
Task Interaction and Control System (TICS)

Mark Grossman
M.S., University of California, San Diego, 1984

B.A., State University of New York, Stony Brook, 1972

A dissertation submitted to the faculty
of the Oregon Graduate Center

in partial fulfillment of the
requirements for the degree

Doctor of Philosophy
In

Computer Science and Engineering

June, 1987

The dissertation "Task Interaction and Control System (TICS)", by Mark

Grossman, has been examined and approved by the following Examination

Committee:

David E. Maier, Thesis Advisor
Associate Professor

Lougenii' Anderson
Principal Scientist, Tektronix, Inc.

Robert G. Babb II
Associate Professor

-- --- I
Richard Hamlet
Professor

ii

Dedication

To my parents for giving me the ability,

my son for providing the inspiration,

and my advisor for his time and ideas.

iii

Table of Contents

Abstract vii

Chapter 1:

1.1

1.2

1.3

Chapter 2:

Introduction 1

Illustrative Example 3

Summary of Goals 6

Computer Algorithms as Task Solvers 8

TICS' Approach 10

2.5 System Development and TICS 24

Chapter 3: Related Research 27

Chapter 4: What Makes TICS Tick . 36

4.1 Deduction Engine 36

4.2 External Procedures . 40

4.3 Data Access Manager (DAM) 42

4.4 Data Types 43

4.5 Managing Freedom 44

Chapter 5: Examples 48

iv

2.1 Overview of TICS . 10

2.2 Horn Clause Logic 11

2.3 Extensions to Logic 14

2.4 TICS meets Pascal 21

5.1

5.2

5.3

Chapter 6:

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Chapter 7:

7.1

7.2

Bibliography

Car Buying

Plumber

Scheduling .

Implementation 79

Window Manager .

Database Access Manager 81

Horn Clause Parser .

Forward Deduction

Intelligent Backtracking .

Data Structures .

External Processes

Implementation Considerations

Conclusions

Observations .

Future Research

..

Appendix: System Predicates .

Biographical Note .

v

48

61

73

79

84

85

91

98

104

107

109

110

114

117

122

132

List of Figures

TICS Overview 37

CarBuying's Gates 59

Intermediate PlumberLayout 70

Completed PlumberLayout 71

TICS' Window Manager 80

Sample'sParser Created Structures 86

vi

Figure 4-1:

Figure 5-1:

Figure 5-2:

Figure 5-3:

Figure 6-1:

Figure 6-2:

Figure 6-3: Sample's Initial Plan With Two Nodes 89

Figure 6-4: Sample's Initial Plan With Conflicts 91

Figure 6-5: Sample's New P Ian 97

Figure 6-6: TICS' Logical Terms 99

Figure 6-7: TICS' Constraint Graphs 101

Abstract

Task Interaction and Control System (TICS)

Mark Grossman, Ph.D.
Oregon Graduate Center, 1987

Supervising Professor: David E. Maier

Task Interaction and Control System (TICS) models computer-assisted

problem-solving as the decomposition of a problem into subtasks. TICS provides a

declarative and executable specification of such a model through the use of Horn

clause logic. The logic clearly expresses the assumptions and rules that control the

composition and interaction of the predicates that solve the subtasks. The power of

logic programming to represent a hierarchical search for task solutions is augmented

in TICS by evaluable predicates. Evaluable predicates invoke external procedures

that execute as concurrent processes and whose internals are hidden from TICS.

Logic provides a rich framework to specify a space of ways to solve a problem.

This approach differs from the use of non-declarative codes and scripts to manage

tasks, which usually permit only a subset of the possible solutions. TICS promotes

user-directed exploration. Logic does not inflict artificial orderings or dependencies

among subtasks that are not present in the problem domain itself. The specific ord-

er to solve the subtasks is not dictated, the user's search being limited only by those

constraints inherent in the task and not by the rigidity of a computer program.

vii

TICS encourages trial-and-error problem-solving by carefully tracking true subtask

dependencies, and minimally undoing previous work through the use of intelligent

backtracking. TICS supports multiple techniques to cope with the need to undo

side-effects.

A prototype system was implemented in C++. Using this system to solve prob-

lems we noted that freedom from artificial constraints sometimes created a burden

of choices. TICS was enhanced to provide a flexible means to limit the number of

decisions that an end-user must consider. To guide decisions, a natural language for-

mat and menu facility were incorporated to communicate with the user. The versa-

tility of the TICS framework is illustrated through example problems that have been

implemented on our prototype system. We conclude by discussing our experience

with TICS and topics for further research.

viii

1

Chapter 1

Introduction

Etiquette is a formal code of behavior set up to regulate human interaction. A

person who deviates from the prescribed path may be frowned upon and considered

to be in error. Etiquette provides a way to implement an interactive system with a

minimum of friction. However, there is a price. This highly structured interaction,

by its rigid nature, can be exasperating in its intolerance of deviation. The system

tends to suppress individuality, creativity, originality, and exploration. In short,

such a system, by its intolerance of deviation, has an element of frustration and

boredom, and is not much fun. Most people would categorize their interactions with

computers in just this way. A highly constrained interactive system, however easy

to implement, limits the user's repertoire of approaches. The ability to effectively

solve problems with the system is greatly constrained.

To relax the rules we must keep our minds open and realize that deviation from

expectations can be positive. Not only should systems be designed to be tolerant of

errors, but the system, ideally, should encourage the experimentation that can result

in them. Deviations from behavior patterns, like biological mutations, allow for the

random incorporation of changes that might prove useful in current and future cir-

cumstances. These deviations provide for evolution. Because of them users become

better adapted to their environment.

- - - ..-.

2

In solving a complex task, a user cannot predict the ramifications of every deci-

sion. A computer system should not force the user to work out all of the implica-

tions and interplay between decisions before entering them, but should help the user

explore. Users should be able to change their minds without getting browbeaten by

the system. Serendipity is just another name for an error that proved useful. A sys-

tern creator should say, "Let there be errors." Providing a framework for the

specification and implementation of such user-oriented systems is the objective of our

Task Interaction and Control System (TICS).

Most people fret not for philosophers who are starving for lack of utensils and

common sense, and most people have two, not eight, queens on their chess boards.

They have no desire to repeatedly spend an unending amount of time streaming an

infinite list of numbers into an equally large number of prime sieves. Problems of

resource allocation, optimal search strategies and elegant abstract algorithms lie in

the domain of computer specialists. The real-world problems faced by people are

often of a different nature. Solutions are developed in the context of the user's world

of facts and rules. This world defines what constitutes an acceptable solution and

ensures that constraints imposed by reality are not violated. A typical individual

solves a complex problem by decomposing the task into more manageable subtasks,

each of which focuses on one aspect of the overall problem. Difficulties often arise

because there are inter-dependencies between the subtasks that may prevent a linear

ordering of their solutions. The solution of one subtask may depend upon and affect

the solution of other subtasks. It may be impossible or intractable to completely

3

solve each subtask before proceeding to solve the next.

1.1. Dlustrative Example

We are all at least somewhat familiar with the process of buying a car, a task

described as a pleasure by our friends in the advertising business. An individual is

limited by a number of inherent constraints while solving this problem. Some define

what is an acceptable solution, e.g., the required delivery date of the vehicle. Other

constraints define necessary temporal orderings reflecting the cause-and-effect rela-

tionships being modeled. For example, one cannot determine the price of a new vehi-

cle until that vehicle's model is specified.

Within these essential constraints a number of solutions are possible. A person

will choose solutions based upon his or her particular circumstances. In a simple

situation one may need only to select the new car's style. For this example we will

examine the more usual and complex case requiring decomposing the task into the

the following subtasks: disposing of an old vehicle, choosing the new vehicle, and

arranging for financing. Choosing a model is further decomposed into subtasks to

specify the body style and color. A purchaser may quickly solve the task by using

the package solution provided by a helpful car salesperson. This solution might con-

sist of using the old car as a trade-in and financing the new car through the dealer.

Most people prefer to customize their purchase, deriving a better solution for their

particular situation.

Purchasing a vehicle does not inherently require that anyone subtask be

started before the other. One person may wish to establish the value of their old

4

vehicle before considering options for the new vehicle; another may first wish to

determine the amount and cost of available financing. It is important to note that

different people may not only handle the tradeoffs among solutions differently, but

also may prefer to reach an overall solution via different orderings of subtasks.

Regardless of what direction the solution initially takes, decisions made while

solving each subtask will affect other, possibly completed, subtasks. For instance,

choosing a certain model could conflict with the required delivery date because such

a vehicle is not in stock and would have to be special ordered. Information derived

while solving a subtask is cooperatively used by other subtasks, even before that sub-

task is completed. Once a person selects the body style of the new vehicle, the

choice of colors offered is restricted to those available for that model. Alternatively,

if a color is first selected, then the range of body styles must be constrained to allow

only those that come in the selected color.

If a constraint is violated by an action, then a person must eventually undo a

previously solved subtask to resolve the problem. If selecting a certain model causes

the cost of the vehicle to exceed the amount of money available, an individual must

choose from among the alternatives to resatisfy the constraint. For example, one

could dispose of the old vehicle privately to raise more money, or one could select a

different model, to lower the price.

There are other reasons besides resolving constraint violations for a person

wanting to undo some previous action. A user cannot be expected to have complete

knowledge of the interrelationships of a complex system. An iterative approach may

6

be required by the user to find a satisfactory solution. The ability to change answers

provides a person with the capability to solve a problem by trying out different

choices and exploring their ramifications. One might want tentatively to change the

selected vehicle's color to learn the effect on the delivery date. Individuals some-

times use existing prototypical solutions. A person might want to start with a

salesman's initial proposal and modify it, rather than to start from scratch. Input

errors are sometimes made and facts are sometimes altered. When a salesperson

believes that a purchase will not be made because of monetary considerations, the

price of the new vehicle may be reduced or the amount offered for a trade-in

increased.

It should be as easy as possible to undo previous actions. Work done to solve

parts of a problem that are independent of a modification should not be lost. The

sequence in which subtasks are solved must not be confused with causality. Regard-

less of the order of solving a new vehicle's color and financing sub-problems, a change

in vehicle color that does not affect the car's price should not cause the financing

sub-problem to be undone. In some cases, subtask dependencies will cause a

modification to one subtask to affect other solved parts of the problem. Ideally, a

person should be aware of these impacts. For example, if an individual decides to

change the previously selected style, he or she should be informed if this will affect

the price or delivery date.

When solving a task it is often necessary to communicate with agents outside

the task's environment and direct control. These actions can cause changes that are

6

not reflected in the state of the task. We term these changes side-effects. When

undoing a subtask that has caused a side-effect, corrective action, when possible,

should be taken. For example, when a person solves the financing subtask certain

actions might be initiated, such as sending a letter to the finance company request-

ing a loan for a new vehicle. If the person later decided to cancel the purchase, a

new letter should be generated to the finance company to attempt to undo the

effects of the previous action. Some actions cannot be undone; it is not possible to

restore missiles to their silos. These sorts of side-effects should therefore be delayed

as long as possible to allow for changes of heart.

Some information should be retained even if the parent subtask is undone and

another approach tried. If the financing subtask must be redone, due to a slight

modification in the amount to be borrowed, a person should not have to once again

fill out all the parts of a long and detailed loan form. Information, such as a

person's name and address, should not have to be entered multiple times.

1.2. Summary of Goals

We want TICS to support the features of real-world problem solving outlined

above. A system that claims to be user-oriented needs to address the points that

were illustrated in the previous section. Such a system should:

(1) Provide a clear and concise way to specify what constitutes an acceptable solu-

tion to a task. This specification should:

A. Decompose a task into meaningful subtasks.

B. Permit information to be supplied from anyone of a number of sources.

7

C. Allow for the use of multiple ways to solve a task or subtask.

(2) Permit subtasks to be solved in any order consistent with the inherent nature

of the task. The temporal order of solutions should not be confused with

causality.

capability for subtasks to cooperate to solve inter-dependent sub-

independent subtasks and track dependencies to provide a general

and intelligent undo facility that allows the system or user to modify previous

answers with a minimum amount of lost effort.

(5) Support communication with agents outside the system, with the capability to

handle, as well as possible, side-effects.

(6) Allow some information to persist even if the procedure that generated the

information is undone. Such persistent data can be used to establish alterna-

tive solutions to a subtask.

