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ABSTRACT

Parallel Solution Of Sparse Linear Systems

Babak 1'\ader M.S.

Oregon Graduate Center, 198i

Supervising Professor: Cleve B. Moler

This paper deals with the problem of solving a system of sparse non-

symmetric matrices on a distributed memory multiprocessor computer, the

Intel iPSe (hypercube). The processors have substantial local memory but

DOglobal shared memory. They communicate among themselves and with a

host processor through message passing. The primary interest is to design

an algorithm which exploits parallelism, and which perform elimination and

solution of large sparse matrices. Elimination is performed by Ll"-

decomposition. The storage scheme is based on linked list data-structurE-

defined for a given generated matrix. The matrix is distributed by columns

in a "wrapped" fashion so that elimination in the natural order will L<'

balanced, if the sparsity structure is equa]]y distributed across the columns.

Numerical results from experiments running on the hypercube are included

along with performance analysis.
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CHAPTER 1

INTRODUCTION

"

This paper explains the implementation of an algorithm for solving

sparse systems of simultaneous linear equations on a distributed memory

parallel computer, the Intel iPSC hypercube. The algorithm is designed so

it can be used with any number of processors and non-symmetric matrices

of any order; subject only to memory limitations. The following chapters

explain the steps that are needed to be taken for implementing the pro-

gram, as well as a detailed description of usage. A performance analysis of

the program is also included.

1.1. Intel iPse Concurrent Computer

The Intel Personal SuperComputer (iPSC) is one of the first commer-

ciaIIy available parallel (or concurrent) computers. The iPSC is a true Mul-

tiple Instruction, Multiple Data (MIMD) machine. All processor nodes are

identical and are connected by bidirectional links in a hypercube topology.

In a 32 node hypercube, each node is directly connected to 5 nearest neigh-

bors. f:or any hypercube, if d is the dimension of the cube, each processor

will have d nearest neighbors, and the cube will have 2d nodes. The aver-

2
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age distance between any two nodes is .!!:..,and the maximum distance is d.2

Although the basic machine ( d =5 ) consists of a single unit of the

specifications just described, the architecture allows expansion to two or

four units (64 or 128 nodes). The communication arrangement allows other

topologies, such as meshes, rings, and trees, to be constructed in software

by the user.

An iPSC system consists of one, two, or four basic computational units

plus an Intel 286/310 computer, referred to as the cube manager or host.

Each unit consists of 32 identical single-board microcomputers or nodes.

There is a total of 16 Mbytes of memory distributed evenly among the 32

nodes. Each node has a copy of a small operating system (NX), an Intel

80286 CPU, and an Intel 80287 floating point co-processor. The

80286/80287 combination has a throughput rate of about 30 Kflops, or just

under one Mflop per 32 node unit.

There are eight communication channels per node. The internode

channels are implemented via seven Intel 82586 communication co-processor

per node. In addition, an eighth 82586 implements a global ethernet channel

for communication with the cube manager.

Hypercube interconnections for a 32 node machine are implemented via

backplane connections. Machines consisting of two or four 32 node compu-

tational units (32 nodes) are interconnected via external cables. The
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collection of nodes is controlled by a system cube manager, which is an

Intel 286/310 comI?uter. This computer uses the same processors as the

nodes, but has 2 Mbytes of memory, a 40 Mbyte Winchester disk, a floppy

disk drive, and runs the XENIX operating system.

Processes communicate with other processes on the same or neighbor-

ing nodes by sending and receiving messages. Message passing is the only

means available for internode communication and synchronization, since

the iPse has no shared memory. Message passing can be either blocked or

unblocked. A blocked send delays execution until the message is sent. (Note

that this does not mean that the message has been received). Although the

use of unblocked message passing can decrease execution time, a check

must be made to determine whether or not the message has been sent

before modifying the contents of the message buffer. Another problem with

the iPse is that some programs can generate messages (blocked or

unblocked) faster than destination nodes can receive them. There is no

way of detecting whether the next message sent will cause the network

hang.

All messages carry a type, which is a non-negative integer. Message

types allow receiving nodes to accept only messages of a desired type. The

time required for message passing depends on the number of 1 Kbyte pack-

ets (the basic unit that is sent) that must be formed and on the number of.
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internode connections that must be traversed. If a message is sent using

the blocked send routine, the process suspends until the message is sent.

Similarly with a blocked receive will suspend a process until a message is

received. With unblocked message passing, the program continues execut-

ing after the send (or receive) and the message is handled by the operating

system according to its own priorities. In the latter case, a call to status

can determine whether a particular message buffer is available for reuse.

These message passing protocols allow users to construct correctly syn-

chronized parallel applications and to avoid message flow problems.



CHAPTER 2

BACKGROUND

A square matrix A of order n consists of n 2 elements aU. When only a

few elements of ai,j are not zero, the matrix is sparse. Clearly it can, with

appropriate coding, be represented by far fewer than n2 real numbers since

zero elements need not be stored. A matrix for which the majority of the

elements are nonzero is a dense matrix. The word density is used to denote

the proportion of nonzero elements.

Sometimes even though no element of a matrix is zero, the elements

ai,j can be generated by a simple algorithm depending on the arguments i,j.

Such a JIlatrix is a generated matrix, and its element do not require n 2 real

numbers of computer storage. If, on the other hand, elements of a matrix

are represented as n2 real numbers, it is a stored matrix. It does not

matter whether some elements are zero or not since the zero will in any

event be stored[FoM67].

One can easily make a trite definition of sparse matrices by defining

quantitatively the ratio of nonzero to zero entries. However it is much

better to say that a sparse matrix or system is one in which advantage can

be taken of the percentage and/or distribution of zero elements, for exam-

pIe, systems with a high percentage of zero elements. There are several

6
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advantages that can be taken of sparse systems. The most evident is infor-

mation storage and retrieval.

The basic problem considered in this paper is the solution of a system

of simultaneous linear equations,

Ax=b.

Much of the work on sparse matrices involves symmetric, positive definite

matrices A. However this paper is mainly concerned with general non-

symmetric matrices A.

.As Alan George et al[GeL81j. point out, the numerical methods for

solving such systems falls into two general classes, iterative and direct. A

typical iterative method involves the initial selection of an approximation

X(l) to the solution x, and the determination of a sequence x(2),x(3), . . .

such that lim x(i)=x. Usually the calculation of x(i+l) involves only A,b,
;-00

and one or two of the previous iterates. In theory, when we use an iterative

method we must perform an infinite number of arithmetic operations in

order to obtain x, but in practice we stop the iteration when we believe our

current approximation is acceptably close to x. On the other hand, in the

a.bsence of rounding errors, a. direct method provides the solution after a

fixed number of arithmetic operations have been performed.

When using the direct methods for solving sparse linear equations it is

important to design the algorithm to preserve as much as possible the
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system's initial sparsity. As Ian Duff[DUF77] explains there are several

direct methods:

i) LV decomposition ( elimination form of inverse)
ii} Row Gauss elimination
iii) Product form of the inverse ( Gauss-Jordan)
iv} Compact elimination ( Crout reduction)

i) L U decomposition:

The LV decomposition of the system is

A=LU

where U is the upper triangular matrix and L is the lower triangular matrix

of the A matrix. L can be considered as the sparse factors of the normally

dense L -1. The system

Ax=b

can be solved by using forward substitution

Ly=b

followed by back substitution

Ux=y

The kth column of L is obtained from the first k columns of A. The

reduced matrix A (k) is shown in Fig.l, where the L part of A has been

reduced to zero ( and factors of L are stored), the first k-l rows of V have

already been found, and A (k) has been modified by each previous step of

elimination. The remainder of A is then modified in step k according to the

equation.



--
9

and the algorithm proceeds to the next step.

Fig.! Partial LV decomposition

When performing elimination on sparse systems, a primary objective is to

choose the pivot sequence to preserve sparsity, so that the number of arith-

metic operations and the number of nonzero's added during. the elimination

is kept to minimum. But it is also important that the pivoting preserves

numerical stability. Pivoting for sparsity does not necessarily depend on

numerical values. An extreme example of the effects of pivoting on sparsity

is given by

XXX XX
XX
X X
X X
X X
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If the pivots are chosen from the diagonal so that the element (1,1) is

chosen last, there is no change in sparsity pattern and only (n-l) divides

and (n-I) multiply-adds are required to effect the decomposition and no

additional storage is required. However, should element (1,1) be chosen

3 2

first, then fill-in is total and E-+O(n2) multiply-adds and ~+O(n)3 2

divides are required and n 2 storage locations are needed. Pivoting for

numerical stability is also important, since in equation

division by a small pivot au will causes excessive magnification of round-off

error.

Most techniques for pivot selection fall into one of two categories. In a

priori methods, the column (or rows) are first ordered and then, at each

stage of the elimination, the pivot is chosen from within the first column of

the reduced submatrix ( matrix A (k)). In local strategies, the pivot is

selected from among all the nonzero's in the reduced matrix using the

knowledge of its actual updated structure at the stage of the elimination.

A priori ordering strategies are useful when the matrix is held on back-

ing store and can be accessed only a column (row) at a time. They are

however, not nearly as good as local methods at preserving sparsity or

reducing the operation count. Common selection criteria are to order the
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columns in increasing order column count, or to order them in increasing

total number of nonzero entry in the given column.

ii) Row Gauss elimination

In this method of elimination, at th~ kth stage of row k, A is

transformed to the appropriate parts of Land U by subtracting multiple of

rows 1,2..., k-l from it in turn. This routine can handle a sparse data

structure but local ordering techniques are not possible. The a priori order-

ing is possible. Fig.2 illustrates the scheme of Row Gauss elimination.

u

A

Fig.2 Row Gauss elimination
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full matrices and is also used for sparse matrices. This algorithm again

computes Land U from the identity

A=LU

in the order shown in Fig.4. Again the same problem is encountered as in

the row-Gauss elimination. Local ordering is not possible, but priori order-

ing and partial pivoting are.

A

Fig.4 The Crout reduction
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2.1. Other algorithms:

A) According to Dongarra et al. [DGK84] the basic algorithm for Gaus-

sian elimination can be described as follows

Generic Gaussian elimination algorithm

for

for

for

end

end

end.

The indices and loop information are intentionally left blank since there are

six different forms of Gaussian elimination possible depending on the order

the indices i,J.,k are placed in the above algorithm. For example, the form

ijk and jik are variants of Crout reduction algorithm discussed before. The

Crout reduction algorithm can be characterized by the use of inner pro-

ducts to accomplish the decomposition. In appendix B there are four Gaus-

sian elimination algorithms which are column variants of the generic algo-

rithm discussed above. Since Fortran is a column oriented language, the

algorithm performance in a column variant algorithm is better than the

corresponding row variant.
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B) Research has been done at Oak Ridge National laboratory on sys-

'ems of positive definite sparse matrices

Ax=b

on local-memory and shared memory multiprocessor systems. The basic

algorithm used is parallel sparse Choloski decomposition

A =LL T

where L is the lower triangular factor of matrix A and L T is the transpose

of L.

Pivoting in a positive definite system is done only for sparsity. For

numerical stability, any diagonal pivots are acceptable. Therefore sym-

metric Gaussian elimination (Cholesky's method) applied to a symmetric

positive definite matrix does not require interchangings (pivoting) to main-

tain numerical stability. Since PApT is also symmetI;"ic and positive

definite for any permutation matrix P, this means we can chose to reorder

A symmetrically i) without regard to numerical stability and ii) before the

actual numerical factorization begins.

This has an important practical implication, since the ordering can be

determined before the factorization begins, the locations of fill-in suffered

during the factorization can also be determined. Thus the data structure

used to store L can be constructed before the actual numerical factoriza-

tion, and spaces for fill-in components can be reserved. The computation
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then proceeds with the storage structure remaining static (unaltered).

In the local memory case (hypercube) [GHL86] the ordering that is

most suited is one that utilizes the parallelism, and allows distribution of

the computation across the processors in a way so that there is not an inor-

dinate amount of communication. The formulation use is to store the lower

matrix L is an elimination tree for sparse Cholesky factors[DuR83][Liu86].

