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Abstract 

Tandem Feature Extraction for Automatic Speech Recognition 

Sunil Sivadas 

Supervising Professor: Hynek Hermansky 

For ASR and many other applications, feature extraction transforms the signal to a feature 

vector that is modeled by the subsequent stochastic classifier. One of the shortcomings 

of the current feature extraction methods is that they are susceptible to recording chan- 

nel and speaker characteristics. This has been addressed by learning a transformation in 

the initial feature vector to suppress the detrimental factors. Linear and nonlinear trans- 

formations are studied. This thesis explores the transformation of features to functions 

of posterior probabilities of phonemes which are modeled by the subsequent stochastic 

classifier. Further, various models for transformation, such as generative and discrimina- 

tive, are studied. A discriminative transformation was found to be superior to generative 

transformation. Different architectures for nonlinear discriminant features are tried. A 

hierarchical tree structure is found to give marginal reduction in word error rate over a 

monolithic transformation. The problem of target class selection for feature training is 

investigated. In a context dependent phoneme classifier based speech recognition system, 

context sensitive targets are found to be advantageous. The posterior probabilities are 

estimated using a three layer multi-layer perceptron (MLP). Outputs of the MLP are used 

as features to a hidden Markov model (HMM) based classifier. The arrangement of two 

classifiers, a MLP and HMM, in cascade is called Tandem feature extraction. 

. . . 
Xlll 



Chapter 1 

Introduction 

Speech is the natural medium of communication among humans. We are able to recognize 

it effortlessly in most difficult environments. It is reasonable to think that human-machine 

communication could be improved by using speech as a medium(moda1ity) of communi- 

cation. But speech recognition by machines is not yet reliable enough to replace other 

modalities of interactions. Although Automatic Speech Recognition (ASR) is an esoteric 

problem, it has progressed significantly from "Radio Rex" in 1914, one of the first toys to 

use speech recognition in which a dog jumps out of its hut when its name is shouted, to 

where it is being used in many applications, such as dictation, telephone call automation 

and command-and-control. Although ASR enjoys considerable success, it has not reached 

the performance of humans in realistic environments. Most of this success has been due 

to designing systems specific to tasks and environments. In a survey by Lippman [69], he 

showed that the performance of ASR systems degrade drastically in adverse environments. 

ASR systems have improved since that time, but the degradation under adverse condi- 

tions still a issue preventing ubiquitous deployment of ASR systems. The most successful 

approach to ASR so far has proven to be the one based on statistical pattern recognition 

1461. The pattern recognition approach is illustrated by a simplified block diagram shown 

in Figure 1.1. 

In the first step, acoustic analysis is performed on the speech signal using a sequence 

of windows, resulting in a set of acoustic parameters once every ten millisecond. Usually, 

some form of spectral analysis, providing a smooth envelope of the speech spectrum, is 

the preferred method of acoustic analysis. 

In the second step, the likelihood of acoustic parameters for the unknown speech being 



Speech Signal Estimation 
Feature Parameters 
Extraction 

Density 
Testing Estimation 

Dictionary 

Figure 1.1: Block diagram of speech recognition system 

generated by an acoustic model, learned from a large collection of labeled speech utterances 

from many speakers using a Hidden Markov Model (HMM) based training procedure, is 

computed. Finally, in the last step, the likelihood scores are augmented with higher level 

knowledge about the speech utterance derived from a language model, the context, or task 

semantics, to produce the recognized pattern with the highest likelihood score. 

1.1 Feature extraction 

The first transformation applied to speech signal in ASR is feature extraction. In feature 

extraction, the signal is transformed (using a linear or nonlinear transformation) to a 

reduced dimension space. There are several reasons for performing feature extraction: 

to reduce the bandwidth of the input data; 

to provide a set of relevant set of features for a classifier, resulting in improved 

performance, particulary for simple classifiers; 

to reduce redundancy; 

to recover new meaningful underlying variables or features that describe the data, 

leading to greater understanding of the data generation process; 

to produce a low-dimensional representation (ideally in two dimensions) with min- 

imum loss of information so that the data may easily be viewed and relationships 

and structure in the data identified. 
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Figure 1.2: Block diagram of feature extraction. 

Due to all the reasons listed above, feature extraction is a critical step in ASR. Since 

information lost can never be recovered, the redundancy reduction has to be carefully 

designed. In principle, feature extraction is not required, if the stochastic classifier has 

enough degrees of freedom and is trained with large amount of training data containing 

all the possible speaker variability and distortions introduced by communication chan- 

nel.Since both the conditions are not physically attainable, features play an important 

role in improving the performance of classifiers. There has been numerous works in the 

past addressing various issues in feature extraction. The feature extraction technique may 

be supervised (make use of class label information) or unsupervised. Most of the current 

feature extraction techniques have an initial processing stage based on partial knowledge 

of human speech production and perception, followed by a transformation derived from 

data. Figure 1.2 shows a diagram of common current feature extraction techniques. 

Linear Predictive Coding (LPC) is an example of calculating features based on speech 

production [35]. Mel-Frequency Cepstral Coefficients (MFCC) [64] and Perceptual Linear 

Prediction (PLP) [24] are inspired by the properties of human auditory system. Subse- 

quent transformation could be linear or nonlinear and supervised or unsupervised. This 

transformation is primarily to suppress the undesired variabilities in the signal and to en- 

hance the desired variabilities that are beyond the scope of the previous transformation. 

In the case of speaker-independent ASR,the useful source of variability is the inter-class 

variability of the classes, typically subword units, modeled by the stochastic classifier and 



the undesired variabilities are inter-speaker and communication channel variabilities. Al- 

though the knowledge about human speech production and perception help us in designing 

features, [64, 241 it does not provide robustness against variabilities affecting the features. 

An example of transformation is Cepstral Mean Subtraction (CMS) [47] which provides 

robustness to variabilities introduced by the recording instrument or communication chan- 

nel. This thesis focuses on the design of transformation. 

1.2 Contributions of this work 

The main hypothesis of this work is that the best way to derive the transformation is from 

data itself. The most compact set of features to discriminate between N classes are N - 1 

class conditional aposteriori probabilities [40]. It has been shown that using functions 

of class conditional aposteriori probabilities estimated from data can be used as features 

in HMM based ASR systems [31]. There are various issues in estimating the aposteriori 

probabilities. 

How to estimate them? A posteriori probabilities are non-linear functions of 

the observation. Estimating them reliably from data could be very difficult. Since 

the estimator has to learn the non-linear function from data, there could be gen- 

eralization issues due to overfitting of the data. A posteriori probabilities can be 

estimated using discriminative or maximum likelihood learning techniques. 

What are the classes to be used? One would expect the best set of classes are 

the ones that closely matches the classes used in the subsequent stochastic classifier 

that models the distribution of the aposteriori probabilities. Typically HMM based 

recognisers use triphone models. If we assume there are approximately 50 phonemes 

in English, the number of context dependent triphones are 503 = 125,000. Not 

all the possible contexts occur due to phonotactics of the language. Although it 

is possible to maximize the discriminability among such a large number of classes, 

one usually suffers from curse of dimensionality while modeling a feature vector 

of thousand dimensions. Also it requires an estimator with large number of free 

parameters. 
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Figure 1.3: A block diagram of data-guided feature extraction. 

Figure 1.3 shows a block diagram of data-guided feature extraction. The contribution 

of this thesis can be summarized as follows 

Function of a posteriori probabilities as features for stochastic classifier 

This thesis studies various models for estimating the aposteriori probabilities. We 

show that discriminatively estimating the aposteriori probabilities is better than 

maximum likelihood estimation. We investigate various architectures for estimating 

the posteriors. 

Discriminative feature extraction We compare various linear and nonlinear dis- 

criminative feature extraction methods, such as Linear Discriminant Analysis (LDA) 

[40, 681, and Multi-Layer Perceptrons (MLP) [41]. We show that nonlinear discrim- 

inative feature extraction is better than the linear discriminative techniques. 

Estimation of features from task independent data Ideally we want to train 

the feature estimator once and reuse it on various ASR tasks. For that the fea- 

tures have to be trained on a large enough database that contains all the recording 

conditions that you may encounter in test conditions. We show that the tandem fea- 

tures generalize by training the MLP on task independent database and training the 

HMMs on task dependent database. The best performance is obtained by training 

features and HMMs on the task specific database. 

Choice of classes in data-guided feature estimation We study the effect of 



using context independent and context dependent classes in calculating the features. 

We derive new target classes by clustering context independent phonemes and show 

that they perform equally good as context independent phoneme targets. Use of 

context dependent phoneme targets provide only marginal improvement over context 

independent targets. 

1.3 Organization of the thesis 

Chapter 2 reviews feature extraction methods used in automatic speech recognition. We 

review the most commonly used short-term features based on the Short Time Fourier 

Transform of a speech signal, and various auditory like modifications applied to it before 

applying to a hidden Markov Model (HMM) based classifier. We describe data-guided 

feature extraction and various design issues involved. Two of the most popular data-guided 

feature extraction methodologies are explained, one based on parametric representation 

of input features and other based on connectionist approach. We review some of the 

existing data-guided feature extraction methods such as Linear Discriminant Analysis 

(LDA), Tandem and TempoRAl Patterns (TRAPS). 

In Chapter 3 we explain the philosophy of Tandem feature extraction in detail. Tandem 

feature extraction uses two, or more, classifiers in tandem. The first one is used to map 

the acoustic feature vector space to posterior probability space and the second classifier 

models the distribution of the posterior probability based features. 

Chapter 4 studies the various architectures for Tandem. We study discriminative and 

generative transformations of acoustic feature space. We investigate linear and nonlin- 

ear transformations. We compare monolithic versus hierarchical architecture for feature 

extraction. 

Effect of target classes used in feature extraction is studied in Chapter 5. We examine 

classes based on phoneme segmentation. Specifically we study broad phonetic categories, 

context independent phonemes, context dependent phoneme based targets. 

The effect of training the transformation and stochastic classifier on different types 

of databases is studied in Chapter 6. We investigate the situation where there is a large 



amount of task independent training data available and only a small amount of task 

dependent training data. 

Finally Chapter 7 summarizes the thesis and discusses extensions of the work. 



Chapter 2 

Data guided features 

2.1 Introduction 

In an Automatic Speech Recognition (ASR) system, the boundary between feature ex- 

traction and stochastic classifier is very fuzzy. Since the stochastic classifier makes as- 

sumption about the statistics of feature vectors, such as uncorrelated feature dimensions, 

which are violated many times, there are many approaches to bridge this gap. Feature 

extraction reduces the bandwidth, from the sampled signal, of the information flow by 

reducing the redundancy in the signal. This signal carries information about the speaker, 

message, and channel. Depending on the task some of the information is redundant or 

unwanted. For example, speaker independent ASR systems suffers from the variabilities 

due to the speaker and channel. Since the feature extraction does not completely remove 

the unwanted variability, the residual variability is modeled by the stochastic model. The 

performance of the system depends on the efficacy of feature extraction in reducing the 

redundancy and its ability to model the residual variability. If the stochastic classifier 

is complex enough to model all the sources of redundancy in the signal directly, feature 

extraction is not required. Thus as the amount of speech data increases and the number 

of learnable parameters in the stochastic classifier increases the role of feature extraction 

becomes less prominent. 

In the 70's, ASR systems were purely knowledge-based 1841. They were designed 

using rules for pattern classification and language modeling. These rules were based 

on how humans read spectrograms [13, 871. Although they worked reasonably on small 

tasks under controlled environment, they were very fragile [7]. Later, in the mid go's, 



Figure 2.1: Cepstral feature extraction. 

the knowledge-based systems were replaced by a combination of knowledge-based and 

stochastic approaches. Where as the features are largely designed based on prior knowledge 

about human auditory and production mechanism, the classifiers are based on stochastic 

modeling techniques such as Hidden Markov Models (HMM) [46] and Artificial Neural 

Networks (ANN) [60]. Stochastic classifiers learn the parameters of the model directly 

from the data. Classification is based on the likelihood of scores representing the similarity 

between the unknown pattern and each of the models.This was a major step towards data- 

guided approach to ASR. 

Although data-guided approaches are used extensively in designing stochastic classi- 

fiers, it has not been applied prominently in the design of features until recently. The 

feature extraction methods for ASR are adopted from speech coding principles. Features 

are largely designed based on the partial knowledge of how humans produce or perceive 

speech. Initial research in feature extraction has been influenced by how humans produce 

speech and speech coding principles. One example is Linear Predictive Coding (LPC) [35]. 

+Cesptral 
features 
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Typically, feature extraction for ASR consists of the processing steps shown in Figure 2.1. 
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As a first step, most of the feature extraction systems converts the speech signal into a 

vector of spectral energy values using Short Time Fourier Transform (STFT) [51]. STFT 

Short Time 
Fourier Transform 

is computed as 

-b 



where t is the discrete time index and h(t) is a symmetric window applied to the short- 

time signal and is non-zero only in the interval -k to k. Ohm's law of hearing asserts 

that human ear is insensitive to phase differences between the frequency components in 

the signal over a short duration. Typically a Hamming window of 25 ms duration is used. 

We retain only the magnitude of S(w, t). Such a window when applied on a signal which 

is sampled at 8 kHz will band-limit S ( w ,  t )  to 80 Hz in t dimension. Hence S(w, t) needs 

to be sampled at  160 Hz [37]. However, in practice, we have observed that sampling at  

100 Hz (every 10 ms) makes no difference to the processing. This is because S(w, t )  has 

little energy above 50Hz. 

To compute energy in spectral components, the squared magnitude of the S(w,t) is 

calculated. Experiments have shown that [16] the cochlear filters have non uniform fre- 

quency resolution. Psychoacoustic experiments using simultaneous frequency masking 

have revealed that the bandwidth of critical bands increases with the center frequency. 