The structure of a task and the environment in which it is to be solved needs to

be developed by a designer. A designer-oriented problem solving system should:

(7) Include facilities to hierarchically modularize a complex system to allow

different levels of abstraction and details.

(8) Have the flexibility to develop a system using a wide variety of tools and

environments.

(3) Have the

problems.

(4) Recognize

8

(9) Allow for the easy re-use of existing solutions.

(10) Enhance development of software for diverse groups of end-users by incorporat-

ing the ability to separate the user-interface processes from application

processes.

(11) Provide a methodology to distribute the solving of subtasks to multiple proces-

sors. This methodology should include a means for these subtasks to communi-

cate and synchronize.

1.3. Computer Algorithms as Task Solvers

Computer science has always been concerned with problem solving and there-

fore with the nature of problems. Efficient algorithms exists to solve many types of

tasks, for example, sorting a list of numbers. Some complicated tasks have a nature

that allows them to be decomposed into subtasks in such a way that optimally solv-

ing the subtasks implies a global optimum solution. An example of this is the

Minimum-Cost Alphabetic Tree problem [Hu 82]. The key here is that although there

are an exponential number of decompositions, there are only a polynomial number of

non-interacting sub-problems. A general method for solving these types of tasks is

provided by Dynamic Programming [Hu 82].

All the tasks mentioned in the last paragraph have a nature that permits their

search space of possibilities to be analyzed in a reasonable amount of time in order

to determine an optimal solution. However, many other problems are intractable

because solving any sub-part of the problem affects many other sub-parts. If one

9

sub-part of the problem is solved, other sub-parts must be re-examined in order to

ensure that local decisions are not preventing the system from achieving a better

global solution. This inter-dependency causes a combinatorial explosion of possibili-

ties that must be examined to solve the task optimally; there are more solutions

than can be generated and tested in a reasonable amount of time. The Bin-Packing

problem exemplifies this intractable nature [Hu 82]. Recent work has lead to a gen-

eral heuristic approach for solving such problems. This method called Simulated

Annealing is described in detail by Kirkpatrick, Gelatt and Vecchi [Kirkpatrick,

Gelatt and Vecchi 83]. Simulated Annealing involves adding noise, i.e. variation, to

the sub-solutions of a task. The result, if done correctly, is to move the system out

of states of local optimality in order to achieve a better global solution. The

amount of noise is then reduced with the result that a near perfect solution can be

determined in an acceptable amount of time.

If one had to examine all the possibilities required to purchase a vehicle before

making a decision then one might prefer to walk. The approach most people take is

to make good initial selections for each of the subtasks and spend a reasonable

amount of time slightly modifying them, i.e., introducing noise, and noting the

overall effects. Each change may produce positive and negative effects. The results

are examined to determine whether the total solution has been improved by the

tradeoffs, and this is used to guide further exploration.

10

Chapter 2

TICS' Approach

Solving complex problems requires the ability to model and manipulate syn-

ergistic systems. TICS provides a framework to develop such interactive human-

computer systems and to incorporate in them the most desirable features of effective

problem solving, illustrated and summarized in the previous chapter.

2.1. Overview of TICS

In this section the important features of TICS are illustrated. The first part of

our discussion concerns the advantages of using Horn clause logic to model the

decomposition of problems. Next, we discuss the extensions to Horn clause logic

required to achieve the goals described in the previous chapter. The motivation for

augmenting logic programming with evaluable predicates is presented. TICS' resolu-

tion mechanism, which allows subtasks to interact with each other and which pro-

vides user- and system-initiated undo is described. Techniques for dealing with the

problems of side-effects and for preserving and re-using information are discussed.

We conclude with an example of how our prototype TICS implementation provided a

flexible and forgiving interface for a Pascal program written by Knuth [Bentley and

Knuth 861.

11

2.2. Horn Clause Logic

TICS uses Horn clause logic to specify tasks. Some cognitive psychologists feel

that the Horn clause subset of first-order logic compares favorably with other for-

malisms as a basis for information processing models of human problem-solving [Nils-

son 801. The reader is referred to Clocksin and Mellish [Clocksin a.nd Mellish 84] for

the syntactic conventions used by TICS and for a detailed technical description of

Horn clauses and their relationship to logic in general. A major advantage of a Horn

clause specification is that it is runnable. A task can be formulated as a goal, Le., a

headless clause, that can be proved, using a strategy based upon resolution. Horn

clauses allow us to declaratively specify facts and rules succinctly to describe what

constitutes a solution. The problem-reduction strategy for Horn clauses is identical

with the procedural interpretation of Horn clauses and naturally represents the

decomposition of a task into meaningful subtasks, the first part of Goal (1). The

procedural interpretation is described by Kowalski as follows (with clause syntax

modified to fit our usage):

An implication of the form

is interpreted as a procedure which reduces problems of the form A to subproblems

Bl and ... Bn' Each of the subproblems Bjin turn is interpreted as a procedure call
to other implications. Assertions A. are interpreted as procedures A : - . which
solve problems directly by reducing them to an empty collection of subproblems.

To apply a procedure to a procedure call, it may be necessary to instantiate vari-
ables, to make the procedure call identical to the conclusion of the procedure. In-
stantiating variables in the procedure can be regarded as transmitting input from
the proc.edure call to the procedure. Instantiating variables in the procedure call
can be regarded as transmitting output from the procedure to the procedure call
and to all other procedure calls with which it shares variables. [Kowalski 821

12

The following clause illustrates one simple decomposition of the task, I.e. pro-

cedure, of purchasing a car:

buy_car (

tradein(TMethod, TModel, TValue),
new_car (NModel, NPrice, NDelivery),
finance (FinanceMethod, MonthlyPayments»

do_tradein(TMethod, TModel, TValue),
select_new (NModel, NPrice, NDelivery),
arrange_finance (TValue, NPrice, FinanceMethod,

MonthlyPayments) .

.

Each use of a procedure establishes a local binding environment with new

instances of the logical variables. The local environment contains a subset of the

data that defines the overall state of the system. In the buy_car clause the pro-

cedure used to solve the arrange_finance subtask is specified to contain, in its

environment, variables that contain information regarding the value of the old vehi-

cle, cost of the new vehicle, financing method and the required monthly payments for

the loan. Each procedure can view and modify its local binding environment and

thereby examine and change its specified part of the system's state. Procedures can

exchange information through communication channels, i.e., variables in each of

their local environments that are constrained, via unification, to contain the same

value. The procedure used to solve the select_new subtask could instantiate its

local variable that is unified to the NPr ice variable. This instantiated value would

then be accessible to the procedure used to solve the arrange_finance subtask.

Logic variables can allow indeterminism as to which subtask supplies a value

for a variable. This permits information to be supplied from anyone of a number of

13

sources, the second part of Goal (1). For example, a person might wish to determine

how expensive a vehicle he or she could purchase with a specific monthly payment.

One could invoke the buy_car task instantiating the MonthlyPayments vari-

able to 100 dollars as follows:

?- buy_car (tradein(TMethod, TModel, TValue),
new_car (NModel, NPrice, NDelivery),
finance (FinanceMethod, 100».

Alternatively, a person could provide enough information about the rest of the prob-

lem so that the arrange_financing subtask could calculate and instantiate

MonthlyPayments.

Another feature of logic, non-determinism, allows more than one clause, i.e.,

method of solution, to be applicable to a given procedure call. Thus, multiple ways

can be specified to solve a subtask, the final requirement of Goal (1). In our car

example, we might add to our problem specification another clause to provide a

default prototypical solution for the case where there is no trade-in vehicle and

dealer financing is to be used.

buy_car (

tradein(none, none, 0),
new_car (NModel, NPrice, NDelivery),
finance (dealer, MonthlyPayments» :-

select_new (NModel, NPrice, NDelivery),
arrange_finance (0, NPrice, dealer,

MonthlyPayments) .

Logically, the collection of procedure calls listed in the method used to solve a

task, i.e., the body of the selected clause, can be executed in any order and even in

parallel. Some systems, e.g., Prolog, impose an ordering for the sake of efficiency and

14

simplicity. TICS uses the more flexible method of resolution theorem proving based

on plan-based deduction [Cox and Pietrzykowski 81] [Forsythe and Matwin 84]

[Matwin and Pietrzykowski 85]. No ordering is therefore imposed by the

specification upon the solving of subtasks. Subtasks can be solved in any order con-

sistent with the inherent nature of the task, (Goal (2)). Thus, if the first buy_car

clause was used to solve the task, one could work on do_trade in, select_new

or arrange_finance in any order or in parallel. Although the utility of plan-

based deduction for theorem proving is unclear, the performance is adequate for

TICS because of the incorporation of evaluable predicates, as described below.

2.3. Extensions to Logic

Evaluable Predicates

People typically decompose problems until they get to a subtask with a deter-

ministic, functional solution. Subtasks that have a straightforward or algorithmic

solution require no further decomposition. The internal structure of such procedures

is not part of the decomposition of the problem and is, therefore, of limited interest

to the problem solver. TICS provides for evaluable predicates, Le., subtasks that are

solved by external procedures. These procedures are implemented as processes that

can incorporate large grain functionality and whose internals are hidden from TICS.

Logically, an evaluable predicate's procedure can be viewed as a dynamic fact gen-

erator. Such predicates can be specified to be either of type external or external gen-

erator, the difference being that the latter type process can be re-invoked, by back-

tracking, to generate alternative facts. TICS' evaluable predicates eliminate the

15

need to incorporate the bottom level of detail in the logic. Thus, TICS' large over-

head, required to track dependencies, can be supported.

A method, based upon the technique of Gray, Moffat and du Boulay [Gray,

Moffat and Boulay 85] [Moffat and Gray 86], is provided by TICS to handle external

objects safely, i.e., typed data from other languages, within a type-free logic environ-

ment. We discuss this method further in Chapter 4.

And-parallelism

To provide the capability for subtasks to cooperate to solve inter-dependent

sub-problems, Goal (3), we modified plan-based deduction to support and-parallelism.

Multiple procedures can be executed by external processes running concurrently with

each other (and with TICS). A TICS' procedure can receive and send information

via logical variables throughout its execution, not just at initiation and completion.

This ability requires care with bindings of logical variables. Therefore, TICS main-

tains a partial ordering of process dependencies reflecting causality as described by

Lamport [Lamport 78].

Procedures to solve subtasks are temporally ordered only by the data they

require, Le., the inherent constraints of the problem. If a procedure requires data

that is not yet available it must wait. TICS provides a notification mechanism that

allows external procedures to synchronize with each other. A procedure may wait

until TICS notifies it that a variable's binding has changed. For example, while the

arrange_financesubtask may be started at any time, it must wait until TICS

notifies it that the values for NPrice and TValue have been supplied by

16

select_new and do_tradein, respectively, before computing MonthlyPay-

ments.

In TICS subtasks can cooperate. The partial solution of one subtask can con-

strain another. When a person selects the style of the new vehicle, this information

can be used to restrict the choice of colors to only those available in that style.

Alternatively, if a color is first selected, then the range of styles can be limited to

only those that come in the selected color. The following procedure is an example of

specifying subtasks with appropriate communication channels:

select_new (NModel, NPrice, NDelivery) .
get_style (NStyle, Color), get_color (NStyle, Color),

find_model (NStyle, Color, NModel).

Undo

As Donald Norman has stated, "Error is the natural result of a person attempt-

mg to do a task". Therefore, it should be as easy as possible to undo previous

actions. Work done to solve parts of a problem that are independent of a

modification should not be lost. A system must not confuse the sequence in which

subtasks are solved with causality. For example, regardless of the order in which a

new vehicle's color and financing subtasks are solved, a change in vehicle color that

does not affect the car's price should not cause the financing subtask to be undone.

Logic is a good framework for tracking dependencies. TICS' extended version

of plan-based deduction maintains information about the history of the resolution,

the unification constraints between variables, and the causal relationships between

17

binding environments. With this information TICS can recognize independent sub-

tasks and track dependencies to provide a general and intelligent undo facility that

allows the system or user to modify previous answers with a minimum amount of

effort, (Goal (4)). Intelligent backtracking detects and acts upon the exact source of

failure as opposed to exhaustive, blind backtracking, which acts upon the most

recent procedures first. TICS allows alternative solution paths to be tried and errors

to be corrected with only solutions to those subtasks affected by the change needing

to be redone. In our car example, if the value for NPr ice, supplied by the

select_new procedure, was undone after arrange_finance had used its value,

then arrange_finance would need to be redone. However, even if do_trade in

had been solved after select_new completed, do_tradein would be unaffected

because do_ tradein and select_new do not share variables. In addition, if

arrange_finance had not yet examined the undone value for NPrice, there

would be no causal dependency and thus, arrange_finance would not need to be

redone.

