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Abstract

Although great progress has been made recently in the treatment and cure of most
types of pediatric cancer, similar success has eluded neuroblastoma. This malignancy is
characterized by diverse outcomes including spontaneous regression, development into
benign conditions, and progression to aggressive metastatic disease. The biologic
mechanisms determining these presentations remain unknown, challenging those who
seck accurate prognostic tools and successful therapies.

To increase understanding of neuroblastoma’s underlying biology, we evaluated
an existing dataset containing neurotrophin-associated gene expression levels and clinical
prognostic assessment variables for 235 tumors. Genes studied included members of the
Trk and GABA families of neurotrophin receptors. Through complementary statistical
methodologies, including analysis of variance, logistic regression, and classification
trees, we drew associations between gene expression levels and clinically derived risk
groups. Gene expression levels of Trk A, p75, and GABA A delta emerged as potential
predictors of neuroblastoma risk group. Further genetic studies are required for the
development of an improved system of risk determination and the discovery of targeted

treatments.
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Background

Embryonic development is achieved through a complex and critical sequence of
events. Early in this process, cells from the neural crest migrate throughout the body to
differentiate into numerous specific cell types and structures. Many of these cells will
become the peripheral nervous system and its subgroup, the sympathetic nervous system.
Occasionally, a sympathetic neuron precursor will experience a genetic change that may
lead to unregulated proliferation. These genetically abnormal cells may develop
immediately into tumors, or lie dormant for varying lengths of time until a precipitating
event triggers the onset of tumor development. This is the beginning of a neuroblastoma,
a type of childhood malignancy characterized by puzzling presentations and diverse

outcomes.

Epidemiology of neuroblastoma

Among children in the United States, cancer in all of its forms is the fourth
leading cause of death, and the most common cause of disease-related death (1).
Following leukemias, central nervous system tumors, and lymphomas, neuroblastoma is
the fourth most prevalent pediatric malignancy, accounting for 7-10% of all childhood
cancer (2,3). Approximately 650 new cases of neuroblastoma are diagnosed per year (4).

As children age, their risk of developing neuroblastoma decreases. In the United
States, the annual incidence rate for neuroblastoma for children under the age of 15 years
ranges from & to 12 per million (1). For infants of less than one year of age, however, the

incidence rate is greater than 60 per million, making neuroblastoma the most common



infant malignancy. This rate was nearly twice that of leukemia, the next most common
cancer (1). While neuroblastoma patients generally range in age from neonates to 15-
year olds, the median age of existing neuroblastoma cases is 2 years (3).

The incidence of neuroblastoma is slightly higher in males than in females, and
slightly higher in whites than blacks. Between 1975 and 1995, the average annual
neuroblastoma incidence rates per million children under 15 years were 10.1 for white
males, 9.6 for white females, 8.8 for black males, and 8.6 for black females (1). An
insufficient number of U.S. neuroblastoma cases were identified in other races to

determine incidence rates.

Etiology

Hereditary cases of neuroblastoma have been noted, but are extremely rare. Since
the first discovery of familial neuroblastoma in 1945, there have only been approximately
40 family pedigrees described in which more than one case was found in first or second-
degree relatives (19). Inheritance was determined to follow an autosomal dominant
Mendelian model. According to this “two hit” model, tumors were predicted to arise as
the result of two separate mutation events. In sporadic cases, these mutations were both
somatic, whereas in familial cases one mutation was inherited and the other was somatic
(20, 21).

Several case-control and population-based studies have been conducted to
identify possible etiological risk factors for neuroblastoma development. Since
neuroblastoma is a disease of infancy and young childhood, studies have focused

primarily on parental and prenatal exposures. Several investigators reported significant



associations between maternal use of sex hormones prior to or during pregnancy and
development of neuroblastoma (5,6,7,8). The results obtained from most etiologic
studies, however, have been either null or contradictory. Due to the scarcity of
neuroblastoma cases, studies are performed with few subjects, and lack the statistical
power needed to detect significant differences. Conflicting results have been obtained in
the studies of parental exposure to electromagnetic fields (9,10,11,12,13,14,15), maternal
use of alcohol during pregnancy (5,6,16), and previous fetal loss (17,18).

Adding to this confusion are studies in which investigators have reported finding
statistically significant predictors of neuroblastoma to be different between subsets of the
disease. Dividing patients into groups based on age at diagnosis and risk status allowed
different yet significant etiologic agents to be detected, including gestation duration,
maternal alcohol consumption during pregnancy, and parental age (5,15). Such

differences suggest that neuroblastoma actually represents more than one distinct disease.

Disease presentation and behavior

Primary neuroblastoma tumors may be found in a variety of anatomical locations.
While approximately one half of neuroblastomas begin in the adrenal medulla, other
possible sites of tumor origination include the pelvic ganglia and the paraspinal ganglia in
the chest or abdomen (22). At the time of diagnosis, metastasis may have begun in as
many as 70% of neuroblastomas (4). The range of primary tumor locations and
metastatic sites results in a wide array of presenting symptoms, from abdominal

discomfort and bowel irregularities to limping and periorbital hemorrhage (23).



Possible outcomes of neuroblastoma are diverse and puzzling. Tumors may
undergo spontaneous regression, progression to metastatic disease, or development into
benign conditions. Autopsies performed on infants expiring of non-neuroblastoma
causes find small clusters of neuroblastoma cells in up to 1 of every 220 adrenal glands
(24). This phenomenon suggests that most neuroblastomas that occur will spontaneously
regress or mature without being clinically detected. A related group of benign tumors,
the ganglioneuromas, are believed to have begun as neuroblastomas before maturing
(24). Despite efforts to discover the biological explanation for these distinct outcomes,
the pathology of neuroblastoma remains enigmatic, and its elucidation demands more

research.

Clinical prognostic indicators

Although the exact biologic mechanisms that lead to neuroblastoma’s diverse
behavior are still unclear, several clinical variables have been found that have strong
associations with disease outcome.
Age

In the early 1970’s patient age was shown to be an important and independent
predictor of neuroblastoma outcome (25). Patients diagnosed with neuroblastoma under
the age of one year have a much more positive prognosis. The five-year survival for
infants diagnosed at less than one year of age is approximately 83%. This percentage is
very high compared to the five-year survival of children diagnosed between the ages of

one and five years (55%), and those diagnosed over the age of five years (40%) (1).



Patient age at diagnosis and tumor stage are still considered the two most important
prognostic indicators in clinical practice (26).
Stage

Prior to the late 1980’s several staging systems had been developed worldwide to
help classify and predict behavior of neuroblastoma tumors based on clinical features.
Having different systems produced a lack of uniformity in prognosis and in assignment of
a treatment regimen. As a result, investigators had difficulty comparing patients that
were being treated in different institutions throughout the world, complicating the study
of novel treatments. To resolve these difficulties, an international group formed to
standardize the diagnosis, staging, and treatment response of neuroblastoma (27). This
group developed and later revised the International Neuroblastoma Staging System
(INSS) from a combination of factors taken from the three primary existing staging
systems (28). The INSS is now the internationally accepted and employed method of
staging neuroblastoma. This system classifies patients into one of five stages based on
the location and infiltration of the tumor, the completeness of the tumor resection, and the
extent of lymph node involvement and metastasis (27).

As shown in Table 1, prognoses by stage range from 1 (the most favorable) to 4
(the least favorable). Stage 4s is an unusual category that involves widespread
dissemination at the time of diagnosis, but the prognosis is generally very good. These
tumors, by definition, only occur in infants less than one year old (28). Since the
inception of the INSS, several studies have tested and verified the system’s utility in
predicting disease outcome (29,30). Coupling age at diagnosis with INSS stage provides

a superior estimate of disease behavior than considering either of these predictors alone.



Three-year remission for infants in stage 3 disease is 80% to 90%, whereas it is only 50%
in children older than one year of age. These rates drop to 60% to 75% for stage 4
infants, and 15% for stage 4 children over 1 year (31). At any age at diagnosis, 75% to
90% of patients in stages 1, 2, and 4s are alive and event-free three years after their

diagnoses (31).

Table 1: International Neuroblastoma Staging System criteria for classifying
neuroblastoma by stage (28)

Stage Definition

1 Localized tumor with complete gross excision, with or without microscopic residual
disease; representative ipsilateral lymph nodes negative for tumor microscopically
(nodes attached to and removed with the primary tumor may be positive).

2A Localized tumor with incomplete gross excision; representative ipsilateral nonadherent
lymph nodes negative for tumor microscopically.

2B Localized tumor with or without complete gross excision, with ipsilateral nonadherent
lymph nodes positive for tumor. Enlarged contralateral lymph nodes must be negative
microscopically.

3 Unresectable unilateral tumor infiltrating across the midline, * with or without regional

lymph node involvement; or localized unilateral tumor with contralateral regional
lymph node involvement; or midline tumor with bilateral extension by infiltration
(unresectable) or by lymph node involvement.

4 Any primary tumor with dissemination to distant lymph nodes, bone, bone marrow,
liver, skin and/or other organs (except as defined for stage 4s).
4s Localized primary tumor (as defined for stage 1, 2A or 2B), with dissemination limited

to skin, liver, and/or bone marrow** limited to infants <1 year of age).

*The midline is defined as the vertebral column. Tumors originating on one side and crossing the midline must
infiltrate to or beyond the opposite side of the vertebral column.

**Marrow involvement in stage 4s should be minimal, i.e., <10% of total nucleated cells identified as malignant on
bone marrow biopsy or on marrow aspirate. More cxtensive marrow involvement would be considered to be stage 4.
The MIBG scan (if performed) should be negative in the marrow.

Tumor histology

Neuroblastic tumors are composed of two populations of cells, including
Schwann cells, responsible for myelin formation in the peripheral nervous system, and
neuroblastic cells. Studies have shown that in normal development neuroblastic cells

produce a chemotactic factor that attracts Schwann cells from surrounding tissues.



Schwann cells, in turn, produce factors responsible for stimulating neuroblast
differentiation and ceasing neuroblast proliferation (32). Through this process some
neuroblastomas mature, developing into benign conditions called ganglioneuromas.
Others, however, do not.

Techniques for classifying neuroblastic tumors were originally proposed by
Shimada (33) and revised by the International Neuroblastoma Pathology Committee in
1999 to become the currently accepted and widely used International Neuroblastoma
Pathology Classification (INPC) (34). The classification system determines tumor type
based on the density of Schwann cells and histological appearance of neuroblastic cells
within the tumors.

According to INPC criteria, neuroblastic tumors may be one of the four following
types:
1. Neuroblastoma (Schwannian stroma-poor)

These tumors consist of clusters of immature neuroblastic cells separated by few

Schwann cells. Depending on the presence of various indicators of cellular

maturity contained by the neuroblastic cells, tumors are subclassified into one of

three groups (see Figures 1-3).



Figure 1: Neuroblastoma, undifferentiated subtype, as defined by the
International Neuroblastoma Pathology Classification system (24)

& ’*rl& * '
Rz ﬂf}ﬁ

Neuroblasts are seen densely distributed with very little neuropil (the material present between nerve cells).
The prognosis of this group is always unfavorable.

Figure 2: Neuroblastoma, poorly differentiating subtype, as defined
by the International Neuroblastoma Pathology Classification

system (24)
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Undifferentiated neuroblasts are present within small amounts of neuropil.



Figure 3: Neuroblastoma, differentiating subtype, as defined by the
International Neuroblastoma Pathology Classification system (24)
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Differentiating neuroblasts are present within greater amounts of neuropil,

Ganglioneuroblastoma, intermixed (Schwannian stroma-rich)

Tumors of this type are in the process of maturation, but have not yet reached the
full maturity of ganglioneuromas. They contain a mix of randomly distributed
cells in various stages of maturation surrounded by a higher proportion of
Schwann cells than were seen in neuroblastomas (see Figure 4). Regardless of the

patient’s age, the prognosis of such tumors is favorable.

