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ABSTRACT

A VLSI Architecture for a Neurocomputer
Using Higher-Order Predicates

Ronnie Dee Geller, M.S.
Oregon Graduate Center, 1987

Supervising Professor: Dan Hammerstrom

Some biological aspects of neural interactions are presented and used as a

basis for a computational model in the development of a new type of computer

architecture. A VLSI microarchitecture is proposed that efficiently implements the

neural-based computing methods. An analysis of the microarchitecture is presented

to show that it is feasible using currently available VLSI technology. The perfor-

mance expectations of the proposed system are analyzed and compared to conven-

tional computer systems executing similar algorithms. The proposed system is shown

to have comparatively attractive performance and cost/performance ratio charac-

teristics. Some discussion is given on system level characteristics including initializa-

tion and learning.

vi
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1. INTRODUCTION - A BIOLOGICAL VIEW

. Modeling biological intelligence by mimicing neural interactions is a field of

computer science that could yield significant practical results and scientific insights.

A completed technology of this form could greatly enhance the pursuit of computer

based artificial intelligence. It is also likely that efforts in this direction could pro-

vide information for neural scientists on how neurons group together to provide per-

ception, motor functions and intelligent behavior. This thesis addresses these topics

and proposes a computer architecture which is well suited to modeling large neural

networks.

The work presented here actually represents only a portion of broader

research interests being pursued at Oregon Graduate Center (OGC) [Ham86a]. The

computer architecture presented in this thesis uses a communication structure which

is being developed in a parallel effort at OGC [Bai85]. The communication portion

of the proposed architecture is not considered in this work.

As this thesis is grossly based on a simulation of neurons and neural networks,

it is important to explicitly define the limits of the accuracy and intent of this simu-

lation. The ultimate goal of this research is to design a computer architecture that

allows much more computational parallelism than is possible with other computer

systems. An architecture of this sort would lend itself well to applications that are

not efficiently solved using essentially sequential computing. Target applications
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tend to have large numbers of "soft" constraints and these include image recognition

and natural language understanding.

To accomplish these goals, a computer architecture will be presented which

derives its computational attributes from biologically based neural systems. There

are several reasons for the choice of neural networks as a basis. One is that neural

networks are capable of supporting tremendous amounts of computational parallel-

ism. Furthermore, life-forms are capable of performing the cognitive functions which

a.re the goal of this research area. Several researchers have used computer simula-

tions of neural networks to obtain promising results. These include pattern cornple-

t,ion by Hopfield [Hop82] and generalized learning by Rumelhart and Hinton

{RHW85]. Sejnowski and Rosenberg have designed and ~uilt a system that has

learned to convert text to speech [SeR86]. Finally, previous research at aGe has

validated the usefulness of the specific neuron-based model used here 1 [Ham86b].

Rumelhart and McClelland have covered this general research area carefully

[RuM86]. A complete bibliography of research in this field has been prepared by

Hammerstrom [Ham86c].

The following paragraphs present some biological information on the neural

model used in this research. Also defined are some relevant biological terms which

might otherwise be foreign to comput~r scientists. Every attempt has been made to

present this information as accurately as possible without getting into unnecessary

details. The references provide these details to the interested reader.

1 At. will be seen later, the proposed model differs from its biological counterpart in many substantial wa.ys.
.In fact, it is best to regard the computational model a.a an oversimplified and stereotypical view of a real system
'that is otherwise much too complica.ted and diverse.

O'r; .."



3

Although biological evidence indicates that there are many different kinds of

neurons with a tremendous amount of differentiation between them, there are also

similarities regardless of the neuron type or its specific biological function [KuN77].

In general terms, any neuron can be thought of as the composition of four distinct

components -the dendrites, a cell body, an GZonand the presynaptic terminals of the

axon [KaS81). The dendrites of the neuron act a.s its input sensors. The axon, cou-

pled with its presynaptic terminals, provide the neuron's output capabilities 2. Sig-

nals are passed from the axon or one neuron to a dendrite or another neuron across a

synapse. Incoming signals are pa.ssed from the dendrites to the cell body where they

are converted into an output signal. In biological terms this conversion is referred to

as integration. Figure 1 depicts a neuron and illustrates the stereotypical features

described above.

~PRESYNAPTIC NEURON~I4-POSTSYNAPTIC NEURON~

Dendrites Axon
I \

0 ...~.~.~. ~..-...-....

Cell body

Figure 1- A Depiction of a Stereotyped Neuron Model
With Nomenclature Definitions.

IIAlthough a dilerentiaUon between the axon proper and ita pre8ynaptic terminal8 may be important to the
biological understanding or a neuron, referring to them 8eparately in thi8 tbesis would eause nudleu eonfusion.
Therefore, ruture rererence8to the axon will include the prelynapUc terminal8 unleu dilerentiation il required and
explieitly stated.
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Although the communication scenario presented above is accurate in its sim-

plicity, there are several important points where clarification is required. First, it

must be noted that the biological mechanisms used to support communication

between neurons is incredibly complex. The communication path actually involves

several stages of transformations both within the neuron and at the synapse. These

transformations typically involve electrical and chemical interactions that are still

not completely understood. Further, there is much differentiation between the

specific communication mechanisms used by different types of neurons. As a result,

some neural scientists are skeptical of the value of any neural simulation that only

allows one specific mechanism for neuron communication. Their claim is that the

diversity in communication mechanisms is a necessary component of biologically

based cognitive behavior. Arguments of this nature must be deferred until more

results in this research area are available.

Although there are major differences between specific communication mechan-

Isms used by different neurons, most neural scientists would agree that there are

some characteristics that are easily stereotyped and readily understood [KaS81]. In

this stereotypical view, there are several points worth noting for future reference.

Interneuron communication occurs at a synapse between the axon of the presynaptic

neuron and the dendrite of the postsynaptic neuron. There are several energy transi-

tions that occur during this communication. These include generation of an action

potential which is electrical in nature and is transmitted along the axon of the

presynaptic neuron. An action potential causes a secretory potential by releasing

chemica.l transmitters into the synaptic region. The dendrite of the postsynaptic
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neuron reacts to these chemical transmitters by generating an electrically based

synaptic potential. A synaptic potential may be either excitatory or inhibitory in its

effect on the cell body. There is considerable controversy in the biological neural sci-

ences over the importance of the dendrites role during complex interneuron commun-

ications [KPT82, Per83]. Nonetheless, it is clear that the dendrite's role as a func-

tional input site could represent a significant portion of neural systems processing

power.

Synaptic potentials from a neuron's dendrites are carried to the cell body

where they are integrated, both spatially and temporally, to determine whether an

action potential should be generated on its own axon. The integration performed by

the cell body can be viewed as a weighted algebraic summation of its individual

synaptic potentials. If the result of the integration is above a threshold, then the cell

body will cause its axon to fire, i.e., generate an action potential. The exact details

of the integration, including the assignment of weights to each of its inputs, depends

greatly on the type of neuron, its biological function and its previous history.

The intensity of secretory and synaptic potentials depends on the magnitude,

duration and timing of their stimulus. In this manner, their behavior may be accu-

rately viewed as a time integration of analog input signals. However, biological evi-

dence indicates that action potentials are of an all-or-none nature with the ampli-

tude a.nd duration roughly fixed for any individual neuron. As a result, stimulus

intensity information is only conveyed by the number of action potentials generated

and the time interval between the potentials.
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Beyond the microscopic details of a neuron, there is some higher level biologi-

cal information that requires examination. A human brain contains on the order of

one trillion neurons (1012)with about one thousand different neuron types [KaS81].

The function of a neuron depends on both its biological type and the functions of the

neurons that are connected to it. A neuron may receive inputs from as many as

10,000 to 80,000 other neurons and its output may affect a similar number. The

cycle time of a neuron, from receiving its input to generating its output, is in the

order of 2 to 5 milliseconds [pos78]. Certain interesting behavior that uses large sub-

systems of the nervous system, such as simple image recognition, requires only about

one half a second to complete. Other more complicated cognitive tasks may take

more time. Nevertheless, it is obvious that macroscopic response times of this mag-

nitude are impressive when the basic response time of a neuron (about 10e slower

than a transistor!) is considered along with the incredible number of neurons that

are involved. These facts indicate that the neural systems utilize significant con-

currency and little sequentiality in solving problems. In summary, response times of

this sort represent performance efficiency that will be carried over to the neural

model based computer architecture presented in later chapters.
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2. A PROPOSAL FOR A SPECIALIZED DIGITAL ARCmTECTURE

As with all models, -it is necessary to differentiate between important elements

of the real system and complicating details that may be ignored. In this case, there

must be defined a digital model of a neuron that contains enough of the neuron's fun-

damental properties that interesting, if not intelligent, behavior could be expected.

Complicating features can be ignored if they are peculiar to the biological nature of

neurons and are not critical to the macroscopic functions desired. Finally, there are

some biological details that are important to mimic but are not suited to direct

implementation using digital computer technologies. In these cases, functionally

similar counterparts must be derived and substituted into the model.

The model used in this research defines the Connection Node (CN) as the logi-

cal component which corresponds to an individual neuron. A group of Connection

Nodes are combined together into a network to form a system called a Connection

Computer (CC). In some ways, a connection computer's capabilities may be closer to

those of a nervous system than those of current computers. In this way, the connec-

tion computer could perform certain cognitive tasks that are not solvable with the

computers of today. While keeping these goals in mind, the implementation details

of the CN and CC are given below. As some of the attributes of the CN and CC are

roughly based on biological neural networks, some comparisons of the two systems

are gIven.
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As with neurons, the CN is complicated enough that its description is more

easily presented if it is segmented into separate functional units. One of the most

fundamental of these is the communication facility which allows a CN to receive

input and generate output. As depicted in Figure 2, a CN accepts digital values as

input and transmits a digital output. As with a neuron, a CN accepts inputs from

many sources and integrates these to generate an output value. Unlike neurons, the

CN's signals are represented by discrete digital values rather than analog signals. It

is likely that the digital implementation of the CN is acceptable as it satisfies the

functional requirement of conveying intinsity information. Another reason for using

digital outputs is that efficient transmission across a single carrier is only possible

with a digital representation of the data. An analog transmission scheme would not

allow reasonably efficient time-multiplexed use of the transmission medium.

To extend this comparison, the CN uses the value of the digital signal as the

only indication of intensity whereas neurons rely heavily on the inter-"fire" interval

to denote intensity. From a more specific perspective, our CNs use eight bits of

41
f

8 out

Figure 2 -A Diagramof a ConnectionNode (CN).
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information for input and output values. The granularity of communication accu-

racy is probably greater than that of real neurons. Initial simulations of this specific

model at OGe shows that this quantization is more than acceptable for the target

applications [Ham86b].

The second major functional portion of the CN requiring explanation is its

method of integration to generate an output value from its input values. The gen-

eral function used is called a Sigma-Pi function. This name is derived from the fact

that the function is a sum (Sigma) of intermediate products, Pi terms. Specifically,

the output of a CN is derived from its inputs as given by Equation 1.

Equation 1

In Equation 1, in/r;' and W/rare 3-tuple inputs which are used to calculate the output,

out. Each in/rj represents an input signal into the CN and it is typically an output of

some other CN. The product of the two inputs, in/rl and in/r2'is referred to as a t-

codon and it is an intermediate value used during the computation. The 2-codon is a

particular type of higher-order predicates 3 and both of these terms are explained

below. Each 2-codon is multiplied by a 16-bit weight, W/r'before being submitted to

the summation function shown in Equation 1. After the summation is complete, a

firing function, J, is applied that converts the sum to the output value. Throughout

these computational processes, full precision is retained by increasing the widths of

the data paths as appropriate.

a The word pretlica'e is used here ror its meaning as a term designating a reltllion,hip and not ror its rormal
logic meaning that is ramiliar to computer scientists.
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Although this Sigma-Pi construct may appear to be rather specific in its

application, it is actually quite general. In fact, some key features used by other

neural models, such as threshold and residual state, can be easily handled with this

general computational formulation.

The specific firing function used in this research is a simple binary division

which is easily performed by just extracting the upper eight bits from the resultant

sum. This is a special case of the more general non-linear sigmoid function that is

most often used in this context [RuM86]. The microarchitecture presented in the fol-

lowing chapter relies on the choice of f as the firing function, but the more general

architecture of the CN does not, as it uses the more general sigmoid function.