Side-effects

A side-effect is an effect not contained and reflected in the state, i.e., logical

variable bindings, of the system. Procedures that cause no side-effects are undone

via TICS' backtracking mechanism by removing the logical variable bindings caused

by them. However, the execution of certain procedures can cause side-effects that

are not contained and reflected in TICS' logical variables. A common problem is the

side-effect caused by information communicated beyond the boundary of the system

18

[Archer, Conway and Schneider 84]. The issue of undoing side-effects is difficult, but

must be addressed in any real system. TICS provides two different ways to address

this issue. An evaluable predicate can be specified to have paired with its normal

procedure either a delayed or inverse procedure.

Some subtasks have side-effects that can be delayed until the user commits to

an answer. Such side-effects can be incorporated into delayed procedures. These

procedures are executed at the completion of the deduction only if their invoking

subtask is still valid. If the subtask was withdrawn during backtracking, the delayed

procedure is never executed and no side-effect occurs. In our previous car-buying

program we could specify that a delayed procedure be associated with the

arrange_finance subtask. When the user commits to a solution, thus completing

the buy_car task, the procedure associated with arrange_finance is executed.

This procedure would cause the side-effect of mailing a loan request to the financing

agency.

Sometimes a subtask requires that side-effects not be delayed. Thus, the nor-

mal procedure associated with such a subtask would itself cause the side-effect to

occur. Such a subtask could specify an inverse procedure that is executed when the

specifying subtask is withdrawn. The inverse procedure is used to take action to

reverse the side-effect. What constitutes an inverse procedure depends upon the

nature of the side-effect and the external object(s) affected. For example, if the

select_new subtask draws a picture of the selected vehicle on the screen, an

inverse procedure can be specified that erases the display if the subtask is later

19

undone. These techniques facilitate the interfacing with outside agents with the

capability to handle, as best as possible, side-effects (Goal (5)).

Preserving and Re-using Information

One aspect of problem solving that our deduction method fails to deal with

occurs when two alternative solutions share an identical subtask. In undoing one

solution and trying the other, the work for solving the common subtask is lost. If

the arrange_finance subtask must be redone, due to a slight modification in the

amount to be borrowed, a person should not have to once again enter his or her

name and address.

One traditional approach to this problem in logic programming has been to use

assert and retract predicates. A problem with this technique occurs when the clause

that issued an assert is withdrawn due to backtracking. In our initial design of

TICS we planned to include a special system predicate called a soft-fact. A soft-fact

was to be a dynamically asserted fact that could be retracted. A soft-fact, unlike a

dynamic fact generated by an evaluable predicate's procedure, could be used to solve

more than one subtask. If a soft-fact was retracted, all subtasks that used informa-

tion generated by that soft-fact would also be undone. Soft-facts could then be used

to save and share answers generated by specified procedures.

A fact generated by an assert or soft-fact has an affect on the logic that

depends upon when it temporally occurs during a deduction. Subtasks can use such

dynamic facts only after they are generated and thus, the meaning of the program

depends upon the temporal ordering of such events. We wished to avoid the

20

semantic problems associated with these predicates and so TICS supports other tech-

niques, which can be implemented by the system designer, to share some information

between subtasks. These answers can be retained by the system even if the subtask

that generated the information is undone, (Goal (6)).

TICS' large-grain functionality results in deduction trees that are much smaller

than traditional logical approaches. Small trees aid the designer in removing com-

mon information from multiple subtasks and placing this information into a single

subtask that is as close or closer to the root of the deduction tree. The person_ID

subtask illustrates this technique in the extended car-buying example presented in

Chapter 5. In this example, the name and address of the buyer is required by both

the arrange_finance and do_trade in subtasks, so a subtask called

get_buyer is created to supply this factored-out information. If either

arrange_finance or do_tradein are undone, the name and address informa-

tion will persist.

TICS supports an additional technique, sometimes referred to as the blackboard

method, to provide for persistent shared data. Standard logic predicates must use

logic terms to compose and select information, but TICS' external processes can

incorporate the functionality to handle formatted data, e.g., read and write records.

The arrange_finance and do_tradein subtasks can contain a pointer to some

common storage area, e.g., a file. These subtasks can then read and/or write the

buyer's name and address to and from this storage area.

21

buy_car(...) .

do_trade in (file_name, ...),
select_new (...),
arrange_flnance(file_name, ...),
bottom_line_constraints(...).

Writing to a fileis different than asserting a fact. A file'sdata is not necessarily

available to allsubtasks; fileaccess can be restricted to only those subtasks with the

file'sname in their local environment. In addition, the choice of whether to use the

file'sdata and how to interpret the data's meaning is leftto each subtask's external

process.

2.4. TICS meets Pascal

The mating of human and machine is a complex craft. Maintenance costs of

many systems overshadow development costs. The user relationship to a system is

said to account for about 60 percent of the maintenance problem and is critical to

system success [Lientz and Swanson 811. TICS attacks this issue by providing a flexi-

ble and forgiving interface that isuser-oriented.

We describe how we used our prototype TICS system to improve the user-

interface to a program written by Knuth to solve the following problem posed by Jon

Bentley:

The input consists of two integers M and N, with M < N. The output is a sorted
list of M random numbers in the range l..N in which no integer occurs more than
once. For probability buffs, we desire a sorted selection without replacement in
which each selection occurs equiprobably. [Bentley and Knuth 86]

Knuth wrote the code using his "literateprogramming" system called WEB. The

language used by WEB is Pascal. This program is presented by Bentley as an

22

example of an elegant and efficient program.

The "short dialogue with the user," as Knuth calls it, comprises the largest sin-

gle chunk of code in the program. The user-interface requires seventeen lines of code

versus nine lines for the next largest routine. Knuth's program first obtains from the

user a positive integer "N", the size of the population. The program next gets a posi-

tive integer for "M", the size of the sample. The requirement that "M" is less than

"N" and that ''M'' is less than or equal to some constant is then checked. Finally the

program creates and prints the sorted list.

To show the utility of TICS we describe how it was used to improve what we

feel is the weakest aspect of the program, the interaction between the user and the

machine. The interaction in Knuth's program is constrained beyond the inherent

nature of the problem due to the sequential nature of the programming language

Pascal. Using TICS, the task is decomposed into separate subtasks to get the value

of "N", the value of "M", check the constraints between "N" and ''M'', create the

sorted list and print the sorted list. We express this decomposition with the follow-

ing clause:

knuth(N, M, P) .
get_num('Pop. size, N =', N),
get_num('Sample size, M = " M),
check(N, M, P),
create_list(P, N, M, List),
print_list (List) .

The evaluable predicate get_num specifies a process whose purpose it is to ensure

that the second argument is equal to a numeric value. This process first determines

23

the value of its second argument. If that argument is a numeric value, get_num

does nothing additional. This scenario would occur if the value were supplied in the

invoking goal as follows:

7- knuth(200, 100, P).

If get_num's second argument has not been constrained to a value, the process,

using its first argument, prompts the user. After the user enters a value, get_num

examines the value and if it is numeric, instantiates its second argument to that

value. If the value was not numeric, then get_num informs the user of the error

and re-solicits.

The evaluable predicate check specifies a process whose purpose it is to ensure

that its first argument is greater than its second. The check process waits, if

necessary, until its first and second arguments are bound to values and then checks

the required constraint. If the constraint is satisfied, then check instantiates the

variable P and terminates. If the second argument is greater than the first, check

informs the user of the problem and asks whether the user wants to undo the value

for N or for M to resolve the constraint violation. When the user specifies the vari-

able he or she wants to change, check tells TICS to undo, via intelligent back-

tracking, the process that instantiated that variable. TICS will automatically undo

check because check has read the value of a variable instantiated by the process

being undone and is, therefore, causally dependent upon it. Since get_num and

check are evaluable predicates of type external generator, TICS, after backtrack-

ing, will attempt to re-solve the initial procedure by re-invoking those processes.

24

The subtask create_l ist requests TICS to notify it when the user has input

legal values, i.e., the variable P has become instantiated. The subtask waits until it

receives notification and then establishes a file containing the sorted list of random

numbers, writes the file's name to the variable List and terminates. When TICS

notifies print_list of the instantiation of List, print_list will create a

hard copy of the contents of the file named by the variable List and terminate.

We note the following advantages over Knuth's solution. Knuth's code required

the value for N to be entered prior to the value for M. With TICS the input param-

eters are obtained via concurrently executing processes and could thus be specified

simultaneously by the invoking procedure or in any order by the user. If the user

entered a value for M that is greater than N, Knuth's program required that M be

changed or the program aborted. With TICS, the subtask check allowed the user

to change either M or N. Intelligent backtracking ensured that only the subtasks

affected by the change were undone. Thus, if the user wishes to change the value of

N the previously entered value of Mremains valid.

TICS provided additional flexibility by allowing the task to be started with the

value for some, all or none of its arguments supplied. The get_num subtask

prompts the user only if its variable is un instantiated.

2.5. System Development and TICS

Human limitations make it impossible to juggle too many things at once and

make it worthwhile to package complex ideas into procedures that are hierarchically

organized. TICS' Horn clause syntax provides a declarative way for a designer to

25

hierarchically modularize a complex system to allow different levels of abstraction

and details, (Goal (7)). Logic is not ideal for handling numeric computation and

manipulating persistent storage. Other forms of programming are more suitable.

TICS augments logic programming's ability to search for solutions by extending logic

predicates to include procedures implemented as independent processes. The inter-

nals of these processes and their parameters are hidden and isolated from the logic.

These procedures can be implemented in any language and in any operating environ-

ment capable of interfacing to a TICS system. Thus, the designer is given the flexi-

bility to develop a system using a wide variety of tools and environments, (Goal (8)).

This flexibility in mixing languages and operating systems helps support the easy re-

use of existing solutions, (Goal (9)). The ability to re-use modules from system to

system can provide a standard set of easy-to-use tools that promotes a continuity of

style between applications.

TICS uses logic to decompose problems into subtasks. This encourages and

enhances the development of software for diverse groups of end-users by incorporat-

ing the ability to separate the user-interface processes from application processes,

(Goal (10)). In addition, modularization also allows interface programmers to imple-

ment the interactive displays iteratively and in parallel with the development of the

rest of the program, a goal espoused by Norman and Draper [Norman 83] [Draper

and Norman 84].

The division of functionality into separate unit processes provides the capabil-

ity to distribute the solving of subtasks to multiple processors, (Goal (11)). One use

26

of this ability would be to offload processing intensive interface-specific routines, such

as low-level graphics, scrolling, text editors and menu routines, from the main pro-

cessor onto workstations. TICS provides the ability for procedures to interact via

powerful communication and control synchronization techniques. These techniques

are described further in Chapter 4 and allow for the incorporation of stream COffi-

munication, as described by Kieburtz and Nordstrom [Kieburtz and Nordstrom 85]

and coroutining as in Kahn and Macqueen [Kahn and Macqueen 77].

27

Chapter 3

Related Research

To define and design our user-oriented problem solving system we examined and

drew upon knowledge from many areas of related research. In this chapter, the task

composition methods provided by office management and user-interface management

systems (DIMS) and some techniques used to formally specify programs are dis-

cussed. Next we examine extending logic programming by incorporating other

languages and pursue the issues of concurrency and backtracking. Finally, other sys-

terns are presented that provide general user-undo facilities.

An intelligent user-interface called POISE was designed to address the problems

of task definition and support [Croft and Lefkowitz 841 [Broverman and Croft 851.

POISE can run both as a task planner, taking stated task goals and directing the

user through sequences of actions designed to achieve those goals, or as an inter-

preter, to recognize user actions and assist where appropriate. TICS only proposes

to do the former. POISE, like TICS, handles tasks that involve complex sequences of

actions that do not correspond to running simple tools but involve problem-solving

ability. A version of an Event Description Language is used to specify procedures. A

specification contains a section describing constituent procedures and their sequenc-

ing, a section to describe task attributes in terms of semantic database items, con-

stant values or attributes of its constituent procedures, a section on constraints, and

finally, sections describing preconditions and satisfaction criteria. TICS' Horn clause

28

specification, we feel, captures all this information in a clearer and more direct and

declarative manner.

