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ABSTRACT

A VLS] Architecture for a Neurocomputer
Using Higher-Order Predicates

Ronnie Dee Geller, M.S.
Oregon Graduate Center, 1987

Supervising Professor: Dan Hammerstrom

Some biological aspects of neura) interactions are presented and used as a
basis for a computational model in the development of a new type of computer
architecture. A VLSI microarchitecture is proposed that efficiently implements the
neural-based computing methods. An analysis of the microarchitecture is presented
to show that it is feasible using currently available VLSI technology. The perfor-
mance expectations of the proposed system are analyzed and compared to conven-
tional computer systems executing similar algorithms. The proposed system is shown
to bave comparatively attractive performance and cost/performance ratio charac-
teristics. Some discussion 1s given on system level characteristics including initializa-

tion and learning.
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1. INTRODUCTION - A BIOLOGICAL VIEW

Modeling biological intelligence by mimicing neural interactions is a field of
computer science that could yield significant practical results and scientific insights.
A completed technology of this form could greatly enhance the pursuit of computer
based artificial intelligence. It is also likely that eflorts in this direction could pro-
vide information for neural scientists on how neurons group together to provide per-
ception, motor functions and intelligent behavior. This thesis addresses these topics
and proposes a computer architecture which is well suited to modeling large neural

networks.

The work presented here actuazlly represents only a portion of broader
research interests being pursued at Oregon Graduate Center (OGC) [Ham86a). The
computer architecture presented in this thesis uses 2 communication structure which
is being developed in a parallel effort at OGC [Bai85]. The communication portion

of the proposed architecture is not considered in this work.

As thijs thesis is grossly based on a simulation of neurons and neural networks,
1t 1s important to explicitly define the limits of the accuracy and intent of this simu-
lation. The ultimate goal of this research is to design 2 computer architecture that
allows much more computational parallelism than is possible with other computer
systems. Ap architecture of this sort would lend itsell well to applications that are

not efficiently solved using essentially sequential computing. Target applications



tend to have large numbers of "soft” constraints and these include image recognition

and natura) language understanding.

To accomplish these goals, a computer architecture will be presented which
derives its computational attributes from biologically based neural systems. There
are several reasons for the choice of neural networks as a basis. One is that neural
networks are capable of supporting tremendous amounts of computational parallel-
ism. Furthermore, life-forms are capable of performing the cognitive functions which
are the goal of this research area. Several researchers have used computer simula-
ti0os of neural networks to obtain promising results. _These include pattern comple-
tion by Hopfield [Hop82] and gemeralized learning by Rumelhart and Hinton
[RHWS8S). Sejnowski and Rosenberg have designed and built a system that has
tearned to convert text to speech (SeR86]. Finally, previous research at OGC has
walidated the usefulness of the specific neuron-based model used here ' [Ham86bj.
Rumelthart and McClelland have covered this general research area carelully
fRuM86). A complete bibliography of research in this field has been prepared by
Hammerstrom [Ham86¢).

The following paragraphs present some bioclogica! information on the neural
rnode) used in this research. Also defined are some relevant biological terms which
might otherwise be foreign to computgr scientists. Every attempt has been made to
presept this information as accurately as possible without getting into unnecessary

details. The references provide these details to the interested reader.

1 As wjll be seen later, the proposed model differs from its biological counLerpatt in many substantisl ways.
Yo fact, it is best to regard the computstionsl mode! as an oversimplified and stereotypical view of & real system
rhat iz otherwise much too complicated and diverse.



Although biological evidence indicates that there are many different kinds of
peurons with a tremendous amount of differentiation between them, there are also
similarities regardless of the neuron type or its specific biological function KuN77).
In general terms, any neuron can be thought of as the composition of four distinet
components - the dendrites, a cell body, an azon and the presynaptic terminals of the
axon [KaS81]. The dendrites of the neuron act 2s its input sensors. The axon, cou-
pled with its presynaptic terminals, provide the neuron’s output capabilities 2. Sig-
nals are passed from the axon of one neuron to a dendrite of another neuron across a
synapse. Incoming signals are passed from the dendrites to the cell body where they
are converted into an output signal. In biological terms this conversion is referred to
as tntegration. Figure 1 depicts a neuron and illustrates the stereotypical features

described above.

|=—PRESYNAPTIC NEURON—>|«—POSTSYNAPTIC NEURON-+]

Figure /- A Depiction of a Stereotyped Neuron Model
With Nomenclature Definitions.

2 Although » differentiation between the axon proper and its presynaptic terminals may be important to the
biological understanding of a peuron, referring to them meparately in this thesis would cause needless confusion.
Therefore, future references to the axon will include the presynsptic terminals unless differentiation is required and
explicitly stated.



Although the communication scenario presented above is accurate in its sim-
plicity, there are several important points where clarification is required. First, it
must be noted that the biological mechanisms used to support communication
between neurons is incredibly complex. The communication path actually involves
several stages of transformations both within the neuron and at the synapse. These
transformations typically involve electrical and chemical interactions that are still
not completely understood. Further, there is much differentiation between the
specific communication mechanisms used by diflerent types of neurons. As a result,
some neural scientists are skeptical of the value of any neural simulation that only
allows one specific mechanism for neuron commubnication. Their claim is that the
diversity Ip communication mechanisms is & necessary component of biologically
based cognitive behavior. Arguments of this nature must be deflerred until more
results 1n this research area are available.

Although there are major differences between specific communication mechan-
1sms used by different neurons, most neural scientists would agree that there are
some characteristics that are easily stereotyped and readily understood [KaS81]. In
this stereotypical view, there are several points worth noting for future reference.
Interneuron communication occurs at a synapse between the axon of the presynaptic
neuron and the dendrite of the postsynaptic neuron. There are several energy transi-
tions that occur during this communication. These include generation of an action
potenttal which is electrical in nature and is transmitted along the axon of the
presynaptic neuron. An action potential causes a secretory potential by releasing

chemical transmitters into the synaptic region. The dendrite of the postsynaptic



neuron reacts to these chemical transmitters by generating an electrically based
synaptic polential. A synaptic potential may be either ezcitafory or fmhibttory in its
effect on the cell body. There is considerable controversy in the biological neural sci-
ences over the importance of the dendrites role during complex interneuron commun-
ications [KPT82,Per83). Nonetheless, it is clear that the dendrite’s role as a func-

tional input site could represent a significant portion of neural systems processing

power.

Synaptic potentials from a neuron’s dendrites are carried to the cell body
where they are integrated, both spatially and temporally, to determine whether an
action potential should be generated on its own axon. The integration performed by
the cell body can be viewed as a weighted algebraic summation of its individual
synaptic potentials. If the result of the integration is above a threshold, then the cell
body will cause its axon to fire, 1.e., generate an action potential. The exact details
of the integration, including the assignment of weights to each of its inputs, depends

greatly on the type of neuron, its biological function and its previous history.

The intensity of secretory and synaptic potentials depends on the magnitude,
duration and timing of their stimulus. Ip this manner, their behavior may be accu-
rately viewed as a time integration of analog input signals. However, biological evi-
dence indicates that action potentials are of an all-or-none nature with the ampli-
tude and duration roughly fixed for any individual neuron. As a result, stimulus
intensity information is only conveyed by the number of action potentials generated

and the time interval between the potentials.



Beyond the microscopic details of a neuron, there is some higher level biologi-
cal information that requires examination. A buman brain contains on the order of
one trillion neurons (10'*) with about one thousand different neuron types [KaS81].
The function of a neuron depends on both its biclogical type and the functions of the
neurons that are connec¢ted to it. A neuron may receive inputs from as many as
10,000 to 80,000 other neurons and its output may affect a similar oumber. The
cycle time of a neuron, from receiving its input to generating its output, is in the
order of 2 to 5 milliseconds [Pos78]. Certain interesting behavior that uses large sub-
gysteras of the nervous system, such as simple image recognition, requires only about
one half a second to complete. Other more complicated cognitive tasks may take
more time. Nevertheless, it is obvious that macroscopic response times of this mag-
nitude are impressive when the basic response time of a neuron (about 10° slower
than a transistor!) is considered along with the incredible number of neurons that
are involved. These facts indicate that the neura) systems utilize significant con-
currency and little sequentiality in solving problems. In summary, response times of
this sort represent performance efficiency that will be carried over to the neural

model based computer architecture presented in later chapters.



2. APROPOSAL FOR A SPECIALIZED DIGITAL ARCHITECTURE

As with all models, it is necessary to differentiate between important elements
of the real system and complicating details that may be ignored. In this case, there
must be defined a digital model of 2 peuron that contains enough of the neuron’s fun-
damental properties that interesting, if not intelligent, behavior could be expected.
Complicating features can be ignored if they are peculiar to the biological nature of
neurons and are pot critical to the macroscopic functions desired. Finally, there are
some biological details that are important to mimic but are not suited to direct

implementation using digital computer technologies. In these cases, functionally

similar counterparts must be derived and substituted into the model.

The model used in this research defines the Connection Node (CN) as the logi-
cal component which corresponds to an individuzal neuron. A group of Connection
Nodes are combined together into a network to form a system called a Connection
Computer (CC). In some ways, a connection computer’s capabilities may be closer to
those of a nervous system than those of current computers. In this way, the connec-
tion computer could perform certain cognitive tasks that are not solvable with the
computers of today. While keeping these goals in mind, the implementation details
of the CN and CC are given below. As some of the attributes of the CN and CC are
roughly based on biological neural networks, some comparisons of the two systems

are given.



As with neurons, the CN is complicated enough that its description is more
easily presented if it is segmented into separate functional units. One of the most
fundamental of these is the communication facility which allows a CIN to receive
input and generate output. As depicted in Figure 2, a CN accepts digital values as
input and transmits 2 digital output. As with a peuron, a CN accepts inputs {from
many sources and integrates these to generate an output value. Unlike neurons, the
CN’s signals are represented by discrete digital values rather than analog signals. It
i1s hikely that the digital implementation of the CN is acceptable as it satisfies the
functional requirement of conveying intensity information. Another reason for using
digital outputs is that efficient transmission across a single carrier is only possible
with 2 digital representation of the data. An analog transmission scheme would not
allow reasonably efficient time-multiplexed use of the transmission medium.

To extend this comparison, the CN uses the value of the digital signal as the
only indication of intensity whereas neurons rely heavily on the inter-"fire™ interval

to denote intensity. From a more specific perspective, our CNs use eight bits of
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Figure 2 - A Diagram of a Connection Node (CN).



information for input and output values. The granularity of communication accu-
racy is probably greater than that of real neurons. Initial simulations of this specific
model at OGC shows that this quantization is more than acceptable for the target

applications (Ham86b).

The second major functional portion of the CN requiring explabnation is its
method of integration to generate an output value from its input values. The gen-
eral function used is called a Sigma-Pi function. This name is derived from the fact
that the function is a sum (Sigma) of intermediate products, Pi terms. Specifically,

the output of a CN is derived from its inputs as given by Equation {.

[ 2
out = [ ( 3w ( Hz’nﬁ )) Egquation 1

k=i jml

In Equation 1, in,;, and w, are 3-tuple inputs which are used to calculate the output,
out. Each in, represents an input signal into the CN and it is typically an output of
some other CN. The product of the two inputs, in,, and ing,, is referred to as a £-
codon and it is an intermediate value used during the computation. The 2-codon is a
particular type of higher-order predicates  and both of these terms are explained
below. Each 2-codon is multiplied by a 16-bit weight, w,, before being submitted to
the summation function shown in Equation 1. After the summation is complete, a
firing function, f, is applied that converts the sum to the output value. Throughout
these computational processes, full precision is retained by increasing the widths of

the data paths as appropriate.

3 The word predicalc i uzed bere for its meanipg as & term desigpaling 8 relslronskip and pot for its formal
logic meaning that is familiar to computer scientists.
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Although this Sigma-Pi construct may appear to be rather specific in its
application, it is actually quite geperal. In fact, some key features used by other
peural models, such as threshold and residual state, can be easily handled with this

general computational formulation.

The specific firing function used in this research is a simple binary division
which is easily performed by just extracting the upper eight bits from the resultant
sum. This is a special case of the more general non-linear sigmotd function that is
most often used in this context [RuM86). The microarchitecture presented in the fol-
lowing chapter relies or the choice of f as the firing function, but the more general
architecture of the CN does not, as it uses the more general sigmoid function.
Furthermore, if subsequent research shows a need for a more powerful firing func-
tion, this could be accomplished with only minimal changes to the proposed microar-

chitecture.