Figure 4: Ganglioneuroblastoma, intermixed, as defined by the
International Neuroblastoma Pathology Classification system (24)

Different cell populations are present within large amounts of stroma.



3. Ganglioneuroma (Schwannian stroma-dominant)

The highest proportions of Schwann cells are seen in this prognostically favorable

tumor class, which is further divided into two subgroups (see Figures 5-6).

Figure 5: Ganglioneuroma, maturing subtype, as defined by the
International Neuroblastoma Pathology Classification system (24)
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While most of the cells seen in these tumors are fully mature, a few clusters of maturing neuroblastic cells in
various stages may be seen.

Figure 6: Ganglioneuroma, mature subtype, as defined by the
International Neuroblastoma Pathology Classification system (24)
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Arrows point to fully mature ganglion cells amid Schwannian stroma.
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4. Ganglioneuroblastoma, nodular (composite, Schwannian stroma-rich/stroma-
dominant and stroma-poor)
This class of tumor is characterized by having one or more nodules of stroma-
poor neuroblastoma contained within stroma-dominant ganglioneuroma or
stroma-rich intermixed ganglioneuroblastoma tissue (see Figure 7). The stroma-
poor nodules are aggressive and rapid to grow. As with undifferentiated
neuroblastoma tumors, the prognosis of nodular ganglioneuroblastomas is always

unfavorable (32).

Figure 7: Ganglioneuroblastoma, nodular, as defined by the
International Neuroblastoma Pathology Classification system (24)

Stroma-poor neuroblastic cells on the right infiltrate the stroma-rich area to the left.

When assessing favorable versus unfavorable histology-based prognosis, the
mitosis-karyorrhexis index (MKI) is also considered. This determinant is a measure of
the proportion of tumor cells undergoing either of these processes. MKI is classified into
low (<2% mitotic and karyorrhectic cells), intermediate (2%-4%), or high (>4%) (32).

Since some immature neuroblastic tumors develop into nonmalignant conditions, tumor

11



class is combined with patient age at diagnosis and MKI to estimate prognosis (see Table

2,

Table 2: International Neuroblastoma Pathology Classification criteria for
assessing favorable versus unfavorable histology (32)

Age  Favorable Histology Group Unfavorable Histology Group
Any Ganglioneuroma (Schwannian stroma-
dominant)

¢ Maturing

¢ Mature
Any Ganglioneuroblastoma, intermixed Ganglioneuroblastoma, nodular (composite,

(Schwannian stroma-rich) Schwannian stroma-rich/stroma-dominant and
stroma-poor)
Any Neuroblastoma (Schwannian stroma-poor)
¢ Undifferentiated and any MKI
<1.5  Neuroblastoma (Schwannian stroma-poor) Neuroblastoma (Schwannian stroma-poor)
Years *  Poorly differentiated and low or ¢ Poorly differentiated and high
intermediate MKT* MKT*
¢ Differentiating and low or *  Differentiating and high MKI*
intermediate MKT*
1.5-5 Neuroblastoma (Schwannian stroma-poor) Neuroblastoma (Schwannian stroma-poor)
Years ¢ Differentiating and low MKI* ¢ Poorly differentiated and any
MKI
¢ Differentiating and intermediate
ot high MKI*

>5 Neuroblastoma (Schwannian stroma-poor)
Years ¢ Any subtype and any MKI

*Low MKI: <2% mitotic and karyorrhectic cells, Intermediate MKI: 2%-4% mitotic and karyorrhectic

cells, High MKI: >4% mitotic and karyorrhectic cells

N-myc amplification

Cancers often arise as the result of amplifications of genes in some way

responsible for the control of cellular proliferation. One such gene, N-myc, is amplified

in approximately 22% of neuroblastoma cases, making it the most common DNA

amplification seen in this malignancy (35). Amplifications of N-myc are cytogenetically

exhibited as homogeneously staining regions (HSRs) and double-minute chromatin
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bodies (DMs) in tumor chromosome studies (22). It is likely, therefore, that N-myc
amplification occurs by the replication-excision pathway, in which the gene sequence is
over-replicated locally, and the resulting extra DNA is excised from the chromosome.
These independent DNA fragments may be integrated into other chromosomes for further
amplification (36).

N-myc amplification generally results in high gene expression levels, measured
by N-myc mRNA and protein product levels. Increased expression of N-myc has been
shown to stimulate tumorigenicity in mature cells and prevent apoptosis, or programmed
cell death, in immature cells (36). As cells divide, they undergo four successive phases
called Gy, S, Gy, and M. N-myc acts by shortening the G, phase of the cell-division
cycle, thereby increasing the cell proliferation rate (36). Increased expression of N-myc
does not necessarily require N-myc amplification. Tumors exhibiting greater than normal
levels of N-myc mRNA and proteins without corresponding N-myc amplification may
have irregularities in protein breakdown pathways (22). Therefore, while high N-myc
expression levels are highly correlated with N-myc amplified tumors, these two measures
are certainly not interchangeable.

Investigators have reported conflicting results regarding the prognostic
significance of high expression levels of N-myc in non-amplified tumors (37,38). Nearly
all N-myc amplified tumors, however, undergo rapid and aggressive disease progression,
despite the status of other prognostic indicators. Between N-myc amplification status and
N-myc expression, amplification is generally considered the more reliable prognostic
indicator, and its determination is now routine in clinical risk assessment of

neuroblastoma (35).
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DNA index (ploidy)

DNA index (DI), or tumor “ploidy”, refers to the overall number of chromosomes
in the tumor cell. A DNA index of 1.0 reflects the 46 chromosomes expected in a normal
diploid cell. Any DNA index value greater than 1.0 indicates that a state of hyperploidy
exists. For example, a triploid cell will contain 69 chromosomes, and have a DI value of
1.5. Studies have found that in infants, near-triploid tumors seem to have the best
outcomes, while diploid and tetraploid tumors correlate with poor prognosis and
advanced stage (39,40,41). This relationship is lost, however, in patients diagnosed over
24 months of age. Therefore, DNA index is only a factor in assessing risk in infants.
1p loss and 17q gain

The most common chromosomal aberrations found in neuroblastoma tumors are
gains of the long arm of chromosome 17 (17q), and deletions of the short arm of
chromosome 1 (1p). 1p deletions correlate with other indicators of poor prognosis
including N-myc amplification and DI near 1.0 (42). Although more than one deletion
site have been found on 1p, deletions are generally seen in the distal end of the
chromosome, suggesting that this may be the site of at least one tumor suppressor gene
(43,44). 17q gains, identified in more than 90% of high-risk tumors studied, have been
shown to be independent predictors of poor outcome in neuroblastoma (45). It is
postulated that this site may contain a gene important for cell survival, and
overexpression of this gene may lead to aggressive tumor growth. Often 1p loss
accompanies 17q gain in a phenomenon called translocation. Translocation occurs when
part of a chromosome breaks off and attaches to another chromosome. In 1:17

translocation part of the 17q chromosome replaces the missing area of 1p, doubly
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increasing the risk. While initial reports are promising (35,46), the prognostic utility of
these chromosomal abnormalities is still under investigation.
Risk groups

After standardizing the tumor staging system with the INSS, an international
group of investigators identified the need to develop a standardized system of assigning
neuroblastoma risk status to compare similar groups of patients being treated at different
locations. Treatments would also be standardized based on this risk assessment. This
group first proposed studying several biological variables for their prognostic
significance when combined with age and INSS stage. Prior research in neuroblastoma
biology provided the variables suggested for evaluation. The widely collected
prognosticators of interest included indicators suggesting genetic abnormalities (N-myc
amplification, DNA index, and individual chromosomal losses or gains),
histopathological evaluation, and serum markers lactate dehydrogenase and ferritin (47).
The serum markers were later discarded as potential prognostic indicators as they were
determined to be more representative of tumor burden, or the amount of cancer present in
the body (31).

Current methods of risk group determination used by the Children’s Oncology
Group (COG) depend on patient age, INSS stage, INPC histology summary, N-myc
amplification status, and DNA index (in infants only). Risk group assignment is
performed according to the criteria outlined in Table 3. Tumor stage is determined first,
then patient age, N-myc amplification status, histology summary, and DNA index (where
applicable) are examined successively to assign patients into low, intermediate, and high

risk groups.
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Table 3: Current Children’s Oncology Group criteria for classifying neuroblastoma
into risk groups (22)

Stage | Low Risk Intermediate Risk High Risk
1 All None None
2 Age < lyear, or None Age 1-21 years and
Age 1-21 years and N-myc amplified with
N-myc non-amplified, or Unfavorable histology

Age 1-21 years and
N-myc amplified with

Favorable histology
3 None Age < 1 year and Age 0-21 years and
N-myc non-amplified, or N-myc amplified, or
Age 1-21 years and Age 1-21 years and
N-myc non-amplified N-myc non-amplified
with with
Favorable histology Unfavorable histology
4 None Age < 1 year and Age < 1 year and
N-myc non-amplified N-myc amplified, or

Age 1-21 years

4s | N-myc non-amplified with | N-myc non-amplified with | N-myc amplified

(all Favorable histology and Unfavorable histology, or

are DNA index>1 N-myc non-amplified with

<1 Favorable histology and
year) DNA index =1

Tumor biology: neurotrophic factors and receptors

Neuroblastoma’s diverse clinical manifestations and subgroup differences in
prognostic indicators, genetic features, and etiologic agents suggests that this group of
malignancies may encompass more than one biologically disparate disease state. Further
comparison of the genetic activity of the different tumor types is a necessary step towards
understanding the biological differences exhibited between the three risk groups.

Understanding the biology of neuroblastoma begins with understanding the
process of normal nervous system development. Early in embryogenesis, neuron
precursor cells travel from the neural crest to their target locations. Many more of these

cells arrive than are needed. Circulating proteins known as neurotrophic factors at these
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locations bind to the cells, enabling their survival and proliferation. Cells that are not
able to bind adequate neurotrophic factor undergo apoptosis, or cell death. Expression of
various cell-surface receptors enables the binding and subsequent action of
neurotrophins.
Trk receptors

There are three tyrosine kinase receptors in the Trk family, each having different
ligands and functions (see Figure 8). In normal cellular differentiation, expression levels
of these receptors vary with embryonic stage. TrkA is highly expressed late in the
differentiation process. This receptor binds nerve growth factor (NGF) and (less
strongly) neurotrophin-3 (NT-3) (48). Nerve growth factor binding results in the
differentiation of immature sympathetic neurons into mature ganglion cells. Failure of
cells to bind NGF results in apoptosis (49). Recent studies have shown that
neuroblastomas with high expression levels of TrkA have a much more favorable
prognosis than those with low expressions of this receptor. High TrkA expression is
correlated with younger age at diagnosis, lower stage, and non-amplified N-myc gene
(22). High expressions of TrkB, however, are characteristic of tumors with a very poor
prognosis (50). In normal cell differentiation, TrkB is highly expressed at early stages.
Its ligands include brain-derived neurotrophic factor (BDNF), neurotrophin-4/5 (NT-4/5),
and to a lesser extent NT-3 (48). Binding of these ligands promotes cell survival. The
ligand NT-3 is also bound by the TrkC receptor. TrkC expression has not been studied as
extensively as TrkA and TrkB in neuroblastoma, but preliminary data suggest that the
relationship between TrkC and tumor prognosis follows the same pattern as that of TrkA

(48). A final receptor noteworthy for its contribution to cellular differentiation is p75™ ~.
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This receptor also binds ligands NGF, BDNF, NT-3, and NT-4/5. Its expression levels in

neuroblastoma are unknown (48).

