZERO

JZERO

JGLOBFUN ' i f-import '

JGLOBFUN

J-NOT-PTR

EMIT " jmp -MLLW opl ; ;

EMIT V:
EMIT "jge -MLL" opl ::

EMIT V:
EMIT " jle -MLL" opl ; ;

EMIT V;
EMIT "jne -MLL" opl ;;

EMIT V:
EMIT "jeq -MLL" opl ; ;

I I EMIT *'movl #GL" opl , a5";
EMIT "movl a5@(4) , a5";
EMIT "jsr a5@";:

EMIT " j s r -ML" opl ;:

EMIT "movl PS@, asn;
EMIT "cmpl #APPLY, a5@It:
EMIT "jne -MLL" opl:
EMIT "cmpl #PAIR, a5@";
EMIT "jne -MLLW opl::

EMIT "movl PS@, as";
EMIT "cmpl #APPLY, a5@";
EMIT "jeq ,MLL" opl:
EMIT "cmpl #PAIR, a5@":
EMIT "jeq -MLL" opi: ;

GCODE ATTRI BUTE S

UPDATE arg-1 '

ACTION CODES

P [opl] = P [O] :
POP-P ;
EMIT " m o v l PS@+, aO";
EMIT "mov l PS@, as":
EMIT " m o v l aO@, a5@";
EMIT "mov l a0@ (4) , a5@ (4) ": :

UPDATE

P [o p l] = P [0] ;
POP-P ;
EMIT " m o v l PS@ (4 * " o p l

'I) , a5";
EMIT " m o v l PS@+, aO":
EMIT " m o v l aO@, a5@";
EMIT "mov l a0@ (4) , a5@ (4) " : ;

UPDATE-PR

P [opl] = P [O] :
POP-P 2;

RET

RET-INT

EVAL

EMIT "mov l PS@ (4 * " opl
") , a5" :

EMIT " m o v l #PAIR, a5@";
EMIT " m o v l PS@+, aO":
EMIT " m o v l aO, a5@ (4) ";
EMIT " m o v l PS@+, aO";
EMIT " m o v l aO, a5@ (8) "; ;

EMIT "rts"; :

PUSH-P V [0] ;
EMIT " m o v l PS@, as":
EMIT " m o v l #VAL, as@";
EMIT "mov l VS@+, a5@ (4) ";
EMIT "rts"; :

EMIT "jsr -evalW; ;

APPENDIX F MACHINE DESCRIPTION TABLE FOR INTEL 286/310

GCODE ATTRIBUTES ACTION CODES

ADD

MOD

: EMIT "mov ax , [di]";
EMIT "add [di-21 , ax";
EMIT "sub di , 2";;

: EMIT "mov ax , [di] ";
EMIT "div [di-21";
EMIT "mov [di-2) , ax";
EMIT "sub di , 2";;

NEG : EMIT "neg [di] ";;

I NCR : EMIT "add [di] , WORD PTR 1"; ;

GET-EST

F S T

GET-BYTE

: EMIT "mov si , [bx-2*" opl "I";
EMIT "mov ax , [si+2] ";
EMIT "mov [di+2] , ax":
EMIT "add di , 2";;

: EMIT "mov si , [bx] " ;
EMIT "mov ax , [si+2] ";
EMIT "mov [bx] , ax";
EMIT "mov ax , [si] ";
EMIT "mov [di+2] , ax";
EMIT "add di , 2" ; ;

: EMIT "mov [di+2] , WORD PTR " opl;
EMIT "add di , 2"::

GCODE ATTRI BUTE S ACTION CODES

POPP : EMIT "sub bx , 2";;

POPV

MOVEP

MOVEV

COP-

: EMIT "sub di , 2"; ;

: EMIT "mov ax , [bx] " ;
EMIT "mov [bx-2* (l+" opl ")] , ax":
EMIT "sub bx , 2";:

: EMIT "mov ax , [di]";
EMIT "mov [di-2* (l+" opl ") 1 , ax1';
EMIT "sub di , 2";;

: EMIT "mov ax , [bx-2*" opl "1 ":
EMIT "mov [bx+2] , ax":
EMIT "add bx , 2":;

COP W

LABEL

ALLOC

: EMIT "mov a x , [di-2*" opl "]":
EMIT "mov [di+2] , ax";
EMIT "add di , 2";;

: EMIT "mov si , G-mem-ptr":
EMIT "mov [bx+2] , si";
EMIT "add G-mem-ptr , 6":
EMIT "add bx , 2";;

: EMIT "mov si , G-mem-ptr";
EMIT "mov [si] , WORD PTR BAS";
EMIT "mov ax , [di] ":
EMIT "mov [si+2] , ax":
EMIT "mov [si+4] ,WORD PTR NIL";
EMIT "mov [bx+2] , si":
EMIT "sub di , 2";
EMIT "add bx , 2";
EMIT "add G-mem-ptr , 6";:

GCODE ATTRI BUTE S ACTION CODES

MK-APP
: EMIT "mov si , G-mem-ptr";

EMIT "mov [si] , WORD PTR APPLY";
EMIT "mov ax , [bx]";
EMIT "mov [si+2] , ax";
EMIT "mov ax , [bx-21";
EMIT "mov [si+4] , ax";
EMIT "mov [bx-21 , si";
EMIT "sub bx , 2";
EMIT "add G-mem-ptr , 6";;

