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ABSTRACT

Parallel Solution Of Sparse Linear Systems

Babak Nader M.S.

Oregon Graduate Center, 1987

Supervising Professor: Cleve B. Moler

This paper deals with the problem of solving a svstem of sparse non-
symmetric matrices on a distributed memory multiprocessor computer, the
Inte] iPSC (hypercube). The processors have substantial local memory bu
no global shared memory. They communicate among themselves and with a
bost processor through message passing. The primary interest is to design
an algorithm which exploits parallelism, and which perform elimination and
solution of large sparse matrices. Elimination is performed by LU-
decomposition. The storage scheme is based on linked list data-structure
defined for a given generated matrix. The matrix is distributed by columns
in a "wrapped" fashion so that elimination in the natural order will Le¢
balanced, if the sparsity structure is equally distributed across the columns.
Numerical results from experiments running on the hypercube are included

along with performance analysis.
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CHAPTER 1

INTRODUCTION

This paper explains the implementation of an algorithm for solving
sparse systems of simultaneous linear equations on a distributed memory
parallel computer, the Intel iPSC hypercube. The algorithm is designed so
it can be used with any number of processors and non-symmetric matrices
of any order; subject only to memory limitations. The following chapters
explain the steps that are needed to be taken for implementing the pro-
gram, as well as a detailed description of usage. A performance analysis of

the program is also included.

1.1. Inte] iPSC Concurrent Computer

The Inte} Personal SuperComputer (iPSC) is one of the first commer-
cially available paralle} (or concurrent) computers. The iPSC js a true Mul-
tiple Instruction, Multiple Data (MIMD) machine. All processor nodes are
identical and are connected by bidirectional links in a hypercube topology.
In a 32 node hypercube, each node is directly connected to 5 nearest neigh-
bors. For any hypercube, if d is the dimension of the cube, each processor

will have d nearest neighbors, and the cube will have 2¢ nodes. The aver-

o
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age distance between any two nodes is o and the maximum distance is d.

Although the basic machine ( d=5 ) consists of a single unit of the
specifications just described, the architecture allows expansion to two or
four units (64 or 128 nodes). The communication arrangement allows other
topologies, such as meshes, rings, and trees, to be constructed in software

by the user.

An iPSC system consists of one, two, or four basic computational units
plus an Inte] 288/310 computer, referred to as the cube manager or host.
Each unit consists of 32 jdentical single-board microcomputers or nodes.
There is a total of 16 Mbytes of memory distributed evenly among the 32
nodes. Each node has a2 copy of a small operating system (NX), an Intel
80286 CPU, and an Intel 80287 floating point co-processor. The
80286/80287 combination has a throughput rate of about 30 Kflops, or just

under one Mflop per 32 node unit.

There are eight communication channels per node. The internode
channels are implemented via seven Intel 82586 communication co-processor
per node. In addition, an eighth 82586 implements a global ethernet channel

for communication with the cube manager.

Hypercube interconnections for a 32 node machine are implemented via
backplane connections. Machines consisting of two or four 32 node compu-

tational units (32 nodes) are interconnected via external cables. The



collection of nodes is controlled by a system cube manager, which 1s an
Intel 286/310 computer. This computer uses the same processors as the
nodes, but has 2 Mbytes of memory, 2 40 Mbyte Winchester disk, a floppy

disk drive, 2nd runs the XENIX operating system.

Processes communicate with other processes on the same or neighbor-
ing nodes by sending and receiving messages. Message passing is the only
means available for internode communication and synchronization, since
the iPSC has no shared memory. Message passing can be either blocked or
unblocked. A blocked send delays execution until the message is sent. (Note
that this does not mean that the message has been received). Although the
use of unblocked message passing can decrease execution time, a check
must be made to determine whether or not the message has been sent
before modifying the contents of the message bufler. Another problem with
the {PSC is that some programs can generate messages (blocked or
unblocked) faster than destination nodes can receive them. There is no
way of detecting whether the next message sent will cause the network

hang.

All messages carry a type, which is a2 non-negative integer. Message
types allow receiving nodes to accept only messages of a desired type. The
time required for message passing depends on the number of 1 Kbyte pack-

ets (the basic unit that is sent) that must be formed and on the number of



internode connections that must be traversed. If a message is sent using
the blocked send routine, the process suspends until the message is sent.
Similarly with a blocked receive will suspend a process until a message is
received. With unblocked message passing, the program continues execut-
ing after the send (or receive) and the message is handlea by the operating
system according to its own priorities. In the latter case, a call to status
can determine whether a particular message bufler is available for reuse.
These message passing protocols allow users to construct correctly syn-

chronized parallel applications and to avoid message flow problems.



CHAPTER 2

BACKGROUND

A square matrix A of order n consists of n? elements a; ;. When only a

few elements of a; ; are not zero, the matrix is sparse. Clearly it can, with

appropriate coding, be represented by far fewer than n?

real numbers since
zero elements need not be stored. A matrix for which the majority of the

elements are nonzero is a dense matrix. The word density is used to denote

the proportion of nonzero elements.

Sometimes even though no element of a matrix is zero, the elements
a; ; can be generated by a simple algorithm depending on the arguments ¢j.

2

Such a matrix is a generafed matrix, and its element do not require n° real

numbers of computer storage. If, on the other hand, elements of a matrix

2 real numbers, it is a stored matrix. It does not

are represented as n
matter whether some elements are zero or not since the zero will in any

event be stored[FoM67].

One can easily make a trite definition of sparse matrices by defining
quantitatively the ratio of nonzero to zero entries. However it is much
better to say that a sparse matrix or system is one in which advantage can
be taken of the percentage and/or distribution of zero elements, for exam-

ple, systems with a high percentage of zero elements. There are several



advantages that can be taken of sparse systems. The most evident is infor-

mation storage and retrieval.

The basic problem considered in this paper is the solution of a system
of simultaneous linear equations,
Az=b.
Much of the work on sparse matrices involves symmetric, positive definite
matrices A. However this paper is mainly concerned with general non-

symmetric matrices A.

As Alan George et al/GeL81]. point out, the numerical methods for
solving such systems falls into two genera! classes, tterative and direct. A
typical iterative method involves the initial selection of an approximation
z(1) to the solution z, and the determination of a sequence z(2,z(3) - ..

y

such that lim 7(D=z. Usually the calculation of z+1) involves only A.b.
1{—+ 00

and one or two of the previous jterates. In theory, when we use an iterative
method we must perform an infinite number of arithmetic operations in
order to obtain z, but in practice we stop the iteration when we believe our
current approximation is acceptably close to z. On the other hand, in the
absence of rounding errors, a direct method provides the solution after a

fixed number of arithmetic operations have been performed.

When using the direct methods for solving sparse linear equations it is

important to design the algorithm to preserve as much as possible the



system’s initial sparsity. As lan Dufl[DUF77] explains there are several

direct methods:

1) LU decomposition ( elimination form of inverse)
11) Row Gauss elimination

i11) Product form of the inverse ( Gauss-Jordan)

1v) Compact elimination ( Crout reduction)

() LU decomposition :
The LU decomposition of the system is
A=LU
where U is the upper triangular matrix and L is the lower triangular matrix
of the A matrix. L can be considered as the sparse factors of the normally

dense L~!. The system

followed by back substitution
Ur=y
The k™ column of L is obtained from the first £ columns of A. The
reduced matrix A{*) is shown in Fig.1, where the L part of A has been
reduced to zero ( and factors of L are stored), the first k-1 rows of U have
already been found, and A(*) has been modified by each previous step of
elimination. The remainder of A is then modified in step k according to the

equation.
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and the algorithm proceeds to the next step.

X xx =

Fig.1 Partial LU decomposition

When performing elimination on sparse systems, a primary objective is to
choose the pivot sequence to preserve sparsity, so that the number of arith-
metic operations and the number of nonzero’s added during the elimination
is kept to minimum. But it is also important that the pivoting preserves
numerical stability. Pivoting for sparsity does not necessarily depend on
nuroerical values. An extreme example of the effects of pivoting on sparsity

is given by

XXXXX
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If the pivots are chosen from the diagonal so that the element (1.1) is
chosen Jast, there is no change in sparsity pattern and only {n-1) divides
and (n-1) multiply-adds are required to effect the decomposition and no

additional storage is required. However, should element (1,1) be chosen

3 2
first, then fill-in is total and "T+0(n?) multiply-adds and %—l—O(n)

2

divides are required and n° storage locations are needed. Pivoting for

numerical stability is also important, since in equation

ak)‘

Qi

a;;=a,

J .—al.k ‘

j
division by a small pivot g, will causes excessive magnification of round-off

error.

Most techniques for pivot selection fall into one of two categories. In a
priort methods, the column (or rowsj are first ordered and then, at each
stage of the elimination, the pivot is chosen from within the first column of
the reduced submatrix { matrix A(k)). In local strategies, the pivot is
selected from among all the nonzero’s in the reduced matrix using the

knowledge of its actual updated structure at the stage of the elimination.

A priory ordering strategies are useful when the matrix is held on back-
ing store and can be accessed only a column (row) at a time. They are
however, not nearly as good as local methods at preserving sparsity or

reducing the operation count. Common selection criteria are to order the
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columns in increasing order column count, or to order them in increasing

total number of nonzero entry in the given column.

#1) Row Gauss elimination

In this method of elimination, at the k% stage of row k, A is
transformed to the appropriate parts of L and U by subtracting multiple of
rows 1,2..., k-1 from it in turn. This routine can handle a sparse data
structure but local ordering techniques are not possible. The a prior: order-

ing is possible. Fig.2 illustrates the scheme of Row Gauss elimination.

Fig.2 Row Gauss elimination
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full matrices and is also used for sparse matrices.

This algorithm again
computes L and U from the identity

A=LU

in the order shown in Fig.4. Again the same problem is encountered as in

the row-Gauss elimination. Local ordering is not possible, but priori order-
ing and partial pivoting are.

j,pou[ﬂ-'

Fig.4 The Crout reduction



14
2.1. Other algorithms:

A) According to Dongarra et al. [DGK84] the basic algorithm for Gaus-
sian elimination can be described as follows
Genertc Gaussian elsmination algorithm
for
for

for

altk.akj

Gk

end
end

end.

The indices and loop information are intentionally left blank since there are
six different forms of Gaussian elimination possible depending on the order
the indices 1,7,k are placed in the above algorithm. For example, the form
17k and jitk are variants of Crout reduction algorithm discussed before. The
Crout reduction algorithm can be characterized by the use of inner pro-
ducts to accomplish the decomposition. In appendix B there are four Gaus-
sian elimination algorithms which are column variants of the generic algo-
rithm discussed above. Since Fortran is a column oriented language, the
algorithm performance in a column variant algorithm is better than the

corresponding row variant.
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B) Research has been done at Oak Ridge National laboratory on sys-
tems of positive definite sparse matrices
Az=b
on local-memory and shared memory multiprocessor systems. The basic

algorithm used is parallel sparse Choloski decomposition

A=LLT

where L is the lower triangular factor of matrix A and L7 is the transpose

of L.

Pivoting in a positive definite system is done only fer sparsity. For
numerical stabililty, any diagonal pivots are acceptable. Therefore sym-
metric Gaussian elimination (Cholesky’s method) applied to a symmetric
positive definite matrix does not require interchangings (pivoting) to main-
tain numerical stability. Since PAPT is also symmetric and positive
definite for any permutation matrix P, this means we can chose to reorder
A symmetrically ¢) without regard to numerical stability and i) before the

actual numerical factorization begins.

This has an important practical implication, since the ordering can be
determined before the factorization begins, the locations of fill-in suffered
during the factorization can also be determined. Thus the data structure
used to store L can be constructed before the actual numerical factoriza-

tion, and spaces for fill-in components can be reserved. The computation
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then proceeds with the storage structure remaining static (unaltered).