This property of hearing is simulated in the current feature extraction modules by project- 

ing the short-time power spectrum onto the frequency responses of the simulated critical 

band filters in Bark scale [24] or Me1 scale [76]. This is simulated by, 

where fk and sp are column vectors representing the frequency response of the kth critical 

bands and the short-time power spectrum respectively. This operation yields s k  energy 

output from the kth critical band. 

Next, a compressive nonlinearity is applied to model the nonlinearities present in the 

human auditory system. This nonlinearity is typically logarithm or cubic root of the filter 

bank outputs. 

Esk = ln(sk) k = 1 , 2 .  . .15, (2.3) 

The compressed spectral energy values are then uncorrelated and dimensionality is re- 

duced. 

C = W.ls (2.4) 

where 1s is the vector of 15 logarithmic critical band energies and W the matrix whose rows 

are the decorrelating basis function. The optimal bases for decorrelation of features are the 



Eigen vectors of the total covariance matrix. They are derived using Principal Component 

Analysis (PCA) 1671. For random variables generated by a first order Markov processes, 

projection onto a cosine basis approximately decorrelates the distribution [54, 1, 581. It has 

been shown that the bases derived using PCA are very similar to Cosine bases. [26]. The 

resulting features are known as cepstral features. The cosine bases analyze the "frequency 

of the spectral values". This is analogous to the "ripple frequency analysis" in the auditory 

system [43]. 

Various psychoacoustic experiments on masking have demonstrated that in the human 

auditory system the effect of a sound can last as long as 200ms [50]. This shows the need 

for integration of information over longer time spans than the 25ms window size. Time 

derivatives of cepstral coefficients, known as "delta coefficients", 1711 was an initial attempt 

at  incorporating information over longer time spans. The typical time span of filters used 

in computing delta features is 50-100 ms. RelAtive SpecRAl (RASTA) [27] processing 

is motivated by the the observation that modulation frequencies 1251 in the range 4- 

15Hz are most important in the intelligibility of speech. RASTA processing enhances the 

modulation frequencies that are important while attenuating the the ones that are not 

carrying linguistic information. The time constant of RASTA filter is about 200ms. It 

was later shown that RASTA filter can also model forward masking [50]. 

Fletcher [22, 381 hypothesized that initial recognition of features in human speech 

processing occur independently in individual critical bands or a group of critical bands. 

They are later integrated to identify phonemes, subsequently into words and sentences. 

Sub-band based speech recognition 121, 741 is based on this hypothesis. Saul et. al. [45] 

designed a feature detector based on this hypothesis. More recently extraction of features 

independently from critical bands has been shown to be successful in ASR using TempoRAl 

Patterns (TRAPS) [30, 321 

2.3 Data-guided feature extraction 

In the previous section we saw that the features derived from the signal are based on our 

partial knowledge of human speech processing. Instead we could derive a transformation 



from the signal with a little prior knowledge about the constraints, which will also give 

insight into the nature of analysis and transformations going on inside the human auditory 

system. The transformation from measurements to a lower dimensional space may be 

a linear or nonlinear combination of the original variables and may be supervised or 

unsupervised. The transformation requires the optimization of some criterion function, 

J ( . ) .  The optimization is performed over all possible transformations of the measurements. 

We seek the transformation 5?, for which 

where x is the measurement and A(.) is the set of allowable transformations. The feature 

vector is then y = i ( x ) .  The criterion function J ( . )  is usually based on some measure 

of distance or dissimilarity between distributions, which in turn may require distances 

between objects to be defined. There are various issues in designing the transformation 

4.1. 

Archi tec ture  of fea ture  extractor:  An important issue is the allowable complex- 

ity of the function A(.) that extracts features. If the function A(.) is unstructured 

and unconstrained, then unreasonably large amounts of data and computation may 

be necessary to get a good estimate of the function. Hence in this work we use a 

family of constrained linear and nonlinear functions to extract features. 

Objective measure: The effectiveness of the approach depends on the optimality 

measure used to select the feature extraction function A(.). Ideally one would like to 

maximize the Mutual Information (MI) between the measurement x and the class Ci 

to which it belongs to, I(x,  Ci). It  has been shown that maximizing the aposteriori 

probability of class C given the measurement x, P(Ci(x), maximizes the MI, I ( x ,  Ci), 

under the condition that all the classes Ci, i = 1, . . . , N are equally likely [20]. 

Learning t h e  transformation: The ability of the estimated feature extraction 

method to generalize to new databases will determine the re-usability of the data- 

guided feature extraction module. For good generalization, the database used for 



estimating the feature extraction method should contain a sufficient sampling of all 

the possible sources of variability that we expect to encounter in the application. 

Definition of classes: If the transformation A(.) is learned in a supervised manner, 

each measurement x needs to be labeled as one of the classes Ci, i = 1,. . . , N. In 

speech recognition the classes used are related to phonemes. It is important to 

maintain consistency between the classes used in learning the transformation A(.) 

and the classes used in the subsequent stochastic classifier. 

a Measurements from signal: It is important to make minimum a priori assump- 

tions about the measurement x. Ideally we would like to use the speech signal itself 

as the initial representation. This would result in a huge search space for the trans- 

formation A(.) .  Hence it is important to structure A(.). An example can be found 

in [3] where they show the advantage of structuring the transformation A(.) over 

unstructured one. We restrict the initial measurements from signal to auditory like 

features. 

In the subsequent sections we review of some of the popular data-guided feature ex- 

traction techniques. 

2.4 Linear Feature extraction 

If the class of transformations A(.) is specified as linear, we can derive linear features 

from the measurements. The transformations can be supervised or unsupervised. Prin- 

cipal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are the most 

common linear feature extraction techniques used in speech. Both are linear transforma- 

tions based on matrices of first and second-order statistics. 

2.4.1 Principal Component Analysis (PCA) 

PCA is an unsupervised method based on a correlation or covariance matrix. 



The transformation A is orthogonal and maximizes the variances of individual components 

of y. A can be derived from the total covariance matrix ST of the measurements x 

where 

ST = E [xxT] - E [X]E [xT] 

and 

C = d iag[u~ ,  aa, . . . , up] 

is a matrix whose diagonal consists of the eigenvalues of ST and columns of A are the 

eigenvectors of ST. Detailed derivation and properties of PCA can be found in any pattern 

recognition textbook [67]. 

The most common application of PCA in speech are to uncorrelate the measurements 

x and to reduce dimensionality. It has been shown that if x is generated by a first order 

Markov process, then the principal components are Cosine bases [I]. Cosine bases are 

used extensively in uncorrelating logarithm of filter bank energy values, to compute Me1 

Frequency Cepstral Coefficients (MFCC) [76]. 

2.4.2 Linear Discriminant Analysis (LDA) 

LDA is a supervised method to find a linear combination of the measurements that maxi- 

mizes linear separability of the classes. The criterion proposed by Fisher [65] is a function 

of the ratio of between-class to within-class covariance matrices. The transformation max- 

imizes between-class separability and minimizes within-class separability. It transforms x 

to a space of dimension at  most C-1, where C is the number of classes. The transformation 

assumes that the data is normally distributed. In the transformed space, the dimensions 

are ordered in terms of 'importance of discrimination'. The within-class covariance repre- 

sents how much the samples within a class vary. Between-class covariance matrix is the 

covariance of the class conditional means. It gives a measure of the separability of class 

conditional means and hence overlap between classes in feature space.. 

A property of between-class covariance matrix and within-class covariance matrix is 

that they sum up to the total covariance and hence LDA can be viewed as decomposing 



the total variability into within-class and between-class variability. A widely used criterion 

for class separability is defined by 

where Sw and Sb are within-class covariance matrix and between-class covariance matrix 

respectively. It  has been shown that the set of basis vectors c$i, that satisfies the following 

generalized eigen-value problem 

Sb4i = Xi S w  4i r (2.11) 

maximizes F. The matrix Sb has a maximum rank of L - 1. This constrains the rank of 

[SilSb] also L - 1. Hence the maximum number of linearly independent basis functions 

obtained from the above equation is L - 1. 

The basis functions computed using LDA are optimal only under the following as- 

sumptions: 

The class conditional distributions are normal. 

All the class-conditional covariances are equal. 

Only two classes are involved in the classification. 

If the above conditions are met, then the basis functions given by LDA are guaranteed 

to be optimal and the classification error will be equal to  the Bayes' error bound. When 

these conditions are not met, dimensionality reduction using discriminant basis vectors can 

increase the overlap of class conditional distributions. This in turn causes an increase in 

the lowest theoretical achievable error. But practically, even for multi-modal distributions, 

t ~ a c e ( S ; ~ S ~ )  has been found to be a good measure for class separability unless the class 

conditional means are all the same [39]. 

LDA has been studied by Hunt and colleagues [54, 48, 49, 471 to reduce the dimen- 

sionality of the various features. They used states of HMMs as classes to  compute the 

within- and between-class covariances. These statistics were derived from trained HMMs 

representing words. Discriminant analysis was also used by Brown to process several 

concatenated feature vectors, thus addressing both temporal and spectral dimensions [62]. 



Doddington used a state specific discriminant transformation for improving the recognition 

performance. For each of the HMM states a transformation which enhances the discrimi- 

nation between that state and other confusable states was derived [17]. A comparison of 

various linear transformations as alternatives to the DCT can be found in [80, 141 

2.5 Nonlinear feature extraction 

An ideal feature extractor should be able to reduce the error to its theoretical limit, which 

is given by Bayes' error [39]. For an L class problem, the Bayes' classifier that yields 

minimum error compares L a posteriori probabilities, p(xlCi), p(xlC2) . . . ~ ( x ~ C L ) ,  and 

classifies x to the class that gives maximum a posteriori probability. Another interesting 

point is that the a posteriori probabilities are not linearly independent, since 

Only L - 1 of the L posterior probabilities are linearly independent. Hence these L - 1 

linearly independent features are the ideal set of features that would give an error which is 

equal to the error given by a Bayes' classifier. That is, by transforming the original random 

vector x into an L - 1 dimensional vector by using the transformation, yi = p(xlCi), i 

= 1, 2, . . . L - 1, no classification information is lost. Even though Bayes' error is the 

best criterion and the a posteriori probabilities the best features, a posteriori probability 

functions are hard to estimate without severe biases and variances. 

There are many methods in literature to estimate the a posteriori probabilities of 

classes. They can be broadly classified as generative and discriminative. The generative 

models maximize the likelihood of the data with respect to the parameters of the model, 

where are discriminative models maximize the separability of the classes. Two of the 

most common statistical modeling techniques for estimating a posteriori probabilities are 

parametric models and connectionist models. In general the nonlinear feature extraction 

can be formulated as 

Y = w T $ ( x )  (2.13) 

Where W is the C x m matrix with (ij) component wij, $(x) is the m-dimensional vector 



with ith component 4i(x). y = 4(x) is a nonlinear transformation of x. In the subse- 

quent sections we review two methods. The parametric models estimate the a posteriori 

probabilities indirectly using the Bayes' rule. 

where p(xlCi) is the likelihood of feature vector x given the model for class Ci, p(Ci) is 

the apriori probability of the class Ci and p(x) is the apriori probability of feature vector 

x.  Connectionist models estimate a posteriori probabilities directly from data by learning 

the nonlinear function $( .). 

2.5.1 Gaussian Mixture Models (GMM) 

If the function 4. in equation 2.13 are Gaussian densities, then we have a Gaussian Mixture 

Model (GMM). GMM is a parametric model of estimating density of the data. 

where pij are mixture weights, Ni j ( . )  are Gaussian functions and M is the number of 

Gaussian functions used for modeling the distribution. The Gaussian functions are each 

parameterized by a mean vector, pij, and a covariance matrix, Cij. The parameters are 

estimated in maximum likelihood manner from data using the well known Expectation 

Maximization (EM) algorithm [2]. The structure of GMM is specified by the number 

of components M within each class, the constraint on the covariance matrices Cij. The 

number of components depends on many factors including shape of clusters, separation, 

relative sizes, sample size and dimension of data. We use a rule of thumb, where the ratio 

of number of observations to number of variables is ten. 

GMMs can be trained in a discriminative manner also. LDA is equivalent to maximum 

likelihood classification assuming Gaussian distributions for each class with different means 

and common covariance matrix. This is extended to GMMs by having separate means, 

pij, within a class, but the covariance matrix, C, is common across all mixture components 

and across all classes [82]. This is also one way of restricting the number of parameters to 



be estimated. In discriminant analysis by GMMs, the class-conditional density for class 

Uj is expressed as 
M 

~ ( x l c i )  = C p i j ~ j ( x ;  pij7 x), 
j=1 

If the common covariance matrix C is diagonal, then we have discriminant functions similar 

to Radial Basis Functions (RBF) [ll]. 

GMMs are used extensively in acoustical modelling [9, 461 for speech and speaker 

recognition. Recently they have been used in feature extraction also. In [56] a GMM 

based front-end is used to extract spectral peak information. Another architecture, which 

is a two dimensional HMM, known as HMM2 [44] is used to extract formant features. 

Eide. et. a1 [15] used GMM to extract distinctive features. The output of GMMs are 

used as features to subsequent HMM based classifier. In this thesis we use GMMs to 

estimate likelihood of measurement x given the class models. The likelihoods are used as 

features to a GMM based classifier 

2.5.2 MultiLayer Perceptron (MLP) 

The MLP is a model that, in its simplest form, can be regarded as a generalized linear 

discriminant function in which the nonlinear function $ in equation 2.13 is flexible and 

adapt to the data. The basic MLP produces a transformation of observation x from a p 

dimensional space to an n dimensional space according to 

The functions $i are fixed nonlinearities, usually identical and of the logistic form. 