Furthermore, if subsequent research shows a need for a more powerful firing func-

tion, this could be accomplished with only minimal changes to the proposed microar-

chitecture.

The computation method given in Equation 1 is a special case of r-codons as

formulated by Marr [Mar70, MGL86a, MGL86b, MiP69]. This computational strategy

is based on hypotheses of the biological mechanisms used in neural systems to encode

and process information 4. Specifically, there are several areas where the CN func-

tions are analogous to those of neurons. The most obvious of these similarities is the

use of a weighted sum method for performing the integration function. In this con-

text, the mathematical summation of the CN precisely corresponds to a similar func-

tion performed by the cell body. Further, weighting the inputs to the summation is

very similar to the function performed by the connection between the dendrites and

· As &result, .. &econd&ry benellt or this rese&rch &re&will be to test the va.lidity or these biologic&1 theories.
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the cell body. In the biological mechanism, the electrical resistance between the den-

drite and the cell body depends on the physical dimensions of the dendrite [KaS81]

and this resistance greatly determines the weighting factor associated with each den-

drite. The weighting of inputs also may correspond in function with the temporal

and spatial facilitation that occurs at a synapse.

The use of higher-order predicates is another case where the CN is similar to

a neuron. The alternative to using higher-order predicates would be basing the CN's

computations exclusively on the weighted sum of its inputs. In biological terms, this

alternative would correspond to a neuron whose input processing consists of only

simple signal integration at the cell body. This simplified neuron model would lack

all input processing and correlation functions that are associated with the neuron's

dendrites. As the dendrites role is critical to interneuron communication

[KPT82, Per83], omitting it completely from the CN model would be unwise. In fact,

Marr shows that higher-order predicates, in the form of r-codons, are consistent with

biological theories of neuron based information processing [Mar70]. Maxwell et al.

[MGL86b] and Minsky and Papert [MiP69] have discused the functional advantages

of higher-order predicates from a computer science perspective.

The particular type of higher-order predicate used in the CN model is the 2-

codon and it is a two input r-codon. The use of 2-codons, rather than 3-codons or

even some different type of higher-order predicate, was chosen as a result of simula-

tions at OGe of target application requirements [Ham86b].

Once the integration is complete, the firing function generates a digital out-

put. In the neural system, the actual firing conveys little information as its intensity
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is roughly fixed for any individual neuron. As a result, neurons must convey inten-

sity information by the relative times at which they fire. The underlying mechan-

isms used by neurons rely heavily on analog processing and synchronization of time

critical events. As the CN model does not support these capabilities, the digital gra-

dation of outputs must sufficefor expressing intensity information.

Now that the internal aspects of the CN have been presented, certain system

Issues of the CC must be considered. As with a biological nervous system, it is

important that the CC have sufficient connections that efficient parallelism may be

accomplished. On the other extreme, it is obviously impossible for 'each CN to be

connected to every other CN in the CC. These two opposing factors suggest the

need for a communication scheme that is a mixture of acceptable connection richness

and technological viability. As mentioned earlier, parallel research at OGC is

directed towards defining a globa.l communication mechanism for the CC which will

support rich connections a.nd fast communications in very large systems [BaH86].

Bailey and Hammerstrom have shown that conventional networks based on such con-

structs as direct connections, nearest neighbor, hypercube, shared memory, etc., are

unacceptable for the very large systems under consideration at OGC. Furthermore,

they have proposed a communication scheme called the Broadcast Hierarchy (BH)

that satisfies the requirements for the target systems s. This research uses their pro-

posal of the BH and relies on their rationale. Therefore, this thesis provides only

enough relevant information on the BH to establish its use and function within the

CC. Beyond this, it will be shown specifically how the CN supports communication

6 The BH construct II.Sused in this thesis is derived from ongoing research at oac. lIB the BH definition is
nolving, related implementa.tion details may slightly conftict with current and future deflnitions used by other
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using the BH construct.

Before presenting the details of the BH, it is important to discuss a technolog-

ical constraint on the CC design that affects its BH implementation. Because a CN

is such a. simple computationa.l element a.nd many of its functions relate directly to

1/0 requirements, it is useful to group together many CNs into a single physical

entity. Combining severa.l CNs together a.llows efficient utilization of VLSI technol-

ogy and lowers the number of physical circuit board connections required. To

a.ccomplish this physica.l grouping, 64 CNs are combined together to form a Physical

Node (PN). Within a. PN, communication between its CNs is accomplished by

methods that are consistent with standard intrachip VLSI methods and, therefore,

the BH construct does not strictly apply at this internal level 6. The exact details of

the intrachip CN communication facilities are presented in the following chapter

which defines the PN microarchitecture.

It should be remembered that the PN construct is just a technological neces-

sity for grouping together many CNs. The existence of the PN as a. physical entity

forces frequent references to it even though the PN's computational properties are

completely defined by its emulation of the virtual CNs.

The BH networking method is a mechanism of connecting many different PNs

together while minimizing physical connections, communication latency and address-

ing overhead. This is accomplished by segmenting PNs into logical groups that com-

municate with each other on a Broadcast Hierarchy level. In the specific form of the

reseArchers At OGC.

IIIt could be Argued thAt the internAl communication facilities actually are the lowest level of the Broadcast
Hier&rchy. This argument ha.s practical &nd &esthetic merit but is not pursued here.
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BH usedin this research, each PN is a member of three different BH levels and the

PN supports complete parallel utilization of all three levels concurrently. Level 1

connects four PNs, level 2 connects 32 and BH level 3 connects 128 PNs to each

other. These BH level sizes were chosen as a result of the previously cited initial

simul~tions of this system by Bailey [BaH86]. The simulation results indicate that

target applications require each CN to have direct communication access to approxi-

mately 1,000 other CNs. A!3can be seen from Table 1, the sizes chosen for the three

BH levels are satisfactory in this regard.

The method of grouping PNs together could have significant affect on PN per-

formance and its inherent fault tolerance. The exact details of the grouping are not

pursued in this thesis as they are more intimately tied up with details of the com-

munication theory of the CC. Nonetheless, some of the characteristics of the group-

ing are discussed here as they relate to the details of PN implementation. A!3lower

levels would have less contention, communication latency would tend to be shorter

at the lower levels than at the higher ones. A!3a result, CC algorithms would be

able to specify that communications between any two PNs would be accomplished at

Table 1 - The Number 01Addressable CNs and PNs at each BH Level.

BH NUMBER NUMBER REQUIREDBITS
IN

LEVEL OF PNs OF CNs ADDRESS FIELD

INTERNAL 1 64 6

1 4 256 8

2 92 e048 11

9 le8 8192 19
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the lowest possible BH level. This choice could tend to keep concentrated communi-

cation traffic on the smaller, local levels and keep them off the more competitive

higher levels. This preferred use of lower levels would minimize contention problems

at higher BH levels that would otherwise become prohibitive in very large systems.
!'

As communication "locality" is typical in neural networks, the preferred use of lower

BH levels is natural.

I
l
t
I
t

The logical communication mechanism used by the BH is level independent,

but there could be variation in the physical connection method depending on the

number of PNs connected. Logically, each BH level must have an address space

within which each definable CN has a unique address. Table 1 lists the size of the

different levels and the related addressing requirements. To simplify the implemen-

tation, it is useful to define the addresses of all of the CNs within a PN sequentially

from a base address. In this way, the PN would only need to be given its base

address at each BH level to define the addresses of each of its CNs.

Whenever a CN fires, the parent PN takes the eight bit output of the CN and

appends the CNs unique address onto the data to create a BH communication

packet for each of the three BH levels. The PN then simply broadcasts the appropri-

ate packet onto each level using the physical communication facility provided at

that BH level. All PNs connected on the specific BH level receive this packet and

are responsible for looking at the CN address of the originator to determine if they

have a.ny CN which relies on the data message. If there is no reliance, the PN may

simply discard the packet. If there is a reliance, the PN must retain the input data

and then update the output of its own affected CNs. This protocol is referred to as

~ (f.~"

...
.

... . q;-;: '- .
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"come-from" addressing, as the address of the sender is specified and not the address

of the recipient.

This logical protocol shows the elegance and simplicity of the BH construct

when used in very large systems. In particular, the broadcasting of all messages

onto a common carrier is an apt choice if it is likely that a packet will be used by

multiple PNs on a BH level. This likelihood is consistent with biological evidence of

neural based information processing. Besides, an application would be formulated

for execution on the CC with this efficiency characteristic in mind.

Actually, broadcasting on all levels would be unnecessary and inefficient in a

pure Broadcast Hierarchy. By broadcasting on multiple levels, the PN is capable of

supporting the more general case where there is overlap between BH levels. A more

efficient implementation (that yields the same flexibility) uses a programmable

Broadcast Control Field to specify which BH levels are to be used for each CN out-

put. The Broadcast Control Field is not supported in the definition of the PN given

in this thesis, but it could be easily added in the future.

The choice of physical connection facilities used at each level could depend on

the number of PNs connected, their proximity and other environmental factors. For

example, it is possible that at the lower levels a fully arbitrated, parallel transmis-

sion, shared bus could be used. At the higher levels, some sort of serial transmission,

non-arbitrated network would be used. As network protocol methods are subject to

considerable controversy among specialists, this thesis will not propose a precise

method for communication. Instead, it will be assumed that some sort of a serial

transmission will be used and it will be the same choice for each BH level.
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From a biological perspective, the Broadcast Hierarchy is attractive in several

ways. One is that is supports fast local communications between PNs at the lower

BH levels. This is similar to communication between neurons that are directly con-

nected. Besides fast local communication, the BH provides a network with high fan-

out and fan-in that allows many CNs to indirectly (but quickly) communicate, with

even logically distant CNs. Therefore, a carefully formulated group of overlapping

BH levels could provide connection richness similar to that of biological neural sys-

terns. If this richness were accomplished, it is likely that any two CNs could

indirectly communicate with only a couple of int.ermediary CNs required to pro-

pagate a message. These simple indirect message passing abilities could easily be

programmed into a CC application as shown in a later chapter. This relatively

straightforward global communication capability provided by the BH closely corre-

lates with similar biological functions.

We next show how the constructs defined above are combined to design a real

computer system. Figure 3 shows a hypothetical configuration of a CC circuit board

that contains 128 PNs. It is entirely possible that a realistic CC could be composed

of 32 of these boards providing a system of over 250,000 CNs with approximately 43

million logical connections.

Although these numbers may be technologically aggressive, they do not

represent overly optimistic expectations as integrated circuit packaging techniques

are rapidly improving. Furthermore, the regularity and locality of the inter-chip

communication requirements could make this proposed system easily realistic.

Finally, it is anticipated that the research at aGC will ultimately evolve into a
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CONNECTION TO OTHER BOARDS

PN *16BH NETWORK CONTROLLER

AND 1/0 INTERFACE

.

.

PN *' 113

COMMERCIAL

MICROPROCESSOR PN *' 128

PN *' 113
DRAM

PN *'128
DRAM

Figure 9. A Liblll ConfilUrtdion0/ IIConnection Computer. With 64 CN, per PN, thil wouldIIllow819t CN, per
bOllrd,The microproce"or iI u,ed during .1I,tem initilllizlltionIIndto ezecute lellrninl IIl,orithm" A
.pecilllized BrolldclI,tHierllrchllnetwork controller IInd110 inter/lice mllil be uled.

Wafer Scale Integration (WSI) implementation that would require some architectural

changes from the CC presented in this thesis. As a result, the technological aggres-

siveness of this proposal does not introduce significant risk into future research.

Further discussions of the technological, academic and economic viability of the pro-

posed system will be presented in later chapters.

The three non-PN logic components shown in Figure 3 play crucial roles in the

CC architecture. An explanation of their functions sheds some light on how the CC

operates. Briefly, these are used primarily in system initialization, operational com-

puting and the execution of learning algorithms, The initialization consists of the
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microprocessor loading the DRAM of each PN with the numerical information

required to define the problem to be solved. As will be seen in the following chapter,

this information must include a definition of which 2-codons will be used and the

specification of all required weight terms. Once the DRAMs are initialized, the PNs

may be started and they will begin to generate outputs. For communication

between PNs, on-board references are passed directly between PNs but off-board

references must be passed through the I/O controller on each board. The I/O con-

troller also performs the DRAM refresh. In many applications, the ee will "com-

plete" its computation and the microprocessor may be called upon to execute a
,"

learning algorithm. In other applications, learning may be performed as a back-

ground job while the PN computes. A more detailed discussion of topics relating to

initialization, computing and learning will be presented in a later chapter.

