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Run-time Information Fusion in Large Vocabulary Continuous 
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Continuous speech recognition systems are environmentally sensitive and suffer from 

the great variability of speech. In order to achieve recognition robustness, there's a strong 

interest among researchers on how to fuse different information sources for speech recog- 

nition. A common problem of those approaches is that complementary information is lost 

either before or after recognition. 

To avoid this unrecoverable information loss, and to better utilize this complementary 

information, we proposed a run time information fbsion scheme. The hypothesis of this 

thesis is that by performing fusion at different levels and stages of a Large Vocabulary 

Continuous Speech Recognition (LVCSR) system, especially inside the decoder, more 

reliable and efficient fusion is possible. 

The hypothesis is first tested in a speech segmentation task, which is essential to 

the performance of an LVCSR system. Furthermore, three different approaches of run 

. . . 
Xll l  



time fusion are proposed and implemented inside an LVCSR decoder. The experiments 

demonstrate the effectiveness and potential of these approaches. 
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Chapter 1 

Introduction 

The goal of this thesis work is to attack the major barriers that prevent existing speech 

technology from being used in real world noisy operating environment. Towards this 

end, this thesis will address an innovative work in performing run-time fusion of mul- 

tiple information sources. Whereas the ASR field has evolved from speaker-dependent 

to speaker-independent systems, we believe that this direction of research is essential to 

achieve the next generation of "environment-independent" speech recognition. 

Fletcher and his colleagues at Bell Labs extensively studied how humans process 

and recognize speech [I]. This work showed that the phones are processed in indepen- 

dent articulation bands and that these independent estimates are "optimally" merged to 

achieve the recognition results. Recent research activities on multistream or multiband 

also demonstrated the importance of looking at the data from different angles (different 

signal processing and features) and fusion of the information to obtain improved recogni- 

tion accuracy (a greater than 20% error reduction was found in the SPINE1 task by doing 

so). However, both Fletcher and the recent activities did not explicitly conclude how dif- 

ferent information should be fused to form the sound-unit recognition in order to achieve 

human-like performance. 

In this thesis work, we investigated fusion strategies during the decoding stage (run 

time) so that critical information will be utilized earlier to avoid pruning errors that may 

not be recoverable in a later processing stage. Mathematically, this thesis work is different 

from previous work, which assumes either time-synchrony (concatenating the features to 



form a single feature stream, such as appending energy to MFCC) or complete indepen- 

dence (running separate recognitions and combining the lattices). 

From the theoretic side, how humans use complex components for speech recognition 

are not, as yet, deciphered. Research on using multiple feature streams in one system 

has a relative short history. From an engineering side, conducting information fusion at 

the decoding stage requires knowledge of traditional LVCSR decoders and a deep under- 

standing of speech recognition at the system level. 

This thesis will first lay down the theoretic framework of the run time fusion approach, 

then describes the detailed design and implementation from the engineering point of view. 

The goal of this thesis work is to bring multi-information systems to a new level of excel- 

lence and change the way in which complementary information extracted from different 

features is utilized. 

1.1 Speech Recognition System Structure 

Most state-of-the-art speech recognition systems (Figure 1.1) use a two pass decoding 

strategy in which the fist pass (tree recognizer) produces a graph of the most likely word 

sequences, and the second pass (graph recognizer) searches this graph for the single best 

hypothesis. Each node (word or phone) in the graph has an acoustic likelihood estimated 

by matching HMM acoustic models against the input signal, and a language score cal- 

culated from an n-gram language model. The term decoding is often used to refer the 

process of recognizing the spoken words from the acoustic signal. Correspondingly, the 

recognizer is often called a decoder in reference to the information-theoretic model of 

speech production and recognition. 

A speech recognition system can be divided into the following parts: 

1. Pre-processing: speech segmentation and feature extraction 

In this step, the input speech stream is first transformed into a sequence of au- 

dio segments, which we call spoken utterances (sentences). The speech waveform 
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Figure 1.1 : Structure of a speech recognition system 

Speech sounds are first converted to a sequence of features and then the recognition is 
performed to find the hypotheses that best match the speech. 

of each utterance is converted by a front-end signal processor into a sequence of 

acoustic vectors, 0 = o l ,  02 ,  . . . , ot . Each of these vectors is extracted from the 

short-time speech spectrum covering a period of typically 10 msec, which is called 

a frame. The extracted speech vectors are also called speech features, which are 

used as observations in the mathematical modeling of acoustics. Ideally, the speech 

features should contain as much information as possible about the linguistic content 

of the speech while being reasonably compact and free of redundant details. 

The feature extraction processing can be further divided into: 



(a) Speech Segmentation 

Segmentation is the task of chopping long utterances into short ones and re- 

moving non-speech events. 

(b) Channel and Gender Detection 

For some systems, the pre-processing step may also include channel and gen- 

der detection. Experiments show that system performance degrades rapidly 

when the acoustic model is mismatched to the actual input speech. Multiple 

acoustic models are trained for each channel or gender condition in these sys- 

tems. For each test utterance, the channel and gender detection step identifies 

an appropriate acoustic model to use in the later steps. 

(c) Speaker Detection 

Similar to channel and gender detection, a speaker adapted model perfonns 

better than a non-adapted model. Speaker detection is used to identify the 

speaker of the test utterances, thus the speaker adapted model can be used in 

recognition. 

2. Speech recognition: searcwdecoding 

In the recognition step, the speech recognizer performs a massive search to find 

the most likely word sequence that matches the acoustic observations. Suppose 

the input utterance consists of a sequence of words W = wl, wa, . . . , w, . The 

speech recognition system will determine the most likely word sequence w given 

the observed acoustic signal 0. The search uses several knowledge sources: 

(a) Acoustic Model (AM): Contains the probability of observing the vector se- 

quence 0 given some specified word sequence W. 

(b) Language Model (LM): Represents the a priori probability of observing W 

independent of the observed speech signal. In other words, it models the 

probabilities of word sequences. 



(c) Pronunciation Lexicon: Is a list of vocabulary words in the system and their 

pronunciation rules. 

3. Post-processing: hypotheses generation 

This post-processing step generates the best hypothesis and outputs it in a certain 

format. Some optional procedures may be contained in the post-processing step: 

(a) N-Best hypotheses generation. 

The top N scored hypotheses are selected and outputs it in certain formats. 

Score is usually attached for each hypothesis. The hypothesis could be listed 

as a word sequence or a phoneme sequence. The N-Best hypotheses are usu- 

ally in a text format. 

(b) Word graph or word lattice generation. 

Similar as N-Best hypotheses. Word graph contains the top scored hypotheses. 

However, word graph is not constrained by the 'N' as the N-Best approach. 

All the paths which reach the end of search could be included into the word 

graph. Thus word graph is constrained by the search pruning thresholds. An- 

other difference between word graph and N-Best hypotheses is that the word 

graph is organized in the form of a graph whose nodes represent the hypoth- 

esized words. Word graph provides a more compact representation compared 

to N-Best hypotheses. Word graph is usually stored in some special binary 

format thus lacks readability. 

(c) Hypotheses re-scoring. 

The results obtained from the two procedures above can be re-scored by more 

accurate knowledge sources such as a high-order language model. Re-scoring 

can also be performed by running a second recognition pass with a more de- 

tailed acoustic model and language model. 



1.2 Mathematical Basics of Speech Recognition 

The task of a speech recognition system is to find a word string W  = wl, wz, . . . w ~  that 

maximizes the posterior probability of the string W  given the speech observations 0 = 

ol, 02, ... OT,' that is: 

w = a r g m ~ x  P(WI0) (1.1) 

According to Bayes ' rule: 

where P(0)  is the distribution of the speech observation. Since P(0)  is constant over 

the time period of interest, it can be omitted from the equation above. 

Combining these two equations together, we get: 

The recognition procedure is a massive search over all the possible word sequences 

to find a word sequence w that maximizes P(W)P(OI W ) .  P(W) represents the "a 

priori" probability of observing W  independently of the observed acoustic event, and 

acts as a grammar constraint on the word sequence. P(W) is extracted from a language 

model during recognition, which is trained from a text database. P(OI W )  represents the 

probability of observing the vector sequence 0 given a specified word sequence W  and 

measures how well the observed speech sound matches the word sequence. P(O(W) is 

determined by an acoustic model during recognition and it is also trained beforehand on 

some speech databases. 

1.3 Acoustical Modeling with HMMs 

As stated in Section 1.2, the acoustic model is used to calculate the likelihood of gener- 

ating any acoustic vector sequence 0 given a word sequence W .  The acoustic model is 

'This process is often called decoding. 
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Figure 1.2: Different levels of modeling of a sample sentence 

The modeling unit is context triphones. They are obtained by first expanding each word 
in a sentence into its pronunciations and then constructing triphones according to the left 
and right context of each phoneme. The phoneme /spl represents an optional short pause 
between two words. Usually /sp/ is skipped when considering contexts. 

obtained by a statistical based training procedure that requires many speech samples of 

each word w for a reliable estimation. In large vocabulary systems, words are no longer 

the appropriate acoustic modeling unit because it is impractical to collect sufficient sam- 

ples for each word. A unit smaller than a word, such as phone, is the most popular 

modeling unit in this case. To model the co-articulation effect of speech, context depen- 

dent phones are used instead. The simplest and most often used context dependent phone 

is the triphone, which is a single phone that takes into account its left and right neigh- 

boring phones. For distinction with triphone, the context independent phone is called a 

monophone. As shown in Figure 1.2, a word is represented first by a series of mono- 

phones according to its pronunciations and then by a series of context triphones. The 

construction of a triphone is to combine each phoneme with its left and right context. For 

example, "a-b+c" represents the phone "b" with a left neighboring phone "a" and a right 

neighboring phone "c". Each context triphone is modeled by a certain model. In Figure 

1.2, there are two instances of phone "ih" with different neighboring phones, which are 

represented by different triphones and therefore different models. In the latter chapters, 



the acoustic model is denoted as A, following standard conventions. 

1.4 Fusion in Speech Recognition 

With the advance of computer hardware and speech technologies, automatic speech recog- 

nition (ASR) systems have been deployed in commercial applications in the last decade. 

However there is still a long way to go before an ASR system can reach performance 

comparable to humans [53]. 

One major challenge that current statistically based ASR technology is facing comes 

from the great diversity and variability of speech sources and transmission channels. It 

is still very difficult for an ASR system to deal with these variations. Often, a speaker 

change, or even an emotional change in the same speaker, causes recognition performance 

to degrade. Speech variations come from many sources: background noise, channel con- 

dition, music, speaker emotion, dialects, disfluency, murmur, etc. 

Adverse acoustic environments, such as noise, music and background speech can also 

dramatically degrade the performance of current ASR systems. 

Current statistically based ASR systems try to ease the problem by performing training 

on large amounts of collected speech data. However it's impossible to model all the 

diversity and variability with limited data. Even small mismatches between training and 

testing data can cause sharp performance degradation. 

For many years, research has been devoted to finding a "perfect" feature representa- 

tion of the speech signal. It seems an endless journey so far, just as we cannot make a 

"perfect" recognizer that makes no mistakes. Current speech recognizers adopt a single 

"best" feature set according to the task they are facing and measure the result on a devel- 

opment data set. Also feature representations have fixed parameters (such as the window 

and frame size, and the number and shape of the band filters) during feature extraction. 

However, different features, or features with different parameters, can represent the 

same speech input differently. Information loss is inherent for any feature extraction 



method [ l l ] .  The remaining information is different for features that are based on dif- 

ferent feature extraction methods. These differences represent different subsets of infor- 

mation contained in the original speech signal. It is plausible that these differences will 

cause different recognition results. 

Human auditory studies also support that there are multiple forms of signal processing 

occurring in the auditory system [24]. Evidence was found in the mammalian auditory 

system that each auditory nerve fiber splits and transmits the same data through seven 

different types of nerve cells. Each type of cell produces a different response and their 

outputs are combined at higher level processing [I, 291. Additional research shows that 

humans can recognize speech with limited spectral cues and can easily integrate acous- 

tic cues from different frequency regions for speech perception. When the environment 

becomes noisier, humans rely on more cues from the speech signal. 

For these reasons (from both theoretical and engineering viewpoints), there's a strong 

interest among ASR researchers on how to combine different features for speech recogni- 

tion. The success of this research is partly due to the efficiency of improving recognition 

accuracy, partly due to the simplicity and ease of deployment. The existing art can be 

roughly classified into two categories: pre-recognition and post-recognition combina- 

tion. Complementary information from multiple features is adopted either before or after 

recognition. 

To utilize the complementary information from multiple features, pre-recognition ap- 

proaches, such as the Multi-Stream approach [l  1,42,61], were proposed in recent years. 

Feature or probability combination is performed before the actual recognition engine 

started. 

Similar complementary characteristics were observed when using different acoustic 

or language models; some models perform well for certain speakers or environments but 

degrade under other circumstances. Two systems with identical performance can have a 

huge difference in the errors they make. To utilize the differences in the multiple recog- 

nizers, people started to combine the outputs of several recognizers in a post-recognition 



combination scheme. Approaches in this scheme include ROVER [28], hypothesis com- 

bination [82], etc. All of them have demonstrated their ability to improve recognition 

performance. 

1.5 This Thesis 

The fusion approaches presented above have proven to be effective in improving system 

performance. However some complementary information is either lost after the recogni- 

tion (such as in post-recognition) or not fully used (such as in pre-recognition). To avoid 

these problems, we proposed a run time fusion scheme. The main idea of our approach is 

to conduct information fusion during the run time of a recognizer (or decoder). 

The first proposed approach is to use fusion to segment the speech into utterance at 

the run time of the recognizer ("Segmenter" in Figure 1.1). Multiple filter bank coeffi- 

cients are fused to make the speecWnon-speech detection. The segmentation approach is 

evaluated by performing the recognition on the segmented files and measuring the overall 

word error rates. 

The other proposed approaches are performed inside the recognizer such as the "Tree 

Recognizer" and the "Graph Recognizer" in Figure 1.1. The core of an LVCSR system 

is a complex decoder coupled with an acoustic model and language model. Both the 

acoustic model and language model for an LVCSR system are very large in scale and 

contain statistical information obtained from a huge database. During the decoding, the 

decoder will produce a rather rich content that is largely ignored, but we believe it is 

worth exploring in this case. We believe that the content produced during recognition 

represents complementary information in a multiple level aspect (Figure 1.2). To better 

use the complementary information, the decoder is a suitable platform that provides more 

reliable control on a much richer context. During-recognition fusion not only can reduce 

2 ~ h i l e  there are minor differences in the contexts in which the term recognizer and decoder are used, 
we consider them to be synonymous in this thesis 



the unrecoverable information loss occurring in pre- or post-recognition approaches but 

also provides a better framework to more fully use the information. Maybe the complexity 

of current decoders hinders research in this direction, but we have the knowledge and tools 

to conduct this study. The complexity of our approach can be limited to the design and 

implementation of the decoder. As a black box, the re-designed decoder can still be easy 

to deploy without much increase in operation cost. It is our hypothesis that by wisely 

using the complementary features during recognition, a significant gain can be expected. 

In this thesis, various fusion algorithms and implementation techniques are studied. 

Overview of the Rest of the Thesis 

Chapter 2 contains the background technology used in this thesis. This chapter will give 

a general description of the structure of current continuous speech recognition systems 

including acoustic model training and decoding. This chapter introduces the concept of 

Hidden Markov Model, the most widely used statistical approach for speech recognition. 

This chapter describes the Viterbi algorithm, which is used to conduct an efficient search 

in a speech recognition system, which we will revisit in Chapter 5. Various technologies 

are used to control the search cost. The technologies described in this chapter are closely 

related to the implementation of our run time fusion and we will use these concepts in 

Chapter 5. This background information is necessary to understand how we implement 

our fusion approach in an efficient way. 

Chapter 3 describes the speech recognition tasks that are used throughout this thesis 

and the essential components of our baseline system. This chapter gives some introduc- 

tions on the speech signal processing and the speech feature extraction. This chapter also 

contains the details of building the baseline system used in this thesis work. Some add- 

on technologies such as retraining, class-based language modeling were implemented to 

improve our baseline system. At the end of this chapter, we obtained a very competitive 

baseline system, which is about the best system we can get by using traditional techniques. 



Chapter 4 gives a background review on some existing approaches to performing fu- 

sion in speech recognition. Information fusion in speech recognition is a relatively new 

and active research area. It was based on the research findings on human speech recog- 

nition (Section 4.1). Current fusion approaches can be roughly classified into two cate- 

gories: pre-recognition (Section 4.2) and post-recognition combination (Section 4.3). We 

will give a review on these existing fusion approaches and their advantages and disadvan- 

tages. 

Chapter 5 will present how we approach the problems in the existing fusion ap- 

proaches, rooted in their inefficient use of the complementary information. We propose a 

run time fusion framework to address these problems. We further present the detailed de- 

sign and implementation of our approach. Under the general high level fusion framework, 

we designed three different fusion approaches. These three approaches are based on the 

same hypothesis, that by applying complementary information at an earlier stage of the 

recognition process, the final system will be able to obtain much better accuracy. These 

three approaches differ from each other at when, where and how the fusion is performed. 

We investigate these three approaches (or system architectures) in the hope of making the 

best use of multi-information sources. Experimental results are given after each approach 

to demonstrate the advantages of our solutions. 

Chapter 7 presents a new speech segmentation approach based on two levels of fu- 

sion. The first level of fusion applies to the spectral sub-bands and fuse multiple filter 

bank coefficients. This new approach takes advantage of current feature extraction pro- 

cedure, with little additional computation cost. Another level of fusion was performed by 

fusing the results from several segmentation systems. Experiments show our fusion based 

approaches significantly reduced the WER compare to two classifier-based approaches. 

Compared to a manual segmentation, our approach only has 0.3% WER increase. 

Section 8 summarizes this thesis work and describes out our future research direc- 

tions. 



Chapter 2 

Background Technology 

This chapter contains the background technology used in this thesis. Section 2.1 intro- 

duces the concept of hidden Markov model and its application in speech recognition. 

Section 2.2 describes the traditional acoustic model training approach. Section 2.3 de- 

scribes the Viterbi algorithm, which is used to conduct an efficient search in a speech 

recognition system, which we will revisit in Chapter 5. The potential search space in an 

LVCSR task is prohibitive for a full search, and various technologies are used to tackle 

this problem (Section 2.4). The technologies described in this section are closely related 

to the implementation of our run time fusion and we will use these concepts in Chapter 5. 

This background information is necessary to understand how we implement our fusion 

approach in an efficient way. 

2.1 Hidden Markov Model 

The acoustic models mentioned above are basic entities used for modeling certain speech 

features. There are many modeling techniques in the history of speech recognition: dy- 

namic template comparison, knowledge based matching, neural network, and Hidden 

Markov Models (HMM). These techniques have their own advantages in certain applica- 

tions. HMM is so far the most widely used and most effective approach. Its popularity is 

mostly due to its efficient algorithms for training and recognition, and to its performance 

superiority over other modeling techniques. 
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Figure 2.1 : An example of Hidden Markov Model 

There are 5 states in this figure and state 1 is the entry state and 5 is the exit state of this 
HMM. An HMM can be viewed as a finite state machine with transition probability aij 

from one state i to another j .  The observation sequence is generated with output proba- 
bility density bj (o t )  represented by Gaussian mixture densities. State 1 and 5 do not have 
associated observation probabilities. 

An HMM has a certain number of states connected with directional arcs. It can be 

viewed as a finite state machine that changes its state once every time unit by following 

the arcs in the HMM topology. Figure 2.1 illustrates a typical three state HMM. (State 1 

and 5 are pseudo states used for modeling a triphone.) The transition from state i to state 

j is determined by the probability aij. At each state j ,  a speech vector (observation) ot is 

generated with probability density bj (o t ) ,  represented by Gaussian mixture densities: 

where wjm is the weight of mixture component rn in state j and N denotes a multivariate 

Gaussian of mean p and covariance C. 

The wj,, satisfy: 
M 



and 

is a multivariate Gaussian distribution with mean vector pj,, and covariance matrix Cj,,, 

where D is the feature dimension and (ot - pjm)T denotes the transposition of (ot - pjm). 

An HMM contains two stochastic processes: a transition process accounts for tempo- 

ral variability, and an observation process for spectral variability. These two stochastic 

processes have been successfully used to model the speech variability, and at the same 

time be flexible enough for building a practical system. For ASR, only the observed se- 

quence of events is known and the underlying transition process is unobservable. This is 

why it is called a "hidden " Markov model. 

There are two basic assumptions in the HMM based ASR systems: 

1. The first-order N state Markov assumption claims that the current system status 

depends only on its previous N states: 

where st stands for the system being at state st at time t. In most ASR systems, as 

shown in Figure 2.1, N is 1 which means only the previous state has influence on 

current status. 

2. The observation independence assumption assumes that the observation probability 

of a state depends only on the state, regardless of when and how the state is entered. 

Under these two assumptions, the joint probability of an observation sequence 0 = 

ol, 02, ..., OT and its corresponding state sequence s = so, sl, ..., ST can be calculated 

as follows: 



2.1.1 Likelihood Evaluation: the Forward and Backward Algorithm 

Given an HMM represented by A and an observation sequence 0 = (olo2.. . oT), the 

occurrence probability of the observation P(0IA) can be theoretically calculated by sum- 

ming Equation 2.5 over all possible state sequences. Let T,, = a,,,, be the initial proba- 

bility of state sl. 

Let oE be the partial observation sequence of ( 0 ~ 0 ~ .  . . ot). The forward probability 

ai (t) is defined as 

ai(t) = P(oi, st = ilA) (2.6) 

which is the joint conditional probability of the partial observation sequence, 0102 . . . ot 

and state i at time t, given the model A. 

And the backward variable Pi(t) is defined as 

which is the conditional probability of the partial observation sequence from time t + 1 

on, given both the model and known state occupancy in state i at time t. 

Initializing at time t = 1, the forward variable can be computed inductively using the 

following steps: 

1. Initialization 

( 1  = b ( 0 )  1 5 i < N 

2. Recursion 



3. Termination 

In the same way, we can initialize the backward variable at time t = T and compute 

it inductively using the following steps: 

1.  Initialization 

2. Recursion 

3. Termination 

The total likelihood P ( 0 ,  s I A) = in Equation 2.5 can be calculated by: 

When t = T, we can use Equation 2.8 to further simplify the equation above to 

So we only need the forward recursion for calculation P ( 0 ,  s I A) and this forward 

recursion is called the forward algorithm. The counterpart recursion is called backward 

algorithm and is used in training to estimate the model parameter. 