Figure 8: Patterns of neurotrophin binding by Trk family and p75 receptors

Neurotrophins are represented by black ovals, and corresponding receptors are shown in colored boxes.
Block arrows indicate high-affinity binding. Narrow arrows indicate low-affinity binding

GABA receptors

The action of y-aminobutyric acid (GABA) is dictated by the expression levels of
three types of receptors, GABA A, GABA B, and GABA C. GABA A and GABA C
exist as pentamers of various subunits. Identified GABA A subunits include six alpha
subunits, three beta subunits, three gamma subunits, and one each of delta, epsilon, pi,
and theta subunits. Complete receptors have been found to contain at least one alpha and

one beta subunit, and one from the group including gamma, delta, epsilon, pi, or theta.
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GABA C receptors consist of five rho subunits. Both GABA A and GABA C are
ionotropic receptors, operating through control of ion channels. This is in contrast to
GABA B, a metabotropic receptor that operates by means of enzymatic activation. The
GABA B receptor consists of one R1 subunit and one R2 subunit associated with trimeric
GTP-binding regulatory proteins (G proteins), which mediate the interactions between
receptors and ligands (51).

GABA is most frequently thought of as an inhibitory neurotransmitter of the
central nervous system. Recent research, however, has suggested further functions of
GABA in neural development. In several laboratory studies, the addition of GABA to
various neuronal cell populations in vitro was found to induce cellular differentiation, to
affect DNA synthesis, and to regulate the migration of neurons (51). In another study,
when researchers applied GABA to cultured peripheral neurons and neuroblastoma cells,
neuron differentiation was stimulated and GABA receptor expression was changed,
suggesting the role of GABA as a general neurotrophin (52). The potential role of
GABA in the pathogenesis of neuroblastoma remains to be determined.

Summary

Neuroblastoma is a puzzling malignancy of infancy and early childhood
characterized by diverse presentations and outcomes. The risk posed by this disease is
currently assessed using a system combining several clinical prognosticators including
age at diagnosis, tumor stage, histology summary, N-myc amplification status, and DNA
index. Biologic mechanisms explaining the various outcomes are currently unknown, but
may be revealed by differences in genetic expression levels between the tumors.

Neurotrophin receptor genes are of particular interest. Since these genes are known
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actors in normal neuronal development, it is likely that they also play a role in the

pathogenesis of neuroblastoma.

Study Objectives

The broad objective of this study is to add to the growing body of knowledge
explaining the biologic mechanisms for the development of neuroblastoma’s diverse
outcomes. Specifically, the expression levels of several families of genes believed to be
associated with the pathology of this malignancy will be studied. Of particular interest
are genes associated with the receptors of neurotrophic factors. These factors all play
critical roles in the normal differentiation of neural crest cells into mature sympathetic
neurons.

A data set compiled jointly by the Children’s Hospital of Los Angeles (CHLA)
and Oregon Health and Science University will be examined with this objective in mind.
CHLA investigators gathered tumor samples and information from 235 neuroblastoma
patients diagnosed throughout the United States. The data set they compiled includes
variables describing the clinical presentations of the patients’ tumors, as well as gene
expression levels of various neurotrophic factors. Variables to be analyzed in this study
include expression levels of genes associated with GABA receptors (GABA A alpha 1-6,
GABA A beta 1-3, GABA A gamma 2-3, GABA A delta, GABA A epsilon, GABA A pi,
GABA A theta, GABA B, GABA C, GAD-1, and GAD-2), the Trk A and p75 receptors,
and NGF. Unfortunately, expression levels of Trk B and Trk C were unavailable in this

data set.
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This study is a secondary analysis of these data. The primary analysis included a
statistical examination of a subset of the GABA receptor family of genes, using time to
disease progression/death as the outcome variable (53). This study will use clinical risk
group as the outcome variable, and will examine the expression levels of neurotrophin
receptor genes across these groups.

Specific aims

Specific aims for this study include:

1. Categorize patients into risk status groups according to INRG criteria

2. Examine the relationships between the gene expression levels in Trk and GABA
families

3. Determine the associations between gene expression variables and risk status
groups

4. Create models to describe risk group based on factors and/or individual gene
expressions

5. Determine how well risk groups can be classified by using combinations of

factors and individual gene expressions

21



Methods

Clinical methods
Study participants

Subjects enrolled in the study were patients at one of the many U.S. institutions
partnered with the former Children’s Cancer Group (CCG). The CCG has since joined
with the Pediatric Oncology Group (POG) to become the Children’s Oncology Group
(COG) (see Appendix A for a complete list of partner institutions). All participating
institutions obtained IRB approval for the study. A total of 235 neuroblastoma tumor
samples were collected over sixteen years, from January 1980 through April 1996.
Samples were collected from patients at the time of their diagnoses, prior to treatment
with chemotherapy or other methods.
Variable collection

The tumor samples were evaluated for traditional prognostic markers including
patient age at diagnosis, stage, Shimada histology profile, and N-myc amplification status
at partner institutions. These data, as well as a sample of the tumor itself, were submitted
to the Neuroblastoma Center at the Children’s Center for Cancer and Blood Diseases in
Children’s Hospital, Los Angeles (CHLA). The patients’ institutions periodically
submitted further data including survival times and disease progression, and CHLA
added variables documenting length of follow-up time and outcome to the data set.

Expression levels for various genetic markers were determined by RT-PCR at
CHLA. These variables included Trk A, NGF, and p75. Tumor tissue was then

submitted to OHSU for further genetic expression testing.
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Molecular methods

At the Center for Biomarker Discovery at Oregon Health and Science University,
Department of Pediatrics, the complimentary techniques of suppression subtractive
hybridization and cDNA microarray assays were employed to find genes that were
differentially expressed in neuroblastoma tumor samples compared to normal adrenal
tissue. A pool of mRNA taken from tumors of all stages was tested with mRNA from
normal adrenal glands, identifying 1600 genes preferentially expressed in neuroblastoma.
These genes were used to create microarray slides to test expression levels in adrenal
controls and tumor samples. GABA system gene expressions were determined to be
significantly different between various samples and controls. RT-PCR was used to
quantify expression levels in genes of interest. Gene expression levels were determined
for several genes comprising the GABA family. GABA genes measured included 15
GABA A receptor subunits, GABA B and GABA C receptors, and metabolizing enzymes
GADI and GAD?2 (see reference 53 for complete methods of molecular analysis). RT-
PCR results were added to the data compiled by CHLA.

Two variables were obtained for every gene examined. The first variable, called
cycle threshold, represents the number of RT-PCR cycles required to produce a target
quantity of cDNA. Low results for this variable correspond to high initial levels of
mRNA in the sample, and therefore to high levels of gene expression. Samples with gene
expression product (mMRNA) absent achieve the maximum cutoff value of 40 for this
variable, since no cDNA was produced. The second variable conveys relative numerical

values for the gene expressions of the samples.
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Statistical methods

Several methods of statistical analysis were used to examine the data from various
perspectives while accomplishing the proposed specific aims of the study. The statistical
methods used for each aim are described below. These analyses were performed using
SPSS software unless otherwise noted (54).
Data examination and transformation (Aim 1)
Clinical variables

Clinical prognostic indicators were used to create the variables age at diagnosis
(broken down into categories of greater than or less than one year), stage (1,2,3.,4, or 4s),
N-myc amplification status (amplified or non-amplified), and histology summary
(favorable, unfavorable, or indeterminate).
Risk status variables

A new variable was created to assign cases to a category of high, intermediate, or
low risk based on clinical variables as depicted in Table 3 (page 16). Frequencies of
cases in each level were obtained, and missing cases were isolated and examined. Since
missing cases were due to incomplete histology, DNA index, and N-myc status data, we
decided to create two binary variables to divide risk status into low and intermediate vs.
high risk, and low vs. intermediate and high risk. Creating these binary variables allowed
us to include many of these missing cases into some analyses.
Gene expression variables

The ranges and medians of all continuous gene expression variables were
determined, and their distributions were examined. To determine whether these values

depicted meaningful expression or merely background noise, the cycle threshold
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variables were examined. Cycle threshold values of less than 30 correspond to highly
expressed genes. Values between 30 and 38 indicate a low level of expression, and
values greater than 38 are considered undetectable. Variables with cycle threshold values
greater than 38 for all observations were omitted from further analyses.

Histograms of expression level variables to be included in analyses were
examined, and a log) transformation was applied to all continuous variables to reduce
skewness. Prior to taking the logs, variables containing negative and zero values were
adjusted to permit log transformations of all values. Variables having a minimum value
of zero had 0.01 added to each observation, and variables having negative expression
values had a constant added to each observation in order that the new minimum value
become 0.01. Distances between observations within variables were therefore preserved
while permitting logs of every value to be obtained. Distributions and correlations
(obtained by Spearman rank method) of log-transformed variables were examined.
Survival analysis

Disease progression-free survival times of each risk group were compared to gain
insight into the utility of the newly created risk group variable. Kaplan-Meier analysis
and log-rank testing was performed on the data examining time to disease progression
stratified by patient risk group.

Principal components analysis (Aim 2)

PCA was performed to reduce the numerous gene expression variables into a few
principal components calculated as linear combinations of original variables (factor
scores). Creating uncorrelated factor scores also allowed us to avoid the problem of

variable correlation in regression analyses. Initially, the analysis was performed using all
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gene expression variables, and factors created with eigenvalues greater than one were
saved. These underwent varimax rotation to eliminate inter-factor correlation. The
analysis was rerun several times, omitting variables that either loaded equally into more
than one factor, or did not load significantly into any. Based on the results of initial
analyses the decision was made to remove Trk A and p75 from the PCA variable pool
and take their average to create a new variable (referred to as Trk75). The factor scores
from the final analysis were saved as new variables (referred to as Factor 1 and Factor 2)
to include in future analyses. Internal reliability of factors was assessed by Cronbach’s
alpha. To get a sense of the clinical meaning behind the factors, the factor score variables
were split into quartiles, and the mean number of genes expressed was computed for each
quartile.

Examination of new predictor variables

We examined histograms of new variables including the factor scores created by
principal components analysis and the variable created by taking the average of Trk A
and p75. Boxplots of these variables with cases divided into risk groups were also
examined to identify differences that might prove to be important in regression analysis
and modeling of the risk variables.

Analysis of variance (Aim 3)

A series of analyses of variance were performed to determine whether there were
significant differences in gene expression levels between the three risk groups. The new
variables created by principal components analysis as well as individual gene expression
variables were examined. Post hoc pairwise comparisons using Tukey’s HSD method

were conducted to determine which of the groups significantly differed.
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Regression analysis (Aim 4)

To examine the possibility that ditferent levels of risk behave as separate disease
states characterized by the expression of different genes, regression analysis was
performed using the two binary risk variables (low vs. intermediate/high risk, referred to
as Risk 2, and low/intermediate vs. high risk, referred to as Risk 3) as dependent
variables and combinations of gene expression variables as predictor variables.

Logistic regression

A series of logistic regression models were fit using Risk 2 and Risk 3 as the
dependent variables and Factor 1, Factor 2, Trk75, and individual gene expressions as
independent variables. Results from these analyses were considered when creating
multiple logistic regression models to predict Risk 2 and Risk 3. Initially, only the factor
scores and Trk75 were entered into these models, then individual component gene
expression variables were substituted for factors in further analyses. The individual gene
variables in the final models were selected based on model fit and correlation levels with
other variables.