Although this proposed system will have approximately seven orders of magni-

tude less eNs than a human brain has neurons, it is still likely that the ee could

perform useful functions that are not possible with current computers. For example,

NETtaik uses only 300 nodes [SeR86]. The ee could also perform some functions

that are already possible but at a vastly improved cost/performance ratio.

Nevertheless, the brain provides a very general processing mechanism that is capable

of such diverse functions as sensory analysis, memory, rational thought, emotional

behavior, reflex actions and instinctual behavior such as propagation of the species.

The expectations of the CC's abilities are well below those of human intelligence. In

fact, the initial ce design would probably be considered successful if it were capable

of just one fairly trivial function such as learning to reliably recognize subtle visual
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t patterns in different contexts. An alternative task could be the real-time recognition
,
i of several words spoken continuously. In general, any computational problem that

t

f
I
.
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could profit from significant parallelism would be a target application for the CC.

No proposal for a radically different computer would be complete without

showing why the proposal is even required. In other words, it is important to estab-

lish why currently available computer architectures are not acceptable for the execu-

I

J

l
.

tion of the target applications. It is becoming increasingly clear that conventional

von Neumann computers cannot support the computational parallelism required to

solve complicated artificial intelligence problems. To circumve-nt these limitations,

this thesis presents a computational architecture that is capable of tremendous alg<>-

rithmic parallelism. A later chapter presents some calculated performance expecta-

tions for the CC and compares them with those expected from more conventional

computers executing the same algorithm.
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3. A MICROARCffiTECTURALIMPLEMENTATION

It is now possible to define a microarchitecture that implements the digital

model presented above. This chapter presents a microarchitectural proposal for a

VLSI based digital chip that implements an individual PN and provides a building

block for the Connection Computer.

This thesis gives the initial proposal for a computer architecture that is

totally different from any other computer system. Furthermore, brand new compu-

tational methods are being developed for this architecture that are fundamentally

different from those of conventional computer systems. As a result of these two fac-

tors, it has proved impossible to completely resolve every technical question encoun-

tered during the architectural definition. On the other hand, this thesis explicitly

points out the questions that require resolution before this architecture is finalized.

In these situations, the microarchitecture is defined in such a way that resolution of

the questions affects only design parameters and not the fundamental architectural

structure. As a result, the structure presented here should be flexible enough to

accommodate future research results.

Before describing the details of the microarchitecture, it is important to point

out two important implementation decisions that cause significant repercussions.

The first of these decisions is to use external Dynamic Random Access Memory

(DRAM) to satisfy the high-capacity memory requirements of a PN. As will be
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shown later, each PN (as defined in this chapter) requires on the order of two mega-

bits of memory. AP,these requirements border on the capacity limits of commercially

available DRAM, it is clear that it would be unlikely to include this amount of

memory on-chip in the PN. Therefore, the decision to use external memory was

made even though this solution is not optimal in many ways. In fact, several funda-

men tal characteristics of the microarchitecture of the PN differ from those that

would be expected if the memory were internal. In some cases, specific logic ele-

these are discussed below as appropriate. Some discussion is also provided on how

t
r
r...,'-

ments require actual trade-offs to accommodate the external memory decision and

The second topic that requires resolution before actually launching into the

the microarchitecture could be enhanced in the more ideal situation where internal

memory is feasible.

discussion of the microarchitecture, is the definition of some system level details of

the PN as they relate to memory use. AP,described in the previous chapter, a PN

implements 64 CNs and uses three levels of the Broadcast Hierarchy. The different

BH levels support either 4, 32 or 128 PNs depending on the level. These system

parameters imply that the PN must be capable of accepting input from 10,560

f
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unique CNs. This number may be derived from Table 1 by adding the number of

CNs possible at each BH Level. This total includes every input CN separately even

though this results in replicated storage, because in true hierarchical structures

inputs a.re duplica.ted on different BH levels. This replication of storage for each

input CN supports the worst case grouping in which inputs on lower levels are not

present in higher levels.
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In the proposed design, the PN allocates data buffer memory for each of the

defined ON inputs, even though it is likely that most applications would not use

them all. Other memory allocation methods were considered that are more conser-

vative of memory use in the situation where many ONs are unused. Unfortunately,

none of these was feasible as the savings in memory use was easily offset by the

increased complexity of addressing logic. This trade-off between regularity and

memory requirements occurs throughout this design and is generally resolved in a

similar manner.

Although the PN reserves storage for each ON input, it is not possible f"Orit

to reserve storage for each 2-codon. As a result, the £-codon Products Table and the

CN Weight Tables shown in Figure 4 must be limited in size. If the sizes of these

tables were not restricted by the implementation, it would be possible that the PN

would require all possible 2-codons to be generated. Furthermore, in the extreme, it

would be possible for each of the 64 CNs to have a Weight Table with an entry for

each of the possible 2-codons. This scenario is clearly infeasible as the number of

possible 2-codons is in the approximate order of the square of the number of input

CNs. This would imply the need for over 100 megabytes of memory just to store the

entire 2-codon Products Table. As a result, the 2-codon Products Table is limited in

size to 8192 entries and the Weight Tables are limited to 512 entries per ON. Limit-

ing table sizes is possible because neural networks exhibit significant locality in their

computational references. Ongoing research at OGO indicates that the proposed

limits are consistent with applica.tion requirements [Ham86b]. Furthermore, the

actual table sizes are not critical to the microarchitecture of the PN and could be
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Figure 4 -A High Level Block Diagram of the PN MicToarchitecture with Control Signals.

easily changed if required.

It is now possible to define the microarchitecture of the PN. .As can be seen

from an examination of Figure 4, the PN is segmented into five major functional

units. The remainder of this chapter is devoted to defining the structure of these

functional blocks in detail. The communication and synchronization between these

blocks is also described.

Figure 5 shows a detailed block diagram of the INPUT BUFFER AND ROUT-

ING LOGIC used by the PN. When a BH transmission packet is received by the

PN, it is deserialized, buffered and converted to PN internal addresses as shown in
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Figure 5. Once converted to internal format, the data in the received packets are

written to the external memory where the Input Data Buffer (IDB) resides. These

data are then accessible to other functional subsystems of the architecture. At this

time, the input control logic uses the Input Contributor Flags (ICF) associated with

the particular input to set the global CN Update Required bits. The ICF bits, cou-

pled with related data structures, provide the control and synchronization mechan-

ism that governs how and when CNs are updated. The use of these global mechan-

isms are defined below after first addressing some of the more fundamental issues of

the input logic.
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Parallel logic is provided to allow deserialization, buffering and address

conversion to occur concurrently and independently on each of the BH levels. The

reasons behind the use of this (mostly) duplicated logic is to isolate BH level specific

considerations - both from the internal structure of the PN and from the other BH

levels.

One particular dependency that can be masked using this sort of replicated

BH specific logic is the slight difference in transmission packet formats. ~ shown in

Figure 6, each BH level has a transmission packet that differs from other levels in

the size of its address field. (Figure 5 also shows this feature as the input busses

vary in size depending on the BH level.) The use of BH specific logic to deserialize

transmission packets requires the implementation of a simple deserialization. circuit

that accepts a fixed number of serial bits and converts to a fixed size parallel word.

The alternate method of using common logic would require some programmability of

the deserialization circuitry to accommodate the different packet sizes. ~ this logic

complication is not necessary, dedicated deserialization hardware is used for each BH

level. The same type of arguments apply to the choice of using BH level specific

dedicated circuitry for the data buffering and the address conversion logic.

~ shown in Figure 5, the PN uses a four packet deep FIFO to buffer its

inputs at each BH level. Buffering is required, because after the internal address is

DATA FIELD

(8 bits)

ORIGINATORADDRESSFIELD

(Bit width is BH level dependent)

Figure 6 -A BroadcalJt Hierarch, TranlJmilJlJionPacket. The lJize of the data field ilJfized but
the ftze of the addreu field i8 BH level dependent.
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computed for a packet, the external memory must be accessed to write the data to

the IDB and to fetch the ICFs. This accessing of memory could represent a

bottleneck during times of high input frequency and as a result, it is necessary to

slightly decouple the BH networks from the PN's processing of the packets. This is

accomplished by the use of a FWO buffer for each of the BH levels. It is not known

whether a four deep buffer is acceptable in this architecture as the BH network load

characteristics are not well defined at this time. Actually, buffer overflow is not a

catastrophic occurrence in the CC and losing some small percentage of the packets

could be tolerated. Nonetheless, this specific portion of the architecture will require
r
(..,
....

~

The address conversion performed by the input oriented logic is straightfor-
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significant future analysis before this question is completely resolved. As the

bottleneck causing the problem is related to the use of external memory, it is possi-

ble that if the design were converted to use internal memory, then the problem could

be eliminated.

ward. Within the PN, all input CNs are numbered sequentially from 1 to 10,560 and

the corresponding memory locations store the latest values received for each CN.

These addresses are computed from the BH level addresses by adding an offset that

is BH level dependent. For internal levels, no offset is required as they both start at

address one. For BH levels I, 2 and 3 the offsets are 64, 320 (64 + 256) and 2368

(64 + 256 + 2048), respectively. The derivation of these offsets can be understood

from an examination of the information given in Table 1. The computation of the

internal addresses is therefore, quite simple. As a result, BH level specific dedicated

translation hardware is an acceptable solution.
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As mentioned earlier, the Input Control Logic accesses the external memory

to write into the IDB and to fetch the ICFs. To accomplish these functions, it is

necessary to perform an address mapping to obtain correct physical addresses in the

DRAM. To avoid redundant logic, a centralized memory access facility is defined

that all other portions of the microarchitecture use whenever they require access to

external memory. This central facility would use a standard implementation of a

base+offset memory controller that also has block transfer capabilities. The base

address is derived from a lookup table by using a code passed to it to indicate which
't

portion of tbe DRAM is being accessed. For example, a code of three might indicate

r
C'
.,'"
~

that the request is for a word in the IDB portion in the DRAM. The offset and word

count would also have to be passed as part of the requesting protocol to completely

define the required transfer. This type of memory translation logic is commonplace

in conventional computer systems and therefore does not require a detailed descrip-

tion here.

In addition to implementation ease, there are other reasons why a centralized

memory access facility is desirable. One is that it limits the sphere of influence of

the logical to physical mapping in such a way that changes to the mapping only

affect the central facility. Also, memory bandwidth optimizations can be pursued

without considerations of global features of the microarchitecture. The memory

access facility also generates all required DRAM control signals, thus eliminating any

need for "glue" logic between the PN and the DRAM. Finally, the use of this central

facility allows maximum flexibility in adapting to technological changes in the inter-

face characteristics of future memories.



The last portion of the input logic requiring discussion is the ICFs. These pro-

vide the cornerstone for the communication and synchronization mechanisms used by

the PN. An ICF is a 64-bit wide, bit significant DRAM resident field that contains

one bit for each of the PN's internal CNs. If the ICF bit for a CN is set for some

input in the IDB, then the specified CN uses that input in the calculation of its out-

put 7 As a result, the ICFs provide a mechanism to define which CNs require

recomputation of their output functions when an input changes. The role of the

input oriented logic in this process is easily defined although its purpose and correct-

ness will not become apparent until later. Whenever the Input Control Logic

receives a new input value, it will fetch that input's ICFs, and for each ICF bit set,

it will pulse the corresponding CN Update Required signal. Subsequent logic that

uses the CN Update Required signals must latch the pulse on its rising edge. When

other subsystems of the PN detect the rising edge of this pulse, it informs them that

a recomputation of a particular CN's output is required. The details of the other

blocks' use of this, and related synchronization structures, are described when their

functional descriptions are given.

