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Thesis Advisor: Dr. John Launchbury 

In an effort to improve microprocessor performance, each generation of a micropro- 

cessor family's instruction-set architecture is typically extended with new features. For 

example, many modern microprocessors now support parallelism annotations, predication, 

speculative memory access, and SIMD-based multimedia instructions. These extensions 

allow a compiler or programmer to directly express instruction-level parallelism that is 

difficult for the microprocessor to find alone. 

This dissertation focuses on the modeling and formal verification of microprocessor 

designs with instruction-set extensions. Inspired by ARM and IA-64, we develop sev- 

eral elementary instruction-set architectures that employ extensions. We also construct 

microarchitectural implementation of the instruction sets. 

The specification and microarchitectural model in this dissertation are represented in 

a novel way: as the composition of functions between transition systems. We call these 

functions transition system transformers. In isolation, transformers can be used to model 

instruction-set extensions. Together, they can be used to model an entire machine. 



This dissertation demonstrates that the extra structure available in transformer-based 

specifications and models can be used to help decompose a proof that the model imple- 

ments a specification. We develop several proof strategies that make use of the transformer 

structure in this way. The contribution of this dissertation is the modeling and verification 

method that facilitates the decomposition of microarchitectural correctness proofs using 

instruction-set extensions. 



Chapter 1 

Introduction 

Formal verification is the discipline of proving, with mathematics and logic, that a formal 

representation of a design is correct with respect to a specification. Formal microarchitec- 

ture verification, or formal processor verification, is the application of formal verification to 

a microarchitectural design. In recent years, a number of researchers have focused their at- 

tention on the verification of out-of-order microarchitectures, developing special techniques 

that use the structure inherent in these designs. This research has been fruitful-numerous 

papers have reported on the formal verification of relatively sophisticated microarchitec- 

tural models-and the proof techniques developed in this research are now being applied 

in industry. 

However, while the research on formal verification has been directed at out-of-order 

machines, microprocessor designers have been experimenting with techniques that go be- 

yond out-of-order execution. Architects are now adding constructs to the instruction-sets 

of their microprocessors that allow the programmer or compiler to explicitly declare op- 

timizations. For example, a programmer can use VLIW-style parallelism annotations 

[22, 48, 61, 621 to specify a set of instructions that can be safely executed in parallel. 

A compiler can implement conditional codes with predication [5, 381 rather than branch 

instructions. A programmer can use a speculative load instruction [22, 391 rather than 

wait for a traditional load instruction to complete. When writing multimedia algorithms, 

a programmer can use SIMD-based multimedia extensions [14, 27, 28, 591. 

These instruction-set extensions can potentially affect the way in which microproces- 

sors are formally verified. For example: 



Instruction-set extensions provide a larger interface to the microprocessor, and there- 

fore there are more ways in which instructions can interact within the microprocessor. 

This makes some verification techniques less tractable, particularly if they are based 

on executing the microarchitectural model on input vectors. 

Instruction-set extensions provide structure that can potentially be exploited during 

the correctness proof. That is, although the instruction-set is more complicated, it 

is closer to the microarchitectural design than has traditionally been true. 

In this dissertation we pursue the second point. We introduce a method of model- 

ing instruction-set extensions that facilitates their modular design. This method is based 

on the use of higher-order functions. We then develop several strategies for proving the 

correctness of a microprocessor model that implements instruction-set extensions. The 

first is a simple decomposition rule that can be used to break a proof obligation down 

into several proof obligations. The second rule can be used to simplify the overall proof 

by eliminating an obligation. We demonstrate, by example, how these two strategies can 

be used to decompose and simplify a microarchitectural correctness proof. The focus of 

this dissertation is on the development of the theory, and the application of the theory 

to decomposition. Therefore, rather than focusing on the proof of the example microar- 

chitecture, on several occasions we either provide a proof outline or refer the reader to 

an algorithmic technique which has been successfully applied in the literature to prove a 

similar property. 

The thesis presented in this dissertation is that higher-order functions facilitate both 

the design of architectural extensions and the proofs of their correctness. The key contri- 

butions of this dissertation are: 

a modeling method based on higher-order functions for extended instruction-sets 

and their microarchitectural designs; 

a decomposition proof strategy that leverages the proposed modeling method and 



a simplification strategy which can be applied to proof obligations left by the decom- 

position strategy. This is the result of an application of the theory of Parametric- 

ity [54, 661. 

It should be noted that we will be making an important distinction not usually made in 

the literature on formal microarchitectural verification. We will use two languages when 

describing models and performing formal reasoning. The first language is a mathematical 

notation with a higher-order logic flavor. The second language is a restricted polymorphic 

functional programming notation. The functional notation's semantics are quite basic and 

support only bounded recursion with a set theoretic semantics. The literature typically 

blurs the distinction between the design language and the language in which reasoning is 

performed. The advantage to making this distinction will be made clear later. 

1.1 Dissertation Synopsis 

The remainder of this dissertation is organized as follows: 

Chapter 2: Instruction-set extensions 

In Chapter 2 we describe the microarchitectural concepts behind out-of-order and VLIW 

microprocessors and contrast them with the ideas underlying some common instruction- 

set extensions. We introduce two extended instruction-sets, which we call the Washington 

Architecture (WA) and the Oregon Architecture (OA). These architectures exhibit several 

of the common instruction-set extensions. 

Chapter 3: Formal microarchitecture specification and verification 

We survey the existing research on the formal modeling of microprocessors, their cor- 

rectness criteria, and the techniques used to prove their correctness. The definitions and 

techniques developed in this chapter become the foundation from which we construct our 

new modeling and proof techniques. 



Chapter 4: Modeling with transformers 

We introduce a modeling technique based on the composition of a class of functions we 

call transition system transformers. Using these transformers, we develop a formal speci- 

fication of the Oregon and Washington architectures, and microarchitectural designs that 

implement them. These microarchitectural designs draw influence from the 21264 [25], 

StrongARM [37], and the Itanium 135, 58, 18, 22, 26, 29, 47, 611. 

Chapter 5: Proof with transformers 

Chapter 5 develops several proof strategies that can be applied to correctness proofs of 

specifications and models that have been represented using transition system transform- 

ers. That is, if both the specification and the model are formed as the composition of 

transformers, this chapter provides applicable proof rules. 

Chapter 6: Applying the theory of transformers 

We apply the techniques from Chapters 3 and 5 to a decomposition of a proof that a 

microarchitectural design from Chapter 4 is correct. 

Chapter 7: Conclusion 

In the final chapter we conclude with a discussion of the strengths and weaknesses of the 

approach advocated in this dissertation, and discuss several leads for future research. 



Chapter 2 

Instruct ion-set extensions 

In this chapter we introduce a number of concepts from out-of-order and VLIW micro- 

processor design. We then develop a simple predicated RISC instruction set called the 

Washington Architecture (WA) and an extended second-generation VLIW instruction-set, 

called the Oregon Architecture (OA) and explain how microarchitectural implementations 

of the instruction-sets might relate to their out-of-order and VLIW counterparts. OA and 

WA are used as examples throughout the dissertation. 

2.1 Microarchitectures and microprocessors 

The programmer's view of a microprocessor is typically a simple one. The programmer sees 

only the machine's visible state (the register-file, memory, etc.) and how each instruction 

effects that state. The programmer's view is often called the instruction-set architecture 

(ISA) and is typically represented as the conceptually simplest machine possible that 

implements the intention of the designer. The states that are reachable by the ISA are 

generally called the ISA states. 

The microarchitect's perspective of a microprocessor, in contrast, is much richer. Per- 

formance goals force the microarchitect to design with techniques such as pipelining, 

buffering, speculative execution, and out-of-order and superscalar execution. We refer 

to the microarchitectural design as the implementation; and the reachable states of the 

microarchitectural model the implementation states. From this point forward, we will 

use the term out-of-order to refer to designs that mix techniques such as superscalar, 

out-of-order and speculative execution. 



The tricks used in these out-of-order designs typically include techniques such as fetch- 

ing and executing multiple instructions per cycle, issuing instructions based on resources 

rather than their position within a program, and the removal of false register dependencies 

with on-the-fly register renaming. 

The basis for many of these high-performance techniques is the existence of paral- 

lelism between machine instructions. As an illustration of this parallelism, consider the 

program fragment in Figure 2.1 which implements the factorial function in a stylized RISC 

instruction-set. If we assume that the "branch if not equal to zero" instruction (beqz) in 

the figure is not taken for some time, (this is the sort of assumption that a microprocessor's 

branch predictor will often make) we can unfold the loop formed from instructions 103 to 

106 and construct a data dependency graph like the one found in Figure 2.2. In this graph, 

an arrow is drawn between two instructions if they form a read-after-write dependency. 

If there is no path between two instructions, they are not dependent. Notice also that in 

the dependency graph we have labeled each instruction in the unfolding, beginning with 

i O .  Every instruction is labeled in the order that it should be fetched. 

High-performance microprocessors often maintain graphs like these in hardware. Using 

the analysis exhibited in this type of graph, a microprocessor might determine that it is 

possible to issue instruction i 4  into to an execution unit before instruction i3. In other 

words, the instructions can be executed out of program order; which is called out-of-order 

execution. The microprocessor might also choose to evaluate them in parallel (called 

superscalar execution). Because the value being placed into r 2  by instruction i 2  is not 

the same as the value of r 2  from instruction i 5 ,  the microprocessor could also replace the 

references to these registers with references to the labels of instructions which compute 

their values (see Figure 2.3). This is called register renaming. 

The design of out-of-order microarchitectures is further complicated by the possibility 

of internal exceptions and external interrupts. For example, if an out-of-order micropro- 

cessor executes instruction i1 before instruction i O ,  and the execution of instruction i O  

raises an internal exception, the processor could potentially be in a state where the register 

r I  is set to 1 and the exception has been raised-which is a state that is not reachable by 

the ISA. To avoid these situations, high-performance microprocessors typically maintain 



101: r 2  t load 400 
102: r1 t 1 
103: beqz r 2  107 
104: r 2  t r 2  - 1 
105: r1 t r1 * r 2  
106: jump 103 
107: s t o r e  401 rl 

Figure 2.1: Factorial function in a RISC instruction-set 

iO) 1-2 c load 400 i1)  r1 t 1 

i2 )  beqz 1-2 i3 )  r 2  t r 2  - 1 i4) r l  t r l  * r 2  

i5)  beqz r 2  i6 )  r 2  t r 2  - 1 i7)  rl t rl * r 2  

i8) beqz r 2  i9 )  r 2  t r 2  - 1 i10) r1 t rl * r 2  

i l l )  beqz r 2  i12) r 2  t r 2  - 1 i13) rl t rl  + r 2  

Figure 2.2: Data dependency graph of the factorial function in Figure 2.1 

enough information so that they can place themselves back into a reachable ISA state in 

the event of an exception or interrupt. 

2.1.1 An example of out-of-order design: the Intel P6 microarchitecture 

Intel's P6 microarchitecture [24]-which underlies the Pentium Pro, Pentium I1 and Pen- 

tium I11 microprocessors-implements out-of-order execution using the following microar- 

chitectural components: a reorder buffer maintains a finite region of the program's de- 

pendency graph; the reservation stations maintain the portion of the reorder buffer that 

remains to be computed; the execution uni ts  compute, in parallel, the destination values 



i O )  r 2  t load 400 il) r1 t 1 

i2 )  beqz i O  i3)  r 2  c i O  - 1 i4)  r1 t i l *  i O  

i 5 )  beqz i3  i6)  r 2  c i3  - 1 i7)  r l  c i 4  c i 3  

i8 )  beqz i 6  i9 )  r 2  c i 6  - 1 i l O )  rl t i 7  * i 6  

ill) beqz i 9  i12) r 2  t i 9  - 1 i13) r1 t- i l 0  * i 9  

Figure 2.3: Data dependency graph from Figure 2.2 with source references renamed 

for the instructions in the reservation stations; and the register-file represents the current- 

ISA state. 

To demonstrate how the P6 works, we can partially execute the encoding of the facto- 

rial function from Figure 2.1 in a mock P6-like machine. We begin with an empty reorder 

buffer, empty reservation stations, and a program counter (pc) pointing to instruction 

reorder buffer 

i0 

i I 

i 2 

i3 

i4 

i5 

i6 

i7 

reservation stations 

so 

sl 

s2 

s3 

s4 

s5 

s6 

s7 

execution units 

iu2 

We will assume that the mock machine can fetch up to three instructions per cycle. 

Therefore, on the first cycle, we insert instructions 101, 102 and 103 into the machine. 

The internal representation of the beqz instruction is pc t r2=0?107: 104 , which should 

be interpreted as "if r 2  equals 0 then set the program counter to 107, otherwise set it to 

104." In the next state below, notice how the reorder buffer constructs the active region of 



the data dependency graph: as instructions are loaded into the buffer, register references 

are replaced with pointers into the graph. In this case, r2  is replaced with iO. Note that 

the reorder buffer locations are the same as the instruction labels in Figure 2.3. 

reservation stations 

so 
s l  

s2 

s 3  

s4 

s5  

s6 
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reorder buffer 

execution units 

iu2 

The reorder buffer is designed as a circular queue: the symbol a is used to represent 

104 

i O  

il 

o i 2  

i 3  

i 4  

i 5  

i 6  

i 7  

the front of queue, and o represents the end. The third column in the reorder buffer is 

r 2  + load 400 

rl + 1 

PC + i0=0?107:104 

used to store branch predictions. In the above state, the machine has guessed that the 

result of i 2  will eventually resolve to 104. When retiring instruction i2,  if the machine 

discovers a misprediction, it will bring itself into a corrected state by clearing the reorder 

buffer, registration stations, and execution units; and saving the value of i 2  to location 

pc in the register-file. 

On the next cycle, we can simultaneously load instructions 104, 105 and 106 and begin 

to execute instructions i O  and il: 

I reorder buffer 
I reservation stations I 

execution units 

iu2 

The P6 implements in-order write back, meaning that the results of instructions are 

written back to the register file in program order. This policy ensures that the register file 

is always in an ISA state, maintaining the programmer's illusion of sequential execution. 



For example, in the state above the execution of instruction i1 is complete (the value it 

is computing for its destination register is known). However, we cannot yet safely write 

its value to the register-file until we know that executing instruction i O  has not caused an 

exception. 

We will assume, on the next cycle, that the load instruction is complete. We can 

therefore write the values of instructions i O  and ii to the register file and remove them 

from the reorder buffer. With the value of i O  known, we can also issue instructions i3,  

i4,  and i 5  into the integer execution units: 

reorder buffer 

This demonstration highlights how the P6 finds parallelism between instructions in a 

reservation stations 

sequential program. For example, it found the parallelism between instructions i O  and 

104 

103 

104 

i 0  

i l  

a i 2  

i 3  

i 4  

i 5  

i 6  

i 7  

o i 8  

SO 

s l  

s2  

s 3  

s4 
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s6 

s7 

i1, and between i2 ,  i3 ,  and i4. Recall the program dependency graph in Figure 2.3. In 

pc t ? 

r2 t ? 

r l  t ? 

pc t 1 0 3  

pc t i3=0?107:104 

r l  t i 4  * i 3  

r2 t i 3  - 1 

i 3  6 ? 

i 2  +- ? 

i 4  e ? 

the current state, the machine has traversed halfway down the graph: 

i O )  r 2  + load 400 il) rl +- 1 

i2) beqz i O  i3) r 2  t i O  - 1 i4)  ri t i l *  i O  

i5)  beqz i 3  i6)  r 2  t i 3  - 1 i7) r l  t i 4  * i 3  

The machine has computed and retired the first row of the graph: 

iO) r 2  c load 400 i1) ri c 1 



it is currently executing the second row of the graph: 

i2)  beqz i O  i3 )  r 2  t i O  - 1 i4)  r l  t i l *  i O  

and it has fetched the third row of the graph: 

i5) beqz i 3  i6)  r 2  t i 3  - 1 i7) r1 t i 4  * i 3  

2.2 Techniques for making a microprocessor's data depen- 

dency graph explicit 

Unfortunately, P6-style connected graph structures can lead to large and complex micro- 

processors. Graph based machines, such as the P6, are difficult to design and debug, and 

typically have long critical paths, which inhibit faster clock speeds. In response to this, 

microprocessor companies have, over the years, experimented with VLIW machines, which 

do not suffer these weaknesses. 

Like the P6, VLIW machines typically fetch multiple instructions on each cycle. These 

groups of instructions are sometimes called packets. Unlike the P6, VLIW machines do 

not provide reorder buffers or reservation stations. Instead, their hardware is typically a 

simple vector of execution units with a register file. The programmer or compiler must 

then know the latencies of the execution units of the particular machine and schedule the 

instructions appropriately. 

For example, assume that memory instructions have a one cycle latency, multiplications 

have a three cycle latency, and that branches have no latency, Also, assume each packet 

has the following format: 

fp ; mem ; i n t o  ; i n t i  ; i n t 2  



101: nop ; r 2  t load 400 ; rl  t 1 ; noP ; nap 
102: nop ; nop ; noP ; nap ; nop 
103: nop ; nop ; beqz r 2  105 ; nop ; noP 
104: nop ; nop ; r 2  t r 2  - 1 ; r1 t rl * r2 ; jump 103 

105: nop ; s t o r e  401 r1 ; nop ; noP ; nap 

Figure 2.4: VLIW factorial function 

where f p  is a floating point instruction, mem is a memory operation and i n t o  through i n t 2  

are integer instructions. Figure 2.4 contains a VLIW source fragment for the factorial 

function. We use the nop instruction to separate dependent instructions sufficiently so 

that the latencies of the execution units do not cause incorrect results. A VLIW compiler 

or programmer must perform considerable analysis to build this program fragment, but 

the hardware that executes it is simple. 

For example, we can run a VLIW machine on the program fragment in Figure 2.4. We 

begin execution with an empty machine: 

execution units 

iu2 

On the first cycle we load and execute the instructions from memory location 101. 

This results in a state in which the register pc has been incremented, register r1 has been 

set to 1, and the load instruction has been issued to the memory unit: 



execution units 

mem r2 t load 400 

iul  

iu2 

In the next cycle we load the nop instructions in memory location 102. We have placed 

these nops into the program to provide time for the load instruction to calculate the value 

of r2. 

execution units 

mem r2 t load 400 

iu2 

On the next cycle we fetch the branch instruction in location 103: 

execution units 

iuO pc t 8=0?103:107 

iu2 

We then fetch the parallel subtract, multiply, and jump instructions: 

execution units 

iuO r2 t 8 - 1 

iul  r l t l * 8  



Note that, in effect, a VLIW machine is like the back-end execution core of our mock 

P6-like machine. It  would be expected that a compiler or the programmer had performed 

the analysis of the reorder buffer before executing the program. 

The drawback to VLIW microprocessors is that, from one processor generation to the 

next, the latencies of instructions often change. This destroys binary-code compatibility 

and requires that programs be re-compiled. Another problem is that, when there is no 

parallelism to fill up the slots in a VLIW packet, the fetch bandwidth is wasted loading 

nops. Consequently, the success of VLIW in mainstream computing has been limited. 

However, a trend in microprocessor design is to adapt the ideas from VLIW design in 

such a way that the compatibility and space problems are mitigated. The so-called ex- 

plicitly parallel or second generation VLIW instruction-sets provide VLIW-like extensions 

to RTSC. Rather than specifying exactly how the instructions should be executed in the 

machine, in some cases, these extensions allow the programmer to simply express the ex- 

istence of parallelism, allowing the machine the option of implementing parallelism-based 

optimizations. 

