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ABSTRACT

OBJECTIVE: The bibliome of biomedical literature is already too large and growing
much too rapidly for researchers to stay current on all information relevant to their work.
Text-mining and knowledge extraction (KE) can assist researchers by analyzing
bibliographic databases as a whole, and extracting knowledge by connecting information
between multiple records. Symbolic Network Lo gical Analysis (SNLA), a novel text-
mining method based on analyzing the network structure created by symbol co-
occurrences, was developed as a way to extend the capabilities of KE. METHODS:
Computer software was created applying SNLA to the task of automatic gene and protein
name synonym extraction. Datasets containing ~50,000 abstracts were created from a
year’s worth of MEDLINE records containing the word “gene.” Abstracts from 2001,
2002, and 2003 served as training, validation, and test sets, respectively. Synonyms
extracted from controlled gene name terminolo gies were used as a gold standard.
Performance was measured by recall and precision combined via the F-score. RESULTS:
The system obtained a maximum F-score of 22.21% (23.18% precision and 21.36%
recall). Error analysis provided insight into the strengths and weaknesses of SNLA.
CONCLUSIONS: SNLA compared favorably with other gene name synonym extraction

methods, and has a wide range of potential applications in KE.
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INTRODUCTION

This work is divided into ten sections. Section I covers the background and
significance of knowledge extraction and text mining as it applies to the biomedical
literature. Section II first defines the problem-space, and then presents an operational
definition of the knowledge extraction process and its components. The Section II
introduces an approach to knowledge extraction called Symbolic Network Logical
Analysis (SNLA), discusses the purpose of the research, and defines the research
question. Section III surveys the current biomedical literature most relevant to the
development of SNLA methods and the problem domains to which it will be applied.
Section IV presents the theoretical framework of SNLA, including the graph and network
theory, and mathematical analysis on which it is based. Section V restates the research
question and presents the operational definitions and constructs necessary for the
application of SNLA to gene and protein name synonym extraction. The specific
algorithm to be used will also be described here. Section VI presents the design of the
software system that implements the algorithm described in the previous section. Section
VII details the experimental design, which includes what will be measured and how the
performance of the system will be evaluated. Section VIII presents the results of the gene
and protein name synonym extraction and computation of basic statistics on these data.
Section IX discusses the results, what they mean, error analysis, and limitations. Section

X summarizes what has been learned and discusses potential directions for future work.



I. BACKGROUND AND SIGNIFICANCE

The volume of published biomedical research, and therefore the underlying biomedical
knowledge base, is expanding at a fantastic pace. While scientific information in general
has been growing exponentially for several centuries [1], the absolute numbers specific to
modern medicine are very impressive. The MEDLINE 2004 baseline distribution
contains over 12.5 million records [2], and the database is currently growing at the rate of
500,000 new citations each year [3]. With such explosive growth, it is extremely
challenging to keep up-to-date with all of the new discoveries and theories even within
one’s own field of biomedical research.

In discussing the biomedical literature, it is useful to differentiate between three
components of the biomedical knowledge base: data, information, and knowledge. Data
are simply recorded observations, for example, “the patient’s cholesterol was 280mg/dL.”
Information is a judgment based on that data, for example, “a cholesterol of 280mg/dL is
significantly higher than normal.” Knowledge is the ability to make a decision based on
general principles derived from that information, perhaps to produce a desired result. F or
example, “the patient has an elevated risk of heart disease, we should treat with a statin-
type drug to lower the cholesterol.” Knowledge can also be build on top of other
knowledge, for example, “the 20 year old patient with normal cholesterol has a gene
associated with high cholesterol, and will need monitoring and likely need treatment by
the time he is 30.”

Therefore biomedical “information overload” is really a data, information, and
knowledge overload, since all are being produced constantly in large volume. The goal is

to continue to make progress in medical science by identifying the right data,



information, and knowledge, and connecting them together to produce new knowledge.
The problem is that as the knowledge base grows, it is more and more difficult for
anyone to be aware of the complete set of information and it is therefore less likely that
the right data, information, and knowledge will be reco gnized and combined into new
knowledge. We are at the point where it is essentially impossible for anyone to keep up to
data on all the knowledge in all fields of biomedicine [4].

Balas and Boren found that it takes an average of 15.6 years for research evidence to
reach the level of 50% clinical practice. This is divided into a period of about 6.3 years
for the research to make it into review articles and text books, and 9.3 years for the
published recommendations to be put into practice [5]. These periods are at the tail end of
the life cycle of medical discoveries. While it is unclear how long it takes new medical
research discoveries to be disseminated among biomedical researchers, Altman and
Goodman found that it takes between four and six years for new statistical techniques to
be used and documented in the biomedical literature [6]. While these studies quantify the
duration of just two steps in the process, the overall period between the making of a
discovery and that discovery being put to use for the good of patients is much too long.

This has negative effects both at the individual and societal level. For individual
doctors and patients, the lack of the ability to keep abreast of all new development
relevant to their patients means that important information may not be available to them
when decisions of care are made. This is in spite of the fact that the information may be
“out there”, say spread over several articles referenced in MEDLINE. The information

exists, it may even be known to a few specialists or researchers. It is just not accessible to



some of those that need it, perhaps because the physician has no way of knowing that the
information applies to their patient [7].

At a higher societal level, without a comprehensive, “big picture” view of the current
state of medical knowledge, it is likely that important connections will not be made in a
timely manner, resulting in a delay in the understanding of disease mechanisms and the
discovery of new treatments. Even in a field with thousands of researchers, the
connection between available information that leads to new knowledge must be made
within an individual. In this case, there is information available that a researcher or
specialist could synthesize into new knowledge, but no one has yet reco gnized that this
opportunity exists.

Medicine and biomedical research is divided into highly specialized fields and sub-
fields, with poor communication between disciplines [8]. While this may be a necessary
pre-condition for the complex and detailed research that biomedical science requires, it
also tends to narrow the perspective, impeding the establishment of connections between
discoveries arising within different research specialties. With the recent sequencing of the
human genome, the addition of detailed genetic information to medical research makes
the situation even more complicated, since genetics may play a part in almost all areas of
health and disease and it is likely that many connections between different branches of
medical may be based on related genomic mechanisms.

Clearly with the current rate of growth in published biomedical research, it becomes
increasingly likely that important connections between individual elements of biomedical
knowledge are not being recognized because there is no individual in a position to make

the necessary connections. Methods must be established to aid physicians and researchers



in making better use of the existing published research and helping them to discover
potential connections and turn these into new discoveries [9].

Text mining and knowledge extraction are ways to aid physicians and researchers in
identifying the connections between data, information, and knowledge available in the
biomedical knowledge base. A subset of full-blown natural language processing (NLP),
which attempts to understand the meaning of text as a whole, text mining and knowledge
extraction concentrate on solving a specific problem in a specific domain identified a
priori. For example, literature searching may be improved by identifying all of the
abbreviations used by researchers in Journal articles [10], or potential new treatments for
migraine may be determined by looking for pharmacological substances that are
associated with biological processes associated with migraine [11, 12].

For the purpose of discussion, knowledge extraction can be used as a general term for
the process of distilling knowledge from a collection of data. Text mining specifically
applies knowledge extraction techniques to data in the form of narrative text. Srinivasan
quotes Hearst when she states that “the key goal of mining whether from well structured
databases or numeric data or from text collections is the discovery of new knowledge”
and states that the goal for information extraction systems is to extract “nuggets of
information from collections of texts” [9]. As applied to biomedical text, the goal is to
draw out connections between terms or concepts that are present but unrecognized in
medical documents and the medical literature. These terms and concepts may be coded
from a controlled vocabulary, or may be present in free text fields. Several types of

extracted knowledge have been identified: referential (e.g., lists of names of drugs),



attributive (e.g., attributes of a gene or set of genes), or relational (e.g., interactions
between proteins) [13].

Hersh distinguishes between several kinds of medical data, textual (or narrative) versus
coded (or structured), and patient-specific versus knowledge-based. The patient-specific
class consists of information pertaining to a specific patient and includes structured
information such as lab results and vital signs, and narrative information such as a
physician’s progress notes. Knowledge-based information pertains to the science of
health and medicine and includes ori ginal research, review articles, books, practice
guidelines, and structured summaries of this information such as bibliographic databases
[1].

Both of these classes include textual data than can serve as a source for text mining as
well as structured data that can be used as a source for information extraction. However,
for the purposes of knowledge extraction, there are some significant differences between
patient-specific and knowledge-based information. Knowledge-based information is
usually intended for a wide audience and is hi ghly reviewed and edited. Patient-specific
information is usually not reviewed or edited, is read only by people who need to take
care of the patient, may be brief and use non-standard abbreviations, and often contains
errors. Structured, knowledge-based information is typically coded using a taxonomy
intended for the purpose of codifying medical knowledge concepts. The MEDLINE
database, for example, uses the National Library of Medicine’s Medical Subject Heading
(MESH) vocabulary [14]. Structured patient-specific information is often coded for
purposes other than representing scientific knowledge, such as the ICD-9 and DRG codes

used for billing. Interestingly, one important research area of text-mining is to provide an



automatic means of determining appropriate billing codes from discharge summaries and
other patient-specific free text [1].

Therefore, knowledge-based information tends to be less noisy, have a lower rate of
error, and a lower level of semantic ambi guity than patient-specific information. This
often makes it simpler to apply knowledge extraction techniques to knowledge-based
information, especially structured knowledge-based information such as the MeSH term
fields of the MEDLINE database. In fact, a significant amount of knowledge extraction
research in medical informatics does exactly that [9, 15]. However, some of the most
important applications of knowledge extraction and text-mining, such as epidemic and
bio-terrorism surveillance, may require patient-specific (and perhaps narrative as well)

information to produce timely results [16].



II. PROBLEM DEFINITION

Focus on Bibliographic Data

This work will focus on the extraction of knowledge from the bibliographic database
MEDLINE, a knowledge-based resource. Both narrative text, in the form of titles and
abstracts and structured data in the form of MESH headings are available in the
MEDLINE database. MEDLINE contains data from a wide array of medical, biological,
and genomic specialty areas, and documents much of the accumulated knowledge in
these areas back to the 1960s. While text mining and knowledge extraction from patient-
centric data is an important area of research, the depth and breadth of biomedical
knowledge represented in MEDLINE, and the quality of the data, make it a useful source
on which to begin. Furthermore, focusing on MEDLINE has the very desirable quality of
maximizing the potential of research already conducted (and paid for).

Use of the MEDLINE database is central to the work of biomedical researchers, who
review the database for articles relevant to their work. Researchers use MEDLINE
essentially as a searchable collection of records, in other words, the sum of its parts. Text
mining and knowledge extraction can approach MEDLINE from a different direction - as
a whole, where the value is in the implicit relationships between the concepts in the
database. Since the knowledge is implicit, rather than explicit, it is important to develop
robust, reliable, flexible methods to extract this knowledge into useful forms.

This additional knowledge can benefit the biomedical research community in several
ways and have a potentially strong synergistic effect on the research community. Search
and retrieval may be improved by uncovering related terms and concepts useful for

searching, such as synonyms, or abbreviations [10, 17-20]. Indexing may be improved by



uncovering concepts not explicitly coded that should be [21]. Knowledge extraction may
be used to group concepts in novel ways, or bring previously unrecognized concepts into
a well-defined group [22-24]. Lastly, text mining and knowledge extraction may be used
to uncover unrecognized functional relationships, stimulating new research in treatment
or disease pathophysiology [12, 21, 25-27].
The Process of Knowledge Extraction

The process of knowledge extraction can be represented as a system of interacting
components. Each of these components represents a functional unit or set of data in a
knowledge extraction system. It is important to note that all knowledge extraction
systems may not include all types of components.

The basic components of a knowledge extraction system are (see Figure 1):

Bounded Problem Domain

Data Set

Initial Knowledge

Instance Knowledge

Recognition Patterns

Application of Patterns to the Data Set
Extraction of Instance Knowledge
Rating of Instance Confidence
Recognition of New Patterns
Rating of Pattern Utility
Evaluation

Gold Standard

Results

In the figure, actions or processes are represented by white rectangles. Data or
representations are shown using gray ovals. Each of these components will be described

separately.



Bounded Problem Domain

Any text mining or knowledge extraction task must be done in a well-defined manner.
The definition of the subject area, the specific terms or concepts of interest, the
significant relationships between the concepts, and the form of the data representing
those concepts comprise the bounded problem domain [28, 29].
Data Set

This is the set of data to be used as the source material for knowledge extraction. If a
system evaluation is to be done, the data set may be divided into learning, testing, and
validation subsets [30-32].
Initial Knowledge

This is the expertise that the investigator brings to the knowledge extraction task. The
initial knowledge may be used to produce an initial set of knowledge instances and/or
recognition patterns to “seed” the knowledge extraction process [4, 33-35].
Instance Knowledge

These are instances of the relationships of interest. The relationship may be between
concepts, terms, or phrases and indicate specific relationships between two or more
specific concepts or terms. In many cases the goal of knowledge extraction is to increase
the number and quality of the set of instance knowledge [10, 25, 36, 37]. Note that
instance knowledge may be obtained directly by application of recognition patterns to the
data set, or indirectly based on lo gical analysis of pre-existing instance knowledge.
Recognition Patterns

These are patterns or templates for reco gnizing instance knowledge in the data set.

These patterns may be lexical, semantic, statistical, or take some other form [11, 20, 26,

10



27]. The patterns process the data set in pieces through a window that corresponds to the
level of granularity required by the template. For example, MEDLINE records may be
processed by record or field within a record, and text fields such as the abstract field may
be processed by word, sentence, clause, paragraph, or as a whole [38].
Application of Patterns to the Data Set

This is the process of reviewing the data set for matches with the recognition patterns.
A match between a unit of the data set and a reco gnition pattern will result in some
evidence that may lead to instance knowledge. This is a deductive process: the
application of the general to the specific [4, 39, 40].
Extraction of Instance Knowledge

This is the process of examining the evidence collected so far in the process to find
instances of new knowledge. This component may essentially be a pass through of the
results of the Application of Patterns to the Data Set component, or there may be
significant additional processing done here to extract instance knowledge from collected
evidence. For example, the process of following a chain of logical reasoning may be done
by this component [26, 27, 37].
Rating of Instance Confidence

This is the process of evaluating the confidence or certainty of an instance of
knowledge. This is often expressed as a percentage, with certainty being 100%. Initial
knowledge instances may be treated as certain, while extracted instances will have a

confidence between 0% and 100% [35, 39].
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Recognition of New Patterns

This is the process of recognizing new extraction patterns, based on the initial
knowledge and gathered instance knowledge from the data set. These new extraction
patterns can be used to extract new instances of knowledge and can be rated in terms of
their utility. This is an inductive process: the creation of a general rule from specific
instances [37, 40, 41].
Rating of Pattern Utility

This is the process of evaluating the accuracy (specificity and sensitivity) of an
extraction pattern or method. Given a set of patterns or methods, those with higher
accuracy will produce better results than those with lower sensitivity and accuracy [10,
19, 40].
Evaluation

This is the process of examining the results for correctness and errors, strengths and
weaknesses, failures, and oddities of the system [42, 43].
Gold Standard

This is a set of known correct and complete results to use as a comparison with the
extracted knowledge during evaluation [44-46].
Results

Results constitute the final useful output of the system intended to answer the initial
knowledge extraction question. In other words, the purposeful knowledge extracted from
the data set. These may include the accumulated instance knowledge, the discovered
recognition patterns, and results of the evaluation, and the making of the system available

for public use [10, 36].
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Figure 1: Knowledge Extraction Process F ramework

Process Framework for Knowledge Extraction
For the purpose of this thesis, these component descriptions will serve as a process

framework and the operational definitions of the components of a knowledge extraction
system. The literature review, theoretical framework, and the experimental design
sections will be organized around these operational definitions and framework. F requent
reference to this diagram and the corresponding component definitions will be made.
Purpose of Study

The purpose of this study is to determine whether mathematical graph and network
analysis can be applied to the text mining of bibliographic data. Instance knowledge will
be extracted from the fields of MEDLINE records using recognition patterns, and
recognition patterns will be induced from the extracted instance knowledge. Graph and
network analysis will be used to extract instance knowledge, and evaluate the quality of

the instance knowledge and the quality of the recognition patterns. This process is called
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Symbolic Network Logical Analysis (SNLA) because the accumulated instance
knowledge is used to create a symbolic network of logical relationships, and then graph
and network analysis is used to extract new knowledge and evaluate the confidence in
that knowledge.

The mathematical analysis of graphs and networks for the purpose of text mining and
knowledge extraction of the medical data has not been well studied, although viewing
semantic relationships as a graph has been discussed in the medical informatics literature
[11]. A few investigators have used the network structure of biomedical literature co-
occurrences to visualize and uncover generic relationships between genes [47, 48].
Sociograms, the network representation of relationships between people, is a well known
tool in social science qualitative research [49, 5 0]. Researchers in other domains have
analyzed the graphical properties of relationships of interest to them, for example, the
work of Newman, Strogatz, and Watts on the “small world phenomenon” of social
networks [51-53] (for instance their analysis of MEDLINE co-authorship[54]), and
Sigman and Cecchi’s work on the organizational function of antonymy (opposites),
hypernymy/hyponymy (more generic/more specific), and meronomy/holonomy (is part
of/contains) in the English language [55].

With graphical and network analysis having demonstrated usefulness in knowledge
extraction for other fields, it seems likely that a similar approach can be used for the
purpose of knowledge extraction and text mining on the biomedical literature as
represented by the text and coded fields of the MEDLINE database. A well-defined and

focused problem of practical value must be selected to test this assumption.
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Gene and Protein Name Synonymy as the Initial Problem Domain

The problem of gene and protein name synonymy has been selected as the initial area
in which to develop the techniques of SNLA. Many genes and proteins have multiple
names with several orthographic and lexical variants. Gene names are often not used
consistently, and new names continue to be created [56, 57]. The many potential
attributes of a gene may lead to it being given several names over time. This includes
attributes such as its phenotypes and Mendelian inheritance, linkage to a marker, pseudo-
genes (non-functional copies of genes), anti-sense encoding, and transcribed but
untranslated segments. Genes may receive names that are retracted when new
information becomes available [58]. Since the gene names and symbols used in a journal
article in the biomedical literature are fixed once published, later correction of improper
names does not affect the prior published literature. Therefore, the name space
representing a gene can become quite large between the time a gene is first suspected and
when it is well studied and has a universally agreed upon name. Additionally, since gene
and protein names overlap and are often used in place of one another within the literature
(with the intended gene or protein being dependent upon context), when conducting a
literature review it is useful to search for both gene and protein names simultaneously
[56].

An automatically generated list of synonyms would be a useful aid in searching the
biomedical literature. The development of SNLA techniques to automatically extract
synonyms from MEDLINE records will both demonstrate the practicality of SNLA and
provide functional methods towards development of an automated service that provides a

nearly complete list of gene name synonyms by scanning new MEDLINE records for
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additional synonym information in real-time. This service could then be used to improve
the research capabilities of genomics investigators trying to find all known information
on a gene or protein, regardless of the name or names used in a specific article.

An automatically generated list of name synonyms would also be useful in further work
on extracting genomics knowledge from textual sources and to other investigators
investigating the properties of the biomedical literature [59]. To make efficient use of the
available data when mining the biomedical literature for relationships, it is important to
recognize differing names for identical concepts and treat these as a single concept.
Within the genomic literature, this can be difficult since so many lexical strings are often
used to represent a single gene. For example, the LocusLink database [46] lists at least 20
alias names for the gene PTEN (phosphatase and tensin homolog)', and this does not
include many simple orthographic punctuation variations currently in use, for example,
MMACI1 [60] and MMAC-1 [61]. Two independent research groups studying the
visualization of gene relationships (using a display of network structure based on
literature co-occurrences) found that the main sources of error were “insufficient
synonym lists, synonym case variation, and complex gene families with immature or
complex or naming conventions” [48, 62]. All three of these sources of error can be
reduced with a high quality, automatically generated list of name synonyms.

While databases of gene names and symbols exist, they have several limitations. Gene
name databases such as FlyBase [63-65] and HUGO are restricted to a single species
(fruit flies and humans, respectively). While the LocusLink database includes genes and

names for several species, it does not attempt to include all names, symbols, and lexical

' PTEN, daf-18,T07A9.6, DPTEN, PTEN3, dPTEN, CG5671, CT17882, CT40892, CT40894,TEP1,
MMACI,BZS, MHAM, TEP1, PTEN1, Mmac, PTH2, PTEN2, and PTEN-rs as of September 11, 2003.
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variations that refer to a gene. In this respect, the FlyBase and HUGO databases are
similar to LocusLink. The HUGO database in particular was created by the Human
Genome Organisation for the purpose of establishing an approved set of unique gene
names and symbols for every gene in the human genome. Currently the HUGO database
is incomplete; it contains approved symbols for 13,000 genes out of an expected total of
about 30,000 [66, 67]. HUGO is focused on creating the set of gene names recommended
for use in biomedical writing. It is not intended to be a complete collection of the gene
names and symbols actually used in the biomedical literature. Actually the reverse is true:
for genes that are already well studied, HUGO functions as a source of approved names
for journal authors [68]. For new gene discoveries, HUGO serves as an approval body for
the creation of new names [66].

While other investigators have examined the problem of gene name synonymy [19, 35],
as of this writing, these research systems have not been put into general use, leaving open
the opportunity for other approaches, such as SNLA, which may be more appropriate
than these other approaches for online, real-time, knowledge extraction. For example,
several prior approaches to extracting gene name synonyms from the medical literature
rely on part-of-speech (POS) taggers that have been modified to recognize gene names as
parts of speech [19, 43]. While tagger-based systems require that names be recognized
independently of their participation in text that defines synonyms, this is by no means a
required first step to detecting synonyms [35]. In fact, reliably recognizing biological
entity names (such as gene and protein names), called named entity extraction, is in
general thought to be a harder problem than synonym detection [56], implying that

systems extracting synonyms using POS taggers may be doing more work than
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necessary, and not taking full advantage of the available information because the
additional context of the synonymy relationship may simplify the problem. Approaches
based on concept relationships such as SNLA can efficiently take advantage of this
additional context.

Another limitation to these systems is that the taggers must be trained on a manually
annotated document corpus. Few annotated document sets are publicly available [44, 46,
69], and it is not clear that those that are available adequately represent the whole of
biomedical literature. It is also unclear whether a POS tagger once trained will continue
to perform to the level necessary over time. Clearly an approach that trains as it examines
new data would be preferable. Since symbolic network graphs can be built and analyzed
incrementally over time, SNLA can be used in this manner.