In the local memory case (hypercube) [GHL86] the ordering that is
most suited is one that utilizes the parallelism, and allows distribution of
the computation across the processors in a way so that there is not an inor-
dinate amount of communicati.on. The formulation use is to store the lower
matrix L is an elimination tree for sparse Cholesky factors[DuR83}{Liu86].
Therefore consider the structure of Cholesky factor L. For each column
7<n,if column ;7 has off-diagonal non-zeros, define by

T|j)=min{: |{;#0,i>7}
that is, YT{7] is the row subscript of the first ofi-diagonal in column ; of L.
If column j has no off-diagonal non-zeros, we set Y[j]=7, (Hence Y|n]=n.)
The elimination tree has n nodes, labeled from 1 to n. For each 3, then
néde T(7] is the parent of the node 7 in the elimination tree, and node j is
one of possibly several different child nodes of the node Y{[j]. In order to
recognize the parallelism identified by the elimination tree, consider the 3
by 3 grid example shown in fig.5a from [GHL86] which can be represented
by triangular matrices in fig.5b from [GHL86], and their elimination tree is
represented in fig.6 from [GHLB86|. The elimination tree on the left is the
best, since it yields less fill-in and low operation count, and leads to better
parallel load balancing. Therefore task of column 1,2,3,4 can start in paral-

lel. Moreover, when 1,2,3,4 complete their execution then column 5,6 can



start execution in paralle]l independently and so on.

X X
X X X
X X X
x X X X X
X x XXX XX
XX X X X X XX i
X X X X X X XXX
XXXXXXXX XXX XX
X XX XX XX XX XXX
Fig Sa T'wo orderings of 2 S by 8 gnd Fig 5b Structure of the Cholesky factors for ¢the orderings of Fig $a
® ®
®
®
©
©. ®
O O, ®
®
@ ® & ©,
O,

Fig. 6 The elimination ©yves rosociated with the matnces in Fig. 5b

In the shared memory case [GHL87] the formulation used to store the
non-zero elements of the matrix is a linked list data-structure. Their for-
mulation maintains a set of non-overlapping linked list, one for each column
of matrix. Since they are non-overlapping, an n-vector link will be enough
to implement them. When the term [link™(7] is used it denotes the m-th
element in the link list structure for column j; for example, the third ele-
ment of column 5 can be denoted by link3[j]|=link|link|link|7]]]. The lists

are assumed to be null-terminated, so that the j-th list is given by:
link(5),link?(5), - - Jlink"[7],...

Where for some r, link"t![7]=0. Also an array nezt(5 k) is defined to be the
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row subscript of the next nonzero in column k of L immediately beneath
Ly- Hence nezt(j k) will depend on both 7 and k. For more illustration see

fig.7.

Elements of Column j

Link[j] Link?|s] Link"{j}  Link™(y]

Fig. 7 ORNL Link list dats-structure for columnns of sparse matrix

Since a shared memory is used, the computiné regime they use adopts
a notion of a pool of tasks whose parallel execution is controlled by a self
scheduling gdiscipline[Jor84]. The tasks are those computations associated
with columns of the coefficient matrix and hence have a well defined order
associated with them. Since eflective static load balancing among the pro-
cessors requires that the distribution of work to be reasonably uniform, the
self scheduling can be regarded as a mechanism for implementing dynamic
load balancing; p processors are initiated to perform 7T tasks where p is
less than or equal 7. When a given processor completes a task, it checks to

see If any unsigned tasks remain, if so it is assigned to the next one. So a
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processor with smaller task will be freed sooner than a processor with larger
task. In this way, processors tend to be kept busy even if the tasks vary in
their computational requirements., For more information and proof about

positive definite systems see references {GeL81||GHLS87].

C) For non-symmetric matrices, a sequential algorithm developed by
Cleve Moler uses a sparse compact method to solve the system of sparse
linear equation

Az=).
The non-zero elements are stored in n linked lists, rather than in a two

dimensional array as in a dense matrix case.

A sparse vector is a linked list of triplets corresponding to the nonzero
elements of a vector. Each triplet contains val, a floating point value; row,
the index of that value; and nezt, a pointer to the next triplet. The last
nonzero of each vector or column of a matrix is followed by an additional
triplet called the "footer”, containing a zero value, a row index equa! to the
largest machine integer, and a pointer to the footer itself. A sparse matrir
is an array of pointers to sparse vectors, one for each of the column in the

matrix A as shown in Fig.8.
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val
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C; o!oroor C olopooy

A, A

Fig. 8 Link list data-structure of sparse matrix
D) The parallel extension of Moler's algorithm uses the LU decomposi-
tion to solve the system of sparse linear equations on a distributed memory
multiprocessor system, the Intel iPSC hypercube. The algorithm uses the
same data structure as in Fig.8 but with the variation that the columns of
the matrix are distributed across p processors. In this scheme column j of/
the matrix is generated and stored on the processor with identification

number {7—1) mod p, as shown in Fig.8. The remainder of this paper will

describe this algorithm in greater detail.
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COLUMN 7 IN NODE (5-1) mod p

oo o [ o o [

Fig.9 Distributian of columns of sparse matrix -



CHAPTER 3

USAGE

Three double precision routines {or sparse matrices which are included
in the appendix A, PGSFA, PGSSL, and PGSMUL. The subroutine names
follow the LINPACK [DMB79] naming conventions; PGS stands for parallel
general sparse, FA for Factor and SL for solve. PGSFA is called once to
factor a particular sparse matrix and then PGSSL is called to perform for-

ward and backward substitution. The calling sequence for PGSFA is

CALL PGSFA(A,n,nm,p,cid,id,prat, krow,gkrow pvt,L,U,D)
This computes LU decomposition of a sparse matrix.
The input arguments are:

A integer (n)
pointers to the columns of the sparse matrix
n integer
order of the sparse matrix
nm integer
number of column assigned to node.
p integer
number of processors.
cid  integer
channel id
id integer
identification of node (mynode() returns)
prat double precision
ratio : minimum acceptable / maximum pivot
krow integer (n)
count of the number of nonzero elements in the rows

22
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of the sparse matrix
The output arguments are:

pvt  integer (n)
record of the row exchanges incurred in the LU
decomposition
gkrow integer (n)
global count of the number of nonzero elements in the rows
of the sparse matrix across p processors
L integer (n)
pointers to the columns of the sparse lower triangular
factor (unit diagonal omitted)
U integer (n)
pointers to the columns of the sparse upper triangular
factor (diagonal omitted)
D double precision (n)
diagonal elements of the upper triangular factor
Note that upon return A points at the columns of the upper
triangular factor (diagonal omitted). The triplets of the
original sparse matrix are overwritten by the those of the
upper and Jower triangular factors. Therefore A is same as U
on output from PGSFA

PGSFA is usually called first to factor the sparse matrix. The actual
factorization is done 1n the form of
A=L(D+U)
Which L is the lower triangle of the sparse matrix A, and U is the upper
triangle of the sparse matrix excluding the diagonals which are kept in vec-

tor D.

PGSSL uses the L(D+U) factorization of the matrix A to solve the

linear system of equation



The calling sequence is

CALL PGSSL(cid,L,U,D,n,nm,p,pvt,b,id)

24

which finds the solution of a system of linear equations whose sparse
matrix is in the L(D+U) form provided by subroutine pgsfa.

The input arguments are the output arguments of PGSFA together with the
right hand side b :

L

nm

pvt

integer (n)

pointers to the columns of the lower triangular factor

(unit diagonal omitted), as returned by PGSFA
integer (n)

pointers to the columns of the upper triangular factor

(diagonal omitted), as returned by PGSFA
double pracision (n)

diagonal eiements of the upper triangular factor as
returned by pgsfa

integer

order of the system

integer

number of the column on each node.
integer

number of the processors

integer (n)

record of exchanges returned by PGSFA
double precision (n)

right-hand side of the system

The output arguments are:

b

PGSMUL is called to multiply a vector by a sparse matrix.

double precision (n)
solution of the system

tine is used to compute the right hand side of the equation

Ar=b

This rou-
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The b is then used by PGSSL to solve for z in the above equation using

L,U and D. The calling sequence is

CALL PGSMUL (A,n,m,p,cid,id,x,y,t)

This routine computes'y = A¥*x.

The input arguments are:

A

n

integer

distributed over p nodes
integer

order of sparse matrix

integer

number of column assign to node
integer

number of processors

integer

channel identification

integer

node id (returned by mynode())
double precision

held on node 0

double precision

dummy array for work

The cutput arguments are:

Y

double precision
result on node 0

double precision
destroyed

There are two routines used for generation of a sparse matrix, INIT, and

INSERT. INIT is called to initialize a vector. The calling sequence is



CALL INIT(v)
This creates a new sparse vector which is initially empty (consisting of a footer).
The input arguments are:

v integer
' pointer to the first triplet of the new sparse vector

INSERT is called to insert new element in a sparse vector. The calling

sequence is

CALL INSERT(p,2lfa,i)
Inserts a new component in a sparse vector
The input arguments are:
9] integer

pointer to the successor of the triplet to be inserted
alfa  double precision

value of the component to be inserted
i integer
index of the component to be inserted

3.1. Other routines called

There are several routines called by the three routines PGSFA, PGSSL,
PGSMUL, which are included in the appendix A. PIVIDX is the {unction
called by PGSFA for each column of sparse matrix A to find the pivot index

of that sparse vector. The calling sequence for PIVIDX is

CALL PIVIDX(aa,defalt,prat,krow)
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This returns the index of the minimum component of a vector of
integers subject to the corresponding component of a sparse vector
being no less than a fraction of its maximum component {in magnitude).

The input argument are:

aa
defalt

prat

krow

integer

pointer identifying the sparse vector

integer

index to be returned if the sparse vector is empty
double precision

acceptable fraction of the maximum component of the
sparse vector

integer (*)

vector of integers

Also PGSFA calls a routine called SCOLL to perform scaling of each of

the columns of the lower triangular matrix L by the reciprocal of the pivot

index. The calling sequence for SCOLL is

CALL SCOLL(xx,s,krow,cid)

This performs scaling of the sub-diagonal elements of a column of a
sparse matrix in Gaussian elimination to form the corresponding column
of the lower triangular factor, and update the record of nonzero
elements in the rows (krow) by subtracting one from the krow of the
row index of that column (krow(row(x))-1).

The input arguments are:

XX

krow

integer

pointer identifying the first sub-diagonal element of
the column to be scaled

double precision

scaling divisor (pivot of the elimination)

integer (*)

record of the numbers of nonzero elements in the rows
of the matrix

The output arguments are:
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krow updated record of the row counts of nonzero elements

Subroutine SWAP is used whenever it is necessary to interchange two

elements in a sparse vector. The calling sequence for SWAP is

CALL SWAP(xx,kk,mm)
This exchanges the k-th and m-th components of a sparse vector

The input arguments are:

XX integer
pointer to the vector where the exchange takes place
kk integer

index of one of the components to be exchanged
mm integer

index of the other components to be exchanged

It is possible that either index, kk or mm, may refer to a zero com-
ponent, for which there is no triplet in the linked list. The list is always
ordered so that row indices increase as the list is traversed. So if exactly
one of the indices , kk or mm, refers to a zero component, it is necessary to
reorder the list. In this case, a routine called CANDP is used to perform the
cut and paste operation. The routine CANDP moves one triplet to precede

another. The calling sequence for CANDP is

CALL CANDP(p,q,i)
The input arguments are:
p integer

pointer identifying the triplet to be moved
q integer
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pointer identifying the triplet chosen to become the
successor of the moved triplet
i integer
component index to be assigned to the moved triplet
The effect of a call to candp is equivalent to the sequence

call insert{q,val(p),i)
call delete(p)

but without creating a "dead" element.