The computation method given in Equation 1 is a special case of r-codons as
formulated by Marr Mar70, MGL86a, MGL86b, MiP69]. This computational strategy
is based on hypotheses of the biological mechanisms used io neural systems to encode
and process information *. Specifically, there are several areas where the CN func-
tions are analogous to those of neurons. The most obvious of these similarities is the
use of a weighted sum method for performing the integration function. In this con-
text, the mathematical summation of the CN precisely corresponds to a similar func-

tion performed by the cell body. Further, weighting the inputs to the summation is

very similar to the function performed by the connection between the dendrites and

“ As a result, a secondary beneht of Lhis research area will be to Lest the validity of these biological theories.
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the cell body. In the biological mechanism, the electrical resistance between the den-
drite and the cell body depends on the physical dimensions of the dendrite (KaS81]
and this resistance greatly determines the wejghting factor associated with each den-
drite. The weighting of inputs also may correspond in function with the temporal
and spatial facilitation that occurs at a synapse.

The use of higher-order predicates is another case where the CN is similar to
a neuron. The alternative to using higher-order predicates would be basing the CN’s
computations exclusively on the weighted sum of its inputs. In biclogical terms, this
alternative would correspond to & neuron whose input processing consists of only
simple signal integration at the cell body. This simplified neuron model would lack
all input processing and correlation functions that are associated with the neuron’s
dendrites. As the dendrites role is critical to interneuron communication
[KPT82,Per83], omitting it completely from the CN model would be unwise. In fact,
Marr shows that higher-order predicates, in the form of r-codons, are consistent with
biological theories of neuron based information processing Mar70]. Maxwell et al.
IMGL86b] and Minsky and Papert [MiP89] have discused the functional advantages

of higher-order predicates from a computer science perspective.

The particular type of higher-order predicate used in the CN model is the 2-
codon apnd it is a two input r-codon. The use of 2-codonms, rather than 3-codons or
even some different type of higher-order predicate, was chosen as a result of simula-
tions at OGC of target application requirements [Ham86b].

Once the integration is complete, the firing function generates a digital out-

put. In the neural system, the actual firing conveys little information as its intensity
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is roughly fixed for apy individua! neuron. As a result, neurons must convey inten-
sity information by the relative times at which they fire. The underlying mechan-
isms used by reurons rely heavily on analog processing and synchronization of time
critical events. As the CN model does not support these capabilities, the digital gra-

dation of outputs must suffice for expressing intensity information.

Now that the internal aspects of the CN have been presented, certain system
issues of the CC must be considered. As with a biological nervous system, it is
important that the CC have sufficient connections that efficient parallelism may be
accomplished. On the other extreme, it is obviously impossible for each CN to be
connected to every other CN in the CC. These two opposing factors suggest the
need for a communication scheme that is a mixture of acceptable connection richness
and technological viability. As mentioned earlier, paralle] research at OGC is
directed towards defining a global communication mechanism for the CC which will
support rich connections and fast communications in very large systems [BaHS86].
Bailey and Hammerstrom have shown that conventional networks based on such con-
structs as direct connections, nearest neighbor, hypercube, shared memory, etc., are
unacceptable for the very large systems under consideration at OGC. Furthermore,

they have proposed a communication scheme called the Broadcast Hierarchy (BH)

that satisfies the requirements for the target systems °

. This research uses their pro-
posal of the BH and relies on their rationale. Therefore, this thesis provides only

enough relevant information on the BH to establish its use and function within the

CC. Beyond this, it wil} be shown specifically how the CN supports communication

5 The BH construct as used in this thesis is derived from ongoing research sl OGC. Az the BH definition is
evolving, related implementation details may slightly confBlict with current zad future definitions used by other
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using the BH construct.

Before presenting the details of the BH, it is important to discuss a technolog-
ical constraint on the CC design that aflects its BH implementation. Because a CN
is such a simple computational element and many of its functions relate directly to
1/O requirements, it is useful to group together many CNs into a single physical
entity. Combining several CNs together sllows efficient utilization of VLSI technol-
ogy and lowers the number of physical circuit board connections required. To
accomplish this physical grouping, 64 CNs are combined together to form a Physical
Node {(PN). Within a PN, communication between its CNs is sccomplished by
methods that are consistent with standard intrachip VLSI methods and, therefore,
the BH construct does not strictly apply at this internal level 8. The exact details of
the intrachip CN communication facilities are presented in the following chapter

which defines the PN microarchitecture.

It should be remembered that the PN construct is just a technological neces-
sity for grouping together many CNs. The existence of the PN as a physical entity
forces frequent references to it even though the PN’s computational properties are

completely defined by its emulation of the virtual CNs.

The BH networking method is a mechanism of connecting many different PNs
together while minimizing physical connections, communication latency and address-
ing overhead. This is accomplished by segmenting PNs into logical groups that com-

municate with each other on a Broadcast Hierarchy level. In the specific form of the

researchers at OGC.

9]¢ could be argued that the internal communication facilities actually are Lhe lowest level of the Broadcast
Hierarchy. This argument has practical and aesthetic merit but is nol pursued here.
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BH used in this research, each PN is 2 member of three different BH levels and the
PN supports complete parallel utilization of all three levels concurrently. Level 1
connects four PNs, level 2 connects 32 and BH level 3 connects 128 PNs to each
other. These BH level sizes were chosen as a result of the previously cited initial
simulations of this system by Bailey [BaH86|. The simulation results indicate that
target applications require each CN to bave direct communication access to approxi-
mately 1,000 other CNs. As can be seen from Table 1, the sizes chosen for the three

BH levels are satisfactory in this regard.

The method of grouping PNs together could have significant affect on PN per-
formance and its inherent fault tolerance. The exact details of the grouping are not
pursued 1n this thesis as they are more intimately tied up with details of the com-
munication theory of the CC. Nonetheless, some of the characteristics of the group-
ing are discussed here as they relate to the details of PN implementation. As lower
levels would have less contention, communication latency would tend to be shorter
at the lower levels than at the higher ones. As a result, CC algorithms would be

able to specify that communications between any two PNs would be accomplished at

BH NUMBER NUMBER REQ UIII;ED BITS
LEVEL OF PNs OF CNs ADDRESS FIELD
INTERNAL 1 64 s
! 4 256 P
d il 2048 11
g 128 8192 18

Table 1 - The Number of Addressable CNs and PNs at each BH Level.
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the lowest possible BH level. This choice could tend to keep concentrated communi-
cation traffic on the smaller, local Jevels and keep them off the more competitive
higher levels. This preferred use of lower levels would minimize contention problems
at higher BH levels that would otherwise become prohibitive in very large systems.
As communication "locality” is typical in neural networks, the preferred use of lower

BH levels is natural.

The logical communication mechanism used by the BH is level independent,
but there could be variation in the phystcal connection method depending on the
pumber of PNs connected. Logically, each BB Jevel must bave an address space
within which each definable CN has a unique address. Table 1 lists the size of the
different levels and the related addressing requirements. To simplify the implemen-
tatiop, 1t 1s useful to define the addresses of all of the CNs within a PN sequentially
from a base address. In this way, the PN would only need to be given its base

address at each BH level to define the addresses of each of its CNs.

Whenever a CN fires, the parent PN takes the eight bit output of the CN and
appends the CNs unique address onto the data to create a BH communication
packet Jor each of the three BH levels. The PN then simply 6roadcaests the appropri-
ate packet onto each level using the physical communication facility provided at
that BH level. All PNs connected on the specific BH level receive this packet and
are responsible for Jooking at the CN address of the originator to determine if they
have any CN which relies on the data message. If there is no reliance, the PN may
simply discard the packet. If there 13 a relizance, the PN must retain the input data

and then update the output of its own affected CNs. This protocol is referred to as
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"come-from" addressing, as the address of the sender is specified and not the address

of the recipient.

This logical protocol shows the elegance and simplicity of the BH construct
when used in very large systems. In particular, the broadcasting of all messages
onto a common carrier is an apt choice if it is likely that a packet will be used by'
multiple PNs on 2 BH level. This likelihood is consistent with biological evidence of
neural based information processing. Besides, an application would be formulated
for execution on the CC with this efficiency characteristic in mind.

Actually, broadcasting on all levels would be unnecessary and inefficient in 2
pure Broadcast Hierarchy. By broadcasting on multiple levels, the PN is capable of
supporting the more general case where there is overlap between BH levels. A more
efficient implementation (that yields the same flexibility) uses a programmable
Broadcast Control Field to specify which BH levels are to be used for each CN out-
put. The Broadcast Countrol Field is not supported in the definition of the PN given

in this thesis, but it could be easily added in the future.

The choice of physical connection facilities used at each level could depend on
the number of PNs connected, their proximity and other environmental factors. For
example, it is possible that at the lower levels a fully arbitrated, parallel transmis-
sion, shared bus could be used. At the higher levels, some sort of serial transmission.
pon-arbitrated network would be used. As network protocol methods are subject to
considerable controversy among specialists, this thesis will not propose a precise
method for communication. Instead, it will be assumed that some sort of a serial

transmission will be used and it will be the same choice for each BH level.
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From a biological perspective, the Broadcast Hierarchy is attractive in several
ways. One )s that is supports fast local communications between PNs at the lower
BH levels. This is similar to communication between neurons that are directly con-
nected. Besides fast local communication, the BH provides 2 network with high fan-
out and fan-in that allows many CNs to indirectly (but quickly) communicate, with
even logically distant CNs. Therefore, a carefully formulated group of overlapping
BH levels could provide connection richness similar to that of biological neural sys-
tems. If this richness were accomplished, it is likely that any two CNs could
indirectly communicate with only a couple of intermediary CNs required to pro-
pagate a message. These simple indirect message passing abilities could easily be
programmed into a CC application as shown in a later chapter. This relatively
straightforward global communication capability provided by the BH closely corre-
lates with similar biological functions.

We next show how the constructs defined above are combined to design a real
computer system. Figure 3 shows a hypothetical configuration of 2 CC circuit board
that contains 128 PNs. It is entirely possible that a realistic CC could be composed
of 32 of these boards providing a system of over 250,000 CNs with approximately 43

million logical connections.

Although these numbers may be technologically aggressive, they do not
represent overly optimistic expectations as integrated circuit packaging techniques
are rapidly improvinrg. Furthermore, the regulanty and locality of the inter-chip
communication requirements could make this proposed system easily realistic.

Finally, it is anticipated that the research at OGC will ultimately evolve into a
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Wafer Scale Integration (WSI) implementation that would require some architectural
changes from the CC presented in this thesis. As a result, the technological aggres-
siveness of this proposal does not introduce significant risk into future research.
Further discussions of the technological, academic and ecoaomic viability of the pro-
posed system will be presented in later chapters.

The three non-PN logic components shown in Figure 3 play crucial reles in the
CC architecture. An explanation of their functions sheds some light on how the CC
operates. Briefly, these are used primarily in system initialization, operational com-

puting and the execution of learning algorithms. The initialization consists of the
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microprocessor loading the DRAM of each PN with the numerical information
required to define the problem to be solved. As will be seen in the following chapter,
this information must include a definition of which 2-codons will be used and the
specification of all required weight terms. Once the DRAMSs are initialized, the PNs
may be started and they will begin to generate outputs. For communication
between PNs, on-board references are passed directly between PNs but off-board
references must be passed through the I/O controller on each board. The 1/O con-
troller also performs the DRAM refresh. In many applications, the CC will “"com-
plete” its computation and the microprocessor may be called upon to execute 2
learning algorithm. In other applications, learning mayr be performed as a back-
ground job while the PN computes. A more detailed discussion of topics relating to
initialization, computing and learning will be presented in a later chapter.

Although this proposed system will have approximately seven orders of magni-
tude less CNs than a buman brain bas neurons, it is still likely that the CC could
perform useful functions that are not possible with current computers. For example,
NETtalk uses only 300 nodes [SeR86]. The CC could also perform some functions
that are already possible but at a vastly improved cost/performance ratio.
Nevertheless, the brain provides a very general processing mechanism that is capable
of such diverse functions as sensory analysis, memory, rational thought, emotionzal
behavior, reflex actions and instinctual behavior such as propagation of the species.
The expectations of the CC’s abilities are well below those of human intelligence. In
fact, the initial CC design would probably be considered successful if it were capable

of just one fairly trivial function such as learning to reliably recognize subtle visual
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patterns in different contexts. An alternative task could be the real-time recognition
of several words spoken continvously. In general, any computational problem that

could profit from significant parallelism would be a target application for the CC.

No proposal for a radically different computer would be complete without
showing why the proposal is even required. In other words, it is important to estab-
lish why currently available computer architectures are not acceptable for the execu-
tion of the target applicatiops. It is becoming increasingly clear that conventional
von Neumann computers cannot support the computational parallelism required to
solve complicated artificial intelligence problems. To circumveat these limitations,
this thesis presents a computational architecture that is capable of tremendous algo-
rithmic parallelism. A later chapter presents some caljculated performance expecta-
tions [or the CC and compares them with those expected from more conveptional

computers executing the same algorithm.
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3. AMICROARCHITECTURAL IMPLEMENTATION

It is now possible to define a microarchitecture that implements the digital
mode] presented above. This chapter presents 2 microarchitectural proposal for a
VLSI based digital chip that implements an individua)l PN and provides a building

block for the Connection Computer.