For the purpose of developing SNLA, gene name synonymy has the advantage of being
a symmetric and transitive relationship, the simplest kind that can be represented in a
network. Symmetric means that relationships go in both directions: if A is a synonym of
B, then B is a synonym of A. Transitive means that logical inferences can be made about
synonyms: if A is a synonym of B, and B is a synonym of C, then A is a synonym of C.
This makes gene name synonymy a tractable problem to start with since the
straightforward semantic representation of concepts and relationships allows to the
research to focus on the development of methods. Generalizations of these methods will
then have further applications to text mining and knowledge extraction. For example, the
extraction of new potential therapies based on the discovery of a chain of reasoning
spread over several bibliographic entries. Swanson has termed this “complementary

structures in disjoint literatures” (CSD) [26]. He proposed a simple “A influences B, and
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B influences C, therefore A may influence C” model for detecting instances of CSD
which is commonly referred to as Swanson’s ABC model [8, 27]. This is one exciting
potential application of SNLA, since the network approach facilitates logical analysis
over many semantic concepts simultaneously, and can also has the ability to represent
and uncover relationships across many interconnections, providing for much greater
potential than Swanson’s ABC model which has only two interconnections. While
Swanson’s ABC model could be extended, to say ABCD model, this model still begins at
a pre-defined concept and each new interconnection exponentially increases the work of
the investigator [25, 27]. SNLA has the potential to analyze a large set of relationships
simultaneously without pre-de‘ﬁning a starting place and with little or no additional
burden on the investigator (although the computer has more to do).
Research Question

In order to investigate the potential of symbolic network logical analysis as an approach
to knowledge extraction from bio-medical textual sources, SNLA will be applied to the
problem of automatically generating a list of gene and protein name synonyms. The
research question to be studied is whether symbolic network logical analysis can be used
as a tool in knowledge extraction, and specifically, can it be used to extract a high quality

set of gene and protein name synonyms from MEDLINE database records?
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III. LITERATURE REVIEW

There is a vast amount of literature that pertains to text mining and knowledge
extraction, with contributions coming from many fields including computer science,
library science, the social sciences, and informatics. The prior work is so vast and so
distributed across the scientific specialties that a complete review would be both
impractical and impossible. Nevertheless, the literature that applies directly to the
research question, both the study of SNLA methods, and the study design itself, is much
more manageable. This literature review focuses on the prior work most directly related
to proposed research question. Much of this literature originates in the field of
biomedicine and medical informatics, but relevant articles from computer science and the
social sciences are included as well.

The prior literature is organized according to two main themes: related high-level text
mining and information extraction tasks, and lower level components of the knowledge
extraction process pertinent to using and evaluating SNLA. The section on high-level
tasks concentrates on knowledge extraction goals from biomedical text sources. The
section on lower-level components reviews prior work relevant to components of the
SNLA process and the evaluation of SNLA-based research.

High level knowledge extraction tasks
Early work

The idea of extracting knowledge from biomedical bibliographic and other text
sources goes back at least 35 years, if not further. During the late 1960s, Zellig Harris did
important theoretical work in describing the structural characteristics of language in a

limited domain such as scientific or medical literature [28]. He termed these
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sublanguages. Harris described how these structural characteristics could be determined
and then used to help with knowledge extraction. Much of the current work in text
mining, knowledge extraction from bibliographic databases, and natural language
processing (NLP) in limited domains (such as medical specialty reports) has roots in
Harns’s ideas [29, 70].

Swanson was perhaps the first person to propose using text mining on the biomedical
literature to uncover previously unrecognized relationships worthy of further
investigation, an approach sometimes called hypothesis generation. Swanson developed a
theory he called “complementary structures in disjoint literatures” (CSD) [26]. Swanson
realized that large databases of large scientific literature would allow discoveries to be
made by connecting concepts using logical inference. He proposed a simple “A
influences B, and B influences C, therefore A may influence C” model for detecting
instances of CSD which is commonly referred to as Swanson’s ABC model [8, 27]. In this
model, A is a pharmacologically active substance such as the drug thalidomide, B is a

biological factor, and C is a disease or syndrome (see Figure 2).

Immunalogic Factor
B

A hmcccmmsss e (O
Thalidomide Disease or Syndrome

Figure 2: Swanson's ABC Model (from Weeber [27])
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In several published papers in the 1980s and early 1990s Swanson gave examples of
discovering new hypotheses by manually connecting concepts between journal articles.
In 1986, he found a connection implying patient benefit between fish oil and Reynaud’s
syndrome, two years before clinical trials established that the benefit was real [12,25]. In
another article he traced 11 indirect connections between migraine and magnesium using
summarizations of published articles. He used MEDLINE title word co-occurrence
frequencies as a means of assisting the investigator to logically connect concepts related
to both migraine and its possible therapies. He also suggested that the process could be
improved by using MESH subheadings to narrow the document space [26].

Swanson predicted the future development of more highly automated systems to help
researchers accomplish the task of uncovering CDB connections on a much larger scale.
The ARROWSMITH system, built by Smalheiser and Swanson, is the most recent
version of such a tool [71]. This and similar systems are still very much in the research
phase [8, 15, 38, 72], and currently, there is little use of these systems by medical (as
opposed to informatics) researchers [71]. While, in his writing, Swanson establishes a
long history in science for discovery based on uncovering previously unrecognized
connections, his ideas are still very much leading-edge, and are currently being actively
explored [27].

Other early investigators investigated the use of the bibliographic indexes by
themselves, rather than using the title, abstract, or journal article text, as raw material for
knowledge extraction. In 1993, Cimino and Barnett first constructed a medical
knowledge base from MEDLINE using statistical citation co-occurrence analysis [73].

Mendonca and Cimino extended this work to focus on improving information retrieval by
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automatically identifying semantic relationships between co-occurring pairs of MESH
terms. One study found that 7% to 8% of MESH term pairs to occur together significantly
more frequently than others. The authors suggest that the extracted relationships could be
useful in an automated system that helped physicians to perform more effective literature
searches, for example by suggesting inclusion of “propranolol” in a search for
information on therapies for heart failure [15]. In another study by these investigators, a
group of physicians found 60% of the automatically extracted semantic pairs to be
clinically relevant [74].
Current Work

This section covers current tasks to which researchers are applying text mining to
biomedical literature. This work is important not only because it covers the current state-
of-the-art problems and techniques, but also because many of the tasks may be aided by
an SNLA-based approach. Furthermore, the nature of biomedical text mining is such that
more sophisticated tasks often must be built on top of solutions for other, more basic, text
mining problems [57]. Therefore the opportunities here are two-fold: to use prior results
as a basis for solving more sophisticated knowledge extraction problems and to identify
areas where there are basic problems still needing to be solved.

de Bruijn and Martin have summarized the current state-of-the-art in medical text

mining from a bioinformatics perspective. They give several examples of specific tasks
(which they call goals) for text-mining in bio-informatics and medicine. They include
tasks such as finding protein-protein and protein-gene interactions, finding sub-cellular
localization of proteins, functional annotation of protein, vocabulary construction, and

discovering gene functions and relations [72].
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de Bruijn and Martin separate NLP research in clinical medicine from that of
molecular biology by stating that the former focuses on the patient clinical record while
the later focuses on scientific articles. However, this separation is artificial, and there are
many counter examples, such as Swanson’s well-known example of finding that fish oil
may be a possible treatment for Raynaud’s syndrome by examining the MEDLINE
database. A more accurate classification is Hersh’s separation between research focused
on patient-specific information, and that focused on knowledge-based information. Text-
mining in clinical medicine and molecular biology, as well as other medical and
biological specialties, may use either of these information sources. Therefore, it is not the
scientific specialty that characterizes the text-mining work as much as the source, quality,
and reliability of the source data.

de Bruijn and Martin have also outlined the process of text mining into four stages:
(1) document categorization; (2) named entity tagging; (3) fact and information
extraction; and (4) collection-wide analysis. However, this four-stage process lacks a
very import aspect of knowledge extraction: the feedback between discovered facts and
rules or templates for extracting these facts. Indeed, de Bruijn and Martin allude this in
the context of the interaction between investigator creation of NLP models and the
investigators use of those models, but they neglect to point out that this feedback can
exist within the text-mining system itself. This feedback loop forms an important part of
applying SNLA.

de Bruijn and Martin also assume that named entity tagging is an essential
independent step, when in fact biomedical relationship mining has been found to be

somewhat independent of the quality of biological named entity tagging. If one assumes
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that relationship extraction requires identification of three biomedical terms, two entitics
and one relationship, the performance of relationship extraction should be approximately
equal to the cube of the performance of biological named entity tagging. While this
assumption appears to be true for news article extraction, for biomedical applications the
F-score performance rates of named entity tagging and relationship mining are about
equal, 75-85% [56, 75]. It appears that the independence assumption does not hold for
biological relations and it may be easier to extract concepts and the relationships between
them all at once without a prior tagging step due to the increased local context that
relationships provide. This work therefore uses the knowledge extraction framework
previously described instead of the de Bruijn and Martin stages.
Related Research

Currently, there is much interest and ongoing research in the application of
knowledge extraction and text mining to knowledge-based biomedical text. This section
will focus on research that either has goals similar to that of the research question, or
whose methods are related to or serve as inspiration for the present work. Many of these
knowledge extraction tasks may be amenable to the techniques of SNLP.

The related research includes work on:

Named entity recognition
Word-sense disambiguation

Curation

Functional gene grouping
Abbreviation and acronym extraction
Name synonym extraction
Relationship extraction
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Named entity recognition

At first glace, the task of named entity recognition (NER) appears straightforward.
The goal is to identify, within a collection of text, all of the instances of 2 name for a
specific type of thing. For example, identify all of the drug names within a collection of
journal articles, or identify all of the gene names and symbols within a collection of
MEDLINE abstracts. Hansich and others [59, 72] believed that solving this problem
would allow more complex text mining tasks to be tackled.

It turns out that this task is anything but simple and straightforward. There does not
exist a complete dictionary for most types of biological named entities, so a simple text-
matching algorithm will not suffice. The same word or phrase can refer to a different
thing depending upon context. Many biological entities have several names.

The named entity task is an easier task when applied to general news stories. Systems
performing named entity extraction on news stories typically perform at an F-score over
90%, the scores for biological names are much lower, about 75-80%. As mentioned
above, the independence assumption that seems to hold on news stories does not hold for
biological relations. The biological relation extraction scores are about the same as that
for news relations, about 75%, even though the named entity recognition scores are about
10% lower [56].

One possible explanation is that context provided by the biological relation and other
terms provide stronger evidence for the location of biological names than they do for
locations in news text. This would go along with Harris’ sublanguage theories, and
suggest that the sublanguage used in biology is more distinct from general English than is

the language found in news stories. Context seems to be very important in biomedical
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text mining, and because of that, NER requires contextual knowledge to achieve high
accuracy. Since the contextual knowledge needed for recognizing some types of entities
may be broad, NER can be a more complex task than relationship extraction because the
definition of the relationship provides some very helpful context [56].

Perhaps because of the difficulty of the NER problem, several researchers have
focused their efforts on it. While current work has been fairly successful, the complex
sophisticated methods used provide further evidence that biological NER is not a simple
problem. NER remains an open area of research and the approaches of several
researchers will be reviewed here.

Proux

As their first step toward automatically detecting interactions between genes, Proux et
al. constructed a software system to identify Drosphilia melanogaster (the fruit fly) gene
names in scientific text. Drosphila was chosen as a good test subject because the
FlyBase database contains a list of 550 distinct gene names, as well as short abstracts of
research papers stored in the “Phenotypic Information” field for each gene. As a test set,
sentences were extracted from this field in the database that contained at least two known
gene symbols, with the rationale being that interactions would more likely be found in
these sentences.

Identification of these gene names was complicated largely by the observations that
gene names do not follow construction rules (unlike Fukuda’s assumption about protein
names [21]), and that authors do not use approved names consistently. Also, new genes

are frequently discovered and added to the literature. Therefore, name dictionaries are
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frequently out-of-date and their use is a limited solution to the identification of gene
names in text.

Proux et al. found that fruit fly gene names come in three categories. First are names
including special categories, such as mixed case, hyphens, dashes, slashes, or numbers
(e.g., Hrp54, Lam-B1, Laer\mt). Second are names using lower case letters only and also
being an English word (e.g., vamp, ogre, zip, zen). And third are names using only lower
case letters and not an English word (e.g., ynd, zhr, wp, unr). Proux found that while
about 50% of Drosphilia gene names belong to the last two categories, most of those
belong to the third category and only about 5.5% belong to the second category.
Furthermore, within this second category, about one-fifth are English words “out of
scope” in scientific writing and unlikely to be found in an abstract (e.g., ogre). This
leaves about 4% of gene names being ambiguous with English words.

Proux et al.’s gene name identifier was built on a series of finite state machines
organized as a part of speech (POS) tagger that included gene names as a type. General
POS tagging, while not essential to the problem at hand, was included in preparation for
the next step of recognizing gene interactions. The process has two levels, lexical and
contextual. The lexical analysis has four steps: re-writing common domain specific
expressions into clearer forms to aid the tagger, the POS tagger itself, error recovery
using domain specific dictionaries that aid in recovering out of scope English words that
are gene names, and suffix and prefix recognition. The second level, contextual analysis,
looks at nearby words in order to distinguish ambiguous gene names from common
English words. Other forms that tended to confuse the tagger, such are bibliographic

references, were also removed at this step.
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The system was trained and tested on 1200 sentences extracted from F lybase, and
divided into a 450 sentence tuning set and a 750 sentence experimental set. Recall on the
experimental set was 94.4%, and precision was 91.4%. It should be noted that these
results are outliers and similar researchers consistently achieve only about 80% precision
and recall [56]. This may be due to the smaller domain of the Flybase gene namespace.
Most of the false positives were found to be words specific to biology but not found in
the dictionaries used (e.g. ommatidial), and chromosome locations, which may be
combinations of letters and numbers (e.g., 102Efc). False negatives included numerical
expressions, ambiguous in-domain English words, biological vocabularies, proper nouns,
and others. Furthermore, the authors defined gene names as a single lexeme, and so gene
names of two or more words were not recognized by the system and not included in the
test set [57].

Hanisch

Hanisch et al. have addressed the problem of identifying known proteins in scientific
text. Note that this problem is not simply solved by creation of a dictionary of protein
names, since authors often do not use the exact same lexical forms when discussing the
same proteins. Hanisch et al. uses a large dictionary of protein names and semantically
classified words that tend to appear in context with protein names. The classifier words
are used as “delimiter” and “specifier” tokens to increase the specificity of matching
biomedical text to the dictionary by helping detect ambiguous and irrelevant synonyms.
Hanisch et al. created a set of pattern and heuristic filter rules to make use of this
information as well as lexical information about the protein name, such as only

considering case-sensitivity when the name was a single word. The matches were scored
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using a weighting of the various types of matching, with the optimal weight determined
by using a supervised machine learning algorithm called robust linear programming
(RLP) [59].
Aronson

Aronson, et al. created MetaMap, a program that maps biomedical text to terms in the
UMLS Metathesaurus. MetaMap works by first parsing the text into noun phrases, and
then generating a set of spelling, abbreviation, acronym, synonym, inflectional, and
derivational variants for sub-phrases that are either single words, or those that occur in
the SPECIALIST lexicon. These variants are candidate phrases, and they are mapped to
the closest match in the UMLS Metathesaurus using an evaluation function that takes into
account centrality, variation, coverage, and cohesiveness. The scores for the candidates
are then combined for disjoint parts of the noun phrase to determine which UMLS
Metathesaurus best matches the noun phrase. The score of the best match is reported as a
final confidence value that can be used as threshold value for valid mappings [76].

Tanabe and Wilbur

Tanabe and Wilbur investigated and evaluated a method of automatically identifying
gene names in MEDLINE abstracts called AbGene. They extended the Brill POS tagger
[41, 77, 78] to include gene and protein names as a tag type and then trained their system
on 7000 hand-tagged sentences from biomedical text. The system then applied manually
generated post-processing rules based on lexical-statistical characteristics that helped
further identify the context in which gene names are used and eliminate false positives

and negatives.
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Evaluation on a test corpus showed that they were able to identify 77% of the correct
and 93% of the incorrect gene name training examples. Interestingly, the post-processing
rules usually helped to improve recall, but often decreased precision. For example, at the
highest lexical-statistic scoring level, recall improved from 0.417 just using the modified
Brill tagger, to 0.667 using their full system, but precision dropped from 1.000 down to
0.857 [43].

Change, Schiitze, and Altman

Change, Schiitze, and Altman took a very different approach to biological NRE. Instead
of basing their algorithm on tagging names as parts of speech (such as in AbGene), the
GAPSCORE system [79] assigns a numeric score to each word within a sentence. Words
with higher scores are more likely to be gene and protein names or symbols, and words
with low scores are unlikely to represent genes or proteins. The GAPSCORE is computed
by examining the appearance, morphology, and context of the word to be scored and
applying a classifier trained on these features. The scores are then divided into bins
representing excellent, good, or poor candidate predictions for gene names.

Interestingly, the GAPSCORE system uses the Brill tagger [41, 77, 78] as a pre-filter
to remove any words that are not nouns, adjectives, participles, proper nouns or foreign
words, so POS tagging is still an important part of the approach. POS tags are also used
to extend single word partial names into multi-word names by including preceding nouns,
adjectives, participles, and subsequent numerals.

After training on the Yapex gold standard [80], precision, recall, and F-score were
computed at every GAPSCORE cut off for both the exact matches and ‘sloppy’ matches

(defined as a true positive if any part of gene name is predicted correctly). As would be
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expected, the system performed much better with sloppy matches (precision 73.5%, recall
81.4%, F-score 77.3%), than with exact matches (precision 58.5%, recall 50.1%, F-score
54.3%).

The utility of sloppy matches is unclear. For example, running the web-based

GAPSCORE implementation [69] on this sentence from a MEDLINE abstract:

Based on its structure, chromosomal location, sequence homology and cytokine-like properties,
mda-7 has now been renamed IL-24 and classified as a member of the expanding IL-10 cytokine
gene family. [81]

produced a score of “good” or “excellent” for “mda-7”, “been renamed IL-247,
“expanding IL-10”, and “Based”. Clearly sloppy matching includes words that are not
specifically related to the gene. In this example, the number of non-gene words retrieved
is greater than the number of gene words retrieved.

The performance of GAPSCORE for exact match was significantly lower than those
found by many investigators during the BioCreative conference [75], where the average
F-score for gene and protein NER was approximately 85%. However, both the test set
and evaluation procedure were different. As with many results in text mining and NLP, it

is difficult to draw firm conclusions by comparing studies using separate data sets.
Word-sense disambiguation

Another task thought to be fundamental in biomedical text mining is word-sense
disambiguation. This is the problem of polysemy, a single word having more than one
meaning. Unfortunately for text mining, this is a common occurrence in biolo gy,
medicine, and the English language. The Unified Medical Language System (UMLS)
lexicon [82] has many terms that are associated with multiple concepts. A capsule can be
an anatomical site or refer to a pill. Potassium can be a lab value or a medication. Cold

can be a viral infection or a sensation of temperature [83]. Resolving these ambiguities
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are important in many information retrieval and knowledge extraction applications. This
is termed word-sense disambiguation (WSD). To researchers working on this problem,
Weeber et al. have developed a biomedical word-sense disambiguation test collection
containing 5000 unambiguous instances (in context) of 50 ambiguous UMLS text strings
[84].

There have been three basic approaches applied to the WSD problem. The first uses a
set of disambiguation rules handcrafted by domain experts. The second uses a supervised
machine-learning algorithm that is trained on an annotated corpus. A basic problem with
both of these approaches, common to many text-mining approaches, is the large amount
of expert labor they require, and the fact that they cannot be applied to a new or broader
domain without repeating much of the work. A third approach, based on the one sense
per discourse assumption, has neither of these disadvantages.

Liu and Freidman

Liu and Freidman use the third approach, which requires no specific domain
expertise. It is based on two important assumptions. First, the one sense per discourse
assumption states that the sense of a term used in a unit of text (e.g., an abstract or journal
article) is constant across that text unit. This assumption is largely correct for domain-
specific terms used in medical literature, but is less likely to be valid for terms that have
both general and medical meanings, such as cold and discharge. The second assumption
is that conceptual relatives of a term will tend to be used in the same sense as the term
itself. A conceptual relative of a term is another term that has an ontological relationship
with the first term, such as is-A or synonymy. The approach then proceeds as follows. An

automatically sense-tagged corpus is created by assigning a sense to ambiguous terms
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based on the sense of unambiguous conceptually related terms that co-occur in the text
unit (e.g. the same abstract). Then a system for sense tagging the ambiguous terms is
created by training a supervised machine learning algorithm on the automatically sense
tagged corpus. Liu and Friedman used the Naive Bayes’ algorithm for this purpose [85].
Liu and Friedman applied their approach to ambiguous abbreviations in MEDLINE
abstracts. They selected 35 ambiguous abbreviations as meeting the conditions of the
experiment and used the UMLS MRREL relationships table to determine conceptually

related terms. Overall precision was about 93% with recall about 47% [83].
Curation

The goal of the curation problem is to determine whether a document should be
included in a collection based on some particular criteria, usually based on whether the
document discusses a given topic or range of topics. This is a specific type of document
classification. The curation task is different from many other text mining and knowledge
extraction tasks in that instead of a list of extracted facts, the end result is a group of
decisions on whether each document in the set belongs to the collection or not. In many
ways this is like a “diagnosis” of the document, does it have a certain characteristic (e.g.
discuss a disease, or a medical finding) or not.

Yeh, Hirschman, and Morgan ran a text mining competition as part of the Knowledge
Discovery in Databases (KDD) challenge cup. The task was a realistic curation problem
to evaluate papers from the FlyBase data set and determine whether the paper should be
curated based on whether it contains experimental evidence of gene products. The
competing programs were to extract three items of information: a ranked list of papers in

the order of probability for the need of curation, a yes/no decision on whether to curate
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each paper, and, for each gene listed in each paper, a yes/no decision about whether a
paper contained experimental evidence for a gene’s RNA and polypeptide products.

A training set of 862 cleaned full text papers was provided, along with XML mark-up
containing the gold standard results for each paper. Of these, 283 were judged by experts
to require curation. The test set contained 213 papers. Papers were cleaned by converting
non-plain text (superscripts, subscripts, italics, Greek letters) into a plain text convention.

The best performing entry used a set of manually constructed rules for reco gnizing
patterns of interest that provided the required information. They focused on figure
captions, which were found to be useful [86]. The F-score of the ranked list was 84%,
with 78% overall yes/no per paper and 67% for gene products. Another well performing
team looked for manually chosen “keywords” and computed the distance between
keywords and gene names [87]. Two other well-performing teams used regular
expressions to find patterns of words and then used a support vector machine (SVM) to
classify the papers [30].

Problems and complications noted were many. Systems had difficulty in
distinguishing between gene names and the names of gene products. FlyBase is intended
to contain only products based on the wild type of fruit fly, but systems found genes and
products in laboratory-induced mutations. Gene name synonyms were a significant
problem, as names in the papers often did not match that in FlyBase, and many gene
products have several names. Naming conventions are also often not followed, resulting
in many variants. Furthermore a protein could have several forms as well as a more

general name and it can be difficult to determine which is meant.

