
Structuring instruction-sets with

higher-order functions

John Byron Cook

B.Sci., The Evergreen St ate College, 1995

A dissertation submitted to the faculty of the

OGI School of Science & Engineering

at Oregon Health & Science University

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science & Engineering

January 2005

The dissertation "Structuring instruction-sets with higher-order functions" by John

Byron Cook has been examined and approved by the following Examination Committee:

G e s z ; n c h F

Thesis Research Adviser

-
Mark Aagaad
Associate Professor, University of Waterloo

- - I
Todd Austin "-2
Associate Professor, University of Michigan

Dan ~arnmevrstrom
Professor

ICich'aFd Kieburtz
Professor Emeritus

Acknowledgements

I would like to thank my wife, children, and parents for their support during my Ph.D.

research. Each of them have made numerous personal sacrifices that have given me this

opportunity. Many friends have also generously helped along the way, offering childcare

and other favors during my studies.

My advisor, John Launchbury, provided years of calm and patient guidance. Thank

you. I also wish to thank Tom Ball, Per Bjesse, Nancy Day, Robert Jones, John Harrison,

Sava KrstiC, John Matthews, and Sriram Rajamani, Mary Sheeran, Don Syme, and the

members of my committee for their technical comments and suggestions.

I would like to thank Intel's Strategic CAD laboratories. I learned a great deal about

both formal verification and microprocessors while visiting Intel for a 6 month internship.

Intel also provided financial support to my advisor which was used to pay for some of my

expenses.

Prover Technology paid my salary and expenses during some of the time in which this

research was done. Thank you.

I would also like to thank Marisa Anderson and Michelle Burbidge for all of their work:

they typed much of the text in this dissertation from my handwritten notebooks. Finally,

I wish to thank Jeff Henry who printed and submitted the final copies of this dissertation.

Contents

. Acknowledgements iii

. Abstract ix

. 1 Introduction 1
. 1.1 Dissertation Synopsis 3

. 2 Instruction-set extensions 5
. 2.1 Microarchitectures and microprocessors 5

2.1.1 An example of out-of-order design: the Intel P6 microarchitecture . 7
2.2 Techniques for making a microprocessor's data dependency graph explicit . 11

. 2.3 The Washington architecture 15
. 2.4 The Oregon architecture 15

. 2.5 Summary 20

. 3 Formal microarchitecture specification and verification 21
. 3.1 Preliminaries 21

. 3.1.1 Transactions 25
. 3.1.2 Connecting transaction combinators and hardware 29

. 3.2 Specifying and modeling with transition systems 30
. 3.3 Specifying and modeling microarchitectures 33

. 3.3.1 An example instruction-set architecture specification 33
. 3.3.2 An example pipelined RISC implementation 37

. 3.4 Correctness criteria 37
. 3.4.1 Simulation 38

. 3.4.2 Flush-point correctness 41
. 3.5 Verification methods 44

. 3.5.1 Intermediate models 44
. 3.5.2 Criteria strengthening 46

. 3.5.3 Uninterpreted functions 48
. 3.5.4 Calculating simulation mappings with flushing 48

. 3.6 Historical Context 49

. 3.6.1 Burch: Verifying Superscalar Microprocessors 49

. 3.6.2 Damm, Pnueli. Arons: Verification by Refinement 49

3.6.3 Sawada & Hunt: Micro-Architecture Execution Trace Table 50

. 3.6.4 Skakkebaek, Jones. & Dill: Incremental Flushing 50

. 3.6.5 Berezin, Biere, Clark & Zhu: Reference Files 51

. 3.6.6 McMillan: Compositional Model Checking 51

3.6.7 Hosabettu. Gopalakrishnan. Srivas: Completion Functions 52

. 3.6.8 Velev & Bryant: Exploiting Positive Equality 52
. 3.7 Conclusion 52

. 4 Modeling with transformers 54
. 4.1 Predicating the architectural model 59

. 4.2 Predicating the microarchitectural pipeline 62

. 4.3 Adding concurrent execution 65
. 4.4 Adding the front-end 67

. 4.5 Executing the specification and model 68

. 4.5.1 Executing the architectural model oa 68

. 4.5.2 Executing the microarchitectural model oma 71
. 4.6 Summary 74

. 5 Proof with transformers 75
. 5.1 Notation and mathematical preliminaries 75

. 5.2 AM: A language for expressing transition systems 77
. 5.2.1 Syntax 78
. 5.2.2 Types 78

5.2.3 Semantics . 79
. 5.3 Parametricity for AM 81

. 5.4 Parametricity and Collect 86

. 5.5 Decomposing proofs with transformers expressed in X~ 91
. 5.6 Summary 92

. 6 Applying the theory of transformers 93
. 6.1 Decomposing the proof into obligations 95

. 6.2 Proving Obligation 1: (f n t p. f n t p) E (FP t FP) 95

. 6.3 Proving Obligation 2: (prd-pipe. prd r i s c) E FP 96

. 6.4 Proving Obligation 3: (prd-pipe. prd pipe) E FP 96

. 6.5 Proving Obligation 4: (prd pipe. prd r i s c) E FP 97

. 6.6 Proving Obligation 5: (prd-pipe. slow prd-pipe) E FP 99

. 6.7 Proving Obligation 6: (slow prd-pipe. prd pipe) E SIM 100

. 6.8 Proving Obligation 7: (prd. prd) E (SIM t SIM) 105
. 6.9 Proving Obligation 8: (pipe. r i s c) E SIM 105

. 6.10 Summary 105

. 7 Conclusion 107
. 7.1 Conclusions 107
. 7.2 Future work 110

. 7.2.1 Machine checking the proof decomposition 110

. 7.2.2 Algorithmically proving the obligations 110
. 7.2.3 Stream-based models 111

. 7.2.4 Demonstrating that decomposition is helpful 111

. 7.2.5 Alternative correctness criteria 112
. 7.2.6 Liveness 112

. 7.2.7 Architectural relevance 112

. Bibliography 113

. Biographical Note 119

List of Figures

. 2.1 Factorial function in a RISC instruction-set 7

. 2.2 Data dependency graph of the factorial function in Figure 2.1 7

2.3 Data dependency graph from Figure 2.2 with source references renamed . . 8
. 2.4 VLIW factorial function 12

. 2.5 Oregon Architecture (OA) factorial function 17

. 3.1 Opcode. A RISC instruction-set type
. 3.2 Trans. the transaction type

. 3.3 The transaction combinator make-trans

. 3.4 The transaction combinator read-stage

. 3.5 The transaction combinator alu-stage

. 3.6 The transaction combinator wb-stage

. 3.7 The transaction combinator bypass

. 3.8 Schematic diagram for alu-stage in the ADD equation

3.9 Schematic diagram for pattern matching circuit from alu-stage's ADD case

. 3.10 The type Obs, used to represent observations
. 3.11 r i s c . a RISC transition system

. 3.12 pipe. the RISC pipelined transition system

. 3.13 Connections between the correctness criteria

. 4.1 Architecture of r i s c

. 4.2 Architecture of f n t p r i s c

. 4.3 Architecture of prd r i s c

. 4.4 Architecture of f n t p (prd r i s c)

. 4.5 Architecture of f n t p prd-pipe

. 4.6 Architecture of cnc 1 (prd r i s c)

. 4.7 Architecture of f n t p (cnc 1 (prd r i s c))

. 4.8 Architecture of f n t p (cnc 3 prd-pipe)

. 4.9 Predicated instruction type and instances
. 4.10 The predication transformer prd

4.11 prd-pipe: a higher-performance predicated N S C pipeline

. 4.12 Prd-Trans: the predication transaction type 64

. 4.13 pred-bypass: the predication bypass combinator 64

. 4.14 wb-st age: the predication writeback function 64

. 4.15 Interface to the Region type 65

. 4.16 cnc: the concurrency transformer 66

. 4.17 f n t : the instruction memory transformer 68

. 4.18 Factorial function encoding 69

. 5.1 Implications between lifted correctness criteria 77
. 5.2 XM syntax 78

. 5.3 Type system of XM 79
. 5.4 Type semantics of XM 80
. 5.5 Term semantics of X~ 80

5.6 S: a mapping from X"-types to sets of X"-expressions 80

. 5.7 Rel: an alternative semantics for types 81

. 6.1 Toplevel proof decomposition 94

. 6.2 slow: A prophecy-variable based transformer 98

6.3 mapping: witness to (slow prd-pipe. prd pipe) E MAP 103

. 6.4 Functions used in the definition of mapping 104

Abstract

Structuring instruction-sets with higher-order functions

John Byron Cook

Ph.D., OGI School of Science & Engineering

at Oregon Health & Science University

January 2005

Thesis Advisor: Dr. John Launchbury

In an effort to improve microprocessor performance, each generation of a micropro-

cessor family's instruction-set architecture is typically extended with new features. For

example, many modern microprocessors now support parallelism annotations, predication,

speculative memory access, and SIMD-based multimedia instructions. These extensions

allow a compiler or programmer to directly express instruction-level parallelism that is

difficult for the microprocessor to find alone.

This dissertation focuses on the modeling and formal verification of microprocessor

designs with instruction-set extensions. Inspired by ARM and IA-64, we develop sev-

eral elementary instruction-set architectures that employ extensions. We also construct

microarchitectural implementation of the instruction sets.

The specification and microarchitectural model in this dissertation are represented in

a novel way: as the composition of functions between transition systems. We call these

functions transition system transformers. In isolation, transformers can be used to model

instruction-set extensions. Together, they can be used to model an entire machine.

This dissertation demonstrates that the extra structure available in transformer-based

specifications and models can be used to help decompose a proof that the model imple-

ments a specification. We develop several proof strategies that make use of the transformer

structure in this way. The contribution of this dissertation is the modeling and verification

method that facilitates the decomposition of microarchitectural correctness proofs using

instruction-set extensions.

Chapter 1

Introduction

Formal verification is the discipline of proving, with mathematics and logic, that a formal

representation of a design is correct with respect to a specification. Formal microarchitec-

ture verification, or formal processor verification, is the application of formal verification to

a microarchitectural design. In recent years, a number of researchers have focused their at-

tention on the verification of out-of-order microarchitectures, developing special techniques

that use the structure inherent in these designs. This research has been fruitful-numerous

papers have reported on the formal verification of relatively sophisticated microarchitec-

tural models-and the proof techniques developed in this research are now being applied

in industry.

However, while the research on formal verification has been directed at out-of-order

machines, microprocessor designers have been experimenting with techniques that go be-

yond out-of-order execution. Architects are now adding constructs to the instruction-sets

of their microprocessors that allow the programmer or compiler to explicitly declare op-

timizations. For example, a programmer can use VLIW-style parallelism annotations

[22, 48, 61, 621 to specify a set of instructions that can be safely executed in parallel.

A compiler can implement conditional codes with predication [5, 381 rather than branch

instructions. A programmer can use a speculative load instruction [22, 391 rather than

wait for a traditional load instruction to complete. When writing multimedia algorithms,

a programmer can use SIMD-based multimedia extensions [14, 27, 28, 591.

These instruction-set extensions can potentially affect the way in which microproces-

sors are formally verified. For example:

Instruction-set extensions provide a larger interface to the microprocessor, and there-

fore there are more ways in which instructions can interact within the microprocessor.

This makes some verification techniques less tractable, particularly if they are based

on executing the microarchitectural model on input vectors.

Instruction-set extensions provide structure that can potentially be exploited during

the correctness proof. That is, although the instruction-set is more complicated, it

is closer to the microarchitectural design than has traditionally been true.

In this dissertation we pursue the second point. We introduce a method of model-

ing instruction-set extensions that facilitates their modular design. This method is based

on the use of higher-order functions. We then develop several strategies for proving the

correctness of a microprocessor model that implements instruction-set extensions. The

first is a simple decomposition rule that can be used to break a proof obligation down

into several proof obligations. The second rule can be used to simplify the overall proof

by eliminating an obligation. We demonstrate, by example, how these two strategies can

be used to decompose and simplify a microarchitectural correctness proof. The focus of

this dissertation is on the development of the theory, and the application of the theory

to decomposition. Therefore, rather than focusing on the proof of the example microar-

chitecture, on several occasions we either provide a proof outline or refer the reader to

an algorithmic technique which has been successfully applied in the literature to prove a

similar property.

The thesis presented in this dissertation is that higher-order functions facilitate both

the design of architectural extensions and the proofs of their correctness. The key contri-

butions of this dissertation are:

a modeling method based on higher-order functions for extended instruction-sets

and their microarchitectural designs;

a decomposition proof strategy that leverages the proposed modeling method and

a simplification strategy which can be applied to proof obligations left by the decom-

position strategy. This is the result of an application of the theory of Parametric-

ity [54, 661.

It should be noted that we will be making an important distinction not usually made in

the literature on formal microarchitectural verification. We will use two languages when

describing models and performing formal reasoning. The first language is a mathematical

notation with a higher-order logic flavor. The second language is a restricted polymorphic

functional programming notation. The functional notation's semantics are quite basic and

support only bounded recursion with a set theoretic semantics. The literature typically

blurs the distinction between the design language and the language in which reasoning is

performed. The advantage to making this distinction will be made clear later.

1.1 Dissertation Synopsis

The remainder of this dissertation is organized as follows:

Chapter 2: Instruction-set extensions

In Chapter 2 we describe the microarchitectural concepts behind out-of-order and VLIW

microprocessors and contrast them with the ideas underlying some common instruction-

set extensions. We introduce two extended instruction-sets, which we call the Washington

Architecture (WA) and the Oregon Architecture (OA). These architectures exhibit several

of the common instruction-set extensions.

Chapter 3: Formal microarchitecture specification and verification

We survey the existing research on the formal modeling of microprocessors, their cor-

rectness criteria, and the techniques used to prove their correctness. The definitions and

techniques developed in this chapter become the foundation from which we construct our

new modeling and proof techniques.

Chapter 4: Modeling with transformers

We introduce a modeling technique based on the composition of a class of functions we

call transition system transformers. Using these transformers, we develop a formal speci-

fication of the Oregon and Washington architectures, and microarchitectural designs that

implement them. These microarchitectural designs draw influence from the 21264 [25],

StrongARM [37], and the Itanium 135, 58, 18, 22, 26, 29, 47, 611.

Chapter 5: Proof with transformers

Chapter 5 develops several proof strategies that can be applied to correctness proofs of

specifications and models that have been represented using transition system transform-

ers. That is, if both the specification and the model are formed as the composition of

transformers, this chapter provides applicable proof rules.

Chapter 6: Applying the theory of transformers

We apply the techniques from Chapters 3 and 5 to a decomposition of a proof that a

microarchitectural design from Chapter 4 is correct.

Chapter 7: Conclusion

In the final chapter we conclude with a discussion of the strengths and weaknesses of the

approach advocated in this dissertation, and discuss several leads for future research.

Chapter 2

Instruct ion-set extensions

In this chapter we introduce a number of concepts from out-of-order and VLIW micro-

processor design. We then develop a simple predicated RISC instruction set called the

Washington Architecture (WA) and an extended second-generation VLIW instruction-set,

called the Oregon Architecture (OA) and explain how microarchitectural implementations

of the instruction-sets might relate to their out-of-order and VLIW counterparts. OA and

WA are used as examples throughout the dissertation.

2.1 Microarchitectures and microprocessors

The programmer's view of a microprocessor is typically a simple one. The programmer sees

only the machine's visible state (the register-file, memory, etc.) and how each instruction

effects that state. The programmer's view is often called the instruction-set architecture

(ISA) and is typically represented as the conceptually simplest machine possible that

implements the intention of the designer. The states that are reachable by the ISA are

generally called the ISA states.

The microarchitect's perspective of a microprocessor, in contrast, is much richer. Per-

formance goals force the microarchitect to design with techniques such as pipelining,

buffering, speculative execution, and out-of-order and superscalar execution. We refer

to the microarchitectural design as the implementation; and the reachable states of the

microarchitectural model the implementation states. From this point forward, we will

use the term out-of-order to refer to designs that mix techniques such as superscalar,

out-of-order and speculative execution.

The tricks used in these out-of-order designs typically include techniques such as fetch-

ing and executing multiple instructions per cycle, issuing instructions based on resources

rather than their position within a program, and the removal of false register dependencies

with on-the-fly register renaming.

The basis for many of these high-performance techniques is the existence of paral-

lelism between machine instructions. As an illustration of this parallelism, consider the

program fragment in Figure 2.1 which implements the factorial function in a stylized RISC

instruction-set. If we assume that the "branch if not equal to zero" instruction (beqz) in

the figure is not taken for some time, (this is the sort of assumption that a microprocessor's

branch predictor will often make) we can unfold the loop formed from instructions 103 to

106 and construct a data dependency graph like the one found in Figure 2.2. In this graph,

an arrow is drawn between two instructions if they form a read-after-write dependency.

If there is no path between two instructions, they are not dependent. Notice also that in

the dependency graph we have labeled each instruction in the unfolding, beginning with

i O . Every instruction is labeled in the order that it should be fetched.

High-performance microprocessors often maintain graphs like these in hardware. Using

the analysis exhibited in this type of graph, a microprocessor might determine that it is

possible to issue instruction i 4 into to an execution unit before instruction i3. In other

words, the instructions can be executed out of program order; which is called out-of-order

execution. The microprocessor might also choose to evaluate them in parallel (called

superscalar execution). Because the value being placed into r 2 by instruction i 2 is not

the same as the value of r 2 from instruction i 5 , the microprocessor could also replace the

references to these registers with references to the labels of instructions which compute

their values (see Figure 2.3). This is called register renaming.

The design of out-of-order microarchitectures is further complicated by the possibility

of internal exceptions and external interrupts. For example, if an out-of-order micropro-

cessor executes instruction i1 before instruction i O , and the execution of instruction i O

raises an internal exception, the processor could potentially be in a state where the register

r I is set to 1 and the exception has been raised-which is a state that is not reachable by

the ISA. To avoid these situations, high-performance microprocessors typically maintain

101: r 2 t load 400
102: r1 t 1
103: beqz r 2 107
104: r 2 t r 2 - 1
105: r1 t r1 * r 2
106: jump 103
107: s t o r e 401 rl

Figure 2.1: Factorial function in a RISC instruction-set

iO) 1-2 c load 400 i1) r1 t 1

i2) beqz 1-2 i3) r 2 t r 2 - 1 i4) r l t r l * r 2

i5) beqz r 2 i6) r 2 t r 2 - 1 i7) rl t rl * r 2

i8) beqz r 2 i9) r 2 t r 2 - 1 i10) r1 t rl * r 2

i l l) beqz r 2 i12) r 2 t r 2 - 1 i13) rl t rl + r 2

Figure 2.2: Data dependency graph of the factorial function in Figure 2.1

enough information so that they can place themselves back into a reachable ISA state in

the event of an exception or interrupt.

2.1.1 An example of out-of-order design: the Intel P6 microarchitecture

Intel's P6 microarchitecture [24]-which underlies the Pentium Pro, Pentium I1 and Pen-

tium I11 microprocessors-implements out-of-order execution using the following microar-

chitectural components: a reorder buffer maintains a finite region of the program's de-

pendency graph; the reservation stations maintain the portion of the reorder buffer that

remains to be computed; the execution uni ts compute, in parallel, the destination values

i O) r 2 t load 400 il) r1 t 1

i2) beqz i O i3) r 2 c i O - 1 i4) r1 t i l * i O

i 5) beqz i3 i6) r 2 c i3 - 1 i7) r l c i 4 c i 3

i8) beqz i 6 i9) r 2 c i 6 - 1 i l O) rl t i 7 * i 6

ill) beqz i 9 i12) r 2 t i 9 - 1 i13) r1 t- i l 0 * i 9

Figure 2.3: Data dependency graph from Figure 2.2 with source references renamed

for the instructions in the reservation stations; and the register-file represents the current-

ISA state.

To demonstrate how the P6 works, we can partially execute the encoding of the facto-

rial function from Figure 2.1 in a mock P6-like machine. We begin with an empty reorder

buffer, empty reservation stations, and a program counter (pc) pointing to instruction

reorder buffer

i0

i I

i 2

i3

i4

i5

i6

i7

reservation stations

so

sl

s2

s3

s4

s5

s6

s7

execution units

iu2

We will assume that the mock machine can fetch up to three instructions per cycle.

Therefore, on the first cycle, we insert instructions 101, 102 and 103 into the machine.

The internal representation of the beqz instruction is pc t r2=0?107: 104 , which should

be interpreted as "if r 2 equals 0 then set the program counter to 107, otherwise set it to

104." In the next state below, notice how the reorder buffer constructs the active region of

the data dependency graph: as instructions are loaded into the buffer, register references

are replaced with pointers into the graph. In this case, r2 is replaced with iO. Note that

the reorder buffer locations are the same as the instruction labels in Figure 2.3.

reservation stations

so
s l

s2

s 3

s4

s5

s6

97

reorder buffer

execution units

iu2

The reorder buffer is designed as a circular queue: the symbol a is used to represent

104

i O

il

o i 2

i 3

i 4

i 5

i 6

i 7

the front of queue, and o represents the end. The third column in the reorder buffer is

r 2 + load 400

rl + 1

PC + i0=0?107:104

used to store branch predictions. In the above state, the machine has guessed that the

result of i 2 will eventually resolve to 104. When retiring instruction i2, if the machine

discovers a misprediction, it will bring itself into a corrected state by clearing the reorder

buffer, registration stations, and execution units; and saving the value of i 2 to location

pc in the register-file.