When both indices refer to nonzero components, it is necessary to
exchange the contents of the triplets. SWAP calls routine SWREAL. The
calling sequence for SWREAL is

CALL SWREAL(alfa,beta)

This swaps two double precision variables
The input arguments are:
alfa  double precision
variable to be exchanged with beta
beta double precision
variable to be exchanged with alfa

The output arguments are:

alfa the value entered as beta
beta the value entered as alfa

There are two routine used for packaging the sparse vector for broad-
casting to the other nodes PACK and DPACK. The PACK routine is used

by PGSFA to pack the sparse scaled vector L and the pivot index of



30

present iteration. Starting from the second element into the packed sparse
vector y, the row index and the value of each triplet in the sparse vector L
is stored in pair sequentially. The first element is saved to store the pivot

index. The sequence of call for PACK is

CALL PACK(cid,y,xx,m,s)

The input arguments are:

XX integer

pointer identifying the sparse vector
m integer

k-th pivot

The ouilput arguments are:
y full vector ( packed sparse vector )
S integer

determined size of packed sparse vector inciuding FOOT,
returns minimum size of 2.

The routine DPACK is used by PGSSL2 for packing the sparse vectors
L,U and is similar to PACK except instead of setting the first element of
the buffer y to the pivot index, it is set to the double precision value of the

new b. The calling sequence is

CALL DPACK(cid,y,xx,m,s)

which fills y with column of pointer xx and the first
element of y with the value of b(k) and the last element
with index and value of FOOT.



31

The input arguments are:

XX integer
pointer identifying the sparse vector
m double precision

computed value of b(k)
The output arguments are:
y full vector { packed sparse vector )
s integer

determined size of packed sparse vector including FOOT,
returns minimum size of 2.

There are three routines used for elimination and multiplication of the
sparse vectors YAXPY, FAXPY and BAXPY. All three of these routine per-
form the operation

y=y+taz
But each routine performs this operation with different set of data-
structures passed as their arguments, see table 1. and Fig.10 for illustra-

tion.

Table 1.

Data-structure of routines
Routine Vector y Vector x
YAXPY sparse packed sparse
FAXPY full sparse
BAXPY full packed sparse
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Fig. 10 Different dats-structures for vector x, and y

The routine YAXPY is called by PGSFA to perform Gaussian elimina-
tion on each sparse vector below the pivot row, yy, by multiplying the
packed sparse vector z contajning the scaled values of lower matrix, L pro-
duced by routine SCOLL to the sparse vector yy, which results in producing

the new vectors of the upper matrix U. Also YAXPY performs insert and
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delete operation if the elimination result in a zero element or a newly
created element for the vector. The calling sequence for YAXPY is

CALL YAXPY(alfa,x,yy krow)

This performs modification of a column of a sparse matrix in the
Gaussian elimination of one variable

The input arguments are:

alfa  double precision
element of the column with same row index as the pivot

X packed sparse vector
containing the value and row indices of lower matrices
vy integer

pointer to the first element of the column of the matrix
below the pivot row

krow integer (*)
record of the numbers of nonzero eieqnents in the rows
of the sparse matrix

The output arguments are:

krow updated record of the number of nontrivial elements in

vy integer
pointer to the new changed element of the column of the

matrix below the pivot row
matrix

On the other band the routine FAXPY is called upon by PGSMUL to
perform multiplication operation of a sparse vector z to a full vector y

using alfa as coefficient of the vector operation. The calling sequence for

FAXPY is

CALL FAXPY(alfa,xx,y)
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Which performs addition of a multiple of a sparse vector to a full
vector

y <-y + alfa * sparse (xx)

The input arguments are:

alfa  double precision
multiplier of the sparse vector

XX integer

pointer identifying the sparse vector
y double precision (*)

full vector

The output arguments are:

y modified full vector

The routine BAXPY is called by routine PGSSL2 the second version of
PGSSL (o perform the vector operation of & packed sparse vector z to a
full vector y. These packed sparse vector are of length of each sparse vec-
tors L or U depending on the operation being performed by PGSSL2 when
called. The calling sequence for BAXPY is

CALL BAXPY(alfa,x,y)

This performs addition of a multiple of a full vector to a packed
sparse vector

y <- y + alfa * packed-sparse(x)

The input arguments are:

alfa  double precision
multiplier of the packed sparse vector

X double precision (*)
packed sparse vector
y double precision (*)

full vector



The output arguments are:

y modified full vector

3.2. Sequence of call

Since the input/output operations are performed by the cube manager,
the input parameters p,n,dens,prat,seed corresponding to number of pro-
cessors used, the order of matrix, the off-diagonal density, the maximum
allowable pivot ratio, and the initial seed for the random number generator
are collected into a buffer by the host program and sent to nodes by the
message passing routine sendmsg and result received from the node program
by the routine recvmsg. Once the bufler is received by the root node of the

spanning tree a copy of the buffer is sent to the other nodes for execution.

The node program in appendix A describes the sequence of calls used
in the main rode program, which is executed on each node. First the
matrix of order n is generated and then factored to the form of

A=L(D+U)
and then solved by forward substitution and backward substitution.

Also the main node program when generating the sparse matrix A calls

a routine called FSUM to compute the sum of absolute value of the sparse

matrix A for residual calculation. The calling sequence for FSUM is

CALL FSUM (xx)
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This sum up the absolute values of a sparse vector
t =t + abs( sparse (xx))

The input argument is ;
XX integer
pointer identifying the sparse vector

The output is :

fsum Sum of absolute values of sparse vector

3.3. Broadcast routines

The communication between nodes is done with broadcast routines,
GSENDW, GRECVW and global operation such as addition, multiplication
is performed by using the GOP routine. In 2 technical report by Intel a

detailed information about the above communication utilities is given

[MoS8s).

3.4. Basic Linear Algebra Subroutines

There are two Basic Linear Algebra Subroutine used, DASUM, and
DCOPY for double precision addition of full vector elements and copying
elements of a vector to another vector. For detailed information about the

above routines see reference[DMB79]{Mol886).



CHAPTER 4

Programming detail

4.1. PGSFA

In the routine PGSFA the principal loop involves k, the index of the
pivot row and column. The subroutine pividx is used to find L, the row
index of the minimum component of a vector of integers subject to the
corresponding component of a sparse vector being not less than a fraction
of its maximum component in magnitude, below the diagonal in the k'
column. Pividx uses the global row count gkrow of the row counts krow
across the p processors which is collected by a global operation across the
spanping tree to find the pivot index. Once the pivot index is found, if the
pivot index is not equal to the value of the k% step of the iteration the
value of the triplet contained at the k' row index is swapped by the value
of the row index of the pivot index. And if there is no triplet at either
indices a triplet is created and deleted in accordance to the index( the rou-
tine swap). Since the value of the pivot index is changed, all the other ele-
ments of that row which are across the node in different columns should be
swapped as well so that the pivoting is complete. Finally the krow count

should be swapped as well so it will contain the correct row count. At the

37
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R™ node the value of the pivot index is stored in a full vector D, and the
rest of the sparse vector L is scaled by the value stored at that index of D
the routine scoll). Since the rest of the nodes containing the rest of the
column at this time are waiting for this information to perform elimination

on there column to produce the upper triangular sparse matrix U, the

1 .
scaled lower sparse vector —= is packed in a bufler array BUF and broad-
A

casted across to the rest of the nodes. The rest of the nodes including the
R™ node (root node) then perform the elimination in accordance to the

equation

Qs
J
a;;= S

JT 8T8y

Cik

Which the result is the upper triangular matrix U. The routine used for per-
forming the vector multiplication of the above equation and transformation
of the vector of matrix A i1s YAXPY. Once all the iterations of index k is

done the LU-decomposition is complete and the sparse vector of A is decom-

posed into two other sparse vectors L and U and full vectorD.

4.2. PGSSL

For solving the system of linear equation there are two routines imple-
mented since neither of the routines utilize the parallelism of the system,

evaluation of performance difference is left for further research, and imple-
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mentation of a parallel solve routine is left for further research as well.

4.2.1. PGSSL1 ( first version of solve)

The routine PGSSLI uses the two sparse vectors L , U and a full vec-
tor D to perform forward substitution and backward substitution. Before
any substitution applied to b vector the row index of b is checked against
the pivot index which is stored in an array pvl by PGSFA and if they are
not equal the row of index of b at present iteration is swapped with the
index of the pivot column. Then forward substitution is first applied to the
first column or columns of ilie matrix which resides at node one, in accor-

dance to the equation

Ly=b.

Then the new value of b after application is sent to the successor node
which is at the stage of receive wait for a message from the predecessor
node. When the message received by the successor the same transformation

is applied to the column it is assigned to and send b to its successor.

Once forward substitution is perform all through nodes with their
columns then backward substitution is applied, but first the & is scaled by
the pivot value which is stored in the diagonal since the transformation of

A was to LDU rather than to
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Then the backward substitution is applied in accordance to equation

Uz=y

Which y contains the vector with the estimated solution of the system.

4.2.2. PGSSL2( second version of solve)

The routine PGSSL2 performs the same operation of substitutions as
the PGSSL1 with a difference that each node waits to receive the packed
vector of the sparse vector L through the iterations of £ and then applies
the transformation to the its copy of the vector b. At the end of k% itera-
tion all the copies of b have gone through same double transformation (for-

ward and backward) and contain same values.

4.3. PGSMUL

The routine PGSMUL perform multiplication of a sparse vector to a
full vector. Since the vector z is initially stored at node zero therefore a
copy of it is sent to all nodes. Then faxpy (sparse daxpy) operation is
applied to the vector y with coefficient z. Since sparse vectors of A are
spread across p nodes, then each of the row values of the y vector are
spread across the p processes. Therefore global operation is applied and a
copy of the value of all indices of the vector y is sent 1o the node 0 which is

the root node in spanning tree.
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4. PIVIDX

The routine PIVIDX is called by PGSFA with each column of sparse
matrix A. Each sparse vector is traversed through using FOOT as the indi-
cator of end of vector, and the largest value (val) plus the row index of that
value {(row) are stored in a temporary variables ¢ and m. If. the vector is
empty & default index which is the index of the £ pivot is returned as the
pivot index. On the other hand if the pivot ratio prat is 1.0d0 then the
index of the largest value in that vector is returned as the pivot index.
Otherwise we check to find the index of the triplet with the largest com-

ponent value and the most row count krow.

4.5. SCOLL

The routine SCOLL is called by PGSFA with each column of triangular
sparse matrix L. Each sparse vector is scaled (divided) by the pivot value.
The row counts krow of each row is decremented since a subset of the

matrix is now left for further elimination.

4.8. SWAP

The routine SWAP is called by PGSFA if the pivot index returned by
the PIVIDX is not the index of the k' iteration. It is called with a pointer
to the first element of the sparse vector and the index of pivot and it

jteration index. First row index of triplet bigger than or equal the
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minimum of indexes is found and then the index of the triplet bigger or
equal than the maximum of the indexes is found. Once the two index are
found there are four cases to consider, i) both components are zero which
nothing is done, ii) one of the components of the indexes is zero which
candp (cut and paste) routine is used for exchange, iii) both components are
non-trivial which swreal(swap real value) is used to just swap the value in

the triplets.

4.7. CANDP

The routine CANDP moves one triplet to proceed another. When
called index pointsr of the two triplets and an index that is to be assigned
to the triplet that is being moved to are passed as arguments. The cut and
paste operation is performed with out deleting a triplet, rather it performs
the exchange by first saving the contents of the triplet in a temporary vari-

able and then uses the freed triplet to insert the other triplet values into it.

4.8. SWREAL

The routine SWREAL swap to double precision variables. When called
the two variable to be swapped are passed as argument and the value are

swapped and returned with new values in them.
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4.9. YAXPY

The routine YAXPY performs the Gaussian elimination of one column

of a sparse matrix A according to the equation

Q.
— It B
=y =0q =k 41, n

a.l'j

Qpy

.y . J . . . .