Figure 7 shows the UPDATE PRODUCTS LOGIC along with the previously

defined Input Data Buffer. The data structures and computing elements shown in

Figure 7 generate specific 2-codons that are required to compute CN outputs. When

the Product Update Control Logic detects a pulse on a CN Update Required line, it

asserts the corresponding CN Active bit to enable the sum update circuitry. It then

7 The lo&dingor the ICFs occurs during system initi&liution when the Weight T&bles&ndsome other &ppli-
c&tion specific memory &re loaded. None or these values are modified during the normal comput&tions or the PN.
System initi&lization &.nd dynamic le&rning are covered in a later chapter where some or the details or the loading
are described.
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reads the 2-codons Used Table for the corresponding CN. These 64 tables contain

the addresses for each of the 2-codons that the particular CN uses to compute its

output. As the number of 2-codons used by a CN is limited in this implementation

to 512, these tables require 512 entries each. The PN contains on-chip memory for

the specific purpose of storing an entire 2-codons Used Table. As a result, it is possi-

ble for the table to be read from the external memory into the internal buffer in a

single memory transfer.

Once the table has been read into its internal buffer, the Product Update

Control Logic reads each entry in the table to compute all 2-codons required by that

CN. Specifically, it uses each entry as a pointer into the 2-codon Products Table

where the IDB addresses of the two multiplicands are stored. After fetching these
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Uf't\t.1E

OOmROL !KXXX>N
14.1 Aa:RESS L H,

LOGIC AV
lC..n_,....:.

13



31

IDB addresses, the specified multiplicand data is passed to the 8 X 8 multiplier. The

16-bit 2-codon result is then passed directly to the UPDATE SUM LOGIC and the

2-codon Available signal is strobed to cause the product to be latched. The Product

Update Control Logic continues in this fashion until all 2-codons required by the

given CN have been computed. The completion condition is detected. when either

the last of the 512 entries is exhausted or an address pointer of zero is detected.

When complete, the control logic deasserts the CN Active bit for that CN to indi-
t

cate that the last 2-codon product has been generated. At this time, the UPDATE r
{.,.
.:::
..-~PRODUCTS LOGIC either begins a similar process on a different CN, if required, or

it goes into an idle mode.

In analyzing the performance implications of the proposed method of updating

the 2-codons, two immediate concerns are raised. First, when a 2-codon is shared by

multiple CNs, its 2-codon value is actually computed once for every CN that uses it.

Although this may seem inefficient, implementations that eliminated multiple 2-

codon computations required more complicated data structures and had significantly

higher control overhead.

The second performance concern may actually become critical to PN perfor-

mance if the inputs to the PN change too rapidly. This problem could become evi-

dent if during the computation of a CN's 2-codons, the CN Update Required signal

for that CN is pulsed again. At this point, it will be necessary to discard all compu-

tations in progress and begin to recompute all 2-codon values even though it is possi-

ble that only one would change. In the ideal case, it would seem possible to store a

designation of which input caused the midstream interruption and only recompute
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2-codons that are bued on it. Unfortunately, the mechanisms required to accom-

plish this selection were more complicated than their relative merit allowed. Future

research in this area may find a method of allowing this type of midstream correc-

tion, if the applications that use the PN exhibit this sort of behavior routinely.

There is a final topic concerning the 'format of the 2-codon Products Table

tha.t requires explicit description. If one of the multiplicand addresses is zero, then

the other input will be passed (unchanged) to the UPDATE SUM LOGIC as the 2-

codon Product. Using a zero-value address in this manner provides a mechanism for

the PN to use when a CN requires the simple weighting of a single input. This

mechanism is efficient and straightforward in its implementation because this

scenario could occur frequently.

The next major subsystem to be considered is the UPDATE SUM LOGIC

shown in Figure 8. When the UPDATE SUM LOGIC detects a pulse on a CN

Update Required line, it waits for a corresponding CN Active bit to be set by

intermediary logic. When the latter bit gets set, it indicates that the UPDATE SUM

LOGIC will start to receive 2-codon Products (for the specified CN) as an input to

its 16-bit multiplier. As each 2-codon is strobed into the multiplier by the 2-codon

Available signal, the control logic fetches the corresponding value from the appropri-

ate Weight Table and passes it, as the other input, to the 16 X 16 multiplier. The

32-bit output products from the multiplier are repeatedly passed to the 32-bit by

41-bit full adder which recycles its previous result as one of its inputs 8.

· The 4l-bit limit is derived from the maximum width th~t could be required when addlDI 612 (2") Dumben
t.hat are 32 bits wide.

-,
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In this way, the summation defined in Equation 1 is performed and the result

IS passed to the Firing Function block. The assertion of the OUT Available bit

instructs the Firing Function circuitry to accept the final result from the adder and

then drive its own 8-bit result, OUT, towards the output oriented subsystem of the

PN. The Firing Function block must continue to keep its output valid until the con-

trol logic deasserts the OUT Available bit. Because the control logic waits for the

return of the OUT Accepted bit before it deasserts OUT Available, this provides a

full handshake mechanism to insure that the output oriented logic receives the

correct result,

Finally, Figure 9 shows the OUTPUT BUFFER AND ROUTING LOGIC used

to send the newly calculated OUT values onto each of the BH levels. After detecting

the assertion of a CN Update Required pulse, the output oriented control logic waits

for the corresponding OUT Available bit to be set, After an implementation
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dependent deskew time, the 8-bit OUT value is latched as one input to the compara-

tor shown in Figure g, and the OUT Accepted bit for that CN is set. The Output -.
T1

Buffer Control Logic then causes the previously stored Last OUT Value, for the par-

ticular CN, to be passed as the second input to the comparator. If the comparator

finds that the new OUT value and the last OUT value are equal, then no more pro-

cessing is required as there has not been a net change in the state of the specified

CN. In later implementations it will be desirable to loosen up the equality con-

straint and instead determine whether the current and last OUT values are equal to

each other within some predefined threshold. Loosening this constraint will actually

simplify the comparator logic as it will eliminate some of the low-order bits from the

XOR circuitry.
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If the comparator finds the new and last OUT values to be different, then it is

necessary to broadcast the new value to all other CNs in the CC. Under this cir-

cumstance, the comparator drives the new OUT value as its output and generates

the Broadcast Required control signal. When the control circuitry detects the asser-

tion of the Broadcast Required signal, it passes the CN number that is being

updated to the Address Translation Logic blocks for each BH level v. At this time,

the Output Buffer Control Logic causes the new OUT value to be written to the

Table of Last OUT Values for future comparisons.

When the Address Translation Logic blocks receive the Broadcast Required

signal, they compute the BH level specific address of the CN by adding the internal

CN number to its own BH level specific base address. The BH level base address for

each level is stored in a dedicated internal register that is loaded during system ini-

tialization as described in a later chapter. The computed BH addresses are passed

to the BH level specific FIFO buffer where they are united with the data output from

the comparator and buffered.

Once the data is in the FIFO buffer, it is available to the BH level Network

Controller which is responsible for performing the required parallel to serial conver-

sion. Each Network Controller arbitrates for use of its own BH physical network

and then broadcasts the new OUT value to all other PNs that are connected to it.

Thus the process begins anew on any PNs that have a CN that relies on the new

value.

· Recent rese&rch&toac IBaH86jhu shown the need ror progr&mm&blecontrol over whether &CN's output
gets tr&nsmitted on e&chsep&r&teBH lenlu defined by the BroGdclJltControl Field. Although this re&tureis not
supported in this implement&tion, the Output Control Logic could be euily modified to &ccommod&teit.
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Most of the architectural features of the output oriented logic are simple

inversions of the operations performed by the input oriented logic of the PN. There-

fore, rationalization of the repetition of similar logic on each of the BH levels is not

required as the arguments are the same as those given above for the input section.

Nonetheless, it would seem possible to omit the use of any FIFO .buffering in the out-

put logic as the time required to compute a total CN update is probably quite large

compared with the time required to transmit the transmission packet onto the BH
t

network. It was decided that the choice of not using FIFO buffering was imprudent r
("

for two reasons. The first is that a CN input could cause an output to be generated

quite quickly if there is only a small number of entries in the affected CN's 2-codons --

Used Table. The second is that a BH network could have bursts of high communica-

tions traffic and therefore significant network delays could occur. In either case, a -
FIFO buffer allows for these circumstances and insures that the PN is capable of

responding to them. On the other ha.nd, it is not entirely clea.r whether the four r.....

deep FIFO is optimal or even acceptable. Future work must be done to discover r.

application requirements in this respect.

Now that the microarchitectural structure has been presented, it is important

to describe the external signals that are used to control the PN. Figure 4 shows the

major PN control signals. These are the START, HALT, HOLD and PIO (Pro-

grammed I/O) signals. Not surprisingly, assertion of the START signal causes the

PN to begin execution and HALT ca.uses it to cease execution. Assertion of the

HOLD signal temporarily inhibits the PN from accessing its DRAM. This signal is

used if the I/O controller or microprocessor require exclusive access to the DRAM
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This function is required if learning is performed as a background task. The PIO

control signals are used to ca.use the PN to enter a mode where it allows external

access to its internal memory locations. This access is required during PN initializa-

tion and may also be useful in determining the status of an individual CN after exe-

cutioD has been halted. The actual implementation of the PIO logic is straightfor-

ward because all that is required is selective access to internal registers. This is a

standard technical requirement in VLSI circuits and therefore does not reqUIre a

more detailed explanation in this thesis. On the other hand, a brief discussion of the

complexity of the circuitry used to implement the control signals is given in the next

chapter. Furthermore, a later chapter on initialization and learning will show how

these signals are used during these operations.

The microarchitectural definition of the PN has now been provided in

sufficient detail to allow continued research to refine and validate the proposal. The

next chapter covers. some of the specific technological and implementation specific

topics and shows the viability of this proposal. Furthermore, a performance analysis

is given in a later chapter to round out the definition of this PN implementation pr~

posal and establish its desirability.

'.
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4. TECHNOLOGICAL FEASmn..ITY

This chapter presents an analysis of the PN that defines and quantifies its

requirements. In particular, it examines the requirements of the PN in terms of

memory use, transistor count, silicon area and external I/O pin count. The purpose

of this analysis is to show that the PN is a feasible VLSI circuit. As a further result

of this resource quantification, information is derived that can be used to estimate

the "cost" of manufacturing the PN. This data will be critical to the

cost/performance analysis presented in the next chapter.

It is important to remember while reading this chapter that this thesis

presents a fairly high-level architectural description of the PN and it is not a

detailed design of the circuitry. As a result, there are several areas in the following

analysis where gross assumptions are made about the actual details of the required

circuitry. These assumptions are acceptable because the major goal of this chapter

is to show that this architectural proposal is feasible. Establishing this as fact,

insures that any following research effort will be well spent.

The first task in analyzing the PN's resource requirements is estimating its

use of memory. This analysis is actually best broken down into two separate topics.

These are the PN's use of external DRAM and its use of on-chip memory. The first

of these to be considered is the PN's requirements for external memory. Table 2

shows the memory capacity requirements of the PN's DRAM based data structures
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that were defined in Chapter 3. It also lists the architectural parameters of the PN

that ultimately dictate the memory size of each specific data structure. These archi-

tectural parameters include the number of input CNs, the number of internal CNs,

data widths and various table sizes. Some of these parameters indirectly affect PN

memory requirements by defi~ing address field sizes or the replication of a data

structure. The itemization of this information eases verification of the conclusions

presented here.

As can be seen from an exa.mination of Ta.ble 2, the PN reqUires approxl-

mately 2 M-bits of external memory. This could be accommodated with commer-

cially available DRAM by using either two 1 M-bit ICs or by using a single 4 M-bit

part. Although the higher capacity memories are not readily available today, their

TOTAL = 1939 K-BITS

Table e - An Itemized Summary of the PN's External Memory Requirements.

MEMORY DATA
ADDRESSOR REQUIRED

TYPE SIZE
CONTROL REPLICATION MEMORY

FIELD SIZE IN K-BITS

INPUT
DATA 8 bits 64 bits 10560 760

BUFFER (I per iDerDaIeN) (1 per iDpu eN)

2-CODON
PRODUCTS 0 28 bits 8192 229

TABLE
(2 lima 'be 14 bi. required (1 per eODON)

\0 addnu 10600iDpu eN.