On the next cycle, we can simultaneously load instructions 104, 105 and 106 and begin

to execute instructions i O and il:

I reorder buffer
I reservation stations I

execution units

iu2

The P6 implements in-order write back, meaning that the results of instructions are

written back to the register file in program order. This policy ensures that the register file

is always in an ISA state, maintaining the programmer's illusion of sequential execution.

For example, in the state above the execution of instruction i1 is complete (the value it

is computing for its destination register is known). However, we cannot yet safely write

its value to the register-file until we know that executing instruction i O has not caused an

exception.

We will assume, on the next cycle, that the load instruction is complete. We can

therefore write the values of instructions i O and ii to the register file and remove them

from the reorder buffer. With the value of i O known, we can also issue instructions i3,

i4, and i 5 into the integer execution units:

reorder buffer

This demonstration highlights how the P6 finds parallelism between instructions in a

reservation stations

sequential program. For example, it found the parallelism between instructions i O and

104

103

104

i 0

i l

a i 2

i 3

i 4

i 5

i 6

i 7

o i 8

SO

s l

s2

s 3

s4

95

s6

s7

i1, and between i2 , i3 , and i4. Recall the program dependency graph in Figure 2.3. In

pc t ?

r2 t ?

r l t ?

pc t 1 0 3

pc t i3=0?107:104

r l t i 4 * i 3

r2 t i 3 - 1

i 3 6 ?

i 2 +- ?

i 4 e ?

the current state, the machine has traversed halfway down the graph:

i O) r 2 + load 400 il) rl +- 1

i2) beqz i O i3) r 2 t i O - 1 i4) ri t i l * i O

i5) beqz i 3 i6) r 2 t i 3 - 1 i7) r l t i 4 * i 3

The machine has computed and retired the first row of the graph:

iO) r 2 c load 400 i1) ri c 1

it is currently executing the second row of the graph:

i2) beqz i O i3) r 2 t i O - 1 i4) r l t i l * i O

and it has fetched the third row of the graph:

i5) beqz i 3 i6) r 2 t i 3 - 1 i7) r1 t i 4 * i 3

2.2 Techniques for making a microprocessor's data depen-

dency graph explicit

Unfortunately, P6-style connected graph structures can lead to large and complex micro-

processors. Graph based machines, such as the P6, are difficult to design and debug, and

typically have long critical paths, which inhibit faster clock speeds. In response to this,

microprocessor companies have, over the years, experimented with VLIW machines, which

do not suffer these weaknesses.

Like the P6, VLIW machines typically fetch multiple instructions on each cycle. These

groups of instructions are sometimes called packets. Unlike the P6, VLIW machines do

not provide reorder buffers or reservation stations. Instead, their hardware is typically a

simple vector of execution units with a register file. The programmer or compiler must

then know the latencies of the execution units of the particular machine and schedule the

instructions appropriately.

For example, assume that memory instructions have a one cycle latency, multiplications

have a three cycle latency, and that branches have no latency, Also, assume each packet

has the following format:

fp ; mem ; i n t o ; i n t i ; i n t 2

101: nop ; r 2 t load 400 ; rl t 1 ; noP ; nap
102: nop ; nop ; noP ; nap ; nop
103: nop ; nop ; beqz r 2 105 ; nop ; noP
104: nop ; nop ; r 2 t r 2 - 1 ; r1 t rl * r2 ; jump 103

105: nop ; s t o r e 401 r1 ; nop ; noP ; nap

Figure 2.4: VLIW factorial function

where f p is a floating point instruction, mem is a memory operation and i n t o through i n t 2

are integer instructions. Figure 2.4 contains a VLIW source fragment for the factorial

function. We use the nop instruction to separate dependent instructions sufficiently so

that the latencies of the execution units do not cause incorrect results. A VLIW compiler

or programmer must perform considerable analysis to build this program fragment, but

the hardware that executes it is simple.

For example, we can run a VLIW machine on the program fragment in Figure 2.4. We

begin execution with an empty machine:

execution units

iu2

On the first cycle we load and execute the instructions from memory location 101.

This results in a state in which the register pc has been incremented, register r1 has been

set to 1, and the load instruction has been issued to the memory unit:

execution units

mem r2 t load 400

iul

iu2

In the next cycle we load the nop instructions in memory location 102. We have placed

these nops into the program to provide time for the load instruction to calculate the value

of r2.

execution units

mem r2 t load 400

iu2

On the next cycle we fetch the branch instruction in location 103:

execution units

iuO pc t 8=0?103:107

iu2

We then fetch the parallel subtract, multiply, and jump instructions:

execution units

iuO r2 t 8 - 1

iul r l t l * 8

Note that, in effect, a VLIW machine is like the back-end execution core of our mock

P6-like machine. It would be expected that a compiler or the programmer had performed

the analysis of the reorder buffer before executing the program.

The drawback to VLIW microprocessors is that, from one processor generation to the

next, the latencies of instructions often change. This destroys binary-code compatibility

and requires that programs be re-compiled. Another problem is that, when there is no

parallelism to fill up the slots in a VLIW packet, the fetch bandwidth is wasted loading

nops. Consequently, the success of VLIW in mainstream computing has been limited.

However, a trend in microprocessor design is to adapt the ideas from VLIW design in

such a way that the compatibility and space problems are mitigated. The so-called ex-

plicitly parallel or second generation VLIW instruction-sets provide VLIW-like extensions

to RTSC. Rather than specifying exactly how the instructions should be executed in the

machine, in some cases, these extensions allow the programmer to simply express the ex-

istence of parallelism, allowing the machine the option of implementing parallelism-based

optimizations.

For example:

Parallelism annotations [61] declare which instructions within a program can be exe-

cuted out-of-order or in parallel. The microprocessor then uses this information to

schedule instructions into execution units. This feature appears in Intel's IA-64 [22],

and Compaq's Araiia [62].

Predication [5] expresses conditional execution using data dependence rather than branch

instructions. IA-64 and ARM [38] are examples of predicated instruction sets.

Speculative instructions [22] behave like their traditional counterparts-however the

exceptions they might cause are raised only when and if the data they compute

is used. IA-64 and PA-RISC [39], for example, both support speculative loading

mechanisms.

Multimedia instructions provide SIMD-ba,sed instruction-set extensions which are well-

suited for multimedia computation. MMX [14], AltiVec [27], and 3DNow 128, 591

are examples of multimedia specific instruction-set extensions.

2.3 The Washington architecture

We now describe a simple example of a predicated instruction-set, which we call the

Washington Architecture (WA). The extension to RISC that WA provides is the if syntax.

The semantics of the following instruction is that it should be executed only in the case

that the value of the predicate register p1 is t r u e in the predicate register-file:

WA allows us to encode conditional execution without branches and jump instructions.

For example, we re-encode the RISC code fragment:

beqz r1 L 1

r 2 +- r 4 * r 5

jmp L2

L l : r 2 t r 4 + r 5

L2: nop

As this:

p l ,p2 t r l = = O

r 2 c r 4 * r 5 if p i

r 2 +- r 4 + r 5 if p2

Where the predicate p l will be set to t r u e if r1 equals zero and p2 is assigned to the

negation of p1. This is a more efficent encoding because the branch mechanism (and

branch prediction unit) is not used. This feature is similar to the form of predication in

the ARM and IA-64 instruction-sets.

2.4 The Oregon architecture

Next we develop a simple example of a second-generation VLIW instruction-set as an

extension to WA, which we call the Oregon Architecture (OA). This instruction-set com-

bines predication with explicit parallelism constructs. Figure 2.5 provides an example OA

encoding of the factorial function.

To see how these extensions fit into OA, look at Figure 2.5 which contains an OA

encoding of the factorial function:

As in VLIW, an OA program is a finite sequence of packets, where each packet

consists of a fixed number of instructions. In this case, packets consist of three

instructions. Programs are addressed at the packet-level. That is, instructions are

fetched in packets, and branches can jump only to the beginning of a packet.

Instructions are annotated with thread identifiers. Instructions with equal identifiers

should be executed sequentially. Instructions with independent identifiers can be

executed in any order. For example, the 0 in the load instruction declares that

instructions with thread identifiers that are not equal to 0 can be executed in any

order with respect to the load instruction.

a Packets can be annotated with the directive FENCE, which directs the machine to

fully calculate all in-flight results before executing the following packet.

As in WA, instructions in OA are predicated on Boolean-valued predicate registers.

For example, the load instruction will only be executed if the value of p5 is true in

the current predicate register-file state.

One way to view the thread identifiers and fences in OA is with directed graphs whose

nodes are the sets of threads that occur between fence directives. These sets are analagous

to basic blocks, using compiler terminology. The idea is that an OA machine will execute

one basic block at a time. In this manner, all values computed in previously executed

basic blocks are available to all threads in the current basic block.

For example, the fence directive after packet 10 1 instructs the microprocessor to retire

the active threads before executing the following packet. Assuming that packet 100 issues

a fence directive, packet 101 forms its own basic block:

1 0 1 r 2 t load 100 if p5 in 0
r1 t 1 if p5 in 1

noP
FENCE

102: r 4 t r 2 != 0 if p5 in 0
p2,p3 t r2p r 4 if p5 i n 0
r3 t r 2 if p5 in 1

FENCE

103: r 2 t r 2 - 1 i f p 2 i n 1
rl t r1 * r3 if p2 in 0
pc t 102 if p2 in 2

104: s t o r e 401 rl if p3 in 3
pc t 105 if p3 i n 2

noP
FENCE

Figure 2.5: Oregon Architecture (OA) factorial function

In this picture, the ovals are used to represent basic blocks, and boxes to represent threads.

Instructions within a thread must be executed in order. Threads, however, can be executed

in any interleaving-order with other threads. Because packet 101 is its own basic block,

the machine is required to synchronize the state before executing the next packet.

Because packet 102 and 103 are separated by a fence, packet 102 forms its own basic

block:

The comparison and copy instructions set the predicate register p2 to true if r2 is not

equal to 0. The value of p3 is set to the negation of p2.

Because packet 103 is not fenced, but packet 104 is, the next basic block is formed

from packets 103 and 104:

Assignments to the program counter within a basic block are visible to the machine's fetch

mechanism only after a fence directive has been issued. That is, assignments to pc tell

the machine where to fetch from after executing the next fence. Therefore, a trace of an

OA program can be viewed as an infinite path through the finite directed graph formed

by basic blocks and their successors:

r2 <- load 400 if p5

Reasoning about these basic blocks is analogous to the sort of control calculation the

P6 performs during execution [57]. For example:

Figure 2.1 uses a conditional branch in the place of the predicate calculation. The

P6 with branch speculation might predict that the branch is not taken and issue

the multiplication and subtraction before calculating the condition. In this case the

branch prediction mechanism is acting as a predicate register file.

The OA program calculates a predicate, issues instructions from both sides of the

potential branch, and only retires the instructions that satisfy the predicate.

In Figure 2.1 much of the instruction-level parallelism discovered in Figure 2.2 is

implicit. The P6 analyzes register references to find parallelism (e.g. between the

subtraction and multiplication instructions).

In OA, the compiler or programmer declares the dependencies between instructions.

In addition, the final values in the registers may not correspond to any interleaving

of the original instructions, due to latencies between storing and fetching values from

memory and the register file.

One constraint that OA assumes the programmer to maintain is that no read-after-

write or write-after-write hazards shall occur between instructions in different threads.

For example, the following code (which contains a read-after-write hazard) will not be

allowed:

We assume that the compiler or programmer will not violate this rule.

As another example, this code (which contains a write-after-write hazard) will also not

be allowed:

rl t r2 + r3 in 0

r1 t r3 + r4 in 1

2.5 Summary

Modern instruction-set extensions allow the compiler or programmer to specify parallelism

between instructions, a job that has been traditionally left to the microprocessor. However,

unlike VLIW instruction-sets, they typically do not directly expose the structure of the

microarchitecture and the latencies of its execution units.

In this chapter we have surveyed the landscape of microprocessor design and introduced

WA and OA, elementary instruction-sets that illustrate several features that appear within

the instruction-sets of some popular microprocessors: predication and concurrency anno-

tations. In this chapter we saw that the particular combination of extensions in OA forms

a language in which thread parallelism can be expressed within basic blocks. However,

the semantics of each feature could be changed-which would result in a different sort of

machine language. In Chapter 4 we explore a method of modeling that allows us to isolate

the meaning of each extension.

Chapter 3

Formal microarchitecture specification

and verification

In this chapter we describe the formalism of transition systems, which are commonly used

in the literature for specifying and modeling microarchitectures. We then describe several

correctness criteria on transition systems that are commonly proved of microarchitectural

models. The material from this chapter forms the basis from which the theory and the

example in later chapters are constructed.

3.1 Preliminaries

As mentioned in Chapter 1, we are distinguishing between programming language syntax

and mathematical semantics. The distinction will be made explicitly with fonts. Type-

writer font will denote syntax in a programming language. Mathematical font will indicate

mathematical and logical expressions. The use of semantic brackets (0) will be used to

indicate the mathematical meaning of programming language syntax. We will use sans

serif font to name mathematical definitions.

For example, we provide the mathematical definition of the identity function, Id:

A Definition 1 (Id) (a, b) E Id = a = b.

We also provide an analogous definition in our programming language syntax:

Definition 2 (id) The function i d with type a -> a is defined as [id] Id.

In this dissertation we assume that the reader is familiar with functional programming

notation. We will, however, introduce several of the more obscure concepts that we are

borrowing from the functional programming language Haskell [36]: qualified types, and

the denotation. We will also introduce the concepts and code behind a microarchitectural

modeling library written in this programming language notation.

Type-classes [40] facilitate overloading in a parametrically polymorphic typing system.

Suppose, for example, that we want to write a function that takes a register-file and

returns the value of the program counter in the register-file, with the constraint that this

function should work for register-files over any register-type. As a first attempt, we might

try to write a function with type:

type RF a b = a -> b

read-pc : : RF a b -> b

That is, the type RF a b is synonymous for functions from a to b. Also, for any type a

and b, the function read-pc takes an RF a b and returns a b. Unfortunately, we cannot

write the intended function with this type in our language. The problem is that the type

a is a parameter of RF a b, i.e. it is a place holder for any type. The function read-pc

should work identically for the integers, Booleans, strings, etc. The consequence of this

is that it is impossible to know which element of type a is the program counter, or if one

even exists. Type-classes address this problem. With type classes, we can constrain the

function read-pc such that it will be applicable only to types that have an element called

pc. First we define a type-class called Register:

c l a s s Register r where

pc : : r

This declaration partially defines a set of types in which a predicate is true: all of the

types in this set have an element named pc. The reader should read the declaration as

follows: "if r belongs to the type-class Register, than it must have an element called

pc" . For each type in the class Register, we must declare that it belongs to the class,

and point to an element that will represent pc. For example, we can declare 32-bit words

to be in the Register type-class:

instance Register Word where

PC = 0

That is, for the type Word, pc equals 0. We can now write a function with the original

intended behavior:

read-pc r f = r f pc

This function has the following qualified type:

read-pc : : Register a => RF a b -> b

This type should be read as "if the type a is an instance of the type-class Register, then

read-pc is a function from RF a b to b." In the definition of read-pc, when the function

r f is applied to pc, the value of pc of type a is used. For example, if wrf has type RF

Word Bool, and [wrf OD = 5 then

[read-pc wrfj = 5

As another example, imagine trying to write a polymorphic function, elem, that de-

termines if an argument is an element of a list. To do this we require an equality function

(==) that works for all types:

elem x [I = False

elem x (y:ys) = i f x==y then True

e l s e elem x ys

The idea is that == should be defined on a number of types. We can make this assumption

explicit by defining an equality type-class:

c l a s s Eq a where

(==) : : a -> a -> Bool

This declaration states that == is a function that should be defined for all types that are

elements of the Eq type-class. A function defined with == will have this type constraint in

its type. So, for example, the type of elem is:

elem : : Eq a => a -> [a1 -> Bool

We will use the type-class Collect as a common interface to set-like structures:

c l a s s Collect c where

u n i t : : a -> c a

map : : (a -> b) -> c a -> c b

jo in : : c (c a) -> c a

union : : c a -> c a -> c a

This definition states that if a type c is an element of Collect , then the functions un i t ,

map, join, and union will be defined on c. The meaning of these functions depends on

the interpretation assigned to them for each c.

Let us Iook at some possible implementations. We can define a basic set-like structure:

type One a = a. That is, One is the type that represents singleton sets. One can be

declared an instance of Collect:

instance Collect One where

u n i t = i d

mapf x = f x

jo in = i d

union x y = x

In this case, the type of jo in is One (One a) -> a. Note that, because Onea = a, that

One (One a) -> a is equivalent to a -> a.

We will assume that finite sets are provided by the language as a built-in construct

called FSets. This too is an instance of Collect, where:

[[unit] 2 { a)

[map] 4 A f . AA. {f ala E A)

[[join] 4 U
[union] 4 u

Because FSet is built-in we define the instantiation with a direct semantic definition.

The do-notation

In some circumstances, we make use of a convenient set-comprehension like notation,

called the do-notation. A do-notation expression like this:

data Opcode = ADD Reg Reg Reg I ADD1 Reg Reg Word I SUB Reg Reg Reg

I SUB1 Reg Reg Word I MLT Reg Reg Reg I MLTI Reg Reg Word
I D I V Reg Reg Reg I DIVI Reg Reg Word I CNT Reg Word
I BNEZ Reg Word I BEQZ Reg Word I NEQZ Reg Reg
I EQZ Reg Reg I NEG Reg Reg I BUBBLE

Figure 3.1: Opcode, A RISC instruction-set type

do { x <- a ; y <- b; z <- f y; un i t (z ,x))

is translated accordingly:

; y < - b

; z < - f y

; un i t (z ,x)

l e t bind x f = jo in (map f x)

i n a ' b i n d r (\x.

b 'bind' (\y.

(f x) 'bind' (\z .

un i t (z , x >) > >

In this code we see several new syntactic structures. The back-quotes around bind indicate

that bind is being used in an i n k position. The syntax \ x . E allows us to introduce a

function where x is the function's parameter and E is the function's body.

In the finite-set interpretation of Collect and u s] , the meaning of the translation of

this denotation code represents the following finite set:

In the One interpretation, the translation represents:

(Ufll(Ubll>, [all)

which equals [[(f b , a) 1.

3.1.1 Transactions

A key concept used later in this chapter is the idea of transactions [2, 501. A transaction

is like a machine-level instruction, with data bundled in the operands. Figure 3.2 contains

type Trans = ([(Reg,Maybe Int)] , Opcode , [(Maybe Reg,Maybe 1nt)l)

Figure 3.2: Trans, the transaction type

make-trans (ADD x y z)
= ((x ,Nothing) ,ADD x y z , [(Just y ,Nothing) , (Just z , Nothing)])

make-trans (SUB x y z)
= ((x,Nothing) ,SUB x y z , [(Just y,Nothing) , (Just z ,Nothing)])

I etc.. .
Figure 3.3: The transaction combinator make-trans

read-stage : : RF -> Trans -> Trans
read-stage rf (dsts,opcode,srcs) = (dsts,opcode,srcs')

where srcs' = map (rd rf) srcs
rd rf (Just r,z) = (Just r,Just (readEnv rf r))
rd rf x = x

Figure 3.4: The transaction combinator read-stage

alu-stage : : Trans -> Trans
alu-stage ([(rl ,-)I , ADD, ((r2, Just x) : (r3, Just y) : s))

- - (C(r1,Just (x + y))], ADD, ((r2,Just x): (r3,Just y) :s))
alu-stage ([(rl,-11, SUB, ((r2,Just x):(r3,Just y):s))

- - (C(r1,Just (x - y))], SUB, ((r2,Just x):(r3,Just y):s))

etc.. .

Figure 3.5: The transaction combinator alu-stage
1

wb-stage : : Trans -> RF -> (RF,Trans)
wb-stage (dsts , i , srcs) rf = (rf ' , (dsts , i , srcs)

where rf' = fold1 writeback rf dsts
writeback rf (r, Just x) = updateEnv rf (r,x)

Figure 3.6: The transaction combinator wb-stage

bypass : : Trans -> Trans -> Trans
bypass (dstsl,i1,srcs1) (dsts2,i2,srcs2) = (dsts2,i2,srcs3)
where
srcs3 = map (bp dstsl) srcs2
bp dsts (Just x, y) =

let dom = map fst dsts
func x = case filter (\(a,Just b) -> a==x) dsts of

(a, Just b) :c -> Just b
in if x ' elem' dom then (Just x,func x) else (Just x, y)

bp dsts x = x

I Figure 3.7: The transaction combinator bypass

a definition of a type Trans which models the concept of a transaction. Within this type

declaration, the types Opcode and Maybe are used. Opcode (see Figure 3.1) is used to

denote a RISC instruction-set. The type Maybe is like the ML type option:

da t a Maybe a = Jus t a 1 Nothing

This means, for example, that a value of type Maybe I n t is either a Nothing, or it is

a (Jus t n) for some integer n.