POISE uses three major components, a planner, focuser and interpreter. These

components provide a means to direct the user through a sequence of actions to

achieve goals, maintain constraints and incorporate backtracking to correct errors.

Some of the initial ideas for TICS came from trying to understand the POISE system

by casting it into logic programming. We believe that TICS' use of resolution

theorem proving provides a simpler and more straightforward way to provide this

task management functionality.

Much work has been done in the area of User Interface Management Systems

(UIMS) to develop a framework to coordinate the interaction between user-interface

and application modules. This work is usually referred to as dialogue management.

Various techniques have been used to specify and implement this aspect of a system.

These specifications can be classified into two broad categories, declarative and non-

declarative. Some declarative ways of defining the dialogue include BNF grammars

[Reisner 81], special purpose languages [Prywes and Pnueli 83] and first-order logic

[Roach and Nickson 83]. Non-declarative approaches have included versions of state

transition diagrams and event languages. Examples of these techniques are in

Wasserman [Wasserman 85] and Green [Green 85] respectively.

Jacob argues that non-declarative specifications, and specifically state transi-

tion diagrams, are the most suitable for describing interactive human-computer

interfaces because they represent time sequences explicitly [Jacob 83]. This may be

29

true when the possible sequence of events is rather limited. Concurrency complicates

the issue immensely. Cardelli and Pike developed a system that handles concurrency

using a set of communicating finite state machines [Cardelli and Pike 85]. Their

scheme provides for efficient handling of a limited number of interaction devices,

such as mice, buttons and keyboards, but as they remark,

... in general the state space of a set of concurrent processes can explode. [Cardelli
and Pike 85]

There is no reason for the problem solver to anticipate or have knowledge of all pos-

sible event orderings. This detailed information will only confuse the user. We feel

that to understand a complex concurrent program it is better to simply know what

must be done. The step-by-step details of all the possible ways of how to achieve a

goal are better ignored, i.e., abstracted away.

Formal declarative specification techniques allow one to prove the characteris-

tics of programs that are developed through semantics-preserving transformations of

such specifications. As Kowalski states,

Logic reconciles the requirement that the specification language be natural and easy
to use with the advantage of its being machine-intelligible. [Kowalski 82]

The meaning of a TICS specification is thereby automatically preserved. There is no

need for a separate verification step. Davis compares two formal specification tech-

niques, Guttag and Horning's algebraic equations and Horn clause logic [Davis 82].

She feels that the major distinction between the two methods is the way in which

questions about the specification can be handled. The algebraic equation approach

requires questions to be submitted to an expert who reformulates an informal user

30

query into a formal question from which an answer can be derived from the axioms

of the specification. While this approach may also be used with Horn clauses, they

can also be executed directly, to answer questions by running the specification and

observing the results. Roach and Nickson assert that logic not only provides the full

power equivalent to a Turing machine but it does so in a manner that is more easily

modified than algebraic or functional methods because its statements are less closely

coupled [Roach and Nickson 831. They feel rule-based languages, like logic, provide

for rapid development and easy modification by adding or modifying individual rules.

Their paper describes the successful specification and development of a complex sys-

tern using Prolog to manage the dialogue between user and machine.

Wadge and Ashcroft state that logic languages do not handle "bread and

butter" computation well [Wadge and Ashcroft 851. These languages lack the ability

to define their own functions, and even the arithmetic operations are not really

respectable. They go on to state that perhaps in the future "inference" programming

languages (such as Prolog) and dataflow languages (such as Lucid) will be used in

cooperation.

There are many examples in the literature of integrating logic and other

languages. LOGLISP is a system that uses a non-backtracking approach to imple-

ment logic with functional programming techniques [Robinson and Sibert 82]. QLOG

takes the approach of implementing logic as an embedded sublanguage of the host

language Lisp [Komorowski 82]. As a result of this embedding, QLOG can easily

incorporate many of the major components of the Interlisp environment. This

31

embedded approach differs from the more conventional freestanding implementa-

tions, such as TICS, where the host and embedded languages have more distinct syn-

tactic and semantic structures. At the University of Salford, a system that combines

Lisp and Prolog along with the ability to execute FORTRAN77 was developed

because

... there exist programs which are easy to write in a conventional programming
language but which are tortuous and obscure in Prolog. [Bailey 85]

A commercial system, developed at Texas Instruments, uses a LISP-based interpreter

of Prolog [Srivastava 86]. Their system provides for the arbitrary exchange of data

and control between LISP and Prolog. Moffat and Gray combine Prolog logic search

strategy with PS-Algol, a highly typed language [Gray, Moffat and Boulay 85]

[Moffat and Gray 86]. The use of PS-Algol allows them to implement efficient pro-

cedures to manage complex objects that do not fit easily into Prolog's logical model.

A language such as PS-Algol allows the manipulation of complex objects such as

semantic nets and efficient list structures.

TICS differs from all the schemes above by providing for the non-deterministic

composition of procedures written in any language. These procedures can execute in

any operating environment that is capable of communicating with TICS. TICS pro-

vides full support for intelligent backtracking and concurrent execution of logic

terms. These features allow TICS to provide a system that models problem solving

in a way that is natural for people to use and that imposes the minimum of arbi-

trary temporal constraints.

32

The problem of coupling logic to a language with formal data types must be

addressed. Furukawa, et al. [Furukawa, Nakajima and Yonezawa 83] and Mycroft

and O'Keefe [Mycroft and O'Keefe 84] developed systems that require type declara-

tions for all of their logic procedures. TICS uses the technique of Moffat, Gray and

Boulay to integrate typed data from other languages with a type-free logic. This

technique,

... is more suitable when we want to hide a representation but do not want the ex-
tra discipline of typing our program. It could be considered as a primitive which
could be used to implement a Furukawa type scheme at a later date if desired.
[Gray, Moffat and Boulay 85] [Moffat and Gray 86]

The representation of types is isolated from the logic by making typed data private,

their internals hidden and not directly accessible by logic. Unification is used to pass

these terms safely to language units that can directly manipulate and maintain the

correctness of the typed data. These features are more fully described in the next

chapter.

A number of logic systems exist that permit the reduction of several sub-tasks

m parallel. This form of parallelism is usually referred to as and-parallelism. Two

such languages are PARLOG [Clark and Gregory 85] and a successor language, Con-

current Prolog [Shapiro and Takeuchi 83]. Both languages assume that the program

makes the "correct" non-deterministic choices: once a goal has reduced itself using

some clause, it is committed to that clause. This computational behavior is known

as committed-choice non-determinism. Once a clause choice is committed to, by

satisfying its guard conditions, it is never rescinded via backtracking. Modes are

used in PARLOG and read-only and commit operators in Concurrent Prolog to

33

un pose a direction on communication and provide procedure synchronization. A

different approach to parallelism is taken by Conery and Kibler [Conery and

Kibler 81] [Conery and Kibler 85]. They avoid the use of non-logical annotations,

including guard conditions, but provide only limited and-parallelism. Borgwardt

modifies their concepts to include special mode declarations to support efficient

stream communication [Borgwardt 84].

All of these systems implement the small-grain functionality of standard logic

predicates. TICS powerful external procedures incorporate large-grain functionality

that can produce a simpler and more human-oriented task decomposition. TICS

keeps the logic pure and simple by not describing data flow direction or temporal

constraints at the specification level. Evaluable predicates can impose these con-

straints, when necessary in order to synchronize and communicate, by using the

facilities of TICS' special purpose database.

The emphasis in TICS is on flexibility of interaction, not just efficiency of

operation. This flexibility requires the inclusion of real non-determinism to provide

alternative solutions, and backtracking to provide a means to undo user and system

actions. To improve user-machine interaction, the fully intelligent backtracking sys-

tern of plan-based deduction, [Cox and Pietrzykowski 81] [Forsythe and Matwin 841

[Matwin and Pietrzykowski 851, is used rather than the potentially more run-time

efficient but less accurate semi-intelligent strategy of Chang and Despain [Chang and

Despain 85]. A fully intelligent backtracking scheme allows TICS to provide the user

with exact information about any resolution failure in addition to minimizing the

34

effects of backtracking. The large-grain functionality of TICS' external procedures

provides for a sufficient level of efficiency despite the overhead imposed by these

features.

Other systems provide different models to allow the user to cancel the effects of

past actions and to restore an object to a prior state. COPE is an editing and incre-

mental program development system that provides for user recovery and reversal

[Archer, Conway and Schneider 84]. INTERLISP also provides for extensive recovery

capabilities using a similar but slightly different model [Teitelman 75].

The COPE model describes the basic interaction cycle as having two logical

phases. In the first phase the user edits a script. A script represents a modifiable

specification of a transformation. Submitting the edits begins the second phase

where the system performs some execution, e.g., undoing and rebuilding tasks, in

order to ensure that the state of the system will correspond to that specified in the

script. This cycle is repeated until the user deems the task complete. COPE's

recovery mechanism is based upon a modified truncate and reappend version of their

general model. Basically, recovery involves undoing all system changes required to

return the system back to a state that was valid prior to the time of the operation

that is being undone. The commands occurring after that point in the script are

then executed. Since these commands were modified during the first phase the

resulting state corresponds to the new script specification.

The task of incremental program development with COPE is composed of the

alternate invocation of user-edit and program-execution subtasks. This composition

35

causes each subtask to be dependent upon those subtasks solved before them. The

temporal order of solutions imposes a linear chain of causality. COPE's recovery

scheme, similar to the linear backtracking of standard Prolog, is well suited for this

problem domain. TICS' domain of general problem solving requires the composition

of subtasks with more complicated inter-relationships. The intelligence of TICS'

dependency-directed backtracking scheme is needed to avoid the waste and user con-

fusion of blind linear backtracking.

TICS is based on a database with built-in functionality that controls and coor-

dinates the composition of individual procedures and the flow of data between them.

To provide communication and synchronization TICS uses techniques similar to

those found in Humanizer [Grossman 85] [Maier, Nordquist and Grossman 86].

36

Chapter 4

What Makes TICS Tick

The key to TICS' implementation is its database, which incorporates special-

purpose functionality and is main-memory resident. The database contains the

system's specification, provides dynamic working storage and implements a deduction

engine with the functionality of extended plan-based deduction. Everything in TICS,

except the external processes for evaluable predicates, is contained within the data-

base process.

Subtasks specified by evaluable predicates utilize external procedures that are

implemented as separate processes. These procedures are used to solve subtasks and

communicate with the database via messages handled by the Database Access

Manager (DAM). Figure 4-1 is an overview of TICS in an operating system environ-

ment that supports multi-tasking and interprocess communication.

4.1. Deduction Engine

The deduction engine is based upon a method of resolution theorem provmg

called plan-based deduction.

Attempts to find a refutation(s) are recorded in the form of plans, corresponding to
portions of an AND JOR graph search space and representing a purely deductive
structure of derivation ... It is proven that the algorithm is complete in the follow-
ing sense: if for a given base a resolution refutation exists, then this refutation is
found by the algorithm. [Matwin and Pietrzykowski 85]

37

Horn Clause

Specification

Task

Control

Dynamic

Working
Storage lnterprocess

Communication

External

Process

External

Process

External

Process

Figure 4-1. TICS Overview

The following is a simplified summary of how plan-based deduction works. The

data structures used to implement this technique are described in more detail in

Chapter 6. Plan-based deduction explicitly represents the current state of a goal's

resolution as a plan. A plan consists of a deduction graph and its potential function

and associated constraint graph(s). The deduction graph provides information about

which clause was used to solve which goal. The potential function assigns to each

goal in the associated deduction graph the subset of the program's Horn clauses, i.e.,

base, that may be used in the future to solve that goal. This subset consists of those

clauses whose heads unify with the goal and that have not been used in the past

with that goal. Such a representation allows for a flexible search strategy. Unsolved

goals can be solved in any order. In contrast, many logic programming implementa-

tions limit the search strategy to depth-first-search. This limitation provides

38

implicit information that allows them to use stack-based implementations of refuta-

tion procedures.