2-CODONS
USED 0 13 bits 64 x 512 426

TABLES (required \0 addreas SID:! (1 per merDaI eN &ime. &he
eODON Table eo&ries) eories per Weich& Table)

WEIGHT 64 x 512
TABLES

16 bits 0
(1 per m&eroal eN Umea he

524
eo&ries per Weilh& Table)
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use would be highly desirable in the CC application to lower the required number of
r
I

IOs. Furthermore, the excess capacity of the 4 M-bit memory would be consumed if

some of the architectural parameters of the PN are increased in future designs. As a

result of these benefits, the rest of this thesis will assume the use of the 4 M-bit

DRAM. This choice int.roduces an element of design risk that substantially depends

on the time frame of the production of the CC.

The analysis of on-chip memory requirements is also straightforward. The

information shown in Figure 5 can be used to compute the internal memory require-

ments of the Input Buffer and Routing Logic. As defined, this circuitry uses 414

memory bits that are arranged in 21 separately addressable registers. Five data

buffers are used for each of the four BH levels and one 64-bit-register is used to

buffer one input CN's ICFs.

The Update Products Logic (Figure 7) only requires on-chip memory to buffer

a single 2-codons Used Table. Each of these tables consists of 512 registers that are

13-bits wide to yield 6656 bits per table. The Update Sum Logic does not use any

on-chip memory.

The Output Buffer and Routing Logic (Figure 9) uses 876 bits of internal

memory in 88 separate registers. As with the input oriented logic, twenty of these

registers are used for data and address buffering. But in this case, four registers are

used to store the BH level base addresses and 64 registers are used to store the last

OUT value for each internal CN.

Coupled together, this data implies that the PN needs to contain 7946 inter-

nal memory bits in 621 separately addressable registers. When more of the details of
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this design are determined, it is likely that more on-chip memory would be required

for unanticipated data transfer and control requirements. Therefore, this memory

estimate actually gives only a lower bound on the PN's on-chip memory resources.

Nevertheless, this capacity figure is a decent approximation and is possible with

~xisting VLSI technology.

The next step in the technological analysis of the PN is to estimate the

transistor count and silicon area that it will occupy. The total transistor count est i-

mate will be derived from detailed estimates of each of the major computational and

control circuits of the PN. These major circuits are the adder, the two integer mul.

tipliers, the external memory controller (EMC) and the PN global control and syn-

chronization circuitry. This gross method of estimating the total transistor count of

the PN omits consideration of minor computational circuits and miscellaneous con-

trol and synchronization logic that will surely be required. To adjust for this

shortcoming, a generous allowance will be added to the sum of the estimates to

obtain what should be a conservative upper bound on the transistor count of the PN.

It is assumed that the PN will be implemented in a CMOS design. This

choice is consistent with current technological trends. It also allows the use of the

comprehensive CMOS design reference by Weste and Eshraghian [WeE85]. This

reference contains much of the information that was used to estimate the transistor

count and silicon area of the fundamental computational circuitry as defined below.

The first circuits to be considered are the adder and the multipliers. A rea-

80nable implementation of a CMOS full adder, i.e., a transmission gate adder,

requires approximately 25 transistors per bit. Using this value, the 41-bit adder
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shown in Figure 8 would be composed of 1025 transistors. In reality, there is

significant variation in the complexity of adder designs with substantial trade-offs
i!

between performance and circuit size. Performance concerns tend to dominate as

the data size increases, and the transmission gate adder may not be fast enough in a

,
f 41-bit application. As a result, it may be necessary to use a more complicated,

higher performance, adder circuit than the one proposed.

The performance of the multipliers is critical to the computational

throughput of the PN. Therefore, it is important to implement a high-speed, fully

parallel, multiplication circuit. Multipliers in this class are constructed from full

adders, such as the transmission gate adders considered above. Specifically, an

n X n multiplier requires on the order of n2 full adders to perform fully parallel mul-

tiplications. Therefore, the 8 X 8 multiplier would be composed of approximately

1600 (25 X 64) transistors. The 16 X 16 multiplier requires 6400 (25 X 256) transistors.

This yields a total transistor count of 9025 for the adder and the multipliers.

The external memory controller (EMC) must be kept computation ally simple

to prevent it from becoming a performance bottleneck. A high performance imple-

mentation of the base+offset logic could be obtained from integrating a special pur-

pose barrel-shifter that converts the logical offset, passed to the EMC, into the physi-

cal memory offset. This va.lue is merged onto the lower-order bits of the address bus

with the specified base address to obtain the desired physical memory address. All

together, the required base+offset logic is composed of approximately 200 transistors.

It is not necessary to list the intimate details used in estimating the transistor count

for this trivial circuitry.
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To implement the block transfer capabilities of the EMC, it is necessary to

include automatic word count decrementing logic and automatic address increment-

ing circuitry. This could be done effectively by using a special-function adder like

the one described above. Assuming byte addressability, 19-bit adders will be

required to support complete access of the 4 M-bit DRAM. .Therefore, the address

and counting logic would each require approximately 475 (25 X 19) transistors. This

yields a total sum of 1150 ( = 475 + 475 + 2(0) transistors required to implement

the entire EMC logic. Although this figure could be subject to substantial recon-

sideration as the exact circuitry evolves, the magn.itude of the estimate will not

change dramatically unless significant functionality is added.

The next task in estimating the PN's transistor count is analyzing its global

control and synchronization circuitry. It is desirable to use a PLA as the major con-

trol structure for the PN. Although this method is conceptually appealing, it is not

feasible in this application because the vast majority of the control signals must be

replicated for each CN. More specifically, this application would require a control

structure with approximately 640 inputs and 640 outputs. A PLA implementation of

this logic was considered but was rejected because this application has only sparse

connections and this would result in inefficient use of silicon area.

To circumvent this concern, the PN's control flow is designed in such a

manner that it can be implemented by replicating circuitry that is both conceptually

straightforward and physically dense. There are several fundamental qualities of the

PN architecture that tend to support these goals. The first point worth noting is

that the majority of the synchronization and control within the PN is accomplished
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by independent circuitry that is replicated for each of the internal CNs. This repli-

cation provides a physical regularity of cells that minimizes circuit layout problems.

Regularity can be crucial to successful VLSI designs.

From a more microscopic perspective, the structured "control flow" of the PN

is a major factor in accommodating the d~sign of compact and efficient control circu-

itry. Specifically, CN Update Required is the only major control signal that has a

global effect. The other four major control signals for each CN are locally derived

and have only local effects. They are structured in such a way that control "flows"

in an orderly pattern from the input of the PN to its output. As a result of these

two features, it is easy to visualize a rectangular cell that contains all of the control

logic for a CN, but is still small and compact, and has few external connections. As

a further benefit of this systematic control flow, the few external connections that

are required may enter the logic at fixed intervals and therefore, the physical

interference between them is minimized.

Given all of these arguments, it is reasonable to consider a fundamental con-

trol structure that uses 30 transistors per CN. These transistors could probably be

arranged in a regular rectangular grid with roughly four conductor rows and ten

conductor columns. Therefore, approximately 1920 (30 X 64) transistors would be

used in the PN's global control and synchronization mechanisms. Physical size est i-

mates of the control logic are more important and they are presented below.

Lastly, we need to determine the total transistor count of the PN's on-chip

memory. A six transistor per bit SRAM cell can be used. Therefore, 47,676 transis-

tors are required to implement the 7946 bits of on-chip memory.
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At this point, all of the major logical components of the PN have been con-

sidered and the sum of these estimates is close to 60,000 transistors 10. It may now

be concluded that the PN architecture defined in Chapter 3 is feasible from a purely

transistor count perspective. This conclusion remains true even if a 100 % transistor

count allowance is. reserved for the miscellaneous computational and control circuits

that were omitted in the analysis presented above. As a matter of fact, commercial

lCs composed of greater than 120,000 transistors are commonplace.

As an additional check of implement ability , the silicon area requirements of

the logical components discussed above are estimated. This is the final step in show-

ing that the PN is technologically feasible using currently available CMOS process-

ing techniques. Table 3 shows the approximate cell sizes of the most significant of

the major logical elements discussed above. Although these values are only gross

2
TOTAL = 41,599,296 pm

Table 9 -Silicon Area Information of the Principal PN Logic Ce1l8. The8e
value8 a88ume a minimum feature 8ize of e pm.

10The vast majority or these transistors are in area-efficient SRAMcells.

,.

CELL CELL SIZE SILICON

TYPE
(in pm2)

REPLICATION AREA REQUIRED

(in pm2)

ADDER 7,744 399 3,089,856

SRAM 4,800 7,946 38,140,800

GLOBAL
CONTROL 5,760 64 368,640

CELL
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estimates, they are based on 2 pm minimum feature size (>'= 1 pm), two level metal-

ization and standard CMOS design rules IWeE85]. Specifically, the adder cell is

estimated as a square with 176 pm (88 >') sides. The SRAM is a 80 pm (40 >') by

60 pm (30 >') rectangular cell. The control logic cell size was estimated by assuming

a 4 X 10 conductor grid with a 12 pm (6 >.)grid spacing. Table 3 also gives the repli-

cation of each cell type and the total silicon area that they require.

As can be seen from examining Table 3, the major logical portions of the PN

will require a silicon area of around 40 million pm2. This could be easily accommo-

dated in a somewhat typical 1 cm2(which is 100 million pm2) VLSI chip.

No technological analysis of a VLSI architecture would be complete without

performing a quick examination of its external I/O pin-count and some related

parameters. In this regard, the PN is not only feasible but it has a low enough pin-

count that ECB signal routing is simple. Specifically, the PN requires a total of only

56 external connections. Three of these are used for the START, HALT and HOLD

signals shown in Figure 4. Assuming that each external BH level uses a serial inter-

face that requires four connections, a total of twelve pins are required for the three

external levels. The PIO interface shown in Figure 4 requires thirteen connections.

Ten of these are required to specify addressing of the 621 different registers, one

specifies the access direction (read/write) and two connections provide a handshake

mechanism. Similarly, assuming a byte-wide DRAM, approximately eighteen pms

are used for the connection between it and the PN. These are broken down into

eight data lines, six address lines, CAS, RAS, chip select and write enable. Finally,

approximately ten connections are required for power, ground and multiple clock
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phases. Although these are only rough estimates, a pin-count of 56 is quite small

and is easily accommodated with conventional VLSI packaging techniques. This low

pin count is also desirable as it reduces board costs and increases system reliability.

The pin-count estimate given above includes four pins each for power and

ground. This number is required to support the estimated 60K transistors of the PN.

Furthermore, the raw power consumption of the PN is not of significant concern as

the vast majority of the PN's transistors are used in SRAM cells and these are

power efficient in CMOS technology. As a result, no major power related concerns

are expected in either supplying raw power to the PN or in cooling it.
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5. PERFORMANCE ANALYSIS

This chapter presents an evaluation of the computational performance of the

PN microarchitecture proposed in Chapter 3. Unfortunately, due to the scope of this

design, a detailed simulation of the proposed PN architecture was considered to be

beyond the scope of this thesis. Also, simulation is not critical in this case, since rea-

son ably accurate performance analysis is possible, and a strong argument is made

that the performance of the PN is limited by the memory bandwidth of the DRAM

In any case.

After establishing the PN's performance as memory access limited, a discus-

sion is given that explains why memory limited performance is acceptable in light of

other system considerations. A sensitivity analysis is then presented that shows the

performance effects expected from varying the memory bandwidth. Next, an alge-

braic expression is derived that allows the quick computation of the PN response

time given a specific stimulus. Several different stimuli will be explicitly considered

that represent the PN operating under different computational loads. Although this

approach does not validate the correctness of the proposed microarchitecture, it will

a.llow the calculation of quantitative information to predict the performance of the

PN based Connection Computer. Finally, cost/performance results will be derived

a.nd compared with more conventional computer systems performing the same appli-

cation. As will be seen, the PN compares favorably in this regard.
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Before presenting the detailed performance analysis, it is useful to present the

reasons why a simulation of the PN is not critical to the performance analysis por-

tion of this research. There are several reasons why a simple simulation of an indivi-

dual PN would actually have only limited value. One reason is that the PN is

designed to be used in groups (i.e.. a CC) and the performance of the group is not

directly related to the performance of any individual PN. Rather, the performance

of the CC is derived from characteristics of both the individual PN's performance

and communication delays between connected PNs. Therefore, to obtain accurate

estimates of CC performance, a statis_tical treatment of both the PN response time

and related communication overhead must be performed. This analysis must exam-

ine the effect of different computational loads and communication delays on the net

performance of the CC. Currently, anticipated workload specifications within the

CC are poorly defined so even statistical analysis would be of little concrete value.