Evaluation of predictor linearity

Independent variables found to be significantly associated with risk level by
logistic regression were further explored in generalized additive models using the R
software program (55). Splines of significant predictors were examined to detect
nonlinearity in their functions. Predictors with nonlinear splines were broken into
categorical variables corresponding to regions of differential response. These variables
were then re-entered into logistic regression analyses, and the improvement in model fit

was determined.
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Logistic regression using data subgroups

Regression models were fit using pairs of individual risk groups. The models
developed compared low and intermediate risk groups, intermediate and high risk groups,
and low and high risk groups. Independent variables used included gene expression
levels that emerged as significant predictors in previous regression analyses.
Classification of intermediate risk group

The logistic regression model developed using high risk vs. low risk as the
outcome variable was used to create an equation to determine fitted values for risk
probability. Intermediate risk cases were entered into this equation to compute fitted
values, and the distribution of these values was examined. This distribution was
compared to those of the predicted values for the low and high risk groups.
Classification trees (Aim 5)

Salford Systems” CART methodology was used to create trees in which different
subsets of predictor variables were used to classify risk into its three categories of low,
intermediate, and high (56). Initially, predictor variables were limited to Factors | and 2,
and Trk75. Results from this model were compared to a tree created to predict risk using
a combination of individual gene expression variables. The preferred trees were selected
from the groves of trees grown based on a combination of tree complexity and relative
cost. Cross-validation misclassification rates from the final trees selected were examined

and the classification powers of the trees were assessed.



Results

Each specific aim will be restated followed by the results of analyses performed

to reach the aim.

Aim 1: Categorize patients into risk status groups according to stage, age at
diagnosis, N-myc amplification status, and Shimada histology summary

The clinical variables have the distributions displayed in Table 4. Although most
of the cases were N-myc non-amplified and histology favorable, overall the data showed
diverse clinical presentation with all subgroups of variables being well represented.

Table 4: Frequency of neuroblastoma cases in subgroups of stage, age at diagnosis,
N-myc status, and histology summary

Variable Subgroups Number of Cases
Stage 1 24
2 50
3 42
4 96
4s 23
Age at diagnosis Less thanl year 117
Greater than 1 year 118
N-myc status Amplified 40
Non-amplified 194
Unknown 1
Histology summary Favorable 121
Indeterminate 5
Unfavorable 56
Unknown 53

Assignment of clinical variables into the risk status variable resulted in the
distribution of cases displayed in Table 5. Overall, distribution of cases among the risk
groups was fairly even. Most cases (39%) were classified as high risk, closely followed

by low risk (35%). Slightly fewer fell into the intermediate risk group (26%).
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Table 5: Frequency of neuroblastoma cases in each risk group stratified by

subgroups of stage, age at diagnosis, N-myc status, and histology

summary
Risk Status
Low Intermediate High
Stage 1 24

2 48 2

3 27 8

4 27 68

4s 1 2

Age at diagnosis Less than 1 year 46 45 5
Greater than 1 year 26 10 75
N-myc status Amplified 1 39
Non-amplified 7 55 41

Histology summary Favorable 58 38 7
Indeterminate 1

Unfavorable 7 4 45

Unknown 7 13 27
Total 72 55 80

The risk status variable is composed of 207 valid cases and 28 missing values.

These missing cases are the result of unknown and indeterminate histology

classifications, one missing N-myc amplification status, and unknown DNA index

information. The breakdown of missing cases by clinical variables is shown in Table 6.

Unfortunately, most of the 4s cases could not be included in this categorical variable as a

result of unavailable DI data.

Most of these missing cases were included as useable data in several analyses,

however, by the creation of the two binary variables Risk 2 (low and intermediate versus

high risk) and Risk 3 (low versus intermediate and high risk). The distributions of these

variables are shown in Table 7. The total number of cases classified is 227 for Risk 2

and 215 for Risk 3.



Table 6: Frequency of missing cases stratified by risk status determinants

Number | Stage | Age at N-myc Histology | DNA Possible Risk

of Cases Diagnosis Status Summary | Index Groups
4 3 > | year non-amplified lindeterminate| N/A  |Intermediate or Hig
3 3 > 1 year non-amplified unknown N/A _ [Intermediate or Hig
1 4 <1 year unknown unknown N/A  [Intermediate or Hig
2 4s | <1 year non-amplified unknown Junknown|Low or Intermediate
18 4s | <1 year non-amplified favorable |unknown|Low or Intermediate

Table 7: Frequency of cases in subgroups of dichotomous risk variables (Risk 2

and Risk 3)
Low/Intermediate vs. High Risk Low/Intermediate Risk 147
(Risk 2) High Risk 80
Missing 8
Low vs. Intermediate/High Risk Low Risk 72
(Risk 3) Intermediate/High Risk 143
Missing 20

Mean survival times for each risk group and tests of significance by Kaplan-Meier

are shown in Table 8. This table, along with the survival plot (see Figure 9), reveals

significantly longer survival times of the low and intermediate risk groups when

compared to the high risk group. Mean survival times do not differ significantly between

the low and intermediate risk groups. In each of these two groups less than ten percent of

the cases expired or had progressive disease, compared to more than two thirds of the

high risk cases.
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Table 8: Kaplan-Meier and log-rank results for analysis of time to disease
progression/death stratified by risk group

! Me:fm Ao d Number of Number Percent
Risk Group Survival Confidence
N Events Censored Censored
Time Interval
Low Risk 125.8 (116.0, 135.6) 7 65 90.3
Intermediate

Risk 117.1 (109.0, 125.2) 3 52 94.6
High Risk 31.3 (24.2, 38.4) 57 23 28.8

Statistic df p-value

Log Rank 101.4 2 <0.001

Figure 9: Kaplan-Meier survival curve for analysis of time to disease
progression/death stratified by risk group
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Aim 2: Examine the relationships between the gene expressions in Trk and GABA
families

Gene expression quantification variables

Genes with expression detected by RT-PCR include GABA A (subgroups alpha
1-3 and 5-6, beta 1-3, gamma 2, delta, epsilon, pi, and theta) GABA B, GAD 1 and 2,
TrkA, NGF, and p75. Genes with cycle threshold values greater than 38 for all
observations include GABA A alpha 4, GABA A gamma 3, and GABA C. These three ‘
variables were excluded from further analyses, as cycle thresholds greater than 38
indicate that no gene expression was detected.

Distributions of gene expression variables were found to be consistently and
strongly skewed to the right with most values close to zero. The log;, transformations
made the majority of the variables’ distributions more closely resemble a normal
distribution. Correlations were determined conservatively using the nonparametric
Spearman rank method. Many pairs of variables exhibit significant correlation. In
Figure 10, significantly correlated pairs of variables are indicated using stars color-coded
by ranges of p-values. Approximate absolute values of Spearman’s correlation
coefficient are between 0.108 and 0.131 for green stars, 0.132 and 0.167 for blue stars,

and greater than 0.168 for red stars (see Appendix B for a complete table of correlations).
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Figure 10: Correlations between gene expression variables displayed by p-value
ranges of Spearman’s rho
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Principal components analysis

An analysis was performed in which three principal components were created.
GABA A alpha 5 failed to load significantly into a factor, and NGF loaded equally into
two. Neither of these variables was included in the final factor scores. The only
variables to contribute significantly to the third factor were Trk A and p75 (see Table 9).
Both these variables are missing data for several cases, and were not included in the final
factor scores.

Table 9: Relative contributions of gene expression variables to components
produced by principal components analysis

Component
1 2 3

GABA A epsilon 0.907

GAD-1 0.904

GABA A alpha | 0.884

GABA A pi 0.873

GABA A theta 0.859

GABA A alpha 6 0.747

GAD-2 0.690

GABA A delta 0.663

GABA A alpha 3 0.610

GABA B 0.772

GABA A alpha 2 0.771

GABA A beta 1 0.705

GABA A beta 3 0.704

GABA A beta 2 0.699

GABA A gamma 2 0.490

Trk A 0.889
p75 0.793

Extraction method: Principal Component Analysis
Rotation method: Varimax with Kaiser Normalization
GABA A alpha 5 and NGF omitted

Cells <0.25 suppressed



A PCA that produced two factors was the preferred solution. This solution
explained 60.8% of the variance of the 15 variables (Table 10). Coefficients were
determined for each variable that reflected the relative contribution of the variable to the
factor. These coefficients were then multiplied by the gene expression values for each of
the cases. Factor scores were calculated by taking the sum of all of these coefficient-
variable products. The scores from both factors were saved as new variables called
Factor 1 and Factor 2 in the data set. In addition, the two variables (Trk A and p75) that
contributed highly to the third factor obtained from the second analysis (see Table 9)
were averaged to create a new variable (Trk75).

Table 10: Relative contributions of gene expression variables to components
produced by preferred principal components analysis

Component
1 2

GABA A epsilon 0.911
GAD-1 0.908
GABA A pi 0.882
GABA A alpha 1 0.878
GABA A theta 0.859
GABA A alpha 6 0.754
GAD-2 0.716
GABA A delta 0.689
GABA A alpha 3 0.582
GABA A beta 1 0.763
GABA A alpha 2 0.763
GABAB 0.746
GABA A beta 3 0.737
GABA A beta 2 0.689
GABA A gamma 2 0.533

Extraction method: Principal Component Analysis
Rotation method: Varimax with Kaiser Normalization
GABA A alpha 5, NGF, Trk A and p75 omitted

Cells <0.25 suppressed
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The Cronbach’s alpha (a value that evaluates internal consistency among
variables) was 0.9110 and 0.7671 for Factor 1 and Factor 2, respectively. There were no
variables in either factor whose exclusion would result in a sizeable increase in alpha.
Most of the variables, had they been removed one by one, would have resulted in
decreasing the alpha value.

New variables: Factors 1 and 2 and Trk75

As shown in Table 10, variables contributing most strongly to Factor 1 include
GABA A epsilon, GAD-1, GABA A pi, GABA A alpha 1, GABA A theta, GABA A
alpha 6, GAD-2, GABA A delta, and GABA A alpha 3. Factor 1 values ranged from
-2.59 to 3.05. The lowest quartile of Factor 1 scores had an average of 5.7 of these
variables expressed. The second, third, and highest quartiles had means of 7.8, 8.4, and
8.8 variables expressed, respectively.

Most of the weight in the second factor was contributed by the variables GABA A
beta 1, GABA A alpha 2, GABA B, GABA A beta 3, GABA A beta 2, and GABA A
gamma 2. Values of this variable ranged from a low of —2.02 to a high of 3.26. The first
quartile showed an average of 2.6 of these variables expressed. The second and third
quartiles had means of 4.0 and 4.7 variables, and the highest quartile had an average of

5.6 variables expressed (see Table 11).
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Table 11: Average number of highly contributing gene expression variables
expressed in quartiles of each PCA factor

Average # genes expressed Total # genes
Quartile included in factor
lst 2nd 3l‘d 4ﬂl score
Factor1 | 5.7 7.8 8.4 8.8 9
Factor2 | 2.6 4.0 4.7 5.6 6

Factors 1 and 2 had distributions close to normal. The new variable created by
taking the average of Trk A and p75 (Trk75) exhibited a slight right skew. Boxplots of
Factor 1 and Trk75 revealed lower median values in the low risk groups with a linear
increase through the high risk group. A comparison of the boxplots depicting Factor 2
values for each risk group, however, showed nonlinear results, with the intermediate risk

group displaying the lowest median value.
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Aim 3: Determine the associations between gene expression variables and risk
status groups

Results of analysis of variance for each gene expression variable and composite
variable are shown in Table 12. Five of the gene expression levels differed significantly
(p<0.05) between the three risk groups; Trk A, p75, GABA A delta, NGF, and Trk75
composite score. The low risk group is significantly different from the high risk group
for all five variables. For Trk A, p75, and Trk75 composite, the intermediate risk group
significantly differed from the high risk group, but the low and intermediate groups did
not differ significantly. In contrast, GABA A delta low and intermediate groups were

significantly different, whereas intermediate and high risk groups were not.

