
Run-time Information Fusion in Large

Vocabulary Continuous Speech

Recognition

Chengyi Zheng

B.E., Shanghai JiaoTong University, Shanghai, China, 1995

M.S., Fudan University, Shanghai, China, 1998

A dissertation submitted to the faculty of the

OGI School of Science & Engineering

at Oregon Health & Science University

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

April 2004

@ Copyright 2004 by Chengyi Zheng

All Rights Reserved

The dissertation "Run-time Information Fusion in Large Vocabulary Continuous Speech

Recognition" by Chengyi Zheng has been examined and approved by the following Ex-

amination Committee:

Or. Yh'ghohg Y&
Associate Professor
Thesis Research Advisor

-. - -. . .

DK.I[J"G F. F G Z s a n t e n
Professor

D;. Peter A. Heeman
Assistant Professor

ohn-Paul Hosom
-

Dr. Hynek Hermansky
Professor, IDIAP, Switzerland

Dedication

To my parents.

Acknowledgements

I would like to thank Dr. Yonghong Yan, my advisor, for his many suggestions and

constant support during this research. Without his supervision and guidance, I would not

have been able to go through the chaos and confusion that has happened in the past five

years. Special thanks also goes to the other members of the large vocabulary continuous

speech recognition group: Dr. Xintian Wu, and Dr. Chaojun Liu. As the youngest of this

group, I received tremendous amount of help from them. Our brotherhood will become

my precious memory.

I also would like to thank Dr. Peter Heeman who has been my on-campus advisor

in the early years of my Ph.D study. He provided many useful references and hendly

encouragement.

Thanks are also due to my thesis committee members, Dr. Yonghong Yan, Dr. Jan P.

H. van Santen, Dr. Peter Heeman, Dr. Hynek Hermansky, Dr. John-Paul Hosom, and Dr.

James A. Larson, for reviewing my thesis and giving me invaluable feedback to improve

my thesis.

Thanks goes to Dr. Hynek Hermansky and his students: Dr. Sachin Kajarekar, Dr.

Pratibha Jain, Andre Adami, Sunil Sivadas, and others for their help during our collabo-

ration on two national competitions.

I had the pleasure of meeting the folks in CSLU. They are wonderful people and their

support makes research like this possible. Special thanks goes to Ed Kaiser, for spending

his busy time on proof-reading my papers.

Of course, I am grateful to my parents for their patience and love. Without them this

work would never have come into existence (literally).

Contents

. Dedication iv

. Acknowledgements v

. Abstract xiii

. 1 Introduction 1
. 1.1 Speech Recognition System Structure 2

. 1.2 Mathematical Basics of Speech Recognition 6
. 1.3 Acoustical Modeling with HMMs 6

. 1.4 Fusion in Speech Recognition 8
. 1.5 This Thesis 10

. 1.6 Overview of the Rest of the Thesis 11

. 2 Background Technology 13
. 2.1 Hidden Markov Model 13

2.1.1 Likelihood Evaluation: the Forward and Backward Algorithm . . 16
. 2.2 Acoustic Model Training: The Baum-Welch Algorithm 18
. 2.3 Time Synchronous Recognition: The Viterbi Algorithm 20

. 2.4 Tree Based Time Synchronous Beam Search 21
. 2.4.1 Lexical Tree 22

. 2.4.2 Token Structure 25
. 2.4.3 Lexical Tree Search 27

. 2.4.4 Lexical Tree Beam Search 28
. 2.4.5 Word Graph 30

. 3 Tasks and Baseline System 34
. 3.1 Speech Corpus and Tasks 35

. 3.1.1 TIMIT 35

. 3.1.2 Speech In Noisy Environments 35
. 3.2 Signal Processing and Feature Extraction 42

. 3.2.1 MFCC 44
. 3.2.2 TRAPS (TempoRAl Pattern) 47

. 3.2.3 TLDA (Two dimensional Linear Discriminants Analysis) 49
. 3.3 Building the Baseline System 52
. 3.3.1 OGI LVCSR System 52

. 3.3.2 Acoustic Training 54

. 3.3.3 Retrain Strategy 56
. 3.3.4 Lexicon and Language Model 58

. 3.3.5 Experimental Results 58

3.3.6 Some Improvements by Applying Class Based Language Model . 60

. 4 Overview on Information Fusion in Speech Recognition 64
. 4.1 Information Fusion in Speech Recognition 64

. 4.2 Pre-recognition Combination 66

. 4.2.1 Feature Combination 66
. 4.2.2 Probability Combination 67

. 4.2.3 HMM Combination 68
. 4.3 Post-recognition Combination 70

. 4.3.1 Recognizer Output Voting Error Reduction (ROVER) 70
. 4.3.2 Hypotheses Combination 73

. 5 Run Time Fusion in Speech Recognition 75
. 5.1 Problems and Motivations 75

. 5.2 Framework of Run Time Information Fusion 77
. 5.3 Fusion Based on Multiple Features 80

. 6 Run Time Fusion In Detail 83
. 6.1 Constraint Fusion 86

6.1.1 Constraint Fusion Implementation - Modification on Token Pass-
. ing and Token Merge 87

. 6.1.2 Constraint Fusion Experiments . Fusion Based Pruning 91
. 6.1.3 Using Fusion to Improve Word Graph Quality 92

6.1.4 Constraint Fusion Experiments - Fusion Based Final Recognition
. Output 94

. 6.1.5 Fusion with Dynamic Beam Adjustment 97
. 6.2 Composite Fusion 99

. 6.2.1 Fused Viterbi Algorithm 102

. 6.2.2 Fused Token Propagation 103
. 6.2.3 Composite Fusion Improve Word Graph Quality 111

. 6.3 Rank Based Fusion 114
. 6.3.1 Rank Based Fusion in SPINE Task 114

. 7 Fusion in Speech Segmentation 118
. 7.1 Speech Segmentation Overview 118

. 7.1.1 TRAPS Based Segmentation 121
. 7.1.2 Gaussian Mixture Classifier (GMC) Based Segmentation 122

. 7.2 Proposed Segmentation Approaches 122
. . . . 7.2.1 Segmentation using Filter Bank (Subbands) Based Fusion 122

. 7.2.2 Fusion on Several Segmentations 128

. 8 Conclusions and Future Work 130
. 8.1 Review of the Work 130

. 8.2 Future Work 132

. A Classes used in our Class Based Language Model 134

. B Significance Test 139
. B.1 Signed Pair Comparison Test 140

. B.2 Wilcoxon Signed Rank Test 141
. B.3 MAPSSWETest 142

. B.4 McNemar (Sentence Error) Test 144
. B.5 Significant Test Summary 146

. Bibliography 148

. Biographical Note 159

List of Tables

. Scenarios in SPINE1 37
Characteristics of SPINE Task . 40

. SPINE2 Training and Development Data 41

Comparison on acoustic model state numbers among different features . . 56

Comparison on acoustic model size among different features 57

. Official Evaluation Results on SPINE1 59

Experimental Results on SPINEl Evaluation Data: Comparison of MLLR
. and Retrain on MFCC based systems 59

Experimental Results on SPINE2 Dry Run Data 59

Baseline System Performance on Official SPINE2 Evaluation 60

Official SPINE2 Evaluation Result: common language model 60

Baseline System Performance on Official SPINE2 Evaluation . Post Eval-

uation . 61
Official SPINE2 Evaluation Result: special language model 61

Comparison on the effect of Class based Language Model (CLM) and

common language model . 62
Comparison on the effect of language model retrain 63

Effect of constraint fusion based pruning on reducing WGER and WER . 93

Effect on reducing WER by hsing likelihoods from different features . . . 96

Comparison on WER reduction by using constraint fusion approach with

different main feature . 96
Further WER reduction by applying ROVER after constraint fusion . . . 96
WER reduction by using composite fusion with extended Viterbi I l l
The effect of beam width pruning on word graph size and its accuracy . . 112

Graph Word Error Rate reduction by cross-reference pruning coupled
. with dynamic beam width fusion 113

The effect of improved WGER on the 2nd pass decoding 114

6.9 Significance test result on the WER of 2nd pass decoding 1 15
. 6.10 WER reduction by using rank based fusion 117

7.1 Comparison of three segmentation approaches on SPINE2 task: number
. of files and the overall files size 127

7.2 Comparison of Segmentation Approaches on SPINE2 Task: Performance
. Measured by WER 129

A . 1 Class Language Model: x-axis of ACE Grid Labels in SPINE2 Lexicon . 135
A.2 Class Language Model: y-axis of ACE Grid Labels in SPINE2 Lexicon . 136
A.3 Class Language Model: Class of Directions in SPINE2 Lexicon 137
A.4 Class Language Model: Class of Person Name in SPINE2 Lexicon 137

A.5 Class Language Model: Class of Partial Words in SPINE2 Lexicon 138

B.l McNemar Test Error Matrix: Counts of correct and incorrect items for
two systems . 145

B.2 Significance Tests Comparison: Test Assumptions 147

B.3 Significance Tests Comparison: Test Units 147

B.4 Significance Tests Comparison: Whether it is a parametric test and its
relative power . 147

List of Figures

. Structure of a speech recognition system 3
. Different levels of modeling of a sample sentence 7

. An example of Hidden Markov Model 14
. An example of Lexical Tree 23

. A sample diagram of Word Graph 32

. Some sample utterances in SPINE task 42

Extracting the base acoustic feature vectors of MFCC from speech data . 45

Diagram of extracting MFCC acoustic feature vectors from speech data . 46
. Comparison of TRAPS feature with conventional features 48

. Performance comparison of different features 50
. The acoustic training procedure 54

. The retrain procedure in SPINE2 57

. Existing fusion approaches in an ASR system
. Pre-recognition: Feature Combination

. Pre-recognition: Probability Combination
. Coupled-HMM topology

. Post-recognition: recognition result combination
. A WTN of a ROVER system with three hypotheses as input

. Different levels of information within a speech recognition 77
. Run time fusion framework 78

. WER comparison on 16 speaker-environment pairs 82

. Flowchart of Constraint Fusion 87
. Pseudocode for Token Merge 91

The comparison of active token numbers along the time frame during
. decodingonesentence 98

. 6.4 Existing art: Concatenated approach in Pre-recognition fusion 100
. 6.5 Existing art: Post-recognition fusion 100

. 6.6 Our run time hsion approach 101
. 6.7 An example of our extended Viterbi search 104

. 6.8 An example of Token Link List used in extended Token Merge 109
. 6.9 Pseudocode for Token Merge 110

. 6.10 Run time fusion with Rank Based Token Pruning 116

. 7.1 Subbands fusion based segmentation 123
. 7.2 Fusion based segmentation: fusion across several segmentations 128

. B . 1 State machine for locating sentence segments 143

xii

Abstract

Run-time Information Fusion in Large Vocabulary Continuous

Speech Recognition
Chengyi Zheng

Ph.D., OGI School of Science & Engineering

at Oregon Health & Science University

April 2004

Thesis Advisor: Dr. Yonghong Yan

Continuous speech recognition systems are environmentally sensitive and suffer from

the great variability of speech. In order to achieve recognition robustness, there's a strong

interest among researchers on how to fuse different information sources for speech recog-

nition. A common problem of those approaches is that complementary information is lost

either before or after recognition.

To avoid this unrecoverable information loss, and to better utilize this complementary

information, we proposed a run time information fbsion scheme. The hypothesis of this

thesis is that by performing fusion at different levels and stages of a Large Vocabulary

Continuous Speech Recognition (LVCSR) system, especially inside the decoder, more

reliable and efficient fusion is possible.

The hypothesis is first tested in a speech segmentation task, which is essential to

the performance of an LVCSR system. Furthermore, three different approaches of run

. . .
Xll l

time fusion are proposed and implemented inside an LVCSR decoder. The experiments

demonstrate the effectiveness and potential of these approaches.

xiv

Chapter 1

Introduction

The goal of this thesis work is to attack the major barriers that prevent existing speech

technology from being used in real world noisy operating environment. Towards this

end, this thesis will address an innovative work in performing run-time fusion of mul-

tiple information sources. Whereas the ASR field has evolved from speaker-dependent

to speaker-independent systems, we believe that this direction of research is essential to

achieve the next generation of "environment-independent" speech recognition.

Fletcher and his colleagues at Bell Labs extensively studied how humans process

and recognize speech [I]. This work showed that the phones are processed in indepen-

dent articulation bands and that these independent estimates are "optimally" merged to

achieve the recognition results. Recent research activities on multistream or multiband

also demonstrated the importance of looking at the data from different angles (different

signal processing and features) and fusion of the information to obtain improved recogni-

tion accuracy (a greater than 20% error reduction was found in the SPINE1 task by doing

so). However, both Fletcher and the recent activities did not explicitly conclude how dif-

ferent information should be fused to form the sound-unit recognition in order to achieve

human-like performance.

In this thesis work, we investigated fusion strategies during the decoding stage (run

time) so that critical information will be utilized earlier to avoid pruning errors that may

not be recoverable in a later processing stage. Mathematically, this thesis work is different

from previous work, which assumes either time-synchrony (concatenating the features to

form a single feature stream, such as appending energy to MFCC) or complete indepen-

dence (running separate recognitions and combining the lattices).

From the theoretic side, how humans use complex components for speech recognition

are not, as yet, deciphered. Research on using multiple feature streams in one system

has a relative short history. From an engineering side, conducting information fusion at

the decoding stage requires knowledge of traditional LVCSR decoders and a deep under-

standing of speech recognition at the system level.

This thesis will first lay down the theoretic framework of the run time fusion approach,

then describes the detailed design and implementation from the engineering point of view.

The goal of this thesis work is to bring multi-information systems to a new level of excel-

lence and change the way in which complementary information extracted from different

features is utilized.

1.1 Speech Recognition System Structure

Most state-of-the-art speech recognition systems (Figure 1.1) use a two pass decoding

strategy in which the fist pass (tree recognizer) produces a graph of the most likely word

sequences, and the second pass (graph recognizer) searches this graph for the single best

hypothesis. Each node (word or phone) in the graph has an acoustic likelihood estimated

by matching HMM acoustic models against the input signal, and a language score cal-

culated from an n-gram language model. The term decoding is often used to refer the

process of recognizing the spoken words from the acoustic signal. Correspondingly, the

recognizer is often called a decoder in reference to the information-theoretic model of

speech production and recognition.

A speech recognition system can be divided into the following parts:

1. Pre-processing: speech segmentation and feature extraction

In this step, the input speech stream is first transformed into a sequence of au-

dio segments, which we call spoken utterances (sentences). The speech waveform

Segmenter 9
Feature Graph Recognizer

Extraction

Acoustic
Model

(cross-word)

time t

Language
Model

(tri-gram)

within-word) (bi-gram) Word graph

Figure 1.1 : Structure of a speech recognition system

Speech sounds are first converted to a sequence of features and then the recognition is
performed to find the hypotheses that best match the speech.

of each utterance is converted by a front-end signal processor into a sequence of

acoustic vectors, 0 = o l , 02 , . . . , ot . Each of these vectors is extracted from the

short-time speech spectrum covering a period of typically 10 msec, which is called

a frame. The extracted speech vectors are also called speech features, which are

used as observations in the mathematical modeling of acoustics. Ideally, the speech

features should contain as much information as possible about the linguistic content

of the speech while being reasonably compact and free of redundant details.

The feature extraction processing can be further divided into:

(a) Speech Segmentation

Segmentation is the task of chopping long utterances into short ones and re-

moving non-speech events.

(b) Channel and Gender Detection

For some systems, the pre-processing step may also include channel and gen-

der detection. Experiments show that system performance degrades rapidly

when the acoustic model is mismatched to the actual input speech. Multiple

acoustic models are trained for each channel or gender condition in these sys-

tems. For each test utterance, the channel and gender detection step identifies

an appropriate acoustic model to use in the later steps.

(c) Speaker Detection

Similar to channel and gender detection, a speaker adapted model perfonns

better than a non-adapted model. Speaker detection is used to identify the

speaker of the test utterances, thus the speaker adapted model can be used in

recognition.

2. Speech recognition: searcwdecoding

In the recognition step, the speech recognizer performs a massive search to find

the most likely word sequence that matches the acoustic observations. Suppose

the input utterance consists of a sequence of words W = wl, wa, . . . , w, . The

speech recognition system will determine the most likely word sequence w given

the observed acoustic signal 0. The search uses several knowledge sources:

(a) Acoustic Model (AM): Contains the probability of observing the vector se-

quence 0 given some specified word sequence W.

(b) Language Model (LM): Represents the a priori probability of observing W

independent of the observed speech signal. In other words, it models the

probabilities of word sequences.

(c) Pronunciation Lexicon: Is a list of vocabulary words in the system and their

pronunciation rules.

3. Post-processing: hypotheses generation

This post-processing step generates the best hypothesis and outputs it in a certain

format. Some optional procedures may be contained in the post-processing step:

(a) N-Best hypotheses generation.

The top N scored hypotheses are selected and outputs it in certain formats.

Score is usually attached for each hypothesis. The hypothesis could be listed

as a word sequence or a phoneme sequence. The N-Best hypotheses are usu-

ally in a text format.

(b) Word graph or word lattice generation.

Similar as N-Best hypotheses. Word graph contains the top scored hypotheses.

However, word graph is not constrained by the 'N' as the N-Best approach.

All the paths which reach the end of search could be included into the word

graph. Thus word graph is constrained by the search pruning thresholds. An-

other difference between word graph and N-Best hypotheses is that the word

graph is organized in the form of a graph whose nodes represent the hypoth-

esized words. Word graph provides a more compact representation compared

to N-Best hypotheses. Word graph is usually stored in some special binary

format thus lacks readability.

(c) Hypotheses re-scoring.

The results obtained from the two procedures above can be re-scored by more

accurate knowledge sources such as a high-order language model. Re-scoring

can also be performed by running a second recognition pass with a more de-

tailed acoustic model and language model.

1.2 Mathematical Basics of Speech Recognition

The task of a speech recognition system is to find a word string W = wl, wz, . . . w ~ that

maximizes the posterior probability of the string W given the speech observations 0 =

ol, 02, ... OT,' that is:

w = a r g m ~ x P(WI0) (1.1)

According to Bayes ' rule:

where P(0) is the distribution of the speech observation. Since P(0) is constant over

the time period of interest, it can be omitted from the equation above.

Combining these two equations together, we get:

The recognition procedure is a massive search over all the possible word sequences

to find a word sequence w that maximizes P(W)P(OI W) . P(W) represents the "a

priori" probability of observing W independently of the observed acoustic event, and

acts as a grammar constraint on the word sequence. P(W) is extracted from a language

model during recognition, which is trained from a text database. P(OI W) represents the

probability of observing the vector sequence 0 given a specified word sequence W and

measures how well the observed speech sound matches the word sequence. P(O(W) is

determined by an acoustic model during recognition and it is also trained beforehand on

some speech databases.

1.3 Acoustical Modeling with HMMs

As stated in Section 1.2, the acoustic model is used to calculate the likelihood of gener-

ating any acoustic vector sequence 0 given a word sequence W . The acoustic model is

'This process is often called decoding.

Mceb Speech recognition. n
dt

speech I recognition
n

Figure 1.2: Different levels of modeling of a sample sentence

The modeling unit is context triphones. They are obtained by first expanding each word
in a sentence into its pronunciations and then constructing triphones according to the left
and right context of each phoneme. The phoneme /spl represents an optional short pause
between two words. Usually /sp/ is skipped when considering contexts.

obtained by a statistical based training procedure that requires many speech samples of

each word w for a reliable estimation. In large vocabulary systems, words are no longer

the appropriate acoustic modeling unit because it is impractical to collect sufficient sam-

ples for each word. A unit smaller than a word, such as phone, is the most popular

modeling unit in this case. To model the co-articulation effect of speech, context depen-

dent phones are used instead. The simplest and most often used context dependent phone

is the triphone, which is a single phone that takes into account its left and right neigh-

boring phones. For distinction with triphone, the context independent phone is called a

monophone. As shown in Figure 1.2, a word is represented first by a series of mono-

phones according to its pronunciations and then by a series of context triphones. The

construction of a triphone is to combine each phoneme with its left and right context. For

example, "a-b+c" represents the phone "b" with a left neighboring phone "a" and a right

neighboring phone "c". Each context triphone is modeled by a certain model. In Figure

1.2, there are two instances of phone "ih" with different neighboring phones, which are

represented by different triphones and therefore different models. In the latter chapters,

the acoustic model is denoted as A, following standard conventions.

1.4 Fusion in Speech Recognition

With the advance of computer hardware and speech technologies, automatic speech recog-

nition (ASR) systems have been deployed in commercial applications in the last decade.

However there is still a long way to go before an ASR system can reach performance

comparable to humans [53].

One major challenge that current statistically based ASR technology is facing comes

from the great diversity and variability of speech sources and transmission channels. It

is still very difficult for an ASR system to deal with these variations. Often, a speaker

change, or even an emotional change in the same speaker, causes recognition performance

to degrade. Speech variations come from many sources: background noise, channel con-

dition, music, speaker emotion, dialects, disfluency, murmur, etc.

Adverse acoustic environments, such as noise, music and background speech can also

dramatically degrade the performance of current ASR systems.

Current statistically based ASR systems try to ease the problem by performing training

on large amounts of collected speech data. However it's impossible to model all the

diversity and variability with limited data. Even small mismatches between training and

testing data can cause sharp performance degradation.

For many years, research has been devoted to finding a "perfect" feature representa-

tion of the speech signal. It seems an endless journey so far, just as we cannot make a

"perfect" recognizer that makes no mistakes. Current speech recognizers adopt a single

"best" feature set according to the task they are facing and measure the result on a devel-

opment data set. Also feature representations have fixed parameters (such as the window

and frame size, and the number and shape of the band filters) during feature extraction.

However, different features, or features with different parameters, can represent the

same speech input differently. Information loss is inherent for any feature extraction

method [l l] . The remaining information is different for features that are based on dif-

ferent feature extraction methods. These differences represent different subsets of infor-

mation contained in the original speech signal. It is plausible that these differences will

cause different recognition results.

Human auditory studies also support that there are multiple forms of signal processing

occurring in the auditory system [24]. Evidence was found in the mammalian auditory

system that each auditory nerve fiber splits and transmits the same data through seven

different types of nerve cells. Each type of cell produces a different response and their

outputs are combined at higher level processing [I, 291. Additional research shows that

humans can recognize speech with limited spectral cues and can easily integrate acous-

tic cues from different frequency regions for speech perception. When the environment

becomes noisier, humans rely on more cues from the speech signal.

For these reasons (from both theoretical and engineering viewpoints), there's a strong

interest among ASR researchers on how to combine different features for speech recogni-

tion. The success of this research is partly due to the efficiency of improving recognition

accuracy, partly due to the simplicity and ease of deployment. The existing art can be

roughly classified into two categories: pre-recognition and post-recognition combina-

tion. Complementary information from multiple features is adopted either before or after

recognition.

To utilize the complementary information from multiple features, pre-recognition ap-

proaches, such as the Multi-Stream approach [l 1,42,61], were proposed in recent years.

Feature or probability combination is performed before the actual recognition engine

started.

Similar complementary characteristics were observed when using different acoustic

or language models; some models perform well for certain speakers or environments but

degrade under other circumstances. Two systems with identical performance can have a

huge difference in the errors they make. To utilize the differences in the multiple recog-

nizers, people started to combine the outputs of several recognizers in a post-recognition

combination scheme. Approaches in this scheme include ROVER [28], hypothesis com-

bination [82], etc. All of them have demonstrated their ability to improve recognition

performance.

1.5 This Thesis

The fusion approaches presented above have proven to be effective in improving system

performance. However some complementary information is either lost after the recogni-

tion (such as in post-recognition) or not fully used (such as in pre-recognition). To avoid

these problems, we proposed a run time fusion scheme. The main idea of our approach is

to conduct information fusion during the run time of a recognizer (or decoder).

The first proposed approach is to use fusion to segment the speech into utterance at

the run time of the recognizer ("Segmenter" in Figure 1.1). Multiple filter bank coeffi-

cients are fused to make the speecWnon-speech detection. The segmentation approach is

evaluated by performing the recognition on the segmented files and measuring the overall

word error rates.

The other proposed approaches are performed inside the recognizer such as the "Tree

Recognizer" and the "Graph Recognizer" in Figure 1.1. The core of an LVCSR system

is a complex decoder coupled with an acoustic model and language model. Both the

acoustic model and language model for an LVCSR system are very large in scale and

contain statistical information obtained from a huge database. During the decoding, the

decoder will produce a rather rich content that is largely ignored, but we believe it is

worth exploring in this case. We believe that the content produced during recognition

represents complementary information in a multiple level aspect (Figure 1.2). To better

use the complementary information, the decoder is a suitable platform that provides more

reliable control on a much richer context. During-recognition fusion not only can reduce

2 ~ h i l e there are minor differences in the contexts in which the term recognizer and decoder are used,
we consider them to be synonymous in this thesis

the unrecoverable information loss occurring in pre- or post-recognition approaches but

also provides a better framework to more fully use the information. Maybe the complexity

of current decoders hinders research in this direction, but we have the knowledge and tools

to conduct this study. The complexity of our approach can be limited to the design and

implementation of the decoder. As a black box, the re-designed decoder can still be easy

to deploy without much increase in operation cost. It is our hypothesis that by wisely

using the complementary features during recognition, a significant gain can be expected.

In this thesis, various fusion algorithms and implementation techniques are studied.

Overview of the Rest of the Thesis

Chapter 2 contains the background technology used in this thesis. This chapter will give

a general description of the structure of current continuous speech recognition systems

including acoustic model training and decoding. This chapter introduces the concept of

Hidden Markov Model, the most widely used statistical approach for speech recognition.

This chapter describes the Viterbi algorithm, which is used to conduct an efficient search

in a speech recognition system, which we will revisit in Chapter 5. Various technologies

are used to control the search cost. The technologies described in this chapter are closely

related to the implementation of our run time fusion and we will use these concepts in

Chapter 5. This background information is necessary to understand how we implement

our fusion approach in an efficient way.

Chapter 3 describes the speech recognition tasks that are used throughout this thesis

and the essential components of our baseline system. This chapter gives some introduc-

tions on the speech signal processing and the speech feature extraction. This chapter also

contains the details of building the baseline system used in this thesis work. Some add-

on technologies such as retraining, class-based language modeling were implemented to

improve our baseline system. At the end of this chapter, we obtained a very competitive

baseline system, which is about the best system we can get by using traditional techniques.