In plan-based deduction, a constraint graph represents the unification con-

straints imposed by the various resolution steps on a logic variable. A set of con-

straint graphs is associated with each deduction graph; each constraint graph

describes one group of logical terms, i.e., variables, constants or structures, bound

together by unifications. This method is less space efficient than Prolog's use of a

binding array and trail. However, Prolog's method does not retain the information

to record which unification of variables caused a particular binding, nor can the

binding be undone except in a "linear" manner. Plan-based deduction's constraint

graph provides the information to identify the actual source or sources of a

variable's binding. Knowing the sources gives plan-based deduction the ability to

determine data unification dependencies and thereby implement intelligent back-

tracking. In addition, using plan-based deduction a goal can be solved with a clause

that, due to bindings established earlier, will cause a unification failure. By allowing

this unification, plan-based deduction, unlike Prolog, can force the earlier binding to

be undone.

In plan-based deduction an initial current plan is generated containing only a

single root node. This node consists of the original query, i.e., initial goal(s), and its

potential. As long as there are no detected unification conflicts in a current plan's

associated constraint graphs and there are remaining unsolved goals, the current

plan is developed. Development proceeds by adding nodes to the deduction graph

39

that represent the resolution of an unsolved goal with a clause from its potential.

When all goals are solved a solution is achieved. When a unification conflict is

detected, plan-based deduction determines the set of sets of clauses that can be

undone to remove the conflict and still provide a non-empty potential for all

unsolved goals. The elements of the set represent the alternative sets of clauses to

undo during backtracking. Undoing any set of clauses causes the pruning of the

corresponding arcs and nodes of the current plan's deduction graph, and thereby

results in the creation of a new plan. New plans are inserted into a store for future

use. A new plan can be created for each element of the set of sets of clauses. The

current plan is then discarded and a new current plan is selected from the store. If

additional solutions to the original goal are desired, artificial conflicts are added to

force solved goals to be re-solved, thus generating any additional solutions. The

algorithm can continue until all plans are solved or annihilated.

TICS implements the following processing strategies in its version of plan-based

deduction. A check for unification conflicts is made after every goal resolution. The

selection of which unsolved goal is to be developed next is either made automatically

by the system, on the basis of assigned priorities, or chosen from a menu by the user.

This mechanism is described more fully in the following chapters. TICS' resolution

algorithm is oriented to finding single solutions, but retains the capabilities to find

alternative solutions. Plan-based deduction is simplified by TICS' restriction of the

base to allow only Horn clauses.

40

TICS extends plan-based deduction by allowing for and-parallel resolution. All

unsolved goals can be solved concurrently. TICS provides procedures executing in

parallel with the ability to dynamically examine the evolving environments of other

procedures with which they share common variables. This sharing provides pro-

cedures with the ability to use the maximum amount of information available in

order to limit their range of possible solutions. However, the accessing of a value by

a procedure makes that procedure causally dependent upon that value. If the pro-

cedure that established the value later fails and there are no other procedures that

have also established that value, then the procedure that accessed the value must be

undone. The establisher has, in effect, caused a change in the accesser's environ-

ment. TICS' database must track these causality dependencies. For example, if pro-

cedure pl (A, B) has accessed the value of A that was instantiated by procedure

p2 (A) and by no other procedure, then if we fail p2, we must also fail pl. How-

ever, if pl has not gotten around to reading the value of A, then there is no reason

to fail it. We want pl to be able to access the most current unified value of A

because it may be able to use that knowledge to generate a value for B that is more

reasonable then a value generated without that knowledge.

4.2. External Procedures

A predicate can be specified as being an evaluable predicate via the $pred

system predicate, described later. TICS attempts to solve a goal against an evalu-

able predicate by executing the predicate's external procedure. This procedure is

implemented as a separate process. An external process that completes and

41

terminates with success represents an assertion , i.e., a generated fact, that solves

the goal against its evaluable predicate. A process that terminates with failure

means that with the current variable bindings, nothing could be asserted. If an

external procedure terminates with failure TICS invokes backtracking to remove the

goal.

External processes terminate upon completion. TICS also automatically ter-

minates external processes if the evaluable predicate's node, i.e. clause, is removed

during backtracking. A node will be removed if any of the node's goals, i.e. subtasks,

cannot be solved. An evaluable predicate can be associated with a special type of

external procedure called an external generator. An external generator represents a

lazy generator of assertions. External generator processes that complete with suc-

cess can suspend themselves rather than terminate, and thus have a memory of past

actions. After backtracking, TICS can send a message to the external generator

requesting the process to unsuspend and generate another fact. Thus, the process

acts as a generator of facts on demand. An external generator can indicate to TICS

that it cannot generate the requested fact by completing with a failure status. TICS

will then invoke backtracking to remove the external generator's goal from the

deduction.

There is a deliberate similarity between the way an external generator pro-

cedure and a human operator provide data for a program. When a user supplies

input, he or she, in essence, asserts a fact. If, in the future, this input is unsatisfac-

tory, the user is again asked to enter a new value. The user can be viewed as a lazy

42

fact generator whose cranial memory stores local state information regarding past

actions. It should be noted that there is nothing in TICS that prevents an external

generator from generating the same fact more than once.

4.3. Data AccessManager (DAM)

TICS' database does not provide persistent storage but is a database in the

sense that it provides controlled sharing of data. All access by external procedures

to this data is via the Data Access Manager (DAM). TICS' logical terms are read

and written by external procedures via commands sent to and received from the

DAM in a manner similar to that used in the Humanizer framework [Grossman 85]

[Maier, Nordquist and Grossman 86]. External procedures are invoked with the

database identifiers of the logical terms they can access. These terms are accessed

only via database read and write messages.

When a procedure issues a read command for a term in its environment, the

DAM responds with the term's value. Since plan-based deduction does not store

variable bindings with destructive updates, the current value of a variable is derived

by unifying the variable's constraint graph. If the value is unacceptable to the pro-

cedure, then the procedure can either try some alternative action or terminate with

a failure status.

When an procedure sends a write command to a variable, the database's DAM

enters that value into the constraint graph of the appropriate variable. If the data-

base cannot unify all terms in the constraint graph, intelligent backtracking is

invoked. Unifiability is restored by selecting a set of nodes in the current plan's

43

deduction graph to be undone.

Each external procedure is responsible for acquiring any data it needs. When a

procedure requires data from one or more logical variables that are not yet instan-

tiated, the procedure can issue requests to be notified when those variables change

and then suspend itself. This mechanism permits external procedures to be started

even if the data they require is not currently available. Mode declarations and other

annotations to provide data synchronization are neither permitted nor required in

the logic. Sometimes logical variables will never be fully instantiated nor even acces-

sible, as in the case of infinite structures and non-terminating computations. Such

cases cause no problem as long as the missing information is not required by a pro-

cedure.

4.4. Data Types

Type checking of an external procedure's parameters, i.e., database identifiers

of the logical terms the procedure can access, is the responsibility of the individual

procedure. Data types can be protected from TICS' type-free logic by being specified

as being private terms. This technique is used in Persistent Prolog [Gray, Moffat

and Boulay 85] [Moffat and Gray 86]. Private terms cannot be examined by TICS'

logic because such a term can only be unified with another term of that type or with

a free variable. TICS' logic can only be used to pass private terms from one pro-

cedure to another or to construct compound terms, e.g., lists, made up of private

terms. Special data objects can be represented by private terms. We can create a

handle to an object by binding a private variable to a pointer to that object. Only

44

external procedures that know a special object's handle, i.e., have a variable bound

to the object's term in their environment, can access it.

Coercion of data can be done internally by each procedure or through the use

of special predicates. For example, to transfer data between two different pro-

cedures, pI and p2, each of which requires different data types, a procedure called

coerce_i t can be written and used as follows:

pI (AIn, AOut), coerce_it (AOut, BIn), p2(BIn, BOut)

The coerce_it procedure can be written so as to be bidirectional.

4.5. Managing Freedom

In the introduction, we argued the need for freedom in problem solving. Sys-

terns that impose highly structured interaction limit a person's freedom to use his or

her individuality, creativity and originality to solve problems. TICS was conceived

as an interactive problem-solving system with minimal constraints. However, cer-

tain human-oriented constraints on problem-solving were used to simplify parts of its

design. People normally use one approach at a time to solve a problem. Therefore,

TICS is or-sequential, a goal is solved by only one clause at a time. Horn clause

logic, rather than full first order logic, was chosen because it is more efficient to

implement and provides a convenient way for people to naturally express and under-

stand the decomposition of problems. Despite these restrictions, TICS provides a lot

of freedom, much more than traditional approaches, as was demonstrated by the

example of Knuth's Pascal code.

45

While we still believe in freeing the user from artificial constraints, even simple

Horn clause specifications, such as our car buying example, specify a very large space

of possible solutions. Our initial implementations made us realize that a person can

easily be overwhelmed and burdened by too many choices presented all at once. An

exhaustive search of such a space is infeasible.

TICS' original design was to have the end-user provide the meta-level reasoning

to guide the deduction. The end-user's general and domain-specific knowledge was to

direct the search for a problem's solution. After TICS was implemented and the first

examples run, it became apparent that too much freedom can be confusing and

annoying. To solve a problem, many questions arise. To ease the burden on the

end-user, we enhanced TICS to provide the system designer the option to flexibly

limit the number and structure the presentation, of those decisions that an end-user

must make. A TICS system designer can specify that some of these decisions be

made automatically by the system. In addition, the designer can provide informa-

tion to guide both the system and end-user in choosing among alternatives.

During forward deduction operation, TICS' deduction engine, solves subtasks.

Whenever a unification conflict is detected, the deduction engine invokes the back-

tracking operation to undo subtask(s) to remove the conflict. Forward deduction is

then resumed. These operations are described in further detail in Chapter 6. The

deduction engine can be set to operate in either a global automatic or global manual

mode of operation during forward deduction and backtracking by the $deduction

and $backtrack system predicates, respectively. If the system is set to the global

46

manual mode of operation for forward deduction the choice of subtask to solve next

and the method to use to solve it are always made by the user. In terms of logic,

these questions refer to the choice of subgoal to solve and the clause to use to solve

it. This feature is useful for single-step operation during system debug by the

designer but usually asks too many unimportant and meaningless questions to be

useful for a user during a typical problem-solving session.

If the system is set to global automatic mode of operation, the system makes

all selections. The system designer can assign forward priority values to clauses and

predicates to direct TICS' selections. This all-or-nothing form of control was found

to be too inflexible. Therefore, we provided a mechanism to permit the designer to

specify that certain predicates, even in automatic mode, are to be solved by asking

the user to select the clause to use. This specification is done using the or _mode

field of the $pred system predicate.

In backtracking, the system may find multiple ways to restore unifiability; each

alternative generates a new plan that could be further developed. If automatic

mode is set for backtracking the choice of which plan to develop next is made by the

system on the basis of backtracking priority. If manual backtrack mode is set, the

user is asked to make the choice.

TICS incorporates and-parallelism. Therefore, many subtasks can be executing

concurrently. Sequentialization and synchronization can be accommodated by

methods previously described. Computations may be put into a single external pro-

cedure that can use local state to order events. Alternatively, evaluable predicates

47

can use logical variables to coordinate their activities. These techniques alone do

not provide the designer with the means to flexibly adapt the system to available

resources. For example, the number of simultaneously executing tasks that interact

with a human or CRT may need to be limited to prevent exceeding the user's

mindspace or the CRT's screen space. To remedy this problem, we enhanced TICS

to provide the designer with a gate mechanism to control the number of tasks that

access a particular resource at any instant.

To enhance communication between the system and the user, TICS was pro-

vided with amen u facility. Menus are dynamically generated by the system when

the user has to be queried about which way the deduction should proceed. Menu

choices are listed in priority order. Most people do not understand the syntax of

logic and so we have provided the designer with the option of providing a natural

language format for each predicate and clause. TICS maintains the information

required to answer the questions, "How did we get to the current state?", and "Why

are you asking this question?". Since plan-based deduction maintains the current

deduction tree, there is no need to pass the context of the deduction as an extra

argument, as would be required in Prolog [Clark and McCabe 82] [Walker 82]. At

this time we have not yet fully implemented this explanation facility. Gates, clause

selection and natural language formats are illustrated and described further in the

next chapter.

48

Chapter 5

Examples

The following programs were designed to demonstrate the power of TICS' logic

to compose interactive tasks to solve problems and the ability of TICS' intelligent

backtracking to allow system- and user-initiated changes. We use these examples to

introduce and describe TICS' system predicates. The Appendix contains a summary

of these predicates.