39



Table 12: Risk group mean values and ANOVA results for gene expression
variables and factor scores

Risk Group Means | F-score p- Significantly different

Variable value subgroups*

Low | Int. | High

Individual genes

Trk A 531 | 547 | 4.38 34.399 | <0.001 Low/High** Int/High**
p75 3.08 | 3.09 | 2.24 15.429 | <0.001 Low/High** Int/High**
GABA A delta 022 |1-021 | -0.35 | 10.557 | <0.001 Low/Int*** Low/High**
NGF 0.88 | 0.61 | 0.38 3.382 0.036 | Low/High*#**

GABA A gamma? 170 | 1.22 | 146 2,612 0.076

GABA A theta 0.12 | -0.07 | -0.04 2.297 0.103

GABA B -0.80 | -1.10 | -0.64 2.185 0.115

GABA A alpha 2 -0.11 | -0.59 | -0.29 2.099 0.125

GABA A epsilon -0.70 | -0.93 | -0.85 2.037 0.133

GABA A alpha 1 1.21 | 0.94 | 1.08 1.559 0.213

GABA A beta | 054 | 033 | 0.19 1.544 0.216

GABA A alpha 6 -1.44 | -1.64 | -1.59 1.537 0.217

GABA A alpha 5 -1.47 1 -0.93 | -1.30 1.372 0.256

GABA A beta 2 -1.88 [ -1.93 ] -1.88 1.255 0.293
GAD-1 0.69 | 0.37 | 0.66 1.202 0.303
GABA A pi 0.62 | 0.62 | 0.50 1.121 0.328
GABA A beta 3 1.09 | 0.90 | 1.04 0.688 0.504
GAD-2 -1.26 | -1.27 | -1.22 0.328 0.721

GABA A alpha 3 -0.21 | -0.23 | -0.20 0.010 0.990

Composite variables

Trk75 429 | 430 | 3.30 | 32.09 [ <0.001 [ Low/High** Int/High**
Factor 1 0.15 | -0.09 | -0.07 1.897 0.153
Factor 2 0.21 [ -0.14 ] 0.11 1.442 0.239

*Multiple comparisons by Tukey’s HSD

** p<0.001

*#% p<(.01

#HEE p<(.05
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Aim 4: Create a model to describe risk group based on factors and/or individual
gene expressions

Regression analysis
Risk 2: Low and Intermediate risk vs. High risk

Several individual genes achieved statistical significance (p<0.05) when regressed
one at a time onto the Risk 2 variable. These variables include Trk A, p75, NGF, GABA
A delta, and GABA B. Considering the composite variables (Factors 1 and 2 and Trk75).
only Trk75 proved to be an independent significant predictor of Risk 2. All gene
expression variables with the exception of GABA B gave odds ratios less than 1.0,
indicating an inverse relationship between gene expression levels and risk group.
However, it appears that when low and intermediate risk groups are pooled, higher
GABA B expression is associated with increased risk.

In a multiple logistic regression model considering composite variables only as
predictors, Factor 2 and Trk75 proved to be significant, whereas Factor 1 did not. Model
statistics included a deviance value of 188.459, and a Cox and Snell’s R? of 0.285. Only
GABA B expression and Trk75 were significant in analyses using individual gene
expression variables to predict Risk 2. This second model appeared to be a slightly better
fit for the data than was the first, reducing the deviance to 185.160 and increasing the R?
value to 0.298. The results of univariate and multiple logistic regression analyses for the

Risk 2 variable are summarized in Table 13.
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Table 13: Summary of logistic regression models using Risk 2 (low and

intermediate risk vs. high risk) as the dependent variable.

Univariate analyses

Wald Chi p- Odds 95% Confidence
Square value Ratio Interval for OR

Individual genes
TrkA 43.153 <0.001 | 0.280 (0.192,0.410)
p75 20.589 <0.001 | 0.389 (0.259, 0.585)
NGF 4.068 0.044 0.749 (0.565, 0.992)
GABA A alpha 1 0.002 0.963 1.007 (0.742,1.368)
GABA A alpha 2 0.674 0412 1.091 (0.887, 1.341)
GABA A alpha 3 0.006 0.940 1.010 (0.788, 1.294)
GABA A alpha 5 0.165 0.685 0.969 (0.833, 1.128)
GABA A alpha 6 0.861 0.354 0.835 (0.570, 1.223)
GABA Abeta 1 e 4] 0.249 0.876 (0.700, 1.097)
GABA A beta 2 1.302 0.254 2.210 (0.566, 8.636)
GABA A beta 3 0.281 0.596 1.085 (0.803, 1.466)
GABA A gamma 2 0.011 0915 1.013 (0.801, 1.281)
GABA A delta 9212 0.002 0.566 (0.392, 0.817)
GABA A epsilon 0.161 0.688 0.921 (0.616, 1.377)
GABA A pi 2.545 0.111 0.663 (0.401, 1.098)
GABA A theta 0.569 0.451 0.836 (0.525, 1.331)
GABA B 5.174 0.023 L2EE (1.036, 1.617)
GAD-1 0.546 0.460 1.081 (0.879,1.331)
GAD-2 0.799 0.371 1.431 (0.652, 3.140)
Composite variables
Factor 1 0.726 0.394 0.887 (0.673, 1.169)
Factor 2 0.996 0.318 1.148 (0.875, 1.507)
Trk75 36.724 <0.001 | 0.208 (0.125, 0.346)
Multivariate models

Wald Chi p- Odds 95% Confidence

Square value Ratio Interval for OR

Model 1
Trk75 38.652 <0.001 | 0.178 (0.103, 0.306)
Factor 2 6.162 0.013 1.610 (1.105, 2.346)
Model 2
Trk75 37.847 <0.001 ] 0.188 (0.110, 0.320)
GABA B 9.148 0.002 1.603 (1.181, 2.176)

Highlighted results: p<0.05

OR = odds ratio
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Risk 3: Low risk vs. Intermediate and High risk

Regressing individual gene expression variables onto Risk 3 in univariate
analyses yielded more significant predictors than obtained in the previous analyses using
Risk 2 as the outcome variable. As seen for Risk 2, Trk A, p75, NGF, and GABA A
delta all proved to be individually predictive of Risk 3. In addition, GABA A gamma 2
and GABA A theta showed significance. GABA B, however, was no longer predictive of
outcome when intermediate risk was grouped with high risk instead of low risk. Of the
composite variables, only Trk75 was a significant predictor in univariate analyses. Odds
ratios generated by these analyses are all less than one. It appears, therefore, that these
gene expression levels decrease as risk level increases.

In multivariate models built using Risk 3 as the dependent variable and Factors 1
and 2 and Trk75 as independent variables, the latter two proved to be significant
predictors. Deviance and Cox and Snell’s R* values for this model were 178.51 and
0.126, respectively. Using individual gene expressions instead of factors yielded a
similar model that used Trk75 and GABA A delta expression to predict Risk 3. This
model appeared to improve slightly upon the first, reducing the deviance to 172.70 and
increasing R to 0.155. Expression variables GABA A alpha 3 and GABA A alpha 6
were also significant in models using individual gene expressions. These variables were
too highly correlated to be included together in a model, however, and neither was
significant when considered independently. Results of these analyses are summarized in

Table 14,
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Table 14: Summary of logistic regression models using Risk 3 (low risk vs.
intermediate and high risk) as the dependent variable.

Univariate analyses

Wald Chi p- Odds 95% Confidence

Square value Ratio Interval for OR

Individual genes
TrkA 11.675 0.001 0.549 (0.389, 0.774)
p75 7.707 0.005 0.550 (0.360, 0.839)
NGF 4.964 0.026 | 0.648 (0.442, 0.949)
GABA A alpha 1 2.262 0.133 0.774 (0.555, 1.081)
GABA A alpha 2 3.179 0.075 0.819 (0.657, 1.020)
GABA A alpha 3 0.003 0.957 | 0.993 (0.761, 1.294)
GABA A alpha 5 1.606 0.205 1.119 (0.940, 1.333)
GABA A alpha 6 3.508 0.061 0.680 (0.454,1.018)
GABA A beta | 3.214 0.073 0.804 (0.633, 1.021)
GABA A beta 2 0.855 0.355 0.521 (0.131, 2.074)
GABA A beta 3 0.673 0412 | 0.873 (0.632, 1.207)
GABA A gamma 2 4.828 0.028 0.752 (0.583, 0.970)
GABA A delta 16.655 <0.001 | 0.465 (0.322, 0.672)
GABA A epsilon 3.755 0.053 0.652 (0.423, 1.005)
GABA A pi 1.031 0.310 | 0.769 (0.464, 1.277)
GABA A theta 4.507 0.034 | 0.590 (0.363, 0.960)
GABA B 0.148 0.700 | 0.956 (0.761, 1.201)
GAD-1 0.810 0.368 0.902 (0.719, 1.130)
GAD-2 0.069 0.793 1.114 (0.497, 2.496)
Composite variables
Factor | 3.023 0.082 | 0.768 (0.571, 1.034)
Factor 2 2.493 0.114 0.796 (0.599, 1.057)
Trk75 JER A <0.001 | 0.376 (0.224, 0.633)
Multivariate models

Wald Chi p- Odds 95% Confidence

Square value Ratio Interval for OR

Model 1
Trk75 14.210 <0.001 | 0.355 (0.207, 0.608)
Factor 1 SOT8 0.022 | 0.620 (0.413, 0.932)
Model 2
Trk75 11.821 0.001 0.388 (0.226, 0.666)
GABA A delta 10.488 0.001 0.458 (0.285, 0.734)

Highlighted results: p<0.035
OR = odds ratio
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Evaluation of predictor linearity

Spline plots created to evaluate the linearity of independent variables significant
in logistic models predicting Risk 2 and Risk 3 yielded mixed results. In Risk 2 models,
spline plots reveal some apparent nonlinearity in Trk75, whereas plots for Factor 2 and
GABA B do not deviate substantially from linearity. In Risk 3 models, spline plots of
both Trk75 and Factor 1 appear fairly linear within the bulk of their observations. GABA
A delta’s plot exhibits some nonlinearity, however there appears to be an overall
downward trend within most of the observations (Figure 11).
Evaluation of regression models using coding variables

Regression models using coding variables created to divide the most nonlinear
variables (Trk75 for Risk 2 and GABA A delta for Risk 3) into ranges of values
exhibiting uniform activity did not improve upon original regression models. The level
of non-linearity exhibited by these variables was not sufficient to remove them from

logistic regression models, so original models were retained.
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Figure 11: Spline plots for independent variables significant in logistic regression
models predicting Risk 2 and Risk 3
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Plots depict values of each observation of the various predictor variables along the x-axes by their
corresponding spline functions along the y-axes for outcome variables Risk 2 and Risk 3. Spline functions
with negative slopes are indicative of predictor variables having a protective effect whereas spline
functions with positive slopes are indicative of predictor variables conveying risk. At spline function
values of 0.0 relative risk is null.
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Logistic regression: two group comparisons

Binary logistic regressions run on subsets of data isolating low and intermediate

risk, intermediate and high risk, and low and high risk groups produced the models

detailed in Table 15.

Table 15: Summary of best regression model results: gene expression variables
regressed onto binary risk outcome variables (low vs. intermediate risk,
intermediate vs. high risk, and low vs. high risk)

Logistic regression: individual group data

Dependent variable Predictor Wald Chi p- Odds 95% Confidence
variables Square value | Ratio Interval for OR
Low vs. Intermediate risk | GABA A delta 7.954 0.005 0.503 (0.313, 0.811)
Intermediate vs. High risk | Trk75 23.541 <0.001 | 0.168 (0.082, 0.345)
GABA B 6.194 <0.013 | 1.671 (1.115, 2:503)
Low vs. High risk Trk75 20.981 <0.001 { 0.237 (0.128, 0.439)
GABA A delta 7.365 0.007 | 0.448 (0.251, 0.800)

These models further illuminate the relationships between the groups indicated by

ANOVA and previous regression analyses. Values of odds ratios for GABA A delta in

models predicting low versus intermediate risk and low versus high risk are 0.503 and

0.448, respectively. These values suggest that high GABA A delta levels may be

predictive of low risk disease, and that levels progressively decrease as risk increases.