For example: 

Parallelism annotations [61] declare which instructions within a program can be exe- 

cuted out-of-order or in parallel. The microprocessor then uses this information to 

schedule instructions into execution units. This feature appears in Intel's IA-64 [22], 

and Compaq's Araiia [62]. 

Predication [5] expresses conditional execution using data dependence rather than branch 

instructions. IA-64 and ARM [38] are examples of predicated instruction sets. 

Speculative instructions [22] behave like their traditional counterparts-however the 

exceptions they might cause are raised only when and if the data they compute 

is used. IA-64 and PA-RISC [39], for example, both support speculative loading 

mechanisms. 



Multimedia instructions provide SIMD-ba,sed instruction-set extensions which are well- 

suited for multimedia computation. MMX [14], AltiVec [27], and 3DNow 128, 591 

are examples of multimedia specific instruction-set extensions. 

2.3 The Washington architecture 

We now describe a simple example of a predicated instruction-set, which we call the 

Washington Architecture (WA). The extension to RISC that WA provides is the if syntax. 

The semantics of the following instruction is that it should be executed only in the case 

that the value of the predicate register p1 is t r u e  in the predicate register-file: 

WA allows us to encode conditional execution without branches and jump instructions. 

For example, we re-encode the RISC code fragment: 

beqz r1 L 1  

r 2  +- r 4  * r 5  

jmp L2 

L l :  r 2  t r 4  + r 5  

L2: nop 

As this: 

p l ,p2  t r l = = O  

r 2  c r 4  * r 5  if p i  

r 2  +- r 4  + r 5  if p2 

Where the predicate p l  will be set to t r u e  if r1 equals zero and p2 is assigned to the 

negation of p1. This is a more efficent encoding because the branch mechanism (and 

branch prediction unit) is not used. This feature is similar to the form of predication in 

the ARM and IA-64 instruction-sets. 

2.4 The Oregon architecture 

Next we develop a simple example of a second-generation VLIW instruction-set as an 

extension to WA, which we call the Oregon Architecture (OA). This instruction-set com- 

bines predication with explicit parallelism constructs. Figure 2.5 provides an example OA 



encoding of the factorial function. 

To see how these extensions fit into OA, look at Figure 2.5 which contains an OA 

encoding of the factorial function: 

As in VLIW, an OA program is a finite sequence of packets, where each packet 

consists of a fixed number of instructions. In this case, packets consist of three 

instructions. Programs are addressed at the packet-level. That is, instructions are 

fetched in packets, and branches can jump only to the beginning of a packet. 

Instructions are annotated with thread identifiers. Instructions with equal identifiers 

should be executed sequentially. Instructions with independent identifiers can be 

executed in any order. For example, the 0 in the load instruction declares that 

instructions with thread identifiers that are not equal to 0 can be executed in any 

order with respect to the load instruction. 

a Packets can be annotated with the directive FENCE, which directs the machine to 

fully calculate all in-flight results before executing the following packet. 

As in WA, instructions in OA are predicated on Boolean-valued predicate registers. 

For example, the load instruction will only be executed if the value of p5 is true in 

the current predicate register-file state. 

One way to view the thread identifiers and fences in OA is with directed graphs whose 

nodes are the sets of threads that occur between fence directives. These sets are analagous 

to basic blocks, using compiler terminology. The idea is that an OA machine will execute 

one basic block at a time. In this manner, all values computed in previously executed 

basic blocks are available to all threads in the current basic block. 

For example, the fence directive after packet 10 1 instructs the microprocessor to retire 

the active threads before executing the following packet. Assuming that packet 100 issues 

a fence directive, packet 101 forms its own basic block: 



1 0 1  r 2  t load 100 if p5 in  0 
r1 t 1 if p5 in  1 

noP 
FENCE 

102: r 4  t r 2  != 0 if p5 in  0 
p2,p3 t r2p r 4  if p5 i n  0 
r3 t r 2  if p5 in  1 

FENCE 

103: r 2 t r 2 -  1 i f p 2 i n  1 
rl  t r1 * r3 if p2 in  0 
pc t 102 if p2 in  2 

104: s t o r e  401 rl if p3 in  3 
pc t 105 if p3 i n  2 

noP 
FENCE 

Figure 2.5: Oregon Architecture (OA) factorial function 



In this picture, the ovals are used to represent basic blocks, and boxes to represent threads. 

Instructions within a thread must be executed in order. Threads, however, can be executed 

in any interleaving-order with other threads. Because packet 101 is its own basic block, 

the machine is required to synchronize the state before executing the next packet. 

Because packet 102 and 103 are separated by a fence, packet 102 forms its own basic 

block: 

The comparison and copy instructions set the predicate register p2 to true if r2 is not 

equal to 0. The value of p3 is set to the negation of p2. 

Because packet 103 is not fenced, but packet 104 is, the next basic block is formed 

from packets 103 and 104: 

Assignments to the program counter within a basic block are visible to the machine's fetch 

mechanism only after a fence directive has been issued. That is, assignments to pc tell 

the machine where to fetch from after executing the next fence. Therefore, a trace of an 

OA program can be viewed as an infinite path through the finite directed graph formed 

by basic blocks and their successors: 



r2 <-  load 400 if p5 

Reasoning about these basic blocks is analogous to the sort of control calculation the 

P6 performs during execution [57]. For example: 

Figure 2.1 uses a conditional branch in the place of the predicate calculation. The 

P6 with branch speculation might predict that the branch is not taken and issue 

the multiplication and subtraction before calculating the condition. In this case the 

branch prediction mechanism is acting as a predicate register file. 

The OA program calculates a predicate, issues instructions from both sides of the 

potential branch, and only retires the instructions that satisfy the predicate. 

In Figure 2.1 much of the instruction-level parallelism discovered in Figure 2.2 is 

implicit. The P6 analyzes register references to find parallelism (e.g. between the 

subtraction and multiplication instructions). 

In OA, the compiler or programmer declares the dependencies between instructions. 

In addition, the final values in the registers may not correspond to any interleaving 

of the original instructions, due to latencies between storing and fetching values from 

memory and the register file. 

One constraint that OA assumes the programmer to maintain is that no read-after- 

write or write-after-write hazards shall occur between instructions in different threads. 



For example, the following code (which contains a read-after-write hazard) will not be 

allowed: 

We assume that the compiler or programmer will not violate this rule. 

As another example, this code (which contains a write-after-write hazard) will also not 

be allowed: 

rl t r2 + r3 in 0 

r1 t r3 + r4 in 1 

2.5 Summary 

Modern instruction-set extensions allow the compiler or programmer to specify parallelism 

between instructions, a job that has been traditionally left to the microprocessor. However, 

unlike VLIW instruction-sets, they typically do not directly expose the structure of the 

microarchitecture and the latencies of its execution units. 

In this chapter we have surveyed the landscape of microprocessor design and introduced 

WA and OA, elementary instruction-sets that illustrate several features that appear within 

the instruction-sets of some popular microprocessors: predication and concurrency anno- 

tations. In this chapter we saw that the particular combination of extensions in OA forms 

a language in which thread parallelism can be expressed within basic blocks. However, 

the semantics of each feature could be changed-which would result in a different sort of 

machine language. In Chapter 4 we explore a method of modeling that allows us to isolate 

the meaning of each extension. 



Chapter 3 

Formal microarchitecture specification 

and verification 

In this chapter we describe the formalism of transition systems, which are commonly used 

in the literature for specifying and modeling microarchitectures. We then describe several 

correctness criteria on transition systems that are commonly proved of microarchitectural 

models. The material from this chapter forms the basis from which the theory and the 

example in later chapters are constructed. 

3.1 Preliminaries 

As mentioned in Chapter 1, we are distinguishing between programming language syntax 

and mathematical semantics. The distinction will be made explicitly with fonts. Type- 

writer font will denote syntax in a programming language. Mathematical font will indicate 

mathematical and logical expressions. The use of semantic brackets (0) will be used to 

indicate the mathematical meaning of programming language syntax. We will use sans 

serif font to name mathematical definitions. 

For example, we provide the mathematical definition of the identity function, Id: 

A Definition 1 (Id) (a, b)  E Id = a = b. 

We also provide an analogous definition in our programming language syntax: 

Definition 2 ( id)  The  function i d  with type a -> a is defined as [id] Id. 

In this dissertation we assume that the reader is familiar with functional programming 

notation. We will, however, introduce several of the more obscure concepts that we are 



borrowing from the functional programming language Haskell [36]: qualified types, and 

the denotation. We will also introduce the concepts and code behind a microarchitectural 

modeling library written in this programming language notation. 

Type-classes [40] facilitate overloading in a parametrically polymorphic typing system. 

Suppose, for example, that we want to write a function that takes a register-file and 

returns the value of the program counter in the register-file, with the constraint that this 

function should work for register-files over any register-type. As a first attempt, we might 

try to write a function with type: 

type RF a b = a -> b 

read-pc : : RF a b -> b 

That is, the type RF a b is synonymous for functions from a to b. Also, for any type a 

and b, the function read-pc takes an RF a b and returns a b. Unfortunately, we cannot 

write the intended function with this type in our language. The problem is that the type 

a is a parameter of RF a b, i.e. it is a place holder for any type. The function read-pc 

should work identically for the integers, Booleans, strings, etc. The consequence of this 

is that it is impossible to know which element of type a is the program counter, or if one 

even exists. Type-classes address this problem. With type classes, we can constrain the 

function read-pc such that it will be applicable only to types that have an element called 

pc. First we define a type-class called Register: 

c l a s s  Register r where 

pc : :  r 

This declaration partially defines a set of types in which a predicate is true: all of the 

types in this set have an element named pc. The reader should read the declaration as 

follows: "if r belongs to the type-class Register, than it must have an element called 

pc" . For each type in the class Register, we must declare that it belongs to the class, 

and point to an element that will represent pc. For example, we can declare 32-bit words 

to be in the Register type-class: 



instance Register Word where 

PC = 0 

That is, for the type Word, pc equals 0. We can now write a function with the original 

intended behavior: 

read-pc r f  = r f  pc 

This function has the following qualified type: 

read-pc : : Register a => RF a b -> b 

This type should be read as "if the type a is an instance of the type-class Register, then 

read-pc is a function from RF a b to b." In the definition of read-pc, when the function 

r f  is applied to pc, the value of pc of type a is used. For example, if wrf has type RF 

Word Bool, and [wrf OD = 5 then 

[read-pc wrfj = 5 

As another example, imagine trying to write a polymorphic function, elem, that de- 

termines if an argument is an element of a list. To do this we require an equality function 

(==) that works for all types: 

elem x [I = False 

elem x (y:ys) = i f  x==y then True 

e l s e  elem x ys 

The idea is that == should be defined on a number of types. We can make this assumption 

explicit by defining an equality type-class: 

c l a s s  Eq a where 

(==) : :  a -> a -> Bool 

This declaration states that == is a function that should be defined for all types that are 

elements of the Eq type-class. A function defined with == will have this type constraint in 

its type. So, for example, the type of elem is: 

elem : : Eq a => a -> [a1 -> Bool 



We will use the type-class Collect  as a common interface to set-like structures: 

c l a s s  Collect  c  where 

u n i t  : : a  -> c  a  

map : : (a -> b) -> c  a -> c  b 

jo in  : :  c  (c  a) -> c  a  

union : : c  a  -> c  a  -> c  a 

This definition states that if a type c  is an element of Collect ,  then the functions un i t ,  

map, join,  and union will be defined on c. The meaning of these functions depends on 

the interpretation assigned to them for each c. 

Let us Iook at some possible implementations. We can define a basic set-like structure: 

type One a  = a. That is, One is the type that represents singleton sets. One can be 

declared an instance of Collect:  

instance Collect  One where 

u n i t  = i d  

mapf x = f x  

jo in  = i d  

union x y = x 

In this case, the type of jo in  is One (One a )  -> a. Note that, because Onea = a, that 

One (One a)  -> a  is equivalent to a  -> a. 

We will assume that finite sets are provided by the language as a built-in construct 

called FSets. This too is an instance of Collect,  where: 

[[unit] 2 { a )  

[map] 4 A f .  AA. {f ala E A) 

[[join] 4 U 
[union] 4 u 

Because FSet is built-in we define the instantiation with a direct semantic definition. 

The do-notation 

In some circumstances, we make use of a convenient set-comprehension like notation, 

called the do-notation. A do-notation expression like this: 



data  Opcode = ADD Reg Reg Reg I ADD1 Reg Reg Word I SUB Reg Reg Reg 

I SUB1 Reg Reg Word I MLT Reg Reg Reg I MLTI Reg Reg Word 
I D I V  Reg Reg Reg I DIVI Reg Reg Word I CNT Reg Word 
I BNEZ Reg Word I BEQZ Reg Word I NEQZ Reg Reg 
I EQZ Reg Reg I NEG Reg Reg I BUBBLE 

Figure 3.1: Opcode, A RISC instruction-set type 

do { x <- a ;  y <- b; z <- f y; un i t  (z ,x)  ) 

is translated accordingly: 

; y < - b  

; z < - f y  

; un i t  (z ,x)  

l e t  bind x f = jo in  (map f x) 

i n  a ' b i n d r  (\x. 

b 'bind' (\y. 

(f x) 'bind' ( \z .  

un i t  ( z , x > ) > >  

In this code we see several new syntactic structures. The back-quotes around bind indicate 

that bind is being used in an i n k  position. The syntax \ x . E  allows us to introduce a 

function where x is the function's parameter and E is the function's body. 

In the finite-set interpretation of Collect and u s ] ,  the meaning of the translation of 

this denotation code represents the following finite set: 

In the One interpretation, the translation represents: 

(Ufll(Ubll>, [all) 

which equals [[ (f b , a) 1. 

3.1.1 Transactions 

A key concept used later in this chapter is the idea of transactions [2, 501. A transaction 

is like a machine-level instruction, with data bundled in the operands. Figure 3.2 contains 



type Trans = ( [(Reg,Maybe Int)] , Opcode , [(Maybe Reg,Maybe 1nt)l) 

Figure 3.2: Trans, the transaction type 

make-trans (ADD x y z) 
= ( (x ,Nothing) ,ADD x y z , [ (Just y ,Nothing) , (Just z ,  Nothing)] ) 

make-trans (SUB x y z) 
= ( (x,Nothing) ,SUB x y z ,  [(Just y,Nothing) , (Just z ,Nothing)] ) 

I etc.. . 
Figure 3.3: The transaction combinator make-trans 

read-stage : : RF -> Trans -> Trans 
read-stage rf (dsts,opcode,srcs) = (dsts,opcode,srcs') 

where srcs' = map (rd rf) srcs 
rd rf (Just r,z) = (Just r,Just (readEnv rf r)) 
rd rf x = x 

Figure 3.4: The transaction combinator read-stage 

alu-stage : : Trans -> Trans 
alu-stage ( [(rl ,-)I , ADD, ((r2, Just x) : (r3, Just y) : s)) 

- - ( C(r1,Just (x + y))], ADD, ((r2,Just x): (r3,Just y) :s ) )  
alu-stage ( [(rl,-11, SUB, ((r2,Just x):(r3,Just y):s)) 

- - ( C(r1,Just (x - y))], SUB, ((r2,Just x):(r3,Just y):s)) 

etc.. . 

Figure 3.5: The transaction combinator alu-stage 
1 



wb-stage : : Trans -> RF -> (RF,Trans) 
wb-stage (dsts , i , srcs) rf = (rf ' , (dsts , i , srcs) 

where rf' = fold1 writeback rf dsts 
writeback rf (r, Just x) = updateEnv rf (r,x) 

Figure 3.6: The transaction combinator wb-stage 

bypass : : Trans -> Trans -> Trans 
bypass (dstsl,i1,srcs1) (dsts2,i2,srcs2) = (dsts2,i2,srcs3) 
where 
srcs3 = map (bp dstsl) srcs2 
bp dsts (Just x, y) = 

let dom = map fst dsts 
func x = case filter (\(a,Just b) -> a==x) dsts of 

(a, Just b) :c -> Just b 
in if x ' elem' dom then (Just x,func x) else (Just x, y) 

bp dsts x = x 

I Figure 3.7: The transaction combinator bypass 



a definition of a type Trans which models the concept of a transaction. Within this type 

declaration, the types Opcode and Maybe are used. Opcode (see Figure 3.1) is used to 

denote a RISC instruction-set. The type Maybe is like the ML type option: 

da t a  Maybe a = Jus t  a 1 Nothing 

This means, for example, that a value of type Maybe I n t  is either a Nothing, or it is 

a ( Jus t  n )  for some integer n. 

We provide a number of functions to construct and inspect transactions. For example, 

make-trans (Figure 3.3) can be used to create a transaction from an instruction. If the 

incoming instruction is ADD rl r 2  r3,  then make-trans will produce the transaction: 

( [ ( r l  ,Nothing) 1 ,ADD, [ ( Jus t  r 2 ,  Nothing) , ( Jus t  r3, Nothing) 1 ) 

This transaction represents an instruction with no data available. That is: the value of 

r1 is not available (Nothing), nor are the values of r 2  and r3. 

The function read-stage (Figure 3.4) takes a register-file and a transaction and returns 

a new transaction in which the value of the source operands have been placed with the 

references. For example, if in a register-file r 2  equals 2 and r3 equals 3, then read-stage 

would take the above transaction and produce: 

( [ ( r l  ,Nothing)] ,ADD A( Jus t  r 2 ,  Jus t  2) , ( Jus t  1-3, Jus t  311 ) 

This transaction represents the instruction with its source operand values known. 

The function alu-stage (Figure 3.5) could be used to take this transaction, perform 

addition on the source operands, and place the computed value in the destination field: 

( [ ( r l , J u s t  511 ,ADD, [ ( Jus t  r 2 , J u s t  2 ) , ( J u s t  r 3 , J u s t  311) 

This transaction represents the instruction where r l  is assigned 5. 

The function wb-stage (Figure 3.6) can be used to update a register file with the 

bindings from the destination operands [ ( r l ,  Ju s t  511. In this definition we see an 

application of f o ld l ,  a commonly used function in functional programming that iteratively 

applies a function to a list. 



The final transaction function is bypass (Figure 3.7), which can be used to mediate 

data dependencies between transactions. Suppose a transaction is on its way through a 

microprocessor's pipeline with an outdated rl-value in its source operands: 

old = (L(r5,Nothing)l ,SUB, [(Just r1,Just 81, (Just r9,Just 211) 

Also, suppose that another transaction is traveling through the machine with a recently 

computed value for r1: 

new = ([(rl, Just 5)] ,ADD, [(Just r2, Just 21, (Just r3,Just 311) 

In this case we could use bypass to construct a new transaction based on old with an 

updated r 1-value: 

bypass new old = ( [ (r5 ,Nothing)] ,SUB, [(Just r1, Just 51, (Just r9, Just 2) 1 ) 

3.1.2 Connecting transaction combinators and hardware 

The purpose of these transformers is to simplify the development of hardware. Therefore 

it is natural to wonder how we might map from the transaction combinators down to 

wires and registers. Rather than provide a rigorous and complete mapping we will take 

alu-stage as an an example combinator and demonstrate its compilation. 

This unit takes in a set of wires representing the transaction and produces a set of 

outputs that represent the resulting transaction. Each type can be represented with a 

finite set of wires (given that the sizes of lists are bounded). For example, an output of 

type Maybe Int can be represented with 32 wires for Int and one additional wire for the 

Just and Nothing constructors. Tuples are implemented simply as the concatenation of 

types. 