Therefore consider the structure of Cholesky factor L. For each column

j <n, if column j has off-diagonal non-zeros, define by

T[j]=min{ i \lij=FO,i>j}

that is, T[j] is the row subscript of the first off-diagonal in column j of L.

If column j has no off-diagonal non-zeros, we set T[j]-j, (Hence T[n ]=n. )

The elimination tree has n nodes, labeled from 1 to n. For each j, then

node T[j] is the parent of the node j in the elimination tree, and node j is

one of possibly several different child nodes of the node T[j]. In otder to

recognize the parallelism identified by the elimination tree, consider the 3

by 3 grid example shown in fig.5a from [GHL86] which can be represented

by triangular matrices in fig.5b from [GHL86], and their elimination tree is

represented in fig.6 from [GHL86]. The elimination tree on the left is the

best, since it yields less fill-in and low operation count, and leads to better

parallel load balancing. Therefore task of column 1,2,3,4 can start in paral-

leI. Moreover, when 1,2,3,4 complete their execution then column 5,6 can
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start execution in parallel independently and so on.

x
x

x
x

x x
xx x

x x xxx
xxxxxxxx

x xxx xxx

x
xx

xx
xxx x
xxx xx

xxxxx
xxxx
xxxxx

xxxxx

Fil Sa Two orderin.. or a S by S ,rid Fil Sb Structure or tbe Cbole.ky ractO" ror tbe orderiDI' or Fil.Sa

Fi,. II The elimination ~""e' a..oci.ted witb tbe matrice. ia Fi,. lib

In the shared memory case [GHL87] the formulation used to store the

non-zero elements of the matrix is a linked list data-structure. Their for-

mulation maintains a set of non-overlapping linked list, one for each column

of matrix. Since they are non-overlapping, an n-vector link will be enough

to implement them. When the term linkm [j] is used it denotes the m-th

element in the link list structure for column j; for example, the third ele-

ment of column j can be denoted by link3[j]=link[link[link[j]]]. The lists

are assumed to be null-terminated, so that the j-th list is given by:

link [J'],link2[j], . . . ,linP [j],.....

Where for some r, linp+l[i]=O. Also an array next(i,k) is defined to be the
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row subscript of the next nonzero in column k of L immediately beneath

LjI,. Hence next(J,k) will depend on both j and k. For more illustration see

fig.7.

Elements of Column j

D

........-.................. o

Link [j] Link2[j]

Fig. 7 ORNL Link list data-structure for columns of sparse matrix

Since a shared memory is used, the computing regime they use adopts

a notion of a pool of tasks whose parallel execution is controlled by a self

scheduling disCipline(Jor84]. The tasks are those computations associated

with columns of the coefficient matrix and hence have a well defined order

associated with them. Since effective static load balancing among the pro-

cessors requires that the distribution of work to be reasonably uniform, the

self scheduling can be regarded as a mechanism for implementing dynamic

load balancing; p processors are initiated to perform T tasks where p is

less than or equal T. When a given processor completes a task, it checks to

see it any unsigned tasks remain, if so it is assigned to the next one. So a
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processor with smaller task will be freed sooner than a processor with larger

task. In this way, processors tend to be kept busy even if the tasks vary in

their computational requirements. For more information and proof about

positive definite systems see references [GeL81][GHL87]. .

C) For non-symmetric matrices, a sequential algorithm developed by

Cleve Moler uses a sparse compact method to solve the system of sparse

linear equation

Ax=b.

The non-zero elements are stored in n linked lists, rather than in a two

dimensional array as in a dense matrix case.

A sparse vector is a linked list of triplets corresponding to the nonzero

elements of a vector. Each triplet contains val, a floating point value; row,

the index of that value; and next, a pointer to the next triplet. The last

nonzero of each vector or column of a matrix is followed by an additional

triplet called the Itfooter", containing a zero value, a row index equal to the

largest machine integer, and a pointer to the footer itself. A sparse matr£x

is an array of pointers to sparse vectors, one for each of the column in the

matrix A as shown in Fig.8.
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Fig. 8 Link list data-structure or sparse matrix

D) The parallel extension of Moler's algorithm uses the LV decomposi-

tion to solve the system of sparse linear equations on a distributed memory

multiprocessor system, the Intel iPSe hypercube. The algorithm uses the

same data structure as in Fig.8 but with the variation that the columns of

the matrix are distributed across p processors. In this scheme column j of/

the matrix is generated and stored on the processor with identification

number (j-I) mod p, as shown in Fig.9. The remainder of this paper will

describe this algorithm in greater detail.



COLUMN j IN NODE (j-1) mod p

CJ CJ
I I

00000000000

Fig.9 Distribution or columns or sparse matrix
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CHAPTER 3

USAGE

Three double precision routines for sparse matrices which are included

in the appendix A, PGSF A, PGSSL, and PGS1.1UL. The subroutine names

follow the LINP ACK [D1\.1B7g]naming conventions; PGS stands for parallel

general sparse, FA for Factor and SL for solve. PGSF A is called once to

factor a particular sparse matrix and then PGSSL is called to perform for-

ward and backward substitution. The calling sequence for PGSF A is

CALL PGSF A(A,n,nm,p,cid,id,prat,krow,gkrow ,pvt,L,U,D)

This computes LU decomposition of a sparse matrix.

The input arguments are:

A integer (n)
pointers to the columns of the sparse matrix

n integer
order of the sparse matrix

nm integer
number of column assigned to node.

p integer
number of processors.

cid integer
channel id

id integer
identification of node (mynodeO returns)

prat double precision
ratio: minimumacceptable / maximum pivot

krow integer (n)
count of the number of nonzero elements in the rows

22
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of the sparse matrix

The output arguments are:

pvt integer (n)
record of the row exchanges incurred in the LV
decomposition

gkrow integer (n)
global count of the number of nonzero elements in the rows
of the sparse matrix across p processors

L integer (n) .

pointers to the columns of the sparse lower triangular
factor (unit diagonal omitted)

V integer (n)
pointers to the columns of the sparse upper triangular
factor (diagonal omitted)

D double precision (n)
diagonal elements of the upper triangular factor

Note that upon return A points at the columns of the upper
triangular factor (diagonal omitted). The triplets of the
original sparse matrix are overwritten by the those of the

. upper and lower triangular factors. Therefore A is same as V
on output from PGSFA

PGSF A is usually called first to factor the sparse matrix. The actual

factorization is done in the form of

A =L (D+U)

Which L is the lower triangle of the sparse matrix A, and U is the upper

triangle of the sparse matrix excluding the diagonals which are kept in vec-

tor D.

PGSSL uses the L(D+V) factorization of the matrix A to solve the

linear system of equation

Ax=b
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The calling sequence is

CALL PGSSL( cid,L,U,D,n,nm,p,pvt,b,id)

which finds the solution of a system of linear equations whose sparse
matrix is in the L(D+U) form provided by subroutine pgsfa.

The input arguments are the output arguments of PGSF A together with the
right hand side b :

L integer (n)
pointers to the columns of the lower triangular factor
(unit diagonal omitted), as returned by PGSF A

U integer (n)
pointers to the columns of the upper triangular factor
(diagonal omitted), as returned by PGSF A

D double pr~cision (n)
diagonal elements of the upper triangular factor as
returned by pgsfa

n integer
order of the system

nm integer
number of the column on each node.

p integer
number of the processors

pvt integer (n)
record of exchanges returned by PGSF A

b double precision (n)
right-hand side of the system

The output arguments are:

b double precision (n)
solution of the system

PGS~ is called to multiply a vector by a sparse matrix. This rou-

tine is used to compute the right hand side of the equation

Ax=b



The b is then used by PGSSL to solve for x in the above equation using

L ,U and D. The calling sequence is

CALL PGSMUL (A,n,m,p,cid,id,x,y,t)

This routine computes. y = A*x.

The input arguments are:

A integer
distributed over p nodes

n integer
order of sparse matrix

m integer
number of column assign to node

p integer
number of processors

cid integer
channel identification

id integer
node id (returned by mynodeO)

x double precision
held on node 0

t double precision
dummy array for work

The output arguments are:

y double precision
result on node 0

x double precision
destroyed

There are two routines used for generation of a sparse matrix, INIT, and

INSERT. INIT is called to initialize a vector. The calling sequence is
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CALL INIT(v)

This creates a new sparse vector which is initially empty (consisting of a footer).

The input arguments are:

v integer
pointer to the first triplet of the new sparse vector

INSERT is called to insert new element in a sparse vector. The calling

sequence is

CALL INSERT(p,alfa,i)

Inserts a new component in a sparse vector

The input arguments are:

p integer
pointer to the successor of the triplet to be inserted

alfa double precision
value of the component to be inserted

i integer
index of the component to be inserted

3.1. Other routines called

There are several routines called by the three routines PGSF A, PGSSL,

PGSMUL, which are included in the appendix A. PlVIDX is the function

called by PGSF A for each column of sparse matrix A to find the pivot index

of that sparse vector. The calling sequence for PMDX is

CALL PMDX( aa,defalt,prat,krow)
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This returns the index of the minimum component of a vector of
integers subject to the corresponding component of a sparse vector
being no less than a fraction of its maximum component (in magnitude).

The input argument are:

aa integer
pointer identifying the sparse vector

defalt integer
index to be returned if the sparse vector is empty

prat double precision
acceptable fraction of the maximum component of the
sparse vector

krow integer (*)
vector of integers

Also PGSF A calls a routine called SCOLL to perform scaling of each of

the columns of the lower triangular matrix L by the reciprocal of the pivot

index. The calling sequence for SCOLL is

CALL SCOLL(xx,s,krow,cid)

This performs scaling of the sub-diagonal elements of a column of a
sparse matrix in Gaussian elimination to form the corresponding column
of the lower triangular factor, and update the record of nonzero
elements in the rows (krow) by subtracting one from the krow of the
row index of that column (krow(row(x))-l).

The input arguments are:

xx integer
pointer identifying the first sub-diagonal element of
the column to be scaled

s double precision
scaling divisor (pivot of the elimination)

krow integer (*)
record of the numbers of nonzero elements in the rows
of the matrix

The output arguments are:
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krow updated record of the row counts of nonzero elements

Subroutine SWAP is used whenever it is necessary to interchange two

elements in a sparse vector. The calling sequence for SWAP is

CALL SWAP(xx,kk,mm)

This exchanges the k-th and m-th components of a sparse vector

The input arguments are:

xx integer
pointer to the vector where the exchange takes place

kk integer
index of one of the components to be exchanged

mm integer
index of the other components to be exchanged

It is possible that either index, kk or mm, may refer to a zero com-

ponent, for which there is ~o triplet in the linked list. The list is always

ordered so that row indices increase as the list is traversed. So if exactly

one of the indices, kk or mm, refers to a zero component, it is necessary to

reorder the list. In this case, a routine called CANDP is used to perform the

cut and paste operation. The routine CANDP moves one triplet to precede

another. The calling sequence for CANDP is

CALL CANDP(p,q,i)

The input arguments are:

p integer
pointer identifying the triplet to be moved

q integer
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pointer identifying the triplet chosen to become the
successor of the moved triplet
integer
component index to be assigned to the moved triplet

The effect of a call to candp is equivalent to the sequence

call insert( q,val(p ),i)
call delete(p)

but without creating a "dead" element.

When both indices refer to nonzero components, it is necessary to

exchange the contents of the triplets. SWAP calls routine S\\.TREAL. The

calling sequence for SWREAL is

CALL SWREAL(alfa,beta)

This swaps two double precision variables

The input arguments are:

alfa double precision
variable to be exchanged with beta

beta double precision
variable to be exchanged with alfa

The output arguments are:

alfa
beta

the value entered as beta
the value entered as alfa

There are two routine used for packaging the sparse vector for broad-

casting to the other nodes PACK and DPACK. The PACK routine is used

by PGSF A to pack the sparse scaled vector L and the pivot index of
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present iteration. Starting from the second element into the packed sparse

vector y, the row index and the value of each triplet in the sparse vector L

is stored in pair sequentially. The first element is saved to store the pivot

index. The sequence of call for PACK is

CALL PACK(cid,y,xx,m,s)

The input arguments are:

xx integer
pointer identifying the sparse vector
integer
k-th pivot

m

The output arguments are:

y full vector ( packed sparse vector)

s integer
determined size of packed sparse vector including FOOT,
returns minimum size of 2.