As a result of these complications and limitations, the following analysis is restricted

to a priori methods rather than more detailed simulation methods. When the work-

loads within the CC become more defined, system simulation of PNs will become

necessary.

The first step towards estimating the performance of the PN is showing that

its DRAM accesses are the limiting factor. To establish this relationship, it is first

necessary to compare the DRAM a.ccess times to the directly related computa.tion

times. If the time required to access memory is significantly greater than a reason-

able performance estimate of the related circuitry, then it can be concluded that the

memory access time is a reasonable approximation of the computation time.
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To begin the detailed comparison, consider the logic shown in Figure 7 that

computes the 2-codon products. The basic computation performed here is the

repeated multiplication of two 8-bit values fetched from the DRAM to obtain the

16-bit results that are passed directly to the multiplier of the Update Sum Logic.

Therefore, each multiplication requires the access of two data bytes, but Figure 7

shows that an additional 41-bits of address and control information must be read

from the DRAM to obtain the IDB addresses of the multiplicands. Thirteen of these

bits are the entry in the 2-codons Used Table that provides a pointer into the 2-

codon Products Table. Using this pointer, 28 address bits are fetched that define the

actual IDB addresses of the two target multiplicands. Altogether, this scenario

results in the access of approximately seven bytes of DRAM just to perform the mul-

tiplication. It is useful to consider whether the total time required to access the

DRAM is significantly greater than the time required to actually perform the 8-bit

multiplication.

To answer this question, it is necessary to make some performance oriented

assumptions about both the PN and the DRAM. It is reasonable to assume that the

PN could operate at a clock rate of 10 M-Hz and that it could perform simple opera-

tions in a single clock cycle (100 nS). Specifically, it may be assumed that the 8 X 8

multiplier could be designed in such a way that it takes just one clock cycle per mul-

tiplication. On the other side of the comparison, consider a DRAM that is very

aggressive in terms of performance. Assume that the DRAM used in the CC will

have a data path that is 8-bits wide and an effective cycle time of 100 nS 11. Given

11CurreDtly "'Yailt.ble DRAMs teDd to be DOlarger tht.t 4-bits wide with cycle times closer to 200 DS. DRAM
performt.Dce figures will probably DOtimprove drt.matically for high-capt.city DRAMs iD the Dear future.
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these fundamental performance estimates and the DRAM reference characteristics

explained above, eight separate byte-wide accesses would be required to yield a total

memory access time of 800 nS. This is eight times the amount of time required to

a.ctually perform the multiplication. Furthermore, the multiplication time could be

entirely hidden by performing the fetch of the next multiplicand address during the

multiplication cycle. Simplistically speaking, these results show that the time it

takes to compute a 2-codon is directly dependent on the related DRAM access time.

Before moving on to the other major circuit elements of the PN, it is impor-

tant to consider the control overhead associated with the multiplications disc~ssed

above. In particular, one would wonder if the proposed microarchitecture contains

some controi path that would implicitly limit its performance to below what is possi-

ble given its DRAM references. Although this type of limit is always possible if cir-

cuitry is designed that is incorrect or inefficient, it is unlikely that this would be a

great risk in the PN design because its control structure' is simple. This is

exemplified in the Update Products Logic discussed above and can be seen from a

careful examination of its control 80w. After detecting the assertion of the CN

Update Required signal for a CN, the Update Products Logic activates the Update

Sum Logic by asserting the appropriate CN Active bit for the given CN. At this

point, control is transferred to the logic block that actually causes the multiplica-

tions to be performed. This logic sequentially fetches six pointer bytes that define

the address of the two data bytes and then directly fetches the data and passes it to

the multiplier. When the multiplication is complete, it passes the result to the mul-

tiplier in the Update Sum Logic and strobes the 2-codon Available signal to cause
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the product to be latched as one input to the 16 X 16 multiplier. This exact process

is repeated until every required 2-codon has been computed.

Thus, the only significantly complicated function performed by the Update

Products Logic directly involves DRAM accesses. Therefore, the only significant per-

Cormance bottleneck would have to result from inefficiencies in this part oC the circu-

itry. This is not a large risk because efficient traversal of indirect memory references

is a common Cunction in many VLSI designs and good solutions to potential design

problems are prevalent. For instance, general purpose commercial microprocessors

must solve this problem in a general way to support a wide array of addressing

modes. On the other hand, this is an area of the PN design where work towards

optimization could have linear benefits.

Now that the 2-codon multiplication has been Cully characterized, it is possi-

ble to consider the performance of the other components of the PN. In some cases

below, performance arguments are similar to those made above and so they are only

explained briefly. For instance, the description of the performance of the Update

Sum Logic (Figure 8) closely follows from the previous discussion of the Update Pro-

ducts Logic. In particular, only two bytes of data are accessed from the DRAM for

each 16-bit multiplication as the other two bytes are passed directly to the multi-

plier Crom the Update Products Logic. Accessing these two additional data bytes

implies the need for an additional memory access time of 200 nS for every entry in

the Weight Table. As the timing between 2-codon Products was derived from dedi-

cated access to the DRAM, the two additional data bytes could not be fetched dur-

ing the 800 nS required to compute each 2-codon. Therefore, the multiplier in the
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Update Sum Logic can only be cycled every 1000 nS as limited by the ten bytes of

data that are ultimately accessed in each iteration. Assuming that the 16-bit multi-

plier could also be designed to perform one multiplication every 100 nS clock cycle

and that the multiplication could be overlapped with subsequent data accesses, its

performance is clearly limited by DRAM references. Furthermore, the 41-bit addi-

tion, that follows every multiplication, could also be performed in one clock cycle.

This addition requires no DRAM references so it could be performed in paralle'l with

the computation of the next product value. This scheme yields an efficient computa-

tional pipeline where each iteration takes only 1000 nS.

In contrast to the addition, even though the Firing Function logic (also in Fig-

ure 7) is simple, it cannot be pipelined as it is only computed once per CN. There-

fore, the Firing Function adds one additional clock cycle to the total time required

by the Update Sum Logic.

The Input Buffer and Routing Logic (Figure 5) accesses nine DRAM bytes

every time a new input value is received. After input deserialization, it is unlikely

that any of its simple translation oriented circuits would require more than the 900

nS used by these DRAM references. Therefore, this value represents an acceptable

approximation of its response time. Of course, this analysis assumes that the input

logic's FIFO buffers are empty so that they do not contribute to the delay. Obtain-

ing performance estimates associated with non-empty buffers would require substan-

tial additional effort and is not done here.

Finally, the Output Buffer and Routing Logic (Figure 9) does not access any

external memory. Therefore, the type of arguments given above do not apply. On
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the other hand, the output logic is sequential and straightforward so an accurate

estimate can be made by just examining its circuitry. Again assuming that the out-

put FIFOs are empty, it would take approximately six clock cycles from the time

that OUT Available is asserted until the deserialization and transmission can begin.

As with the analysis of the input logic given above, it is assumed that network

delays do not occur. The effects of network delays will have to be considered in later

efforts.

Before deriving an algebraic expression that predicts the PN's macroscopIC

performance characteristics, it is interesting to explicitly consider topics that relate

to system performance trade-offs, sensitivity analysis, global parallelism and resource

contention. These topics are discussed briefly to assure the reader that they have

been satisfactorily considered.

One might wonder why an architecture is proposed that is memory bandwidth

limited when the use of high-capacity, high-speed memory components is extremely

economical. It would be easily possible to increase the bandwidth by using either

faster memories (such as SRAMs) or parallel access to multiple memory components.

Although these solutions are feasible and would provide higher performance, they are

inconsistent with a more fundamental system goal. As discussed in Chapter 2, an

overriding goal in the CO design is to support computations using a very large

number of PNs. To maximize the number of PNs possible in a CC, it is crucial to

minimize the ECB real-estate and IC count associated with each PN. Therefore, the

use of only a single DRAM provides an almost optimal solution in this regard and its

performance appears to be acceptable for target applications. The PN based CO
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also provides a high memory density per ECB and this is a major factor in this

memory intensive application. Ai:, a result, other memory configurations were

rejected.

In examining the sensitivity of the PN performance on DRAM bandwidth, if

the bandwidth of the DRAM at-bitrarily decreases, the effect on the performance of

the PN will be a linearly related decrease. On the other hand, if the bandwidth

increases, the performance benefit will only be linear until a threshold is reached

when the computational circuitry becomes the limiting factor. It is not known when

this performance threshold would be reached, but from a raw component perspective

it would be roughly in the 20 nS memory cycle time range. Similar thresholds would

be reached if different memory configurations were used that yield wider effective

data accesses. Future efforts will be necessary to refine this estimate if significantly

higher performance memories are considered.

Another general topic worth consideration is the PN's support of global paral-

lelism. Global parallelism within the PN could be defined as occurring when different

computational elements are performing operations at the same time. In fact, the

computational efficiency of the PN is largely derived from its use of computational

parallelism. In particular, the two multiplications and the addition (described

above) are all computed concurrently using pipeline methods. Further, these arith-

metic operations can occur in parallel with activities in both the input and output

logic portions of the PN. This use of global parallelism yields net performance that

is similar to much higher cost designs, as will be shown in the end of this chapter.



-.~.

68

There is one key area where computational parallelism is required. Whenever

the input logic receives new data, it must be able to fetch its associated ICFs, even if

some other computational element is actively accessing external memory. This is

required because the fetched ICFs could cause the computations that are already in

progress to be terminated and restarted, which would be the case if the internal CN

being computed has a data dependency on the new input value received. If the ICFs

show no dependency, the computation could resume where interrupted. Clearly in

this case, prioritized global parallelism is critical to the PN's performance as it

minimizes unnecessary computations. :

A concern that is often raised when assessing the value of performance esti-

mates is the effect of resource contention. There are three distinct areas in the pro-

posed architecture where resource contention could be an issue. The first results

from the use of DRAM for the storage of many data and control structures. The

effect of contention in this case was implicitly considered in the performance discus-

sion given above. The second shared resource subject to contention is the external

memory controller. This logic will have to be designed to insure that its access for

one purpose does not adversely impact its efficiency for other purposes. Finally, the

BH networks have contention problems that result in output value transmission

delays. This scenario is not considered in this thesis.

Another question that could be raised is whether a caching method could be

used to lessen the PN's total memory access time requirements. The PN's references

within the 2-codon Products Table and its references of CN inputs are nonsequential

a.nd could be widely scattered in DRAM memory. There is also no reason to believe
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that there would be a high likelihood of reuse of these data elements. Furthermore,

as the PN's memory capacity requirements are quite large, it is infeasible to cache

the entire data sets. Given these three factors, caching could not be used effectively

to obtain a performance benefit. If future research shows high reuse within either of

these data structures, then a caching mechanism should be considered.

To develop an algebraic expression for the response time of the PN, it is

necessary to define the related variables 12 For any input CN, define n as the

number of bits set in the input CN's ICF entry. This value gives the number of

internal CNs that will have to be computed as a result of the input change. Next let

It, where l::S;k::S;n,be the number of entries in the Weight Table for each of the n

affected CNs. Given that just one input CN changes when the PN is otherwise idle,

the response time, R, is defined in Equation 2 13.

.
R = 900 + ( E It X lOOO) + (n X 7(0) nS Equation 2

In Equation 2, R is the time between the receipt of the input value and the transmis-

sion of the last output value. The specific numeric information is derived from the

appropriate circuit performance estimates given above.

Although Equation 2 gives an accurate estimate of the response time of the

PN, it requires specification of the size of each Weight Table. This requirement

12Throughout the following discussion, lower case letters denote va.ria.bles tha.t a.re delined by properties of a
single CN. When upper case letters are used, they are derived from a.n ensemble of CNs and have simila.r cha.rac-
teristics as their lower case roots.