Each equation from Figure 3.5 can be implemented as a circuit, and the overall function 

can then be the composition of these circuits with a large mux that implements the pattern 

matching. That is: the hardware can speculatively compute the answer for each equation 

and then choose the right one with a mux by inspecting the input transaction with a 

pattern matching circuit. As pictured in Figure 3.8, if the pattern match in the ADD case 

succeeds, the output would be the same as the input except that the with the data line 



for rl would be in with the data from r 2  added with r3. Figure 3.9 contains a circuit 

implementing the pattern match for the ADD case from Figure 3.5. 

cons? - 1 ----- 
11 - 0- 
Just? - I- 

3.2 Specifying and modeling with transition systems 

data - 
cons? - 
other - 
Just? - 
data - 
opcode 

cons? 
R 
Just? 
data 

In microarchitecture verification, with few exceptions, both instruction-set specifications 

and microarchitectural implementations are represented as transition systems. Although 

the formalisms differ slightly from paper to paper, the following notation suffices for our 

discussion. 

A transition system is a structure with three elements: 

* 

0- 
0 --- 
0- 
0- - 

.. 
* 

A set of initial states, 

A next state relation, and 

cons? 
r3 

A function that labels or projects out the visible parts of system's states. 

- 
Just? - 
data 
wns? * 
r4 - 
Just? 
data 
cons? - 
r5 - 
Just? * 
data 

Figure 3.8: Schematic diagram for alu-stage in the ADD equation 



Just? - 
data - 
cons? 
other - 
Just? - 
data - 
opcode - 
cons? 
r2 - 
Just? 
data ---- 
cons? 
r3 - 
Just? 
data - 
cons? - 
r4 - 
Just? - 
data - 
cons? - 
r5 - 
Just? - 
data - 

Figure 3.9: Schematic diagram for pattern matching circuit from alu-stage's ADD 
case I 



The following example is a transition system that implements a modulo-5 counter, 

where the observation function returns a Boolean value that indicates when the system 

has been reset to 0: 

initial states : (0) 

next state relation : {(x, y) I y = x + 1 mod 5) 

observation function : {(O,l)) U {(x, 0) (x E (1 . . .4)) 

Pictorially, this transition system can be drawn as the following graph: 

In our programming language syntax we can define a type synonym, called TS, that 

uses the parameters c, s, i, and o to represent the set of transition systems with statetype 

s, input-type i, observation-type o and collection-type c: 

The generality of the parameter c is not strictly necessary for this chapter, but is key in 

Chapters 5 and 6. We will typically restrict ourselves to finite transition systems with 

finitely non-deterministic transitions: 

TS FSet s i o = (FSet s ,  i -> s -> FSet s, s -> o) 



Notice that this ensures that the state of the transition systems remain finite. 

Rather than explicitly naming the initial states and next-state relation within the tran- 

sition system, we will often use the following projection functions on transition systems: 

A i n i t i a l  (x ,y ,z)  = x 

A next (x ,y ,z)  = y 
A observe (x ,y ,z )  = z 

i 
We use the notation a - a' as a shorthand for a' E ([next] u) i a. 

u 

3.3 Specifying and modeling microarchitectures 

In this section we demonstrate how ISA specifications and microarchitectural models are 

typically built. We construct an ISA specification and a microarchitectural model-both 

as transition systems. These transition systems will be used again in later chapters. 

3.3.1 An example instruction-set architecture specification 

For simplicity our specification does not support instruction or data memory. On each 

cycle the machine accepts an instruction as an input, reads the source register references, 

calculates the value of the destination operand and stores it into the register file. This 

transition system has type: 

r i s c  : : TS FSet Opcode (RF ,Word) (Obs RF) 

The type RF represents a register-file (which is essentially an environment or function from 

Reg to Word). We use the type Reg to represent register names, and Word to represent 

32-bit words. If we expand the type TS out to: 

( FSet (RF, Word) 

, Opcode -> (RF,Word) -> FSet (RF,Word) 

, (RF, Word) -> Obs RF 

1 

then we can see that r i s c  is a triple, where the first element is a finite set of register-file 

and word pairs; the second element is a functional relation indexed by the elements of the 



type Opcode, and the third element is a function from pairs of register-files and words to 

elements in the type Obs RF. 

The observation-type Obs, defined in Figure 3.10, is used in r i s c  in the following way: 

If the machine is stalled then the observation is Nothing. That is, because the tran- 

sition system is stalled, it is in a state in which the register-file cannot be observed. 

If the machine is not stalled and also not flushed then the observation is Jus t  Nothing. 

This is another situation where the transition system is in a state in which the 

register-file cannot be observed. 

If the machine is not stalled, and it is flushed, then the observation is Just  (Just  

r f ) ,  where r f  is a function that represents the current state of the register-file. 

We make use of the observation functions in Figure 3.10 to simplify the task of modeling 

with the Obs type. For example, we use r-f lushed to construct the appropriate encoding 

with the type Maybe to model the case where the register-file is available for inspection. 

The definition of r i s c  is in Figure 3.11. The observation function (lines 14 through 16 

of Figure 3.11) defines the significance of the integers in the initial states. If the integer is 

1, the machine is flushed and the register-file is observable. If the integer is 2, the machine 

is not flushed, but also not stalled. If the integer is 3, the machine is stalled. 

Note that r i s c  is not pipelined itself. It does, however, implement an interface that 

allows for it to be used in environments built for pipelining: at any time the system can 

be stalled, flushed, or not stalled and not flushed. An implementation of this specification 

is, therefore, free to choose when the contents of the register-file are made available. 

The next-state relation (lines 6 through 12 of Figure 3.11) is specified with transactions. 

On line 11, the function make-trans (Figure 3.3) is used to create a new transaction from 

the incoming instruction. The function read-stage takes the new transaction and fills in 

its source register operands. Then, alu-stage uses the source register values to calculate 

the value(s) of the destination operand(s). Finally, wb-stage updates the register file with 

the bindings from the destination operand(s) . 



type Obs e = Maybe (Maybe e)  

r - s t a l l e d  = Nothing 
r n o t - f  lushed = Jus t  Nothing 
r-f lushed e = Jus t  ( Jus t  e)  

s ta l l -obs  : : Obs a -> Bool 
s ta l l -obs  o = case o of 

Nothing -> True 
otherwise -> False 

f lushed-obs : : Obs a -> Bool 
flushed-obs o = case o of 

( Jus t  ( Jus t  x ) )  -> True 
otherwise -> False 

s t a l l i n g  :: TS m i s (Obs e )  -> s -> Bool 
s t a l l i n g  m s = s t a l l -obs  (observe m s) 

f lushed : : TS m i s (Obs e)  -> s -> Boo1 

f lushed m s = flushed-obs (observe m s )  

view : : TS m i s (Obs e l  -> s -> e 
view m s = case observe m s of 

( Jus t  ( Jus t  x)) -> x 

Figure 3.10: The type Obs, used to represent observations 



0 r i s c  : : TS FSet Opcode (RF, 1nt )  (0bs RF) 
1 r i s c  = ( i n t ,  nx t ,  ob ) 

2 where 
3 
4 i n t  = u n i t  ( i n i t i a l x f  , 1) 

5  
6 nxt i (rf  ,3) = e i t h e r  r f  
7 nxt i ( r f ,  n) 
8 = l e t  ( r f '  , wbi) = wb-stage wb r f  
9 wb = alu-stage r d  
10 rd = read-stage rf nw 

11 nw = make-trans i 
12 i n  e i t h e r  r f  ' 
13 
14 o b ( x , l ) = r - f l u s h e d x  
15 ob (x, 2) = r n o t f  lushed 
16 ob (x, 3) = r - s t a l l e d  

17 
18 e i t h e r r f = d o { x < - [ 1 , 2 , 3 ] ; u n i t ( r f , x ) )  

Figure 3.11: r i s c ,  a RISC transition system 



3.3.2 An example pipelined RISC implementat ion 

In the literature on formal verification, microarchitectural models are typically represented 

in the same manner as their specifications-albeit with the microarchitectural details 

filled in. In this section we define a microarchitectural-level implementation of r i s c  that 

includes pipeline registers, and a next-state relation that defines how instructions flow 

through the registers, with possible stalling and bypassing. 

Figure 3.12 provides the code for this three stage pipeline. In this transition system, 

the state of the pipeline is represented with a triple of transactions. The pipeline is 

flushed if each of the transactions is equal to bubble-trans, which is the transaction that 

represents the absence of action: 

bubble-trans=([], BUBBLE , [ I )  

The machine has only one initial state (defined on line 5): the initial register-file used 

in the definition of r i s c ,  paired with a flushed vector of transactions. The observation 

function (lines 14 through 16) determines whether or not the machine is flushed based on 

the vector of transactions. 

Lines 7 through 12 define the next state relation, which implements a classic pipeline, 

with a register read stage, an ALU stage, and a write-back stage. The definition of the 

next-state relation is similar to r i sc ' s  next-state relation. The difference is that the 

intermediate values are stored in pipeline registers with appropriate bypassing. 

Lines 14 through 16 define the observation function, which displays the register-file 

only when the pipeline is flushed. 

3.4 Correctness criteria 

Although ISA specifications and microarchitectural models are developed in the same 

formalism, they are typically developed at different levels of abstraction. For example, 

r i s c  provides details on which values should be produced after executing a sequence of 

instructions, but does not specify when the values should be ready. The implementation, 

in contrast, is much more specific as to when the values are visible. These two systems 

are apparently related in some way-but how? 



0 pipe : : TS FSet Opcode (RF, (Trans, Trans, Trans)) (Obs RF) 
1 pipe = ( i n t ,  nxt ,  ob 
2 where 
3 f lushed-pipe = (bubble-trans ,bubble-trans ,bubble-trans) 
4 
5 i n t  = un i t  ( i n i t i a l x f ,  flushed-pipe) 
6 
7 nxt i (rf  , (nw, r d ,  wb) ) 
8 = l e t  ( r f '  , wbi) = wb-stage wb r f  
9 wb' = alu-stage (bypass wbi rd)  

10 rd '  = bypass wbi (read-stage r f  nw) 
11 nw ' = make-trans i 
12 i n  un i t  ( r f ' ,  ( nw', r d ' ,  wb')) 
13 
14 ob ( r f ,  pipe) 
15 = i f  pipe == f lushed-pipe then r-f lushed r f  

16 e l s e  r-not-f lushed 

Figure 3.12: pipe, the RISC pipelined transition system 

Typically, correctness is stated with a pre-order relationship such as simulation or flush- 

point correctness, which we define in the next section. Note that there are many variations 

of correctness criteria used in the literature that we will not review. Our purpose here is 

to discuss only those criteria necessary in the later chapters. 

3.4.1 Simulation 

A transition system u is said to simulate a specification v (notationally (u, v) E SIM) if 

there exists a relation R-called a simulation relation-that implies observational equiva- 

lence between sequences of u and v states. That is, R must hold between the initial states 

of the two systems and, for any step that the system u makes, v must have an analogous 

step that maintains R. 

The intuition behind simulation is that the graph of executions in the implementation 

must be a subset of those of the specification. For example, imagine that the following 

graph represents the set of all possible executions in a specification: 



Assume that the labels are from the observation function applied to the states. A system 

that simulates this specification must be a sub-graph of the above graph. For example, 

the graph below denotes a system which simulates the above system: 

Observation=A 

The next graph, on the other hand, is a system that does not simulate the specification: 

Definition 3 (SIM) Given (u :: T S  FSet s i o)  and (v :: T S  FSet s' i o), (u, V) E SIMR 4 



S1M.A) Va E i n i t i a l  u .  3b E i n i t i a l  v . (a ,  b) E R 

S1M.B) 'da, a', b, i. [ (a ,  b) E R A a' E next u i a] + [3b1. b' E next v i b A (a', b') E R] 

S1M.C) Y a ,  b. ( a ,  b) E R + observe u a = observe v b 

In the example above, the transition system pictured in the first graph is simulated by 

the second graph, where 

R = { ( n ,  n) ( n E {I . .  .4)) 

Note that, in this definition of SIM, we are abusing notation. To be more precise we 

should state condition S1M.C as: 

'da, b. ( a ,  b) E R + [observe] u a = [observe] v b 

It is again an abuse of notation to mix type constructors such as TS with mathematical 

variables such as i. A more precise use would be: 

u :: [TS ~ ~ e t ]  s i o 

We will use the less restrictive notation when there is no chance for ambiguity. 

Often we use SIM without specifying a relation subscript. In that case we define 

A (u ,v )  E SIM = 3 R .  (u ,v)  E SIMR 

We will sometimes refer to just the inductive clause of SIM: S1M.B 

A common twist on simulation is the notion of bisimulation. If two systems are bisim- 

ular, then their graphs are isomorphic. 

Definition 4 (BISIM) 

(u, V) E BISIMR 4 (u, V )  E SIMR A (v ,  U )  E SIMR-I 

We can expand the definition of BlSlM and define it directly as: 

BIS1M.A) 

Va E i n i t i a l  u. 3b E i n i t i a l  u.(a, b) E R 

and 

b'b E i n i t i a l  v .  3a E i n i t i a l  u.(a,  b) E R 



Va,a', b,i. [(a, b) E R A a' E next u i a] + [3b1. b' E next v i b A (a', b') E R] 

and 

Va, b, b', i. [(a, b) E R A b' E next v i b] + [gat. a' E next u i a A (a', b') E R] 

B1SIM.C) Va, b. (a, b) E R + observe u a = observe v b 

In the microarchitecture verification literature, it is common to find simulation rela- 

tions that are, in fact, functions. These functions are known by various names, including: 

abstractions, mappings, simulation mappings, abstraction mappings, or refinement map- 

pings. We will refer to simulation with a mapping as MAP: 

A Definition 5 (MAP) Given (u :: TS FSet s i o) and (v :: TS FSet s' i o), (u, v) E MAPR = 

MAP.A) Va E initial u. 3b E initial v. R(a) = b 

MAP.B) Va, a', b, i. [R(a) = b A a' E next u i a] + [gb'. b' E next v i b A R(al) = b'] 

MAP.C) Va, b. R(a) = b + observe u a = observe v b 

MAP.B is often presented pictorially as a commuting diagram: 

next u i q-+q 
next v z 

~ - - - - - - + ~  

3.4.2 Flush-point correctness 

A difficulty with sophisticated microarchitectures is that it is rare for them to actually 

simulate their specifications. For instance, an out-of-order microprocessor will often exe- 

cute a program in fewer cycles than the specification-meaning that the execution graph 

of the implementation cannot be a sub-graph of its specification. 

A more flexible criterion, which we call flush-point correctness, has been independently 

proposed several times in the literature to address this weakness. It is general enough to 

allow machines which should be considered correct to be related. 



Before we define flush-point correctness, we first must introduce several concepts used 

in its definition: the Bubble type-class, r, and the notion of a flush-point trace. 

The Bubble type-class 

We use the type-class Bubble to represent the existence of a machine instruction that 

takes no arguments: 

class Bubble i where 

bubble : : i 

The type Opcode is an instance of Bubble: 

instance Bubble Opcode where 

bubble = BUBBLE 

That is, when we use the value bubble in the context of the type Opcode, we are referring 

to the value BUBBLE. We define this type-class to facilitate the restriction of flush-point 

correctness to only those transition systems with a built in notion of a bubble instruction. 

Removing bubbles with J? 

We use the notation (r i s )  to represent the set of finite instruction sequences that are 

equivalent to i s  when bubbles are not considered. That is, let b remove all finite sub- 

sequences of bubbles from an instruction stream: 

I? i s  {is'lb is' = b i s )  

We have borrowed this notation from Abadi and Lamport [4]. 

Flush-point traces 

The final concept that we need is the notion of a flush-point trace, which is a finite sequence 

of states from a flushed state to the next flushed state. We will assume the existence of 

a predicate called flushed that indicates when the observation of the transition system 

is available. We define nextfp to represent the set of states that are at the end of the 



flush-point traces from a given state a: 

next-fp u i a {b ( 32' E r i. 3n.3s.3q 

I s J = n  A s l = a  A s , = b  

AVO 5 k < n - q. s t a l l e d ( s k )  H i; = bubble  

AVn - q 5 k < n. ii = bubble 

A VO 5 k < n. sk+l E [ n e x t ]  u ii sk 

A flushed u a 

A flushed u s, 

A VO < k < n. l(flushed u s k )  

1 
Definition 6 Given u :: T S  FSet s i (Obs o) ,  v :: T S  FSet s' i (Obs o),  Let 

(a ,  b)  E RF flushed u a A flushed v b A ( a ,  b) E R 

(u,  V) E F P R  A 

FP.A) V a  E i n i t i a l  u. 3b E i n i t i a l  v.(a, b) E R~ 

FP.B) V a ,  a', b,  i s .  ( a ,  b) E RF Aa' E next-fp u i s  a 3 3b1. b' E next-fp v i s  b A  (a', b') E RF 

FP.C) Va,  b. ( a ,  b) E R* + observe  u a = observe  v b 

The intuition behind flush-point correctness is similar to simulation, with the modifi- 

cation that we only compare states with R when they are flushed. When proving FP, we 

are essentially proving that there always exists a flush-point trace in the specification such 

that R holds at the points when the machines are in flushed states. Recall the example 

implementation from above: 



And recall the specification that it does not simulate: 

This implementation is correct with respect to FP if we let R = ((1, I), (3,3)) and assume 

that only states 1 and 3 are flushed. 

3.5 Verification methods 

In this chapter we have seen how ISA specifications and microarchitectural models are 

represented. In addition, we have defined correctness criteria that relate specifications and 

models. But what are the common techniques used to prove these relationships? In this 

section we describe some of the most popular techniques used, including: intermediate 

models, criteria strengthening, uninterpreted functions, and Burch & Dill's flush-based 

simulation mapping. Later, in Chapter 6, we will see how these ideas are applicable to 

the proof of our WA microarchitectural model's correctness. 

3.5.1 Intermediate models 

A microarchitectural design that is being verified is usually very different from its ISA 

specification. It is often difficult to relate the components of the specification to the 

finely tuned reservation stations, arrays of execution units, branch predictors and content- 

addressable memories found in a sophisticated microarchitecture. Intermediate models 

are sometimes used in the literature to bridge this gap between microarchitectural models 



and ISA specifications. These intermediate models are typically built using one of three 

concepts: history variables, abstraction, or prophecy variables. 

History variables 

Microarchitectural models typically only have registers that contribute to performance. 

However, when proving a relation between a microarchitectural model and its specification, 

it can be helpful for the microarchitectural model to carry around more state than is 

necessary. An intermediate model sometimes can be constructed with extra variables used 

to carry around history which clearly bisimulates the original microarchitectural model. 

Abstraction 

Intermediate models are also commonly used to abstract away the complexity of microar- 

chitectural models. That is, an abstract model can be constructed from the microarchi- 

tecture with a simpler but less deterministic next-state relation. The original next-state 

relation can sometimes be proved to be correct with respect to the abstract one. When 

using this strategy, one must also show that the intermediate abstraction implements the 

specification. 

Proposition 1 

MAP, SIM, FP, MAP.B, SIM.B, and FP.B are pre-orders. 

The preorder property is important, because it allows us to use this technique of 

introducing intermediate models. For example, imagine trying to prove (A, B) E SIM. We 

might build a new system B', which is based on B such that we can prove (A, B') E SIM. 

If we can prove (B, B') E SIM, then by transitivity of SIM we know (A, B) E SIM. 