High levels of Trk75 appear to be predictive of high risk disease (odds ratios 0.168 and

0.237 for intermediate versus high risk and low versus high risk), and high levels of

GABA B may distinguish the high risk from the intermediate risk group (odds ratio

1.671).
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Prediction of intermediate class

Regression analysis of gene expression variables onto the binary outcome variable
low vs. high risk group produced the following equation for determining predicted
probability:

A

65.943 +1.439+Trk75-0.802 * GABAAdelta
A= 1+eS.943—1.439*Trk75—0.802*GABAAdelta

Prediction of values for intermediate risk group subjects produced a three-peaked
distribution (see Figure 12). The first peak covers the area under which most of the
values for low risk patients fell. Values in the third peak were similar to the bulk of
values obtained for the high risk individuals. The middle peak, whose values fell directly
between the other two, might represent individuals whose outcomes are truly more severe
than low risk patients but better than the high risk group.

Since no other data set was available with which to classify patients according to
Trk75 and GABA A delta values, cross-validation with intermediate risk patients not
included in the regression analysis was necessary. Thus, the histogram depicted in Figure

12 was reflects the values obtained only on a small subset of the available data.
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Figure 12: Histogram of predicted values for intermediate risk group individuals
obtained by the regression model of GABA A delta and Trk75
expressions regressed onto low vs. high risk groups
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Aim §5: Determine how well risk groups can be classified by using combinations of
factors and individual risk variables

Classification Trees

When Trk 75 and Factors 1 and 2 were used to classify risk group, a series of
trees were generated with the error curve shown in Figure 13. The preferred tree chosen
from this series has a relative cost of 0.699, and only 3 terminal nodes. This model

corresponded to the lowest relative cost achieved in the series.

Figure 13: Error curve for series of classification trees using Factors 1 and 2 and

Trk75 to classify risk
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Splitters and resulting nodes of the preferred model are depicted in Figure 14.
The first node created in this tree is comprised of 54 cases, mostly high risk, determined
by the first splitter, Trk75 < 3.56. The remainder of the data is then divided into two
nodes based on Factor 1 scores of greater than or less than 0.822. The second node is
composed of 99 predominantly intermediate risk cases, and the third node consists of 14
cases, most of which are low risk. The second node contains much more
misclassification than the other two. Overall misclassification rates for this tree were

very high for the low risk group, and fairly high for the high risk group (Table 16). Most
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muisclassification was due to the large proportion of low and high risk individuals in node

2.

Figure 14: Preferred classification tree produced by using Factors 1 and 2 and
Trk75 to classify risk group
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Table 16: Misclassification rates for classification trees using factors 1 and 2 and

Trk75 to classify risk
Class % Misclassified
Learn | Cross-validation
Low 78.72 76.60
Intermediate | 8.89 17.78
High 37.33 4533
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The error curve in Figure 15 depicts a series of trees created using all gene
expression variables. Choosing these variables as predictors enabled the inclusion of
cases for which values of Trk75 are missing. The preferred tree selected from this grove
has a cost of 0.793. This model was selected instead of the one having the lowest cost
(0.753) because that tree is excessively complex, having many more terminal nodes, each

of which contained few cases.

Figure 15: Error curve for series of classification trees using individual gene
expression level variables to classify risk
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Figure 16 shows splitters and terminal node details for the preferred model. Cases
with TrkA values less than 4.275 comprise the first node. This node resembles the first
node seen in the previous model, consisting mainly of high risk cases. The second
splitter used is a GABA A delta value of -0.106. This split creates node 7, largely
consisting of low risk individuals. A GABA A pi value of 0.653 is then used to isolate
node 6, a small group of mostly intermediate cases. The remainder of the data is split
using the GAD-2 value of —1.123 to create two subsets, but no nodes. The first of these
subsets is split using GAD-1 of —0.348 to create nodes 2 and 3. Node 2, containing much
misclassification, is composed of 25 cases, a slight majority of which are low risk. Node

3 contains somewhat less misclassification, most of the 25 cases being intermediate risk.
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The second subset of the GAD-1 split is further separated based on a GABA A alpha 3

value —1.047.

This split creates node 4, a small group of low risk cases, and node 5,

containing a predominance of high risk cases.

Figure 16: Preferred classification tree produced by using individual gene
expression variables to classify risk group
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Misclassification rates for low and high risk groups were lower than those seen in
the previous model, however the rate for the intermediate group increased. Rates for all

three classes remain much higher than desirable (Table 17).

Table 17: Misclassification rates for classification trees using individual gene
expression level variable to classify risk

Class % Misclassified
Learn | Cross-Validation
Low 22.22 65.28
Intermediate 49.09 54.55
High 35.00 38.75
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Discussion

Several types of analyses were conducted to fulfill the aims set forth in this study.
The combination of these methodologies was used to examine the data from several
perspectives, and to expose complexities in the relationships between the variables.
Analyses of variance suggested key variables that might be useful as predictor variables
in further analyses. Regression analyses identified relative levels of risk for single
variables predicting risk group, as well as basic interactions between groups of these
predictors. Classification trees were grown to elucidate complex interactions between
variables that are unable to be determined by the strict linear relationships imposed upon
the data by logistic regression. These interactions are discovered when data are
examined, split into subgroups using cut points of predictor variables, and re-examined,
exposing relationships that would require a combination of several regression models to
achieve.

While examining the results of these methodologies, it is important to remember
that the utility of these gene expression variables comes from their relative, not absolute,
value. RT PCR studies evaluate relative gene expression levels by quantifying
replication cycle time required to produce target quantities of cDNA from original
mRNA levels of samples subjected to identical conditions. These cycle threshold values
may vary from run to run based on many factors including cycling conditions and
substrate amounts. Small variations in laboratory protocol, therefore, may result in
different absolute values for an individual sample, but should not change relative values

when comparing all samples. Thus, it is of little interest to examine the individual odds
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ratio provided by the regression of a gene expression variable onto risk, or to examine the
precise value of a variable used in growing a classification tree. It is, however, of interest
to examine the relative values of these odds ratios, and to determine those genes
conveying risk as opposed to those providing an apparent protective effect.

When the relationships between the Trk and GABA genes were explored, three
groups of co-expressed genes emerged. Factors comprised of GABA genes were of little
utility in distinguishing risk levels in further analyses. In the ANOVA, logistic
regression and CART models developed to clarify relationships between risk groups and
neurotrophin gene expression levels, individual expression variables proved more
valuable as predictors than did these factors. The variable that averaged the p75 and Trk
A expression levels (Trk75), however, proved to be a significant predictor of high risk in
the regression analyses.

Several individual GABA gene expression variables surfaced during the analyses
as potentially important predictors of risk group. GABA A delta was exposed as the
second most valuable predictor of class in the CART model, and an important predictor
of low risk in regression analysis. Results obtained for GABA B were puzzling.
Significant in a regression model distinguishing the intermediate from the high risk
group, this gene was the only single gene expression variable whose value did not exhibit
an inverse relationship to risk. Studies of GABA’s role in neuronal differentiation have
discovered that the types of receptors present in young cells vary as they mature (51).
Considering this, our results support the suggestion that disease severity may depend in

part on the stage of cellular differentiation at the time of malignancy development.
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Our finding that decreased Trk A expression predicts high risk group is in
agreement with the results of other studies (39,57). High risk tumors generally express
high levels of Trk B that binds BDNF and NT-4/5, promoting cell survival. The
favorable prognoses experienced by tumors expressing high levels of Trk A result either
from the binding of adequate NGF to stimulate cell maturation, or inadequate NGF,
causing cell death. Our results provide further support for the proposal that Trk A levels
be used routinely in the clinical assessment of disease prognosis.

Our analyses also exposed a strong correlation between p75 and Trk A. P75 was
found to be a significant predictor of risk group independently of Trk A, but the
predictive power of the composite variable Trk75 was stronger than that of either of its
component variables alone. The action of p75 as reported by other neuroblastoma
studies, however, has not been so consistently demonstrated as that of Trk A. A recent
study reported the results of an in vitro analysis of two different neuroblastoma cell lines
both expressing p75, and neither expressing Trk A. The addition of NGF to the cell lines
had the opposite effects of increasing proliferation in one clone, and decreasing
proliferation in the other (58). Another study unearthed a possible new role for p75 as an
inducer of cellular death (48). Surprisingly, the p75 gene has been mapped to 17q 21-22
(59), and thus is likely present in more than one copy in tumors exhibiting 17q gains. As
discussed earlier, 17q gains have been identified in a high percentage of tumors having
poor outcomes. Based on the strong correlation of Trk A and p75 seen in our study, it
would be expected that these tumors would have more favorable outcomes, however the
reverse has been shown consistently (42). This diverse set of results suggests that further

study of the role of p75 in neuroblastoma is warranted.
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A few of our results reinforce the conclusions reached by Roberts et al in the
primary examination of these data (53). This initial set of analyses focused on the
relationship between GABA A receptor components and patient outcome as measured by
time to disease progression or death. The authors found that higher levels of GABA A
delta correlated with longer survival and remission times in subsets of cases. Their
finding is strengthened by the results of our analyses. High expression levels of this
subunit were found to be predictive of low risk group. As mentioned by the authors of
the primary analysis, chromosomal mapping of the GABA A delta gene further reinforces
this conclusion. This gene was mapped to 1p36.3, an area of chromosome 1 commonly
deleted in aggressive and rapidly growing tumors (60).

The contributors to the primary analysis also isolated two factors by principal
components analysis. These factors were very similar in variable composition to those
created by our analyses. Factor 1 of our study, however, also contained GAD-1 and
GAD-2, and Factor 2 contained GABA B. In the previous study, high values of the factor
that the authors termed GAP (analogous to our Factor 2) were found to be predictive of
longer survival times. Our attempts to distinguish risk groups using Factor 2 did not
yield complementary results. Although Factor 2 was found to be significant in regression
analysis, higher levels of this factor actually predicted high risk group. Potentially the
inclusion of GABA B with its peculiar properties into Factor 2 led to this disparity in
results.

Overall, results from this study complement those of the primary analysis by
examining these data from a different perspective. The use of a different outcome

variable avoided some problems, but introduced others. Early in our analyses survival
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times by risk group were examined. Significant differences in survival time were
exhibited between the low and high risk groups, and between the intermediate and high
risk groups. Survival times for the low and intermediate risk groups, however, were very
similar. This phenomenon may be attributed to the moderately intensive and successful
treatment given to intermediate risk patients (26). Since no treatment data were
available, examination of differences in gene expression levels based solely on time to
outcome would fail to distinguish differences between low and intermediate risk
individuals. All individuals with favorable outcomes were considered together,
regardless of how intensive the treatments were to achieve these outcomes.

While our analyses enabled comparison of low and intermediate risk groups, other
problems were introduced into these analyses by using clinically derived risk groups as
the outcome variable. The current definitions of these risk groups were developed as the
International Neuroblastoma Risk Groups (INRG) in response to the need for an
improved system of prognostication that would include newly discovered predictors of
outcome in addition to age and INSS stage (47). The Children’s Oncology Group
adopted this risk stratification system to standardize treatment recommendations.
Although the currently accepted determinants of risk group include age, stage,
histopathology summary, DI, and N-myc amplification status, this classification system is
still a work in progress, and new prognostic indicators are under evaluation for their
utility in improving this system of risk prediction.