LSAll of the following specific performa.nce estima.tes rely on the a.ggressive DRAM performa.nce assumptions
that were previously described. M a result, these estima.tes ma.y ha.ve to be rea.djusted to reflect a.ctua.l DRAM
product a.va.ila.bility when the CC is produced.
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makes it too application specific for macroscopic estimates but this problem can be

solved without compromising the precision of the estimate. To do so, let L be the

average number of entries in the Weight Tables of the affected internal CNs. Given

this definition, the equivalent expression for the response time is given in Equation 3.

R = 900 + (n X L X 1(00) + (n X 7(0) nS Equation 3

This yields an accurate estimate of the response time of the PN given two applica-

tion parameters that can be easily obtained. Note that R has the exact same mean-

ing in Equation 3 as it does in Equation 2, but is just defined in terms of different

variables.

Before calculating the PN's performance expectations, it is necessary to

further generalize the function that predicts its response time. In particular, both

Equations 2 and 3 assume that only one input CN changes at anyone time. In real-

ity, many input CNs may change at the same time so it is desirable to include this

behavior in the performance model used. To include this situation, define I as the

number of inputs that change at the same time. Also, let N represent the number of

bits set in the logical OR of the ICF bits associated with each of the I input CNs

that change at one time. Although N is derived differently than n, its significance is

the same as it denotes the number of internal CNs that have to be updated when

new inputs are received. Given these definitions, the response time of the PN, when

several inputs change concurrently, is defined in Equation 4.

R = (I X 9(0) + (N X L X 1(00) + (N X 7(0) nS Equation 4
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Equation 4 gives the definition of a new PN response time, R, that will be used

below. It is interesting to note that when I is set to a value of one, Equation 4 is

equivalent to Equation 3, as would be expected. Also, increasing the value of I has

only a relatively small direct effect on the PN response time. Its indirect effect of

converting the small value n to the larger value. N is likely to have a more substan-

tial net effect.

There is one limitation of the performance model used to derive Equation 4

that needs to be explicitly stated and discussed. Specifically, the derivation of Equa-

tion 4 assumes that all of the changes to the input CNs occur at the exact same

time. In fact, this restriction can be somewhat loosened to allow all cases where the

inputs change at any time during the PN's computations as long as new inputs do

not force recomputation of any kind within the PN. It is unlikely that this ideal

case would occur often in most applications. Deviation from this ideal adversely

impacts the response time of the PN. The magnitude of the impact is extremely

application dependent. In the worst case, the PN would never be able to generate

an output because it is continually having its computations interrupted. In fact,

there will be an input frequency window within which substantial inefficiency will

result. The actual parameters that define the width of this window are application

dependent. Nonetheless, it is interesting to note that these performance problems

are self-limiting because if ON results cannot be computed then they cannot be

transmitted. Given these qualifications, the response time defined by Equation 4 is

an approximate lower bound.
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Finally, it is possible to present some interesting estimates of the performance

of the PN. Table 4 shows predicted PN response times under different computa-

tional loads. There are several interesting insights that can be obtained from exa-

mining Table 4. One is t.hat the minimum response time of 2.6 pS is fast, when one

considers that even this simple case exercises all of the PN's logical circuitry. The

second point is that the maximum response time of 42.3 mS is a promising value

because it indicates that the PN can be used in real-time applications. Although

both the minimum and maximum are promising, it is unlikely that either of these

performance extremes would result from any real application.

Table 4 -Some Examples of Estimated PN Performance. The exact parameter values
are representative examples reflecting the specified loads.

NUMBER OF NID.1BER OF AVERAGE ESTIMATED
SYSTEM CNINPUTS INTERNAL CNs

NID.1BER OF
RESPONSE

LOAD ENTRIES IN
CHANGED AFFECTED WEIGHT TABLES TIME

fl) (N) (L) (11 )

MINIMUM 1 1 1 2.6 pS

5 5 20 108 pS
LIGHT

5 10 20 212 pS

15 32 256 8.2 mS
MEDIUM

400 32 256 8.6 mS

4000 50 200 13.6 mS
HEAVY

4000 50 400 23.6 mS

MAXIMUM 10560 64 512 42.3 mS
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In comparing the times shown in Table 4 with prior expectations, one must

remember that these estimates are based on computations using higher-order predi-

cates. It is dangerous to compare these estimates with those of systems that do not

use higher-order predicates as they provide substantially less computing power than

the PN proposed here. In fact, a major accomplishment of this thesis is the develop-

ment of an efficient computational vehicle using higher-order predicates.

One can also observe from Table 4 the performance impact of varying the

three main application parameters. As can be seen from the Medium load data,

varying I does not have a substantial impact on the response time. On the other

hand, as can be seen from the Heavy load data, varying the average number of

entries in the Weight Tables has a nearly linear effect on R. Similarly, increasing

the number of affected CNs also has a large effect on the response time. None of

these insights are particularly surprising given the form of Equation 4. Nevertheless,

these results dramatize these conclusions in a practical way.

There are other interesting generalizations that can be obtained from examin-

ing the data shown in Table 4 or from direct calculations of Equation 4 for different

loads. To draw statistically based PN performance conclusions, it will be necessary

to generate a simulation program for the proposed microarchitecture, but first an

understanding of specific application requirements must be obtained. This simula-

tion program will provide several benefits including microarchitectural verification,

architectural optimization, BH network traffic analysis and application algorithm

evaluation. In fact, one of the first goals of any future efforts in this research area

should be the development of a suitable simulation program.



82

The final task in analyzing the PN's performance is comparing it to more con-

ventional computers. Two different performance measures have to be considered to

show the value of the PN. One is raw performance and the other is the

cost/performance ratio. The Collowing discussion examines two distinctly different

conventional computer types and compares both to the PN based CC. One of these

computers is microprocessor based and is designed to occupy minimum ECB real-

estate. The second is composed of state-of-the-art Digital Signal Processing (DSP)

components and represents a high performance, highly optimized, alternative to the

PN. Explicit consideration of both of these extremes is necessary as each has been

proposed as a viable alternative to the more specialized PN [CaG86, CrT8S, HeG]. In

fact, the DSP appro"ach is being actively pursued by several commercial firms includ-

ing IBM, Texas Instruments and Hecht-Nielsen Neurocomputer.

Throughout the following comparisons, only the inner loop of the PN's compu-

tation is considered. Additional comparisons would almost certainly require detailed

simulations of the proposed systems. The inner loop of the PN is composed of the 8-

bit multiplication, the 16-bit multiplication and the 41-bit accumulating addition. In

the PN, all of these operations are pipe lined and so the required time for an iteration

is 1000 nS as shown in Equation 4.

The first computer architecture to be compared to the PN is simply a 68020

microprocessor connected to a single DRAM. This is an unlikely combination

because a small amount of "glue" logic would almost certainly be required. Neglect-

ing this complication, its "cost" is easily compared to that of the proposed PN based

system and it is easily replicated. The 68020 performs a 16 X 16 integer multiplica-
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tion in 28 clock cycles (worst case) and performs a 32-bit addition in 6 cycles (worst

case). Beyond this, there are several assumptions that must be made to estimate the

68020 execution time for the inner loop. First, assume that all program memory

references can be performed in parallel with the computing. On .the other hand,

data operand fetches cannot be performed in parallel so their related data access

times must be added to computational. times to determine total time estimates.

Next, assume that the address computation for any data operand requires the 68020

to fetch a 16-bit address offset from the DRAM and perform one single integer addi-

tion H FinaHy, assume use of a 12 M-Hz 68020 with the 100 nS cycle time, 8-bit

wide DRAM that was proposed earlier.

Given these assumptions, fetching the three data operands requires a total of

1000 nS memory access time plus 500 nS to perform the three address additions.

The two multiplications and the double-precision accumulating addition take an

additional 5667 nS. This yields a total time 8167 nS required per inner loop itera-

tion. As the PN performs this operation in 1000 nS, it has a factor of eight perfor-

mance benefit over the 68020 in this application. The 8-to-l advantage is actually a

lower bound, as there are many application specific, efficiency related, features in the

PN that are not available with the 68020. Using IC count as a gross measure of

cost, a similar factor is obtained for the cost/performance comparison.

The next conventional architecture to be considered uses DSP logic that is

tuned for high-performance in the PN application. The following analysis shows that

the PN compares favorably against computers on this extreme of the performance

14This uaumptioo is very geoerous as it is likely that sigoiflcaotly higber overhead will be required for data
address calculatioos. This results in a decrease or t.he predict.edPN perrorma.nce a.dunta.ge over the 88020.
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spectrum. The specific system to be considered uses the Weitek ACCEL 8000, 32-bit

wide, integer processor chip set that has a 100 nS cycle time. This chip set is com-

posed of an Integer Processing Unit and a separate Program Sequencing Unit.

Together, they perform 32-bit integer arithmetic operations in just a single clock

cycle. To use these components effectively, data and program memory must be phy-

sically separated and both of the memories should have cycle times in the 50 nS

range. The program portion of the memory is composed of four 8K X 8-bit SRAMS

which are currently commodity items. This memory configuration provides the 32-

bit program word width used by the Weitek chips. The data memory requires a

total capacity of 4 M-bits and it is composed of sixteen 32K X 8-bit (state of the art)

SRAMs. This yields a total IC count of 22 for the DSP solution. Using Ie count as

a rough measure of cost, this implies a factor of eleven cost advantage of the PN

based system over the DSP solution.

The performance estimate for the DSP system is derived similarly to the

68020 performance estimate. In fact, all the same assumptions apply. Program

memory fetches are completely hidden. Data fetches are assumed to require the
'h

same address offset fetch - integer addition- data fetch sequence. Furthermore, each

of these operations takes one separate DSP clock cycle. Therefore, fetching the

three data operands requires 900 nS. Performing the two multiplications and one

double-precision addition takes four clock cycles (400 nS). This means that the DSP

system completes each inner loop iteration in 1300 nS and it is slower than the (less

costly) PN based system. As a specific result, the PN based system has an approxi-

mate cost/performance advantage of 14-to-l over the DSP solution.
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6. INITIALIZATION, COMPUTING AND LEARNING

There are three distin.ct operational phases used by the PN based CC in solv-

ing application problems. They a.re initialization, operational computing and learn-

ing. Although the PN is the cornerstone during all of these processes, the CC's on-

board microprocessor and I/O controller (shown in Figure 3) also play crucial roles.

This chapter describes how these three major components cooperate together to

allow efficient execution in each of the CC's computational phases. Explicitly

describing these interactions further validates the proposed architecture by estab-

lishing its suitability to the set of target applications described in Chapter 1.

Throughout this chapter, the roles and functions of the on-board microproces-

sor are frequently discussed. In fact, the microprocessor could be replaced by some

other general purpose computational agent that is capable of the same functions.

Although this thesis assumes the use of a microprocessor for this computational

agent, the actual choice may be made at a later date without compromising the

validity of the following discussion. Furthermore, no lack of generality results from

this assumption.

Like conventional computers, before the CC can actually begin operational

computing, it must first be initialized with the problem set to be solved. In conven-

tional computers, this initialization includes the loading of the program to be exe-

cuted as well as the specific data. set for the current problem. Analogous functions
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are required within the ee, although the "program" construct is markedly different.

In conventional computers, the program defines the sequence of instructions that the

computer executes. In the case of the ee, the "program" is composed of memory

images of all of the data structures, the connections and weights, for each PN in the

system..

Specifically, the ee program is segmented between data structures internal to

the PN and those data structures that are located in each PN's external memory.

The external data structures that require initialization are the Input Data Buffer,

the 2-codons Used Tables and the Weight Tables. Internal PN program initializa-

tion consists of setting the BH level base addresses and setting the Table of Last

OUT values. By initializing the Input Data Buffer and Table of Last OUT Values,

correct generation of new OUT values is possible, even if only a single new input is

received. Furthermore, by setting the BH level base addresses at run-time, there is

greater flexibility in binding ee program portions to PNs that are actually ph'ysi-

cally available. In comparison to fixed BH level base addresses, this run-time binding

supports fault tolerant computing within the ee.