We provide a number of functions to construct and inspect transactions. For example,

make-trans (Figure 3.3) can be used to create a transaction from an instruction. If the

incoming instruction is ADD rl r 2 r3, then make-trans will produce the transaction:

([(r l ,Nothing) 1 ,ADD, [(Jus t r 2 , Nothing) , (Jus t r3, Nothing) 1)

This transaction represents an instruction with no data available. That is: the value of

r1 is not available (Nothing), nor are the values of r 2 and r3.

The function read-stage (Figure 3.4) takes a register-file and a transaction and returns

a new transaction in which the value of the source operands have been placed with the

references. For example, if in a register-file r 2 equals 2 and r3 equals 3, then read-stage

would take the above transaction and produce:

([(r l ,Nothing)] ,ADD A(Jus t r 2 , Jus t 2) , (Jus t 1-3, Jus t 311)

This transaction represents the instruction with its source operand values known.

The function alu-stage (Figure 3.5) could be used to take this transaction, perform

addition on the source operands, and place the computed value in the destination field:

([(r l , J u s t 511 ,ADD, [(Jus t r 2 , J u s t 2) , (J u s t r 3 , J u s t 311)

This transaction represents the instruction where r l is assigned 5.

The function wb-stage (Figure 3.6) can be used to update a register file with the

bindings from the destination operands [(r l , Ju s t 511. In this definition we see an

application of f o ld l , a commonly used function in functional programming that iteratively

applies a function to a list.

The final transaction function is bypass (Figure 3.7), which can be used to mediate

data dependencies between transactions. Suppose a transaction is on its way through a

microprocessor's pipeline with an outdated rl-value in its source operands:

old = (L(r5,Nothing)l ,SUB, [(Just r1,Just 81, (Just r9,Just 211)

Also, suppose that another transaction is traveling through the machine with a recently

computed value for r1:

new = ([(rl, Just 5)] ,ADD, [(Just r2, Just 21, (Just r3,Just 311)

In this case we could use bypass to construct a new transaction based on old with an

updated r 1-value:

bypass new old = ([(r5 ,Nothing)] ,SUB, [(Just r1, Just 51, (Just r9, Just 2) 1)

3.1.2 Connecting transaction combinators and hardware

The purpose of these transformers is to simplify the development of hardware. Therefore

it is natural to wonder how we might map from the transaction combinators down to

wires and registers. Rather than provide a rigorous and complete mapping we will take

alu-stage as an an example combinator and demonstrate its compilation.

This unit takes in a set of wires representing the transaction and produces a set of

outputs that represent the resulting transaction. Each type can be represented with a

finite set of wires (given that the sizes of lists are bounded). For example, an output of

type Maybe Int can be represented with 32 wires for Int and one additional wire for the

Just and Nothing constructors. Tuples are implemented simply as the concatenation of

types.

Each equation from Figure 3.5 can be implemented as a circuit, and the overall function

can then be the composition of these circuits with a large mux that implements the pattern

matching. That is: the hardware can speculatively compute the answer for each equation

and then choose the right one with a mux by inspecting the input transaction with a

pattern matching circuit. As pictured in Figure 3.8, if the pattern match in the ADD case

succeeds, the output would be the same as the input except that the with the data line

for rl would be in with the data from r 2 added with r3. Figure 3.9 contains a circuit

implementing the pattern match for the ADD case from Figure 3.5.

cons? - 1 -----
11 - 0-
Just? - I-

3.2 Specifying and modeling with transition systems

data -
cons? -
other -
Just? -
data -
opcode

cons?
R
Just?
data

In microarchitecture verification, with few exceptions, both instruction-set specifications

and microarchitectural implementations are represented as transition systems. Although

the formalisms differ slightly from paper to paper, the following notation suffices for our

discussion.

A transition system is a structure with three elements:

*

0-
0 ---
0-
0- -

..
*

A set of initial states,

A next state relation, and

cons?
r3

A function that labels or projects out the visible parts of system's states.

-
Just? -
data
wns? *
r4 -
Just?
data
cons? -
r5 -
Just? *
data

Figure 3.8: Schematic diagram for alu-stage in the ADD equation

Just? -
data -
cons?
other -
Just? -
data -
opcode -
cons?
r2 -
Just?
data ----
cons?
r3 -
Just?
data -
cons? -
r4 -
Just? -
data -
cons? -
r5 -
Just? -
data -

Figure 3.9: Schematic diagram for pattern matching circuit from alu-stage's ADD
case I

The following example is a transition system that implements a modulo-5 counter,

where the observation function returns a Boolean value that indicates when the system

has been reset to 0:

initial states : (0)

next state relation : {(x, y) I y = x + 1 mod 5)

observation function : {(O,l)) U {(x, 0) (x E (1 . . .4))

Pictorially, this transition system can be drawn as the following graph:

In our programming language syntax we can define a type synonym, called TS, that

uses the parameters c, s, i, and o to represent the set of transition systems with statetype

s, input-type i, observation-type o and collection-type c:

The generality of the parameter c is not strictly necessary for this chapter, but is key in

Chapters 5 and 6. We will typically restrict ourselves to finite transition systems with

finitely non-deterministic transitions:

TS FSet s i o = (FSet s , i -> s -> FSet s, s -> o)

Notice that this ensures that the state of the transition systems remain finite.

Rather than explicitly naming the initial states and next-state relation within the tran-

sition system, we will often use the following projection functions on transition systems:

A i n i t i a l (x ,y ,z) = x

A next (x ,y ,z) = y
A observe (x ,y ,z) = z

i
We use the notation a - a' as a shorthand for a' E ([next] u) i a.

u

3.3 Specifying and modeling microarchitectures

In this section we demonstrate how ISA specifications and microarchitectural models are

typically built. We construct an ISA specification and a microarchitectural model-both

as transition systems. These transition systems will be used again in later chapters.

3.3.1 An example instruction-set architecture specification

For simplicity our specification does not support instruction or data memory. On each

cycle the machine accepts an instruction as an input, reads the source register references,

calculates the value of the destination operand and stores it into the register file. This

transition system has type:

r i s c : : TS FSet Opcode (RF ,Word) (Obs RF)

The type RF represents a register-file (which is essentially an environment or function from

Reg to Word). We use the type Reg to represent register names, and Word to represent

32-bit words. If we expand the type TS out to:

(FSet (RF, Word)

, Opcode -> (RF,Word) -> FSet (RF,Word)

, (RF, Word) -> Obs RF

1

then we can see that r i s c is a triple, where the first element is a finite set of register-file

and word pairs; the second element is a functional relation indexed by the elements of the

type Opcode, and the third element is a function from pairs of register-files and words to

elements in the type Obs RF.

The observation-type Obs, defined in Figure 3.10, is used in r i s c in the following way:

If the machine is stalled then the observation is Nothing. That is, because the tran-

sition system is stalled, it is in a state in which the register-file cannot be observed.

If the machine is not stalled and also not flushed then the observation is Jus t Nothing.

This is another situation where the transition system is in a state in which the

register-file cannot be observed.

If the machine is not stalled, and it is flushed, then the observation is Just (Just

r f) , where r f is a function that represents the current state of the register-file.

We make use of the observation functions in Figure 3.10 to simplify the task of modeling

with the Obs type. For example, we use r-f lushed to construct the appropriate encoding

with the type Maybe to model the case where the register-file is available for inspection.

The definition of r i s c is in Figure 3.11. The observation function (lines 14 through 16

of Figure 3.11) defines the significance of the integers in the initial states. If the integer is

1, the machine is flushed and the register-file is observable. If the integer is 2, the machine

is not flushed, but also not stalled. If the integer is 3, the machine is stalled.

Note that r i s c is not pipelined itself. It does, however, implement an interface that

allows for it to be used in environments built for pipelining: at any time the system can

be stalled, flushed, or not stalled and not flushed. An implementation of this specification

is, therefore, free to choose when the contents of the register-file are made available.

The next-state relation (lines 6 through 12 of Figure 3.11) is specified with transactions.

On line 11, the function make-trans (Figure 3.3) is used to create a new transaction from

the incoming instruction. The function read-stage takes the new transaction and fills in

its source register operands. Then, alu-stage uses the source register values to calculate

the value(s) of the destination operand(s). Finally, wb-stage updates the register file with

the bindings from the destination operand(s) .

type Obs e = Maybe (Maybe e)

r - s t a l l e d = Nothing
r n o t - f lushed = Jus t Nothing
r-f lushed e = Jus t (Jus t e)

s ta l l -obs : : Obs a -> Bool
s ta l l -obs o = case o of

Nothing -> True
otherwise -> False

f lushed-obs : : Obs a -> Bool
flushed-obs o = case o of

(Jus t (Jus t x)) -> True
otherwise -> False

s t a l l i n g :: TS m i s (Obs e) -> s -> Bool
s t a l l i n g m s = s t a l l -obs (observe m s)

f lushed : : TS m i s (Obs e) -> s -> Boo1

f lushed m s = flushed-obs (observe m s)

view : : TS m i s (Obs e l -> s -> e
view m s = case observe m s of

(Jus t (Jus t x)) -> x

Figure 3.10: The type Obs, used to represent observations

0 r i s c : : TS FSet Opcode (RF, 1nt) (0bs RF)
1 r i s c = (i n t , nx t , ob)

2 where
3
4 i n t = u n i t (i n i t i a l x f , 1)

5
6 nxt i (rf ,3) = e i t h e r r f
7 nxt i (r f , n)
8 = l e t (r f ' , wbi) = wb-stage wb r f
9 wb = alu-stage r d
10 rd = read-stage rf nw

11 nw = make-trans i
12 i n e i t h e r r f '
13
14 o b (x , l) = r - f l u s h e d x
15 ob (x, 2) = r n o t f lushed
16 ob (x, 3) = r - s t a l l e d

17
18 e i t h e r r f = d o { x < - [1 , 2 , 3] ; u n i t (r f , x))

Figure 3.11: r i s c , a RISC transition system

3.3.2 An example pipelined RISC implementat ion

In the literature on formal verification, microarchitectural models are typically represented

in the same manner as their specifications-albeit with the microarchitectural details

filled in. In this section we define a microarchitectural-level implementation of r i s c that

includes pipeline registers, and a next-state relation that defines how instructions flow

through the registers, with possible stalling and bypassing.

Figure 3.12 provides the code for this three stage pipeline. In this transition system,

the state of the pipeline is represented with a triple of transactions. The pipeline is

flushed if each of the transactions is equal to bubble-trans, which is the transaction that

represents the absence of action:

bubble-trans=([], BUBBLE , [I)

The machine has only one initial state (defined on line 5): the initial register-file used

in the definition of r i s c , paired with a flushed vector of transactions. The observation

function (lines 14 through 16) determines whether or not the machine is flushed based on

the vector of transactions.

Lines 7 through 12 define the next state relation, which implements a classic pipeline,

with a register read stage, an ALU stage, and a write-back stage. The definition of the

next-state relation is similar to r i sc ' s next-state relation. The difference is that the

intermediate values are stored in pipeline registers with appropriate bypassing.

Lines 14 through 16 define the observation function, which displays the register-file

only when the pipeline is flushed.

3.4 Correctness criteria

Although ISA specifications and microarchitectural models are developed in the same

formalism, they are typically developed at different levels of abstraction. For example,

r i s c provides details on which values should be produced after executing a sequence of

instructions, but does not specify when the values should be ready. The implementation,

in contrast, is much more specific as to when the values are visible. These two systems

are apparently related in some way-but how?

0 pipe : : TS FSet Opcode (RF, (Trans, Trans, Trans)) (Obs RF)
1 pipe = (i n t , nxt , ob
2 where
3 f lushed-pipe = (bubble-trans ,bubble-trans ,bubble-trans)
4
5 i n t = un i t (i n i t i a l x f , flushed-pipe)
6
7 nxt i (rf , (nw, r d , wb))
8 = l e t (r f ' , wbi) = wb-stage wb r f
9 wb' = alu-stage (bypass wbi rd)

10 rd ' = bypass wbi (read-stage r f nw)
11 nw ' = make-trans i
12 i n un i t (r f ' , (nw', r d ' , wb'))
13
14 ob (r f , pipe)
15 = i f pipe == f lushed-pipe then r-f lushed r f

16 e l s e r-not-f lushed

Figure 3.12: pipe, the RISC pipelined transition system

Typically, correctness is stated with a pre-order relationship such as simulation or flush-

point correctness, which we define in the next section. Note that there are many variations

of correctness criteria used in the literature that we will not review. Our purpose here is

to discuss only those criteria necessary in the later chapters.

3.4.1 Simulation

A transition system u is said to simulate a specification v (notationally (u, v) E SIM) if

there exists a relation R-called a simulation relation-that implies observational equiva-

lence between sequences of u and v states. That is, R must hold between the initial states

of the two systems and, for any step that the system u makes, v must have an analogous

step that maintains R.

The intuition behind simulation is that the graph of executions in the implementation

must be a subset of those of the specification. For example, imagine that the following

graph represents the set of all possible executions in a specification:

Assume that the labels are from the observation function applied to the states. A system

that simulates this specification must be a sub-graph of the above graph. For example,

the graph below denotes a system which simulates the above system:

Observation=A

The next graph, on the other hand, is a system that does not simulate the specification:

Definition 3 (SIM) Given (u :: T S FSet s i o) and (v :: T S FSet s' i o), (u, V) E SIMR 4

S1M.A) Va E i n i t i a l u . 3b E i n i t i a l v . (a , b) E R

S1M.B) 'da, a', b, i. [(a , b) E R A a' E next u i a] + [3b1. b' E next v i b A (a', b') E R]

S1M.C) Y a , b. (a , b) E R + observe u a = observe v b

In the example above, the transition system pictured in the first graph is simulated by

the second graph, where

R = { (n , n) (n E {I . . .4))

Note that, in this definition of SIM, we are abusing notation. To be more precise we

should state condition S1M.C as:

'da, b. (a , b) E R + [observe] u a = [observe] v b

It is again an abuse of notation to mix type constructors such as TS with mathematical

variables such as i. A more precise use would be:

u :: [TS ~ ~ e t] s i o

We will use the less restrictive notation when there is no chance for ambiguity.

Often we use SIM without specifying a relation subscript. In that case we define

A (u ,v) E SIM = 3 R . (u ,v) E SIMR

We will sometimes refer to just the inductive clause of SIM: S1M.B

A common twist on simulation is the notion of bisimulation. If two systems are bisim-

ular, then their graphs are isomorphic.

Definition 4 (BISIM)

(u, V) E BISIMR 4 (u, V) E SIMR A (v , U) E SIMR-I

We can expand the definition of BlSlM and define it directly as:

BIS1M.A)

Va E i n i t i a l u. 3b E i n i t i a l u.(a, b) E R

and

b'b E i n i t i a l v . 3a E i n i t i a l u.(a, b) E R

Va,a', b,i. [(a, b) E R A a' E next u i a] + [3b1. b' E next v i b A (a', b') E R]

and

Va, b, b', i. [(a, b) E R A b' E next v i b] + [gat. a' E next u i a A (a', b') E R]

B1SIM.C) Va, b. (a, b) E R + observe u a = observe v b

In the microarchitecture verification literature, it is common to find simulation rela-

tions that are, in fact, functions. These functions are known by various names, including:

abstractions, mappings, simulation mappings, abstraction mappings, or refinement map-

pings. We will refer to simulation with a mapping as MAP:

A Definition 5 (MAP) Given (u :: TS FSet s i o) and (v :: TS FSet s' i o), (u, v) E MAPR =

MAP.A) Va E initial u. 3b E initial v. R(a) = b

MAP.B) Va, a', b, i. [R(a) = b A a' E next u i a] + [gb'. b' E next v i b A R(al) = b']

MAP.C) Va, b. R(a) = b + observe u a = observe v b

MAP.B is often presented pictorially as a commuting diagram:

next u i q-+q
next v z

~ - - - - - - + ~

3.4.2 Flush-point correctness

A difficulty with sophisticated microarchitectures is that it is rare for them to actually

simulate their specifications. For instance, an out-of-order microprocessor will often exe-

cute a program in fewer cycles than the specification-meaning that the execution graph

of the implementation cannot be a sub-graph of its specification.

A more flexible criterion, which we call flush-point correctness, has been independently

proposed several times in the literature to address this weakness. It is general enough to

allow machines which should be considered correct to be related.

Before we define flush-point correctness, we first must introduce several concepts used

in its definition: the Bubble type-class, r, and the notion of a flush-point trace.

The Bubble type-class

We use the type-class Bubble to represent the existence of a machine instruction that

takes no arguments:

class Bubble i where

bubble : : i

The type Opcode is an instance of Bubble:

instance Bubble Opcode where

bubble = BUBBLE

That is, when we use the value bubble in the context of the type Opcode, we are referring

to the value BUBBLE. We define this type-class to facilitate the restriction of flush-point

correctness to only those transition systems with a built in notion of a bubble instruction.

Removing bubbles with J?

We use the notation (r i s) to represent the set of finite instruction sequences that are

equivalent to i s when bubbles are not considered. That is, let b remove all finite sub-

sequences of bubbles from an instruction stream:

I? i s {is'lb is' = b i s)

We have borrowed this notation from Abadi and Lamport [4].

Flush-point traces

The final concept that we need is the notion of a flush-point trace, which is a finite sequence

of states from a flushed state to the next flushed state. We will assume the existence of

a predicate called flushed that indicates when the observation of the transition system

is available. We define nextfp to represent the set of states that are at the end of the

flush-point traces from a given state a:

next-fp u i a {b (32' E r i. 3n.3s.3q

I s J = n A s l = a A s , = b

AVO 5 k < n - q. s t a l l e d (s k) H i; = bubble

AVn - q 5 k < n. ii = bubble

A VO 5 k < n. sk+l E [n e x t] u ii sk

A flushed u a

A flushed u s,

A VO < k < n. l(flushed u s k)

1
Definition 6 Given u :: T S FSet s i (Obs o) , v :: T S FSet s' i (Obs o), Let

(a , b) E RF flushed u a A flushed v b A (a , b) E R

(u, V) E F P R A

FP.A) V a E i n i t i a l u. 3b E i n i t i a l v.(a, b) E R~

FP.B) V a , a', b, i s . (a , b) E RF Aa' E next-fp u i s a 3 3b1. b' E next-fp v i s b A (a', b') E RF

FP.C) Va, b. (a , b) E R* + observe u a = observe v b

The intuition behind flush-point correctness is similar to simulation, with the modifi-

cation that we only compare states with R when they are flushed. When proving FP, we

are essentially proving that there always exists a flush-point trace in the specification such

that R holds at the points when the machines are in flushed states. Recall the example

implementation from above:

And recall the specification that it does not simulate:

This implementation is correct with respect to FP if we let R = ((1, I), (3,3)) and assume

that only states 1 and 3 are flushed.

3.5 Verification methods

In this chapter we have seen how ISA specifications and microarchitectural models are

represented. In addition, we have defined correctness criteria that relate specifications and

models. But what are the common techniques used to prove these relationships? In this

section we describe some of the most popular techniques used, including: intermediate

models, criteria strengthening, uninterpreted functions, and Burch & Dill's flush-based

simulation mapping. Later, in Chapter 6, we will see how these ideas are applicable to

the proof of our WA microarchitectural model's correctness.

3.5.1 Intermediate models

A microarchitectural design that is being verified is usually very different from its ISA

specification. It is often difficult to relate the components of the specification to the

finely tuned reservation stations, arrays of execution units, branch predictors and content-

addressable memories found in a sophisticated microarchitecture. Intermediate models

are sometimes used in the literature to bridge this gap between microarchitectural models

and ISA specifications. These intermediate models are typically built using one of three

concepts: history variables, abstraction, or prophecy variables.

History variables

Microarchitectural models typically only have registers that contribute to performance.

However, when proving a relation between a microarchitectural model and its specification,

it can be helpful for the microarchitectural model to carry around more state than is

necessary. An intermediate model sometimes can be constructed with extra variables used

to carry around history which clearly bisimulates the original microarchitectural model.

Abstraction

Intermediate models are also commonly used to abstract away the complexity of microar-

chitectural models. That is, an abstract model can be constructed from the microarchi-

tecture with a simpler but less deterministic next-state relation. The original next-state

relation can sometimes be proved to be correct with respect to the abstract one. When

using this strategy, one must also show that the intermediate abstraction implements the

specification.

Proposition 1

MAP, SIM, FP, MAP.B, SIM.B, and FP.B are pre-orders.

The preorder property is important, because it allows us to use this technique of

introducing intermediate models. For example, imagine trying to prove (A, B) E SIM. We

might build a new system B', which is based on B such that we can prove (A, B') E SIM.

If we can prove (B, B') E SIM, then by transitivity of SIM we know (A, B) E SIM.

Prophecy variables

Some microarchitectural models perform computations faster, or make non-deterministic

choices at times that are different than their specifications-making it impossible to prove

SIM. In some cases an intermediate model can be built from a microarchitectural model

that calculates the same answer as the original microarchitecture, but displays it at a

-

FP.B

T il MAP.B
FP +==== SIM +=== MAP

Figure 3.13: Connections between the correctness criteria

time which is more convenient when proving simulation. One way to address this problem

is to use prophecy variables [4], which can slow down a microarchitectural model that

retires too many instructions per transition or which can be made to predict the future.