Chapter 4 gives a background review on some existing approaches to performing fu-

sion in speech recognition. Information fusion in speech recognition is a relatively new

and active research area. It was based on the research findings on human speech recog-

nition (Section 4.1). Current fusion approaches can be roughly classified into two cate-

gories: pre-recognition (Section 4.2) and post-recognition combination (Section 4.3). We

will give a review on these existing fusion approaches and their advantages and disadvan-

tages.

Chapter 5 will present how we approach the problems in the existing fusion ap-

proaches, rooted in their inefficient use of the complementary information. We propose a

run time fusion framework to address these problems. We further present the detailed de-

sign and implementation of our approach. Under the general high level fusion framework,

we designed three different fusion approaches. These three approaches are based on the

same hypothesis, that by applying complementary information at an earlier stage of the

recognition process, the final system will be able to obtain much better accuracy. These

three approaches differ from each other at when, where and how the fusion is performed.

We investigate these three approaches (or system architectures) in the hope of making the

best use of multi-information sources. Experimental results are given after each approach

to demonstrate the advantages of our solutions.

Chapter 7 presents a new speech segmentation approach based on two levels of fu-

sion. The first level of fusion applies to the spectral sub-bands and fuse multiple filter

bank coefficients. This new approach takes advantage of current feature extraction pro-

cedure, with little additional computation cost. Another level of fusion was performed by

fusing the results from several segmentation systems. Experiments show our fusion based

approaches significantly reduced the WER compare to two classifier-based approaches.

Compared to a manual segmentation, our approach only has 0.3% WER increase.

Section 8 summarizes this thesis work and describes out our future research direc-

tions.

Chapter 2

Background Technology

This chapter contains the background technology used in this thesis. Section 2.1 intro-

duces the concept of hidden Markov model and its application in speech recognition.

Section 2.2 describes the traditional acoustic model training approach. Section 2.3 de-

scribes the Viterbi algorithm, which is used to conduct an efficient search in a speech

recognition system, which we will revisit in Chapter 5. The potential search space in an

LVCSR task is prohibitive for a full search, and various technologies are used to tackle

this problem (Section 2.4). The technologies described in this section are closely related

to the implementation of our run time fusion and we will use these concepts in Chapter 5.

This background information is necessary to understand how we implement our fusion

approach in an efficient way.

2.1 Hidden Markov Model

The acoustic models mentioned above are basic entities used for modeling certain speech

features. There are many modeling techniques in the history of speech recognition: dy-

namic template comparison, knowledge based matching, neural network, and Hidden

Markov Models (HMM). These techniques have their own advantages in certain applica-

tions. HMM is so far the most widely used and most effective approach. Its popularity is

mostly due to its efficient algorithms for training and recognition, and to its performance

superiority over other modeling techniques.

b2(01) b2(%) bZ(4) ~ X Q) bdos) b3(%) b3(4) bX9) b4(@

Observation 1 1 1 1 " 1 Sequence

01 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9

Figure 2.1 : An example of Hidden Markov Model

There are 5 states in this figure and state 1 is the entry state and 5 is the exit state of this
HMM. An HMM can be viewed as a finite state machine with transition probability aij

from one state i to another j . The observation sequence is generated with output proba-
bility density bj (o t) represented by Gaussian mixture densities. State 1 and 5 do not have
associated observation probabilities.

An HMM has a certain number of states connected with directional arcs. It can be

viewed as a finite state machine that changes its state once every time unit by following

the arcs in the HMM topology. Figure 2.1 illustrates a typical three state HMM. (State 1

and 5 are pseudo states used for modeling a triphone.) The transition from state i to state

j is determined by the probability aij. At each state j , a speech vector (observation) ot is

generated with probability density bj (o t) , represented by Gaussian mixture densities:

where wjm is the weight of mixture component rn in state j and N denotes a multivariate

Gaussian of mean p and covariance C.

The wj,, satisfy:
M

and

is a multivariate Gaussian distribution with mean vector pj,, and covariance matrix Cj,,,

where D is the feature dimension and (ot - pjm)T denotes the transposition of (ot - pjm).

An HMM contains two stochastic processes: a transition process accounts for tempo-

ral variability, and an observation process for spectral variability. These two stochastic

processes have been successfully used to model the speech variability, and at the same

time be flexible enough for building a practical system. For ASR, only the observed se-

quence of events is known and the underlying transition process is unobservable. This is

why it is called a "hidden " Markov model.

There are two basic assumptions in the HMM based ASR systems:

1. The first-order N state Markov assumption claims that the current system status

depends only on its previous N states:

where st stands for the system being at state st at time t. In most ASR systems, as

shown in Figure 2.1, N is 1 which means only the previous state has influence on

current status.

2. The observation independence assumption assumes that the observation probability

of a state depends only on the state, regardless of when and how the state is entered.

Under these two assumptions, the joint probability of an observation sequence 0 =

ol, 02, ..., OT and its corresponding state sequence s = so, sl, ..., ST can be calculated

as follows:

2.1.1 Likelihood Evaluation: the Forward and Backward Algorithm

Given an HMM represented by A and an observation sequence 0 = (olo2.. . oT), the

occurrence probability of the observation P(0IA) can be theoretically calculated by sum-

ming Equation 2.5 over all possible state sequences. Let T,, = a,,,, be the initial proba-

bility of state sl.

Let oE be the partial observation sequence of (0 ~ 0 ~ . . . ot). The forward probability

ai (t) is defined as

ai(t) = P(oi, st = ilA) (2.6)

which is the joint conditional probability of the partial observation sequence, 0102 . . . ot

and state i at time t, given the model A.

And the backward variable Pi(t) is defined as

which is the conditional probability of the partial observation sequence from time t + 1

on, given both the model and known state occupancy in state i at time t.

Initializing at time t = 1, the forward variable can be computed inductively using the

following steps:

1. Initialization

(1 = b (0) 1 5 i < N

2. Recursion

3. Termination

In the same way, we can initialize the backward variable at time t = T and compute

it inductively using the following steps:

1. Initialization

2. Recursion

3. Termination

The total likelihood P (0 , s I A) = in Equation 2.5 can be calculated by:

When t = T, we can use Equation 2.8 to further simplify the equation above to

So we only need the forward recursion for calculation P (0 , s I A) and this forward

recursion is called the forward algorithm. The counterpart recursion is called backward

algorithm and is used in training to estimate the model parameter.

2.2 Acoustic Model Training: The Baum-Welch Algorithm

The goal of acoustic model training is to estimate X by maximizing the probability of

the observations P (0 I A) over all training data. Solving the HMM training problem is

difficult because the state sequence is hidden to us. There is no "correct" state sequence

corresponding to a given observation sequence for all but the case of degenerate models.

Therefore, no sufficient statistics of the state sequence is available to obtain a reliable

estimation. Therefore it is impossible to analytically solve this problem. The best we

can achieve is to obtain a X such that P (0 I A) is the local maximum for the available

training data. The Maximum Likelihood (ML) estimation is usually obtained through the

Baum- Welch algorithm, also called the Expectation Maximization (EM) algorithm [23].

For the case of discrete HMM, the re-estimation formula are straightforward as follows:

- a . . =
expected number of transitions f rom state i to state j

v expected number of transitions out of state i

expected number of t imes observing ot f rom state j
bj(ot) =

expected number o f t imes in state j

where the expectations on the right are determined using the current values of aij and

bj (ot). To compute these, we first need to define a variable, &ij (t) , the probability of being

in state i at time t and state j at time t + 1, given the model and the observation sequence,

that is,

Using the forward and backward variables, we can rewrite it in the form

We refer to it as two-state occupancy probability. We also need to define the one-state

occupancy probability,

Similarly, we can rewrite it as

Put together, the Baurn-Welch re-estimation formula is

In the case of continuous HMM, where the state output distribution takes the form of

Gaussian mixture model (GMM) (Equation 2. I), the estimation formula for parameters

of the GMM becomes:

where the modified state occupancy probability is the joint probability of being in state j

at time t with the mixture m accounting for observation ot. It is given as

where we have simplified P = P(0IX) since it is constant for a given training utterance.

Here we only give the formula for the case of a single training utterance. It is straightfor-

ward to extend them to the case of multiple training utterances.

2.3 Time Synchronous Recognition: The Viterbi Algo-

rithm

As described in Section 1.2, the recognition procedure is a massive search over all the

possible word sequences to find a word sequence w that maximizes Equation 1.3. Within

the HMM framework, search for w is realized by searching all possible state sequences.

We can use the forward probability for the likelihood calculation, and Equation 1.3 can

be re-formulated as follows:

w = arg max P (W) P(OI W) = arg ma* P (W) ~ (0 , sTI W) W W
(2.16)

ST

where ST means all possible state sequences from time 1 to T. The summation in Equa-

tion 2.16 is for all possible state sequences under the constraint of word sequence W.

Summing all possible state sequences will require a thorough search through the whole

search spaces which is not affordable.

Therefore replacing "sum" with "max" in Equation 2.16, the new search equation

becomes:

w = argmax P(W)P(OIW) = argmWax P (W) max P (0 , s r l ~) ,
W

(2.17)
ST

where only the most probable state sequence is considered. This replacement is called

the Viterbi approximation or maximum approximation: The most likely word sequence

is approximated by the most llkely state sequence. This approximation is certainly a

sub-optimal assumption but in practice it works very well.

To find the best state sequence for a given observation sequence, the Viterbi algorithm,

a dynamic programming method, is used. If we define the quantity &(t) as the partial state

sequence probability

max P(s1. . . st-1, st = i, 01 . . . otlX) Mt) = s I... st-1

then the basic Viterbi algorithm can be simply stated as

1. Initialization

2. Recursion

3. Termination

The final result of the algorithm is P,,,, the probability of the most likely state se-

quence. The identity of the individual states within the sequence can be obtained by

recording the argmaxfi) at each step of the Viterbi recursion and backtracking after the

final result is found. By considering only the best state sequence at any time, the Viterbi

algorithm does not need to store all the partial state sequences over time t. Therefore, it

is memory efficient. Under the Viterbi algorithm, the search performs at both the state

and word level and is executed in a time synchronous fashion in that it processes all states

completely at time t before moving on to time t + 1.

2.4 Tree Based Time Synchronous Beam Search

There are two main components related to the computational cost of speech recognition:

the acoustic model evaluation and the search. The fonner refers to the probability calcu-

lation of the acoustic models and speech observations. The latter refers to the search for

the best word sequence that matches the given speech utterance. Both components are

essential to a recognizer and need to be integrated together in an efficient way. For large

vocabulary systems, the search cost is significant and a careful design of the recognizer is

necessary.

2.4.1 Lexical Tree

In small vocabulary systems, acoustic models are organized in a flat structure. Each word

has its unique acoustic models corresponding to its pronunciations. In the flat structure,

the source and target word models of a crossword transition are known at the transition

stage, thus it is easy to incorporate a language model into the search. When the vocabulary

size increases to certain amount, the recognizer cannot afford to have such flat structures

anymore.

In large vocabulary systems, the acoustic models are organized in a phonetic tree

structure, called a tree-structured lexicon or lexical tree [63] [3 81 [69] [64], as illustrated in

Figure 2.2. In recognition, the search for the most likely word sequence is based on the

lexical tree, a prefix pronunciation tree. Each tree node (except the pseudo root node) is a

phoneme of some word pronunciations. Words with the same prefix pronunciations share

the same acoustic models representing these pronunciations and share the same tree paths.

Each leaf node is associated with a word whose pronunciation is represented by the path

from the pseudo root node to the leaf node. When a search path reaches a tree leaf node

(the word-end pronunciation), the search space is extended by copying the entire lexi-

cal tree under that leaf node. The tree-copy is a requirement in the traditional lexical tree

search algorithm to form a unique search path (to determine the acoustic model to be eval-

uated) and to retrieve the final transcription. Since the search paths are frequently created

and discarded during the search, the lexical trees are copied and discarded accordingly.

These operations occupy a large portion of the total search computation.

The recognition is processed as the search paths pass through the lexical tree. The

search is initialized from the pseudo root node. The context triphone is rendered and the

corresponding acoustic model is used to calculate the acoustic score. The search path

splits at the tree branches so that every possible path will be traversed.

At each leaf node, the language model score is attached. The word associated with

the leaf node is recorded as the search history and the search path goes back to the pseudo

about

\ i -..--,,'
accrue

abound

Figure 2.2: An example of Lexical Tree

Words with the same prefix pronunciations share the same tree paths. The search is per-
formed as the search paths passing through the lexical tree. Each tree node is associated
with a triphone HMM model.

root node for searching the successive words.

At the end of the search, the search path with the best likelihood score is traced back

to retrieve the most likely word sequence and output as the recognition result.

The lexical tree structure has the following advantages [2] :

1. By introducing a high degree of sharing at the root nodes, the lexical tree structure

reduces the number of word initial (acoustic) models that need to be evaluated.

(Word initial models are the most frequently evaluated models in the flat structure

systems.)

2. The tree structure also greatly reduces the number of crossword transitions, which

is again a dominant part of the search.

The problems with a lexical tree occur at the word boundary: (1) The application of

a language model has to be delayed because the target word of a crossword transition

is unknown at the tree root nodes. (2) When the search paths cross the word boundary,

the search space needs to be extended. And the search paths need to be unique after the

extension.

The traditional way to solve the problem is to copy the entire lexical tree (or to copy

the tree-layers on demand). The tree-copy requirement results in high overhead (of CPU

time and memory) for manipulating the lexical tree. The new lexical tree search algorithm

in our system solves the problem by decoupling the search and the search space. The

lexical tree is re-entered instead of being physically copied.

A typical lexical tree is illustrated in Figure 2:2. Each tree node is associated with an

acoustic model (a mono-phone model in the figure). Each path from the pseudo root node

to a leaf node (also called a word-end node) represents the pronunciation of a word. The

lexical tree is constructed as follows:

1. The pronunciation of a word is represented by a series of mono-phone tree nodes.

Acoustic models are associated with the tree nodes. The word is indicated by the

corresponding tree leaf node. Tree nodes are shared by words with the same pro-

nunciation prefixes. If a tee-model' is inserted as the last pronunciation of a word,

the word is also indicated by the mono-phone node right above the tee-model.

2. The sentence-end is represented as a special branch of the lexical tree. The sentence

beginning is represented as a stand-alone lexical tree.

'A tee-model is an optional silence model with very short duration. It is a special model because it is
usually skipped when a left-context (or right-context) mono-phone is considered.

2.4.2 Token Structure

To search through the lexical tree, we need some structures to record the search status

and history. The "token passing" [95] concept is used and extended in our algorithm to

achieve the lexical tree re-entry. A token is a data structure to represent a (partial) search

path at the current time frame. Each search path can be viewed as a token passing through

the lexical tree. Additional data structures are carried with the tokens to distinguish the

search paths on a tree node (I) with different re-entry times, or (2) re-entering the lexical

tree from different words.

To represent a search path, a token has the following elements:

1. NODE: a tree node index indicating where the token resides in the lexical tree.

2. NEXT: A tree node pointer indicating what is the next move. If NODE is a tee-

model, NEXT is the move after evaluating the tee-model.

3. TRIPHONE: the triphone model. If NODE is a tee-model, TRIPHONE is the last

triphone model evaluated. Otherwise, TRIPHONE is the current triphone model

to be evaluated.

4. TEE: A tee-model pointer pointing to the tee-model node if the next evaluating

acoustic model is the tee-model. Tee-model is a special phone model that needs

special treatment.

5. Log Likelihood: The log likelihood value of all the internal states in the triphone

model.

6. Pointer to Word Link List (WLL): WLL is a partial history list containing a list of

words that the token passed by. The WLL also contains the time t and log likelihood

value information. Upon the finish of the recognition, a back trace through the

WLLs will retrieve the most likely word sequences. It is necessary to build a word

graph after the recognition.

The token passing algorithm is implemented in the Viterbi decoder by the following

procedures:

1. At time t, a token T reaches the HMM state i of lexical tree instance h. T represents

the current best partial path that starts from time 0 to time t, which is the match be-

tween the acoustic observation sequence, 01 to ot and a sequence of HMMs ending

at state i of lexical tree instance h.

2. At time t+l , the token is passed from state i to all traversable states on the lexical

tree. Each state j of these states gets a clone of token T.

3. The elements of the cloned token are updated accordingly:

NODE is updated with the new node index number of the current tree node.

NEXT is updated according to the topology of the lexical tree.

TRIPHONE is updated if the current triphone is different from time t.

TEE is updated if the current model is a tee model.

Log Likelihood is incremented by adding the transition probability and state

probability log(aij) + log(bj (o t)) .

WLL is updated if it just exited from a word end node.

4. For each state j, pool and rank all the tokens, discard all tokens except the one with

the highest probability.

Since each HMM state s was represented by a node in the lexical tree and the lexical

tree was re-used by each new word instance, more than one token can propagate to state

s at time t. We pool those tokens together as a token list TL(t;w;s). w means a language

model state, it is necessary because we have to take account the word history information.

At the same time frame, more than one lexical tree representing the same grammar word

could be entered. Each one has a different language model state in the search space since

they have different previous words. Each token in TL(t;w;s) can be distinguished by its

partial path score r(t; w; s) and partial path history H(t;w;s).

2.4.3 Lexical Tree Search

The search is initiated from the pseudo root node of the sentence-beginning lexical tree.

At each time frame, tokens split and move. Usually, a token splits itself into several

tokens: one of the tokens remains at the particular tree node and is used to record the

model internal transitions; other tokens advance to all the child tree nodes. The advancing

tokens will have their internal data structures changed to reflect the move. When a tee

model is encountered, a token makes additional splits (in addition to the normal splits

mentioned above). The split tokens skip the tee model and go directly to the re-entry

process.

When a token reaches a word-end node, the lexical tree is re-entered. The token

passing continues. At the end of the speech utterance, the search paths in the special

sentence-end branch are sorted to give the transcription.

The search is conducted on the lexical tree by decoupling the search and the search

space. The search space is extended by re-entering the lexical tree instead of copying

the lexical tree. Because a thorough search is neither affordable or necessary, multiple

pruning methods are implemented to control the span of the actual search paths. The

surviving search paths are recorded by the tokens, and a back tracing through the tokens

can reconstruct the actual search space which is much smaller compared to the original

search space. Experimental results show that this lexical tree method takes much less

CPU time and memory to achieve the same performance as the traditional lexical tree

search algorithm.

2.4.4 Lexical Tree Beam Search

By associating path information with tokens instead of tree nodes, the major drawback of

copying the entire lexical tree in the traditional lexical tree search algorithm is avoided,

and thus it saves time and memory resources. However, the number of tokens associated

with a single tree node increases accordingly, which results in increased computation on

each node, especially on the word-end nodes. To address this new problem, pruning is

applied to reduce the number of active tokens on each tree node.

Beam Search [5 5] [63] is one solution used to limit the search space by pruning away

the less likely hypotheses. The paths that fall below a certain threshold from a reference

path are removed from further propagation. The threshold or the beam width is usually

decided by trial and error on a development data set. It is a tradeoff between speed and

accuracy; a larger beam width usually means higher recognition accuracy with slower

speed.

From the point of view of computer algorithms, Beam Search is an expansion of

hill-climbing search: instead of just keeping one state around, several states are kept.

Although it can alleviate some local optima problem inherent to hill-climbing, Beam

Search is still an incomplete and inadmissible search. It is most useful when the search

space is big and the local optima are not dominant. Both are a good fit to lexical tree

search.

The standard Beam Search algorithm under our lexical tree search framework has the

following steps at each time frame t:

1. Search starts from the root node of the lexical tree and propagates to all entry nodes

of the lexical tree.

2. For each active node N (active means there is at least one token with time stamp t

that resides on that node):

(a) Perform Token Passing as outlined in Section 2.4.2.

(b) Find the maximum log likelihood for node N and record it as MaxLog(N).

(c) If MaxLog(N) is larger than the global maximum value MaxLog, set MaxLog

to MaxLog(N).

3. Perform pruning:

If (MaxLog(N) > (MaxLog - Beam Mdth)),

propagate those tokens to the next frame;

else

stop propagating those tokens and deactivate their corresponding nodes.

4. If the token leaves the leaf node and re-enters the lexical tree at the root node, repeat

from step 1.

In our system, we have several different pruning steps that are performed every time

frame.

State acoustic pruning: State acoustic pruning is the standard beam pruning ap-

proach as detailed above.

State overall pruning: Similar to the state acoustic pruning, the state overall pruning

is used to retain only hypotheses with a score close to the best state hypothesis. The

difference is the language model probabilities are added into the score before state

overall pruning.

Word-end pruning: Besides the normal state pruning method, an extended word-

end pruning method is implemented. This pruning method is an extension to the

traditional word-end pruning. Assuming that acoustic models are well trained, the

best path will dominate the search most of the time. Thus, each word-end may

allow only certain fan out2 without performance loss. This concept is extended to

every tree node.

2 ~ a n out is the number of words that is associated with the successor of the current tree node.

Histogram pruning: After the previous pruning steps, another round of histogram

pruning is performed to control the maximum number of surviving tokens. His-

togram pruning is done by examining the total number of active tokens (states) on

all tree nodes. If the number exceeds a given threshold (MaxTokens), then only

the best MaxTokens tokens are allowed to continue.

Token merge pruning: A token merge step was implemented in our system as de-

scribed in Section 6.1.1. The token merge beam is used to set a threshold for merg-

ing some tokens.

Other pruning: Language model lookahead pruning and Phoneme lookahead prun-

ing are also used in our system.

2.4.5 Word Graph

As detailed in Section 2.3, the Viterbi algorithm is essentially a dynamic programming al-

gorithm conducting a time synchronous search that processes the input speech one frame

at a time. The Viterbi search calculates the best path score at each state at a given time

t. It will move on to time t+l after all states are processed at time t. When it reaches

the last frame, a backward trace will generate the most likely phone and word sequence.

When we connect those word sequences together, it is an acyclic graph representing the

recognition hypotheses. This graph is called a word graph [70], which is a subset of the

original search space.

For most ASR tasks, the search space constituted by all possible combined state se-

quences is too prohibitive to conduct a thorough search. A beam search (Section 2.4) is

an approach used to limit the search space by pruning away the less likely partial paths

before they reach the end of utterance. Another way to reduce the search cost is a multiple

pass approach in which the first pass generates the word graph using simple acoustic and

language models, then successive passes re-score the graph using more complex knowl-

edge sources such as long span acoustic and language models. Although the complex

knowledge sources are more accurate, they are too costly to be deployed during the early

pass search. Most of the time, the later pass decoding will achieve a higher accuracy with

only a relatively small cost compared to the first pass decoding. The overall computation

cost of multiple pass decoding is usually much lower compared to single pass decoding.

In the multiple pass approach, the word graph (Figure 2.3) serves as an intermediate

recognition output representing the high-ranking sentence hypotheses in the form of a

graph whose edges are words. Any path from the sentence-beginning node "S" to the

sentence-end node "E" is a valid sentence hypothesis (generated by the recognizer). The

horizontal axis shows the time scale and the vertical axis is for the purpose of displaying

the hypotheses in parallel. Each node in the word graph represents a word transition time.

The edges and nodes of a word graph not only show when the word transitions happen

but also their sources and destinations. The word graph can be interpreted as a reduced

search space, where the number of possible words is reduced and possible connections

are restricted.

Compared to the N-best sentence lists, the word graph has some clear advantages.

First, a word graph is a more compact representation because sentence hypotheses can

share edges and nodes; the N-best list makes separate entries for every difference along

the hypothesis path. Secondly, a word graph is much more powerful and flexible. It con-

tains more information than an N-best list, such as partial hypothesis score, competing

paths, and their relationship. Additional information is easier to incorporate into the word

graph structure that is essential for integrating new knowledge sources and support multi-

ple sources simultaneously. Most times, the N-best list is extracted from the word graph.

Furthermore, the N-best list can be treated as a subset of a word graph.

Applications of Word Graph

Besides serving as an intermediate search space between two sequential searches, the

word graph has been used in many other ways:

1. post-recognition approaches:

cannons about

1
come

PI .(=J-6 -
zoom

s 0 cannon
alulull

to

-
n o n n n n 0- zooms , - O U ~

Y can y ou -0 what 0-

Figure 2.3: A sample diagram of Word Graph

"sil" means non-speech event.
The corresponding utterances are:

cannons about.

cannon come up.

cannon come on.

cannon zoom out.

...

can you what.

Instead of performing another recognition process, post-recognition approaches

manipulate word graph directly. Examples such as Hypothesis Combination is in-

troduced in Section 4.3.2.

2. language model re-scoring:

Higher order language models or syntactic taggers, which are not able to be directly

integrated into the recognizer, can search through a word graph to find an optimal

path.

3. Confusion Network:

Confusion Network [56, 571 is an approach that aims to minimize the WER by

post-processing the word graph. It aims to solve the mismatch problem between

the current word-based performance criteria and the standard MAP decoding that is

sentence-based. The word graph is clustered into a linear graph called a consensus

network (Confusion Network). The final word sequence that minimizes the WER

can be found by selecting the word hypothesis with the highest posterior probability

from the confusion network.

4. speech understanding system:

In speech understanding system, the target is to get the essential meaning of the

speech rather than to get all the words recognized correctly. Lingustic, syntactic and

semantic knowledge of language is normally incorporated into a parser to reach this

goal. In dialogue management, if the I-Best hypothesis is not right, an alternative

hypothesis can be dynamically prompted according to a user's response.

5. confidence measurement and word spotting:

A word graph contains many competing hypotheses at word and sentence level; a

number of features can be delivered from a word graph for confidence measurement

and word spotting.

Chapter 3

Tasks and Baseline System

This chapter describes the speech recognition tasks that are used throughout this thesis and

the essential components of our baseline system. Section 3.1 presents a brief overview

of the training and testing corpus. Two corpora, TIMIT and Speech In Noisy Environ-

ments (SPINE), are used to build acoustic models. The test corpora is the DARPA SPINE

evaluation set. Section 3.2 gives some introductions on the speech signal processing and

the speech feature extractions. Section 3.3 contains the details of building the baseline

system used in this thesis work. First, in section 3.3.1, we explain the main components

of our in-house LVCSR software package. Then we describe the acoustic model train-

ing algorithms and procedures used to obtain different acoustic models for each features.