35



Other lessons learned include that full electronic versions of papers are often not
easily available. Abstracts are readily available, but much of the information needed by
the curators to make a decision was only in the full text and not in the abstract.
Processing HTML has challenges (it is difficult to separate presentation from structure;
XML is much better in this respect), and getting to the full text can involve multiple
download steps for each document. Most text processing systems handle plain text, but
important information may be contained in typesetting conventions.

Functional gene grouping

The problem of functional gene grouping is to collect genes into sets of biologically
meaningful groups, based on their function. Some researchers have attempted to do this
by mining the biomedical literature. Raychaudhuri and Altman have done much work in
this area. They have used entropy measures to associate genes with gene ontology (GO)
codes representing biological processes mentioned with the genes in literature abstracts
[23]. The same group has done work in automatically determining whether a group of
genes are functionally related by applying a measure termed neighbor divergence per

gene to the gene names in the articles most similar to a given article [22, 24].

Abbreviation and acronym extraction

A knowledge extraction task that has attracted much attention recently is abbreviation
and acronym extraction for biomedical terms. The goal of this task is to extract a list of
abbreviations and their definitions from a set of text documents. As medicine and
genomics are full of specialized terms and corresponding abbreviations and acronyms, a

list of these in a given domain could be very useful both for readers needing to know the
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full form of an abbreviation, and authors wishing to use already existing common
abbreviations and not invent unnecessary new ones.

The problem of acronym extraction is similar to synonym extraction problem of the
current work in several ways. It is based on a specific type of relationship between terms,
it is narrowly defined, and evaluation is relatively straightforward and does not require
much domain expertise to identify the false positives and negatives to evaluate results.
Both may also have problems of polysemy, i.e., one term mapping to several concepts.

Acronym extraction differs from the synonymy problem in that that relationship
between the long form and the abbreviations is unidirectional and not symmetric as is the
synonym relationship. Another difference is that at least one published test set,
Medstract, exists for evaluating abbreviation and acronym extraction, currently none
exists for synonym extraction. Medstract is a collection of MEDLINE abstracts manually

annotated in the XML format described and available at www.medstract.org [58].

Many of these attributes make abbreviation and acronym extraction an attractive
research problem. It is not surprising that several groups have published work in this area
over the last three years. All of their approaches make use of the observation that terms
and their definitions frequently occur next to each other in biomedical text, with one or
the other being enclosed in parenthesis. Some of the most successful work in this area
includes that done by Pustejovsky, Lui, Aronson and Friedman, Chang and Altman,
Schwartz and Hearst, and Larkey.

Pustejovsky et al.

Pustejovsky et al.’s research centers on extracting relations in biomedical literature.

Their system, Acromed, uses a set of semantic automata to model the relations of interest.
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These semantic automata are designed to recognize sequences of tagged parts of speech
that correspond to the relation of interest. The relationship type, such as “inhibit”, is part
of the pattern recognized by the automata, and several automata are generated to
recognize the nominal and verbal forms of the relationship (e. g, inhibits, is inhibited by).
The Brill tagger is used [41, 77, 78], followed by the Porter stemmer [88] to preprocess
the text and make the set of automata simpler. The automata are separated into five
phases: noun chunking, noun phrases, coordinated noun and verbs, chunks with
prepositional phrases, and finally, recognition of subordinate clauses by the semantic
automata. The authors note that the use of general anaphoric terms (e.g,, “it”) is
relatively infrequent in MEDLINE abstracts, but the use of sortal anaphors (group types,
€.g., “‘statins”) is prevalent. Their system includes ordered sentence frames to help resolve
anaphora [89].

The researchers used their system to find the long forms of abbreviations in
biomedical text. They achieved performance of 72% recall and 97% precision on the
manually annotated MEDLINE records they created as part of the Medstract test
collection. The authors noted that their system performed better on biomedical texts than
did other systems for general text, however, no comparison was made with other
biomedical abbreviation extraction systems [18].

Lui, Aronson, and Friedman

Lui and Friedman studied the use of parenthetical expressions in text mining [17, 90].
They note that terms associated with parenthetical terms are often related terms, such as
synonyms or close semantic relations such as abbreviations and definitions. These occur

more frequently together in a corpus than by chance. Several types of relationships are

38



identified: A(B), and B(A), where A is the short, abbreviated form and B is the long
form; A (i.e., B), where A and B are synonyms in the given context, and hypernymy A
(B) or A(e.g., B) where B is an instance of the more general B. Lui and Friedman’s work
1s unique in looking at the co-occurrences in an automated way to acquire terminological
knowledge. They note that this method is not suitable for recognizing expansions that
only occur once in a text corpus, since frequency is an important filter. However, no hand
crafted rules or patterns are required, and no manually annotated training set is needed.

They used the NLM’s SPECIALIST lexicon to normalize words, and then collected
statistics associating three letter abbreviations within parenthesis with the one-to-many
word phrases preceding the parenthesis in the sentences contained in a set of MEDLINE
abstracts. Frequency threshold parameters were set to determine which co-locations were
most significant. An internal analysis showed that their system detected correct pairings
96.3% of the time on a gold standard test set. A total of 381,126 unique pairs were
collected, where 308,339 were used in the abbreviation knowledge base and 72,787 were
considered as other types of pairing. The extracted abbreviation knowledge base covered
38.3% of the pathology abbreviation list manually compiled by J. Berman [91].

Chang and Altman

Chang and Altman created an online dictionary of abbreviations used in MEDLINE
based on aligning abbreviations with their full form in the text using a machine learning
approach. They observed that the number of abbreviations grows at least as quickly as the
number of abstracts, and that half of all abstracts contain abbreviations. Furthermore, less

than half of abbreviations are formed from initial word letters, so in order to support the
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many ways that investigators create abbreviations, they broadly defined abbreviations to
include more than just acronyms.

They broke the task into four components: scanning the text for possible
abbreviations, aligning the candidates to the preceding text, converting the abbreviation
and text into a feature vector, and scoring the feature vector. To find a possible
abbreviation, the lexical pattern of short space delimited spans of text inside parenthesis
was used. The preceding 3*N words in the same sentence were used for the prefix text
window, where N was the number of letters in the abbreviation. They approached the
alignment task as a form of the longest common substring (LCS) problem, and used a
dynamic programming algorithm to maximize the matched number of letters between
two strings, where the first string was the candidate abbreviation, and the second was the
document text that came before the abbreviation. Vectors were computed based on a
heuristic set of features. Logistic regression was on a training set to determine the best
coefficients with which to score the feature vectors. The score of an abbreviation is then
the maximum score of the possible prefix alignments. Evaluation of the system against
the Medstract gold standard abbreviation annotated database [58] showed a maximum of
83% recall and 80% precision at the best score points for each. Error analysis showed that
the most frequent error was due to the gold standard using synonymous words and
phrases in the definitions [10]. Note that this was better recall than that achieved by
Pustejovsky, at the expense of lower precision.

Schwartz and Hearst

Schwartz and Hearst created a simple algorithm for identifying long forms of

abbreviations in biomedical text that performs as well as much more complex
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approaches. They use a simple two-stage process [92]. The first stage identifies
abbreviation long form/short form pairs by looking for short text sequences in or next to
parentheses. These candidate pairs are then filtered by heuristic lexical criteria based on
the length and number of words in the short and long forms. The second stage identifies
the long forms by performing a greedy match of letters in the short form with letters in
the long form, starting at the end of each, with the additional constraint that the first letter
in the abbreviation must match to the first letter of a word in the long form. This is based
on the observation that abbreviations rarely begin with an internal character of the first
word. Evaluation on both a MEDLINE subset and the Medstract gold standard evaluation
corpus [93] showed precision (96%) and recall (82%) approximately the same or better
than that reported by other investigators with much more complex systems, such as
Chang and Yu [10] and the Brandeis ACROMED system [18].

Larkey et al.

Larkey et al. have built Acrophile, a web-based acronym and abbreviation server and
database populated by an automatic extraction algorithm [36]. Their system scans web
pages and is not specifically for biomedical text, but their approach is related to the other
work already described. They developed and compared four relatively simple algorithms
to automatically extract abbreviations and acronyms from web pages: contextual,
canonical, canonical/contextual, and simple canonical. Simple canonical was the most
basic, finding only abbreviation pairs fitting well-defined forms, such as “expansion
(ACRONYM)”. The contextual algorithm looked for an expansion of an abbreviation in

nearby text. The other two algorithms combined features of these two. A simple regular-
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expression definition of abbreviations was used, such as all uppercase letters, or
uppercase separated by periods.

Evaluation used precision and recall on a given set of abbreviations in a randomly
chosen set of 170 web pages. For abbreviations of length greater than 3, the simple
algorithm was found to have the highest precision (99%), but the lowest recall (57%).
The hybrid canonical/contextual had a precision of 92% with the highest recall of 84%.
The investigators graphed precision and recall was graphed for all four algorithms and

selected the canonical/contextual algorithm as the best visually.
Name synonym extraction

The idea of name synonym extraction is simply to extract sets of synonymous names
for a given concept. Genomics is an interesting area in which to apply synonym
extraction systems because genes and proteins commonly have many names, in both
short and long forms. There is significant prior work in this area, most of it done over the
last five years by Yu and Agichtein [19, 35].

This is the research task to which SNLA has been initially applied. While the work of
Yu and Agichtein is significantly different from that of the present work, the variety of
methods they use shows that the gene name synonym extraction task is open to many
approaches and therefore it is a good task on which to develop the methods of SNLA.

Yu and Agichtein

Yu first worked on gene name synonym extraction with a system that extracted gene
name synonyms based on manually identifying patterns in which gene name synonyms
commonly occur. These are common patterns that authors use to list synonyms and

include identifying phrases such as “dr4, also known as trail-r1”, parenthetical phrases
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such as “dr3 (also called ws-1, tramp, apo-3, or lard)”, and slash separated synonym lists
such as “p21/Cip1/Sdil”. Domain experts were used to identify common patterns. Yu et
al. estimated the precision of their system to be approximately 71%. Recall measurements
were not published [35].

Yu and Agichtein worked together to combine several previously investigated text-
mining approaches to the problem of gene and protein name synonym extraction. Their
goal was to combine approaches and improve both precision and recall [19]. They
implemented and tested four systems using complementary approaches. Three of the four
approaches required pre-processing the corpus to tag the gene and protein names with
type information. For this they chose Tanabe and Wilber’s Abgene tagger, previously
described [43].

The first system, called Similarity, detected synonyms using a contextual similarity
metric based on words appearing nearby within a fixed sized window. Confidence of
name pairs was simply the similarity measure between the contexts of the two names.

The second system, entitled Snowball, was based on Brin’s Dual Iterative Pattern
Expansion (DIPRE) system for the Web [39], which Agichtein adapted for extracting
relationships from large text collections [37]. A small set of initially known facts is used
to find the patterns in which these facts occurred within a large corpus. Then these
patterns were used to extract more facts, which in turn were used to find more patterns. In
this way the set of extracted facts grows like a “snowball rolling down a hill”. Four
crucial steps in this approach were: 1) matching of patterns to the text, 2) determination

of confidence in the extracted facts, 3) determination of confidence in the extracted
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patterns, and 4) a means of generating patterns from the context in which the high
confidence facts occur.

Snowball stores patterns as tuples of 5 values, <lp, t1, mp, tp, >, where 1, is the vector
of term frequencies in the string before the first tag, t, is the tag value (type) of the first
term in the potential fact, my, is the vector of term frequencies in the string between the
tags, t; 1s the tag value (type) of the second term in the potential fact, and r, is the vector
of term frequencies in the string after the second tag. A similarity metric is used to
measure the degree that strings match with a pattern. It divides the context into left,
middle, and right vector and wei ghts each term in each vector based on the frequency of
appearance. Then the degree of match between a pattern and a string of text are computed
as the dot product of the vectors if the tags match, and zero if they do not.

Snowball uses a simple confidence measure that gives high confidence to facts
extracted in the current iteration that match facts extracted in previous generations. Then
the confidence in a pattern is computed as the log of the fraction of the positive facts
divided by a weighted sum of the known positive facts, the known negative facts, and the
unknown facts. The weights are set empirically during system tuning. For rating the
confidence in the extracted facts, Snowball uses a measure based on the number of
patterns that generated the extracted fact. Essentially the confidence is 1 minus the
probability that all of the patterns that generated the fact were incorrect. Snowball
discards facts with low confidence on each generation, since low confidence facts could
add noise to the patterns generator.

While the iterative fact extraction/pattern finding approach is a clever and powerful

approach, the Snowball method has several limitations. First, confidence is based
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primarily on having seen a fact in an earlier iteration. However, if a single iteration has
several new patterns discovering the same fact, or a single pattern finds the same fact in
several places, this should logically increase the confidence in the pattern. In Snowball it
does not. Also, facts discovered earlier in the process have a propagating and therefore
stronger influence than those discovered later. Except for the initially provided facts,
which are assumed to actually be true, it is not clear that this should be the case.
Furthermore, Snowball can only find synonyms (facts) that are explicitly stated in a
single sentence of the text. There is no means of inferring facts, even if there is strong
evidence of synonymy across several articles in the corpus. This may explain why the
Snowball method has low recall at high confidence scores (<10% at confidence > 0.40)
[19], and why the researchers chose to combine it with other methods.

SVM, the third method that Yu and Agichtein investigated, used a text classification
tool, SVMLight, trained on an initial set of user-provided positive and negative examples
of gene name pairs and the surrounding text context. After training the classifier was run
over the text corpus, this generated a confidence score for every text context of gene
name pairs. When a pair appeared in more than one context, SVM assigned the
confidence of the highest context for the pair.

The forth system that Yu and Agichtein included was “GPE”, a template-based
system with hand-coded rules specifically for extracting gene and protein name synonym
pairs they had previously investigated [35]. A domain expert examined a sample of
journal articles and manually created patterns that authors commonly used to list
synonyms. GPE did not use gene or protein name taggers and initially generated pairs of

strings that were not gene or protein names. A set of heuristics was used to filter these
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out. The system had no way to compare confidence in different synonym pairs and so
extracted pairs were assigned a confidence of 1. This system does not make use of the
increased confidence gained by extracting the same synonym pair from different abstracts
or with different templates.

Yu and Agichtein combined the four approaches in a system called Combined. It
combines the confidence of the pairs of the four systems in a way similar to how
Snowball combines the confidence in individual patterns generating a synonym pair, that
is, it computes the confidence as one minus the probability that all of the other systems
are incorrect (which is one minus the confidence). This approach has the advantage of
incorporating approaches that did not detect the synonym. These would have a
confidence of zero. In their evaluation, Yu and Agichtein found that the Combined
approach worked best, having higher recall at higher confidence levels. However,
precision of Combined was less than that of both Snowball and SVM at confidence levels
greater than about 0.60. Also, the time required of the combined approach, 11.5 hours to
run over 32,000 journal articles, was the most of any of the systems, being the sum of the
time taken by the system plus the time taken by tagging, although the computation of the
four approaches, being independent, could be done in parallel on separate machines.

While the Combined system produces the highest recall of 0.80 with a precision of
about 0.09, these results leave much room for improvement. The high recall comes with
very low precision. Even though the Combined system allows the subcomponents to
compensate for each other somewhat and improve precision over any single component,

the overall precision is still very low.
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Furthermore, the Combined system is a “kitchen sink” approach that combines the
confidence levels from four different systems into one. This both requires a great deal of
processing and makes the manner in which the system makes decisions somewhat
opaque. It is difficult to see how changes to the system would lead to improved results
since there is no intuitively understandable knowledge model in the Combined system.
The effect of changing any one of the subsystems may make no change on the final
result. It is not clear what features of the text are important in identifying a synonym pair,
and it is not easy to see what text features constitute evidence of a synonym pair in the
final Combined system. Nevertheless, the Combined approach does integrate the
detection of several kinds of text features (pattern, statistical, co-occurrence) that appear
to be important in identifying synonym pairs.

Relationship extraction

The basic idea of relationship extraction is to identify evidence for relationships
between concepts in a text corpus. While acronym and synonym extraction can also be
thought of as a simple type of relationship extraction, research in biomedical relationship
extraction focuses on identifying a range of relationships from a single text corpus, and
the relationship types may or may not be defined in advance. Current research into
relationship extraction usually falls into one of three types. Some relationship extraction
systems simply attempt to identify pairs of concepts are related in some unspecified by
interesting way, and leaves the determination of that relationship up to the investigator
[74]. Other work specifies a relationship between classes of objects, such as proteins and
cellular locations, and attempts to identify evidence of specific instances of that

relationship [94]. Still other work specifies both the object classes and the types of
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relationships, and looks for any combination of two object classes and a relationship type.
For example, the object classes may be drugs, cellular mechanisms, and diseases, and the
relationship type may be inhibits. The relationship extraction system would look for any
combination of the object classes and the inhibit relation, such as drugs inhibiting cellular
mechanisms, or diseases inhibiting cellular mechanisms, or drugs inhibiting other drugs,
etc [89].

Craven and Kumlien

Craven and Kumlien have explored the possibility of extracting structured
information from MEDLINE abstracts for inclusion in a database to allow arbitrarily
complex relational queries and support automated structured summarization [94]. They
define the task as information extraction (IE) rather than natural language understanding,
defining IE as “a limited form of natural language processing in which the system tries to
only extract predefined classes of facts from the text.”

Their system takes a set of classes and relations among these classes, and is therefore
an example of the second type of relationship extraction. The system uses a supervised
learning approach, taking each sentence containing a pair of classes in a given relation
and running a Naive Biyesian classifier with the bag-of-words for that sentence on a
manually annotated set of training data. The bag-of-words approach treats the words in a
text unit, for example a sentence, as a set, ignoring the position of the words in the text.

Some word preprocessing is performed using the Porter stemmer [88], and the
conditional probabilities were computed using Laplace estimates [95], which makes the
estimates robust with infrequently encountered words. Essentially the system learns the

conditional probabilities for a sentence belonging in a class on the training data and then
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classifies the test data based on the posterior probabilities computed by using the
conditional probabilities.

For their initial implementation, the classes were: protein, subcellular-structure, cell
type, tissue, disease, and pharmacologic-agent. The relations were: subcellular-
localization(protein, subcellular-structure), tissue-localization(protein, tissue), cell-
localization(protein, cell-type), associated-diseases(protein, disease), and drug-
interactions( protein, pharmacologic-agent). Confidence in a relation detected multiple
times was computed using the noisy or function [96] which computes confidence as one
minus the probability that all of the detected instances are incorrect.

The system was tested by looking in MEDLINE for subcellular-localization
relationships documented in the Yeast Protein Database (YPD). They found a set of 20
words that contributed most highly to a sentence being classified to the subcellular-
localization relation, the highest being “local” with a log-odds ratio of 0.00571 (note that
this is an odds ratio of just 1.00573). Precision on the YPD test set was 77%, with a recall
of 30%.

Pustejovsky et al.

Pustejovsky et al. used their Acromed system to find inhibit relations in MEDLINE
records [58]. This is also an example of the second type of relationship extraction. They
evaluated their system on 56 abstracts that were distinct from the training and evaluation
set extracted from the Medstract test collection that included mark-up for inhibit
relations, and were used as a gold standard for evaluation. Results showed a precision of

90.4% and recall of 58.9% in finding inhibit relations in the test set [89].
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Swanson and related work

Swanson’s ABC model, with the relation influences, falls into the third, and most
general type of relationship extraction. In several published papers in the 1980s, Swanson
gave examples of manually discovering new inferences by connecting concepts between
journal articles. In 1986, he found a connection implying patient benefit between fish oil
and Raynaud’s syndrome, two years before clinical trials established that the benefit was
real [12, 25]. In another article, he traced 11 indirect connections between migraine and
magnesium using summarizations of published articles. He used MEDLINE title word
co-occurrence frequencies as a means of assisting the investigator to logically connect
concepts related to both migraine and its possible therapies. He also suggested that the
process could be improved by using MeSH subheadings to narrow the document space
[26].

Swanson predicted the future development of more highly automated systems to help
researchers accomplish the task of uncovering CDB connections on a much larger scale.
The ARROWSMITH system, built by Smalheiser and Swanson, is the most recent
version of such a tool [71]. This and similar systems are still very much in the research
phase [8, 15, 38, 72], and currently there is little use of these systems by medical (as
opposed to informatics) researchers [71]. While Swanson establishes a long history in
science for discovery based on uncovering previously unreco gnized connections, this is
still not done routinely on an automated basis.

Even though Swanson began his work in the 1980s, his ideas are still being actively

explored. In fact, other investigators working on relationship extraction systems have
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tested their approaches by attempting to simulate Swanson results for Raynaud’s and
migraine headache [27].

Following on the work of Swanson, Lindsay and Gordon attempted to discover
hidden connections in the medical literature based on lexical statistics commonly used in
information retrieval [11]. Lindsay and Gordon state that it is an “open and heavily
debated question whether a computational system will ever be able to fully master the use
and comprehension of a natural language”, and that current systems must examine text at
the level of phrases and words. They investigate whether the “most tractable methods,
that is systems based solely on lexical statistics, can be useful in uncovering implicit
connections in the literature.”

Lindsay and Gordon were able to replicate Swanson’s mi graine/magnesium findings
by lexical analyzing text broken in one, two, and three word phrases, with token
frequency, document frequency, relative frequency (in the migraine literature as
compared to MEDLINE as a whole), and the TF*IDF [1] product being computed for
cach token. The idea here is that two concepts appearing frequently together in
documents are likely to influence each other in some way. In contrast to Swanson who
used only titles and MESH terms, their approach uses the complete MEDLINE record.

Lindsay and Gordon first identify the relevant primary literature, for example,
literature containing the word “migraine.” Then they analyze this literature for tokens that
occur frequently across the primary literature. These tokens are used to collect a set of
records termed the intermediate literature. This intermediate literature is then examined in

a similar manner, looking for tokens of high frequency that were not identified in the
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primary literature. These tokens are then areas for exploration of concepts implicitly
related to the primary topic.

They found that most (10 of 12) of the important intermediate topics identified by
Swanson were determined by lexical statistics. Lindsay and Gordon also identified 16
biological substances with possible implicit associations to migraine for further
investigation. Their work shows that useful information can be extracted from the
medical literature based solely on lexical statistics. They note that more efficient use of
the lexical information could be obtained by combining synonyms and lexical variants,

~ and they suggested the Unified Medical Language System (UMLS) Metathesaurus for
this purpose.