Thus, the transformation consists of projecting the data onto each of m directions de- 

scribed by the vectors oi then transforming the projected data (offset by a bias aio) by 

the nonlinear functions $i(z) and finally forming a linear combination using the weights 

wji . 

A diagrammatic representation of MLP is given in Figure 2.2. In this thesis we use 
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Figure 2.2: Illustration of a Multi-Layer Perceptron (MLP) with one input layer, one 
hidden layer and an output layer giving posterior probability estimates for each class. 

a MLP with a single hidden layer to nonlinearly transform measurements x. It has been 

shown that an MLP with a single hidden layer can approximate an arbitrary (continu- 

ous bounded integrable) function arbitrarily accurately [41]. The 'outputs' are a linear 

combination of the functions rPi. 

The MLP is a nonlinear model: the output is nonlinear function of its parameters and 

the inputs. The optimization criterion used to train the parameters is the minimization 

of classification error on a training and cross-validation databases. The parameters of the 

basis functions, as well as the linear weights are determined by back-propagation training 

procedure [lo]. 

An MLP with enough number of learnable parameters and a softmax output layer, 

when trained with " 1 from K" target coding can estimate the posterior probability of the 

classes given the input features [19, 201. We use the output of the MLP, after some further 

processing, as features in a HMM based speech recognition system. 

2.6 Description of various data-guided feature extraction 

approaches for ASR 

Several researchers have applied the data-guided feature extraction techniques explained 

in the previous sections to speech. 



2.6.1 Spectral LDA 

Malayath [57] applied LDA to derive basis functions to project logarithmic critical band 

energy values. The discriminant basis corresponding to the largest eigenvalues were found 

to be significantly different from the DCT basis and that derived by PCA. Since phonemes 

are used as the basic units in many speech recognition systems, linear discriminant anal- 

ysis (LDA) of the critical-band spectrum was carried out by with context independent 

phonemes as classes. They also showed that the features extracted by the alternative 

spectral basis functions offer advantage in phoneme classification of spectral vectors. The 

LDA-derived basis functions outperformed the conventional DCT in connected digit recog- 

nition tasks. The zero-crossings of the LDA-derived spectral basis functions are reasonably 

uniformly spaced on the Bark scale of the auditory-like critical-band spectrum. They in- 

vestigated the suitability of Mel/Bark frequency warping for phoneme recognition. The 

shape of the discriminant vectors computed using LDA determines the spectral variations 

that are important in discriminating phonemes. They observed that the discriminant 

vectors analyze the low frequency part of the spectrum with higher resolution than the 

high frequency part. This trend is consistent with the properties of auditory-like filters 

used by the conventional Mel/Bark filter-bank analysis. It  was shown that the sensitivity 

of the features extracted by these basis functions is approximately inversely proportional 

to the formant frequency. This trend in sensitivity is consistent with the properties of 

hearing. Non-uniform frequency resolution in the form of critical-band filters is mainly 

used in ASR systems to emulate the properties of basillar membrane in human ear. Using 

discriminant analysis they established a link between non-uniform frequency resolution, 

phonetic discrimination and the spectral properties of vowel-like sounds. 

2.6.2 Temporal LDA 

Using a well known statistical analysis method Multivariate ANalysis Of VAriance (MANOVA), 

Kajarekar et.al. [72] observed that the variability due to phones spreads for approximately 

250 ms around the current frame. This is in agreement with the time constant of the tem- 

poral integrator in human auditory system. They included this variability in the design of 
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Figure 2.3: A block diagram of the application of tandem feature extraction scheme in
ASR.

features using Linear Discriminant Analysis (LDA). Two types of analysis were performed.

First analysis, called joint analysis, uses all the correlations in a block of spectrogram.

Second analysis, called combined analysis, assumes that time and frequency domains are

independent. The discriminant features from both analysis are used in speech recognition

experiments. The results showed that features from joint analysis performed worse than

combined analysis because joint analysis suffered from the lack of training data and did

not generalize on the test data. They showed that performance of the speech recognition

system improves when information from a longer time-span is included in the features.

2.6.3 Tandem

Tandem is a nonlinear data guided feature extraction method [31]. A MLP is discrim-

inately trained using a labeled data-set to estimate posterior probabilities of phonemes

classes given the measurements. The posterior probabilities are used as features in a

GMMjHMM based ASR system. The distribution of the posteriors is heavily skewed and

these posteriors are correlated. To make them suitable for HMM based recognizer, first a

nonlinearity is applied to the posterior probability feature vector to make the distribution

smooth, then they are decorrelated using PCA. Unlike LDA, MLP makes little assump-

tions about the statistical properties of input features. Figure 2.3 shows a block diagram

of the application of tandem feature extraction scheme in ASR.

Since the features are posterior probabilities, it is possible to combine multiple MLPs

trained on different transformations of the speech signal. If individual MLPs are trained on

input representations that carry complementary information, a lot of gain can be obtained

by combining their outputs [73]. Ellis et al. [6] used conditional mutual information (CMI)



as a tool to estimate the amount of information that one feature stream contains about 

the other, given knowledge of the correct subword unit label. 

2.6.4 TempoRAl Patterns (TRAPS) 

Based on the Fletcher-Allen model of human speech recognition [22, 381, features or acous- 

tic events are first detected in individual critical bands. They are then integrated at  a later 

stage to detect phonemes. Hermansky et.al. [30, 321 investigated the use of frequency- 

localized temporal patterns of the speech signal for developing robust front-end in hybrid 

ANN/HMM based speech recognition system. It was later extended into GMM/HMM 

based system using Tandem feature extraction [33]. Jain et.al proposed categories that 

are based on the shape of the temporal patterns. Instead of labeling each pattern in each 

critical band with the phoneme corresponding to it, they proposed categories that repre- 

sent a small number of distinct speech-events. These categories are obtained by clustering 

the mean temporal patterns of context-independent phonemes using an agglomerative 

hierarchical clustering technique [28]. They showed that integrating information across 

multiple critical bands, up to three, was beneficial [29]. 

2.7 Summary 

In this chapter we first reviewed various feature extraction methods. We explained data- 

guided feature extraction methodology and examined design issues. We summarized a few 

popular data-guided feature extraction methods. 



Chapter 3 

Tandem feature extraction 

The motivation for Tandem feature extraction method is to use functions of posterior prob- 

abilities of abstract events in speech as features to a stochastic classifier. A data-guided 

feature extraction method for deriving features for ASR based on HMM was proposed by 

Hermansky et. a1 [33]. The technique used a Multi-Layer Perceptron (MLP) trained on the 

task-specific training data or task-independent development data to  derive mapping from 

several (possibly different) feature sets to logarithmic posteriors of context-independent 

phonemes. The log likelihoods are then further transformed through a Karhunen-Loeve 

(KL) transform, also known as Principal Component Analysis (PCA) to  a set of features 

for subsequent HMM modeling. The proposed technique was known as Tandem feature 

extraction since it has two acoustic models in tandem - first a neural-net then a GMM. 

The Tandem approach performed significantly better than either the hybrid or conven- 

tional baseline features such as PLP, MFCC [31, 731 on the Aurora noisy digits task [23], 

achieving an average 50% relative error rate reduction. Figure 3.1 shows various block 

diagrams of hybrid HMMIANN, HMM/GMM and Tandem speech recognition systems. 

Current speech recognition systems consists of three main stages. First , features are 

computed from the speech waveform to generate relatively compact feature vectors a t  a 

frame rate of 100 Hz. Secondly, these feature vectors are fed to a stochastic model which 

has been trained to assign feature vectors to  speech units; commonly, this is realized as a set 

of Gaussian Mixture Models (GMMs) of the distributions of feature vectors corresponding 

to context dependent phonemes. Finally, the output of these models provides the relative 

likelihoods for the different speech sounds needed for a hidden Markov model (HMM) 

decoder, which searches for the most likely allowable word sequence. The stochastic 
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Figure 3.1: Block diagrams of (a) Hybrid HMM-ANN system (b) HMM-GMM system and 
(c) Tandem. 

model is trained using a corpus of examples that have been manually or automatically 

labeled. This is done according to a Maximum Likelihood (ML) criteria using the EM 

algorithm. We would rather have a discriminative criterion that optimized the ability to 

distinguish different classes, rather than just the match within each class. The hybrid 

HMM-ANN framework [20] replaces the GMM stochastic model with a neural network 

(NN), discriminatively trained to estimate the posterior probabilities of each subword 

class given the data. Hybrid systems have been shown to have comparable performance 

to GMM-based systems for many corpora. 

This is not the first time that neural networks have been proposed as feature prepro- 

cessors for speech recognition. Bengio et al. [86] suggested using them to increase state 

likelihoods in HMM systems, and Rigoll et al. [18] showed significant improvements from 

an MLP inserted as a feature preprocessor into a previously-trained Gaussian-model HMM 

system, again training the net based on the HMM state. Fontaine et al. [83] use the first 

3 layers of a four-layer net as a form of Non-Linear Discriminant Analysis (NLDA), to 

emphasize the relationship to the better known linear discriminant analysis (LDA). They 



achieved a 20-25% relative error reduction for the Phonebook large-vocabulary isolated- 

word corpus. 

3.1 Methodology 

First, a hybrid connectionist-HMM system is trained , which amounts to training the 

neural network acoustic model (a conventional multi-layer perceptron (MLP) structure 

with one hidden layer) to estimate the posterior probabilities of each possible subword 

unit. The network is trained by backpropagation with a minimum-cross-entropy criterion 

to one-hot targets obtained from either hand labeling or a forced alignment of the training 

data generated using an earlier acoustic model. (For the results below, the entire training 

and realignment process was repeated several times to stabilize the labels). Input to the 

MLP is nine frames, four frames from past and four frames in future, of 8 PLP cepstral 

coefficients, 8 delta and 8 double delta features (24x9=216) after utterance based mean 

subtraction. The output of the neural network is a vector of posterior probabilities , with 

one element for each phone; one such vector is generated for context windows centered on 

each input feature vector. Conventionally (for an HMMIANN hybrid system) these would 

go directly (after division by priors) to an HMM decoder to find the word sequence , but 

instead we use them as the feature inputs for a Gaussian-mixture-based HMM system. 

Typically, the number of phones is between 30 and 50, so the total dimensionality of 

the feature space is much the same as with normal features augmented by deltas and 

double-deltas. Figure 3.2 shows spectrogram of a waveform, its auditory version using 

PLP processing and the posterior probability outputs of MLP. The figures on the left 

column illustrate the time-frequency representation of clean waveform and the output of 

MLP trained on a mixture of clean and noisy speech. The figures on the right column are 

the corresponding noisy versions of the same utterance. It can be seen that the outputs of 

the MLP are not affected much by the decrease in signal to noise ratio of the waveform. 

Because the posterior probabilities have a very skewed distribution, we find it ad- 

vantageous to warp them into a different domain, for instance by taking their logs. An 

alternative to this is to omit the final nonlinearity in the output layer of the neural network 



CD

5
1
;&

.s:::"
D.
al.....
u
'E I*'
CD
CD
.tr19
118

"D
I:: r~..
I

-.". ...
r'..."ltm.

"t'.

1::.
]i!

.!' ~
I - . ,I
= (,"'" \\~\f

1. . '1

a .. .~!
U 'I

J

8

~ ~- 0:.. .. -
('.41111>0.1,1

weifioJpads

...!

Ii

Ii

a
iii

ffn
il ...

r&

~

?;i

R

.1 ~

! Ii

~

i!i

~

II
I
t !i

,I
~

it

i!J

!:!

:!~~ ',-

,,!as aAOUaJ~anp" :aseqe~epUe!le~1Je::neOLj:Jaads

WSJfioJpads (aVo!
SJo~a.sod

Figure 3.2: Time-feature plot of spectral features and tandem features.
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during forward pass. We use the softmax nonlinearity in this position (exponentials nor- 

malized to sum to 1, so simply skipping it is very close to taking the log of the subsequent 

probabilities. Figure 3.3 shows the histogram of posterior probabilities, pre-nonlinearity 

outputs and log of the posterior probabilities. These are the two outputs, corresponding 

to "silence" and phoneme "ah", of a MLP trained to classify 23 monophones. It can be 

observed that the pre-nonlinearity outputs are more "gaussian like" distributed. 

The features constituted by the log-posteriors have the rather unusual property of 

tending to contain one large value (corresponding to the current phone) with all other 

values much smaller. We find that applying a global decorrelation via the Karhunen- 

Loeve (KL) transform improves system performance, presumably by improving the match 

of these features to the Gaussian mixture models. Figure 3.4 shows the histograms of the 

first two cepstral coefficients Co and C1 and the histogram of first two tandem features 

after KL transform. The two dominant modes in the histogram of the first tandem features 

are for speech and non-speech classes. 

What makes functions of posterior probabilities useful features? This has been ad- 

dressed in the seminal paper on tandem feature extraction [31]. Figure 3.5 shows the 

scatter diagram of features belonging to "speech" and "silence" classes. The top figure 

shows how two cepstral features X = (Co, C1) are distributed, the middle one illustrates 

the distribution of posterior probabilities,p(speechlX) and p(silencelX), and the bottom 

plot shows how the log posterior probabilities are distributed. The feature distributions 

of two classes are more separable in the posterior feature space than the cepstral feature 

space. Here, the MLP maps the input feature space, that is cepstral coefficients, to poste- 

rior feature space in which the boundaries between classes are magnified. This implies a 

low entropy regions in feature space. The overlapping regions are mapped to equal poste- 

rior or high entropy regions in feature space. This results in a transformed feature space 

which magnifies the relevant sources of variability in input feature space and minimizes 

the unwanted sources of variability. 