The above equation’s coefficient —= is passed to the routine in a variable
Gk

alfo and the values ¢; and their row indexes are passed on to the routine in
a packed sparse matrix z. Also a pointer to the sparse vector yy containing
the elements of sparse vector that contain the elements of g, is passed as
well. Therefore inorder to apply the above equation we must first traverse
the sparse vector against the each of the row indexes in the packed sparse
matrix z until we reach to the triplet with index less than the index in z. If
row index of triplet is less than the row index in z we that means a fill in
operation must be performed containing the multiple of the alfa and the
value stored in z. If the components contain coincident indices then the

multipie of alfe and value are subtracted from the coincident triplet value

val.

val(y)=val(y)+alfa*z(k)

The row index of y is equal to the row index stored at z(k-1) of the packed

sparse vector z.
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4.10. FAXPY

4.11.

4.12.

The routine FAXPY does vector operation by performing addition of a
multiple of a sparse vector to a full vector
v:=y+alfa*sparse(z)
Where in the routine, y is the full vector and alfa the multiplier and z is
index of a pointer to the sparse matrix z. Therefore the sparse vector is
traversed unti) the end of the list and the above vector operation is applied

to the coincident indices of z and v.

BAXPY

The routine BAXPY does vector operation by performing addition of a
multiple of a packed sparse vector to a full vector
y:=y+alfa*z
Where in the routine, y is the full vector and alfa the multiplier and z is
values stored in the sparse full vector z, which contain row index of packed
sparse vector as well as the value. Therefore the sparse full vector is
traversed using the row indexes stored until the end of the vector. Then

the above vector operation is applied to the coincident indices of z and y.

FSUM

The routine FSUM is called by the main node program to calculate the

sum of the absolute values of the sparse matrix A, by traversing each vec-
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tor of the matrix and summing up the absolute values of val in the triplets
of the vectors. The routine is called m times by each node, which is the
total number of columns assign to that node. Then by global operation the
value of a)l the sums are collected from all the participating nodes in the

spanning tree.



CHAPTER 5

Performance Analysis

Numerical experiments were performed on the Intel iPSC hypercube of
dimension d=>5 with local memory and message passing routines for broad-

casting and communication.

The parallel algorithm described in this paper is in Fortran and com-
piled by Ryan-McFarland compiler. The program has been tested on p pro-
cessors, where 1<p<32. The test problems used for these experiments are
random sparse matrices of different density values. All the diagonal ele-
ments are nonzero and a fraction of off-diagonal elements are nonzero, the
fraction is the Iexperimental parameter dens. The locations of the off-
diagonal elements are determined randomly. The data structure of the pro-
gram coumsist of triplets row,nezi,val. So each nonzero element of the
matrix is stored on a triplet which requires a total of twelve bytes of
memory ( 2 bytes each for row,next and 8 bytes for the double precision
value val). The figure on the following page is an example of a sparse

matrix with off-diagonal density of 0.005 (one-half of a percent).

406
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A random sparse matrix
n = 32, dens = .005
Our experiments may vary any of the five input parameters
p,n,dens,prat,seed corresponding to the number of processors used, the
order of matrix, the off-diagonal density, maximum allowable pivot ratio,
and the initial seed for the random number generator. In the experiments

reported here only the first three parameters are varied and their effects are
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noted. The other parameters are fixed at prat=.125 and seed =2.

The first experiment concerns sparse matrices and not parallel process-
ing. It shows the effects of matrix order and density on execution time for a
fixed number of processors. The number of processors was held at 32, n
>was varied from 100 to 1000 and dens was varied from .001 to .010. The
results are shown in Figures 11 and 12. Figure 11 shows that, for fixed
order, the execution time is roughly a linear function of density. Also the
number of nonzero elements is a linear function of density, since as the den-
sity increases so does nonzero's. The circle points on the figure represent
different values of density for fixed matrix order(n=1000). It is obvious
from the figure that execution time is also dependent on number of
nonzero’s, since the slope of the line is much higher for larger order of
matrices. This is because a change in density has greater eﬁeclts on Jarger
order of matrices. Figure 12 shows that, for fixed density, the execution
time as a function of matrix order increases faster than linearly. A sparse
matrix of density value of one (dens = 1) is 2 full matrix with no zero off-

diagonal. For a full matrix the elimination requires n®

operations. There-
fore matrix order as a function of execution time for a full matrix would be
proportional to n3. On the other hand a diagonal matrix is a matrix with

no off-diagonal elements which can be represented by a sparse matrix of

density value 2ero (dens=0). For a diagonal matrix elimination requires n
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operation. Therefore matrix order as function of execution time for a diag-
onal! matrix is proportional to n. In Figure 12 curves for different values of

the density lies between a full matrix and a diagonal matrix curves men-

tioned above.

The overall effects of order and density and time appear to be difficult
to model analytically. One possible component of such 2 model is shown in
figure 13. Our experiments counted the number of nonzero elements
present in the final LU data structure and the number of floating point
operations -~ additions, multiplications and divisions -- used during factori-
zation. Figure 13 shows that the relation between these two quantities is
nearly independent of density and can be fairly well modeled by the equa-
tion

ops=K-(nz)"
where nz is number of nonzeros in the final LU. A logarithmic least squares

fit found K = 0.0895 and a = 1.64. Of course, the fit is best suited for

large values of nz and ops because that is were the most operations occur.

e . 2 .
For a full matrix elimination requires E‘na operations. If represented as a

15

function of nonzero elements it requires nz' > number of operations.

The second experiment measures parallel speedups. The density was

kept fixed at .005. The dimension of the hypercube was varied from 0 to 5,

so the number of processors varied from 1 to 32 in powers of 2. For a given
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number of processors, memory size limits the maximum order that can be
handled. These limits are seen in figure 14 which shows the values of
matrix order n that were used for various p . It can be seen that matrices
of orders up to 400 and ofl-diagonal sparsity of 0.005 (one-half of a percent)
can be stored on one processor. With 32 processors, orders up to 1000 can

be stored.

Figure 15 shows the aggregate megafiop rate (millions of floating point
operations per second for the total multiprocessor system) measured during
the LU factorization of these matrices. It can be seen for a fixed problem
size, the aggregate megaflop rate increases with the number of processors,
thereby showing parallel speedup. The obvious question, “Is the speedup
linear?", is hard to answer. Problems which are small enough to run on one
processor are inefficient on 32 processors and so do not show good speedup.
The curves at the bottom of the figure demonstrates the deterioration as
more processors are used. On the other hand, problems which are large
enough to efficiently utilize many processors will not fit on one processor.
This is demonstrated by the curves associated with the larger order of
matrices. The straight line in the figure is an attempt to provide a speedup
guide. It is a constant, tau, times the number of processors. In Moler's
experiments with dense matrices [Mol86) tau is the maximum megaflop rate

for the inner loop, DAXPY, and has the value .030. The corresponding
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quantity for our sparse matrix experiments would be the megaflop rate for
YAXPY, but this depends upon density and resulting fill-in. So we have

somewhat arbitrarily set tau = .006.
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CHAPTER 8

CONCLUSIONS

This thesis has developed an algorithm for sparse LU-decomposition
and solutions that are sﬁitab]e for multiprocessor system with Jocal
memory. The data structure of the algorithm consist of triplets
row,nezt,val. Each nonzero element of the matrix is stored on a triplet
which requires total of twelve bytes of memory (2 bytes each for row,nezt
and 8 bytes for the double precision value wal). An efficient load balancing
was achieved Ly distributing the columns of the matrix across the nodes

using the wrap fashion so elimination in the natural order will be balanced.

Numerical experiments performed on an iPSC d=5 system have been
presented which demonstrate the behavior of the algorithm. The result
indicate that for matrices of large order the speedup is much better than
for smaller order of matrices. Also when using random sparse matrices it is
difficult to be precise about speed because several variables must be con-

sidered such as density and maximum allowable pivot ratio.

Moreover, matrices with random sparsity pattern are probably not
representative of problems encountered in practice. For example in civil
engineering connectivity of structures and circuits leads into non-random

sparsity. However {or specific use of the algorithm it is advised that more

57
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extensive performance analysis be carried out before using on real problems.
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APPENDIX A

HOST PROGRAM

include 'sparse.h’

integer i, ), cubedim, dim, pmax, n, p, maxa, method

integer pid, nid, cid, copen, type, cnt, Jdble, Imesg

integer ktol, NZERO

double precision dens,eps,t,prat, mesg(5), secs, pfloat

double precision en, res, mflps, mesg2(5)

doubdle precision x(NMAX), xx(NMAX), b(NMAX), D{(NMAX)
character®10 OK

data \dble/8/ , Imesg/40/

[
open (unit=10,slatus="unknown' file »rzsult’)
dim = cubedim()
pmax = 2**dim
eps = 0.5d0"°52
[
110 print *

print * 'Enter numbcrl of processors, order of matrix : '
read (*,*,end=99,err=98) p, n
if (p .gt. pmax)go to 98
plloat = p
maxn = dsqri(pfBoat*MAXMEM + (1.6*pfloat)**2) - (1.5* poat)
if (n Je. 0 .or. o .gl. maxn) then
D = maxn
write(®,'("" o reset to ",i5)) n
endif
print '(2(i4,2x))', p, n
if (p.eq.0)gotoB9
print ® 'Of-disgons] denzity: °
read (*,%,end=00,err=08) dens
¢ (the density sapplies to the of-diagons) elements. the diagonal is
¢ slways full)
if (dene.1t.0d0 .or. dens.gt.1.0d0) then

priol *, Density mustl be less than 1 and positive: *



read (®,%,end=~09,ecr=088) dens
endifl
print '( f10.5), dens

prat=0.125d0
print *,’Enter the ratio : minimum acceplable / maximum pivot'
print *,’ (s ponpositive value is replaced by 1/8): "
read *t
if (1.g¢.0d0 .and. t.1e.140) prat=t{
print '(19.6)",prat
print *
print * ' Mzthod of Solve (1,2):°
reed (*,*,end=09,err=08) method
if ( method .1t. 1 .or. method .gt. 2) then
print *,' Method must be (1 or 2 )so default 1 taken:®
method = }
endifl
print '(*’ Method using for Solve is: *',14)’, method
print ®
write(*,9)
9 format(3x,Task’,7x,'p’,4x,'0",6x,’dens", 7x, 'secs’,0x, 'miips’,
> 8x,'residval’, 6%, 'OK?")

Send problem specification to node 0

mesg(1) = p

mesg(2) = n

mesg{3) = dens

mesg(4) = prat

mesg(5) = method

type = 101

pid =0

cid = copen(pid)

call sendmag{cid,type,mesg,mesg,0,pid)
if (p .le. 0) go to 99

Generate matrix
call recvmsg(cid,type,secs)dble,cnt,nid,pid)

write(*,20) p, n, debs, sees
20 format(’ Generate: *,2(14,2x), (18.3,2x), (f12.5,2x))
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Matrix - matrix multiplication.

¢all recvmsg(cid,type,secs ldble.cnt,nid,pid)
mfips = 2.0d0%en**2/secs * 1.4-8
write(*,30) p, D, dens, szcs, mfps

30 formal(* Multiply: *,2(i4,2x), (£8.3,2%), (112 6.2x),(18.3,2x))
LU - faclorization of A

call recvmsg(cid,type,secsldble,cnt,nid,pid}
¢n = n

mBps = 0.868667d0%en®"3/secs * 1.d-6
write(®,40) p, n, dens, secs, mflps

40 format(' Factor :’2(i4,2x), (18.3,2x), (f12.6,2x),(f8.3,2x))

Solve linear system.