This thesis gives the initial proposal for a computer architecture that is
totally different from any other computer system. Furthermore, brand new compu-
tational methods are being developed for this architecture that are fundementally
different from those of conventional computer systems. As a result of these two fac-
tors, it has proved impossible to completely resolve every technical question encoun-
tered during the architectural definition. On the other hand, this thesis explicitly
points out the questions that require resolution before this architecture is finalized.
In these situations, the microarchitecture is defined in such a way that resolution of
the questions affects only design parameters and not the fundamental architectural
structure. As a result, the structure presented here should be flexible enough to

accommodate future research results.

Before describing the details of the microarchitecture, it i1s important to point
out two important implementation decisions that cause significant repercussions.
The first of these decisions is to use external Dynamic Random Access Memory

(DRAM) to satisfy the high-capacity memory requirements of 2 PN. As will be
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shown later, each PN (as defined in this chapter) requires on the order of two mega-
bits of memory. As these requirements border on the capacity limits of commercially
available DRAM, it is clear that it would be unlikely to include this amourt of
memory on-chip in the PN. Therefore, the decision to use external memory was
made even though this solution is not optimal in many ways. In fact, several funda-
mental characteristics of the microarchitecture of the PN differ from those that
would be expected if the memory were internal. In some cases, specific logic ele-
ments require actual trade-offs to accommodate the external memory decision and
these are discussed below as appropriate. Some discussion 1s also provided on how
the microarchitecture could be enhanced in the more ideal situation where internal
memory is feasible.

The second topic that requires resolution before actually launching into the
discussion of the microarchitecture, is the definition of some system level details of
the PN as they relate to memory use. As described in the previous chapter, a PN
implements 64 CNs and uses three levels of the Broadcast Hierarchy. The different
BH levels support either 4, 32 or 128 PNs depending on the level. These system
parameters imply that the PN must be capable of accepting input from 10,560
unique CNs. This number may be derived from Table 1 by adding the number of
CNs possible at each BH Level. This total includes every input CN separately even
though this results in replicated storage, because in true hierarchical structures
inputs are duplicated on different BH levels. This replication of storage for each
input CN supports the worst case grouping in which inputs on lower levels are not

present in higher levels.
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In the proposed design, the PN allocates data buffer memory for each of the
defined CN inputs, even though it is likely that most applications would not use
them all. Otber memory allocation methods were considered that are more conser-
vative of memory use in the situation where many CNs are unused. Unfortunately,
none of these was feasible as the savings in memory use was easily offset by the
increased complexity of addressing logic. This trade-off betweer regularity and
memory requirements occurs throughout this design and is generally resolved in a

simtlar manner.

Although the PN reserves storage for each CN input, it is not possible for it
to reserve storage for each 2-codon. As a result, the 2-codon Products Table and the
CN Weight Tables shown in Figure 4 must be limited in size. If the sizes of these
tables were pot restricted by the implementation, it would be possible that the PN
would require all possible 2-codons to be generated. Furthermore, in the extreme, it
would be possible for each of the 64 CNs to have a Weight Table with an entry for
each of the possible 2-codons. This scenario is clearly infeasible as the number of
possible 2-codons is in the approximate order of the square of the mumber of input
CNs. This would imply the need for over 100 megabytes of memory just to store the
entire 2-codon Products Table. As a result, the 2-codon Products Table is limited in
size to 8192 entries and the Weight Tables are limited to 512 entries per CN. Limit-
ing table sizes is possible because neural networks exhibit significant locality in their
computational references. Ongoing research at OGC indicates that the proposed
limits are consistent with application requirements [Ham86b|. Furthermore, the

actual table sizes are not critical to the microarchitecture of the PN and could be



i
f
i

24

l HALT lSTART l HOLD ! ! PIO CONTROL

] INTERNAL
INPUTS :
INPUT UPDWTE 2C0DON UPDATES SUTRUT
o BUFFER PRODUCTS PRODLCTS —— SUM BUFFER
1
=R oo LoGic TABLE §- LoGIc AN [BHIEVELY o)
1
Loaic LoGIC
=3
LEVEL BHLEVEL 2
- SEERC
TS OUTPUTS
W
=
LEVEL MULTIPLIER LEVEL 3
3
INPUTS CUTPUTS

Figure 4 - A High Level Block Diagram of the PN Microarchitecture with Control Signals.

easily changed if required.

It is now possible to define the microarchitecture of the PN. As can be seen
from an examination of Figure 4, the PN is segmented into five major functional
units. The remainder of this chapter is devoted to defining the structure of these
functional! blocks in detail. The communication and synchronization between these

blocks is also deseribed.

Figure 5 shows a detailed block diagram of the INPUT BUFFER AND ROUT-
ING LOGIC used by the PN. When a BH transmission packet is received by the

PN, it 1s deserialized, buffered and converted to PN internal addresses as shown n
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Figure 5 - A Block Diagram of the INPUT BUFFER AND ROUTING LOGIC. The Input Date
Buffer is available to other functional units of the PN. The CN Update Required
signals are passed to other funciional units of the PN to iniiiale processing.

Figure 5. Once converted to internal format, the data in the received packets are

written to the external memory where the Input Data Buffer (IDB) resides. These

data are then accessible to other functional subsystems of the architecture. At this

time, the input control logic uses the Input Contributor Flags (ICF) associated with

the particular input to set the global CN Update Required bits. The ICF bits, cou-

pled with related data structures, provide the control and synchronization mechan-

ism that governs how and when CNs are updated. The use of these global mechan-

isms are defined below after first addressing some of the more fundamental issues of

the input logic.
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Parallel logic is provided to allow deserialization, buffering and address
conversion to occur concurrently and independently on each of the BH levels. The
reasons behind the use of this (mostly) duplicated logic is to isolate BH leve] specific
considerations - both from the internal structure of the PN and from the other BH

levels.

One particular dependency that can be masked using this sort of replicated
BH specific logic is the slight difference in transmission packet formats. As shown in
Figure 6, each BH level has a transmission packet that differs from other Jevels in
the size of its address field. (Figure 5 also shows this feature as the input busses
vary in size depending on the BH level.) The use of BH specific logic to deserialize
transmission packets requires the implementation of a simple deserialization circuit
that accepts a fixed number of serial bits and converts to a fixed size parallei word.
The alternate method of using common logic would require some programmability of
the deserialization circuitry to accommodate the different packet sizes. As this logic
complication 1s not necessary, dedicated deserialization hardware is used for each BH
level. The same type of arguments apply to the choice of using BH level specific

dedicated circuitry for the data buffering and the address conversion logic.

As shown In Figure 5, the PN uses a four packet deep FIFO to bufler its

inputs at each BH level. Buflering is required, because after the internal address is

DATA FIELD ORIGINATOR ADDRESS FIELD
(8 bits) {Bit width is BH level dependent)

Figure 6 - A Broadcast Hierarchy Transmsssion Packel. The size of the data field is fized but
the s1ze of the address field 1s BH level dependent.
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computed for a packet, the external memory must be accessed to write the data to
the IDB and to fetch the ICFs. This accessing of memory could represent a
bottleneck during times of bhigh input frequency and as a result, it is necessary to
slightly decouple the BH networks from the PN’s processing of the packets. This is
accomplished by the use of a FIFO buffer for each of the BH levels. It is not known
whether a four deep bufler 1s acceptable in this architecture as the BH network load
characteristics are not well defined at this time. Actually, buffer overflow is pot a
catastrophic occurrence in the CC and losing some small percentage of the packets
could be tolerated. Nonetheless, this specific portion of the architecture will require
significant future analysis before this question is completely resolved. As the
bottleneck causing the problem is related to the use of external memory, it is possi-
ble that if the design were converted to use internal memory, then the problem could
be eliminated.

The address conversion performed by the input oriented logic is straightfor-
ward. Within the PN, all input CNs are numbered sequentially from 1 to 10,560 and
the corresponding memory locations store the latest values received for each CN.
These addresses are computed from the BH level addresses by adding an offset that
is BH Jevel dependent. For internal levels, no ofiset is required as they both start at
address one. For BH levels 1, 2 and 3 the offsets are 64, 320 (64 + 256) and 2368
(64 + 256 + 2048), respectively. The derivation of these offsets can be understood
from an examinatiop of the information given in Table 1. The computation of the

internal addresses is therefore, quite simple. As a result, BH level specific dedicated

translation hardware is an acceptable solution.
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As mentioned earlier, the Input Control Logic accesses the external memory
to write into the IDB and to fetch the ICFs. To accomplish these functions, it is
necessary to perform an address mapping to obtain correct physical addresses in the
DRAM. To avoid redundant logic, a centralized memory access facility is defined
that all other portions of the microarchitecture use whenever they require access to
external memory. This central facility would use a2 standard implementation of a
base+offset memory controller that also has block transfer capabilities. The base
address is derived from a jookup table by using a code passed to it to indicate which
portion of the DRAM is being accessed. For example, a code of three might indicate
that the request is for a word in the IDB portion in the DRAM. The offset and word
count would also bave to be passed as part of the requesting protocol to completely
define the required transfer. This type of memory translation logic is commonplace
in conventional computer systems and therefore does not require 2 detailed deserip-

tion here.

In addition to implementation ease, there are other reasons why a centralized
memory access {acility is desirable. One is that it lmits the sphere of influence of
the logical to physical mapping in such a way that changes to the mapping only
aflect the central facility. Also, memory bandwidth optimizations can be pursued
without considerations of global features of the microarchitecture. The memory
access facility also generates 2ll required DRAM control signals, thus eliminating any
need for "glue" logic between the PN and the DRAM. Finally, the use of this central
facility allows maximum flexibility in adapting to technological changes in the inter-

face characteristics of future memories.

ASTHSIT N LUSNE FIYN0WHR N~



29

The last portion of the input logic requiring discussion is the ICFs. These pro-
vide the cornerstone for the communication and synchronization mechanisms used by
the PN. An ICF is a 64-bit wide, bit significant DRAM resident field that contains
one bit for each of the PN’s internal CNs. If the ICF bit for a CN is set for some
ixput in the IDB, then the specified CN uses that input in the calculation of its out-
put ’. As a result, the ICFs provide a mechanism to define which CNs require
recomputation of their output functions when an input changes. The role of the
imput oriented logic in this process is easily defined although its purpose and correct-
ness will not become apparent until Jater. Whenever the Input Control Logic
receives a new input value, it will fetch that input’s ICFs, and for each ICF bit set,
it will pulse the corresponding CN Update Required signal. Subsequent logic that
uses the CN Update Required signals must latch the pulse on its rising edge. When
other subsystems of the PN detect the rising edge of this pulse, it informs them that
a recomputation of a particular CN’s output is required. The details of the other
blocks’ use of this, and related synchronjzation structures, are described when their

functional descriptions are given.

Figure 7 shows the UPDATE PRODUCTS LOGIC zlong with the previously
defined Input Data Buffer. The data structures and computing elements shown in
Figure 7 generate specific 2-codons that are required to compute CN outputs. When
the Product Update Control Logic detects a pulse on a CN Update Required line, it

asserts the corresponding CN Active bit to enable the sum update circuitry It then

7 The losding of the 1CFs occurs during system initialization when the Weight Tsbles nnd some other appli-
cxtion epecific memory are loaded. None of these values are modified during the normal computations of the PN.
System initialization and dynsmic learning are covered in & later chapter where some of the detsils of the loading
sxe described.
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Figure 7 - A Block Diagram of the UPDATE PRODUCTS LOGIC. Whenever the CN Update Required
bit 13 set for 2ome CN, all £-codons l(sted in the CN’s 2-codons Used Table are compuled.
The products are passed directly to the Update Sum Logic.

reads the 2-codons Used Table for the corresponding CN. These 64 tables contain
the addresses for each of the 2-codons that the particular CN uses to compute its
output. As the number of 2-codons used by a CN is limited in this implementation
to 512, these tables require 512 entries each. The PN contains on-chip memory for
the specific purpose of storing an entire 2-codons Used Table. As a result, it is possi-
ble for the table to be read {rom the externa) memory into the internal buffer in a
single memory transfer.

Once the table has been read into its mternal buffer, the Product Update
Control Logic reads each entry in the table to compute all 2-codops required by that
CN. Specifically, 1t uses each entry as a pointer into the 2-codon Products Table

where the IDB addresses of the two multiplicands are stored. After fetching these

ARTEHETIOLISNE 3YACHHD L=~
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IDB addresses, the specified multiplicand data is passed to the 8 X 8 multiplier. The
16-bit 2-codon result is thep passed directly to the UPDATE SUM LOGIC and the
2-codon Available signal is strobed to cause the product to be latched. The Product
Update Control Logic continues in this fashion until all 2-codons required by the
given CN have been computed. The completion condition is detected- when either
the last of the 512 entries is exhausted or an address pointer of zero is detected.
When complete, the control logic deasserts the CN Active bit for that CN to indi-
cate that the last 2-codon product has been generated. At this time, the UPDATE
PRODUCTS LOGIC either begins a similar process on a different CN| if required, or

1t goes into an idle mode.