When the posterior for the correct class is not properly estimated (which may occur 

due to limited training data, other conditions for estimating posterior probabilities not 

being met, and/or test data that has characteristics dissimilar to the training data), the 
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Figure 3.4: Histogram of first two cepstral coefficients (CO and C1) and first two tandem 
features after PCA. 



Table 3.1: Word error rates on connected digit recognition task for hybrid HMM-ANN 
and HMM-GMM systems. 

System 
Hybrid HMM-ANN 
PLP HMM-GMM 

Tandem posterior probabilities 
Tandem log probabilities 
Tandem linear outputs 

Tandem log probabilities + KLT 
Tandem linear out~uts  + KLT 

tandem approach shows improvement over the hybrid approach. If the MLP estimates 

posterior probabilities exactly, the tandem approach provides no advantage over hybrid 

WER (%) 
5.9 
5.1 

5.7 
5.2 
4.9 
4.6 
4.4 

systems; however, perfect probability estimation is almost never observed in practice. 

Relative Improvement (%) 

13.6 1 
3.4 
11.9 
16.9 
22.0 
25.4 

3.2 Experiments 

We use digits-only subset of the OGI Numbers database [66] for recognition experiments. 

It contains a vocabulary of ten American English digits in continuous utterances of lengths 

varying from one to seven words, labeled by twenty-three phonemes. The database is split 

into approximately 20000 digits for training and 12000 digits for testing. Phoneme label 

corresponding to the center frame is used as the target class. The MLP has 216 input 

units, 500 hidden units and 23 output units. HTK [77] is used to build HMMs. Context 

dependent phonemes are modeled with 3 states and 8 gaussian components per mixture 

HMMs. 

Table 3.1 lists the WER and relative improvements. From the table, we see that the 

PLP HMM system, is 13.6% better than the hybrid HMM-ANN system. In the PLP 

HMM system acoustic models are context dependent phonemes compared to the context 

independent phonemes used in hybrid system. The best tandem system, using the pre- 

nonlinearity outputs of the MLP plus Karhunen-Loeve Transformation (KLT), reduces 

the baseline word error rate by 25.4%. The tandem features utilizes information over 195 

milliseconds of speech, whereas the PLP HMM-GMM integrates only 105 milliseconds (9 
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Figure 3.6: Word error rates vs. number of input frames to  multi layer perceptron. 

frames for computing delta and delta-delta features) of information. 
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3.2.1 Effect of number of parameters 

Length of context window 

4  

We analyze the effect varying the length of input window size and number of hidden units 

in MLP on word error rate. While varying the number of input units the size of hidden 

layer is fixed a t  500. Figure 3.6 illustrates the change in word error rate with respect to 

width of context window. It can be observed that the decrease in word error rate saturates 

at a window length of nine. This has been previously observed by Bourlard and Morgan 

[20]. The effect of varying the number of hidden units keeping the number of input units 

constant is shown in Figure 3.7. The improvement in word error rate diminishes with 

increasing number of hidden units. As evident from the figure, it saturates a t  500. 

I 1 I I 

2 3 4  5  6 

3.3 Summary 

In this chapter we explained a method of combining the discriminative classification power 

of neural networks with the modeling capability of hidden Markov models. It  is named 
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Figure 3.7: Word error rates vs. number of hidden units in multi layer perceptron. 

tandem feature extraction due to having two classifiers in cascade. We showed, at  least 

for this task, that tandem features give a notable reduction in word error rate compared 

to PLP cepstral features. The reasons behind the improvement could be many. They may 

be due to the fact that the features are functions of posterior probabilities or it may be 

due to the discriminative training of the features or both. We analyze the reasons behind 

the success of tandem features in the next chapter. 



Chapter 4 

Tandem Architecture 

In the previous chapter we described a tandem feature extraction method using a multi 

layer perceptron (MLP)as a feature mapping tool. 

This chapter further investigates the factors responsible for improvement seen with 

tandem modeling, whether they are due to the discriminative training of the MLP or 

because they are functions of posterior probabilities. The posterior probabilities can be 

estimated from data using a discriminative or generative model. A generative model 

maximizes the likelihood of the data given the model parameters. This is usually done as- 

suming a parametric model for the distribution data. Most popular example of generative 

model is Gaussian Mixture Models (GMM), where the the distribution is assumed to be 

mixture of Gaussian components. A discriminative model, on the other hand, models the 

boundary between the classes in the feature space. A typical example of discriminative 

model is Multi-Layer Perceptron (MLP). In the next section we explain how the posteriors 

are estimated using GMMs and the next section examines various MLP architectures for 

estimating tandem features. 

4.1 Gaussian Mixture Model (GMM) front end 

In estimating the density function, p(xlCi) we assume some parametric form of distribu- 

tion. If we assume the distribution of the form 

M 

~ ( x l c i )  = C pijN,j(x; pij, 8,) 
j=1 



M where M is the number of mixture components, pij are the component weights (CjZ1 pij = 

1) and Nij(x; pij, Cij) is a multivariate Gaussian distribution with mean pij and variance 

Cij. The parameters of the model are estimated using the well known Expectation Maxi- 

mization (EM) algorithm [2]. The EM algorithm maximizes the likelihood of the training 

data given the model parameters, p(xJCi), in an iterative manner. Once we have the 

density function p(xlCi), the posterior probabilities p(Cilx) can be estimated using the 

Bayes' rule given by 

where p(Ci) is the prior probability of class Ci and p(x) is the prior probability of feature 

vector x. In the Tandem feature extraction framework, Ellis et. a1 [12] investigated the 

use of HMMs in estimating the posterior probability. Using Bayes' rule in Equation 4.2, 

they estimated posterior probabilities for each phone class p(Cilx) from the likelihoods 

~ ( l C i ) .  

Thus, the output of a first-stage GMM distribution model, trained to model phoneme 

states, and convert it into posteriors that are an approximation to the neural net outputs. 

Here GMMs were trained using maximum likelihood approach. In maximum likelihood 

estimation, densities of each states probability distribution function are estimated inde- 

pendently. It does not address the class boundaries while modeling the distributions. 

We train GMMs in both maximum likelihood and in discriminative manner to test the 

hypothesis whether it is the use of posterior probabilities as features or estimating them 

discriminatively that gives the improvement. 

GMMs can also be trained discriminatively. Modeling using GMM is a simple way of 

extending Gaussian model, or LDA, to nonlinear discriminant functions. If we assume a 

common covariance matrix for mixture components, the decision boundary is not linear. 

If we let Cij = C in equation 4.1 then in EM procedure we re-estimate only component 

weights and means only. This results in Discriminative GMM [82]. 

A logarithm is applied to the posterior probability estimates from GMM to increase 

the spread of their distribution. They are then decorrelated using PCA. The final feature 

vector is applied to a GMM/HMM recognizer. 



Table 4.1: Frame error rates on OGI stories for GMMs and MLPs. 

4.1.1 GMM training 

The English part of OGI Stories database [66] was used to  train GMMs. It is approximately 

3 hours of hand-labeled speech data. It  is labeled by the ICSI56 phoneme set. GhlMs are 

trained to model the feature space constructed using 8 PLP cepstral coefficients, 8 delta 

and 8 double delta features (=24 dimensions) after utterance based mean subtraction. 

There are 56 GMMs, each GMM models the conditional density of the phonemes in the 

training set. Table 4.1 gives the frame error rates for GMMs trained using the standard 

EM algorithm and the discriminant method. The feature space for MLP discriminant 

functions is constructed using nine frames, four frames from past and four frames in 

future, of PLP cepstral coefficients after utterance based mean subtraction. Phoneme 

label corresponding to the center frame is used as class. MLP has 216 input units, 500 

hidden units and 56 output units. MLPs are trained using the backpropagation algorithm 

[lo] using the learning rate reduction approach that was developed by [20]. The stopping 

criterion is based on the performance on a held out cross-validation data, which is 10% 

of the entire training data. In GMM, the best frame accuracy was obtained using 32 

mixture components per phoneme. Increasing the components resulted in decrease of 

frame accuracy. In the case of Discriminative GMM the number of components per mixture 

was increased to 64. From Table 4.1 it can be seen that the "Discriminative GMM" gives 

better frame error rates then standard GMM inspite of having a much simpler model 

assumption. Next we perform connect digit recognition experiments using the tandem 

features derived using GMMs. 



Table 4.2: Word error rates on connected digit recognition task for GMM tandem system. 
In the case of Tandem features the dimensinality of the features vector is the number of 
components retained after PCA. 

4.1.2 Connected Digit Recognition Results 

WER (%) 
5.1 
5.8 
6.1 
5.3 
5.8 
4.7 
4.9 

Type of feature 
PLP with A and A2 

GMM-Tandem 

Discriminative GMM-Tandem 

MLP-Tandem 

Digit recognition experiments are performed on OGI Numbers database. Subword units 

are modeled using 3 state left-to-right context dependent phoneme HMMs with 8 Gaus- 

sianslstate and diagonal covariance matrix. The HMM recognizer is implemented using 

HTK [77]. Table 4.2 gives the baseline Word Error Rate (WER) for 8 PLP cepstral co- 

efficients, 8 delta and 8 double delta features after utterance based mean subtraction. 

The PLP cepstral features are nonlinearly transformed using GMM and MLP estimates 

of posterior probability of context dependent phonemes. The distribution of posterior 

probabilities are smoothed using logarithm nonlinearity and decorrelated using PCA. The 

PCA transformation is derived on OGI Stories database. Table 4.2 tabulates the WER 

for baseline and tandem systems. 

Number of features 
24 
56 
24 
56 
24 
56 
24 

4.1.3 Discussion 

From Table 4.2 we observe that the GMM tandem system does not give us any advan- 

tage over the baseline system. By training GMM discriminatively we make the systems 

comparable. This shows the discriminative training is the right approach. But GMMs 

lack the discriminative modeling power of MLPs. This is evident from the word error 

rates in the Table. The biggest difference between the Discriminative GMM front end 

and MLP front end is that MLP uses larger context, upto 105ms, compared to the short 



Table 4.3: Word error rates for GMM and MLP based tandem system. " PCAxxx" denotes 
the number of dimensions retained after PCA on the 9 frames of cepstral features. 

term context, upto 25ms, used in Discriminative GMM front end. Moreover MLP does 

not make any strict assumptions about the characteristics of the statistical distribution 

of the input features. To test the advantages of using a longer context to construct the 

input feature space for the nonlinear discriminant functions, we train GMMs on 9 frames 

context and MLP on single frame of input features. Since the Gaussians use diagonal 

covariance matrices, we decorrelate the concatenated feature stream using PCA before 

modeling using GMMs. Here we train only the "Discriminative GMM". Table 4.3 gives 

the WER for training the GMMs on 9 frames of input cepstral features. The last row 

gives the result with training MLP front end on single frame of cepstral features. It is 

evident from the table that the performance of the MLP front end became comparable to 

discriminative GMM when trained using one frame of cepstral features. The performance 

of the GMM front end weakened by adding more context. Using a large feature vector of 

216 dimensions will result in data sparsity problem and when the dimension is reduced 

to a manageable number the dimensions do not carry enough variability to represent the 

information in the 216 dimensional feature vector. 

WER (%) 
9.3 
5.9 
6.2 
6.5 

Feature transformation 
GMM (9 frames PLP+d+dd - PCA216) 
GMM (9 frames PLP+d+dd - PCA56) 
GMM (9 frames PLP+d+dd - PCA24) 

MLP (24 x 500 x 56) 

4.2 Generalized MultiLayer Perceptron (MLP) front end 

Dimensionality of tandem feature 
56 
56 
56 
56 

To investigate whether we need a MLP with two layers of nonlinearity to compute dis- 

criminant features, we study the use of a generalized Multi Layer Perceptron (MLP) 

architecture to Tandem feature extraction.In the Tandem feature extraction scheme a 

MLP with softmax output layer is discriminatively trained to estimate phoneme posterior 



probabilities on a labeled database. The outputs of the MLP after nonlinear transfor- 

mation and whitening are used as features in a Gaussian Mixture Model (GMM) based 

recognizer. Here we consider three layer MLPs with linear output layer. They nonlinearly 

transform the input data to a higher dimensional space defined by output of hidden units 

and performs Linear Discriminant Analysis (LDA) on the hidden unit outputs [8]. We 

compare the performances of these features with directly applying LDA on input data, 

which is equivalent to MLP with linear hidden and output layers. 

The objective of discriminant feature extraction is to maximize the separability 

of classes modeled subsequently by Gaussian Mixture Modelslhidden Markov models 

(GMMIHMM). The discriminative power of MLPs lies in their ability to perform non- 

linear transformation of the input patterns into a higher-dimensional space spanned by 

the outputs of the hidden units in which class separation may be easier [8]. The MLP 

maximizes a discriminant function determined by the transfer function of the output layer 

and the particular target coding scheme. This can be seen as a nonlinear extension of 

Fisher's LDA. 

The MLPs with linear output layer performs generalized LDA on the outputs of hid- 

den units [8]. They nonlinearly transform the input data to a higher dimensional space 

defined by output of hidden units and performs a linear transformation that minimizes 

the mean-square error to a set of targets.Next section describes the link between MLP 

and discriminant analysis and the characteristics of features at various layers of MLP. 

4.2.1 MLP and Discriminant Analysis 

Linear Discriminant Analysis 

LDA techniques were successfully applied to discriminative feature extraction. LDA finds 

directions of maximum linear separability between classes. The input vector is linearly 

transformed into the new feature vector. One can find many discriminant criteria in 

literature based on covariance matrices [39, 671. One such criterion is 

J = trace (c$ ,~c~)  (4.3) 



where Cw and C B  are the within-class and between-class covariance matrices respectively. 