Let u be a microarchitectural model and v be an architectural specification. To show

that (u, v) E FP, one might construct a slower model u' using a prophecy variable and

show that (u, u') E FP. Then, after showing that (u', v) E S I M , by the transitivity of FP

and SIM C FP (when the domain of systems is restricted to initially flushed systems),

(u, v) E FP.

Definition 7 A system u is initially flushed zf Vs E i n i t i a l u. flushed u s

Unless stated otherwise, we will assume that all transition systems are initially flushed.

3.5.2 Criteria strengthening

Another proof strategy that is often used in unison with intermediate variables is the

strengthening of the criteria. For example, we might prove SIM in order to prove FP.

Figure 3.13 is a picture demonstrating the connections between the criteria mentioned in

this chapter. For example, S1M.B + MAP.B states that if we have proved MAP.B then

we have also proved S1M.B. Unfortunately, because S1M.B $ FP.B, there is an arrow

missing. In this figure we assume that domain is restricted to initially flushed systems.

To see why SI M .B FP. B, consider the following example:

System u System v

In this example, we have two transition systems-and each transition system has one

state: a and b. The arrows indicate that the systems can transition to the same state.

Assume that flushed u a, lflushed v b, and R A {(a , b)) meets the criterion of S1M.B.

There is a flush-point trace in u:

But there does not exist a flushed state in v. Therefore, there cannot be a flush-point

trace in v.

Proposition 2 If (u , v) E SIM and u is initially flushed then (u , v) E FP

Proof. We know by SIM that there exists a simulation relation R.

A) Because u is initially flushed and S1M.A

B) Assume that a0 and a, are flushed states of u and that

is a flush-point trace. We know that io . . . meets the constraints required by

nextfp. By S1M.B we know that there exists a sequence:

such that (ak , bk) E R for all 0 5 k 5 n. By S1M.C we know also that both bo and

bn are flushed.

C) By R and S1M.C

3.5.3 Uninterpreted functions

One of the most pervasive techniques in microarchitecture verification is the use of uninter-

preted functions [12, 17, 43, 51, 631. Suppose that both next u and next v are defined in

terms of a function. When proving a relationship between expressions containing next u

and next v, the interpretation of the function is often inconsequential. That is, it is

commonly sufficient to know that applications of the function to equal arguments delivers

equal results.

For example, Burch & Dill [17] defined both their architectural specification and

pipelined model to access state using the functions read and wri te . When proving the

correctness of a simulation mapping, they were able to do so without interpreting the

meaning of read and wri te .

3.5.4 Calculating simulation mappings with flushing

Burch & Dill observed that a simulation mapping can be automatically calculated for

pipelined microarchitectures that support the notion of bubble [17]. Assume that u ::

TS FSet s i o is a microarchitectural model and v :: TS FSet o i o is an architectural

specification. Assume that i is an instance of Bubble. If, for all states, there exists a k

such that u is flushed after k applications of next u bubble, and the following diagram

commutes for all i, then (u , v) E MAP. B:

next u z

next u bubble 1 1 next u bubble

next u bubble l

next u bubble

observe u

ububble

(observe u

next v i &---&)

In this case, the simulation mapping is observe u o (next u b~bble)~.

3.6 Historical Context

To provide more context to the material in this chapter, we close with a history of the

key technical developments in microarchitectural verification. Note that this historical

summary only covers the literature up until 2002'. We survey the literature on the formal

verification of out-of-order microarchitectural designs, and point out how the material

developed in this chapter has been applied in practice. This section is based on a paper

by Aagaard, Cook, Day and Jones [I, 31.

3.6.1 Burch: Verifying Superscalar Microprocessors

In some of the first work on processor verification that went beyond pipelining, Burch [16]

proved that MAP.B holds between a tweinstruction wide superscalar microarchitectural

model and an instruction-set architecture. For this model, proving the commuting diagram

with Burch & Dill's simulation mapping was not feasible using algorithmic methods. To

address this, the paper presented four commuting diagrams that together imply MAP. B.

The proof obligations in Burch's decomposition were significantly simpler and were feasibly

solved with an automated decision procedure.

3.6.2 Damm, Pnueli, Arons: Verification by Refinement

In the first work to address the verification of out-of-order microarchitectural designs,

Damm & Pnueli [20] proved that SIM holds between an out-of-order model and an ISA

specification. The implementation and ISA were extraordinarily simple: neither handled

branch or jump instructions, and both required finite instruction sequences. In addition,

the implementation did not allow multiple instruction issue or retirement and the pipeline

was abstracted away. Nevertheless, the proof was a significant accomplishment. In the

proof, an abstract intermediate model was constructed that computes all out-of-order,

data-flow executions. Uninterpreted functions were used to abstract the data paths. The

'When this dissertation research was done

intermediate model contained an arbitrary number of functional units. In later work,

Arons & Pnueli [a, 91 used an intermediate model which used a prophecy variable for each

instruction. The intermediate model and the specification were synchronized at instruction

dispatch by comparing the instruction result in the specification with the prophecy variable

in the intermediate model. Other proof steps established that the result written into the

implementation's register file was the same as the prophecy variable.

Arons & Pnueli later extended their approach to an out-of-order model with a reorder

buffer [7]. The systems were synchronized at instruction retirement. To facilitate this,

the specification executed instructions only when they were retired.

3.6.3 Sawada & Hunt: Micro-Architecture Execution Trace Table

Sawada & Hunt [55] proved that FP.C held between an out-of-order model and specifi-

cation ISA. Their implementation issued a single instruction per cycle. The out-of-order

model had a number of execution units, including instruction and data memory, all of

different latencies. The model did not use a reorder buffer. Correctness was proved by

constructing an intermediate model that captured the history of all previously executed

instructions.

In a later paper [56] the authors extended their approach to verify a model that handled

precise exceptions, interrupts, and speculative branch execution with a reorder buffer.

Hunt & Sawada again used the FP.3 correctness criteria. Correctness was proved in the

same manner as before. The intermediate model was adapted to carry relevant information

about interrupts and exceptions.

3.6.4 Skakkebaek, Jones, & Dill: Incremental Flushing

Skakkebaek, Jones & Dill [60] proved FP.B between an ISA and a pipelined, out-of-order

design. The implementation contained multiple execution units, and a reorder buffer.

They introduced the notion of incremental flushing, the decomposition of the flushing-

based abstraction into a collection of easier proof obligations. The intermediate model

used in this proof placed the logic from multiple stages of the pipeline into a single stage

that computed the result of each instruction when it entered the machine. The instruction

input was queued in the reorder buffer until retirement. The implementation and the

intermediate model were proved to be in MAP.B. The intermediate model was proved to

be in FP. B with the instruction-set architecture using incremental flushing.

In later work, Jones, Skakkebaek & Dill, [45, 46, 411 built a prophecy-variable based

non-deterministic intermediate model in which the scheduling logic was abstracted. In-

cremental flushing was used to show that the machine executing at full capacity was in

FP.B with an intermediate model that was restricted to execute only one instruction at a

time. The intermediate model was then shown to be in the FP.B relation with the ISA.

3.6.5 Berezin, Biere, Clark & Zhu: Reference Files

Berezin, Biere, Clarke & Zhu [13] proved MAP.B between an out-of-order model and an

ISA. An intermediate model was constructed with a reference file, a heap-like structure

with sharing of common sub-expressions. MAP.B was proved between the intermediate

model and the original implementation. MAP.B was proved between the intermediate

model and the ISA, using Burch & Dill's simulation mapping. With a transitive argument,

using the correctness hierarchy, the implementation was proved to be in MAP.B with the

ISA.

3.6.6 McMillan: Compositional Model Checking

In contrast with the other work surveyed, McMillan [51] did not directly prove a criteria

akin to SIM or FP. Instead he proved that an intermediate model with history variables

satisfied several invariants [52]. However, we conjecture that McMillan's invariants imply

S1M.B.

The proof was decomposed into three proof obligations. The first stated that the

operand forwarding logic worked correctly; the second demonstrated that the instruction

execution logic functioned correctly using uninterpreted functions. A third obligation

extended the proof to a model with an arbitrary number of execution units.

3.6.7 Hosabettu, Gopalakrishnan, Srivas: Completion Functions

Hosabettu, Gopalakrishnan & Srivas [31, 341 verified the correctness of an out-of-order

model. The important contribution of this paper was a powerful technique for decompos-

ing proof obligations. This technique appears to be related to the programming languages

notation of a continuation. The simulation mapping for a proof of MAP.C was computed

by composing completion functions together, one for each instruction outstanding in the

machine. A completion function represents the intended effect of an instruction on micro-

processor state when it has completed. In subsequent papers, the completion functions

approach was extended to an out-of-order machine with an unbounded reorder buffer [32]

and a similar machine without a reorder buffer [33]. Both extensions used MAP.B and an

intermediate model with auxiliary variables to establish FP.B.

In another paper [30] the authors extended their approach to microarchitectures with

branch speculation and instruction exceptions. The notion of completion functions was

again extended, this time to include the possibility that an instruction may be specula-

tive, and thus never complete. FP.C was again established by proving MAP.B with an

intermediate model.

3.6.8 Velev & Bryant: Exploiting Positive Equality

Velev & Bryant [64] extended Burch & Dill's approach to accommodate superscalar mi-

croarchitectures. They constructed an intermediate model with an efficient reduction of

the original logic to propositional logic. This reduction was facilitated by exploiting posi-

tive equality, a technique that efficiently handles terms that appear in a positive polarity.

In a subsequent paper the authors extended their approach to microarchitectures

with arbitrary-latency functional units and memories, branch prediction, and instruction-

generated exception handling [65].

3.7 Conclusion

In this chapter we have developed a transition system formalism along with correctness

criteria used to relate transition systems. We have discussed several common techniques

used to decompose and simplify microarchitectural correctness proofs. We have also sur-

veyed the literature on microarchitectural verification-pointing out which criterion was

proved and which structuring techniques were used during the proof.

As we have learned in this chapter, transition systems are the fundamental formalism

used to describe both microarchitectural models and ISA specifications. The correctness

criteria proved between models and specification are typically variants of simulation or

flush-point correctness. Uninterpreted functions, intermediate models, Burch & Dill's

simulation mapping and the correctness criteria hierarchy are some of the most perva-

sive techniques used to handle the complexity inherent in proving modern microprocessor

microarchitectural models correct.

In the subsequent chapters we will use the material described here as a basis for further

development. For example, we will discuss how to extend the modeling techniques from

Section 3.2 and the correctness criteria from Section 3.4.

Chapter 4

Modeling with transformers

In this chapter we develop a method of modeling architectural extensions in a modular

fashion. We use this method to build specifications of our extended instruction-sets, WA

and OA, and simple microarchitectural models that implement them. The microarchitec-

tural model of WA implements a pipeline that integrates predication. The OA implemen-

tation provides three pipelined execution clusters. We make use of these models later in

the dissertation when we discuss how to formally prove models of this style correct.

As is standard practice, we specify WA and OA as transition systems. However, rather

than monolithic transition systems, they are represented as the composition of functions.

The specification of WA is defined as:

wa p = f n t p (prd rise)

The functions f n t , and prd take transition systems as arguments and return transition

systems; each potentially with more features. These functions could specify an extension

such as instruction caching, parallelism or predication. We call these functions transition

system transformers.

The transition system r i sc is described in detail in Chapter 3 and is displayed in

a visual representation in Figure 4.1. In the specification of WA, r i s c is extended to

support predication by the transformer prd, as seen in Figure 4.3. The transformer f n t

builds a transition system with a program memory loaded with the program p, as shown

in Figure 4.2.

A WA microarchitectural model can also expressed as the composition of transformers:

wma p = f n t p prd-pipe

This model is, in principle, similar to what we might find in the Intel StrongARM mi-

croprocessor. It is a fast predicated pipeline, with an instruction fetch unit on the front

end. Figure 4.5 displays the WA microarchitectural model. Figure 4.4 displays the WA

architectural model.

In order to specify the OA we can extend WA with concurrency as follows:

f \ /- \

oa p = f n t p (cnc 1 (prd r i s c))

The parallelism transformer cnc then adds a notion of threads, thread identifiers, and

synchronization-see Figure 4.6. cnc can also be used in the construction of a microar-

chitectural model for OA:

Instruction input

oma p = f n t p (cnc 3 prd-pipe)

L J \ J
b

Writeback

Figure 4.1: Architecture of r i s c

- R F

The transformers f n t and cnc are shared between the specification and implemen-

tation. However, in the implementation, cnc is applied to 3 instead of 1, which means

that cnc constructs 3 concurrently executing transition systems. The transition system

prd-pipe is a predicated pipeline with better stalling behavior than prd pipe. See Fig-

ure 4.8 for a visual representation of the microarchitectural system.

ALU

Figure 4.2: Architecture of f n t p r i s c

Figure 4.3: Architecture of prd risc

1 ,
f r , I -3

ALU

\ , i

Writeback

RF - Instruction input - - CNTL

/ 3

Predicated Pipeline

Figure 4.5: Architecture of f nt p prd-pipe

- - RF/PFW

Figure 4.6: Architecture of cnc 1 (prd r i s c)

r 7

PRF

I

Instruction Queues

' [G] '

Instruction Queues I

--

Figure 4.7: Architecture of fnt p (cnc 1 (prd r i s c)

(--2]

J -- I

- RF - ALU

J

i ,

I
t , r

Writeback

Writeback
I

Memory p
Instnrction

-

,

RF

L / C

CNTL

i

- - ALU

4.1 Predicating the architectural model

Predicated Pipeline
Instruction Queues

((Q....] '
i

The transformer prd is designed to construct a predicated transition system. This trans-

former has type:

--

(Collect c , Bubble i , Eq r, Eq w, Bind i r w , I n t eg ra l w) =>
TS c i s (Obs (Env r w)) ->
TS c (Prd-Instr i r r) (Prd-St s r (Prd-Instr i r r)) (Obs (Env r w))

,- 7 >

[GGi] Predicated Pipeline - RFIPl7F

[G] C

In other words, the transformer takes a transition system whose only constraint is that

it have observation type: Obs (Env r w), meaning that the transition system provides a

register-file as its observation type, but only when it is flushed and not stalled. It returns

i
I

Predicated Pipeline

r 7

a transition system with the same observation type, but with richer types representing the

Instruction
Memory p

inputs and states. The returned input-type is Prd-Instr i r r. Prd-Instr (Figure 4.9),

,

when given an instruction type i, register-type r and predicate register type r ' , returns a

type that represents tagged expressions. These tagged expressions can be either register to

<

Figure 4.8: Architecture of f n t p (cnc 3 prd-pipe)

predicate-register moves (R2P), predicate-register to register moves (P~R), an assignment

to the predicate register file (SET), a predicated instruction (IF), or an un-predicated

instruction (GO).

data Prd-Instr i r r ' = R2P r ' r ' r I P2R r r ' I SET r ' Bool
I I F i r ' I G O i

instance Bubble i => Bubble (Prd-Instr i r r ') where
bubble = GO bubble

Figure 4.9: Predicated instruction type and instances

The returned state-type is (s , (Env r Bool ,Maybe i) 1. The type Env r Bool is used

to represent a predicate register-file. Type type Maybe i is used to represent the instruc-

tion register. For clarity, we abbreviate this type with the synonym Prd-St:

type Prd-St s r i = (s , (Env r Bool ,Maybe i))

The occurrence of the type-class Bind in the type of prd asserts that we need to provide

a function named bind for i, r, and w:

c lass Bind i r w where

bind : : r -> w -> i

That is, an expression such as bind r 1 O 20 should form an instruction that directs the

transition system to bind the register r10 to 20 in the register file. In the case of Opcode,

bind is defined as SET.

The definition of the transformer prd is in Figure 4.10. The set of initial states of

the system (defined on line 2) are essentially the initial states of the underlying system

paired with a predicate register-file and an empty register. The observation function is

defined in the equations on lines 4 and 5. On line 4, in the case that there is an instruction

in the register, the observation is that the system is stalled. Line 5 states that for any

given state, when the register is empty, the observation is simply the observation of the

underlying state.

Lines 8 through 36 define prd's next-state relation. For example, lines 8 through 12

define what the system does when there is an instruction (i) in the register. The next-state

relation checks to see if the underlying system is flushed. If so, then the saved instruction

0 prd m = (int ,nxt ,ob)

1 where
2 int = do {x <- initial m; unit (x, (emptyEnv ~rue,~othing)))
3
4 ob (s, (e, Just -1) = r-stalled
5 ob (s, (e ,Nothing)) = observe m s
6
7
8 nxt - (s, (e, Just i)) = if flushed m s
9 then nxt i (s, (e ,Nothing))

10 else do { s' <- next m bubble s

11 ; unit (s' , (e, Just i) 1
12 1
13 nxt (P2R r r') (s , (e ,~othing))

14 = if (readEnv e r') then do { s' <- next m (bind r 1) s
15 ; unit (s' , (e ,Nothing))
16 1
17 else do { s' <- next m (bind r 0) s
18 ; unit (s ' , (e ,Nothing))
19 1
20 nxt (SET r' b) (s, (e ,Nothing))
2 1 = do { s' <- next m bubble s
22 ; unit (sY,(updateEnv e (r',b),Nothing))

23 1
24 nxt (IF i r') (s, (e,Nothing)) = if readEnv e r'
25 then do { s' <- next m i s; unit (s' , (e ,Nothing) 1)
26 else do { s ' <- next m bubble s ; unit (s ' , (e ,Nothing)))
27 nxt (GO i) (s, (e ,Nothing)) =

28 do { s' <- next m i s; unit (s' , (e,Nothing)))
29 nxt (R2P rl r2 r') (s, (e,Nothing)
30 = if flushed m s then

31 let el = updateEnv e (r1 ,readEnv (view m s) r' /= 0)
32 e2 = updateEnv el (r2,readEnv (view m s) r' == 0)

33 in unit (s , (e2 ,Nothing))
34 else do { s <- next m bubble s
35 ; unit (s, (e, Just (R2P rl r2 r')))

36 1
Figure 4.10: The predication transformer prd

is issued. If not, then a bubble is placed into the underlying system and the instruction is

kept in the register.

In the case that there is no instruction in the register, the next-state relation performs

the appropriate action for each instruction type. If the incoming instruction is an I F (line

24), and the value of the predicate in the predicate register-file is true, then the instruction

is passed on to the underlying system. In the case that the predicate is untrue, then a

bubble is placed into the underlying system in the instruction's place.

4.2 Predicating the microarchitectural pipeline

To build a predicated pipeline we could simply apply prd to the transition system pipe

from Chapter 3. Unfortunately, because prd places the predication check at the front of

the pipeline, it must flush the pipeline each time it encounters an R2P instruction. For

example, consider executing the following code fragments in prd pipe:

C GO (ADD rl r 2 r3)

GO (ADD r 4 r 5 r6)

GO (ADD r 7 r 8 r9)

R2P p r l pr2 r 7

I

In this case, prd would issue the first three add instructions and then flush the pipeline

before issuing the R2P instruction. That is: the predication transformer would cause the

machine to stall and drain the add instructions before copying the value of r 7 into the

predicate register-file. The result of this would be a three cycle penalty for each R2P

instruction. For this reason, we will not use it in the definition of the microarchitec-

ture. It will, however, turn out to be useful later when decomposing the proof of the

implementation's correctness.

To build a faster predicated pipeline, the aspects of prd must be integrated into the sys-

tem such that instructions are allowed to flow through the pipeline before the predication

check occurs. Each instruction's predicate can then be checked just before writeback.

The integrated predication pipeline, called prd-pipe (Figure 4.11), implements this

algorithm. It is constructed using transaction combinators which are a hybrid of the

0 prd-pipe : : TS FSet PIns t r

1 ((RF , (Prd-Trans , Prd-Trans , Prd-Trans)) , (PRF, 0))
2 (Obs RF)
3 prd-pipe = (i n t , nxt , ob)
4 where
5 f lushed-pipe = (prd-bubble-trans , prd-bubble-trans , prd-bubble-trans)

6
7 i n t = un i t ((i n i t i a l - r f , f lushed-pipe) , (in i t ia l -pr f , 0)
8
9 nxt i ((nrf , (nw, rd , wb) , (prf , other))
10 = l e t r f = (nrf , prf)
11 (rf ' , wbi) = prd-wb-stage wb r f
12 wb' = prd-alu-stage (prd-bypass wbi rd)

13 rd ' = prd-bypass wbi (prd-read-stage r f nw)

14 nw' = prdrmake-trans i
15 i n un i t ((f s t r f J , (n w ' , r d ' , wb')), (s n d r f ' , other))
16
17 ob ((r f , pipe) , (prf , other) 1
18 = i f pipe == f lushed-pipe then r-f lushed r f
19 e l s e rno t - f lushed

Figure 4.11: prd-pipe: a higher-performance predicated lUSC pipeline

transaction combinators from Chapter 3. The transition system is defined to manipulate

pipeline stages of type Prd-Trans (Figure 4.12) which is like Trans, except that predicate

registers are possible source and destination operands. One can think of an element of

Prd-Trans as two transactions, with a shared instruction. This is the essence of how

the combinators treat Prd-Trans instructions. For example, the function prd-bypass

defined in (Figure 4.13) bypasses the predicate references and the standard references

independently. The writeback function, prd-wb-stage, (Figure 4.14) checks the source

predicate and commits the instruction only if the predicate is true.