In 2nalyzing the performance implications of the proposed mec:hod of updating
the 2-codons, two immediate concerns are raised. First, when a 2-codon is shared by
multiple CNs, its 2-codon value is actually computed once for every CN that uses it.
Although this may seem inefficient, implementations that eliminated multiple 2-
codon computations required more complicated data structures and had significantly
bigher control overhead.

The second performance concern may actually become critical to PN perfor-
mance if the inputs to the PN change too rapidly. This problem could become evi-
dent if during the computation of a CN’s 2-codons, the CN Update Required signal
for that CN is pulsed again. At this point, it will be necessary to discard all compu-
tations in progress and begin to recompute all 2-codon values even though 1t 1s possi-
ble that only one would change. In the ideal case, it would seem possible to store a

designation of which input caused the midstream interruption and only recompute
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2-codons that are based on it. Unfortunately, the mechanisms required to accom-
plish this selection were more complicated than their relative merit allowed. Future
research in this area may find a method of allowing this type of midstream correc-
tion, if the applications that use the PN exhibit this sort of behavior routinely.
There is a final topic concerning the format of the 2-codon Products Table
that requires explicit description. If one of the multiplicand addresses is zero, then
the other input will be passed (unchanged) to the UPDATE SUM LOGIC as the 2-
codon Product. Using a zero-value address in this manper provides a mechanism for
the PN to use when a CN requires the simple weighting of a single input. This
mechanism is efficient and straigbtforward in its implementation because this

scenario could occur frequently.

The next major subsystem to be considered is the UPDATE SUM LOGIC
shown in Figure 8. When the UPDATE SUM LOGIC detects a pulse on a CN
Update Required line, it waits for a corresponding CN Active bit to be set by
intermediary logic. When the latter bit gets set, it indicates that the UPDATE SUM
LOGIC will start to receive 2-codon Products (for the specified CN) as an input to
its 16-bit multiplier. As each 2-codon is strobed into the multiplier by the 2-codon
Available signal, the control logic fetches the corresponding value from the appropri-
ate Weight Table and passes it, as the other input, to the 16 x 16 multiplier. The

32-bit output products from the multiplier are repeatedly passed to the 32-bit by

41-bit full adder which recycles its previous result as one of its inputs 8.

9
® The 41-bit limit is derived from the maximum widlh that could be required when adding 612 (2') numbers
thst are 32 bits wide.
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Figure 8 - A Block Diagrom of the UPDATE SUM LOGIC with the Weight Tablea for each CN.
The B-codon Available mgnal sirobes the 2-codon product info the mulliplier’s input.
The OUT Aveilable and OUT Accepied lines prowvide full handehaking of the OUT value.

In this way, the summation defined in Equation 1 is performed and the result
is passed to the Firing Funetion block. The assertion of the OUT Available bit
instructs the Firing Function circuitry to accept the final result from the adder and
then drive its own 8Dbit result, OUT, towards the output oriented subsystem of the
PN. The Firing Function block must continue to keep its output valid until the con-
trol logic deasserts the OUT Available bit. Because the control logic waits for the
return of the OUT Accepted bit before it deasserts OUT Available, this provides a

full bandshake mechanism to insure that the output oriented logic receives the

correct result.
Finally, Figure 9 shows the OUTPUT BUFFER AND ROUTING LOGIC used
to send the newly calculated OUT values onto each of the BH levels. After detecting

the assertion of a CN Update Required pulse, the output oriented control logic waits

for the corresponding OUT Available bit to be set. After an implementation
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Figure 9 - A Block Diagram of the OUTPUT BUFFER AND ROUTING LOGIC. CN values are only
broadcasted if they change from the lagt value broadcasted.

dependent deskew time, the 8§ bit OUT value is latched as one input to the compara-
tor shown in Figure 9, and the QUT Accepted bit for that CN is set. The Output
Buffer Control Logic then causes the previously stored Last OUT Value, for the par-
ticular CN, to be passed as the second input to the comparator. If the comparator
finds that the new OUT value and the last OUT value are equal, then no more pro-
cessing 1s required as there has not been a net chaange in the state of the specified
CN. In later implementations it will be desirable to loosen up the equality con-
straint and instead determine whether the current and last OUT values are equal to
each other within some predefined threshold. Loosening this constraint will actually

simplify the comparator logic as it will eliminate some of the low-order bits from the

XOR circuitry.
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If the comparator finds the new and last OUT values to be different, then it is
necessary to broadcast the new value to all other CNs in the CC. Under this cir-
cumstance, the comparator drives the new OUT value as its output and generates
the Broadcast Required control signal. When the control circuitry detects the asser-
tion of the Broadcast Required signal, it passes the CN number that is being
updated to the Address Translation Logic blocks for each BH level ®. At this time,
the Output Buffer Control Logic causes the new OUT value to be written to the

Table of Last OUT Values for future comparisons.

When the Address Translation Logic blocks receive the Broadcast Required
signal, they compute the BH level specific address of the CN by adding the internal
CN number to its own BH level specific base address. The BH level base address for
each level is stored in a dedicated internal register that is loaded during system ini-
tialization as described in a later chapter. The computed BH addresses are passed
to the BH level specific FIFO bufler where they are united with the data output from

the comparator and buffered.

Once the data is in the FIFO buffer, it 1s available to the BH level Network
Controller which is responsible for performing the required parallel to serial conver-
sion. Each Network Controller arbitrates for use of its own BH physical network
and then broadcasts the new OUT value to all other PNs that are connected to 1t.
Thus the process begins anew on any PNs that have a CN that relies on the new

value.

® Recent research st OGC [Bal88] has shown the need for programmable control over whether a CN's output
gets transmitted on each separale BH level s defined by the Broadcas! Control Field. Although this feature is not
supported in this implementsation, the Output Control Logi¢c could be easily modified to asccommodate it.
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Most of the architectural features of the output oriented logic are simple
inversions of the operations performed by the input oriented logic of the PN. There-
fore, rationalbization of the repetition of similar logic on each of the BH levels is not
required as the arguments are the same as those given above for the input section.
Nonetheless, it would seem possible to omit the use of any FIFO buffering in the out-
put logic as the time required to compute a total CN update is probably quite Jarge
compared with the time required to transmit the transmission packet onto the BH
network. It was decided that the choice of not using FIFO buffering was imprudent
for two reasons. The first is that a CN ipput could cause an output to be generated
quite quickly if there is only a small number of entries in the affected CN’s 2-codons
Used Table. The second is that a BH network could have bursts of high communica-
tions traffic and therefore significant network delays could occur. In either case, a
FIFO buffer allows for these circumstances and insures tbat the PN is capable of
responding to them, Omn the other hand, it is not entirely clear whether the four
deep FIFO is optimal or even acceptable. Future work must be done to discover

application requirements in this respect.

Now that the microarchitectural structure has been presented, it is important
to describe the external signals that are used to control the PN. Figure 4 shows the
major PN control signals. These are the START, HALT, HOLD and PIO (Fro
grammed 1/O) signals. Not surprisingly, assertion of the START signal causes the
PN to begin execution and HALT causes it to cease execution. Assertion of the
HOLD signal temporarily inhibits the PN from accessing its DRAM. This signal is

used if the I/O controller or microprocessor require exclusive access to the DRAM
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This function is required if learning is performed as a background task. The PIO
contro} signals are used to cause the PN to enter a mode where it allows external
access to its internal memory locations. This access is required during PN initializa-
tion and may also be useful in determining the status of an individua] CN after exe-
cution has been halted. The actual timplementation of the PIO logic is straightfor-
ward because all that is required is selective access .to internal registers. This is a
standard technical requirement in VLSI circuits and therefore does not require a
more detailed explanation in this thesis. On the other hand, a brief discussion of the
complexity of the circuitry used to implement the control signals is given in the next
chapter. Furthermore, a later chapter on initizlization and learning will show how

these signals are used during these operations.

The microarchitectural debnition of the PN has now been provided in
sufficient detail to allow continued research to refine and validate the proposal. The
next chapter covers some of the specific technological and implementation specific
topics and shows the viability of this proposal. Furthermore, a performance analysis
18 given in a later chapter to round out the definition of this PN implementation pro-

posal and establish its desirability.
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4. TECHNOLOGICAL FEASIBILITY

This chapter presents an analysis of the PN that defines and quantifies its
requirements. In particular, it examines the requirements of the PN in terms of
memory use, transistor count, silicon area and external 1/O pin count. The purpose
of this analysis is to show that the PN is a feasible VLSI circuit. As a further result
of this resource quantification, information is derived that can be used to estimate
the “cost” of manufacturing the PN. This data will be ecritical to the

cost /performance analysis presented in the next chapter.

It Is important to remember while reading this chapter that this thesis
presents a fairly high-level architectural description of the PN and it is not =&
detailed design of the circuitry. As a result, there are several areas in the following
analysis where gross assumptions are made about the actual details of the required
circuitry. These assumptions are acceptable because the major goal of this chapter
is to show that this architeciural proposal is feasible. Establishing this as fact,

insures that any following research eflort will be well spent.

The first task in analyzing the PN’s resource requirements is estimating its
use of memory. This analysis is actually best broken down into two separate topics.
These are the PN’s use of ezternal DRAM and its use of on-chip memory. The first
of these to be considered is the PN’s requirements for external memory. Table 2

shows the memory capacity requirements of the PN's DRAM based data structures
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that were defined in Chapter 3. It also lists the architectural parameters of the PN
that ultimately dictate the memory size of each specific data structure. These archi-
tectural parameters include the number of input CNs, the number of internal CNs,
data widths and various table sizes. Some of these parameters indirectly affect PN
memory requirements by defining address field sizes or the rephcation of a data
The itemization of this information eases verification of the conclusions

structure.

presented here.

As can be seen from an examination of Table 2, the PN requires approxi-
mately 2 M-bits of external memory. This could be accommodated with commer-
cially available DRAM by using either two 1 M-bit ICs or by using a single 4 M-bit

part. Although the higher capacity memories are not readily available today, their

MEMORY BATA ADDRESS OR REQUIRED
TYPE SI2E CONTROL REPLICATION | MEMORY
FIELD SIZE IN K-BITS
Igi%{ 8 bits 64 bits 10560 760
BUFFER {1 per internal CN) {1 per input CN)
Pzé%%%%l’\és 0 __ 28 bits 8192 299
TABLE e e 10500 o gy 1 P 20PN
2'%228NS o 13 bits 64 x 512 496
TABLES B eoDON Trbi aoricr) | U Serris ror Wt Tabie) )
Tamips | 8bis ° et B

TOTAL

1939 K-BITS

Table 2 - An ltemized Summaeary of the PN’s Ezternal Memory REequirements.
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use would be highly desirable in the CC application to lower the required number of
ICs. Furthermore, the excess capacity of the 4 M-bit memory would be consumed if
some of the architectural parameters of the PN are increased in future designs. As a
result of these benefits, the rest of this thesis will assume the use of the 4 M-bit
DRAM. This choice introduces an element of design risk that substantially depends

on the time frame of the production of the CC.

The analysis of op-chip memory requirements is also straightforward. The
information shown in Figure 5 can be used to compute the internal memory require-
ments of the Input Buffer and Routing Logic. As defined, this circuitry uses 414
memory bits that are arranged in 21 separately addressable registers. Five data
buffers are used for each of the four BH levels and one 64-bit register is used to

buffer one input CN’s ICFs.

The Update Products Logic (FFigure 7) only requires on-chip memory to buffer
a single 2-codous Used Table. Each of these tables consists of 512 registers that are
13-bits wide to yield 6656 bits per table. The Update Sum Logic does not use any
on-chip memory.

The Output Buffer and Routing Logic (Figure 9) uses 876 bits of internal
memory in 88 separate registers. As with the input oriented logic, twenty of these
registers are used for data and address buffering. But in this case, {our registers are
used to store the BH Jevel base addresses and 64 registers are used to store the last

OUT value for each internzal CN.

Coupled together, this data implies that the PN needs to contain 7946 inter-

nal memory bits in 621 separately addressable registers. When more of the details of



41

this design are determined, 1t 1s likely that more on-chip memory would be required
for unanticipated data transfer and control requirements. Therefore, this memory
estimate actuzally gives only a lower bound on the PN’s on-chip memory resources.
INevertheless, this capacity figure is a decent approximation and is possible with

existing VLSI technology.

The next step in the technological analysis of the PN is to estimate the
transistor count and silicon area that it will occupy. The total transistor count esti-
mate will be derived from detailed estimates of each of the major computational and
control circuits of the PN. These major circuits are the adder, the two integer mul-
tipliers, the external memory controller (EMC) and the PN global control and syn-
chronization circuitry. This gross method of estimating the total transistor count of
the PN omits consideration of minor computational circuits and miscellaneous con-
trol and synchronization logic that will surely be required. To adjust for this
shortcoming, a generous allowance will be added to the sum of the estimates to

obtain what should be a conservative upper bound on the transistor count of the PN.