The discriminant directions (A) are obtained from these matrices as 

A = eig (C$CB)  (4.4) 

Discriminant features (2) are obtained by projecting original features (x) on discriminant 

directions ( A ) ,  i.e., 2 = Atx. The input vector x is typically a concatenation of a few 

adjacent frames of cepstral features and the classes are phonemes or subphone units [68]. 

The relationship between LDA and linear MLP is examined in [63]. 

Nonlinear Discriminant Analysis 

The Nonlinear Discriminant Analysis (NDA) is based on a nonlinear transformation of the 

feature vectors into a new space with maximum discrimination between the classes. The 

ideal discriminant features are the posterior probabilities P(Cilx), where Ci,O < i < L 

are the L classes [39]. They can be estimated using a three layer MLP [19]. Lowe and 

Webb have shown that, under the one-from-C target coding, a nonlinear MLP with linear 

output layer maximizes the discriminant function [8], 

J = trace ( c ; $ c ~ ~ )  (4.5) 

where ChT and ChB are the total and weighted between-class covariance matrices of the 

hidden unit activation vector z. Note that in this case the outputs are not estimates 

of a-posteriori probabilities P(Cilx), although the outputs sum to one. In the case of 

MLP with softmax output nonlinearity, the outputs can be interpreted as probabilities of 

class membership conditioned on the outputs of the hidden units, P(Cilz), assuming that 

the class-conditional densities P(zlCi) belong to N o m a l  distributions that differ only in 

mean [5]. 

ai = w f z  + wio (4.8) 



and 

where wi and wio are the output layer weights and biases connected to the output node 

i, pi is the class conditional mean of the hidden unit activation vector z. In the Tandem 

approach the features are the linear transformations of hidden unit activation vector z. 

From Equations (6) and (7), tandem features can be viewed as linear discriminant func- 

tions of z [5]. Depending on the type of nonlinearity present in the output layer, the 

features derived from MLP with nonlinear hidden units are linear or nonlinear discrimi- 

nant functions of the high dimensional hidden space. As a final step, we decorrelate the 

features using PCA and may reduce the dimensionality. 

4.2.2 LDA and MLP Training 

We used two databases to train the LDA and MLP. One is the English part of OGI Stories 

database [66]. It is approximately 3 hours of hand-labeled speech data. It is labeled 

by ICSI56 phoneme set. The other is the database on which recognition is performed, 

namely, OGI Numbers database. It contains ten continuous digits in utterances varying 

between one and seven digits, labeled by twenty-three phonemes. The database is split 

into approximately 20000 digits for training and 12000 digits for testing. The reason 

for choosing OGI Stories for training the feature space is to test the generalizability of 

the various discriminant functions. Since phonemes in spoken digits have limited context 

variability, the MLP if trained on it may learn the specific contexts and may not generalize 

to other tasks. 

The feature space for discriminant functions is constructed using nine frames, four 

frames from past and four frames in future, of 8 PLP cepstral coefficients, 8 delta and 8 

double delta features (24x9=216) after utterance based mean subtraction. Phoneme label 

corresponding to the center frame is used as class. For OGI Stories there are 56 classes 

and for OGI Numbers there are 23 classes. The linear transformation matrix A is obtained 

by maximizing the criterion in Equation (1). The MLPs, with softmax and linear output 



Table 4.4: Frame error rates on training databases for MLPs. 

layer, are trained using the same target classes using one-from-N target coding scheme. 

Each MLP has 216 input units, 500 hidden units and 56(23) output units for training 

on OGI stories(Numbers). MLPs are trained using backpropagation algorithm [lo]. The 

stopping criterion is based on the performance on a held out cross-validation data, which is 

10% of the entire training data. The frame error rates for MLPs on the training databases 

are given in Table 4.4. It can be seen that the frame error rate for Stories database is 

approximately twice that of Numbers database. This may be due to the higher context 

variability in spontaneous speech and larger number of classes. The smaller error rate for 

softmax MLP may be due its ability to form more complex decision surfaces than MLP 

with just one layer of nonlinearity [5]. Figure 4.1 shows the output of MLPs, trained 

on Numbers database, with respect to time. It can be seen that estimates of posterior 

probabilities obtained using softmax nonlinearity are more distinct than the linear output 

case. 

4.2.3 Feature Extraction 

In the case of MLP features, PCA bases (derived from the MLP training data) are used to 

whiten the feature space and optionally to reduce the number of features for subsequent 

modeling by HMM. For the linear and so ftmax feature space, there are L - 1 linearly 

independent features, where L is the number of classes. This is because the outputs sum 

to one. As explained in the previous Chapter, for computing the Tandem features, the 

softmax activation function is replaced with linear activation function. Here again, PCA 

bases are applied similarly. 



MLPwithlinearoutputlayer

iIII

5
x
Q)
'C
.~ 10
Q)..
:1...
co
$15

"'".. Of...
~

-
i" ~"".~.JiI1-""~

,.

20

20 180 20040 60 80 100 120 140 160

MLP with softmaxoutputlayer

I IJIIi 11-.. I I
11;335 [ - ..

II
I

x
Q)
'C

£ 10
Q)..
:1...
co

$ 15

il J

']

D. 8c'i. ~......
T BII I[ ":i

20 20040 60 80 100 120
framenumber

140 160 180

Figure 4.1: Outputs of MLPs with linear and softmax output layer.

Feature
PLP Cep+b.+b.b.

Table 4.5: Baseline Word error rates on connected digit recognition task.
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Table 4.6: Word error rates on connected digit recognition task. "MLP-Linear" for outputs 
of MLP trained with linear output layer. 

Table 4.7: Word error rate for LDA on hidden unit outputs. 

Feature I Dimension I WER (%) 

4.2.4 Connected Digit Recognition Results 

LDA on hidden layer I 2 2 

Digit recognition experiments are performed on OGI Numbers database. Subword units 

are modeled using 3 state left-to-right context dependent phoneme HMMs with 8 Gaus- 

sianslstate and diagonal covariance matrix. The HMM recognizer is implemented using 

hidden Markov tollkit (HTK) [77]. Table 4.5 gives the baseline Word Error Rate (WER) 

for 8 PLP cepstral coefficients, 8 delta and 8 double delta features after utterance based 

mean subtraction. To keep the dimension of the feature vector same as the baseline, PCA 

is used to reduce the dimensionality of the MLP outputs from 56 to 24 when the MLP 

is trained on OGI Stories. Table 4.6 gives the WER for discriminative features, when 

they are trained on Stories and Numbers databases. It can be seen that only the Tandem 

features perform consistently better than the baseline irrespective of the training database. 

5.7 

4.2.5 Discussion 

Both LDA and MLP with linear output layer fail to provide any improvement over the 

baseline system. Both of them are derived by maximizing discriminant criteria based 

on covariance matrices. In the case of LDA the criterion is maximized on the input 



feature space, whereas it is maximized on the hidden unit activation space in the case of 

MLP. Although the linear output MLP gives better performance than LDA, the expected 

advantage by the nonlinear transformation of input features to a higher-dimensional space 

is not visible here. 

To check the performance of using another discriminant criterion, other than the one 

in Equation(3), we compute the linear discriminants on the hidden units space separately 

after the MLP has converged. We use the same discriminant function as in Equation (1). 

From Table 4.7 it can be seen that the WER obtained is similar to the MLP discriminant 

function. 

Replacing the softmax activation function of each output node by a linear function 1311 

at the output of MLP increases the spread of the distribution of the features. This results 

in better modeling by HMMs without any loss in discrimination compared to posterior 

features. T 

Figure 4.2 shows the normalized eigenvalues of the PCA matrix of MLP outputs and 

the LDA transformation matrix. The rate of roll-off of normalized eigenvalues of LDA 

is steeper than that for the MLP outputs. This shows that all the dimensions carry 

significant amount of class information in the case of MLP outputs where as they are 

highly compressed in the case of LDA. 

Figure 4.2: Normalized eigenvalues of LDA and MLPs trained on OGI Stories. 



4.3 Hierarchical discriminative front end 

Modular and hierarchical neural networks have been studied extensively in pattern recog- 

nition literature [52, 531. These networks divide the overall classification task among 

several networks. The decisions from networks are combined in a hierarchical manner to 

arrive at the overall network output. Thus the task of classifying a global set of classes, 

context-independent phonemes in the case of tandem approach, is divided into subsets. 

The partition is based on prior knowledge about the task or by data-driven clustering 

algorithms. For example, natural choice of first partitioning in the case of phonemes will 

be speech and silence. 

The hierarchical systems can have shorter training times and can have fewer param- 

eters than the monolithic neural networks. This technique has been applied to build 

connectionist acoustic models [34]. Here we investigate the effectiveness of hierarchical 

approach in feature extraction under tandem framework. This is implemented as hierar- 

chies of MLPs. We make soft splits of data using soft classification trees. This is based 

on the statistical method of factoring posteriors [36, 591 which is explained in the next 

section. 

4.3.1 Hierarchical Classification 

Factoring Posterior Probabilities 

Let L denote the set of classes Ck to be discriminated. Consider the partition of L into 

M disjoint and non-empty subsets Li such that members of Li are least confused with 

members of L j  ( V j  # i). A particular class Ck will now be a member of L and only one of 

the subsets Li. Therefore, we can rewrite the posterior probability of class Ck as a joint 

probability of the class and the corresponding subset Li and factor it according to 

Thus, the global task of discriminating between all the classes in L has been converted 

into discriminating subsets Li and independently discriminating the classes Ck remaining 



within each of the subsets Li. Recursively repeating this process yields a hierarchical 

tree-organized structure. The posterior probability for a specific class can be computed 

by multiplying all the conditional posteriors from root node to the leaf corresponding to 

the specific class. 

Conditional node posteriors can be estimated by restricting the training set of the 

corresponding MLP to the subset Li on which the probability is conditioned. Thus the 

training data for each node is shared among all its child nodes according to the partitioning 

of classes and the amount of training data decreases with increase in specialization. Due 

to the diminishing training data as we traverse down the tree and the errors in posterior 

estimation, the the design of hierarchical structure become crucial. 

4.3.2 Hierarchical Tandem System 

Hierarchical Tree Structure 

If all the nodes in the tree would compute true conditional posteriors, the tree structure 

would have no influence on the classifier performance because any kind of factoring yields 

an exact decomposition of the class posteriors.Since this not true in practice, the choice 

of tree structure is important. Due to the large number of choices at each node it is 

impossible to find an optimal structure through an exhaustive search. Hence we apply 

evidence from data and heuristics to design the tree structure. 

In speech recognition the obvious first partitioning is speech and silence. At the root 

of the tree we discriminate speech and background noise. This is motivated by the obser- 

vation that these classes are easy to distinguish acoustically. The speech subset is further 

split into voiced and unvoiced classes. The leaf nodes of the tree compute context in- 

dependent phoneme (monophone) posteriors conditioned on voiced and unvoiced classes. 

Figure 4.3 shows the topology of the hierarchy. In this paper we design a hierarchical tree 

with three levels. Table 4.8 shows the hierarchical splitting of classes. "Tandem 0" system 

is the basic tandem system with single MLP. "Tandem 1" has two levels of hierarchy and 

"Tandem 2" has three levels of hierarchy. 



Voiced Classes Unvoiced Classes 

Figure 4.3: Hierarchies of MLPs 

Table 4.8: Hierarchical splitting of classes. 

Postprocessing of Posteriors 

The posterior probabilities have a skewed distribution, making them harder to be modeled 

by mixture of Gaussian components. Different postprocessing methods to warp the pos- 

teriors into a different domain has been tried [31]. Replacing the softmax nonlinearity at  

the output layer with a linear function is shown to make the distribution more Gaussian. 

Removing the softmax is equivalent to the logarithm of the posteriors with a normalization 

constant. 



where li is the linear output corresponding to class Ci and K = l o g ( ~ E i l  exp(1i)). Since 

we have no means of obtaining K from p(Cilx) we approximate it by the average of the 

log posteriors. 

The distribution of resulting features is found to be similar to the one obtained by removing 

the softmax. As explained in the previous Chapter, diagonalization of the global covariance 

matrix of the features by PCA transformation improves the performance because the 

GMM/HMM assumes that features are uncorrelated. We retain all the feature components 

after PCA. 

4.3.3 Experimental Evaluation 

We tested the hierarchical system on SPINE1 task [61]. We need a bigger database 

than OGI stories and OGI Numbers for hierarchical splitting, because as we traverse 

down the tree, the amount of data available to train each node decreases. The task 

focuses on transcribing speech produced in noisy environments with emphasis on noisy 

military environments. It involves a medium-sized vocabulary of about 5000 words. The 

data consists of conversations between two communicators working on a collaborative, 

Battleship-like task in which they seek and shoot at targets.Each person is seated in a 

sound chamber in which a previously recorded military background noise environment is 

accurately reproduced. The speech is sampled at 16KHz. 

Perceptual Linear Prediction (PLP) cepstral features are extracted from a frame of 25 

ms of speech, every 10ms. The feature vector consists of 13 PLP coefficients augmented 

by deltas and double-deltas. They are then normalized over the utterance to zero mean 

and unit variance. The input to each MLP is a window of 9 successive feature vectors. 

The labels for training MLP are generated by the process of forced alignment as ex- 

plained in [12]. From ICSI56 context-independent phoneme set a subset of 50 phonemes 

occurring in SPINE1 data was derived. Each MLP in the hierarchy is trained by back- 

propagation with a minimum-cross-entropy criterion to 'one-up' targets obtained from the 



Table 4.9: Architecture of MLPs in the hierarchy. IU stands for number of input units, 
HU for hidden units and OU for output units. 

labels. The outputs from the MLPs are fed to the GMM/HMM system after the post- 

processing. The GMM/HMM system is trained according to the standard EM algorithm. 