Weeber et al. have investigated the use of automated systems using NLP techniques,
applying Swanson’s ABC model to scientific bibliography in the DAD-system [8], using
UMLS Metathesaurus concepts instead of simple words as the analysis units. Their
system extracts biomedical concepts using NLP techniques and assigns them to
categories with the aid of the Metathesaurus. Then, Swanson’s ABC model is applied in
reverse, first looking for concepts associated in the MEDLINE literature with C (e.g., a
disease), and then sites of action B that are associated with disease C. Substances A
associated with site B are then found to generate potential hypotheses for substance A
acting on disease C. The DAD-system then assists with a manual review of the literature
connecting A and C by presenting the relevant complementary sentences side by side. In
one investigation, concepts having the categories immunologic factor and
disease/syndrome were examined by the system for relationships to each other and to the

drug thalidomide. By applying their system to PubMed titles and abstracts they were able
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to recreate Swanson’s finding of the relationship between fish oil and Raynaud’s disease
[8] and discover new potential uses for thalidomide in the treatment of chronic hepatitis
C, myasthenia gravis, H. pylori-induced gastritis, and acute pancreatitis [27].

Other work

There is additional ongoing research using biomedical text that is not directly related
to the present work but is interesting and warrants mention. The goal of much of this
work centers on summarization or paraphrasing of knowledge-based text such as journal
articles or patient-centered narrative such as exam reports. This work is different from the
work already discussed in that the attempt is to understand the meaning of the text as a
whole instead of extracting evidence of the truth of a set of relationships. This work leans
heavily on traditional natural language processing (NLP) techniques.

Kittredge has reviewed the current NLP work on paraphrasing, for purposes such as
automatic journal abstraction. Current research structures the problem into three stages:
content planning, where the important content to be summarized is selected and given an
outline structure; sentence planning where the outline is converted to a plan of
paragraphs, sentences, and what they should contain; and realization, generation of the
output text. Ongoing empirical study of the process that writers use to condense text into
abstracts has lead to developments in rhetorical structure theory (RST) which postulates
about two dozen relations between clauses in text, and assists in constructing a tree
structure representing the text.

Kittredge developed a set of condensation process types that can be used in a specific
domain to create transformation rules for the analyzed text. These types include: local

substitutions, sublanguage dependent structural operations, anaphora removal, and
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semantic aggregation. Along with domain knowledge of what information is important, a
summary can be created [97].

Perhaps the most successful of the biomedical text summarization systems is
MedLEE, created by Friedman et al. at Columbia University. MedLEE is a general
system for medical NLP that has been adapted for work in several areas of medical
radiology, including chest radiograph and mammography reports, and discharge
summaries [33, 34]. They have also incorporated MedLEE into a system called GENIES
that automatically extracts molecular pathways from journal articles. They approach the
problem by using MedLEE to assign semantic classes with actions, processes and other
relationships that are identified in the articles by the words used and the phrase structure.
Identified phrases that are well formed with respect to pre-defined patterns are output as
bio-molecular pathways. Evaluation of the system showed that it identified 57 binary

relations in the document corpus, 55 of which were judged correct by a domain expert

[4].
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Components of the knowledge extraction process

Just as important as reviewing the high level tasks and results of prior biomedical
knowledge extraction is the examination of some of the components of that work in more
detail. The knowledge extraction process previously described defines several
components that are important to SNLA, and it is interesting and useful to understand the
prior work in terms of a focus on these components. This section will review prior work

relevant to the knowledge extraction components in the present research on SNLA in the

areas of:
e Prior work on the use of initial instance data as seed data
 Prior work on the manual and automatic generation of extraction patterns
e Prior work on the use of graph and network analysis for knowledge extraction
e Prior work on evaluation of results of medical knowledge extraction systems

Prior work on the use of initial instance data as seed data

Sergey Brin was one of the first to have the idea to use initial instance data to
discover patterns for knowledge extraction. Brin’s Dual Iterative Pattern Expansion
(DIPRE) system was initially targeted at Web pages, and was used to extract
relationships between authors and titles [39]. The basic idea is that a small set of initially
known facts (the initial instance data) is used to find the patterns in which these facts
occur from a large corpus. The initially known facts may also include negative facts, in
other words, such as two gene names are not synonyms. Then these patterns are used to
extract more facts, which in turn are used to find more patterns. Only extracted facts with
high confidence are used to find patterns. Obviously, the stability of the system is highly
dependent upon the quality of the initial instance data, as well as a reliable means of

determining which discovered instances are most reliable.
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Prior work on the manual and automatic generation of extraction patterns

Patterns, or templates that are matched against the text corpus are basic to text mining
and knowledge extraction. There are basically two kinds of templates: manually
authored, and automatically generated. The manually authored templates often can be
very reliable and lead to good results [35], unfortunately, they require a large amount of
both time and domain expertise to author [90]. Manually authored templates are also
incapable of adaptation; they must be re-authored if there is a significant change to the
syntax or semantics of the source text.

The SGPE system by Yu et al. is an example of the use of manually authored
templates. The investigators used MEDLINE abstracts to detect gene and protein name
synonyms and extracted gene names from MEDLINE abstracts and full articles by
looking for common patterns that authors use to list synonyms. These include identifying
phrases such as “dr4, also known as trail-r1”, parenthetical phrases such as “dr3 (also
called ws-1, tramp, apo-3, or lard)”, and slash separated synonym lists such as
“p21/Cip1/8dil”. Domain experts were used to determine common patterns. The
investigators estimated the precision of their system to be approximately 71% [35].
Recall was not measured.

Automatically generated templates do not require nearly as much time or domain
expertise, but the system can more easily be mislead by unexpected lexical characteristics
and it may be difficult to distinguish between good and bad templates. Therefore, systems
using automatically generated templates must have good measures of confidence for both

the discovered instance knowledge and patterns.
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The Snowball system developed by Agichtein is an example of an automatic pattern
generation approach. Snowball uses a simple confidence measure that gives high
confidence to facts extracted in the current iteration that match facts extracted in previous
generations. Then the confidence in a pattern is computed as the log of the fraction of the
positive facts divided by a weighted sum of the known positive facts, the known negative
facts, and the unknown facts. The weights are set empirically during system tuning. For
rating the confidence in the extracted facts, Snowball uses a measure based on the
number of patterns that generated the extracted fact. Essentially the confidence is one
minus the probability that all of the patterns that generated the fact were incorrect.
Snowball discards facts with low confidence on each generation, since low confidence
facts could add noise to the patterns generator [37, 40].

There are some potential problems with this approach. First, confidence is based
primarily on having seen a fact in an earlier iteration. However, if a single iteration has
several new patterns discovering the same fact, or a single pattern finds the same fact in
several places, this should logically increase the confidence in the pattern. In Snowball it
does not. Also, facts discovered earlier in the process have a propagating and therefore
stronger influence than those discovered later. Except for the initially provided facts,
which are known to actually be true, it is not clear that this should be the case.
Furthermore, Snowball can only find synonyms (facts) that are explicitly stated in a
single sentence of the text. There is no means of inferring facts, even if there is strong
evidence of synonymy across several articles in the corpus. This may explain why the

Snowball method has low recall at high confidence scores (<10% at confidence > 0.40)
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[19], and why the researcher extracting gene names synonyms chose to combine it with
other methods [19].
Prior work on the use of graph and network analysis for knowledge extraction

Many researchers have mentioned the idea that relationships among elements of the
biomedical literature can be interpreted as a graph or network. However, most of the time
the authors simply mention that relationships can be visualized this way and then do not
pursue the idea. Lindsay and Gordon mention that textual information can be thought of
as a graph where nodes are individual documents and the links are implicit connections
between documents, for example by citation, but they do not use this idea in their work
[11].

Almost no literature exists that analyzes the biomedical literature by constructing a
graph or network based on co-occurrences across articles and then uses that network as
an analysis tool for text mining and knowledge extraction. One notable exception is the
work of Jenssen et al. This group has created a gene relationship visualization tool called
PubGene, which uses an approach based on MEDLINE title and abstract co-occurrences.
Their tool allows displaying co-occurrences relationships graphically and displaying
relative expression values using color-coding. They demonstrated that the tool shows
biologically meaningful relationships by comparing the relationships found in the co-
occurrence network to that of published gene micro-array data. They also discuss the use
of the tool to visualize a related set of genes weighted by functional activity from prior
knowledge [48]. Jenssen et al.’s work is similar to Stapley and Benoit, but uses the entire
MEDLINE database rather than focusing exclusively on Saccharomyces cerevisae genes

[62].
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Jenssen et al., and Stapley, and Benoit’s work are essentially graph-based
visualization tools. They do not attempt to analyze the literature based on the
mathematical properties of the extracted network structure. Wren and Garner have taken
network analysis one step further, using a measure of node “cohesiveness” to uncover
related groups of genes within those found to share specific GO codes [47]. While their
work does use network metrics as a tool in knowledge extraction, the extracted
relationship is very generic and non-specific. In this way the present work on SNLA
demonstrating the extraction of a specific conceptual relationship using network metrics
appears unique.

Prior work on evaluation of results of medical knowledge extraction systems

Evaluation is an important part of any approach or system of knowledge extraction.
Without evaluation it is impossible to get an idea of the quality of results of an individual
system and multiple approaches cannot be compared. Unfortunately, evaluation and
especially comparison of systems is largely dependent upon a standardized test collection
or an agreed set of expert evaluators that will apply a set of criteria uniformly across the
results of various systems [42].

The use of precision and recall is often recommended and adapted for use in text
mining tasks that result in a collection of proposed facts or relationships. These are
dependent on having available an appropriate gold standard or a set of experts to judge
relevance. While several researchers have questioned the real-world significance of
measures such as precision and recall, these measures are the ones most often used, are

the current state-of-the-art, and usually nothing better is available [1, 98].
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Unfortunately for many biomedical text-mining tasks, a gold standard test set or set of
expert evaluators is often not available. Several authors have called for development of
standardized biomedical test sets, and at least two groups are working on annotation mark
up to create genomics test collected: the GENIA corpus [44] and the Medstract project
[58]. These test collections are very helpful, and have been used in the evaluation of
several systems [10, 18, 89, 92] , however they can only be used to evaluate results for
problems for which they have been annotated. For example, the Medstract project
supports evaluation of systems extracting abbreviations and acronyms, but, at least not
currently, does not support evaluation of systems extracting gene name synonyms.
Annotation is an expertise and labor-intensive process and it is unlikely that annotated
text collections will be able to keep up with the new research tasks that knowledge
extraction researchers are investigating.

Because of this problem, many evaluations are dependent upon the knowledge of
locally available expertise. Additionally, for work that produces a large number of
individual postulated facts as results, random sub-sampling is often done to reduce the
workload of the experts. One example of this type of evaluation is that performed by Yu
and Agichtein to evaluate their five synonym extraction systems. Yu and Agichtein
measured precision and recall, however they had to estimate these quantities since they
could not manually verify the truth of every extracted synonym pair, and they did not
have a complete list of all synonym pairs described in the corpus. Therefore, to estimate
precision they randomly selected 20 extracted pairs at each 0.1 increment of confidence
for each system, and had experts manually determine the correctness of the synonym

pair. Then they combined these results into average precision at each confidence score.
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To estimate recall, they used SWISSPROT as a base and designated the gold standard
list of synonyms as every synonym pair in SWISSPROT that co-occurred at list one time
in a sentence in the test document corpus. However, the investigators disagreed with the
SWISSPROT definition of gene synonymy and had six experts review the pairs in the
gold standard list. This dropped the size of the gold standard list from about 900 to about
600 pairs. The investigators did not define a specific purpose for their synonym list, and
this definition would surely effect the definition of a gene or protein name synonym. The
investigators defined a synonym as the same gene or protein, but the SWISSPROT
database uses a broader definition that appears to be more based on genes or proteins
related closely enough to group them together for the purposes of information retrieval.

It is unclear what definitions various authors use in designating synonyms in their
articles, but clearly these should be the gold standard for rating the recall of synonym
extraction. The authors attempted to chose a very restrictive definition of synonymy by
stating that the name must refer to the same gene. Unfortunately, this is an incomplete
definition. What does the “same gene” mean? In the human genome a gene may have
several names, each allele of the gene may have several names, and the gene may be
present in more than one species. Does this include alleles, which are located in the same
place on the chromosome but specify different sequences?

Research in synonym extraction requires defining what constitutes a synonym; ideally
this should be done before the experiment is conducted. Yu and Agichtein made heavy
use of the SWISSPROT database but did not agree with many of the synonym pairs in
this database. Because of this difficulty Yu and Agichtein relied on a group of six biology

experts to evaluate gene and protein name pairs as synonyms. They used the 588
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synonym pairs that the experts agreed on for evaluating their systems. The 318 pairs that
the experts disagreed on and the 83 pairs that they were unsure of were not used. This
introduces a possible source of bias into their study, since the agreed upon pairs are likely
the more common names, and these more common names may be more often found in
the journal articles examined by their system. The effect of this may have been to
positively bias their recall measures of the four approaches. Interestingly, even though
their definition was intended to be very restricted, it was solely based on expert opinion,
and the level of agreement was only 0.61 among experts, 0.83 between experts, and 0.77
overall.

Studies that evaluate text curation or classifier systems most often treat the process
like a diagnostic procedure and evaluate the curate/no-curate decision as a diagnosis.
Sensitivity and specificity are can be measured as well as area under the receiver
operating characteristic curve. These studies are also dependent upon some type of gold
standard, which usually is a group of experts. The experts are often chosen to be the same
people that make the curation decision under test manually themselves. For example, in
the system designed by Chapman et al. to detect radiology reports containing mediastinal
finds associated with inhalation anthrax, the experts were five internists who read through
the radiology reports just as they did in their medical practice [99].

This study is also interesting because while the test collection included almost 80,000
documents, evidence of anthrax was estimated to occur in only about 1% of the reports.
Clearly it would have been burdensome for the five internists to read all 80,000 reports.
However, random sampling would have resulted in a very small number of positive

documents, making it difficult to achieve statistical significance.
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The researchers resolved this dilemma by using an enriched sampling method. All
documents classified as positive by their system was included in the test set, along with
an equal sized random sample of documents not classified positive by the system, for a
total of 1,258 radiology reports. After internist review of these reports, the true-positive,
false-positive, true-negative, and false-negative rates determined in the randomly
sampled subset was extrapolated to the rest of the documents previously not classified as
positive by the system, and then sensitivity and specificity were computed [99].

Some studies do not attempt to do any formal evaluation. In particular, knowledge
extraction tasks that look for new hypotheses, called hypothesis generation systems, such
as those based on Swanson’s ABC model, are most often evaluated based on whether
anything novel and interesting is found [12, 25]. It would be difficult to apply the
measures of precision and recall to these studies because there is no gold standard to
evaluate the quality of a generated hypothesis. One method that some researchers
working in this area have used is to try to duplicate the results of Swanson using
automated systems. The experiments are deemed a success if the extracted hypotheses
include those found by Swanson, specifically the relationship between fish oil and
Reynaud’s syndrome, and that between magnesium and migraine headache [11, 27]. Of
course, this is a fairly low measure of success, and it is further diminished by the fact that
the investigators know exactly what results they are looking for in advance.

One way that hypothesis generation systems could be evaluated is by expert
evaluation of the usefulness of the results [42]. It remains to be demonstrated whether
there would be any consistency of results across experts for an evaluation of this type. It

is conceivable that these systems could be tested by putting them into use by biomedical
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researchers and then comparing the research output of those using the systems verses
those who do not. However, this would be a large, cumbersome, and long-term
evaluation project.

In summary, evaluation of knowledge extraction systems remains an essential, but
difficult, subjective, error-prone, and labor-intensive process. When available, test
collections can ease the burden considerably and encourage the production of results that
can be meaningfully compared across systems. On the other hand, some of the most
exciting and potentially useful tasks for knowledge extraction, such as hypothesis
generation, cannot be easily tested by current methods and may have to be put into actual

practice to determine whether they generate useful results.
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IV. THEORETICAL FRAMEWORK

Basic Theoretical Foundation

The central premise of SNLA is that the relationships between symbols (the S in
SNLA) in the problem domain can be represented by constructing a weighted network
(the N in SNLA) based on symbol co-occurrence using a set of recognition patterns, and
that important logical (the L in SNLA) relationships between symbols can be identified
by analyzing (the A in SNLA) the graph as a mathematical object. Here, symbols
represent units of knowledge. These can be units of language, such as terms, words,
synonyms, or units of meaning, such as concepts (each of which may have several names
or associated terms).

The recognition patterns used must be chosen specifically for each knowledge
extraction task. The mathematical analysis techniques should be reusable and applicable
to many different knowledge extraction tasks; it should be possible to create a “toolbox”
of techniques ready for application to many appropriate tasks.

It is useful to define several terms in the central premise more completely. A graphis a
mathematical object having vertices and edges. Vertices, also called nodes, represent
symbols. An edge is a connection between two symbols. Edges represent relationships
between symbols and may be unidirectional or bi-directional. A graph with directional
edges is called a digraph. A network is a graph with weighted edges, that is, each edge
has an assigned numeric value. Note that there does not need to be an edge between every
pair of vertices, and a vertex may have no edges. A path is a traversal from one vertex to
another along edges, going through zero or more intermediary vertices. More formally a

path between two vertices u,v is an ordered list of vertices starting with vertex u and
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ending with vertex v where there is an edge between each consecutive pair of vertices in
the list, and no vertex is repeated [100].

SNLA represents symbols (or semantic constructs) in the problem domain as vertices
or nodes and the relationships between semantic constructs as edges. Weighting of the
network edges is accomplished by using the frequency of observing the two symbols
together in recognition patterns as defined in Section II. Observing two symbols and their
relationship together in a recognition pattern is termed a co-occurrence. The edges of the
network are weighted by a measure derived from the count of co-occurrences for each
pair of symbol nodes connected by a relationship edge. The recognition patterns are
specific to the knowledge extraction task at hand and define what types symbols and
relationships can be recognized. Recognition patterns can be either limited and specific,
recognizing only a pre-defined set of symbols and relationships, or flexible and
extensible, recognizing an unlimited set of symbols and relationships based on some
criteria specific to the problem domain. For example, the set of MESH terms used in
MEDLINE make up a predefined set of symbols. A limited and specific recognition
pattern for these could be simply each pair of MESH terms that occur together in a
MEDLINE record. An example of a flexible and extensible recognition pattern would use
a noun phrase and verb phrase POS tagger to identify actions and entities in journal
articles. Note the different window sizes for these templates. The first example uses the
set of MESH terms used on an individual MEDLINE record as the window size. The
second example uses sentences within a journal article as a window.

Given a symbolic network created by this process, knowledge can be extracted by

analyzing the graph mathematically. The possibilities are essentially endless, but a few
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examples will illustrate the potential. Tightly related concept pairs can be extracted by
searching the graph for the vertices connected by the highest weighted edges. Symbols
that are related, but whose relationship is unrecognized in the literature can be extracted
by searching the graph for pairs of vertices that have a path between them which are not
directly connected. Sets of ti ghtly related symbols can be found by examining the graph
for clusters of high interconnectivity. Note that mathematical measurements can be
defined for what constitutes a strong connection or a tight cluster, and these
measurements can be reused across different knowledge extraction tasks requiring these
definitions. The selection of what mathematical definitions are necessary is specific to a
given knowledge extraction task
Representing and Inferring Knowledge with Symbolic Networks

Given this basic approach to representing and extracting knowledge, various kinds of
knowledge extraction tasks can be handled by SNLA by appropriate selection of the
represented concept vertices and relationship edges and their types. Both concept vertices
and relationship edges may be associated with a specific type and class. A concept node
class is the general category of what it represents. For example, in a network of gene
names, the concept node class is a gene name, and each node is a specific, instance of an
individual gene name. A relationship edge may have both a type and a class. The edge
type is the mathematical type of the edge, either bidirectional or unidirectional. The edge
class is the specific relationship represented between two vertices of given type. Note that
a network may have many vertices of the same class, but only one node for each specific
instance. A network may have many edges of the same type and class. These symbolic

networks are different from semantic networks in that semantic networks are created by
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domain experts. Semantic networks are created in part to allow document authors to use
codes and mark up to precisely identify important types and relationships within their
documents. Symbolic networks are created automatically from pre-existing text given a
set of symbol and relationship types, as well as a means of identifying these symbols and
relationships with some measurable confidence. Note that the symbols and relationships
in a symbolic network are not expected to be 100% accurate. Uncertainty is taken into
account when analyzing the network.

In the simplest network, all the vertices may be of a single class and all of the edges
may also be of a single class and type. For example in a network representing synonymy
between gene names, each node represents a name for a gene, and each edge represents a
synonymous relationship between gene names. However, much more complex networks
can be created. There may be several classes of vertices representing several groups of
symbols. For example, there may be subject vertices and action vertices. In this network
an edge may represent “is capable of” where an edge between a subject node and an
action node means that the subject is capable of an action. In this network there would
not be any edges between subjects or between actions, since the edge represents a
relationship between a subject and an action. The network can be made more complex by
adding an additional class of edge, say an edge between subjects that represents the
subjects being co-located. In this case there would never be an edge of class co-located
between a subject and an action or two actions.

Edge and Relationship Types
While the classes of symbols and relationships are specific to the knowledge extraction

task, relationship types have common characteristics based on their mathematical
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properties of invertibility and transitivity. Each relation falls into one of a few basic
types: invertible (symmetric, bi-directional) verses non-invertible (asymmetric or uni-
directional), and transitive verses non-transitive. An invertible relationship is one that is
symmetric, if A has relationship R with B; then B has relationship R with A. These are
represented in SNLA as a bi-directional edge. A transitive relationship is one that applies
across connections. If A has transitive relationship R with B, and B has relationship R
with C; then A has relationship R with C.

SNLA allows these various types of semantic relationships to be represented by
controlling the directionality of the edges and the types of nodes between which edge
types may appear. This will be illustrated with examples of several different types of

edges and the kinds of symbolic networks that they help represent.
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synonymous synonymous

synonymous
(inferred)

Figure 3: Simple Bidirectional Network

Simple bidirectional networks include only relationships are invertible and transitive.
For example in the network shown in Figure 3, if the labeled nodes represent terms, and
the bidirectional arrows represent “is synonymous with”, then the solid arrows state that
A is synonymous with B, and B is synonymous with C. The dashed arrow, which
represents A’s synonymy with C can be inferred, and this relationship is invertible: if A is
a synonym of C, then C is a synonym of A. These relationships and the method of
inference continue to be true in much larger networks, even across multiple nodes.

In contrast, a simple unidirectional network includes only relationships that are
transitive, but not invertible. For example in the network shown in Figure 4, if the labeled
nodes represent biologically active substances found in an organism, and the bidirectional
arrows represent “influences”, then the solid arrows represent the knowledge that
substance A influences substance B, and substance B influences substance C. The dashed
arrow, which represents substance A’s net influence on substance C, can be inferred.
Note that this relationship is not invertible. Substance C may have no effect on substance
A atall. Again, the method of inferring the relationships between substances is valid in

much larger networks, and can be followed across multiple nodes and arrows.
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influences influences

influences
(inferred)

Figure 4: Simple Unidirectional Network

A useful property of simple, unidirectional relationships is that the conceptual
relation, such as “influences”, can be general enough to apply to many different kinds of
nodes. The nodes do not all have to be of the same semantic type, such as the biologically
active substances in the example above. The same type of unidirectional relationship can
represent the semantic association between concept nodes of very different types, such as
between pharmacologic substances and biologic processes or between biologic processes
and diseases. In fact, these different kinds of relationships can be expressed in the same
network, and that network can be used to infer knowledge across the concept node types.