Prophecy variables 

Some microarchitectural models perform computations faster, or make non-deterministic 

choices at times that are different than their specifications-making it impossible to prove 

SIM. In some cases an intermediate model can be built from a microarchitectural model 

that calculates the same answer as the original microarchitecture, but displays it at a 



- 

FP.B 

T il MAP.B 
FP +==== SIM +=== MAP 

Figure 3.13: Connections between the correctness criteria 

time which is more convenient when proving simulation. One way to address this problem 

is to use prophecy variables [4], which can slow down a microarchitectural model that 

retires too many instructions per transition or which can be made to  predict the future. 

Let u be a microarchitectural model and v be an architectural specification. To show 

that (u, v) E FP, one might construct a slower model u' using a prophecy variable and 

show that (u, u') E FP. Then, after showing that (u', v) E S I M ,  by the transitivity of FP 

and SIM C FP (when the domain of systems is restricted to initially flushed systems), 

(u, v) E FP. 

Definition 7 A system u is initially flushed zf Vs E i n i t i a l  u. flushed u s 

Unless stated otherwise, we will assume that all transition systems are initially flushed. 

3.5.2 Criteria strengthening 

Another proof strategy that is often used in unison with intermediate variables is the 

strengthening of the criteria. For example, we might prove SIM in order to prove FP. 

Figure 3.13 is a picture demonstrating the connections between the criteria mentioned in 

this chapter. For example, S1M.B + MAP.B states that if we have proved MAP.B then 

we have also proved S1M.B. Unfortunately, because S1M.B $ FP.B, there is an arrow 

missing. In this figure we assume that domain is restricted to initially flushed systems. 

To see why SI M .B FP. B,  consider the following example: 



System u System v 

In this example, we have two transition systems-and each transition system has one 

state: a and b. The arrows indicate that the systems can transition to the same state. 

Assume that flushed u a,  lflushed v b, and R A {(a ,  b ) )  meets the criterion of S1M.B. 

There is a flush-point trace in u: 

But there does not exist a flushed state in v. Therefore, there cannot be a flush-point 

trace in v. 

Proposition 2 If ( u ,  v) E SIM and u is initially flushed then (u ,  v) E FP 

Proof. We know by SIM that there exists a simulation relation R. 

A) Because u is initially flushed and S1M.A 

B) Assume that a0 and a, are flushed states of u and that 

is a flush-point trace. We know that io . . . meets the constraints required by 

nextfp. By S1M.B we know that there exists a sequence: 

such that (ak ,  bk) E R for all 0 5 k 5 n. By S1M.C we know also that both bo and 

bn are flushed. 

C )  By R and S1M.C 



3.5.3 Uninterpreted functions 

One of the most pervasive techniques in microarchitecture verification is the use of uninter- 

preted functions [12, 17, 43, 51, 631. Suppose that both next u and next v are defined in 

terms of a function. When proving a relationship between expressions containing next u 

and next v, the interpretation of the function is often inconsequential. That is, it is 

commonly sufficient to know that applications of the function to equal arguments delivers 

equal results. 

For example, Burch & Dill [17] defined both their architectural specification and 

pipelined model to access state using the functions read and wri te .  When proving the 

correctness of a simulation mapping, they were able to do so without interpreting the 

meaning of read and wri te .  

3.5.4 Calculating simulation mappings with flushing 

Burch & Dill observed that a simulation mapping can be automatically calculated for 

pipelined microarchitectures that support the notion of bubble [17]. Assume that u :: 

TS FSet s i o is a microarchitectural model and v :: TS FSet o i o is an architectural 

specification. Assume that i is an instance of Bubble. If, for all states, there exists a k 

such that u is flushed after k applications of next u bubble, and the following diagram 

commutes for all i, then (u ,  v) E MAP. B: 

next u z 

next u bubble 1 1 next u bubble 

next u bubble l 

next u bubble 

observe u 

ububble 

( observe u 

next v i &---&) 



In this case, the simulation mapping is observe u o (next u b~bble)~. 

3.6 Historical Context 

To provide more context to the material in this chapter, we close with a history of the 

key technical developments in microarchitectural verification. Note that this historical 

summary only covers the literature up until 2002'. We survey the literature on the formal 

verification of out-of-order microarchitectural designs, and point out how the material 

developed in this chapter has been applied in practice. This section is based on a paper 

by Aagaard, Cook, Day and Jones [I, 31. 

3.6.1 Burch: Verifying Superscalar Microprocessors 

In some of the first work on processor verification that went beyond pipelining, Burch [16] 

proved that MAP.B holds between a tweinstruction wide superscalar microarchitectural 

model and an instruction-set architecture. For this model, proving the commuting diagram 

with Burch & Dill's simulation mapping was not feasible using algorithmic methods. To 

address this, the paper presented four commuting diagrams that together imply MAP. B. 

The proof obligations in Burch's decomposition were significantly simpler and were feasibly 

solved with an automated decision procedure. 

3.6.2 Damm, Pnueli, Arons: Verification by Refinement 

In the first work to address the verification of out-of-order microarchitectural designs, 

Damm & Pnueli [20] proved that SIM holds between an out-of-order model and an ISA 

specification. The implementation and ISA were extraordinarily simple: neither handled 

branch or jump instructions, and both required finite instruction sequences. In addition, 

the implementation did not allow multiple instruction issue or retirement and the pipeline 

was abstracted away. Nevertheless, the proof was a significant accomplishment. In the 

proof, an abstract intermediate model was constructed that computes all out-of-order, 

data-flow executions. Uninterpreted functions were used to abstract the data paths. The 

'When this dissertation research was done 



intermediate model contained an arbitrary number of functional units. In later work, 

Arons & Pnueli [a, 91 used an intermediate model which used a prophecy variable for each 

instruction. The intermediate model and the specification were synchronized at instruction 

dispatch by comparing the instruction result in the specification with the prophecy variable 

in the intermediate model. Other proof steps established that the result written into the 

implementation's register file was the same as the prophecy variable. 

Arons & Pnueli later extended their approach to an out-of-order model with a reorder 

buffer [7]. The systems were synchronized at instruction retirement. To facilitate this, 

the specification executed instructions only when they were retired. 

3.6.3 Sawada & Hunt: Micro-Architecture Execution Trace Table 

Sawada & Hunt [55] proved that FP.C held between an out-of-order model and specifi- 

cation ISA. Their implementation issued a single instruction per cycle. The out-of-order 

model had a number of execution units, including instruction and data memory, all of 

different latencies. The model did not use a reorder buffer. Correctness was proved by 

constructing an intermediate model that captured the history of all previously executed 

instructions. 

In a later paper [56] the authors extended their approach to verify a model that handled 

precise exceptions, interrupts, and speculative branch execution with a reorder buffer. 

Hunt & Sawada again used the FP.3 correctness criteria. Correctness was proved in the 

same manner as before. The intermediate model was adapted to carry relevant information 

about interrupts and exceptions. 

3.6.4 Skakkebaek, Jones, & Dill: Incremental Flushing 

Skakkebaek, Jones & Dill [60] proved FP.B between an ISA and a pipelined, out-of-order 

design. The implementation contained multiple execution units, and a reorder buffer. 

They introduced the notion of incremental flushing, the decomposition of the flushing- 

based abstraction into a collection of easier proof obligations. The intermediate model 

used in this proof placed the logic from multiple stages of the pipeline into a single stage 

that computed the result of each instruction when it entered the machine. The instruction 



input was queued in the reorder buffer until retirement. The implementation and the 

intermediate model were proved to be in MAP.B. The intermediate model was proved to 

be in FP. B with the instruction-set architecture using incremental flushing. 

In later work, Jones, Skakkebaek & Dill, [45, 46, 411 built a prophecy-variable based 

non-deterministic intermediate model in which the scheduling logic was abstracted. In- 

cremental flushing was used to show that the machine executing at full capacity was in 

FP.B with an intermediate model that was restricted to execute only one instruction at a 

time. The intermediate model was then shown to be in the FP.B relation with the ISA. 

3.6.5 Berezin, Biere, Clark & Zhu: Reference Files 

Berezin, Biere, Clarke & Zhu [13] proved MAP.B between an out-of-order model and an 

ISA. An intermediate model was constructed with a reference file, a heap-like structure 

with sharing of common sub-expressions. MAP.B was proved between the intermediate 

model and the original implementation. MAP.B was proved between the intermediate 

model and the ISA, using Burch & Dill's simulation mapping. With a transitive argument, 

using the correctness hierarchy, the implementation was proved to be in MAP.B with the 

ISA. 

3.6.6 McMillan: Compositional Model Checking 

In contrast with the other work surveyed, McMillan [51] did not directly prove a criteria 

akin to SIM or FP. Instead he proved that an intermediate model with history variables 

satisfied several invariants [52]. However, we conjecture that McMillan's invariants imply 

S1M.B. 

The proof was decomposed into three proof obligations. The first stated that the 

operand forwarding logic worked correctly; the second demonstrated that the instruction 

execution logic functioned correctly using uninterpreted functions. A third obligation 

extended the proof to a model with an arbitrary number of execution units. 



3.6.7 Hosabettu, Gopalakrishnan, Srivas: Completion Functions 

Hosabettu, Gopalakrishnan & Srivas [31, 341 verified the correctness of an out-of-order 

model. The important contribution of this paper was a powerful technique for decompos- 

ing proof obligations. This technique appears to be related to the programming languages 

notation of a continuation. The simulation mapping for a proof of MAP.C was computed 

by composing completion functions together, one for each instruction outstanding in the 

machine. A completion function represents the intended effect of an instruction on micro- 

processor state when it has completed. In subsequent papers, the completion functions 

approach was extended to an out-of-order machine with an unbounded reorder buffer [32] 

and a similar machine without a reorder buffer [33]. Both extensions used MAP.B and an 

intermediate model with auxiliary variables to establish FP.B.  

In another paper [30] the authors extended their approach to microarchitectures with 

branch speculation and instruction exceptions. The notion of completion functions was 

again extended, this time to include the possibility that an instruction may be specula- 

tive, and thus never complete. FP.C was again established by proving MAP.B with an 

intermediate model. 

3.6.8 Velev & Bryant: Exploiting Positive Equality 

Velev & Bryant [64] extended Burch & Dill's approach to accommodate superscalar mi- 

croarchitectures. They constructed an intermediate model with an efficient reduction of 

the original logic to propositional logic. This reduction was facilitated by exploiting posi- 

tive equality, a technique that efficiently handles terms that appear in a positive polarity. 

In a subsequent paper the authors extended their approach to microarchitectures 

with arbitrary-latency functional units and memories, branch prediction, and instruction- 

generated exception handling [65].  

3.7 Conclusion 

In this chapter we have developed a transition system formalism along with correctness 

criteria used to relate transition systems. We have discussed several common techniques 



used to decompose and simplify microarchitectural correctness proofs. We have also sur- 

veyed the literature on microarchitectural verification-pointing out which criterion was 

proved and which structuring techniques were used during the proof. 

As we have learned in this chapter, transition systems are the fundamental formalism 

used to describe both microarchitectural models and ISA specifications. The correctness 

criteria proved between models and specification are typically variants of simulation or 

flush-point correctness. Uninterpreted functions, intermediate models, Burch & Dill's 

simulation mapping and the correctness criteria hierarchy are some of the most perva- 

sive techniques used to handle the complexity inherent in proving modern microprocessor 

microarchitectural models correct. 

In the subsequent chapters we will use the material described here as a basis for further 

development. For example, we will discuss how to extend the modeling techniques from 

Section 3.2 and the correctness criteria from Section 3.4. 



Chapter 4 

Modeling with transformers 

In this chapter we develop a method of modeling architectural extensions in a modular 

fashion. We use this method to build specifications of our extended instruction-sets, WA 

and OA, and simple microarchitectural models that implement them. The microarchitec- 

tural model of WA implements a pipeline that integrates predication. The OA implemen- 

tation provides three pipelined execution clusters. We make use of these models later in 

the dissertation when we discuss how to formally prove models of this style correct. 

As is standard practice, we specify WA and OA as transition systems. However, rather 

than monolithic transition systems, they are represented as the composition of functions. 

The specification of WA is defined as: 

wa p = f n t  p (prd rise) 

The functions f n t ,  and prd take transition systems as arguments and return transition 

systems; each potentially with more features. These functions could specify an extension 

such as instruction caching, parallelism or predication. We call these functions transition 

system transformers. 

The transition system r i sc  is described in detail in Chapter 3 and is displayed in 

a visual representation in Figure 4.1. In the specification of WA, r i s c  is extended to 

support predication by the transformer prd, as seen in Figure 4.3. The transformer f n t  

builds a transition system with a program memory loaded with the program p, as shown 

in Figure 4.2. 

A WA microarchitectural model can also expressed as the composition of transformers: 

wma p = f n t  p prd-pipe 



This model is, in principle, similar to what we might find in the Intel StrongARM mi- 

croprocessor. It is a fast predicated pipeline, with an instruction fetch unit on the front 

end. Figure 4.5 displays the WA microarchitectural model. Figure 4.4 displays the WA 

architectural model. 

In order to specify the OA we can extend WA with concurrency as follows: 

f \ /- \ 

oa p = f n t  p (cnc 1 (prd r i s c ) )  

The parallelism transformer cnc then adds a notion of threads, thread identifiers, and 

synchronization-see Figure 4.6. cnc can also be used in the construction of a microar- 

chitectural model for OA: 

Instruction input 

oma p = f n t  p (cnc 3 prd-pipe) 

L J \ J 
b 

Writeback 

Figure 4.1: Architecture of r i s c  

- R F  

The transformers f n t  and cnc are shared between the specification and implemen- 

tation. However, in the implementation, cnc is applied to 3 instead of 1, which means 

that cnc constructs 3 concurrently executing transition systems. The transition system 

prd-pipe is a predicated pipeline with better stalling behavior than prd pipe. See Fig- 

ure 4.8 for a visual representation of the microarchitectural system. 

ALU 



Figure 4.2: Architecture of f n t  p r i s c  
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Figure 4.6: Architecture of cnc 1 (prd r i s c )  
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4.1 Predicating the architectural model 

Predicated Pipeline 
Instruction Queues 

((Q....] ' 
i 

The transformer prd is designed to construct a predicated transition system. This trans- 

former has type: 

-- 

(Collect c ,  Bubble i , Eq r, Eq w, Bind i r w ,  I n t eg ra l  w) => 
TS c i s (Obs (Env r w)) -> 
TS c (Prd-Instr i r r )  (Prd-St s r (Prd-Instr i r r ) )  (Obs (Env r w)) 

,- 7 > 

[GGi] Predicated Pipeline - RFIPl7F 

[G] C 

In other words, the transformer takes a transition system whose only constraint is that 

it have observation type: Obs (Env r w), meaning that the transition system provides a 

register-file as its observation type, but only when it is flushed and not stalled. It returns 

i 
I 

Predicated Pipeline 

r 7 

a transition system with the same observation type, but with richer types representing the 

Instruction 
Memory p 

inputs and states. The returned input-type is Prd-Instr i r r. Prd-Instr (Figure 4.9), 

, 

when given an instruction type i, register-type r and predicate register type r ' , returns a 

type that represents tagged expressions. These tagged expressions can be either register to 

< 

Figure 4.8: Architecture of f n t  p (cnc 3 prd-pipe) 

predicate-register moves (R2P), predicate-register to register moves (P~R), an assignment 

to the predicate register file (SET), a predicated instruction (IF), or an un-predicated 

instruction (GO). 



data  Prd-Instr i r r ' = R2P r ' r '  r I P2R r r ' I SET r ' Bool 
I I F i r '  I G O i  

instance Bubble i => Bubble (Prd-Instr i r r ' )  where 
bubble = GO bubble 

Figure 4.9: Predicated instruction type and instances 

The returned state-type is (s , (Env r Bool ,Maybe i )  1. The type Env r Bool is used 

to represent a predicate register-file. Type type Maybe i is used to represent the instruc- 

tion register. For clarity, we abbreviate this type with the synonym Prd-St: 

type Prd-St s r i = ( s ,  (Env r Bool ,Maybe i )  ) 

The occurrence of the type-class Bind in the type of prd asserts that we need to provide 

a function named bind for i, r, and w: 

c lass  Bind i r w where 

bind : : r -> w -> i 

That is, an expression such as bind r 1 O  20 should form an instruction that directs the 

transition system to bind the register r10 to 20 in the register file. In the case of Opcode, 

bind is defined as SET. 

The definition of the transformer prd is in Figure 4.10. The set of initial states of 

the system (defined on line 2) are essentially the initial states of the underlying system 

paired with a predicate register-file and an empty register. The observation function is 

defined in the equations on lines 4 and 5. On line 4, in the case that there is an instruction 

in the register, the observation is that the system is stalled. Line 5 states that for any 

given state, when the register is empty, the observation is simply the observation of the 

underlying state. 

Lines 8 through 36 define prd's next-state relation. For example, lines 8 through 12 

define what the system does when there is an instruction (i) in the register. The next-state 

relation checks to see if the underlying system is flushed. If so, then the saved instruction 



0 prd m = (int ,nxt ,ob) 

1 where 
2 int = do {x <- initial m; unit (x, (emptyEnv ~rue,~othing))) 
3 
4 ob (s, (e, Just -1) = r-stalled 
5 ob (s, (e ,Nothing)) = observe m s 
6 
7 
8 nxt - (s, (e, Just i)) = if flushed m s 
9 then nxt i (s, (e ,Nothing)) 

10 else do { s' <- next m bubble s 

11 ; unit (s' , (e, Just i) 1 
12 1 
13 nxt (P2R r r' ) (s , (e ,~othing) ) 

14 = if (readEnv e r' ) then do { s' <- next m (bind r 1) s 
15 ; unit (s' , (e ,Nothing) ) 
16 1 
17 else do { s' <- next m (bind r 0) s 
18 ; unit (s ' , (e ,Nothing)) 
19 1 
20 nxt (SET r' b) (s, (e ,Nothing)) 
2 1 = do { s' <- next m bubble s 
22 ; unit (sY,(updateEnv e (r',b),Nothing)) 

23 1 
24 nxt (IF i r') (s, (e,Nothing)) = if readEnv e r' 
25 then do { s' <- next m i s; unit (s' , (e ,Nothing) 1) 
26 else do { s ' <- next m bubble s ; unit (s ' , (e ,Nothing) ) ) 
27 nxt (GO i) (s, (e ,Nothing)) = 

28 do { s' <- next m i s; unit (s' , (e,Nothing))) 
29 nxt (R2P rl r2 r') (s, (e,Nothing) 
30 = if flushed m s then 

31 let el = updateEnv e (r1 ,readEnv (view m s) r' /= 0) 
32 e2 = updateEnv el (r2,readEnv (view m s) r' == 0) 

33 in unit (s , (e2 ,Nothing) ) 
34 else do { s <- next m bubble s 
35 ; unit (s, (e, Just (R2P rl r2 r'))) 

36 1 
Figure 4.10: The predication transformer prd 



is issued. If not, then a bubble is placed into the underlying system and the instruction is 

kept in the register. 

In the case that there is no instruction in the register, the next-state relation performs 

the appropriate action for each instruction type. If the incoming instruction is an I F  (line 

24), and the value of the predicate in the predicate register-file is true, then the instruction 

is passed on to the underlying system. In the case that the predicate is untrue, then a 

bubble is placed into the underlying system in the instruction's place. 