Line 5 of Figure 4.11 defines how an empty stage is represented internally within

prd-pipe. Line 7 declares that there is a single initial state, using the variables i n i t i a l - r f

and in i t i a l -p r f as representatives of initial register-file states. The next state relation is

defined in a fashion similar to the definition of the pipe, except that the predication-based

transaction functions are used.

I type Prd-Trans = (I(Reg,Maybe Int)] , [(PReg,Maybe Bool)] I
, Prd-Instr Opcode Reg PReg
, [(Maybe Reg,Maybe Int) I , [(Maybe PReg,Maybe Bool)]

Figure 4.12: Prd-Trans: the predication transaction type

prd-bypass : : Prd-Trans -> Prd-Trans -> Prd-Trans
prd-bypass (dsts1,dsts2,i,srcsl,srcs2) (dsts1',dsts2',i',srcs17,srcs2')

= (d~t~l',d~t~2~,i~,~rcsl",srcs2~~)
where (-,-,srcslW) = bypass (dstsl,i,srcsl) (dstsl',i',srcsl')

(-,-,srcs2") = bypass (dsts2,i,srcs2) (d~ts2~,i',srcs2')

I Figure 4.13: pred-bypass : the predication bypass combinator

prd-wb-stage : : Prd-Trans -> MEnv -> (MEnv, Prd-Trans)
prd-wb-stage (a,b,IF c d,e,f) env

= let t = (a,b,IF c d,e,f)
in if pred-true t then (do-wb t env, t)

else (env, prd-bubble-trans)
prd-wb-stage t env = (do-wb t env, t)

do-wb : : Prd-Trans -> MEnv -> MEnv
do-wb (dstsl ,dsts2, i, srcsl, srcs2) (rf ,prf) = (rf ' ,prf '1

where rf ' = f old1 writeback rf dstsl
prf' = foldl writeback prf dsts2
writeback rf (r , Just x) = updateEnv rf (r ,x)

wb-stage : : Trans -> RF -> (RF,Trans)
wb-stage (dstsl ,i,srcsl) rf = (rf ' , (dstsl ,i ,srcsl))

where rf7 = foldl writeback rf dstsl
writeback rf (r, Just x) = updatehv rf (r ,x)

Figure 4.14: wb-stage: the predication writeback function

emptyRn : : Int -> Region i
isEmptyRn : : Region i -> Boo1
popRn : : Int -> Region i -> (Maybe i ,Region i)

Figure 4.15: Interface to the Region type

4.3 Adding concurrent execution

The concurrency transformer cnc is used both in the architectural specification and mi-

croarchitectural model. The idea behind this transformer is that it takes a transition

system and makes a number of concurrently executing copies of it. These copies have

some shared state.

The type of the concurrency transformer is:

Bubble i => Int -> TS FSet i ((v, o) ,s) (Obs e) ->

TS FSet (Region i) ((v,s), [ol ,Region i) (Obs e)

The first parameter is used to determine the number of concurrently executing transition

systems. The second parameter is a non-deterministic transition system. The transformer

returns a new nondeterministic transition system with richer input- and-state types. The

input-type of the returned transformer is regions of inputs.

The state space of the new system is a triple ((v,s), Col ,Region i) :

The first element is a pair from the underlying system's state space. This is the

shared state.

The second element is a list of parts from the underlying system's state space-one

for each concurrently executing transition system.

The third element represents the state of the current region in execution.

The Region data-type (Figure 4.15) is used to represent basic blocks, as described in

Chapter 2. Essentially, a Region represents a sequence of queues. Figure 4.15 contains

the types and names of several functions available for constructing empty regions, testing

to see if a region is empty, and removing instructions from specified queues.

0 cnc k m = (int,nxt,ob)

1 where
2 int = do { ((a,b) ,c) <- initial m
3 ; unit ((a, c) ,take k (repeat b) ,emptyRn rs)
4 1
5
6 nxt b (rf,ps,r) =
7 do { choice <- perm rs k
8 ; let psk = zip ps choice
9 ; let r' = if ishptyh r then fillout rs b else r
10 ; foldM issue (rf , [I, r') psk
11 1
12
13 ob ((rf ,p') ,ps,r) =

14 let ss = map (\x -> ((rf,x) ,p')) ps
15 in if isEmptyRn r && all (flushed m) ss
16 then observe m ((rf ,head ps) ,pJ)
17 else r-stalled
18 1
19 issue ((rf ,p2), ps' ,r) (pl,n) =

20 do { let s = ((rf ,pi) ,p2)
2 1 ; (s' ,rJ) <- if stalling m s then match r (next m bubble s)
22 else case popRn n r of
23 (Nothing ,r ' -> match r ' (next m bubble s)
24 (Just x,r') ->matchr' (next m x s)
2 5 ; let ((rfJ,pl') ,p2') = sJ
26 ; unit ((rf',p2'), ps' 'union' Cpl'l ,r')
27 1

Figure 4.16: cnc: the concurrency transformer

As we can see from line 2 of Figure 4.16, the initial states of the concurrent transition

system are built from the underlying transition system's initial states: the first and third

elements are returned with k copies of the second element. In addition, cnc returns an

empty region. Lines 6 through 11 define the next-state relation. The variable choice is

nondeterministically chosen to be a legal assignment of instructions to pipelines. A legal

choice is defined as follows: an instruction from queue q can be issued to a pipeline p if

p = q mod s, where s represents the number of pipelines. We can also choose not to issue

an instruction on that cycle. For example, if we have three pipelines, the next instruction

for the first pipeline could come from the first or the fourth queue.

The next state relation is defined with f oldM:

f oldM : : Collect c => (a -> b -> c a) -> a -> [bl -> c a
foldM f a [I = unit a

foldM f a (x:xs) = do {y <- f a x; foldM f y xs)

The function issue (line 19) issues the choices into their respective pipelines and

returns the updated region. On line 20, issue makes a state for the underlying system

from the available parts. It then issues an instruction for pipeline n if possible. A new

state s ' and a reduced region r ' are returned. The function then de-constructs the state

returned by the underlying transition system and adds the pipeline register state into the

value that is finally returned.

The observation function (lines 13 to 18) defines the system to be stalled and not

flushed unless the region is empty and the pipelines are flushed. In the case that both the

region and the pipelines are flushed the definition uses the flushed pipelines to determine

the underlying observation.

4.4 Adding the front-end

The last transformer applied in both the architectural and microarchitectural models is

fnt defined in (Figure 4.17). This function takes a program and inserts instructions from

the program into its argument transition system. The type of f n t is:

fnt p m = (initial m,nxt ,observe m)
where nxt False s = if not (flushed m s) then next m bubble s

else let v = readEnv (view m s) pc
r = p! ! (toInt (v))

in next m r (s)
nxt True s = next m bubble s

Figure 4.17: f nt : the instruction memory transformer

(Register r, Bubble i, Integral w) =>
[i] ->
TS m i s (Obs (Env r w)) ->
TS m Boo1 s (Obs (Env r w))

The function returns a transition system with a stall input signal.

Notice that fnt is used in four different type instantiations. In WA it is being applied

to a predicated MSC architecture, which has the following type:

It is also being applied to a predicated RISC pipeline, a concurrent and predicated RISC

architecture and a concurrent and predicated pipeline. We could also apply fnt to just a

pipeline:

fnt p pipe

4.5 Executing the specification and model

In this section we demonstrate oa and oma on the sample program from Chapter 2 which

is encoded as a list of regions in the [Region (Prd-Instr Opcode Reg PReg)] data-type

in Figure 4.18.

4.5.1 Executing the architectural model oa

The following is an initial state of oa:

Y

-- Region 1
, [[GO (NEQZ r4 r2), R2P p2 p3 r41
, [GO (CNT pc 2), GO (ADDI r3 r2 011
I

Y

-- Region 2
, [[IF (MLT rl r1 r3) p21
, [IF (ADDI r2 r2 (-1)) p21
, [IF (CNT pc 1) p2,IF (CNT pc 3) p31
, [IF (ADDI r4 r1 0) p31
1

[
-- Region 0

[[[GO (CNT rl I)]
, [GO (CNT r2 711
, [GO (CNT pc 111
1

9

-- Region 3
, [[GO (CNT pc 311
, [GO (CNT 6 2) ,GO (DIVI 5 5 0) 1
I

1
1

Figure 4.18: Factorial function encoding

where r f is the register file ([rf pc] = 0, [rf rl] = 0, etc) and prf is the predicate register

file ([prf pol = 0, [prf pin = 0, etc). The singleton list [31 is r i sc ' s non-deterministically

chosen stall value. The list of empty lists is the empty region. We format this state as

follows:

registers pred. reg.

On the first transition the first region can be loaded into the system:

region

registers

1

2

3

4

5

6

7

8

9

10

[I
[I
Cl
[I
[I
[I
[I
[I
[I
[I

At the next cycle, because the system is not flushed, the input region is ignored. We can

choose to issue the instruction in the third queue:

region

registers

1

2

3

4

5

6

7

8

9

10

[I

[GO (CNT 1-2 7)1

[GO (CNT pc 1)l

CI
C1
[I
[I
[I
[I
[I

region ,
1

3

4

5

6

7

8

9

10

[I
[GO (CNT 2 7)l

[I
C1
C1
Cl
C1
[I

[I

[I

We can then issue the second instruction on the following cycle:

registers

Now the program counter (pc) is set to 1 and the system is flushed. Therefore, on

region

the next cycle, the second region can be loaded:

region

2) ,GO (ADD1 3 2 011

10 [I

1

2

3

4

5

6

7

8

9

l o

4.5.2 Executing the microarchitectural model oma

[I
[I
[I
C1
[I
Cl
CI
Cl
[I
[I

The implementation model, oma can be analogously executed on the same program. Its

initial state is:

registers
pipeline one

nw ([I , [l , G O BUBBLE,[],[]) region

pipeline two

nw ([].[I ,GO BUBBLE,[I,Cl)

1

2

3

4

5

6

7

8

9

10

[I
Cl
[I
CI
[I

C1
[I
[I

[I
[I

r d

wb

([I , [I ,GO BUBBLE, Cl, [I)
(Cl ,Cl ,GO BUBBLE,[],[])

pipeline three

nw

rd

(CI ,Cl ,GO BUBBLE,[],[])

([I , [I ,GO BUBBLE. [I, [I)

After the first transition, the entire first region can be loaded and issued into the three

pipelines:

registers

We have now issued all of the instructions in the region. On the next cycle we concurrently

run each of the pipelines. Assuming that all of the pipelines make progress, the three

transactions can progress to the read stage in their respective pipelines:

pipeline one

region C(r1,Just 1)l,[l,GO CNT,[(Nothing,Just I)],[])

registers [I

1

2

3

4

5

6

7

8

9

10

During the next transition the transactions progress to the writeback stage of their

pipelines:

11 (CI,CI,GO BUBBLE,[],[])

[I ([I, [I ,GO BUBBLE. [I, [I)
[I
[I
[I
[I

(CI,Cl,GO BUBBLE,[],[])

C(r1,Just I)l,[l,GO CNT,C (Nothing,Just I)],[])

([],[],GO BUBBLE,[],[])

(C(r2, Just 7)1, [I ,GO CNT, [(Nothing, Just 7)1, [I)
([],[],GO BUBBLE,[],[])

([I, [I ,GO BUBBLE, [I , [I)

region

1

2

3

4

5

6

7

8

9

10

[I
[I pipeline three

[I
[I ([I, [I ,GO BUBBLE, [I, [I)

([I, [I ,GO BUBBLE, [I, [I)

pipeline two

[I
[I
[I
[I
[I
[I
[I
[I
[I
[I

nw

rd

wb

(C(r2,Just 711, [I ,GO CNT, [(Nothing,Just 711, [I)
([I, [I ,GO BUBBLE, [I, [I)
([],[],GO BUBBLE,[],[])

registers
pipeline one

nu ([I, [I ,GO BUBBLE, [I, 11)
rd ([],[],GO BUBBLE,[],[])

wb ([(rl, Just I)], [I ,GO CNT, [(Nothing, Just I)], [I)

(Cl,CI,GO BUBBLE,[],[])

(CI,Cl,GO BUBBLE,CI,[l)

(Cl,Cl,GO BUBBLE, [I,[])

Finally, on the next cycle, the machine writes the results embedded in the transactions of

the three writeback stages:

At this point we have completely executed the first region. On the next cycle, we can load

pipeline one

the region pointed to by pc:

region

registers [I pred. reg.

(CI,Cl,GO BUBBLE,[],[])

(Cl,[l,GO BUBBLE,[], [I)
(CI,Cl,GO BUBBLE.CI,[l)

pipeline two

nu

rd

wb

(Cl,Cl,GO BUBBLE,[],[])

(Cl,Cl,GO BUBBLE,[],[])

([I, C1 ,GO BUBBLE, [I, [I)

region

I ~ i ~ e l i n e two I

pipeline three

(Cl,Cl,GO BUBBLE,[],[])

(CI,Cl,GO BUBBLE,CI,Cl)

(Cl,[l,GO BUBBLE,Cl,[l)

pipeline one

1

2

3

4

5

6

7

8

9

10

nu

rd CR2P p2 p3 r41

[ADDI r 3 r2 01

[I
[I
[I
[I
[I
[I
[I
[I

(C(r4, Nothing) 1 , [I ,GO NEZ, [(Jt r2, Nothing) 1 , [I)

(Cl,Cl,GO BUBBLE,[],[])

' .
nw

rd

wb

pipeline three

([(pc ,Nothing)] , [I ,GO CNT, [(Nothing, Just 211 , [I)

([I, [I ,GO BUBBLE, [I, [I)
([I, [I ,GO BUBBLE, [I, [I)

nu

I

([l,Cl,GO BUBBLE,[],[])

4.6 Summary

In this chapter we have constructed several ISA specifications and microarchitectural de-

signs. The key concept in this chapter is that of a transition system transformer. When

represented as the composition of these transformers, the features of a specification and

model can be expressed in isolation of other features. For example, the specification of

predication is expressed in an orthogonal manner from the specification of concurrency or

instruction fetching. Qualified types have played an important role in this method of in-

dependently modeling extensions. They have allowed us to encode the expectations of the

argument transition system into the type of the transformer. For example, the predication

transformer prd requires that its argument support the notion of bubbles, so that it can

flush its argument transition system in the event of an R2P instruction-this expectation

is encoded in the predicate Bubble which occurs in the function's type.

Another aspect of this chapter is that we have been able to re-use the relatively stan-

dard definitions of r i s c and pipe in the specifications of OA and WA. For quality it

is typically good to build designs using well understood building blocks. What's more:

this will be advantageous later when we explore the decomposition of the proof of wma's

correctness.

Chapter 5

Proof with transformers

In the previous chapter we demonstrated how we can model architectures and microar-

chitectures with transformers. We now explore how to use the extra structure in these

transformer-based microarchitectural models when formally verifying them against their

transformer-based specifications. In this chapter we develop a transformer-based strategy

that facilitates the decomposition and simplification of correctness proofs.

The chapter is organized as follows. We first introduce some notation and review

mathematical concepts. We develop AM, a formal language for the expression of transition

systems and transformers. We provide a basic rule that allows for proof decomposition

on transformers. Then, using the theory of Pararnetricity [54, 661 for AM, we develop a

strategy for proof simplification.

5.1 Notat ion and mat hemat ical preliminaries

We use + and x over sets in the traditional manner:

Definition 8 (x, +)

A x B is the product space of A and B. A + B is the function space from A to B.

Later in the chapter, we will need to specify domains and ranges relative to a relation

such that the relation appears to be a total relation, a total function, or a one-to-one

function. We achieve this with the following higher-order relations:

Definition 9 (total, totalfunc, iso)

(A, B) E total R Va E A. 3b E B. (a, b) E R
(A, B) E totalfunc R 4 Va E A. 3!b E B. (a, b) E R

(A, B) E iso R A (A, B) E total R A (B, A) E total R-I

These higher-order relations have type: Set(A x B) -+ Set((Set A) x (Set B)). In essence,

the relations relate domains to ranges such that they have some property with respect to

R. In the case of total, the property is that R appears total under the domain and range.

For example, consider total Id, which relates A to B only if A is a subset of B. The

relation total-func is identical to total except for the additional constraint that an A and

B must be chosen such that R appears to be a function. iso restricts A and B such that

the relation is both total and surjective. As an example: iso Id = Id.

We use the notation (R t Q) to represent the lifting of relations on transformers:

Definition 10 (t)

We use the backwards arrow to simplify composition notationally. When we apply (t) to

relations such as SIM, MAP, BlSlM or FP we get new relations that range over trans-

formers. For example: (f, g) E (SIM + SIM) is true when two machines (x, y) are

in SIM and (f(x),g(y)) E SIM. Figure 5.1 portrays a lattice of implications between

lifted relations constructed from SIM, MAP, and FP. It demonstrates that (FP t MAP)

is the most general relation, while (MAP t FP) is the least. We can also see that

(MAP t FP) c (FP t SIM)-meaning that if we have proved (SIM t FP) we have also

proved (FP t SIM). This figure assumes that transition systems are all initially flushed.

Definition 11 (monotonicity) A function f : A -+ B is monotonic with respect to R

and Q if for all (a,b) E Q, (f a, f b) E R.

This is a slight generalization of the familiar definition of monotonicity. Normally we

would not use two relations in the definition. Notice that, using the lifting notation, our

definition of monotonicity can be rephrased as: A function f : A --+ B is monotonic with

respect to R and Q if (f, f) E (Q t R).

/+F\ /PIS\

FP +- FP ___ /+S\ >P+MAP

FP +- SIM

\ FP t MAP /IMAp

Figure 5.1: Implications between lifted correctness criteria

5.2 AM: A language for expressing transition systems

Thus far we have expressed transformers in an unspecified functional programming lan-

guage notation. We will now be more precise as to the semantics of this language by

defining a core language AM. The purpose for delving into this level of detail is that, with

the language formally defined, we gain the use of Parametricity.

AM is minimal and verbose: it is intended as a simple language for study. We conjecture

that a compiler could be written that translates the code from Chapters 3 and 4 into

terms of AM by removing syntactic sugar, compiling away type-classes and performing

type inference. Like System F [23], X~ requires explicit type annotations. Like Haskell

or ML, it requires Hindley-Milner types.

We assume that all recursion is bounded. That is, we assume that all recursion can

be eliminated by a static number of unfoldings-in practice ten to twenty unfoldings

are likely to be more than sufficient. Recursion is used for notational convenience, not

computational necessity. This matches the domain in which it is being used-hardware

must, in the end, be described with a finite amount of state.

x , y,z E Vars
S E Typeschemes ::= ~ (A x 1 . ~ (A x 2 xn.T) . . .)
T E Types ..- ..- x (C T I (T'4T2 I TlXT2

T' E GrTypes ::= C T i . . . TA I TiGT; (T,'><T;
C E Typeconstants ::= FSet 1 Int 1 . . .
t E Terms ::= x (c (Ax : T.t 1 Ax.t (tl t 2 I t~ ((t 1 , t 2)

c E Constants ::= fst 1 snd 1 . . .

Figure 5.2: AM syntax

5.2.1 Syntax

Figure 5.2 displays the syntax for AM types and terms. The letters x , y, and z represent

type- and term-variables. To simplify the semantics, we distinguish between type ex-

pressions with variables, and ground type expressions, which are type expressions without

variables.

We represent quantified types with constructors. The familiar type Vx.x is treated as

shorthand for '?(Ax.x), where 9 is a type constructor and Ax.x is a function of the type

syntax level from ground types (GrTypes) to Types.

Figure 5.2 presents the syntax for A M . The form Ax : T.t represents abstraction over

terms. Ax.t is abstraction over types. The form (tl ta) denotes the application of term t l

to t2. t~ is the applicative form of terms to types.

5.2.2 Types

AM borrows system F's type system (Figure 5.3) as described in [66]. A term is considered

to be in AM if it is well typed. A type assertion is of the form

A is a set of type variables, and r is an environment from variables to types. We expect

that each free variable in t will be in the domain of I?. Each free type variable in T should

appear in A.