We used CMU SPHINX-I11 recognizer [85] with 3 states per context-dependent phoneme 

with 2600 tied states, each modeled by a mixture of 8 Gaussians.The context-independent 

phonemes are also modeled using 3 state HMMs with 8 Gaussians per state. The tan- 

dem MLP and GMM are trained independently and use different number of context- 

independent phonemes. Table 4.3.3 shows the architecture of each MLP in the hierarchy. 

Results 

The SPHINX system was trained on 8 hours of data. Models were trained for three tandem 

features and the PLP features. Recognition was performed on 9 hours of evaluation data. 

The word error rates for all the systems are shown in Table 4.10. The recognizer was not 

tuned to improve the performance of individual systems. 

When Context Independent models are used for decoding, the tandem systems outper- 

form the PLP system. The word error rates for Context Independent models are 71.6% for 

PLP system and 50.5% for Tandem respectively. The performance of the systems tend to 

converge when context-dependent models are used for recognition. The tandem systems 

are marginally better than the PLP system. However, Tandem 2 system performs 3% 

better than the Tandem 0 system and 5% better than the PLP system. 



Type of feature Dimensions WER (%) 
PLP with A and A 

Tandem 0 
Tandem 1 
Tandem 2 37.1 

Table 4.10: Word error rates (%) with SPHINX-I11 system for various feature sets. 

4.3.4 Discussion 

We find that the tandem systems perform notably better than the PLP system with 

context-independent models whereas only marginal improvement is obtained with context- 

dependent models. It is observed that the hierarchical tandem system perform marginally 

better than the monolithic classifier based system with context-dependent models and 

worse when context-independent models are used. 

In [12] we interpreted the MLP in tandem modeling as a transformation of the feature 

space that magnifies regions around phonetic boundaries and suppressing the non-phonetic 

variability due to speaker and noise within the region corresponding to class. In the 

tandem approach we train the MLP to maximize the separability of context-independent 

phonemes with a block of 9 successive frames of feature vectors as input. The target 

phoneme corresponds to the frame at the center of the window. This introduces shift- 

invariance and suppresses the context, speaker and environmental variability. Thus there 

is little information left to be modeled by context-dependent GMMs. This explains why 

the improvements without the context-dependence in the HMM from tandem are much 

more dramatic. 

It can be observed from Table 4.3.3 that the number of parameters in Tandem 2 system 

is half of that in Tandem 0. This has reduced the training time and system complexity 

without affecting the performance. 

To investigate further the reasons for the disparity in improvements from context- 

independent and context-dependent models we tested the features with GMMs of varying 

complexity. Figure 4.4 shows the performance curve of PLP system and Tandem 2 system 

for different number of Gaussianslstate keeping the number of states per model unit same 



(=3). Increasing the number of Gaussians gives GMM additional parameters to model 

the variability in feature space within each phoneme. It can be seen from the figure that 

the performance of the tandem system and PLP system tend to converge with increasing 

number of Gaussians/state. The word error rate of PLP system reduced by 25% from 1 

Gausslstate to 8 Gausslstate whereas the tandem system improved by only 10%. Thus 

with increasing modeling complexity the GMM is able to minimise the advantages of 

discriminant transformation. 

75 - PLP 8asethe 

40 - 

Figure 4.4: Word error rates (%) of feature sets vs. Complexity of models 

4.4 Summary 

We investigated the roots for the improvement in word error rate using tandem features. 

We showed that discriminative training of the feature extractor and the use of large con- 

text are the critical factors that contributes to the improvement. We established this 

comparing a GMM based front end with MLP based front end. The GMM based front 

end fails to model the likelihood density function well when a large context is used. This 

may be due to the non Gaussian nature of the distribution of features. This is one of the 

advantages in using MLP as a feature transformation. MLP does not make any assump- 

tions about the nature of the distribution. We showed that discriminative training of the 

feature transformation is better than maximum likelihood training. Discriminative train- 

ing emphasizes the class boundaries, whereas the maximum likelihood training is unaware 



of the class boundaries. 

Using a generalized MLP architecture we compared various linear and nonlinear dis- 

criminant functions for feature extraction in this paper. An MLP trained with softmax 

nonlinearity at the output layer to estimate posterior probabilities outperforms other dis- 

criminant functions. This may be due to multiple reasons. First when the MLP is trained 

with nonlinearity in the output layer to estimate class conditional posterior probabilities, 

it can learn more complex decision regions than the the MLP with linear output layer. 

By removing the nonlinearity during the forward pass the features are more suitable for 

Gaussian mixture modeling without loss of discriminating information in the posterior 

probabilities. 

Next we presented a study on hierarchical feature extraction under tandem framework 

using a MLP tree. Hierarchical modeling offers a power method of combining multiple 

classifiers into a tree structure. We have shown that it achieves better word error rates to 

a monolithic MLP, with dramatically fewer parameters. The design of the tree was based 

on the prior knowledge of classes. The tandem modeling approach offers considerable 

advantages for low complexity systems with few subword classes especially when signal to 

noise ratio is low. 



Chapter 5 

Target class select ion 

Tandem features are trained on Context Independent (CI) targets. Subsequent stochastic 

classifier typically uses subword units that are different than CI phonemes. A common 

example is Context Dependent (CD) phoneme models that are used in state of the art 

ASR systems. Maximizing the discriminability between a set of target classes in feature 

extraction other than the classes modeled by the subsequent stochastic classifier may not 

be the optimum choice. The focus of this chapter is to investigate the effect of using 

different set of target classes in feature extraction and in acoustic model. In [12] the 

MLP is trained to discriminate between Hidden Markov Model (HMM) states of whole 

word HMMs. They observed a slight improvement in performance compared to phoneme 

targets. In a similar approach [4] neural networks are trained to map short-term spectral 

features to the posterior probability of distinctive features. They used 60 distinctive 

features comprising articulatory features [42] , plus some broad phonetic classes as targets. 

Using 44 CI phoneme targets, on a large vocabulary task they obtained better performance 

than the distinctive features . 

5.1 Context Independent Targets 

Are CI phonemes optimal targets for tandem feature extraction? In this section we try 

to find smaller set of target classes than CI phoneme classes. This results in smaller 

set of features and fewer parameters in the GMM classifier. The dimensionality of the 

feature vector can be reduced using PCA without changing the number of classes. An- 

other method is to cluster the phoneme classes. Clustering using prior knowledge such as 



voiced/unvoiced and vowel/consonant results in broad category targets. We do not know 

whether this is an optimal way of clustering. Another approach is data-driven clustering. 

Since we use a nonlinear and complex HMM classifier with multiple states and Gaus- 

s i a n ~ ,  we may not require the MLP to discriminate among all the classes. We start with 

ICSI56 phoneme set. We try four clustering methods to reduce the number of classes, 1) 

using apriori knowledge to cluster the phonemes to broad phonetic categories 2) decision 

tree based clustering [78] 3) data driven clustering of phoneme models [79] and 4) Mutual 

Information (MI) based clustering to reduce the phoneme confusions. 

5.1.1 Broad phonetic categories 

We cluster CI phonemes based on their phonetic properties to obtain seventeen broad pho- 

netic categories. The categories are front vowels, central vowels, back vowels, retroflexes, 

diphthongs, voiced plosives, unvoiced plosives, nasals, flaps, voiced fricatives, unvoiced 

fricatives, affricates, glides, voiced closures, unvoiced closures, syllabics and silence. Ta- 

ble 5.1 shows the grouping of phonemes into broad phonetic categories. The mapping from 

phonemes to the broad-phonetic-class is obtained from a International Phonetic Alphabet 

(IPA) chart. By training a MLP on these targets we are extracting phonetic "features". 

5.1.2 Data derived classes 

Extracting features based on hardwired phonetic attributes may not be optimal for clas- 

sification of phonemes. There are many approaches in literature to derive classes using 

clustering techniques. 

Decision tree based clustering 

Here phoneme models are clustered using a phonetic decision tree [78]. A phonetic decision 

tree is a binary tree with yes/no questions attached to each node. We use HTK [77] to 

build the decision tree. Initially the 56 CI phoneme are modeled using single state, single 

gaussian models. Each phoneme is renamed to have the same central phoneme. For 

example phoneme "aa" is renamed as "aa-phn+aan and phoneme "p" as "p-phn+pV, so 

that all phonemes are placed in a single cluster at the root of the tree corresponding to 



Table 5.1: Grouping of phonemes into broad categories based on International Phonetic 
Alphabet (IPA) chart. 



the central phoneme "phn". The decision tree asks whether the phoneme to the leftlright 

of the central phoneme is in a certain set, e.g. "Is the phoneme to the left or right a 

plosive?". The questions sets are borrowed from HTK's demonstration system for large 

vocabulary speech recognition. Examples are: "Vowel", " F'ricative" , "Stop", etc. The 

question that gives the maximum increase in log likelihood is chosen at each node. This 

process is repeated until the increase in log likelihood falls below a specified threshold. 

We vary the number of classes from two to fifty five by changing the.threshold. Figure 5.1 

shows an example of splitting classes using decision tree. 

Initial set of all phonemes 

Figure 5.1: Example of a phonetic decision tree. 

Broad phonetic categories are a special case of classes obtained using decision tree 

clustering. 

Data driven clustering of phoneme models 

Initially all the phoneme models are placed in individual clusters. Here again the phonemes 

are modeled using single state, single gaussian HMM. The pair of clusters which, when 

combined, would form the smallest resultant cluster are merged. This process repeats 

until the number of clusters have reached the specified number. The size of the cluster 

is defined as the greatest distance between any two phoneme models. Euclidean distance 

between the class conditional means weighted by the inverse of the variance is used as the 

distance metric. We use HTK to implement the clustering. 



M u t u a l  information based clustering 

First a hybrid HMMIMLP [20] is trained to estimate the phoneme posterior probability 

using the manually labeled training data. Using the frame level phoneme classification 

results on the training data a confusion matrix is obtained. A confusion matrix (CM) is 

a matrix of hits and misses for all phonemes. A joint Probability Distribution Function 

(PDF) is estimated from the confusion matrix by dividing each element in it with the 

total number of phoneme segments. We compute the Mutual Information (MI), I (X; C) 

between the feature vector X and phoneme C from the joint PDF. I ( X ;  C) is the reduction 

in uncertainty of the phoneme C due to the knowledge of X [81]. The pair of phonemes 

which, when combined, would result in the maximum reduction in I ( X ;  C )  are merged to 

form new classes. For example, "em" and "en" are merged in the first step to form a new 

class "em-en". The process is repeated until all the phonemes are paired. 

5.1.3 MLP training 

We used two databases in our experiments. One is the English part of OGI Stories 

database [66]. It is approximately 3 hours of hand-labeled speech data. It is labeled 

by ICSI56 phoneme set. This is used to train the MLP and in deriving new categories 

from data. The other is the database on which recognition is performed, namely, OGI 

Numbers database. The database is split into approximately 20000 digits for training and 

12000 digits for testing. Note that all the clustering schemes are performed on a database 

independent of the final recognition task. 

The baseline tandem system is trained on ICSI56 CI phonemes. Input to the MLP is 

nine frames, four frames from past and four frames in future, of 8 PLP cepstral coefficients, 

8 delta and 8 double delta features (24x9=216) after utterance based mean subtraction. 

The phoneme label corresponding to the center frame is used as the target class. MLP 

has 216 input units, 500 hidden units and 56 output units. 

The single state, single gaussian HMMs used in clustering are trained on 8 PLP cepstral 

coefficients, 8 delta and 8 double delta features. After clustering the classes using the 

aforementioned techniques, the CI phonemes are mapped to the new classes and an MLP 



Table 5.2: Word Error Rates (WER) on connected digit recognition task using CI phoneme 
targets. 

Feature 
PLP Cep+A+AA 

' Baseline Tandem 

is trained on each of the new classes. Each MLP has same number of input and hidden 

units as the baseline system, only the number of output units vary from two to fifty-five. 

5.1.4 Results 

CI models 
6.2(%) 
5.7(%) 

Connected digit recognition experiments are performed on OGI Numbers database. The 

23 context independent phonemes are modeled using 3 state left-to-right HMMs with 8 

Gaussianslstate and diagonal covariance matrix. Table 5.2 gives the Word Error Rate 

(WER) for 8 PLP cepstral coefficients, 8 delta and 8 double delta features after utter- 

ance based mean subtraction and the baseline tandem system. Context dependent (CD) 

HMM system used 3 states per HMM with 1300 tied states, each modeled by a mixture 8 

Gaussians. 

Figure 5.2 shows the WER, using CI models, for various clustering schemes and dif- 

ferent number of classes. It can be seen that WER rolls off much faster with increasing 

number of clusters using MI based clustering than decision tree based clustering and data 

driven clustering of phoneme models. The WER for MI based clustering saturates at  

29 classes, the WER=6.0% (not statistically significant compared to 5.7% at 95% confi- 

dence). The best WER of 5.5% is obtained using 34 categories. The WER for tree-based 

and data-driven clustering of phoneme models continues to improve with increase in num- 

ber of classes. The better performance of MI based clustering could be attributed to the 

complexity of the phoneme models used in clustering. Both tree based and data driven 

clustering use single state, single gaussian model (because of the limitations of the HTK 

software), whereas MI based clustering use a MLP to generate the confusion matrix. To 

verify the effect of complexity of the models used in clustering on WER we trained two sets 

of HMMs to generate phoneme confusion matrices. A single state, single gaussian model 

CD models 
5.1(%) 
4.7(%) 



Table 5.3: Results of MI based clustering. 

and three state, eight gaussian components per state model on OGI stories. Phoneme 

recognition is performed on training data and phoneme confusion matrix is obtained as 

explained in section 5.1.2. Table 5.3 compares the WER obtained for 12, 24, 36 and 48 

categories obtained using HMM and MLP. It can be seen that the more the complexity of 

the model used in estimating MI the better the WER. 