2.2 Acoustic Model Training: The Baum-Welch Algorithm 

The goal of acoustic model training is to estimate X by maximizing the probability of 

the observations P ( 0  I A )  over all training data. Solving the HMM training problem is 

difficult because the state sequence is hidden to us. There is no "correct" state sequence 

corresponding to a given observation sequence for all but the case of degenerate models. 

Therefore, no sufficient statistics of the state sequence is available to obtain a reliable 

estimation. Therefore it is impossible to analytically solve this problem. The best we 

can achieve is to obtain a X such that P ( 0  I A)  is the local maximum for the available 

training data. The Maximum Likelihood (ML) estimation is usually obtained through the 

Baum- Welch algorithm, also called the Expectation Maximization (EM) algorithm [23]. 

For the case of discrete HMM, the re-estimation formula are straightforward as follows: 

- a . .  = 
expected number of transitions f rom state i to state j 

v expected number of transitions out of state i 

expected number of t imes observing ot f rom state j 
bj(ot) = 

expected number o f  t imes in state j 

where the expectations on the right are determined using the current values of aij and 

bj (ot).  To compute these, we first need to define a variable, &ij ( t ) ,  the probability of being 

in state i at time t and state j at time t + 1, given the model and the observation sequence, 

that is, 

Using the forward and backward variables, we can rewrite it in the form 

We refer to it as two-state occupancy probability. We also need to define the one-state 

occupancy probability, 



Similarly, we can rewrite it as 

Put together, the Baurn-Welch re-estimation formula is 

In the case of continuous HMM, where the state output distribution takes the form of 

Gaussian mixture model (GMM) (Equation 2. I), the estimation formula for parameters 

of the GMM becomes: 

where the modified state occupancy probability is the joint probability of being in state j 

at time t with the mixture m accounting for observation ot. It is given as 

where we have simplified P = P(0IX) since it is constant for a given training utterance. 

Here we only give the formula for the case of a single training utterance. It is straightfor- 

ward to extend them to the case of multiple training utterances. 



2.3 Time Synchronous Recognition: The Viterbi Algo- 

rithm 

As described in Section 1.2, the recognition procedure is a massive search over all the 

possible word sequences to find a word sequence w that maximizes Equation 1.3. Within 

the HMM framework, search for w is realized by searching all possible state sequences. 

We can use the forward probability for the likelihood calculation, and Equation 1.3 can 

be re-formulated as follows: 

w = arg max P ( W )  P(OI W )  = arg ma* P ( W )  ~ ( 0 ,  sTI W )  W W 
(2.16) 

ST 

where ST means all possible state sequences from time 1 to T. The summation in Equa- 

tion 2.16 is for all possible state sequences under the constraint of word sequence W. 

Summing all possible state sequences will require a thorough search through the whole 

search spaces which is not affordable. 

Therefore replacing "sum" with "max" in Equation 2.16, the new search equation 

becomes: 

w = argmax P(W)P(OIW) = argmWax P ( W )  max P ( 0 ,  s r l ~ ) ,  
W 

(2.17) 
ST 

where only the most probable state sequence is considered. This replacement is called 

the Viterbi approximation or maximum approximation: The most likely word sequence 

is approximated by the most llkely state sequence. This approximation is certainly a 

sub-optimal assumption but in practice it works very well. 

To find the best state sequence for a given observation sequence, the Viterbi algorithm, 

a dynamic programming method, is used. If we define the quantity &(t) as the partial state 

sequence probability 

max P(s1. . . st-1, st = i, 01 . . . otlX) Mt) = s I... st-1 

then the basic Viterbi algorithm can be simply stated as 



1.  Initialization 

2. Recursion 

3.  Termination 

The final result of the algorithm is P,,,, the probability of the most likely state se- 

quence. The identity of the individual states within the sequence can be obtained by 

recording the argmaxfi) at each step of the Viterbi recursion and backtracking after the 

final result is found. By considering only the best state sequence at any time, the Viterbi 

algorithm does not need to store all the partial state sequences over time t. Therefore, it 

is memory efficient. Under the Viterbi algorithm, the search performs at both the state 

and word level and is executed in a time synchronous fashion in that it processes all states 

completely at time t before moving on to time t + 1. 

2.4 Tree Based Time Synchronous Beam Search 

There are two main components related to the computational cost of speech recognition: 

the acoustic model evaluation and the search. The fonner refers to the probability calcu- 

lation of the acoustic models and speech observations. The latter refers to the search for 

the best word sequence that matches the given speech utterance. Both components are 

essential to a recognizer and need to be integrated together in an efficient way. For large 

vocabulary systems, the search cost is significant and a careful design of the recognizer is 

necessary. 



2.4.1 Lexical Tree 

In small vocabulary systems, acoustic models are organized in a flat structure. Each word 

has its unique acoustic models corresponding to its pronunciations. In the flat structure, 

the source and target word models of a crossword transition are known at the transition 

stage, thus it is easy to incorporate a language model into the search. When the vocabulary 

size increases to certain amount, the recognizer cannot afford to have such flat structures 

anymore. 

In large vocabulary systems, the acoustic models are organized in a phonetic tree 

structure, called a tree-structured lexicon or lexical tree [63] [3 81 [69] [64], as illustrated in 

Figure 2.2. In recognition, the search for the most likely word sequence is based on the 

lexical tree, a prefix pronunciation tree. Each tree node (except the pseudo root node) is a 

phoneme of some word pronunciations. Words with the same prefix pronunciations share 

the same acoustic models representing these pronunciations and share the same tree paths. 

Each leaf node is associated with a word whose pronunciation is represented by the path 

from the pseudo root node to the leaf node. When a search path reaches a tree leaf node 

(the word-end pronunciation), the search space is extended by copying the entire lexi- 

cal tree under that leaf node. The tree-copy is a requirement in the traditional lexical tree 

search algorithm to form a unique search path (to determine the acoustic model to be eval- 

uated) and to retrieve the final transcription. Since the search paths are frequently created 

and discarded during the search, the lexical trees are copied and discarded accordingly. 

These operations occupy a large portion of the total search computation. 

The recognition is processed as the search paths pass through the lexical tree. The 

search is initialized from the pseudo root node. The context triphone is rendered and the 

corresponding acoustic model is used to calculate the acoustic score. The search path 

splits at the tree branches so that every possible path will be traversed. 

At each leaf node, the language model score is attached. The word associated with 

the leaf node is recorded as the search history and the search path goes back to the pseudo 
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Figure 2.2: An example of Lexical Tree 

Words with the same prefix pronunciations share the same tree paths. The search is per- 
formed as the search paths passing through the lexical tree. Each tree node is associated 
with a triphone HMM model. 

root node for searching the successive words. 

At the end of the search, the search path with the best likelihood score is traced back 

to retrieve the most likely word sequence and output as the recognition result. 

The lexical tree structure has the following advantages [ 2 ] :  

1. By introducing a high degree of sharing at the root nodes, the lexical tree structure 

reduces the number of word initial (acoustic) models that need to be evaluated. 

(Word initial models are the most frequently evaluated models in the flat structure 

systems.) 

2. The tree structure also greatly reduces the number of crossword transitions, which 



is again a dominant part of the search. 

The problems with a lexical tree occur at the word boundary: (1) The application of 

a language model has to be delayed because the target word of a crossword transition 

is unknown at the tree root nodes. (2) When the search paths cross the word boundary, 

the search space needs to be extended. And the search paths need to be unique after the 

extension. 

The traditional way to solve the problem is to copy the entire lexical tree (or to copy 

the tree-layers on demand). The tree-copy requirement results in high overhead (of CPU 

time and memory) for manipulating the lexical tree. The new lexical tree search algorithm 

in our system solves the problem by decoupling the search and the search space. The 

lexical tree is re-entered instead of being physically copied. 

A typical lexical tree is illustrated in Figure 2:2. Each tree node is associated with an 

acoustic model (a mono-phone model in the figure). Each path from the pseudo root node 

to a leaf node (also called a word-end node) represents the pronunciation of a word. The 

lexical tree is constructed as follows: 

1. The pronunciation of a word is represented by a series of mono-phone tree nodes. 

Acoustic models are associated with the tree nodes. The word is indicated by the 

corresponding tree leaf node. Tree nodes are shared by words with the same pro- 

nunciation prefixes. If a tee-model' is inserted as the last pronunciation of a word, 

the word is also indicated by the mono-phone node right above the tee-model. 

2. The sentence-end is represented as a special branch of the lexical tree. The sentence 

beginning is represented as a stand-alone lexical tree. 

'A tee-model is an optional silence model with very short duration. It is a special model because it is 
usually skipped when a left-context (or right-context) mono-phone is considered. 



2.4.2 Token Structure 

To search through the lexical tree, we need some structures to record the search status 

and history. The "token passing" [95] concept is used and extended in our algorithm to 

achieve the lexical tree re-entry. A token is a data structure to represent a (partial) search 

path at the current time frame. Each search path can be viewed as a token passing through 

the lexical tree. Additional data structures are carried with the tokens to distinguish the 

search paths on a tree node (I) with different re-entry times, or (2) re-entering the lexical 

tree from different words. 

To represent a search path, a token has the following elements: 

1. NODE: a tree node index indicating where the token resides in the lexical tree. 

2. NEXT: A tree node pointer indicating what is the next move. If NODE is a tee- 

model, NEXT is the move after evaluating the tee-model. 

3. TRIPHONE: the triphone model. If NODE is a tee-model, TRIPHONE is the last 

triphone model evaluated. Otherwise, TRIPHONE is the current triphone model 

to be evaluated. 

4. TEE: A tee-model pointer pointing to the tee-model node if the next evaluating 

acoustic model is the tee-model. Tee-model is a special phone model that needs 

special treatment. 

5. Log Likelihood: The log likelihood value of all the internal states in the triphone 

model. 

6. Pointer to Word Link List (WLL): WLL is a partial history list containing a list of 

words that the token passed by. The WLL also contains the time t and log likelihood 

value information. Upon the finish of the recognition, a back trace through the 

WLLs will retrieve the most likely word sequences. It is necessary to build a word 

graph after the recognition. 



The token passing algorithm is implemented in the Viterbi decoder by the following 

procedures: 

1. At time t, a token T reaches the HMM state i of lexical tree instance h. T represents 

the current best partial path that starts from time 0 to time t, which is the match be- 

tween the acoustic observation sequence, 01 to ot and a sequence of HMMs ending 

at state i of lexical tree instance h. 

2. At time t+l ,  the token is passed from state i to all traversable states on the lexical 

tree. Each state j of these states gets a clone of token T. 

3. The elements of the cloned token are updated accordingly: 

NODE is updated with the new node index number of the current tree node. 

NEXT is updated according to the topology of the lexical tree. 

TRIPHONE is updated if the current triphone is different from time t. 

TEE is updated if the current model is a tee model. 

Log Likelihood is incremented by adding the transition probability and state 

probability log(aij) + log(bj (o t ) ) .  

WLL is updated if it just exited from a word end node. 

4. For each state j, pool and rank all the tokens, discard all tokens except the one with 

the highest probability. 

Since each HMM state s was represented by a node in the lexical tree and the lexical 

tree was re-used by each new word instance, more than one token can propagate to state 

s at time t. We pool those tokens together as a token list TL(t;w;s). w means a language 

model state, it is necessary because we have to take account the word history information. 

At the same time frame, more than one lexical tree representing the same grammar word 

could be entered. Each one has a different language model state in the search space since 



they have different previous words. Each token in TL(t;w;s) can be distinguished by its 

partial path score r(t; w; s) and partial path history H(t;w;s). 

2.4.3 Lexical Tree Search 

The search is initiated from the pseudo root node of the sentence-beginning lexical tree. 

At each time frame, tokens split and move. Usually, a token splits itself into several 

tokens: one of the tokens remains at the particular tree node and is used to record the 

model internal transitions; other tokens advance to all the child tree nodes. The advancing 

tokens will have their internal data structures changed to reflect the move. When a tee 

model is encountered, a token makes additional splits (in addition to the normal splits 

mentioned above). The split tokens skip the tee model and go directly to the re-entry 

process. 

When a token reaches a word-end node, the lexical tree is re-entered. The token 

passing continues. At the end of the speech utterance, the search paths in the special 

sentence-end branch are sorted to give the transcription. 

The search is conducted on the lexical tree by decoupling the search and the search 

space. The search space is extended by re-entering the lexical tree instead of copying 

the lexical tree. Because a thorough search is neither affordable or necessary, multiple 

pruning methods are implemented to control the span of the actual search paths. The 

surviving search paths are recorded by the tokens, and a back tracing through the tokens 

can reconstruct the actual search space which is much smaller compared to the original 

search space. Experimental results show that this lexical tree method takes much less 

CPU time and memory to achieve the same performance as the traditional lexical tree 

search algorithm. 



2.4.4 Lexical Tree Beam Search 

By associating path information with tokens instead of tree nodes, the major drawback of 

copying the entire lexical tree in the traditional lexical tree search algorithm is avoided, 

and thus it saves time and memory resources. However, the number of tokens associated 

with a single tree node increases accordingly, which results in increased computation on 

each node, especially on the word-end nodes. To address this new problem, pruning is 

applied to reduce the number of active tokens on each tree node. 

Beam Search [ 5 5 ]  [63] is one solution used to limit the search space by pruning away 

the less likely hypotheses. The paths that fall below a certain threshold from a reference 

path are removed from further propagation. The threshold or the beam width is usually 

decided by trial and error on a development data set. It is a tradeoff between speed and 

accuracy; a larger beam width usually means higher recognition accuracy with slower 

speed. 

From the point of view of computer algorithms, Beam Search is an expansion of 

hill-climbing search: instead of just keeping one state around, several states are kept. 

Although it can alleviate some local optima problem inherent to hill-climbing, Beam 

Search is still an incomplete and inadmissible search. It is most useful when the search 

space is big and the local optima are not dominant. Both are a good fit to lexical tree 

search. 

The standard Beam Search algorithm under our lexical tree search framework has the 

following steps at each time frame t: 

1. Search starts from the root node of the lexical tree and propagates to all entry nodes 

of the lexical tree. 

2. For each active node N (active means there is at least one token with time stamp t 

that resides on that node): 

(a) Perform Token Passing as outlined in Section 2.4.2. 



(b) Find the maximum log likelihood for node N and record it as MaxLog(N). 

(c) If MaxLog(N) is larger than the global maximum value MaxLog, set MaxLog 

to MaxLog(N). 

3. Perform pruning: 

If (MaxLog(N) > ( MaxLog - Beam Mdth)), 

propagate those tokens to the next frame; 

else 

stop propagating those tokens and deactivate their corresponding nodes. 

4. If the token leaves the leaf node and re-enters the lexical tree at the root node, repeat 

from step 1. 

In our system, we have several different pruning steps that are performed every time 

frame. 

State acoustic pruning: State acoustic pruning is the standard beam pruning ap- 

proach as detailed above. 

State overall pruning: Similar to the state acoustic pruning, the state overall pruning 

is used to retain only hypotheses with a score close to the best state hypothesis. The 

difference is the language model probabilities are added into the score before state 

overall pruning. 

Word-end pruning: Besides the normal state pruning method, an extended word- 

end pruning method is implemented. This pruning method is an extension to the 

traditional word-end pruning. Assuming that acoustic models are well trained, the 

best path will dominate the search most of the time. Thus, each word-end may 

allow only certain fan out2 without performance loss. This concept is extended to 

every tree node. 

2 ~ a n  out is the number of words that is associated with the successor of the current tree node. 



Histogram pruning: After the previous pruning steps, another round of histogram 

pruning is performed to control the maximum number of surviving tokens. His- 

togram pruning is done by examining the total number of active tokens (states) on 

all tree nodes. If the number exceeds a given threshold (MaxTokens), then only 

the best MaxTokens tokens are allowed to continue. 

Token merge pruning: A token merge step was implemented in our system as de- 

scribed in Section 6.1.1. The token merge beam is used to set a threshold for merg- 

ing some tokens. 

Other pruning: Language model lookahead pruning and Phoneme lookahead prun- 

ing are also used in our system. 

2.4.5 Word Graph 

As detailed in Section 2.3, the Viterbi algorithm is essentially a dynamic programming al- 

gorithm conducting a time synchronous search that processes the input speech one frame 

at a time. The Viterbi search calculates the best path score at each state at a given time 

t. It will move on to time t+l after all states are processed at time t. When it reaches 

the last frame, a backward trace will generate the most likely phone and word sequence. 

When we connect those word sequences together, it is an acyclic graph representing the 

recognition hypotheses. This graph is called a word graph [70], which is a subset of the 

original search space. 

For most ASR tasks, the search space constituted by all possible combined state se- 

quences is too prohibitive to conduct a thorough search. A beam search (Section 2.4) is 

an approach used to limit the search space by pruning away the less likely partial paths 

before they reach the end of utterance. Another way to reduce the search cost is a multiple 

pass approach in which the first pass generates the word graph using simple acoustic and 

language models, then successive passes re-score the graph using more complex knowl- 

edge sources such as long span acoustic and language models. Although the complex 



knowledge sources are more accurate, they are too costly to be deployed during the early 

pass search. Most of the time, the later pass decoding will achieve a higher accuracy with 

only a relatively small cost compared to the first pass decoding. The overall computation 

cost of multiple pass decoding is usually much lower compared to single pass decoding. 

In the multiple pass approach, the word graph (Figure 2.3) serves as an intermediate 

recognition output representing the high-ranking sentence hypotheses in the form of a 

graph whose edges are words. Any path from the sentence-beginning node "S" to the 

sentence-end node "E" is a valid sentence hypothesis (generated by the recognizer). The 

horizontal axis shows the time scale and the vertical axis is for the purpose of displaying 

the hypotheses in parallel. Each node in the word graph represents a word transition time. 

The edges and nodes of a word graph not only show when the word transitions happen 

but also their sources and destinations. The word graph can be interpreted as a reduced 

search space, where the number of possible words is reduced and possible connections 

are restricted. 

Compared to the N-best sentence lists, the word graph has some clear advantages. 

First, a word graph is a more compact representation because sentence hypotheses can 

share edges and nodes; the N-best list makes separate entries for every difference along 

the hypothesis path. Secondly, a word graph is much more powerful and flexible. It con- 

tains more information than an N-best list, such as partial hypothesis score, competing 

paths, and their relationship. Additional information is easier to incorporate into the word 

graph structure that is essential for integrating new knowledge sources and support multi- 

ple sources simultaneously. Most times, the N-best list is extracted from the word graph. 

Furthermore, the N-best list can be treated as a subset of a word graph. 

Applications of Word Graph 

Besides serving as an intermediate search space between two sequential searches, the 

word graph has been used in many other ways: 

1. post-recognition approaches: 
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Figure 2.3: A sample diagram of Word Graph 

"sil" means non-speech event. 
The corresponding utterances are: 

cannons about. 

cannon come up. 

cannon come on. 

cannon zoom out. 

... 

can you what. 

Instead of performing another recognition process, post-recognition approaches 

manipulate word graph directly. Examples such as Hypothesis Combination is in- 

troduced in Section 4.3.2. 

2. language model re-scoring: 

Higher order language models or syntactic taggers, which are not able to be directly 

integrated into the recognizer, can search through a word graph to find an optimal 

path. 

3. Confusion Network: 

Confusion Network [56, 571 is an approach that aims to minimize the WER by 

post-processing the word graph. It aims to solve the mismatch problem between 



the current word-based performance criteria and the standard MAP decoding that is 

sentence-based. The word graph is clustered into a linear graph called a consensus 

network (Confusion Network). The final word sequence that minimizes the WER 

can be found by selecting the word hypothesis with the highest posterior probability 

from the confusion network. 

4. speech understanding system: 

In speech understanding system, the target is to get the essential meaning of the 

speech rather than to get all the words recognized correctly. Lingustic, syntactic and 

semantic knowledge of language is normally incorporated into a parser to reach this 

goal. In dialogue management, if the I-Best hypothesis is not right, an alternative 

hypothesis can be dynamically prompted according to a user's response. 

5. confidence measurement and word spotting: 

A word graph contains many competing hypotheses at word and sentence level; a 

number of features can be delivered from a word graph for confidence measurement 

and word spotting. 



Chapter 3 

Tasks and Baseline System 

This chapter describes the speech recognition tasks that are used throughout this thesis and 

the essential components of our baseline system. Section 3.1 presents a brief overview 

of the training and testing corpus. Two corpora, TIMIT and Speech In Noisy Environ- 

ments (SPINE), are used to build acoustic models. The test corpora is the DARPA SPINE 

evaluation set. Section 3.2 gives some introductions on the speech signal processing and 

the speech feature extractions. Section 3.3 contains the details of building the baseline 

system used in this thesis work. First, in section 3.3.1, we explain the main components 

of our in-house LVCSR software package. Then we describe the acoustic model train- 

ing algorithms and procedures used to obtain different acoustic models for each features. 

An unique training method called 'Retrain' is briefly introduced (Section 3.3.3). Sec- 

tion 3.3.5 contains details of recognition experiments performed, such as results obtained 

from different features. In this thesis work, much effort was devoted to improving the 

performance of our baseline system. A class based Language Model is used to further 

improve the performance of our baseline system (Section 3.3.6). At the end of this chap- 

ter, we obtained a very competitive baseline system, which is about the best system we 

can get by using traditional techniques. 



3.1 Speech Corpus and Tasks 

Two databases are used in our experiments: TIMIT corpus and SPeech In Noisy Envi- 

ronments (SPINE) corpus. TIMIT is used only for initial training of acoustic models. 

The SPINE corpus is one of the latest databases, for DARPA sponsored large-vocabulary 

continuous speech recognition evaluation conducted in 2000 and 2001. 

3.1.1 TIMIT 

The TIMIT corpus of read speech was designed to provide speech data for acoustic- 

phonetic studies and for the development and evaluation of automatic speech recognition 

systems. It contains broadband recordings of 630 speakers of 8 major dialects of Amer- 

ican English, each reading 10 phonetically rich sentences. The TIMIT corpus includes 

time-aligned orthographic, phonetic and word transcriptions as well as a 16-bit, 16kHz 

speech waveform files for each utterance. 