¢a}] recymsg(cid,type,secsldble,cnl,nid,pid)
mfips = 2.040%en**2/secs * 1.d4-8
write(®,50) p. n, dens, secs, mfips
50 format(’ Solve : '2(i4,2x), (18.3,2x), (112.6,2x),(f8.3,2x))

Residual — csalclated

if ( n .le.lprint) then
call recvmsg(cid,type,D,NMAX"®1dble,cnt,nid,pid)
call recvmsg(cid,type,b NMAX*Idble,ent,nid,pid)
eall recvmag(cid,type x, NMAX*Idble cnt,nid,pid)
call recvmsg(cid type,xx, NMAX*Idble,cnt,nid,pid)
endif
cell recymsg(cid, type,res,dble,cnt,nid,pid)
iIf (res .It. n®eps) then
OK = 'OK :
elgeif (res .Jt. 1000.0%n%eps) then
OK = Suspicious'
else
OK = 'TROUBLE"!
endifl
secs = 0.040
mflps = 0.0d0
write(®,60} p, n, dens, sees, mAps, res, OK

63



80 format (' Residusal: ',2(i4,2x»}), (18.3,2x), (12.8,2x),
> (18.3,2x),1pd13.3,1%,510)

if (o .e. lprint ) then
write (10,°)
write (10,*) —- SR
write (10,*)
write(10 , *) ' The Diagonal Dis ;'
write (10,*)

¢all ywrite(D,n)

write (10,*)

write(10 , *)* The exect x is :°
write (10,%)

call vwrite(xx,n)

write (10,")

write(10 ,*) ' The computed x is : '
write (10,7}

call vwrite(x,n)

write (10,%)

write(10, *) ' The exact b is:’
write (10,")

¢all vwrite(b,n)

endif

print *

Opceration and storage count

call recymsg(cid,type,mesg2,5*13ble,ent,nid,pid)
kadd ~ mesg2(l)

kmul = mesg2(2)

kdiv = mesg2(3)

memptr = mesg2(4)

NZERO = mesg2(5)

print *,' B-pt sddition, muliiplications, division, and Lotal’
ktol = ksdd + kmul + kdiv

print '(8i18)', kadd, kmul, kdiv, ktot

priot *' Total number of Lriplets stored’

print '(il5)', memptr

priat ** Tots) number of NON 1zero elements’
print '(i15)', NZERO

Print & e '
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go to 110

08 write(®, '(” Something wrong with input, try again”)’)
go to 110
00 stop

end
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NODE PROGRAM

main node program for Parrallel Sparse Computation of Linear

fquations.

melude 'sparse.h’

daracter *50 string

daracter *5 case

wteger A(NMAX)L(NMAX),U(NMAX),pvL{NMAX),krow(NMAX)
mteger ¢id, p, n, m, ent, copen, Lype, pid, method

imteger Imesg, cubedim, dpsize, gkrow(NMAX)

mtegerid, i, §, b, root, bid, mynode, dim, dimeube

mteger click, clock

nteger iy, iygave , R, NZERO, acmemptr

doudble precision D(NMAX),b(NMAX),x(NMAX), xx{NMAX)
double precision acx(NMAX),2(NMAX), res

doudle precision dens, randum, urand, prat, fsum, dasum
double precision secs, t, mesg(5),mesg?2(5)

double precision normx, norras

data Jmesg/40/, hid/-32768/, root /0/, dpsize /8/

Open one channe!

yid =0
dd = ¢open(pid)

Rejewes problem size informzation from host.

iy =0
Ittype = 101

jysgve = iy

NZERO =0

e} greevw (eid, type, mesg, Imesg, cnt, cubedim())

p= mumber of processors

n= order of the matrix

dme = density of the matrix

pat = ratio : minimum acceptable/ minimum pivot.

mrithod = method of Solve

p == mesg(l)

a =e meeg(2)
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deps = mesg(3)

prat = mesg(4)
method = mesg(5)
if (p .z. 0) go to 200

¢
dim = dimcube(p)
id = myanode()
it (id .ge. 2**dim) go Lo 10
c

¢ m = pumber of columns in this process.

c
m=n/p
if (i Jt. MOD(n,p)) m =m + 1
it{id .ge.p)m =0
click = clock()

¢

¢

¢ Initialize the row counts of nonzzro elements
do 120 i=1,n
b(3) = 0.040
D(i) = 0.040
x(3) = 0.0d0
xx(i) = 0.0dD
krow(i)=0
120 continue
¢
c initizlize the flop counts
kadd=0
kmul=0
kdiv=0
c
¢ generation of & "rapdom sparse matrix” with integer coefficients ...
memptr =0
norma = 0.040
h = id + 1
dol140 ) =1, m
call init(A(j),cid)
do 130 i = n,1,-1
if (i q. b .or. urand(iy) .le. dens) then
cal) snsert(A(j),randum(iy),i,cid)
NZERO =~ NZERO + 1
krow(i)=xrow(})+}
endif



<

<

c

130  continue
oporme = dmaxi( norms, fsum(A(j)) )
h=h<+p

140 continue

... s0d a random solution wilth integer components ...

if (id .eq. root ) ther
do150j= 1, n
x(j) = rendum(iy)
150 continue

endif

secs = (clock() - ¢lick)/1000.d0

call gop(cid. type, secs, 1, 'M’, hid, dim, t)

call gop(cid, 2®*type+1, porma, 1, ‘M’ root, dim, t)
if (id .eq. root) call deopy(n, ¥, 1, xx, 1)

Matrix - matrix multiply

elick = clock()

call pgsmul(A, o, m, p, ¢id, id, x, b,z)

secs = (clock() - elick )/1000.40

call gop(cid, type, secs, 1, '"M’, hid, dim, ¢)
call deopy(n, b, 1, x, 1)

LU - factorization of A

click = ¢lock()

call pgefa(A,n,m,p,cid,id,prat,krow,gkrow,pvt, L ,UD)
secs = (clock() - click )/1000.40

call gop(eid, type, secs, 1, *M’, hid, dim, t)

Solve linear system.

if { mevhod .eq. 1) then
click = clock()
call pgssil{eid L, U, D, n, m, p, p¥t, x, id)
secs = (clock() - elick )/1000.40
call gop(cid, type, secs, 1, M, hid, dim, t)
endif
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if ( meLhod .eq. 2) then
elick = ¢jock()
enll pgasl2(cid,L, U, D, B, m, p, pvi, X, id)
secs = (¢clock() - click )/1000.40
call gop(cid, type, secs, 1, 'M', hid, dim, t)
endif

call igop(cid, type+4, memptr, 1, '+, root, dim, 1)
il (id .eq. root) then
scmemplr = memptr

engif

¢ Regeneration of & “random sparse malrix” with integer coefficients ...

c
iy = iysave
memplr = 0
b=3d +1
do170 ) = 1, m
call init{A(j).cid)
do 1601 =n,1,-1
if (i .¢q. b .or. urand(iy) le. dens) then
esll insert(A(j).randum(iy),i,cid)
krow(i)=krow(i)+1
endif

160 continue

h=h<+p
170 conlinue
c
<
c

¢ Residusl - Cheek the relative residual of

e

call gop(eid, 8*type+1, D, n, '+, root, dim, 1)
if (1d .eq. root) then
normx = dasum(p,x,1)
kadd = kadd + 0o
if (o .le. lprint ) then
call sendw(cid, type, D, n*dpsize, hid, pid)
call sendw(cid, type, b, n%dpsize, hid, pid)
¢sl) sendw(cid, type, x, n®dpsize, hid, pid)
ca)l aendw(cid, type, xx, n®dpsize, bid, pid)
endif
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endif
call pgsmul(A, o, m, p, cid, id, x, acx, 2)
if{ id .eq. root) then

res = 0.0d0

do 180 j = 1, n

res = res + dabs(b(j) - nex{j))
100 contipue

res = resf/(normsa * normx)

cal) sendw(cid, type, res, dpsize, hid, pid})
endif

t Send operation counts

¢
call igop(cid, type+1, kadd, 1, ‘+°, root, dim, L)
erll igop(cid, type+2, kmul, 1, '+, reot, dim, 1)
cell igop(cid, type+3, kdiv, 1, '+, root, dim, L)
call igop(cid, type+5, NZERO, 1, *4’, root, dim, t)
if (id .eq. root ) Lhen
mesg2(1) = ksdd
mnesg2(2) = kmul
mesg2(3) = kdiv
mesg2(4) = acmemptr
mesg2(5) = NZERO
call sendw(cid, type, mesg2, S*dpsize, hid, pid)
endif
¢
¢
go to 10
¢

¢ Quitely terminate

200 conlinue

end



PGSMUL

subroutine pgsmul (A,0,m,p,cid,id,x,y,l)
integer n,m,p,cid,id

integer A(n)

double precision x(n),y(n). t(n)

charscter ®100 string

y = A®x

Input..

A distribuled over p noges

x node
Ovtput..
y node 0

x destroyed

integer ij,l root,dimecube,ent,tmul
double precision s

data root/0/, tmul /7001 /

if (id .eq. root) then

call gsendw(cid, tmul, x, 8%p, dimcube(p))
else

call grecvw(cid, tmul, x, 8%n, cnt, dimcube(p))
endif

doB50i=1,n
y{i) = 0.0d0
50 continue
1 = id+1
do51j=1,m
8 = x(1)
esll taxpy (5,A(i),y)
1l = I+p

Bl continue

ead} gop(eid, tmul+1,y, n, '+, root, dimcube(p), t)
end
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PGSFA

subroutine pgsfa(A,n,nm,p,cid,id,prat krow,gkrow.pvt.L,UD)
¢

¢ LU decomposition of a gparse matrix by compact elimination

<

¢onentry

¢

¢ A integer (n)

¢ pointers to Lthe columns of the sparse matrix
c 0 integer

c order of Lhe sparse matrix

¢ prat double precision
¢ ratio : mintmum scceptable / maximum pivot

¢ krow iaoteger {n)

c record of the number of nonzero elements 1n the rows
¢ of the sparse matrix
¢

conreturn

¢ pvt  ipteger (n)

¢ record of the row exchanges incurred in the LU

¢ decomposition

¢ L integer (n)

4 pointers Lo the columns of the sparse lower triangular
¢ factor (uptt diagonzl omitted)

¢ U integer {n)

< pointers to the columns of the sparse upper triangular
¢ factor (diagonal omitled)

¢ D double precision (n)

¢ diagonal elements of the upper triangular factor

¢ Note that upon return A points at the columnps of the upper
¢ trisngular factor (diagonsl omitted). The triplets of the
¢ origina) sparse matrix are overwritten by the those of the

¢ upper and lower triangular factors,

include ‘sparse.h’

parameter{NMAX2 = NMAX + NMAX)
integer A(n),pvt(n),L{n),U(n)xrow(n)
integer gkrow(n), tt(NMAX)

integer n, p, ¢id, id, ent, [, trow, root
double precision D(n),prat,t, BUF(NMAX?2)
integer j,k,b,m, pividx,R, LDBLE, dimcube
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integer nm, nz, dim
character®70 string
character®$ case

dats LDBLE /8/ , trow/8001/, root/0/
dim = dimcube(p)

make sure that prat is valid

prat=dmin1{140, dabs(prat)}

define U
do10k =) nm
U(k) = A(k)

10 continue

b =1
do30 k=101

Process R (for root)

R = MOD(Xk-1,p)
Find global krow values

call icopy(n, krow, 1, gkrow,1)
call igop{cid,trow,gkrow,n,’+",R,dim,tL)

if Process R (for root)
if (R .eq. id) then
choose the k«th pivot

m = pividx(A(h),k,prat,gkrow)
pvt(h) = m
if (m .ne. k) call swap(A(h),k,m)

save the pivot in D and flag the end of the k-th column of U
D(k) = val{A(h))
if (D(k) .eq. 0.0d0) then
write(string.("zero pivot on column : "i2)) k
c8)l syslog(cid string)
endif
row(A(h)) = FOOT
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¢
¢ compute the elimination multipliers
L(h) = next(A{h))
if (D(k) .ne. 0.040) cal} scoll(L(h),D(k),krow,cid)
call pack(cid, BUF L(h),m,nz)
call gsendw(cid, k, BUF, nz*LDBLE, dimcube(p))
hah+1
e
¢ Wait for eliminetion information other than R
¢
tlse
call grecvw(cid, k, BUF, NMAX2*LDBLE, cni, dimcube(p))
m = BUF(1)
endifl
¢

¢ Exchange krows if pivot column is notl k-th

¢
if(m .ze. k) then
f = krow(k)
krow(¥) = krow(m)
krow(m) =
endif
<

¢ apply sll transformations to (k+1)sL column
do20j=h,om
if (m .ne. k) call swap(A(j), k, m)
it { row(A(j)) .eq. k) then
t=-val(A(j))
A{j)= next(A())
call yaxpy(t BUF ,A(j) krow,cid)
endif
20 continue
30 continue
return

end



PGSSL1

subrouvtme pgssii(¢id,L,UD,n,mm,p,pvt,b,id)
c
c Solution ofa system of Jinear equations whose sparse matrix is in

¢ the LU form provided by subroutine pgsfa.