Table 5.4 compares the performance of seventeen broad categories with the same num- 

ber of classes obtained using MI based clustering. It shows that "better" target categories 

can be obtained using data driven methods than grouping based on phonetic properties. 

Figure 5.2: Word Error Rates (WER) for different clustering schemes and number of 
classes. 



Broad categories 
MI based 6.9 

Table 5.4: Word Error Rates (WER) on connected digit recognition task for seventeen 
categories obtained by MI based clustering. 

Table 5.5: Results using random clustering of phonemes. 

Random clustering 

To test whether it is the "meaningful" clustering approach that is providing the improve- 

ment, we cluster the phonemes randomly. A random number generator produces the 

indices of phonemes to be grouped. We generated three different random mappings to 

reduce the number of classes to seventeen. As shown in Table 5.5 the WER increases. 

PCA versus clustering 

The dimensionality of feature vector can be reduced using PCA. We reduce the dimension- 

ality of the baseline tandem features from 56 and compare the results with same number 

of classes obtained using MI based clustering. From Table 5.6 it can be seen that the per- 

formance of clustering is better than PCA, but not statistically significant. This suggests 

that clustering retains marginally more information for discriminating among phonemes 

than PCA. 

Table 5.6: PCA vs. MI based clustering. 



Table 5.7: Frame accuracy for HMM state targets on training and cross validation data. 

5.1.5 HMM state targets 

Cross-validation 
57.1 (%) 
36.1(%) 
39.8(%) 
40.2(%) 

When each CI phoneme is modeled using 3 state HMMs, each state models the temporal 

variability in phoneme due to context and speaking style. Here we can assume that the 

center state captures the steady part of the sound that is least affected by the context 

and the adjacent states model the effect of left and right context. There are 168(=56x3) 

state targets, resulting in a 168 dimensional feature vector. The dimensionality is reduced 

using PCA. To obtain the state targets, we force aligned OGI stories using the CI phoneme 

HMMs trained on baseline tandem features. MLP is trained on these 168 targets in the 

same fashion as with CI phoneme targets. We increased the hidden layer size from 500 to 

750 to improve the discrimination among acoustically similar targets. Table 5.7 shows the 

frame accuracy on training and cross-validation set for the MLP for various hidden layer 

sizes. 

As expected the frame error rate for 3-state targets is higher than the single state 

targets. Most of the confusions may be the result of same phoneme getting confused 

among different states within the phoneme. 

Training 
65.3(%) 
41.4(%) 
45.2(%) 
45.5(%) 

Target classes 
CI phoneme 
HMM state 

5.2 Context dependent targets 

MLP architecture (Input-Hidden-Output) 
216-500-56 
216-500-168 
216-750-168 
216-1000-168 

In the previous chapter we saw that the difference in performance between the PLP cepstral 

and tandem features diminished with increase in complexity of the HMMs. The MLP 

maximizes separability between CI phonemes whereas HMMs model context dependent 

subword units. The reduction in confusion among CI phonemes may be coming at the 

expense of increasing the confusion among context dependent phonemes. To test whether 



Table 5.8: Frame accuracy for decision tree derived targets on training and cross validation 
data. 

this is due to the mismatch in target classes used in feature extraction and acoustic 

modeling we use context dependent targets in MLP. Training an MLP with large number 

of output units that are highly overlapping is a challenging task. It will result in a high 

dimensional feature vector. We address these problems in the following subsections. 

5.2.1 Decision tree clustering of context dependent phonemes 

In HMM training decision tree clustering of context dependent HMMs is used to handle 

unseen contexts in training data and to reduce the number of free parameters [78]. In 

Section 5.1.2, we applied decision tree clustering of CI phonemes to reduce the number of 

target classes. Here we apply the same technique to cluster some of the context dependent 

phonemes to arrive at a manageable number of targets. From the single state single 

gaussian CI phoneme models in Section 5.1.2 we created "cloned" context dependent 

phoneme models. These models are then clustered using the same decision tree approach 

used in Section 5.1.2. By varying the threshold in the clustering the number of classes is 

controlled. We reduce the number of classes to 168, same number of classes as HMM state 

targets. We further reduce the number to 125, 100 and 75 to find an optimum number 

of classes that can be obtained using decision tree clustering. Table 5.8 shows the frame 

accuracy for various number of target classes. We kept the number of hidden units at  

750. As seen from the Table 5.8, the frame error rate increases with increase in number 

of decision tree clustered context dependent targets. 



/ un voice fric-vow/ /ow/ / ~ o w - ~ l i d e /  

Figure 5.3: Generalized context dependent transition targets 

5.2.2 Generalized context dependent transition (diphone) targets 

In [70] Dupont et al. used MLP to estimate posterior probabilities of context independent 

phoneme targets combined with generalized context dependent transition (diphone) tar- 

gets. As shown in Figure 5.3 the center part of the CI phoneme segment is retained as it 

is the least context sensitive part of the phoneme. To make the number of targets man- 

ageable the transitions are clustered to generalised transitions. We cluster the HMM state 

labels obtained in Section 5.1.5 to diphone transitions based on left and right context. 

The transition clusters are based on the broad phonetic classes of the left and right 

phoneme. Instead of labeling transitions defined by the left and right phonemes, the 

generalised transitions are labeled by the left and right broad phonetic classes. Here 

it is assumed that phonemes in the left and right phonetic class have similar transition 

characteristics. We use silence + 10 broad phonetic classes. Table 5.9 lists the classes 

defined based on the ICS156 phoneme set. This results in 56 (CI phonemes) + 11x11 (CD 

transitions) = 177 targets. This is comparable to the number of targets we have in HMM 

state based targets and decision tree clustered CD phonemes. Table 5.10 shows the frame 

accuracies for the generalized diphone targets for various hidden layer sizes. It can be seen 

that the frame error rate is higher compared to the HMM state based targets and decision 

tree clustered CD phonemes. This is due to the difficulty in mapping disparate acoustic 

realisations into same generalized diphone transition target. 

5.2.3 Results 

Twenty three context independent phonemes are modeled using 3 state left-to-right HMMs 

with 8 Gaussianslstate and diagonal covariance matrix. Table 5.2 gives the Word Error 

Rate (WER) for 8 PLP cepstral coefficients, 8 delta and 8 double delta features after 



Table 5.9: Broad phonetic classes. 

Table 5.10: Frame accuracies for MLP trained on generalized phoneme transition targets. 

utterance based mean subtraction and the baseline tandem system. Context dependent 

(CD) HMM system used 3 states per HMM with 1300 tied states, each modeled by a 

mixture 8 Gaussians. The dimensionality of the feature vector is too huge to be modeled 

directly by HMMs. We reduce the dimensionality of the feature vector using PCA. The 

dimensionality is varied from 56 to 100 to study the effect of dimensionality reduction 

on Word Error Rate (WER). Table 5.11 shows the performance of Tandem features with 

different feature vector dimensions. It can be observed that performance of the CD models 

improved at the expense of the performance of CI models. But the WER reduction 

obtained by CD targets is not statistically significant compared to the CI phoneme targets. 

Although the improvement is not significant, it appears that Tandem features with CD 

targets improve the performance when CD subword units are used as classes in HMMs. 

Cross-validation 
31.1(%) 
32.7(%) 
34.3(%) 

MLP architecture (Input-Hidden-Output) 
216-500-177 
216-750-177 
216-1000-177 

Training 
33.2(%) 
35.5(%) 
36. I(%) 



Table 5.11: Word Error Rates (WER) on connected digit recognition task 

66 

5.3 Summary 

We investigated alternative target definitions to CI phonemes. First, we tried to see if we 

could reduce the number of targets by grouping phonemes based on different clustering 

schemes. The MLP is trained on these new target classes. Grouping phonemes to reduce 

the mutual information between classes and features based on the phoneme confusion 

matrix has shown promising results. We have obtained performance comparable to 56 

CI phoneme targets using 34 data derived classes. This results in a classifier with fewer 

parameters without sacrificing the performance. But the advantages gained by the feature 

dimensionality reduction vanishes when the complexity of HMMs is increased, by modeling 

CD subword units or increasing number of Gaussian components. We studied the effect 

of mismatch in nature of targets used in feature extraction and acoustic modeling. By 

optimizing the separability of HMM state targets in feature extraction, we observed a 

marginal improvement in performance with CD subword HMMs. 

CD models 
4.7(%) 
4.4(%) 
4.4(%) 
4.7(%) 
4.6(%) 
4.5(%) 
4.6(%) 
4.5(%) 
4.7(%) 
4.7(%) 

Feature 
Tandem CI phoneme targets 

Tandem state targets 

Tandem decision tree targets 

Tandem diphone transition targets 

Dimensionality 
56 
56 
75 
100 
56 
75 
100 
56 
75 
100 

CI models 
5.7(%) 
6.5(%) 
6.6(%) 
7. I(%) 
6.1(%) 
6.3(%) 
6.9(%) 
6.6(%) 
6.9(%) 
7.1 (%) 



Chapter 6 

Effect of feature training data 

In the tandem feature extraction scheme a classifer is used as feature extractor. In the 

previous chapters we examined various architectures and target classes for tandem. We 

showed that a MLP trained with softmax nonlinearity in the final layer and one-from-N 

target coding scheme to estimate posterior probabilities of target classes is better than 

using a GMM or other MLP architectures. Since the MLP and HMM are trained 

separately, they can be trained on different databases as well. Current HMM based 

classifiers require large amounts of task specific training data to achieve competitive 

performance. In this chapter we investigate whether the features should be trained 

on a large amount of task independent data to reduce the requirement of task specific 

training data for the subsequent stochastic model based classifier. By task independent 

database, we mean a database that is not specific to any task but contains all the 

variability that is encountered in the test condition. Here the MLP learns to suppress 

the variability in the data that is not helpful to classification of features and enhances 

the variability that is helpful. Since the features are already trained, we expect that 

the HMMs require smaller amounts of task specific training data than when training 

them directly on acoustic features, such as PLP cepstral coefficients. This is particularly 

helpful in practical situations where one has very limited task specific data. The ultimate 

goal of this data-guided feature extraction paradigm is to  acquire permanent knowledge 

from a large amount of task independent training data and use the features in all kinds 

of speech recognition tasks. In this chapter we systematically study the performance 

of HMM based speech recognizers as a function of the amount of task specific training data. 



The next section compares the performance of features trained on task specific and 

task independent data. Subsequent sections study performance of the systems by varying 

the amount of task specific training data. 

6.1 Using Both Task Independent and Task Specific Data 

We use two databases in our experiments. 

The English part of the OGI-Multilingual Corpus [66], known as OGI-Stories, as 

task independent data. 

OGI-Numbers as task specific data. 

8 PLP cepstral features, its first and second derivates are calculated from the speech signal. 

The features are then mean and variance normalized over an utterance. The MLP uses 9 

frames of normalized cepstral features (9x24=216) as input. It has 500 hidden units and 

one node per phoneme. The MLP trained on OGI-Stories (TandstoT) has 41 output nodes 

and the MLP trained on OGI-Numbers (TandDig) has 23 output nodes. To make the 

number of features comparable to cepstral features, only the 24 dimensions corresponding 

to the largest 24 eigenvalues are retained at  the output of TandstOT after PCA. We train 

Hidden Markov Model (HMM) using HTK [77]. We use 3 state context-dependent HMMs, 

each state modeled by mixture of 8 Gaussians. HMMs are trained on both OGI-Stories 

(HMMstoT) and OGI-Numbers (HMMDig). The Word Error Rates (WER) using various 

combinations of training and testing using available databases are tabulated in Table 6.1. 

From Table 6.1 the following things can be observed. 

Tandem features perform better than PLP cepstral features irrespective of the type 

of training data. 

Training HMMs on the task specific data is better than training on task independent 

data. 

The Tandem system trained on task independent data (TandstoT - HMMstoT) 

performs better than the PLP system trained on task independent data ( P L P  - 



Table 6.1: Results using the entire task specific and task independent data. 

System 
P L P  - HMMstoT 
P L P  - HMMDig  

P L P  - H M M ~ t o r + ~ i g  
Tand~tor  - H M M s ~ o T  
Tandsto, - HMMDig  
TandDig - HMMDig  

Tandstor+~ig - HMM~tor+Dig 

HMMsto,) and comparable to  the PLP system trained on task specific data 

(PLP  - HMMDig). 

WER (%) 
5.7 
5.1 
5.3 
5.2 
4.7 
4.4 
4.5 

a The best performance is obtained by training both the MLP and HMM on task 

specific data (TandDig - HMMDig). 

6.2 Limited Amount of Task Specific Training Data 

In the previous section we compared the performance of Tandem features and PLP fea- 

tures, when all the available task-specific training data was used for training HMMs. To 

study the effect of WER on the amount of HMM training data, we compare the perfor- 

mance of HMMs trained on PLP features and HMMs trained on tandem features. We use 

the the tandem features trained on the entire task independent data, and only the HMMs 

are trained on varying amounts of task-specific data. 

The dash-dot line and dash-dash line in Figure 6.1 show the WER as a function of the 

amount of HMM training data. It can be seen that the performance of the HMM trained 

on cepstral features (dash-dot) degrades faster with reduction in training data than the 

HMM trained on tandem features (dash-dash). To confirm that this is actually due to 

the training of features and not due to  discriminative features, we train the MLP and 

HMM on the same amount of task specific data. The solid line in Figure 6.1 shows the 

WER when both the MLP and HMM are trained on same amount of task specific data. 