It is assumed that the PN will be implemented in a CMOS design. This
choice s consistent with current technological trends. [t also allows the use of the
comprehensive CMOS design reference by Weste and Eshraghian [WeE85]. This
reference contains much of the information that was used to estimate the transistor
count and silicon area of the fundamental computational circuitry as defined below.

The first circuits to be considered are the adder and the multipliers. A rea-
sonable implementation of 2 CMOS full adder, i.e., a transmission gate adder,

requires approximately 25 transistors per bit. Using this value, the 41-bit adder
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shown in Figure 8 would be composed of 1025 transistors. In reality, there is
significant variation in the complexity of adder designs with substantial trade-offs
between performance and circuit size. Performance concerns tend to dominate as
the data size increases, and the transmission gate adder may not be fast enough in 2
41-bit application. As a result, it may be necessary to use a more complicated,

higher performance, adder circuit than the one proposed.

The performance of the multipliers is critical to the computational
throughput of the PN. Therefore, it is important to implement a high-speed, fully
parallel, multiplication circuit. Multipliers in this class are coostructed from full
adders, such as the transmission gate adders considered above. Specifically, an
n X n multiplier requires on the order of n” full adders to perform fully paraltel mul-
tiplications. Therefore, the 8 X 8 multiplier would be composed of approximately
1600 (25 x 64) transistors. The 16 x 16 multiplier requires 6400 (25 X 256) transistors.

This yields a total transistor count of 9025 for the adder and the multipliers.

The ezternal memory controller (EMC) must be kept computationally simple
to prevent it from becoming a performance bottleneck. A high performance imple-
mentation of the base+oflset logic could be obtained from integrating a specizal pur-
pose barrel-shifter that converts the logical offset, passed to the EMC, into the physi-
cal memory offset. This value is merged onto the lower-order bits of the address bus
with the specified base address to obtain the desired physical memory address. All
together, the required base+offset logic is composed of approximately 200 transistors.

It is not necessary to list the intimate details used in estimating the transistor count

{or this trivial circuitry.
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To implement the block transfer capabilities of the EMC, it is necessary to
include automatic word count decrementing logic and automatic address increment-
ing circuitry. This could be done effectively by using a special-function adder like
the one described above. Assuming byte addressability, 19-bit adders will be
required to support complete access of the 4 M-bit DRAM. .Therefore, the address
and counting logic would each require approximately 475 (25 x 19) transistors. This
yields a total sum of 1150 ( =475 + 475 + 200) transistors required to implement
the eotire EMC logic. Although this figure could be subject to substantial recon-
sideration as the exact circuitry evolves, the magnitude of the estimate will not

change dramatically unless significant functionality is added.

The next task in estimating the PN’s transistor count is analyzing its global
control and synchronization circuitry. It is desirable to use a PLA as the major con-
trol structure for the PN. Although this method is conceptually appealing, it is not
feasible in this application because the vast majority of the control signals must be
replicated for each CN. More specifically, this application would require a control
structure with approximately 640 inputs and 640 outputs. A PLA implementation of
this logic was considered but was rejected because this application has only sparse
connections and this would result in inefficient use of silicon area.

To circumvent this concern, the PN’s control flow is designed in such a
manner that it can be implemented by replicating circuitry that is both conceptually
straightforward and physically dense. There are several fundamental qualities of the
PN architecture that tend to support these goals. The first point worth noting is

that the majority of the synchronization and control within the PN s accomplhshed
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by independent circuitry that is rephcated for each of the internal CNs. This repli-
cation provides a physical regularity of cells that minimizes circuit layout problems.

Regularity can be crucial to successful VLSI designs.

From a more microscopic perspective, the structured “control fiow"” of the PN
is a2 major factor in accommodating the design of compact and efficient control circu-
itry. Specifically, CN Update Required is the only major contro! signal that has a
global eflect. The other four major control signals for each CN are locally derived
and have oply local effects. They are structured in such a way that coatro) "flows"
1in an orderly pattern from the input of the PN to its output. As a result of these
two features, it is easy to visualize a rectangular cell that contains all of the control
logic for a CN, but is still small and compact, and bas few external connections. As
a further benefit of this systematic control flow, the few external connections that
are required may enoter the logic at fixed intervals and therefore, the physical

interference between them is minimized.

Given all of these arguments, it is reasonable to consider a fundamental con-
trol structure that uses 30 transistors per CN. These transistors could probably be
arranged in a regular rectangular grid with roughly four conductor rows and ten
conductor columns. Therefore, approximately 1920 (30 x 64) transistors would be
used in the PN’s global control and synchronization mechanisms. Physical size esti-

mates of the contro} logic are more important and they are presented below.
Lastly, we need to determine the total transistor count of the PN’s on-chip

memory. A six transistor per bit SRAM cell can be used. Therefore, 47,676 transis-

tors are required to implement the 7846 bits of on-chip memory.
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At this point, all of the major logical components of the PN have been con-

sidered and the sum of these estimates is close to 60,000 transistors °. It may now
be concluded that the PN architecture defined in Chapter 3 is feasible from a purely
transistor count perspective. This conclusion remains true even if a 100 9% transistor
count allowance is reserved for the miscellaneous computational and control circuits
that were omitted ip the analysis presented above., As a matter of fact, commercial

ICs composed of greater than 120,000 transistors are commonplace.

As an additional check of implementability, the silicon area requirements of
the logical components discussed above are estimated. This 1s the final step in show-
ing that the PN is technologically feasible using currently available CMOS process-
ing techniques. Table 3 shows the approximate cell sizes of the most significant of

the major logical elements discussed above. Although these values are only gross

CELL SILICON
CELL SIZE
TYPE ) REPLICATION | AREA REQUIRED
{in ym”) (in #ma)

ADDER 7,744 399 3,089,856
SRAM 4,800 7,946 38,140,800

GLOBAL

CONTROL 5,760 64 368,540
CELL

TOTAL = 41,598,296 um’

Table 8 - Stlicon Area Information of the Principal PN Logic Cells. These
values assume ¢ minsmum feature size of 2 um.

0 The vast majority of these transistors are in ares-efficient SRAM cells.
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estimates, they are based on 2 pgm minimum feature size (A = 1 pm), two level metal-
ization and standard CMOS design rules (WeE85]. Specifically, the adder cell is
estimated as a square with 176 pm (88 X\) sides. The SRAM is a 80 um (40 X\) by
60 um (30 X) rectangular cell. The control logic cell size was estimated by assuming
a 4 x 10 conductor grid with a 12 pym (6 ) grid spacing. Table 3 also gives the repli-

cation of each cell type and the total silicon area that they require.

As can be seen from examining Table 3, the major logical portions of the PN
will require 2 silicon area of around 40 million zm®. This could be easily 2ccommo-
dated in a somewhat typical 1 em® (which is 100 million um?) VLSI chip.

No technological analysis of a VLSI architecture would be complete without
performing a quick examination of its extermal I1/O pin-count and some related
parameters. In this regard, the PN is not only feasible but it has a low enough pin-
count that ECB signal routing is simple. Specifically, the PN requires a total of only
56 external connections. Three of these are used for the START, HALT and HOLD
signals shown in Figure 4. Assuming that each external BH level uses a serial inter-
face that requires four connections, a total of twelve pins are required for the three
external levels. The PIO interface shown in Figure 4 requires thirteen connections.
Ten of these are required to specify addressing of the 621 different registers, one
specifies the access direction (read/write) and two connections provide a handshake
mechanism. Similarly, assuming a byte-wide DRAM, approximately eighteen pins
are used for the connection between it and the PN. These are broken down into
eight data lines, six address lines, CAS, RAS, chip select and write enable. Finally,

approximately ten connections are required for power, ground and multiple clock
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phases. Although these are only rough estimates, a pin-count of 56 is quite small
and is easily accommodated with conventional VLSI packaging techniques. This low

pin count is also desirable as it reduces board costs and increases system reliability.

The pin-count estimate given above includes four pins each for power and
ground. This number is required to support the estimated 60K transistors of the PN.
Furthermore, the raw power consumption of the PN is not of significant concer'n as
the vast majority of the PN’s transistors are used in SRAM cells and these are
power efficient in CMOS technology. As a result, no major power related concerns

are expected in either supplying raw power to the PN or in cooling it.
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5. PERFORMANCE ANALYSIS

This chapter presents an evaluation of the computational performance of the
PN microarchitecture proposed in Chapter 3. Unfortunately, due to the scope of this
design, a detailed simulation of the proposed PN architecture was considered to be
beyond the scope of this thesis. Also, simulation is not critical in this case, since rea-
sonably accurate performance analysis is possible, and a strong argument is made
that the performance of the PN is limited by the memory bandwidth of the DRAM

in any case.

After establishing the PN’s performance as memory access limited, a discus-
sion Is given that explains why memory limited performance is acceptable in light of
other system considerations. A sensitivity analysis is then presented that shows the
performance effects expected from varying the memory bandwidth. Next, an alge-
braic expression is derived that allows the quick computation of the PN respoase
time given a specific stimulus. Several diflerent stimuli will be exphcitly considered
that represent the PN operating under diflerent computational loads. Although this
approach does not validate the correctness of the proposed microarchitecture, it will
allow the calculation of gquantitative information to predict the performance of the
PN based Connection Computer. Finally, cost/performance results will be derived
and compared with more conventional computer systems performing the same appli-

cation. As will be seen, the PN compares favorably in this regard.
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Before presenting the detailed performance analysis, it is useful to present the
reasons why a simulation of the PN is not critical to the performance analysis por-
tion of this research. There are several reasons why 2 simple simulation of an indivi-
dual PN would actually have only limited value. One reason is that the PN is
designed to be used in groups (i.e. a CC) and the performance of the group is noi
directly related to the performance of any individual PN. Rather, the performance
of the CC is derived from characteristics of both the individual PN’s performance
and communication delays between connected PNs. Therefore, to obtain accurate
estimates of CC performance, a statistical treatment of both the PN response time
and related communication overhead must be performed. This analysis must exam-
ine the effect of different computational loads and communication delays on the net
performance of the CC. Currently, anticipated workload specifications within the
CC are poorly defined so even statistical analysis would be of little concrete value.
As a result of these complications and limitations, the following analysis is restricted
to a priort methods rather than more detailed simulation methods. When the work-
loads within the CC become more defined, system simulation of PNs will become

necessary.

The first step towards estimating the performance of the PN is showing that
its DRAM accesses are the limiting factor. To establish this relationship, it is first
necessary to compare the DRAM access times to the directly related computation
times. If the time required to access memory is significantly greater than a reason-
able performance estimate of the related circuitry, then it can be concluded that the

memory access time js a reasonable approximation of the computation time.
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To begin the detailed comparison, consider the logic shown in Figure 7 that
computes the 2-codon products. The basic computation performed here is the
repeated multiplication of two 8-bit values fetched from the DRAM to obtain the
16-bit results that are passed directly to the multiplier of the Update Sum Logic.
Therefore, each multiplication 1equires the access of two data bytes, but Figure 7
shows that an additional 41-bits of address and control information must be read
from the DRAM to obtain the IDB addresses of the multiplicands. Thirteen of these
bits are the entry in the 2-codons Used Table that provides a pointer into the 2-
codon Products Table. Using this pointer, 28 address bits are fetched that define the
actual IDB addresses of the two target multiplicands. Altogether, this scenario
results in the access of approximately seven bytes of DRAM just to perform the mul-
tiplication. It is useful to consider whether the tota) time required to access the
DRAM is significantly greater thanp the time required to actually perform the 8-bjt

multiplication.

To answer this question, it 1s necessary to make some performance oriented
assumptions about both the PN and the DRAM. [t is reasonable to assume that the
PN could operate at a clock rate of 10 M-Hz and that it could perform simple opera-
tions in a single clock cycle (100 nS). Specifically, it may be assumed that the 8 x 8
multiplier could be designed in such a way that it takes just one clock cycle per mul-
tiplication. On the other side of the comparison, consider a DRAM that is very

aggressive In terms ol performance. Assume that the DRAM used in the CC will

have a data path that is 8-bits wide and an effective cycle time of 100 nS . Given

" Currently available DRAMs tend to be no darger that 4-bits wide with eycle Limes closer to 200 0S. DRAM
performance figures will probably nol improve dramatically for high-capacity DRAMSs ip the near future.




51

these fundamental performance estimates 2and the DRAM reference characteristics
explained above, eight separate byte-wide accesses would be required to yield 2 total
memory access time of 800 nS. This is eight times the amount of time required to
actually perform the multiplication. Furthermore, the multiplication time could be
entirely hidden by performing the fetch of the next multiplicand address during the
multiplication cycle. Simplistically speaking, these results show that the time it

takes to compute a 2-codon is directly dependent on the related DRAM access time.