While the use of the neuroblastoma risk stratification system is currently the most
accurate system known to assess prognosis, it is certainly not a perfect predictor of true

disease outcome. Indeed, cases have been reported that were classified as high risk by
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these criteria, but were treated successfully using only basic surgical methods
recommended for low risk cases (61). Considering the heavy reliance of this system on
exact age at diagnosis, an indicator that may be dependent on many non-biological
factors, it is easy to see how discrepancies between prognosis and actual outcome may be
introduced.

Since the radically different treatment recommendations of COG depend on this
system of risk stratification, the implications of inaccurate prediction of outcome are
drastic over- or under-treatment of patients. The management of intermediate risk
patients is especially problematic. Clinical trials are underway in COG-partnered
institutions nationwide to evaluate less intensive treatment options in intermediate risk
patients, and to study other molecular characteristics of this group’s tumors. Goals of
these studies include a refinement of prognostication criteria and determination of
appropriate treatment regimes.

Classification and prediction of intermediate risk in our analyses proved
troublesome. To explore the nature of neurotrophin gene expression levels of this group,
a regression equation was generated using low and high risk cases, and used to obtain
predicted values for the intermediate group cases. The distribution of predicted values
seen for the intermediate group suggested a lack of homogeneity in this group with
respect to gene expression predictors. Perhaps our intermediate group consists of an

amalgam of cases with varying levels of true severity.

60



Limitations

Our study was somewhat limited by missing data. Various cases were missing
values for histology classifications, and others lacked gene expression levels of Trk A,
p75 or NGF. Most 4s cases had to be omitted from analyses using the three-categoried
risk status variable as the outcome due to missing DNA index data that prevented
allocation of patients into the risk groups. These missing data decreased the useable
sample size and power to detect significant differences. We were able to include many of
these cases, however, by creating dichotomous risk variables for use in some analyses.

It is unlikely that much misclassification was introduced by the assessment of
clinical prognosticators by the study’s various constituent institutions. The
determinations of N-myc amplification status and INSS stage are standardized. Tumor
histology is subject to slightly more individual judgment, however all questionable cases
were reviewed by Dr. Shimada at the Children’s Hospital of Los Angeles.

Perhaps the most significant limitation hampering our study was the possible, but
unknown, discrepancy between assigned risk group and actual risk posed by the
malignancies. As mentioned earlier, the currently used COG risk group stratification
system is a decidedly imperfect method with demonstrated shortcomings. While cases
may have been accurately classified into risk group according to this system, they may
actually have been misclassified in terms of true risk. This “misclassification” would
have weakened associations between gene expression levels and outcome.

Assigning individuals to risk groups based on clinical prognosticators is also
problematic in that it fails to allow the examination of the changes in gene expression

occurring over the course of disease. It is likely that within the subgroups of low,
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moderate, and high severity, fluctuations in gene expressions occur as the tumors grow,
recede, or mature. Locking individuals into risk groups does not enable the study of
these dynamics. To examine the changes in gene expression over time we should
abandon the use of clinical prognosticators, and focus solely on gene expression levels

and clinical outcomes adjusted for treatment.

Indications for future studies

Considering the disagreement between the current “gold standard” of
neuroblastoma tumor risk assessment by the COG grouping system and true risk posed
by tumors, a broad goal of future studies should continue to be improving disease
prognostication. New technologies continue to increase the accuracy and ease in which
gene expression levels can be determined. Ideally, studies should employ these
technologies to develop models of tumor behavior based solely on neurotrophin gene
expression levels to predict outcome in newly diagnosed cases. To develop these models
it will be necessary to determine the patterns and changes in gene expression levels over
time within the various strata of disease severity. The exclusion of currently used clinical
prognosticators from future gene studies will be an important consideration in creating
these models.

A prospective study involving COG-partnered institutions nationwide should be
initiated. As with our study, tumor tissue should be excised and submitted for genetic
studies to determine expression levels of neurotrophin genes. These genes should include
the GABA family genes we examined, Trk A, B, and C, and p75. Vigilant follow-up of

patients will be a critical step to ensuring the study’s success. Remission times and dates
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of disease progression and death will be necessary to create a measure of outcome.
Complete and detailed treatment information should also be collected for outcome
adjustment. In addition, tumors not completely excised at the time of diagnosis could
continue to have aspirates taken over time. These additional samples might enable
examination of the changes in gene expression levels as tumors progress either treated or
untreated. To minimize bias that might be introduced by researchers’ knowledge of
assigned risk group, no clinical prognostication variables should be included into the data
set. Since outcome requires adjusting by treatment, and risk group generally decides the
treatment option, it may not be possible to truly “blind” researchers to traditional risk
assessment. Nonetheless, efforts should be taken to avoid bias by original risk
assignment, and to focus on drawing associations between neurotrophin gene expression
levels and outcome. Ideally, these associations could be used to develop models of the
continuums of various gene expression levels for malignancies corresponding to varying

levels of severity.

Significance

Further knowledge of the role of neurotrophins and their receptors in the diverse
clinical courses exhibited by neuroblastoma could lead to the discovery of novel
prognosticators and an improved system of risk stratification. Consequently, more
accurate predictions of disease outcome would decrease under- and over-treatment of
neuroblastoma, thereby lowering mortality rates and decreasing unnecessary morbidity.
In addition, an understanding of the biology underlying neuroblastoma may lead to

specific, targeted approaches to therapy, further decreasing treatment-associated
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morbidity. Many drugs are currently prescribed (the benzodiazepines, for instance), that
function through interactions with the GABA receptors. Advances in the understanding
of GABA involvement in neuroblastoma may reveal clinical utility of similar drugs in the

treatment of subsets of this disease.

Conclusion

Through various statistical analyses we identified associations between the
expression levels of a few neurotrophin receptor genes and neuroblastoma risk group.
These genes included members of the GABA and Trk families. Although our results
suggest that these gene expression levels may be used to predict tumor outcome,
extensive future studies are needed to explore changes in gene expression over time
within subsets of tumors, and to distinguish between different groups of malignancies
leading to distinct outcomes. Implications of further understanding the behavior of
neurotrophin-associated genes in neuroblastomas include an improved system of

prognostication, targeted therapies, and decreased morbidity and mortality.
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Appendix A

Children’s Oncology Group (COG) affiliated United States institutions
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State City

SRRBEE

Birmingham
Mobile

Little Rock
Phoenix
Tucson
Downey
Duarte

Loma Linda
Long Beach
Los Angeles
Los Angeles
Los Angeles
Madera
Oakland
Orange
Orange

Palo Alto
Sacramento
Sacramento
San Diego
San Francisco
San Francisco
Santa Barbara
Colorado Springs
Denver
Hartford

New Haven
Washington
Washington
Wilmington
Ft. Lauderdale
Ft. Myers
Gainesville
Hollywood
Jacksonville
Miami
Miami

Miami
Orlando
Orlando

Institution

University of Alabama

University of South Alabama

University of Arkansas

Phoenix Childrens Hospital

University of Arizona Health Sciences Center
Southern California Permanente Medical Group
City of Hope National Medical Center

Loma Linda University Medical Center

Miller Children's Hospital/Harbor-UCLA
Cedars-Sinai Medical Center

Childrens Hospital Los Angeles

UCLA School of Medicine

Children's Hospital Central California
Childrens Hospital Oakland

Childrens Hospital of Orange County
University of California, Irvine

Stanford University Medical Center

Kaiser Permanente Medical Group, Inc., Northern CA
University of California, Davis

Children's Hospital San Diego

UCSF School of Medicine

Sutter Medical Center, Sacramento

Santa Barbara Cottage Children's Hospital
Presbyterian/St Lukes Medical Center and CHOA
The Children's Hospital - Denver, CO
Connecticut Children's Medical Center

Yale University School of Medicine

Children's National Medical Center - D.C,
Georgetown University Medical Center
Christiana Care Health Services/A.L duPont Inst.
Broward General Medical Center

The Children's Hospital of Southwest Florida Lee Memorial Health Sy

University of Florida

Joe DiMaggio Children's Hospital at Memorial
Nemours Children's Clinic-Jacksonville
Baptist Hospital of Miami

Miami Children's Hospital

University of Miami School of Medicine
Florida Hospital Cancer Institute

Nemours Children's Clinic-Orlando
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Children’s Oncology Group (COG) affiliated United States institutions

State City Institution
41 FL Pensacola Sacred Heart Hospital
42 FL  St. Petersburg All Children’s Hospital
43 FL Tampa Tampa Children's Hospital
44 FL West Palm Beach St. Mary's Hospital
45 GA Atlanta Children's Healthcare of Atlanta at Scottish Rite
46 GA Augusta Medical College of Georgia Childrens Medical Ctr
47 GA Savannah Memorial Medical Center/Backus Children's Hospital
48 HI Honolulu Cancer Research Center of Hawaii
49 TA Des Moines Raymond Blank Children's Hospital
50 TIA Towa City University of Iowa Hospitals & Clinics
51 ID Boise Mountain States Tumor Institute
52 IL  Chicago Children's Memorial Medical Center at Chicago
53 IL Chicago Rush-Presbyterian St. Luke's Medical Center
54 IL Chicago University of Chicago Medical Center
55 IL  Chicago University of Illinois
56 IL Maywood Loyola University Medical Center
57 IL OakLawn Advocate Hope Children's Hospital
58 IL Park Ridge Lutheran General Childrens Medical Center
59 IL Peoria St. Jude Midwest Affiliate
60 IL Springfield Southern Illinois University School of Medicine
61 IN Indianapolis Indiana University - Riley Childrens Hospital
62 IN Indianapolis St. Vincent Children's Hospital - Indiana
63 KS Kansas City University of Kansas Medical Center
64 KS Wichita Via Christi Regional Medical Center
65 KS Wichita Wesley Medical Center
66 KS Wichita Wichita CCOP
67 KY Lexington A.B. Chandler Medical Ctr - University of Kentucky
68 KY Louisville Kosair Childrens Hospital
69 LA New Orleans Children'’s of New Orleans/I.SUMC CCOP
70 LA New Orleans Ochsner Clinic
71 LA New Orleans Tulane University Medical Center
72 MA Boston Boston Floating Hospital for Infants & Children
73 MA Boston Dana-Farber Cancer Institute and Children's Hospital, Boston
74 MA Boston Massachusetts General Hospital
75 MA Springfield Baystate Medical Center
76 MA Worcester University of Massachusetts Medical School
77 MD Baltimore Johns Hopkins Hospital
78 MD Baltimore Sinai Hospital of Baltimore
79 MD Baltimore University of Maryland at Baltimore
80 MD Bethesda National Cancer Institute - Pediatric Branch
81 ME Bangor Eastern Maine Medical Center
82 ME Scarborough Maine Children's Cancer Program
83 MI Ann Arbor C.S. Mott Children's Hospital
84 MI Detroit Children's Hospital of Michigan
85 MI East Lansing Michigan State University
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Children’s Oncology Group (COG) affiliated United States institutions

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

State City

MI
MI
MI
MI
MI
MN
MN
MN
MO
MO
MO
MO
MS
MS
MS
MS
MS
MS
NC
NC
NC
NC
NC
NC
NC
ND
NE
NE
NH
NJ
NJ
NJ
NJ
NJ
NJ
NJ
NM
NV
NY
NY
NY
NY
NY
NY
NY

Flint
Grand Rapids

Gross Pointe Woods

Kalamazoo
Royal Oak
Minneapolis
Minneapolis
Rochester
Columbia
Kansas City
St. Louis

St. Louis
Jackson
Keesler AFB
Keesler AFB
Keesler AFB
Keesler AFB
Keesler AFB
Asheville
Chapel Hill
Charlotte
Charlotte
Durham
Greenville
Winston-Salem
Fargo
Omaha
Omaha
Lebanon
Hackensack
Livingston
Morristown
New Brunswick
New Brunswick
Newark
Paterson
Albuquerque
Las Vegas
Albany
Bronx
Brooklyn
Brooklyn
Brooklyn
Brooklyn
Buffalo