For example, Figure 5, shows a simple relationship, adapted from Weeber [27],
between thalidomide (a pharmacologic substance), IL-12 (an immunologic factor), and
acute pancreatitis (a disease). Thalidomide is known to influence the production of IL-12,
and IL-12 is thought to play a role in susceptibility to acute pancreatitis. We can therefore
infer that thalidomide may have an influence the disease acute pancreatitis. Note that the
unidirectional relationships preclude inferring nonsense such as acute pancreatitis

influences IL-2 or that IL-12 influences thalidomide.
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Figure 5: Relationships between Thalidomide, IL-12, and acute pancreatitis

The directional nature of this type of network is capable of representing restricted
relationships that increase the validity of inferred relationships. When constructed, the
network can be restricted to include only relationships between types that are
predetermined to be acceptable. For example, in a network including concepts of
pharmacologic substances (P), immunologic factors (I), and diseases (D), construction
can be limited to only include the associations P->I, [->D, and P->D. Note that since
disease nodes have no outgoing edges, the network will never lead to the inference that a
disease effects pharmacologic substances or immunologic factors. And since
pharmacologic substance nodes have no incoming edges, the network will never lead to
the inference that a disease or immunologic factor affects a pharmacologic substance.
This property of a network built on a restricted set of relationship types is termed
symbolic network logical consistency.

For greater semantic richness, it is possible to extend a network such as this with
edges representing the influence of one immunologic factor on another, that is, the I->I
edges. This would allow the discovery of a drug’s effect on a disease through an
intermediate immunologic mechanism. Adding this type of relationship greatly enhances
the expressiveness and usefulness of the network while maintaining the desirable

property of network logical consistency.
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Integration with the Knowledge Extraction Framework

SNLA can play a key role in several important parts of the previously defined
knowledge extraction framework. This includes the components: rating of instance
confidence, rating of template confidence, and accumulate of instance knowledge.
Mathematical analysis of the graph properties provides the connection between the
symbolic network and the components of the knowledge extraction process.

Instance confidence can be derived from the symbolic network by using the co-
occurrence information contained in the network edge weights, and comparing this to
some threshold or standard value. This can be either a binary or continuous measure. A
binary measure would set a threshold, relationships with co-occurrences above this value
would be treated as true, and those below the value would be treated as undecided. A
continuous measure could be used as a relative measure of certainty. For example, the
structure of weighted connections between a set of symbols could be compared to the
probability that the structure could occur randomly in a network with similar average
properties. The less random the structure, the higher the confidence that the knowledge
represented by that structure is actually true.

The mathematical analysis of the symbolic network can also be used in pattern
selection, based on the idea that a good pattern should create networks that have the
properties appropriate for the kind of knowledge being extracted. The investigator must
first determine what kind of network structure will best represent the extracted
knowledge of interest. Patterns that lead to appropriately constructed networks are kept,
and those that lead to incorrect constructed networks are discarded. For example, say that

the task is to determine sets of synonyms. In this case the graph should have the
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appearance of a number of tightly connected clusters that are disconnected from each
other. Obviously, a graph where every node is connected to every other would not
represent the synonym relationship, and would imply that every concept in the network
was a synonym with every other, an unlikely situation. Conversely, a graph where no
nodes are tightly connected with any others would imply that there are no synonyms in
the data set, also an unlikely situation if the data set contains the knowledge that we think
it does. Graph analysis techniques include measures of graph clique-ness and clustering
that can be used as measurements for these knowledge extraction tasks [51-54].

Third, mathematical analysis of the graph structure can revel new instance
knowledge. Instance knowledge consistent with the problem space may not appear
directly in the data set, but instead it may be possible to infer this knowledge based on the
semantics of the concept nodes and the edges that represent transitive relationships.
Graph traversal algorithms such as Dijkstra’s shortest path algorithm [101] can be used to
determine which symbols are connected and which are not, and how the strength of those
connections.

A graph traversal algorithm called weakest link, strongest chain, has been created and
may be especially useful for knowledge inference in symbolic networks. Weakest link,
strongest chain can most easily be explained by using a chain made of links as a
metaphor for relationships between concepts or terms. The strength of the chain is the
strength of the weakest link, and is analogous to the confidence of the relationship. With
a set of chains connecting two objects, the strongest connection is the strongest individual

chain.
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The co-occurrence counts are used directly as the edge weights in the graph. The edges
may be directed or non-directional. Applying the chain metaphor to logical inference, the
strength of a synonym “link” between two gene names is the number of co-occurrences
of the two gene names. A chain of inference can be constructed between a series of
concepts. The strength of that chain is the strength of the weakest link of that chain, that
is, the smallest number of co-occurrences in the set of symbol pairs connecting the two
given symbols at the end of the chain. Multiple chains may connect a pair of symbols.
The strength of the strongest connecting chain is a measure of the confidence that two
symbols actually are related to each other according to the semantics of the relationship
edge. The result of applying the weakest link, strongest chain algorithm to the co-
occurrence data is a list of the strongest connections between each pair of connected
symbols for a given relationship class. This “candidate” instance knowledge can then be
rated according to the methods used to evaluate instance confidence discussed above.

The implementation of this algorithm is much like the implementation of the classic
shortest path algorithm [101]. However, instead of adding the edge weight as a path is
walked, a minimum is taken, and instead of choosing the path with the shortest total, the
path with the largest value is taken. The time complexity is also similar to the shortest
path algorithm, being proportional to the square of the number of symbols (graph nodes)
[101].

A variation of the weakest link, strongest chain algorithm would treat the individual
links as confidence measures and evaluate the strength of a chain as the product of the
individual confidences. This variation requires a method of converting the co-occurrences

at each connection into a probability. This can be done using a Poisson random-graph
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model as discussed above, or by more sophisticated methods such as examining the
statistical distribution of individual node metrics.

A particular strength of the weakest link, strongest chain algorithm is that it
automatically discounts indirect connections. Since the strength of a chain is the strength
of the weakest link, a long chain must have a larger number of strong links to be as strong
as a shorter chain. Therefore, longer connections must include more co-occurrences (or at
a minimum, more certain information) than shorter connections to have the same
confidence. These applications of SNLA are used in the software system investigating the
research question on extracting gene and protein name synonyms from MEDLINE
abstracts.

SNLA Provides a Unified Approach

Srinivasan quotes Hearst when she states that “the key goal of mining whether from
well structured databases or numeric data or from text collections is the discovery of new
knowledge” and states that the goal for information extraction systems is to “extract
nuggets of information from collections of texts” [9]. She lists several types of extracted
knowledge: referential (lists of names of drugs), attributive (attributes of a gene or set of
genes), or relational (interactions between proteins) [13]. SNLA is useful in many of
these knowledge extraction and text mining tasks and provides a unified approach to
several kinds of knowledge extraction tasks that have been previously treated separately.
For example, referential and attribute lists can be approached as tight network clusters.
Relational interactions can be analyzed following relationships along network edges.

Logical inference can take relational interaction on step farther by connecting

concepts (or more generally, symbols) through a chain of reasoning. In this way, new
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potential discoveries can be identified based solely on evidence in the medical literature.
Researchers can then pursue the most promising of these discoveries. Currently most
work on applying logical inference to medical bibliographic data uses Swanson’s ABC
model [11, 25, 27]. This model is limited in that it only can connect three concepts by
two relationships in a linear “A implies B implies C” progression. SNLA provides much
more general logical processing, allowing discovery of relationships separated by any

number of intermediate concepts.
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V. RESEARCH QUESTION AND OPERATIONAL DEFINITIONS

In this section the research question will be further defined, focusing on stating how
SNLA will be applied to the research question and supplying operational definitions
necessary to fully specify the research question.

Applying SNLA to the Research Question

Again, the research question to be studied is whether SNLA can be used as a tool in
knowledge extraction, and specifically, can it be used to extract a high quality set of gene
and protein name synonyms from MEDLINE database records?

To apply SNLA to the task of gene and protein name synonym extraction, this task will
be outlined in terms of the knowledge extraction framework detailed above. Each
component of the knowledge extraction framework will be defined for the purpose of
studying the research question, and the components that will use SNLA will be described.
The task-specific portions of SNLA as applied to the research question will also be
specified.

Operational Definitions

In order to detail the specific knowledge extraction method to be used in studying the
research question, it will be useful to have an operational definition for key constructs to
be used in defining the research question.

Gene and protein names
The research will focus on gene and protein short names and symbols. Full multi-
word names of genes will not be considered for two reasons. First abstracts appear to

make much heavier use of short names and symbols than full names, perhaps to save
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word count. Second, recognizing multi-word full names is a difficult problem in itself
[48, 56], and would complicate the investigation of the research question.

Gene and protein nomenclature is inconsistent and complex, and often the difference
between a gene name and the name of the corresponding protein is expressed in
typesetting features (e.g. italics) that are not present in MEDLINE abstracts. For the
purpose of this research, no distinction will be made between names of genes and the
proteins that they code for.

The upper and lower case of names as well as individual characters within names will
not be considered as significant. Examination of the MEDLINE database showed no
consistent or significant differentiation between upper and lower case gene names,
although gene names for some species, such as yeast, tended to appear in lowercase,
while for other organisms, such as human, usually appeared in uppercase.

These names will all be collectively termed gene and protein names, gene/protein
names, or when the context makes the usage clear, simply names.

Gene and protein name synonyms

What exactly is meant by a gene or protein name synonym? One possible definition for
a name synonym is that the names specify exactly the same sequence of base pairsin a
specific organism. However, this definition is very limiting. For example, this definition
would not treat names of different alleles of the same gene as synonymous, nor would it
treat names for genes of similar sequence and function in different organisms as
synonymous.

It will help to define the intended use for a list of gene and protein name synonyms. For

the purposes of studying the research question, the intended use of the synonym list is to
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aid researchers in literature search and retrieval, and to provide an essential first step in
gene knowledge extraction research by collapsing many names into a single concept.
With much biomedical research being done on non-human organisms, it is reasonable to
assume that many researchers would want to look at literature that discusses these related
genes. For similar reasons, it is helpful to not separate gene and protein names related to
the same biological product.

The definition to be used here will be based on the stated intended use of the synonym
list. The operationalized definition of gene name synonym is that two gene or protein
names are synonyms if they specify two genes that are identically located in a single
species, or if they specify for functionally equivalent genes or proteins between two
species that are treated as homologs in the biomedical literature. Functional equivalence
is defined in terms base pair sequence similarity and synteny, the preservation across
species of gene order and location inter-relationships [102]. The two synonymous gene
names together constitute a synonym pair.

Applying the Knowledge Extraction Framework to Synonym Extraction

The application of each component of the knowledge extraction framework to the task
of extracting gene and protein name synonyms from MEDLINE abstracts framework will
be described here. Task-specific details of the application of SNLA will be described in
the sections covering the relevant knowledge extraction components. The components of
the knowledge extraction system for extracting gene and protein name synonyms are as

follows.
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Bounded Problem Domain

The domain is the set of gene and protein names used in the biomedical literature. The
knowledge in this domain includes how genes and proteins are discovered and named,
and why genes and proteins often have several names with many variants [56, 57]. These
names can be grouped into groups of synonyms, using the operationalized definition of
synonymy given above.
Data Set

This is the set of data to be used as the source material for knowledge extraction. For
the research question, the abstract field of a subset of MEDLINE database records was
used. It should be noted that this is a database very heavily biased toward research
published in English [1], therefore it is expected that the gene and protein synonyms will
most often be those used in research done in English speaking countries. The data sets
consist of abstracts from a year’s worth of MEDLINE records containing the word
“gene,” and retrieved on-line using the PubMed query system. Abstracts meeting the
query criteria from the year 2001 served as training data used in the development of the
system. Abstracts from the year 2002 served as validation data, allowing the algorithm to
be checked for robustness and generality on a dataset separate from the training data.
Finally, abstracts from the year 2003 were used as the test collection. The final version of
the program developed using the training and validation sets was run on the test
collection and results computed. This will be presented in more detail in the sections on

experimental design and results.
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Initial Knowledge

Two forms of initial knowledge are used in this research. First, a set of orthographic
rules are used that will specify combinations of letters, numbers, and symbols likely to
constitute a gene name. These orthographic rules form a portion of the recognition
patterns used to extract synonym relationships. This is a very simple form of NER [41,
43, 72,77, 78]. This simple approach to NER has been used successfully by other
researchers [10, 36], and helps to reduce the size of the constructed network, as well as
some of the noise. The orthographic rules are based on the analysis of the different types
of gene names done by Proux et al. [57] and are similar to that used by Fukuda et al. for
protein names [21], with some added flexibility to support the greater irregularity of gene
names and increase recall at the expense of some precision. The named entity reco gnition
does not have to be perfect since the SNLA network is the main mechanism of screening
out noise (see rating of instance confidence below), hence the sacrifice of some precision
for recall. Descriptively, the orthographic rules recognize gene and protein names as
space or punctuation delimited strings, which must begin with a letter and contain
between three and fourteen characters consisting of any number of letters, numbers and
hyphens. The regular expression syntax supported by the Python programming language
[103], was used to represent gene names in the recognition patterns combined with
orthographic-based procedural rules for determining what symbols are likely to be gene
names. A list of stop patterns was also used to help remove symbols that look like gene
names, but are not (e.g., “mRNA”).

The second form of initial knowledge is a small number of known correct gene and

protein name synonym pairs that will be used to “seed” (or initiate) the knowledge

82



extraction process. The initial knowledge will be used to find patterns that then can be
used to find more instance knowledge. The initial knowledge was obtained by choosing
the most common gene name pairs found in the training dataset that were listed in
SWISSPROT. During training, a set of eight initial seed pairs was found to be adequate.
Raising the number of seed pairs to 12, 16, 24, and 32 did not significantly change the
performance.
Instance Knowledge

These are instances of the synonym relationship between gene and protein names. In
terms of SNLA, gene and protein names are the vertices, and the edges represent the
synonym relationship between names. The network edge weights will be equal to the
number of times that the synonym relationship has been detected by the patterns in the
data set. This is the co-occurrence count as discussed above. The result of the extraction
process will be a list of synonym name pairs, which can then be evaluated for accuracy.
Recognition Patterns

These are patterns or templates for recognizing instance knowledge in the data set. For
the research question, recognition patterns will be applied to the text in MEDLINE
abstract fields sentence by sentence. Therefore the window size or granularity of the
recognition patterns will be a single sentence [38]. A recognition pattern will consist of
two or more repetitions of the orthographic pattern for a gene or protein name separated
by the text found between known pairs. One or two leading and trailing words will be

included in the pattern to increase the contextual information.
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The initial set of recognition patterns was found using the initial knowledge. Thereafter,
more recognition patterns were detected using the accumulated instance data. Only the
discovered instance data with the highest confidence will be used to help find patterns.

A specific example will help make this clear. If the known synonym pair is (cIp1,

waF1), and this name pair is found in the text:

Two percent or greater nuclear staining with WAF1/CIP1 monoclonal antibody was determined
by hazard ratio analysis to constitute positive p21 expression.[104]

Then the following four patterns will be extracted by the system, where $GENES

represents the orthographic pattern that matches possible gene and protein names:

$GENES$/$GENES
with $GENES$/ SGENES
$GENES$/$GENES$ monoclonal

® with $GENE$/SGENES$ monoclonal

Application of Patterns to the Data Set

This is the process of reviewing the data set for matches with the recognition patterns.
In this case, the abstract field of the MEDLINE records are searched for sequences that
match the recognition patterns. For matching sequences, the gene and protein name
portions identify the evidence for the synonym pair. This results in one or more co-
occurrence counts being added to the network. This provides evidence to the next step,
extraction of the instance knowledge.

Again, a specific example will make this clear. The pattern “with $GENES/$GENES”

matches the following sentences:

Of the children with NOD2/CARD15 variants, 44% were < or =5th percentile for weight at
diagnosis, whereas only 15% of children without mutations were < or =5th percentile (chi2=8.7;
p=0.003; OR=4.5; 95% CI=1.4-14.4).[105]

Human glioma xenografts treated with PTEN/MMAC gene transfer exhibited significantly
decreased vascularity both in an orthotopic and in an ectopic model. [106]
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The pair co-occurrence (carp15, Nob2) is extracted from the first sentence, and the pair
(MMAC, PTEN) is extracted from the second.
Extraction of Instance Knowledge
Instance knowledge is extracted by applying the weakest link, strongest chain

algorithm to the co-occurrence network. This algorithm extracts name pairs using both
direct (a found co-occurrence) and indirect (inferring synonymy) evidence of synonymy.
It was found during algorithm training that synonym pairs having only indirect evidence
of synonymy and a weakest link, strongest chain count of one had a very high error rate.
The current implementation only follows inference chains links having a count of at least
two.
Rating of Instance Confidence

Rating of instance confidence is important in order to select the highest-confidence
pairs for the next iteration of pattern and instance extraction. SLNA is used in this
component. Instance confidence will be rated by comparing the co-occurrence count with
the predicted count in a random network with the same number of vertices and edge
counts [52, 53]. This will give the probability that a synonym relationship with the given
co-occurrence count would be seen by chance in a random network. Lower probabilities
of the co-occurrence count being seen randomly imply a higher confidence in the
instance knowledge. This idea is similar to the noisy or function, where the probability of
a conclusion based on multiple co-occurrences being correct is defined as one minus the
probability that all of the observed co-occurrences are incorrect [57].

Since many synonym relationships are examined simultaneously, it is important to take

this into account, much like applying the Bonferroni correction for multiple comparisons
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in statistical hypothesis checking [107]. Therefore the measure is based on the probability
of seeing at least one synonym relationship of the given co-occurrence count or greater in
the entire network.

Mathematically, this can be described as follows. Given a random graph created by a
Poisson process with C nodes, M = C*(C-1) possible edges, and N total co-occurrence
counts in the entire network, the probability P that the co-occurrence count between any

two nodes will have a count of n is:

-u

P(X =n)= “u=N/M

u'e
n!
(Equation 1)

Then the probability that there does not exist at least one edge with n or greater co-

occurrence counts represents our confidence in the synonym pair and is:
k=n-1 M
confidence = P(X <n) = { D> P(X = k)}
k=0

(Equation 2)

Which reduces to:

=n—1'une“ﬂ M
= f,u =N/M

k
confidence = P(X < n) = [

k=0
(Equation 3)

This is used as an estimate of the probability of the synonym relationship being
detected in the literature by chance alone. During training, it was found that a confidence
threshold of 0.999 was necessary in order to select out only the best pairs for use in the

next iteration of extraction.
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Recognition of New Patterns

This is the process of recognizing new extraction patterns, based on the initial
knowledge and gathered instance knowledge from the data set. For the research question,
recognition patterns were created by first examining the text in the area of known pairs of
name synonyms within the sentences in the data set as described above. From this text,
recognition patterns were built by using the orthographic pattern (described in the section
on initial knowledge) to replace the gene and protein names, along with text fragments
found near the known gene and protein name pairs in the data set. The initial recognition
patterns will be found by searching the text for the initial knowledge seed pairs.
Subsequent recognition patterns are found by search for new high confidence synonym
pairs found in the prior iteration.
Rating of Pattern Utility

This is the process of evaluating the quality of the extraction patterns. Given a set of
patterns, we wish to use the subset that leads to the best results. SNLA is used to access
the quality of subsets of the extraction patterns by examining the contribution of the
extraction patterns to the network structure. For gene and protein name synonyms, the
expected network structure is a large number of tightly linked small clusters. This follows
directly from the definition of gene/protein name synonym and our domain knowledge of
gene and protein names: there should be more gene names than there are genes, and
groups of gene and protein name synonyms should be distinct from each other. The
cluster size (the number of names in a group of name synonyms), should be relatively
small, say less than 20, compared to the number of names in the network nodes, which

may be several thousand (this is based on examining the number of synonyms for a gene
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in Locus Link [46, 108] and allowing for orthographic variants). The clusters should be
tightly linked, this means that the nodes in each cluster should be much more strongly
connected to other members of the cluster, and non-connected, or only weakly connected
to nodes (names) that are not part of the cluster.

Mathematically, this can be measured as a property of the network. Authors have
previously described a “clustering coefficient” which is the degree to which a node’s
neighbors are neighbors of each other [51]. The average taken over all the nodes of the
network is the mean clustering coefficient or MCC. A related concept is the non-
clustering coefficient, which would represent the degree to which a node’s neighbors are
not neighbors of each other. The average taken over all the nodes of the network is the
mean non-clustering coefficient or MNCC. A high quality pattern would create a network
structure having a MCC and a low MNCC. This can be reduced to a single measure by
taking the ratio of MCC to MNCC. This ratio is then the measure of quality for the
pattern. The best patterns will be selected and used to extract knowledge. Inferior patterns
will be thrown away.

To formally define MCC, we will compute the clustering coefficient as the average co-
occurrence count between neighbors of a given node, and then compute the mean
clustering coefficient as the mean of the average co-occurrence count between nei ghbors
of a given node for all nodes. Only nodes with at least two neighbors are included, since
these are the only nodes that could possibly have co-occurrences between neighbors.

Given a network C with |C] vertices, define neighbors(c) as an operation that returns the
list of the vertices which share an edge with vertex ¢, that is, those that have at co-

occurrence count of at least one with the gene/protein name associated with node c. Also
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define an operation weight(a,b) as returning the weight of the edge between nodes a and
b, that is, the co-occurrence count of the pair of gene/protein names associated with nodes
a and b. The standard combination function of n items taken x at a time is notated as

combinations(n,x). Then the clustering coefficient for each node c is:

1
combinations( ’neigbors(c)

GCe)= Z weight(a,b)

X
> 2) Va,beneighbors(c)|a=b

(Equation 4)

And the average over all the nodes in the network with at least two neighbors is:

MCC=~1— !

C

Z weight(a,b)

X
52) Va,beneighbors(c)|a=b

Velneighors(c)>1 combinations( ]neigbors(c)
(Equation 5)

Furthermore, we can compute the mean non-clustering coefficient (MNCQC) as the
mean of the average link count between neighbors of a given node and non-neighbors of

the given node for all nodes. The non-clustering coefficient for each node c is:

1
NCC(c) = ight(a,b
(C) Ineigbors(c), X ('CI = ’neigbors(c)p & Vaeneighbors(c;b:‘;fi;fl;orsgf) )

(Equation 6)

And the mean non-clustering coefficient for the entire network is:

MNCC=i L

a2

ight(a,b
neigbors(c)l X GC‘ = lneigbors(cﬁ ) Vaeneighbors(c)%b?:fi;iorsgg )

(Equation 7)

Then the quality of a pattern based on the network structure created by adding the co-
occurrences detected by the pattern to the current network structure is:

quality = MCC/ MNCC
(Equation 8)

Similarly, the CC/NCC ratio can also be computed for an individual node. This value

will be useful in sorting high confidence extracted pairs before using these pairs to find
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new extraction patterns. To order the extracted high confidence pairs, the CC/NCC ratio
for each of the two nodes in a synonym pair will be computed, and then the individual
node ratios will be multiplied. This will give a measure of relative confidence for the
extracted high confidence pairs that can be used to sort the pairs.