Before moving on to the other major circuit elements of the PN, it is impor-
tant to consider the control overhead associated with the multiplications discussed
above. In particular, one would wonder if the proposed micreoarchitecture contains
some controi path that would implicitly limit its performance to below what is possi-
ble given its DRAM references. Although this type of lim.. is always possible il cir-
cuitry 15 designed that is incorrect or inefficient, it is unlikely that this would be a
great risk in the PN design because its contro]l structure is simple. This is
exemplified in the Update Products Logic discussed above and can be seen from a
careful examination of its control flow. After detecting the assertion of the CN
Update Required signal for a CN, the Update Products Logic activates the Update
Sum Logic by asserting the appropriate CN Active bit for the given CN. At this
point, control is transferred to the logic block that actually causes the multiplica-
tions to be performed. This logic sequentselly fetches six pointer bytes that define
the address of the two data bytes and then directly fetches the data and passes it to
the multiplier. When the multiplication is complete, it passes the result to the mul-

tiplier in the Update Sum Logic and strobes the 2-codon Available signal to cause
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the product to be latched as one input to the 16 x 16 multiplier. This ezact process

is repeated until every required 2-codon has been computed.

Thus, the only significantly complicated function performed by the Update
Products Logic directly involves DRAM accesses. Therefore, the only significant per-
formance bottleneck would have to result {rom inefficiencies in this part of the circu-
itry. This is not a large risk because efficient traversal of indirect memory references
is a common function in many VLSI designs and good solutions to potential design
problems are prevalent. For instance, general purpose commercial microprocessors
must solve this problem in a general way to support a wide array of addressing
modes. On the other hand, this is an area of the PN design where work towards

optimization could have linear benefits.

Now that the 2-codon multiplication has been {ully characterized, it is possi-
ble to consider the performance of the other components of the PN. In some cases
below, performance arguments are similar to those made above and so they are only
explained briefly. For instance, the description of the performance of the Update
Sum Logic (Figure 8) closely follows {rom the previous discussion of the Update Pro-
ducts Logic. In particular, only two bytes of data are accessed from the DRAM for
each 16-bit multiplication as the other two bytes are passed directly to the multi-
plier from the Update Products Logic. Accessing these two additional data bytes
implies the need for an additional memory access time of 200 nS for every entry in
the Weight Table. As the timing between 2-codon Products was derived {rom dedi-
cated access to the DRAM, the two additional data bytes could not be fetched dur-

ing the 800 nS required to compute each 2-codon. Therefore, the multiplier in the
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Update Sum Logic can only be cycled every 1000 aS as limited by the ten bytes of
data that are ultimately accessed in each iteration. Assuming that the 16-bit multj-
plier could also be designed to perform one multiplication every 100 nS clock cycle
and that the multiplication could be overlapped with subsequent data accesses, its
performance is clearly limited by DRAM references. Furthermc;re, the 41-bit addi-
tion, that follows every multiplication, could also be performed in one clock cycle.
This addition requires no DRAM references so it could be performed in parallel with
the computation of the next product value. This scheme yields an efficient computa-

tional pipeline where each iteration takes only 1000 nS.

In contrast to the addition, even though the Firing Function logic (also in Fig-
ure 7) is simple, it cannot be pipelined as it is only computed once per CN. There-
fore, the Firing Function adds one additional clock cycle to the total time required

by the Update Sum Logic.

The Input Buffer and Routing Logic (Figure 5) accesses nine DRAM bytes
every time a new input value is received. After input deserialization, it is unlikely
that any of its simple translation oriented circuits would require more than the 900
nS used by these DRAM references. Therefore, this value represents an acceptable
approximation of its response time. Of course, this analysis assumes that the input
logic’s FIFO buffers are empty so that they do not contribute to the delay. Obtain-
ing performance estimates associated with non-empty buflers would require substan-

tial additional eflort and is not done here.

Finally, the Output Buffer and Routing Logic (Figure 9) does not access any

external memory. Therefore, the type of arguments given above do not apply. On
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the other hand, the output logic is sequential and straightforward so an accurate
estimate can be made by just examining its circuitry. Again assuming that the out-
put FIFOs are empty, it would take approximately six clock cycles from the time
that OUT Available is asserted until the deserialization and transmission can begin.
As with the analysis of the input logic given above', it is assumed that network
delays do not occur. The effects of network delays will have to be considered in later

efforts.

Before deriving an algebraic expression that predicts the PN’s macroscopic
performance characteristics, it is interesting to explicitly conside;' topics that relate
to system performance trade-offs, sensitivity analysis, global parallelism and resource
contention. These topics are discussed briefly to assure the reader that they have

been satisfactorily considered.

Ope might wonder why an architecture is proposed that is memory bandwidth
limited when the use of high-capacity, high-speed mernory components is extremely
economical. It would be easily possible to increase the bandwidth by using either
faster memories (such as SRAMs) or parallel access to multiple memory components.
Although these solutions are feasible and would provide higher performance, they are
inconsistent with a more fundamental system goal. As discussed in Chapter 2, an
overriding goal in the CC design is to support computations using a very large
number of PNs. To maximize the number of PNs possible in 2 CC, it 1s crucial to
minimize the ECB real-estate and IC count associated with each PN. Therefore, the
use of only a single DRAM provides an almost optimal solution in this regard and its

performance appears to be acceptable for target applications. The PN based CC
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also provides a high memory density per ECB and this is 2 major factor in this
memory intensive application. As a result, other memory configurations were

rejected.

In examining the sensitivity of the PN performance on DRAM bandwidth, if
the bandwidth of the DRAM arbitrarily decreases, the effect on the performance of
the PN will be a linearly related decrease. Op the other hand, if the bandwidth
increases, the performance benefit will only be linear until a threshold is reached
when the computational circuitry becomes the limiting factor. It is not known when
this performance threshold would be reached, but f[rom a raw component perspective
it would be roughly in the 20 pS memory cycle time range. Similar thresholds would
be reached if diflerent memory configurations were used that yield wider effective
data accesses. Future eflorts will be necessary to refine this estimate if significantly

higher performance memories are considered.

Another general topic worth consideration is the PN’s support of global paral-
lelism. Global parallelism within the PN could be defined as occurring when different
computational elements are performing operations at the same time. In fact, the
computational efficiency of the PN is largely derived from its use of computational
parallelism. In particular, the two multiplications and the addition (described
above) are all computed concurrently using pipeline methods. Further, these arith-
metic operations can occur in parallel with activities in both the input and output
logic portions of the PN. This use of global parallelism yields net performance that

is similar to much higher cost designs, as will be shown in the end of this chapter.
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There 1s one key area where computational parallelism is required. Whenever
the input logic receives new data, it must be able to fetch its associated ICFs, even if
some other computational element is actively accessing external memory. This is
required because the fetched ICFs could cause the computations that are already in
progress to be terminated and restarted, which would be the case if the interna) CN
being computed has a data dependency on the new input value received. If the ICFs
" show no dependency, the computation could resume where interrupted. Clearly in
this case, prioritized global parallelism is critical to the PN’s performance as it

minimizes unnecessary computations. -

A concern that s oftep raised when assessing the value of performance esti-
mates is the effect of resource contention. There are three distinct areas in the pro-
posed architecture where resource contention could be an issue. The first results
from the use of DRAM for the storage of many data and control structures. The
eflect of contention in this case was implicitly considered in the performance discus-
sion given above. The second shared resource subject to contention is the external
memory controller. This logic will have to be designed to insure that its access for
one purpose does not adversely impact its efficiency for other purposes. Finally, the
BH networks have contention problems that result jn output value transmission

delays. This scenario is not considered in this thesis.

Another question that could be raised is whether a caching method could be
used to lessen the PN’s total memory access time requirements. The PN’s references
within the 2-codon Products Table and its references of CN inputs are nonsequential

and could be widely scattered in DRAM memory. There is also no reason to believe
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that there would be a high likelihood of reuse of these data elements. Furthermore,
as the PN’s memory capacity requirements are quite large, it is infeasible to cache
the entire data sets. Given these three factors, caching could not be used eflectively
to obtain a performance benefit. If future research shows high reuse within either of
these data structures, then a caching mechanism should be considered.

To develop an algebraic expression for the response time of the PN, it is

necessary to define the related variables 12,

For any input CN, define n as the
number of bits set in the input CN’s ICF entry. This value gives the number of
internal CNs that will have to be computed as a result of tble input change. Next let
l,, where 1<k<n, be the number of entries in the Weight Table for each of the »

affected CNs. Given that just one input CN changes when the PN is otberwise idle,

the response time, R, is defined in Equation 2 12,

R = 900 4+ (Y15, x1000) + {(nX700) nS Equation 2
k=i

In Equation 2, R is the time between the receipt of the input value and the transmis-
sion of the last output value. The specific numeric information is derived from the

appropriate circuit performance estimates given above.

Although Equation 2 gives an accurate estimate of the response time of the

PN, it requires specification of the size of each Weight Table. This requirement

2 Throughout the following discussion, lower case letters denole varizbles that are defined by properlies of a
single CN. When upper casc letters are used, they are derived from an ensemble of CNs =nd have similar charac-
Leristics as Ltheir lower case roots.

13 411 of the following apecific performsnee estimates rely on the aggressive DRAM performance assumptions
that were previously described. As a result, these estimates may have to be readjusted to reflect retua)l DRAM
product availability when the CC is produced.
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makes it too application specific for macroscopic estimates but this problem can be
solved without compromising the precision of the estimate. To do so, let L be the
average number of entries in the Weight Tables of the affected internal CNs. Given

this definition, the equivalent expression for the response time is given in Equation 3.
R = 6800 + (s XL X1000) + (nXx700) nS Eguation 3

This yields an accurate estimate of the response time of the PN given two applica-
tion parameters that can be easily obtained. Note that R has the ezact same mean-
ing in Equation 3 as it does in Equation 2, but is just defined in terms of different

variables.

Before calculating the PN’s performance expectations, it 1s necessary to
further generalize the function that predicts its response time. In particular, both
Equations 2 and 3 assume that only one input CN changes at any one time. In real-
ity, many input CNs may change at the same time so it is desirable to include this
behavior in the performance model used. To include this situation, define / as the
number of inputs that chapge at the same time. Also, let N represent the numbey of
bits set mn the logical OR of the ICF bits associated with each of the 7 input CNs
that change at one time. Although N is derived differently than n, its significance is
the same as it denotes the number of internal CNs that have to be updated when
new inputs are received. Given these definitions, the response time of the PN, when

several inputs change concurrently, is defined in Equation 4.

F = (Ix900) + (NXLx1000) 4+ {NX700) nS Equation 4
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Equation 4 gives the definition of 2 new PN response time, K, that will be used
below. It is interesting to note that when 7is set to a value of one, Equation 4 is
equivalent to Equation 3, as would be expected. Also, increasing the value of I has
only 2 relatively small direct effect on the PN response time. Its indirect effect of
converting the small value n to the larger value. Nis likely to have a more substan-

tial net effect.

There is one limitation of the performance model used to derive Equation 4
that needs to be explicitly stated and discussed. Specifically, the derivation of Equa-
tion 4 assumes that all of the changes to the input CNs occur at the exact same
time. In fact, this restriction can be somewhat loosened to allow all cases where the
inputs change at any time during the PN’s computations as Jong as pew ioputs do
not force recomputation of any kind within the PN. It is ualikely that this ideal
case would occur often in most applications. Deviation from this ideal adversely
impacts the response time of the PN. The magnitude of the impact is extremely
application dependent. In the worst case, the PN would never be able to generate
an output because it is continually having its computations interrupted. In fact,
there will be ap input frequency window within which substantial inefficiency will
result. The actual parameters that define the width of this window are application
dependent. Nonetheless, it 1s interesting to note that these performance problems
are sell-limiting because if CN results cannot be computed then they cannot be
transmitted. Given these qualifications, the response time defined by Equation 4 is

an approximate lower bound.
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Finally, it is possible to present some interesting estimates of the performance
of the PN. Table 4 shows predicted PN response times under different computa-
tional loads. There are several interesting insights that can be obtained from exa-
mining Table 4. One is that the minimum response time of 2.6 uS 1s {ast, when one
considers that even this simple case exercises all of the PN’s logical circuitry. The
second point is that the maximum response time of 42.3 mS is a promising value
because it indicates that the PN can be used in real-time applications. Although
both the minimum and maximum are promising, it 15 unhkely that either of these

performance extremes would result from any real application.

|
; NUMBER OF | NUMBER OF l\f\VERétg%F ESTIMATED
ST | ONINPUTS | INTERNAL CNs ENTRIES 4 | RESPONSE
CHANGED AFFECTED |WEIGHT TABLES| TIME
(1) (N) (L) (R)
: MINIMUM 1 1 1 2.6 uS
] 5 5 20 108 uS
LIGHT
S 10 20 212 uS
15 32 256 8.2 mS
MEDIUM
400 32 256 8.6 mS
4000 50 200 13.6 mS
HEAVY
4000 50 400 23.6 mS
f MAXIMUM| 10560 64 512 423 mS

Table 4 - Some Ezamples of Estimated PN Performance. The ezact parameter values
are representative ezamples reflecting the specified loads.
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In comparing the times shown in Table 4 with prior expectations, one must
remember that these estimates are based on computations using higher-order predi-
cates. It is dangerous to compare these estimates with those of systems that do not
use higher-order predicates as they provide substantially less computing power than
the PN proposed here. In fact, a major sccomplishment of this thesis is the develop-

ment of an efficient computational vehicle using higher-order predicates.