Institution

Hurley Medical Center

DeVos Children's Hospital

St John Hospital and Medical Center
Kalamazoo Center for Medical Studies
William Beaumont Hospital

Childrens Hospital & Clinics

University of Minnesota Cancer Center

Mayo Clinic and Foundation

University of Missouri - Columbia

The Childrens Mercy Hospital

Cardinal Glennon Children's Hospital
Washington University Medical Center
University of Mississippi Medical Center Children’s Hospital
Madigan Army Medical Center (USOC)
Tripler Army Medical Center (USOC)

United States Air Force Med Ctr, Keesler AT (USOC)
Walter Reed Army Medical Center (USOC)
Naval Medical Center/Portsmouth (USOC)
Mission Hospitals

University of North Carolina at Chapel Hill
Carolinas Medical Center

Presbyterian Hospital

Duke University Medical Center

East Carolina University School of Medicine
Wake Forest University School of Medicine
MeritCare Hospital

Childrens Memorial Hospital of Omaha
University of Nebraska Medical Center
Dartmouth-Hitchcock Medical Center
Hackensack University Medical Center

Saint Barnabas Medical Center

Atlantic Health System

University of Medicine and Dentistry of New Jersey
Saint Peter's University Hospital

Newark Beth Israel Medical Center

St. Joseph's Hospital and Medical Center
University of New Mexico School of Medicine
Sunrise Childrens Hospital, Sunrise Hosp & Med Ctr
Albany Medical Center

Montefiore Medical Center

Brookdale Hospital Medical Center

Brooklyn Hospital Center

Maimonides Medical Center

SUNY Health Science Center at Brooklyn
Roswell Park Cancer Institute
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Children’s Oncology Group (COG) affiliated United States institutions

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

State City

NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
OH
OH
OH
OH
OH
OH
OH
OH
OH
OK
OK
OR
OR
PA
PA
PA
PA
PA
PR
RI
SC
SC
SC
SD
TN
TN
TN
TN
TN
TX
TX
TX
X
TX

Mineola
New Hyde Park
New York
New York
New York
New York
New York
Rochester
Stony Brook
Syracuse
Valhalla
Akron
Cincinnati
Cleveland
Cleveland
Columbus
Dayton
Toledo
Toledo
Youngstown
Oklahoma City
Tulsa
Portland
Portland
Danville
Hershey
Philadelphia
Philadelphia
Pittsburgh
Santurce
Providence
Charleston
Columbia
Greenville
Sioux Falls
Chattanooga
Johnson City
Knoxville
Memphis
Nashville
Amarillo
Austin
Corpus Christi
Dallas
Dallas

Institution

Winthrop University Hospital

Schneider Children's Hospital

Columbia Presbyterian College of Phys & Surgeons
Memorial Sloan Kettering Cancer Center

Mount Sinai Medical Center

New York Hospital-Comell Univ Medical Center
New York University Medical Center

University of Rochester Medical Center

State University of New York at Stony Brook
State University of New York Upstate Medical University
New York Medical College

Childrens Hospital Medical Center-Akron, Ohio
Childrens Hospital Medical Center Cincinnati
Rainbow Babies and Childrens Hospital

The Children's Hospital at The Cleveland Clinic
Childrens Hospital of Columbus

Children's Medical Center Dayton

Mercy Children's Hospital

Toledo Children's Hospital

Western Reserve Care System - Tod Childrens Hosp
University of Oklahoma Health Sciences Center
Warren Clinic, Inc

Doernbecher Childrens Hospital - Oregon HSU
Emanuel Hospital-Health Center

Geisinger Medical Center

Penn State Children's Hospital, Hershey Med Ctr
Childrens Hospital of Philadelphia

St. Christopher's Hospital for Children

Children's Hospital of Pittsburgh

San Jorge Children's Hospital

Rhode Island Hospital

Medical University of South Carolina

South Carolina Cancer Center

Children's Hospital of the Greenville Hospital System
Sioux Valley Children's Specialty Clinics

T.C. Thompson Children's Hospital

East Tennessee State University

East Tennessee Childrens Hospital

St. Jude Children's Research Hospital Memphis
Vanderbilt Children's Hospital

Texas Tech UHSC - Amarillo

Children's Hospital of Austin

Driscoll Children's Hospital

North Texas Hosp for Children at Med City Dallas
University of Texas Southwestern Medical School
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Children’s Oncology Group (COG) affiliated United States institutions

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

State City

TX
TX
X
TX
TX
TX
X
TX
X
UT
VA
VA
VA
VA

Fort Worth
Galveston
Houston
Houston
Lackland AFB
Lubbock

San Antonio
San Antonio
Temple

Salt Lake City
Charlottesville
Fairfax
Norfolk
Richmond
Roanoke
Burlington
Seattle
Spokane
Tacoma
Green Bay

La Crosse
Madison
Marshfield
Milwaukee
Charleston
Huntington
Morgantown

Institution

Cook Children's Medical Center

University of Texas Medical Branch

M.D. Anderson Cancer Center

Texas Children's Cancer Center at Baylor College of Medicine
San Antonio Military Pediatric Cancer & Blood Disorders Center
Children's Hem/Onc Team @ Covenant Children's Hosp
Southwest Texas Methodist Hospital

University of Texas Health Science Center at San Antonio
Scott & White Memorial Hospital

Primary Childrens Medical Center

University of Virginia Health Sciences Center

Inova Fairfax Hospital

Childrens Hospital-King's Daughters

Virginia Commonwealth Univ Health System - MCV

Carilion Medical Center for Children at Roanoke Community Hospital

University of Vermont College of Medicine
Children's Hospital and Regional Medical Center
Sacred Heart Children's Hospital

Mary Bridge Hospital

St. Vincent Hospital

Gundersen Lutheran

University of Wisconsin - Childrens Hosp Madison
Marshfield Clinic

Midwest Children's Cancer Center

West Virginia University HSC - Charleston
Cabell Huntington Hospital

West Virginia University HSC - Morgantown
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Appendix B

Correlations of gene expression variables by Spearman’s rho

Log GABA A|Log GABA A| Log GABA A | Log GABA A
Log Trk A Log NGF
= Legors o9 alpha 1 alpha 2 alpha 3 alpha 5
Log Trk A 1.00 0.54 0.29 0.02 0.03 0.00 -0.14
Log p75 0.54 1.00 0.54 0.03 0.21 0.03 -0.02
Log NGF 0.29 0.54 1.00 0.05 0.41 0.16 0.04
LOHBABAAY 4 g -0.03 0.05 1.00 0.22 0.57 -0.08
alpha 1
Log GABAAY (43 0.21 0.41 0.22 1.00 0.20 -0.02
alpha 2
Log GABAAL 400 0.03 0.16 0.57 0.20 1.00 0.10
alpha 3
Log GABA A HESCEE -0.02 0.04 0.03 0.02 0.10 1.00
alpha 5
Log GABAAY 46 -0.06 -0.05 0.65 0.11 0.51 -0.10
alpha 6
Log GABAAL g 56 0.28 0.38 017 0.57 0.28 0.17
beta 1
Leg GABA AN  oa 0.05 0.28 0.23 0.45 0.12 0.13
beta 2
Log GABAAY 444 0.22 0.34 0.25 0.43 0.30 0.11
beta 3
Log GABAAY 4 59 0.06 0.16 0.34 0.34 0.13 0.24
gamma 2
Log GABA A [EERH 0.12 0.15 0.55 0.07 0.37 0.10
delta
lea eABAAY S50 0.08 0.17 0.78 0.18 0.59 0.03
epsilon
Log GABA A |EuSe -0.04 0.04 0.76 0.06 0.46 0.00
pl
Log GABAAY 447 0.13 0.18 0.74 0.14 0.51 0.05
theta
LogGABAB]  0.02 0.20 0.43 0.05 0.44 0.22 0.18
Log GAD-1 | -0.08 -0.08 -0.01 0.81 0.15 0.57 -0.01
LogGAD-2 | 002 0.10 -0.08 0.75 0.01 0.49 0.03
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Correlations of gene expression variables by Spearman’s rho

Log GABA A| Log GABA A| Log GABA A| Log GABA A| Log GABA A| Log GABA A| Log GABA A
alpha 6 beta 1 beta 2 beta 3 gamma 2 delta epsilon
Log Trk A 0.06 0.26 0.01 0.30 0.20 0.17 0.03
Log p75 -0.06 0.28 0.05 0.22 0.06 0.12 0.08
Log NGF -0.05 0.38 0.28 0.34 0.16 0.15 0.17
Log GABAAL g5 0.17 0.23 0.25 0.34 0.55 0.78
alpha 1
Log GABAAL ¢ 44 057 0.45 0.43 0.34 0.07 0.18
alpha 2
Log GABA A 0.51 0.28 0.12 0.30 0.13 0.37 0.59
alpha 3
L BABAAL g 0.17 0.13 0.11 -0.24 -0.10 -0.03
alpha 5
Log GABAAL 4 o 0.06 0.01 0.11 0.20 0.37 0.54
alpha 6
FRUGABAAY e 1.00 0.38 0.58 0.23 0.21 0.22
beta 1
Log GABAAL 4 0.38 1.00 0.37 0.34 0.08 0.04
beta 2
Log GABAAY 4 44 0.58 0.37 1.00 0.34 0.27 0.23
beta 3
Log GABA A SRuNEES 0.23 0.34 0.34 1.00 0.15 0.19
gamma 2
Lo GABA A SRR 0.21 0.08 0.27 0.15 1.00 0.68
delta
Log GABAAL o4 0.22 0.04 0.23 0.19 0.68 1.00
epsilon
Log GABAAL 4 60 0.11 0.02 0.27 0.18 0.58 0.76
pi
Log GABAAL 4 45 0.25 0.06 0.26 0.17 0.70 0.85
theta
Log GABAB|  -0.11 0.50 0.37 0.55 0.20 0.03 0.0
LogGAD-1 | 0.68 0.14 0.01 0.17 0.22 0.49 0.81
LogGAD-2 | 0.6 0.06 -0.06 0.08 0.21 0.46 0.74
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Correlations of gene expression variables by Spearman’s rho

Log GABA | Log GABA | Log GABA Log Log
A pi A theta B GAD-1 GAD-2
Log Trk A 0.16 0.07 0.02 -0.08 0.02
Log p75 -0.04 0.13 0.20 -0.08 0.10
Log NGF 0.04 0.18 0.43 -0.01 -0.08
LEGERE, {13 0.76 0.74 -0.05 0.81 0.75
alpha 1
(g GREAA 0.06 0.14 0.44 0.15 0.01
alpha 2
Log GABA A 0.46 0.51 0.22 0.57 0.49
alpha 3
Log GABA A 0.00 0.05 0.18 -0.01 -0.03
alpha 5
Liog GAL AR 0.62 0.45 -0.11 0.68 0.66
alpha 6
Leg GABA A 0.11 0.25 0.50 0.14 0.06
beta 1
Log GABA A 0.02 0.06 0.37 0.01 -0.06
beta 2
Log GABA A 0.27 0.26 0.55 0.17 0.08
beta 3
Log Gl 0.18 0.17 0.20 0.22 0.21
gamma 2
Leg GAEAA 0.58 0.70 0.03 0.49 0.46
delta
Log GABA A REEEEES 0.85 0.05 0.81 0.74
epsilon
Lo SHERA 1.00 0.70 -0.08 0.78 0.77
pl
Log GABA A 0.70 1.00 0.04 0.71 0.66
theta
Log GABABJ  -0.08 0.04 1.00 -0.06 015
Log GAD-1 0.78 0.71 0.06 1.00 0.86
Log GAD-2 0.77 0.66 -0.15 0.86 1.00
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