An unique training method called 'Retrain' is briefly introduced (Section 3.3.3). Sec-

tion 3.3.5 contains details of recognition experiments performed, such as results obtained

from different features. In this thesis work, much effort was devoted to improving the

performance of our baseline system. A class based Language Model is used to further

improve the performance of our baseline system (Section 3.3.6). At the end of this chap-

ter, we obtained a very competitive baseline system, which is about the best system we

can get by using traditional techniques.

3.1 Speech Corpus and Tasks

Two databases are used in our experiments: TIMIT corpus and SPeech In Noisy Envi-

ronments (SPINE) corpus. TIMIT is used only for initial training of acoustic models.

The SPINE corpus is one of the latest databases, for DARPA sponsored large-vocabulary

continuous speech recognition evaluation conducted in 2000 and 2001.

3.1.1 TIMIT

The TIMIT corpus of read speech was designed to provide speech data for acoustic-

phonetic studies and for the development and evaluation of automatic speech recognition

systems. It contains broadband recordings of 630 speakers of 8 major dialects of Amer-

ican English, each reading 10 phonetically rich sentences. The TIMIT corpus includes

time-aligned orthographic, phonetic and word transcriptions as well as a 16-bit, 16kHz

speech waveform files for each utterance.

Example transcriptions for an utterance in the corpus are as follows. The labels con-

sist of two integers (start and end sample-numbers1) followed by an ASCII ARPAbet

representation of the standard IPA phonetic symbol.

Orthography:

0 61748 She had your dark suit in greasy wash water all year.

The phonetic transcription is very important for initial training (bootstrapping) of each

individual HMM phone model, as we will explain in Section 3.3.

3.1.2 SPeech In Noisy Environments

Recent research efforts have focused on robust speech recognition under noisy environ-

ments. The newest deployment of speech technology are relevant to telephone conver-

sation and anywhere environments. One great challenge to such applications is the great

' ~ o t e that these integers are sample-numbers, not milliseconds, or other units of time.

Word label:

7470 11362 she
11362 15420 had
15420 17503 your
17503 23360 dark
23360 28360 suit
28360 30960 in
30960 36971 greasy
36971 43120 wash
43 120 49021 water
49021 52184 all
52184 58840 year

Phonetic label:

0 7470 h#
7470 9840 sh
9840 11362 iy
11362 12908 hv
12908 14760 ae
14760 15420 dcl
15420 16000 jh
16000 17503 axr
17503 18540 dcl

....
56654 58840 axr
58840 61680 h#

Note: beginning and ending silence regions are marked with h#

degree of variation of speech signal. The source environments and transmission channels

may be noisy or variable, resulting in a distorted speech signal from the origin. Also the

noise can put the speaker under stress and so may express a variety of emotions reflected

in their speech.

Noise or limited bandwidth channels have provided a real challenge to current speech

recognition technology. Lots of effort has been undertaken to tackle the problem but only

with limited success. To evaluate the current state of the art in speech recognition un-

der noise, especially military noise, the Naval Research Labs organized the first SPeech

In Noisy Environments evaluation (SPINEI) in August 2000. With the success of the

first evaluation, the second SPeech In Noisy Environments (SPINE2) evaluation was con-

ducted in November 2001 [NRL, 200 11.

The SPINE1 data was collected fiom 22 pairs of speakers. Each pair of speakers

participated in a Milton BradleyTM battleship game. Each pair of speakers worked in a

cooperative way to locate and sink ships on a grid. Each conversation session was com-

plicated by the introduction of noise and the confusable grid labels. Each pair of speakers

Table 3.1 : Scenarios in SPINE1

were located in separate sound recording rooms. Four scenarios were combined by real-

istic noise, handsets, communication channels and vocoders from the military operations,

as shown in Table 3.1.

Twelve different vocoders were applied on the transmissions between booths. A pair

of speakers also switched booths and repeated the same session. Overall, with four scenar-

ios, twelve vocoders and two speakers, each speaker pair worked through 96 sessions. Al-

though the speech signals excluded the vocoder effects, the stress of listening to vocoded

speech is reflected in the speech of those participants.

The difficulty of an ASR task can be measured by the recognition performance of

a certain recognizer, namely the word error rate (WER). On the other hand, we can es-

timate the difficulty of an ASR task by analysis of its characteristics. Both theoretical

and practical studies show that the ASR task becomes more difficult along the following

dimensions:

Vocabulary Size

The larger the vocabulary size, the more confusion the recognizer needs to resolve.

However, missing coverage of possible words is more expensive than false inclu-

sion of some non-appearing words. The optimal vocabulary is a balance between

reducing OOV (out of vocabulary) words and reducing the total number of words.

Current technology requires the vocabulary to be task oriented, which means tai-

lored to the specified application. Generally, the English ASR systems are classified

by their vocabulary size into:

- small: less than a few hundreds words; such as voice commands on small

devices.

- medium: around a few thousands words; such as database management.

- large: more than 5,000 words; such as Wall Street Journal, Broad Cast News.

- super: at least several 10,000 words; such as dictation systems.

Speaker Mode

Most state-of-the-art ASR systems are continuous which means each speech utter-

ance can contain more than one word. Some ASR systems are still isolated, which

requires the speaker to speak one word at a time. Generally continuous ASR is

more challenging than isolated word recognition.

Speaker Dependency

ASR systems are speaker dependent or speaker independent. A Speaker Depen-

dent (SD) ASR system is trained or adapted on the speech of a specified test

speaker. A Speaker Independent (SI) system is trained on speech data from vari-

ous speakers and not targeted to any specified speaker. A speaker dependent system

generally performs better than a speaker independent system.

Channel and bandwidth

Different communication channels have different distortions. Some channels limit

the bandwidth, such as telephone line, but some are able to provide high band-

width. Generally low bandwidth causes the loss of information thus increasing the

recognition errors.

Acoustic environment

The type and degree of background noise can significantly reduce the recognizer

performance. Non-stationary noise is more harmful than stationary noise. Back-

ground human speech is more confusing than non-human speech.

Speaking Style

Read speech such as dictation and news report contain less variety. Spontaneous

speech such as casual talk is more difficult for ASR system because it contains more

non-standard speech. Non-standard speech, such as hesitations, repeats, murmurs,

cannot be well modeled by current acoustic and language modeling technologies.

Experiments were conducted on identical sentences that varied in speaking style

[85]. The Word Error Rate increased from 28.8% for read dictation to 52.6% for

spontaneous conversation.

Language Model

A language model with a constrained grammar is more beneficial for a recognizer

than a non-constrained one. A lower perplexity language model generally can im-

prove recognition performance compared to a high perplexity one because it re-

stricts the possible word end fanout.

Acoustic Training Data

Generally speaking, the more speech data for acoustic training the better because

the acoustical model can have a more accurate statistical estimation. Also the task

domain data is preferable to out-of-domain data.

Language Model Training Data

Similar to acoustic training data, the more task oriented data for language model

training the better. However, in most cases, the available training data within the

task domain is quite limited.

Computing Resources

The performance of an ASR system is strongly tied to its available computing re-

sources, such as memory size and CPU speed. For applications that require real-

time response, some compromises have to be made between recognition accuracy

and recognition time. With the same computing resources, the smaller the real time

Table 3.2: Characteristics of SPINE Task

factor, the more difficult the recognition task is.

Speaking Mode
Speaking Style

Speaker Enrollment
Vocabulary
Noise Level
Noise Type

Channel Type

The SPINE data also contains some unusual phenomenon for speech recognition sys-

tems. There are quite a few non-lexemes that appear in SPINE data. Speaker noises such

as coughing, laughing and breathing are common. Because the speakers need to use push-

to-talk handsets, truncations happen frequently. There are also a large number of words

spelled out by the speakers to disambiguate some easily confusable words. Although it

is easier for speakers to understand, it is difficult for speech recognition systems. There

are also noticeable mispronunciations and unintelligible portions of speech in the SPINE

data.

The SPINEl and SPINE2 corpus consist of several parts:

SPINEl

SPINEl training data:

Easy + Difficult
Isolated + Continuous
Read + Spontaneous

Dependent + Independent
(Small <1,000 words) + Large (>5,000 words)

Low (SNR>30db) + High(SNR< 1 Odb)
Seen + Unseen

Close talk Microphone + Cell Phone

- 10 speaker pairs, 20 speakers overall

- 4 environments including quiet, office, HMMWV and AC carrier

- DRT (Diagnostic Rhyme Test) in 2 noise environments

- grids were labeled with words from the DRT and quiet

SPINE2
Continuous
Spontaneous
Independent

Medium
SNR: 5-20db

varies
varies

SPINEl test data:

Table 3.3: SPINE2 Training and Development Data

[Training Data I number of Utterances I Hours I -
SPINE1 Train
SPINE1 Eval.

- 20 speaker pairs, 40 speakers overall

- 6 environments including two new - E3A and MCE

SPINE2 Train
SPINE2 Dev.

SPINE2

SPINE2 training data:

1 1,973
12,079

- 6 noise environments

- grids were labeled with words from a military vocabulary

- 2 talker pairs (4 speakers total) with 32 conversations (sessions) per talker pair

(64 conversations total).

8.7
7.3

6,129
1,941

SPINE2 development data:

3.2
1.6

- 2 talker pairs (4 speakers total) with 16 conversations (sessions) per talker pair

(32 conversations total).

SPINE2 test data:

- 16 talker pairs (32 speakers total) with 4 conversations (sessions) per talker

pair (64 conversations total).

- 8 environments including two new - E3A and MCE

- total of 7 hours (423 minutes) of audio data

The test data comprises 128 speaker-environment pairs with 8 different noise envi-

ronments. The test data has unseen speakers and noise types from the training data, so

there will be unavoidable speaker and environment mismatch between the training and

test data.

Some utterance samples in the SPINE2 corpus are given in Figure 3.1 together with

their corresponding recognition output.

REF: SAY I T I CAN'T HEAR YOU
HYP: *** ** * ***** THAT AGAIN

REF: confirmed *** ** OKAY HERE we GO DOING A (RADA-) OH
HYP: conf- GOT OH YEAH DON'T we GOT ONE ALL RIGHT I 'LL

REF: okay RUN TEST SERIES ONE TWO THREE
HYP: okay *** **** RENTED RIGHT I THINK

REF: the sweep coordinates FROM THE acoustic sweep are north to north east
HYP: the sweep coordinates **** AN acoustic sweep are north to north east

Figure 3.1 : Some sample utterances in SPINE task

Lines starting with "REF" are the reference transcription of that utterance. Lines starting
with "HYP" are the corresponding recognition hypothesis. The words in capital font are
mis-recognized.

3.2 Signal Processing and Feature Extraction

Both the training and testing speech data must first be processed before being used by

the speech recognition system. In this thesis work, information fusion is based on the

complementary information contained in different features. Thus it is necessary to give

some introductions on the speech signal processing and the resulting speech features.

The speech signal is highly redundant because of the strong correlation between ad-

jacent segments. Use of the raw signal is not only too expensive but also unmanageable.

Therefore, speech recognition systems always use a parametric representation rather than

the speech waveform itself. Not only is useful information compactly extracted from the

waveform, but also computation is saved for both training and decoding.

Just as feature extraction is important in any pattern recognitions, it is an important

part of a successful speech recognition system. Most speech feature extraction approaches

are based on the study of the human auditory system and researchers' intuitions. Over

the years, various types of parametric representations for speech recognition have been

proposed. Most of them are based on short-time spectrum analysis of the speech signal.

A fundamental assumption underlying the short-time analysis is that over a long-time

interval speech is non-stationary, but that over a sufficiently short-time interval it can be

regarded as stationary. Due to the physical limitations of human vocal production, the

speech signal can be treated as stationary at that short period of time.

Another argument is that successful feature extraction should be able to retain the use-

ful information for a specific task and discard unrelated information. For speech recog-

nition, information about speech contents (linguistic and phonetic information) must be

preserved, while information about speaker identity is irrelevant. The short-time analysis

is suitable for speech coding but may not be a good candidate for speech recognition.

In speech coding, the goal is to preserve perceptual components of the signal, possibly

for restoration. However for speech recognition, some of the perceptual components are

harmful to retain, such as the communication channel information and the emotion of a

speaker.

Although there are many different feature extraction methods, they each have their

own advantages and disadvantages. More importantly, they have to be integrated with

speech recognition modules. The feature extraction algorithms may have different rela-

tive performances under different recognition modules or tasks. The most successful and

commonly used acoustic features for recognition purposes are Mel-Frequency Cepstral

Coefficients (MFCC) [22] and Perceptual Linear Prediction (PLP) [39]. In this thesis

work, the complementary information contained in different features are fused within a

new recognition architecture. Since these different speech features are important com-

ponents of this thesis work, we detail some of the feature extraction methods that we

used.

3.2.1 MFCC

We illustrate the procedure of extracting MFCC features below as it was used in all the

experiments in this thesis.

1. Speech sampling: The input speech signal is sampled at 16 kHz (this step is usually

skipped as the speech corpus has already been digitalized and stored on CDs).

2. Spectral analysis: A Hamming window of 25 ms is used to perform the short-time

analysis. The window is shifted every 10 ms. These windows are overlapped to

provide a greater frequency resolution.

3. Pre-emphasis: A pre-emphasis filter H (z) = 1 - 0.97~-I is applied to get rid of

the lip effect [58].

4. Fast Fourier Transform (FFT) is applied to obtain the spectral representation, fol-

lowed by a logarithm conversion.

5. Mel-spaced filterbanks are used to map the spectrum of linear scale in me1 scale

based on perceptual studies of human's hearing.

6. Discrete Cosine Transform (DCT) is applied to the filterbank output to convert the

spectral domain coefficients to cepstral domain. There are several advantages to

performing such a conversion. One reason is that cepstral parameters are a more

efficient compression and thus provide a more compact representation than filter-

bank parameters. Secondly, mel-scale filterbank parameters are highly correlated

and require a large number of parameters to model their distributions. In the cep-

stral domain, it is safer to make the assumption that the parameters are indepen-

dent. In practice, conversion to cepstral domain allows using diagonal covariance

matrices with little performance degradation. This dramatically reduces the com-

putation cost of HMM training and decoding. Recently, researchers also found that

in cepstral domain it is much easier to get rid of some channel distortions, using

techniques such as Cepstral Mean Subtraction/Normalization.

7. The first 12 coefficients are preserved, which become the base of our target MFCC

feature vectors.

Figure 3.2 gives a diagram of the acoustic feature processing for producing MFCC

features in our system. Note that energy information is also extracted for every frame and

appended to the MFCC feature vector, giving the 13th dimension.

\ Signal

Windowed 4 FFT I Mel-spaced Filterbanks

Energy
Measure

Figure 3.2: Extracting the base acoustic feature vectors of MFCC from speech data

The spectral pattern of a frame only contains local and static information about a

sound. Since dynamic characteristics of temporal features play an important role in

human perception, it is necessary to use some dynamic features to capture the tempo-

ral change. The most common method of obtaining dynamic feature is to estimate the

delta and acceleration of the spectral coefficients over a series of consecutive frames, and

Figure 3.3: Diagram of extracting MFCC acoustic feature vectors from speech data

then append these measurements to the basic static feature vectors [31]. The success of

these dynamic features is also due to their complementary nature to HMMs. Because the

time independence assumption of HMM assumes each frame is independent of the other

frames, dynamic features weaken this unsound assumption by broadening the duration of

a frame.

Usually, a linear regression equation is used for the calculation:

where ci denotes the i-th cepstral coefficient, di denotes its delta coefficient and (2N + 1)

gives the size of the regression window.

So the final feature vector for our system has 39 elements, consisting of 12 MFCCs

and normalized energy plus their first and second order time derivatives (Figure 3.3).

3.2.2 TRAPS (TempoRAl Pattern)

MFCC, along with most feature extraction methods in ASR is based on the spectral enve-

lope of speech. An inherent problem with the spectrum of speech is that it is sensitive to

many non-linguistic factors. Those factors such as frequency response of communication

channels or frequency selective noise, have little effect on human speech understanding.

To reduce this kind of sensitivity, a multi-band paradigm [l l] [42] adopts a series of

spectral subband classifiers. Each subband only considers a part of the whole spectral

envelope. Since only some of the subbands were corrupted by the frequency-selective

noise, this paradigm allows noise robustness by reducing the damage caused by those

unreliable subbands.

The traditional feature extraction methods also use the short-term (1Oms) spectral en-

velope and process it solely on the frequency domain. The frequency domain features are

better at representing features such as formats and provide more accuracy than in the tem-

poral domain. However recent studies have found that the phonetic information of one

phoneme is spread across several neighboring phonemes. Some important linguistic char-

acteristics, such as the phoneme and the syllable, are much longer than the conventional

short-term spectrum. Modeling syllable-length information requires the feature extraction

to be conducted also on the temporal domain.

TRAPS was proposed by Dr. Hermansky's group as an innovative approach to solve

some of the problems of traditional feature extractions [41]. It extracts features in the

time-frequency domain under the multi-band paradigm. As a radical departure from con-

ventional feature extraction, TRAPS uses a rather longer temporal envelope: 1 sec win-

dow (101 frames at 10 ms frame rate). Similar to the Multi-Band approach, there are

15 critical bands across the frequency space. The energy of each single critical band is

calculated based on these temporal vectors. It assumes independence among different

frequency bands in the early stage of speech communication.

48

frequency . 10 ms 4

ConventionalASR

frequency

time

classifier

TRAP

Figure 3.4: Comparison of TRAPS feature with conventional features

The design of TRAPS allows it to apply mean and variance normalization ofthe criti-

cal band spectrum, thus making it more robust to linear filtering of the signal and station-

ary noise. It is also more robust to frequency selective noises because of its relation to the

Multi-Band approach.

The procedure that we used to produce TRAPS features is detailed as follows [66],[41],

[91]:

1. Adjacent pairs of rather long (about 1 second) temporal trajectories of critical-band

spectral energies formed the vector space for LDA-based projection. The 15 most

relevant 2-d discriminants are used to project 202 point feature vector (101 features

from each adjacent critical band) into a 15 dimensional vector space. The projected

features are given as input to multi-layered perceptrons (MLP). The output units of

MLPs are the acoustic targets defined by 30 phonetic categories. The 56 phonemes

which cover the whole SPINE-1 development set are grouped together to obtain

the targets. The grouping of phonemes is based on the similarity of Articulatory

properties namely Manner, Place, Voicing, and Height.

2. The second (information merging) stage uses MLP to combine the information from

the individual frequency-localized classifiers. The output from this MLP represent

estimates of posterior probabilities of the underlying phonetic features. To circum-

vent the skewed distribution of the estimated posterior probabilities, the final soft-

max nonlinearity in the output layer was removed from the trained MLP. The size of

the hidden units is kept at 300 for band-specific MLPs and at 500 for merging MLP.

First and second order dynamic features (speed and acceleration) are computed on

trajectories of these probability estimates. Whitening transform (Karhunen-Loeve)

is used to reduce the dimensionality and de-correlate the output. This results in 39

dimension feature vectors, which form the input to the recognizer. All linear and

nonlinear transformations described above are derived on force-aligned SPINE1

development data.

3.2.3 TLDA ('Pwo dimensional Linear Discriminants Analysis)

Studies show that the influence of the current phone extends beyond its boundaries, into

its surrounding phones. Conventional feature extraction using a 10 ms time span is too

short to cover most phone duration. To incorporate a longer time span that can match the

duration of a phone, a wider block of the spectrogram is used. But use of a long time span

incurs some problems. First, these features are not independent but highly correlated.

Second, the feature dimensions are increased dramatically. It not only requires a huge

amount of training data but also stresses the training procedure.

To solve these problems, Linear Discriminants Analysis (LDA) is used to reduce re-

dundancy and obtain a smaller size feature set. The final feature is projected on the joint

time-frequency domain. In the spectral domain, the discriminants are based on short-term

spectral energies. In the temporal domain, the discriminants are based on time trajecto-

ries of the spectral energies. The joint features are formed by concatenating short-term

spectral frames along the temporal span.

features' WER comparison

50

speaker

wmfcc +ssrnfcc +plp --Slttlda + t r a d

Figure 3.5: Performance comparison of different features

The procedure for obtaining 2-dimensional LDA-derived discriminants in our SPINE

work is detailed as follows [66],[48],[91]:

Spectral bases representing the 15 most dominant LDA discriminants of logarithmic

spectral energy vectors from 15 Bark filter-bank were derived on force-aligned SPINE1

training database with 56 context-independent phone classes. Temporal discriminants

(LDA-RASTA filters) are derived from the OGI Stories hand-labeled database (41 context-

independent phones). 15-dimensional logarithmic spectral energy vectors derived on this

database are projected on the first spectral base. The three most dominant discriminants

from LDA projection of 10 1 -point temporal vectors (representing critical-band spectral

energy trajectories, spanning 500 msec into past and 500 msec into future) yield three

temporal RASTA filters. Features for the recognizer are generated as follows. The base

features are first projected on 13 spectral bases to generate a 13 dimensional feature vec-

tor. The time trajectories of these 13 features are then filtered using three RASTA filters

to generate (13x3=39) dimensional feature vector. Finally, each element of the feature

vector is normalized using its mean and variance computed over the utterance.

Other Features Involved in the Building of Baseline System

There are a few other features that we used during our official evaluation [66],[91]:

The initial feature representation is 13 PLP cepstral coefficients (20 ms analysis

frame with 10 ms steps, 12th order PLP model) normalized to zero mean and unity

variance over the utterance. These features are fed into a 3 layer MLP, with 9

frames of context and 56 phoneme target classes, which results in MLP size 35 1-

1000-56. The MLP is trained on forced aligned SPINE1 development data by back-

propagation with minimum cross entropy criterion. The outputs of the trained MLP

represent estimates of the phoneme posterior probabilities. These posterior proba-

bilities have a skewed distribution that is difficult to be modeled by Gaussian mix-

ture models. To circumvent the skewed distribution of the posterior probabilities,

the final soft-max nonlinearity in the output layer is removed from the trained MLP

by the logarithm of the posteriors with a normalization constant. The linear outputs

from MLP are augmented with their first derivative and second derivatives com-

puted over 9 frame window. These features are whitened using global Karhunen-

Loeve transform and the first 56 dimensions are retained.

2. SMFCC [66],[91]:

The minimal value of power spectrum in each Mel-frequency band is used as an es-

timate of noise in the utterance. This estimate is subtracted from the Me1 spectrum

prior to cosine transform. The rationale is that the background noise is additive

in the power spectral domain. We noticed that this feature by itself has no advan-

tage compared with mean subtracted MFCC. However this feature set contributed

to improvement performance of the overall (ROVER-combined) system.

3. WMFCC:

WMFCC is similar to MFCC but with wide bandwidth filters [82]. The filter over-

lap is increased to 75% instead of 50% in the conventional MFCC. The average

noise distortion is lower for WMFCC than for MFCC, and thus provides more noise

robustness.

3.3 Building the Baseline System

3.3.1 OGI LVCSR System

Since 1996, our research group has been actively focused on research and development

of large vocabulary continuous speech recognition systems and we have participated in

several government sponsored annual evaluations (Broadcast News Transcription (HUB4)

1997 [92] and 1998 [90], Speech In Noise Environment (SPINE) [91], and Language

Recognition 2003).

Our research software platform is a large-vocabulary, speaker-independent, continu-

ous speech recognition system. It contains most of the state-of-the-art components of a

speech recognition system:

1. Continuous HMM based training and decoding components.

2. A statistical n-gram language model, supports unigram, bigram, trigram, and class-

based language models.

3. Complete package for signal processing and feature extraction (the commonly used

features such as MFCC, PLP, LPC).

4. Some noiselchannel variation reduction techniques, such as Cepstral Meadvariance

Normalization [30].

5. Speaker and channel segmentation.

6. Advanced acoustic model training and speaker adaptation:

(a) Speaker Adaptive Training (SAT) [3] [2] [4],

(b) Vocal Tract Length Normalization (VTLN) [26]).

(c) Maximum A Posteriori (MAP) [97],

(d) Maximum Likelihood Linear Regression (MLLR) [52]

(e) Markov Random Field Linear Regression (MRFLR) [89].

7. Flexible decoders:

(a) Supports either single-pass decoding or two-pass decoding.

(b) Supports both within-word and cross-word model.

Real time decoding is made possible with various fast decoding strategies including

complex beam pruning, fast gaussian mixture computation, phoneme lookahead

and language model lookahead.

8. A portable system that can run on either Linux or Windows platform, that supports

parallel training and decoding on either a Linux or Windows cluster.

3.3.2 Acoustic Training

The initial Speaker Independent (SI) model was trained based on SPINE1 and SPIEN2

training data plus SPINE1 evaluation data. We refer to them as the SPINE2-SI-Base

training set. The total training data is about 20 hours (Table 3.3).

Monophone training -
I Clone to triphones I

Train un-clustered

7
cluster triphone models

Model re-estimation
single Gaussian)

Continue
splitting?

/ Final HMM set \

Figure 3.6: The acoustic training procedure

The training procedure is a step by step learning process, starting from building sim-

ple acoustic models to gradually increased model complexity. The training procedure is

shown in Figure 3.6 and works as follows:

1. Monophone initialization and training (Bootstrapping)

The first step of acoustic model training is building monophone models. Phonet-

ically labelled speech data is necessary for this step. Generally a carefully hand

labelled database is essential to obtaining accurate monophone models. In English,

the TIMIT corpus (Section 3.1.1) is the most widely used one for bootstrapping.

Several iterations of Viterbi and Baum-Welch training are performed to obtain the

probabilities of the acoustic observations given the current HMM models. If the

change of the probabilities between successive iterations falls below a preset thresh-

old, or the number of iterations reaches a preset limit, the procedure stops and a new

set of HMM models are obtained.

2. Un-clustered context triphone training

The monophone models are cloned to their corresponding context triphones (with

same central phone). These triphones that are derived from the same monophone

have identical HMM models. In this training step, several iterations of the em-

bedded training are performed on the SPINE2-SI-Base training set. Each triphone

model is updated after each iteration. Compared to the bootstrapping training, no

phone or word boundary information is required. Instead, triphone HMM mod-

els are concatenated into a sentence level HMM model and the forward-backward

algorithm automatically makes the time alignments. After this step, statistical in-

formation is collected for the next clustering step.

3. Clustering and state tying using a phonetic decision tree

In this step, phonetically similar triphone models are clustered for several reasons:

(a) A large number of triphone models need to be trained.

(b) Limited training data.

(c) The triphone models are not evenly covered by the training data.