The routine DP ACK is used by PGSSL2 for packing the sparse vectors

L, U and is similar to PACK except instead of setting the first element of

the buffer y to the pivot index, it is set to the double precision value of the

new b. The calling sequence is

CALL DPACK(cid,y,xx,m,s)

which fills y with column of pointer xx and the first
element of y with the value of b(k) and the last element
with index and value of FOOT.
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The input arguments are:

xx integer
pointer identifying the sparse vector

m double precision
computed value of b(k)

The output arguments are:

y full vector ( packed sparse vector)

s integer
determined size of packed sparse vector including FOOT,
returns minimum size of 2.

There are three routines used for elimination and multiplication of the

sparse vectors YA"XPY, FAXPY and BAXPY. All three of these routine per-

form the operation

y=y+a.x

But each routine performs this operation with different set of data-

structures passed as their arguments, see table 1. and Fig.10 for i1lustra-

if tion.
~
~

Table 1.
Data-structure or routines

Routine Vector y Vector x
YAXPY sparse packed sparse
FAXPY fuB sparse
BAXPY fuB packed sparse
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FIg. 10 Different data.structures for vector x, and y

The routine YAXPY is called by PGSFA to perform Gaussian elimina-

tion on each sparse vector below the pivot row, yy, by multiplying the

packed sparse vector x containing the scaled values of lower matrix, L pro-

duced by routine SCOLL to the sparse vector yy, which results in producing

the new vectors of the upper matrix U. Also YAXPY performs insert and

Pivot Index
I

row

I :.14val

--
row

1.:.78val
-

row

val 0.0
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delete operation if the elimination result in a zero element or a newly

created element for the vector. The calling sequence for YAXPY is

CALL YAXPY(alfa,x,yy,krow)

This performs modification of a column of a sparse matrix in the
Gaussian elimination of one variable

The input arguments are:

alfa double precision
element of the column with same row index as the pivot

x packed sparse vector
containing the value and row indices of lower matrices

yy integer
pointer to the first element of the column of the matrix
below the pivot row

krow integer (*)
record of the numbers of nonzero elements in the rows

of the sparse matrix

The output arguments are:

krow updated record of the number of nontrivial elements in

yy integer
pointer to the new changed element of the column of the
matrix below the pivot row

matrix

On the other hand the routine FAXPY is called upon by PGSMUL to

perform multiplication operation of a sparse vector x to a full vector y

using alfa as coefficient of the vector operation. The calling sequence for

FAXPY is

CALL FAXPY(alfa,xx,y)



34

,. Which performs addition of a multiple of a sparse vector to a full
vector

y <-y + alfa * sparse (xx)

The input arguments are:

alfa double precision
multiplier of the sparse vector

xx integer
pointer identifying the sparse vector

y double precision (*)
full vector

The output arguments are:

y modified full vector

The routine BAXPY is called by routine PGSSL2 the second version uf

PGSSL to perform the vector operation of a packed sparse vector x to a

full vector y. These packed sparse vector are of length of each sparse vec-

tors L or U depending on the operation being performed by PGSSL2 when

called. The calling sequence for BAXPY is

CALL BAXPY(alfa,x,y)

This performs addition of a multiple of a full vector to a packed
sparse vector

y <- y + alfa * packed-sparse(x)

The input arguments are:

alfa double precision
multiplier of the packed sparse vector

x double precision (*)
packed sparse vector

y double precision (*)
full vector



35

The output arguments are:

y modified full vector

3.2. Sequence of call

Since the input/output operations are performed by the cube manager,

the input parameters p ,n ,dens ,prat ,seed corresponding to number of pro-

cessors used, the order of matrix, the off-diagonal density, the maximum

allowable pivot ratio, and the initial seed for the random number generator

are collected into a buffer by the host program and sent to nodes by the

message passing routine se.n.dmsg and result received from the node program

by the routine recvmsg. Once the buffer is received by the root node of the

spanning tree a copy of the buffer is sent to the other nodes for execution.

The node program in appendix A describes the sequence of calls used

in the main node program, which is executed on each node. First the

matrix of order n is generated and then factored to the form of

A=L(D+U)

and then solved by forward substitution and backward substitution.

Also the main node program when generating the sparse matrix A calls

a routine called FSUM to compute the sum of absolute value of the sparse

matrix A for residual calculation. The calling sequence for FSUM is

CALL FSUM (xx)
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This sum up the absolute values of a sparse vector
t = t + abs( sparse (xx))

The input argument is ;

xx integer
pointer identifying the sparse vector

The output is :

fsum Sum of absolute values of sparse vector

3.3. Broadcast routines

The communication between nodes is done with broadcast routines,

GSENDW, GRECVW and global operation such as addition, multiplication

is performed by using the GOP routine. In a technical report by Intel a

detailed information about the above communication utilities is given

[MoS86].

3.4. Basic Linear Algebra Subroutines

There are two Basic Linear Algebra Subroutine used, DASUM, and

DCOPY for double precision addition of full vector elements and copying

elements of a vector to another vector. For detailed information about the

above routines see reference[DMB79][MoI86].



CHAPTER 4

Programmingdetail

4.1. PGSFA

In the routine PGSF A the principal loop involves k, the index of the

pivot row and column. The subroutine pividx is used to find L, the row

index of the minimum component of a vector of integers subject to the

corresponding component of a sparse vector being not less than a fraction

of its maximum component in magnitude, below the diagonal in the kth

column. Pividx uses the global row count gkrow of the -row counts krow

across the p processors which is collected by a global operation across the

spanning tree to find the pivot index. Once the pivot index is found, if the

pivot index is not equal to the value of the kth step of the iteration the

value of the triplet contained at the kth row index is swapped by the value

of the row index of the pivot index. And if there is no triplet at either

indices a triplet is created and deleted in accordance to the index( the rou-

tine swap). Since the value of the pivot index is changed, all the other ele-

ments of that row which are across the node in different columns should be

swapped as well so that the pivoting is complete. Finally the krow count

should be swapped as well so it will contain the correct row count. At the

37
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Rth node the value of the pivot index is stored in a full vector D, and the

rest of the sparse vector L is scaled by the value stored at that index of D(

the routine Bcoll). Since the rest of the nodes containing the rest of the

column at this time are waiting for this information to perform elimination

on there column to produce the upper triangular sparse matrix U, the

ak'
scaled lower sparse vector ---L is packed in a buffer array BUF and broad-

au

casted across to the rest of the nodes. The rest of the nodes including the

Rth node (root node) then perform the elimination in accordance to the

equation

akja..=a..-al.-
I} I} ill; akk

~hich the result is the upper triangular matrix U. The routine used for per-

forming the vector multiplication of the above equation and transformation

of the vector of matrix A is YAXPY. Once all the iterations of index k is

done the LV-decomposition is complete and the sparse vector of A is decom-

posed into two other sparse vectors Land U and full vector D.

4.2. PGSSL

For solving the system of linear equation there are two routines imple-

mented since neither of the routines utilize the parallelism of the system,

evaluation of performance difference is left for further research, and imple-
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mentation of a parallel solve routine is left for further research as well.

4.2.1.PGSSLI ( first version of solve)

The routine PGSSLl uses the two sparse vectors L , U and a full vec-

tor D to perform forward substitution and backward substitution. Before

any substitution applied to b vector the row index of b is checked against

the pivot index which is stored in an array pvt by PGSF A and if they are

not equal the row of index of b at present iteration is swapped with the

index of the pivot column. Then forward substitution is first applied to the

first column or columns of the matrix which resides at node one, in accor-

dance to the equation

Ly=b.

Then the new value of b after application is sent to the successor node

which is at the stage of receive wait for a message from the predecessor

node. When ~he message received by the successor the same transformation

is applied to the column it is assigned to and send b to its successor.

Once forward substitution is perform all through nodes with their

columns then backward substitution is applied, but first the b is scaled by

the pivot value which is stored in the diagonal since the transformation of

A was to LDU rather than to

A =L U.
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Then the backward substitution is applied in accordance to equation

f: 4.2.2. PGSSL2( second version of solve)
~.

i;.

The routine PGSSL2 performs the same operation of substitutions as
..

the PGSSLl with a difference that each node waits to receive the packed

vector of the sparse vector L through the iterations of k and then applies

the transformation to the its copy of the vector b. At the end of kth itera-

tion all the copies of b have gone through same double transformation (for-

ward and backward) and contain same values.

4.3. PGSMUL

The routine PGSMUL perform multiplication of a sparse vector to a

full vector. Since the vector x is initially stored at node zero therefore a

copy of it is sent to all nodes. Then faxpy (sparse daxpy) operation is

applied to the vector 11with coefficient x. Since sparse vectors of A are

spread across p nodes, then each of the row values of the 11vector are

spread across the p processes. Therefore global operation is applied and a

copy of the value of all indices of the vector 11is sent to the node 0 which is

the root node in spanning tree.
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.4. PIVIDX

The routine PIVIDX is called by PGSFA with each column of sparse

matrix A. Each sparse vector is traversed through using FOOT as the indi-

cator of end of vector, and the largest value (va0 plus the row index of that

value (row) are stored in a temporary variables t and m. If the vector is

empty a default index which is the index of the kth pivot is returned as the

pivot index. On the other hand if the pivot ratio prat is 1.0dO then the

index of the largest value in that vector is returned as the pivot index.

Otherwise we check to find the index of the triplet with the largest com-

ponent value and the most row count how.

4.5. SCOLL

The routine SeOLL is called by PGSFA with each column of triangular

sparse matrix L. Each sparse vector is scaled (divided) by the pivot value.

The row counts how of each row is decremented since a subset of the

matrix is now left for further elimination.

4.6. SWAP

The routine SWAP is called by PGSFA if the pivot index returned by

the PIVIDX is not the index of the kth iteration. It is called with a pointer

to the first element of the sparse vector and the index of pivot and kth

iteration index. First row index of triplet bigger than or equal the
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minimum of indexes is found and then the index of the triplet bigger or

equal than the maximum of the indexes is found. Once the two index are

Cound there are four cases to consider, i) both components are zero which

nothing is done, ii) one of the components of the indexes is zero which

candp (cut and paste) routine is used for exchange, iii) both components are

non-trivial which swreal(swap real value) is used to just swap the value in

the triplets.

4.7. CANDP

The routine CANDP moves one triplet to proceed another. \Vhen

called index point~:- of the two triplets and an index that is to be assigned
\

to the triplet that is being moved to are passed as arguments. The cut and

paste operation is performed with out deleting a triplet, rather it performs

the exchange by first saving the contents of the triplet in a temporary vari-

able and then uses the freed triplet to insert the other triplet values into it.

4.8. SWREAL

The routine SWREAL swap to double precision variables. When called

the two variable to be swapped are passed as argument and the value are

swapped and returned with new values in them.
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4.g. YAXPY

The routine YAXPY performs the Gaussian elimination of one column

of a sparse matrix A according to the equation

a",
The above equation's coefficient -L is passed to the routine in a variable

au

alfa and the values aile and their row indexes are passed on to the routine in

a packed sparse matrix x. Also a pointer to the sparse vector yy containing

the elements of sparse vector that contain the elements of aij is passed as

well. Therefore inorder to apply the above equation we must first traverse

the sparse vector against the each of the row indexes in the packed sparse

matrix x until we reach to the triplet with index less than the index in x, If

row index of triplet is less than the row index in x we that means a fill in

operation must be performed containing the multiple of the alfa and the

value stored in x. If the components contain coincident indices then the

multiple of alfa and value are subtracted from the coincident triplet value

val.

val(y )=val(y )+alfa *x(k)

The row index of 11 is equal to the row index stored at x(k-l} of the packed

sparse vector x.
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'.10. FAXPY

The routine FAXPY does vector operation by performing addition of a

multiple of a sparse vector to a full vector

y:=y+alfa *sparse(x)

Where in the routine, y is the full vector and alfa the multiplier and x is

index of a pointer to the sparse matrix x. Therefore the sparse vector is

traversed until the end of the list and the above vector operation is applied

to the coincident indices of x and y.