One can 2lso observe from Table 4 the performance impact of varying the
three main application parameters. As can be seen from the Medium load data,
varying / does not have a substantial impact on the response time. On the other
hand, as can be seen from the Heavy load data, varying the average number of
entries in the Weight Tables has a nearly linear eflect on E. Similarly, increasing
the number of affected CNs also bas a large effect on the response time. None of
these insights are particularly surprising giver the form of Equation 4. Nevertheless,

these results dramatize these conclusions in a practical way.

There are other interesting generalizations that can be obtained from examin-
ing the data shown in Table 4 or from direct calculations of Equation 4 for different
loads. To draw statistically based PN performance conclusions, it will be necessary
to generate a simulation program for the proposed microarchitecture, but first an
understanding of specific application requirements must be obtained. This simula-
tion program will provide several benefits including microarchitectural verification,
architectural optimization, BH network traffic analysis and application algorithm
evaluation. In fact, one of the first goals of any future efforts in this research area

should be the development of a suitable simulation program.
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The final task in analyzing the PN’s performance i1s comparing it to more con-
ventional computers. Two different performance measures have to be considered to
show the value of the PN. Ope is raw performance and the other is the
cost/performance ratio. The following discussion examines two distinctly different
conventional computer types and compares both to the PN based CC. One of these
computers is microprocessor based and is designed to occupy minimum ECB real-
estate. The second is composed of state-of-the-art Digital Signal Processing (DSP)
components and represents a high performance, highly optimized, alternative to the
PN. Explicit consideration of both of these extremes is necessary as each has been
proposed as a viable alternative to the more specialized PN [CaG86,CrT85,HeG|. In
fact, the DSP approach is being actively pursued by several commercial firms includ-

ing IBM, Texas Instruments and Hecht-Nielsen Neurocomputer.

Throughout the following comparisons, only the inner loop of the PN’s compu-
tation is considered. Additional comparisons would almost certainly require detailed
simulations of the proposed systems. The inner loop of the PN is composed of the 8-
bit multiplication, the 16-bit multiplication and the 41-bit accumulating addition. In
the PN, all of these operations are pipelined and so the required time for an iteration

is 1000 nS as shown in Equation 4.

The first computer architecture to be compared to the PN is simply a 68020
microprocessor connected to a single DRAM. This is an unlikely combination
because a small amount of “glue"” logic would almost certainly be required. Neglect-
ing this complication, its "cost” is easily compared to that of the proposed PN based

system and it is easily replicated. The 68020 performs a 16 X 16 integer multiplica-
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tion in 28 clock cycles (worst case) and performs a 32-bit addition in 6 cycles (worst
case). Beyond this, there are several assumptions that must be made to estimate the
88020 execution time for the inner loop. First, assume that all program memory
references can be performed in parallel with the computing. On the other hand,
data operand fetches cannot be performed in paralle]l so their crelated data access
times must be added to computational times to determine total time estimates.
Next, assume that the address computation for any data operand requires the 68020
to feteh a 16-bit address offset from the DRAM and perform ope single integer addi-
14

tion Finally, assume use of a 12 M-Hz 68020 with the 100 nS cycle time, 8bit

wide DRAM that was proposed earlier.

Given these assumptions, fetching the three data operands requires a total of
1000 nS memory access time plus S00 aS to perform the three address additions.
The two multiplications and the double-precision accumulating addition take zn
additional 5667 nS. This yields & tota) time 8167 nS required per inner loop itera-
tion. As the PN performs this operation in 1000 S, it has a factor of eight perfor-
mance benefit over the 68020 in this application. The 8-to-1 advantage is actually a
lower bourd, as there are many application specific, efficiency related, features in the
PN that are not available with the 68020. Using IC count as a gross measure of
cost, a similar factor is obtained for the cost/performance comparison.

The next conventional architecture to be considered uses DSP logic that is
tuned for high-performance in the PN application. The following analysis shows that

the PN compares favorably against computers on this extreme of the performance

1€ This aasumption is very generous »s it is litely that significantly higher overbead will be required for data
address calculations. This results in & decrcase of the predicied PN performance advantage over the 88020

s
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spectrum. The specific system to be considered uses the Weitek ACCEL 8000, 32-bit
wide, integer processor chip set that has 2 100 nS cycle time. This chip set is com-
posed of an Integer Processing Unit and a separate Program Sequencing Unil.
Together, they perform 32-bit integer arithmetic _operations io just a single clock
cycle. To use these components effectively, data and program memory must be phy-
sically separated and both of the memories should have cycle times in the 50 nS
range. The program portion of the memory is composed of four 8K X 8bit SRAMS
which are currently commodity items. This memory configuration provides the 32-
bit program word width used by the Weitek chips. The data memory requires a
tota]l capacity of 4 M-bits and it is composed of sixteen 32K x 8bit (state of the art)
SRAMSs. This yields & total IC count of 22 for the DSP solution. Using IC count as
a rough measure of cost, this implies a factor of eleven cost advantage of the PN

based system over the DSP solution.

The performance estimate for the DSP system is derived similarly to the
68020 performance estimate. [n fact, all the same assumptions apply. Program
memory fetches are completely hidden. Data fetches are assumed to require the
same address offsel fetch - integer addition - dafa felch sequence. Furthermore, each
of these operations takes one separate DSP clock cycle. Therelore, fetching the
three data operands requires 900 nS. Performing the two multiplications and one
double-precision addition takes four clock cycles (400 nS). Tbis means that the DSP
system completes each inner loop iteration in 1300 nS and it is slower than the (less

costly) PN based system. As a specific result, the PN based system has an approxi-

mate cost/performance advantage of 14-to-1 over the DSP solution.
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8. INITIALIZATIOIN, COMPUTING AND LEARNING

There are three distinet operational phases used by the PN based CC in solv-
ing application problems. They are initialization, operational computing and learn-
ing. Although the PN is the cornerstope during all of these processes, the CC’s on-
board microprocessor and [/O controller (shown in Figure 3) also play crucial roles.
This chapter describes how these three major components cooperate together to
allow efficient execution in each of the CO’s computatiopal phases. Explicitly
describing these interactions further validates the proposed architecture by estab-
lishing its suitability to the set of target applications described in Chapter 1.

Throughout this chapter, the roles and functions of the on-board microproces-
sor are frequently discussed. In fact, the microprocessor could be replaced by some
other general purpose computational agent that is capable of the same functions.
Although this thesis assumes the use of a microprocessor for this computational
agent, the actual choice may be made at a later date without compromising the
validity of the following discussion. Furthermore, no lack of generality results from

this assumption.

Like conventional computers, before the CC can actually begin operational
computing, it must first be initjalized with the problem set to be solved. In conven-
tional computers, this initialization includes the loading of the program to be exe-

cuted as well as the specific data set for the current problem. Apalogous functions
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are required within the CC, although the "program” construct is markedly different.
In conventional computers, the program defines the sequence of instructions that the
computer executes. In the case of the CC, the "program" is composed of memory
images of all of the data structures, the connections and weights, for each PN in the

system.

Specifically, the CC program is segmented between data structures internal to
the PN and those data structures that are located in each PN’s external memory.
The external data structures that require initialization are the Input Data Buffer,
the 2-codons Used Tables and the Weight Tables. Internal PN program initializa-
tion consists of setting the BH level base addresses and setting the Table of Last
QUT values, By initializing the Input Data Bufier and Table of Last OUT Values,
correct generation of new OUT values is possible, even if only a single new input is
received. Furthermore, by setting the BH level base addresses at run-time, there is
greater flexibility in binding CC program portions to PNs that are actually physi-
cally available. In comparison to fixed BH level base addresses, this run-time binding

supports [ault tolerant computing within the CC.

Given these functional requirements, it is useful to consider the mechanics of
the initialization process. The on-board microprocessor directs and controls the ini-
tialization sequence and uses the 1/O controller to perform any required low-level
/O accesses ®. (The I/O controller is also responsible for generating the control sig-
nals required to refresh the DRAM components.} From a high level perspective, the

microprocessor must have access to a "program image" that includes each PN within

154 likely configuration of » CC would use b hosi compuler for the highest level of control and 1/O sequenc-
ing. Therole of the bost and its specifi¢ interactions with the CC's logic boards ate not covered in this Lhesis.
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the CC. This program image is stored on a bulk-storage device, such as a disk drive.

As a result, the microprocessor must behave in its conventional role as a file system

manager 5. More specifically, after it first informs the 1/O controller which PN is

being initialized, the microprocessor starts the transfer of a portion of the program
image from the disk drive to the I/O controller. The I/O controller is then directly
responsible for passing the data to the appropriate memory structure for the target
PN. Access to the PN’s internal registers is accomplished via the PIO mechanisms
defined earlier. To allow efficient access to memory external to the PN, each DRAM
is directly connected to the 1/O controller.

Given this initialization mechanism, it is interesting to consider iritialization
performance. As derived in Chapter 4, each PN requires initialization of approxi-
mately 2 M-Bits to define all of its memory structures. Assuming the use of a disk
drive with a 1 M-Byte/second transfer rate, it follows that the complete initializa-
tion of a single PN will require approximately 250 mS. Using this result and assum-
ing just 2 single I/O path between the disk drive and the I/O controller, initializa-
tion of the 128 PN board proposed in Figure 3 will require 32 seconds. It is Likely
that initialization times of this magnitude would be a problem in mary applications
but it would be more serious if multiple CC logic boards were to use the same disk
drive, Therefore, system level 1/O solutions would be required to lessen the initiali-

zation {ime.

18 Throughoul this chapter, the agsumption is made thal the spplication problem hss slready been translat-
¢d to a form that the PN uses during execution. lo fact, s compilation process, functionslly similar to that used in
conventional computers, would be required Lo translale the problem from s human specification to the PN usatle
form. Thig compilation process is a major concern in this general research sres, but il is not covered here.
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From a software perspective, mechanisms supporting learning capabilities can
be used to minimize initialization requirements as explained below. Other solutions
might include the use of faster bulk-storage devices and multiple bulk storage devices
operating concurrently. Although either the faster disks or multiple parallel disks
would provide benefits, the multiple disk solution is preferable because it 1s more
extensible. It is also more consistent with the parallel computation paradigm of the
CC. Incidentally, this sort of parallel concurrent access to different disk drives is
similar to the "file striping" function that bas recently become available on high-
speed conventional computers. Nevertheless, there is one complication when multi-
ple disk drives are controlled and zccessed by separate processors. This architec-
tural feature would directly imply the need [or a distributed file system of some kind.
This portion of the I/O design will require significant future eflort as potential design
problems in this area are numerous and nontrivial.

After 1initialization is complete, the CC begins execution by setting the
START signal of each PN in the system. Preceding chapters describe in detail how
the PN operates during this phase, but the roles of the microprocessor and 1/0O con-
troller need to be considered. The function of the /O controller is intuitively obvi-
ous as it simply routes any non-local communications to and from other portions of
the system. The methods that the I/O controller uses to accommodate these com-
munications are not covered in this thesis. Significant analysis of many communica-
tion related parameters will bave to be performed before substantial progress can be

expected in this area.
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The role of the microprocessor during operational computing is obvious. It is
responsible for determining when the application has completed. It then halts the
PNs and extracts the "answer” from appropriate PN data structures. The micropro-
cessor may use several criteriz to determine completion. One could be monitoring
traffic frequency on selected BH networks. When the frequency drops below some
threshold for a specified amount of time, then it could infer that the application has
"settled” to a solution. Similarly it could monitor the message contents on a selected
BH petwork to look for a token that could be used to signal completion. Finally, it
could be signaled by some other logic element in the CC. The general-purpose pro-
grammable capabilities of the microprocessor makes it well suited in this case as

completion conditions will be application specific.

Extracting the answer from the PN is another area where the flexibility and
computational power of the microprocessor is useful during the CC’s operational
computing phasle. The application "answer™ will probably be derived, after the PN
has been stopped, from information contained in the Table of Last OUT Values.
The PIO capabilities of the PN are used to read the QUT values associated with any
giver CN. After fetching any required OUT values, the microprocessor executes an
arbitrarily complex algorithm to convert the answer to the desired form. As the
algorithmic translation is extremely application specific, this is also an ideal use for

the microprocessor in the CC’s computationa! hierarchy.