From the figure it can be observed that the performance of tandem and cepstral features 

are comparable when the HMMs are trained on the entire task specific data. Also, the 
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Figure 6.1: Word Error Rates (WER) for continuous digits recognition task as a function 
of the amount of training data. 

difference is greatest when there is less training data. The best performance is obtained 

when the tandem features are trained on task specific data. This explains why the WER 

for TandDig - HMMDig is lower than Tandst, - HMMDig. From the figure, it can be 

observed that when the training data for MLP is reduced severely (solid line), it starts 

over-fitting the data and performance on test data suffers. This is evident by the cross-over 

of TandDig - HMMDig (solid 1ine)performance around 60% training data. 

To verify whether this observation holds for another task, we use the Speech In Noisy 

Environments (SPINE) database [61]. It involves a medium-sized vocabulary of about 

5000 words. The data consists of conversations between two communicators working on a 

collaborative, Battleship-like task in which they seek and shoot at targets. Each person 

is seated in a sound chamber in which a previously recorded military background noise 

environment is accurately reproduced. The speech is sampled at 16KHz. PLP cepstral 

features are extracted from a frame of 25 ms of speech, every 10ms. The feature vector 

consists of 13 PLP coefficients augmented by deltas and double-deltas. They are then 

normalized over the utterance to zero mean and unit variance. The input to each MLP is 
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Figure 6.2: Word Error Rates (WER) for large vocabulary recognition task as a function 
of the amount of training data. 

a window of 9 successive feature vectors. The training set is divided into two parts, one 

is used to train MLP and the other to train HMM to simulate the task specific and task 

independent data. Figure 6.2 shows the results on SPINE data. The trend is similar to the 

small-vocabulary test data, except that the WER is higher due to the higher complexity 

of the task. 

To study the situation when the availability of task specific data is very limited, as in 

many practical situations, we use only 20% of the task specific data. From Figure 6.1 it 

can be seen that the difference in performance between cepstral features and tandem is 

the largest when the HMMs are trained with the least amount of data. 

6.2.1 Using task independent data together with a small amount of task 
specific data 

We train both HMM and MLP using the entire task independent data and 20% of the 

task specific data. Here we use only OGI Stories and Digits. Table 6.2 lists the WER 

for various combinations of training data. The following observations can be made from 



Table 6.2: Results using task independent data and small amount of task specific data. 

Table 6.2. 

Using small amounts of the task specific training data to train tandem features and 

HMM, the WER is reduced by 39% relative to HMM trained on cepstral features 

with the same amount of training data. 

Using the MLP trained on task independent data to extract features, and training 

the HMM on small amounts of task specific data, we obtain relative WER reduction 

of 62% compared to the cepstral system. 

By training the MLP and HMM on the combination of task independent data and 

a small amount of task specific data, the WER is reduced by 11%. 

6.3 Adaptation Using MLLR 

An alternate way of utilizing small amounts of task specific training data is to adapt 

the acoustic models trained on large amount of task independent data. This has been 

proved to be successful in ASR community [55, 751. There are two types of adaptation, 

supervised and unsupervised. If the true transcription of the adaptation data is known 

then it is termed supervised adaptation, whereas if the adaptation data is unlabeled then 

it is termed unsupervised adaptation. 

The most successful method of adaptation technique is Maximum Likelihood Linear 

Regression (MLLR) [55]. MLLR computes a set of transformations that will reduce the 

mismatch between an initial model set and the adaptation data. More specifically MLLR 



is a model adaptation technique that estimates a set of linear transformations for the 

mean and variance parameters of a Gaussian mixture HMM system. The effect of these 

transformations is to shift the component means and alter the variances in the initial 

system so that each state in the HMM system is more likely to generate the adaptation 

data. 

The transformation matrix used to give a new estimate of the adapted mean is given 

by 

h = W J  (6.1) 

where W  is the nx(n + 1) transformation matrix (where n is the dimensionality of the 

data) and J is the extended mean vector, 

where w represents a bias offset whose value is fixed (within HTK) at 1. Hence W  can be 

decomposed into 

W = [bA] (6.3) 

where A represents an nxn transformation matrix and b represents a bias vector. The 

transformation matrix W  is obtained by solving a maximization problem using the 

Expectation-Maximization (EM) technique. This technique is also used to compute the 

variance transformation matrix. 

We use 20% of the task specific data to adapt the acoustic models trained on task 

independent data. If a small amount of data is available then a global adaptation transform 

can be generated. A global transform is applied to every Gaussian component in the model 

set. We use HTK to implement the MLLR adaptation. Table 6.3 gives the performance 

of the HMMs trained using PLP features on various combination task independent data 

and task specific data. 

From the Table 6.3 it can be seen that when we use the a little amount of task specific 

data to adapt the acoustic models trained on task independent data, instead of mixing 

them, the performance of the baseline system becomes comparable to tandem system. 

This shows that if we have a little amount of task specific data and large amount of 



Table 6.3: Results using MLLR to adapt HMMs trained on task independent with a little 
amount of task specific data. 

task independent data, they can be utilised effectively either using a data-guided feature 

extraction technique trained on task independent data or adapting the acoustic models 

using the available task specific data. Since they are two complementary approaches, they 

can also be combined. 

6.4 Summary 

In this chapter we addressed the problem of how features trained on large amounts of task 

independent training data reduces the requirement of task specific training data for the 

HMM. With small amounts of task specific training data, the tandem system outperforms 

the cepstral system. This may be due to the knowledge acquired by the tandem features 

from the task independent data. We showed that the performance of tandem features 

is superior to cepstral features even when all the available training data is used to train 

HMM. Another efficient way to utilise the available task specific data is to adapt acoustic 

models trained on task independent data. The performance of the adapted acoustic models 

become comparable to tandem system trained on all the available data. 



Chapter 7 

Summary 

In automatic speech recognition, the speech signal is converted to the text of the mes- 

sage it carries. The message is a sequence of words and words are made of sequence of 

phonemes. The objective in speech recognition is to get the sequence of words right. The 

signal carries various sources of variabilities, such as the variability due to the message 

itself, speaker characteristics, ambient noise and characteristics of the recording channel. 

Feature extraction is the process of reducing the variabilities in the signal that are not 

important to the task and enhancing the variability of interest. In speech recognition 

we wish to preserve the variability due to the message. Traditionally features used in 

speech recognition are based on the short term spectral properties of the units. The short 

term spectrum undergoes a series of transformations before it is finally used as feature in 

a classifier. Each transformation addresses different sources of variability present in the 

signal. These transformations cannot suppress all the unwanted sources of variabilities in 

the signal. The residual sources of variabilities are modeled by training the classifier on 

large amounts of data containing all the sources of variabilities. 

This thesis investigated a data-guided feature extraction method for automatic speech 

recognition. In data-guided feature extraction a transformation is derived from the data 

to enhance the variability of interest. This could be a linear or nonlinear transformation. 

The objective measure used in deriving the transformation is generally Bayes classification 

error of phonemes or sub-phoneme speech units. Theoretically the Bayes classification 

error is minimum when posterior probabilities of classes, or functions of them, are used 

as features. In this thesis we investigated a method of using posterior probability based 

features in a hidden Markov model based speech recognition system. The thesis is broadly 



divided into three parts. In the first part we study the architecture of the transformation, 

in the second part we investigate the choice of target classes and the in the last part we 

analyze the effect of training the feature extractor on task independent data. 

In chapter 2 we reviewed feature extraction methods used in automatic speech recog- 

nition. We reviewed the most commonly used short-term features based on Short Time 

Fourier Transform of speech signal, various auditory like modifications applied to it before 

applying to a hidden Markov Model (HMM) based classifier. We described data-guided 

feature extraction and various design issues involved. Two of the most popular data-guided 

feature extraction methodologies are explained, one based on parametric representation 

of input features and the other based on a connectionist approach. We reviewed some of 

the existing data-guided feature extraction methods such as Linear Discriminant Analysis 

(LDA), Tandem and TempoRAl Patterns (TRAPS). 

The next chapter presented the motivation for Tandem feature extraction. The training 

methodology was explained in detail. We studied the statistics of Tandem features and 

how they could be used as features in a HMM based speech recognizer. It was shown 

that posterior probabilities have a skewed distribution that is difficult to be modeled by 

Gaussian mixture model based classifiers. Applying a logarithmic nonlinearity makes the 

features more gaussian. Removing the softmax nonlinearity in the final layer of the MLP 

during the forward pass gives a smoother distribution that can be easily modeled without 

loss of discriminability. 

Various architectures for Tandem were explored in chapter 4. We investigated discrimi- 

native and generative transformations of acoustic feature space. Gaussian mixture models 

(GMM) trained in a maximum likelihood manner using the expectation maximization 

algorithm were used as a generative estimator of posterior probabilities. We compared 

discriminatively trained GMM with its generative version and showed the discriminant 

training is better. Further we showed that using an MLP to estimate posterior probabili- 

ties in a discriminative manner is a better transformation. MLP has the advantage that 

it makes fewer assumptions about statistics of the input feature space. We investigated 

a hierarchical architecture for tandem feature extraction. Thus task of discriminating 

between all the classes has been converted into discriminating subsets and independently 



discriminating the classes within each subset. The posterior probability for a specific class 

was computed by multiplying all the conditional posteriors from root node to the leaf cor- 

responding to the specific class. We compared monolithic versus hierarchical architecture 

for feature extraction and found marginal improvement in the case of hierarchical features. 

HMMs use context dependent phonemes as units. The effect of difference in targets 

used in feature extraction and the classes modeled by HMM is studied in chapter 5. 

We studied broad phonetic categories, context independent phonemes, context dependent 

phoneme based targets. By using context independent phonemes as targets in feature ex- 

traction, the context variability in the initial feature space could be reduced. We analyzed 

the use of targets with context variability. The context dependent targets were derived by 

clustering the context dependent phoneme to a manageable number. The performance of 

the features with context dependent targets were only marginally better than the context 

independent targets. 

Finally the effect of training the transformation and stochastic classifier on differ- 

ent types of databases is studied. We investigated the situation where there is a large 

amount of task independent training data available and only a small amount of task de- 

pendent training data. We showed that the feature transformation, when trained on task 

independent data, performs better than the PLP cepstral features. This showed the gener- 

alizability of the feature transformation, though the best performance was obtained when 

both features and classifier were trained on task specific data. 

7.1 Contributions 

The contributions of this thesis can be summarized as follows. 

Nonlinear discriminative feature extraction We compared various linear and 

nonlinear discriminative feature extraction methods, such as Linear Discriminant 

Analysis (LDA), Gaussian Mixture Models (GMM) and Multi-Layer Perceptrons 

(MLP). Since the speech recognition consisted of two or more classifiers in tandem, 

the feature extraction method is called tandem feature extraction. LDA is an opti- 

mal feature transformation method under the assumptions that features are normally 



distributed. This is not usually the case. We showed that nonlinear discriminative 

feature extraction using a MLP is better than LDA. MLP is not constrained by the 

statistics of input feature space to derive an optimal feature transformation. This 

thesis studied various models for estimating posterior probabilities. We show that 

discriminatively estimating posterior probabilities is better than maximum likeli- 

hood estimation. We investigate various architectures for estimating the posteriors. 

A hierarchical method of computing the features was investigated. The hierarchical 

tree was constructed based on the phonetic properties of the target classes used. 

It was shown that computing features in a hierarchical manner provides better dis- 

crimination. 

Effect of training data in feature estimation We showed that the nonlinear 

feature transformation generalizes across different databases. We showed reduction 

in word error rate in a connected digit recognition task when the MLP was trained on 

a task independent database. When the availability of task specific data is limited, 

feature extractor trained on large amounts of task independent data is an elegant 

way of compensating for the lack of task specific knowledge. Adaptation of the 

classifier, trained on task independent data, using the limited task specific data is 

an alternative method. The best performance was obtained when we utilized all the 

available data, both task independent and task specific, to train both the feature 

extractor and classifier. 

Target classes in data-guided feature estimation Hidden Markov model 

(HMM) based speech recognizers typically model context dependent phonemes. Ide- 

ally the feature extractor must be optimizing he separability of the classes modeled 

by the classifier. Since these recognizers often incorporate many tens or even hun- 

dreds of thousands of such units, it is a challenging task to reliably estimate the 

posteriors. We studied the effect of using context independent and context depen- 

dent classes in calculating the features. We derived new target classes by clustering 

context independent phonemes and show that they perform equally well as context 

independent phoneme targets when HMMs also use context independent phonemes 



as units. Use of clustered context dependent phoneme targets provide only marginal 

improvement over context independent targets. 

7.2 Future Directions 

We presented a data-guided feature extraction scheme which consists of a nonlinear dis- 

criminative transformation of the input feature space to functions of posterior probabilities 

of the target classes. We showed that it performed better than the best performing PLP 

cepstral features. It has the limitation the use of features are limited by the choice of 

target classes. To use it in a different language, we need to retrain the neural net on a 

different set of phonemes present in the application. This work can be extended further 

to train the neural net on a set of targets that are universal across various languages. 

Another possibility is to derive classes automatically from the data. To test the general- 

ization ability and task independence of the MLP, a big MLP has to be trained on large 

amounts of data and has to be tested on various tasks. 



Appendix A 

ICSI 56 Phoneme Set 

Table A. l :  ICSI56 phoneme set. 

Symbol 1 Description 11 Symbol / Description 11 Symbol I Description 1 

uw 

aY 
h# 

boot 
bite 

silence 

ix 

OY 

debit 

boy 

aw 
ax 

out 
about 
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