'.11. BAXPY

The routine BAXPYdoes vector operation by performing addition of a

multiple of a packed sparse vector to a full vector

y :=y +alfa *x

Where in the routine, y is the full vector and alfa the multiplier and x is

values stored in the sparse full vector x, which contain row index of packed

sparse vector as well as the value. Therefore the sparse full vector is

traversed using the row indexes stored until the end of the vector. Then

the above vector operation is applied to the coincident indices of x and y.

'.12. FSUM

The routine FSUM is called by the main node program to calculate the

sum of the absolute values of the sparse matrix A, by traversing each vec-
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tor of the matrix and summing up the absolute values of val in the triplets

~ of the vectors. The routine is called m times by each node, which is the

total number of columns assign to that node. Then by global operation the

value of all the sums are collected from all the participating nodes in the

spanning tree.



CHAPTER 5

PerformanceAnalysis

Numerical experiments were performed on the Intel iPse hypercube of

dimension d =5 with local memory and message passing routines for broad-

casting and communication.

The parallel algorithm described in this paper is in Fortran and com-

piled by Ryan-McFarland compiler. The program has been tested on p pro-

cessors, where 1<p <32. The test problems used for these experiments are

random sparse matrices of different density values. All the diagonal ele-

ments are nonzero and a fraction of off-diagonal elements are nonzero, the

fraction is the experimental parameter dens. The locations of the off-

diagonal elements are determined randomly. The data structure of the pro-

gram consist of triplets row,next ,val. So each nonzero element of the

matrix is stored on a triplet which requires a total of twelve bytes of

memory ( 2 bytes each for row, next and 8 bytes for the double precision

value val). The figure on the following page is an example of a sparse

matrix with off-diagonal density of 0.005 (one-half of a percent).

46



Our experiments may vary any of the five input parameters

p,n ,dens ,prat ,seed corresponding to the number of processors used, the

order of matrix, the off-diagonal density, maximum allowable pivot ratio,

and the initial seed for the random number generator. In the experiments

reported here only the first three parameters are varied and their effects are
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noted. The other parameters are fixed at prat=.125 and seed=2.

The first experiment concerns sparse matrices and not parallel process-

ing. It shows the effects of matrix order and density on execution time for a

fixed number of processors. The number of processors was held at 32, n

was varied from 100 to 1000 and dens was varied from .001 to .010. The

results are shown in Figures 11 and 12. Figure 11 shows that, for fixed

order, the execution time is roughly a linear function of density. Also the

number of nonzero elements is a linear function of density, since as the den-

sity increases so does nonzero's. The circle points on the figure represent

different values of density for fixed matrix order(n=l000). It is obvious

from the figure that execution time is also dependent on number of

nonzero's, since the slope of the line is much higher for larger order of

matrices. This is because a change in density has greater effects on larger

order of matrices. Figure 12 shows that, for fixed density, the execution

time as a function of matrix order increases faster than linearly. A sparse

matrix of density value of one (dens = 1) is a full matrix with no zero off-

diagonal. For a full matrix the elimination requires n3 operations. There-

fore matrix order as a function of execution time for a full matrix would be

proportional to n3. On the other hand a diagonal matrix is a matrix with

no off-diagonal elements which can be represented by a sparse matrix of

density value zero (dens=O). For a diagonal matrix elimination requires n
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operation. Therefore matrix order as function of execution time for a diag-

onal matrix is proportional to n. In Figure 12 curves for different values of

the density lies between a full matrix and a diagonal matrix curves men-

tioned above.

The overall effects of order and density and time appear to be difficult

to model analytically. One possible component of such a model is shown in

figure 13. Our experiments counted the number of nonzero elements

present in the final LV data structure and the number of floating point

operations -- additions, multiplications and divisions --used during factori-

zation. Figure 13 shows that the relation between these two quantities is

nearly independent of density and can be fairly well modeled by the equa-

tion

ops=K'(nz)4

where nz is number of nonzeros in the final LV. A logarithmic least squares

fit found K = O.OSQ5 and a = 1.64. Of course, the fit is best suited for

large values of nz and ops because that is were the most operations occur.

For a full matrix elimination requires !..n3 operations. If represented as a
3

function of nonzero elements it requires nz1.5 number of operations.

The second experiment measures parallel speedups. The density was

kept fixed at .005. The dimension of the hypercube was varied from 0 to 5,

so the number or processors varied from 1 to 32 in powers of 2. For a given
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number of processors, memory size limits the maximum order that can be

handled. These limits are seen in figure 14 which shows the values of

matrix order n that were used for various p. It can be seen that matrices

of orders up to 400 and off-diagonal sparsity of 0.005 (one-half of a percent)

can be stored on one processor. With 32 processors, orders up to 1000 can

be stored.

Figure 15 shows the aggregate megaflop rate (millions of floating point

operations per second for the total multiprocessor system) measured during

the LV factorization of these matrices. It can be seen for a fixed problem

size, the aggregate megaflop rate increases with the number of processors,

thereby showing parallel speedup. The obvious question, "Is the speedup

linear?", is hard to answer. Problems which are small enough to run on one

processor are inefficient on 32 processors and so do not show good speedup.

The curves at the bottom of the figure demonstrates the deterioration as

more processors are used. On the other hand, problems which are large

enough to efficiently utilize many processors will not fit on one processor.

This is demonstrated by the curves associated with the larger order of

matrices. The straight line in the figure is an attempt to provide a speedup

guide. It is a constant, tau, times the number of processors. In Moler's

experiments with dense matrices [Mo186] tau is the maximum megaflop rate

for the inner loop, DAXPY, and has the value .030. The corresponding
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quantity for our sparse matrix experiments would be the megaflop rate for

YAXPY, but this depends upon density and resulting fill-in. So we have

somewhat arbitrarily set tau = .006.
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CHAPTER 6

CONCLUSIONS

This thesis has developed an algorithm for sparse LV-decomposition

and solutions that are suitable for multiprocessor system with local

memory. The data structure of the algorithm consist of triplets

row,next,val. Each nonzero element of the matrix is stored on a triplet

which requires total of twelve bytes of memory (2 bytes each for row,next

and 8 bytes for the double precision value val). An efficient load balancing

was achieved by distributing the columns of the matrix across the nodes

using the wrap fashion so elimination in the natural order will be balanced.

Numerical experiments performed on an iPse d =5 system have been

presented which demonstrate the behavior of the algorithm. The result

indicate that for matrices of large order the speedup is much better than

for smaller order of matrices. Also when using random sparse matrices it is

difficult to be precise about speed because several variables must be con-

sidered such as density and maximum allowable pivot ratio.

Moreover, matrices with random sparsity pattern are probably not

representative of problems encountered in practice. For example in civil

engineering connectivity of structures and circuits leads into non-random

sparsity. However for specific use of the algorithm it is advised that more
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extensive performance analysis be carried out before using on rea] problems.
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APPENDIX A

HOST PROGRAM

include 'sparse.h'

integer i, j, cubedim, dim, pmax, n, p, maxn, method

integer pid, nid, cid, copen, type, cnt, ldble, Imesg

integer hot, NZERO

double precision dens,eps,t,prat, mesg(5),sees, pftoat

double precision en, res, mOps,mesg2(5)

double precision x(NMAX),xx(NMAX), b(NMAX),D(NMAX)

character*lO OK

data Idble/S/ , Imesg/40/

c

open (unit-lO,status-'unknown',file ..'nsult')

dim - cubedimO

pmax - 2**dim

eps - 0.5dOu52

c

110 print *

print *,'Enter number or processors, order or matrix: '

read (*,*,end-OO,err-Og) p, n

ir ( p .gt. pmax) go to OS

plloat - p

maxn - dsqrt(plloat*MAXMEM + (1.5*pftoat)U2) - (1.5* pftoat)

if (n .Ie. 0 .or. n .gt. maxn) then
n - maxn

write(*,'(" n reset to ",i5)') n
endir

print '(2(i4,2x))', p, n

If ( p. eq. 0 ) go to 00

print * 'Olf-di..gonal density:

re..d (*,*,end-00,err-9S) dens

c (the deDsity ..pplies to the olf-di..gonal elements. the diagonal is

c alw..ys full)

If (dens.lt.OdO.or. deDs.gt.l.OdO)then

print *, 'Density must be less than 1 ..nd posit.ive: '

61



62

read ( eDd-99.err-98) deDs

endir

priDt. '( nO.6)', dens

c

prat.-O.125dO

priDt. .,'EDt.er t.he rat.io: miDimum accept.able / maximum pivot.'

priDt. .,' (a. Donposit.ive value is replaced by 1/8) : '

read .,t.

ir (t..ge.OdO.aDd. t..le.ldO) prat.-t.

priDt. '(f'9.6)',prat.

priDt. ·
priDt. · , Met.hod or Solve (1,2) : '

read (... ,eDd-99,err-98) met.hod

ir ( method .It.. 1 .or. met.hod .gt.. 2) theD

priDt .,' Method must be (lor 2 ) so derault. 1 t.aken : '

method - 1

endir

print '(" Met.hod using ror Solve is: ",i4)', met.hod

priDt. ..

writ.e(. .iI)

9 rorma.t(3x, 'Task' .7x, 'p' ,4X,'D',6x.'dens',7x,'secs'.9x,'mil ps',

> 6x,'residua.I'.6x. 'OK!')
c

c Send problem specificat.ioD t.o Dode0

c

mesg(l) -p

mesg(2) -D

mesg(3) -deDs

mesg(4) -pra.t.

mesg(5) -met.hod

t.ype -101

pid-0
eid - copeD(pid)

call seDdmsg(cid,t.ype,mesg,lmeag,O,pid)

if (p .Ie. 0) go to 99

c

c GeDerate matrix

c

call recv mag(eid .t.)'pe.seca,ld bIe,cDt,Did .pi d)

write(. ,20) p, D. dens, sees

20 rormat.(' GeDerat.e: '.2(i4,2x), (rs.3.2x), (n2.6,2x»

c
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c MlI.trix- mll.trixmultipliclI.tion.
c:

call recvmsg(cid,type,secs,ldble.cnt,nid,pid)

mOps - 2.0dO*en**2/secs * 1.d-6

write(*,30) p, D, deDs,lecs, mflps

30 Cormat(' Multiply: ',2(i4,2x), (rB.3,2x),(Cl2.6,2x),(rB.3,2x))

c

e LU-Cactorization oCA

e

call recvmag( cid ,type ,seca,ld ble,cnt,nid,pid)

en - n

mflps - O.666667dO*eDu3/secs * l.d-6

write(* ,40) p, D, deDs,secs, mflps

40 Cormat(' Factor : ',2(i4,2x), (rB.3,2x),(Cl2.6,2x),(f8.3,2x))

c

c Solve liDear system.

c

call recvmsg( cid ,type ,secs,ld ble,cDt,Did,pi d)

mflps - 2.0dO*en**2/secs * l.d-5

write(* ,SO) p, D, deDs, secs, mflps

SOCormat(' Solve : ',2(i4,2x), (f8.3,2x), (Cl2.6,2x),(f8.3,2x))

c

c Residual - calclated

c

iC( D .Ie. IpriDt) then

call recv msg( cid ,ty pe,D ,NMAX*ld bl e,CDt,nid,pi d)

call recvmsg( cid ,type,b ,NMAX*ld ble,cDt,nid ,pid)

call recvmsg( cid ,type ,x,NMAX*1 dble,cn t,Did ,pid)

call recvmsg( cid,ty pe ,xx,NMAX*ld ble ,CDt,ni d,pid)

eDdiC

call recvmag( cid ,type,res,ld ble,cDt,nid,pid)

If ( res .It. D*eps) then

OK - 'OK
elseif( res .It. lOOO.O*D*eps)then

OK - 'Suspicious'

else
OK - 'TROUBLE!!!'