The final purpose of this chapter is to show how the CC architecture supports
learning algorithms and how these capabilities may be used to minimize initializa-

tion requirements. Before describing the actual mechanisms that support CC based
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learning, it is necessary to examine some conceptual details of the generalized pro-
cess that will be employed. As discussed in Chapter 1, significant effort is being
expended to develop automatic learning algorithms for neural network based com-
puter systems and there 1s a wealth of related literature that is not covered here. In
the purest form, automated learning procedures rely exclusively on trial and error
methods. As with humans, when the CC computes 2n answer during the learning
process, it must be compared with an expected answer for the given input. In human
learning, discrepancies between expected and actual results are explaired and then
the subject repeats the process. In a similar manner, the CC uses some algorithmic
method to selectively modify the connections between, and inputs to, specified CNs.
The specific algorithms used during this phase are still in-the early stages of develop-
ment, so flexibility has to be retained in this regard 17,

Given this general formulation for CC based learning, the functional require-
ments of the different major components become clear. As with the two earler
phases of CC operation, the microprocessor plays a key role in the learning process.
Specifically, it 1s respousible for comparing the actual "answer"”, as obtained above,
with the known expected answer. The required examination can be performed when
the PN is halted or during PN execution if the PN’s HOLD signal is used. In either
case, the microprocessor must then execute an algorithm to determine exactly which
elements of the PN data structures need to be modified and bow much they need to

be changed. Depending on the locality of the Jearning algorithm, with respect to

7 There =re a significant number of major considerations that must be zddressed to support learning zlgo-
rithms on the CC. Unfortunately, this thesis presents only a broad overview of how the PN could be used in these
applications. As = result, differentiation between types of learning algorithms and anzlysis of their resource re-
quirements is not possible, though Lhe mechanism proposed here for learning should cover the important areas
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microprocessors and related PNs, one or many of the CC's microprocessors could

participate in the learning oriented calculations.

Once it has been determined which specific elements of & PN’s data structure
reguire modification, the microprocessor would selectively write only those memory
elements. In this way, complete memory initialization overhead is not incurred

between separate trial and error attempts.

The logical mechanism tbat supports learning uses selective update of PN
data structures. As was implied earlier, this selected update mechanism could also
be of significant use in minimizing [/O overhead associated with switching between
problem sets. If separate problems that are executed sequentially can be formulated
in such a manner that they share PN data structures, then the microprocessor can
perform partial update of these memory structures. To facilitate this function, it
may be useful to develop a concise logical protocol to specify exact update actions.
The development and use of this type of protocol could prove to be beneficial when
applications problems are similar to each other and a minimization of 1/O overhead

1s critical.
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7. SUMMARY AND CONCLUSION

The basic goal of this thesis is to define a computer architecture and its sur-
rounding system that is capable of solving certain problems more cost-efectively
than conventional computers can. Target applications for the proposed system are
characterized by the ability to take advantage of massive computational parallelism.
These include artificial intelligence applications such as image recognition and
natural Janguage understanding. To achieve cost-eflectiveness, a radically different
computer architecture was proposed. The computational model used by the new
architecture was based on a derivation of a biologically accurate model of peural
systems. The neural model was refined with the intent of reducing the interactions

to a set that could be mimicked using digital computer techaiques.

Given the proposed neuron based model, 2 generalized computer architecture
was defined that derived many properties from its biological counterparts. This por-
tion of the thesis was directly based on prior and ongoing research at OGC and, to
some extent, is just a directed collection of other researchers’ work in this area. The
defined computer system 1s called a Connection Computer and its biological counter-
part is the nervous system including the brain. The Connection Computer is com-
posed of many Connection Nodes which are analogous to individual neurons. Con-
nection nodes use the Broadcast Hierarchy as their fundamental communication

mechanism and this provides facilities that have similar characteristics to biological
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systems. The computational model uses higher-order predicates called 2-codons.
This choice substantially increases the computational power and circuit complexity

of the proposed system.

After developing and summarizing the specific computational model, a
detailed microarchitecture was proposed that implements the specified functions
using digital computer technology. Designing an efficient microarchitecture required
the definition of the Physical Node as a group of intimately related Connection
Nodes. The microarchitectural definition portion of this thesis represents a
significant contribution to this research area as this 1s the frst effort at detailed
design of this type of computer system. As such, this practical viewpoint exposes
complications and weaknesses that are not visible when considered from a more
theoretical perspective and this represents a major contribution of this thesis.

The proposed microarchitecture is admittedly non-optimal in some respects,
as would probably be expected given that this is the first detailed proposal. One
weakness of the proposal 1s that it may have fixed some architectural parameters in
gilicon that are better left as application variables. These might include the number
of BH levels, the size of the different BH levels, DRAM bandwidth and even the
number of CNs per PN. The choice of fixing these variables was deliberate and was
made to put physical bounds on the design, so that accurate silicon resource and per-
formance predictions could be made. It may be desirable in future efforts to consider

leaving these parameters as application variables.

Although the proposed microarchitecture is non-optimal in some respects, it is

superior to any other microarchitecture considered. In fact, several alternatives
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were considered at both the computational architecture level and at the microarchi-
tectura) implementation level. Many options were considered that initially seemed
advantageous but after detailed analysis were found to lead to serious implementa-
tion problems. One recent proposal was considered that only computes 2-codons
that are affected by a given input change. Although the proposed method could pro-
vide higher performance in some Joad situations, a fully general implementation
(with the capabilities of the PN proposed here) would result in the need for over 90
M-bits of memory per PN. By severely restricting the number of 2-codons that an
input could affect, the required memory capacity could be lowered to a realistic
value. This restriction is contrary to an original supposition of the PN’s communica-
tion and computational capabilities. Furthermore, it it not known whether compu-
tational Joads (eventually encountered by the PN) will favor the PN as defined or as
supposed. The moral here is - beware of proposed alternatives until their exact

desigp and system level eflects are detziled.

To establish the viability and value of the proposed microarchitecture, careful
analysis was presented that addressed the technological viability and performance of
the proposed system. It was shown that the PN-based microarchitecture, exactly as
defined, could be designed and fabricated using currently available digital manufac-
turing techniques. This result, in and of itself, is of great value to others in this
research area as it shows that an efficient execution vehicle could be available to
them in the near future. This analysis also provides rough cost/performance esti-

mates of such & vehicle.
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To further their anticipation, performance analysis was presented that shows
the expected performance available from the proposed system. As part of this
analysis, an algebraic expression was derived that yields the response time of the
PN, given specific input stimuli. This algebraic function will be of significant vse to
other researchers who are examining and developing applications for the CC. More
specifically, it is not known whether the estimated performance of the PN is accept-
able in all target applications or if substantial performance improvements will be
required. If higher performance is necessary, then a reconsideration of some of the
fundamental PN design decisions must be made. Specifically, as the external
memory bandwidth was the limiting factor in the performance estimates, some way
of minimizing PN external references could be required. In this respect, the choice
that would yjeld most performance benefit would be to bring all of the memory on-
chip. This decision would radically improve the expected performance and should be
possible as technology improvements allow higher levels of logic integration per sili-
con area. If the memory is moved completely into the PN, many facets of the pro-
posed design may require modification as it is currently optimized for relatively siow
memory references. In particular, content-addressable memory could take the place
of more memory capacity intensive pointer structures.

The performance and cost/performance ratio of the PN was compared to that
of more conventional computers. Using assumptions that were generous to the con-
ventional computers, the PN was shown to be desirable from both perspectives.
Specifically, its performance was shown to be above that of a significantly more

costly, high performance, DSP-based computer system. The PN’s cost performance
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advantage was conservatively estimated to be between 2 factor of eight and fourteen
over that of conventional solutions.

Finally, some discussion was presented that showed how the proposed system
would actually operate from a high-level system perspective. This information was
presented to show that there are no major boles in the CC system that would prohi-
bit its eflectiveness. This discussion could also act as a tutorial to show how the CC

petforms the operations that are expected from more conventional computers.




A B T R B

¥
#
E

77

References

(Bai853] Bailey, J., Mapping Virtual Networks to Physical Networks, Dept. of
Computer Science, Oregon Graduate Center, December 1885, Unpublished
Manuscript.

[BaH86] Bailey, J. and Hammerstrom, D., "How to Make a Billion Conpections,”
Tech. Report CS/E-06-007, Dept. of Computer Science /Engineering, Oregon
Graduate Center, Beaverton, Oregon, July 1986.

[CaG86} Carpenter, G. and Grossberg, S., "A Massively Parallel Architecture for 2
Self-Organizing Neural Pattern Recognition Machine,” in Computer Viston,
Graphics, and Image Processing, 1985. In press.

(CrT85] Cruz-Young, C. A. and Tam, J. Y., "NEP: An Emulation-Assist Processor
for Parallel Associative Networks," IBM Palo Alto Scientific Center, June
1985.

[Ham86a]

Hammerstrom, D. W., Connectionist VLSI Architectures, Oregon Graduate
Center, Beaverton, OR, April 1986.

[Ham86b|
Hammerstrom, D., "A Connectivity Analysis of Recursive, Auto-Associative
Cornnection Networks," Tech. Report CS/E-86-008, Dept. of Computer
Science /Engineering, Oregon Graduate Center, Beaverton, Oregon, August
1986.

[Ham86c]

Hammerstrom, D., "A Connectionist /Neural Network Bibliography," Tech.
Report CS/E-86-010, Dept. of Computer Science/Engineering, Oregon
Graduate Center, Beaverton, Oregon, August 1986.

[HeG|] Hecht-Nielsen, R. and Gutschow, T., Sensor Processing using Artificial
Neural Systems.

[Hop82) Hopfield, J. J., "Neural networks and physical systems with emergant
collective computational abilities,” Proc. Nat. Acad. Sci. USA, vol. 79(April
1982), pp. 2554-2558.

[KaS81] Kandel, E. R. and Schwartz, J. K., in Principles of Neural Science,
Elsevier /North-Holland, New York, 1981.

[KPT82] Koch, C., Poggio, T. and Torre, V., "Micronetworks in Nerve Cells,” in
Competstion and Cooperation tn Neural Nets, vol. 45, S. Amari and M. Arbib
(ed.}, Springer-Verlag, Berlin, 1882, pp. 105-110. Chapter 6.

[KuN77] Kuffler, S. W. and Nicholls, J. G., From Neuron to Brain, Sinauer
Associates, Inc., Sunderland, Massachusetts, 1977.

Mar70] Marr, D., "A Theory for Cerebral Neocortex,” Proc. Roy. Soc. London, vol.
176(1970), pp. 161-234.

MGL86a]

Maxwell, T., Giles, C. L., Lee, Y. C. and Chen, H. H., "Trapsformation



i
‘I
,

78

Invariapce Using High Order Correlations in Neural Net Architectures,”
Proceedings International Conf. on Systems, Man, and Cybernetics, 1986.

IMGL86b)

Maxwell, T., Giles, C. L., Lee, Y. C. and Chen, H. H., "Nonlinear Dynamics
of Artificial Neural Systems,” in Neural Networks for Computing, American
Institute of Physics, 1986.

[MiP69] Minsky, M. and Papert, S., Perceptrons, The MIT Press, Cambridge, MA,
1969.

[Per83] Perkel, D. H., "Functional role of dendritic spines,” J. Physio., Paris, vol.
78(1983), pp. 695-699.

[Pos78| Posner, M. 1., Chronometric Ezplorations of Mind, L.E. Erlbaum Associates,
Hillsdale, NJ, 1978.

(RHWS85|Rumelhart, D. E., Hinton, G. E. and Williams, R. J., "Learning Internal
Representations by Error Propagation,” ICS Report 8508, Institute for
Cognitive Science, La Jolla, CA, September 1985.

[RuMS86] D. E. Rumelbart and J. L. McClelland, eds., Parallel Distributed Processing:
Ezplorations tn the Microstructure of Cognition, vol. 1 and 2, Bradford
Books/MIT Press, Cambridge, MA, 1986.

|SeR86] Sejnowski, T. J. and Rosenberg, C. R., “NETtalk: A Parallel Network that
Learns to Read Aloud,” JHU/EECS-86/01, The Johns Hopkins Univ. Elec.
Eng. and Comp. Sci. Tech. Rpt, 1986.

[WeE85] Weste, N. and Eshraghian, K., Principles of CMOS VLSI Design: A Systems
Perspective, Addison-Wesley, 1985,



SRy S

79

BIOGRAPHICAL NOTE

The author was born the 26th of September, 1956, in Evanston, Wyoming. He
moved with his family to the San Ferpando Valley where he spent the rest of his
childhood. He graduated from Monroe High School in 1974 and then moved to Port-
land, Oregon to attend Reed College. He received a B.A. in Chemistry from Reed

College in 1979. He began part-time work on his Masters at OGC in 1981.