4.2 Predicating the microarchitectural pipeline 

To build a predicated pipeline we could simply apply prd to the transition system pipe 

from Chapter 3. Unfortunately, because prd places the predication check at the front of 

the pipeline, it must flush the pipeline each time it encounters an R2P instruction. For 

example, consider executing the following code fragments in prd pipe: 

C GO (ADD rl  r 2  r3)  

GO (ADD r 4  r 5  r6)  

GO (ADD r 7  r 8  r9)  

R2P p r l  pr2 r 7  

I 

In this case, prd would issue the first three add instructions and then flush the pipeline 

before issuing the R2P instruction. That is: the predication transformer would cause the 

machine to stall and drain the add instructions before copying the value of r 7  into the 

predicate register-file. The result of this would be a three cycle penalty for each R2P 

instruction. For this reason, we will not use it in the definition of the microarchitec- 

ture. It will, however, turn out to be useful later when decomposing the proof of the 

implementation's correctness. 

To build a faster predicated pipeline, the aspects of prd must be integrated into the sys- 

tem such that instructions are allowed to flow through the pipeline before the predication 

check occurs. Each instruction's predicate can then be checked just before writeback. 

The integrated predication pipeline, called prd-pipe (Figure 4.11), implements this 

algorithm. It is constructed using transaction combinators which are a hybrid of the 



0 prd-pipe : : TS FSet PIns t r  

1 ( (RF , (Prd-Trans , Prd-Trans , Prd-Trans) ) , (PRF, 0 ) ) 
2 (Obs RF) 
3 prd-pipe = ( i n t ,  nxt ,  ob ) 
4 where 
5 f lushed-pipe = (prd-bubble-trans , prd-bubble-trans , prd-bubble-trans) 

6 
7 i n t  = un i t  ( ( i n i t i a l - r f  , f lushed-pipe) , ( in i t ia l -pr f  , 0 )  
8 
9 nxt i ((nrf , (nw, rd ,  wb) , (prf , other) )  
10 = l e t  r f  = (nrf , prf )  
11 (rf ' , wbi) = prd-wb-stage wb r f  
12 wb' = prd-alu-stage (prd-bypass wbi rd) 

13 rd '  = prd-bypass wbi (prd-read-stage r f  nw) 

14 nw' = prdrmake-trans i 
15 i n  un i t  ( ( f s t  r f J ,  ( n w ' ,  r d ' ,  wb')), ( s n d r f ' ,  other))  
16 
17 ob ( ( r f  , pipe) , (prf , other) 1 
18 = i f  pipe == f lushed-pipe then r-f lushed r f  
19 e l s e  rno t - f  lushed 

Figure 4.11: prd-pipe: a higher-performance predicated lUSC pipeline 

transaction combinators from Chapter 3. The transition system is defined to manipulate 

pipeline stages of type Prd-Trans (Figure 4.12) which is like Trans, except that predicate 

registers are possible source and destination operands. One can think of an element of 

Prd-Trans as two transactions, with a shared instruction. This is the essence of how 

the combinators treat Prd-Trans instructions. For example, the function prd-bypass 

defined in (Figure 4.13) bypasses the predicate references and the standard references 

independently. The writeback function, prd-wb-stage, (Figure 4.14) checks the source 

predicate and commits the instruction only if the predicate is true. 

Line 5 of Figure 4.11 defines how an empty stage is represented internally within 

prd-pipe. Line 7 declares that there is a single initial state, using the variables i n i t i a l - r f  

and in i t i a l -p r f  as representatives of initial register-file states. The next state relation is 

defined in a fashion similar to the definition of the pipe, except that the predication-based 

transaction functions are used. 



I type Prd-Trans = ( I(Reg,Maybe Int)] , [(PReg,Maybe Bool)] I 
, Prd-Instr Opcode Reg PReg 
, [(Maybe Reg,Maybe Int) I , [(Maybe PReg,Maybe Bool)] 

Figure 4.12: Prd-Trans: the predication transaction type 

prd-bypass : : Prd-Trans -> Prd-Trans -> Prd-Trans 
prd-bypass (dsts1,dsts2,i,srcsl,srcs2) (dsts1',dsts2',i',srcs17,srcs2') 

= (d~t~l',d~t~2~,i~,~rcsl",srcs2~~) 
where (-,-,srcslW) = bypass (dstsl,i,srcsl) (dstsl',i',srcsl') 

(-,-,srcs2") = bypass (dsts2,i,srcs2) (d~ts2~,i',srcs2') 

I Figure 4.13: pred-bypass : the predication bypass combinator 

prd-wb-stage : : Prd-Trans -> MEnv -> (MEnv, Prd-Trans) 
prd-wb-stage (a,b,IF c d,e,f) env 

= let t = (a,b,IF c d,e,f) 
in if pred-true t then (do-wb t env, t) 

else (env, prd-bubble-trans) 
prd-wb-stage t env = (do-wb t env, t) 

do-wb : : Prd-Trans -> MEnv -> MEnv 
do-wb (dstsl ,dsts2, i, srcsl, srcs2) (rf ,prf) = (rf ' ,prf '1 

where rf ' = f old1 writeback rf dstsl 
prf' = foldl writeback prf dsts2 
writeback rf (r , Just x) = updateEnv rf (r ,x) 

wb-stage : :  Trans -> RF -> (RF,Trans) 
wb-stage (dstsl ,i,srcsl) rf = (rf ' , (dstsl ,i ,srcsl)) 

where rf7 = foldl writeback rf dstsl 
writeback rf (r, Just x) = updatehv rf (r ,x) 

Figure 4.14: wb-stage: the predication writeback function 



emptyRn : : Int -> Region i 
isEmptyRn : : Region i -> Boo1 
popRn : : Int -> Region i -> (Maybe i ,Region i) 

Figure 4.15: Interface to the Region type 

4.3 Adding concurrent execution 

The concurrency transformer cnc is used both in the architectural specification and mi- 

croarchitectural model. The idea behind this transformer is that it takes a transition 

system and makes a number of concurrently executing copies of it. These copies have 

some shared state. 

The type of the concurrency transformer is: 

Bubble i => Int -> TS FSet i ((v, o) ,s) (Obs e) -> 

TS FSet (Region i) ((v,s), [ol ,Region i) (Obs e) 

The first parameter is used to determine the number of concurrently executing transition 

systems. The second parameter is a non-deterministic transition system. The transformer 

returns a new nondeterministic transition system with richer input- and-state types. The 

input-type of the returned transformer is regions of inputs. 

The state space of the new system is a triple ((v,s), Col ,Region i) : 

The first element is a pair from the underlying system's state space. This is the 

shared state. 

The second element is a list of parts from the underlying system's state space-one 

for each concurrently executing transition system. 

The third element represents the state of the current region in execution. 

The Region data-type (Figure 4.15) is used to represent basic blocks, as described in 

Chapter 2. Essentially, a Region represents a sequence of queues. Figure 4.15 contains 

the types and names of several functions available for constructing empty regions, testing 

to see if a region is empty, and removing instructions from specified queues. 



0 cnc k m = (int,nxt,ob) 

1 where 
2 int = do { ((a,b) ,c) <- initial m 
3 ; unit ( (a, c) ,take k (repeat b) ,emptyRn rs) 
4 1 
5 
6 nxt b (rf,ps,r) = 
7 do { choice <- perm rs k 
8 ; let psk = zip ps choice 
9 ; let r' = if ishptyh r then fillout rs b else r 
10 ; foldM issue (rf , [I, r') psk 
11 1 
12 
13 ob ((rf ,p') ,ps,r) = 

14 let ss = map (\x -> ((rf,x) ,p')) ps 
15 in if isEmptyRn r && all (flushed m) ss 
16 then observe m ( (rf ,head ps) ,pJ ) 
17 else r-stalled 
18 1 
19 issue ((rf ,p2), ps' ,r) (pl,n) = 

20 do { let s = ((rf ,pi) ,p2) 
2 1 ; (s' ,rJ) <- if stalling m s then match r (next m bubble s) 
22 else case popRn n r of 
23 (Nothing ,r ' -> match r ' (next m bubble s) 
24 (Just x,r') ->matchr' (next m x  s) 
2 5 ; let ((rfJ,pl') ,p2') = sJ 
26 ; unit ((rf',p2'), ps' 'union' Cpl'l ,r') 
27 1 

Figure 4.16: cnc: the concurrency transformer 



As we can see from line 2 of Figure 4.16, the initial states of the concurrent transition 

system are built from the underlying transition system's initial states: the first and third 

elements are returned with k copies of the second element. In addition, cnc returns an 

empty region. Lines 6 through 11 define the next-state relation. The variable choice is 

nondeterministically chosen to be a legal assignment of instructions to pipelines. A legal 

choice is defined as follows: an instruction from queue q can be issued to a pipeline p if 

p = q mod s, where s represents the number of pipelines. We can also choose not to issue 

an instruction on that cycle. For example, if we have three pipelines, the next instruction 

for the first pipeline could come from the first or the fourth queue. 

The next state relation is defined with f oldM: 

f oldM : : Collect c => (a -> b -> c a) -> a -> [bl -> c a 
foldM f a [ I  = unit a 

foldM f a (x:xs) = do {y <- f a x; foldM f y xs) 

The function issue (line 19) issues the choices into their respective pipelines and 

returns the updated region. On line 20, issue makes a state for the underlying system 

from the available parts. It then issues an instruction for pipeline n if possible. A new 

state s ' and a reduced region r ' are returned. The function then de-constructs the state 

returned by the underlying transition system and adds the pipeline register state into the 

value that is finally returned. 

The observation function (lines 13 to 18) defines the system to be stalled and not 

flushed unless the region is empty and the pipelines are flushed. In the case that both the 

region and the pipelines are flushed the definition uses the flushed pipelines to determine 

the underlying observation. 

4.4 Adding the front-end 

The last transformer applied in both the architectural and microarchitectural models is 

fnt defined in (Figure 4.17). This function takes a program and inserts instructions from 

the program into its argument transition system. The type of f n t  is: 



fnt p m = (initial m,nxt ,observe m) 
where nxt False s = if not (flushed m s) then next m bubble s 

else let v = readEnv (view m s) pc 
r = p! ! (toInt (v) ) 

in next m r (s) 
nxt True s = next m bubble s 

Figure 4.17: f nt : the instruction memory transformer 

(Register r, Bubble i, Integral w) => 
[i] -> 
TS m i s (Obs (Env r w)) -> 
TS m Boo1 s (Obs (Env r w)) 

The function returns a transition system with a stall input signal. 

Notice that fnt is used in four different type instantiations. In WA it is being applied 

to a predicated MSC architecture, which has the following type: 

It is also being applied to a predicated RISC pipeline, a concurrent and predicated RISC 

architecture and a concurrent and predicated pipeline. We could also apply fnt to just a 

pipeline: 

fnt p pipe 

4.5 Executing the specification and model 

In this section we demonstrate oa and oma on the sample program from Chapter 2 which 

is encoded as a list of regions in the [Region (Prd-Instr Opcode Reg PReg)] data-type 

in Figure 4.18. 

4.5.1 Executing the architectural model oa 

The following is an initial state of oa: 



Y 

-- Region 1 
, [ [GO (NEQZ r4 r2), R2P p2 p3 r41 
, [GO (CNT pc 2), GO (ADDI r3 r2 011 
I 

Y 

-- Region 2 
, [ [IF (MLT rl r1 r3) p21 
, [IF (ADDI r2 r2 (-1)) p21 
, [IF (CNT pc 1) p2,IF (CNT pc 3) p31 
, [IF (ADDI r4 r1 0) p31 
1 

[ 
-- Region 0 

[ [  [GO (CNT rl I)] 
, [GO (CNT r2 711 
, [GO (CNT pc 111 
1 

9 

-- Region 3 
, [ [GO (CNT pc 311 
, [GO (CNT 6 2) ,GO (DIVI 5 5 0) 1 
I 

1 
1 

Figure 4.18: Factorial function encoding 



where r f  is the register file ([rf pc] = 0, [rf rl] = 0, etc) and prf is the predicate register 

file ([prf pol = 0, [prf pin = 0, etc). The singleton list [31 is r i sc ' s  non-deterministically 

chosen stall value. The list of empty lists is the empty region. We format this state as 

follows: 

registers pred. reg. 

On the first transition the first region can be loaded into the system: 

region 

registers 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

[I 
[I 
Cl 
[I 
[I 
[I 
[I 
[I 
[I 
[I 

At the next cycle, because the system is not flushed, the input region is ignored. We can 

choose to issue the instruction in the third queue: 

region 

registers 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

[I 

[GO (CNT 1-2 7)1 

[GO (CNT pc 1)l 

CI 
C1 
[I 
[I 
[I 
[I 
[I 

region , 
1 

3 

4 

5 

6 

7 

8 

9 

10 

[I 
[GO (CNT 2 7)l 

[I 
C1 
C1 
Cl 
C1 
[I 

[I 

[I 



We can then issue the second instruction on the following cycle: 

registers 

Now the program counter (pc) is set to 1 and the system is flushed. Therefore, on 

region 

the next cycle, the second region can be loaded: 

region 

2 )  ,GO (ADD1 3 2 011 

10 [I 

1 

2 

3 

4 

5 

6 

7 

8 

9 

l o  

4.5.2 Executing the microarchitectural model oma 

[I 
[I 
[I 
C1 
[I 
Cl 
CI 
Cl 
[I 
[I 

The implementation model, oma can be analogously executed on the same program. Its 

initial state is: 

registers 
pipeline one 

nw ( [ I , [ l , G O  BUBBLE,[],[]) region 

pipeline two 

nw ([].[I ,GO BUBBLE,[I,Cl) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

[I 
Cl 
[I 
CI 
[I 

C1 
[I 
[I 

[I 
[I 

r d 

wb 

( [ I ,  [I ,GO BUBBLE, Cl, [ I )  
(Cl ,Cl ,GO BUBBLE,[],[]) 

pipeline three 

nw 

rd 

(CI ,Cl ,GO BUBBLE,[],[]) 

( [ I ,  [I ,GO BUBBLE. [I, [I)  



After the first transition, the entire first region can be loaded and issued into the three 

pipelines: 

registers 

We have now issued all of the instructions in the region. On the next cycle we concurrently 

run each of the pipelines. Assuming that all of the pipelines make progress, the three 

transactions can progress to the read stage in their respective pipelines: 

pipeline one 

region C(r1,Just 1)l,[l,GO CNT,[ (Nothing,Just I)],[]) 

registers [I 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

During the next transition the transactions progress to the writeback stage of their 

pipelines: 

11 (CI,CI,GO BUBBLE,[],[]) 

[I ([I, [I ,GO BUBBLE. [I, [I) 
[I 
[I 
[I 
[I 

(CI,Cl,GO BUBBLE,[],[]) 

C(r1,Just I)l,[l,GO CNT,C (Nothing,Just I)],[]) 

([],[],GO BUBBLE,[],[]) 

( C(r2, Just 7)1, [I ,GO CNT, [(Nothing, Just 7)1, [I) 
([],[],GO BUBBLE,[],[]) 

( [I, [I ,GO BUBBLE, [I , [I ) 

region 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

[I 
[I pipeline three 

[I 
[I ([I, [I ,GO BUBBLE, [I, [I) 

([I, [I ,GO BUBBLE, [I, [I) 

pipeline two 

[I 
[I 
[I 
[I 
[I 
[I 
[I 
[I 
[I 
[I 

nw 

rd 

wb 

(C(r2,Just 711, [I ,GO CNT, [(Nothing,Just 711, [I) 
([I, [I ,GO BUBBLE, [I, [I) 
([],[],GO BUBBLE,[],[]) 



registers 
pipeline one 

nu ([I, [I ,GO BUBBLE, [I, 11) 
rd ([],[],GO BUBBLE,[],[]) 

wb ([(rl, Just I)], [I ,GO CNT, [(Nothing, Just I)], [I) 

(Cl,CI,GO BUBBLE,[],[]) 

(CI,Cl,GO BUBBLE,CI,[l) 

(Cl,Cl,GO BUBBLE, [I,[]) 

Finally, on the next cycle, the machine writes the results embedded in the transactions of 

the three writeback stages: 

At this point we have completely executed the first region. On the next cycle, we can load 

pipeline one 

the region pointed to  by pc: 

region 

registers [I pred. reg. 

(CI,Cl,GO BUBBLE,[],[]) 

(Cl,[l,GO BUBBLE,[], [I) 
(CI,Cl,GO BUBBLE.CI,[l) 

pipeline two 

nu 

rd 

wb 

(Cl,Cl,GO BUBBLE,[],[]) 

(Cl,Cl,GO BUBBLE,[],[]) 

([I, C1 ,GO BUBBLE, [I, [I) 

region 

I ~ i ~ e l i n e  two I 

pipeline three 

(Cl,Cl,GO BUBBLE,[],[]) 

(CI,Cl,GO BUBBLE,CI,Cl) 

(Cl,[l,GO BUBBLE,Cl,[l) 

pipeline one 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

nu 

rd CR2P p2 p3 r41 

[ADDI r 3  r2 01 

[I 
[I 
[I 
[I 
[I 
[I 
[I 
[I 

( C(r4, Nothing) 1 , [I ,GO NEZ, [( Jt r2, Nothing) 1 , [I ) 

(Cl,Cl,GO BUBBLE,[],[]) 

' . 
nw 

rd 

wb 

pipeline three 

( [(pc ,Nothing)] , [I ,GO CNT, [(Nothing, Just 211 , [I ) 

([I, [I ,GO BUBBLE, [I, [I) 
([I, [I ,GO BUBBLE, [I, [I) 

nu 

I 

([l,Cl,GO BUBBLE,[],[]) 



4.6 Summary 

In this chapter we have constructed several ISA specifications and microarchitectural de- 

signs. The key concept in this chapter is that of a transition system transformer. When 

represented as the composition of these transformers, the features of a specification and 

model can be expressed in isolation of other features. For example, the specification of 

predication is expressed in an orthogonal manner from the specification of concurrency or 

instruction fetching. Qualified types have played an important role in this method of in- 

dependently modeling extensions. They have allowed us to encode the expectations of the 

argument transition system into the type of the transformer. For example, the predication 

transformer prd requires that its argument support the notion of bubbles, so that it can 

flush its argument transition system in the event of an R2P instruction-this expectation 

is encoded in the predicate Bubble which occurs in the function's type. 

Another aspect of this chapter is that we have been able to re-use the relatively stan- 

dard definitions of r i s c  and pipe in the specifications of OA and WA. For quality it 

is typically good to build designs using well understood building blocks. What's more: 

this will be advantageous later when we explore the decomposition of the proof of wma's 

correctness. 



Chapter 5 

Proof with transformers 

In the previous chapter we demonstrated how we can model architectures and microar- 

chitectures with transformers. We now explore how to use the extra structure in these 

transformer-based microarchitectural models when formally verifying them against their 

transformer-based specifications. In this chapter we develop a transformer-based strategy 

that facilitates the decomposition and simplification of correctness proofs. 

The chapter is organized as follows. We first introduce some notation and review 

mathematical concepts. We develop AM, a formal language for the expression of transition 

systems and transformers. We provide a basic rule that allows for proof decomposition 

on transformers. Then, using the theory of Pararnetricity [54, 661 for AM, we develop a 

strategy for proof simplification. 

5.1 Notat ion and mat hemat ical preliminaries 

We use + and x over sets in the traditional manner: 

Definition 8 (x, +) 

A x B is the product space of A and B. A + B is the function space from A to B. 