5.1. Car Buying

The Car Buying problem consists of trading in a used car, selecting a new car

and financing the balance due. This problem is basically the same one we discussed

in Chapters 1 and 2 with some details added. For simplicity, we initially show only

the basic Horn clauses to illustrate how the problem is decomposed into subtasks.

We will then introduce the complete program.

To buy a car: get buyer information, establish trade-in's worth, select the
new vehicle and arrange financing. Ensure that cost of new vehicle less
trade-in does not exceed the maximum amount to be financed:

buy_car (

person_ID(Name, Income),
tradeln(TYear, TVehlcle, TMethod, TWorth),
new_car (NYear, NStyle, NColor, NPrlce, NDellvery),
flnance(FMethod, FMax, FAmount, MonthlyPayments»

get_buyer (Name, Income),
do_tradeln(Name, TYear, TVehlcle, TMethod, TWorth),
select_new (NYear, NStyle, NColor, NPrlce, NDellvery),
arrange_flnance(Name, Income, FMethod, FMax, FAmount,
MonthlyPayments),

bottom_llne_constralnt(TWorth, NPrlce, FMax, FAmount).

49

Trade-in can be either handled bv the dealer for wholesale book value:

do_tradein(Name, Year, Vehicle, dealer, Worth)
book_value (low, Year, Vehicle, Worth).

... or bv Drivate sale for retail book value:

do_tradein(Name, Year, Vehicle, private, Worth)
book_value (high, Year, Vehicle, Worth).

The svstem medicate is is used to set Year to 1987:

select_new (Year, Style, Color, Price, Delivery)
is (Year, 1987),
find_vehicle (Style, Color, Price, Delivery).

Determine the new vehicle bv either choosinlt from stock:

find_vehicle (Style, Color, Price, 0)
in_stock (Style, Color, Price).

Ie and color:

!ind_vehicle(Style, Color, Price, DeliveryTime)
get_style (Style, Color),
get_color (Style, Color),
order_vehicle (Style, Color, Price),
order_time (DeliveryTime) .

Use the following fact to order the vehicle via the delayed side-effect predi-
cate described later in this section:

order_vehicle (Style, Color, 15000).

The following: facts denote the cars currentlv in stock:

in_stock (coupe, white, 12000).
in_stock (sedan, black, 11000).

For simplicity we assert that all ordered vehicles have the same delivery
time. The following fact sDecifies the deliverv time for an ordered vehicle:

order_time(90).

50

Note: get_buyer, book_value, get_style, get_color,
arrange_finance and bottom_line_constraint are evaluable

predicates solved by external generator processes, described later in this
section.

The rest of this section will detail the complete Car Buying program inter-

spersed with an explanation of the system predicates used to manage freedom. TICS

can accept un annotated Horn clauses. However, control and descriptive information

about individual predicates can be specified optionally by including $pred asser-

tions of the form:

$pred(name(variablel, variable2 ...), [Fieldl, Field2 ...])

The first argument of $pred is a structure that identifies the predicate being anno-

tated. The functor, name, is an atom whose value is the name of the annotated

predicate. The subterms of the name structure are variables; the number of these

variables is equal to the arity of the annotated predicate. The second argument con-

tains a list of one or more optional Field terms in any order. Each Field

specifies one attribute. Certain attributes are incompatible with others, as described

below. An attribute may associate a priority with a predicate or clause. In TICS,

priorities are positive integers, the higher the number the higher the priority.

To prevent system resources from being overwhelmed, TICS provides the sys-

tern designer with the option of specifying gates. Gates are used to limit the number

of goals that can access the user or other resource at any instant. These gates are

declared by the $gate system predicate whose arguments specify the resource's

name, the maximum number of goals that can access the resource at anyone time

51

and the manner in which the goals are to be selected from the gate. Goals can

either be selected by the user from a menu or selected automatically by the system,

based upon the gated goals' priorities. The $pred's gate attribute specifies that

a predicate's goals use a limited resource and assigns those goals a priority of access

to that resource. In addition, predicates with the $pred I s or _mode attribute

have their goals automatically assigned to the select gate. When the system

attempts to solve a subtask that is gated, the system initially inserts that subtask

into the appropriate gate according to the task's gate priority. After all goals have

been initially serviced, i.e., solved or inserted into gates, the system will remove and

solve gated goals, one at a time. Gates are examined in the order they are initially

declared. The first gate found whose limit is greater than the number of subtasks

currently accessing the gate's resource is selected. If the gate's selection mode was

specified as manual, the user chooses a goal from a menu containing all the gate's

members. If the gate's mode is automatic, the system will select the highest

priority goal.

The order of initial gate declaration is especially important when the select

gate is used. Select goal's may establish additional, possibly gated, goals. Gates

declared after the select gate will not start solving their goals until all of the

gate's goals, including those established by or _mode predicates, have been inserted.

Our first two examples declare the gates in different orders to accomplish different

purposes. The Car Buying program will declare the select gate first because the

procedure used to solve find_vehicle, an or _mode predicate, may establish the

62

goals, get_color and get_style. This gate ordering ensures that these goals

will be inserted, in priority order, into the crt's gate before the crt's gate is initially

serviced. Thus, get_color and get_style will be invoked before lower priority

goals, e.g., bottom_line_constraint. This behavior is desired because the

lower priority goals require information that is based upon the data supplied by

The following $gate predicate establishes the select gate. This predi-
cate states that the system will automatically choose the next or _mode

redicate's goal to solve. The select gate limit is alwavs one:

$gate(select, 1, automatic).

Limit to three the number of subtasks using the display at anyone time.
The three are automatically selected by the system on the basis of each

redicate's $pred £ate Driorit

$gate(crt, 3, automatic).

The following $pred system predicate contains the clauses and pdesc annota-

tions for the buy_car predicate. The clauses term specifies the procedures that

can be used to solve the buy_car predicate. Each procedure is described by a

clause term.

Forward deduction priority is the second argument of the clause term and is

used in determining the procedure to solve a goal. If clause selection is manual

because either the deduction mode is set to manual or the predicate has an

or _mode manual annotation, then the user is presented with a menu with the

goal's potential clauses listed in priority order. If clause selection is automatic

53

because both the deduction mode is set to automatic and the predicate does

not have an or _mode manual annotation, then the system automatically selects

the highest priority procedure.

Backward deduction priority is the third argument of the clause term and is

used to determine which predicate to undo during backtracking. If there is more

than one element in the set of sets of goals that can be undone to restore

unifiability, then the sets are ordered by the sum of the backtracking priorities of

each set's members. If backtracking mode has been set to automatic, then

the system undoes the set with the lowest sum of backtracking priorities. If back-

tracking mode has been set to manual the user selects the set from a priority-

ordered menu. The fourth argument of the clause term contains the clause's

natural language format. The fifth argument specifies the clause's information level

that will be used by the, not as yet implemented, explanation facility. The informa-

tion level will be used to control the amount of detail provided the user. The

pdesc term specifies the natural language description of the predicate and has the

same format as the last two arguments of the clause term.

54

The buy_car subtask is solved by a clause,i.e.,procedure, described to

the user by the system as "tradein,selectand finance a new car". The

predicate buy_car is described by the phrase "buy a car: <I>, <2>,

<3>, <4>"; where the current bindings of the variables Person,

Trade, New and Finance are displayed in positions<I>, <2>, <3>

and <4>, respectively.Ifthe variableisunbound then "<unbound>" will

be displayed in that position.For example, if Person were bound to Jay

and the other three variableswere unbound, then the followingwould be

printed:

buy a car: 'Jay', <unbound>, <unbound>, <unbound>

When the display level feature is implemented, this description will only be

printed if the current display level is less than or equal to 2:

$pred(buy_car(Person, Trade, New, Finance), [
clauses ([

clause«buy_car(
person_ID(Name, Income),
tradein(TYear, TVehicle, TMethod, TWorth),
new_car (NYear, NStyle, NColor, NPrice, NDelivery),
finance (FMethod, FMax, FAmount, MonthlyPayments» :-
get_buyer (Name, Income),
do_tradein(Name, TYear, TVehicle, TMethod, TWorth),
select_new (NYear, NStyle, NColor, NPrice, NDelivery) ,
arrange_finance (Name, Income, FMethod, FMax, FAmount,
MonthlyPayments),

bottom_line_constraint(TWorth, NPrice, FMax, FAmount»,
1,1, ['tradein, select and finance a new car'],2)

]),
pdesc(['buy a car: " Person,' ',Trade,' ',New,

, ',Finance], 2)
]).

The ptype term for get_buyer specifies that get_buyer is an evalu-
able predicate of type external generator and that it should be solved by
executing the process named gb. The backtrack priority of this predicate
is 6. The gate term says that get_buyer utilizes the crt and has a
priority of access to this gated resource of 6:

$pred(get_buyer(Name, Income), [
ptype(external_generator, gb, 6),
pdesc(['buyer is " Name, ' with income
gate (crt, 6)

Income], 2),

]) .

00

The clauses term for do_tradein specifies two procedures that can

be used to solve it. Note that not only do the descriptions of these clauses

differ,but the firstclause instantiates the variable Method to dealer

while the second instantiates this variable to pr ivate:

$pred (do_tradein (N, Y, v, Method, W), [
clauses([
clause«do_tradein(N, Y, V, dealer, W) :-

book_value (low, Y, V, W», 2, 1, ['use dealer tradein'], 2),
clause «do_tradein(N, Y, V, private, W) :-

book_value (high, Y, V, W», 1, 1, ['use private sale'], 2)
]),

The or _mode term states that when the system encounters a

do_tradein goal to insertitinto the select gate with a priorityof 2.

When a do_tradein goal is removed from the gate, because the

or _mode's firstargument is automatic, the system willchoose the pro-

cedure to solve the goal from that goal'spotential.The system willselect

the procedure with the highest forward priority.For do_tradein, the

procedure in the firstclause term has a higher forward prioritythan

the procedure in the second clause term:

or_mode (automatic, 2),
pdesc(['determine trade-in value for vehicle Y, V], 2)

]).

$pred(book_value(Method, Year, Vehicle, Value), [
ptype(external_generator, bv, 3),
gate (crt, 3),
pdesc(['old car is worth " Value, , using " Method,

, trade-in '], 2)
]) .

$pred(select_new(Y, S, C, P, D),
clauses([
clause «select_new(Y, S, C, P, D) :-

Y is 1987, find_vehicle(S, C, P, D», 2, 2,
['select new car'], 2)

])
J).

$pred(get_style(Style, Color), [
ptype(external_generator, 'gs', 3),
pdesc(['style of car is " Style], 2),
gate (crt, 4)

]) .

66

$pred(get_color(Style, Color), [
ptype(external_generator, 'gc', 3),
pdesc(['color of car is " Color], 2),
gate (crt, 4)

])0

$pred(find_vehicle(S, C, p, D), [
or_mode (automatic, I),
clauses([
clause«find_vehicle(S, C, p, 0) :-

in_stock(S, C, P», I, 2,
[' new car from stock, price " P], 2),

clause«find_vehicle(S, C, P, D) :-
get_style(S, C), get_color(S, C),
order_vehicle(S, C, P), order_time(D», 2,
2, ['ordering new car, price " P, , delivery D], 2)

])
])0

The side_e f fect term specifies that, when the user accepts a
buy_car solution, the order _vehicle subtask in the final deduction
tree should have the process named o_letter executed with the current
bindings for that order_vehicle's S, C and Price variables passed
as arguments. The side_effect annotation is used in our example to
send an order letter with the values for the selected vehicle's style, color
and price:

$pred(order_vehicle(S, C, Price), [
clauses ([

clause «order_vehicle(S, C, 15000», I, 8,
['order vehicle'], 1)

]),
pdesc(['order vehicle " S, ' color " C, ' price

Price], I),
side_effect (delayed, o_letter, [8, C, Price])

]) 0

The or _mode term causes TICS to insert in_stock goals into the
select gate with priority 20 When an in_stock goal is removed from
the gate, the user will select the procedure to solve the goal from a menu.
The menu entries will consist of the goal's potential displayed in natural
language format and in forward Drioritv order:

57

~pred(in_stock(5, C, Price), [
clauses([

clause«in_stock(coupe, white, 12000», 1, 4,
['white coupe 12000'], 1),

clause «in_stock(sedan, black, 11000», 2, 4.
['black sedan 11000'], 1)

]) ,
or_mode (manual, 2),
pdesc(['in stock vehicle " 5, ' color " C, ' price

Price], 1),
side_effect (delayed, o_letter, [5, C, Price])

».