Evaluation

The evaluation of the system is based on comparing the extracted synonym list to a
gold standard and computing precision and recall for the synonym pairs. The absolute
number of correct pairs extracted will also be evaluated, as well as a measure of the
efficient use of the initial seed pair knowledge. This will be fully described in the section
on experimental design.

Gold Standards

No complete list of gene and protein name synonyms currently exists. There are also no
standard test sets for name synonyms, although some do exist for abbreviation extraction
and other biomedical text mining tasks [44, 46]. However, there are data sets that can
function as reasonable approximations of a gold standard for the purpose of studying the
research question.

A gold standard synonym pair set for evaluating precision was constructed out of
symbol, synonym and alias fields from several protein and genome databases available
on-line. The gold standard synonym pair set for evaluating recall was constructed by
extracting the synonym pairs listed in the SWISSPROT database [109] that are present in
sentences in the abstract test collection. Details on how these test sets were constructed
and used as gold standards will be more fully described in the section on experimental

design.
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Results

Results are the final useful output of the system intended to answer the initial
knowledge extraction question. For this research question, the useful output will consist
of the gene and protein name synonym list, as well as the evaluation results. The gene
and protein name synonym list will be a useful contribution in improving the searching of
the gene and protein biomedical literature. The evaluation results will help establish the
credibility of SNLA as a tool in knowledge extraction.
Algorithm for Gene and Protein Synonym Extraction

At this point the full algorithm for extracting gene and protein name synonym pairs
from MEDLINE abstracts can be presented in terms of the components discussed above.
The steps of the algorithm are as follows (see Figure 6):

1. Select the data set of MEDLINE abstracts.

2. Parse the abstracts into sentences.

3. Filter out any sentences that do not contain a least two potential names, based
on the orthographic pattern and procedural rules for gene and protein names.

4. Create an empty high confidence pairs list.

5. Establish a threshold confidence value for instance knowledge to be used for
creating new patterns. A confidence threshold of 0.999 was found to be
effective during training and was used here.

6. Based on examining the training data, provide a small number of gene and
protein name synonym pairs to be used as the initial “seed” data. This results in
the initial set of instance knowledge. Place these pairs into the high confidence

pairs list. Eight initial seed pairs were found to work well.
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8.

25

10.

Create an empty candidate pattern list.

Create an empty knowledge network.

Sort the high confidence pairs list based on the product of the MCC/MNCC
ratio for each of the two symbol nodes in the pair. The pair with the highest
product was used to find new patterns first, followed by the other high
confidence pairs in descending order. For the initial seed pairs, which are all
known to be correct, the ordering is not significant, and therefore a default
MCC/MNCC node product value of 1.0 was used to for the initial seed pairs.
Construct candidate recognition patterns based on the text fragments that occur
within the text between the current set of high confidence pairs. Add the new
patterns found to candidate recognition pattern list. Each new high confidence
pair is used to scan through the test collection, looking for sentences containing
the pair, and constructing four patterns based on the matching sentences. As
previously described, the four patterns consist of the pattern created by the gene
name placeholders for the symbols of the pair along with the text in-between,
along with three additional patterns formed by including the non- gene name
token preceding the pair, the non-gene name token following the pair, and the
pattern formed by including both the non-gene name token preceding and
following the location of the gene name pair in the matching sentence. Stop
adding patterns to the candidate pattern list when all high confidence pairs have
been used or the number of patterns reaches some predetermined limit. During

training, a pattern count limit of 150 was found to be adequate, balancing the
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need to consider a large variety of patterns with the processing time needed to
evaluate them.

For each new candidate pattern, search the text collection and record the set of
symbol co-occurrences that the pattern detects.

From the list of candidate patterns, determine the subset whose co-occurrences
produce the knowledge network with the highest quality score. During this step,
each subset of patterns is treated as creating its own, temporary, knowledge
network. This is essentially a discrete combinatorial optimization problem,
which is best solved using a genetic algorithm [110, 111]. Details of the genetic
algorithm are included in the following section on software implementation.
Remove the patterns selected by the previous optimization step from the
candidate pattern list and add their co-occurrences to the knowledge network.
Extract the synonym pairs from the knowledge network.

Using the confidence threshold selected above, replace the contents of the
previous high confidence pairs list with the set of extracted synonyms that have
not yet been used to generate patterns and whose co-occurrence count is greater
than that required for the confidence threshold.

If the high confidence pairs list is not empty, then go to step 9.

Scan the network to extract out the final list of gene and protein name synonym

pairs and the computed confidence of each pair.
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Figure 6: Synonym Extraction Algorithm
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VI. SOFTWARE IMPLEMENTATION

The software system is implemented in object-oriented Python [1 03]. Python was

chosen because it allows rapid, object-oriented development, and provides high-level

built-in data types such as dictionaries and lists that make the implementation

straightforward. Object-oriented design allowed the system to be developed in an

incremental, testable manner, and facilitates future extension as well as code reuse for

other research applying SNLA-based techniques.

From a high level perspective, the software system takes a large text file containing

MEDLINE records as input, performs analysis using the SNLA-based algorithm

described above, and produces as output a list of synonym name pairs along with the co-

occurrence count and confidence measure for each pair. A separate lo g file contains the

list of patterns found and chosen, as well as the list high confidence pairs used at each

iteration to generate new patterns.

SNLASynonyms
1 1
* 1
SNLAGraph SNLACoOccurrences SNLAPatterns
1 1
| 1 1
| Table

Figure 7: Entity-Relationship Diagram of Software Architecture




list of uppercase gene name pairs.

SNLACoOccurrences. This module implements the class used to track the
sentences a symbol co-occurrences has been found in. Since many patterns may
match a given co-occurrence within a particular sentence, it is important to
make sure that a symbol co-occurrence within a sentence is used only once. The
SNLACoOccurrences object tracks the source identifiers (sentence numbers)
where a symbol co-occurrence has been found. This allows the main function in
the sNLASynonyms module to check whether a co-occurrence is new or has
already been used.

Table. This module implements a sparse 2-dimensional table, where the row
and column keys, and the value stored at the combination of keys, can be any
Python value. The implementation uses a two-level Python dictionary structure
to maximize time and space efficiency. An efficient Table class is central to the
implementation because the SNLAGraph and SNLACoOccurrences modules use

it heavily.

Implementation Parameters, System Constants, and Design Decisions

Several parameters, system constants and design decisions had to be determined while

implementing and training the system. These decisions will be listed and described here.

For each parameter, constraint or design decision a descriptive title will be followed by

an explanatory paragraph that details the function of any related parameters. Parameters

and constants are listed by their associate module name, followed by a period, followed

by the parameter name.
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Symbol Delimiters

In order to parse the sentences into individual tokens, white space and other delimiters
were used to separate words and other sequences of characters. Since parsing was
completely lexical, a decision had to be made on which punctuation characters would be
delimiters and which could appear within a symbol. The system constant
SNLAPatterns.TOKEN DELIMITER_ LIST contains the characters that are treated as
symbol delimiters. These were determined during system training and include: period,
common, parenthesis, braces, brackets, equals, semicolon, colon, explanation point,
question mark, caret, dollar sign, pip, forward slash, percent sign, greater-than, less-than,
plus, ampersand, and single and double quotes.
Case Insensitivity

Early on in the development of the system it was found that there was little
consistency in the use of capitalization in the training data. Making distinctions about
gene and protein name symbols based purely on the capitalization was not found to be
useful. In fact, it was counterproductive to distinguish between upper and lower case
gene symbols. Therefore the system searches for symbols case-insensitively and converts
recognized gene name pairs to uppercase for entry into the knowledge network.
Pattern Length
In order to limit the overall symbol distance between candidate synonym pairs, a

system parameter SNLAPatterns .MAXIMUM PATTERN LENGTH is included to limit the
maximum length of recognition patterns. This includes slots for gene names as well as
words and punctuation providing context. During training a value of 10 was found to be

an adequate limit.
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Determining Possible Gene Names

The software uses a function in the sNLAPatterns module called isGeneName O to
determine whether a delimited string might be a gene name. This function is not intended
to provide highly accurate named-entity recognition. Instead, this function simply looks
for orthographic evidence that a symbol may be or is likely not to be a gene name. While
this method would not be accurate on its own, the context provided by the synonym
patterns provides some additional gene name entity filtering later in the algorithm.

There are two reasons that this simple form of gene and protein name entity
recognition was chosen. First, one of the goals of the research was to determine what
level of performance could be obtained using the contextual information provided by the
synonymy relationship without high quality named entity recognition, as well as to
quantify the improvement that accurate named-entity recognition could provide. Second,
getting approval, obtaining the source code, and integrating a named entity recognizer
from another research group into the software system could have become a complex
project in and of itself.

Developing and implementing a set of orthographic rules for making approximate
“gene name, not gene name” decisions was straightforward. First, the symbol must match
the regular expression for a gene name. The regular expression is given in the system
constant SNLAPatterns.GENE_NAME_REGEX. Basically it allows gene names to contain
mixes of letters and numbers three to fourteen characters in length. Colons as well as
some other special characters such as asterisk are allowed.

Second, it must not be of a form listed in the stop list. The stop list is a list of regular

expressions found in the training data to often occur in gene name contexts but that do
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not represent gene names. Included are terms such as “mRNA”, and “VIRUS”, as well as
patterns such as “.*-ASSOCIATED”, and “*.-INDUCED”. Note that the recognized
symbol patterns may contain gene names, but not be gene names in and of themselves
(e.g., “WAF1-ASSOCIATED?”). The current version of the software makes no attempt to
extract out the gene name portion. The stop list is implemented as system constant
SNLAPatterns.GENE NAME STOP LIST.

Lastly a series of orthographic rules are applied to the symbol. Symbols consisting of
all lower case letters are most likely to be English words and not considered gene names.
A simple future improvement would be to incorporate a dictionary to screen out
lowercase English words, but accept non-words. Symbols containing mixes of letters and
numbers are considered gene names. Finally, gene names are not allowed to begin with
the characters dash, colon, period, asterisk, or tilde, and they are not allowed to end with
the characters dash, period, or colon.

Filtering Out Non-Contributing Sentences

The algorithm works with a text window size of one sentence, that is, evidence of
name synonymy must occur within a sentence for the algorithm to recognize it. This
implies that a sentence must contain at least two potential gene names in order to
contribute to the knowledge network. Furthermore, the system contains a parameter
MAXIMUM EXTRACTED DISTANCE that sets the maximum number of non-gene or protein
name symbols allowed to occur between a pair within a pattern. A value of 4 was chosen
during system training. Therefore, any sentences that do not have at least two gene names
separated by less than or equal to the MAXIMUM EXTRACTED DISTANCE will not contribute

any information to the algorithm and can therefore be filtered out before processing. This
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reduces the size of the data set by about two-thirds, which helps with efficiency since the

algorithm makes multiple passes over the data set looking for pattern matches.

High Confidence Pair Selection Parameters

The algorithm has two system parameters that help select the only most likely

discovered synonym pairs for later use in generating patterns.

SNLASynonyms .PAIR_HIGH CONFIDENCE THRESHOLD. This is the minimum
confidence value that a synonym pair must have in order to be considered a
high quality synonym pair and used for pattern extraction. During system
tuning on the training data set a value of 0.999 was found to give the best
results.

SNLASynonyms .MINIMUM PAIR_QUALITY. As discussed earlier, high
confidence extracted synonym pairs are sorted by the product of the node
quality prior to using the pairs to search for patterns. This system parameter
sets the minimum required quality product. The pair quality product is a
measure of the collaborative evidence for pair synonymy that exists in the
graph. Pairs which are synonyms of each other and do not share other
common synonyms will have a pair quality product of zero. The purpose of
this parameter is to screen out pairs that have little or no corroborating
evidence of synonymy. During system tuning, a value of 2.0 was found to be

effective.

Pattern Selection System Parameters

The algorithm includes two system parameters that screen out unlikely patterns from

being further evaluated. These include patterns that match too many or not enough

sentences.

SNLASynonyms .MINIMUM_PATTERN MATCHING CASES. This system pattern is
used to require a pattern to match a minimum number of sentences. The

purpose is to prevent overwhelming the graph and the genetic optimization

101



algorithm with patterns that contribute little evidence of synonym pairs.
During training a value of 4 was found to give good results.

SNLASynonyms . MAXIMUM_PATTERN MATCHING CASES. This system parameter
1s used to screen out patterns that are excessively general and match two many
sentences. For example “$GENE$ and $GENE$” will match any two tokens
that could be gene names, separated by the word “and”. This is necessary both
to reduce false positives and improve the efficiency of evaluation during the
genetic optimization step. A value of 1000 was chosen after examining the
frequency of matches for patterns found during training. In the current version
of the system, this parameter is an absolute number, which is an adequate
approach because all three data sets had about the same number of sentences.
However in a future version of the system intended for use on various size
data sets, this parameter must be converted into a percentage of sentences. The
current filtered data sets contain approximately 150,000 sentences, so this

works out to a threshold of approximately 0.7% of the data set size.

Another pattern selection parameter, PATTERNS PER_ITERATION, controls how

many patterns are considered at one time:

SNLASynonyms . PATTERNS_PER_ITERATION. The maximum number of
patterns to evaluate with the genetic optimizer at each iteration of the main
SNLA loop. For each iteration, the algorithm uses new high confidence pairs
to search the text for new patterns. When the number of total patterns found
but not yet selected by the optimizer reaches the value of this parameter, the
algorithm stops looking for new patterns and proceeds to the optimization
step. Since the speed of the optimization step is very sensitive to the number
of patterns being evaluated at once. A value of 150 was chosen as a balance

between speed and broad coverage of a variety of patterns.
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Synonym Inference Required Co-occurrences

As was previously stated, synonyms that are inferred across the synonymous
relationship of two or more other synonyms have a higher error rate than synonyms
detected explicitly in the text. To compensate for this the algorithm includes a parameter
SNLASynonyms .MINIMUM LINK_TO FOLLOW. This is the minimum number of co-
occurrences required for a synonym pair to be used in logically inferring other synonym
pairs. While a value of 1 (uses all synonym pairs during logical inference) results in
finding the most synonyms, the error rate during training was very high. A value of 2
gave a good balance between precision and number of inferred pairs discovered.

Genetic Optimization Parameters

A genetic (or evolutionary) algorithm is used to find the optimal (highest quality) set
of patterns during each iteration. For the genetic optimization procedure, the samples
(genomes in typical genetic algorithm terminology) are lists of flags (genes, in typical
genetic algorithm terminology) of whether or not to include a candidate pattern in the
optimal pattern set. For each generation, there is a best sample, which gives the
combination of patterns to include for the best quality score. The optimizer runs for
multiple generations, until no better solutions can be found.

The genetic algorithm used here is a variation of the canonical genetic algorithm that
uses rank-order based selection pressure. It is used simply as a combinatorial optimizer.
This version was chosen because it works well and is simple to implement. Other genetic
algorithm variants and other approaches to combinatorial optimization likely would work

just as well.
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The genetic optimizer has several parameters that determine how quickly the
algorithm converges to a local optimum and the criteria for exiting the optimization loop.
While the parameters will be described and defined here, an in-depth presentation of the
effects of each parameter is beyond the scope of this work. Most parameters were chosen
by rules-of-thumb given in published work and were not specifically tuned for the SNLA
system. See papers by Whitley for more detailed technical information on genetic
algorithms in general and the canonical and rank-order based version used here [110,
112].

® SNLASynonyms.RANDOM SEED. A random seed for initializing the population
sample and randomly assigning candidate patterns to the pattern flags.

® SNLASynonyms.NUM_GENOMES TO_FREE_PASS. The number of top scoring
samples to pass unmutated from one generation to the next. Given the rule-of-
thumb value of 1.

® SNLASynonyms.MUTATION_ RATE. The probability that the inclusion status of a
particular pattern in a particular sample will change during reproduction from one
generation to the next. Given the rule-of-thumb value of 0.01.

¢ SNLASynonyms.CROSSOVER_RATE. The probability that a pair of samples will
recombine via the crossover operation during reproduction from one generation to
the next. Given the rule-of-thumb value of 0.90

® SNLASynonyms.NUM GENERATIONS. The maximum number of generations to run
the optimization during each iteration of the SNLA algorithm. During system
training a value of 100 was found to be adequate.

® SNLASynonyms.MAX NO_IMPROVEMENT ITERATIONS. The number of generations
to run the optimization without seeing any improvement in the best quality score.
During system training a value of 5 was found to be adequate.

¢ SNLASynonyms.GENERATION SIZE. The number of samples to include in each

generation. During system training a value of 200 was found to be adequate.
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SNLASynonyms . PATTERN_INCLUSION PROBABILITY. The probability that any
given pattern is included in a sample. This is used while initializing the population
for the genetic algorithm. Since each pattern flag is essentially a true/false about
whether a given pattern is included in the sample, one might think that this
parameter should be set to 0.50. However, after optimization most patterns are
rejected, so using 0.50 results in the optimization spending a lot of time waiting
for the mutation operator to set a flag to false. A parameter value of 0.25 was
found to speed up the optimization without diminishing the quality score of the
final result.

SNLASynonyms . RANK_SELECTION PRESSURE. This parameter defines how rank
order is transformed into selection pressure. After computing quality, each sample
is sorted into rank, ordered by quality. The probability, p that a sample will be
selected to participate in the next iteration is computed as:

1.0
- RANK _SELECTION _ PRESSURE * rank +1.0

p

(Equation 9)

During system tuning a value of 0.50 was found to give good results.
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VII. EXPERIMENTAL DESIGN

To provide insight into the research question, the experiment was done in three steps.
The first step was to develop, debug and tune the algorithm detailed in the previous
section on the training and validation data sets. In the second step, the synonym
extraction algorithm was run on the MEDLINE records in the test set. In the third step,
the quality of the extracted synonym list was evaluated by validating the synonymy of
each extracted pair, and then computing metrics such as the rates of precision and recall

for each iteration of the algorithm. See Figure 8.

Develop Software System
based on SNLA techniques

Analyze Results

Run System on Training &
Validation Data Step 1

!

Run System on Test Data

Step 2

lSynonym Pairs

Evaluate Results Step 3

Figure 8: Experimental Design
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Data Sets

The training, validation, and test data sets used in this experiment consist of sentences
extracted from approximately 50,000 abstracts from a year’s worth of MEDLINE records
containing the word “gene.” Abstracts from 2001, 2002, and 2003 served as training,
validation, and test sets, respectively. Originally it was planned to use the test set from
the 2003 Text Retrieval Conference (TREC) genomics track [113], however the test
collection did not contain enough records to separate into separate training, validation,
and test sets.

After downloading the MEDLINE records from PubMed, the records were parsed to
extract the abstract field. The abstracts were then separated into sentences using a simple,
lexically based sentence boundary detection algorithm. Finally, the sentences were
screened to remove non-contributing sentences as described previously in the section on
Filtering Out Non-Contributing Sentences. This resulted in the three data sets used in this

experiment. Size properties of these data sets are listed in Table 1.

Data Set Size in Number of
Kilobytes Sentences
medline-gene-200l-sentences- 25251 140,591
screened. txt
medline-gene-2002-sentences- 26,665 148,525
screened. txt
medline-gene-2003-sentences- 27,410 152,432
screened. txt

Table 1: Size Properties of Data Sets
Gold Standards

This experiment requires gold standards for both precision and recall. Since gene name
synonyms are part of the curated data available in the on-line genomics databases, these
served as the basis for both gold standards. Slightly different methods were used to create

the precision and recall gold standards.
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Precision Gold Standard

The approach used here was to download a snapshot of several genomics databases

available on-line, extract out the name, alias, and synonym fields, and combine them into

a single gold standard for use in the computation of recall and precision. Since the

databases do not contain all synonyms in common use, and orthographic variations (e.g.

“WAF1” and “WAF-1”) are usually missing, during training and validation extracted

candidate synonym pairs that were not found in the precision gold standard were

manually reviewed for pairs that were likely to be correct (e.g. “CONNEXIN32” and

“CX-327), and these pairs were checked by reviewing MEDLINE for supporting

information in the titles and abstracts. Manually verified pairs were added to the precision

gold standard for use in scoring the results from the test data. Information on the

databases and fields used are listed in Table 2.

Database

Organism

Fields

Download Date

Flybase

Drosophilia

ALL (synonym only file)

2004/01/12

Genew

Human

SYMBOL,
PREVIOUS SYMBOL,
ALIAS

2004/01/12

LocusLink

Multiple

OFFICIAL _SYMBOL,
PREFERRED SYMBOL
ALIAS SYMBOL,
OFFICIAL_NAME,
PREFERRED NAME

cl

2004/01/12

MGI

Mouse

ACCESSION 1D,
MARKER_SYMBOL,
SYNONYMS

2004/01/22

SGD

Yeast

LOCUS_NAME,
OTHER_NAMES,
GENE_PRODUCT,
ORF NAME

2004/01/22

SwissProt

Multiple

GN (both AND and OR)

2003/12/10

Table 2: Precision Gold Standard Databases
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Recall Gold Standard

Creation of a recall gold standard for a knowledge extraction task is a difficult problem.
Typically an accurate gold standard requires multiple experts to agree on definitions and
then manually review the literature for the information in question, comparing multiple
expert opinions and computing inter- and intra-rater agreement. This research did not
have the necessary expert resources available to use this method; a simpler method based
on that used by Yu and Agichtein in their gene and protein synonymy research was used
instead [19].

To approximately sample the synonym pairs that could be extracted from the
MEDLINE sentence test sets, tﬁe synonym pairs extracted from the SWISSPROT
database were compared to the sentences in the test collection. If both symbols of a
synonym pair extracted from SWISSPROT were present in a sentence in the test
collection, that synonym pair was included in the recall gold standard. This resulted in a
recall standard set of 483 synonym pairs. While this biases the recall gold standard
towards the genes and protein names and formats present in SWISSPROT, the bias is
independent of any feature of the algorithm. Also, using a recall gold standard
construction method like that of Yu and Agichtein facilitates comparison of results.
These comparisons will be shown later.