Based on the occupancy statistics of triphone models, a phonetic decision is con-

structed for every HMM state. Then the phonetic decision-tree algorithm is used to

Table 3.4: Comparison on acoustic model state numbers among different features

We built both within-word and cross-word acoustic models for each features. The acoustic
models have different HMM state numbers

perform state clustering and then state-tieing to the corresponding mixture pararn-

eters (mixture weight, mean vector and covariance matrix). Up to this step there is

only one Gaussian mixture component for each HMM state.

Number of states
Within-Word
Cross-Word

4. Clustered triphone training

FeatureNet
1422
1870

The clustered triphone model is again trained with the embedded training algorithm

on the SPINE2-SI-Base training set. After every three or four iterations of training,

each HMM state in the model is split to more mixture components. Generally the

amount of training data affects how many iterations of training and mixture compo-

nents are necessary. In practice, experiments varying these numbers are performed

and the best ones are selected by running a decoder on the development set.

MFCC
1221
1894

The final clustered HMM states are automatically determined by the decision tree

algorithm according to both the training data and decision tree parameters. The features

we used in SPINE2 task have different state numbers, ranging from 1101 to 1422 for

within-word models (table 3.4). The size of these acoustic models also varies because of

that (table 3.5). These acoustic models all use 12 Gaussian mixture components.

WMFCC
1249
1837

TLDA
1293
1879

3.3.3 Retrain Strategy

Retraining is an approach similar to unsupervised adaptation, except that the acoustic

models are re-estimated (as in the normal acoustic model training) using the standard

EM algorithm. Similar to unsupervised adaptation, the test data is first decoded and the

recognition result was used as the training transcription. Rather than modify the SI models

TRAPS
1284
1843

SMFCC
1101
1832

Table 3.5: Comparison on acoustic model size among different features

We built both within-word and cross-word acoustic models for each features. Each acoustic
model is stored as a binary file on the disk. This table shows the size of these binary files.
As shown in the table, the acoustic model size varies from 8.5M to 15.3M for within-word
models and from 13.6M to 20M for cross-word models.

by adapting them to the test data, our retraining approach combines the test data with the

Mbyte
Within-Word
Cross-Word

original training data for a fresh training. A diagram showing the retraining procedure is

TLDA
9.6
13.6

given in Figure 3.7.

MFCC
9.4
14.6

C 4 C C C C

Combine
I

TRAPS
10.2
14.3

Go to retrain I
Final Result

SMFCC
8.5
14.2

WMFCC
9.6
14.2

Figure 3.7: The retrain procedure in SPINE2

FeatureNet
15.3
20

3.3.4 Lexicon and Language Model

In our official evaluation, we used the common language model provided by CMU to all

participant sites.

The SPINE2 lexicon was built from three sources:

1759 unique words from all text files of SPINE 1 data set but excludes partial words

that occurred just once.

160 words containing ACE grid labels from the battleship game.

5000 most frequently occurring words in the Switchboard corpus. Tests conducted

during the construction of SPINE1 language model showed that these were the most

useful set of "extra" words to be included in the SPINE vocabulary.

After combining all files mentioned above, we obtained a 5720 word lexicon.

3.3.5 Experimental Results

The development of our SPINE2 system is based on many experiments on both SPINEl

evaluation data and SPINE2 dry run data. We first developed a system according to the

official SPINEl evaluation requirement, the purpose is to build a basic working system

and compare its results with other sites. The official evaluation results on SPINE1 are

shown in Table 3.6:

We built our rudimentary system and its result is the 2nd best (32.3%) compared with

all the participant sites. We further did comparison experiments on MLLR and Retraining.

Our retrained system is better than the one which we applied MLLR (Table 3.7).

From Table 3.6, we can see that the best overall system used ROVER [28]. Inspired

by this finding, we built 15 different systems, varying their features. The final result after

applying ROVER is quite impressive: 25.0%.

Based on this setup, we trained a similar system for SPINE2 dry run. The training data

includes all SPINEl data plus SPINE2 training data. The testing data is the SPINE2 dry

Table 3.6: Official Evaluation Results on SPINE1

Table 3.7: Experimental Results on SPINE1 Evaluation Data: Comparison of MLLR and
Retrain on MFCC based systems

run data. Based on our findings on SPINE1 , we used Retrain exclusively in the following

experiments (Tabel 3.8). The additional findings are that MLLR is complementary to

Retrain, and VTN delivers significant gain. The final system reduces the WER by 27%

compared to the baseline.

Systems
Baseline
MLLR
Retrain

Table 3.8: Experimental Results on SPINE2 Dry Run Data

WER
32.3%
29.6%
28.8%

Based on these experiments, we built our final system for the official evaluation. The

features and acoustic model training have been introduced since the beginning of this

chapter. The original plan also includes two rounds of Retrain plus MLLR and VTN.

We did not finish that part because of the tight time schedule. The results in the official

evaluation are shown in Table 3.9.

Table 3.9: Baseline System Performance on Official SPINE2 Evaluation

Compared to other participant sites, our system ranks 3rd place in using the common

language model (Table 3.10).

Table 3.10: Official SPINE2 Evaluation Result: common language model

After the official evaluation, we finished up some of the planned system building and

the best result 39.6% was treated as our baseline (Table 3.11).

SRI
SSLI
ISIP

3.3.6 Some Improvements by Applying Class Based Language Model

In this thesis work, some effort are devoted to improving the performance of our baseline

system. In the official SPINE2 evaluation, some sites obtained significant gain by using

42.1
38.8
56.9

68.2
66.6
54.6

23.7
22.6
28.9

08.1
10.9
16.5

10.3
05.4
11.5

Table 3.1 1 : Baseline System Performance on Official SPINE2 Evaluation - Post Evalua-
tion

Table 3.12: Official SPINE2 Evaluation Result: special language model

Mbyte
Baseline

special language models, such as class based language models. Because of their success,

we implemented a class based language model in our baseline system.

It is usually difficult to obtain enough training corpus for many domain-dependent

tasks, such as, the SPINE2 tasks. In such cases, a class based language model is preferred

to a general word-based language model. SPINE2 task contains some common words,

such as personal names, military acronyms, slang and directions, etc. Each individual

word cannot be well trained since each one occurs infrequently in our sparse corpus. In

this case, a class-based language model can be employed to gain a more robust model and

further reduce the model size.

Before training a class-based language model, we first defined some classes (refer to

Appendix A). For example, the DIRECTION class includes words such as east, west,

northeast, etc. A tagged sentence from our corpus is shown below:

Original sentence:

East to southeast do you copy Michael.

Tagged sentence:

Featureset
54.6%

Systemname
CU

IBM
SFU

ROVER
Retrain
ROVER
Retrain
ROVER -

MFCC
46.7%

TLDA
50.6%

41.5%
42.1% 1 42.6% 1 44.2% 1 43.6% 1 45.9% 1 45.1%

39.8%
41.8% 1 42.2% 1 43.5% 1 42.4% 1 45.4% 1 43.6%

39.6%

WMFCC
47.6%

%totalerror
37.5
29.3
27.5

TRAPS
55.0%

%correct
67.8
73.0
74.4

SMFCC
48.9%

%INS
05.3
02.3
02.0

%SUB
24.2
13.7
13.5

%DEL
08.0
13.3
12.1

[DIRECTION: East] to /DIRECTION: southeast] do you copy mame: Michael].

Given two neighboring words Wi-l and Wi, the probability of the word Wi given its

preceding word WiPl can be expressed as:

where Wi and WiPl belong to class Ci and Ci-1 separately.

To obtain a class based language model from our original trigram model, two addi-

tional sets of probabilities need to be estimated:

1 . Transition probability P(CilCiP2, Ci-]), which is the probability of the current

class Ci given its preceding two classes Ci-2 and Ci-].

2. Observation probability P(Wi ICi), which is the probability of the current word Wi

given its class Ci.

We use the CMU-Cambridge Statistical Language Modeling Toolkit to obtain the set

of transition probabilities. Also, the set of observation probabilities is computed via divid-

ing the number of occurrences of each word in a class by the total number of occurrences

of all words in the class. In our computation, a Witten-Bell discounting method is applied

to the probabilities of less frequent or unseen events. The improvement after adopting

class based language model is impressive (Table 3.13).

Table 3.13: Comparison on the effect of Class based Language Model (CLM) and com-
mon language model

Similar to acoustic model retraining, we retrain the language model by interpolating

original training data with decoded testing data. Decoded testing data contains some

unseen word sequences in the original language model. And by retraining, the resulting

Systems
Baseline

Baseline + Retrain + MLLR + VTN with common language model
Baseline + Retrain + MLLR + VTN with CLM

WER
39.6%
35.8%
3 1.2%

language model is closer to the testing domain. Some confidence measurement steps were

used to remove some error prone utterances from the decoded data [loo], [99]. Further

improvement was observed after applying the approaches above (Table 3.14).

Table 3.14: Comparison on the effect of language model retrain

Systems
class based language model

class based language model + retrain

WER
3 1.2%
28.7%

Chapter 4

Overview on Information Fusion in

Speech Recognition

This chapter gives a background review on some existing approaches to performing fusion

in speech recognition. Information fusion in speech recognition is a relatively new and

active research area. It is based on the research findings on human speech recognition

(Section 4.1). Current fusion approaches can be roughly classified into two categories:

pre-recognition (Section 4.2) and post-recognition combination (Section 4.3). We will

review these existing fusion approaches and give their advantages and disadvantages.

4.1 Information Fusion in Speech Recognition

In human speech recognition, various cues (including visual information) are used. The

more difficult the speech (such as in noisy environments), the more cues are needed [24].

Fletcher extensively studied how humans process and recognize speech [I, 291. Ths

work showed that the phones are processed in independent articulation bands and that

these independent estimates are "optimally" merged to achieve the recognition results.

Recent research activities on multi-stream or multi-band [l l , 42, 611 also demonstrated

the importance of looking at the data from different angles (different signal processing

and features) and fusing the information to improve recognition accuracy. However, both

Fletcher and the recent activities did not explicitly conclude how different information

should be fused to form the sound-unit recognition in order to achieve human-like perfor-

mance.

Motivated by how humans recognize speech, in recent years, there has been a strong

interest among researchers on how to combine different features in speech recognition

[21, 241. The success of these approaches is partly due to their efficiency in improving

recognition accuracy, partly due to their simplicity and ease of deployment.

The existing art can be roughly classified into two categories: pre-recognition and

post-recognition combination.

---------r-

I=>[Graph Recognizer b y p o k s I I

Figure 4.1 : Existing fusion approaches in an ASR system

The boxes with dashed lines are the modules related to existing fusion approaches.

4.2 Pre-recognition Combination

The pre-recognition approach combines features or probabilities before conducting de-

coding. It can be further classified into feature combination and probability combination.

4.2.1 Feature Combination

Feature combination concatenates different features to form a single feature vector before

acoustic modeling. The benefit of this approach is that the time dependence of different

features is exploited. Successful examples of this approach include concatenating energy

and delta features with a spectral representation (such as MFCC [3 11 as shown in Figure

3.3).

Feature

Feature
Fn pi
1- GMM

Figure 4.2: Pre-recognition: Feature Combination

The advantage of feature combination is that it is easy to deploy in current HMM sys-

tems. The disadvantage is that the combination of several features could lead to a much

larger feature vector, and therefore a larger acoustic model. The larger acoustic model

requires much more training data, resources and time. Feature combination also incurs

many redundancies thus diluting the complementary information. Another disadvantage

is that feature combination assumes that the combined features are independent. However,

most existing features have highly correlated information. Thus feature combination re-

quires special selection of individual features. The success of feature combination is

still limited to concatenating the energy and delta vector with the baseline feature vector.

During our preparation for the SPINE task, we concatenated TRAPS and MFCC feature

vectors into a single feature vector. Although the feature space was nearly doubled, the

recognition performance was somewhere between the two single feature systems.

4.2.2 Probability Combination

Probability combination is mainly used in HMM/ANN (Artificial Neural Network) hybrid

systems such as Multi-Band [l 1 , 6 1, 18, 171 and Multi-Stream systems [13, 83,47, 61,

2 11. A set of ANNs are trained for each feature and used for probability estimation. The

output of these ANNs are combined and input to an HMM decoder.

An example of probability combination is the Multi-Stream approach, which is mainly

based on an HMMIMLP (Multi-Layer Perceptron, a kind of ANN) hybrid system that em-

ploys several MLP recognizers trained on different features. The outputs of these MLPs

are fed into another trained MLP to estimate the phone posterior probability (Figure 4.3).

The combined phone posterior probability is input into an HMM decoder for final decod-

ing. Experiments have reported that Multi-Stream systems have better noise robustness

than the conventional HMMIMLP hybrid system using single feature.

A variation named a "tandem approach" [40, 271 has been proposed recently. It is

different from the conventional Multi-Stream approach in that the outputs of MLPs are

used as input features of GMMs (Gaussian Mixture Models) instead of a MLP. The output

of the GMMs are likelihood values for different speech units used in the HMM decoder.

Tandem approach has reported large WER reduction using context-independent modeling

compared to the standard MFCC or PLP features. Nevertheless the improvement cannot

carry over to large vocabulary task such as SPINE when context-dependent modeling is

necessary [27].

Feature

Figure 4.3: Pre-recognition: Probability Combination

The advantage of probability combination is that it can be designed for parallel pro-

cessing in several small models instead of a single large one. The disadvantage is that the

number of ANNs needed to be trained is very large and often prohibitive for a context-

dependent phone system. The drawback for both approaches is that only frame-based

feature can be incorporated (or only time synchronized features can be incorporated).

Segmental based information, such as tones (or pitch patterns), cannot be integrated eas-

ily.

4.2.3 HMM Combination

There has been much research in exploring possible extensions to HMMs. These include

factorial HMMs [34], 2-D HMM [62] and coupled HMMs [15,65] among others.

Factorial HMM was first introduced by Ghahramani and Jordan. They attempted to

extend HMMs by allowing the modeling of several stochastic random processes loosely

coupled. Factorial HMMs can be seen as an extension to HMMs. In the experiments

presented in their report, factorial HMMs did not appear to offer any advantage over

regular HMMs when traditional feature vectors were used.

To integrate segmental based information, such as tones (or pitch patterns), Mirghafori

and Morgan tried to relax the synchrony constraints in their research by using a 2-D

HMM [62]. In their research, sub-band HMMs are combined to form 2-D HMMs. Two

approaches were used in their paper to relax synchrony constraints: HMM decomposi-

tiodrecombination and two-level dynamic programming.

Nock and Young proposed a method called loosely coupled HMMs (Figure 4.4),

which is similar to the factorial HMMs. In their approach, two HMMs are coupled to-

gether to form a so-called loosely coupled HMM. A coupling matrix is defined for each

coupled HMM, which represents the transition and observation probabilities. Coupled

HMMs are trained to model two different input streams with asynchrony allowed. Vari-

ous degrees of synchrony between the two state sequences are also allowed by restricting

some state transitions. One major problem for this approach is the computational cost is

O(S3T), instead of O(S2T) for traditional HMMs. The number of parameters that need

to be estimated is also explosive in space under a continuous ASR system.

Figure 4.4: Coupled-HMM topology

Although theoretically 2-D HMM and coupled-HMM can be used to address the ex-

isting problem, the associated expense is an increased model space (extra states need to

be introduced). Although it is straightforward from an implementation point of view,

the tremendous increase in the state space dimension makes it impossible for applying to

multiple input streams. Attempts were made in [61] but failed to improve accuracy due

to significant increase in free parameters that needed to be estimated.

4.3 Post-recognition Combination

For the post-recognition combination approach, the underlying mathematic assumption

is the conditional independence between different features during recognition of each

stream. Thus decoding is performed on each stream independently of the decoding on the

other features. The benefit of this approach is its simplicity and flexibility in manipulating

the final recognition result. Approaches such as ROVER and word graph (or lattice)

combination all fit into this category. The time-dependency between different features is

completely ignored during the recognition of each stream. There is no interaction between

different features during the decoding process, and so the presence of one feature will not

affect the course of decoding on the other features. The problem with this approach is that

some complementary information among different features is not utilized. The mistakes

made in the early decoding stage may not be recoverable at the combination stage since

the correct hypothesis may have been pruned away during decoding of each individual

streams. As shown in Figure 3-3, recognition is performed independently on each single

feature representation and the results are combined in a post recognition manner.

4.3.1 Recognizer Output Voting Error Reduction (ROVER)

ROVER was introduced by J. Fiscus at National Institute of Science and Technology

(NIST) and used at the DARPA 1997 LVCSR Hub 5-E evaluation [28]. After combining

the results submitted by all participants in the evaluation, the WER is reduced to 39.4%

from 44.9% (obtained by the best single system). Since then, ROVER has gained much

attention in the speech recognition community. Five of nine participants in the 1998

,

Feature Fn
I Recognition

0 1- - Decoder 2 I t n

AM

Figure 4.5: Post-recognition: recognition result combination

LM

DARPA Broadcast News evaluation adopted ROVER. Even though their results are the

output of a ROVER system, NIST further reduced the WER from 13.5% to 10.6% after

performing ROVER on the results of all nine participating systems.

During our development on SPINEI, when we combined outputs from systems with

15 different feature front ends using ROVER, the combined system obtained a WER of

25%; although systems with each individual feature front end had a WER ranging from

32% to 50%.

ROVER is based on the hypothesis that the complementary information from different

recognizers output can be used to reduce word error rate. It has two steps:

Feature F i /I Recognition

1- - Decoder 1
Resul t1

1 . Align outputs of all the recognizers and build a single Word Transcription Network

(WTN) by dynamic programming (DP).

2. Select the highest voted word as the best scoring word at each node of the WTN.

The WTN is aligned iteratively in step one by first aligning two output sequences to

form a combined WTN. This WTN is aligned with the third output word sequence, then

the fourth and so on. So the final WTN is related to the combination order of all the

recognizer outputs. To achieve best ROVER results, the recognizer outputs are ranked by

their individual word error rate in an ascending order. However, the word error rates of

the individual systems are generally unavailable.

During the second step, ROVER picks the word with the highest number of votes

at each node in the WTN. When two or more words have a tie in the voting, the tie is

arbitrarily broken, which is a major drawback for this voting scheme. Especially for a

ROVER with only two inputs, all the potential correctable words result in a tie and the

final ROVER output lies between the original two input systems. So when only two

recognizer outputs are available, ROVER has no advantage at all in reducing WER.

Figure 4.6: A WTN of a ROVER system with three hypotheses as input

There are seven aligned regions in this WTN. Each small capital letter represents a hypoth-
esized word. 'sil' represent a silence region.

In summary, ROVER has the following advantages and disadvantages:

Advantages:

1. Based on a solid assumption that the error patterns of two systems can be dramati-

cally different even though they have a similar recognition error rate.

2. Requires very little run time itself.

3. Works quite well in most cases.

Disadvantages:

1. Based on an unreliable voting decision: The word confidence scores from different

systems are not strictly comparable but ROVER assumes they are.

2. Has a limitation in real application: The time and resource cost are linearly in-

creased by a factor of the number of systems.

3. Only uses the first hypothesis (best hypothesis with the largest likelihood) of each

system. Complementary information contained in the hypotheses beyond the first

one is discarded. Potentially better paths have been pruned during the recognition

phrase and are not recoverable.

4. Performance is influenced by the order of the combination with the best system

ranked the first. This assumes a prior knowledge about the performance ranking,

which is not always available.

5. Cannot guarantee performance improvement. Experiments found it actually hurts

performance when combined with systems that have higher word error rates.

4.3.2 Hypotheses Combination

During the 2000 SPINE evaluation, the best system from CMU introduced a parallel hy-

potheses combination method [82]. The word hypotheses obtained from parallel systems

are combined into a word graph. Unlike ROVER, the acoustic score is carried with each

node of the word graph. The nodes representing identical words between the same time

instants are merged into a single node. For each node pair, if the end time of first node

is within 30 ms of the begin time of the second node, a link is added between these two

nodes. Finally, a language model is used to score the word graph and find the best path as

the final hypothesis.

This approach is similar to ROVER at aligning and building the WTN, but the differ-

ence is that it tries to explore more paths than the first hypothesis, so the resulting WTN is

an extended network compared with ROVER. The WER of the best path that can be found

in the WTN is believed to be lower than that from ROVER. The problem lies in whether

the re-scoring by a language model can select better paths. CMU7s result [82] shows that

it improves performance compared with the baseline system, but no comparison is done

with ROVER.

Since acoustic scores from different systems (recognizers) are not readily compara-

ble, the hypotheses from different systems are infeasible to be cross-linked, which limits

the combination only between the same recognizer with different models or features. Be-

cause hypothesis combination is the same as ROVER on only combining the single best

hypothesis from each systems, it has the same disadvantages as ROVER has.

Chapter 5

Run Time Fusion in Speech Recognition

This chapter presents how we approach the problems in the existing fusion approaches,

rooted in their inefficient use of the complementary information. We propose a run time

fusion framework to address these problems (Section 5.2). In this thesis work, we mainly

discuss our approach at the acoustic level and we fuse the complementary information

from the multiple features (Section 5.3). Starting from Chapter 6, we present the detailed

design and implementation of our approach. Under the general high level fusion frame-

work, we designed three different fusion approaches. These three approaches are based

on the same hypothesis, that by applying complementary information at an earlier stage

of the recognition process, the final system will be able to obtain much better accuracy.

These three approaches differ from each other at when, where and how the fusion is per-

formed. We investigated these three approaches (or system architectures) in the hope of

making the best use of multi-information sources. Experimental results are given after

each approach to demonstrate the advantages of our solutions.

5.1 Problems and Motivations

As described in Chapter 4, current approaches to fuse different features have limitations.

1. From the accuracy point of view, pre- and post-recognition do not use the potential

benefit of a recognition engine (decoder). Pre-recognition approaches use multiple

information at the feature or acoustic probability level; post-recognition approaches

use multiple information at the reduced sentence level. Compared to pre- or post-

recognition approaches, our run time fusion has access to all levels of complemen-

tary information in the full extent (Figure 5.1). There has not been any work done

to perform run-time fusion inside a decoder. A possible reason why this hasn't

been done before is the recognizer engines are not readily available to the pub-

lic till recently, and they are also rather complex to be manipulated. Current pre-

and post-recognition undermine the possible improvement on recognition accuracy

when complementary information is used.

Our hypothesis: Much more complementary information is available and can be

better used during run time in a unified framework. More performance gain can

be obtained by performing information fusion at the decoder's run-time compared

to the pre- or post-recognition. Run-time fusion is also more robust to different

features and noises.

2. From the computation cost point of view, post-recognition approaches, such as

ROVER and Hypotheses Combination, require separate recognitions to be per-

formed thus the computation cost is linearly increased. Running separate recog-

nizers not only increases the computation cost but also increases the demand of

resources. Since maintaining several recognizers is generally unaffordable, the

recognitions are usually performed using the same recognition engine.

Our hypothesis: Rather than running the same recognizer repeatedly, performing in-

formation fusion in a single recognition engine is a feasible and efficient approach.

During-recognition fusion can achieve improvement without a large increase in

computation cost. Better or comparable performance can be achieved when run-

ning the recognizer in a speedup mode (such as narrowing the beam width).

Sentence Level: cannon about. Canon come up. ..
r - l h

-.
bll

come UP

on
zoom

45phones=>
91 125 tri-phone

HMM State Level:

GiZic]

Figure 5.1 : Different levels of information within a speech recognition

5.2 Framework of Run Time Information Fusion

We investigated how to effectively fuse different information sources during run-time.

The framework for our proposed fusion work is illustrated in Figure 5.2. The novel part of

our proposed work is the interaction between different feature streams during recognition.

The concept is similar to RAID for storage: using a collection of identical and inexpensive

components to form an efficient and better system. The advantages of our proposed work

on information fusion include:

Compared with post recognition fusion, complementary information among different

feature representations will be exploited during search to avoid un-recoverable errors in

post recognition processing and the dependence (or time correlation) of different feature

streams will be preserved. More information can ensure that the recognizer makes fewer

errors at run time, and the improvement of recognition on each feature stream will con-

tribute to the over all fused recognition performance.

Compared with a pre-recognition approach, the constraint on frame level synchroniza-

tion is relaxed in our proposed work and it enables features with different timelfrequency

resolutions and time spans (such as segmental based features) to be readily integrated.

It should be mentioned that our approach is not in opposition with the pre- or post-

recognition, and they can coexist in the same system.

\ - . - - - -
F e a t u r e F d U 1

[I n n - - Decoder 1 -

Figure 5.2: Run time fusion framework

The decoder with its underlying search network is the core of any speech recognition

system. It can integrate multiple knowledge sources in the same framework at several

levels (state, phone and word) and both within and across phones (or words). Rich inter-

mediate information is available for manipulation at these levels. Pre-recognition fusion

operates at the frame level and post-recognition is conducted at a reduced word level

space. Our hypothesis is that recognition accuracy can be enhanced greatly by utilizing

the complementary information contained in different features at different levels during

decoding. In this thesis, we investigate fusion methods that lie in between two existing

extreme approaches (either strictly conditionally dependent or completely independent)

and show it can provide a more reliable fusion.

The novel part of this framework is the interaction between different features during

recognition. The potential benefit of this framework are:

1. Complementary information between different feature representations will be ex-

ploited during the search to avoid un-recoverable errors as in post recognition pro-

cessing, and the dependency (or time correlation) of different features is preserved.

More information can ensure the recognizer makes fewer errors at run time, and

the improvement of recognition on each feature will contribute to the overall fused

recognition performance.

2. The constraint on frame level synchronization is relaxed, and it enables features

with different timelfrequency resolutions and time spans (such as segmental based

features) to be readily integrated.

3. Current LVCSR recognizers are quite complex and very few people in the world

actually master their art. This is probably one of the main reason why previous work

concentrated onpre- orpost- recognition fusion but not during the recognition. The

advantages of a recognizer make it more attractive to be the center of fusion:

(a) Integration of multiple knowledge sources: Acoustic and language knowledge

sources are already integrated in current LVCSR recognizer. Other innovative

knowledge sources such as prosodic information, confidence measurement,

noise cancellation, etc. can be used without much trouble.

(b) Rich statistical information is readily available: As a by-product of decoding,

a tremendous amount of data related to the search is produced during recogni-

tion. These data can be used to perform fusion under our current statistically

based recognizer.

(c) The success of run time fusion can promote researchers in other specialities to

experiment with more innovative approaches independent of the recognizer.

Such approaches may have had a lack of success under traditional recognition

frameworks, which prevented them from further studies.