: EMIT "mov si , G-mem-ptr":
EMIT "mov [si] , WORD PTR PR";
EMIT "mov ax , [bx] ";
EMIT "mov [si+2] , ax";
EMIT "mov ax , [bx-21";
EMIT "mov [si+4] , ax":
EMIT "mov [bx-21 , si";
EMIT "sub bx , 2";
EMIT "add G-mem-ptr , 6";;

PUSH-LIT

PUSHCONST

: EMIT "mov [di+2] , WORD PTR " opl;
EMIT "add di , 2";;

: EMIT
"mov [bx+2] , OFFSET ,DATA:FDW opl;
EMIT "add bx , 2";;

PUSHGLOBAL
: EMIT

"mov [bx+2] , OFFSET -DATA: GD" opl:
EMIT "add bx , 2";;

DEF-FUN

JFUN

JMF'

: EMIT "L" opl ":" ; ;

: EMIT "jmp L" opl ; ;

: EMIT "jmp L" opl ;;

GCODE ATTRI BUTES ACTION CODES

JGLOBFUN ' i f - i m p o r t '
: EMIT "mov si , OFFSET -DATA:GDW opl ;

EMIT "mov ax , [si+4] ";
EMIT "call dx" : :

JGLOBFUN
: EMIT " j m p L" op l : ;

JNOT-ZERO
: EMIT "jne LL" op l ::

JZERO
: EMIT "je LLn o p l ;:

JNOT-NEG
: EMIT " jae LL" opl ; ;

JNEG
: EMIT " jb LL" o p l ;:

J-NOT-PTR
: EMIT "mov ax , [di] ";

EMIT "sub d i , 2";
EMIT "sub ax , WORD PTR APPLY":
EMIT " jb LL" op l :;

J-IF-PTR
I

: EMIT "mov ax , [di] ";
i EMIT "sub d i , 2":
1 EMIT "sub ax , WORD PTR APPLY";

EMIT " jae LL" op l : :
i CALLGLOBFUN ' i f - i m p o r t '
* . : EMIT "mov si , OFFSET -DATA:GDW opl:
i EMIT "mov ax , [si+4] ";
I EMIT "ca l l dxs9;;

CALLGLOBFUN
: EMIT "mov cx , [di] ":

EMIT "inc cx";
EMIT "add bx , 2";
EMIT "mov si , bx";
EMIT "LT" opl " : ";
EMIT "mov ax , [s i - 2 1 " ;
EMIT "mov [si] , ax":
EMIT "sub si , 2";
EMIT " loop LT" o p l :
EMIT "mov [si] , WORD PTR NIL":
EMIT "ca l l L" op l ; :

GCODE ATTRI BUTES ACTION CODES

UPDATE
: EMIT "mov cx , di":

EMIT "mov si , [b x - 2 * " op l "1 ";
EMIT "mov d i , [bx]";
EMIT "mov ax , [di] ";
EMIT "mov [si] , ax" ;
EMIT "mov ax , [d i + 2 I w ;
EMIT "mov [s i + 2] , ax":
EMIT "mov ax , [d i +4] " ;
EMIT "mov [si+4] , ax";
EMIT "mov d i , cx":
EMIT "sub bx , 2"; :

UPDATE-PR
: EMIT "mov si , [b x - 2 * " op l "1";

EMIT "mov [si] , WORD PTR PR":
EMIT "mov ax , [bx] " ;
EMIT "mov [s i + 2] , ax";
EMIT "mov ax , [bx-21" :
EMIT "mov [s i + 4] , ax";
EMIT "sub bx , 4":;

RET
: EMIT "mov ax , [bx] ":

EMIT "mov [bx -21 , ax":
EMIT "sub bx , 2";
EMIT "ret": ;

: EMIT "mov si , [bx] ":
EMIT "mov [si] , WORD PTR BAS":
EMIT "mov ax , [di] ";
EMIT "mov [s i + 2] , ax":
EMIT "mov ax , [bx] " :
EMIT "mov [b x - 2 1 , ax";
EMIT "sub bx , 2":
EMIT "ret": ;

GCODE ATTRIBUTES ACTION CODES

EVAL

I N I T

GCODE

FUN

I NT

EXPORT

IMPORT

: EMIT "call -evaln::

: EMIT "-DATA SEGMENT WORD" ; :

: EMIT "-DATA ENDS": :

: EMIT "FD" d-label dw 1, "
opl " , O F F S E T -TEXT:LV' op2;;

: EMIT "FD" d-label " dw 1, "
I1 opl ", op2;;

EMIT "L" opl ". 11. ,
EMIT "jmp L" op2;
EMIT "ret":;

: EMIT "GD" d-label " dw 1, "
opl ' ' ,OFFSET -TEXT:LU op2;;

APPENDIX G: TARGET MACHINE INSTRUCTION TABLE

r

The following is a list of format numbers that are used t o define the VAX

111780 instructions.

Format 1 rO

Format 2 rO , r l

Format 3 r0, r l , r2

rO, r l , r2 represent target machine registers. In the above formats results are

stored in the last register.

The following table contains the instructions and their format numbers.

VAX 111780 instruction Format no.

incl
mnegl
decl
clrl

	198610.tenneti.raman to p. 74.pdf
	198610.tenneti.raman to p. 102.pdf