A,l?[xi+Tl] I - u : T2 ~ [x] , r F U : T
A, r I- AX : T1.u : T 1 i T 2 A, r I- AX.^ : V(AX.T)

A , I ' [x H T] I - x : T
A,rkt l :Tl;T2 A , r t t 2 : T 1

A, r t tl t2 : T2

a, r F t : V(AX.T~)
n , r I - c : o T c

A , r I- t, : T1[x i+ T2]

A , r I - t l :T I A , r I - t 2 :T2
A, I' I- (tl, t2) : T ~ ~ < T ~

Figure 5.3: Type system of AM

5.2.3 Semantics

Because AM is intended as the target for a language with only bounded recursion, simple

sets suffice as the semantic interpretation. For example, we can represent any function of

type BooliBool as a subset of the set of pairs:

That is, we do not neet to provide an extra element to represent functions that do not

terminate. Following the style of Mitchell and Meyer [53], the semantics of AM are defined

in terms of environments for the typed and kinded constants. a~ provides the meaning for

type constants, and TK gives the kind for each type constant. At the term level, 0~ provides

the meaning for each term constant, and TT the types. For example, we will expect the

following equations to be true:

TK BOO^ = *
a~ Boo1 = {1,0)

TT and = BooliBooliBool

OT and = XX.X~.X A y

We provide the semantics of AM in a framebased form, as described by Meyer and Bruce

[15]. That is, we provide a frame (T, S, 4, V, a, Q). From this frame, Meyer and Bruce

uxn+
A = $ x

[IC TI . . a Tn]+ 4 (OK C) [[Tl]I+...I[Tn]+
IITl~T21+ UTlI+ - UT2D+

[TI]+ x l[T21+ U T I ~ T ~ I I + A
[V(XX.T)]+ = XA : GSet. [T]+c-~ l

Figure 5.4: Type semantics of XM

1
A

uxn+>p = p x
A

UCI+>P
- - (TT c
a

[[AX : U.u]+,p = Xa : UTD+. U ~ l l + , ~ [x w a]
A

ut un+,p = utn+,p UUI+,P

UAx. tn+,p
A = XA : GSet. [[t~+[x++Al,p

U ~ T I + , P A utn+,PuTn+

Figure 5.5: Term semantics of X~

construct [.I for terms and types defined in Figures 5.4 and 5.5. Both @ and 9 are in this

case the identity function.

The function S (Figure 5.6) takes a type expression and returns the set of elements

that represent that type. For example: S Boo1 = {True, False). GSet is defined as the

meaning of all possible monomorphic types:

GSet A {I[t]lt E GrTypes)

The meaning of a polymorphic term t : V (X ~ . T) is represented as a environment from

I Figure 5.6: S: a mapping from XM-types to sets of XM-expressions I

(a, b) E RelC x A < x
A (a, b) E RelC c = n c

(a, b) E Relc ($'(AX. T)) V R . (a , b) E RelC[x,Rl T
(a, b) E RelC (T l i T 2) 4 (a, b) E (RelC Tz c- RelC TI)
(a, b) E RelC (T ~ X T ~) (a, b) E (RelC Tl x RelC Tz)

Figure 5.7: Rel: an alternative semantics for types

GSet to the meaning of terms. For example,

[(AX. XTJ : X. XZ : X.TJ)] = XA : GSet. [[(XTJ : X. XZ : ~.y)]~ , [, ,~]

= XA : GSet. Xal : EX][,,A~. [[Az : x . Y] [~ H ~ ~] , [x ~ A]

= XA : GSet. Xal : A. Xa2 : A. [[Y][?JH(L~,ZH~~],[XHA]

= XA : GSet. Xal : A. Xa2 : A. a1

This is a significant departure from the standard semantics for System F. This restriction

essentially states that polymorphism only ranges over ground types. The form XA : B.t is

a notational shorthand for the set of pairs {(A, t) 1 A E B) . We use ([a] as an abbreviation

for Il-10 and U-JJ0,0.

5.3 Parametricity for X~

In essence, Parametricity [54, 661 states that for each type there is a theorem that holds

for any expression of that type. In other words, for every term with type t : T we know

that there is a statement constructed from T that is true of t-regardless oft's definition.

The relation Rel (see Figure 5.7) builds this statement.

Now for a more formal explanation. A constant c is said to be parametric if (aT c, a~ c) E

Rel T. Parametricity states that if every constant is parametric, then for any term t : T,

([[t], [t]) E Rel T. Rel T is sometimes called T's free theorem. Note that Rel uses C as an

environment from variables to relations, which grows in the recursive applications of Rel

over quantified types. We will use Rel as an abbreviation for Relo. The environment K. is

defined such that a (possibly higher-order) relation is bound for each type-constant in the

language. For example, K. Int = Id and n FSet could be defined as iso.

Let us see a few examples of free theorems. The relation that compares two sets A

and B which are denoted by expressions of type FSet I n t is

(A, B) E Rel (FSet I n t) e (A, B) E (Rel set) (Rel In t)

(A, B) E iso (Rel I n t)

e (A,B) E iso Id

e (A, B) E total Id A (B, A) E total id-'

e V ~ E A . ~ ~ E B . (~ , ~) E I ~ A V ~ E B . ~ ~ E A . (~ , ~) E I ~

e (Va E A. 3 b E B. a = b) A (Vb E B. 3a E A. b = a)

@ A = B

So the free theorem of any term t with type FSet I n t is that It] = i t] . This is not a

ground breaking theorem, but it's free.

For a more interesting free theorem, recall that in Chapter 4 we wrote transformers

with type: Vx. TS FSet x TI T2 -+ TS FSet (F x) T3 T4, where F is any function at the

syntactic type level. Let us take a specific example. Suppose that we have an encoding of

a transformer in x ~ :

f :: Vx. TS FSet x TI T2 + TS FSet (xj<x) T3 T4

What is the theorem associated with this type? Recall that Rel constructs a relation from

a type that compares two elements. In the case of TS, Rel (TS TI T2 T3 T4) is constructed

to relate two transition systems:

Rel (TS TI T2 T3 T4)

v

This picture is intended to communicate that Rel (TS TI T2 T3 T4) is a relation that holds

between elements in TS TI T2 T3 T4 and TS TI T5 T3 T4. In other words,

Rel (TS TI T2 T3 T4) :: TS TI T2 T3 T4 + TS TI T5 T3 T4 + {0,1)

Let R, = Rel Ti. The picture below demonstrates how the structure of T S is used to

construct the relationship Rel (T S TI T2 T3 T4):

A A A A A A A

Rel (TS TI Tg T3 T4) = R1 R2 A R3 =$ R2 =+ R1 Rz A R2 * R4

v v v v v v v
TS Tl T5 T3 T4 = (Tl T5 T3 T5 i Tl T5 T5 i T4)

Notice how the structure of T S naturally causes Rel to construct the relation with three

conjuncted clauses:

Rel (TS TI T2 T3 T4) =

The first clause compares the first projection of the triples (in i t ia l) :

That is, if in i t ia l u : TI T2 and ini t ial v : Tl T5 then in i t ia l u can be compared to

in i t ia l v with the relation (R1 R2): (in i t ia l u, in i t ia l v) E (R1 Rg). For example, if

R1 = iso, then R1 Rg equals

Va E in i t ia l u. 3b E in i t ia l v.(a, b) E R2

A

Vb E in i t ia l v. 3a E in i t ia l u.(a, b) E R2

This precisely matches BISIM.A, which was defined in Chapter 3 as:

Va E i n i t i a l u. 3b E i n i t i a l v.(a, b) E R

and

Vb E i n i t i a l v. 3a E i n i t i a l u.(a, b) E R

The second clause can be visually represented as:

That is, this clause constructs a relation that compares the second projection of the triples.

To compare two elements f and g with Ra, R3, and (R1 R2) :

we do the following: assume that (i, j) E R3; assume tha.t (s , q) E R2; and then check that

(f i s ,g j q) E R1 R2. For example, if Rg is equality, R1 = iso, next u :: T3iT2+Tl T2,

and next v :: T 3 i T 5 i T l T5, then this is equivalent to:

Va, a', b, i. [R2(a, b) A a' E next u i a] + [3b1. b' E next v i b A Rz(al, b')]

A

Va, b, a', i . [R2(a, b) A b' E next v i b] [gal, a' E next u i a A R2(a1, b')]

This matches BIS1M.B.

The final clause is:

This clause constructs a relation that compares the third projection. If R4 is equality,

observe u :: T 2 i T 4 , and observe v :: T 5 i T 4 then this is equivalent to:

Va, b. (a, b) E R2 + observe u a = observe v b

This matches BISI M's third clause:

Va, b. (a, b) E R + observe u a = observe v b

This connection between Re1 and BlSlM provides us with the following result:

Proposition 3 Given u :: '?(Ax. TS FSet (F x) T2 T3), v :: '?(AX. TS FSet (F x) T2 T3),

and n FSet = iso,

(u, v) E BlSlM equals (u, v) E Rel[x,Rl (TS FSet (F x) T2 T3)

With this proposition, we are now ready to see what the free theorem is for f , where f

has type:

'?(Ax. TS FSet x TI T2iTS FSet (xxx) T3 T4)

By the Parametricity theorem for AM, we know that:

(I[f 1, [f]) E Rel ('?(Ax. TS FSet x TI T2 iTS FSet (xxx) T3 T4))

from this fact we can derive the following:

VR.([f], if]) E Relix,Rl (TS FSet x TI T2 iTS FSet (xxx) T3 T4)

'dR, a, b. (a, b) E Rel[x,Rl (TS FSet x TI T2)

* ([f] a, [f] b) E Rel[x,~] (TS FSet (xxx) T3 T4)

H VR,a, b. (a , b) E BISIMR + ([f a, [f b) E BISIM(RxRl

+ Va, b. (a, b) E BlSlM + ([f] a, [f] b) E BlSlM

e ([f], [f]) E (BISIM + BISIM)

That is, the free theorem states that f is monotonic with respect to BISIM. Remember

that this theorem is based completely on f ' s type. More generally, we can do the same

trick for any function, f , with type:

V(XX. TS FSet x Tl T+TS M (F x) T3 Tq)

If (m,n) E BISIMn then (f m, f n) E BISIM(Rel,z - n l (~ r.). Therefore, we can conclude

that any transformer of this general type is monotonic with respect to BISIM.

5.4 Parametricity and Collect

Unfortunately, transformers of type V(XX.TS FSet x Tl T2 ATS FSet (F x) T3 T4) are

not necessarily monotonic with respect to SI M. Consider the following example, which

inspects how many transitions exist from the set of initial states.

f : TS FSet x 0 Bool -> TS FSet x () Bool

f m = (i n i t m,next m,ob)

where

ob = i f s i z e (j o i n (map (next m 0) (i n i t m)))== 1 then obs m

e l s e \x. False

The trouble is that the two machines in the relationship SIM might return sets of states

with different cardinalities. Consider the following transition systems m and n :

m = (un i t l , \ x y -> u n i t (x+x) , \x -> (x % 2) == 0)

n = (un i t 1 , \x y -> u n i t (x+x) 'union' x , \x -> (x % 2) == 0)

In this case, ([m], in]) E SIM, but (if m], [f n]) @ SIM.

However, with type classes we can restrict the available functions over sets to those of

Collect . To do this, we must first add Collect into XM, where TK Collect * -+ *:

A
TT u n i t = ~ (~ x . x i ~ o l l e c t x)

7-T j o in V (~ x . ~ o l l e c t (Collect x) i c o l l e c t x)

A
TT union = ~ (~ x . ~ o l l e c t x 4 C o l l e c t x 4 C o l l e c t x)

7~ map 4 ~ (~ x . \ b (~ ~ . (x 4 ~) + ~ o l l e c t x i c o l l e c t y))

We can then encode the transformers from Chapter 4 that use Collect as functions in

AM with type:

(Collect T2, T 3 i T 2 - X o l l e c t T2, T2iT4)

(Collect T3, T 3 i T 4 i C o l l e c t T3, T2iT5)

We have a number of interpretations in mind for Collect : One, FSet, etc. Therefore,

the semantics of Collect are provided in axiomatic form. The axioms guarantee that the

constants of Collect are parametric:

A1 : (aT un i t , a~ un i t) E Rel (~ (A x . x ~ ~ o l l e c t x))

A2 : (aT join, aT join) E Rel (~ (A x . ~ o l l e c t (Collect x) i C o l l e c t x))

A3 : (aT union,aT union) E Rel (~ (~ x . ~ o l l e c t x i C o l l e c t x i C o l l e c t x))

A4 : (aT map, a~ map) E Rel (' b (A x . ~ (A ~ . (x ~ ~) i ~ o l l e c t x i C o l l e c t y)))

If our interpretation of Collect is finite sets, we can define the meaning of the constants

a, u n i t 2 {.)

OT jo in 4 U
A a~ union = U

a~ map 4 Af.Ax.{f x1x E X)

We can implement Collect in tc as total. We must, however, verify that the model meets

axioms A1 through A4. That is, we need to show that the model is parametric.

Proposition 4 IfaT u n i t = {.) and tc Collect = total,

A1 :(aT un i t , a~ un i t) E Rel (' b (A x . x ~ ~ o l l e c t x))

(aT u n i t , a~ u n i t) E Re1 (v (X z . z i ~ o l l e c t z))

(Xy.{y}, Xy.{y)) E Re1 ($ ' (Xz.z i~ol lec t z))

* (Xy.{y), Xy.{y)) E Rel[x++R] (z*Collect a)

* (XY.{Y),AY.{Y)) E (Re l [zw~] Rel[x++~] z)

Va, b.(a, b) E ReltHRl x + ({a), {b)) E Rel[x,RI (c o l l e c t z)

e Va, b.(a, b) E R + ({a), {b)) E total (Rel[,,Rl x)

* Va, b.(a, b) E R + ({a), {b)) E total R

@ Va, b.(a, b) E R + Vc E {a). 3d E {b). (c, d) E R

($ true

Proposition 5 If aT union = U and n C o l l e c t = total,

A3 : (aT union, a~ union) E Rel (($'(Xx.~ollect z i c o l l e c t z i c o l l e c t z)

Proposition 6 If aT j o i n = U and n C o l l e c t = total,

A2 : (aT j o i n , a T j o in) E Rel (' b (Xz .~o l l ec t (Co l lec t x) i C o l l e c t z))

Proof.

(aT j o i n , a ~ join) E Rel (~ (X s . ~ o l l e c t (Collect x) i C o l l e c t x))

u (U,U) E Rel (~ (X z . ~ o l l e c t (Collect x)'-tCollect x))

u (U,U) E Rel[x,RI (Collect (Collect x) i C o l l e c t a)

U (U, U) E (Rel[x,Rl (co l l ec t X) + Rel[,,Rl (co l l ec t (Collect x)))

e VA, B. [(A, B) E Rel[x,R] (Collect (Collect x))

=+ (U A, U B) E Rel[x,Rl (Collect x)

e VA, B. [(A, B) E Rel[x,R] (Collect (Collect x))

* (U A, U B) E total (Rel[x~R] x)

e VA, B. [(A, B) E total (RelIxHRl (Collect x))

* (UA, U B) E total (R~~[zHR] x)

H VA, B. [(A, B) E total (total (Rel[x,RI x))

* (U A, U B) E total (Rel[x++~l x)

H VA, B. [(A, B) E total (total R)

* (U A, U B) E total (Rel[x~R] x)]

e VA, B. [(A, B) E total (total R)

=+ (U A, U B) E total R

e VA, B. [VA1 E A. 3B' E B. (A', B') E total R

+ (U A, U B) E total R

e VA, B. [VA'E A. 3B' E B. Va E A1.3b E B'. (a,b) E R

+ (U A, U b) E total R

e VA,B. [VA' E A. 3B' E B. Va E A1.3b E B'. (a,b) E R

+ V a € U A . 3 b E U B . (x , Y) E R

e true

Proposition 7 If aT map = Xf.XA.{f ala E A) and K Collect = total,

A4 :(aT map, a~ map) E Rel (~ (~ x . ' b (~ ~ . (x ~ ~) ~ ~ o l l e c t x i C o l l e c t Y)))

If the interpretation of Collect is One, then we can define the meaning of the constants

as:

0~ u n i t 4 Id
a a, j o in = Id
a a~ union = Xu. Xb. a

CTT map 9 Xf .Xu. f a

In this case we implement Collect in r; as r; Collect = Id.

Proposition 8 If uT u n i t = Id and n Collect = Id,

A1 :(OT u n i t , a ~ u n i t) E Rel ($ (X z . z i ~ o l l e c t z))

Proposition 9 If UT jo in = Id and n Collect = Id,

A2 :(m jo in ,aT join) E Rel (~ (~ x . ~ o l l e c t (Collect x) i ~ o l l e c t z))

(aT join, a~ join) E Rel (' b (~ z . ~ o l l e c t (Collect z) i ~ o l l e c t x))

(Id, Id) E Rel ('b(Xx.~ollect (Collect z) i C o l l e c t z))

(Id, Id) E Rel[,,,] (Collect (Collect z) i C o l l e c t z)

(Id, Id) E (Rel[x,RI (Collect x) + Rel[x,RI (Collect (Collect x)))

(Id, Id) E (R~~[xHR] z Rel[x,R] 2)

(Id, Id) E (R + R)

b'a, b. (a, b) E R + (Id a, Id b) E R

b'a,b. (a,b) E R + (a,b) E R

true

Proposition 10 If UT union = Xu. Xb. a and n Collect = Id,

A3 :(uT union, UT union) E Rel (('b(Xz.collect z i c o l l e c t z i C o l l e c t z)

Proposition 11 If a~ map = Xf.Xa. f a and n Collect = Id,

A4 :(aT map ,a~ map) E Rel (~ (~ z . ~ (X ~ . (z + ~) i ~ o l l e c t x i c o l l e c t y)))

We can now develop a parametricity result for (SIM t SIM). If the transformer is de-

fined using the abstract C o l l e c t interface to set-like structures, then it cannot access any

of the functions that destroy monotonicity. For example, if the interpretation of Col lec t

is finite sets, functions of type $'(Ax. TS C o l l e c t x Tl T2 + TS C o l l e c t (x x x) T3 T4) only

have access to 1.1, U, U, and mappings-meaning that the functions of this type cannot

use set-operators such as cardinality.

Proposition 12 Given u :: $'(AX. TS C o l l e c t (F z) T2 T3),

v :: $'(AX. TS C o l l e c t (F x) T2 T3) and K C o l l e c t = total:

(u,v) E SIMR equals (u,v) E Rel[x,RI (TS C o l l e c t (F x) T2 T3)

With this proposition, we can prove that any f with type ~ (x x . TS C o l l e c t x Tl T2 +

TS C o l l e c t (F x) T3 T4) is monotonic with respect to SIM:

([f], [f]) E Rel (V(Xx. TS Col lec t x TI T 2 i T S C o l l e c t (F x) TI Tz))

@ VR.([f], if]) E Rel[x,Rl (TS C o l l e c t x TI T z i T S C o l l e c t (F x) T3 T4)

e VR, a , b. (a, b) E Rel[x,Rl (TS C o l l e c t x Tl Tz)

+ ([f] a, [f] b) E Rel[F,+Rl (TS C o l l e c t (X X X) T3 T4)

@ VR, a7b. (a7b) E S~MR + (If] a, [f b) E SIM(R~R)

+ Va, b. (a, b) E SIM + ([f] a, [f] b) E SIM

@ wn, [fn) E (SIM SIM)

From this, we now know that transformers that use C o l l e c t and that are appropriately

polymorphic in the state parameter are monotonic with respect to SIM.

5.5 Decomposing proofs with transformers expressed in X~

An advantage of writing models as the composition of transformers is that, when verifying

one model against another, the proof can potentially be decomposed point-wise into proofs

about transformer pairs.

Proposition 13 If (f, f') E (P +- Q) and (g, g') E (Q t R) then (fog, flog') E (P t R)

(9,g') E (Q t R) ~ (f l f ') E (P t Q)
H [Va,b.(a,b) E R * (g a,g' b) E Q] A ~ c , d . (c , d) E Q* (f c, f ' d) E PI

=+ Va,b.(a,b) E R * (f(g .)'f1 (9' b)) E P

* Va,b.(a,b) E R + - ((f og) a),(f1og') b) E P

-3 (f o g , f ' 0 9 ') ~ (R + - P)

For example, if we are trying to prove that (f o g, f' o g') E (SIM t BISIM), one possible

strategy is to prove (f, f') E (SIM +- SIM) and (g,gf) E (SIM t BISIM).

Proposition 14 If (f, f') E (R t Q) and (u, v) E Q then (f u, f' v) E R

Using this rule, we can prove (f u, f' v) E SIM by proving (f, f') E (SIM t SIM) and

(u,v) E SIM.

If f is appropriately typed and f = f' then, with the Parametricity results that we

have developed in this chapeter, we can potentially discharge (f, f') E (SIM t SIM) based

on f 's type.

5.6 Summary

In this chapter we have provided a methodology for decomposing and simplifying correct-

ness proofs of transformer-based models. The methodology begins with breaking a proof

down into smaller proofs--each of which can potentially require reasoning only about local

extensions. Then, using the Parametricity-based simplification strategy, we have provided

a way of discharging a limited class of resulting obligations.

The material in this chapter has demonstrated that transformers can potentially pro-

vide a new axis for decomposition and simplification during a proof of a microarchitec-

tural design's correctness. If the forms of the specification and implementation align in

the correct way, we can break down the proof obligation. The connection that we have

demonstrated between simulation and Parametricity may also allow us to automatically

discharge some of the proof obligations.

Chapter 6

Applying the theory of transformers

In Chapter 3 we surveyed several approaches that have been used when formally verifying

a microarchitectural model against its ISA specification. In Chapter 5 we developed a

decomposition and simplification strategy that can be used when verifying models against

specifications written as the composition of transformers. In this chapter, we apply these

techniques to the decomposition of a proof that, m a , the microarchitectural model from

Chapter 4, is correct with respect to its ISA specification, wa.