Example transcriptions for an utterance in the corpus are as follows. The labels con- 

sist of two integers (start and end sample-numbers1) followed by an ASCII ARPAbet 

representation of the standard IPA phonetic symbol. 

Orthography: 

0 61748 She had your dark suit in greasy wash water all year. 

The phonetic transcription is very important for initial training (bootstrapping) of each 

individual HMM phone model, as we will explain in Section 3.3. 

3.1.2 SPeech In Noisy Environments 

Recent research efforts have focused on robust speech recognition under noisy environ- 

ments. The newest deployment of speech technology are relevant to telephone conver- 

sation and anywhere environments. One great challenge to such applications is the great 

' ~ o t e  that these integers are sample-numbers, not milliseconds, or other units of time. 



Word label: 

7470 11362 she 
11362 15420 had 
15420 17503 your 
17503 23360 dark 
23360 28360 suit 
28360 30960 in 
30960 36971 greasy 
36971 43120 wash 
43 120 49021 water 
49021 52184 all 
52184 58840 year 

Phonetic label: 

0 7470 h# 
7470 9840 sh 
9840 11362 iy 
11362 12908 hv 
12908 14760 ae 
14760 15420 dcl 
15420 16000 jh 
16000 17503 axr 
17503 18540 dcl 

.... 
56654 58840 axr 
58840 61680 h# 

Note: beginning and ending silence regions are marked with h# 

degree of variation of speech signal. The source environments and transmission channels 

may be noisy or variable, resulting in a distorted speech signal from the origin. Also the 

noise can put the speaker under stress and so may express a variety of emotions reflected 

in their speech. 

Noise or limited bandwidth channels have provided a real challenge to current speech 

recognition technology. Lots of effort has been undertaken to tackle the problem but only 

with limited success. To evaluate the current state of the art in speech recognition un- 

der noise, especially military noise, the Naval Research Labs organized the first SPeech 

In Noisy Environments evaluation (SPINEI) in August 2000. With the success of the 

first evaluation, the second SPeech In Noisy Environments (SPINE2) evaluation was con- 

ducted in November 2001 [NRL, 200 11. 

The SPINE1 data was collected fiom 22 pairs of speakers. Each pair of speakers 

participated in a Milton BradleyTM battleship game. Each pair of speakers worked in a 

cooperative way to locate and sink ships on a grid. Each conversation session was com- 

plicated by the introduction of noise and the confusable grid labels. Each pair of speakers 



Table 3.1 : Scenarios in SPINE1 

were located in separate sound recording rooms. Four scenarios were combined by real- 

istic noise, handsets, communication channels and vocoders from the military operations, 

as shown in Table 3.1. 

Twelve different vocoders were applied on the transmissions between booths. A pair 

of speakers also switched booths and repeated the same session. Overall, with four scenar- 

ios, twelve vocoders and two speakers, each speaker pair worked through 96 sessions. Al- 

though the speech signals excluded the vocoder effects, the stress of listening to vocoded 

speech is reflected in the speech of those participants. 

The difficulty of an ASR task can be measured by the recognition performance of 

a certain recognizer, namely the word error rate (WER). On the other hand, we can es- 

timate the difficulty of an ASR task by analysis of its characteristics. Both theoretical 

and practical studies show that the ASR task becomes more difficult along the following 

dimensions: 

Vocabulary Size 

The larger the vocabulary size, the more confusion the recognizer needs to resolve. 

However, missing coverage of possible words is more expensive than false inclu- 

sion of some non-appearing words. The optimal vocabulary is a balance between 

reducing OOV (out of vocabulary) words and reducing the total number of words. 

Current technology requires the vocabulary to be task oriented, which means tai- 

lored to the specified application. Generally, the English ASR systems are classified 



by their vocabulary size into: 

- small: less than a few hundreds words; such as voice commands on small 

devices. 

- medium: around a few thousands words; such as database management. 

- large: more than 5,000 words; such as Wall Street Journal, Broad Cast News. 

- super: at least several 10,000 words; such as dictation systems. 

Speaker Mode 

Most state-of-the-art ASR systems are continuous which means each speech utter- 

ance can contain more than one word. Some ASR systems are still isolated, which 

requires the speaker to speak one word at a time. Generally continuous ASR is 

more challenging than isolated word recognition. 

Speaker Dependency 

ASR systems are speaker dependent or speaker independent. A Speaker Depen- 

dent (SD) ASR system is trained or adapted on the speech of a specified test 

speaker. A Speaker Independent (SI) system is trained on speech data from vari- 

ous speakers and not targeted to any specified speaker. A speaker dependent system 

generally performs better than a speaker independent system. 

Channel and bandwidth 

Different communication channels have different distortions. Some channels limit 

the bandwidth, such as telephone line, but some are able to provide high band- 

width. Generally low bandwidth causes the loss of information thus increasing the 

recognition errors. 

Acoustic environment 

The type and degree of background noise can significantly reduce the recognizer 

performance. Non-stationary noise is more harmful than stationary noise. Back- 

ground human speech is more confusing than non-human speech. 



Speaking Style 

Read speech such as dictation and news report contain less variety. Spontaneous 

speech such as casual talk is more difficult for ASR system because it contains more 

non-standard speech. Non-standard speech, such as hesitations, repeats, murmurs, 

cannot be well modeled by current acoustic and language modeling technologies. 

Experiments were conducted on identical sentences that varied in speaking style 

[85]. The Word Error Rate increased from 28.8% for read dictation to 52.6% for 

spontaneous conversation. 

Language Model 

A language model with a constrained grammar is more beneficial for a recognizer 

than a non-constrained one. A lower perplexity language model generally can im- 

prove recognition performance compared to a high perplexity one because it re- 

stricts the possible word end fanout. 

Acoustic Training Data 

Generally speaking, the more speech data for acoustic training the better because 

the acoustical model can have a more accurate statistical estimation. Also the task 

domain data is preferable to out-of-domain data. 

Language Model Training Data 

Similar to acoustic training data, the more task oriented data for language model 

training the better. However, in most cases, the available training data within the 

task domain is quite limited. 

Computing Resources 

The performance of an ASR system is strongly tied to its available computing re- 

sources, such as memory size and CPU speed. For applications that require real- 

time response, some compromises have to be made between recognition accuracy 

and recognition time. With the same computing resources, the smaller the real time 



Table 3.2: Characteristics of SPINE Task 

factor, the more difficult the recognition task is. 

Speaking Mode 
Speaking Style 

Speaker Enrollment 
Vocabulary 
Noise Level 
Noise Type 

Channel Type 

The SPINE data also contains some unusual phenomenon for speech recognition sys- 

tems. There are quite a few non-lexemes that appear in SPINE data. Speaker noises such 

as coughing, laughing and breathing are common. Because the speakers need to use push- 

to-talk handsets, truncations happen frequently. There are also a large number of words 

spelled out by the speakers to disambiguate some easily confusable words. Although it 

is easier for speakers to understand, it is difficult for speech recognition systems. There 

are also noticeable mispronunciations and unintelligible portions of speech in the SPINE 

data. 

The SPINEl and SPINE2 corpus consist of several parts: 

SPINEl 

SPINEl training data: 

Easy + Difficult 
Isolated + Continuous 
Read + Spontaneous 

Dependent + Independent 
(Small <1,000 words) + Large (>5,000 words) 

Low (SNR>30db) + High(SNR< 1 Odb) 
Seen + Unseen 

Close talk Microphone + Cell Phone 

- 10 speaker pairs, 20 speakers overall 

- 4 environments including quiet, office, HMMWV and AC carrier 

- DRT (Diagnostic Rhyme Test) in 2 noise environments 

- grids were labeled with words from the DRT and quiet 

SPINE2 
Continuous 
Spontaneous 
Independent 

Medium 
SNR: 5-20db 

varies 
varies 

SPINEl test data: 



Table 3.3: SPINE2 Training and Development Data 

[ Training Data I number of Utterances I Hours I - 
SPINE1 Train 
SPINE1 Eval. 

- 20 speaker pairs, 40 speakers overall 

- 6 environments including two new - E3A and MCE 

SPINE2 Train 
SPINE2 Dev. 

SPINE2 

SPINE2 training data: 

1 1,973 
12,079 

- 6 noise environments 

- grids were labeled with words from a military vocabulary 

- 2 talker pairs (4 speakers total) with 32 conversations (sessions) per talker pair 

(64 conversations total). 

8.7 
7.3 

6,129 
1,941 

SPINE2 development data: 

3.2 
1.6 

- 2 talker pairs (4 speakers total) with 16 conversations (sessions) per talker pair 

(32 conversations total). 

SPINE2 test data: 

- 16 talker pairs (32 speakers total) with 4 conversations (sessions) per talker 

pair (64 conversations total). 

- 8 environments including two new - E3A and MCE 

- total of 7 hours (423 minutes) of audio data 



The test data comprises 128 speaker-environment pairs with 8 different noise envi- 

ronments. The test data has unseen speakers and noise types from the training data, so 

there will be unavoidable speaker and environment mismatch between the training and 

test data. 

Some utterance samples in the SPINE2 corpus are given in Figure 3.1 together with 

their corresponding recognition output. 

REF: SAY I T  I CAN'T HEAR YOU 
HYP: *** ** * ***** THAT AGAIN 

REF: confirmed *** ** OKAY HERE we GO DOING A (RADA-) OH 
HYP: conf- GOT OH YEAH DON'T we GOT ONE ALL RIGHT I 'LL 

REF: okay RUN TEST SERIES ONE TWO THREE 
HYP: okay *** **** RENTED RIGHT I THINK 

REF: the sweep coordinates FROM THE acoustic sweep are north to north east 
HYP: the sweep coordinates **** AN acoustic sweep are north to north east 

Figure 3.1 : Some sample utterances in SPINE task 

Lines starting with "REF" are the reference transcription of that utterance. Lines starting 
with "HYP" are the corresponding recognition hypothesis. The words in capital font are 
mis-recognized. 

3.2 Signal Processing and Feature Extraction 

Both the training and testing speech data must first be processed before being used by 

the speech recognition system. In this thesis work, information fusion is based on the 

complementary information contained in different features. Thus it is necessary to give 

some introductions on the speech signal processing and the resulting speech features. 

The speech signal is highly redundant because of the strong correlation between ad- 

jacent segments. Use of the raw signal is not only too expensive but also unmanageable. 

Therefore, speech recognition systems always use a parametric representation rather than 



the speech waveform itself. Not only is useful information compactly extracted from the 

waveform, but also computation is saved for both training and decoding. 

Just as feature extraction is important in any pattern recognitions, it is an important 

part of a successful speech recognition system. Most speech feature extraction approaches 

are based on the study of the human auditory system and researchers' intuitions. Over 

the years, various types of parametric representations for speech recognition have been 

proposed. Most of them are based on short-time spectrum analysis of the speech signal. 

A fundamental assumption underlying the short-time analysis is that over a long-time 

interval speech is non-stationary, but that over a sufficiently short-time interval it can be 

regarded as stationary. Due to the physical limitations of human vocal production, the 

speech signal can be treated as stationary at that short period of time. 

Another argument is that successful feature extraction should be able to retain the use- 

ful information for a specific task and discard unrelated information. For speech recog- 

nition, information about speech contents (linguistic and phonetic information) must be 

preserved, while information about speaker identity is irrelevant. The short-time analysis 

is suitable for speech coding but may not be a good candidate for speech recognition. 

In speech coding, the goal is to preserve perceptual components of the signal, possibly 

for restoration. However for speech recognition, some of the perceptual components are 

harmful to retain, such as the communication channel information and the emotion of a 

speaker. 

Although there are many different feature extraction methods, they each have their 

own advantages and disadvantages. More importantly, they have to be integrated with 

speech recognition modules. The feature extraction algorithms may have different rela- 

tive performances under different recognition modules or tasks. The most successful and 

commonly used acoustic features for recognition purposes are Mel-Frequency Cepstral 

Coefficients (MFCC) [22] and Perceptual Linear Prediction (PLP) [39]. In this thesis 

work, the complementary information contained in different features are fused within a 



new recognition architecture. Since these different speech features are important com- 

ponents of this thesis work, we detail some of the feature extraction methods that we 

used. 

3.2.1 MFCC 

We illustrate the procedure of extracting MFCC features below as it was used in all the 

experiments in this thesis. 

1. Speech sampling: The input speech signal is sampled at 16 kHz (this step is usually 

skipped as the speech corpus has already been digitalized and stored on CDs). 

2. Spectral analysis: A Hamming window of 25 ms is used to perform the short-time 

analysis. The window is shifted every 10 ms. These windows are overlapped to 

provide a greater frequency resolution. 

3. Pre-emphasis: A pre-emphasis filter H ( z )  = 1 - 0.97~-I is applied to get rid of 

the lip effect [58]. 

4. Fast Fourier Transform (FFT) is applied to obtain the spectral representation, fol- 

lowed by a logarithm conversion. 

5. Mel-spaced filterbanks are used to map the spectrum of linear scale in me1 scale 

based on perceptual studies of human's hearing. 

6. Discrete Cosine Transform (DCT) is applied to the filterbank output to convert the 

spectral domain coefficients to cepstral domain. There are several advantages to 

performing such a conversion. One reason is that cepstral parameters are a more 

efficient compression and thus provide a more compact representation than filter- 

bank parameters. Secondly, mel-scale filterbank parameters are highly correlated 

and require a large number of parameters to model their distributions. In the cep- 

stral domain, it is safer to make the assumption that the parameters are indepen- 

dent. In practice, conversion to cepstral domain allows using diagonal covariance 



matrices with little performance degradation. This dramatically reduces the com- 

putation cost of HMM training and decoding. Recently, researchers also found that 

in cepstral domain it is much easier to get rid of some channel distortions, using 

techniques such as Cepstral Mean Subtraction/Normalization. 

7. The first 12 coefficients are preserved, which become the base of our target MFCC 

feature vectors. 

Figure 3.2 gives a diagram of the acoustic feature processing for producing MFCC 

features in our system. Note that energy information is also extracted for every frame and 

appended to the MFCC feature vector, giving the 13th dimension. 

\ Signal 

Windowed 4 FFT I Mel-spaced Filterbanks 

Energy 
Measure 

Figure 3.2: Extracting the base acoustic feature vectors of MFCC from speech data 

The spectral pattern of a frame only contains local and static information about a 

sound. Since dynamic characteristics of temporal features play an important role in 

human perception, it is necessary to use some dynamic features to capture the tempo- 

ral change. The most common method of obtaining dynamic feature is to estimate the 

delta and acceleration of the spectral coefficients over a series of consecutive frames, and 



Figure 3.3: Diagram of extracting MFCC acoustic feature vectors from speech data 

then append these measurements to the basic static feature vectors [31]. The success of 

these dynamic features is also due to their complementary nature to HMMs. Because the 

time independence assumption of HMM assumes each frame is independent of the other 

frames, dynamic features weaken this unsound assumption by broadening the duration of 

a frame. 

Usually, a linear regression equation is used for the calculation: 

where ci denotes the i-th cepstral coefficient, di denotes its delta coefficient and (2N + 1) 

gives the size of the regression window. 

So the final feature vector for our system has 39 elements, consisting of 12 MFCCs 

and normalized energy plus their first and second order time derivatives (Figure 3.3). 



3.2.2 TRAPS (TempoRAl Pattern) 

MFCC, along with most feature extraction methods in ASR is based on the spectral enve- 

lope of speech. An inherent problem with the spectrum of speech is that it is sensitive to 

many non-linguistic factors. Those factors such as frequency response of communication 

channels or frequency selective noise, have little effect on human speech understanding. 

To reduce this kind of sensitivity, a multi-band paradigm [ l l ]  [42] adopts a series of 

spectral subband classifiers. Each subband only considers a part of the whole spectral 

envelope. Since only some of the subbands were corrupted by the frequency-selective 

noise, this paradigm allows noise robustness by reducing the damage caused by those 

unreliable subbands. 

The traditional feature extraction methods also use the short-term (1Oms) spectral en- 

velope and process it solely on the frequency domain. The frequency domain features are 

better at representing features such as formats and provide more accuracy than in the tem- 

poral domain. However recent studies have found that the phonetic information of one 

phoneme is spread across several neighboring phonemes. Some important linguistic char- 

acteristics, such as the phoneme and the syllable, are much longer than the conventional 

short-term spectrum. Modeling syllable-length information requires the feature extraction 

to be conducted also on the temporal domain. 

TRAPS was proposed by Dr. Hermansky's group as an innovative approach to solve 

some of the problems of traditional feature extractions [41]. It extracts features in the 

time-frequency domain under the multi-band paradigm. As a radical departure from con- 

ventional feature extraction, TRAPS uses a rather longer temporal envelope: 1 sec win- 

dow (101 frames at 10 ms frame rate). Similar to the Multi-Band approach, there are 

15 critical bands across the frequency space. The energy of each single critical band is 

calculated based on these temporal vectors. It assumes independence among different 

frequency bands in the early stage of speech communication. 
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Figure 3.4: Comparison of TRAPS feature with conventional features

The design of TRAPS allows it to apply mean and variance normalization ofthe criti-

cal band spectrum, thus making it more robust to linear filtering of the signal and station-

ary noise. It is also more robust to frequency selective noises because of its relation to the

Multi-Band approach.

The procedure that we used to produce TRAPS features is detailed as follows [66],[41],

[91]:

1. Adjacent pairs of rather long (about 1 second) temporal trajectories of critical-band

spectral energies formed the vector space for LDA-based projection. The 15 most



relevant 2-d discriminants are used to project 202 point feature vector (101 features 

from each adjacent critical band) into a 15 dimensional vector space. The projected 

features are given as input to multi-layered perceptrons (MLP). The output units of 

MLPs are the acoustic targets defined by 30 phonetic categories. The 56 phonemes 

which cover the whole SPINE-1 development set are grouped together to obtain 

the targets. The grouping of phonemes is based on the similarity of Articulatory 

properties namely Manner, Place, Voicing, and Height. 

2. The second (information merging) stage uses MLP to combine the information from 

the individual frequency-localized classifiers. The output from this MLP represent 

estimates of posterior probabilities of the underlying phonetic features. To circum- 

vent the skewed distribution of the estimated posterior probabilities, the final soft- 

max nonlinearity in the output layer was removed from the trained MLP. The size of 

the hidden units is kept at 300 for band-specific MLPs and at 500 for merging MLP. 

First and second order dynamic features (speed and acceleration) are computed on 

trajectories of these probability estimates. Whitening transform (Karhunen-Loeve) 

is used to reduce the dimensionality and de-correlate the output. This results in 39 

dimension feature vectors, which form the input to the recognizer. All linear and 

nonlinear transformations described above are derived on force-aligned SPINE1 

development data. 

3.2.3 TLDA ('Pwo dimensional Linear Discriminants Analysis) 

Studies show that the influence of the current phone extends beyond its boundaries, into 

its surrounding phones. Conventional feature extraction using a 10 ms time span is too 

short to cover most phone duration. To incorporate a longer time span that can match the 

duration of a phone, a wider block of the spectrogram is used. But use of a long time span 

incurs some problems. First, these features are not independent but highly correlated. 

Second, the feature dimensions are increased dramatically. It not only requires a huge 



amount of training data but also stresses the training procedure. 

To solve these problems, Linear Discriminants Analysis (LDA) is used to reduce re- 

dundancy and obtain a smaller size feature set. The final feature is projected on the joint 

time-frequency domain. In the spectral domain, the discriminants are based on short-term 

spectral energies. In the temporal domain, the discriminants are based on time trajecto- 

ries of the spectral energies. The joint features are formed by concatenating short-term 

spectral frames along the temporal span. 

features' WER comparison 
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Figure 3.5: Performance comparison of different features 

The procedure for obtaining 2-dimensional LDA-derived discriminants in our SPINE 

work is detailed as follows [66],[48],[91]: 

Spectral bases representing the 15 most dominant LDA discriminants of logarithmic 

spectral energy vectors from 15 Bark filter-bank were derived on force-aligned SPINE1 



training database with 56 context-independent phone classes. Temporal discriminants 

(LDA-RASTA filters) are derived from the OGI Stories hand-labeled database (41 context- 

independent phones). 15-dimensional logarithmic spectral energy vectors derived on this 

database are projected on the first spectral base. The three most dominant discriminants 

from LDA projection of 10 1 -point temporal vectors (representing critical-band spectral 

energy trajectories, spanning 500 msec into past and 500 msec into future) yield three 

temporal RASTA filters. Features for the recognizer are generated as follows. The base 

features are first projected on 13 spectral bases to generate a 13 dimensional feature vec- 

tor. The time trajectories of these 13 features are then filtered using three RASTA filters 

to generate (13x3=39) dimensional feature vector. Finally, each element of the feature 

vector is normalized using its mean and variance computed over the utterance. 

Other Features Involved in the Building of Baseline System 

There are a few other features that we used during our official evaluation [66],[91]: 

The initial feature representation is 13 PLP cepstral coefficients (20 ms analysis 

frame with 10 ms steps, 12th order PLP model) normalized to zero mean and unity 

variance over the utterance. These features are fed into a 3 layer MLP, with 9 

frames of context and 56 phoneme target classes, which results in MLP size 35 1- 

1000-56. The MLP is trained on forced aligned SPINE1 development data by back- 

propagation with minimum cross entropy criterion. The outputs of the trained MLP 

represent estimates of the phoneme posterior probabilities. These posterior proba- 

bilities have a skewed distribution that is difficult to be modeled by Gaussian mix- 

ture models. To circumvent the skewed distribution of the posterior probabilities, 

the final soft-max nonlinearity in the output layer is removed from the trained MLP 

by the logarithm of the posteriors with a normalization constant. The linear outputs 



from MLP are augmented with their first derivative and second derivatives com- 

puted over 9 frame window. These features are whitened using global Karhunen- 

Loeve transform and the first 56 dimensions are retained. 

2. SMFCC [66],[91]: 

The minimal value of power spectrum in each Mel-frequency band is used as an es- 

timate of noise in the utterance. This estimate is subtracted from the Me1 spectrum 

prior to cosine transform. The rationale is that the background noise is additive 

in the power spectral domain. We noticed that this feature by itself has no advan- 

tage compared with mean subtracted MFCC. However this feature set contributed 

to improvement performance of the overall (ROVER-combined) system. 

3. WMFCC: 

WMFCC is similar to MFCC but with wide bandwidth filters [82]. The filter over- 

lap is increased to 75% instead of 50% in the conventional MFCC. The average 

noise distortion is lower for WMFCC than for MFCC, and thus provides more noise 

robustness. 