eDdiC

secs - O.OdO

mflps - O.OdO

write(*,60) p, n, dens, lees, mftps, res, OK



64

60 rormat(' Residual: ',2(i.c,2x), (rs.3,2x), (n2.6,2x),

> (rs.3,2x),lpd13.3,lx,a10)

if ( n .Ie. lprint ) then

write (10,*)

write (10,*)' ,

write (10,*)

write(10 , *) , The Diagona.l D is : '

write (10,*)

call vwrite(D,n)

write (10,*)

write(IO , *) , The exact x is : '

write (10,*)

call vwrite(xx,n)

write (10,*)

write(10 ,*) , The computed x is : '

write (10,*)

call vwrite(x,n)

write (10,*)

write(10, *) , The exact b is : '

write (10,*)

call vwrite(b ,n)

endif

print ·
c

c Operation and storage count

c

call recvmsg( c:id,type,mesg2,S*ld ble,cnt,nid,pid)

hdd - mesg2(1)

kmul - mesg2(2)

kdiv - mesg2(3)

memptr - mesg2(.c)

NZERO - mesg2(S)

print .,' 8-pt ..ddition, multiplications, division, ..nd total'

ktot - hdd + kmul + kdiv

print '(3iIS)', hdd, kmul, kdiv, hot

print .' Tot..l number of triplets stored'

print '(ilS)', memptr

print *, Tot..l number of NON zero elements'

print '(iIS)', NZERO

print .'
.

c



65

e

go to 110

e

08 write(., '(" Something wrong with input, try again")')

go to 110

00 atop

end
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NODE PROGRAM

c: IJLin node program ror Parrallel Sparse Computation or Linear

c: Iqua:t.ions.

c:

c

itdude'sparse.h'

lliara.cter .00 string

llia.racter · 5 case

i1t~er A(NMAX),L(NMAX),U(NMAX),pvt(NMAX),krow(NMAX)

integer cid, p, n, m, cnt, copen, type, pid, method

iIIt.eger Imesg, cubedim, dpsize, gkrow(NMAX)

iDteger id, i, j, h, root., hid, mynode, dim, dimcube

iIIt.eger click, clock

i1t.eger iy, iysave , R, NZERO, acmemptr

iou'ble precision D(NMAX),b(NMAX),x(NMAX),xx(NMAX)

iouble precision acx(NMAX),z(NMAX),res

doable precision dens, randum, urand, prat, rsum, dasum

louble precision sees, t, mesg(5),mesg2(5)

ioub1e precision norrnx, norma

dat.a Imesg/40/, hid/-32768/, root/Of, dpsize /8/

c

c Open one channel

c

,rd-0
rid - copen(pid)

c
c Rsieye problem size inrormation rrom host.

c

ir-O

ltt.ype - 101

iJsa.ve - iy
NZERO - 0

ca.1Igrecvw (cid, type, mesg, lmesg, cnt, cubedim())
c

C p- Dumber or proceaaors

C D- order or the mat.rix

C elm. -density or the matrix

c: pa&._ ratio: minimum acceptable/ minimum pivot.

C _bod - method or Solve

c:

p -mesg(l)

D -mesg(2)
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dens - mesg(3)

prat - mesg(4)

method - mesg(5)

if (p .Ie. 0) go to 200

c

dim -dimcube(p)

id - mynodeO

if (id .ge.2"dim) go to 10
c

c m - number of columns in this process.

c

m - nip

if (id .It. MOD(n,p))m - m + 1

if ( id .ge.p) m - 0

click- clockO
c

c
c Initializethe rowcountsof nonzeroelements

do 120 i-l,n

b(i) - O.OdO

D(i) - O.OdO

x(i) - O.OdO

xx(i) - O.OdO

krow(i)-0
120continue

c

c initialize the flop counts

kadd-o

kmul-O

kdiv-o

c

c generation of a "random sparse matrix" with integer coefficients ...
memptr - 0

norma - O.OdO

h - id + 1

do 140 j - I, m

call init(A(j),eid)

do 130 i - n,I,-1

if (i .eq. h .or. urand(iy) .Ie. dens) then

call insert(A(j),rand um(iy),i,cid)
NZERO- NZERO+ 1

krow(i )-krow(i)+ 1

endir
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130 continue

norma - dmaxl( norma, fsum(A(j)) )

h-h+p

140 continue

c

c ...and a random solution with integer components '"

c

if ( id .eq. root) then

do ISO j - I, n

x(j) - randum(iy)

160 continue

endif

c

secs - (c1ockO - click)/I000.dO

call gop(cid, type, secs, I, 'M', hid, dim, t)

call gop(cid, 28type+l, norma, I, 'M', root, dim, t)

if ( id .eq. root) call dcopy(n, x, I, xx, 1)
c

c Matrix -matrix multiply

c

click - c1ockO

call pgsmul(A, n, m, p, eid, id, x, b,z)

secs- (clockO-click )/I000.dO

call gop(eid, type, secs, I, 'M', hid, dim, t)

call dcopy(n. b, I, x, 1)
c

c LU -factorization of A

c

click - clockO

call pgsfa(A,n,m,p,cid,id,prat,ltrow ,Sbow ,pvt,L,U,D)

lecs - (clockO. click )/I000.dO

call gop(cid,type, lecs, I, 'M', hid, dim, t)

c

c Solve linear system.

c

if( method .eq. 1) then

click - clackO

call pgssl1(cid,L, U, D, n, m, p, pvt., x, id)

secs - (clockO. click )/l000.dO

call gop(cid, type, secs, I, 'M', hid, dim, t.)

endif
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ir ( metbod .eq. 2) tben

click - clockO

call pgasl2(cid,L, U, D, n, m, p, pvt, x, id)

lees - (c:lockO. click )/I000.dO

call gop(cid, type, lecs, 1, 'M', bid, dim, t)

endir

call igop(eid,.type+4, memptr, I, '+', root, dim, t)

ir (id .eq. root) tben

acmemptr - memptr

endir

c Regenera.tion or a "ra.ndom spa.rse matrix. with integer coefficients ...

c

iy - iysa.ve

memptr - 0

h - id + 1

do 170 j - 1,m
ca.1Iinit(A(j),dd)

do 160 i - D,l,-1

ir (i .eq. b .or. ura.nd(iy) .Ie. dens) then

ca.1Iinsert(A(j),randum(iy ),i,eid)

krow(i )-krow(i)+ 1

endir

160 continue

b-b+p

170 continue

c

c

c

c Residual -Check the rela.tive residual or

c

call gop(cid, g*type+1, D, n, '+', root, dim, z)

ir ( id .eq. root) then

Dormx - duum(n,x,l)
hdd - hdd + n

ir ( n .Ie. Iprint ) tben

callaendw(cid, type, D, n*dpaize, bid, pid)

call sendw(cid, type, b, n*dpaize, bid, pid)

call sendw(cid, type, x, n*dpsize, hid, pid)

callaendw(cid, type, xx, n*dpsize, hid, pid)

endir
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endif

call pgsmul(A, n, m, p, cid, id, x, acx, z)

if( id .eq. root) then

res - O.OdO

do 190 j - I, n

res - res + dabs(b(j) -acx(j))

100 continue

res - res/(norma. * normx)

call sendw(cid, type, res, dpsize, hid, pid)

endif

c Send opera.tion counts

c

call igop(cid, type+l, kadd, I, '+', root, dim, t)

call igop(cid, type+2, kmul, I, '+', root, dim, t)

call igop(cid, type+3, kdiv, I, '+', root, dim, t)

ca.1Iigop(cid, type+5, NZERO, 1, '+', root, dim, t)

if (id .eq. root) then

meag2(1) - hdd

mesg2(2) - kmul

meag2(3) - kdiv

mesg2(4)-acmemptr

meag2(S) - NZERO

call aendw(cid, type, mesg2, S*dpsize, hid, pid)
endif

c

c

go to 10

c

c Quitely termina.te

c

200 continue

end
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PGSMUL

subroutine pgsmu] (A,n,m,p,cid,id,x,y ,t)

integer n,m,p,cid,id

integer A(n)

double precision x(n),y(n), t(n)

chU'&cter *100 string

c

c y - A.x

c

c Input...

c A distributed over p nodes

c x node a

c

c Output..

c y node 0

c x destroyed

c

integer i,j,l,root,dimcube,cnt,tmul

double precision 8

d..ta root/Of, tmul/7001/
c

if (id .eq. root) then

call gsendw(cid, tmul, x, S*n, dimcube(p»

else

caU grecvw(cid, tmul, x, S*n, cnt, dimcube(p»
endir

c

do 50 i-I, n

y(i) - O.OdO

50 continue

I - id+1

do61 j - I, m
8- x(l)
eall rupy (s,A(j),y)
I-I+p

61continue

c

call gop(cid, tmul+1 , y, n, '+', root, dimcube(p), t)

end
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PGSFA

su broutine pgsfa(A,n,nm,p,cid ,id,prat,k row ,ghow ,pvt,L,U ,D)

e

e LU decomposition of a sparse matrix by compact elimination

e

e ODentry

e

e A integer (n)

c pointers to the columns of the sparse matrix

integere n

e order of the sparse matrix

e prat double precision

e ratio: minimum acceptable / maximum pivot

e how integer (n)

c record of the Dumber of nonzero elements in the rows

e of the sparse matrix

e

e aDret urn

e

e pvt integer (n)

c record of the row exchanges incurred in the LU

c decomposition

c L integer (n)

c pointers to the columns of the sparse lower triangular

c factor (unit diagonal omitted)

integer (n)c U

c pointers to the columns of the sparse upper triangular

c factor (diagonal omitted)

c D double precision (n)

c diagonal elements of the upper triangular factor

c Note that upon return A points at the columns of the upper

c tria.ngular fa.ctor (diagonal omitted). The triplets of the

c original spa.rse ma.trix are overwritten by the those of the

c upper a.nd lower tria.ngular factors.

c

include 'spa.rse.h'

para.meter(NMAX2 - NMAX + NMAX)

in teger A( n ),pvt( n ),L( n ),U( n ),krow( n )

integer ghow(n), tt(NMAX)

integer n, p, cid, id, ent, f, trow,root

double precision D(n),prat,t, BUF(NMAX2)

integer j,lt,b,m,pividx,R, LDBLE, dimcube



integer nm, nz, dim

cha.racter.70 string

cha.ra.cter.S ca.se

data. LDBLE /8/ , trow/gool/, root/Of

dim - dimcube(p)

c

c ma.kesure tha.t pra.t is va.lid

prat-dminl(ldO, da.bs(pra.t))
c

c define U

do 10 It - I, nm

U(k) - A(k)
10 continue

c

h - 1

do 30 k - I, n

c

c Process R (ror root)

R - MOD(k-l,p)
c

c Find globa.l how va.lues

c

call icopy(n, how, I, ghow,I)

call igop(cid,trow,ghow ,n,'+',R,dim,tt)

c

c ir Process R (ror root)

c

ir (R .eq. id) then
c

c choose the k-th pivot

c

m - pividx(A(h),k,prat,gkrow)

pvt(h)- m
ir (m .ne. k) call swap(A(h),k,m)

c

c save the pivot in D and fla.gthe end or the k.th column or U

D(k) - val(A(h))

if (D(k) .eq. O.OdO)then

write(string,'("zero pivot on column: ",i2)') k

ca.11syslog(cid,string)

endif

row(A(h)) -FOOT

73
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c

c comput.e t.he eliminat.ion multipliers

L(h)- Dext.(A(h»

if (D(It) .De.O.OdO)call scoll(L(h),D(It),trow,cid)

call pact(cid,BUF ,L(h),m,nz)

call &sendw(cid,It, BUF, oz*LDBLE, dimcube(p»

h-h+l

. c
c Wait.for eliminationinformationother than R

c

else

call grecvw(cid, It, BUF, NMAX2*LDBLE,cnt, dimcube(p))

m - BUF(l)
endif

c

c Exchange hows if pivot column is not It-th

c

if(m .nt. It) then

f - how(lt)

trow(k) -trow(m)