Later in the chapter, we will need to specify domains and ranges relative to a relation 

such that the relation appears to be a total relation, a total function, or a one-to-one 

function. We achieve this with the following higher-order relations: 



Definition 9 (total, totalfunc, iso) 

(A, B) E total R Va E A. 3b E B. (a, b) E R 
(A, B) E totalfunc R 4 Va E A. 3!b E B. (a, b) E R 

(A, B)  E iso R A (A, B) E total R A (B, A) E total R-I 

These higher-order relations have type: Set(A x B) -+ Set((Set A) x (Set B)). In essence, 

the relations relate domains to ranges such that they have some property with respect to 

R. In the case of total, the property is that R appears total under the domain and range. 

For example, consider total Id, which relates A to B only if A is a subset of B. The 

relation total-func is identical to total except for the additional constraint that an A and 

B must be chosen such that R appears to be a function. iso restricts A and B such that 

the relation is both total and surjective. As an example: iso Id = Id. 

We use the notation (R t Q) to represent the lifting of relations on transformers: 

Definition 10 ( t  ) 

We use the backwards arrow to simplify composition notationally. When we apply (t) to 

relations such as SIM, MAP, BlSlM or FP we get new relations that range over trans- 

formers. For example: (f, g) E (SIM + SIM) is true when two machines (x, y) are 

in SIM and (f(x),g(y)) E SIM. Figure 5.1 portrays a lattice of implications between 

lifted relations constructed from SIM, MAP, and FP. It demonstrates that (FP t MAP) 

is the most general relation, while (MAP t FP) is the least. We can also see that 

(MAP t FP) c (FP t SIM)-meaning that if we have proved (SIM t FP) we have also 

proved (FP t SIM). This figure assumes that transition systems are all initially flushed. 

Definition 11 (monotonicity) A function f : A -+ B is monotonic with respect to R 

and Q if for all (a,b) E Q, (f a, f b) E R. 

This is a slight generalization of the familiar definition of monotonicity. Normally we 

would not use two relations in the definition. Notice that, using the lifting notation, our 

definition of monotonicity can be rephrased as: A function f : A --+ B is monotonic with 

respect to R and Q if (f,  f )  E (Q t R). 



/+F\ /PIS\ 

FP +- FP \\___ /+S\ >P+MAP 

FP +- SIM 

\ FP t MAP /IMAp 

Figure 5.1: Implications between lifted correctness criteria 

5.2 AM: A language for expressing transition systems 

Thus far we have expressed transformers in an unspecified functional programming lan- 

guage notation. We will now be more precise as to  the semantics of this language by 

defining a core language AM.  The purpose for delving into this level of detail is that, with 

the language formally defined, we gain the use of Parametricity. 

AM is minimal and verbose: it is intended as a simple language for study. We conjecture 

that a compiler could be written that translates the code from Chapters 3 and 4 into 

terms of AM by removing syntactic sugar, compiling away type-classes and performing 

type inference. Like System F [23], X~ requires explicit type annotations. Like Haskell 

or ML, it requires Hindley-Milner types. 

We assume that all recursion is bounded. That is, we assume that all recursion can 

be eliminated by a static number of unfoldings-in practice ten to twenty unfoldings 

are likely to be more than sufficient. Recursion is used for notational convenience, not 

computational necessity. This matches the domain in which it is being used-hardware 

must, in the end, be described with a finite amount of state. 



x ,  y,z E Vars  
S E Typeschemes ::= ~ ( A x 1 . ~ ( A x 2 .  . . . xn.T) . . .) 
T E Types  ..- ..- x ( C T I  ( T'4T2 I TlXT2 

T' E GrTypes ::= C T i  . . .  TA I TiGT;  (T,'><T; 
C E Typeconstants ::= FSet 1 Int 1 . . . 
t E Terms ::= x ( c ( Ax : T.t 1 Ax.t ( tl t 2  I t~ ( ( t 1 , t 2 )  

c E Constants ::= fst 1 snd 1 . . .  

Figure 5.2: AM syntax 

5.2.1 Syntax 

Figure 5.2 displays the syntax for AM types and terms. The letters x ,  y, and z represent 

type- and term-variables. To simplify the semantics, we distinguish between type ex- 

pressions with variables, and ground type expressions, which are type expressions without 

variables. 

We represent quantified types with constructors. The familiar type Vx.x is treated as 

shorthand for '?(Ax.x), where 9 is a type constructor and Ax.x is a function of the type 

syntax level from ground types (GrTypes) to Types. 

Figure 5.2 presents the syntax for A M .  The form Ax : T.t  represents abstraction over 

terms. Ax.t is abstraction over types. The form (tl ta )  denotes the application of term t l  

to t2. t~ is the applicative form of terms to types. 

5.2.2 Types 

AM borrows system F's type system (Figure 5.3) as described in [66]. A term is considered 

to be in AM if it is well typed. A type assertion is of the form 

A is a set of type variables, and r is an environment from variables to types. We expect 

that each free variable in t will be in the domain of I?. Each free type variable in T should 

appear in A. 



A,l?[xi+Tl] I - u :  T2 ~ [ x ] , r  F U :  T 
A, r I- AX : T1.u : T 1 i T 2  A, r I-  AX.^ : V(AX.T) 

A , I ' [ x H T ] I - x : T  
A,rkt l :Tl;T2 A , r t t 2 : T 1  

A, r t tl t2 : T2 

a, r F t : V(AX.T~) 
n , r I - c : o T c  

A , r  I- t, : T1[x i+ T2] 

A , r I - t l  :T I  A , r I - t 2  :T2 
A, I' I- (tl, t2) : T ~ ~ < T ~  

Figure 5.3: Type system of AM 

5.2.3 Semantics 

Because AM is intended as the target for a language with only bounded recursion, simple 

sets suffice as the semantic interpretation. For example, we can represent any function of 

type BooliBool as a subset of the set of pairs: 

That is, we do not neet to provide an extra element to represent functions that do not 

terminate. Following the style of Mitchell and Meyer [53], the semantics of AM are defined 

in terms of environments for the typed and kinded constants. a~ provides the meaning for 

type constants, and TK gives the kind for each type constant. At the term level, 0~ provides 

the meaning for each term constant, and TT the types. For example, we will expect the 

following equations to be true: 

TK  BOO^ = * 
a~ Boo1 = {1,0) 

TT and = BooliBooliBool 

OT and = XX.X~.X A y 

We provide the semantics of AM in a framebased form, as described by Meyer and Bruce 

[15]. That is, we provide a frame (T, S, 4, V, a, Q). From this frame, Meyer and Bruce 



uxn+ 
A = $ x  

[IC TI . . a  Tn]+ 4 (OK C )  [[Tl]I+...I[Tn]+ 
IITl~T21+ UTlI+ - UT2D+ 

[TI]+ x l[T21+ U T I ~ T ~ I I +  A 
[V(XX.T)]+ = XA : GSet. [T]+c-~ l  

Figure 5.4: Type semantics of XM 

1 
A 

uxn+>p = p x  
A 

UCI+>P 
- - (TT c 
a 

[[AX : U.u]+,p = Xa : UTD+. U ~ l l + , ~ [ x w a ]  
A 

ut un+,p = utn+,p UUI+,P 

UAx. tn+,p 
A = XA : GSet. [[t~+[x++Al,p 

U ~ T I + , P  A utn+,PuTn+ 

Figure 5.5: Term semantics of X~ 

construct [.I for terms and types defined in Figures 5.4 and 5.5. Both @ and 9 are in this 

case the identity function. 

The function S (Figure 5.6) takes a type expression and returns the set of elements 

that represent that type. For example: S Boo1 = {True, False). GSet is defined as the 

meaning of all possible monomorphic types: 

GSet A {I[t]lt E GrTypes) 

The meaning of a polymorphic term t : V ( X ~ . T )  is represented as a environment from 

I Figure 5.6: S: a mapping from XM-types to sets of XM-expressions I 



(a, b) E RelC x A < x 
A (a, b) E RelC c = n c 

(a, b) E Relc ($'(AX. T))  V R .  (a ,  b) E RelC[x,Rl T 
(a, b) E RelC ( T l i T 2 )  4 (a, b) E (RelC Tz c- RelC TI) 
(a, b) E RelC ( T ~ X T ~ )  (a, b) E (RelC Tl x RelC Tz) 

Figure 5.7: Rel: an alternative semantics for types 

GSet to the meaning of terms. For example, 

[(AX. XTJ : X. XZ : X.TJ)] = XA : GSet. [[(XTJ : X. XZ : ~.y) ]~ , [ , ,~ ]  

= XA : GSet. Xal : EX][,,A~. [[Az : x . Y ] [ ~ H ~ ~ ] , [ x ~ A ]  

= XA : GSet. Xal : A. Xa2 : A. [[Y][?JH(L~,ZH~~],[XHA] 

= XA : GSet. Xal : A. Xa2 : A. a1 

This is a significant departure from the standard semantics for System F. This restriction 

essentially states that polymorphism only ranges over ground types. The form XA : B.t is 

a notational shorthand for the set of pairs {(A, t) 1 A E B) .  We use ([a] as an abbreviation 

for Il-10 and U-JJ0,0. 

5.3 Parametricity for X~ 

In essence, Parametricity [54, 661 states that for each type there is a theorem that holds 

for any expression of that type. In other words, for every term with type t : T we know 

that there is a statement constructed from T that is true of t-regardless oft's definition. 

The relation Rel (see Figure 5.7) builds this statement. 

Now for a more formal explanation. A constant c is said to be parametric if (aT c, a~ c) E 

Rel T. Parametricity states that if every constant is parametric, then for any term t : T,  

([[t], [t]) E Rel T. Rel T is sometimes called T's free theorem. Note that Rel uses C as an 

environment from variables to relations, which grows in the recursive applications of Rel 

over quantified types. We will use Rel as an abbreviation for Relo. The environment K. is 

defined such that a (possibly higher-order) relation is bound for each type-constant in the 

language. For example, K. Int = Id and n FSet could be defined as iso. 



Let us see a few examples of free theorems. The relation that compares two sets A 

and B which are denoted by expressions of type FSet I n t  is 

(A, B )  E Rel (FSet I n t )  e (A, B) E (Rel   set) (Rel In t )  

# (A, B) E iso (Rel I n t )  

e (A,B) E iso Id 

e (A, B) E total Id A (B,  A) E total id-' 

e V ~ E A . ~ ~ E B . ( ~ , ~ ) E I ~ A V ~ E B . ~ ~ E A . ( ~ , ~ ) E I ~  

e (Va E A. 3 b  E B. a = b) A (Vb E B. 3a E A. b = a)  

@ A = B  

So the free theorem of any term t  with type FSet I n t  is that It] = i t ] .  This is not a 

ground breaking theorem, but it's free. 

For a more interesting free theorem, recall that in Chapter 4 we wrote transformers 

with type: Vx. TS FSet x TI T2 -+ TS FSet (F x) T3 T4, where F is any function at the 

syntactic type level. Let us take a specific example. Suppose that we have an encoding of 

a transformer in x ~ :  

f :: Vx. TS FSet x TI T2 + TS FSet (xj<x) T3 T4 

What is the theorem associated with this type? Recall that Rel constructs a relation from 

a type that compares two elements. In the case of TS, Rel (TS TI T2 T3 T4) is constructed 

to relate two transition systems: 

Rel (TS TI T2 T3 T4) 

v 

This picture is intended to  communicate that Rel (TS TI T2 T3 T4) is a relation that holds 

between elements in TS TI T2 T3 T4 and TS TI T5 T3 T4. In other words, 

Rel (TS TI T2 T3 T4) :: TS TI T2 T3 T4 + TS TI T5 T3 T4 + {0,1) 



Let R, = Rel Ti. The picture below demonstrates how the structure of T S  is used to 

construct the relationship Rel ( T S  TI T2 T3 T4): 

A A A A A A A 

Rel (TS  TI Tg T3 T4) = R1 R2 A R3 =$ R2 =+ R1 Rz A R2 * R4 

v v v v v v v 
TS Tl T5 T3 T4 = ( Tl T5 T3 T5 i Tl T5 T5 i T4 ) 

Notice how the structure of T S  naturally causes Rel to construct the relation with three 

conjuncted clauses: 

Rel (TS  TI T2 T3 T4) = 

The first clause compares the first projection of the triples ( in i t ia l ) :  

That is, if in i t ia l  u  : TI T2 and ini t ial  v : Tl T5 then in i t ia l  u can be compared to 

in i t ia l  v with the relation (R1 R2): ( in i t ia l  u, in i t ia l  v )  E (R1 Rg). For example, if 

R1 = iso, then R1 Rg equals 

Va E in i t ia l  u. 3b E in i t ia l  v.(a, b) E R2 

A 

Vb  E in i t ia l  v. 3a E in i t ia l  u.(a, b) E R2 



This precisely matches BISIM.A, which was defined in Chapter 3 as: 

Va E i n i t i a l  u. 3b E i n i t i a l  v.(a, b) E R 

and 

Vb E i n i t i a l  v. 3a E i n i t i a l  u.(a, b) E R 

The second clause can be visually represented as: 

That is, this clause constructs a relation that compares the second projection of the triples. 

To compare two elements f and g with Ra, R3, and (R1 R2) : 

we do the following: assume that (i, j) E R3; assume tha.t ( s ,  q) E R2; and then check that 

(f i s ,g j q) E R1 R2. For example, if Rg is equality, R1 = iso, next u :: T3iT2+Tl T2, 

and next v :: T 3 i T 5 i T l  T5, then this is equivalent to: 

Va, a', b, i. [R2(a, b) A a' E next u i a] + [3b1. b' E next v i b A Rz(al, b')] 

A 

Va, b, a', i .  [R2(a, b) A b' E next v i b] [gal, a' E next u i a A R2(a1, b')] 

This matches BIS1M.B. 



The final clause is: 

This clause constructs a relation that compares the third projection. If R4 is equality, 

observe u :: T 2 i T 4 ,  and observe v :: T 5 i T 4  then this is equivalent to: 

Va, b. (a, b) E R2 + observe u a = observe v b 

This matches BISI M's third clause: 

Va, b. (a, b) E R + observe u a = observe v b 

This connection between Re1 and BlSlM provides us with the following result: 

Proposition 3 Given u :: '?(Ax. TS FSet (F x) T2 T3), v :: '?(AX. TS FSet (F x) T2 T3), 

and n FSet = iso, 

(u, v) E BlSlM equals (u, v) E Rel[x,Rl (TS FSet ( F  x) T2 T3) 

With this proposition, we are now ready to see what the free theorem is for f ,  where f 

has type: 

'?(Ax. TS FSet x TI T2iTS FSet (xxx) T3 T4) 

By the Parametricity theorem for AM, we know that: 

(I[ f 1, [f]) E Rel ('?(Ax. TS FSet x TI T2 iTS  FSet (xxx) T3 T4)) 

from this fact we can derive the following: 

# VR.([f], if]) E Relix,Rl (TS FSet x TI T2 iTS  FSet (xxx) T3 T4) 

# 'dR, a,  b. (a, b) E Rel[x,Rl (TS FSet x TI T2) 

* ([f] a,  [f] b) E Rel[x,~] (TS FSet (xxx) T3 T4) 

H VR,a, b. (a ,  b) E BISIMR + ( [ f  a, [ f  b) E BISIM(RxRl 

+ Va, b. (a, b) E BlSlM + ([f] a,  [f] b) E BlSlM 

e ([f], [f]) E (BISIM + BISIM) 



That is, the free theorem states that f is monotonic with respect to BISIM. Remember 

that this theorem is based completely on f ' s  type. More generally, we can do the same 

trick for any function, f ,  with type: 

V(XX. TS FSet x  Tl T+TS M ( F  x) T3 Tq) 

If (m,n)  E BISIMn then (f m, f n) E BISIM(Rel,z - n l ( ~  r.). Therefore, we can conclude 

that any transformer of this general type is monotonic with respect to BISIM. 

5.4 Parametricity and Collect 

Unfortunately, transformers of type V(XX.TS FSet x  Tl T2 ATS FSet (F x) T3 T4) are 

not necessarily monotonic with respect to SI M. Consider the following example, which 

inspects how many transitions exist from the set of initial states. 

f :  TS FSet x  0 Bool -> TS FSet x  () Bool 

f  m = ( i n i t  m,next m,ob) 

where 

ob = i f  s i z e  ( j o i n  (map (next m 0 )  ( i n i t  m)) )== 1 then obs m 

e l s e  \x.  False  

The trouble is that the two machines in the relationship SIM might return sets of states 

with different cardinalities. Consider the following transition systems m and n  : 

m = (un i t  l , \ x  y -> u n i t  (x+x) , \x  -> (x % 2) == 0) 

n  = (un i t  1 , \x  y -> u n i t  (x+x) 'union' x , \x  -> (x % 2) == 0) 

In this case, ([m], in]) E SIM, but (if m], [f n]) @ SIM. 

However, with type classes we can restrict the available functions over sets to  those of 

Collect .  To do this, we must first add Collect  into XM, where TK Collect  * -+ *: 

A 
TT u n i t  = ~ ( ~ x . x i ~ o l l e c t  x) 

7-T j o in  V ( ~ x . ~ o l l e c t  (Collect x ) i c o l l e c t  x) 

A 
TT union = ~ ( ~ x . ~ o l l e c t  x 4 C o l l e c t  x 4 C o l l e c t  x) 

7~ map 4 ~ ( ~ x . \ b ( ~ ~ . ( x 4 ~ ) + ~ o l l e c t  x i c o l l e c t  y)) 



We can then encode the transformers from Chapter 4 that use Collect  as functions in 

AM with type: 

(Collect T2, T 3 i T 2 - X o l l e c t  T2, T2iT4) 

(Collect T3, T 3 i T 4 i C o l l e c t  T3, T2iT5) 

We have a number of interpretations in mind for Collect :  One, FSet, etc. Therefore, 

the semantics of Collect  are provided in axiomatic form. The axioms guarantee that the 

constants of Collect  are parametric: 

A1 : (aT un i t ,  a~ un i t )  E Rel ( ~ ( A x . x ~ ~ o l l e c t  x)) 

A2 : (aT join,  aT join) E Rel ( ~ ( A x . ~ o l l e c t  (Collect x ) i C o l l e c t  x)) 

A3 : (aT union,aT union) E Rel ( ~ ( ~ x . ~ o l l e c t  x i C o l l e c t  x i C o l l e c t  x)) 

A4 : (aT map, a~ map) E Rel ( ' b ( A x . ~ ( A ~ . ( x ~ ~ ) i ~ o l l e c t  x i C o l l e c t  y))) 

If our interpretation of Collect  is finite sets, we can define the meaning of the constants 

a, u n i t  2 {.) 

OT jo in  4 U 
A a~ union = U 

a~ map 4 Af.Ax.{f x1x E X) 

We can implement Collect  in tc as total. We must, however, verify that the model meets 

axioms A1 through A4. That is, we need to show that the model is parametric. 

Proposition 4 IfaT u n i t  = {.) and tc Collect  = total, 

A1 :(aT un i t ,  a~ un i t )  E Rel ( ' b ( A x . x ~ ~ o l l e c t  x)) 



(aT u n i t ,  a~ u n i t )  E Re1 ( v ( X z . z i ~ o l l e c t  z ) )  

(Xy.{y}, Xy.{y)) E Re1 ($ ' (Xz.z i~ol lec t  z ) )  

* (Xy.{y), Xy.{y)) E Rel[x++R] (z*Collect a )  

* (XY.{Y),AY.{Y)) E (Re l [zw~]  Rel[x++~]  z )  

Va, b.(a, b) E ReltHRl x + ({a), {b)) E Rel[x,RI ( c o l l e c t  z )  

e Va, b.(a, b) E R + ({a), {b)) E total (Rel[,,Rl x) 

* Va, b.(a, b) E R + ({a), {b)) E total R 

@ Va, b.(a, b) E R + Vc E {a). 3d E {b). (c, d) E R 

($ true 

Proposition 5 If aT union = U and n C o l l e c t  = total, 

A3 : (aT union, a~ union) E Rel (($'(Xx.~ollect z i c o l l e c t  z i c o l l e c t  z) 

Proposition 6 If aT j o i n  = U and n C o l l e c t  = total, 

A2 : (aT j o i n ,  a T  j o in )  E Rel ( ' b (Xz .~o l l ec t  (Co l lec t  x ) i C o l l e c t  z ) )  



Proof. 