3.3 Building the Baseline System 

3.3.1 OGI LVCSR System 

Since 1996, our research group has been actively focused on research and development 

of large vocabulary continuous speech recognition systems and we have participated in 

several government sponsored annual evaluations (Broadcast News Transcription (HUB4) 

1997 [92] and 1998 [90], Speech In Noise Environment (SPINE) [91], and Language 

Recognition 2003). 

Our research software platform is a large-vocabulary, speaker-independent, continu- 

ous speech recognition system. It contains most of the state-of-the-art components of a 

speech recognition system: 



1. Continuous HMM based training and decoding components. 

2. A statistical n-gram language model, supports unigram, bigram, trigram, and class- 

based language models. 

3. Complete package for signal processing and feature extraction (the commonly used 

features such as MFCC, PLP, LPC). 

4. Some noiselchannel variation reduction techniques, such as Cepstral Meadvariance 

Normalization [30]. 

5. Speaker and channel segmentation. 

6. Advanced acoustic model training and speaker adaptation: 

(a) Speaker Adaptive Training (SAT) [3] [2] [4], 

(b) Vocal Tract Length Normalization (VTLN) [26]). 

(c) Maximum A Posteriori (MAP) [97], 

(d) Maximum Likelihood Linear Regression (MLLR) [52] 

(e) Markov Random Field Linear Regression (MRFLR) [89]. 

7. Flexible decoders: 

(a) Supports either single-pass decoding or two-pass decoding. 

(b) Supports both within-word and cross-word model. 

Real time decoding is made possible with various fast decoding strategies including 

complex beam pruning, fast gaussian mixture computation, phoneme lookahead 

and language model lookahead. 

8. A portable system that can run on either Linux or Windows platform, that supports 

parallel training and decoding on either a Linux or Windows cluster. 



3.3.2 Acoustic Training 

The initial Speaker Independent (SI) model was trained based on SPINE1 and SPIEN2 

training data plus SPINE1 evaluation data. We refer to them as the SPINE2-SI-Base 

training set. The total training data is about 20 hours (Table 3.3). 
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Figure 3.6: The acoustic training procedure 

The training procedure is a step by step learning process, starting from building sim- 

ple acoustic models to gradually increased model complexity. The training procedure is 

shown in Figure 3.6 and works as follows: 

1. Monophone initialization and training (Bootstrapping) 

The first step of acoustic model training is building monophone models. Phonet- 

ically labelled speech data is necessary for this step. Generally a carefully hand 



labelled database is essential to obtaining accurate monophone models. In English, 

the TIMIT corpus (Section 3.1.1) is the most widely used one for bootstrapping. 

Several iterations of Viterbi and Baum-Welch training are performed to obtain the 

probabilities of the acoustic observations given the current HMM models. If the 

change of the probabilities between successive iterations falls below a preset thresh- 

old, or the number of iterations reaches a preset limit, the procedure stops and a new 

set of HMM models are obtained. 

2. Un-clustered context triphone training 

The monophone models are cloned to their corresponding context triphones (with 

same central phone). These triphones that are derived from the same monophone 

have identical HMM models. In this training step, several iterations of the em- 

bedded training are performed on the SPINE2-SI-Base training set. Each triphone 

model is updated after each iteration. Compared to the bootstrapping training, no 

phone or word boundary information is required. Instead, triphone HMM mod- 

els are concatenated into a sentence level HMM model and the forward-backward 

algorithm automatically makes the time alignments. After this step, statistical in- 

formation is collected for the next clustering step. 

3.  Clustering and state tying using a phonetic decision tree 

In this step, phonetically similar triphone models are clustered for several reasons: 

(a) A large number of triphone models need to be trained. 

(b) Limited training data. 

(c) The triphone models are not evenly covered by the training data. 

Based on the occupancy statistics of triphone models, a phonetic decision is con- 

structed for every HMM state. Then the phonetic decision-tree algorithm is used to 



Table 3.4: Comparison on acoustic model state numbers among different features 

We built both within-word and cross-word acoustic models for each features. The acoustic 
models have different HMM state numbers 

perform state clustering and then state-tieing to the corresponding mixture pararn- 

eters (mixture weight, mean vector and covariance matrix). Up to this step there is 

only one Gaussian mixture component for each HMM state. 

Number of states 
Within-Word 
Cross-Word 

4. Clustered triphone training 

FeatureNet 
1422 
1870 

The clustered triphone model is again trained with the embedded training algorithm 

on the SPINE2-SI-Base training set. After every three or four iterations of training, 

each HMM state in the model is split to more mixture components. Generally the 

amount of training data affects how many iterations of training and mixture compo- 

nents are necessary. In practice, experiments varying these numbers are performed 

and the best ones are selected by running a decoder on the development set. 

MFCC 
1221 
1894 

The final clustered HMM states are automatically determined by the decision tree 

algorithm according to both the training data and decision tree parameters. The features 

we used in SPINE2 task have different state numbers, ranging from 1101 to 1422 for 

within-word models (table 3.4). The size of these acoustic models also varies because of 

that (table 3.5). These acoustic models all use 12 Gaussian mixture components. 

WMFCC 
1249 
1837 

TLDA 
1293 
1879 

3.3.3 Retrain Strategy 

Retraining is an approach similar to unsupervised adaptation, except that the acoustic 

models are re-estimated (as in the normal acoustic model training) using the standard 

EM algorithm. Similar to unsupervised adaptation, the test data is first decoded and the 

recognition result was used as the training transcription. Rather than modify the SI models 

TRAPS 
1284 
1843 

SMFCC 
1101 
1832 



Table 3.5: Comparison on acoustic model size among different features 

We built both within-word and cross-word acoustic models for each features. Each acoustic 
model is stored as a binary file on the disk. This table shows the size of these binary files. 
As shown in the table, the acoustic model size varies from 8.5M to 15.3M for within-word 
models and from 13.6M to 20M for cross-word models. 

by adapting them to the test data, our retraining approach combines the test data with the 

Mbyte 
Within-Word 
Cross-Word 

original training data for a fresh training. A diagram showing the retraining procedure is 

TLDA 
9.6 
13.6 

given in Figure 3.7. 

MFCC 
9.4 
14.6 
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SMFCC 
8.5 
14.2 

WMFCC 
9.6 
14.2 

Figure 3.7: The retrain procedure in SPINE2 

FeatureNet 
15.3 
20 



3.3.4 Lexicon and Language Model 

In our official evaluation, we used the common language model provided by CMU to all 

participant sites. 

The SPINE2 lexicon was built from three sources: 

1759 unique words from all text files of SPINE 1 data set but excludes partial words 

that occurred just once. 

160 words containing ACE grid labels from the battleship game. 

5000 most frequently occurring words in the Switchboard corpus. Tests conducted 

during the construction of SPINE1 language model showed that these were the most 

useful set of "extra" words to be included in the SPINE vocabulary. 

After combining all files mentioned above, we obtained a 5720 word lexicon. 

3.3.5 Experimental Results 

The development of our SPINE2 system is based on many experiments on both SPINEl 

evaluation data and SPINE2 dry run data. We first developed a system according to the 

official SPINEl evaluation requirement, the purpose is to build a basic working system 

and compare its results with other sites. The official evaluation results on SPINE1 are 

shown in Table 3.6: 

We built our rudimentary system and its result is the 2nd best (32.3%) compared with 

all the participant sites. We further did comparison experiments on MLLR and Retraining. 

Our retrained system is better than the one which we applied MLLR (Table 3.7). 

From Table 3.6, we can see that the best overall system used ROVER [28]. Inspired 

by this finding, we built 15 different systems, varying their features. The final result after 

applying ROVER is quite impressive: 25.0%. 

Based on this setup, we trained a similar system for SPINE2 dry run. The training data 

includes all SPINEl data plus SPINE2 training data. The testing data is the SPINE2 dry 



Table 3.6: Official Evaluation Results on SPINE1 

Table 3.7: Experimental Results on SPINE1 Evaluation Data: Comparison of MLLR and 
Retrain on MFCC based systems 

run data. Based on our findings on SPINE1 , we used Retrain exclusively in the following 

experiments (Tabel 3.8). The additional findings are that MLLR is complementary to 

Retrain, and VTN delivers significant gain. The final system reduces the WER by 27% 

compared to the baseline. 

Systems 
Baseline 
MLLR 
Retrain 

Table 3.8: Experimental Results on SPINE2 Dry Run Data 

WER 
32.3% 
29.6% 
28.8% 

Based on these experiments, we built our final system for the official evaluation. The 

features and acoustic model training have been introduced since the beginning of this 



chapter. The original plan also includes two rounds of Retrain plus MLLR and VTN. 

We did not finish that part because of the tight time schedule. The results in the official 

evaluation are shown in Table 3.9. 

Table 3.9: Baseline System Performance on Official SPINE2 Evaluation 

Compared to other participant sites, our system ranks 3rd place in using the common 

language model (Table 3.10). 

Table 3.10: Official SPINE2 Evaluation Result: common language model 

After the official evaluation, we finished up some of the planned system building and 

the best result 39.6% was treated as our baseline (Table 3.11). 

SRI 
SSLI 
ISIP 

3.3.6 Some Improvements by Applying Class Based Language Model 

In this thesis work, some effort are devoted to improving the performance of our baseline 

system. In the official SPINE2 evaluation, some sites obtained significant gain by using 

42.1 
38.8 
56.9 

68.2 
66.6 
54.6 

23.7 
22.6 
28.9 

08.1 
10.9 
16.5 

10.3 
05.4 
11.5 



Table 3.1 1 : Baseline System Performance on Official SPINE2 Evaluation - Post Evalua- 
tion 

Table 3.12: Official SPINE2 Evaluation Result: special language model 

Mbyte 
Baseline 

special language models, such as class based language models. Because of their success, 

we implemented a class based language model in our baseline system. 

It is usually difficult to obtain enough training corpus for many domain-dependent 

tasks, such as, the SPINE2 tasks. In such cases, a class based language model is preferred 

to a general word-based language model. SPINE2 task contains some common words, 

such as personal names, military acronyms, slang and directions, etc. Each individual 

word cannot be well trained since each one occurs infrequently in our sparse corpus. In 

this case, a class-based language model can be employed to gain a more robust model and 

further reduce the model size. 

Before training a class-based language model, we first defined some classes (refer to 

Appendix A). For example, the DIRECTION class includes words such as east, west, 

northeast, etc. A tagged sentence from our corpus is shown below: 

Original sentence: 

East to southeast do you copy Michael. 

Tagged sentence: 

Featureset 
54.6% 

Systemname 
CU 

IBM 
SFU 

ROVER 
Retrain 
ROVER 
Retrain 
ROVER - 

MFCC 
46.7% 

TLDA 
50.6% 

41.5% 
42.1% 1 42.6% 1 44.2% 1 43.6% 1 45.9% 1 45.1% 

39.8% 
41.8% 1 42.2% 1 43.5% 1 42.4% 1 45.4% 1 43.6% 

39.6% 

WMFCC 
47.6% 

%totalerror 
37.5 
29.3 
27.5 

TRAPS 
55.0% 

%correct 
67.8 
73.0 
74.4 

SMFCC 
48.9% 

%INS 
05.3 
02.3 
02.0 

%SUB 
24.2 
13.7 
13.5 

%DEL 
08.0 
13.3 
12.1 



[DIRECTION: East] to /DIRECTION: southeast] do you copy mame: Michael]. 

Given two neighboring words Wi-l and Wi, the probability of the word Wi given its 

preceding word WiPl can be expressed as: 

where Wi and WiPl belong to class Ci and Ci-1 separately. 

To obtain a class based language model from our original trigram model, two addi- 

tional sets of probabilities need to be estimated: 

1 .  Transition probability P(CilCiP2, Ci-]), which is the probability of the current 

class Ci given its preceding two classes Ci-2 and Ci-]. 

2. Observation probability P(Wi ICi), which is the probability of the current word Wi 

given its class Ci. 

We use the CMU-Cambridge Statistical Language Modeling Toolkit to obtain the set 

of transition probabilities. Also, the set of observation probabilities is computed via divid- 

ing the number of occurrences of each word in a class by the total number of occurrences 

of all words in the class. In our computation, a Witten-Bell discounting method is applied 

to the probabilities of less frequent or unseen events. The improvement after adopting 

class based language model is impressive (Table 3.13). 

Table 3.13: Comparison on the effect of Class based Language Model (CLM) and com- 
mon language model 

Similar to acoustic model retraining, we retrain the language model by interpolating 

original training data with decoded testing data. Decoded testing data contains some 

unseen word sequences in the original language model. And by retraining, the resulting 

Systems 
Baseline 

Baseline + Retrain + MLLR + VTN with common language model 
Baseline + Retrain + MLLR + VTN with CLM 

WER 
39.6% 
35.8% 
3 1.2% 



language model is closer to the testing domain. Some confidence measurement steps were 

used to remove some error prone utterances from the decoded data [loo], [99]. Further 

improvement was observed after applying the approaches above (Table 3.14). 

Table 3.14: Comparison on the effect of language model retrain 

Systems 
class based language model 

class based language model + retrain 

WER 
3 1.2% 
28.7% 



Chapter 4 

Overview on Information Fusion in 

Speech Recognition 

This chapter gives a background review on some existing approaches to performing fusion 

in speech recognition. Information fusion in speech recognition is a relatively new and 

active research area. It is based on the research findings on human speech recognition 

(Section 4.1). Current fusion approaches can be roughly classified into two categories: 

pre-recognition (Section 4.2) and post-recognition combination (Section 4.3). We will 

review these existing fusion approaches and give their advantages and disadvantages. 

4.1 Information Fusion in Speech Recognition 

In human speech recognition, various cues (including visual information) are used. The 

more difficult the speech (such as in noisy environments), the more cues are needed [24]. 

Fletcher extensively studied how humans process and recognize speech [I, 291. Ths  

work showed that the phones are processed in independent articulation bands and that 

these independent estimates are "optimally" merged to achieve the recognition results. 

Recent research activities on multi-stream or multi-band [ l l ,  42, 611 also demonstrated 

the importance of looking at the data from different angles (different signal processing 

and features) and fusing the information to improve recognition accuracy. However, both 

Fletcher and the recent activities did not explicitly conclude how different information 



should be fused to form the sound-unit recognition in order to achieve human-like perfor- 

mance. 

Motivated by how humans recognize speech, in recent years, there has been a strong 

interest among researchers on how to combine different features in speech recognition 

[21, 241. The success of these approaches is partly due to their efficiency in improving 

recognition accuracy, partly due to their simplicity and ease of deployment. 

The existing art can be roughly classified into two categories: pre-recognition and 

post-recognition combination. 
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Figure 4.1 : Existing fusion approaches in an ASR system 

The boxes with dashed lines are the modules related to existing fusion approaches. 



4.2 Pre-recognition Combination 

The pre-recognition approach combines features or probabilities before conducting de- 

coding. It can be further classified into feature combination and probability combination. 

4.2.1 Feature Combination 

Feature combination concatenates different features to form a single feature vector before 

acoustic modeling. The benefit of this approach is that the time dependence of different 

features is exploited. Successful examples of this approach include concatenating energy 

and delta features with a spectral representation (such as MFCC [3 11 as shown in Figure 

3.3). 

Feature 

Feature 
Fn pi 
1- GMM 

Figure 4.2: Pre-recognition: Feature Combination 

The advantage of feature combination is that it is easy to deploy in current HMM sys- 

tems. The disadvantage is that the combination of several features could lead to a much 

larger feature vector, and therefore a larger acoustic model. The larger acoustic model 

requires much more training data, resources and time. Feature combination also incurs 

many redundancies thus diluting the complementary information. Another disadvantage 

is that feature combination assumes that the combined features are independent. However, 



most existing features have highly correlated information. Thus feature combination re- 

quires special selection of individual features. The success of feature combination is 

still limited to concatenating the energy and delta vector with the baseline feature vector. 

During our preparation for the SPINE task, we concatenated TRAPS and MFCC feature 

vectors into a single feature vector. Although the feature space was nearly doubled, the 

recognition performance was somewhere between the two single feature systems. 

4.2.2 Probability Combination 

Probability combination is mainly used in HMM/ANN (Artificial Neural Network) hybrid 

systems such as Multi-Band [ l  1 , 6 1, 18, 171 and Multi-Stream systems [13, 83,47, 61, 

2 11. A set of ANNs are trained for each feature and used for probability estimation. The 

output of these ANNs are combined and input to an HMM decoder. 

An example of probability combination is the Multi-Stream approach, which is mainly 

based on an HMMIMLP (Multi-Layer Perceptron, a kind of ANN) hybrid system that em- 

ploys several MLP recognizers trained on different features. The outputs of these MLPs 

are fed into another trained MLP to estimate the phone posterior probability (Figure 4.3). 

The combined phone posterior probability is input into an HMM decoder for final decod- 

ing. Experiments have reported that Multi-Stream systems have better noise robustness 

than the conventional HMMIMLP hybrid system using single feature. 

A variation named a "tandem approach" [40, 271 has been proposed recently. It is 

different from the conventional Multi-Stream approach in that the outputs of MLPs are 

used as input features of GMMs (Gaussian Mixture Models) instead of a MLP. The output 

of the GMMs are likelihood values for different speech units used in the HMM decoder. 

Tandem approach has reported large WER reduction using context-independent modeling 

compared to the standard MFCC or PLP features. Nevertheless the improvement cannot 

carry over to large vocabulary task such as SPINE when context-dependent modeling is 

necessary [27]. 
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Figure 4.3: Pre-recognition: Probability Combination 

The advantage of probability combination is that it can be designed for parallel pro- 

cessing in several small models instead of a single large one. The disadvantage is that the 

number of ANNs needed to be trained is very large and often prohibitive for a context- 

dependent phone system. The drawback for both approaches is that only frame-based 

feature can be incorporated (or only time synchronized features can be incorporated). 

Segmental based information, such as tones (or pitch patterns), cannot be integrated eas- 

ily. 

4.2.3 HMM Combination 

There has been much research in exploring possible extensions to HMMs. These include 

factorial HMMs [34], 2-D HMM [62] and coupled HMMs [15,65] among others. 

Factorial HMM was first introduced by Ghahramani and Jordan. They attempted to 

extend HMMs by allowing the modeling of several stochastic random processes loosely 

coupled. Factorial HMMs can be seen as an extension to HMMs. In the experiments 

presented in their report, factorial HMMs did not appear to offer any advantage over 

regular HMMs when traditional feature vectors were used. 

To integrate segmental based information, such as tones (or pitch patterns), Mirghafori 



and Morgan tried to relax the synchrony constraints in their research by using a 2-D 

HMM [62]. In their research, sub-band HMMs are combined to form 2-D HMMs. Two 

approaches were used in their paper to relax synchrony constraints: HMM decomposi- 

tiodrecombination and two-level dynamic programming. 

Nock and Young proposed a method called loosely coupled HMMs (Figure 4.4), 

which is similar to the factorial HMMs. In their approach, two HMMs are coupled to- 

gether to form a so-called loosely coupled HMM. A coupling matrix is defined for each 

coupled HMM, which represents the transition and observation probabilities. Coupled 

HMMs are trained to model two different input streams with asynchrony allowed. Vari- 

ous degrees of synchrony between the two state sequences are also allowed by restricting 

some state transitions. One major problem for this approach is the computational cost is 

O(S3T), instead of O(S2T) for traditional HMMs. The number of parameters that need 

to be estimated is also explosive in space under a continuous ASR system. 

Figure 4.4: Coupled-HMM topology 

Although theoretically 2-D HMM and coupled-HMM can be used to address the ex- 

isting problem, the associated expense is an increased model space (extra states need to 



be introduced). Although it is straightforward from an implementation point of view, 

the tremendous increase in the state space dimension makes it impossible for applying to 

multiple input streams. Attempts were made in [61] but failed to improve accuracy due 

to significant increase in free parameters that needed to be estimated. 

4.3 Post-recognition Combination 

For the post-recognition combination approach, the underlying mathematic assumption 

is the conditional independence between different features during recognition of each 

stream. Thus decoding is performed on each stream independently of the decoding on the 

other features. The benefit of this approach is its simplicity and flexibility in manipulating 

the final recognition result. Approaches such as ROVER and word graph (or lattice) 

combination all fit into this category. The time-dependency between different features is 

completely ignored during the recognition of each stream. There is no interaction between 

different features during the decoding process, and so the presence of one feature will not 

affect the course of decoding on the other features. The problem with this approach is that 

some complementary information among different features is not utilized. The mistakes 

made in the early decoding stage may not be recoverable at the combination stage since 

the correct hypothesis may have been pruned away during decoding of each individual 

streams. As shown in Figure 3-3, recognition is performed independently on each single 

feature representation and the results are combined in a post recognition manner. 

4.3.1 Recognizer Output Voting Error Reduction (ROVER) 

ROVER was introduced by J. Fiscus at National Institute of Science and Technology 

(NIST) and used at the DARPA 1997 LVCSR Hub 5-E evaluation [28]. After combining 

the results submitted by all participants in the evaluation, the WER is reduced to 39.4% 

from 44.9% (obtained by the best single system). Since then, ROVER has gained much 

attention in the speech recognition community. Five of nine participants in the 1998 
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Figure 4.5: Post-recognition: recognition result combination 
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DARPA Broadcast News evaluation adopted ROVER. Even though their results are the 

output of a ROVER system, NIST further reduced the WER from 13.5% to 10.6% after 

performing ROVER on the results of all nine participating systems. 

During our development on SPINEI, when we combined outputs from systems with 

15 different feature front ends using ROVER, the combined system obtained a WER of 

25%; although systems with each individual feature front end had a WER ranging from 

32% to 50%. 

ROVER is based on the hypothesis that the complementary information from different 

recognizers output can be used to reduce word error rate. It has two steps: 

Feature F i  /I Recognition 

1- - Decoder 1 
Resul t1 

1 .  Align outputs of all the recognizers and build a single Word Transcription Network 

(WTN) by dynamic programming (DP). 

2. Select the highest voted word as the best scoring word at each node of the WTN. 

The WTN is aligned iteratively in step one by first aligning two output sequences to 



form a combined WTN. This WTN is aligned with the third output word sequence, then 

the fourth and so on. So the final WTN is related to the combination order of all the 

recognizer outputs. To achieve best ROVER results, the recognizer outputs are ranked by 

their individual word error rate in an ascending order. However, the word error rates of 

the individual systems are generally unavailable. 