Note that the focus of this chapter is on factoring the proof into obligations-not

completely proving correctness. Therefore several of the proof obligations will not be

proved rigorously. In these cases we will provide a reference to a technique from the

literature which can solve the problem.

As we saw from the execution demonstration at the end of Chapter 4, the microarchi-

tectural model can execute a program in a different number of cycles than ISA; meaning

that it is not possible to prove that (wma p, wa p) E SIM. Therefore our aim is to work on

the proof that (wma p, wa p) E FP. That is, we are trying to prove that for each flush-point

trace in m a there exists an analogous trace in wa such that the observations of the flushed

states are equivalent. Note that we are not proving (oma p, oa p) E FP-we will discuss

this in the next chapter. Figure 6.1 displays the picture of the overall proof decomposition.

Each step is numbered for discussion. The remainder of this chapter discusses these steps

in more detail. A review and summary of the decomposition and proof steps will be given

at the end of the chapter.

Figure 6.1 : Top-level proof decomposition

6.1 Decomposing the proof into obligations

We begin the proof by decomposing (wma p, wa p) E FP into several obligations. First, by

unfolding the definitions of wma and wa we have:

(fnt p prd-pipe, fnt p (prd risc)) E FP

Using Proposition 3 from Chapter 5 we can decompose this into two obligations:

1 :(fntp,fntp) E (FP t FP)

2 :(prd-pipe, prd risc) E FP

6.2 Proving Obligation 1: (f nt p, fnt p) E (FP +- FP)

This obligation essentially states that if there exists an R such that (u,v) E FPR then

(fnt p u, fnt p v) E FP. Let Bool be an instance of the Bubble type-class where True is

the bubble instruction. Let the same R be the witness for (f nt p u, f nt p v) E FP. By

the definition of fnt we know that conditions FP.A and FP.C from Definition 6 hold. We

must now prove FP.B. Imagine that the following is a flush point trace of fnt p u:

bo 61 bm
So - S1 - - - Sm

fnt p u fnt p u fnt p u

where b, :: Bool. This induces a flush-point trace in the underlying system u:

where io . . .in are chosen by fnt from p. By (u, v) E FP, we know that there exists a

flush-point trace in v :

such that i' E I? i, observe u so = observe v sb and observe u s, = observe v sk. We

also know that there exists a q such that YO 5 k < n - q. st alled(sk) % i; = bubble and

V n - q 5 k < n. iL = bubble. Let b' be the sequence defined by the function Xk. k < q. By

the definition of fnt we know that feeding b' to the transition system fnt p v will cause

it to feed the sequence s' to v in the underlying system. Since s' is a flush-point trace of

v, we know that s' is a flush-point trace of f n t p v and that

VO < k < n - q. s t a l l ed (s i) tJ bi = bubble

AVn - q 5 k < n. 13; = bubble

A VO 5 k < n. s ; + ~ E [next] v i; s i

Therefore, (f n t p u, f n t p v) E FP.

6.3 Proving Obligation 2: (prd-pipe,prd r i sc) E FP

In this part of the proof we are essentially showing that the execution core of the microar-

chitectural model is correct with respect to the execution core of the architectural model.

This is difficult to prove directly because, as we discussed in Chapter 4, prd r i s c imple-

ments predication at the front-end of r i s c , while prd-pipe places the predication check

at the end of the pipeline. One approach to solving this problem is to break the obligation

down into two simpler ones: one that proves that the predication code in prd-pipe is

correct with respect to prd; and the other that proves that the non-predicated parts of

prd-pipe are correct with respect to r i sc .

We can do this by introducing an intermediate model. Because the specification is

in transformer form, we use a part of the specification to build an intermediate model:

prd pipe. With the transitivity of FP we know that, (prd-pipe, prd r i sc) E FP is implied

by Obligations 3 and 4:

3 : (prd-pipe, prd pipe) E FP

4 : (prd pipe,prd r i s c) E FP

6.4 Proving Obligation 3: (prd-pipe, prd pipe) E FP

In essence, this obligation states that pipelining with predication implemented in the

back-end of a pipeline is correct with respect to pipelining with predication implemented

in the front-end. As discussed in Chapter 4, the distinction between the two techniques

is that the transition system with predication in the back-end does not stall on an R2P

instruction. If it weren't for this difference we could easily build a simulation relation

between them. However, if we were to force prd-pipe to stall for three cycles whenever it

received an R2P instruction, it would simulate prd pipe. Figure 6.2 contains the definition

of a transformer, called slow, which does exactly this. Essentially slow takes a model with

state space s and constructs a new model that consists of s paired with two prophecy

variables: (s , In t , Int). The second element keeps track of how many cycles to stall,

and the third records how many cycles the machine has been stalling. On every cycle in

which the prophecy variables are set to 0, slow uses the function slowp to determine how

many cycles to stall based on the incoming instruction and the state of the underlying

machine. This is similar to tricks used by Jones [41, 421, Jones et al. [44] and Abadi &

Larnport [4]. Lines 16 through 19 of Figure 6.2 check for the case that either a bubble

instruction or an instruction that cannot exist in the prd pipe pipeline is found in the

slowed down predicated pipeline. In this case, the number of cycles to stall is adjusted

such that the execution of the two pipelines match. We can construct an intermediate

model by applying slow to prd-pipe. Then, using transitivity of FP and SIM C FP we

can decompose Obligation 3 into:

5 : (prd-pipe, slow prd-pipe) E FP

6 : (slow prd-pipe,prd pipe) E SIM

6.5 Proving Obligation 4: (prd pipe, prd r i s c) E FP

By applying the decomposition rule in the same fashion as we decomposed the toplevel

obligation, (prd pipe, prd r i s c) E FP can be broken down into:

7 : (prd, prd) E (SIM + SIM)

8 : (pipe, r i s c) E SIM

0 slow = slowdown slowp
1
2 slowdown : : (Collect c,Bubble i) => (i-> (s,~nt,Int) -> Int) ->
3 TS c i s (Obs o) -> SM c i (s,Int ,Int) (Obs o)
4 slowdown p m = (int ,nxt , ob)
5 where
6 int = do {s <- initial m; return (s ,O ,O))
7 nxt i (s,O, k) = do {s' <- next m i s
8 ; return (s',p i (s,O,k),p i (s,O,k))
9 1
10 nxt i (s ,n,k) = do {s' <- next m bubble s; return (s ' ,n-1 ,k))
11 ob (S ,O ,-I = observe m s
12 ob (s ,n,J = r-stalled
13
14
15 slowp (R2P - - -1 (((rf , (p, q, r)) , (prf , other)) ,n,n')
16 I n==O && n' > 0 = 0
17 I bub p prf3 && bub q prf2 && bub r prfl = 0
18 I bub p prf3 && bub q prf2 = 1
19 I bub p prf3 = 2
20 I otherwise = 3
2 1 where
22 bub p env = not (pred-true-in p env)
23 I I p==prd-bubble-trans I l isr2p p
24 I I is-set p
25 ss = ((rf,(p,q,r)), (prf, other))
26 ((-, -) , (prf 3, -1) = run- prd-pipe b3 ss
27 ((-, -) , (prf 2, -1 = run- prd-pipe b2 ss

28 ((-, -), (prfl, -1) = run- prd-pipe bl ss

29 where s = (((rf , (p, q, r)) , (prf , other)) ,n,nJ)
30 b1 = [bubble]
3 1 b2 = [bubble, bubble]
32 b3 = [bubble, bubble, bubble]
33 slowp i - = 0

Figure 6.2: slow: A prophecy-variable based transformer

6.6 Proving Obligation 5: (prd-pipe, s low prd-pipe) E FP

Assuming that a given transition system m is deterministic, let the function V be defined

accordingly1 :

V, s = next, bubble (next, bubble (next, bubble s))

Assume that we can prove the following property of prd-pipe:

I YS, s f . Vprdpipe S = Vprd-pipe S * Vprd-pipe (nextprd-pipe bubble s) = Vprd-pipe SI

Call this property Bubble independence. Also assume that we can also prove that the

Burch-Dill verification condition holds for prd-pipe when compared to itself.

I I
YS! s ! i - Vprd-pipe s = Vprd-pipe s * Vprd-pipe (next i S) = Vprdpipe (next i st)

Call this property Self Burch-Dill.

These two properties are like those that are often proved in the literature using a

validity checker such as CVC-lite [ll] or Zapato [lo]. Examples include [12, 44, 42, 41,

43, 60, 45, 461

Let R be defined as:

A
R (s7 (s17 n7 k)) = n = 0 A Vprd-pipe S = V(slov prd-pipe S'

If the two properties above hold then we can now prove (prd-pipe, slow prd-pipe) E FPR.

Let i be a sequence of instructions such that the following is a flush-point trace:

io + i 1 in
S1 - - ' Sn prd-pipe prd-pipe prd-pipe

k Consider each of these transtions: sr, ------t prd-pipe s k + l . Using mixtures of the self Burch-

Dill property and Bubble independance we can prove that, if Vprd-pipe sk = VprdTpipe S;

then the following four conditions hold2:

V (next ik s ~ + ~) = V (next ik SL+~)

'This could be generalized to non-deterministic systems, but that is unnecissary in this case
'we are assuming that prd-pipe is the underlying machine in these conditions

v (next ik skS1) = v (next bubble (next ik s;+~))

V (next ik s ~ + ~) = V (next bubble (next bubble (next ik s;+,)))

V (next ik sk+l) = V (next bubble(next bubble (next bubble (next ik s ~ + ~))))

By abstracting slowp we can safely assume that the result of slowp applied to ik is

m E { O , 1 , 2,3). We know that this will induce a sequence in the machine slow prd-pipe

such that

bubble bubble

By the four conditions above and the definition of slow we can therefore conclude that,

if V sk = V s i , then

I ~ta l ledprd-~ipe Sk+l * stalled(slow prd-pipe) Sk+m

~ t a l l e d ~ r d - ~ i ~ e sk+1 stalled(slow prd-pipe) (~ i + m , O, m,

Let f be the function that maps an instruction j to j followed by value sequence of

bubbles. Assume that the number of bubbles is equal to the value returned slowp when

applied to j . Let it be the instruction sequence constructed from i by a concatenation

of the sequences f(i). This leads to a flush-point trace in slow prd-pipe, proving that

(prd-pipe, slow prd-pipe) E FP:

i:,
((sb, 0, -1 - . -. (s;, 0, m)

slow prd-pipe

6.7 Proving Obligation 6: (slow prd-pipe,prd pipe) E SIM

An important distinction between slow prd-pipe and prd pipe is that the pipeline reg-

isters in slow prd-pipe hold PTrans values, whereas the pipeline registers in prd pipe

hold Trans values. Therefore, when a predicated instruction i occurs in a slow prd-pipe

pipeline register, the analogous register in prd pipe is a function of what prd did with i

when it was placed into the machine.

The Obligation (slow prd-pipe,prd pipe) E SIM can be proved with the simulation

mapping in Figure 6.3. This function computes the underlying transaction from a PTrans

value.

The mapping uses the prophecy variable in slow prd-pipe to calculate the analogous

state in prd pipe. In the case that the prophecy variable is 3 (lines 0 through 3), on the

last cycle the R2P instruction was issued and therefore:

The nw register in prd pipe must be an empty transaction.

The r d register in prd pipe is the underlying transaction in r d from slow prd-pipe.

However, because the transaction in wb can potentially be an R2P or SET, we must

calculate the underlying transaction with the predicate register file updated by any

R2P or SET instructions in wb.

The wb register in prd pipe is the underlying transaction from wb in slow prd-pipe.

Because the last instruction issued to slow prd-pipe was an R2P the latch is set to

the underlying instruction from nw.

Similar logic is used in lines 4 through 13. Lines 4 through 7 cover the case that the

prophecy variable is 2. Lines 8 through 13 cover the case that the prophecy variable is 1.

In the case that the prophecy variable is 0, the mapping searches for R2P instructions

in the pipeline registers of slow prd-pipe. Lines 15 through 19 cover the case where there

is an R2P instruction in nw. In this case the machine received an R2P instruction four cycles

before this one. Therefore the analogous state in prd pipe must be completely flushed.

In the other cases (lines 20 through 38) there is no R2P instruction in nw. If there is an

R2P instruction in r d (lines 20 through 25) then the machine was issued an R2P instruction

five cycles before this one, and the analogous state in prd pipe must be only be partially

flushed.

Notice how, in many of the cases, SET instructions are searched for with updt' when

calculating the predicate register file. This is because, in prd pipe, the effect of SET

instructions are seen as soon as they are issued.

Intuitively speaking, the function mapping accelerates the execution slow prd-pipe in

cases where it is necissary in order that the observations of the two machines are equivilent.

We can apply symbolic simulation to establish the conditions required to prove SIM.

To prove that mapping is a simulation relation we must prove that

S1M.A) b'a, b. (a, b) E mapping =+ observe u a = observe v b

To prove this we could use a validity checker-as we also proposed when discussing

Obligation 6. The proof of this condition could even be decomposed into seven

validity checks: one for each of the cases that comprises the function mapping.

S1M.B) b'a E initial u. 3b E initial v. (a, b) E mapping

To prove this we can simply symbolically execute mapping on the single initial state

of slow prd-pipe. This state is

where

f lushed-pipe = (prd-bubble-trans ,prd-bubble-trans ,prd-bubble-trans)

After executing mapping (slow prd-pipe) we the single initial state of prd pipe:

((initial~rf,flu~hed~pipe'),(initial~prf~Nothing))

where

flushed-pipe' = (bubble~trans,bubble~trans,bubble~trans)

S1M.C) b'a, a', b, i. [(a, b) E mapping A a' E next u i a] + [3b1. b' E next v i b A (a', b') E

mapping1

To prove this condition we could again rely on a validity checker.

-

0 mapping (((rf,(nw, rd, wb)),(prf, O)), 3,n')
1 = ((rf , (bub-trans ,under1 ' prf 1 rd,underl ' prf wb))
2 , (updt [rd ,wb] rf prf , Just (instr nw)))

3 where prf 1 = updt [wbl rf prf
4 mapping (((rf,(nw, rd, wb)),(prf, O)), 2,n')
5 = ((rf , (bub-trans ,hub-trans ,under1 ' prf wb))
6 , (updt ' [nw , rd] (updt [wbl rf prf
7 ,Just (if is-r2p nw then instr nw else instr rd)))
8 mapping (((rf,(nw, rd, wb)),(prf, () I) , 1s')
9 = ((rf ,(hub-trans,bub-trans,bub-trans))

10 ,(updt' [nw,rd,wbl prf
11 ,Just (if isr2p nw then instr nw
12 else if is-r2p rd then instr rd
13 else instr wb)))
14 mapping (((rf,(nw, rd, wb)),(prf, o)), 0,n')
15 1 is-r2p nw = let (((rf ' ,-) , (prf3, -1) , -,-I = run- prd-pipe' b3 s
16 b3 = [bubble, bubble, bubble1
17 in ((rf' ,(hub-trans,bub-trans,bub-trans))
18 , (prf 3 ,Nothing)
19 1
20 1 is-r2p rd = let (((rf ' , -) , (prf 2, -1) , -, -1 = run- prd-pipe' b2 s
2 1 b2 = [bubble, bubble]
22 prf 3 = updt ' [nwl prf 2
23 in ((rf ' , (under1 ' prf 2 nw, bub-trans ,hub-trans))
24 , (prf 3, Nothing)
25 1
26 I is.12~ wb = let (((rf ' ,-I, (prf 1, -)) , -, -) = run- prd-pipe' b1 s
27 bl = [bubble]
28 prf 3 = updt ' [nw , rdl prf 1
29 prf 2 = updt ' [rdl prf 1
30 in ((rf',(underl' prf2 nw,underlY prfl rd,bub-trans))
31 , (prf 3, Nothing)
32 1
33 1 otherwise = let prf3 = updt ' [nw,rd,wb] prf
34 prf 2 = updt ' [rd, wbl prf
35 prf 1 = updt' [wbl prf
36 in ((rf , (underl' prf 2 nw ,underl' prf 1 rd,
37 underl' prf wb)),(prf3,Nothing)
38 1
39 wheres=(((rf,(nw,rd,wb)),(prf,~))),O,n')

Figure 6.3: mapping: witness to (slow prd-pipe, prd pipe) E MAP

0 instr (-,-, 1,-,-I = i
1
2 underl prf (dsts, - , (GO j) , srcs, -)=(dsts, j , srcs)
3 underl prf (dsts, - , (IF j -1, srcs, -)=(dsts, j, srcs)
4 underlprf ((x, -):d,[:l,P2R --,-, [(Just y,-11)
5 = mkTrans (CNT x (if (readEnv prf y) then 1 else 0))

6 underl prf - = bubble-trans

7
8 underl' prf i = if pred-true-in i prf then underl prf i

9 else bubble-trans
10
11 updt [I rf prf = prf
12 updt (x:xs) rf prf
13 = case instr x of
14 R2P rl r2 r' -> let el = updateEnv e (r1,readEnv rf r' /= 0)
15 e2 = updateEnv el (r2,readEnv rf r' == 0)

16 in e2
17 SET r v -> updateEnv e (r,v)
18 otherwise -> e
19 where e = updt xs rf prf
20
21 updt' [1 prf = prf
22 updt' (x:xs) prf
23 = case instr x of
24 SET r v -> updateEnv e (r,v)
2 5 otherwise -> e
26 where e = updt' xs prf

Figure 6.4: Functions used in the definition of mapping

6.8 Proving Obligation 7: (prd, prd) E (SIM -+ SIM)

This obligation states that prd is monotonic with respect to (SIM t SIM). Recall that in

Chapter 4, prd7s type was given as:

(Collect c , Bubble i , Eq r , Eq w, Bind i r w , I n t eg ra l w) =>

TS c i s (Obs (Env r w)) ->
TS c (Prd-Instr i r r) (Prd-St s r (Prd-Instr i r r)) (Obs (Env r w)

Because the TS type corresponds via the Parametricity theorem to the SIM relation (as

described in Chapter 5), we can use this theorem to establish Obligation 7.

Assuming that TI, T2, and T3 meet the constraints of the type classes, we can encode

prd in as a function with type:

$(AX. TS Collect TI z (Obs (~ n v T2 T 3)) i

TS Collect (Prd-Instr TI Tz T2)

(Prd-St x T2 (Prd-Instr TI T2 T2)) (Obs (Env T2 T3)))

Because prd is polymorphic in its state-type and can be expressed in A M , by Parametricity

we know that (prd, prd) E (SIM t SIM).

6.9 Proving Obligation 8: (pipe, r i s c) E SIM

This problem has been well addressed in the formal verification literature, as discussed in

Section 3.6. To prove (pipe, r i s c) E SI M we could use any of these published techniques.

As an example, we could use Burch & Dill's technique [17] of automatically construct-

ing the simulation relation with the next functions of the two machines, together with

the bubble instruction. As Burch & Dill do, we could then use a validity checker to prove

condition SIM .C. We could also use the validity checker to prove conditions S1M.A and

S1M.B.

6.10 Summary

In this chapter we have decomposed and discharged the top level proof obligation (wrnap, wa p) E

FP. This decomposition was performed using the following strategies:

Transformer decomposition: This strategy was applicable in three points of the overall

proof decomposition. What's more: the decomposition rules left proof obligations

in several cases that were naturally solved by other techniques.

Parametricity: We were able to apply the Parametricity theorem to Obligation 7. This,

combined with an application of Proposition 4 and the well-known techniques for

proving RISC pipelines correct, discharges a significant part of the correctness proof.

Transitivity with intermediate models: The strategy of building intermediate mod-

els which more closely model the specification was applicable in the decomposition

of Obligations 2 and 3.

Strengthening with the correctness criteria hierarchy: In several cases we used the

connections between the correctness criteria developed in Chapter 3 to simplify the

proofs. Namely, we used the result that S I M c FP when the domain of these relations

is restricted to initially flushed systems.

Transformer modeling style: We were able to mix and match pieces of the microar-

chitectural design and the ISA to build an intermediate model during the decompo-

sition of Obligation 2. The clean interfaces encouraged by the transformer modeling

method helped facilitate this.

Chapter 7

Conclusion

As microprocessors have grown more complex, researchers have addressed the problem of

verifying the underlying designs with a number of new proof techniques, many of which

make use of structure inherent in the superscalar and out-of-order execution cores. Mean-

while, microprocessor designers have not only been improving the execution cores of mi-

croprocessors, they have also been adding optimizations to the front-ends. These front-end

features are typically in the form of instruction-set extensions, examples of which include

parallelism annotations and predication.

One purpose of this dissertation has been to provide a modular method of modeling

these instruction-set extensions. When modeled in this way, we have set out to demon-

strate that the extra structure can be exploited in the decomposition of a microarchitec-

tural correctness proof. In this dissertation we have introduced a method of modeling

instruction-set extensions. We have argued that instruction-set extensions, when modeled

in this style, can provide a new axis for proof decomposition. We have also demonstrated

that this axis of decomposition can work hand-in-hand with other known proof techniques,

such as uninterpreted functions, intermediate models, and Burch & Dill's flush-based sim-

ulation mapping.