Itrow(m) -f

endif

c

c apply all transforma.tions t.o (It+l)st column

do 20 j - h , nm

if (m .ne. It) ca.llswap(A(j), It, m)

if ( row(A(j)) .eq. It) then

t.- -va.I(A(j))

A(j)- next(A(j))

ca.l1ya.xpy(t,BUF,A(j),how ,cid)

endif

20 continue

30 continue

return

end \...
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PGSSLI

subroutine pgssll( cid,L,U,D,n,mm,p,pvt,b,id)

c

c Solution ora .ystem or linear equa.tions whose spa.rse ma.trix is in

e the LU rom provided by subroutine pgsra.

c

c on entry

c

c L ilteger (n)

c paint.ers to the columns or the lower tria.ngula.r ractor

c U

(unit diagonal omitted), a.s returned by dgsra

iateger (n)

c

c painters to the columns or the upper triangular ractor

c (cb.gonal omitted), a.s returned by pgsfl

clDuble precision (n)c D

c di&gonalelements or the upper triangular ractor as

c returned by dgsra

c n iJt.eger

c order or the system

c mm iDteger

e umber or the cloumn on each node.

c p iJt.eger

c nunber or the proccessors

c pvt iateger (n)

c record or exchanges returned by pgsra

c

cbuble precision (n)

richt-ba.nd side or the system

c b

c

c on return

c

c b double precision (n)

c &elut.ionor the system

c

include'sparse.h'

integer .,mm,L(n),U(n),pvt(n)

integer p, t'ype, pid, pred, succ, BYTES

double ,recision D(n),b(n)

double precision t

integer i,m, cid, id, h, R

ehara.cter 860 string

character -5 case

data type /4/
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pred - MOD(id-1+p,p)

suee - MOD(id+1+p,p)
BYTES-S.n

pid -'0

e

e forward .ubstitution L.y - b

k - id + 1

do 10 h - I,mm

if ( k .gt. 1 .and. pred .ne. id)

> ea.1Irecvw(cid, type, b, BYTES, BYTES, pred, pid)

m.. pyt(h)

if ( m .ne. k) call swreal(b(k) , b(m»

if (b{l) .ne. O.OdO)ca.1Ifaxpy(-b(k), L(h), b)

if ( k .It. n .a.nd. succ .ne. id)

> call send(cid, type, b, BYTES, succ, pid)

k-k+p

10 contLnue

c

c ba.ckward substitution. U.x - y

do 20 b - mm,I, -1

k-k-p
if( k .It. n .and. suec .ne. id)

> call recvw(cid, type, b, BYTES, BYTES, succ, pid)

if' (D(k) .ne. O.OdO)b(k) - b(k)/D(k)

ldiv-kdiv+l

if.- b(k)
if (to .ne. O.OdO)call faxpy(-t,U(h ),b)

if (k .gt. 1 .a.nd. pred .ne. id)

> ea.1Isend(cid, type, b, BYTES, pred, pid)
20 cont.inue

retllrn

end
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PGSSU

aubrouline pgsal2(cid,L,U,D,n,mm,p,pvt,b,id)

c

c Solution rl a system of linear equations whose sparse matrix is in

c the LU form provided by 8ubroutine dgsfa.

c

c on entry

c

c L integer (n)

point.ers to the columns of the lower triangular factor

(lDit. diagonal omitted), as returned by dgsfa

integer (n)

c

c

c U

c poinurs to the columns of the upper triangular factor

c (diagonal omitted), as returned by dgsrI

double precision (n)c D

c diagona.l elements of the upper triangular factor as

c nturned by dgsfa

c 0 integer

c order of the system

c mm int.eger

c umber of the c\oumn on each node.

c .p integer

c number of the proccesaors

c pvt integer (0)

c record of exchanges returned by dgsfa

c b double precision (n)

c right-hand side of the system

c

c on return

c

c b double precision (n)

IOlution of the systemc

c

include'sparse.h'

paramrter( NMAX2 - NMAX + NMA.X)

integer n,mm,L(n),U(n),pvt(n)

integer p. dimcube, dim, cnt , type. DPSIZE

integer \t.m, cid, id. h, R, nz

double precision D(n),b(n), BUF(NMA.X2)

double precision t

character-50 string

data t1Pe 1512/. DPSIZE /8/
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c

c rorward substitution L*y -b

dim -dimcube(p)

nz - 0

h-I

dOl0k.-l,n
R -MOD( k-l, p)

if ( R .eq.id) then

m - pvt(h)
call pack(cid,BUF, L(h), m, nz)

call gsendw(cid, 10*tYPHk , BUF. nz*DPSIZE, dim)

h-h+1

else

call grecvw(cid, lO*type+k, BUF, NMAX2*DPSIZE, ent, dim)

m -BUF(l)

endif

if (m .ne. k) call swreal(b(k),b(m))

if (b(k) .ne. O.OdO)call baxpy(-b(k),BUF,b)
10 continue

c

c backward substitution. V*x - y

h -mm

do 20 k - n, I, -I

R - MOD( k-l, p)

if ( R .eq. id) then

if (D(k) .ne. O.OdO)b(k) - b(k)jD(k)

kdiv-kdiv+l

call dpack(cid,BUF, V(h), b(k), nz)

can gsendw(cid, 2O*type+k , BUF, nz*DPSIZE, dim)
h-h-I

else

caIl grecvw(cid, 2O*type+k, BUF, NMAX2*DPSIZE, cnt, dim)

b(k) - BUF(l)

endif

if (b(k) .ne. O.OdO)call baxpy(-b(k),BUF,b)

20 continue

return

end
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BLAS functions

A.I. FAXPY

lubroutine faxpy(..lf..,xx,y)
e
e Addition of .. multiple of .. ap..rse vector to a full vector
e y <- y + ..Ira * aparse (xx)
e
e on entry
e

c on return
c
e y
c

modified full vector

double precision alf&,y(l)
integer x,xx ,d
include 'sp&rse.h'
ch&racter*l00 string

c

x-xx

10 if(row(x).eq.FOOT) return
y(row(x))..y(row(x))+&lf&*nl(x)

kadd-kadd+l
kmul-kmul+l

x-next(x)
go to 10
end

c

c ..Ira double precision
c multiplier of the sp&rse vector
c xx integer
c pointer identifying the sp&rse vector
c y double precision (*)
c full vector
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A.2. BAXPY

c

subroutine baxpy(alra,x,y)
c
c Addition or a multiple or a rull vector to a full vector
c y <- y + alfa ·x
c

c on entry
c

e aIra double precision
c mult.iplier of the sparse vector
c x double precision (-)
c full vector
c y double precision (-)
c full vector
c on return
c
c y
c

modified fuB vector

integer d, k, ix
double precision alfaJ(I),x(-)
include 'sparse.h'
character-l00 string

c
t-2

10 ix- x(k+l)
ir(ix .eq.FOOT) return

y(ix) - y(ix)+ alfa.- x(k)
hdd-kadd+l
kmul-kmul+l

k-k+2
go t.o 10
end

c
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A.3. FSUM

c
double precision func~ion fsum (xx)

c
c Sum up t.he 'Yaluesof a sparse vector
c to - t + sparse (xx)
c

c on entry
c

c xx integer
c pointer identifying the spa.rse vector
c on return
c
c fsum
c

sum of the sparse vec~or

double precision t
in~eger x,xx
include 'sparse.h'
cbaract.er*l00 s~ring

c
x-xx
t-O

10 ir(row(x).eq.F~OT)then
rsum -t
return

endif

t - t.+ dabs(val(x))
hdd -kadd + 1

x-next(x)

go ~o 10
end

c
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A.4. DCOPY
c

subroutine dcopy(n.dx,incx,dy,incy)
e

c: copies a. vector, x. to a vector, y.

c uses unrolled loops for increments equal to one.
e ja.ck dongarra" linpack, 6/17/77.
e

double precision dx(I),dy(I)

integer i,incx,inc)',ix,iy ,m,mp I,n
c

ir(n.le.O)return

ir(incx.eq.I.a.nd.incy.eq.I)goto 20
c

c: code for unequal increments or equal increments
c not equal t.o 1
c

ix - 1

iy - 1

if(incx.lt.O)ix- (-n+I)*incx+ 1
ir(incy.lt.O)iy - (-n+I)*incy + 1
do 10 i - I,n

dy(iy)- dx(ix)
ix- ix + iDex
iy - iy + iDey

10 continue
return

e

e code for bot.h increments equal to 1
c
e

e clean-up loop
c

20 m"" mod(n,7}
if( m .eq. 0 ) go to 40
do 30 i-I,m
dy(i)- dx(i)

30 continue
if(n .It. 7 ) ret.urn

40 mpl -m + 1
do 50 i - mpl,n,7
dy(i)- dx(i)
dy(i + 1) - dx(i + 1)
dy(i + 2) - dx(i + 2)
dy(i + 3) - dx(i + 3)
dy(i + 4) - dx(i + 4)
dy(i + 5) - dx(i + 5)
dy(i + 6) - dx(i + 6)

50 continue
return
end
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A.5. DASUM
c

double precision function dasum(n,dx,inex)
c
c takes tbe 8um of tbe absolute values.

c jack dongarra, linpack, 6/17/77.
c

double precision dX(I),dtemp
integer i,incx,m,mpl,n,ninex

c
dasum - O.OdO

dtemp - O.OdO

if(n.le.O)return
if(incx.eq.l)goto 20

c

e code for increment not equal to 1
C

nincx - n.inex
do 10 i - l,nincx,incx

dtemp - dtemp + dabs(dx(i))
10 continue

dasum - dtemp
return

C

c code for increment equa.l to 1

C

C

C clean-up loop

c

20 m - mod(n,6)
if'( m .eq. 0 ) go to 40
do 30 i-I,m

dtemp - dtemp + dabs(dx(i))
30 continue

if( n .It. 6 ) go to 60
40 mpl - m + 1

do 50 i - mpl,n,6
dtemp - dtemp + dabs(dx(i)) + dabs(dx(i + 1)) + dabs(dx(i + 2»)

· + dabs(dx(i + 3)) + dabs(dx(i + 4)) + dabs(dx(i + 5))
50 continue
60 dasum - dtemp

return
end

c
c
c
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A.e.ICOPY
c

aubroutine icopy(n,dx,incx,dy ,incy)
c

c copiea & vector, x, to &vector, y.
c uses unrolled loops ror increments equa] to one.
c

integer dx(l ),dy(l)
integer i,incx,incy ,ix,iy ,m,mpl,n

C

ir(n.le.O)return
ir(incx.eq.l.and.incy.eq.l)goto 20

C

c code ror unequa.l increments or equa.] increments
C not equal to 1
c

ix-1
iy-1
ir(incx.lt.O)ix - (-n+l)*incx + 1
ir(iney.lt.O)iy- (-n+ 1)*iney + 1
do 10 i - I,n
dy(iy)- dx(ix)
ix - ix + inex
iy - iy + iney

Iv continue
return

e

e code ror both increments equal to 1
e

e

C clun-up loop
e

20 m - mod(n,7)
ir( m .eq. 0 ) go to 40
do 30 i-I,m

dy(i)- dx(i)
30 continue

ire n .It. 7 ) return
40 mpl - m + 1

do 50 i - mpl,n,7
dy(i)- dx(i)
dy(i + 1) - dx(i+ 1)
dy(i + 2) - dx(i+ 2)
dy(i + 3) - dx(i+ 3)
dy(i + 4) - dx(i+ 4)
dy(i + 5) - dx(i+ 5)
dy(i + 6) - dx(i+ 6)

50continue
ret.urn
end
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CANDP

subroutint candp(p,q,i)
c

c -Cut and putt- : moYt ont tripltt to prtctde anothtr

c

c on entry

c
integer

pointtr identifying tht tripltt to be moved

inhgtr

pointtr idtntifying the tripltt chosen to becomt the

SUcctssor of tht moVtd tripltt

inttgtr

compontnt indtx to bt assigntd to tht moved triplet

c

C tht tlftct of a call to candp is tquivaltnt to tht stquenct

c callinstrt(q,val(p),i)

c calldtlete(p)

c but without cre..ting a -dead- element.