During the second step, ROVER picks the word with the highest number of votes 

at each node in the WTN. When two or more words have a tie in the voting, the tie is 

arbitrarily broken, which is a major drawback for this voting scheme. Especially for a 

ROVER with only two inputs, all the potential correctable words result in a tie and the 

final ROVER output lies between the original two input systems. So when only two 

recognizer outputs are available, ROVER has no advantage at all in reducing WER. 

Figure 4.6: A WTN of a ROVER system with three hypotheses as input 

There are seven aligned regions in this WTN. Each small capital letter represents a hypoth- 
esized word. 'sil' represent a silence region. 

In summary, ROVER has the following advantages and disadvantages: 

Advantages: 

1. Based on a solid assumption that the error patterns of two systems can be dramati- 

cally different even though they have a similar recognition error rate. 

2. Requires very little run time itself. 

3. Works quite well in most cases. 



Disadvantages: 

1. Based on an unreliable voting decision: The word confidence scores from different 

systems are not strictly comparable but ROVER assumes they are. 

2. Has a limitation in real application: The time and resource cost are linearly in- 

creased by a factor of the number of systems. 

3. Only uses the first hypothesis (best hypothesis with the largest likelihood) of each 

system. Complementary information contained in the hypotheses beyond the first 

one is discarded. Potentially better paths have been pruned during the recognition 

phrase and are not recoverable. 

4. Performance is influenced by the order of the combination with the best system 

ranked the first. This assumes a prior knowledge about the performance ranking, 

which is not always available. 

5. Cannot guarantee performance improvement. Experiments found it actually hurts 

performance when combined with systems that have higher word error rates. 

4.3.2 Hypotheses Combination 

During the 2000 SPINE evaluation, the best system from CMU introduced a parallel hy- 

potheses combination method [82]. The word hypotheses obtained from parallel systems 

are combined into a word graph. Unlike ROVER, the acoustic score is carried with each 

node of the word graph. The nodes representing identical words between the same time 

instants are merged into a single node. For each node pair, if the end time of first node 

is within 30 ms of the begin time of the second node, a link is added between these two 

nodes. Finally, a language model is used to score the word graph and find the best path as 

the final hypothesis. 

This approach is similar to ROVER at aligning and building the WTN, but the differ- 

ence is that it tries to explore more paths than the first hypothesis, so the resulting WTN is 



an extended network compared with ROVER. The WER of the best path that can be found 

in the WTN is believed to be lower than that from ROVER. The problem lies in whether 

the re-scoring by a language model can select better paths. CMU7s result [82] shows that 

it improves performance compared with the baseline system, but no comparison is done 

with ROVER. 

Since acoustic scores from different systems (recognizers) are not readily compara- 

ble, the hypotheses from different systems are infeasible to be cross-linked, which limits 

the combination only between the same recognizer with different models or features. Be- 

cause hypothesis combination is the same as ROVER on only combining the single best 

hypothesis from each systems, it has the same disadvantages as ROVER has. 



Chapter 5 

Run Time Fusion in Speech Recognition 

This chapter presents how we approach the problems in the existing fusion approaches, 

rooted in their inefficient use of the complementary information. We propose a run time 

fusion framework to address these problems (Section 5.2). In this thesis work, we mainly 

discuss our approach at the acoustic level and we fuse the complementary information 

from the multiple features (Section 5.3). Starting from Chapter 6, we present the detailed 

design and implementation of our approach. Under the general high level fusion frame- 

work, we designed three different fusion approaches. These three approaches are based 

on the same hypothesis, that by applying complementary information at an earlier stage 

of the recognition process, the final system will be able to obtain much better accuracy. 

These three approaches differ from each other at when, where and how the fusion is per- 

formed. We investigated these three approaches (or system architectures) in the hope of 

making the best use of multi-information sources. Experimental results are given after 

each approach to demonstrate the advantages of our solutions. 

5.1 Problems and Motivations 

As described in Chapter 4, current approaches to fuse different features have limitations. 

1. From the accuracy point of view, pre- and post-recognition do not use the potential 

benefit of a recognition engine (decoder). Pre-recognition approaches use multiple 



information at the feature or acoustic probability level; post-recognition approaches 

use multiple information at the reduced sentence level. Compared to pre- or post- 

recognition approaches, our run time fusion has access to all levels of complemen- 

tary information in the full extent (Figure 5.1). There has not been any work done 

to perform run-time fusion inside a decoder. A possible reason why this hasn't 

been done before is the recognizer engines are not readily available to the pub- 

lic till recently, and they are also rather complex to be manipulated. Current pre- 

and post-recognition undermine the possible improvement on recognition accuracy 

when complementary information is used. 

Our hypothesis: Much more complementary information is available and can be 

better used during run time in a unified framework. More performance gain can 

be obtained by performing information fusion at the decoder's run-time compared 

to the pre- or post-recognition. Run-time fusion is also more robust to different 

features and noises. 

2. From the computation cost point of view, post-recognition approaches, such as 

ROVER and Hypotheses Combination, require separate recognitions to be per- 

formed thus the computation cost is linearly increased. Running separate recog- 

nizers not only increases the computation cost but also increases the demand of 

resources. Since maintaining several recognizers is generally unaffordable, the 

recognitions are usually performed using the same recognition engine. 

Our hypothesis: Rather than running the same recognizer repeatedly, performing in- 

formation fusion in a single recognition engine is a feasible and efficient approach. 

During-recognition fusion can achieve improvement without a large increase in 

computation cost. Better or comparable performance can be achieved when run- 

ning the recognizer in a speedup mode (such as narrowing the beam width). 
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Figure 5.1 : Different levels of information within a speech recognition 

5.2 Framework of Run Time Information Fusion 

We investigated how to effectively fuse different information sources during run-time. 

The framework for our proposed fusion work is illustrated in Figure 5.2. The novel part of 

our proposed work is the interaction between different feature streams during recognition. 

The concept is similar to RAID for storage: using a collection of identical and inexpensive 

components to form an efficient and better system. The advantages of our proposed work 

on information fusion include: 

Compared with post recognition fusion, complementary information among different 

feature representations will be exploited during search to avoid un-recoverable errors in 

post recognition processing and the dependence (or time correlation) of different feature 



streams will be preserved. More information can ensure that the recognizer makes fewer 

errors at run time, and the improvement of recognition on each feature stream will con- 

tribute to the over all fused recognition performance. 

Compared with a pre-recognition approach, the constraint on frame level synchroniza- 

tion is relaxed in our proposed work and it enables features with different timelfrequency 

resolutions and time spans (such as segmental based features) to be readily integrated. 

It should be mentioned that our approach is not in opposition with the pre- or post- 

recognition, and they can coexist in the same system. 

\ . . . . . . - . - - - - 
F e a t u r e F d U 1  

[ I n n - -  Decoder 1 - 

Figure 5.2: Run time fusion framework 

The decoder with its underlying search network is the core of any speech recognition 

system. It can integrate multiple knowledge sources in the same framework at several 

levels (state, phone and word) and both within and across phones (or words). Rich inter- 

mediate information is available for manipulation at these levels. Pre-recognition fusion 

operates at the frame level and post-recognition is conducted at a reduced word level 

space. Our hypothesis is that recognition accuracy can be enhanced greatly by utilizing 

the complementary information contained in different features at different levels during 

decoding. In this thesis, we investigate fusion methods that lie in between two existing 



extreme approaches (either strictly conditionally dependent or completely independent) 

and show it can provide a more reliable fusion. 

The novel part of this framework is the interaction between different features during 

recognition. The potential benefit of this framework are: 

1. Complementary information between different feature representations will be ex- 

ploited during the search to avoid un-recoverable errors as in post recognition pro- 

cessing, and the dependency (or time correlation) of different features is preserved. 

More information can ensure the recognizer makes fewer errors at run time, and 

the improvement of recognition on each feature will contribute to the overall fused 

recognition performance. 

2. The constraint on frame level synchronization is relaxed, and it enables features 

with different timelfrequency resolutions and time spans (such as segmental based 

features) to be readily integrated. 

3. Current LVCSR recognizers are quite complex and very few people in the world 

actually master their art. This is probably one of the main reason why previous work 

concentrated onpre- orpost- recognition fusion but not during the recognition. The 

advantages of a recognizer make it more attractive to be the center of fusion: 

(a) Integration of multiple knowledge sources: Acoustic and language knowledge 

sources are already integrated in current LVCSR recognizer. Other innovative 

knowledge sources such as prosodic information, confidence measurement, 

noise cancellation, etc. can be used without much trouble. 

(b) Rich statistical information is readily available: As a by-product of decoding, 

a tremendous amount of data related to the search is produced during recogni- 

tion. These data can be used to perform fusion under our current statistically 

based recognizer. 



(c) The success of run time fusion can promote researchers in other specialities to 

experiment with more innovative approaches independent of the recognizer. 

Such approaches may have had a lack of success under traditional recognition 

frameworks, which prevented them from further studies. 

(d) Our run time fusion approach is not limited to the acoustic level and can be 

easily extended to other system modules such as language models under a 

similar methodology. The success of our approach can also help finding com- 

plementary knowledge source pairs in a given task. 

This thesis work will focus on conducting fusion: 

When? - During the decoding (Run time). 

Where? - Inside the recognizer. 

What? - Fuse the information from several knowledge sources. 

This thesis work tries to answers this question: How to fuse the information from 

several knowledge sources inside the recognizer during run time. 

5.3 Fusion Based on Multiple Features 

Human auditory studies have found that much of the speech signal could be discarded 

without a significant impact on human's speech recognition process [37]. The nature of 

human speech contains much redundancy. Phonetic features are signaled by many dif- 

ferent cues and distributed in both time and frequency space. This distribution is used to 

robustly transmit information contained within the speech signal. However, the underly- 

ing detail of the distributed representation is still unclear. Furthermore, we still don't have 

a complete structure representation for the speech signal. The different speech features 

are based on different assumptions on the structural representation of the speech signal, 

and they contain different information of the original speech. 



For many years, researchers have been devoted to finding a "perfect" feature rep- 

resentation of the speech signal. It seems an endless journey so far, just as we cannot 

make a "perfect" recognizer that makes no mistakes. Current speech recognizers adopt 

a single "best" feature set according to the task it is facing and measure their result on 

a development data set. Also the feature representations have fixed parameters (such as 

the window and frame size, and the number and shape of the band filters) during feature 

extraction. For example, MFCC, one of the most popular feature representations, usually 

has a window size of 25ms with lOms frame size. 

However, different features or features with different parameters can represent the 

same speech input differently. Information loss is inherent for any feature extraction 

method because it is a compression process of original speech signal[l4]. The remaining 

information is different for features that are based on different feature extraction methods. 

It is plausible these differences will result in different recognition results. 

Our experiments show that different features have fluctuating performance on differ- 

ent speakers and noise environments. Figure 5.3 gives a clear illustration of the large per- 

formance difference among different features. Although the overall performances (WER) 

of most of these systems that using different features are similar with differences under 

a few percentages, there are significant differences between there output. The average 

difference between the highest and lowest WER across all features for each speaker- 

environment pair is about 20%. If we can successfully select the best-performing feature 

for every pair, the WER can be reduced significantly compared to the best single fea- 

ture performance. There is much potential to be explored by using the complementary 

information from multiple sources (features). The experiments confirm that different fea- 

ture extraction algorithms can exploit complementary information of the same acoustic 

signal. Furthermore, the complementary information is exhibited at the outputs of the 

recognizers. 

In this thesis, we explore the use of complementary information within a large vocab- 

ulary continuous speech recognition system. Different features will be fused at different 
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Chapter 6 

Run Time Fusion In Detail 

The work described in this thesis has focused on increasing the robustness of the large 

vocabulary speech recognition. One major problem that speech recognition researchers 

have to deal with is the robustness issue. The variability of speech is the nature of human 

speech. Added to the difficulty is the channel and environmental distortions. This thesis 

work is intended to tackle the problems raised by performing run-time information fusion 

inside the decoder. 

The decoder used in this work is similar to other state-of-the art decoders. The decoder 

is the most important component of a LVCSR system. It is responsible for integrating 

various knowledge sources in an efficient way to generate the best word sequence for a 

given speech signal. There are many requirements for a successful decoder. The basic 

performance measurement of a decoder is the recognition accuracy. A decoder can also 

be measured by the demand of computation resources such as memory and disk space. 

A successful decoder also needs to be fast and robust. Lots of effort has been spent on 

designing the decoder to cope with the ever increasing demand of a speech recognition 

system. Current decoders have a very complex design and implementation. The decoder 

used in this work uses many state-of-the-art technologies such as, time-synchronous beam 

pruning and lexical tree based Viterbi search. During the decoding, the decoder will 

generate and manage an extremely complex search space. Thus both the static structure of 

the decoder and the dynamic decoding space are very complex. Our run-time information 

fusion was designed to work with these complexities. To achieve this goal, lots of efforts 



are related to the details of the implementation. Thus it is necessary to describe many 

implementation issues in the following sections. 

The proposed approach was tested on a large vocabulary speech task which contains 

eight different environment noises. The experimental results were measured against the 

results obtained from the conventional approach using WER, the standard criterion used 

to measure the performance of a speech recognition system. However the WER does not 

exhibit the power of our run-time fusion. Because the language model of SPINE task 

restricts the further reduction on WER. And the language model is not the focus of this 

thesis. Although our run-time fusion can also utilize multiple information from different 

language models. This thesis is focused on improving the acoustic disambiguation ability. 

A better evaluation criterion is to decouple acoustic recognition from language model. 

Word graph provides such an option. When the acoustic ambiguity is higher, there will be 

more optional words occurred in the word graph. So in this thesis, we also used WGER 

(Word Graph Error Rate) to evaluate system performance. 

Section 5.2 outlines the novel framework of our approach. The fusion is conducted 

at the run time (when) of the decoder (where). The statement above distinguishes our 

approach from other existing fusion solutions. However, it only provides a general ar- 

chitecture 5.2 of our approach. To make our approach work, we will investigate three 

approaches discussed in the following subsections. These approaches will give a more 

specified answer to these question: 

a How to fuse the information from several knowledge sources at the run time of the 

decoder? 

When to perform the fusion?: At what specified time should we perform the run 

time fusion. 

Where to perform the fusion?: At what points of the decoder should we perform 

the fusion. 



Under the above high level framework, we designed three different fusion approaches. 

We investigated these three approaches (or system architectures) in the hope of making 

the best use of multi-information sources. These three approaches are based on the same 

hypothesis, that by applying complementary information at an earlier stage of the recog- 

nition process, the final system will be able to obtain much better accuracy. These three 

approaches differ from each other at the solutions to the three above questions. 

We refer to the first approach as 'constraint fusion '. In constraint fusion, one feature 

serves as the main feature during the decoding. Decoding of the main feature sets a con- 

straint on the search space for the other features. Other features keep independent search 

paths but mainly functioned as consultants to the main feature. We refer to the second 

approach as 'composite fusion '. The composite fusion is different from the constraint fu- 

sion as each feature stream is independent and has its own search space. The synchrony 

happens at phone or word boundaries. We refer to the third approach as 'rank based fu- 

sion '. Compared to constraint fusion, instead on directly using the log likelihood value 

from different feature streams, the rank based fusion uses the relative rankings of all the 

hypotheses. 

The successfulness of our approaches is measured by the following: 

1. The approach improves recognition accuracy. 

2. The approach keeps recognition efficiency. 

3. The approach is implementable. 

To implement these three approaches, significant work was spent to modify the current 

decoder architecture. To clearly describe our approaches, and to answer the three ques- 

tions above, this thesis has to highlight some important implementation details throughout 

the following sections. 

Please note that although we will mainly discuss our approach at the acoustic level, 

it can be easily generalized to language models and other system components using a 

similar methodology. 



Constraint Fusion 

A post-recognition combination method, such as ROVER, lacks robustness when used 

with higher error systems; its performance degrads. Since ROVER is a voting procedure, 

a higher error hypothesis could play a crucial role in the h a 1  output decision when there 

is a tie (or near-tie) among hypotheses. Similar robustness problems exist in the pre- 

recognition approaches. Because fusion is performed in only one dimension, such as the 

feature or probability level, noise corrupted features make the same contribution as clean 

features. To overcome this kind of problem, we proposed a constraint fusion scheme to 

increase the robustness. 

In our constrain fusion scheme, a set of models are trained independently for each 

feature. During the decoding, recognition on each feature runs independently, except at 

the designated boundaries (such as phone or word boundaries). The designated bound- 

aries are decided by decoding using only one feature named "main feature", and the main 

feature can be any feature in the total feature pool. Thus decoding the main feature sets 

a constraint on the search space for other features. Likelihood from other features with 

the same state sequence will be added (with a weight estimated under certain criteria such 

as Minimal Classification Error (MCE) or Maximum A Posteriori (MAP)) before prun- 

ing. The likelihood for other features can be estimated using technology similar to forced 

alignment (the decoded state sequence as the target of the underlying phonetic targets). 

The purpose is that by using additional (and hopefully complementary) information, the 

correct path will not be pruned away. The flow chart of this approach is given in Fig- 

ure 6.1. This process is conducted for every stream of feature representations, and the 

recognition results from each stream will be fused to give the final recognition output. 

The fusion work in this thesis is based on the time synchronous Viterbi search and the 

general run time fusion architecture is showed in Figure 5.2. The detailed flowchart of 

our constraint fusion scheme is shown in Figure 6.1. 
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Figure 6.1 : Flowchart of Constraint Fusion 

6.1.1 Constraint Fusion Implementation - Modification on Token Pass- 

ing and Token Merge 

Experiments show that the state log likelihoods are very small (<< except for 

a small number of the most likely states. This characteristic is one reason why beam 

search is so effective. However, it also introduces search errors. As described in Section 

2.4.4, beam search width is determined by the maximum partial path likelihood MaxLog 

at time t. The single state that obtains the MaxLog will have the determining effect on the 

pruning decision. Beam search is based on the assumption that the highest partial path 



value is from the most likely state sequence. However, the most likely state sequence 

is not known during the time synchronous search. Thus the beam pruning decision is 

based on an approximation that may not be accurate enough. The partial path that was 

in fact part of the most likely path could be pruned away before reaching the end of the 

utterance. There are many possible reasons that can result in this kind of search errors. 

For example, at one or several frames, the acoustic event could be poorly modelled by the 

acoustic models. The MaxLog value could be set by an incorrect partial path. For some 

other partial paths, their state log likelihood values during that period could be very small 

and the accumulated likelihood is too small to survive the pruning. Although these partial 

paths are in fact part of the most likely paths. If we keep them alive beyond that short 

period, they may survive following pruning and result in most likely paths. Unfortunately, 

we could not know at that point which partial path will be part of the most likely path. 

Even worse, such a pruning error is unrecoverable, which means there is no way to get 

that partial path back into the active search space due to the nature of time synchronous 

search. 

Another reason is as follows. Especially in decoding difficult acoustic events, the 

differentiating ability of the acoustic model is extremely weak. A tremendous amount 

of tokens could be generated in a matter of several frames. Histogram pruning kicks in 

during this circumstance to control the total number of active tokens. However, histogram 

pruning is a compromise to speed up search and more prone to prune promising paths. 

To avoid pruning errors, the beam width must be set large enough. However that 

significantly increases the search effort and therefore is not an ideal solution. In this 

thesis work, we proposed and implemented some novel pruning methods under our fusion 

framework. Under constraint fusion, the pruning strategy is governed by two principals: 

All features have a vote. 

Under beam pruning, all active tokens at the current frame are subjected to a set of 

pruning steps guided by some preset thresholds. In the traditional approach, only 



one feature is used. A preset threshold is compared with the highest value from 

that single feature. The pruning decision is deemed by the acoustic model accuracy 

of that feature. Under our constraint fusion framework, the pruning is no longer 

decided by one single feature as the traditional approach does. Instead, all features 

participate in the pruning decision. The pruning accuracy is now related to the 

accuracies of all acoustic models. 

Main feature has the final say. 

Different from the situation above, there are points that only one token in a token 

pool can be further propagated. For example, under traditional Viterbi decoding, 

only the "best" token is propagated to the next frame when there are multiple active 

tokens reside on the same state. Within constraint fusion framework, this "best" 

token is selected by the main feature. 

Extensions on Token Structure 

The token concept was introduced in Section 2.4.2. To accommodate our fusion scheme, 

we need to extend the original token structure. One of the extensions is the log likelihood 

that is stored in the token is changed from a singleton to an array. There are two kinds of 

arrays depending on the fusion method we use: 

The array is (N + 1) x 1. Log likelihood values of all features plus the fused one 

are stored in this N + 1 dimension array. Element (i, 0) in this array is the token's 

partial path score for feature i. 

The array is (N + 1) x 2. Compared to the first kind of array, an addtional column 

is added. Each element (i, 1) in that colurnn records the relative rank of the partial 

path score among all active tokens for feature i. 



Token Merge 

Before we detail the implementation of our constraint fusion approach, we first introduce 

a technology that we used in our system, called Token Merge. The token merge (or 

recombination) approach is based on the assumption that for each active state in the lexical 

tree at t, all but one token that has the same language model history can be discarded. The 

language model history can be retrieved from each token, and the range of this history 

depends on the actual m-gram language model we are using. For a bigram language 

model, all tokens with the same last word are merged into one token. For a trigram 

language model, all tokens with the same last two words are merged. 

The token merge enables us to incorporate the language model into our lexical tree 

search without making any tree copies. The token merge is conducted on the token list 

of each active lexical tree state at frame t. Suppose at time frame t ,  state s has an active 

token list called TokenList(t; w;  s ) .  TokenList(t; w;  s )  is a linked list structure that has 

K tokens linked together. 

The token merge procedure is as follows: 

1. Cluster tokens into a set of token lists. 

Start searching TokenList(t; w;  s )  from head to end, fetch a token k and compare 

it with corresponding TolcenList-LM(t; w;  s;  m) according to its m-gram history 

m .  Generate a new TokenList-LM(t; w;  s;  m) if it does not exist. 

The pseudocode for this procedure is shown in Figure 6.2: 

After the operation above, all tokens are clustered into a set of token link lists. 

Every such token link list has a unique m-gram history. 

2. Merge the best tokens from all clusters (token link lists). 

The best scored tokens in each cluster have been sorted out in the previous step. We 

simply concatenate these tokens into a new token link list ~ o k e n ~ i s t ' ( t ;  w;  s )  and 

attach it back to state s. 