7.1 Conclusions

In this section we draw several conclusions from the work in this dissertation.

Transformers facilitate modularity in design

When adding an extension to an instruction-set architecture, many decisions must be

made about the interactions between features. For example, when adding predication

and explicit parallelism, we could have chosen to implement one of the following possible

interactions:

A) Instructions within basic blocks are predicated, but not basic blocks themselves.

B) Instructions are not predicated, but basic blocks are.

C) Both instructions and basic blocks are predicated.

Using the modularity that is inherent in transformer-styled modeling, we are encour-

aged to make these distinctions clear and precise. Predication was formally defined in

Chapter 4 in isolation of explicit parallelism. That is: prd is the definition of predication.

We can then combine this feature with explicit parallelism in a number of ways. For

example, in Chapter 4 we chose to implement A from above with:

cnc 1 (prd r i s c)

Had we wanted to implement choice B, we could have used:

prd (cnc 1 r i s c)

Choice C would be:

prd (cnc 1 (prd r i s c))

In a more monolithic modeling style, the artifacts of these decisions would be embedded in

the code and difficult to manipulate. This demonstrates how transformer-based modeling

encourages the development of modular designs. To the best of our knowledge, this sort

of modeling method has not been used before for instruction-set specification-and the

power we get from the method has not been seen until now.

Transformer based proof techniques complement more traditional proof tech-

niques

When new modeling and proof methods are introduced in the literature, they are often

intended as replacements for old techniques. The work presented in this dissertation, in

contrast, adds a new axis for proof decomposition. All of the previously known techniques

can still be applied. That is, the transformer decomposition rule and Parametricity can

work in unison with other verification techniques such as uninterrupted functions, inter-

mediate models, and abstraction.

As an example, consider the case in Chapter 6 where we used the transformer decompo-

sition rule to decompose the obligation (prd pipe, prd r i sc) E FP. The resulting obliga-

tions could then be discharged using a combination of Burch & Dill's mapping, prophecy

variables, and Parametricity. This case demonstrates how transformer-based modeling

and decomposition complement the set of common microarchitectural proof techniques.

Transformers facilitate the construction of intermediate models

We have seen that the transformer-based modeling style presents certain challenges. For

example: the orthogonality that transformers impose made modeling a fast predicated

pipeline with transformers difficult in Chapter 4. The cause of the difficulty was that

the optimization that we implemented required structural information that crossed the

boundaries of the transformer prd and pipe. The discipline of transformer-based modeling

did, however, provide us with a benefit when trying to decompose the proof of correctness:

we were able to combine parts from different worlds to construct the intermediate model

prd pipe.

Parametricity provides free monotonicity results for some correctness criteria

Using Parametricity, we discharged Obligation 7 based on the type of prd. Because this

result was not dependent on the definition of prd, the proof of its monotonicity holds even

when the definition is modified-so long as the type remains appropriately polymorphic.

Although it was not required in this dissertation, a similar theorem holds for fnt.

Based on the type of fnt, and not its definition, we know that it is monotonic with respect

to both simulation and bisimulation. This result could be used to structure and decompose

a number of proofs described in the literature that use microarchitectural models with

built-in front-ends. Had we used transformers to specify speculative loads or multimedia

instructions, we could probably also have demonstrated a type-based monotonicity result

for these transformers.

7.2 Future work

In this section we discuss several issues not addressed elsewhere in the dissertation and

outline some directions for future research.

7.2.1 Machine checking the proof decomposition

The focus of this dissertation has been on the reasoning and organization of microarchi-

tectural proofs-not on the software tools used during a proof. But the question naturally

arises: How amenable is this work to a machine checked or machine guided proof system?

The answer is that, if the intention is to apply this work to traditional monolithic

specifications and microarchitectural implementations, it would probably be difficult to

automate the process in software with tactics or specialized routines. This is because

the approach requires that the model and specification are both presented in an unusual

and stylized form. The difficult aspect of this method is formulating the model and

specification in the necessary form, not the reasoning behind a proof decomposition.

In this work we have used both higher-order functions and polymorphism. If we

were trying to use a machine-based verification system to check reasoning like the work

presented in this dissertation, we would need to use a system, such as HOL or PVS, that

supports higher-order logic and polymorphism.

7.2.2 Algorithmically proving the obligations

An important issue that is not addressed in this dissertation is the algorithmic discharging

of the proof obligations. At several points in Chapter 6 we simply left references to

applicable techniques and tools, and presented several proof sketches. Future development

of this work should further explore the connection to these suggested tools and techniques

and the remaining proof obligations.

7.2.3 Stream-based models

Streams [19, 49, 501 are an alternative formalism to transition systems. A stream is a

function from time to a value. For example, our RISC instruction-set architecture could

be modeled as a function with the type:

Int -> Opcode -> Obs RF

In this dissertation we have chosen to ignore streams for two reasons: First, the transition

systems formulation is standard in the processor verification literature. Secondly, neither

formalism is more or less powerful. In fact, previous work [21] has demonstrated that

verification results in the streams formulation can be imported into the transition systems

formulation, and vice versa.

In the literature on stream-based modeling, it is common to use higher-order functions;

whereas in the transition system setting it is unusual. That said, one possible future direc-

tion for continued research would be to consider writing higher-order functions analogous

to the transformers prd and cnc in a stream-based formalism.

7.2.4 Demonstrating that decomposition is helpful

The thesis of this dissertation assumes that decomposition is always good. The truth, in

fact, is considerably more subtle. In practice, decomposition is certainly good when no

other technique will work. But other techniques, such as abstraction, are typically best

applied before resorting to decomposition. Decomposition still plays an important role in

formal verification and specifically in formal microarchitectural verification. In particular,

decomposition can help significantly when paired with powerful discharge rules for the

decomposed obligations-which is the case in this dissertation. One avenue for further

research would be to conduct a quantitative study of the effect of this work. For example,

in the case of prd-pipe, is the verification route via Proposition 3 and decomposition

better than using an algorithmic tool such as a model checker?

7.2.5 Alternative correctness criteria

In this dissertation we have essentially only considered connections between the correctness

criteria used in the verification work: SIM and FP. However, in practice, many other

criteria are available. These include well-founded bisimulation, trace containment, and a

plethora of unnamed criteria that look similar to simulation. A natural question to ask is:

how do these criteria relate? And, can we use Parametricity to prove monotonicity results

for any of these criteria?

7.2.6 Liveness

In this dissertation we have only considered techniques for proving a class of correctness

criteria called safety properties. That is, our research is applicable to criteria that demon-

strates that nothing bad ever happens. We have not concerned ourselves with criteria

specifying that progress is always made. It is possible, however, to encode any liveness

property of a model using an intermediate model with prophecy variables and a safety

property. Further research could explore the connection between the ideas presented in

this dissertation and the modeling of liveness with prophecy variables.

7.2.7 Architectural relevance

Another question that should be explored with continued research is: beyond concur-

rent and predicated instructions, what can transformers specify? Further research could

explore the boundaries of transformers-developing transformers that specify other ar-

chitectural phenomena such as multimedia extensions, operating system support instruc-

tions, speculative loads, or rotating register-files. Another issue that could be addressed

is that of proving (oma p, oa p) E FP. The difficulty here is in finding ways to prove

(cnc 3 p, cnc 1 p) E (FP e FP).

Further research could also explore whether or not transformers, and the theory that fa-

cilitates t heir decomposition, can model other interesting microarchitectural optimizations-

such as branch predication, multithreading or trace caches.

Bibliography

[I] AAGAARD, M., COOK, B., DAY, N., AND JONES, R. B. A framework for micro-

processor correctness statements. The International Journal on Software Tools for

Technology Transfer (2002), 298-312.

[2] AAGAARD, M., AND LEESER, M. Reasoning about pipelines with structural hazards.

In Conference on Theorem Provers i n Circuit Design (Bad Herrenalb, Germany, Aug.

1994), pp. 13-32.

[3] AAGAARD, M. D., COOK, B., DAY, N., AND JONES, R. B. A framework for

microprocessor correctness statements. In Conference on Correct Hardware Design

and Verification Methods (Edinburgh, United Kingdom, Sept . 2001), pp. 433-448.

[4] ABADI, M., AND LAMPORT, L. The existence of refinement mappings. Theoretical

Computer Science 2, 82 (1991), 253-284.

[5] ALLEN, J . , KENNEDY, K., PORTERFIELD, C., AND WARREN, J . Conversion of

control dependence to data dependence. In Symposium on Principles of Programming

Languages (Austin, Texas, Jan. 1983), pp. 177-189.

[6] ANDERSSON, G., BJESSE, P., COOK, B., AND HANNA, Z. A proof engine ap-

proach to solving combinational design automation problems. In Design Automation

Conference (Las Vegas, Nevada, June 2002), pp. 725-730.

[7] ARONS, T., AND PNUELI, A. Verification of data-insensitive circuits: An in-order-

retirement case study. In Conference on Formal Methods in Computer-Aided Design

(Palo Alto, California, Nov. 1998), pp. 351-368.

[8] ARONS, T., AND PNUELI, A. Verifying Tomasulo's algorithm by refinement. In

Conference On VLSI Design (Goa, India, Jan. 1999), pp. 306-309.

[9] ARONS, T., AND PNUELI, A. Verifying Tomasulo's algorithm by refinement. Tech.

Rep. CS98-15, Wiezmann Institute of Science, 1999.

[lo] BALL, T., COOK, B., LAHIRI, S. K., AND ZHANG, L. Zapato: Automatic theo-

rem proving for predicate abstraction refinement. In Conference on Computer-Aided
Verification (Boston, Massachusetts, June 2004), pp. 388-403.

[ll] BARRETT, C., AND BEREZIN, S. CVC Lite: A new implementation of the co-

operating validity checker. In Conference on Computer-Aided Vem'fication (Boston,

Massachusetts, June 2004), pp. 515-518.

[12] BARRETT, C., DILL, D., AND LEVITT, J . Validity checking for combinations of

theories with equality. In Conference on Formal Methods in Computer-Aided Design

(Palo Alto, California, Nov. 1996), pp. 187-201.

[13] BEREZIN, S., BIERE, A., CLARKE, E., AND ZHU, Y. Combining symbolic model

checking with uninterpreted functions for out-of-order processor verification. In Con-

ference on Formal Methods in Computer-Aided Design (Palo Alto, California, Nov.

1998), pp. 369-386.

[14] BISTRY, D., DULONG, C., GUTMAN, M., JULIER, M., KEITH, M., MENNEMEIR,

L. M., MITTAL, M., PELEG, A. D., AND WEISER, U. The Complete Guide to
MMX Technology. McGraw-Hill, 1997.

[15] BRUCE, K. B., AND MEYER, A. R. The semantics of second order polymorphic

lambda calculus. In Conference on Semantics of Data Types (Sophia-Antipolis,

France, June 1984), pp. 131-144.

[16] BURCH, J. Techniques for verifying superscalar microprocessors. In Design Automa-

tion Conference (Las Vegas, Nevada, June 1996), pp. 552-557.

[17] BURCH, J., AND DILL, D. Automatic verification of pipelined microprocessor control.

In Conference on Computer-Aided Vefification (Palo Alto, California, June 1994),

pp. 60-80.

[18] CASE, B. IA-64's static approach is controversial. Microprocessor Report 11, 16

(1997), 22-25.

1191 COOK, B., LAUNCHBURY, J., AND MATTHEWS, J. Specifying superscalar micropro-

cessors with Hawk. In Workshop on Formal Techniques for Hardware (Maarstrand,

Sweden, June 1998), pp. 155-173.

[20] DAMM, W., AND PNUELI, A. Verifying out-of-order executions. In Conference on

Correct Hardware Design and Verification Methods (Montreal, Canada, Sept. 1997),

pp. 23-47.

[21] DAY, N. A., AAGAARD, M. D., AND COOK, B. Combining stream-based and s t a t e

based verification techniques. In Conference on Formal methods in computer-aided

design (Austin, Texas, Nov. 2000), pp. 126-142.

[22] DULONG, C. The IA-64 architecture a t work. IEEE Computer 31, 7 (1998), 24-32.

[23] GIRARD, J. Y. The system F of variable types, fifteen years later. Theoretical

Computer Science 2, 45 (1985), 159-192.

[24] GWENNAP, L. Intel's P6 uses decoupled superscalar design. Microprocessor Report

9, 2 (1995), 9-15.

[25] GWENNAP, L. Digital 21264 sets new standard. Microprocessor Report 14, 10 (1996),

11-16.

[26] GWENNAP, L. Intel, HP make EPIC disclosure. Microprocessor Report 11, 14 (1997),

1-9.

[27] GWENNAP, L. AltiVec vectorizes PowerPC. Microprocessor Report 12, 6 (1998), 6-9.

[28] GWENNAP, L. AMD deploys K6-2 with 3DNow. Microprocessor Report 12, 7 (1998),

16-17.

[29] GWENNAP, L. Intel outlines high-end roadmap. Microprocessor Report 12, 14 (1998),

16-19.

[30] HOSABETTU, R., GOPALAKRISHNAN, G., AND SRIVAS, M. Verifying advanced

microarchitectures that support speculation and exceptions. In Conference on

Computer-Aided Verification (Chicago, Illinois, July 2000), pp. 521-537.

[31] HOSABETTU, R., SRIVAS, M., AND GOPALAKRISHNAN, G. Decomposing the proof

of correctness of pipelined microprocessors. In Conference on Computer-Aided Veri-

fication (Vancouver, Canada, July 1998), pp. 122-134.

[32] HOSABETTU, R., SRIVAS, M., AND GOPALAKRISHNAN, G. Proof of correctness of a

processor with reorder buffer using the completion functions approach. In Conference

on Computer-Aided Verification (Trento, Italy, July 1999), pp. 134-145.

[33] HOSABETTU, R., SRIVAS, M., AND GOPALAKRISHNAN, G. Proof of correctness

of a processor without reorder buffer using the completion functions approach. In

Conference on Correct Hardware Design and Verification Methods (Bad Herrenalb,

Germany, Sept. 1999), pp. 8-22.

[34] HOSABETTU, R. , SRIVAS, M., AND GOPALAKRISHNAN, G. Formal verification of a

complex pipelined processor. Fomnal Methods in System Design 23,2 (2003), 171-213.

[35] HUCK, J., MORRIS, D., ROSS, J. , KNIES, A., MULDER, H., AND ZAHIR, R. Intro-

ducing the IA-64 architecture. IEEE Micro 20, 5 (2000), 12-23.

[36] HUDAK, P., JONES, S. L. P. , AND WADLER, P. Report on the programming

language haskell, a non-strict purely functional language (version 1.2). SIGPLAN

Notices 27, 5 (May 1992), 1-164.

[37] INTEL CORPORATION. SA-110 microprocessor technical reference manual. 2004.

[38] JAGGAR, D. Advanced RISC Machines Architectural Reference Manual. Prentice

Hall, 1997.

[39] JOHNSON, D. Techniques for mitigating memory latency in the the PA-8500 proces-

sor. In Hot Chips Conference (Palo Alto, California, Aug. 1998), pp. 145-165.

[40] JONES, M. P. Qualified Types: Theory and Practice. PhD thesis, Department of

Computer Science, Oxford University, 1992.

[41] JONES, R. B. Applications Of Symbolic Simulation To The Formal Verification Of

Microprocessors. PhD thesis, Stanford University, Palo Alto, California, 1999.

[42] JONES, R. B. Symbolic Simulation Methods for Industrial Formal VeriJication.

Kluwer Academic Publishers, 2002.

[43] JONES, R. B., DILL, D. L., AND BURCH, J . R. Efficient validity checking for pro-

cessor verification. In Conference on Computer-Aided Design (San Jose, California,

July 1995), pp. 2-6.

[44] JONES, R. B., SEGER, C.-J. H., AND DILL, D. L. Self-consistency checking. In

Conference on Formal Methods in Computer-Aided Design (Palo Alto, California,

Nov. 1998), pp. 159-171.

[45] JONES, R. B., SKAKKEBAEK, J. , AND DILL, D. Reducing manual abstraction in

formal verification of out-of-order execution. In Conference on Formal Methods in

Computer-Aided Design (Palo Alto, California, Nov. 1998), pp. 2-17.

[46] JONES, R. B., SKAKKEBAEK, J . , AND DILL, D. Formal verification of out-of-order

execution with incremental flushing. Formal Methods In System Design 2, 20 (2001),

139-158.

[47] KATHAIL, V., SCHLANSKER, M., AND RAU, B. R. HPL PlayDoh architecture

specification: Version 1.0. Tech. Rep. HPL-93-80, Hewlett Packard Laboratories,

1993.

1481 KELLY, E. J. , CMELIK, R. F., AND WING, M. J . Memory controller for a micro-

processor for detecting a failure of speculation on the physical nature of a component

being addressed. United States patent 5832205, Nov. 1998.

[49] MATTHEWS, J. , LAUNCHBURY, J., AND COOK, B. Specifying microprocessors in

Hawk. In IEEE Conference o n Computer Languages (Chicago, Illinois, Aug. 1998),

pp. 90-101.

[50] MATTHEWS, J. R. Algebraic Specification and Verification of Processor Microarchi-

tectures. PhD thesis, Oregon Graduate Institute of Science and Technology, 2000.

[51] MCMILLAN, K. Verification of an implementation of Tomasulo's algorithm by compo-

sitional model checking. In Conference o n Computer-Aided Verification (Vancouver,

Canada, July 1998), pp. 110-121.

[52] MCMILLAN, K. Circular compositional reasoning about liveness. In Conference o n

Correct Hardware Design and Verification Methods (Bad Herrenalb, Germany, Sept.

1999), pp. 342-345.

[53] MITCHELL, J . C., AND MEYER, A. R. Second-order logical relations. In Conference

o n Logics Of Programs (Brooklyn, New York, Mar. 1985), pp. 225-236.

[54] REYNOLDS, J. C. Types, abstraction, and parametric polymorphism. Information

Processing 1, 83 (1983), 513-523.

[55] SAWADA, J . , AND HUNT, W. Trace table based approach for pipelined microprocessor

verification. In Conference on Computer-Aided Verification (Haifa, Israel, July 1997),

pp. 364-375.

[56] SAWADA, J., AND HUNT, W. Processor verification with precise exceptions and

speculative execution. In Conference o n Computer-Aided Verification (Vancouver,

Canada, July 1998), pp. 135-146.

[57] SCHLANSKER, M., RAU, B. R., , MAHLKE, S., KATHAIL, V., JOHNSON, R., ANIK,

S., AND ABRAHAM, S. G. Achieving high levels of instruction-level parallelism with

reduced hardware complexity. Tech. Rep. HPL-96-120, Hewlett Packard Laboratories,

1996.

[58] SHARANGPANI, H., AND ARORA, K. Itanium processor microarchitecture. IEEE

Micro 20, 5 (2000), 12-23.

1591 SHRIVER, B., AND SMITH, B. The Anatomy of a High-Performance Microprocessor:

A Systems Perspective. IEEE Computer Society Press, 1998.

[60] SKAKKEBAEK, J. , JONES, R. B., AND DILL, D. Formal verification of out-of-order

execution using incremental flushing. In Conference on Computer-Aided Verification

(Vancouver, Canada, July 1998), pp. 98-109.

[61] SONG, P. Demystifying EPIC and IA-64. Microprocessor Report 12, 1 (1998), 21-27.

[62] TULLSEN, D. M., EGGERS, S. J . , EMER, J. S., LEVY, H. M., LO, J . L., AND

STAMM, R. L. Exploiting choice: Instruction fetch and issue on an implementable

simultaneous multithreading processor. In International Symposium on Computer

Architecture (Philadelphia, Pennsylvania, May 1996), pp. 191-202.

[63] VELEV, M. N., AND BRYANT, R. E. Bit-level abstraction in the verification of

pipelined microprocessors by correspondence checking. In Conference on Fomal

Methods in Computer-Aided Design (Palo Alto, California, Nov. 1998), pp. 18-35.

[64] VELEV, M. N., AND BRYANT, R. E. Superscaler processor verification using efficient

reductions of the logic of equality with uninterpreted functions to propositional logic.

In Conference on Correct Hardware Design and Vefification Methods (Bad Herrenalb,

Germany, Sept. 1999), pp. 37-53.

[65] VELEV, M. N., AND BRYANT, R. E. Formal verification of superscaler microproces-

sors with multicycle functional units, exceptions, and branch prediction. In Design

Automation Conference (Los Angeles, California, June 2000), pp. 112-117.

[66] WADLER, P. Theorems for free! In Symposium on Functional Programming and

Computer Architecture (London, United Kingdom, Sept. 1989), pp. 347-359.

Biographical Note

(John) Byron Cook was born in Colorado on the 15th of March, 1971. He received his

B.Sci. degree from The Evergreen State College in 1995. While still a Ph.D. student Byron

interned at Intel's Strategic CAD laboratories in Hillsboro, Oregon. In 2000, Byron joined

Prover Technology AB in Stockholm, Sweden, where he continued his Ph.D. research

part-time. He later joined Microsoft Research in 2002, where he is now searching for

new algorithms and techniques for the formal verification of software. Byron lives in

Cambridge, England.