(d) Our run time fusion approach is not limited to the acoustic level and can be

easily extended to other system modules such as language models under a

similar methodology. The success of our approach can also help finding com-

plementary knowledge source pairs in a given task.

This thesis work will focus on conducting fusion:

When? - During the decoding (Run time).

Where? - Inside the recognizer.

What? - Fuse the information from several knowledge sources.

This thesis work tries to answers this question: How to fuse the information from

several knowledge sources inside the recognizer during run time.

5.3 Fusion Based on Multiple Features

Human auditory studies have found that much of the speech signal could be discarded

without a significant impact on human's speech recognition process [37]. The nature of

human speech contains much redundancy. Phonetic features are signaled by many dif-

ferent cues and distributed in both time and frequency space. This distribution is used to

robustly transmit information contained within the speech signal. However, the underly-

ing detail of the distributed representation is still unclear. Furthermore, we still don't have

a complete structure representation for the speech signal. The different speech features

are based on different assumptions on the structural representation of the speech signal,

and they contain different information of the original speech.

For many years, researchers have been devoted to finding a "perfect" feature rep-

resentation of the speech signal. It seems an endless journey so far, just as we cannot

make a "perfect" recognizer that makes no mistakes. Current speech recognizers adopt

a single "best" feature set according to the task it is facing and measure their result on

a development data set. Also the feature representations have fixed parameters (such as

the window and frame size, and the number and shape of the band filters) during feature

extraction. For example, MFCC, one of the most popular feature representations, usually

has a window size of 25ms with lOms frame size.

However, different features or features with different parameters can represent the

same speech input differently. Information loss is inherent for any feature extraction

method because it is a compression process of original speech signal[l4]. The remaining

information is different for features that are based on different feature extraction methods.

It is plausible these differences will result in different recognition results.

Our experiments show that different features have fluctuating performance on differ-

ent speakers and noise environments. Figure 5.3 gives a clear illustration of the large per-

formance difference among different features. Although the overall performances (WER)

of most of these systems that using different features are similar with differences under

a few percentages, there are significant differences between there output. The average

difference between the highest and lowest WER across all features for each speaker-

environment pair is about 20%. If we can successfully select the best-performing feature

for every pair, the WER can be reduced significantly compared to the best single fea-

ture performance. There is much potential to be explored by using the complementary

information from multiple sources (features). The experiments confirm that different fea-

ture extraction algorithms can exploit complementary information of the same acoustic

signal. Furthermore, the complementary information is exhibited at the outputs of the

recognizers.

In this thesis, we explore the use of complementary information within a large vocab-

ulary continuous speech recognition system. Different features will be fused at different

70

65

60

55

0::50
W45

3:40

35

30

25

20
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

speaker-environment pair

Figure 5.3: WER comparison on 16 speaker-environmentpairs

Refer to Section 3.2 for information about each feature showed in this Figure.

levels during the run time of the recognizer.

82

. MFCC

III WMFCC

A SSM FCC

Ii FeatureNet

:*: TLDA

. TRAPs

Chapter 6

Run Time Fusion In Detail

The work described in this thesis has focused on increasing the robustness of the large

vocabulary speech recognition. One major problem that speech recognition researchers

have to deal with is the robustness issue. The variability of speech is the nature of human

speech. Added to the difficulty is the channel and environmental distortions. This thesis

work is intended to tackle the problems raised by performing run-time information fusion

inside the decoder.

The decoder used in this work is similar to other state-of-the art decoders. The decoder

is the most important component of a LVCSR system. It is responsible for integrating

various knowledge sources in an efficient way to generate the best word sequence for a

given speech signal. There are many requirements for a successful decoder. The basic

performance measurement of a decoder is the recognition accuracy. A decoder can also

be measured by the demand of computation resources such as memory and disk space.

A successful decoder also needs to be fast and robust. Lots of effort has been spent on

designing the decoder to cope with the ever increasing demand of a speech recognition

system. Current decoders have a very complex design and implementation. The decoder

used in this work uses many state-of-the-art technologies such as, time-synchronous beam

pruning and lexical tree based Viterbi search. During the decoding, the decoder will

generate and manage an extremely complex search space. Thus both the static structure of

the decoder and the dynamic decoding space are very complex. Our run-time information

fusion was designed to work with these complexities. To achieve this goal, lots of efforts

are related to the details of the implementation. Thus it is necessary to describe many

implementation issues in the following sections.

The proposed approach was tested on a large vocabulary speech task which contains

eight different environment noises. The experimental results were measured against the

results obtained from the conventional approach using WER, the standard criterion used

to measure the performance of a speech recognition system. However the WER does not

exhibit the power of our run-time fusion. Because the language model of SPINE task

restricts the further reduction on WER. And the language model is not the focus of this

thesis. Although our run-time fusion can also utilize multiple information from different

language models. This thesis is focused on improving the acoustic disambiguation ability.

A better evaluation criterion is to decouple acoustic recognition from language model.

Word graph provides such an option. When the acoustic ambiguity is higher, there will be

more optional words occurred in the word graph. So in this thesis, we also used WGER

(Word Graph Error Rate) to evaluate system performance.

Section 5.2 outlines the novel framework of our approach. The fusion is conducted

at the run time (when) of the decoder (where). The statement above distinguishes our

approach from other existing fusion solutions. However, it only provides a general ar-

chitecture 5.2 of our approach. To make our approach work, we will investigate three

approaches discussed in the following subsections. These approaches will give a more

specified answer to these question:

a How to fuse the information from several knowledge sources at the run time of the

decoder?

When to perform the fusion?: At what specified time should we perform the run

time fusion.

Where to perform the fusion?: At what points of the decoder should we perform

the fusion.

Under the above high level framework, we designed three different fusion approaches.

We investigated these three approaches (or system architectures) in the hope of making

the best use of multi-information sources. These three approaches are based on the same

hypothesis, that by applying complementary information at an earlier stage of the recog-

nition process, the final system will be able to obtain much better accuracy. These three

approaches differ from each other at the solutions to the three above questions.

We refer to the first approach as 'constraint fusion '. In constraint fusion, one feature

serves as the main feature during the decoding. Decoding of the main feature sets a con-

straint on the search space for the other features. Other features keep independent search

paths but mainly functioned as consultants to the main feature. We refer to the second

approach as 'composite fusion '. The composite fusion is different from the constraint fu-

sion as each feature stream is independent and has its own search space. The synchrony

happens at phone or word boundaries. We refer to the third approach as 'rank based fu-

sion '. Compared to constraint fusion, instead on directly using the log likelihood value

from different feature streams, the rank based fusion uses the relative rankings of all the

hypotheses.

The successfulness of our approaches is measured by the following:

1. The approach improves recognition accuracy.

2. The approach keeps recognition efficiency.

3. The approach is implementable.

To implement these three approaches, significant work was spent to modify the current

decoder architecture. To clearly describe our approaches, and to answer the three ques-

tions above, this thesis has to highlight some important implementation details throughout

the following sections.

Please note that although we will mainly discuss our approach at the acoustic level,

it can be easily generalized to language models and other system components using a

similar methodology.

Constraint Fusion

A post-recognition combination method, such as ROVER, lacks robustness when used

with higher error systems; its performance degrads. Since ROVER is a voting procedure,

a higher error hypothesis could play a crucial role in the h a 1 output decision when there

is a tie (or near-tie) among hypotheses. Similar robustness problems exist in the pre-

recognition approaches. Because fusion is performed in only one dimension, such as the

feature or probability level, noise corrupted features make the same contribution as clean

features. To overcome this kind of problem, we proposed a constraint fusion scheme to

increase the robustness.

In our constrain fusion scheme, a set of models are trained independently for each

feature. During the decoding, recognition on each feature runs independently, except at

the designated boundaries (such as phone or word boundaries). The designated bound-

aries are decided by decoding using only one feature named "main feature", and the main

feature can be any feature in the total feature pool. Thus decoding the main feature sets

a constraint on the search space for other features. Likelihood from other features with

the same state sequence will be added (with a weight estimated under certain criteria such

as Minimal Classification Error (MCE) or Maximum A Posteriori (MAP)) before prun-

ing. The likelihood for other features can be estimated using technology similar to forced

alignment (the decoded state sequence as the target of the underlying phonetic targets).

The purpose is that by using additional (and hopefully complementary) information, the

correct path will not be pruned away. The flow chart of this approach is given in Fig-

ure 6.1. This process is conducted for every stream of feature representations, and the

recognition results from each stream will be fused to give the final recognition output.

The fusion work in this thesis is based on the time synchronous Viterbi search and the

general run time fusion architecture is showed in Figure 5.2. The detailed flowchart of

our constraint fusion scheme is shown in Figure 6.1.

Time frame 1: S t a r t search on feature stream I

Conduct Forced-Alignment on feature stream
Fz - Fn for each active path generated by FI

I Fuse the likelihood value I

Prune Search Space
I I

1 Produce final recognition result. 1

Figure 6.1 : Flowchart of Constraint Fusion

6.1.1 Constraint Fusion Implementation - Modification on Token Pass-

ing and Token Merge

Experiments show that the state log likelihoods are very small (<< except for

a small number of the most likely states. This characteristic is one reason why beam

search is so effective. However, it also introduces search errors. As described in Section

2.4.4, beam search width is determined by the maximum partial path likelihood MaxLog

at time t. The single state that obtains the MaxLog will have the determining effect on the

pruning decision. Beam search is based on the assumption that the highest partial path

value is from the most likely state sequence. However, the most likely state sequence

is not known during the time synchronous search. Thus the beam pruning decision is

based on an approximation that may not be accurate enough. The partial path that was

in fact part of the most likely path could be pruned away before reaching the end of the

utterance. There are many possible reasons that can result in this kind of search errors.

For example, at one or several frames, the acoustic event could be poorly modelled by the

acoustic models. The MaxLog value could be set by an incorrect partial path. For some

other partial paths, their state log likelihood values during that period could be very small

and the accumulated likelihood is too small to survive the pruning. Although these partial

paths are in fact part of the most likely paths. If we keep them alive beyond that short

period, they may survive following pruning and result in most likely paths. Unfortunately,

we could not know at that point which partial path will be part of the most likely path.

Even worse, such a pruning error is unrecoverable, which means there is no way to get

that partial path back into the active search space due to the nature of time synchronous

search.

Another reason is as follows. Especially in decoding difficult acoustic events, the

differentiating ability of the acoustic model is extremely weak. A tremendous amount

of tokens could be generated in a matter of several frames. Histogram pruning kicks in

during this circumstance to control the total number of active tokens. However, histogram

pruning is a compromise to speed up search and more prone to prune promising paths.

To avoid pruning errors, the beam width must be set large enough. However that

significantly increases the search effort and therefore is not an ideal solution. In this

thesis work, we proposed and implemented some novel pruning methods under our fusion

framework. Under constraint fusion, the pruning strategy is governed by two principals:

All features have a vote.

Under beam pruning, all active tokens at the current frame are subjected to a set of

pruning steps guided by some preset thresholds. In the traditional approach, only

one feature is used. A preset threshold is compared with the highest value from

that single feature. The pruning decision is deemed by the acoustic model accuracy

of that feature. Under our constraint fusion framework, the pruning is no longer

decided by one single feature as the traditional approach does. Instead, all features

participate in the pruning decision. The pruning accuracy is now related to the

accuracies of all acoustic models.

Main feature has the final say.

Different from the situation above, there are points that only one token in a token

pool can be further propagated. For example, under traditional Viterbi decoding,

only the "best" token is propagated to the next frame when there are multiple active

tokens reside on the same state. Within constraint fusion framework, this "best"

token is selected by the main feature.

Extensions on Token Structure

The token concept was introduced in Section 2.4.2. To accommodate our fusion scheme,

we need to extend the original token structure. One of the extensions is the log likelihood

that is stored in the token is changed from a singleton to an array. There are two kinds of

arrays depending on the fusion method we use:

The array is (N + 1) x 1. Log likelihood values of all features plus the fused one

are stored in this N + 1 dimension array. Element (i, 0) in this array is the token's

partial path score for feature i.

The array is (N + 1) x 2. Compared to the first kind of array, an addtional column

is added. Each element (i, 1) in that colurnn records the relative rank of the partial

path score among all active tokens for feature i.

Token Merge

Before we detail the implementation of our constraint fusion approach, we first introduce

a technology that we used in our system, called Token Merge. The token merge (or

recombination) approach is based on the assumption that for each active state in the lexical

tree at t, all but one token that has the same language model history can be discarded. The

language model history can be retrieved from each token, and the range of this history

depends on the actual m-gram language model we are using. For a bigram language

model, all tokens with the same last word are merged into one token. For a trigram

language model, all tokens with the same last two words are merged.

The token merge enables us to incorporate the language model into our lexical tree

search without making any tree copies. The token merge is conducted on the token list

of each active lexical tree state at frame t. Suppose at time frame t , state s has an active

token list called TokenList(t; w; s) . TokenList(t; w; s) is a linked list structure that has

K tokens linked together.

The token merge procedure is as follows:

1. Cluster tokens into a set of token lists.

Start searching TokenList(t; w; s) from head to end, fetch a token k and compare

it with corresponding TolcenList-LM(t; w; s; m) according to its m-gram history

m . Generate a new TokenList-LM(t; w; s; m) if it does not exist.

The pseudocode for this procedure is shown in Figure 6.2:

After the operation above, all tokens are clustered into a set of token link lists.

Every such token link list has a unique m-gram history.

2. Merge the best tokens from all clusters (token link lists).

The best scored tokens in each cluster have been sorted out in the previous step. We

simply concatenate these tokens into a new token link list ~ o k e n ~ i s t ' (t ; w; s) and

attach it back to state s.

If (matched TokenList-LM(t; w; s ; m) does not existed) {
Create a new linked token list TokenList-LM(t; w; s; m).
Put token k on TokenList-LM(t; w; s; m).

) Else {
I?,(t; w; s) = score of TokenList-LM(t; w; s; m).
If (the score of token k r h (t ; W; s) > Fn(t; w; s)) {

Replace the token on TokenList-L M (t ; w; s; m) with current token;
) Else {

Discard token k.

1
1

Figure 6.2: Pseudocode for Token Merge
Note: Token merge is decided by the main feature.

After the token merge operation, the pointers to surviving tokens are placed in an

one dimensional array. The index of this array is mapped to the m-gram language

model. Thus each m-gram language model combination has a unique index in the

array. For example, the mth element of this array stores the pointer to a token list

named TokenList-LM(t; w; s ; m).

After t h s merge operation, all tokens in ~ o k e n ~ i s t ' (t; w; s) differ in their language

model context. The m-gram language model is integrated into the search process

without using tree copies (Section 2.4.1).

6.1.2 Constraint Fusion Experiments - Fusion Based Pruning

Constraint fusion is used as the platform for testing our proposed cross-reference pruning

strategy [lo 11.

In our implementation, once a feature is selected as the main feature, the remain-

ing features will serve as consultants (supporting features) to the selected main feature.

During the token pruning, when the decision is to keep a token alive under the traditional

pruning strategy (in our implementation, the difference between the maximum token like-

lihood at current time frame and the likelihood of this particular token in comparison to a

preset threshold), no consultation is requested on the remaining features. If the decision

is to prune away this token, a consultation is made via cross-referencing the same path in

the search spaces of the supporting features. If the path could survive in the supporting

feature spaces, then the path will be kept in the main feature search space.

The first set of experiments were used to measure how well this cross-pruning strategy

worked. In these experiments, the main feature was handled as it would be in a standard

recognizer except the pruning. The purpose of these experiments was to measure how

many most likely paths can be saved by the cross-referencing pruning. In other words,

how well the cross-referencing pruning approach compares to conventional beam pruning.

This measurement was performed on both the word sequence and the word graph output.

6.1.3 Using Fusion to Improve Word Graph Quality

The word graph quality determines the success of post-recognition approaches and multi-

pass decoding. The quality of a word graph can be defined by two measurement:

Word Graph Error Rate (WGER)[70]: The best WER that can be reached by choos-

ing a path in the graph, so it's the oracle word error rate that can be achieved by

extracting a path from the word graph.

Word Graph Density (WGD): A measurement of word graph size, it is defined as

the total number of graph edges divided by the number of actually spoken words.

The lower the WGD, the more compact the graph is.

WGER decides the WER lower bound that a second pass decoding or re-scoring can

reach. Reducing WGER will improve the performance of other post-recognition ap-

proaches [56, 57, 821. WGD reflects the search cost of generating the word graph, and

it also affects the cost of re-searching the graph. Low WGD not only reduces computa-

tion cost but also benefits the accuracy because there are fewer incorrect hypotheses in

the graph. Generally, we wish to reduce both WGER and WGD. The common way to

change WGER or WGD is by adjusting beam widths. However, the common approach

cannot reduce both WGER and WGD at the same time. Increasing beam widths will

reduce WGER but also increase WGD. WGER is not guaranteed to be reduced by this

method because we cannot prove the new included hypotheses contain better paths. The

trick of adjusting the beam widths are based on experience and dry run experiments. A

good beam width setting strategy is to reach an optimal WGER and WGD combination.

Compared to tasks with similar baseline WERs,', the SPINE task has a much higher

WGER; it is one unique characteristic that distinguishes it from other tasks. As reported

in [91], our previous constraint fusion experiments show encouraging signs of reducing

the WGER by using information fusion during decoding.

Table 6.1 : Effect of constraint fusion based pruning on reducing WGER and WER

System WGD WGER WER

TRAPS + MFCC means TRAPS is the main feature and MFCC serves as the consultant.

The result in Table 6.1 shows the cross reference pruning strategy indeed rescued

some most likely paths from being pruned. It shows the fusion based pruning is more

accurate than the conventional beam pruning guided by a single feature. The complemen-

tary information from multiple feature sources is more reliable for the pruning decision.

The improvement on WGER is not reflected in the WER. We compared the WERs

from the same experiments, and there are just small improvements for fusion based sys-

tems (Table 6.1). These improvements are not significant.

A reasonable explantation is that although those partial paths were rescued by other

consultant features from being pruned, they still can not win out at the end of utterance

under the main feature's criterion. In other words, the likelihood differences for the partial

'The WGER for Voicemail and Switchboard tasks is about 9% and 9.5% respectively, although the
WER for these two tasks (33.7% and 38.5%) are comparable with SPINE task.

paths at time t are too large for them to catch up with the best hypothesis at time T. In

more detail, since at every time frame, state log likelihoods are very small (<<

except for a small number of the most likely states. For some partial paths which endured

small log likelihoods for several states, their cumulated partial path scores for those states

will be much lower than the best partial path. Although we could save them from being

pruned. These partial paths have little chance to be the number one hypotheses at the end

of utterance. This certainly shows the efficiency of beam pruning for a single feature.

However it also shows the weakness of current ASR architecture. Because the failure of

acoustic models on a few states can be fatal to the whole recognition.

An encouraging sign in these experiments are that many partial paths caught up with

others and were included in the final word graph. Further analysis also shows the WER of

NBEST list (best N hypotheses) was also reduced. So if the utterances are long enough

to let those partial paths have ample time to catch up, the final WER could be reduced

further. This hypothesis requires a detailed error pattern analysis and carefully designed

experiment to verify. We will work on it in the future.

6.1.4 Constraint Fusion Experiments - Fusion Based Final Recogni-

tion Output

In the experiments above, we implemented the constraint fusion concept into the beam

pruning. We observed some improvement on the word graph quality but little gain on the

final recognition output. In this Section, as proposed before, we use fused likelihood as

the criterion to select the final recognition output. Similar to the implementation above,

during the decoding, one feature is assigned as a "main feature", which constrains the

possible state sequences and the search space of the following search. The search is

conducted as usual but at phone (or word) boundaries, the likelihood for all features were

added together. A set of weights ai are obtained by training on a development data set.

Each feature has its own weight and the fused likelihood value is decided by the following

equation:

where

P(si (t) Isi (t - 1)) is HMM state transition probability of feature i,

b(oi (t) / s i (t)) is HMM state observation probability of feature i,

and FN+l (t ; W ; S) is the fused partial path score at time t and state s.

The ai in the Equation above satisfies the following Equation:

Upon a token first entering into the entry state of a node, we need to add up its factored

language model probability:

where 1 5 i 5 N + 1, and w (s (t) l w) is the factored language model probability.

When a token is finally leaving the last state of a node, we need to remove the factored

language model probability after all the pruning:

Not only different features have different weight value during the likelihood fusion,

they play different roles. The search space is pre-defined by the main feature, and the

other features take a role in the pruning decision. In Equation 6.1, state s and word w

are determined by search path of the main feature. And the selection of best (partial)

hypotheses is determined by the fused likelihood rNSl(t; W ; s) .

Table 6.2 shows the results when combining two features using the constraint fusion.

Compared with the baseline non-fusion system (row "TRAPS" in Table 6.2), fusion sys-

tems outperformed it in every case. The improvements are statistically significant.

Table 6.2: Effect on reducing WER by fusing likelihoods from different features.

System WER
TRAPS 29.9%

TRAPS + MFCC 28.4%
TRAPS + TLDA 28.7%

TRAPS + WMFCC 28.4%

Constraint fusion was applied on two features with TRAPS as the main feature in all ex-
periments. TRAPS + MFCC means TRAPS is the main feature and MFCC serves as the
consultant.

Table 6.3: Comparison on WER reduction by using constraint fusion approach with dif-
ferent main feature.

Main Feature
MFCC TLDA TRAPS

Baseline 27.7% 28.6% 29.9%
Fusion 26.8% 27.7% 28.4%

Fused likelihoods were applied.

In Table 6.3, the columns "MFCC", "TLDA" and "TRAPS" denote the experiments

that the corresponding feature is selected as the main feature. Row "Baseline" denotes

systems that did not apply the proposed cross-referencing pruning strategy and the row

"Fusion" denotes systems that applied the proposed strategy.

Since our run time fusion approach performed at different stage compared with pre-

and post-recognition fusions. These approaches can be combined in a sequential way. For

example, we further conducted ROVER on the outputs from both the baseline and fusion

systems (Table 6.3). The experiments shows our approach can be successfully combined

with post-recognition fusion methods such as ROVER (Table 6.4).

Table 6.4: Further WER reduction by applying ROVER after constraint fusion

System MFCC TLDA TRAPS
Baseline 27.7% 28.6% 29.9%

Run Time Fusion 26.8% 27.7% 28.4%

ROVER
27.3%
26.5%

6.1.5 Fusion with Dynamic Beam Adjustment

In large vocabulary speech recognition, the potential search space is prohibitive for a

full search. Beam search is necessary to limit the search space by pruning away the

less likely tokens. In the time synchronous search framework, beam search means at

every time frame, only the most promising tokens are retained. Beam search is based on

the assumption that the highest partial path value is from the most likely state sequence.

However, the most likely state sequence is not known during the time synchronous search.

Thus the beam pruning decision is based on an approximation that may not be accurate

enough. Consequently the beam width is set to a rather large value to ensure that the most

likely state sequence is not pruned. The side effect of setting a larger beam width is that

more tokens are retained and the computation cost is increased.

Although beam search is very effective to control the active token numbers in most

cases, there are periods for which the number of active tokens can be extremely high,

because the potential size of the search space is very large. According to Ode11 1681, the

peak number of active models is about 100 times greater than the average number for a

WSJ 5k test. This many active tokens consumes a lot of memory and CPU cycles. The

acoustic uncertainties, such as noisy speech, make this situation worse. When decoding

unintelligible speech segments, no single token has a dominative score over other tokens,

the recognizer produces a tremendous amount of tokens because the beam pruning is no

longer effective. For tasks containing significant amount of noise or spontaneous speech

such as SPINE task, this condition often occurs.

To accelerate decoding under such conditions without any damage to the recognition

accuracy, we proposed a dynamic beam adjustment under our run time fusion scheme.

In this approach, all features are involved in the pruning decisions. Each feature has

its own set of beam pruning values, some of these beam values are dependent on each

other, such as total allowed token numbers, but most of them are independent. The tokens

are first evaluated by each feature's pruning module, their results are fused to make the

98

final pruning decision. At each time frame, we gather some statistical information on the

beam pruning effect of each feature. For example, at time frame t, word-end beam width

of feature Ii keeps ai percentage of tokens active. The word-end beam width for these

features at time frame t+1 is be adjusted according to the following formulas:

cp= min(ai) * /3;
~

(6.5)

a, - cp
WordEndBeami = WordEndBeami * (1 - ~);

cp

where /3 is a weight value used to adjust the threshold cpo

(6.6)

--- mfcc
"'0'" tlda
',,0.., traps
- fusion

i.

J

I

4

1

I

I
If!' : I n.,' . .'

., I' ! I " l ! I. !'

Ii Ii ~~ii Ji;tl ~ ild~!ml
f\. ~Iff\; !lU

~
'I~i]\ f i~ij'::1!qJ H ! \tU!r:~~.!m!!

I'! IJ :1:: l: \J. r
n

:~

I

=:1
i: # ::

I

~~

I!

:::t:L

I
.., ,.,," ¥ ' ' j

, ,'. " " 1I,,:t
h

j
..~' ".,," ""'

1

"" It T' ~ ' .'

#
" . I ...

. .' "Or;'" . I I
j

.

. .' ..' Ii ~
.." I .

. .' a ,,11' 0 . " '
I

.' ", ' I "

j
"

f \ J Ii
," r I ;1 ~ _

I

II' " ~..: /
? ,,6 '! II

t , ' " 1", , . ;' . /wi., " -

!

, . , .' . ." ~,.- , .' . . ,. .', , . ,. ,'" .

~J 't" . .:°:, 'N"

: ~a
; Iji :
: iii. '

Figure 6.3: The comparison of active token numbers along the time frame during decod-
ing one sentence

When the survived token percentage of feature Ii is over or less than cp,we reduce or

increase its pruning widths according to equation 6.6. This approach is based on the ratio-

nale that unintelligible speech segments often occur in some continuous frames. Rather

than let lots of unpromising tokens go through each pruning stage till the final histogram

pruning, we try to reduce the active tokens in the earlier stage of pruning. Experiments

show this approach significantly speeds up the search without any loss of recognition ac-

curacy. Figure 6.3 compares the active token numbers of dynamic beam adjustment with

conventional single feature pruning. The curve of the fusion approach is relatively flat

and the token numbers are in the range of 10k to 30k. The three features have some peaks

over 40k tokens.

Composite Fusion

From the point of view of HMM topology, the previous proposed constraint fusion scheme

relies on one feature as the main feature and needs a final step to fuse the individual

results. In the composite fusion approach, the fusion is conducted in the single composite

recognizer. Each feature still has its own corresponding HMMs; the search of each feature

runs independently in its state space, except that time synchrony is required only at pre-

defined boundaries. The boundaries can be phone boundaries or word boundaries.