If (matched TokenList-LM(t; w; s ;  m) does not existed) { 
Create a new linked token list TokenList-LM(t; w; s; m). 
Put token k on TokenList-LM(t; w; s; m). 

) Else { 
I?,(t; w; s)  = score of TokenList-LM(t; w; s;  m). 
If (the score of token k r h ( t ;  W; s)  > Fn(t; w; s)) { 

Replace the token on TokenList-L M (t ; w; s; m) with current token; 
) Else { 

Discard token k. 

1 
1 

Figure 6.2: Pseudocode for Token Merge 
Note: Token merge is decided by the main feature. 

After the token merge operation, the pointers to surviving tokens are placed in an 

one dimensional array. The index of this array is mapped to the m-gram language 

model. Thus each m-gram language model combination has a unique index in the 

array. For example, the mth element of this array stores the pointer to a token list 

named TokenList-LM(t; w; s ;  m). 

After t h s  merge operation, all tokens in ~ o k e n ~ i s t '  (t; w; s)  differ in their language 

model context. The m-gram language model is integrated into the search process 

without using tree copies (Section 2.4.1). 

6.1.2 Constraint Fusion Experiments - Fusion Based Pruning 

Constraint fusion is used as the platform for testing our proposed cross-reference pruning 

strategy [ lo  11. 

In our implementation, once a feature is selected as the main feature, the remain- 

ing features will serve as consultants (supporting features) to the selected main feature. 

During the token pruning, when the decision is to keep a token alive under the traditional 

pruning strategy (in our implementation, the difference between the maximum token like- 

lihood at current time frame and the likelihood of this particular token in comparison to a 



preset threshold), no consultation is requested on the remaining features. If the decision 

is to prune away this token, a consultation is made via cross-referencing the same path in 

the search spaces of the supporting features. If the path could survive in the supporting 

feature spaces, then the path will be kept in the main feature search space. 

The first set of experiments were used to measure how well this cross-pruning strategy 

worked. In these experiments, the main feature was handled as it would be in a standard 

recognizer except the pruning. The purpose of these experiments was to measure how 

many most likely paths can be saved by the cross-referencing pruning. In other words, 

how well the cross-referencing pruning approach compares to conventional beam pruning. 

This measurement was performed on both the word sequence and the word graph output. 

6.1.3 Using Fusion to Improve Word Graph Quality 

The word graph quality determines the success of post-recognition approaches and multi- 

pass decoding. The quality of a word graph can be defined by two measurement: 

Word Graph Error Rate (WGER)[70]: The best WER that can be reached by choos- 

ing a path in the graph, so it's the oracle word error rate that can be achieved by 

extracting a path from the word graph. 

Word Graph Density (WGD): A measurement of word graph size, it is defined as 

the total number of graph edges divided by the number of actually spoken words. 

The lower the WGD, the more compact the graph is. 

WGER decides the WER lower bound that a second pass decoding or re-scoring can 

reach. Reducing WGER will improve the performance of other post-recognition ap- 

proaches [56, 57, 821. WGD reflects the search cost of generating the word graph, and 

it also affects the cost of re-searching the graph. Low WGD not only reduces computa- 

tion cost but also benefits the accuracy because there are fewer incorrect hypotheses in 

the graph. Generally, we wish to reduce both WGER and WGD. The common way to 

change WGER or WGD is by adjusting beam widths. However, the common approach 



cannot reduce both WGER and WGD at the same time. Increasing beam widths will 

reduce WGER but also increase WGD. WGER is not guaranteed to be reduced by this 

method because we cannot prove the new included hypotheses contain better paths. The 

trick of adjusting the beam widths are based on experience and dry run experiments. A 

good beam width setting strategy is to reach an optimal WGER and WGD combination. 

Compared to tasks with similar baseline WERs,', the SPINE task has a much higher 

WGER; it is one unique characteristic that distinguishes it from other tasks. As reported 

in [91], our previous constraint fusion experiments show encouraging signs of reducing 

the WGER by using information fusion during decoding. 

Table 6.1 : Effect of constraint fusion based pruning on reducing WGER and WER 

System WGD WGER WER 

TRAPS + MFCC means TRAPS is the main feature and MFCC serves as the consultant. 

The result in Table 6.1 shows the cross reference pruning strategy indeed rescued 

some most likely paths from being pruned. It shows the fusion based pruning is more 

accurate than the conventional beam pruning guided by a single feature. The complemen- 

tary information from multiple feature sources is more reliable for the pruning decision. 

The improvement on WGER is not reflected in the WER. We compared the WERs 

from the same experiments, and there are just small improvements for fusion based sys- 

tems (Table 6.1). These improvements are not significant. 

A reasonable explantation is that although those partial paths were rescued by other 

consultant features from being pruned, they still can not win out at the end of utterance 

under the main feature's criterion. In other words, the likelihood differences for the partial 

'The WGER for Voicemail and Switchboard tasks is about 9% and 9.5% respectively, although the 
WER for these two tasks (33.7% and 38.5%) are comparable with SPINE task. 



paths at time t are too large for them to catch up with the best hypothesis at time T. In 

more detail, since at every time frame, state log likelihoods are very small (<< 

except for a small number of the most likely states. For some partial paths which endured 

small log likelihoods for several states, their cumulated partial path scores for those states 

will be much lower than the best partial path. Although we could save them from being 

pruned. These partial paths have little chance to be the number one hypotheses at the end 

of utterance. This certainly shows the efficiency of beam pruning for a single feature. 

However it also shows the weakness of current ASR architecture. Because the failure of 

acoustic models on a few states can be fatal to the whole recognition. 

An encouraging sign in these experiments are that many partial paths caught up with 

others and were included in the final word graph. Further analysis also shows the WER of 

NBEST list (best N hypotheses) was also reduced. So if the utterances are long enough 

to let those partial paths have ample time to catch up, the final WER could be reduced 

further. This hypothesis requires a detailed error pattern analysis and carefully designed 

experiment to verify. We will work on it in the future. 

6.1.4 Constraint Fusion Experiments - Fusion Based Final Recogni- 

tion Output 

In the experiments above, we implemented the constraint fusion concept into the beam 

pruning. We observed some improvement on the word graph quality but little gain on the 

final recognition output. In this Section, as proposed before, we use fused likelihood as 

the criterion to select the final recognition output. Similar to the implementation above, 

during the decoding, one feature is assigned as a "main feature", which constrains the 

possible state sequences and the search space of the following search. The search is 

conducted as usual but at phone (or word) boundaries, the likelihood for all features were 

added together. A set of weights ai are obtained by training on a development data set. 

Each feature has its own weight and the fused likelihood value is decided by the following 

equation: 



where 

P(si ( t )  Isi (t - 1))  is HMM state transition probability of feature i, 

b(oi ( t ) / s i  ( t ) )  is HMM state observation probability of feature i, 

and FN+l ( t ;  W ;  S )  is the fused partial path score at time t and state s. 

The ai in the Equation above satisfies the following Equation: 

Upon a token first entering into the entry state of a node, we need to add up its factored 

language model probability: 

where 1 5 i 5 N + 1, and w ( s ( t )  l w )  is the factored language model probability. 

When a token is finally leaving the last state of a node, we need to remove the factored 

language model probability after all the pruning: 

Not only different features have different weight value during the likelihood fusion, 

they play different roles. The search space is pre-defined by the main feature, and the 

other features take a role in the pruning decision. In Equation 6.1, state s and word w 

are determined by search path of the main feature. And the selection of best (partial) 

hypotheses is determined by the fused likelihood rNSl(t; W ;  s) .  

Table 6.2 shows the results when combining two features using the constraint fusion. 

Compared with the baseline non-fusion system (row "TRAPS" in Table 6.2), fusion sys- 

tems outperformed it in every case. The improvements are statistically significant. 



Table 6.2: Effect on reducing WER by fusing likelihoods from different features. 

System WER 
TRAPS 29.9% 

TRAPS + MFCC 28.4% 
TRAPS + TLDA 28.7% 

TRAPS + WMFCC 28.4% 

Constraint fusion was applied on two features with TRAPS as the main feature in all ex- 
periments. TRAPS + MFCC means TRAPS is the main feature and MFCC serves as the 
consultant. 

Table 6.3: Comparison on WER reduction by using constraint fusion approach with dif- 
ferent main feature. 

Main Feature 
MFCC TLDA TRAPS 

Baseline 27.7% 28.6% 29.9% 
Fusion 26.8% 27.7% 28.4% 

Fused likelihoods were applied. 

In Table 6.3, the columns "MFCC", "TLDA" and "TRAPS" denote the experiments 

that the corresponding feature is selected as the main feature. Row "Baseline" denotes 

systems that did not apply the proposed cross-referencing pruning strategy and the row 

"Fusion" denotes systems that applied the proposed strategy. 

Since our run time fusion approach performed at different stage compared with pre- 

and post-recognition fusions. These approaches can be combined in a sequential way. For 

example, we further conducted ROVER on the outputs from both the baseline and fusion 

systems (Table 6.3). The experiments shows our approach can be successfully combined 

with post-recognition fusion methods such as ROVER (Table 6.4). 

Table 6.4: Further WER reduction by applying ROVER after constraint fusion 

System MFCC TLDA TRAPS 
Baseline 27.7% 28.6% 29.9% 

Run Time Fusion 26.8% 27.7% 28.4% 

ROVER 
27.3% 
26.5% 



6.1.5 Fusion with Dynamic Beam Adjustment 

In large vocabulary speech recognition, the potential search space is prohibitive for a 

full search. Beam search is necessary to limit the search space by pruning away the 

less likely tokens. In the time synchronous search framework, beam search means at 

every time frame, only the most promising tokens are retained. Beam search is based on 

the assumption that the highest partial path value is from the most likely state sequence. 

However, the most likely state sequence is not known during the time synchronous search. 

Thus the beam pruning decision is based on an approximation that may not be accurate 

enough. Consequently the beam width is set to a rather large value to ensure that the most 

likely state sequence is not pruned. The side effect of setting a larger beam width is that 

more tokens are retained and the computation cost is increased. 

Although beam search is very effective to control the active token numbers in most 

cases, there are periods for which the number of active tokens can be extremely high, 

because the potential size of the search space is very large. According to Ode11 1681, the 

peak number of active models is about 100 times greater than the average number for a 

WSJ 5k test. This many active tokens consumes a lot of memory and CPU cycles. The 

acoustic uncertainties, such as noisy speech, make this situation worse. When decoding 

unintelligible speech segments, no single token has a dominative score over other tokens, 

the recognizer produces a tremendous amount of tokens because the beam pruning is no 

longer effective. For tasks containing significant amount of noise or spontaneous speech 

such as SPINE task, this condition often occurs. 

To accelerate decoding under such conditions without any damage to the recognition 

accuracy, we proposed a dynamic beam adjustment under our run time fusion scheme. 

In this approach, all features are involved in the pruning decisions. Each feature has 

its own set of beam pruning values, some of these beam values are dependent on each 

other, such as total allowed token numbers, but most of them are independent. The tokens 

are first evaluated by each feature's pruning module, their results are fused to make the 
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final pruning decision. At each time frame, we gather some statistical information on the

beam pruning effect of each feature. For example, at time frame t, word-end beam width

of feature Ii keeps ai percentage of tokens active. The word-end beam width for these

features at time frame t+1 is be adjusted according to the following formulas:

cp= min(ai) * /3;
~

(6.5)

a, - cp
WordEndBeami = WordEndBeami * (1 - ~ );

cp

where /3 is a weight value used to adjust the threshold cpo

(6.6)
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Figure 6.3: The comparison of active token numbers along the time frame during decod-
ing one sentence

When the survived token percentage of feature Ii is over or less than cp,we reduce or



increase its pruning widths according to equation 6.6. This approach is based on the ratio- 

nale that unintelligible speech segments often occur in some continuous frames. Rather 

than let lots of unpromising tokens go through each pruning stage till the final histogram 

pruning, we try to reduce the active tokens in the earlier stage of pruning. Experiments 

show this approach significantly speeds up the search without any loss of recognition ac- 

curacy. Figure 6.3 compares the active token numbers of dynamic beam adjustment with 

conventional single feature pruning. The curve of the fusion approach is relatively flat 

and the token numbers are in the range of 10k to 30k. The three features have some peaks 

over 40k tokens. 

Composite Fusion 

From the point of view of HMM topology, the previous proposed constraint fusion scheme 

relies on one feature as the main feature and needs a final step to fuse the individual 

results. In the composite fusion approach, the fusion is conducted in the single composite 

recognizer. Each feature still has its own corresponding HMMs; the search of each feature 

runs independently in its state space, except that time synchrony is required only at pre- 

defined boundaries. The boundaries can be phone boundaries or word boundaries. 

The composite HMMs (Figure 6.6) are a set of parallel traditional HMMs which share 

the same begin and end dummy nodes for the selected units (can be phone or word). Dif- 

ferent streams make the transition at the same time for begin and end nodes (synchro- 

nizing at segment level rather than frame level) but each stream of HMMs makes their 

own state transitions independently in the internal states. To ensure global optimization, 

the EM algorithm can be applied so that HMMs for different streams are trained simul- 

taneously and jointly. Similarly, the existing single stream decoder is extended to ensure 

the time synchrony jointly at boundaries (the specified begin and end nodes for phone or 

word). 

This scheme is quite different from the multi-stream or multi-band approach, where 



different streamshub-bands are trained and decoded independently by different MLP 

recognizers. The proposed topology can be viewed as a generalization of existing ap- 

proaches. The HMM topology of the concatenated approach in pre-recognition fusion is 

illustrated in Figure 6.4, which is a trivial case of our proposed architecture. In the con- 

catenated approach, multiple streams are merged into one input vector for recognition; 

only one set of models is needed. While the post-recognition fusion method can be viewed 

as a composite model at sentence level as shown in Figure 6.2. In the post-recognition 

fusion approach, multiple streams are searched independently during run time. The un- 

derlying state sequences of each path in this diagram are not necessary the same. Further- 

more, each path may have different number of states. The only similarity for these paths 

are they share the same dummy nodes at the sentence beginning and end. 

Dummy I nodes I P 1  

Figure 6.4: Existing art: Concatenated approach in Pre-recognition fusion 

Figure 6.5: Existing art: Post-recognition fusion 



nodes I 
Figure 6.6: Our run time fusion approach 

A combination of synchronous and asynchronous search at run time among different feature 
streams. The underlying state sequences of each partial path that lies between two dummy 
nodes are not necessary the same. Although these partial paths have the same start and end 
time in that period. 

These figures show a more detailed view on the shortcomings of the existing fusion 

solutions. The drawback of pre-recognition fusion approach is that only frame-based fea- 

tures can be incorporated (or only time synchronized feature streams can be incorporated). 

Segmental based information, such as tones (or pitch patterns), cannot be integrated easily 

into this framework during run time. 

The drawback of post-recognition fusion approach is that the time-dependency be- 

tween different features is completely ignored during the recognition of each stream. In 

other words, there is no interaction between different features during the decoding pro- 

cess, i.e. the presence of one feature stream does not impact the course of decoding in 

other feature streams. 

The composite fusion approach is a combination of synchronous and asynchronous 

search at run time among different feature streams. Compared with these existing ap- 

proaches, the constraint on frame level synchronization will be relaxed in our proposed 

work, and enables features with different timelfrequency resolutions and time spans (such 

as segmental based features) to be readily integrated. 



6.2.1 Fused Viterbi Algorithm 

In Section 2.3, we introduced the Viterbi algorithm. Under Viterbi approximation, the 

"C" in the following Equation: 

w = arg rnax P(W)P(OI W )  = arg rnax P ( W )  P ( 0 ,  ST] W )  W W (6.7) 
ST 

was replaced by "max". 

The new search equation becomes: 

w = arg max P ( W )  P(OI W )  = arg rnax P ( W )  rnax P ( 0 ,  ST] w),  (6.8) W W ST 

where ST means all possible state sequences from time 1 to T. 

The summation in the first equation is for all possible state sequences under the con- 

straint of word sequence W. Summing all possible state sequences requires a thorough 

search through the whole search space which is unaffordable. And in the second equation, 

only the most probable state sequence is considered. Under this Viterbi approximation, 

the most likely word sequence is approximated by the most likely state sequence. This 

approximation works well in practice but is certainly a sub-optimal assumption. 

Viterbi approximation assume that the likelihood of the best path can approximate the 

sum over the likelihood of all paths. It works well when the acoustic and language model 

ambiguities are low and the best path dominates other paths. This approximation is in 

doubt when the acoustic and language models can no longer describe the speech signal 

well. In these difficult situations, the distance between the best and other paths will be 

narrow and the likelihood of other competing paths are not appropriated to be ignored. 

The problem above is addressed under our multiple features fusion framework: 

N 

w = arg rnax P ( W )  P(OI W )  = arg rnax P ( W )  rnax P(O, $(i) 1 w), (6.9) W W i sT(4 

where i is the feature index, N is the total number of features. Thus s r ( i )  means all 

possible state sequences from time 1 to T under feature i. 



In Equation 6.9, each feature has its own Viterbi alignment, and the best word se- 

quence is decided by the fusion of the Viterbi alignments. To accommodate this extension, 

we need to modifj our token passing strategy. For each active state, instead of keeping 

only one best token as in conventional token passing, we keep the one best token for each 

feature. So at each time frame t ,  we need to find the best token for each feature and con- 

nect them in a linked list, then attach this linked token list to the active state. We always 

keep N tokens for each state if any one of them can s w i v e  the pruning, which means 

that duplication is allowed in the N tokens list. Duplication occurs when more than one 

feature selected the same token as the best token. If that occurs, we will duplicate that 

token and add the new token to the list. The reason is this agreement can be temporary 

among these feature, most likely they will go their separate ways in the following search. 

An illustration of this extension is showed in Figure 6.7. 

6.2.2 Fused Token Propagation 

The search is implemented by propagating tokens through the lexical tree. The integration 

of token propagation with a re-entered lexical tree makes it possible to use a single tree 

instead of making multiple tree copies. Nevertheless, the token propagation is different 

when it occurs within the tree and across the tree. 

The algorithm for within-tree token propagation in our fusion framework is: 

1. First calculate the new partial path scores for each feature i: 

where 

P ( s ( t ) / s ( t  - 1 ) )  is H M M  state transition probability 

b(o( t ) / s ( t ) )  is HMM state observation probability 

2. Update language model lookahead value: 
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state

time

t t+1 t+2 t+3

Figure 6.7: An example of our extended Viterbi search

If state s is the entry state of a node, and it is the first time this token enters into s,

add its factored language model probability:

ri(t; w; s) = ri(t; w;s) + logw(s(t)jw) (6.11)

where 1 :S i :S N, and w(s(t)jw) is the factored language model probability.

If state s is the exit state of a node, and it is the last time this token stays in s, we

remove that factored language model probability before it leaves state s:

ri(t; w; s) = ri(t; w; s) -logw(s(t)jw) (6.12)



3. For all tokens in frame t ,  find their best score f' for all features 

4. (a) If HMM state is the synchrony point, perform fusion here: 

i f w  r i ( t ;  W; S) > T, *r'a { *  

i. Clone current token to a new token and update its information for all 

features. 

ii. According to equation 6.9, calculate the fused partial scores by summing 

the best partial scores over all features: 

iii. Attach this new token to the linked token list of state s. 

) else{ 

i. Discard this token. 

ii. Exit this routine. 

1 
(b) If HMM state is not the synchrony point, perform normal token propagation: 

i f @ r l ( t ; w ; s )  > il *?I) { 

i. Clone a new token and update its information; 

ii. Attach this new token to the linked token list of state s. 

) else{ 

i. Discard this token. 

ii. Exit t h s  routine. 

2 ~ i  is the beam pruning threshold for feature i 



The algorithm for cross-tree token propagation is more complex than the within-tree 

propagation for several reasons. The cross-tree token propagation starts at the leaf nodes 

of the lexical tree, and ends at the first level triphone nodes: 

1. When a token leaves the last state of a leaf node, we are already able to identify the 

newly generated word. Thus the actual language model probability is added to the 

path score: 

I'i@; W ;  S )  = ri(t - 1; W ;  st-1) + logP(w) (6.15) 

where logP(w) is the language model probability for word w and in the trigram 

case: logP(w) = logP(w/wl,  w2)  

2. Clone a new token and update its information including the path history. 

3. For all tokens in frame t, find their best score f i  for all features 

4. (a) If word is the synchrony point, perform fusion at this point: 

i f ( r i ( t ; w ; s )  > T' * P i )  

i. Clone a new token and update its information; 

ii. According to equation 6.9, calculate the fused partial scores by surn- 

ming the best partial scores over all features: 

iii. Attach this new token to the linked token list of state s. 

else 

i. Discard this token. 

ii. Exit this routine. 

where T' is the word-end beam pruning threshold 



(b) If word is not the synchrony point, perform normal propagation: 

if (rl(t; W; s) > T; * f 

i. Clone a new token and update its information; 

ii. Attach this new token to the linked token list of state s. 

else 

i. Discard thls token. 

ii. Exit t h s  routine. 

5. Propagate the tokens from leaf nodes to the first level tree nodes: 

Suppose the leaf node represents triphone "a-b+cV, and its successor nodes can be 

described as "c-*+*". For each of first level node "c-*+*" that are reachable from 

the word end node "a-b+c7', we need to calculate their new scores: 

where r(t; w; s) on the left hand of the equation is from Equation 6.15. 

6. For all tokens in frame t, find their best score fi 

7. (a) If word is the synchrony point, perform fusion as follows: 

i. Clone a new token and update its information according to r(t; w; s) for 

all features; 

ii. According to equation 6.9, calculate the fused partial scores by sum the 

best partial scores over all features: 



iii. Attach this new token to the linked token list of state s (state s is the first 

state of node "c-*+*"). 

(b) If word is not the synchrony point, perform normal pruning: 

ifV (ri(t; w; s )  > T, * fi) 

i. Clone a new token and update its information according to r ( t ;  w; s) for 

all features; 

ii. Attach this new token to the linked token list of state s (state s is the first 

state of node "c-*+*"). 

Modification to Token Merge 

In Section 6.2.1, we stated what was necessary for an extension to the token structure. For 

each active state, instead of keeping only one best token as in conventional token passing, 

we keep one best token for each feature. In implementation, the extension is executed 

on the token merge (Section 6.1.1) module. For each active state in the lexical tree at t, 

cluster all tokens that have the same language model history, and keep the best token for 

each feature and discard the rest. 