c

integer p,q,i

include 'sparst.h'

dou ble precision alfa

integer t

c

if (next(p) .eq. q) ther.

row(p) - i
else

c

c remember val(p)

alfa - val(p)

c

c delett(p). but do not dispose of tht (freed) triplet

t - next(p)

val(p) - val(t)

row(p) - row(t)

next(p) - next(t)

c

c insert(q,alfa,i), using the free triplet

val(t) - val(q)

row(t) - row(q)

next(t) - ntxt(q)

val(q) - alf..

row(q) - i
next( q) - t

endif

end

c p
c
c q
c
c
c
c
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IN IT

subroutine init(v,cid)
c

c Creation of a new sparse vector initia.lly empty (consisting of a
c footer).
c

c ODentry
c

integer
pointer to the first triplet of the new sparse vector

integer v. cid
include'spa.rse.h'
cha.ra.cter*60 string

c

if (memptr .eq. MAXMEM)then
write(string,'(" OUT OF MEMORY")')

ca.1Isyslog(cid,string)
STOP

endif

memptr - memptr + 1
v - memptr
row(v) - FOOT
nl(v) - O.OdO
next(v)- v
end
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INSERT

subroutine insert(p,alfa,i,cid)
c

c Insertion or a new component in a sparse vector
c

c on entry
c

c p integer
c P?inter to the successor or the triplet to be inserted
c. alra double precision
c , value of the component to be inserted
c i integer
c index or tbe component to be inserted
c

integer p,i, cid
double precision alfa

include 'sparse.b'

character *60 string
c

if (memptr .eq. MAXMEM) then
write(string,'(" OUT OF MEMORY")')

call syslog(cid,string)
STOP

endir
memptr - memptr + 1
nl(memptr) -val(p)

row(memptr) - row(p)
next(memptr) - next(p)
val(p) - alra
row(p) -i
next(p) - memptr
end
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PIVIDX

integer function piyjdx(u,defalt,prat,how)
c

c Index of !.he minimum component of a "fector of integers subject to
c tbe corresponding component of a sparse vector being no less than
c a fractioD or its maximum component (in magnitude).
c
c on entry
c
CO aa integer
c pointer identifying tbe sparse yector
c defalt integer

c index to be returned if the sparse yector is empty
c pra.t double precision
c acceptable fraction of tbe ma.ximum component of the

c spa.rse yector

c how integer (*)
c _ctor of integers
c

integer a.a, defalt,krow(l)
double precision prat
intpger ",m
double precil!ion t
include 'spa.rs~.h'

c
a - aa.
m - ddalt
t - 0.0d0

10 if (row{a.) .eq. FOOT) goto 20
if (dabs(ya.l(a» .gt. t) tben

m -row(a)
t -dabs(val(a»

endif

a - mext(a)
go to 10

20 if(t.eq_()dO.or. prat.eq. l.dO) go to 100
a-aa
t-prat. -..

30 if (row(a) .eq. FOOT) go to 100
if' (dabs(val(a».ge.t .and. how(row(a».1t.krow(m» m-row(a.)

a-next-(a)
go to 30

100piyidx - m
end



89

SCOLL

aubroutine scoll(xx,s.how,cid)
c

c Scaling of the subdiagonal elements of a column of a spa.rse matrix
c in Gaussian elimination to form the corresponding column of the
c lower triangular factor, and update the record of nonzero elements in
c the rows.
c

c on entry
c

c xx integer
c pointer identifying the first subdiagona.1 element of
c the column to be scaled

c 8 double precision

c scaling divisor (pivot of the elimination)
c krow integer (*)
c record of the numbers of nonzero elements in the rows
c of the matrix
c on return
c

c bow updated record of the row counts of nonzero elements
c

integer x,xx,how(l), cid
double precision s
include 'sparse.h'
character *60 string

c
x -xx

10 if (row(x) .eq. FOOT) return
val(x) - val(x)/s

bow( row(x))-k row(row(x)}o1
kdiv-kdiv+l

x - next(x)
go to 10
end

RANDUM & URAND

c

double precision function randum(iy)
integer iy

c

c Genera.tion of uniformly distributed random flints in a fixed range

c symmetric about the origin (compiler para.meter).
c

double precision r,range,urand
parameter (range - 10.OdO)

10 r - dnint(range*(2*urand(iy}ol))
if (r .eq. O.OdO)go to 10
randum - r
end

real function urand(iy)
c

integer*2 iy,ia,ic,m2
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real 8

data m2/16384/,ia/128611 I,ic 161125/,5/3.0517 SSe-51
iy - iy.ia + ic
if (iy .It. 0) iy - (iy + m2) + m2
urand - 8oat(iY).5
return

end
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YAXPY

subroutine Y8XP,.(aJra,x,yy,bow,cid)
c
e ModiBcation of a column of a sparse matrix in the Gaussian
c elimination of Olleyariable
c
c on entry
c
c alra double precision
c element or tbe column with same row index as the pivot
c x packed sparse vector
c containig "he value and row indecies of lower matrices
c 1Y integer
c pointer to t.be Brst element of the column of the matrix
c below the pivot row
c bow integer (*)
c record of the numbers of nonzero elements in the rows
c of the sparse matrix
c on return
c

c bow updated record of the number of nontrivial elements in
c the rows or the matrix
c

integer s , cid
double precision aJfa
integer y,yy,bow(I), ix
double precision x(*)
include 'sparse.b'
character*5O string

c

1 -,y
c
c checksee if alra is zero
c

if ( alfa .eq. 0) return
c

c loop through nonzero elements of x
c

k-2
10 ix - x(k+I)

if ( ix .eq. FOOT) return
20 if (row(y) .It. ix) then

y - next(J)
go to 20

endif
c

c insertion of the new elements of y created by x
if (row(y) .gt. ix) then

c&.llinsert(1. alfa *x(k), ix, cid)
Itrow(ix)-krow(ix)+ 1
kmul-Itmul+l

c
c operation for tbe components of x and y with coincident indices

else

nl(y) - va)(y) +alra'x(k)
kadd-Itadd+l
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kmul-kmul+1
c

c deletion or the components or y annihilated in the process

ir (val(y) .eq. O.OdO)then

krow( row(y ))-k row( row(y ))-1
call delete(y)

endir
endir
k-k+2

go to 10
end



93

DELETE

subrout.ine delete(p)
c
c Deletion or one component or a sparse vector
c

.c on entry
c
c p
c
c

i.nteger
pointer identirying the triplet to be deleted

integer p

integert
include 'sparse.h'

c

t - next(p)
val(p)- val(t)
row(p)- row(t)
next(p) - next(t)
end .

DIM CUBE

integer runction dimcube(p)
integer p

Dimension or a hypercube conta.ining a.t lea.st p nodes
c - ceil(log2(p ))
c

dimcube - ifix(1.44*alog(ftoat(p)) + 0.99)
return
end
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PACK functIons

lubroutine pa.ck(cid,y,xx,m,s)
c

c Fill Buffer y with cloumn of pointer xx
c
C00 ent.ry
c

c xx
c

integer
pointer identifying the sparse vector

int.eger
k-th pivot.

m
C

C00 return
c

y full vect.or ( packed sparse vector)

s int.eger

determined size of pa.cked sparse vector including FOOT,
c returns minimum size of 2.

integer 1
character*l00 string

double precision y(*)
integer x,xx, cid . m
include 'sparse.h'

c

c First. element is k-th pivot
c

c Places FOOT in first then checks against it.
c ihis routine pa.cks the lea.st FOOT.
c

x-xx
1 -1
y(s) - m

10Y(I+l) - val(x)
Y(I+2) - row(x)
1-1+2
ir(row(x).eq.FOOT) return
x-next(x)
go t.o10
end
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subroutine dpack(cid,y,xx,m,s)
c:

e Fill Bull'er y with cloumn or pointer xx
c:

c: on entry
c

m

integer

pointer identirying the sparse vector

double percision

k-th pivot

c:

c

e

xx

c

e on return

rull vector ( pa.ckedspa.rsevector)

integer
determined size or pa.ckedsparse vector including FOOT,

returns minimum size or 2.

integer s
cha.racter-loo string
double precision y(-), m
integer x,xx, cid
include 'spa.rse.h'

e
c:First element contains
c

c: Places FOOT in first then che.cksagainst it.
c This routine pa.cks the least FOOT.
e

x-xx
s-1

yes)- m
10y(s+1) - val(x)

,.(s+2) - row(x)
s-s+2
ir(row(x).eq.FOOT) return
x-next(x)
go to 10
end

c

c y
c:

c s

c:

c

e
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Broadcast routines

B.I. GOP

SUBROUTINE GOP (CI, TYPE, X, N, OP, ROOT, DIM, WORK)
INTEGER CI, TYPE, N, ROOT, DIM
CHARACTER.IOP

DOUBLE PRECISION X{N), WORK(N)
c

c Global vector commutative operat.ion using spanning t.ree.
c

c All participating processes must bave t.he same process id (PID).
c
c Input...
c
c CI channel number (previously opened).
c TYPE message type. Must. be t.he same for all participating
c processes. There must. be no ot.her messages of t.his type
c in t.he system.
c X t.he input. vect.or t.o be used in t.he operat.ion.
c N t.he lengt.h of tbe vector.
c OP '+' sum
c ,.' product.
c 'M' ma.ximum
c 'm' minimum
c ROOT Node id of root. process (which will get the fln..l message).
c (if foot is negative, t.hen the smallest. node number in the act.ive
c subcube acts a.sroot and t.ben forwards t.he message to the root,
c wbicb sbould be the bost, or, in release 3+, a subcube.)
c DIM t.h.esize of tbe aubcube part.icipating.

for t.he root. process, X cont.ains t.be desired result.

for all other processes, X cont.ains tbe partial result
for t.heir subtrees.

c

c Workspace
c
c WORK
c

c Errors Conditions

used t.o receive ot.her contributions.

c

c If ca.lled by a nonpart.icipat.ing node, an error message is
c syslogged a.nd tben the subroutine exits.
c
c: If a. message longer t.ban N element.s is received, only t.he first N
c element.s are saved, &Derror messa.geis syslogged,
c aDd then the computation continues with the truncated results.
c

c If a message sborter t.ban N element.s is received, then an error
c message is syslogged a.nd the computation continues.
c
c Ca.lIs: MYNODE, MYPID, RECVW, SENDW, SYSLOG, XOR
e

INTEGER BIT, BYTES, CNT, DlFF, DPSIZE,I,IGNORE, ME, MYNODE,

c

c Output...
c

c X
c
c
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e MYPID, P, PARENT, PID, TROOT, XOR
PARAMETER (DPSIZE - 8)

c
ME - MYNODE()
P - 2eeDIM

c
c Find t.emporary root. (eit.her t.he real root., or t.he lowest
c numbered node in t.he active subcube--found by zeroing t.he
c DIM lowest.bit.s in mynode).
c

TROOT - MAXO«ME/p)ep,ROOT)
c

PID - MYPIDO
DIFF - XOR(ME,TROOT)
IF (DIFF .GE. P) THEN

CALL SYSLOG(MYPIDO,'GOP: CALLED BY NON PARTICIPANT')
RETURN

ENDIF
c
c Accumulat.e cont.ribut.ions from children, if any
c

BIT- 1
IF (DIFF EQ. 0) DIFF - P
BYTES - DPSIZEeN

10 IF (XOR(BIT,DIFF) .LT. DIFF) GO TO 30
CALL RECYW(CI,TYPE,WORK,BYTES,CNT,IGNORE,PID)
IF (CNT .GT. BYTES) CALL SYSLOG(TYPE,'GOP: LONG MESSAGE')
IF (CNT .LT. BYTES) CALL SYSLOG(TYPE,'GOP: SHORT MESSAGE')
DO 20 I - I, N

IF (OP .EQ. '+') XCI)- X(I) + WORK(I)
IF (OP EQ. 'e') X(I) - XCI)e WORK(I)
IF (OP EQ. 'M') X(I) - DMAX1(X(I),WORK(I»
IF (OP EQ. 'm') X(I) - DMIN1(X(I),WORK(I»

20 CONTINUE
BIT - 2eBIT

GO TO 10
c
c Pass result back t.o parent., if any
c

30 CONTINUE

IF (ME .NE. ROOT) THEN
PARENT - XOR(ME,BIT)
IF (MEEQ. TROOT)PARENT- ROOT
CALL SENDW(CI,TYPE,x.BYTES,PARENT,PID)

ENDIF
RETURN
END

B.2. IGOP

SUBROUTINE IGOP (CI, TYPE, X, N, OP, ROOT, DIM, WORK)
INTEGER CI, TYPE, N, ROOT, DIM
CHARACTERel OP

INTEGER X(N), WORK(N)
c
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c Global vect.or commutative operation using spa.nning tree.
c

c All participating proce86es must have the same process id (PID).
c

c Input..
c

CI
TYPE

channel number (previously opened).
message type. Must be the sa.me for all participating

processes. There must be no otber messages of tbis type
in tbe system.
the input vector to be used in t.he operation.
t.he length of the vector.
'+' sum

,e- product
'M' maximum
'm' minimum

c
c
c
c
c
c
c
c
c
c

X
N
OP

c ROOT Node id of root process (which will get the Bnal message).