¢

c on entry

c

¢ L itteger (o)

c punters to the columns of the tower Lriangulsar factor
¢ (wit diagonal omitted), as returned by dgsfa

¢ U iateger (n)

c peinters Lo the columns of the upper trizngular factor
¢ (&agonal omitted), as returned by pgsfl

¢ D duble precision (n)

c dngonal elernents of the upper ‘riangular factor as
¢ raurned by dgsfe

¢ n irteger

c order of the system

c mm integer

c nemaber of the ¢loumn on each node.
5 P isteger
¢ nember of Lthe proccessors

¢ pvt ixteger (o)
¢ record of exchanges returped by pgsfa

IS double precision (n)

¢ right-hand side of the system
<
con return

c b double precision (n)

c sdution of the system

in¢lude 'sparse.h’

integer g,mm,L(n),U(n),pvt(n}

integer p, type, pid, pred, suce, BYTES
double yrecision D(n),b(n)

double precision t

integer ¥,m, ¢id, id, h, R

character *80 string

character ®5 case

data type f4/
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pred = MOD(id-14p, p)
suec ~= MOD(id+1+p, p)
BYTES =8" 1
pid == 0

¢

¢ forward .subslitution L*y = b

k=id +1

do1C h =1, mm
if (k .gt. 1 .and. pred .ne. id)

> call recyw(cid, type, b, BYTES, BYTES, pred, pid)
m = pvt(h)
if { mma .ne. X) calt swreal(b(k), b(m))
il { b{Xk) .ne. 0.040) call faxpy(-d(k), L(h), b}
if (k .It. o and. succ .ne. id)

> call send(cid, type, b, BYTES, suce, pid)
k=k +p

10 contiaue

¢

¢ backward substitution U*x =y

do 20 h = mm, 1, -}
X=k-p
if( k .It. o .and. succ .me. id)
> call recvw(cid, type, b, BYTES, BYTES, succ, pid)
if (D(k) .ne. 0.0d40) b(k) = b{x)/D(k)
divekdiv+l
t = b(k)
if (t .ne. 0.0d0) call faxpy(-t,U(h),b)
ir (x gt. 1 .and. pred .ne. id)
> eall send(cid, type. b, BYTES, prad, pid)
20 continue
retarn

end
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<

c Solutiop of & system of linear equations whose sparse matrix is in

c

4

¢

[

PGSSL2

subroutine pgssl2(¢id L, U,D,n,mm,p,pvi,b,id)

the LU form provided by subroutine dgsfs.

on entry

L integer (n)
pointers to the columns of the lower triangular factor
(enit diagonzl omitted), as returned by dgsfa

U integer (n)
pointers Lo the columns of the upper triangular factor
(diagonsa) omitted), as returned by dgsfl

D double precision (n)
diagonzl elements of the upper trizngular factor as
returned by dgsfa

n integer
arder of the systern

mm integer
mumber of the cloumn on each node.

p integer
namber of the proccessors

pvi integer (n)
record of exchanges returned by dgsfa

b double precision (n)
nght-band side of the system

onreturp

b double precision (n)

solution of the system

include 'sparse.h’

parameter ( NMAX2 = NMAX + NMAX )
integer n,mm,L(n),U(n),pvt(n)

integer p, dimcube, dim, cot , type, DPSIZE
integer k,m, ¢id, id, h, R, nz

double precision D(n),b{n), BUF(NMAX2)
double precision t

character *60 string

data type /512/, DPSIZE /8/
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¢

¢ forward substitution L®y = b

dim = dimcube(p)
0z=0
b =13
dol0 k=1,
R = MOD( k-1, p)
it (R .eq. id) then
m = pvi(h)
call pack(cid BUF, L{h), m, nz)
call gsendw(cid, 10%Lype+k , BUF, nz*DPSIZE, dim)
h=h+1
else
czll greevw(cid, 10%type+k, BUF, NMAX?2*DPSIZE, ¢nt. dim)
m = BUF(1}
eagil
if (m .ne. ¥) cell swreal(b{k),b{m}}
if (b(k) .ne. 0.040) call baxpy(-b(i),BUF,b)
10 continue
e

c backward substitution. Utx =y

h = mm
do20k =, 1,-1
R = MOD( k-}, p)
if (R .eq.id) then
it {D(k) .ne. 0.040) b(k) = b{k)/D(k)
kdive=kdiv+1i
call dpack(cid, BUF, U(h), b(k), nz)
eall gsendw(cid, 20°type+k , BUF, nz*DPSIZE, dim)
h=h-1
else
csll grecyw(aid, 20°Lype+k, BUF, NMAX2*DPSIZE, cnt, dim)
b(k) = BUF(1)
endif
if (b(k) .ne. 0.0d0] call baxpy(-db(k),BUF,b)
20 continue
return

end
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BLAS functlons
A.l. FAXPY

subroutine faxpy(s!fs,xx,y)

¢
¢ Addition of B multiple of a sparse vector to s full vector
¢ y <-y + alfa ® sparse (xx)
¢
¢ on entry
¢
¢ alfe double precision
c mulliplier of the sparse vector
¢ XX integer
¢ pointer identi{ying the sparse vector
¢y double precision (*)
¢ full vector
c on return
¢
c Yy modified full vector
¢
double precision alfa,y{1)
integer x,xx ,d
include 'sparse.h’
character*100 string
¢

x=XX
10 if(row(x).eq FOOT) return
y(row(x))=y(row{x))+alla*val(x)
kadd=kadd+)
kmul=kmul+1
x=next(x)
g0 to 10
end
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A.2. BAXPY

¢
subroutine baxpy(aifa,xy)
¢
¢ Addition of a multiple of & full vector to a full veclor
¢ y<-y+alfa®*x
¢
¢ on enlry
¢
¢ alfa double prec¢ision
¢ muitiplier of the sparse veclor
¢ x double pracision (*)
¢ full vector
c y double precision (*)
¢ full vector
¢on return
¢
¢y modified full vector
¢

integer d, X, ix

double precision =lfa,y(1).x(*)
include 'sparse.h’
character®i00 string

k=2
10 ix = x(k+1)
if(ix .eq. FOOT) return
y(ix) = y(ix) + alfa * x(k)
kadd=kadd+1
kmul=kmul+1
Ewk+2
go to 10
end
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A.3. FSUM

double precision function fsum (xx)

c
¢ Sum up the values of a sparse vector
3 £ =t + Bparse (xx)
c
con eptry
¢
¢ o' integer
c pointer identifying the sparse vector
¢ onrelurp
c
¢ fsum sum of the sparse veclor
¢
double precision 1
1Dleger XXX
include "sparse.h’
characzer®]00 string
¢
X o= XX
t=0

10 if{row{x).eq FOCT) then
fsum =t
return
endif

t =t 4 dabs{val(x))
kadd — kadd + 1
x~=pext{x)

go to 10
end



A.4. DCOPY
e
subroutine deopy(n,dx,inex,dy,incy)

copies 8 vector, x, to & vector, y.
uses unrolled loops for increments equal to one.
joek dongerre, linpack, 6/17/77.

B 6 & 6 A

double precision dx(1),dy(1)
inleger ijinex,iney ix,iy,m,mpl,n

if(n)e.0)return
if{inex.eq.1.and.incy.eq.1)goto 20

code for upequal increments or equal increments
not equal to 1

a & 6 a

ix=1
iy = 1
if{inex.1t.0)ix = (-n+1)*inex + 1
ifiney Jt.0)ly = (-n+1)*iney + 1
do10i=~1pn
dy(iy) ~ dx(ix)
X =ix +inex
ly = iy 4 incy
10 contipue
return

code for both increments equal to 1

clean-up loop

0 o N A 6N

20 m = mod(n,7)
if{m .2q.0) go to 40
do30i = }m
dy(i) = dx(i)
30 cootinue
if{n Jt. 7 )return
40 mpl = m + 1
do 50 i = mpl,n,7
dy(i) = dx(i)
dy(i + 1) = dx{i 4 1)
dy(i + 2) = dx(i + 2)
dy(i + 3) «= dx(i + 3)
dy(i + 4) = dx(i + 4)
dy{(i + 5} = dx{i + )
dy(i + 6) = dx(i + 8)
60 continue
relurn

end



A.5. DASUM

c

n O 6 6 a0

double precision function dasum(n,dx.incx)
takes the sum of Lhe absolute values.
jack dongarra, linpack, 6/17/17.
double precision dx(1),dvemp
jnteger iinex,m,mpl,n,nincx
dasum = 0.0d0
dtemp = 0.0d0
if(n.le.0)return
if(inex.eq.1)golo 20
code for increment not equal to }
ninex = p%incx
do 101 = 1,mincx,incx
dtemp = diemp + dabs(dx(i))
10 conlinue
dasum = dtemp
return
code for inerement equal to 1
¢lesn-up loop

20 m = mod(n,8)
if( m .eq. 0 ) go Lo 40
do 30 i = I, m
dternp = dtemp + dabs(dx(i))
30 continue
if{ n.lt. 6 ) go to 60
40 mpl = m + 1
do 50 ) = mpl,n,6
dternp = dtemp + dabs(dx(i)) + dabs{dx(i + 1)} + dads(dx(i + 2))
® + dabs(dx(i + 3)) + dabs(dx(i + 4}) + dabs(dx(i + 5))
50 conlinue
60 dasum = dtemp
return
end



A.8. ICOPY
<
subroutine icopy(n,dx,incx,dy,incy)

c
¢ copies & vector, x, Lo 8 vector, y.
¢ uses unrolled loops for inerements equal to one
¢
integer dx(1),dy(1)
integer i,jnex,iney,ix,iy, m,mpl,n
¢
if(n.1e.O)return
if(inex.eq.l.and.incy.eq.1)goto 20
¢
c code for unequal increments or equal increments
¢ not equal to 1
c
ix =)
iy == 1

if{inex.1L.0)ix = (-n+1)%inex + 1
il(incy )L.0)iy = (-n+1)%incy + 1
do 10i = 1,n
dy(iy) = dx(ix)
IX =X + ipex
iy =iy + incy
1J continue
return

code for both inerements equal to )

clean-up loop

o 6006 0 o0 60

20 m = mod(n,7)
if( m .eq. 0 ) go to 40
40 300 = I,m
dy(i) ~ dx(i)
30 continue
if( o b 7 )return
4AO0mpl =m -+t
do 50 i = mpl,n7
dy(i) = dx(i)
dy(i + 1} = dx(i + 1)
dy(i + 2) = dx(i +
dy(i + 3) = dxi +
dy(i + 4) = dx({i +
dy(i + 8) = dx(i +
dy(i + 6) = dx(i +
B0 continue
return
end

)
)
1)
)
)
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CANDP
subroutine candp(p.q,i)
"Cut and paste” : move one triplet to precede another
on entry

p integer
pointer identifying the triplet to be moved
qQ integer
pointer identifying the triplet chosen to become the
successor of the moved triplel
i integer
component index to be sssigned to Lhe moved tripiet

the effect of & call Lo candp is equivalent to the sequence
csll ipsert{q,val(p).i)
call delete(p)
but without creating s "dead” element.