At each time frame t, we need to find the best token for each feature and connect them 

in a linked list, then attach this token linked list to the active state. Figure 6.8 shows such 

a token link list. 

Suppose at time frame t and state s, there is an active token list with language model 

history m, and this token list is named as TokenList(t; w; s). TokenList(t; w; s) has K 

tokens organized as a linked list. The new token merge procedure is as follows: 

1. Start search TokenList(t; w; s)  from head to end, fetch a token k and compare 

it with corresponding TolcenList-LM(t; w; s ;  m) according to its language model 

history m. Generate a new TokenList-LM(t; w; s;  m) if it does not exist. The 

pseudocode for this procedure is shown in Figure 6.9. 
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Figure 6.8: An example of Token Link List used in extended Token Merge

The token list contains more than one token, and each token is placed according to the order
of the features.

After the operation above, all tokens are clustered into M token link lists with

unique m-gram history.

2. Merge the best tokens from each cluster.

The best scoring tokens in each cluster are already sorted by the previous step. We

simply concatenate these tokens into a new linked token list TokenList' (t; w; s),

and attach it to the tree node s. Because these tokens are in an ordered list, after this

merge operation, all N tokens of each TokenList' (t; w; s) will have the same LM

context.



I f  (matched TokenList-LM(t; w; s; m) does not exist) 
Create TokenList-LM(t; w; s; m). 
Generate N copies of token k. 
Link these new tokens onto TokenList-LM(t; w;  s; m ) .  

Else 
matched TokenList-LM(t; w; s; m )  is found; 
For ( i  = 1; i < N ;  i + +){ 

I f ( F x ( t ;  w ; s ; i )  > f m ( t ; w ; s ; i  x i ) )  
Replace the ith token of TokenList-LM(t; w; s; m) with a copy of token k; 

Else 
Discard current token if i == N.  

1 

f',(t; w; s; i x i )  is the feature i score from the ith token of TokenList-LM(t; w; s; m). 
r k ( t ;  w; s; i )  is the score for feature i of token k. 

Note: Token merge was conducted on all features. 

Figure 6.9: Pseudocode for Token Merge 

For an active state of the lexical tree, we keep the best token from each feature. 

These N tokens from N features have the same m-gram history and reside on the 

same state at the same time. Thus their scores are comparable. Different from 

previous implementations, in which the fused likelihood was calculated from one 

single token, in this approach, the likelihood values used in fusion are from different 

tokens: 

In sentence level fusion, the final recognition output was decided by the following 

procedure: 

At the sentence end, search the maximum Score(m) according to Equation 6.2 1. 



There are N tokens in token group m, and they have the same language model 

history. That means these N tokens may have different partial word sequences 

except the last L-1 words in an L-gram case. However, we can only select one 

token for fmal recognition output. The approach we used here is to calculate a 

confidence score for each token: 

A 

Cm(i) = r,(t; w; s; i x i)/rma,(t; s; i ) ,  

where F,,,(t; s; i )  is the best score for feature i at time t. 

Find the maximum Cm(i) and select token i of token group m. 

Back-trace token i and generate final recognition output. 

The experimental result is shown in the following Table 6.5 and the result is superior 

to constraint fusion. 

Table 6.5: WER reduction by using composite fusion with extended Viterbi 

6.2.3 Composite Fusion - Improve Word Graph Quality 

System 
MFCC 
TLDA 

TRAPS 
Composite fusion with extended Viterbi 

In Section 6.1.3, we reduced WGER from 24.0% to 20.9% by using the constraint fu- 

sion method, but it is still not satisfying. We further reduced the WGER by increasing 

the search beam widths at different levels. Although the WGER was reduced, we soon 

reached the limit of our computation power, especially the memory, by increasing beam 

widths. After a certain point, the WGER decreased very slowly by increasing the beam 

widths while the WGD increased rapidly. The improvement in WGER is at the expense 

WER 
27.7% 
28.6% 
29.9% 
25.3% 



of a tremendous increase in word graph size, which lowers the word graph quality and 

diminishes the purpose of using a word graph. 

Table 6.6: The effect of beam width pruning on word graph size and its accuracy 

Note: Beam widths in these experiments are carefully tuned to give the 
best results. 

WGER 
20.9% 
19.7% 
16.6% 
14.1% 

It is important to improve word graph quality without significant increase in compu- 

tation cost. A solution is proposed here that integrates the fusion concept into the lexical 

tree based time synchronous search (Section 2.4.3) and token merge (Section 6.1.1). 

At every time frame (10 ms), a token merge operation is conducted on all tokens. For 

non-leaf nodes of the lexical tree, all tokens having the same language model history but 

different tree entering times are merged. For leaf nodes of the lexical tree, the new word w 

is known, and all tokens having the same preceding words W are merged into one token. 

These W are contained in the final word graph if they survive the following propagation. 

But tokens must pass various pruning stages before entering into the merge process. For 

example, right before token merge, we have a pruning step on all tokens from the active 

state HMMs. 

r(t; w; s) > r * i' (6.23) 

f' is the maximum likelihood of all tokens from HMMs. 

r is the beam pruning threshold. 

WGD 
95.3 

231.5 
255.2 
290.2 

Experiments show increasing r is the most efficient method to reduce WGER and 

the results of Table 6.6 were obtained in this way. But as stated before, this approach is 

unsatisfactory. Part of our approach is that rather than simply increase r, we perform a 

Real Time Factor 
3.5 
6 

7.5 
10 



fusion based pruning: 

V(ri(t; zu; s) > T, * l'i) 

pi is the maximum likelihood value at feature i for all tokens from HMMs. 

ri is the beam pruning threshold for feature i. 

Suppose the ri have the same value as T, then by increasing T in Equation 6.23, we 

leave many unlikely tokens alive, thus hurting the quality of the word graph. But in 

Equation 6.24, only the most likely tokens considered by each individual feature are let 

in. The analysis above was verified by our experiments: at a similar WGD, significant 

WGER reduction by about 43% is achieved (Table 6.7). Additional optimizations, such as 

dynamic beam adjustment of ri, were also implemented by fusion statistics from various 

features. We will not elaborate the lengthy detail here because they are similar to the 

principal of fusion. 

Table 6.7: Graph Word Error Rate reduction by cross-reference pruning coupled with 
dynamic beam width fusion 

Second pass cross-word decodings were performed on the word graphs above using 

the same set of acoustic and language models. The improved word graph (Table 6.7) 

produced by the first pass decoding gave a 9.7% WER reduction in the second pass de- 

coding (Table 6.8). Significance test (Table 6.9) shows this improvement is statistically 

significant and the difference is greater that 99.9%. 

System 
Baseline: Increase Beam approach 

Fused Token Pruning approach 

WGER 
16.6% 
9.4% 

WGD 
200.2 
200.6 



Table 6.8: The effect of improved WGER on the 2nd pass decoding. 
- - 

Best quality word graph by fusion approach is beneficial to 2nd pass decoding. 

6.3 Rank Based Fusion 

A great advantage of our run time fusion over other fusion methods is that the hypotheses 

are automatically aligned across different features. At time frame t, all (partial) hypothe- 

ses are generated from the same part of speech, thus their scores for different features 

can be directly compared. This comparison can be conducted at all levels of a speech 

recognizer: state, phone, word, and sentence. 

In the constraint and composite fusion approaches, we directly use likelihood from 

other feature representations to participate in the pruning stage during the search. In 

rank based fusion, we exploit the relative ranking in active search paths. Similar to the 

constraint and composite fusion approaches, the final result will be given by fusion of the 

recognition results from each feature representations. The difference is that the likelihood 

values are transformed into a series of rankings. Each feature has its own ranking order 

for the recognition hypotheses. The rankings for all features have the same range, such 

as 1.. N for N hypotheses. Thus these rankings are comparable among different features. 

In contrast, the likelihood values from different features for the same hypothesis are not 

comparable because each of them has a different dynamic range. 

6.3.1 Rank Based Fusion in SPINE Task 

If we sort the hypotheses according to their likelihood values, each feature will give a 

different result. An approach we proposed is a rank based re-sort of the recognition 

hypotheses. 



Table 6.9: Significance test result on the WER of 2nd pass decoding 

These significance tests are all two-tailed tests with the null hypothesis that there is 
no performance difference between the two systems. 

The first column indicates if the test finds a significant difference at the level of 
p=0.05. It consists of ' ' if no difference is found at this significance level. If a 
difference at this level is found, this column indicates the system with the higher 
value on the performance statistic utilized by the particular test. 

The second column specifies the minimum value of p for which the test finds a 
significant difference at the level of p. 

The third column indicates if the test finds a significant difference at the level of 
p=0.001 ("***"), at the level of p=0.01, but not p=0.001 ("**"), or at the level of 
p=0.05, but not p=0.01 ("*"). A test finds significance at level p if, assuming the 
null hypothesis, the probability of the test statistic having a value at least as extreme 
as that actually found, is no more than p. 

1. For N best hypotheses, find the maximum and minimum likelihood value (denoted 

as maxP and minP) for each feature i :  

N 
maxPi = max Pi (n )  

n= 1 

* min Pi = min Pi (n )  . 
n=l 

2. Calculate the difference of max Pi and minPi : 

varPi = maxPi - minPi. 

3. For each NBEST hypothesis, calculate feature i's likelihood value difference with 

minPi and divide that by warpi: 

P, ( n )  - min Pi 
@(n)  = 

varPi 
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Figure 6.10: Run time fusion with Rank Based Token Pruning 

Oi ( n )  reflects the relative likelihood value difference between hypothesis n and the 

worst hypothesis under feature i. It is a normalized value in the range of 0 to 1. 

After performing the operation above, we have a set of Oi for each hypothesis. The 

Oi shows the confidence measurement for that hypothesis under feature i. We sum Qi for 

all M features: 

ai is the weight value of each feature i. 

We re-rank the N hypotheses according to the combined value O ( n )  in ascending 

order. The one that has the highest O ( n )  value is the new best hypothesis. As shown in 

Table 6.10, a 4.7% relative WER reduction was obtained in the rank based fusion. 



Table 6.10: WER reduction by using rank based fusion 

System I WER 

28.6% 
29.9% 

ai is 1, 0.9 and 0.8 respectively for MFCC, TLDA and TRAPS. Maximum value of M is 
500 in our experiments. 

In the experiment above, we used all available hypotheses up to the best 500. We did 

observe in some experiments that increasing the maximum M from 500 to 1000 hurts 

performance. One possible explanation is that hypotheses beyond 500 are not accurately 

modelled by all features, and their inclusion introduces some noise into out formula. How 

to optimize M at a global or sentence level still needs to be studied. 

The rank based fusion has not achieved the best result among these three proposed 

fusion approaches. However it still has some potential to be explored. One possible 

direction is to implement the rank based fusion at a smaller unit level. In the current im- 

plementation, only sentence level hypotheses are used. Thus the rankings are influenced 

by the language model scores. One possible solution is to remove the language model 

scores before performing rank based fusion. Another possibility is to perform rank based 

fusion on the state, phone or word level, where the language model effect is smaller. 



Chapter 7 

Fusion in Speech Segmentation 

In this chapter, we focus on using fusion on a different part of the speech recognition sys- 

tem, that of segmenting continuous speech into utterances (sentences) before generating 

the features. We presents a new speech segmentation approach based on two different 

level fusion. The first level of fusion applies to the spectral sub-bands and fuses mul- 

tiple filter bank coefficients. This new approach takes advantage of current feature ex- 

traction procedures, with little additional computation cost. Another level of fusion was 

performed by fusing the results from several segmentation systems. Evaluation was con- 

ducted on the SPINE2 task. Experiments show our fusion based approaches significantly 

reduced the WER compare to two classifier-based approaches. Compared to the manual 

segmentation, our approach only has 0.3% WER increase. This new approach is our first 

try to explore multiple information sources at different stages in the recognition process. 

7.1 Speech Segmentation Overview 

The input speech stream to an ASR system is a continuous flow of speech signal without 

any type of boundary information. For recognition efficiency, the speech stream is first 

transformed into a sequence of audio segments. The basic task of speech segmentation 

is chopping long periods of speech into short ones and removing non-speech events at 

the same time. Additional tasks of a speech segmenter may also include segmenting and 

clustering the speech stream according to speaker identities, environmental and channel 



conditions. In this thesis, we only focus on the basic task, segmenting the speech stream at 

the boundaries of speechlnon-speech events. The segmentation process is also commonly 

referred to as endpoint (or silence) detection. The resulting segments are called utterances 

or sentencess, which is by no means linguistically accurate (these denominations do not 

strictly correspond to their linguistic counterparts). 

Speech segmentation is necessary for an LVCSR system due to memory and speed 

restrictions of speech recognition (Section 1.1). Speech segmentation serves the following 

purpose in a continuous speech recognition system: 

1. Segmentation reduces the network load in a clientlserver or cluster type ASR sys- 

tem. Separating the original long stretch of speech into short segments reduces the 

average feature file size. 

2. Segmentation reduces the computational load of the decoder. The search space 

increases linearly with the length of speech. The longer the speech stream, the 

more words it may contain. And the potential search space would be increased 

correspondingly to a degree that the decoder can no longer afford. So it is necessary 

to constraint the length of input speech due to the memory and speed restrictions. 

3. Segmentation increases the robustness of an ASR system. The continuous speech 

contains speech and non-speech parts. Non-speech parts carry no linguistic infor- 

mation and include silence, background noise, laugh, etc. These non-speech events 

appear between actual spoken words at random time for an unfixed period. Short 

periods of non-speech events are modelled by one or several special models in an 

ASR system. In spite of that, current technology still perfonns poorly when facing 

non-speech events especially when there is strong background noise or the duration 

is long. An ASR system often mis-recognizes non-speech events as words, causing 

insertion errors. Another type of errors caused by non-speech events is the substitu- 

tion error, when the non-speech events corrupt neighboring speech events, causing 

the recognizer mis-recognized both regions. 



4. Segmentation can improve the accuracy of some acoustic modeling methods such 

as Cepstrum Mean Subtraction (CMS). CMS is an approach used in feature gener- 

ation to normalize the speaker variations. It is desirable to minimize the influence 

of channel information in CMS calculation. Long silence is the easiest channel 

information that can be identified with a reasonable accuracy. We found that the 

recognition performance can be improved by deleting most long silence from both 

training and decoding data [go]. 

Since manual segmentation of speech is time consuming and unrealistic in most con- 

ditions, various approaches on automatic speech segmentation have been proposed. Ac- 

cording to [19,76], these approaches can be categorized as follows: 

1. Metric-based segmentation. This approach is based on the acoustic distance mea- 

surement between every two contiguous windows along the speech signal. The 

maximum distances are detected as potential segmentation points, and the final 

segmentation decision is based on some thresholds. 

2. Classifier-based segmentation. This approach builds separate models for speech 

and non-speech events. The segmentation problem becomes a classification task. 

Gaussian mixture models or HMM are trained to model each class, and the fi- 

nal segmentation decision is based on the change point of classes. Another type 

of classifier-based approach runs the decoder on the speech stream to generate 

phoneme or word sequences. The final segmentation decision is based on the si- 

lence locations generated by the decoder. 

Generally the metric-based approaches cannot compete with the classifier-based ap- 

proaches on segmentation accuracy. However, classifier-based segmentations require 

complex computation and cause large latency, thus are not suitable for a real time ap- 

plication and are mostly used in off-line systems. 



In this thesis, we propose a novel fusion-based segmentation approach that is highly 

accurate and demands little computation. We compare our approach with two classifier- 

based segmentation methods, which will be introduced in Section 7.1.1 and Section 7.1.2. 

Segmentation is important in the SPINE task because there is lots of noise. Failing 

to exclude long periods of non-speech noise not only causes a large amount of insertion 

errors but also disrupts the search continuance. Current acoustic and language model- 

ing techniques act awkwardly when facing such an interruption, and the damage usually 

spans to its neighboring speech. The raw speech data files of the SPINE task contain 

several minutes of conversation. The task of segmentation is to separate them into small 

segments and discard non-speech ones. Speech segmentation is the major interest in the 

SPINE 1 workshop and remains an important topic in the SPINE2 workshop and following 

conferences. Almost all nine participants in the SPINE2 evaluation used classifier-based 

segmentation [49, 32, 66, 67,73, 76,981. 

7.1.1 TRAPS Based Segmentation 

The segmentation that we used for the official SPINE2 evaluation is a TRAPS based 

approach proposed by Dr. Hermansky's group [49,41,66]. 

The TRAPS based segmentation is based on two main processing steps. In the first 

step, we learned the distribution of the temporal patterns of speecwnon-speech present 

in each critical band independently. This was performed by training a Multi-Layer Per- 

ceptron (MLP) in each critical band. The input to the MLPs is a one second long (two 

syllables long) temporal trajectory of critical band energy. The temporal trajectories were 

mean subtracted, variance normalized and hamming windowed before given as input to 

the MLPs. The output layer of the MLP consists of two nodes targeting speecwnon- 

speech respectively. In the second step, we combined the outputs from each band-specific 

MLP and trained another MLP as a merging classifier. The output layer of this MLP 

again targets speecwnon-speech events. The size of the hidden units is kept at 300 for 

band-specific MLPs and at 50 for the merging MLP. The output from this merging MLP 



was then median filtered to give final speechlnon-speech decisions. 

7.1.2 Gaussian Mixture Classifier (GMC) Based Segmentation 

We also obtained a segmentation from Dr. Richard Stem and Dr. Rita Singh of CMU 

"A two-class speechlnon-speech Gaussian mixture classifier was trained with 

KLT features from the SPINE2 development data. To train the classifier, the 

training data were segmented using Viterbi alignment. Feature vectors from 

segments corresponding to speech events (i.e. words and filled pauses) were 

used to train the speech distributions. All segments not corresponding to 

speech were used to train the non-speech distributions. Each of the distribu- 

tions was a mixture of 32 Gaussians. 

During segmentation, the likelihood of each of the two classes was computed 

over a sliding window corresponding to 0.5 seconds of speech, where the 

window was advanced in steps of 20 ms. Histograms of the difference in the 

likelihoods of the classes were derived and the inflexion points between the 

modes representing speech and non-speech events were located. The value of 

the likelihood difference at the inflexion point was used as the threshold for 

the likelihood difference that separated speech from non-speech." [66,76,82] 

7.2 Proposed Segmentation Approaches 

7.2.1 Segmentation using Filter Bank (Subbands) Based Fusion 

The third segmentation approach originates from my work on developing the SMFCC 

feature. It is a simple and efficient method based on fusion. 

Filter bank calculation is a necessary step in many feature extraction algorithms. A 

filter bank is a set of band-pass filters that span the whole frequency spectrum. Each filter 
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Figure 7.1 : Subbands fusion based segmentation 

bank corresponds to a subband of the speech spectrum. In the MFCC case, a certain num- 

ber (we used 24 in our system) of me1 scale tiangular filters cover the whole frequency 

analysis spectrum. The filters have 50% overlap with their neighboring filters to obtain 

a smoothed frequency estimation. The magnitude coefficients in the SFFT spectrum are 

transformed into me1 scale by correlating with these filter banks. The me1 scale adopted 

in our system is 
f rnel(f) = 1127.log(l+ -), 

700 

which is designed to normalize lOOOHz correspond to 1000 mels. 

According to the equation above, 24 me1 scale filter bank coefficients were calculated, 

which represent a weighted sum of the spectral magnitude in that subband.' These co- 

efficients were combined into a single feature vector, and each coefficient describes part 

' 1 subband =+ 6 filter banks =+ 3 MFCC coefficients. These coefficients are not independent, and some 
methods to decorrelate them may necessary. 



of the information carried by the speech signal. In a traditional ASR system, the entire 

feature vector is used as one entity for training and classification. In our work, however, 

we treated each filter bank coefficient independently. 

Using filter bank coefficients in speech segmentation has several advantages over the 

traditional energy based approach for detecting non-speech: 

1. Each coefficient comes from the short-term spectral vector and represents the en- 

ergy of the speech signal in a given frequency subband. The noise may corrupt 

some frequency bands but the majority of them are still useable. Based on this as- 

sumption, when majority filter bank coefficients drop to a local minimum, we can 

assume it is a possible non-speech frame. 

2. The noise in SPINE task varies in type and distribution. Some are spread through 

the whole conversation but some only appear in speech or non-speech segments. 

They are also not just a simple additive noise that can be removed by spectral sub- 

traction. The traditional energy based method treats the entire feature vector as a 

single entity; thus, noise is no different fiom speech in their contribution on energy 

calculation. Even a single noise corrupted subband spectral can falsely signal a 

non-speech event as a speech event. 

Based on the analysis above, we designed a fusion based segmentation approach. The 

basic algorithm is as follows: 

1. For frame t, obtain N filter bank coefficients fiom the normal feature extraction 

routine. 

2. Form a fusion window I ,  which covers T consecutive frames and ends at frame t. 

Find the minimum filter bank coefficients for each filter bank i (1 < i < N) within 

that window: 
t. 

minl ( i)  = mln melt( (2) 
tl=t-T+1 



Note: This is similar to the minimum statistic algorithm proposed by Martin [59], 

in which the minimum of smoothed power within a finite length window is used to 

estimate the noise power. 

3. Fuse the statistical information of all the filter bank coefficients within window I 

for each frame d (t - T + 1 5 d 5 t): 

1 if (melt, ( i )  = mini ( 2 ) )  
Xtl ( 2 )  (= 

0 otherwise 

N 

nummin (t' ) = C 2,. ( i )  
i=l 

Note: N is the nurnber of filter banks and nummi,(tl) is the number of minimum 

filter bank coefficients occurring at frame d. 

4. Tag each frame as speech or non-speech. First, compare num,i, ( t l )  with threshold 

O (0 5 O 5 N), if 

nzlrnmin(d) > 0, (7-5) 

then propose this frame t' as a potential non-speech point. It still has several possi- 

bilities considering its relative location to the speech segments: 

(a) Frame t1 is the last frame of this I frames window. + It is the start point of a 

non-speech segment following a speech segment. 

(b) Frame t1 is the fist frame of this I frames window. + It is located at the end 

of a non-speech segment and is followed by a speech segment. 

(c) It could be located anywhere within the I frames window. It is a non-speech 

frame surrounded by other non-speech frames. It occurs when low level noise 

appeared inside a high level noise period. 