The composite HMMs (Figure 6.6) are a set of parallel traditional HMMs which share

the same begin and end dummy nodes for the selected units (can be phone or word). Dif-

ferent streams make the transition at the same time for begin and end nodes (synchro-

nizing at segment level rather than frame level) but each stream of HMMs makes their

own state transitions independently in the internal states. To ensure global optimization,

the EM algorithm can be applied so that HMMs for different streams are trained simul-

taneously and jointly. Similarly, the existing single stream decoder is extended to ensure

the time synchrony jointly at boundaries (the specified begin and end nodes for phone or

word).

This scheme is quite different from the multi-stream or multi-band approach, where

different streamshub-bands are trained and decoded independently by different MLP

recognizers. The proposed topology can be viewed as a generalization of existing ap-

proaches. The HMM topology of the concatenated approach in pre-recognition fusion is

illustrated in Figure 6.4, which is a trivial case of our proposed architecture. In the con-

catenated approach, multiple streams are merged into one input vector for recognition;

only one set of models is needed. While the post-recognition fusion method can be viewed

as a composite model at sentence level as shown in Figure 6.2. In the post-recognition

fusion approach, multiple streams are searched independently during run time. The un-

derlying state sequences of each path in this diagram are not necessary the same. Further-

more, each path may have different number of states. The only similarity for these paths

are they share the same dummy nodes at the sentence beginning and end.

Dummy I nodes I P 1

Figure 6.4: Existing art: Concatenated approach in Pre-recognition fusion

Figure 6.5: Existing art: Post-recognition fusion

nodes I
Figure 6.6: Our run time fusion approach

A combination of synchronous and asynchronous search at run time among different feature
streams. The underlying state sequences of each partial path that lies between two dummy
nodes are not necessary the same. Although these partial paths have the same start and end
time in that period.

These figures show a more detailed view on the shortcomings of the existing fusion

solutions. The drawback of pre-recognition fusion approach is that only frame-based fea-

tures can be incorporated (or only time synchronized feature streams can be incorporated).

Segmental based information, such as tones (or pitch patterns), cannot be integrated easily

into this framework during run time.

The drawback of post-recognition fusion approach is that the time-dependency be-

tween different features is completely ignored during the recognition of each stream. In

other words, there is no interaction between different features during the decoding pro-

cess, i.e. the presence of one feature stream does not impact the course of decoding in

other feature streams.

The composite fusion approach is a combination of synchronous and asynchronous

search at run time among different feature streams. Compared with these existing ap-

proaches, the constraint on frame level synchronization will be relaxed in our proposed

work, and enables features with different timelfrequency resolutions and time spans (such

as segmental based features) to be readily integrated.

6.2.1 Fused Viterbi Algorithm

In Section 2.3, we introduced the Viterbi algorithm. Under Viterbi approximation, the

"C" in the following Equation:

w = arg rnax P(W)P(OI W) = arg rnax P (W) P (0 , ST] W) W W (6.7)
ST

was replaced by "max".

The new search equation becomes:

w = arg max P (W) P(OI W) = arg rnax P (W) rnax P (0 , ST] w), (6.8) W W ST

where ST means all possible state sequences from time 1 to T.

The summation in the first equation is for all possible state sequences under the con-

straint of word sequence W. Summing all possible state sequences requires a thorough

search through the whole search space which is unaffordable. And in the second equation,

only the most probable state sequence is considered. Under this Viterbi approximation,

the most likely word sequence is approximated by the most likely state sequence. This

approximation works well in practice but is certainly a sub-optimal assumption.

Viterbi approximation assume that the likelihood of the best path can approximate the

sum over the likelihood of all paths. It works well when the acoustic and language model

ambiguities are low and the best path dominates other paths. This approximation is in

doubt when the acoustic and language models can no longer describe the speech signal

well. In these difficult situations, the distance between the best and other paths will be

narrow and the likelihood of other competing paths are not appropriated to be ignored.

The problem above is addressed under our multiple features fusion framework:

N

w = arg rnax P (W) P(OI W) = arg rnax P (W) rnax P(O, $(i) 1 w), (6.9) W W i sT(4

where i is the feature index, N is the total number of features. Thus s r (i) means all

possible state sequences from time 1 to T under feature i.

In Equation 6.9, each feature has its own Viterbi alignment, and the best word se-

quence is decided by the fusion of the Viterbi alignments. To accommodate this extension,

we need to modifj our token passing strategy. For each active state, instead of keeping

only one best token as in conventional token passing, we keep the one best token for each

feature. So at each time frame t , we need to find the best token for each feature and con-

nect them in a linked list, then attach this linked token list to the active state. We always

keep N tokens for each state if any one of them can s w i v e the pruning, which means

that duplication is allowed in the N tokens list. Duplication occurs when more than one

feature selected the same token as the best token. If that occurs, we will duplicate that

token and add the new token to the list. The reason is this agreement can be temporary

among these feature, most likely they will go their separate ways in the following search.

An illustration of this extension is showed in Figure 6.7.

6.2.2 Fused Token Propagation

The search is implemented by propagating tokens through the lexical tree. The integration

of token propagation with a re-entered lexical tree makes it possible to use a single tree

instead of making multiple tree copies. Nevertheless, the token propagation is different

when it occurs within the tree and across the tree.

The algorithm for within-tree token propagation in our fusion framework is:

1. First calculate the new partial path scores for each feature i:

where

P (s (t) / s (t - 1)) is H M M state transition probability

b(o(t) / s (t)) is HMM state observation probability

2. Update language model lookahead value:

104

state

time

t t+1 t+2 t+3

Figure 6.7: An example of our extended Viterbi search

If state s is the entry state of a node, and it is the first time this token enters into s,

add its factored language model probability:

ri(t; w; s) = ri(t; w;s) + logw(s(t)jw) (6.11)

where 1 :S i :S N, and w(s(t)jw) is the factored language model probability.

If state s is the exit state of a node, and it is the last time this token stays in s, we

remove that factored language model probability before it leaves state s:

ri(t; w; s) = ri(t; w; s) -logw(s(t)jw) (6.12)

3. For all tokens in frame t , find their best score f' for all features

4. (a) If HMM state is the synchrony point, perform fusion here:

i f w r i (t ; W; S) > T, *r'a { *

i. Clone current token to a new token and update its information for all

features.

ii. According to equation 6.9, calculate the fused partial scores by summing

the best partial scores over all features:

iii. Attach this new token to the linked token list of state s.

) else{

i. Discard this token.

ii. Exit this routine.

1
(b) If HMM state is not the synchrony point, perform normal token propagation:

i f @ r l (t ; w ; s) > il *?I) {

i. Clone a new token and update its information;

ii. Attach this new token to the linked token list of state s.

) else{

i. Discard this token.

ii. Exit t h s routine.

2 ~ i is the beam pruning threshold for feature i

The algorithm for cross-tree token propagation is more complex than the within-tree

propagation for several reasons. The cross-tree token propagation starts at the leaf nodes

of the lexical tree, and ends at the first level triphone nodes:

1. When a token leaves the last state of a leaf node, we are already able to identify the

newly generated word. Thus the actual language model probability is added to the

path score:

I'i@; W ; S) = ri(t - 1; W ; st-1) + logP(w) (6.15)

where logP(w) is the language model probability for word w and in the trigram

case: logP(w) = logP(w/wl, w2)

2. Clone a new token and update its information including the path history.

3. For all tokens in frame t, find their best score f i for all features

4. (a) If word is the synchrony point, perform fusion at this point:

i f (r i (t ; w ; s) > T' * P i)

i. Clone a new token and update its information;

ii. According to equation 6.9, calculate the fused partial scores by surn-

ming the best partial scores over all features:

iii. Attach this new token to the linked token list of state s.

else

i. Discard this token.

ii. Exit this routine.

where T' is the word-end beam pruning threshold

(b) If word is not the synchrony point, perform normal propagation:

if (rl(t; W; s) > T; * f

i. Clone a new token and update its information;

ii. Attach this new token to the linked token list of state s.

else

i. Discard thls token.

ii. Exit t h s routine.

5. Propagate the tokens from leaf nodes to the first level tree nodes:

Suppose the leaf node represents triphone "a-b+cV, and its successor nodes can be

described as "c-*+*". For each of first level node "c-*+*" that are reachable from

the word end node "a-b+c7', we need to calculate their new scores:

where r(t; w; s) on the left hand of the equation is from Equation 6.15.

6. For all tokens in frame t, find their best score fi

7. (a) If word is the synchrony point, perform fusion as follows:

i. Clone a new token and update its information according to r(t; w; s) for

all features;

ii. According to equation 6.9, calculate the fused partial scores by sum the

best partial scores over all features:

iii. Attach this new token to the linked token list of state s (state s is the first

state of node "c-*+*").

(b) If word is not the synchrony point, perform normal pruning:

ifV (ri(t; w; s) > T, * fi)

i. Clone a new token and update its information according to r (t ; w; s) for

all features;

ii. Attach this new token to the linked token list of state s (state s is the first

state of node "c-*+*").

Modification to Token Merge

In Section 6.2.1, we stated what was necessary for an extension to the token structure. For

each active state, instead of keeping only one best token as in conventional token passing,

we keep one best token for each feature. In implementation, the extension is executed

on the token merge (Section 6.1.1) module. For each active state in the lexical tree at t,

cluster all tokens that have the same language model history, and keep the best token for

each feature and discard the rest.

At each time frame t, we need to find the best token for each feature and connect them

in a linked list, then attach this token linked list to the active state. Figure 6.8 shows such

a token link list.

Suppose at time frame t and state s, there is an active token list with language model

history m, and this token list is named as TokenList(t; w; s). TokenList(t; w; s) has K

tokens organized as a linked list. The new token merge procedure is as follows:

1. Start search TokenList(t; w; s) from head to end, fetch a token k and compare

it with corresponding TolcenList-LM(t; w; s ; m) according to its language model

history m. Generate a new TokenList-LM(t; w; s; m) if it does not exist. The

pseudocode for this procedure is shown in Figure 6.9.

109

best token for
feature 1

featu re feature
list

r
\~

./

Figure 6.8: An example of Token Link List used in extended Token Merge

The token list contains more than one token, and each token is placed according to the order
of the features.

After the operation above, all tokens are clustered into M token link lists with

unique m-gram history.

2. Merge the best tokens from each cluster.

The best scoring tokens in each cluster are already sorted by the previous step. We

simply concatenate these tokens into a new linked token list TokenList' (t; w; s),

and attach it to the tree node s. Because these tokens are in an ordered list, after this

merge operation, all N tokens of each TokenList' (t; w; s) will have the same LM

context.

I f (matched TokenList-LM(t; w; s; m) does not exist)
Create TokenList-LM(t; w; s; m).
Generate N copies of token k.
Link these new tokens onto TokenList-LM(t; w; s; m) .

Else
matched TokenList-LM(t; w; s; m) is found;
For (i = 1; i < N ; i + +){

I f (F x (t ; w ; s ; i) > f m (t ; w ; s ; i x i))
Replace the ith token of TokenList-LM(t; w; s; m) with a copy of token k;

Else
Discard current token if i == N.

1

f',(t; w; s; i x i) is the feature i score from the ith token of TokenList-LM(t; w; s; m).
r k (t ; w; s; i) is the score for feature i of token k.

Note: Token merge was conducted on all features.

Figure 6.9: Pseudocode for Token Merge

For an active state of the lexical tree, we keep the best token from each feature.

These N tokens from N features have the same m-gram history and reside on the

same state at the same time. Thus their scores are comparable. Different from

previous implementations, in which the fused likelihood was calculated from one

single token, in this approach, the likelihood values used in fusion are from different

tokens:

In sentence level fusion, the final recognition output was decided by the following

procedure:

At the sentence end, search the maximum Score(m) according to Equation 6.2 1.

There are N tokens in token group m, and they have the same language model

history. That means these N tokens may have different partial word sequences

except the last L-1 words in an L-gram case. However, we can only select one

token for fmal recognition output. The approach we used here is to calculate a

confidence score for each token:

A

Cm(i) = r,(t; w; s; i x i)/rma,(t; s; i) ,

where F,,,(t; s; i) is the best score for feature i at time t.

Find the maximum Cm(i) and select token i of token group m.

Back-trace token i and generate final recognition output.

The experimental result is shown in the following Table 6.5 and the result is superior

to constraint fusion.

Table 6.5: WER reduction by using composite fusion with extended Viterbi

6.2.3 Composite Fusion - Improve Word Graph Quality

System
MFCC
TLDA

TRAPS
Composite fusion with extended Viterbi

In Section 6.1.3, we reduced WGER from 24.0% to 20.9% by using the constraint fu-

sion method, but it is still not satisfying. We further reduced the WGER by increasing

the search beam widths at different levels. Although the WGER was reduced, we soon

reached the limit of our computation power, especially the memory, by increasing beam

widths. After a certain point, the WGER decreased very slowly by increasing the beam

widths while the WGD increased rapidly. The improvement in WGER is at the expense

WER
27.7%
28.6%
29.9%
25.3%

of a tremendous increase in word graph size, which lowers the word graph quality and

diminishes the purpose of using a word graph.

Table 6.6: The effect of beam width pruning on word graph size and its accuracy

Note: Beam widths in these experiments are carefully tuned to give the
best results.

WGER
20.9%
19.7%
16.6%
14.1%

It is important to improve word graph quality without significant increase in compu-

tation cost. A solution is proposed here that integrates the fusion concept into the lexical

tree based time synchronous search (Section 2.4.3) and token merge (Section 6.1.1).

At every time frame (10 ms), a token merge operation is conducted on all tokens. For

non-leaf nodes of the lexical tree, all tokens having the same language model history but

different tree entering times are merged. For leaf nodes of the lexical tree, the new word w

is known, and all tokens having the same preceding words W are merged into one token.

These W are contained in the final word graph if they survive the following propagation.

But tokens must pass various pruning stages before entering into the merge process. For

example, right before token merge, we have a pruning step on all tokens from the active

state HMMs.

r(t; w; s) > r * i' (6.23)

f' is the maximum likelihood of all tokens from HMMs.

r is the beam pruning threshold.

WGD
95.3

231.5
255.2
290.2

Experiments show increasing r is the most efficient method to reduce WGER and

the results of Table 6.6 were obtained in this way. But as stated before, this approach is

unsatisfactory. Part of our approach is that rather than simply increase r, we perform a

Real Time Factor
3.5
6

7.5
10

fusion based pruning:

V(ri(t; zu; s) > T, * l'i)

pi is the maximum likelihood value at feature i for all tokens from HMMs.

ri is the beam pruning threshold for feature i.

Suppose the ri have the same value as T, then by increasing T in Equation 6.23, we

leave many unlikely tokens alive, thus hurting the quality of the word graph. But in

Equation 6.24, only the most likely tokens considered by each individual feature are let

in. The analysis above was verified by our experiments: at a similar WGD, significant

WGER reduction by about 43% is achieved (Table 6.7). Additional optimizations, such as

dynamic beam adjustment of ri, were also implemented by fusion statistics from various

features. We will not elaborate the lengthy detail here because they are similar to the

principal of fusion.

Table 6.7: Graph Word Error Rate reduction by cross-reference pruning coupled with
dynamic beam width fusion

Second pass cross-word decodings were performed on the word graphs above using

the same set of acoustic and language models. The improved word graph (Table 6.7)

produced by the first pass decoding gave a 9.7% WER reduction in the second pass de-

coding (Table 6.8). Significance test (Table 6.9) shows this improvement is statistically

significant and the difference is greater that 99.9%.

System
Baseline: Increase Beam approach

Fused Token Pruning approach

WGER
16.6%
9.4%

WGD
200.2
200.6

Table 6.8: The effect of improved WGER on the 2nd pass decoding.
- -

Best quality word graph by fusion approach is beneficial to 2nd pass decoding.

6.3 Rank Based Fusion

A great advantage of our run time fusion over other fusion methods is that the hypotheses

are automatically aligned across different features. At time frame t, all (partial) hypothe-

ses are generated from the same part of speech, thus their scores for different features

can be directly compared. This comparison can be conducted at all levels of a speech

recognizer: state, phone, word, and sentence.

In the constraint and composite fusion approaches, we directly use likelihood from

other feature representations to participate in the pruning stage during the search. In

rank based fusion, we exploit the relative ranking in active search paths. Similar to the

constraint and composite fusion approaches, the final result will be given by fusion of the

recognition results from each feature representations. The difference is that the likelihood

values are transformed into a series of rankings. Each feature has its own ranking order

for the recognition hypotheses. The rankings for all features have the same range, such

as 1.. N for N hypotheses. Thus these rankings are comparable among different features.

In contrast, the likelihood values from different features for the same hypothesis are not

comparable because each of them has a different dynamic range.

6.3.1 Rank Based Fusion in SPINE Task

If we sort the hypotheses according to their likelihood values, each feature will give a

different result. An approach we proposed is a rank based re-sort of the recognition

hypotheses.

Table 6.9: Significance test result on the WER of 2nd pass decoding

These significance tests are all two-tailed tests with the null hypothesis that there is
no performance difference between the two systems.

The first column indicates if the test finds a significant difference at the level of
p=0.05. It consists of ' ' if no difference is found at this significance level. If a
difference at this level is found, this column indicates the system with the higher
value on the performance statistic utilized by the particular test.

The second column specifies the minimum value of p for which the test finds a
significant difference at the level of p.

The third column indicates if the test finds a significant difference at the level of
p=0.001 ("***"), at the level of p=0.01, but not p=0.001 ("**"), or at the level of
p=0.05, but not p=0.01 ("*"). A test finds significance at level p if, assuming the
null hypothesis, the probability of the test statistic having a value at least as extreme
as that actually found, is no more than p.

1. For N best hypotheses, find the maximum and minimum likelihood value (denoted

as maxP and minP) for each feature i :

N
maxPi = max Pi (n)

n= 1

* min Pi = min Pi (n) .
n=l

2. Calculate the difference of max Pi and minPi :

varPi = maxPi - minPi.

3. For each NBEST hypothesis, calculate feature i's likelihood value difference with

minPi and divide that by warpi:

P, (n) - min Pi
@(n) =

varPi

I Start search (

Conduct forced-alignment for each 4

, active path on other feature streams
I I

Tokens
n

Feature 1 Feature 2 Feature N
Pruning Pruning
Module Module Module

Fusing the survived tokens from each stream
I I

Survived Tokens s
Figure 6.10: Run time fusion with Rank Based Token Pruning

Oi (n) reflects the relative likelihood value difference between hypothesis n and the

worst hypothesis under feature i. It is a normalized value in the range of 0 to 1.

After performing the operation above, we have a set of Oi for each hypothesis. The

Oi shows the confidence measurement for that hypothesis under feature i. We sum Qi for

all M features:

ai is the weight value of each feature i.

We re-rank the N hypotheses according to the combined value O (n) in ascending

order. The one that has the highest O (n) value is the new best hypothesis. As shown in

Table 6.10, a 4.7% relative WER reduction was obtained in the rank based fusion.

Table 6.10: WER reduction by using rank based fusion

System I WER

28.6%
29.9%

ai is 1, 0.9 and 0.8 respectively for MFCC, TLDA and TRAPS. Maximum value of M is
500 in our experiments.

In the experiment above, we used all available hypotheses up to the best 500. We did

observe in some experiments that increasing the maximum M from 500 to 1000 hurts

performance. One possible explanation is that hypotheses beyond 500 are not accurately

modelled by all features, and their inclusion introduces some noise into out formula. How

to optimize M at a global or sentence level still needs to be studied.

The rank based fusion has not achieved the best result among these three proposed

fusion approaches. However it still has some potential to be explored. One possible

direction is to implement the rank based fusion at a smaller unit level. In the current im-

plementation, only sentence level hypotheses are used. Thus the rankings are influenced

by the language model scores. One possible solution is to remove the language model

scores before performing rank based fusion. Another possibility is to perform rank based

fusion on the state, phone or word level, where the language model effect is smaller.

Chapter 7

Fusion in Speech Segmentation

In this chapter, we focus on using fusion on a different part of the speech recognition sys-

tem, that of segmenting continuous speech into utterances (sentences) before generating

the features. We presents a new speech segmentation approach based on two different

level fusion. The first level of fusion applies to the spectral sub-bands and fuses mul-

tiple filter bank coefficients. This new approach takes advantage of current feature ex-

traction procedures, with little additional computation cost. Another level of fusion was

performed by fusing the results from several segmentation systems. Evaluation was con-

ducted on the SPINE2 task. Experiments show our fusion based approaches significantly

reduced the WER compare to two classifier-based approaches. Compared to the manual

segmentation, our approach only has 0.3% WER increase. This new approach is our first

try to explore multiple information sources at different stages in the recognition process.

7.1 Speech Segmentation Overview

The input speech stream to an ASR system is a continuous flow of speech signal without

any type of boundary information. For recognition efficiency, the speech stream is first

transformed into a sequence of audio segments. The basic task of speech segmentation

is chopping long periods of speech into short ones and removing non-speech events at

the same time. Additional tasks of a speech segmenter may also include segmenting and

clustering the speech stream according to speaker identities, environmental and channel

conditions. In this thesis, we only focus on the basic task, segmenting the speech stream at

the boundaries of speechlnon-speech events. The segmentation process is also commonly

referred to as endpoint (or silence) detection. The resulting segments are called utterances

or sentencess, which is by no means linguistically accurate (these denominations do not

strictly correspond to their linguistic counterparts).

Speech segmentation is necessary for an LVCSR system due to memory and speed

restrictions of speech recognition (Section 1.1). Speech segmentation serves the following

purpose in a continuous speech recognition system:

1. Segmentation reduces the network load in a clientlserver or cluster type ASR sys-

tem. Separating the original long stretch of speech into short segments reduces the

average feature file size.

2. Segmentation reduces the computational load of the decoder. The search space

increases linearly with the length of speech. The longer the speech stream, the

more words it may contain. And the potential search space would be increased

correspondingly to a degree that the decoder can no longer afford. So it is necessary

to constraint the length of input speech due to the memory and speed restrictions.

3. Segmentation increases the robustness of an ASR system. The continuous speech

contains speech and non-speech parts. Non-speech parts carry no linguistic infor-

mation and include silence, background noise, laugh, etc. These non-speech events

appear between actual spoken words at random time for an unfixed period. Short

periods of non-speech events are modelled by one or several special models in an

ASR system. In spite of that, current technology still perfonns poorly when facing

non-speech events especially when there is strong background noise or the duration

is long. An ASR system often mis-recognizes non-speech events as words, causing

insertion errors. Another type of errors caused by non-speech events is the substitu-

tion error, when the non-speech events corrupt neighboring speech events, causing

the recognizer mis-recognized both regions.

4. Segmentation can improve the accuracy of some acoustic modeling methods such

as Cepstrum Mean Subtraction (CMS). CMS is an approach used in feature gener-

ation to normalize the speaker variations. It is desirable to minimize the influence

of channel information in CMS calculation. Long silence is the easiest channel

information that can be identified with a reasonable accuracy. We found that the

recognition performance can be improved by deleting most long silence from both

training and decoding data [go].

Since manual segmentation of speech is time consuming and unrealistic in most con-

ditions, various approaches on automatic speech segmentation have been proposed. Ac-

cording to [19,76], these approaches can be categorized as follows:

1. Metric-based segmentation. This approach is based on the acoustic distance mea-

surement between every two contiguous windows along the speech signal. The

maximum distances are detected as potential segmentation points, and the final

segmentation decision is based on some thresholds.

2. Classifier-based segmentation. This approach builds separate models for speech

and non-speech events. The segmentation problem becomes a classification task.

Gaussian mixture models or HMM are trained to model each class, and the fi-

nal segmentation decision is based on the change point of classes. Another type

of classifier-based approach runs the decoder on the speech stream to generate

phoneme or word sequences. The final segmentation decision is based on the si-

lence locations generated by the decoder.

Generally the metric-based approaches cannot compete with the classifier-based ap-

proaches on segmentation accuracy. However, classifier-based segmentations require

complex computation and cause large latency, thus are not suitable for a real time ap-

plication and are mostly used in off-line systems.

In this thesis, we propose a novel fusion-based segmentation approach that is highly

accurate and demands little computation. We compare our approach with two classifier-

based segmentation methods, which will be introduced in Section 7.1.1 and Section 7.1.2.

Segmentation is important in the SPINE task because there is lots of noise. Failing

to exclude long periods of non-speech noise not only causes a large amount of insertion

errors but also disrupts the search continuance. Current acoustic and language model-

ing techniques act awkwardly when facing such an interruption, and the damage usually

spans to its neighboring speech. The raw speech data files of the SPINE task contain

several minutes of conversation. The task of segmentation is to separate them into small

segments and discard non-speech ones. Speech segmentation is the major interest in the

SPINE 1 workshop and remains an important topic in the SPINE2 workshop and following

conferences. Almost all nine participants in the SPINE2 evaluation used classifier-based

segmentation [49, 32, 66, 67,73, 76,981.

7.1.1 TRAPS Based Segmentation

The segmentation that we used for the official SPINE2 evaluation is a TRAPS based

approach proposed by Dr. Hermansky's group [49,41,66].

The TRAPS based segmentation is based on two main processing steps. In the first

step, we learned the distribution of the temporal patterns of speecwnon-speech present

in each critical band independently. This was performed by training a Multi-Layer Per-

ceptron (MLP) in each critical band. The input to the MLPs is a one second long (two

syllables long) temporal trajectory of critical band energy. The temporal trajectories were

mean subtracted, variance normalized and hamming windowed before given as input to

the MLPs. The output layer of the MLP consists of two nodes targeting speecwnon-

speech respectively. In the second step, we combined the outputs from each band-specific

MLP and trained another MLP as a merging classifier. The output layer of this MLP

again targets speecwnon-speech events. The size of the hidden units is kept at 300 for

band-specific MLPs and at 50 for the merging MLP. The output from this merging MLP

was then median filtered to give final speechlnon-speech decisions.

7.1.2 Gaussian Mixture Classifier (GMC) Based Segmentation

We also obtained a segmentation from Dr. Richard Stem and Dr. Rita Singh of CMU

"A two-class speechlnon-speech Gaussian mixture classifier was trained with

KLT features from the SPINE2 development data. To train the classifier, the

training data were segmented using Viterbi alignment. Feature vectors from

segments corresponding to speech events (i.e. words and filled pauses) were

used to train the speech distributions. All segments not corresponding to

speech were used to train the non-speech distributions. Each of the distribu-

tions was a mixture of 32 Gaussians.