A 6o 0 G 6 06 N 6 a 06 0O 60 a o0 a a aa

integer p,qi

inelude 'sparse.b’
double precision slfz
integer t

if {next(p) .eq. q) then
row(p) = i
else

<

remember val(p)
alfa == val(p)

0

delete(p). but do not dispose of the (freed) triplet
t = next(p)
val{p) = val(t)
row(p) = row(t)
next{p) = next(t)
<
¢ insert(q,21fz,}), using Lhe free triplet
val{l) = val(q)
row(t) = row(q)
pext{t) = pext(q)
vel(q) = alfa
row(q) =i
next{q) = ¢
endif
end



INIT

subroutine init(v,cid)

¢

¢ Creation of 8 new sparse vector initially empty (consisting of a
¢ footer).

c

c oo entry

[

¢ v integer

c pointer to the first triplet of the new sparse vector

[

integer v, cid
include 'sparseh’
character®*s80 siring

if (memptr .q. MAXMEM) then

wrile(string,'(" OUT OF MEMORY")')
call syslog(cid,string)

STOP

endif

memptr = memptr + 1

¥ == memptr

row(v) = FOOT

val(v) = 0.040

next(v) = v

end
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INSERT

subroutine insert(p,alfa,icid)

Insertion of a new component in a sparse vector

on enlry

p integer

pointer to the suecessor of the triplel to be inserted
alfa  double precision

value of the component Lo be inserted
) integer

index of the component to be inserted

integer p,i, cid
double precision alfa
include 'spatse.h’
character "60 string

if (memptr .eq. MAXMEM) then

write(string,’("’ OUT OF MEMORY")")
call syslog(cid,string)

STOP

endifl

memptr = memptr 4 1

val(memptr) = val(p)

row(memptr) = row(p)

next(memptr) = next(p)

val(p) = alfa

row(p) =i

next(p) = memptr

eng
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PIVIDX

inleger function pividx(as,defalt prat krow)
¢
¢ Index of e he minimum component of 8 vector of integers subject Lo
¢ the corresponding component of a sparse vector being no less than
¢ o fraction of its maximum component (in magnitude).
¢
on catry

¢

<

¢ a8 10teger

¢ pointer identifying the sparse vector

¢ defalt integer

¢ index to be returned if the sparse veclor is empty

¢ prat  double precision

c ncceplable fraclion of the maximum component of the
¢ sparse vector

¢ krow ipteger (*)

c wector of integers
¢
integer a3, defalt, krow(l}
double precision prst
integes 8,m
double precision t
include 'sparse.h’
¢
a = REL
m = defalt
t = 0.0:d0

10 if (row(2) .eq. FOOT) goto 20
if {dabs(val(a)) .gi. t) then
m = row(a)
t == dabs(val(a))
endif
2 = mexi(a)
go to 19
20 if(t.eq 040 .or. prat.eq. 1.40) go to 100
B=as
t=prat®t
30 if (row(a) .eq. FOOT) go to 100

71 {dabs(vsl(a)).ge.t .and. krow(row(a)).It.krow(m)) m=row(a)

a=next{a)
g0 Lo 30
100 pividx = m
end
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SCOLL

sudbroutine scoli{xx,3,krow,cid)
¢
¢ Scaling of the subdiagonal elements of & column of 2 sparse matrix
¢ i2 Gaussiap elimination Lo form the corresponding column of the
¢ Jower triapgular factor, and update the record of noozero elements in
¢ the rows.

¢
¢ on entry
¢
¢ xx integer
< pointer identifying the first sobdiagonal element of
< the column to be scaled
¢ 8 double precision
¢ sceling divisor {pivot of the eliminalion)
¢ krow ipteger (%)
¢ record of the numbers of nonzero elerments in the rows
¢ of the matrix
¢ on refurp
¢
¢ krow updated record of the row counts of nonzero elements
¢
inleger x,xx krow(l), cid
double precision s
include 'sparse.h’
character *60 string
¢
X = xx
10 if (row(x) .q. FOOT) return
val(x) = val{x}/s
krow(row(x)}=krow(row(x)}1
kdivekdiv+l
X = next(x)
go to 10
end
RANDUM & URAND
e
double precision function rendem(iy)
integer iy
¢

¢ Generation of uniformly distributed random #fints in a fixed range
¢ tymmetric about the origin (compiler parameter).
<
double precision r.range,urand
parameter (range = 10.040)
10 r = dnint(range*(2*urand(iy}1))
if (r .eq. 0.0d0) go to 10
randum = r
end

res) function urand(iy)

inleger®*2iy,ia,jc,m2
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real s

data m2/16384/,i2/12866/,ic/68025/,5/3.051758e-5/
iy =iy®ia +ic

if (iy 1t. 0) iy = (iy + m2) + m2

urand = Boat(iy)*s

return

end
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YAXPY

subroutine yaxpy(alfa x,yy krow.cid)

Modification of » column of & sparse matrix in the Gaussian
eliminalion of one variable

on

on

eptry

slfa double precision
tlement of the column wilh same row index as the pivot
x packed spsrse vector
conlsinig the value and row indecies of lower matrices
yy integer
pointer to the first element of the column of the matrix
below the pivot row
krow integer (®)
record of the numbers of ponzero elements in the rows
of the sparse matrix
return

krow updated record of the number of nonLrivial elements in
the rows of the matrix

integer 5, ¢cid

double precision alfa
integer y,yy krow(1), ix
double precision »(*)
include 'sparse.h’
characler*s0 string

Yy =Jyy

check see if alfa is zero

if (alfa .eq. O) return

loop through nonzero elements of x

10

20

k =2
ix = x(k+1)
if (ix .eq. FOOT) return
if (row(y) It. ix) then
y =~ next(y)
go to 20
endif

c insertion of the new elements of y created by x

[

if (row(y) .gt. ix) then
call insert(y, alfa®x(k), ix, cid)
krow{ix)mkrow(ix)+1
kmul=Xmul+1

¢ operation for the components of x and y with coincident indices

else
val(y) m val(y) + alfa®x(k)
kadd=kadd+1
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kmul=kmul+1
¢
c deletion of the components of y annihilated in the process
if (val(y) .eq. 0.0dO)then
krow(row(y))=krow(row(y)}1
cal) delete(y)
endif
endif
=%k +2
go to 10
end



DELETE
subroutine delete(p)
¢
¢ Deletion of one component of & sparse veclor
¢
¢ on entry
¢
[ integer
¢ pointer identifying the triplet to be deleted
¢
inleger ©
inleger t
ynclude 'sparse.h’
¢
t = next(p)
val(p) = vel(t)
row({p) = row(t)
nexi(p) = mext(t)
end
DIMCUBE
integer function dimecube(p)
integer p
¢
¢ Dimension of a hypercube containing at least p nodes
¢ = ceil(log2(p))

dimcube = ifx(1.44%alog({fRoat(p)) + 0.99)
yeturn
end
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PACK functlons
subroutine pack(cid,y,xx,m,s)
Fill Buffer y with cloumnr of pointer xx
on entry

. xXx inLeger

¢ pointer identifying Lhe sparse veclor
¢ m integer

¢ k-th pivot

¢ onreturn

¢

¢y full vector ( packed sparse vector )
c

¢ 8 integer

¢ determined size of packed sparse vector including FOOT,
¢ returns minimum size of 2.

¢

integer s
charscter®100 siring
double precision y(*)
integer x,xx, ¢id , m
include 'sparse.h’

¢
¢ First element is k~th pivot
¢
¢ Places FOOT in first then checks against i,
¢ This routine packs the least FOOT.
¢

X=X

5 =]

y(8) =m

10 y(s+1) = vel(x)

y(s+2) = row(x)

Emg+ 2

if(row(x).eq FOOT) returp

x=next(x)

go Lo 10

end
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subroutine dpack(eid,y,xx,m,s)
Fill Buffer y with cloumn of pointer xx
on entry

xx integer
pointer identifying the sparse vector
m double percision
k-th pivot
oD returp

y full vector ( packed sparse vector )
s inleger

determined size of packed sparse vector including FOOT,
returns minimum size of 2.

0O 0 6 0 N 006 0N 0 0 060060600 6 n

inleger s

character®100 string
double precision y(*), m
inleger x,xx, cid

include 'sparse.h’

[
¢ First element coblains
<
¢ Places FOOT io Brst then checks against it.
c This routine packs the least FOOT.
c

X=X

5w |

y(s) = m

10 y(s+1) = val(x)

y(s+2) = row(x)

g5 4 2

if(row(x)..qFOOT) return

x=next(x)

go to 10

end



Broadc¢ast rouiines

B.1. GOP

Dﬁﬁﬁﬂﬂ0000hﬁh0000ﬂﬂﬂﬂ0(5ﬁﬂﬂﬂﬁﬁﬂﬁﬂoooﬁﬁﬁﬁnoohﬂhoﬂ

SUBROUTINE GOP (Cl, TYPE, X, N, OP, ROOT, DIM, WORK)
INTEGER CI, TYPE, N, ROOT, DIM

CHARACTER®1 OP

DOUBLE PRECISION X(N), WORK(N)

Global vector commutalive operztion using spanning tree.
All participating processes must have the same process id (PID).
Input..

CI channel numbder (previously opened).

TYPE message type. Must be the same for all participaling

processes. There musl be no olher messages of this type
in the system.

X the input vector to be used in the operalion.
N the length of the vector.
oP '+' sum

*®!' product

‘M’ meximum
'm’ minimun

ROOT Node id of root proceas (which will get the Bne) message).
(if oot is megstive, then the smallest node number in the sctive
subcube acts 88 root and then forwards the message to the root,
wbich should be the host, or, in release 3+, 2 subcube.)

DIM the size of the subcube participating.

Output..

X for the root process, X contains the desired result.
for all other processes, X contains the partial result
for their subtrees.

Workspace
WORK used to receive other contributions.

Errors Conditions

If called by a nonparticipating node, an error message is
syslogged and then the subroutine exits.

If & message longer than N elements is received, only the first N
elements are saved, £D error message is syslogged,
and then the computation continuves with the truncaled results.

If a message shorter than N elements is received, then gn error
message is syslogged snd Lhe computalion continues.

Calls: MYNODE, MYPID, RECVW, SENDW, SYSLOG, XOR

INTEGER BIT, BYTES, CNT, DIFF, DPSIZE, I, IGNORE, ME, MYNODE,
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* MYPID, P. PARENT, PID, TROOT, XOR
PARAMETER (DPS!ZE = 8)

ME = MYNODE()
P = 2**DIM

Find temporary root (either the real root, or the lowest
numbered node in Lhe active subcube--found by zeroing the
DIM lowest bits in mynode).

TROOT = MAXO((ME/P)*P, ROOT)

PID = MYPID()

DIFF = XOR(ME TROOT)

IF (DIFF .GE. P) THEN
CALL SYSLOG(MYPID(), GOP: CALLED BY NON PARTICIPANT')
RETURN

ENDIF

Accumulate contributions from children, il any

BIT =1
IF (DIFF EQ.0) DIFF = P
BYTES = DPSIZE*N
10 IF (XOR(BIT DIFF) LT. DIFF) GO TO 30
CALL RECVW(CI,TYPE,WORK BYTES CNT,IGNORE,PID)
IF (CNT .GT. BYTES) CALL SYSLOG(TYPE GOP: LONG MESSAGE')
IF (CNT LT. BYTES) CALL SYSLOG(TYPE,'GOP: SHORT MESSAGE")
DO 201 =1,N
[F (OP .EQ. '+') X(I) = X(I) + WORK(])
IF (OP EQ. '*') X(I) = X(I) * WORK(I)
IF (OP EQ. M’} X(I) = DMAX1(X(1), WORK(I))
IF (OP EQ.'m’) X(I) = DMIN1(X(1),WORK(1))
20 CONTINUE
BIT = 2°BIT
GO TO 10

Pass result back to parenl, if 2oy

30 CONTINUE
IF (ME NE. ROOT) THEN
PARENT = XOR(ME, BIT)
IF (ME EQ. TROOT) PARENT = ROOT
CALL SENDW(CI,TYPE X, BYTES PARENT PID)
ENDIF
RETURN
END

B.2. IGOP

SUBROUTINE IGOP (CI, TYPE, X, N, OP, ROOT, DIM, WORK)
INTEGER CI, TYPE, N, ROOT, DIM

CHARACTER®] OP

INTEGER X(N), WORK(N)
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Global vector commutative operation using spanning tree.