We are more interested in conditions (a) and (b) because they separate the speech 

from non-speech segments. Condition (c) is less important because we have no 

intent to separate different noise events. 



Scan from the first frame and tag each frame as speech or non-speech according to 

the neighboring tagging status and value of nummi,(t'). 

5. Scan the tagging information from the first frame and re-tag each frame as speech 

or non-speech. In this step, the "speechlnon-speech" tag of current frame t is re- 

determined by the neighboring tagging information and value of n ~ m ~ , ~ - ~ ~ , ( t ' ) .  

6. In the following two steps, two re-scans are performed to smooth the segmentation 

decisions. Because both only involve the tagging information, the cost of perform- 

ing both re-scans is negligible. 

7. Re-scan the tagging information from the first frame and connect the neighboring 

short periods of speech together. Because in continuous speech, there are always 

small periods of non-speech parts existing between spoken words. We do not want 

to segment the whole input speech into individual words but rather separate it into 

utterances/sentences. Word level segmentation is not only more error prone but also 

loses the benefit of language model constraints. 

Similarly we connect the closely located non-speech parts together in this step. 

8. Scan again starting from the first frame and produce segmented speech files ac- 

cording to the tagging result. We found our method is quite accurate at detecting 

the change of speech/non-speech events. We extend the speech duration by cer- 

tain number of frames on both directions to append some silence. We would rather 

include a short period of silence than lose part of the speech events. 

The raw audio data of SPINE2 evaluation has a total of 7 hours of (423 minutes) 

speech comprised of 128 unsegmented conversations with an average duration of 200 

seconds. The overall number of words is 24,015. 

The TRAPS segmentation was used in our official evaluation. After the evaluation, we 

tried CMUYs segmentation and reported some results at the following SPINE2 workshop. 



After the official evaluation, we conducted a series of experiments to compare these 

three segmentation algorithms. This is the first time that our fusion based approach is 

reported. Table 7.1 shows the number of files generated after the segmentations and their 

total file size. 

The best way to evaluate a speech segmentation algorithm for a LVCSR task is to use 

its standard measurement: Word Error Rate (WER). In our experiments, we use the same 

recognizer with MFCC feature for all segmentation approaches. Table 7.2 measures the 

performance of segmentations by compare their corresponding WER. Our fusion based 

approach generates the least amount of speech data but results in the best recognition 

performance (Table 7.2). Further analysis shows the performance gain comes from: 

1. Reduction on insertion error caused by noise. It measures the accuracy of excluding 

non-speech (including silence, noise, etc.) events. 

2. Reduction on deletion errors caused by discarded speech. It measures the accuracy 

of tagging speech event. 

Table 7.1 : Comparison of three segmentation approaches on SPINE2 task: number of 
files and the overall files size 

The TRAPS based segmentation is also using multiple bands of the speech spectrum. 

However, it did not perform as well as our subband based approach. We speculate the 

following differences may be the reason. First, the MLPs used in the TRAPS approach 

were trained on all kinds of noise conditions; thus it is less accurate to a specific noise 

Segmentation 
RAw2 

TRAPS 
Gaussian Mixture 

Subbands 

2 ~ h e  raw speech data files contain both channels of conversation. Since there is only one participant is 
supposed to speak at one time, most of the time only one channel contains speech data. So roughly only 
half of the 779M data contains speech. 

Number of files 
64 

459 1 
5682 
5563 

Total files size 
779M 
315M 
315M 
305M 



condition especially for the unseen testing noise conditions. Second, the TRAPS approach 

has a large amount of parameters in the MLPs which require sufficient training data and 

careful optimization. Third, TRAPS approach uses 15 critical bands on a down-sampled 

8kHz speech whle we use 24 bands on the original 16kHz speech. Another difference is 

that the TRAPS approach uses 10 1 -frame window compared to our 8-frame window. 

7.2.2 Fusion on Several Segmentations 

Another level of fusion is achieved by combining the result from these three segmenta- 

tions (Figure 7.2). 

Segmentation 
tag info. 

TRAPS Segmentor - 
Gaussian Classifier Segmentor - + = w- 
Subbands Fusion Segmentor m n '  
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Figure 7.2: Fusion based segmentation: fusion across several segmentations 

We tried several fusion methods here: 

1. Majority Vote: The speecldnon-speech tag of each frame is decided by the majority 

of segmentations. 

2. Weighted Combination: A set of weights ai and threshold r are obtained from a 

development data set. The final tag is decided by comparing the threshold with the 

following value: 
N 

ai is the weight value for segmentation i, Pi(t) is the probability of frame t is 

speech estimated by segmentation i, in our case, due to lack of data from the other 



two segmentations, Pi (t) is a value of 011. 

Table 7.2: Comparison of Segmentation Approaches on SPINE2 Task: Performance Mea- 
sured by WER 

The effects of our fusion approaches are quite obvious. The weighted combination 

fusion achieves the lowest WER among automatic segmentations, which is only 0.3% 

higher than we obtained from a manual segmentation. Significance tests show these two 

systems have no statistical difference at the level of p=0.05, and they are both significantly 

better (at level p=0.001) than the TRAPS and Gaussian Mixture Classifier systems. As 

noted before, due to lack of data from the other two segmentations, Pi(t) has a value of 0 

or 1. Ideally a probability or confidence score can give a more reliabIe combined score. 

Our fusion based segmentation approach has a clear advantage over others due to its 

simplicity and fast execution. The filter bank coefficients were already available from 

feature extraction and the additional calculation is negligible, so our approach can be 

easily integrated into the front end of an ASR system. The segmentation can be performed 

on-the-fly and the features can be generated right after it. However, TRAPS and Gaussian 

Mixture Classifier approaches, both require a recognition process and are much more 

complex and time demanding. They are fine with evaluation type tasks but not suitable 

for real applications that require a fast response. 

Segmentation Approaches 
TRAPS 

Gaussian Mixture Classifier 
Subbands Fusion 

Majority Vote Fusion 
Weighted Combination Fusion 

Manual 

WER 
41.6% 
39.3% 
38.4% 
38.2% 
38.1% 
37.8% 



Chapter 8 

Conclusions and Future Work 

In this thesis, we presented a run time fusion scheme to use different knowledge sources 

within a speech recognition system. In particular, we investigated the problems posed by 

the inefficient use of complementary information in speech recognition. Three methods of 

performing run time fusion were developed in conjunction with careful design and imple- 

mentation. The techniques developed have been applied to a large vocabulary continuous 

speech recognition task and the performance analyzed both in terms of the computational 

complexity and the recognition accuracy. 

8.1 Review of the Work 

The traditional approach of fusion decouples the search stage with the fusion process; thus 

complementary information from multiple sources are either lost or used inefficiently by 

the decoder. The pre-recognition fusion methods, such as feature combination, require the 

multiple fusion sources to be independent which is generally not true. It is also difficult 

to identify complementary information directly from these sources. The combination 

at this level also causes the individual complementary information to be diluted by the 

more dominant redundant information. For post-recognition fusion, the complementary 

information is represented at the high level of a recognition architecture, such as the word 

or sentence level. The available information at these levels is much smaller compared 

to the whole search space. The complementary information from the original sources is 



either lost or moved to a higher level. We have proposed a number of ways to address 

these problems. Specifically, our contributions are as follows. 

Our approach provides a novel way of fusing multiple information into an LVCSR 

system. Different feature representations are integrated into the decoding module 

of an LVCSR system. It provides the foundation for performing fusion at the run 

time of a recognizer. 

The decoding module is the kernel or CPU of a recognition system. Various types 

of information are presented and integrated at different levels within this module. 

Thus the decoding module is an ideal choice for information fusion. 

Implemented constraint fusion. We investigated the contribution of supporting fea- 

tures on reducing beam pruning. The result shows that conventional beam pruning 

works well for single feature decoding, while integrating several features into the 

pruning decision can improve the word graph quality. However, a likelihood value 

fusion is necessary to reduce WERs. We also proposed a dynamic beam adjustment 

approach: by comparing pruning effects across features, we were able to set a tight 

beam width without sacrificing accuracy. 

Implemented composite fusion. Different from constraint fusion, all features in the 

composite fusion approach have the same role on the search decision. The fusion 

concept is further integrated into the pruning decision. Significant improvement on 

word graph quality was observed and this improvement was also reflected in the 

WER reduction of second round decoding. Research shows evidence that differ- 

ent knowledge sources are not strictly time synchronous. To conduct asynchronous 

fusion across different features, we extended the token structure and proposed a 

modified Viterbi algorithm. By rewriting the token passing and merge procedure, 

we were able to perform fusion at selected levels (state, word and sentence). Ex- 

perimental result shows the composite fusion achieved the best result among our 

fusion approaches. 



A great advantage of our run time fusion over other fusion methods is that the 

hypotheses are automatically aligned across different features. At time frame t, all 

(partial) hypotheses are generated from the same stretch of speech, thus the scores 

for different features can be directly compared. This comparison can be conducted 

at all levels of a speech recognizer: state, word, and sentence. 

All experiments using our run-time fusion showed that the fusion based system out- 

performs single feature systems. The experiments proved that information fusion during 

the decoding phase not only can reduce pruning errors but is also able to select the better 

path. It was rather robust in all of our experiments and outperformed the baseline system 

in all cases. 

8.2 Future Work 

While the run time fusion approach described in this thesis gives significant improve- 

ment, there is room for further refinement. We think the following research directions 

might be useful in pursuing a robust speech recognition system under our run time fusion 

framework: 

Finding canonical and complementary sets of information sources 

This thesis work is mainly on investigating ways to use different signal processing and 

feature extraction techniques. Further work can be done on finding canonical and com- 

plementary sets of information sources. The possible complementary candidates include: 

processing techniques for additive and convolutional noises, features based on segments 

[Kingsbury, 19981 and frames, features from the spectral domains (such as MFCC) and 

time domains (such as pitch, duration, and stress). This work can be further extended to 

use fusion to guide the feature generation. 



Detailed analysis of the complementary characteristic 

In this thesis work, we selected some features for fusion based on their potential com- 

plementary natures. However this judgement is based on the analysis of feature design 

and experiment. More detailed analysis of the complementary characteristic of various 

features is necessary, such as the independence on the feature level and recognition error 

distribution on the state or phone level. 

Extend this thesis work beyond acoustic information 

1. Semantic decoding: how to incorporate semantic information into decoder run time 

to improve system performance in spoken dialogue systems. 

2. Feature selection: for the operating environment of a given application, how to 

automatically select a set of complementary feature representations. 

3. Multi-modal applications: how to exploit complementary information contained in 

different modalities during decoder run time. 

UtiIize aligned scores from multiple sources 

Under the run time fusion framework, the hypotheses are automatically aligned across 

different features. At time frame t, all (partial) hypotheses are generated from the same 

stretch of speech, thus the scores for different features can be directly compared. This 

comparison can be conducted at all levels of a speech recognizer: state, word, and sen- 

tence. We obtained some success on using the rank information for fusion decision. The 

future work is to explore efficient statistical algorithms to use these aligned scores. The 

scores or ranks from multiple features are comparable under our run-time fusion frame- 

work, thus are suitable for confidence measuring and word spotting. 



Appendix A 
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Table A.l:  Class Language Model: x-axis of ACE Grid Labels in SPINE2 Lexicon 



Table A.2: Class Language Model: y-axis of ACE Grid Labels in SPINE2 Lexicon 



Table A.3: Class Language Model: Class of Directions in SPINE2 Lexicon 

Table A.4: Class Language Model: Class of Person Name in SPINE2 Lexicon 



Table A.5: Class Language Model: Class of Partial Words in SPINE2 Lexicon 



Appendix B 

Significance Test 

In the speech recognition community, it is necessary to compare the performance of two 

recognition systems when reporting any experimental results. Researchers need to make 

comparison tests to claim workable, novel, or improved algorithms. Most publications 

still use a single criterion to measure the performance. This criterion, Word Error Rate 

(WER), measures the overall word level agreement between the recognized words and the 

reference by aligning each sentence pair using a dynamic programming (DP) algorithm. 

The WER is calculated by averaging the overall substitutions (SUB), deletions (DEL) and 

insertions (INS) over the total number of reference words: 

W E R  = 
SUB + DEL + I N S  

Num-o f -Words 

The difference of two experimental results is further measured by the absolute WER 

difference 

A W E  R = W E h e W  - W ERhseline (B.2) 

and relative WER difference 

WER is a good performance measurement of a ASR system but generally it is not 

sufficient. For an extreme example, if a test set consists of only one reference word, 

the system recognized correctly has a 0% WER but another system which made a mis- 

recognition has a WER of 100%. The results on this tiny one word test set by no means 



give any sureness on the performance of a ASR system. The shifting from 0% to 100% 

WERs can well be the result of variability and uncertainly of the test data. WER, is not 

sufficient to back any difference in performances as statistically significant. To measure 

the efficiency of algorithms and to compare the performance of different ASR systems, 

it is important to measure the statistical significance of the difference in experimental 

results. 

A significance test is a test for determining the probability that a given result could not 

have occurred by chance. It can be used to perform comparisons on speech recognition 

algorithms (or systems) by comparing the recognition results on the test data set and by 

measuring whether the difference in performance is statistically significant. 

A set of tools for performing significant tests was originally developed by Pallett, et 

al. at NIST for DARPA speech recognition benchmark tests [71] and is now included in 

the NIST standard scoring package. Some of the significance tests we used in this thesis 

are briefly explained below. 

B.l Signed Pair Comparison Test 

The Signed Pair Comparison Test or sign test, is a test comparing word error rates on: 

different speakers, 

different conversation sides, 

some pre-specified subsets of a test set. 

It measures which system performs better on each such subset. If there is systematic 

evidence of differences in a consistent direction, this may prove to be significant even if 

the magnitudes of the differences are small. 

The null hypothesis: 

The number of speakers for which the dzflerences is positive equals the number of 

speakers for which the dzflerences is negative. 



The alternative hypothesis: 

The number of speakers for which the differences is positive is NOT equal to the 

number of speakers for which the dlference is negative. 

Signed Pair Comparison Test is based on the following assumptions that the distribu- 

tion of positive and negative differences follows the binomial distribution for N fair coin 

tosses. It measures the systematic evidence of differences in a consistent direction and 

ignores the magnitudes of these differences. 

The sign test is simple and easy to use, and has been regularly used by NIST in its 

organized evaluations since 1992. The disadvantage of sign test is it is less powerful 

compared to other tests.' 

B.2 Wilcoxon Signed Rank Test 

The Wilcoxon signed rank test applies in similar evaluation situations as the sign test 

and is generally more powerful. The Wilcoxon signed rank test is a non-parametric test2 

that utilizes information on both the signs and the magnitudes of the performance differ- 

ences in two systems. The implementation used in this thesis uses word accuracy as the 

measurement of performance. The hypotheses of the test are as follows. 

The null hypothesis: 

The two populations represented by the respective matchedpairs are identical. 

The alternative hypothesis: 

The two populations are not identical and there is a dzflerence between them. 

The procedure to calculate the test statistic for the Wilcoxon test is: 

lThe power of a statistical hypothesis test measures the test's ability to reject the null hypothesis when 
it is actually false - that is, to make a correct decision. 

2Non-~arametric tests are often used in place of their parametric counterparts when certain assump- 
tions about the underlying population are questionable. Non-Parametric tests may be, and often are, more 
powerful in detecting population differences when certain assumptions are not satisfied. All tests involving 
ranked data, i.e. data that can be put in order, are non-parametric. 



1. Calculate the differences of the word accuracy rates of speaker i of the two systems 

and denote it as di. 

2. Rank the absolute values of the differences, Idi[, by assigning 1 to the smallest, 2 

to the second smallest, and so on. Tied observations are assigned the average of the 

ranks that would have been assigned with no ties. 

3. Calculate the rank sum for the positive differences and label this value as T+. Sim- 

ilarly, calculate T-, the rank sum for the negative differences. 

For large enough n (2 8), T+ has an approximately normal distribution. Its mean and 

variance are 

Then the z statistic 

can be used as a test statistic. The decision rule for the Wilcoxon test is that, based on a 

95% (a = 0.05) confidence interval, the null hypothesis is rejected when lzl > 1.96. 

B.3 MAPSSWE Test 

Matched Pairs Sentence Segment Word Error (MAPSSWE) test, sometimes simply called 

matched-pairs test, is a parametric test that looks at the numbers of errors occurring in 

units that are larger than single words and smaller than entire utterances [35] [36]. The 

units, called sentence segments, are chosen in a way to approximately validate the in- 

dependence assumption. The segments are bounded on both sides by words correctly 

recognized by both systems under test, or the beginning and end of utterances. Because 



the number of units is large, the central limit theorem permits the approximate assurnp- 

tion that the average number of errors per segment are normally distributed. The sentence 

segments are detected using a state machine illustrated in Figure B.3. 

correct 1 
I error I 

error 

store the segment 

A 

state b: Have not found any error yet. 
state e: If both systems are correct, then check to see if number of correct 
words (# correct) equals to the minimum (min-good). If it is, then mark the 
segment and go to state b. 
state g: If next word is correct, increase # correct and loop back to do the 
check. Otherwise, go to state e. 

Figure B. 1: State machine for locating sentence segments 

The term "correct" means that both of the two systems correctly recognize the current 

word. The term "error" means that at least one system incorrectly recognizes the current 

word. A sentence segment is thus a sequence of words that ends with a given number 

(min-good) of correctly recognized words for both systems. 

An example of detected sentence segments is shown below. There are four segments 



detected by the state machine. For segments I and IVY A is incorrect and B is correct (a 

substitution and a deletion in I, and an insertion in IV). For segment 11, A is correct and 

B is incorrect (a deletion). For segment 111, both are incorrect (one substitution in A, two 

in B). 

I I1 I11 IV 

REF: it was the best of times it was the worst of times it was 

SYS A: ITS the best of times it IS the worst of times OR it was 

SYS B: it was the best - times it WON the TEST of times it was 

For each segment i,  define di as the difference of the number of mis-recognized words 

from the two systems. The hypotheses of the matched pairs test are as follows. 
- 

The null hypothesis Ho : d = 0 

The alternative hypothesis Ha : d # 0 

where d is the mean of the differences, d = EL, di/n, and n is the total number of 

segments. 

The test statistic is defined as z = f i q a ,  where a is the estimated standard devia- 

tion, c2 = 5 C:=l(di - JI2. The decision rule of the matched pairs test is therefore: 

reject Ho if lzl > z,, where z, is a critical value 1601 from a standard normal table 

corresponding to the confidence level 100(1 - a)%. When the confidence level is 95% 

(a = 0.05), 1za]=1.96. 

A matched-pairs test is generally more powerful than other tests like Wilcoxon test, 

due to its inherent large number of units (as it uses smaller units, sentence segments rather 

than whole utterances). It is not usual that other tests reject the null hypothesis while a 

matched-pairs test does not. 

B.4 McNemar (Sentence Error) Test 

McNemar Test applies to discrete items which are either correct or incorrect. Similar as 

matched-pairs test, the McNemar test requires those items be independent. For continuous 



speech, utterances can be viewed as either correct or incorrect and they do qualify the 

independence test. But the words in the utterances are not a suitable items for McNemar 

Test because the violation of independent assumption. The reasons are: 

1. Language model (such as bigram, trigram) applied among words. 

2. Current speech recognition algorithm performs an optimization at sentence level. 

3. The scoring program use DP based algorithm for string comparison. 

The errors are therefore highly inter-dependent at the word level. But if each spoken 

phrase is reasonably short (a few words), it can be treated as an independent item, thus 

the McNemar Test can be applied. 

The McNemar Test is based on an Error Matrix (Table B. I). 

Table B. 1: McNemar Test Error Matrix: Counts of correct and incorrect items for two 
systems. 

The assumptions applied to the Table B. 1 are: 

#Items 
System A Correct 

System A Incorrect 

There is little information in the numbers of instances for which: Both systems 

under consideration get correct results (Noo). Both get an incorrect results (Nll). 

a Noo and Nll are due to excessively easy or excessively difficult items. 

System B Correct 
Noo 
NIO 

Based on these assumptions, only Nol and Nlo are actually used in McNemar test. 

The hypotheses of the test are as follows. The null hypothesis: 

System B Incorrect 
No1 
NII - 



The alternative hypothesis: 

The qol represents the conditional probability that System B will make an error on an 

utterance given that only one of the two algorithms makes an error. 

The test statistic used in this thesis is distributed approximately as chi-squared with 1 

degree of freedom 

Based on a 95% confidence interval, the Z-score should be greater than X:,o,,, = 

3.842. 

The McNemar Test can be viewed as the sign test applied at the utterance level. It 

can be applied without making many unsound assumptions. For example, for some ex- 

periments with small error rates, there are often too few relevant observations to apply 

parametric tests. 

B.5 Significant Test Summary 

Some of the assumptions (Table B.2) required for these tests (e.g. independence of errors 

and the availability of sufficient errors to justify assumptions about distributions) may 

not be satisfied for some experiments. We may choose to use the sign test over a more 

powerful competitor because of its ease of application (Table B.4). If null hypothesis was 

rejected, we are done, otherwise, we may use a more powerful test or increase the sample 

size. 

Choosing between Parametric and Non-parametric tests (Table B.4) depends on the 



Table B.2: Significance Tests Comparison: Test Assumptions 

Table B.3 : Significance Tests Comparison: Test Units 

Test Name 
Signed Paired Test 

Wilcoxon Signed Rank Test 
McNemar 

Matched Pair Test 

Assumptions 
None other than Ho 

Difference has symmetric distribution 
Independence 

Independence; normal distribution 

sample size. For large sample size, both tests are powerful enough if their assumptions 

are (at least approximately) satisfied. When not enough samples available, both tests may 

be inaccurate, especially non-parametric tests, which lack statistical power. 

Test Name 
Signed Paired Test 

Wilcoxon Signed Rank Test 
McNemar 

Matched Pair Test 

Table B.4: Significance Tests Comparison: Whether it is a parametric test and its relative 
power 

Test Units 
Speaker Word Accuracy Rate 
Speaker Word Accuracy Rate 

Sentence Error 
Word Error 

Power 
small 
large 
large 

largest 

Test Name 
Signed Paired Test 

Wilcoxon Signed Rank Test 
McNemar 

Matched Pair Test 

Parametric Test 
no 
no 
no 
Yes 
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