(aT j o i n , a ~  join) E Rel ( ~ ( X s . ~ o l l e c t  (Collect x ) i C o l l e c t  x)) 

u (U,U) E Rel ( ~ ( X z . ~ o l l e c t  (Collect x)'-tCollect x)) 

u (U,U) E Rel[x,RI (Collect (Collect x ) i C o l l e c t  a )  

U (U, U) E (Rel[x,Rl ( co l l ec t  X) + Rel[,,Rl ( co l l ec t  (Collect x))) 

e VA, B. [(A, B) E Rel[x,R] (Collect (Collect x)) 

=+ (U A, U B )  E Rel[x,Rl (Collect x) 

e VA, B. [(A, B) E Rel[x,R] (Collect (Collect x)) 

* (U A, U B) E total (Rel[x~R] x) 

e VA, B. [ (A,  B) E total (RelIxHRl (Collect x)) 

* (UA, U B )  E total (R~~[zHR]  x) 

H VA, B.  [(A, B) E total (total (Rel[x,RI x)) 

* (U A, U B) E total (Rel[x++~l x) 

H VA, B. [(A, B) E total (total R) 

* (U A, U B) E total (Rel[x~R] x)] 

e VA, B. [(A, B )  E total (total R) 

=+ (U A, U B)  E total R 

e VA, B. [VA1 E A. 3B' E B.  (A', B') E total R 

+ (U A, U B )  E total R 

e VA, B. [VA'E A. 3B' E B.  Va E A1.3b E B'. (a,b) E R 

+ (U A, U b) E total R 

e VA,B. [VA' E A. 3B' E B. Va E A1.3b E B'. (a,b) E R 

+ V a € U A .  3 b E U B .  ( x , Y ) E R  

e true 

Proposition 7 If aT map = Xf.XA.{f ala E A) and K Collect  = total, 

A4 :(aT map, a~ map) E Rel ( ~ ( ~ x . ' b ( ~ ~ . ( x ~ ~ ) ~ ~ o l l e c t  x i C o l l e c t  Y))) 



If the interpretation of Collect  is One, then we can define the meaning of the constants 

as: 

0~ u n i t  4 Id 
a a, j o in  = Id 
a a~ union = Xu. Xb. a  

CTT map 9 Xf .Xu. f a  

In this case we implement Collect  in r; as r; Collect  = Id. 

Proposition 8 If uT u n i t  = Id and n Collect  = Id, 

A1 :(OT u n i t , a ~  u n i t )  E Rel ( $ ( X z . z i ~ o l l e c t  z))  

Proposition 9 If UT jo in  = Id and n Collect  = Id, 

A2 :(m jo in ,aT join) E Rel ( ~ ( ~ x . ~ o l l e c t  (Collect x ) i ~ o l l e c t  z)) 

(aT join,  a~ join) E Rel ( ' b ( ~ z . ~ o l l e c t  (Collect z ) i ~ o l l e c t  x)) 

(Id, Id) E Rel ( 'b(Xx.~ollect (Collect z ) i C o l l e c t  z)) 

(Id, Id) E Rel[,,,] (Collect (Collect z ) i C o l l e c t  z )  

(Id, Id) E (Rel[x,RI (Collect x) + Rel[x,RI (Collect (Collect x))) 

(Id, Id) E (R~~[xHR]  z Rel[x,R] 2) 

(Id, Id) E (R + R) 

b'a, b. (a, b) E R + (Id a, Id b) E R 

b'a,b. (a,b) E R +  (a,b) E R 

true 

Proposition 10 If UT union = Xu. Xb. a and n Collect  = Id, 

A3 :(uT union, UT union) E Rel (('b(Xz.collect z i c o l l e c t  z i C o l l e c t  z )  

Proposition 11 If a~ map = Xf.Xa. f a  and n Collect  = Id, 

A4 :(aT map ,a~  map) E Rel ( ~ ( ~ z . ~ ( X ~ . ( z + ~ ) i ~ o l l e c t  x i c o l l e c t  y))) 



We can now develop a parametricity result for (SIM t SIM). If the transformer is de- 

fined using the abstract C o l l e c t  interface to set-like structures, then it cannot access any 

of the functions that destroy monotonicity. For example, if the interpretation of Col lec t  

is finite sets, functions of type $'(Ax. TS C o l l e c t  x Tl T2 + TS C o l l e c t  (x x x) T3 T4) only 

have access to 1.1, U, U, and mappings-meaning that the functions of this type cannot 

use set-operators such as cardinality. 

Proposition 12 Given u :: $'(AX. TS C o l l e c t  (F z) T2 T3), 

v :: $'(AX. TS C o l l e c t  (F x) T2 T3) and K C o l l e c t  = total: 

(u,v) E SIMR equals (u,v) E Rel[x,RI (TS C o l l e c t  (F x) T2 T3) 

With this proposition, we can prove that any f with type ~ ( x x .  TS C o l l e c t  x Tl T2 + 

TS C o l l e c t  (F x) T3 T4) is monotonic with respect to SIM: 

([f], [f]) E Rel (V(Xx. TS Col lec t  x TI T 2 i T S  C o l l e c t  ( F  x) TI Tz)) 

@ VR.([f], if]) E Rel[x,Rl (TS C o l l e c t  x TI T z i T S  C o l l e c t  (F x) T3 T4) 

e VR, a ,  b. (a, b) E Rel[x,Rl (TS C o l l e c t  x Tl Tz) 

+ ([ f]  a,  [f] b) E Rel[F,+Rl (TS C o l l e c t  ( X X  X) T3 T4) 

@ VR, a7b. (a7b) E S~MR + (If] a,  [ f  b)  E SIM(R~R) 

+ Va, b. (a, b) E SIM + ([f] a,  [f] b) E SIM 

@ wn, [fn) E (SIM SIM)  

From this, we now know that transformers that use C o l l e c t  and that are appropriately 

polymorphic in the state parameter are monotonic with respect to SIM. 

5.5 Decomposing proofs with transformers expressed in X~ 

An advantage of writing models as the composition of transformers is that, when verifying 

one model against another, the proof can potentially be decomposed point-wise into proofs 

about transformer pairs. 

Proposition 13 If (f, f') E ( P  +- Q) and (g, g') E (Q t R) then (fog, flog') E ( P  t R) 



(9,g') E ( Q t R ) ~ ( f l f ' )  E ( P t  Q) 
H [Va,b.(a,b) E R *  (g a,g' b) E Q ] A ~ c , d . ( c , d )  E Q* (f c, f ' d )  E PI 

=+ Va,b.(a,b) E R *  (f(g .)'f1 (9' b)) E P  

* Va,b.(a,b) E R + - ( ( f  og) a),(f1og') b) E P 

-3 ( f o g , f ' 0 9 ' ) ~ ( R + - P )  

For example, if we are trying to prove that (f o g, f' o g') E (SIM t BISIM), one possible 

strategy is to prove (f, f') E (SIM +- SIM) and (g,gf) E (SIM t BISIM). 

Proposition 14 If (f, f') E (R t Q) and (u, v) E Q then (f u, f' v) E R 

Using this rule, we can prove (f u, f' v) E SIM by proving (f,  f') E (SIM t SIM) and 

(u,v) E SIM. 

If f is appropriately typed and f = f' then, with the Parametricity results that we 

have developed in this chapeter, we can potentially discharge (f, f') E (SIM t SIM) based 

on f 's  type. 

5.6 Summary 

In this chapter we have provided a methodology for decomposing and simplifying correct- 

ness proofs of transformer-based models. The methodology begins with breaking a proof 

down into smaller proofs--each of which can potentially require reasoning only about local 

extensions. Then, using the Parametricity-based simplification strategy, we have provided 

a way of discharging a limited class of resulting obligations. 

The material in this chapter has demonstrated that transformers can potentially pro- 

vide a new axis for decomposition and simplification during a proof of a microarchitec- 

tural design's correctness. If the forms of the specification and implementation align in 

the correct way, we can break down the proof obligation. The connection that we have 

demonstrated between simulation and Parametricity may also allow us to automatically 

discharge some of the proof obligations. 



Chapter 6 

Applying the theory of transformers 

In Chapter 3 we surveyed several approaches that have been used when formally verifying 

a microarchitectural model against its ISA specification. In Chapter 5 we developed a 

decomposition and simplification strategy that can be used when verifying models against 

specifications written as the composition of transformers. In this chapter, we apply these 

techniques to the decomposition of a proof that, m a ,  the microarchitectural model from 

Chapter 4, is correct with respect to its ISA specification, wa. 

Note that the focus of this chapter is on factoring the proof into obligations-not 

completely proving correctness. Therefore several of the proof obligations will not be 

proved rigorously. In these cases we will provide a reference to a technique from the 

literature which can solve the problem. 

As we saw from the execution demonstration at the end of Chapter 4, the microarchi- 

tectural model can execute a program in a different number of cycles than ISA; meaning 

that it is not possible to prove that (wma p, wa p) E SIM. Therefore our aim is to work on 

the proof that (wma p, wa p) E FP. That is, we are trying to prove that for each flush-point 

trace in m a  there exists an analogous trace in wa such that the observations of the flushed 

states are equivalent. Note that we are not proving (oma p, oa p) E FP-we will discuss 

this in the next chapter. Figure 6.1 displays the picture of the overall proof decomposition. 

Each step is numbered for discussion. The remainder of this chapter discusses these steps 

in more detail. A review and summary of the decomposition and proof steps will be given 

at the end of the chapter. 



Figure 6.1 : Top-level proof decomposition 



6.1 Decomposing the proof into obligations 

We begin the proof by decomposing (wma p, wa p) E FP into several obligations. First, by 

unfolding the definitions of wma and wa we have: 

(fnt p prd-pipe, fnt p (prd risc)) E FP 

Using Proposition 3 from Chapter 5 we can decompose this into two obligations: 

1 :(fntp,fntp) E (FP t FP) 

2 :(prd-pipe, prd risc) E FP 

6.2 Proving Obligation 1: (f nt p, fnt p) E (FP +- FP) 

This obligation essentially states that if there exists an R such that (u,v) E FPR then 

(fnt p u, fnt p v) E FP. Let Bool be an instance of the Bubble type-class where True is 

the bubble instruction. Let the same R be the witness for (f nt p u, f nt p v) E FP. By 

the definition of fnt we know that conditions FP.A and FP.C from Definition 6 hold. We 

must now prove FP.B. Imagine that the following is a flush point trace of fnt p u: 

bo 61 bm 
So - S1 - - - Sm 

fnt p u fnt p u fnt p u 

where b, :: Bool. This induces a flush-point trace in the underlying system u: 

where io . . .in are chosen by fnt from p. By (u, v) E FP, we know that there exists a 

flush-point trace in v :  

such that i' E I? i, observe u so = observe v sb and observe u s, = observe v sk. We 

also know that there exists a q such that YO 5 k < n - q. st alled(sk) % i; = bubble and 

V n  - q 5 k < n. iL = bubble. Let b' be the sequence defined by the function Xk. k < q. By 

the definition of fnt we know that feeding b' to the transition system fnt p v will cause 



it to feed the sequence s' to v in the underlying system. Since s' is a flush-point trace of 

v, we know that s' is a flush-point trace of f n t  p v and that 

VO < k < n - q. s t a l l ed ( s i )  tJ bi = bubble 

AVn - q 5 k < n. 13; = bubble 

A VO 5 k < n. s ; + ~  E [next] v i; s i  

Therefore, (f n t  p u, f n t  p v) E FP. 

6.3 Proving Obligation 2: (prd-pipe,prd r i sc )  E FP 

In this part of the proof we are essentially showing that the execution core of the microar- 

chitectural model is correct with respect to the execution core of the architectural model. 

This is difficult to prove directly because, as we discussed in Chapter 4, prd r i s c  imple- 

ments predication at the front-end of r i s c ,  while prd-pipe places the predication check 

at the end of the pipeline. One approach to solving this problem is to break the obligation 

down into two simpler ones: one that proves that the predication code in prd-pipe is 

correct with respect to prd; and the other that proves that the non-predicated parts of 

prd-pipe are correct with respect to r i sc .  

We can do this by introducing an intermediate model. Because the specification is 

in transformer form, we use a part of the specification to build an intermediate model: 

prd pipe. With the transitivity of FP we know that, (prd-pipe, prd r i sc )  E FP is implied 

by Obligations 3 and 4: 

3 : (prd-pipe, prd pipe) E FP 

4 : (prd pipe,prd r i s c )  E FP 

6.4 Proving Obligation 3: (prd-pipe, prd pipe) E FP 

In essence, this obligation states that pipelining with predication implemented in the 

back-end of a pipeline is correct with respect to pipelining with predication implemented 

in the front-end. As discussed in Chapter 4, the distinction between the two techniques 

is that the transition system with predication in the back-end does not stall on an R2P 



instruction. If it weren't for this difference we could easily build a simulation relation 

between them. However, if we were to force prd-pipe to stall for three cycles whenever it 

received an R2P instruction, it would simulate prd pipe. Figure 6.2 contains the definition 

of a transformer, called slow, which does exactly this. Essentially slow takes a model with 

state space s and constructs a new model that consists of s paired with two prophecy 

variables: ( s ,  In t  , Int). The second element keeps track of how many cycles to stall, 

and the third records how many cycles the machine has been stalling. On every cycle in 

which the prophecy variables are set to 0, slow uses the function slowp to determine how 

many cycles to stall based on the incoming instruction and the state of the underlying 

machine. This is similar to tricks used by Jones [41, 421, Jones et al. [44] and Abadi & 

Larnport [4]. Lines 16 through 19 of Figure 6.2 check for the case that either a bubble 

instruction or an instruction that cannot exist in the prd pipe pipeline is found in the 

slowed down predicated pipeline. In this case, the number of cycles to stall is adjusted 

such that the execution of the two pipelines match. We can construct an intermediate 

model by applying slow to prd-pipe. Then, using transitivity of FP and SIM C FP we 

can decompose Obligation 3 into: 

5 : (prd-pipe, slow prd-pipe) E FP 

6 : (slow prd-pipe,prd pipe) E SIM 

6.5 Proving Obligation 4: (prd pipe, prd r i s c )  E FP 

By applying the decomposition rule in the same fashion as we decomposed the toplevel 

obligation, (prd pipe, prd r i s c )  E FP can be broken down into: 

7 : (prd, prd) E (SIM + SIM) 

8 : (pipe, r i s c )  E SIM 



0 slow = slowdown slowp 
1 
2 slowdown : :  (Collect c,Bubble i) => (i-> (s,~nt,Int) -> Int) -> 
3 TS c i s (Obs o) -> SM c i (s,Int ,Int) (Obs o) 
4 slowdown p m = (int ,nxt , ob) 
5 where 
6 int = do {s <- initial m; return (s ,O ,O)) 
7 nxt i (s,O, k) = do {s' <- next m i s 
8 ; return (s',p i (s,O,k),p i (s,O,k)) 
9 1 
10 nxt i (s ,n,k) = do {s' <- next m bubble s; return (s '  ,n-1 ,k)) 
11 ob (S ,O ,-I = observe m s 
12 ob (s ,n,J = r-stalled 
13 
14 
15 slowp (R2P - - -1 ( ((rf , (p, q, r)) , (prf , other)) ,n,n') 
16 I n==O && n' > 0 = 0 
17 I bub p prf3 && bub q prf2 && bub r prfl = 0 
18 I bub p prf3 && bub q prf2 = 1 
19 I bub p prf3 = 2 
20 I otherwise = 3 
2 1 where 
22 bub p env = not (pred-true-in p env) 
23 I I p==prd-bubble-trans I l isr2p p 
24 I I is-set p 
25 ss = ((rf,(p,q,r)), (prf, other)) 
26 ( (-, -) , (prf 3, -1) = run- prd-pipe b3 ss 
27 ( (-, -) , (prf 2, -1 = run- prd-pipe b2 ss 

28 ((-, -), (prfl, -1) = run- prd-pipe bl ss 

29 where s = ( ((rf , (p, q, r)) , (prf , other)) ,n,nJ) 
30 b1 = [bubble] 
3 1 b2 = [bubble, bubble] 
32 b3 = [bubble, bubble, bubble] 
33 slowp i - = 0 

Figure 6.2: slow: A prophecy-variable based transformer 



6.6 Proving Obligation 5: (prd-pipe, s low prd-pipe) E FP 

Assuming that a given transition system m is deterministic, let the function V be defined 

accordingly1 : 

V, s = next, bubble (next, bubble (next, bubble s)) 

Assume that we can prove the following property of prd-pipe: 

I YS, s f .  Vprdpipe S = Vprd-pipe S * Vprd-pipe (nextprd-pipe bubble s)  = Vprd-pipe SI 

Call this property Bubble independence. Also assume that we can also prove that the 

Burch-Dill verification condition holds for prd-pipe when compared to itself. 

I I 
YS! s ! i -  Vprd-pipe s = Vprd-pipe s * Vprd-pipe (next i S) = Vprdpipe (next i st) 

Call this property Self Burch-Dill. 

These two properties are like those that are often proved in the literature using a 

validity checker such as CVC-lite [ll] or Zapato [lo]. Examples include [12, 44, 42, 41, 

43, 60, 45, 461 

Let R be defined as: 

A 
R (s7 (s17 n7 k ) )  = n = 0 A Vprd-pipe S = V(slov prd-pipe S' 

If the two properties above hold then we can now prove (prd-pipe, slow prd-pipe) E FPR. 

Let i be a sequence of instructions such that the following is a flush-point trace: 

io + i 1 in 
S1 - - ' Sn prd-pipe prd-pipe prd-pipe 

k Consider each of these transtions: sr, ------t prd-pipe s k + l .  Using mixtures of the self Burch- 

Dill property and Bubble independance we can prove that, if Vprd-pipe sk = VprdTpipe S; 

then the following four conditions hold2: 

V (next ik s ~ + ~ )  = V (next ik SL+~) 

'This could be generalized to non-deterministic systems, but that is unnecissary in this case 
'we are assuming that prd-pipe is the underlying machine in these conditions 



v (next ik skS1) = v (next bubble (next ik  s;+~)) 

V (next ik s ~ + ~ )  = V (next bubble (next bubble (next ik s;+,))) 

V (next ik sk+l) = V (next bubble(next bubble (next bubble (next ik s ~ + ~ ) ) ) )  

By abstracting slowp we can safely assume that the result of slowp applied to ik is 

m E { O , 1 ,  2,3).  We know that this will induce a sequence in the machine slow prd-pipe 

such that 

bubble bubble 

By the four conditions above and the definition of slow we can therefore conclude that, 

if V sk = V s i ,  then 

I ~ta l ledprd-~ipe  Sk+l * stalled(slow prd-pipe) Sk+m 

~ t a l l e d ~ r d - ~ i ~ e  sk+1 stalled(slow prd-pipe) ( ~ i + m ,  O, m, 

Let f be the function that maps an instruction j to j followed by value sequence of 

bubbles. Assume that the number of bubbles is equal to the value returned slowp when 

applied to j .  Let it be the instruction sequence constructed from i by a concatenation 

of the sequences f(i). This leads to a flush-point trace in slow prd-pipe, proving that 

(prd-pipe, slow prd-pipe) E FP: 

i:, 
((sb, 0, -1 - . -.  (s;, 0, m) 

slow prd-pipe 

6.7 Proving Obligation 6: (slow prd-pipe,prd pipe) E SIM 

An important distinction between slow prd-pipe and prd pipe is that the pipeline reg- 

isters in slow prd-pipe hold PTrans values, whereas the pipeline registers in prd pipe 

hold Trans values. Therefore, when a predicated instruction i occurs in a slow prd-pipe 



pipeline register, the analogous register in prd pipe is a function of what prd did with i 

when it was placed into the machine. 