(if -32768, tben tbe sma.llest node number in tbe active
c lSubcube a.cts &5root and then forwards tbe messa.ge to the host)
c DIM the size of tbe subcube pa.rticipating.

Output..
c

x for the root process, X contains t.be desired result.
for all other processes, X contains the pa.rtial result
for tbeir subtrees.

c
c

Workspace

WORK used to receive other contributions.

Errors Conditions

c If called by a nonparticipa.ting node, an error message is
lIysloggedand then the subroutint exit.s.

c

If a message longer than N element.sis received, only the first N
elements are saved, an error messa.geis syslogged,

c and then the computation continues with the t.runcated results.

If a me86ageshorter t.han N element.sis received, t.henan error
message illsyslogged and t.he computat.ion cont.inues.

Calls: MYNODE, MYPID, RECVW, SENDW, SYSLOG,XOR
c

INTEGER BIT, BYTES, CNT, DIFr, ISIZE, I, IGNORE, ME, MYNODE,
· MYPID, P, PARENT, PID, TROOT. XOR
PARAMETER (ISIZE - 8)

e
ME - MYNODE()
P - 2eeDIM

c
c Find t.emporary root. (eitber tbe nt-I root, or tbe lowest
e numbered node in the active 8ubcube-!ound by zeroing t.he
c DIM lowest bits in mynode).
e

TROOT - MAXO((MEjP)ep, ROOT)
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c

PID - MYPIDO
DIFF - XOR(ME,TROOT)
IF (DIFF .GE. P) THEN

CALL SYSLOG(MYPlDO,'GOP: CALLEDBY NON PARTICIPANT')
RETURN

ENDIF
c

c Accumulate contributions Cromchildren, iCany
c

BIT- P/2
BYTES- ISIZE.N

5 IF (BIT .LE.DIFF)GOTO 20
CALLRECVW(Cl,TYPE,WORK,BYTES,CNT,IGNORE,PID)
IF (CNT.GT. BYTES)CALLSYSLOG(PlD,'GOP:LONGMESSAGE')
IF (CNT.LT. BYTES)CALLSYSLOG(PID,'GOP:SHORTMESSAGE')
DO 10I - I, N

IF (OP .EQ. '+') X(I)- X(l)+ WORK(J}
IF (OP EQ. '.') X(I) - X(I)· WORK(I)
IF (OP EQ. 'M')X(I)- DMAXI(X(I),WORK(I))
IF (OP EQ. 'm') X(I)- DMINI(X(I),WORK(I))

10 CONTINUE
BIT - BIT/2

GO TO 5
c

C P&55result back to parent
c

20 CONTINUE

IF (BIT .NE. 0) THEN
PARENT - XOR(ME, BIT)

CALL SENDW(CI,TYPE,X,BYTES,PARENT ,PID)
ELSE .

IF (ROOT .LT. 0) CALL SENDW(CI,TYPE,X,BYTES,-32768,PID)
ENDIF
RETURN
END

B.3. GRECVW

SUBROUTINE GRECVW(CI, TYPE, BUF, LEN, CNT, DIM)
INTEGER CI, TYPE, BUF(.), LEN, CNT, DIM

c

c Global send participant. Receives message Crom unknown source and

c sends it on to some neighbors.
c

c All particip&ting processes must ba.ve tbe s&meprocess id (PID).
c

c Input...
c
c CI
c TYPE
c
c
c LEN
c DIM

cha.nnel number (previously opened).
mess&getype. Must be tbe s&meCorall participating

processes. There must be no other messages of this type
in tbe system.

tbe length oCBUF in BYTES.
tbe dimension oCthe subcube participating in the send.
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t'-'e meaaage (which may actually be any type).
the length (in BYTES) or the message received.

c
c Error Conditions
c
c If a message ,longer tha.n LEN bytes is received then only
c LEN bytes will be stored in 5UF and the rest or the
c message will be lost. In this case an error message
c will be sent to syslog but the remnants or the messa.ge
c will be sent on.
c

NOTE: only \those nodes which will participate in the
c send can call GRECYW. Any other node which calls it
c will never return.
c
c Calls: MYNODE, MYPID, RECYW, SENDW, SYSLOG, XOR
c

INTEGER BIT, I, LENOUT, ME, MYNODE, MYPID, NODE, P, PID,

* PIDIN, XOR
c

P - 2"DlM
ME - MYNODEO
PID .. MYPIDO

CALL RECVW(CI, TYPE, BUF, LEN, CNT, NODE, PIDIN)
c

LENOUT - CNT

IF (CNT .GT. LEN) THEN
CALL SYSLOG(PID,'GRECYW: MESSAGE TRUNCATED')
LENOUT - LEN

ENDIF
c

BIT - 2*XOR(ME,NODE)
c
c Check to seeil received rrom host.
c

IF (IABS(NODE) .GT. 128) BIT - 1
c

DO 10 I - :1,DIM
IF (BIT .EQ. P) RETURN
NODE - XOR(ME,BIT)
CALL SENDW(CI, TYPE, BUF, LENOUT, NODE, PID)
BIT - 2-BIT

10 CONTINUE
END

B.4. GSENDW

SUBROUTINE GSENDW(CI,TYPE, BUF, LEN, DlM)
INTEGER. CI, TYPE, BUF(*),LEN, DlM

c

c Global send or dds.. Ot.herps.rt.icips.nt.s ca.Jlgrecvw.
c

c
c Output..
c
c BUF
c CNT
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c AU participating processes must bave tbe same proceas id (PID).
c

c Input
c
c
c
c
c
c
t
c
c
c Ca.lIs: MYNODE,MYPID, SENDW, XOR

BUF
LEN
DIM

ehnnel Dumber (previously opened).
message type. Must be the same ror all participating

proeesses. 'There must be no other messages or this type
in the system.

tbe messa.gebuffer (which may actually be any type).
tbe lengt.h or tbe buffer in BYTES
tbe dimension or the subcube

CI
TYPE

c
INTEGER BIT, I, ME, NODE, MYNODE, MYPID, PID, XOR

c
ME - MYNODEO
PID - MYPIDO
BIT- 1

c

DO 10 I - I, DIM
NODE - XOR(ME,BIT)
CALL SENDW(CI, TYPE, BUF, LEN, NODE, PID)
BIT - 2*BIT

10 CONTINUE
RETURN
END



102

SWAP

subroutine IIwap(xx,kk,mm)
c
c Exchange of the k.th and moth components of a sparse vector
c
c on entry
c
c xx integer
c pointer to the vector where the exchange takes pla.ce
c kk integer
c index of one of the components to be excha.nged
c mm integer
c index of the other component to be exchanged
c

integer x,xx,k,m,kk,mm
integer kp,mp
include 'sparse.h'

k-minO(kk,mm)
m-maxO(kk,mm)

c
c find kp and mp 80 tha.t row(kp) >- Jcand row(mp) >- m

x -xx
kp- x

10 if (row(Jcp).ge. Jc)go to 20
kp - next(kp)
go to 10

20 mp - Jcp

30 if (row(mp) .ge. m) go to 40
mp - next(mp)
go to 30

40 continue
c
c four cases to consider

if (row(Jcp).gt. Jc.and. row(mp) .gt. m) then
c both components are zero. do nothing
c
c one component is nonzero. cut and paste

elseif (row(kp) .eq. Jc.and. row(mp) .gt. m) then
call candp(Jcp,mp,m)

elseif (row(kp) .gt. k .a.nd. row(mp) .eq. m) then
call ca.ndp(mp,kp,k)

else
c
c both components are nontrivia.1. swa.pthe va.lues

ca.1Iswreal(val(Jcp), val(mp))
endif
end
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SWREAL

subroutine swreal(alra,beta)
c

c Swap two variables
c
c on entry
c

c alra double precision
c variable to be exchanged with beta
c beta double precision
c variable to be exchanged with alra
c on return
c
c

c
c

aUa
beta

the value entered as beta
the value entered as alra

double precision alra,beta,t
t - alra
aUa- beta
beta - t
end
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XOR function

INTEGER FUNCTION XOR(M,N)
INTEGER M,N

c
c exclusive or
c
c Builtin on UNIX r77.
c
c For Intel FTN286 use:
c XOR - M.NEQV.N
c
c For RIM Fortrn use:

XOR - IEOR(M,N)
c

RETURN
END



APPENDIX B

SUBROJlIKE KJ'I (A, LDA, N)

c

c FORM 111 -SAXPY

c

REAL I(LDA, N)

DO 401: = ~, N-1

m 10 I = K+1, N

A(I,K) = -A(I,K) / A(K,K)
10 CONTIlUE

lID 30 J = K+1, N

DO 20 I = K+1 ,N

A(I,J) = A(I,J') + A(I,K) · A(K,J')

20 CONTINUE

30 CDNTINUE

40 CONTImE

1ETUm'

END

Form KJ'I

SUBRar.rlJiE JKI (A, LDA, N)

c

c: FORM lKl -GAXPY

c:

1EAL l:(LDA,N)

D040.1=l,N

lID 20 K = 1 , J'-1

DO 20 I = K+1, N

A(I,J') = A(I,J') + A(I,K) · A(K,J')

10 CONTINUE

20 CO~INUE

10 30 I '" .1+1, N

A(I,J) = -A(I,J)/A(J,J)

30 mN'TINUE

40 COWTDUE

RETU1III

END
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Form JKI

SUBROUTINE IJK(A.LDA.N)

c:

c: !ORM UK -DOT

c:

lEAL A (LDA. N)

DO SO I = 1. N
DO20 J = 2 . I

A(I.J-1) = -A(I.J) / A(J-l.J-l)

DO 10 I = K+1. N

A(I.J) = -A(I.J) + A(I.K) · A(K.J)

10 CONTINUE

20 CONTINUE

DO 40 J = 1+1. N

DO 30 K = 1. 1-1

A(I.J) = -A(I.J) + A(I.K) · A(K.J)

30 CONTINUE

40 CONTINUE

40 CONTINUE

2ETURN

END

Form IJK

SUBROUTINE JKIPVT(A.LDA.N)

c:

c: FORM JKI -GAXPY

c: WITH PIVOTING

c:

1EAL A(LDA.N). T

DO 60 J = 1. N

DO 20 K =1. .1-1

DO 10 I = K+1. N

A(I.J) = A(I,J) + A(I.K) · A(K.I)
10 CONTINUE

20 CONTINUE

c:

c: PIVOT SEARCH

c:

T = ABS(A(J.J»

L = J
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DO30 I = J . 1, N

IF (ABS(A(I,J» .CT. T) THEN

T = ABS (A (I .J»

L = I

ENDIF

30 CONTINUE

c

c INTERCHANCE ROWS

c

DO 40 I = 1, N

T=A(J',I)

A (J' , I) = A (L, I)

A(L,I) = T

40 CONTINUE

c

A(I,J') = -A(I,J')/A(J,J)

SO CONTINUE

60 CONTINUE

RETURN

END

Form J'KI (with pivoting)
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