All participating processes must have the same process id (PID)

¢

[4

¢

¢

¢

¢

¢ CI channel number (previously opened).

¢ TYPE message type. Must be the same for all participating
¢ processes. Therc must be po other messages of this type

¢ in the system.

¢ X the input vector to be used in the operalion.

¢ N the Jength of the vector.

¢ OP ‘+' sum

¢ '** producet

¢ 'M' maximum

¢ 'm‘' minimum

¢ ROOT Node id of root process {(which will get the Anal message).
c (if -32768, then the smallest node number in the active

¢ subcube acts as root and then forwards the message to the host)
¢ DIM the size of the subcube participating.

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢

Output..

X for the root process, X contains the desired result.
for al]l other processes, X contains the partis! result
for their subtrees.

Workspace
WORK used Lo Teceive olber conlributions.

Errors Conditions

If called by a nonparticipating node, an error message is
syslogged and then the subroutine exits.

If 2 message longer than N elements is received, only the first N
elements are saved, an error message is syslogged,
and then the computation continaes with the truncaled results.

If & message shorter than N elements is received, then g0 ervor
message is syslogged and the computation continues,

Calls: MYNODE, MYPID, RECVW, SENDW, S§YSLOG, XOR

L S S S e S - S - S S S s T S 3

INTEGER BIT, BYTES, CNT, DIFF, ISIZE, 1, IGNORE, ME, MYNODE,
* MYPID, P, PARENT, PID, TROOT, XOR
PARAMETER (ISIZE - 8)

ME =~ MYNODE()
P = 2°*DIM

Find temporary root (either the real root, or the lowest
numbered node in the active subcube—found by zeroing the
DIM lowest bits in mynode).

Lo T Y, 3

TROOT = MAXO((ME/P)*P, ROOT)



PID = MYPID()

DIFF = XOR({ME,TROOT)

IF (DIFF .GE. P) THEN
CALL SYSLOG(MYPID(), GOP: CALLED BY NON PARTICIPANT")
RETURN

ENDIF

¢ Accumulste contributions from children, if any

BIT = P/2
BYTES = ISIZE“N
§ IF (BIT LE. DIFF) GO TO 20
CALL RECVW(CI, TYPE,WORK,BYTES,CNT,IGNORE PID)
IF (CNT .GT. BYTES) CALL SYSLOG(PID,'GCP: LONG MESSAGE’)
IF (CNT LT. BYTES) CALL SYSLOG(PID,"GOP: SHORT MESSAGE")
DO 101 =1, N
IF (OP EQ. '+") X(I) = X(1) + WORK(])
IF (OP .EQ. ™) X{1) = X(I) * WORK(1}
[F (OP EQ.’M’) X(I) = DMAX1(X(1), WORK(I))
[F (OP EQ. 'm") X(1) = DMIN1{X(1), WORK(]))
10 CONTINUE
BIT = BIT/2
GO TO S
¢
¢ Passresull back to parent
¢
20 CONTINUE
IF (BIT .NE. 0) THEN
PARENT = XOR(ME, BIT)
CALL SENDW(CL,TYPE,X,BYTES,PARENT, PID)
ELSE
IF (ROOT .LT. 0) CALL SENDW(CI,TYPE X BYTES,-32768,PID)
ENDIF
RETURN
END

B.3. GRECVW

SUBROUTINE GRECVW(CI, TYPE, BUF, LEN, CNT, DIM)
INTEGER CI, TYPE, BUF("), LEN, CNT, DIM

Global send participant. Receives message from wnknown source and
sends it on Lo some neighbors.

All participating processes must have Lthe same process id (PID).
Input..

CI channel number (previously opened).

TYPE message Lype. Must be the same for all participaling
processes. There must be no other messages of Lhis type
in the system.

LEN the length of BUF in BYTES.

DIM the dimension of the subcube participating in the send.

c o 8 6 0 O 6 a6 N a o ooa
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Qutput..

BUF thee measage (which may aclually be any type)
CNT the lenglh (i0 BYTES) of Lthe message received.

Error Conditions

If & message longer than LEN bytes is received Lhen only
LEN bytes wrill be stored in BUF and the rest of the
message will be lost. In this case an error message

will be sent Lo syslog but the remnants of the message
will be senl on.

NOTE: only those nodes which wil) participate in the
send can <call GRECVW. Any other node which calls it

will never return.

Calls: MYNODE, MYPID, RECVW, SENDW, SYSLOG, XOR

> A O 6 6O 6 a6 0 6 6 o6 6NN 0 0O 6 0 0 0

INTEGER BIT, I, LENOUT, ME, MYNODE, MYPID, NODE, P, PID,
* PIDIN, XOR

P = 2°*DIN

ME = MYNODE()

PID = MYPD()

CALL RECVW(CI, TYPE, BUF, LEN, CNT, NODE, PIDIN)

LENOUT = ONT

IF (CNT .GT. LEN) THEN
CALL SY'SLOG(PID,'GRECVW: MESSAGE TRUNCATED")
LENOUT = LEN

ENDIF

BIT = 2*°XOR(ME,NODE)
¢ Check to see if received from host.
IF (IABS(N'ODE) .GT. 128} BIT = 1}

DO 101 = 3, DIM
IF (BIT Q. P) RETURN
NODE = XOR(ME,BIT)
CALL SENDW(CI, TYPE, BUF, LENOUT, NODE, PID)
BIT = 2¥BIT
10 CONTINGE
END

B.4. GSENDW

SUBROUTINE GSENDW(C1, TYPE, BUF, LEN, DIM)
INTEGER C1, TYPE, BUF(*), LEN, DIM

T

¢ Global send of dala. Other participanta call grecyw,

[4
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¢ All participating processes must have the same process id {PID).

[

¢ Ioput

¢

¢ CI channe) number (previously opened).

¢ TYPE message type. Must be the same for all participaling
¢ processes. There must be no other messages of Lhis type
¢ in the system.

¢ BUF the message buffer {(which may actually be any type)
¢t LEN the length of Lhe buffer in BYTES

¢ DIM the dimension of Lhe subcube

¢

¢ Callss MYNODE, MYPID. SENDW, XOR

¢

INTEGER BIT, I, ME, NODE, MYNODE, MYPID, PID, XOR

ME = MYNODE()
PID = MYPIDY()
BIT = 1

DO101 =), DIM
NODE = XOR(ME,BIT)
CALL SENDW(CI, TYPE, BUF, LEN, NODE, PID)
BIT = 2*°BIT
10 CONTINUE
RETURN
END
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SWAP

<

eubroutine swap(xx,kk,mm)

¢ Exchange of the k-th and m-th componentis of a sparse vector

¢

¢ on ealry
¢

¢ xx

c

¢ 13

[

¢ mrn
¢

4

<

integer

poinler to the veclor where the exchange tekes place

integer

index of one of the components to be exchanged
integer

index of the olher component to be exchanged

integer x, 00k, m,kk,mm
integer kp,mp
include 'sparse.h’

k~minO{kk,mm)
m=meax0(kk,mm)

¢ And kp 20d mp so that row(kp) >=k &nd row(mp) >= m

<

X = XX

kp = x

10 if (row(kp) .ge. k) go Lo 20

kp = next(kp}
go to 10

20 mp = kp
30 if {row{mp) .ge. m) go Lo 40

mp = next(mp)
go to 30

40 continue

¢ four cases Lo consider
if (row(kp) .gt. X .and. row(mp) .gt. m) then
¢ both components are zero. do nothing

¢

¢ one component is ponzero. ¢ut and paste

c

elseil (row(kp) .eq. k .2nd. row(mp) .gL. m) then
call candp(kp,mp,m)

elseif (row(kp) .gt. k .and. row(mp) .eq. m) then
call candp(mp,kp,k)

else

¢ both components are nontrivizl. swap Lhe values
call swreal(val{kp), val{mp))

endif

end
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SWREAL

subroutine swreal{alfa beta)

Swap two variables
on entry
alla  double precision
veriable to be exchanged with beta
beta double precision
variable to be exchanged with alfa
on return
alfa  the value entered as beta
beta the value entered as alfa
double precision alfg,beta,t
t = alfa
alfa = beta
betg =

end

103



7 N0 6 OH0 06 N 06 A a

XOR function

INTEGER FUNCTION XOR(M N)
INTEGER M,N

exclusive or
Builtia on UNIX 177.

For Iptel FTN288 use:
XOR = M.NEQV.N

For R/M Fortran use:
XOR = IEOR(M,N)

RETURN
END
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APPENDIX B

SUBROMINE KJI (A,LDA,N)

FORM I -SAXPY

REAL 1(LDA,N)
DO 40K = 1, N-1
D 10 I = K+1, N
A(1.K) = -A(I1.X) / A(X.X)
CONTISUE
M 30 J = K-1, N
DO 20 I = K+1 N
A(I,J) = A(1.J) » A(I,X) * A(K,J)

CONTINVE
CONTINUE
CORTIOYE
RE TURS
END

Form K31
SUBRCITINE JXI (A,LDA,N)

FORM XX -CAXPY

REAL L{LDA,N)
DO 403 = 1, N
® 20K =1, J-1
DO 20 I = K-1, N
A(I.J) = A(1.J) « A(I,X) ¢ A(K.J)
CONTINUE
ONTINUE
0 30 I =J+1, N
A(1,J) = ~A(1.J)/A(J,J)
ONTINUE
CONTIIUE
RETURR
END
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Form JKI
SUBROUTINE IJK (A.LDA,N)
c
¢ FORM IJK -DOT
c
REAL A(LDA.N)
DO 501 =1, N
DO 20J =2, 1
A(I,J-1) = -A(1,J) / A(J-1,7-1)
DO 10 I = K-+1, N
A{I.J) = -A{I.J) + A(1.X) * A(K.J)
10 CONTINUE
20 CONTINUE

DO 40 3 = I+1l, N
DO 30 X = 1, I-1
A(I,J) = -A(I.J) + A(1.X) % A(K,J)
30 CONTINUE
40 CONTINUE
40 CONTINUE
RETURN
END

Form IJK

SUBROUTINE JKIPVT (A,LDA,N)

¢ FORM JKI -GAXPY
¢ NWITH PIVOTING

REAL A(LDA.N), T
DO 60 J =1, N
PO 20K =1, J-1
DO 10 I = Ke), N
A(1,J) = A(I.J) « A(I.X) * A(K,T)
10 CONTINUE
20 CONTINUE
<
¢ PIVOT SEARCH

c

i}

ABS (A(J.J))
J

o
i
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DO 3 I =J3+« 1, N
IF (ABS(A(I,J)) .CT. T) THEN
T = ABS(A(I.J))

L =1I
ENDIF
30 CONTINUE
c
c INTERCHANGCE ROWS

c

DO 401 =1, N

T =A(J.T)
A(J.I) = A(L.I)
A(L.I) = T

40 CONTINUE

DO SO I = J+1, N
A(l.J)
50 CONTINUE
60 CONTINUE

~A(I.J3)/A(3.Y)

RETURN
END

Form JKI (with pilvoting)
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