The Obligation (slow prd-pipe,prd pipe) E SIM can be proved with the simulation 

mapping in Figure 6.3. This function computes the underlying transaction from a PTrans 

value. 

The mapping uses the prophecy variable in slow prd-pipe to calculate the analogous 

state in prd pipe. In the case that the prophecy variable is 3 (lines 0 through 3), on the 

last cycle the R2P instruction was issued and therefore: 

The nw register in prd pipe must be an empty transaction. 

The r d  register in prd pipe is the underlying transaction in r d  from slow prd-pipe. 

However, because the transaction in wb can potentially be an R2P or SET, we must 

calculate the underlying transaction with the predicate register file updated by any 

R2P or SET instructions in wb. 

The wb register in prd pipe is the underlying transaction from wb in slow prd-pipe. 

Because the last instruction issued to slow prd-pipe was an R2P the latch is set to 

the underlying instruction from nw. 

Similar logic is used in lines 4 through 13. Lines 4 through 7 cover the case that the 

prophecy variable is 2. Lines 8 through 13 cover the case that the prophecy variable is 1. 

In the case that the prophecy variable is 0, the mapping searches for R2P instructions 

in the pipeline registers of slow prd-pipe. Lines 15 through 19 cover the case where there 

is an R2P instruction in nw. In this case the machine received an R2P instruction four cycles 

before this one. Therefore the analogous state in prd pipe must be completely flushed. 

In the other cases (lines 20 through 38) there is no R2P instruction in nw. If there is an 

R2P instruction in r d  (lines 20 through 25) then the machine was issued an R2P instruction 

five cycles before this one, and the analogous state in prd pipe must be only be partially 

flushed. 

Notice how, in many of the cases, SET instructions are searched for with updt' when 

calculating the predicate register file. This is because, in prd pipe, the effect of SET 



instructions are seen as soon as they are issued. 

Intuitively speaking, the function mapping accelerates the execution slow prd-pipe in 

cases where it is necissary in order that the observations of the two machines are equivilent. 

We can apply symbolic simulation to establish the conditions required to prove SIM. 

To prove that mapping is a simulation relation we must prove that 

S1M.A) b'a, b. (a, b) E mapping =+ observe u a = observe v b 

To prove this we could use a validity checker-as we also proposed when discussing 

Obligation 6. The proof of this condition could even be decomposed into seven 

validity checks: one for each of the cases that comprises the function mapping. 

S1M.B) b'a E initial u. 3b E initial v. (a, b) E mapping 

To prove this we can simply symbolically execute mapping on the single initial state 

of slow prd-pipe. This state is 

where 

f lushed-pipe = (prd-bubble-trans ,prd-bubble-trans ,prd-bubble-trans) 

After executing mapping (slow prd-pipe) we the single initial state of prd pipe: 

((initial~rf,flu~hed~pipe'),(initial~prf~Nothing)) 

where 

flushed-pipe' = (bubble~trans,bubble~trans,bubble~trans) 

S1M.C) b'a, a', b, i. [(a, b) E mapping A a' E next u i a] + [3b1. b' E next v i b A (a', b') E 

mapping1 

To prove this condition we could again rely on a validity checker. 



- 

0 mapping (((rf,(nw, rd, wb)),(prf, O)), 3,n') 
1 = ((rf , (bub-trans ,under1 ' prf 1 rd,underl ' prf wb)) 
2 , (updt [rd ,wb] rf prf , Just (instr nw) ))  

3 where prf 1 = updt [wbl rf prf 
4 mapping (((rf,(nw, rd, wb)),(prf, O)), 2,n') 
5 = ( (rf , (bub-trans ,hub-trans ,under1 ' prf wb) ) 
6 , ( updt ' [nw , rd] (updt [wbl rf prf 
7 ,Just (if is-r2p nw then instr nw else instr rd))) 
8 mapping (((rf,(nw, rd, wb)),(prf, ( ) I ) ,  1s') 
9 = ((rf ,(hub-trans,bub-trans,bub-trans)) 

10 ,(updt' [nw,rd,wbl prf 
11 ,Just (if isr2p nw then instr nw 
12 else if is-r2p rd then instr rd 
13 else instr wb))) 
14 mapping (((rf,(nw, rd, wb)),(prf, o)), 0,n') 
15 1 is-r2p nw = let ( ( (rf ' ,-) , (prf3, -1) , -,-I = run- prd-pipe' b3 s 
16 b3 = [bubble, bubble, bubble1 
17 in ((rf' ,(hub-trans,bub-trans,bub-trans)) 
18 , (prf 3 ,Nothing) 
19 1 
20 1 is-r2p rd = let ( (  (rf ' , -) , (prf 2, -1) , -, -1 = run- prd-pipe' b2 s 
2 1 b2 = [bubble, bubble] 
22 prf 3 = updt ' [nwl prf 2 
23 in ( (rf ' , (under1 ' prf 2 nw, bub-trans ,hub-trans) ) 
24 , (prf 3, Nothing) 
25 1 
26 I is.12~ wb = let ( (  (rf ' ,-I, (prf 1, -)) , -, -) = run- prd-pipe' b1 s 
27 bl = [bubble] 
28 prf 3 = updt ' [nw , rdl prf 1 
29 prf 2 = updt ' [rdl prf 1 
30 in ((rf',(underl' prf2 nw,underlY prfl rd,bub-trans)) 
31 , (prf 3, Nothing) 
32 1 
33 1 otherwise = let prf3 = updt ' [nw,rd,wb] prf 
34 prf 2 = updt ' [rd, wbl prf 
35 prf 1 = updt' [wbl prf 
36 in ( (rf , (underl' prf 2 nw ,underl' prf 1 rd, 
37 underl' prf wb)),(prf3,Nothing) 
38 1 
39 wheres=(((rf,(nw,rd,wb)),(prf,~))),O,n') 

Figure 6.3: mapping: witness to (slow prd-pipe, prd pipe) E MAP 



0 instr (-,-, 1,-,-I = i 
1 
2 underl prf ( dsts, - , (GO j) , srcs, -)=(dsts, j , srcs) 
3 underl prf ( dsts, - , (IF j -1, srcs, -)=(dsts, j, srcs) 
4 underlprf ((x, -):d,[:l,P2R --,-, [(Just y,-11) 
5 = mkTrans (CNT x (if (readEnv prf y) then 1 else 0)) 

6 underl prf - = bubble-trans 

7 
8 underl' prf i = if pred-true-in i prf then underl prf i 

9 else bubble-trans 
10 
11 updt [ I rf prf = prf 
12 updt (x:xs) rf prf 
13 = case instr x of 
14 R2P rl r2 r' -> let el = updateEnv e (r1,readEnv rf r' /= 0) 
15 e2 = updateEnv el (r2,readEnv rf r' == 0) 

16 in e2 
17 SET r v -> updateEnv e (r,v) 
18 otherwise -> e 
19 where e = updt xs rf prf 
20 
21 updt' [ 1 prf = prf 
22 updt' (x:xs) prf 
23 = case instr x of 
24 SET r v -> updateEnv e (r,v) 
2 5 otherwise -> e 
26 where e = updt' xs prf 

Figure 6.4: Functions used in the definition of mapping 



6.8 Proving Obligation 7: (prd, prd) E (SIM -+ SIM) 

This obligation states that prd is monotonic with respect to (SIM t SIM). Recall that in 

Chapter 4, prd7s type was given as: 

(Collect c ,  Bubble i , Eq r ,  Eq w,  Bind i r w ,  I n t eg ra l  w) => 

TS c i s (Obs (Env r w)) -> 
TS c (Prd-Instr i r r )  (Prd-St s r (Prd-Instr i r r ) )  (Obs (Env r w) 

Because the TS type corresponds via the Parametricity theorem to the SIM relation (as 

described in Chapter 5), we can use this theorem to establish Obligation 7. 

Assuming that TI, T2, and T3 meet the constraints of the type classes, we can encode 

prd in as a function with type: 

$(AX. TS Collect  TI z (Obs ( ~ n v  T2 T 3 ) ) i  

TS Collect (Prd-Instr TI Tz T2) 

(Prd-St x T2 (Prd-Instr TI T2 T2)) (Obs (Env T2 T3))) 

Because prd is polymorphic in its state-type and can be expressed in A M ,  by Parametricity 

we know that (prd, prd) E (SIM t SIM). 

6.9 Proving Obligation 8: (pipe, r i s c )  E SIM 

This problem has been well addressed in the formal verification literature, as discussed in 

Section 3.6. To prove (pipe, r i s c )  E SI M we could use any of these published techniques. 

As an example, we could use Burch & Dill's technique [17] of automatically construct- 

ing the simulation relation with the next functions of the two machines, together with 

the bubble instruction. As Burch & Dill do, we could then use a validity checker to prove 

condition SIM .C. We could also use the validity checker to prove conditions S1M.A and 

S1M.B. 

6.10 Summary 

In this chapter we have decomposed and discharged the top level proof obligation (wrnap, wa p) E 

FP. This decomposition was performed using the following strategies: 



Transformer decomposition: This strategy was applicable in three points of the overall 

proof decomposition. What's more: the decomposition rules left proof obligations 

in several cases that were naturally solved by other techniques. 

Parametricity: We were able to apply the Parametricity theorem to Obligation 7. This, 

combined with an application of Proposition 4 and the well-known techniques for 

proving RISC pipelines correct, discharges a significant part of the correctness proof. 

Transitivity with intermediate models: The strategy of building intermediate mod- 

els which more closely model the specification was applicable in the decomposition 

of Obligations 2 and 3. 

Strengthening with the correctness criteria hierarchy: In several cases we used the 

connections between the correctness criteria developed in Chapter 3 to simplify the 

proofs. Namely, we used the result that S I M c FP when the domain of these relations 

is restricted to initially flushed systems. 

Transformer modeling style: We were able to  mix and match pieces of the microar- 

chitectural design and the ISA to build an intermediate model during the decompo- 

sition of Obligation 2. The clean interfaces encouraged by the transformer modeling 

method helped facilitate this. 



Chapter 7 

Conclusion 

As microprocessors have grown more complex, researchers have addressed the problem of 

verifying the underlying designs with a number of new proof techniques, many of which 

make use of structure inherent in the superscalar and out-of-order execution cores. Mean- 

while, microprocessor designers have not only been improving the execution cores of mi- 

croprocessors, they have also been adding optimizations to the front-ends. These front-end 

features are typically in the form of instruction-set extensions, examples of which include 

parallelism annotations and predication. 

One purpose of this dissertation has been to provide a modular method of modeling 

these instruction-set extensions. When modeled in this way, we have set out to demon- 

strate that the extra structure can be exploited in the decomposition of a microarchitec- 

tural correctness proof. In this dissertation we have introduced a method of modeling 

instruction-set extensions. We have argued that instruction-set extensions, when modeled 

in this style, can provide a new axis for proof decomposition. We have also demonstrated 

that this axis of decomposition can work hand-in-hand with other known proof techniques, 

such as uninterpreted functions, intermediate models, and Burch & Dill's flush-based sim- 

ulation mapping. 

7.1 Conclusions 

In this section we draw several conclusions from the work in this dissertation. 



Transformers facilitate modularity in design 

When adding an extension to an instruction-set architecture, many decisions must be 

made about the interactions between features. For example, when adding predication 

and explicit parallelism, we could have chosen to implement one of the following possible 

interactions: 

A) Instructions within basic blocks are predicated, but not basic blocks themselves. 

B)  Instructions are not predicated, but basic blocks are. 

C) Both instructions and basic blocks are predicated. 

Using the modularity that is inherent in transformer-styled modeling, we are encour- 

aged to make these distinctions clear and precise. Predication was formally defined in 

Chapter 4 in isolation of explicit parallelism. That is: prd is the definition of predication. 

We can then combine this feature with explicit parallelism in a number of ways. For 

example, in Chapter 4 we chose to implement A from above with: 

cnc 1 (prd r i s c )  

Had we wanted to implement choice B, we could have used: 

prd (cnc 1 r i s c )  

Choice C would be: 

prd (cnc 1 (prd r i s c ) )  

In a more monolithic modeling style, the artifacts of these decisions would be embedded in 

the code and difficult to manipulate. This demonstrates how transformer-based modeling 

encourages the development of modular designs. To the best of our knowledge, this sort 

of modeling method has not been used before for instruction-set specification-and the 

power we get from the method has not been seen until now. 



Transformer based proof techniques complement more traditional proof tech- 

niques 

When new modeling and proof methods are introduced in the literature, they are often 

intended as replacements for old techniques. The work presented in this dissertation, in 

contrast, adds a new axis for proof decomposition. All of the previously known techniques 

can still be applied. That is, the transformer decomposition rule and Parametricity can 

work in unison with other verification techniques such as uninterrupted functions, inter- 

mediate models, and abstraction. 

As an example, consider the case in Chapter 6 where we used the transformer decompo- 

sition rule to decompose the obligation (prd pipe, prd r i sc )  E FP. The resulting obliga- 

tions could then be discharged using a combination of Burch & Dill's mapping, prophecy 

variables, and Parametricity. This case demonstrates how transformer-based modeling 

and decomposition complement the set of common microarchitectural proof techniques. 

Transformers facilitate the construction of intermediate models 

We have seen that the transformer-based modeling style presents certain challenges. For 

example: the orthogonality that transformers impose made modeling a fast predicated 

pipeline with transformers difficult in Chapter 4. The cause of the difficulty was that 

the optimization that we implemented required structural information that crossed the 

boundaries of the transformer prd and pipe. The discipline of transformer-based modeling 

did, however, provide us with a benefit when trying to decompose the proof of correctness: 

we were able to combine parts from different worlds to construct the intermediate model 

prd pipe. 

Parametricity provides free monotonicity results for some correctness criteria 

Using Parametricity, we discharged Obligation 7 based on the type of prd. Because this 

result was not dependent on the definition of prd, the proof of its monotonicity holds even 

when the definition is modified-so long as the type remains appropriately polymorphic. 

Although it was not required in this dissertation, a similar theorem holds for fnt. 

Based on the type of fnt, and not its definition, we know that it is monotonic with respect 



to both simulation and bisimulation. This result could be used to structure and decompose 

a number of proofs described in the literature that use microarchitectural models with 

built-in front-ends. Had we used transformers to specify speculative loads or multimedia 

instructions, we could probably also have demonstrated a type-based monotonicity result 

for these transformers. 

7.2 Future work 

In this section we discuss several issues not addressed elsewhere in the dissertation and 

outline some directions for future research. 

7.2.1 Machine checking the proof decomposition 

The focus of this dissertation has been on the reasoning and organization of microarchi- 

tectural proofs-not on the software tools used during a proof. But the question naturally 

arises: How amenable is this work to a machine checked or machine guided proof system? 

The answer is that, if the intention is to apply this work to traditional monolithic 

specifications and microarchitectural implementations, it would probably be difficult to 

automate the process in software with tactics or specialized routines. This is because 

the approach requires that the model and specification are both presented in an unusual 

and stylized form. The difficult aspect of this method is formulating the model and 

specification in the necessary form, not the reasoning behind a proof decomposition. 

In this work we have used both higher-order functions and polymorphism. If we 

were trying to use a machine-based verification system to check reasoning like the work 

presented in this dissertation, we would need to use a system, such as HOL or PVS, that 

supports higher-order logic and polymorphism. 

7.2.2 Algorithmically proving the obligations 

An important issue that is not addressed in this dissertation is the algorithmic discharging 

of the proof obligations. At several points in Chapter 6 we simply left references to 

applicable techniques and tools, and presented several proof sketches. Future development 



of this work should further explore the connection to these suggested tools and techniques 

and the remaining proof obligations. 

7.2.3 Stream-based models 

Streams [19, 49, 501 are an alternative formalism to transition systems. A stream is a 

function from time to a value. For example, our RISC instruction-set architecture could 

be modeled as a function with the type: 

Int -> Opcode -> Obs RF 

In this dissertation we have chosen to ignore streams for two reasons: First, the transition 

systems formulation is standard in the processor verification literature. Secondly, neither 

formalism is more or less powerful. In fact, previous work [21] has demonstrated that 

verification results in the streams formulation can be imported into the transition systems 

formulation, and vice versa. 

In the literature on stream-based modeling, it is common to use higher-order functions; 

whereas in the transition system setting it is unusual. That said, one possible future direc- 

tion for continued research would be to consider writing higher-order functions analogous 

to the transformers prd and cnc in a stream-based formalism. 

7.2.4 Demonstrating that decomposition is helpful 

The thesis of this dissertation assumes that decomposition is always good. The truth, in 

fact, is considerably more subtle. In practice, decomposition is certainly good when no 

other technique will work. But other techniques, such as abstraction, are typically best 

applied before resorting to decomposition. Decomposition still plays an important role in 

formal verification and specifically in formal microarchitectural verification. In particular, 

decomposition can help significantly when paired with powerful discharge rules for the 

decomposed obligations-which is the case in this dissertation. One avenue for further 

research would be to conduct a quantitative study of the effect of this work. For example, 

in the case of prd-pipe, is the verification route via Proposition 3 and decomposition 

better than using an algorithmic tool such as a model checker? 



7.2.5 Alternative correctness criteria 

In this dissertation we have essentially only considered connections between the correctness 

criteria used in the verification work: SIM and FP. However, in practice, many other 

criteria are available. These include well-founded bisimulation, trace containment, and a 

plethora of unnamed criteria that look similar to simulation. A natural question to ask is: 

how do these criteria relate? And, can we use Parametricity to prove monotonicity results 

for any of these criteria? 

7.2.6 Liveness 

In this dissertation we have only considered techniques for proving a class of correctness 

criteria called safety properties. That is, our research is applicable to criteria that demon- 

strates that nothing bad ever happens. We have not concerned ourselves with criteria 

specifying that progress is always made. It is possible, however, to encode any liveness 

property of a model using an intermediate model with prophecy variables and a safety 

property. Further research could explore the connection between the ideas presented in 

this dissertation and the modeling of liveness with prophecy variables. 

7.2.7 Architectural relevance 

Another question that should be explored with continued research is: beyond concur- 

rent and predicated instructions, what can transformers specify? Further research could 

explore the boundaries of transformers-developing transformers that specify other ar- 

chitectural phenomena such as multimedia extensions, operating system support instruc- 

tions, speculative loads, or rotating register-files. Another issue that could be addressed 

is that of proving (oma p, oa p) E FP. The difficulty here is in finding ways to prove 

(cnc 3 p, cnc 1 p) E (FP e FP). 

Further research could also explore whether or not transformers, and the theory that fa- 

cilitates t heir decomposition, can model other interesting microarchitectural optimizations- 

such as branch predication, multithreading or trace caches. 
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