Given these functional requirements, it is useful to consider the mechanics of

the initialization process. The on-board microprocessor directs and controls the ini-

tialization sequence and uses the I/O controller to perform any required low-level

I/O accesses 15, (The I/O controller is also responsible for generating the control sig-

nals required to refresh the DRAM components.) From a high level perspective, the

microprocessor must have access to a "program image" that includes each PN within

16 A likely conftguration or a CC would use a lIo.t computer ror the highest level or control and 110 sequenc-
ing. The role or the host and its speciftc interactions with the CC's logic boards are not covered in this thesis.
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the CC. This program image is stored on a bulk-storage device, such as a disk drive.

As a result, the microprocessor must behave in its conventional role as a file system

manager 16. More specifically, after it first informs the I/O controller which PN is

being initialized, the microprocessor starts the transfer of a portion of the program

image from the disk drive to the I/O controller. The I/O controller is then directly

responsible for passing the data to the appropriate memory structure for the target

PN. Access to the PN's internal registers is accomplished via the PIO mechanisms

defined earlier. To allow efficient access to memory external to the PN, each DRAM

is directly connected to the I/O controller.

Given this initialization mechanism, it is interesting to consider initialization

performance. As derived in Chapter 4, each PN requires initialization of approxi-

mately 2 M-Bits to define all of its memory structures. Assuming the use of a disk

drive with aIM-Byte/second transfer rate, it follows that the complete initializa-

tion of a single PN will require approximately 250 mS. Using this result and assum-

ing just a single I/O path between the disk drive and the I/O controller, initializa-

tion of the 128-PN board proposed in Figure 3 will require 32 seconds. It is likely

that initialization times of this magnitude would be a problem in many applications

but it would be more serious if multiple CC logic boards were to use the same disk

drive. Therefore, system level I/O solutions would be required to lessen the initiali-

zation time.

18Throughout this cbapter, the usumption is made that the application problem has already been translat-
ed to a form that the PN uses during execution. In fact, a compilation process, functionally similar to that used in
conventional computers, would be required to translate the problem from a human speci8cation to the PN usable
form. This compilation process is a major concern in this general research area, but it is not covered here.
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From a software perspective, mechanisms supporting learning capabilities can

be used to minimize initialization requirements as explained below. Other solutions

might include the use of faster bulk-storage devices and multiple bulk storage devices

operating concurrently. Although either the faster disks or multiple parallel disks

would provide benefits, the multiple disk solution is preferable because it is more

extensible. It is also more consistent with the parallel computation paradigm of the

CC. Incidentally, this sort of parallel concurrent access to different disk drives is

similar to the "file striping" function that has recently become available on high-

speed conventional computers. Nevertheless, there is one complication when multi-

pIe disk drives are controlled and accessed by separate processors. This architec-

tural feature would directly imply the need for a distributed file system of some kind.

This portion of the I/O design will require significant future effort as potential design

problems in this area are numerous and nontrivial.

After initialization is complete, the CC begins execution by setting the

START signal of each PN in the system. Preceding chapters describe in detail how

the PN operates during this phase, but the roles of the microprocessor and I/O con-

.."
troller need to be considered. The function of the I/O controller is intuitively obvi-

-II' ous as it simply routes any non-local communications to and from other portions of

the system. The methods that the I/O controller uses to accommodate these com-

munications are not covered in this thesis. Significant analysis of many communica-

tion related parameters will have to be performed before substantial progress can bE'

expected in this area.
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The role of the microprocessor during operational computing is obvious. It is

responsible for determining when the application has completed. It then halts the

PNs and extracts the "answer" from appropriate PN data structures. The micropro-

cessor may use several criteria to determine completion. One could be monitoring

traffic frequency on selected BH networks. When the frequency drops below some

threshold for a specified amount of time, then it could infer that the application has

"settled" to a solution. Similarly it could monitor the message contents on a selected

BH network to look for a token that could be used to signal completion. Finally, it

could be signaled by some other logic element in the CC. The general-purpose pro-

grammable capabilities of the microprocessor makes it well suited in this case as

completion conditions will be application specific.

Extracting the answer from the PN is another area where the flexibility and

computational power of the microprocessor is useful during the CC's operational

computing phase. The application "answer" will probably be derived, after the PN

has been stopped, from information contained in the Table of Last OUT Values.

The PIO capabilities of the PN are used to read the OUT values associated with any

given CN. After fetching any required OUT values, the microprocessor executes an

arbitrarily complex algorithm to convert the answer to the desired form. As t.he

algorithmic translation is extremely application specific, this is also an ideal use for

the microprocessor in the CC's computational hierarchy.

,;
The final purpose of this chapter is to show how the CC architecture supports

learning algorithms and how these capabilities may be used to minimize initializa-

tion requirements. Before describing the actual mechanisms that support CC based
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learning, it is necessary to examine some conceptual details of the generalized prcr

cess that will be employed. As discussed in Chapter 1, significant effort is being

expended to develop automatic learning algorithms for neural network based com-

puter systems and there is a wealth of related literature that is not covered here. In

the purest form, automated learning procedures rely exclusively on trial and error

methods. As with humans, when the CC computes an answer during the learning

process, it must be compared with an expected answer for the given input. In human

learning, discrepancies between expected and actual results are explained and then

the subject repeats the process. In a similar manner, the ee uses some algorithmic

method to selectively modify the connections between, and inputs to, specified eNs.

The specific algorithms used during this phase are still in.the early stages of develop-

ment, so ftexibility has to be retained in this regard 17.

Given this general formulation for ce based learning, the functional require-

ments of the different major components become clear. As with the two earlier

phases of ee operation, the microprocessor plays a key role in the learning process.

Specifically, it is responsible for comparing the actual "answer", as obtained above,

with the known expected answer. The required examination can be performed when

the PN is halted or during PN execution if the PN's HOLD signal is used. In either

case, the microprocessor must then execute an algorithm to determine exactly which

elements of the PN data structures need to be modified and how much they need to

be changed. Depending on the locality of the learning algorithm, with respect to

17There are a significant number or major considerations that must be addressed to support learning algo-
rithms on the CC. Unrortunately, this thesis presents only a broad overview or /low the PN could be used in these
applications. AB a result, dilrerentiation between types or learning algorithms and analysis or their resource re-
quirements is not pOll5ible, though the mechanism proposed here ror learning should cover the important a.rea5.
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microprocessors and related PNs, one or many of the CC's microprocessors could

pa.rticipate in the learning oriented calculations.

Once it has been determined which specific elements of a PN's data structure

>~'!

require modification, the microprocessor would selectively write only those memory

elements. In this way, complete memory initialization overhead is not incurred

.
1.~

between separate trial and error attempts.

The logical mechanism that supports learning uses selective update of PN

,":-JI'" data structures. As was implied earlier, this selected update mechanism could also

be of significant use in minimizing I/O overhead associated with switching between

problem sets. If separate problems that are executed sequentially can be formulated

in such a manner that they share PN data structures, then the microprocessor can

perform partial update of these memory structures. To facilitate this function, it

ma.y be useful to develop a concise logical protocol to specify exact update actions.

The development and use of this type of protocol could prove to be beneficial when

applications problems are similar to each other and a minimization of I/O overhead

is critical.
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7. SUMMARY AND CONCLUSION

The basic goal of this thesis is to define a computer architecture and its sur-

rounding system that is capable of solving certain problems more cost-effectively

than conventional computers can. Target applications for the proposed system are

characterized by the ability to take advantage of massive computational parallelism.

These include artificial intelligence applications such as image recognition and

natural language understanding. To achieve cost-effectiveness, a radically different

computer architecture was proposed. The computational model used by the new

architecture was based on a derivation of a biologically accurate model of neural

systems. The neural model was refined with the intent of reducing the interactions

to a set that could be mimicked using digital computer techniques.

Given the proposed neuron based model, a generalized computer architecture

was defined that derived many properties from its biological counterparts. This por-

tion of the thesis was directly based on prior and ongoing research at aGC and, to

some extent, is just a directed collection of other researchers' work in this area. The

defined computer system is called a Connection Computer and its biological counter-

part is the nervous system including the brain. The Connection Computer is com-

posed of many Connection Nodes which are analogous to individual neurons. Con-

nection nodes use the Broadcast Hierarchy as their fundamental communication

mechanism and this provides facilities that have similar characteristics to biological
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systems. The computational model uses higher-order predicates called 2-codons.

This choice substantially increases the computational power and circuit complexity

of the proposed system.

After developing and summarizing the specific computational model, a

detailed microarchitecture was proposed that implements the specified functions

using digital computer technology. Designing an efficient microarchitecture required

the definition of the Physical Node as a group of intimately related Connection

Nodes. The microarchitectural definition portion of this thesis represents a

significant contribution to this research area as this is the first effort at detailed

design of this type of computer system. ~ such, this practical viewpoint exposes

complications and weaknesses that are not visible when considered from a more

theoretical perspective and this represents a major contribution of this thesis.

The proposed microarchitecture is admittedly non-optimal in some respects,

as would probably be expected given that this is the first detailed proposal. One

weakness of the proposal is that it may have fixed some architectural parameters in

silicon that are better left as application variables. These might include the number

of BH levels, the size of the different BH levels, DRAM bandwidth and even the

number of CNs per PN. The choice of fixing these variables was deliberate and was

made to put physical bounds on the design, so that accurate silicon resource and per-

formance predictions could be made. It may be desirable in future efforts to consider

leaving these parameters as application variables.

Although the proposed microarchitecture is non-optimal in some respects, it is

superior to any other microarchitecture considered. In fact, several alternatives
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were considered at both the computational architecture level and at the microarchi-

teetural implementation level. Many options were considered that initially seemed

advantageous but after detailed analysis were found to lead to serious implementa-

tion problems. One recent proposal was considered that only computes 2-codons

that are affected by a given input change. Although the proposed method could pr<r

vide higher performance in some load situations, a fully general implementation

(with the capabilities of the PN proposed here) would result in the need for over 90

M-bits of memory per PN. By severely restricting the number of 2-codons that an

input could affect, the required memory capacity could be lowered to a realistic

value. This restriction is contrary to an original supposition of the PN's communica-

tion and computational capabilities. Furthermore, it it not known whether compu-

tationalloads (eventually encountered by the PN) will favor the PN as defined or as

supposed. The moral here is - beware of proposed alternatives until their exact

design and system level effects are detailed.

To establish the viability and value of the proposed microarchitecture, careful

analysis was presented that addressed the technological viability and performance of

the proposed system. It was shown that the PN-based microarchitecture, exactly as

defined, could be designed and fabricated using currently available digital manufac-

turing techniques. This result, in and of itself, is of great value to others in this

research area as it shows that an efficient execution vehicle could be available to

them in the near future. This analysis also provides rough cost/performance esti-

mates of such a vehicle.
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To further their anticipation, performance analysis was presented that shows

the expected performance available from the proposed system. As part of this

analysis, an algebraic expression was derived that yields the response time of the

PN, given specific input stimuli. This algebraic function will be of significant use to

other researchers who are examining and developing applications for t.he ee. More

specifically, it is not known whether the estimated performance of the PN is accept-

able in all target applications or if substantial performance improvements will be

r,equired. If higher performance is necessary, then a reconsideration of some of the

fundamental PN design decisions must be made. Specifically, as the external

memory bandwidth was the limiting factor in the performance estimates, some way
,~-

of minimizing PN external references could be required. In this respect, the choice

that would yield most performance benefit would be to bring all of the memory on-

chip. This decision would radically improve the expected performance and should be

possible as technology improvements a.llow higher levels of logic integration per sili-

con area. If the memory is moved completely into the PN, many facets of the pro-

posed design may require modification as it is currently optimized for relatively slow

memory references. In particular, content-addressable memory could take the place

,r.,
of more memory capacity intensive pointer structures.

The performance and cost/performance ratio of the PN was compared to that

of more conventional computers. Using assumptions that were generous to the con-

ventional computers, the PN was shown to be desirable from both perspectives.

Specifically, its performance was shown to be above that of a significantly more

"I
costly, high performance, DSP-based computer system. The PN's cost performance

~',
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a.dvantage was conservatively estimated to be between a factor of eight and fourteen

over that of conventional solutions.

Fina.lly, some discussion was presented that showed how the proposed system

would actually operate from a high-level system perspective. This information was

presented to show that there are no major holeosin the CC system that would prohi-

bit its effectiveness. This discussion could also act as a tutorial to show how the CC

performs the operations that are expected from more conventional computers.
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