~pred(arrange_finance(Name, Income, FMethod, FMax, FAmount,
MonthlyPayments), [

ptype(external_generator, 'af', 2),
pdesc([FMethod, 'potential financing is " FMax,

" actual financing is " FAmount, ' with payments of
MonthlyPayments], 2),

gate (crt, 2)

]).

~pred(bottom_line_constraint(TWorth, NPrice, FMax, FAmount),
ptype(external_generator, 'blc', 9),
pdesc(['finance amount " FAmount, ' (new car price: "

NPrice, ' less trade-in: " TWorth, ') must be less than "
FMax] , 1),

gate (crt, 2)

]) .

order_time (90) .

Forward deduction in automatic mode willallow the system to selectthe

goals to solve and the procedure to solve a goal unless unless otherwise

specifiedby a $pred or _mode or gate annotation. The following

clause isused to set globalforward deduction mode to automatic:

~deduction(automatic) .

Setting global backtracking to manual will allow the user to select the set

of goals to be undone when unification constraint violations require back-

tracking:

~backtrack(manual).

68

This example program is illustrated by the following problem-solving scenario.

The user enters the initial goal:

7- buy_car (

person_ID(Name, Income),
tradein(TYear, olds, TMethod, TWorth),
new_car (NYear, NStyle, NColor, NPrice, NDelivery),
finance (FMethod, FMax, FAmount, Monthlypayments».

The buy_car procedure that solves this goal creates the following goals:

arrange_finance, and

bottom_line_constraint. The get_buyer subtask is inserted into the crt

gate. The do_trade in, an or _mode annotated subtask, is inserted into the

select gate. The select_new procedure establishes 1987 as the year of the new

vehicle and generates a new goal, find_vehicle, which is inserted into the

select gate. Both arrange_finance and bottom_line_constraint sub-

tasks are then inserted into the crt gate. This situation is illustrated in Figure 5-

lA.

The select gate was specified before the crt gate, thus, the do_tradein

goal is serviced first, causing a new subtask, book_value, to be inserted into the

crt gate. The final select gate goal, find_vehicle, is then solved, resulting

in the goals get_style and get_color being put into the crt gate. This

situation is illustrated by Figure 5-1B.

TICS, as per our $gate specification, allows only three subtasks to access the

crt at once. In this case we had specified that the system is to make the selection

based upon assigned forward priority. Therefore, the goals get_buyer,

59

Belect gate do_tradein

priority 2

find_vehicle

priority 1

crt gate

A

Belect gate empty

crt gate geLbuyer

priority 6

get style

priority 4
geLcolor
priority 4

book_value

priority 3

bottom-line_constrai n t

priority 2

arrangeJinance
priority 2

B

Figure 5-1. Car Buying'8 Gates

get_style and get_color with priorities 6, 4 and 4 respectively, are removed

from the crt gate and solved by their external processes. These processes run con-

currently and interact with the user via separate windows on the crt. The user can

solve these subtasks in any order. In our scenario, the user chooses "black" as the

color of the new car. The get_style subtask uses this color information to

modify its prompt to only those styles available in black, i.e., coupe and sedan. This

interaction illustrates that the two processes, get_styl e and get_co 1or,

cooperate by sharing Color and Style information.

geLbuyer arrange_finance bottom-li ne_constrain t

priority 6 f- priority 2 priority 2

60

The completion of the get_color subtask reduces the number of subtasks

accessing the crt to below the gate's limit. Therefore, TICS removes book_value

from the crt's gate and solves the goal by executing book_value's associated

external process. This process needs only to question the user regarding the trade-

in's year because the initial buy_car goal instantiated the trade-in vehicle's type

information to "olds". The user then enters "coupe" for the new vehicles body style

and continues to interact with the external processes until the remaining goals are

solved.

Had the first find_vehicle clause been used to solve select_new, the

subtask in_stock would have been generated rather than get_color and

get_style. Because in_stock is specified as being or _mode (manual, 2) the

user would have been allowed to select the clause to solve this subtask from a menu,

i.e., choose the in stock vehicle. The entries in the selection menu would have been

ordered by clause priority and displayed in the specified natural language format as

follows:

1- white coupe 12000
2- black sedan 11000

The maximum amount that the buyer can finance is determined from the

buyer's income by arrange_financing. The final net cost, i.e., price of new car

less trade-in, must not be greater than the amount the buyer can finance. This

requirement is checked by bottom_l ine_constraint when all of its variables

become instantiated. If the solution is illegal, bottom_l ine_constraint will

61

permit the user to selectively change the trade-in, finance or new car selection deci-

sions via intelligent backtracking.

In our scenario an initial solution is produced. The user then decides to change

the method of financing. She specifies that additional solutions are desired and thus,

TICS invokes backtracking. Since manual backtracking mode was selected, the

user selects the arrange_financing subtask from the backtracking menu

choices. Had automatic mode for backtracking been set, the system would have

made the choice on the basis of backtracking priority. An advantage of intelligent

backtracking is illustrated by noting that when a subtask is undone only those sub-

tasks that depend upon it are undone. When arrange_financing is undone,

get_buyer, do_tradein and select_new are unaffected. However,

bottom_line_constraint is undone because it read the value of FMax esta-

blished by arrange_financing.

The user enters the new financing information and arrange_financing gen-

erates a new value for FMax. The rerun bottom_line_constraint subtask

examines FMax and determines that the new vehicle can be purchased. The user

then accepts the solution and the side_effect process associated with the

order _vehicle subtask is executed with the specified variables' current bindings.

This process sends mail ordering the specified vehicle, a black coupe.

5.2. Plumber

The task of Plumber is to generate a report from one or more sources of data.

To illustrate TICS' ability to incorporate existing functionality, our goal was to use

62

standard UNIX processes. For example, initial sources, i.e., files, can be created by

UNIX shell processes such as ps. These data sources can then be transformed using

the UNIX utility awk, sorted using UNIX sort and merged using UNIX cat. Our pro-

gram was written so that the functionality of other UNIX utilities could be incor-

porated easily.

Plumber has features, thanks to TICS, not easily provided by existing tech-

niques such as UNIX shell scripts. These features include allowing the user to incre-

mentally create and examine the results of specifying sources and transformations of

data and providing the user with the power to easily modify his or her decisions.

TICS' intelligent backtracking mechanism allows the user to modify both the data

sources and the transformational plumbing. Because the intermediate results of

operations are stored in files instead of being piped directly between processes, only

those operations affected need be redone.

The result of a Plumber session, i.e., data source(s) plus transformation(s), can

be viewed as a customized report. We will illustrate Plumber by describing a session

that creates a report containing the current date followed by the list of an

individual's running processes. The UNIX utilities that will be used in the scenario

are date and ps to generate the sources, and awk and cat to transform and

output the data.

The following program demonstrates TICS' ability to compose existing general-

purpose processes in a user-oriented way. For each report a create goal is gen-

erated. Each create goal establishes a data source and that data's transforma-

63

tion. Plumber allows the user, via manual or _mode menu selections, to incremen-

tally specify this source-transformation network. The data source either comes from

an existing file or is created by generating the data from a UNIX utility. Each

transformation is accomplished by a translate subtask. To utilize existing UNIX

utilities and to display intermediate results, a few general purpose processes were

developed, show_file, user _atom, glue, t_file and do_shell. These

processes are described below.

~backtrack(manual) .
~deduction(automatic) .

Plumber creates the source and transformational plumbing, i.e., network of
external processes, based upon the user's manual or_mode menu selec-
tions. However, these external processes require user-input, via the crt,
before they will allow the data to flow through them. The crt gate is de-
clared before the select gate to allow the crt-gated user-interactive
processes to be started before the network of sources and transformations,
established by manual or_mode goals, is completed. The user can thus
incrementally create the plumbing and observe the flow of the data
through the network. If the select gate were specified first, as in the
previous Car Buying example, all the or _mode goals in the selectgate
would have to be solved before any crt-gated tasks could be started:

~gate(crt, 3, automatic).
~gate(select, 1, automatic).

The user can elect to do one or more independent Plumber reports. Each
report consists of a network of sources and transformations:

64

$pred(report(Input. Output). [
clauses([
clause«report(Input. Output)

create (Input. Output). report (Ninput. Noutput». 2. 1.
['multiple interactive reports']. 1).

clause«report(Input. Output) :-
create (Input. Output». 3. 1.
['single interactive report']. 1).

clause«report(Input. Output». 1. 1. ['end reports']. 1)
]).
pdesc(['report'. ' input '. Input. ' output '. Output]. 1).

When the initial goal is solved the delayed side-effect process r _temp will
be executed. This process will remove all temporary files by simply issuing
a UNIX rm tmp* command. Temporary files are created by t_file as
described below:

side_effect (delayed. r_temp. []).

or_mode (manual. 1)

]).

The create predicate establishes a data source. The source can be eI-
ther an existing file or a UNIX shell command:

$pred(create(Input. Output). [
clauses([
clause«create(Input. Output)

/* user enters the name of the data source file */
user_atom('old filename '. Input).
translate (Input. Output». 4. 1.
['startwith existing File '. Input]. 1).

clause «create (Input. Output) :-
/* user enters a shell command to create data */
user_atom('shell command'. Command). t_file(File).
do_shell(command(Command). input(none).

output(File). Input).
translate (Input. Output». 2. 1.
['start with shell-created file '. Input]. 1)

]).
pdesc(['starting data']. 1).
or_mode (manual. 4)

]) .

65

The translate predicate establishes a transformation operation. The

data can be edited, sorted or merged using the UNIX utilitiesawk, sort or

cat respectively. Alternatively the series of transformations can be ter-

minated with the data optionally being output to a file. Plumber's frame-

work is flexible;other UNIX utilitiescan easily be incorporated to provide
additional transformations:

$pred(translate(Input, output),
clauses ([

clause «translate (Input, Output)
/* user enters the desired UNIX awk specification */
user_atom('awk " Command), awk(Input, Command, Done),
translate (Done, Output», 6,2, ['awk of " Input], 1),

clause «translate (Input, Output) :-
/* user enters the desired UNIX 80rloptions */
user_atom('sort " Command), sort (Input, Command, Done),
translate (Done, Output», 6, 2, ['sort of " Input], 1),

clause «translate (Input, Output) :-
create (NI, NOutput), merge (Input, NOutput, Done),
translate (Done, Output», 5, 2,
['merge " Input, ' with another file'], 1),

clause «translate (Input, Output) :-
show(Input), translate(Input,Output», 4, 2,
['show', Input], 1),

clause «translate (Input, Output) :-
/* user enters the output file's name */
user_atom('output filename', Output),
glue(['cp " Input, ' " Output], CL),
do_shell (command(CL), input (none), output (none), Done»,
2, 2, ['output file " Input, ' to' Output], 1),

clause«translate(Input, Input», 1, 2,
['end translate " Input], 1)

]),

pdesc (['translate " Input, ' to " Output], 1),
or_mode (manual, 6)

]).

To perform a merge operation we use cat to combine the files.The order

of the filesis determined by the clause selected to solve the merge sub-
task:

66

$pred(merge(F1, F2, Done),
clauses ([
clause«merge(F1, F2, Done)

t_flle(Temp1). glue(['cat', F1, ' ',F2], CL),
do_shell (command (CL), input (none), output (Temp1), Done»,
2, 2, [' first file', F1, ' then second file', F2], 1),

clause«merge(F1, F2. Done) :-
t_flle(Temp1), glue(['cat " F2, ' " F1], CL),
do_shell (command (CL), input (none), output (Temp1), Done»,
2, 2, ['second file', F2, ' then first file', F1], 1)

»,
pdesc(['merge files', Fl. ' " F2], 1),
or_mode (manual, 5)

]).

Invoke awk via the shell to Derform a user-sDecified transformation:

$pred(awk(Input, Command, Done),
clauses ([

clause «awk(Input, Command, Done)
t_file (Temp1), glue (['awk " '''',Command, ''''],CL),
do_shell(command(CL). input(Input). output (Temp1), Done»,
2, 1, ['do awk :', Command, ' result in " Done], 1)

».
pdesc(['change " Input, I with awk " Command, ' to

Done], 1)
».