During segmentation, the likelihood of each of the two classes was computed

over a sliding window corresponding to 0.5 seconds of speech, where the

window was advanced in steps of 20 ms. Histograms of the difference in the

likelihoods of the classes were derived and the inflexion points between the

modes representing speech and non-speech events were located. The value of

the likelihood difference at the inflexion point was used as the threshold for

the likelihood difference that separated speech from non-speech." [66,76,82]

7.2 Proposed Segmentation Approaches

7.2.1 Segmentation using Filter Bank (Subbands) Based Fusion

The third segmentation approach originates from my work on developing the SMFCC

feature. It is a simple and efficient method based on fusion.

Filter bank calculation is a necessary step in many feature extraction algorithms. A

filter bank is a set of band-pass filters that span the whole frequency spectrum. Each filter

Feature Sub band
Extraction vectors Feature

El vectors

Segmentation I
. . . Sub band 1 - . . . Sub band 2

fusion

20 frames
I

Smooth and retag
I

Segmentation Decision

Figure 7.1 : Subbands fusion based segmentation

bank corresponds to a subband of the speech spectrum. In the MFCC case, a certain num-

ber (we used 24 in our system) of me1 scale tiangular filters cover the whole frequency

analysis spectrum. The filters have 50% overlap with their neighboring filters to obtain

a smoothed frequency estimation. The magnitude coefficients in the SFFT spectrum are

transformed into me1 scale by correlating with these filter banks. The me1 scale adopted

in our system is
f rnel(f) = 1127.log(l+ -),

700

which is designed to normalize lOOOHz correspond to 1000 mels.

According to the equation above, 24 me1 scale filter bank coefficients were calculated,

which represent a weighted sum of the spectral magnitude in that subband.' These co-

efficients were combined into a single feature vector, and each coefficient describes part

' 1 subband =+ 6 filter banks =+ 3 MFCC coefficients. These coefficients are not independent, and some
methods to decorrelate them may necessary.

of the information carried by the speech signal. In a traditional ASR system, the entire

feature vector is used as one entity for training and classification. In our work, however,

we treated each filter bank coefficient independently.

Using filter bank coefficients in speech segmentation has several advantages over the

traditional energy based approach for detecting non-speech:

1. Each coefficient comes from the short-term spectral vector and represents the en-

ergy of the speech signal in a given frequency subband. The noise may corrupt

some frequency bands but the majority of them are still useable. Based on this as-

sumption, when majority filter bank coefficients drop to a local minimum, we can

assume it is a possible non-speech frame.

2. The noise in SPINE task varies in type and distribution. Some are spread through

the whole conversation but some only appear in speech or non-speech segments.

They are also not just a simple additive noise that can be removed by spectral sub-

traction. The traditional energy based method treats the entire feature vector as a

single entity; thus, noise is no different fiom speech in their contribution on energy

calculation. Even a single noise corrupted subband spectral can falsely signal a

non-speech event as a speech event.

Based on the analysis above, we designed a fusion based segmentation approach. The

basic algorithm is as follows:

1. For frame t, obtain N filter bank coefficients fiom the normal feature extraction

routine.

2. Form a fusion window I , which covers T consecutive frames and ends at frame t.

Find the minimum filter bank coefficients for each filter bank i (1 < i < N) within

that window:
t.

minl (i) = mln melt((2)
tl=t-T+1

Note: This is similar to the minimum statistic algorithm proposed by Martin [59],

in which the minimum of smoothed power within a finite length window is used to

estimate the noise power.

3. Fuse the statistical information of all the filter bank coefficients within window I

for each frame d (t - T + 1 5 d 5 t):

1 if (melt, (i) = mini (2))
Xtl (2) (=

0 otherwise

N

nummin (t') = C 2,. (i)
i=l

Note: N is the nurnber of filter banks and nummi,(tl) is the number of minimum

filter bank coefficients occurring at frame d.

4. Tag each frame as speech or non-speech. First, compare num,i, (t l) with threshold

O (0 5 O 5 N), if

nzlrnmin(d) > 0, (7-5)

then propose this frame t' as a potential non-speech point. It still has several possi-

bilities considering its relative location to the speech segments:

(a) Frame t1 is the last frame of this I frames window. + It is the start point of a

non-speech segment following a speech segment.

(b) Frame t1 is the fist frame of this I frames window. + It is located at the end

of a non-speech segment and is followed by a speech segment.

(c) It could be located anywhere within the I frames window. It is a non-speech

frame surrounded by other non-speech frames. It occurs when low level noise

appeared inside a high level noise period.

We are more interested in conditions (a) and (b) because they separate the speech

from non-speech segments. Condition (c) is less important because we have no

intent to separate different noise events.

Scan from the first frame and tag each frame as speech or non-speech according to

the neighboring tagging status and value of nummi,(t').

5. Scan the tagging information from the first frame and re-tag each frame as speech

or non-speech. In this step, the "speechlnon-speech" tag of current frame t is re-

determined by the neighboring tagging information and value of n ~ m ~ , ~ - ~ ~ , (t ') .

6. In the following two steps, two re-scans are performed to smooth the segmentation

decisions. Because both only involve the tagging information, the cost of perform-

ing both re-scans is negligible.

7. Re-scan the tagging information from the first frame and connect the neighboring

short periods of speech together. Because in continuous speech, there are always

small periods of non-speech parts existing between spoken words. We do not want

to segment the whole input speech into individual words but rather separate it into

utterances/sentences. Word level segmentation is not only more error prone but also

loses the benefit of language model constraints.

Similarly we connect the closely located non-speech parts together in this step.

8. Scan again starting from the first frame and produce segmented speech files ac-

cording to the tagging result. We found our method is quite accurate at detecting

the change of speech/non-speech events. We extend the speech duration by cer-

tain number of frames on both directions to append some silence. We would rather

include a short period of silence than lose part of the speech events.

The raw audio data of SPINE2 evaluation has a total of 7 hours of (423 minutes)

speech comprised of 128 unsegmented conversations with an average duration of 200

seconds. The overall number of words is 24,015.

The TRAPS segmentation was used in our official evaluation. After the evaluation, we

tried CMUYs segmentation and reported some results at the following SPINE2 workshop.

After the official evaluation, we conducted a series of experiments to compare these

three segmentation algorithms. This is the first time that our fusion based approach is

reported. Table 7.1 shows the number of files generated after the segmentations and their

total file size.

The best way to evaluate a speech segmentation algorithm for a LVCSR task is to use

its standard measurement: Word Error Rate (WER). In our experiments, we use the same

recognizer with MFCC feature for all segmentation approaches. Table 7.2 measures the

performance of segmentations by compare their corresponding WER. Our fusion based

approach generates the least amount of speech data but results in the best recognition

performance (Table 7.2). Further analysis shows the performance gain comes from:

1. Reduction on insertion error caused by noise. It measures the accuracy of excluding

non-speech (including silence, noise, etc.) events.

2. Reduction on deletion errors caused by discarded speech. It measures the accuracy

of tagging speech event.

Table 7.1 : Comparison of three segmentation approaches on SPINE2 task: number of
files and the overall files size

The TRAPS based segmentation is also using multiple bands of the speech spectrum.

However, it did not perform as well as our subband based approach. We speculate the

following differences may be the reason. First, the MLPs used in the TRAPS approach

were trained on all kinds of noise conditions; thus it is less accurate to a specific noise

Segmentation
RAw2

TRAPS
Gaussian Mixture

Subbands

2 ~ h e raw speech data files contain both channels of conversation. Since there is only one participant is
supposed to speak at one time, most of the time only one channel contains speech data. So roughly only
half of the 779M data contains speech.

Number of files
64

459 1
5682
5563

Total files size
779M
315M
315M
305M

condition especially for the unseen testing noise conditions. Second, the TRAPS approach

has a large amount of parameters in the MLPs which require sufficient training data and

careful optimization. Third, TRAPS approach uses 15 critical bands on a down-sampled

8kHz speech whle we use 24 bands on the original 16kHz speech. Another difference is

that the TRAPS approach uses 10 1 -frame window compared to our 8-frame window.

7.2.2 Fusion on Several Segmentations

Another level of fusion is achieved by combining the result from these three segmenta-

tions (Figure 7.2).

Segmentation
tag info.

TRAPS Segmentor -
Gaussian Classifier Segmentor - + = w-
Subbands Fusion Segmentor m n '

frame 1 frameT

Figure 7.2: Fusion based segmentation: fusion across several segmentations

We tried several fusion methods here:

1. Majority Vote: The speecldnon-speech tag of each frame is decided by the majority

of segmentations.

2. Weighted Combination: A set of weights ai and threshold r are obtained from a

development data set. The final tag is decided by comparing the threshold with the

following value:
N

ai is the weight value for segmentation i, Pi(t) is the probability of frame t is

speech estimated by segmentation i, in our case, due to lack of data from the other

two segmentations, Pi (t) is a value of 011.

Table 7.2: Comparison of Segmentation Approaches on SPINE2 Task: Performance Mea-
sured by WER

The effects of our fusion approaches are quite obvious. The weighted combination

fusion achieves the lowest WER among automatic segmentations, which is only 0.3%

higher than we obtained from a manual segmentation. Significance tests show these two

systems have no statistical difference at the level of p=0.05, and they are both significantly

better (at level p=0.001) than the TRAPS and Gaussian Mixture Classifier systems. As

noted before, due to lack of data from the other two segmentations, Pi(t) has a value of 0

or 1. Ideally a probability or confidence score can give a more reliabIe combined score.

Our fusion based segmentation approach has a clear advantage over others due to its

simplicity and fast execution. The filter bank coefficients were already available from

feature extraction and the additional calculation is negligible, so our approach can be

easily integrated into the front end of an ASR system. The segmentation can be performed

on-the-fly and the features can be generated right after it. However, TRAPS and Gaussian

Mixture Classifier approaches, both require a recognition process and are much more

complex and time demanding. They are fine with evaluation type tasks but not suitable

for real applications that require a fast response.

Segmentation Approaches
TRAPS

Gaussian Mixture Classifier
Subbands Fusion

Majority Vote Fusion
Weighted Combination Fusion

Manual

WER
41.6%
39.3%
38.4%
38.2%
38.1%
37.8%

Chapter 8

Conclusions and Future Work

In this thesis, we presented a run time fusion scheme to use different knowledge sources

within a speech recognition system. In particular, we investigated the problems posed by

the inefficient use of complementary information in speech recognition. Three methods of

performing run time fusion were developed in conjunction with careful design and imple-

mentation. The techniques developed have been applied to a large vocabulary continuous

speech recognition task and the performance analyzed both in terms of the computational

complexity and the recognition accuracy.

8.1 Review of the Work

The traditional approach of fusion decouples the search stage with the fusion process; thus

complementary information from multiple sources are either lost or used inefficiently by

the decoder. The pre-recognition fusion methods, such as feature combination, require the

multiple fusion sources to be independent which is generally not true. It is also difficult

to identify complementary information directly from these sources. The combination

at this level also causes the individual complementary information to be diluted by the

more dominant redundant information. For post-recognition fusion, the complementary

information is represented at the high level of a recognition architecture, such as the word

or sentence level. The available information at these levels is much smaller compared

to the whole search space. The complementary information from the original sources is

either lost or moved to a higher level. We have proposed a number of ways to address

these problems. Specifically, our contributions are as follows.

Our approach provides a novel way of fusing multiple information into an LVCSR

system. Different feature representations are integrated into the decoding module

of an LVCSR system. It provides the foundation for performing fusion at the run

time of a recognizer.

The decoding module is the kernel or CPU of a recognition system. Various types

of information are presented and integrated at different levels within this module.

Thus the decoding module is an ideal choice for information fusion.

Implemented constraint fusion. We investigated the contribution of supporting fea-

tures on reducing beam pruning. The result shows that conventional beam pruning

works well for single feature decoding, while integrating several features into the

pruning decision can improve the word graph quality. However, a likelihood value

fusion is necessary to reduce WERs. We also proposed a dynamic beam adjustment

approach: by comparing pruning effects across features, we were able to set a tight

beam width without sacrificing accuracy.

Implemented composite fusion. Different from constraint fusion, all features in the

composite fusion approach have the same role on the search decision. The fusion

concept is further integrated into the pruning decision. Significant improvement on

word graph quality was observed and this improvement was also reflected in the

WER reduction of second round decoding. Research shows evidence that differ-

ent knowledge sources are not strictly time synchronous. To conduct asynchronous

fusion across different features, we extended the token structure and proposed a

modified Viterbi algorithm. By rewriting the token passing and merge procedure,

we were able to perform fusion at selected levels (state, word and sentence). Ex-

perimental result shows the composite fusion achieved the best result among our

fusion approaches.

A great advantage of our run time fusion over other fusion methods is that the

hypotheses are automatically aligned across different features. At time frame t, all

(partial) hypotheses are generated from the same stretch of speech, thus the scores

for different features can be directly compared. This comparison can be conducted

at all levels of a speech recognizer: state, word, and sentence.

All experiments using our run-time fusion showed that the fusion based system out-

performs single feature systems. The experiments proved that information fusion during

the decoding phase not only can reduce pruning errors but is also able to select the better

path. It was rather robust in all of our experiments and outperformed the baseline system

in all cases.

8.2 Future Work

While the run time fusion approach described in this thesis gives significant improve-

ment, there is room for further refinement. We think the following research directions

might be useful in pursuing a robust speech recognition system under our run time fusion

framework:

Finding canonical and complementary sets of information sources

This thesis work is mainly on investigating ways to use different signal processing and

feature extraction techniques. Further work can be done on finding canonical and com-

plementary sets of information sources. The possible complementary candidates include:

processing techniques for additive and convolutional noises, features based on segments

[Kingsbury, 19981 and frames, features from the spectral domains (such as MFCC) and

time domains (such as pitch, duration, and stress). This work can be further extended to

use fusion to guide the feature generation.

Detailed analysis of the complementary characteristic

In this thesis work, we selected some features for fusion based on their potential com-

plementary natures. However this judgement is based on the analysis of feature design

and experiment. More detailed analysis of the complementary characteristic of various

features is necessary, such as the independence on the feature level and recognition error

distribution on the state or phone level.

Extend this thesis work beyond acoustic information

1. Semantic decoding: how to incorporate semantic information into decoder run time

to improve system performance in spoken dialogue systems.

2. Feature selection: for the operating environment of a given application, how to

automatically select a set of complementary feature representations.

3. Multi-modal applications: how to exploit complementary information contained in

different modalities during decoder run time.

UtiIize aligned scores from multiple sources

Under the run time fusion framework, the hypotheses are automatically aligned across

different features. At time frame t, all (partial) hypotheses are generated from the same

stretch of speech, thus the scores for different features can be directly compared. This

comparison can be conducted at all levels of a speech recognizer: state, word, and sen-

tence. We obtained some success on using the rank information for fusion decision. The

future work is to explore efficient statistical algorithms to use these aligned scores. The

scores or ranks from multiple features are comparable under our run-time fusion frame-

work, thus are suitable for confidence measuring and word spotting.

Appendix A

Classes used in our Class Based

Language Model

Table A.l: Class Language Model: x-axis of ACE Grid Labels in SPINE2 Lexicon

Table A.2: Class Language Model: y-axis of ACE Grid Labels in SPINE2 Lexicon

Table A.3: Class Language Model: Class of Directions in SPINE2 Lexicon

Table A.4: Class Language Model: Class of Person Name in SPINE2 Lexicon

Table A.5: Class Language Model: Class of Partial Words in SPINE2 Lexicon

Appendix B

Significance Test

In the speech recognition community, it is necessary to compare the performance of two

recognition systems when reporting any experimental results. Researchers need to make

comparison tests to claim workable, novel, or improved algorithms. Most publications

still use a single criterion to measure the performance. This criterion, Word Error Rate

(WER), measures the overall word level agreement between the recognized words and the

reference by aligning each sentence pair using a dynamic programming (DP) algorithm.

The WER is calculated by averaging the overall substitutions (SUB), deletions (DEL) and

insertions (INS) over the total number of reference words:

W E R =
SUB + DEL + I N S

Num-o f -Words

The difference of two experimental results is further measured by the absolute WER

difference

A W E R = W E h e W - W ERhseline (B.2)

and relative WER difference

WER is a good performance measurement of a ASR system but generally it is not

sufficient. For an extreme example, if a test set consists of only one reference word,

the system recognized correctly has a 0% WER but another system which made a mis-

recognition has a WER of 100%. The results on this tiny one word test set by no means

give any sureness on the performance of a ASR system. The shifting from 0% to 100%

WERs can well be the result of variability and uncertainly of the test data. WER, is not

sufficient to back any difference in performances as statistically significant. To measure

the efficiency of algorithms and to compare the performance of different ASR systems,

it is important to measure the statistical significance of the difference in experimental

results.

A significance test is a test for determining the probability that a given result could not

have occurred by chance. It can be used to perform comparisons on speech recognition

algorithms (or systems) by comparing the recognition results on the test data set and by

measuring whether the difference in performance is statistically significant.

A set of tools for performing significant tests was originally developed by Pallett, et

al. at NIST for DARPA speech recognition benchmark tests [71] and is now included in

the NIST standard scoring package. Some of the significance tests we used in this thesis

are briefly explained below.

B.l Signed Pair Comparison Test

The Signed Pair Comparison Test or sign test, is a test comparing word error rates on:

different speakers,

different conversation sides,

some pre-specified subsets of a test set.

It measures which system performs better on each such subset. If there is systematic

evidence of differences in a consistent direction, this may prove to be significant even if

the magnitudes of the differences are small.

The null hypothesis:

The number of speakers for which the dzflerences is positive equals the number of

speakers for which the dzflerences is negative.

The alternative hypothesis:

The number of speakers for which the differences is positive is NOT equal to the

number of speakers for which the dlference is negative.

Signed Pair Comparison Test is based on the following assumptions that the distribu-

tion of positive and negative differences follows the binomial distribution for N fair coin

tosses. It measures the systematic evidence of differences in a consistent direction and

ignores the magnitudes of these differences.

The sign test is simple and easy to use, and has been regularly used by NIST in its

organized evaluations since 1992. The disadvantage of sign test is it is less powerful

compared to other tests.'

B.2 Wilcoxon Signed Rank Test

The Wilcoxon signed rank test applies in similar evaluation situations as the sign test

and is generally more powerful. The Wilcoxon signed rank test is a non-parametric test2

that utilizes information on both the signs and the magnitudes of the performance differ-

ences in two systems. The implementation used in this thesis uses word accuracy as the

measurement of performance. The hypotheses of the test are as follows.

The null hypothesis:

The two populations represented by the respective matchedpairs are identical.

The alternative hypothesis:

The two populations are not identical and there is a dzflerence between them.

The procedure to calculate the test statistic for the Wilcoxon test is:

lThe power of a statistical hypothesis test measures the test's ability to reject the null hypothesis when
it is actually false - that is, to make a correct decision.

2Non-~arametric tests are often used in place of their parametric counterparts when certain assump-
tions about the underlying population are questionable. Non-Parametric tests may be, and often are, more
powerful in detecting population differences when certain assumptions are not satisfied. All tests involving
ranked data, i.e. data that can be put in order, are non-parametric.

1. Calculate the differences of the word accuracy rates of speaker i of the two systems

and denote it as di.

2. Rank the absolute values of the differences, Idi[, by assigning 1 to the smallest, 2

to the second smallest, and so on. Tied observations are assigned the average of the

ranks that would have been assigned with no ties.

3. Calculate the rank sum for the positive differences and label this value as T+. Sim-

ilarly, calculate T-, the rank sum for the negative differences.

For large enough n (2 8), T+ has an approximately normal distribution. Its mean and

variance are

Then the z statistic

can be used as a test statistic. The decision rule for the Wilcoxon test is that, based on a

95% (a = 0.05) confidence interval, the null hypothesis is rejected when lzl > 1.96.

B.3 MAPSSWE Test

Matched Pairs Sentence Segment Word Error (MAPSSWE) test, sometimes simply called

matched-pairs test, is a parametric test that looks at the numbers of errors occurring in

units that are larger than single words and smaller than entire utterances [35] [36]. The

units, called sentence segments, are chosen in a way to approximately validate the in-

dependence assumption. The segments are bounded on both sides by words correctly

recognized by both systems under test, or the beginning and end of utterances. Because

the number of units is large, the central limit theorem permits the approximate assurnp-

tion that the average number of errors per segment are normally distributed. The sentence

segments are detected using a state machine illustrated in Figure B.3.

correct 1
I error I

error

store the segment

A

state b: Have not found any error yet.
state e: If both systems are correct, then check to see if number of correct
words (# correct) equals to the minimum (min-good). If it is, then mark the
segment and go to state b.
state g: If next word is correct, increase # correct and loop back to do the
check. Otherwise, go to state e.

Figure B. 1: State machine for locating sentence segments

The term "correct" means that both of the two systems correctly recognize the current

word. The term "error" means that at least one system incorrectly recognizes the current

word. A sentence segment is thus a sequence of words that ends with a given number

(min-good) of correctly recognized words for both systems.

An example of detected sentence segments is shown below. There are four segments

detected by the state machine. For segments I and IVY A is incorrect and B is correct (a

substitution and a deletion in I, and an insertion in IV). For segment 11, A is correct and

B is incorrect (a deletion). For segment 111, both are incorrect (one substitution in A, two

in B).

I I1 I11 IV

REF: it was the best of times it was the worst of times it was

SYS A: ITS the best of times it IS the worst of times OR it was

SYS B: it was the best - times it WON the TEST of times it was

For each segment i, define di as the difference of the number of mis-recognized words

from the two systems. The hypotheses of the matched pairs test are as follows.
-

The null hypothesis Ho : d = 0

The alternative hypothesis Ha : d # 0

where d is the mean of the differences, d = EL, di/n, and n is the total number of

segments.

The test statistic is defined as z = f i q a , where a is the estimated standard devia-

tion, c2 = 5 C:=l(di - JI2. The decision rule of the matched pairs test is therefore:

reject Ho if lzl > z,, where z, is a critical value 1601 from a standard normal table

corresponding to the confidence level 100(1 - a)%. When the confidence level is 95%

(a = 0.05), 1za]=1.96.

A matched-pairs test is generally more powerful than other tests like Wilcoxon test,

due to its inherent large number of units (as it uses smaller units, sentence segments rather

than whole utterances). It is not usual that other tests reject the null hypothesis while a

matched-pairs test does not.

B.4 McNemar (Sentence Error) Test

McNemar Test applies to discrete items which are either correct or incorrect. Similar as

matched-pairs test, the McNemar test requires those items be independent. For continuous

speech, utterances can be viewed as either correct or incorrect and they do qualify the

independence test. But the words in the utterances are not a suitable items for McNemar

Test because the violation of independent assumption. The reasons are:

1. Language model (such as bigram, trigram) applied among words.

2. Current speech recognition algorithm performs an optimization at sentence level.

3. The scoring program use DP based algorithm for string comparison.

The errors are therefore highly inter-dependent at the word level. But if each spoken

phrase is reasonably short (a few words), it can be treated as an independent item, thus

the McNemar Test can be applied.

The McNemar Test is based on an Error Matrix (Table B. I).

Table B. 1: McNemar Test Error Matrix: Counts of correct and incorrect items for two
systems.

The assumptions applied to the Table B. 1 are:

#Items
System A Correct

System A Incorrect

There is little information in the numbers of instances for which: Both systems

under consideration get correct results (Noo). Both get an incorrect results (Nll).

a Noo and Nll are due to excessively easy or excessively difficult items.

System B Correct
Noo
NIO

Based on these assumptions, only Nol and Nlo are actually used in McNemar test.

The hypotheses of the test are as follows. The null hypothesis:

System B Incorrect
No1
NII -

The alternative hypothesis:

The qol represents the conditional probability that System B will make an error on an

utterance given that only one of the two algorithms makes an error.

The test statistic used in this thesis is distributed approximately as chi-squared with 1

degree of freedom

Based on a 95% confidence interval, the Z-score should be greater than X:,o,,, =

3.842.

The McNemar Test can be viewed as the sign test applied at the utterance level. It

can be applied without making many unsound assumptions. For example, for some ex-

periments with small error rates, there are often too few relevant observations to apply

parametric tests.

B.5 Significant Test Summary

Some of the assumptions (Table B.2) required for these tests (e.g. independence of errors

and the availability of sufficient errors to justify assumptions about distributions) may

not be satisfied for some experiments. We may choose to use the sign test over a more

powerful competitor because of its ease of application (Table B.4). If null hypothesis was

rejected, we are done, otherwise, we may use a more powerful test or increase the sample

size.

Choosing between Parametric and Non-parametric tests (Table B.4) depends on the

Table B.2: Significance Tests Comparison: Test Assumptions

Table B.3 : Significance Tests Comparison: Test Units

Test Name
Signed Paired Test

Wilcoxon Signed Rank Test
McNemar

Matched Pair Test

Assumptions
None other than Ho

Difference has symmetric distribution
Independence

Independence; normal distribution

sample size. For large sample size, both tests are powerful enough if their assumptions

are (at least approximately) satisfied. When not enough samples available, both tests may

be inaccurate, especially non-parametric tests, which lack statistical power.

Test Name
Signed Paired Test

Wilcoxon Signed Rank Test
McNemar

Matched Pair Test

Table B.4: Significance Tests Comparison: Whether it is a parametric test and its relative
power

Test Units
Speaker Word Accuracy Rate
Speaker Word Accuracy Rate

Sentence Error
Word Error

Power
small
large
large

largest

Test Name
Signed Paired Test

Wilcoxon Signed Rank Test
McNemar

Matched Pair Test

Parametric Test
no
no
no
Yes

Bibliography

[I] ALLEN, J. B. HOW do humans process and recognize speech? IEEE Transactions

on Acoustics, Speech, and Signal Processing, 2,4 (1994), 567-577.

[2] ANASTASAKOS, T., MCDONOUGH, J., AND MAKHOUL, J. Speaker adaptive
training: A maximum likelihood approach to speaker normalization. In Proceed-

ings of the 1997 International Conference on Acoustics, Speech, and Signal Pro-

cessing (Munich, Germany, Apr. 1997), pp. 1043-1 046.