Note that even though a pair of gene synonymous names from SWISSPROT may be
present in a single sentence of the test set, it may be impossible for this or any other
pattern-based algorithm to extract the pair. The synonyms could be separated by too

many words, or the synonym pair may not occur in a repeated pattern. Nevertheless, a
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recall gold standard constructed by this method provides a useful benchmark. The error
analysis presented later sheds light on some of these issues complicating recall.
Application of Algorithm to the Data Sets

After development of the software was complete and the system had been debugged
and tuned on the training data set, the software system was run on the test data set
without changes. This produced a list of gene and protein name synonym pairs, along
with co-occurrence counts for each pair, and an indication of whether a synonym pair
was detected in the text or inferred logically from the network structure.
Computation of Performance Measures

Computation of precision and recall was performed for the synonyms extracted after
each iteration of the algorithm. Synonym pair extraction was cumulative. The set of
extracted synonym pairs at each set included the pairs extracted at all prior iterations.
Computation of Precision

To compute precision at each iteration, each extracted synonym pair was assigned a
value of correct or incorrect, based on whether the pair is present in the precision gold
standard database. Pairs marked incorrect were reviewed manually, and the reviewed
pairs deemed likely to be correct were subjected to an additional database and literature
review. If the pair was found to be correct based on the existence of an orthographically
similar synonym (e.g., a missing or added hyphen) in the on-line databases, or there was
clear evidence of synonymy in the MEDLINE database title and abstract fields (e.g.,
“The PEA3/E1AF/ETV4 gene encodes...”), these synonym pairs were added to the gold
standard database. Since many synonyms commonly in use are not included in the on-line

database (e.g., “IL-5” and “Interleukin-5"), this secondary review process was necessary
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to correct the many false negatives that would occur if only curated genes symbols were
used in the gold standard.

Given the counts of extracted and correct synonym pairs at each iteration, the value for
precision can be easily computed by the following formula:

correct extracted synonym pairs

precision,, ... =

number of synonym pairs extracted
(Equation 10)

Computation of Recall

To compute recall at each iteration, each synonym pair in the recall gold standard was
assigned a value of found verses unfound by performing and exact string match
comparison with each extracted synonym pair. A recall gold standard pair was given the
value of found if the exact pair was present in the set of extracted synonym pairs, and
unfound otherwise. Given the counts of found and unfound gold standard synonym pairs

at each iteration, the value for recall can be easily computed by the following formula:

recall pairs found

recall, =

iteration

number of known correct pairs

(Equation 11)

Computation of F-score and Maximum Performance

The F-score (the harmonic mean of precision and recall) was computed at each
iteration. Maximum performance was deemed at the point of maximum F-score of
confidence. While the limitation of any single number summary score must be kept in
mind, the F-score is used here as a single measure for comparison across iterations and

algorithms [56]. The F-score for a given iteration is computed as:
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*recall.

iteration iteration

+ recall.

iteration

2* precision
Fscoreiteration -

precision

iteration

(Equation 12)
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VIilI. RESULTS

The experiment produced two kinds of results: performance measures and error
analysis. The performance measures summarized the quality of the extracted information,
while error analysis provided insight into the strengths and weaknesses of the approach.
Performance measures are presented first, followed by a comparison with the prior work
on synonym extraction done by Yu and Agichtein, and then an error analysis.
Performance Measures

The performance measures include the precision, recall, and F-score of the extracted
synonym pairs, as well the absolute and relative number of correct pairs extracted at each
iteration. Figure 9 shows the precision verses recall of the extracted synonym pairs,
starting with the first iteration at the left-most point and continuing to the 25" iteration at
the right-most point. The graph includes plots of both found (synonym pairs explicitly
found in the text by the patterns) plus inferred synonyms (pairs inferred by the graph
traversal algorithm) as well as plotting only the synonyms that were explicitly found in
the text.

The first iteration achieved a precision of about 25% (24.95% for the
FOUND+INFERRED pairs, 25.05% for FOUND ONLY), at a recall of 6.21% (both
FOUND-+INFERRED and FOUND ONLY). Precision decreased and recall increased
practically monotonically over the 24 following iterations to a high recall of 27.33% (for
FOUND+INFERRED, 26.71% for FOUND ONLY), and a precision low of 5.87% (for

FOUND+INFERRED, 10.81% for FOUND ONLY).
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Figure 9: Precision verses Recall by Iteration

Figure 10 presents the computed F-score at each iteration, and again the graph
includes plots of both found plus inferred synonyms as well as found only. The F-score at
iteration one is 9.91% (for FOUND+INFERRED, 9.92% for FOUND ONLY), and rises
to a maximum of 18.35% (for FOUND+INF ERRED, 18.19% for FOUND ONLY) with a
precision of 16.18% and recall of 21.33% (FOUND+INFERRED) at iteration 9,
gradually falling off during subsequent iterations. It can be seen that the use of inference
in finding synonyms does not significantly hurt the algorithm’s overall accuracy (as

measured by the F-score) until approximately iteration 15.
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Figure 10: SNLA F-score by Iteration

The absolute number of correct pairs extracted is presented in Figure 11. As is
enforced by the algorithm, the number of verified pairs grows monotonically with the
iteration number. Including pairs found using the inference capability of the network
consistently found more pairs than not using the inference capability. At the maximum F-
score (iteration 9) the system using FOUND+INFERRED synonyms extracted 539
correct synonym pairs, including only the FOUND pairs yielded 479 synonym pairs. The
approximately 10% (12.5% at iteration 9) difference in extracted pairs is fairly consistent

across all iterations after the initial iteration.
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Figure 11: SNLA Number Verified Pairs by Iteration

Figures 12 and 13 compare the results of the SNLA system with those of Yu and
Agichtein. The results of their Snowball (their best single algorithm) and Combined (their
best overall approach) systems were interpolated from published graphs [19], and re-
plotted here for comparison. After the first few iterations of SNLA, the recall and
precision of SNLA compares favorably with that of the Snowball system, with SNLA
having better recall and precision than Snowball during iterations 8 (precision 16.73%,
recall 20.29%) through iteration 23 (precision 8.64%, recall 24.84%). The maximum F-
score obtained for SNLA (18.35%) is comparable with that of Snowball (16.77%), but
significantly less than that of the Combined system (30.24%). The combined system of
Yu and Agichtein had superior accuracy to any single system including SNLA, Snowball,
and the three other extraction systems studied by Yu and Agichtein (Similarity, SVM,

and GPE).
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It should be noted that the system of Yu and Agichtein provided a confidence score

that could be used as a precision/recall tradeoff threshold. Yu and Agichtein found that

using only two iterations of Snowball gave the best results, and those are the results that

are plotted here. The current version of SNLA does not provide a tradeoff threshold, and

score of extraction over cumulative iterations are shown here for comparison. Even

though the details by which the system precision/recall tradeoff are made differ, the graph

still serves as a valid comparison of the results of the three systems. It should also be

noted that by using only two iterations, the majority of the results of the Snowball

algorithm was based on pairs detected using the initial seed pairs, and not on the iterative

use of discovered high confidence pairs in detecting new patterns.
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Figure 12: SNLA Precision and Recall Comparison with Prior Work
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Figure 13: SNLA Maximum F-score Comparison with Prior Work

Another measure of system performance is the amount of knowledge extracted per

unit of instance knowledge input to the system. This can be interpreted as a measure of

how efficient the algorithm uses the seed data. Here, the input instance knowledge is the

number of seed pairs. During system tuning on the training data, SNLA was found to

work well with only eight seed pairs. These same eight seed pairs established for the

training data were used on the test data. The seed pairs used are presented in Table 3.

Table 3: Seed Pairs used by SNLA

Seed Number First Synonym

Second Synonym

1 CIP1
LPS
CD82
IGF2R
MMACI
DRS
CCN3
ASF

0 N N A W N

WAF1
TLR4
KAIl
Mo6P
PTEN
KILLER
NOV
SF2
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Figure 14 compares the number of correct extracted pairs to the number of seeds used

for SNLA and for Yu and Agichtein’s Snowball and Combined systems. Results are

shown at the point of maximum F-score in order to provide a consistent comparison. The

SNLA system (FOUND+INFERRED) used 8 seed pairs, while the Snowball and

Combined systems used 650. SNLA extracted 539 correct synonym pairs at the

maximum F-score, while Snowball and Combined extracted 700 and 950 respectively.

Computing the ratio of correct pairs divided by number of seeds used gives a ratio of

67.38 for SNLA, with the Snowball and Combined systems having much smaller ratios

of 1.08 and 1.46 respectively.
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650 650

Number Seeds
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Combined (max F-score: 30.24%)

67.38

1.46

;|

1.08

Correct Pairs

Correct/Seeds

Figure 14: Comparison of Number Seeds, Verified Pairs, and Ratio
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Error Analysis

Error analysis provides insight into the strengths and weaknesses of the SNLA
approach, as well as similar pattern-based approaches. Two kinds of errors were studied,
precision errors and recall errors. Precision errors occurred when the algorithm extracted
symbol pairs that were later not verified as synonyms by the precision gold standard data
set. These are false positives. Recall errors occurred when the algorithm failed to extract
symbol pairs present in the recall gold standard data set. These are false negatives. For
consistency and to facilitate later comparison, precision and recall errors were studied at
the point of maximum F-score, iteration 9.

Recall errors for the SNLA algorithm were categorized into two pre-defined and
mutually exclusive categories, No Matching Pattern, and Pattern Not Accepted. The No
Matching Pattern error category included all recall errors for which the SNLA pattern
generation routines failed to identity a pattern that matched the given pair in the abstract
text. Pattern Not Accepted errors included those recall errors for which a matching
pattern was found, but the matching pattern or patterns were not accepted during the
pattern selection optimization step. All recall errors fell into one of these two categories.

Table 4 presents a summary of the recall error analysis. 100 recall errors were
manually reviewed in order to determine the relative frequencies of the two errors with a
confidence interval of +/-10% at an alpha of 95%. The majority, 65% of recall errors, can
be attributed to the system failing to generate a pattern that matched the recall synonym
pair. The remaining 35% of recall errors are due to matching patterns not being accepted

by the pattern optimization step.
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Table 4: SNLA Recall Error Analysis

Recall Error Type Frequency | Percentage | Low 95% C.I. | High 95% C.I.
No Matching Pattern 65 65% 55% 75%
Pattern Not Accepted 35 35% 25% 45%

Precision errors were categorized by first reviewing a small random sample of 20

errors. From this pilot set of errors, a set of mutually exclusive precision error categories

was determined by inspection. The resulting set of six error categories was then applied

to an additional random sample of 100 precision errors. The six error categories are:

Not a Gene Name. One or both symbols are not the name of a gene, allele,
mutation, or gene family.

Partial Gene Name. One or both symbols are part of an incompletely
extracted gene name pair.

Biochemically Related. Genes have been studied together as interacting
within the context of a biochemical mechanism in some organism or two
distinct genes from the same functionally related family.

Unrelated Genes. Two complete gene names but unable to establish family or
biochemical relationship by reviewing the test data set or MEDLINE.
Mutation Variants. Two mutation names for the same gene but nonspecific
for that gene. This category distinguishes between allele or mutation names
that are recognizable to a particular gene, verses those that are more generic
and used only within a specific abstract. The category is somewhat of a
judgment call, in general short mutation names were considered non-specific.
The errors assigned to this category appeared non-specific when compared to

the genes studied and included: P-0.48/P-0.52, CYS106ALA/CYS7ALA, K-
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RAS/TMDELTA4A, DELTACDTABC/DELTALTXA, and D138E/FECR. It
is conservation to assign these errors to this category. The most reasonable
other category would be to call these synonyms correct.

e Correct. A correct gene synonym pair not found by gold standard dataset,
found by later abstract review.

The results of the precision error analysis are presented in Table 5. By far, the most
commonly occurring error was a pair of gene symbols being chemically or biologically
related but distinct, non-synonymous entities. These errors accounted for 48% of the
total. The next most common error, occurring 28% of the time, resulted when one or both
of the extracted pair of symbols were not a gene or protein name or symbol. The
remaining errors were much less common, and included when one or both extracting
symbols consisted of a partial or incomplete gene name (9%), two extracted symbols
representing mutation names non-specific to an individual gene (5%), and two complete
gene names found but no mention was found in the data set of in MEDLINE of a
biochemical (3%).

Incorporation of Error Analysis in Performance Results

Interestingly, 7% of precision errors were later determined to be false negatives, that
is, the synonym pair was determined by manual inspection to be correct but was not part
of the gold standard data set. These correct pairs have not been added back into the
performance results already shown. Incorporating the additional estimated 7% (95% C.1.:
0%-17%) correct extracted synonym pairs gives an estimated precision of 23.18% and an
estimated peak F-score of 22.21%. A comparison of this performance estimate with the

prior work of Yu and Agichtein is shown in F igure 15.
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F-score

Table 5: SNLA Precision Error Analysis

Precision Error Type Frequency Percentage | Low 95% High 95%

C.L C.L
Not a Gene Name 28 28% 18% 38%
Partial Gene Name 9 9% 0% 19%
Biochemically Related 48 48% 38% 58%
Unrelated Genes 3 3% 0% 13%
Mutation Variants 5 5% 0% 15%
Correct 7 7% 0% 17%
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Figure 15: Maximum F-score Comparison including Precision Errors
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IX. DISCUSSION AND LIMITATIONS

The results of this thesis demonstrate that the SNLA method compares well to other
single methods of synonym extraction and is a useful general approach to knowledge
extraction. The method is highly efficient in its use of seed pairs compared to other
methods. This may be an advantage in situations where large numbers of seed pairs are
difficult or expensive to collect.

It was determined that using eight initial seed pairs was adequate during system
tuning using the training dataset. It was observed that the performance was largely stable
for initial numbers of seed pairs between 8 and 32. This suggests that an initial “critical
mass” of seed pairs was necessary to get the process started. Beyond the critical number,
the algorithm automatically found additional common seeds. Including additional
common synonym pairs as seeds simply gave as input high confidence pairs that the
algorithm could find on its own.

Optimizing the network structure based one the quality metric of the overall network
MCC/MNCC ratio was an effective way to pick the best text patterns for gene synonym
pair extraction. Using the symbolic network to support inference of synonym pairs
improved both the recall at any given iteration as well as the absolute number of
synonym pairs discovered. The FOUND+INFERRED system consistently found
approximately 10% more verified pairs at any iteration than the FOUND pairs alone.
Based on Figure 10 it can be seen that, while there is some cost in precision for these
additional verified pairs, the cost is modest until well past the iteration giving the peak F-

score. The inference ability of SNLA adds to its capability as a tool in knowledge
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discovery, and helps extract pairs additional synonym pairs earlier in the iterative process
and beyond those found strictly in the text.

The confidence measure was found to be an effective way to separate pairs more
likely to be true synonyms, and therefore useful for pattern extraction and generation,
from pairs less likely to be true synonyms and therefore not useful for pattern creation.
However, the confidence measure did not have fine enough granularity and was not
found to be a useful measure to sort and therefore prioritize the pairs. Instead a measure
based on the node pair MCC/MNCC product was used as a sorting value. This was an
adequate approach for the current work, but further investigation is needed to find more
accurate, finer-grained, and more comparable measures of knowledge confidence based
on the structure of the graph. One possibility is to collapse the synonym pair into a single
node and compute the MCC/MNCC for that combined node.

The relative frequencies of the two types of recall errors present interesting evidence
suggesting the possibility of making general observations about pattern-based text
relationship mining systems. Two-thirds of the recall errors were due to the system not
having discovered a pattern that matched the non-recalled pair, and only one-third of
errors were due to the system having found a matching pattern, rejecting it based on the
network metric criteria. The current system used a large number of very specific patterns
based on the text surrounding high confidence gene symbol pairs. The Snowball system
by Yu and Agichtein used more flexible patterns, allowing “fuzzy” matching based on
the relative importance of word in a pattern. The two different systems performed
similarly, leading one to think that there may be some inherent limitation of the pattern-

based approach to uncovering gene relationships. The textual context of interesting
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biological relationships may not be specific enough to significantly improve
performance. Certainly, more work is needed in this area before drawing strong
conclusions.

While the method does not perform as well as the combined method of Yu and
Agichtein, it does perform at a level at least equivalent to the best of their component
methods. It is thought that the Combined system achieves improved performance by
using a variety of algorithms to double-check one another. Including SNLA into the
Combined system of Yu and Agichtein may result in further improvement in gene name
synonym extraction.

The full text test collection used by Yu and Agichtein is not in the public domain and
was not made available to the investigator. One of the major limitations of this study as
well as future work on synonym extraction is the lack of availability of a full text test
collection of adequate size, and the inability to use the same test collection as previous
investigators in order to facilitate comparison. The MEDLINE abstracts were used
because they are plentiful and readily available. While prior investigators have stated that
full text articles are better sources data for the extraction of gene name synonyms [35], it
is encouraging to find that applying the SNLA method to abstracts produced comparable
results.

Since there is no standard test collection for gene symbol synonym extraction
research and no absolute gold standard for recall, the recall standard used is an
approximation. The method of constructing a recall standard used in this work facilitated

comparison with prior work in the field. However, it is by nature a biased sampling
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method, and does not completely characterize the recall capabilities of current knowledge
extraction systems as compared to manual expert review.

Another limitation of the evaluation method is the lack of multiple experts available
to review the results. The principal investigator, an M.D., made all of the precision and
recall judgments based on the criteria described in the section on experimental design.
The investigator used a consistent approach to determine gene name synonymy, and erred
on side of designating pairs as non-synonyms in ambiguous cases. When MEDLINE text
needed to be reviewed directly to verify synonymy, multiple records were examined
looking for consistent use of synonyms. Ambiguous cases were designated as non-
synonyms. With only a single investigator, there was no ability to measure inter-rater
agreement. To compensate for this, results were evaluated with a slight intentional bias
towards marking synonym pairs as incorrect. This is supported by the precision error
analysis that shows that 7% of the sampled errors were actually correct.

The performance of the current system is limited somewhat by the simple
orthographic approach used for named-entity recognition. Gene names and symbols were
required to be a single string delimited by spaces and other punctuation characters. Not
all gene names fit this description, although the gene name pairs extracted for the recall
gold standard from the SWISSPROT did not use any unusual characters and met this
requirement.

Precision error analysis showed that approximately 28% of precision errors are due to
a non-gene or protein symbol being treated as a gene or protein. Another 9% of precision
errors are due to an incomplete portion of a gene symbol being identified as a gene

symbol. These two categories together represent failure of NER and account for 37% of
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precision errors. Current state-of-the-art performance of biological named-entity
recognition is approximately 80%, however this figure assumes that token boundaries are
given, and glosses over the complex problem of determining these boundaries [43, 75].
Nevertheless, using 80% as the measure of performance, it can be estimated that
incorporating a state-of-the-art gene and protein named-entity recognizer into the system
would decrease these errors to about 20%, a 17% reduction in errors. This would result in
a precision at the peak F-score of about 27.12%, as compared to the current precision of
23.18%, an improvement of 17%.

The article titles were not used by the system. Some MEDLINE titles do contain gene
name synonym pairs. Determining whether including titles would improve the system
performance is an open question.

The results also support an interesting observation about the relative ease of a
relationship text-mining task being inversely proportional to the specificity of the
relationship. The largest source of precision errors was due to the algorithm extracting a
related pair of gene symbols that were not synonyms. This type of error accounts for
almost half (48%) of the precision errors. Several investigators have reported on
knowledge extraction systems that extract pairs of related genes [47], sometimes
followed by constructing a gene relationship network [24, 48]. While biochemical
induction/suppression relationships are at least as specific as the synonym relationship, it
is certainly a less specific task to extract pairs of gene names that are simply related in
some general way. If the current system and results were to be left unchanged and the
results re-evaluated with the goal of the simply extracting genes related in any manner,

then half of the precision errors would actually be correct, and the precision would be
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approximately 60%! While may be at first surprising that a system designed for one
purpose should performed well on another task, it is clear that the synonym relationship
is a specialization of the “generally related” relationship. The main point here is that
extracting non-specific relationships between genes is not a particularly difficult task, and
other more functionally based relationships should be used to meaningfully evaluate
biological relationship extraction systems.

One way to improve system performance by reducing these biochemically related
gene synonym pair errors would be to filter the results by removing known associated
gene pairs. There are several on-line databases of gene relationship networks [114-117],
and the information in these databases could be used as evidence of the genes being
distinct and non-synonymous. While it is unlikely that this filtering could remove all of
the false positives due to biochemically related genes, since this is the single largest

source of error the improvement is likely to be significant.
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X. CONCLUSIONS AND FUTURE WORK

The current work has shown that SNLA is a useful method in extracting relationships
from the biomedical literature. The current system could be improved by incorporating
state-of-the-art named entity recognition, and by using richer data sources such as full
text articles, and gene network databases. While the current system does not perform as
well as the combined system of Yu and Agichtein, it performs as well as any individual
method and with more accurate named entity recognition and known biochemically
related pair post-filtering the system would perform even better. It is reasonable to expect
that making these improvements and incorporating the SNLA system into the Combined
system of Yu and Agichtein would result in an overall performance improvement in the
state of the art of gene and protein synonym extraction.

There are many other applications of SNLA to mining the biomedical literature.
Many inter-entity relationships, such as enhance/inhibit between drugs, biological
substances, and diseases, and the promoter/suppressor relationships between genes could
be modeled as graph structures and appropriate metrics created to measure the relevant
network properties. Multiple separate networks can be created simultaneously and then
used together during the logical inference step to extend the use of SNLA to multiple
types and entities and multiple types of relationships between those entities.

Perhaps the most exciting application for SNLA is in mining the biomedical literature
for hypothesis generation, such as that done by Swanson. While Swanson was limited to
ABC-style relations between three entities, the SNLA network can support practically
limitless intermediate inferences, limited largely by the confidence in the individual

relationships. Future refinements will have to go beyond the simple method used in the
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current work to determine which relationships were strong enough to support inference
and model the chain of inference as a confidence path with each link reducing the
confidence in the entire path by a fraction based on the uncertainty of the relationship.
Having the ability to infer useful hypotheses across several individual relationships
has the exciting potential to accelerate the rate of medical progress and focus efforts on
the most promising prospects. With the biomedical knowledge and the corresponding
bibliome growing at an exponential rate, the raw material exists for computer assisted
hypothesis generation. Further work on text mining and knowledge extraction will be

necessary in order to harness this great resource to its full potential.
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APPENDIX A - SOURCE CODE

Source file: SNLASynonyms.py

SNLASynonyms . py

Top level program runs the SNLA based gene and protein name
knowledge extraction algorithm.

Expects a file of sentences from MEDLINE abstracts or the
biomedical literature as STDIN, writes results as synonym pair and
confidence tuples to STDOUT.

Lots of progress and debugging information written to STDERR.