[3] ANASTASAKOS, T., MCDONOUGH, J., SCHWARZ, R., AND MAKHOUL, J. A
compact model for speaker adaptive training. In Proceedings of Fourth Interna-

tional Conference on Spoken Language Processing (Philadelphia, PA, Jan. 1996),
pp. 1137-1 140.

[4] AUBERT, X., AND THELEN, E. Speaker adaptive training applied to continuous
mixture density modeling. In Proceedings of Fifth European Conference on Speech

Communication and Technology (Rhodes, Greece, Sep. 1997), pp. 185 1-1 854.

[5] AUBERT, X. L. An overview of decoding techniques for large vocabulary contin-

uous speech recognition. Computer Speech and Language 16 (2002), 89-1 14.

[6] BAHL, L. R., BROWN, P. F., SOUZA, P. V., AND MERCER, R. L. A tree-based

language model for natural language speech recognition. IEEE Transactions on

Acoustic, Speech Signal Processing 3 7 (1 989), 100 1-1008.

[7] BAHL, L. R., JELINEK, F., AND MERCER, R. L. A maximum likelihood ap-
proach to continuous speech recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 5 (1 983), 179-190.

[8] BAUM, L. E., AND PETRIE, T. Statistical inference for probabilistic functions
of finite state markov chains. Annals of Mathematical Statistics 37 (1966), 1554-
1563.

[9] BELLAGARDA, J., AND NAHAMOO, D. Tied mixture continuous parameter mod-

eling for speech recognition. IEEE Transactions on Acoustic, Speech and Signal

Processing 38 (1 990), 2033-2045.

[lo] BESAG, J. Spatial interaction and the statistical analysis of lattice systems. Journal

of Royal Statistical Society 36 (1974), 192-236.

[l 11 BOURLARD, H., AND DUPONT, S. A new ASR approach based on independent
processing and recombination of partial frequency bands. In Proceedings of Fourth

International Conference on Spoken Language Processing (Philadelphia, PA, Jan.

1996), pp. 426429.

[12] BOURLARD, H., AND DUPONT, S. Subband-based speech recognition. In Pro-

ceedings of the 1997 International Conference on Acoustics, Speech, and Signal

Processing (Munich, Germany, Apr. 1997), vol. 2, pp. 125 1-1 254.

1131 BOURLARD, H., DUPONT, S., AND RIS, C. Multi-stream speech recognition.
Idiap-n: 96-07, IDIAP, 1996.

[14] BOURLARD, H., HERMANSKY, H., AND MORGAN, N. Towards increasing
speech recognition error rates. Speech Communication 18 (1996), 205-23 1.

[15] BRAND, M., OLIVER, N., AND PENTLAND, A. Coupled hidden Markov mod-
els for complex action recognition. In IEEE Conference on Computer fision and

Pattern Recognition (Puerto Rico, Jun. 1997), pp. 994-999.

[16] BREIMAN, L., FRIEDMAN, J., OLSHEN, R., AND STONE, C. Classijication and

Regression Trees. Wadsworth & Brooks, 1984.

[17] CERISARA, C., AND FOHR, D. Multi-band automatic speech recognition. Com-

puter Speech and Language 15,2 (200 l), 15 1-1 74.

[18] CERISARA, C., HATON, J. P., MARI, J. F., AND FOHR, D. A recombination
model for multi-band speech recognition. In Proceedings of the 1998 Interna-

tional Conference on Acoustics, Speech, and Signal Processing (Seattle, Washing-
ton, May 1998), pp. 717-720.

[19] CHEN, S ., AND GOPALAKRISHNAN, P. S. Speaker, environment and channel

change detection and clustering via the bayesian information criterion. In Broad-

cast News Transcription and Understanding Workshop (Lansdowne, Virginia, Feb.

1998), pp. 127-132.

[20] CHOU, K., WILLSKY, A., AND BENVENISTE, A. Multiscale recursive estima-
tion, data fusion, and regularization. IEEE Transactions on Automatic Control, 39

(1 994), 46449 1.

[21] CHRISTENSEN, H., LINDBERG, B., AND ETC. Employing heterogeneous infor-
mation in a multi-stream framework. In Proceedings of the 2000 International

Conference on Acoustics, Speech, and Signal Processing (Istanbul, Turkey, Jun.

2000), vol. 3, pp. 157 1-1574.

[22] DAVIS, S., AND MERMELSTEIN, P. Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences. IEEE Transac-

tions on Acoustics, Speech, and Signal Processing, 28 (1980), 357-366.

[23] DEMPSTER, A. D., LAIRD, N. M., AND RUBIN, D. B. Maximum likelihood
from incomplete data via the EM algorithm. Journal of Royal Statistics Society,

Series B 39 (1977), 1-38.

[24] DENES, P. D., AND PINSON, E. N. The Speech Chain: The physics and biology

of spoken language. W.H. Freeman and Company, New York, 1993.

[25] DIGALAKIS, V., MONACO, P., AND MURVEIT, H. Genones: Generalized mixture

tying in continuous speech hmm-based speech recognizers. IEEE Transactions on

Speech and Audio Processing 4 (1996), 283-289.

[26] EIDEN, E., AND GISH, H. A parametric approach to vocal tract length normaliza-
tion. In Proceedings of the 1996 International Conference on Acoustics, Speech,

and Signal Processing (Atlanta,Georgia, May 1996), pp. 346-349.

[27] ELLIS, D. W. P., SINGH, R., AND SIVADAS, S . Tandem acoustic modeling in
large-vocabulary recognition. In Proceedings of the 2001 International Conference

on Acoustics, Speech, and Signal Processing (Salt Lake City, Utah, May 2001),
vol. 1, pp. 5 17-520.

[28] F ~ s c u s , J. G. A post-processing system to yield reduced word error rates: Rec-
ognizer output voting error reduction (ROVER). In IEEE Workshop on Automatic

Speech Recognition and Understanding (Santa Barbara, California, Dec. 1997),

pp. 347-354.

[29] FLETCHER, H. Speech and Hearing in Communication. Robert E. Krieger Pub-
lishing Company, Huntington, New York, 1953.

[30] FURUI, S. Cepstral analysis technique for automatic speaker verification. IEEE

Transactions on Acoustics, Speech, and Signal Processing 29,2 (1 98 I), 254-272.

[3 11 FURUI, S. Speaker-independent isolated word recognition using dynamic fea-
tures of speech spectrum. In Proceedings of the 1986 International Conference on

Acoustics, Speech, and Signal Processing (Tokyo, Japan, Apr. 1986), pp. 52-59.

[32] GADDE, R., STOLCKE, A., VERGYRI, D., ZHENG, J., SONMEZ, K., AND

VENKATARAMAN, A. Building an ASR system for noisy environments:SRl's 200 1

SPINE evaluation system. In Proceedings of Seventh International Conference on

Spoken Language Processing (Denver, Colorado, Sep. 2002), vol. 3, pp. 1577-

1580.

[33] GAUVAIN, J. L., AND LEE, C. H . Maximum a posteriori estimation for multivari-
ate gaussian mixture observations of markov chains. IEEE Transactions on Speech

Audio Processing, 2 (1 994), 29 1-298.

[34] GHAHRAMANI, Z., AND JORDAN, M. Factorial hidden Markov models. In Ad-

vances in Neural Information Processing Systems (Denver, Colorado, Apr. 1995),
vol. 8, pp. 472478.

[35] GILLICK, L., AND COX, S. J. Some statistical issues in the comparison of
speech recognition algorithms. In Proceedings of the 1989 International Confer-

ence on Acoustics, Speech, and Signal Processing (Glasgow, Scotland, May 1989),
pp. 532-535.

[36] GILLICK, L., AND COX, S. J. Tools for the analysis of benchmark speech recog-
nition tests. In Proceedings of the 1990 International Conference on Acoustics,

Speech, and Signal Processing (Alburquerque, New Mexico, Apr. 1990), pp. 97-
100.

[37] GREENBERG, S. Understanding speech understanding: Towards a unified theory
of speech perception. In ESCA Workshop on The Auditory Basis of Speech Percep-

tion (Keele University, UK, Jul. 1996), pp. 1-8.

[38] HAEB-UMBACH, R., AND NEY, H. Improvements in time-synchronous beam
search for 10,000 word continuous speech recognition. IEEE Transactions on

Speech and Audio Processing 2 (Apr. 1994), 353-356.

[39] HERMANSKY, H. Perceptuanl linear predictive (PLP) analysis of speech. Journal

of the Acoustical Society ofAmerica, 87 (1990), 1738-1752.

[40] HERMANSKY, H., ELLIS, D. P. W., AND SHARMA, S. Tandem connectionist
feature extraction for conventional HMM systems. In Proceedings of the 2000

International Conference on Acoustics, Speech, and Signal Processing (Istanbul,
Turkey, Jun. 2000), vol. 3, pp. 1635-1638.

[41] HERMANSKY, H., AND SHARMA, S. TRAPS - classifiers of temporal patterns.
In Proceedings of Fifth International Conference on Spoken Language Processing

(Sydney, Australia, Nov. 1998), vol. 3, pp. 1003-1006.

[42] HERMANSKY, H., TIBREWALA, S., AND PAVEL, M. Towards ASR on partially

corrupted speech. In Proceedings of Fourth International Conference on Spoken

Language Processing (Philadephia, PA, Oct. 1996), pp. 458461.

[43] HON, H. W., AND LEE, K. F. Recent progress in robust vocabulary-independent

speech recognition. In Fourth DARPA Speech and Natural Language Workshop

(Pacific Grove, CA, Feb. 1991), pp. 258-263.

[44] HUANG, X., ACERO, A., AND HON, H.-W. Spoken Language Processing: a

guide to theory, algorithm, and system development. Prentice Hall PTR, Upper

Saddle River, N.J., 2001.

[45] HWANG, M. Y. Subphonetic Acoustic Modeling for Speaker-Independent Contin-

uous Speech Recognition. PhD thesis, Carnege-Mellon University, 1993.

[46] HWANG, M. Y., AND HUANG, X. Shared distribution hidden markov models for
speech recognition. IEEE Transactions on Speech and Audio Processing 1 (1 993),
414420.

[47] JANIN, A,, ELLIS, D., AND MORGAN, N. Multi-stream speech recognition:

Ready for prime time? In Proceedings of Sixth European Conference on Speech

Communication and Technology (Budapest, Hungary, Sep. 1999), vol. 2, pp. 591-

594.

[48] KAJAREKAR, S ., YEGNANARAYANA, B ., AND HERMANSKY, H. A study of two

dimensional linear discriminants for ASR. In Proceedings of the 2001 International

Conference on Acoustics, Speech, and Signal Processing (Salt Lake City, Utah,
May 2001), pp. 137-140.

[49] KINGSBURY, B., JAIN, P., AND ADAMI, A. A hybrid HMM/TRAPS model for
robust voice activity detection. In Proceedings of Seventh International Conference

on Spoken Language Processing (Denver, Colorado, Sep. 2002), pp. 1 073- 1 076.

[50] LEE, C. Z., AND ~'SHAUGHNESSY, D. Clustering beyond phoneme contexts

for speech recognition. In Proceedings of Fifth European Conference on Speech

Communication and Technology (Rhodes, Greece, Sep. 1997), pp. 19-22.

[5 11 LEE, K. F. Context-dependent phonetic hidden markov models for speaker-

independent continuous speech recognition. In Readings in Speech Recognition,

A.Waibe1 and K-F.Lee, Eds. Morgan Kaufmann Publishers, Inc, 1990, pp. 347-
366.

[52] LEGGETTER, C. J., AND WOODLAND, P. C. Maximum likelihood linear regres-

sion for speaker adaptation of HMMs. Computer Speech and Language, 9 (1995),
171-186.

[53] LIPPMANN, R. P. Speech recognition by machines and humans. Speech Commu-

nication 22, 1 (1997), 1-16.

[54] LIU, C. Toward More Efective Acoustic Model Clustering by More Eficient Use

of Data in Speech Recognition. PhD thesis, OGI School of Science & Engineering
at Oregon Health & Science University, 2002.

[55] LOWERRE, B., AND REDDY, R. The harpy speech understanding system. In
Trends in Speech Recognition. Prentice Hall, 1980, pp. 340-360.

[56] MANGU, L., BRILL, E., AND STOLCKE, A. Finding consensus among words:

Lattice-based word error minimization. In Proceedings of Sixth European Confer-

ence on Speech Communication and Technology (Budapest, Hungary, Sep. 1999),

pp. 495498.

[57] MANGU, L. L. Finding consensus in speech recognition. PhD thesis, Johns Hop-
kins University, 2000.

[58] MARKEL, J. D., AND GRAY, A. H. Linear Prediction of Speech. Springer-Verlag,
1976.

[59] MARTIN, R. Noise power spectral density estimation based on optimal smoothing
and minimum statistics. IEEE Trans. Speech and Audio Processing Vol. 9, 5 (Jul.
2001), 504-512.

[60] MASON, R. L., GUNST, R. F., AND HESS, J. L. Statistical Design and Analysis

ofExperiments. John Wiley & Sons Inc, 1989.

[61] MIRGHAFORI, N., AND MORGAN, N. Combining connectionist multi-band and
full-band probability streams for speech recognition of natural numbers. In Pro-

ceedings of Fifth International Conference on Spoken Language Processing (Syd-

ney, Australia, Nov. 1998), pp. 743-746.

[62] MIRGHAFORI, N., AND MORGAN, N. Sooner or later: Exploring asynchrony in
multi-band speech recognition. In Proceedings of Sixth European Conference on

Speech Communication and Technology (Budapest, Hungary, Sep. 1999), vol. 2,
pp. 595-598.

[63] NEY, H . , HAEB-UMBACH, R., TRAN, B. H., AND OERDER, M. Improvement in
beam search for 10,000 word continuous speech recognition. In Proceedings of the

1992 International Conference on Acoustics, Speech, and Signal Processing (San

Francisco, California, Apr. 1992), pp. 9-12.

[64] NGUYEN, L., AND SCHWARTZ, R. The bbn singlephonetic-tree fast-match al-
gorithm. In Proceedings of Fifth International Conference on Spoken Language

Processing (Sydney, Australia, Nov. 1998), pp. 1 827-1 830.

[65] NOCK, H. J., AND OSTENDORF, M. Parameter reduction schemes for loosely

coupled hmrns. Computer Speech and Language 17,2-3 (2003), 233-262.

[66] NRL. http://elazar.itd.nrl .navy.mil/spine. In The Second Speech in Noisy Environ-

ments Evaluation and Workshop (200 1).

[67] O.CETIN, NOCK, H., KIRCHHOFF, K., BILMES, J., , AND OSTENDORF, M.
The 2001 GMTK-based SPINE ASR system. In Proceedings of Seventh Interna-

tional Conference on Spoken Language Processing (Denver, Colorado, Sep. 2002),
pp. 1037-1040.

[68] ODELL, J. J. The Use of Context in Large Vocabulary Speech Recognition. PhD
thesis, Queen's College, University of Cambridge, 1995.

[69] ODELL, J. J., VALTCHEV, V., WOODLAND, P. C., AND YOUNG, S. J. A one pass
decoder design for large vocabulary recognition. In Proceedings of the 1993 Inter-

national Conference on Acoustics, Speech, and Signal Processing (Minneapolis,

Minnesota, Apr. 1993), pp. 405410.

[70] ORTMANNS, S., AND NEY, H. A word graph algorithm for large vocabulary
continuous speech recognition. Computer Speech and Language 11 (1997), 43-

72.

[71] PALLETT, D., FISCUS, J., FISHER, W., AND GAROFOLO, J. Benchmark tests for

the DARPA spoken language program. In Human Language Technology Workshop

(Princeton, N.J., Mar. 1993), M.Bates, Ed., pp. 7-1 8.

[72] PAUL, D. B. Experience with a stack decoder-based HMM CSR and back-off n-
gram language models. In Fourth DARPA Speech and Natural Language Workshop

(Pacific Grove, California, Feb. 1991), pp. 284-288.

[73] PELLOM, B., AND HACIOGLU, K. Recent improvements in the CUSONIC ASR

system for noisy speech: The SPINE task. In Proceedings of the 2003 International

Conference on Acoustics, Speech, and Signal Processing (HongKong, China, Apr.

2003), vol. 1, pp. 4-7.

[74] POLYMENAKOS, L., OLSEN, P., KANVESKY, D., GOPINATH, R. A.,
GOPALAKRISHNAN, P. S., AND CHEN, S. Transcription of broadcast news -
some recent improvement to IBM's LVCSR system. In Proceedings of the 1998

International Conference on Acoustics, Speech, and Signal Processing (Seattle,
Washington, May 1998), pp. 901-904.

[75] RABINER, L., AND JUANG, B. H. Fundamentals ofspeech Recognition. Prentice

Hall, 1993.

[76] RAJ, B., AND SINGH, R. Classifier-based non-linear projection for adaptive end-
pointing of continuous speech. Computer Speech and Language 17, 1 (2003),
5-26.

[77] RAVISHANKAR, M. K. Eficient Algorithms for Speech Recognition. PhD thesis,
Carnegie Mellon University, 1996.

[78] SAVAGE, L. J. The Foundations of Statistical Inference. New York: Weley

(Methuen & Co. London), 1962.

[79] SCHWARTZ, R. M., CHOW, Y. L., ROUCOS, S., KRASNER, M., AND

MAKHOUL, J. Improved hidden markov modeling of phonemes for continu-
ous speech recognition. In Proceedings of the 1984 International Conference

on Acoustics, Speech, and Signal Processing (San Diego, California, Mar. 1984),
pp. 35.6.1-35.6.4.

[80] SILVADAS, S . , AND HERMANSKY, H. Hierarchical tandem feature extraction.
In Proceedings of the 2002 International Conference on Acoustics, Speech, and

Signal Processing (Orlando, Florida, May 2002), pp. 809-8 12.

[8 11 SINGH, R., RAJ, B ., AND STERN, R. M. Automatic clustering and generation
of contextual questions for tied states in hidden markov models. In Proceedings

of the 1999 International Conference on Acoustics, Speech, and Signal Processing

(Phoenix, Anzona, Mar. 1999), pp. 1 17-1 20.

1821 SINGH, R., SELTZER, M. L., RAJ, B., AND STERN, R. M. Speech in noisy
environment: Robust automatic segmentation, feature extraction and hypothesis

combination. In Proceedings of the 2001 International Conference on Acoustics,

Speech, and Signal Processing (Salt Lake City, Utah, May 2001), vol. 1, pp. 273-

276.

[83] TIBREWALA, S., AND HERMANSKY, H. Sub-band based recognition of noisy
speech. In Proceedings of the 1997 International Conference on Acoustics, Speech,

and Signal Processing (Munich, Germany, Apr. 1997), vol. 2, pp. 1255-1258.

[84] VITERBI, A. J. Error bounds for convolutional codes and an asymptotically op-

timal decoding algorithm. IEEE Transactions on Information 7heory 13 (1967),

260-269.

[85] WEINTRAUB, M., TAUSSIG, K., HUNICKE-SMITH, K., AND SNODGRASS, A.
Effect of speaking style on LVCSR performance. In Proceedings of Fourth Interna-

tional Conference on Spoken Language Processing (Philadephia, PA, Oct. 1996),

pp. 1619 .

[86] WILEY, J., AND SONS. Bayesian Statistics: Principles, Models, andApplications.

John Wiley & Sons, Inc., 1989.

[87] WOODLAND, P. C., LEGGETTER, C. J., ODELL, J. J., VALTCHEV, V., AND

YONG, S. J. The 1994 HTK large vocabulary speech recognition system. In Pro-

ceedings of the 1995 International Conference on Acoustics, Speech, and Signal

Processing (Detroit, Michigan, Apr. 1995), pp. 73-76.

[88] WOODLAND, P. C., ODELL, J. J., VALTCHEV, V., AND YOUNG, S. J. Large
vocabulary continuous speech recognition using HTK. In Proceedings of the 1994

International Conference on Acoustics, Speech, and Signal Processing (Adelaide,

Australia, Apr. 1994), pp. 125-1 28.

[89] Wu, X. Knowledge Constraints in Speaker Adaptation. PhD thesis, Oregon Grad-
uate Institute of Science and Technology, 2000.

[90] Wu, X., LIu, C., YAN, Y., KIM, D., CAMERON, S., AND PARR, R. The 1998
OGI-FONIX broadcast news transcription system. In Broadcast News Transcrip-

tion and Understanding Workshop (Herndon, Virginia, Feb. 1999).

[91] YAN, Y., LIU, C., AND ZHENG, C. A multiple feature front-end approach to
speech in noise. In International Conference on Signal and Image Processing

2002 (Kauai, Hawaii, Aug. 2002).

[92] YAN, Y., WU, X., SCHALKWYK, J., AND COLE, R. Development of CSLU

LVCSR: the 1997 DARPA Hub4 evaluation system. In Broadcast News Transcrip-

tion and Understanding Workshop (Lansdowne, Virginia, Feb. 1998).

[93] YAN, Y., ZHENG, C., ZHANG, J., PAN, J., HAN, J., AND LIU, J. A dynamic
cross-reference pruning strategy for multiple feature fusion at decoder run time.

In Proceedings of Eighth European Conference on Speech Communication and

Technology (Geneva, Switzerland, Sep. 2003), pp. 1 177-1 180.

[94] YOUNG, S., KERSHAW, D., ODELL, J . , OLLASON, D., VALTCHEV, V., AND

WOODLAND, P. The HTK Book. Entropic Ltd., 1999.

[95] YOUNG, S., RUSSEL, N., AND THORNTON, J. Token passing: A simple concep-

tual model for connected speech recognition systems. Tech. Rep. TR38, Cambridge

University Engineering Department, 1989.

[96] YOUNG, S. J. Large vocabulary continuous speech recognition : A review. IEEE

Signal Processing Magazine (1996), 1-23.

[97] ZAVALIAGKOS, G. Maximum A Posteriori Adaptation Techniques for Speech

Recognition. PhD thesis, Northeastern University, 1995.

[98] ZHANG, J., AND NAKAMURA, S. Modeling varying pauses to develop robust
acoustic models for recognizing noisy conversational speech. In Proceedings of

Seventh International Conference on Spoken Language Processing (Denver, Col-
orado, Sep. 2002), vol. 4, pp. 2601-2604.

[99] ZHENG, C., AND YAN, Y. Efficiently using speaker adaptation data. In Proceed-

ings of Sixth International Conference on Spoken Language Processing (BeiJing,
China, Oct. 2000), vol. 4, pp. 358-361.

[loo] ZHENG, C., AND YAN, Y. Improving speaker adaptation by adjusting the adap-

tation data set. In 2000 IEEE International Symposium on Intelligent Signal Pro-

cessing and Communication Systems (Honolulu, Hawaii, Nov. 2000), pp. 7 18-72 1.

[lo l l ZHENG, C., AND YAN, Y. Run time information fusion in speech recognition. In
Proceedings of Seventh International Conference on Spoken Language Processing

(Denver, Colorado, Sep. 2002), pp. 1077-1080.

Biographical Note

Chengyi Zheng was born in ZheJiang, China on June 16th, 1973. He attended Shanghai

JiaoTong University (SJTU) from 1991 to 1995, and obtained his Bachelor Degree in In-

formation System and Instrument Engineering in 1995. He graduated with outstanding

student honor and was waived from the national graduate entrance exam. He selected an-

other prestigious university in China, Fudan University, for his graduate study. He started

working on speech recognition as a graduate student of the computer science department.

He obtained his Master Degree of Computer Science in 1998.

From 1998 to 2004, Chengyi Zheng pursued his Ph.D. degree in Computer Science

and Engineering Department at the OGI School of Science & Engineering, which is part

of the Oregon Health & Science University (formerly Oregon Graduate Institute of Sci-

ence and Technology). His research focus was speech recognition. As part of a small

team led by Dr. Yonghong Yan, Chengyi Zheng participated in several DARPA spon-

sored worldwide competitions. Beginning with the 1998 DARPA Broadcast News, in

2001 the team obtained the 3rd place on the NIST Speech In Noise Environments test

(SPINE) under the common language model track. In 2003 the team obtained the 3rd

place in NIST Language Recognition Evaluation. His major contributions lie in improv-

ing the performance of current Large Vocabulary Continuous Speech Recognition system.

He has worked on various aspects of the speech recognition system, from speech segmen-

tation, feature extraction, acoustic and language model training and speaker adaptation to

search engine optimization.

His research interest includes: applications of speech recognition techniques, research

on speech recognition algorithms, and other related spoken language applications.

List of Publications:

ZHENG, C., LIu, X. AND LI, Z., A Chinese Speech Database for Network Service,

In Proceedings of ORIENTAL COCOSDA Workshop 1998 (Tsukuba, Japan, May

1998).

ZHENG, C., XU, Z., Sign Language Recognition System Using Image Processing,

In Journal of Computer Engineering & Application (1998, China), 1998 annual

edition.

XU, Z., ZHENG, C., YE, Z., XIE, M., Complex-valued Multistate Bidirectional

Associative Memory, In Journal of Acta Electronica Sinica, (1999), Vol 27, 118-

120.

ZHENG, C., AND YAN, Y., Efficiently Using Speaker Adaptation Data, In Proceed-

ings of Sixth International Conference on Spoken Language Processing (BeiJing,

China, Oct 2000).

ZHENG, C., AND YAN, Y., Improving Speaking Adaptation by Adjusting the

Adaptation Data Set, In Proceedings of 2000 IEEE International Symposium on

Intelligent Signal Processing and Communication Systems (Honolulu, Hawaii, Nov

2000).

YAN, Y., LIU, C., AND ZHENG, C ., A Multiple Feature Front-end Approach to

Speech in Noise, In Proceedings of International Conference on Signal and Image

Processing 2002 (Kauai, Hawaii, Aug 2002).

ZHENG, C., AND YAN, Y., Run Time Information Fusion in Speech Recognition,

In Proceedings of Seventh International Conference on Spoken Language Process-

ing (Denver,Colorado, Sep 2002).

YAN, Y., ZHENG, C . , AND ETC., A Dynamic Cross-reference Pruning Strategy for

Multiple Feature Fusion at Decoder Run Time, In Proceedings of Eighth European

Conference on Speech Communication and Technology (Geneva, Switzerland, Sep

2003).

ZHENG, C., AND YAN, Y., Fusion Based Speech Segmentation in DARPA SPINE2

Task, In Proceedings of the 2004 International Conference on Acoustics, Speech,

and Signal Processing (Montreal, Canada, May 2004).

ZHENG, C., AND YAN, Y., Information Fusion in Large Vocabulary Continuous

Speech Recognition, Submitted for publication.