HOFE o o aE

# general Python library imports...
import sys

import re

import time

import random

# import graph and pattern classes...
import SNLAGraph

import SNLAPatterns

import SNLACoOccurrences

# algorithm constants. ..

PAIR_HIGH CONFIDENCE_THRESHOLD = 0.999 # confidence required for template searching
MINIMUM_PAIR QUALITY = 2.00 # minimum pair quality to use for pattern
searching

MINIMUM_PATTERN_MATCHING CASES = 4 # minimum number of matches to include pattern
MAXIMUM_PATTERN MATCHING CASES = 1000 # prevent runaway pattern matches
MINIMUM LINK TO_ FOLLOW = 2 # minimum inference link in GetStrongestChains ()
RANDOM_SEED = 2001 # random seed for genetic algorithm
UNKNOWN_SCORE = -1.0 # sentinel value

NUM_GENOMES_TO_FREE PASS = 1 # free pass to next generation

MUTATION_RATE = 0.01 # gene mutation rate

CROSSOVER_RATE = 0.90 # genome crossover rate

NUM_GENERATIONS = 100 # maximum generations per iteration
GENERATION_SIZE = 200 # number genomes in generation

MAX NO_IMPROVEMENT ITERATIONS = 5 # early bailout with no change
PATTERNS_PER_ITERATION = 150 # patterns to evaluate each iteration

i

PATTERN_INCLUSION_ PROBABILITY = 0.25
RANK_SELECTION_PRESSURE = 0.50

# collection of initial seed pairs...
# EACH PAIR MUST BE IN ALPHABETICAL ORDER BECAUSE OF THE
# WAY THAT THE TUPLE MATCHING WORKS. ..
INITIAL_SEED_PAIRS = [

('CIPL', 'WAF1'),

('LPS','TLR4'),

('CD82', 'KaTl!),

('IGF2R', 'M6P"'),

('MMAC1', 'PTEN'),

('DR5', '"KILLER') ,

('CCN3', 'NOV') ,

('ASF','SF2'),
]

# start time...
startTime = time.time()

# seed the random number generator for consistent results...
random. seed (RANDOM_SEED)

# algorithm global data structures. ..
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# list of found and used high confidence synonym pairs...

allUsedHighConfidencePairs = []

the keys are the regex pattern and the values are

for efficiency...

B i

patternCache = {}

# count each iteration...
iterationCount = 0

# global network graph object...
networkGraph = SNLAGraph.SNLAGraph ()

dictionary cache of pattern matches found and used...

lists of tuples with the matched pair and sentence number. ..
the printable form of the regex will be used as the key

a value of None indicates that the pattern has been used
either the pattern has been accepted and the co-occurrences
have been incorporated into the graph, or the pattern has
been reject because it is outside boundary constraints...

# create SNLAPatterns object to manage pattern creation and matching. ..

patternManager = SNLAPatterns.SNLAPatterns ()

# object to track co-occurrence sources...

networkCoOccurrences = SNLACoOccurrences.SNLACoOccurrences ()

# utilty function for sorting genomes by score...
def genomeSortFxn(a,b):
return cmp (b[1], a([l])

# utilty function for sorting high confidence pairs by confidence. ..

def highConfidenceSortFxn(a,b) :
return cmp(b[2], a(2])

# utilty function for randomizing the order of a list...

def randomizeListSortFxn(a,b) :
return cmp (random.random(), random.random())

# begin main program...

# set defaults and process command line arguments. ..

iterationLimit = -1
numSeeds = 8
acceptNewSeedIterations = -1
maxNumActivePatterns = -1
progName = sys.argv[0]
sys.argv = sys.argv[l:]
while sys.argv:
arg = sys.argv([0]
sys.argv = sys.argv[l:]
if arg == "-h":
sys.stderr.write("Usage: %s [-1 iterations]
num-patterns] < STDIN\n" % progName)
sys.exit (0)
elif arg == "-iv:
iterationLimit = int (sys.argv([0])
sys.argv = sys.argv[l:]
elif arg == "-n":
numSeeds = int (sys.argv[0])
sys.argv = sys.argv[l:]
elif arg == "-a":
acceptNewSeedIterations = int (sys.argv[0])
sys.argv = sys.argv[l:]
elif arg == "-m":
maxNumActivePatterns = int (sys.argv[0])
sys.argv = sys.argv[l:]
elif arg == "-g":

[-n #seeds]

# seed file format must be one tuple per line,
# with each line a tuple of (synA,synB,count)...

seedFile = sys.argv([0]

[-s seedfile]

[-m max-
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sys.argv = sys.argv[l:]

sys.stderr.write ("Reading seed file:

seedPairs = [}

file = open(seedFile, "r")

for line in file.xreadlines() :
seedPairs.append (eval (1ine))

file.close()

seedPairs.sort (lambda a, b:

INITIAL_SEED_PAIRS =

# check the number of seeds...

if numSeeds > len (INITIAL SEED PAIRS) :
numSeeds = len(INITIAL_SEED PAIRS)

sys.stderr.write ("Using %d initial seeds.\n"

# read input file into sentences list, strip

# or trailing whitespace. ..

sentences = []

for s in sys.stdin.xreadlines():
sentences.append(s.strip())

numSentences = len{(sentences)

# loop until we complete the given number of
# or until the program is interrupted...
while 1:

# output progress to stderr...

sys.stderr.write("Beginning iteration %d.

# determine the high confidence pairs to
newHighConfidencePairs = []
if iterationCount == 0:
sys.stderr.write("Using seed initial
for index in xrange (0, numSeeds) :
pair = INITIAL SEED_PAIRS [index]

cmp (b [2],
tuple (seedPairs)

$s\n" % seedFile)

af2]))

% numSeeds)

any leading

iterations

\n" % (iterationCount + 1))

use for this iteration..

high confidence pairs.\n")

newHighConfidencePairs.append ( (pair[0],pair[1],1.0))

else:

# retrieving the current synonym pairs...

sys.stderr.write("Retrieving current
synTriples =

# display the current synonym pairs..

synonym pairs:\n")

networkGraph.getStrongestChains(MINIMUM_LINK_TO_FOLLOW)

for (synA, synB, count) in synTriples:

# get stats for this pair...
confidence =
cooccur =

will not affect the evaluation

oo A A

affect of network inference...
if cooccur == 0:
# if this is a DERIVED pair,
quartet = (synA.lower(),
elif cooccur > count:

# if this is a STRONGER pair,
synB,

quartet =
else:

(synA.lower (),

synB.lower (),

networkGraph.computeConfidence (count)
networkCoOccurrences.getCoOccurenceCount(synA,synB)

format according to the type of pair, these case changes

programs, which convert

everything to upper case anyway. . .
this provides some additional information for accessing the

print both in lower case...
count, confidence)

print only the first in lower case...
count, confidence)

# otherwise, leave both in upper case...

quartet = (synA, synB,

count,

confidence)

sys.stderr.write ("%s\n" % str(quartet))

# print the count...

sys.stderr.write("\nExtracted %d synonym pairs.\n" % len(synTriples))

sys.stderr.flush()

# determine the number of co-occurrences required for high confidence. ..

requiredCoocurrences =

networkGraph.computeRequiredCoocurrences(PAIR_HIGH_CONFIDENCE_THRESHOLD)

143



sys.stderr.write("Requiring %d co-occurrences for high confidence, computing

pairs.\n" % requiredCoocurrences)
sys.stderr.flush()

# extract the high confidence synonym pairs...
for synTriple in synTriples:
if synTriple[2] >= requiredCoocurrences:
# require found, not inferred coOccurrences...
cooccur =
networkCoOccurrences.getCoOccurenceCount (synTriple [0], synTriple[1})
if cooccur >= requiredCoocurrences:
qualA = networkGraph.computeNodeQuality (synTriple [0])
qualB = networkGraph.computeNodeQuality (synTriple[1])
qualPair = qualA * qualB
if qualPair »>= MINIMUM PAIR _QUALITY:

sys.stderr.write("Identified high confidence pair: %s (%0.2f)\n"

% (str((synTriple[0],synTriple[1])), qualPair))

newHighConfidencePairs.append ( (synTriple[0], synTriple[1],

qualPair))
sys.stderr. flush()

# release the memory for the synTriples list...
synTriples = None

# process candidate high confidence pairs list...

if acceptNewSeedIterations > 0 and iterationCount >= acceptNewSeedIterations:

# clear list if we are only using the original seeds...
newHighConfidencePairs = []

sys.stderr.write ("\nNot accepting new high confidence synonym pairs...\n")

sys.stderr.flush()
else:
# sort list highest confidence first...
sys.stderr.write("\nSorting new high confidence synonym pairs...\n")
newHighConfidencePairs.sort (highConfidenceSortFxn)

# remove any high confidence pairs that we have already
# used to search for patterns...
# note that order is always alphabetical (see getStrongestChains)...
sys.stderr.write ("\nLooking for new high confidence synonym pairs...\n")
tempHighConfidencePairs = newHighConfidencePairs
newHighConfidencePairs = []
for (synA, synB, conf) in tempHighConfidencePairs:
if (synA,synB) not in allUsedHighConfidencePairs:
newHighConfidencePairs.append ( (synA, synB) )
sys.stderr.write ("Found new high confidence pair: %s (%0.5f)\n" %
(str((synA,synB)), conf))
sys.stderr.write ("Found %d new high confidence pairs.\n\n" %
len (newHighConfidencePairs))
sys.stderr.flush()

# release the memory for the tempHighConfidencePairs list...
tempHighConfidencePairs = None

# allow for bailout if specified on command line...
if iterationCount == iterationLimit:
break

# keep track of the pairs actually used...
usedHighConfidencePairs = []

# count the current number of active patterns...
currentNumActivePatterns = 0
for p in patternCache.keys () :
if patternCachelp]:
currentNumActivePatterns += 1

# flag for early exit of pattern searching loop...
stopFindingPatterns = 0

# search sentences for the newly found synonym pairs
# and create search patterns from the sentences
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# that we find the pairs in...
# note that a sentence can be used more than once as a source of
# patterns but it can only be used once as a source of a given
# pair of co-occurrences...
for hpair in newHighConfidencePairs:

# check for early exit of loop...

if stopFindingPatterns:

break

# mark this pair as used...
usedHighConfidencePairs.append (hpair)

compile the pair names into case-insensitive
matching patterns. ..
could have some bugs in here if either name
contains special regex characters, will have
to remove this possibility in the isGeneName ()
function in SNLAPatterns...
hmatchSynA = re.compile(hpair[0], re.IGNORECASE)
hmatchSynB = re.compile (hpair([1], re.IGNORECASE)
for s in sentences:
# check for early exit of loop...
if stopFindingPatterns:

break

H o o 3k 3

# test if each member of the pair is found in the
# current sentence, if not found, the pair is definitely
# not in the sentence, but if it is found, the names may
# only be part of a larger name since we are not checking
# delimiter boundaries. this is okay because the
# convertSynonymsAndSentencesToRegEx () method will check
# delimiter boundaries and return None if the pair is not
# found in the sentence...
if hmatchSynA.search(s) and hmatchSynB.search(s):
# try a set of leading and trailing padding of
# non-gene name tokens around the known high confidence
# name pair for our patterns...
for (leading, trailing) in ((0,0),(1,0),(0,1),(1,1)):
# check for early exit of loop...
if stopFindingPatterns:
break

# otherwise, convert to pattern...
regPair =
patternManager.convertSynonymsAndSentencesToRegExPair (hpair, s, leading, trailing)

if regPair:

# we don't want to accept the same pattern twice...

(pattern, printable) = regPair

if printable in patternCache:

continue

# found a new pattern..

sys.stderr.write("Found new pattern: %s %s\n" % (printable,
str (hpair)))

sys.stderr.write("In sentence: %s\n" % s)

# now accumulate the matches for this pattern...
sys.stderr.write("Matching pattern: %s\n" % printable)

# initialize list of pairs found by this pattern...
pairs = []

# pattern NOT found in the cache...
# compile the pattern...
matcher = re.compile (pattern)

# apply it to all of the sentences, which are indexed
# by number in order to help track the sources of

# the co-occurrences...

numPairs = 0

for sourceID in xrange (numSentences) :
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# apply the regular expression to the sentence. ..
sentence = sentences[sourceID]
matchObj = matcher.search (sentence)
if matchobj:
synList = matchObj.groups ()
else:
# move on to the next sentence...
continue

# convert all pairs to uppercase at this stage and
# do not allow duplicates in the name list...
# the lexical criteria for a gene name are applied here...
tempPairs =
patternManager.convertTupleToUppercaseGeneNamePairList(synList)
for pair in tempPairs:
# add pair tuple with sourceID to new pairs list...
pairs.append((pair, sourceID))
numPairs += 1
sys.stderr.write("Found pair: %s in sourceID $s\n" %
(str(pair), str(sourcelD)))

# release the tempPairs memory. . .
tempPairs = None

# early bailout for efficiency...
if numPairs > MAXIMUM_PATTERN_MATCHING__C'ASES:
break

# check that number of pairs are within constraints. ..
numPairs = len(pairs)
if numPairs < MINIMUM_PATTERN_MATCHING CASES:
# too few pairs, discard pattern...
sys.stderr.write("Discarding pattern, below boundary
constraints.\n")
patternCache [printable] = None
elif numPairs > MAXIMUM_PATTERN_MATCHING_ CASES:
# too many pairs, discard pattern...
sys.stderr.write ("Discarding pattern, above boundary
constraints.\n")
patternCache [printable] = None
else:
# add found pairs for this pattern to the patternCache. ..
# priority is the number of matches that the pattern finds...
sys.stderr.write("Retaining pattern, has %4 pairs.\n" %
numbPairs)
patternCache [printable] = pairs
currentNumActivePatterns += 1

# release the pairs memory. ..
pairs = None

# report progress,,,
sys.stderr.write("\n")
sys.stderr.flush()

# limit number of active patterns if specified. ..
if maxNumActivePatterns > 0 and currentNumActivePatterns >=
maxNumActivePatterns:
sys.stderr.write ("Reached maximum active pattern count of
%d.\n" % currentNumActivePatterns)
stopFindingPatterns = 1
break

# we now have all of the patterns that are findable by the

# chosen set of high confidence pairs,

# now use a genetic algorithm to find which set of patterns

# from a randomly chosen subset gives the highest quality network. ..

# report progress...

sys.stderr.write ("High confidence pairs used for this iteration: $s\n" %
str (usedHighConfidencePairs))
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sys.stderr.write ("Randomizing current patterns...\n")
sys.stderr.flush ()

# get list of all the current patterns...

patterns =

[

1

for p in patternCache.keys () :
if patternCache [p] :
patterns.append (p)
totalPatterns = len(patterns)

# determine number of patterns to use this iteration...
if maxNumActivePatterns > 0:
numPatterns = min(maxNumActivePatterns, totalPatterns)

else:

numPatterns = min (PATTERNS_PER ITERATION, totalPatterns)

# randomly sort the list, we will use only the
# first numPatterns in the list for this iteration...
patterns.sort (randomizeListSortFxn)

# report progress...

sys.stderr.write("There are %d active patterns of %d total patterns under

o

consideration.\n" % (numPatterns, totalPatterns))
sys.stderr.write ("Computing best set of patterns...\n")
sys.stderr.flush/()

# create random list of pattern genomes...

genomelList

(1

for i in range(0, GENERATION_SIZE) :
# each genome is initially a random string
# of '+' and '-' characters that represents
# whether a specific pattern is present in the
# genome or not...

genome

[

for j in range (0, numPatterns):
# each new pattern has avchance of
# being included in this genome. ..
if random.random() <= PATTERN_INCLUSION PROBABILITY:

genome.append ('+')

else:

genome.append ('-"')

# convert list to string...

genome

'' . join(genome)

# add to genome list with a dummy score
genomeList .append ( (genome, UNKNOWN_SCORE) )

# cycle through the generations...
generationNumber = 0
previousGenerationQuality = 0.0
generationsWithNoImprovement = 0

while 1:

# save the start time...
generationStartTime = time.time()

# loop through and score the current genome list...
averageScore = 0.0
for i in range (0, GENERATION_ SIZE):

(genome, score) = genomeList [i]

if score == UNKNOWN_SCORE:

# create a graph and coOccurrence table to use
# while scoring this genome.. .
tempGraph = SNLAGraph.SNLAGraph ()

tempCoOccurrences = SNLACoOccurrences.SNLACoOccurrences ()

for j in range (0, numPatterns) :
# check whether to include this pattern...
if genome[j] == '+':
# include the pairs from this pattern...

for (pair, sourcelID) in patternCache [patterns[j]]:
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# we don't want to use the same co-occurrence more than
once.
if not tempCoOccurrences.checkCoOccurenceSourceList(pair[O],
pair([1l], sourcelD):
# add pair tuple with sourceID to graph. ..
tempGraph.addSynonymPair (pair)
tempCoOccurrences.addCoOccurenceSource (pair [0], pair[1],
sourcelD)

# score this genome. ..
score = tempGraph.computeQuality ()
genomeList [i] = (genome, score)

# release the memory...

tempGraph = None

tempCoOccurrences = None
# total up the scores....
averageScore += score

# compute the current genome average fitness...
averageScore = averageScore / GENERATION SIZE

# sort the current genomeList by score, highest first...
genomeList. sort (genomeSortFxn)
currentGenerationQuality = genomeList [0] [1]

# output progress...

generationTime = time.time() - generationStartTime

sys.stderr.write ("Generation %d complete, computed in %0.2f seconds. \n" %
(generationNumber, generationTime))

sys.stderr.write ("Average score is %0.4f.\n" % averageScore)

sys.stderr.write("Best score is %0.4f.\n" % currentGenerationQuality)

sys.stderr.write("Best genome: %s\n\n" % genomeList [0] [0])

sys.stderr.flush()

# exit loop if generations complete. ..
if generationNumber >= NUM GENERATIONS :
break

# also exit loop if we haven't made any improvement in a while.
if currentGenerationQuality <= previousGenerationQuality:
generationsWithNoImprovement += 1
if generationsWithNoImprovement == MAX NO_IMPROVEMENT ITERATIONS:
break
else:
generationsWithNoImprovement = 0
previousGenerationQuality = currentGenerationQuality

# breed the genomes into the next generation. ..
intermediateGenomeList = []
numIntermediateGenomeList = 0

# the best ones get a free pass.

for i in range (0, NUM |_GENOMES_ TO FREE _PASS) :
intermediateGenomeList . append(genomeLlstll]

numIntermediateGenomeList = NUM_GENOMES_TO_FREE_PASS

# rank sampling to complete the rest

# of the selection process...

ranki =10

while numIntermediateGenomeList < GENERATION SIZE:
# compute probability of being selected.
D= 1.0 / (RANK_SELECTION_PRESSURE*rank + 1.0)

# randomly include...

if random.random() < p:
intermediateGenomeList.append(genomeList[rank])
numIntermediateGenomeList += 1

# advance to the next ranked genome and loop if necessary.
rank += 1
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if rank == GENERATION SIZE:
rank = 0
sys.stderr.write("Bred %d genomes.\n" % GENERATION SIZE)

# move genomes from intermediate generation to next
# generation using crossover...
genomeList = []

# give the top scorers a free pass...

for i in range (0, NUM_GENOMES TO FREE_PASS) :
genomelList .append (intermediateGenomeList [i])

numGenomeList = NUM_GENOMES_TO_FREE_ PASS

# compute the crossovers...

crossoverCount = 0

while numGenomeList < GENERATION SIZE:
# update the count...
numGenomelList += 2

# choose a pair of genomes to crossover...
j = random.randint (0, GENERATION SIZE - 1)
k = random.randint (0, GENERATION_SIZE - 1)

# crossover with given probability...

if random.random() < CROSSOVER RATE:
# randomly choose a l-point crossover location...
1 = random.randint (1, numPatterns - 1)

# convert to lists...

(genomel, score) = intermediateGenomeList [j]
(genome2, score) = intermediateGenomeList [k]
genomel = list (genomel)

genome2 = list (genome2)

# perform the crossover...
newGenomel = genomel[0:1] + genome2[l:]
newGenome2 = genome2[0:1] + genomel[l:]

# convert back to strings...
genomel = ''.join(newGenomel)
genome2 = ''.join(newGenome2)

# put into the gene pool...
genomeList.append ( (genomel, UNKNOWN_SCORE) )
genomeList . append ( (genome2, UNKNOWN_SCORE) )

# count the crossovers...
crossoverCount += 1
else:

# just move these genomes without crossover...
genomeList .append (intermediateGenomeList [§1)
genomeList.append (intermediateGenomeList [k])

# report progress...

sys.stderr.write("Performed %d crossovers.\n" % crossoverCount)

# release memory. ..
intermediateGenomeList = None

# randomly mutate, but not the top scorers...
aveMutations = MUTATION_RATE * GENERATION SIZE * numPatterns
numMutations = max (0, int(random.gauss(aveMutations, aveMutations/4.0) + 0.50))
for i in range (0, numMutations):
# choose a genome and a gene to mutate...
g = random.randint(NUM_GENOMES_TO_FREE_PASS, GENERATION SIZE - 1)
k = random.randint (0, numPatterns - 1)

# mutate the chosen gene of the selected genome. ..

(genome, score) = genomeList [j]
genome = list (genome)
if genome[k] == '+':

genome [k] = '-!
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else:
genome [k] = '+!
genome = ''.join(genome)

# place back in the genome list...
genomeList [j] = (genome, UNKNOWN_SCORE)
sys.stderr.write ("Performed %d mutations.\n" % numMutations)

# count the generation...
generationNumber += 1

# done with the genetic optimization, now take the best
# genome and update the network graph with it...
(genome, score) = genomeList [0]

# loop through the patterns...
numKept = 0
for j in range (0, numPatterns):
# check whether to include this pattern. ..
if genome[j] == '+':
# report progress...
sys.stderr.write ("Keeping GOOD pattern: %s\n" % patterns[j])
# include the pairs from this pattern...
for (pair, sourceID) in patternCache [patterns[j]]:

# we don't want to use the same co-occurrence more than once. ..

£ not networkCoOccurrences.checkCoOccurenceSourceList(pair[O], pair[1],

sourcelD) :
# add pair tuple with sourceID to graph...
networkGraph.addSynonymPair (pair)

networkCoOccurrences.addCoOccurenceSource(pair[O], pair[l], sourcelID)

# mark pattern as used, only if we have accepted it,
# otherwise the pattern will continue into the next
# iterationm...

patternCache [patterns[j]] = None

# count it...

numKept += 1

# flush progress log...
sys.stderr.write("Kept %d GOOD patterns.\n" % numKept)
sys.stderr. flush()

# release any memory used...
patterns = None
genomeList = None

# score this graph...
currentQuality = networkGraph.computeQuality ()

# all accepted patterns for this iteration used, now
# move the new high confidence pairs into the found list. ..
allUsedHighConfidencePairs.extend (usedHighConfidencePairs)

sys.stderr.write("Used high confidence pairs list: %s\n" %
str(allUsedHighConfidencePairs))

# current time...
currentTime = time.time()

# count the iterations and give update...
iterationCount += 1

sys.stderr.write("At end of iteration, nextwork quality is %$0.4f\n" % currentQuality)
sys.stderr.write("Completed %d iterations in %0.2f seconds.\n\n" % (iterationCount,

currentTime - startTime))

# flush stderr for each iterationm...
sys.stderr.flush ()

# retrieve the final set of synonym pairs...
sys.stderr.write("Retrieving final s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>