Invoke sort via the shell to Derform a user-sDecified transformation:

$pred(sort(Input, Command, Done),
clauses ([

clause «sort (Input, Command, Done)
t_file(Temp1), glue(['sort " Command], CL),
do_shell (command (CL), input (Input), output(Temp1).
2, 1, ['do sort :', Command, ' result in " Done],

]),
pdesc(['change " Input, ' with sort' Command, ' to

Done], 1)

Done» .

1)

».

Invoke sho'W_fiIe to display a file. The file's display is preceded by the
file's name:

67

$pred(show(File) , [
clauses ([

clause«show(File)
show_file(title(File), data_file(File»), 2, 1,
['do show'], 1)

]),
pdesc(['show " File], 1)

]).

$pred(show_file(A, B), [
ptype(external_generator, 'show_file', 1),
pdesc(['show file " A], 1),
gate (crt, 2)

J).

If user_atom'ssecondargument is uninstantiated, the process displays
the value of its first argument to prompt the user to enter a value. The
entered value is then written to user_atom'ssecond argument:

$pred (user _atom (A, B), [

ptype(external_generator, 'user_atom', 1),

pdesc ([' prompt user: " A, ' entered " B], 1),
gate (crt, 4)

J).

The parts of a command line are sometimes supplied by multiple con-
current processes. We must wait for these parts to become instantiated
before we can compose the complete command. The g1 ue process waits
until all the terms in its first argument are instantiated and then writes
the concatenation of their values as a sin de atom to its second variable:

$pred(glue(A, B), [

ptype(external_generator, 'glue', 1),
pdesc(['createstring (glue) " B], 1)

J).

its argument does not already exist,
file:

68

"pred (t_flle (A), [

ptype(external_generator, 't_file', 1),
pdesc(['a file " A], 1)

]).

The do_shell processisusedtoexecutea UNIX shell command. The
predicate's first argument specifies the command. The second and third
arguments, if not instantiated to none, specify the redirection of stan-
dard input and standard output respectively. The shell command is issued
after the predicate's first three arguments are instantiated. When the
shell command completes, do_shell instantiates its fourth arl!;ument:

$pred (do_shell (A, B, C, D), [
ptype(external_generator, 'do_shell', 1),
pdesc(['shell " A, , " B, , " C], 1)

]).

The followingscenario isused to generate a report containing the current date

followed by the process identifiers, pid, of a particular user's running processes. The

user invokes the deduction engine by entering the initial Horn clause:

?-report (A, B).

In response to the report menu:

1- multiple interactive reports
2- single interactive report
3- end reports

the user enters 2 to start generating the report.

In response to the create menu:

1- start with existing file
2- start with shell-created file

the user enters 2 to create a source of data from a UNIX shell command. This selec-

tion results in both a user _atom process prompt, shell command:, appearing in a

6U

process window and a translate menu being posted. The user elects to further

specify the network before entering the shell command and so selects awk from

translate's menu:

1- awk of <unbound>
2- sort of <unbound>
3- merge <unbound> with another file
4- show <unbound>
5- end translate

Note: <unbound> appears in the menu because t_fi Ie has not yet created the file

and bound the variable Input to the file's name.

AB a result of selecting awk, choice 1, another user _atom process is invoked

and posts the prompt awk: in a process window. Another translate menu is then

posted. The user specifies another awk translation, which similarly generates

another user prompt and a third translate menu. Curious about the current

intermediate result the user selects show from this menu. A graphical view of this

intermediate network is shown in Figure 5-2. Circles represent data sources and

boxes represent data transformations. Each figure contains the name of its opera-

tion followed by the subtasks it invokes.

A fourth translate menu is posted. Since the user desires to examine the

current results he proceeds to answer the previous user_atom prompts rather than

further specifying the network via the translate menu. Answering the prompts

allows the processes to proceed and the data to flow.

The value 'ps -uag' is entered for the shell command: to generate a source file

containing a listing of all active processes. The value' /grossman/' is entered for the

70

Figure 5-2. Intermediate Plumber Layout

first awk prompt to select only those process belonging to the user "grossman". For

the second awk command the value entered is '{ print $ 2 }', which will project out

the second column, i.e., the process identifier. As entries are made, processes that

were previously invoked will be supplied data that they are waiting for. Data flows

down the created plumbing from the source, generated by ps, through the two awk

transformations and will then be displayed by the show_file process.

The user next specifies, via the translate menu, a merge transformation.

The system invokes another translate menu to operate on the output of the

merge. The other source of data for the merge will be provided later. The user

specifies that the report should terminate with data going to an output file. A

user_atom process prompts for the output file's name, and the user enters

"mYJeport".

Before any output can occur the system needs to create and transform the

other source of data to be merged. In response to the create menu, the user

selects start with shell-created file. Again this selection results in both a user_atom

source translate translate translate

........--.....
AWK AWK SHOW

user_atom user Jtom show_file
t_file Lfile
glue (awk) glue (awk)
do...shell do...shell

71

process prompt, shell command:, in a process window and a translate menu being

posted. The user completes the network specification by selecting end translate and

then enters 'date' for the shell command. As a result, a second source containing the

current date is created. The source's data flows into the merge transformation

where it is combined, via a UNIX cat process, with the list of process identifiers.

The resulting report is output to the file "mYJeport". By this time all external

process have completed and terminated. A graphical view of the resulting network

is shown in Figure 5-3. At this point the report is complete and TICS asks if addi-

tional solutions are desired. The user can choose to modify the plumbing, changing

either the transformations or the data sources. In our scenario the user decides to

change the report to contain the UNIX processes being executed by "maier". Since

'date'

Figure 5-3. Completed Plumber Layout

source translate translate translate translate

AWK AWK SHOW
user_atom user_atom

ShOWJileH MERGE

I translatetJile tJile

a1ue
lue

o-shell o-shell tJile
lue ounvr FIlE

,/grossman/' '{ print $ 2}'
I o-shell useLatom'ps -uag' lue.-

o-shell
I

source I + 14 - .J I 'my J'eport'

72

backtracking has been set to manual, the user selects the subtask to be undone from

the following menu:

The menu choices are the leaf nodes, i.e.,facts, in the deduction tree whose undoing

can generate alternative solutions, as per our previous description of extended plan-

based deduction. The choices include all the external_generator type

processes. The process that supplied the firstawk command, '/grossman/', is chosen

by selecting entry number 4. The associated user _atom's bindings are undone and

the rerun process posts a new awk: prompt. In addition,TICS automatically re-

solves all predicates that used this data either directly or indirectly. Thus, the

translate processes associated with the awk: '{ print $.e}', show, merge andfile output

are run again. The processes associated with ps and date are not affected. When the

user enters the new awk command, '/maier/', the data flows through this transfor-

mation and then through the rest of the network. The new list of process id's is

displayed via show and the final data is output into the file "mYJeport". TICS once

again prompts the user to see if additional solutions are desired.

1:

prompt user: output filename entered 'my_report' .

2:

prompt user: shell command entered 'date'.

3:

prompt user: awk entered '{ print $ 2 }'.

4:

prompt user: awk entered '/grossman/' .

5:

prompt user: shell command entered IpS -uag' .

73

If the user wants to get a more current listing of processes, he can request addi-

tional solutions. This action will invoke TICS' backtracking mechanism. He then

can select the do_shell that had executed the 'ps -uag' command, to be undone.

This action will cause the 'ps -uag' command and all processes that depended upon

this command either directly or indirectly for data, to be rerun. The output file will

then contain the new listing of the selected person's processes.

When the user decides to accept the solution, the delayed side-effect associated

with the predicate report is invoked. This invocation initiates the execution of

the process r _temp, which causes the removal of all temporary files created during

the session. The source and transformational plumbing is no longer accessible after

the user accepts a solution. TICS could be enhanced to generate a file containing

the user's menu selections that resulted in a specific solution. This file could then be

used by TICS to automatically regenerate the source and transformational plumb-

mg.

5.3. Scheduling

The Scheduler example assigns professors and the courses they are to teach to

classrooms. This task is invoked with a list of professors as its first argument and a

list of time slots as its second argument. A time slot record contains name of class-

room, hour of day, type of facility, professor-assigned and course-assigned fields. The

last two fields will be specified with variables in the initial goal to indicate slots that

are available for assignment. For example, we can use the following goal:

74

7- assign ([mark, nora] , [
slot (room100, 10, lecture, A, AA),
slot (roomlOO, 1, lecture, B, BB),
slot (room200, 10, seminar, C, CC),

J).

to invoke Scheduler for 2 professors, mark and nora. The goal lists 3 slots to

which these professors may be assigned. The first slot specifies that room 100 of

type lecture hall may be assigned at 10 o'clock.

Associated with each professor IS an external file named

"<professorsJIame> _courses". This file contains a list of records. Each record has

three fields; the course name, desired time and required facility type. For example, a

file named mark_courses, indicating that professor mark is to be scheduled to teach

cs100 and cslOl, contains:

cs100 11 seminar
cs101 10 lecture

The course cslOO requires a seminar room and mark desires to teach the course at

11:00.

The problem is to schedule all the "professor-course" pairs with the constraints

that each time slot can only be assigned one "professor-course" pair. A "professor-

course" pair must be assigned only to a classroom of the proper facility type. The

professor's desired time requests will be satisfied if possible but an alternative time

may be used.

The following program specifies the Scheduler task:

75

$gate(select, 1, automatic).

$pred (assign(Professors, ClassTimes),
clauses([
clause«assign(Professors, ClassTimes)

course_assign (start, Professors, ClassTimes», 1, 1,
['assign professors to classes'], 1)

]),
pdesc(['assignments: " ClassTimes], 1)

J).

The course_assign procedure recursively generates a

one_pro fessor subtask for each professor in the list. The

course_assign subtask will allow all one_professor processes to

access the schedule at the same time. A one_pro fessor process does

not examine the schedule, ClassTimes, untilitsfirstargument isinstan-

tiated. To force a one_pro fessor process to delay examining the

schedule information until the previous one_pro fessor process has

modified the schedule we need only change the variable Start to

Proceed. This flexibilityof operation is due to the design of the

one_pro fessor subtask and isdescribedbelow:

$pred(course_assign(Start, Professors, ClassTimes),
clauses([
clause «course_assign (Start, [], ClassTimes», 1, 9,

[,done'], 1),

clause «course_assign (Start, [APIR], ClassTimes)
one_professor (Start, AP, ClassTimes, Proceed),
course_assign (Start, R, ClassTimes», 2, 1,
['assign one professor'], 1)

J),
pdesc(['assign one professor'], 1)

]) .

76

The one_pro fessor processwaits until its first argument is instantiat-
ed. The process then reads the name of its professor and accesses the
professor's associated file. Assignments are made base upon the informa-
tion in this file. This information specifies the course to be assigned, the
professor's time preference and the type of room required. Assignments
are made by instantiating variables, i.e., unassigned slots, in the classroom
time slot list (argument three). When one_pro fessor completes, it in-
stantiates the variable Proceed to provide synchronization when the
task is setup to operate in sequential mode:

~pred(one_professor(Start, P, C, Proceed), [
ptype(external_generator, 'one_professor', 1),
pdesc(['assignprofessor " PJ, 1)

J) .

Sequential versus concurrent access to the schedule information by the

one_pro fessor processes is similar to the difference between record locking versus

optimistic concurrency control in the database world. Sequential operation ensures

that each process will have sole access to the classroom time slot data during its

time of operation. No conflicts will be generated because a process will know exactly

what slots are safe to assign. A priority scheme is established by the order of the

professors in the original goal. The nearer a professor is to the front of the list the

greater his or her priority and thus the more likely to have the preferred time

assigned.

When operating with concurrent access to the schedule information, the

one_pro fessor subtasks may generate conflicting assignments. These conflicts

will cause TICS' intelligent backtracking to be invoked. The appropriate professor(s)

process(es) will be undone and restarted. Eventually the system will, if possible, gen-

erate a non-conflicting set of assignments. We now illustrate the concurrent access

version of Scheduler with the following external files for professors Becky, Nora and

77

Mark:

becky_courses:
cs300 11 seminar
cs301 10 lecture

nora_courses:
cs200 1 seminar
cs201 11 lecture

mark_courses:
cs100 1 seminar
cs101 10 lecture

A problem-solving session is invoked by submitting the following goal:

$deduction(automatic) .

$backtrack(manual) .

7- assign ([becky, nora, mark], [

slot (room100, 10, lecture, A, AA),

slot (room100, 11, lecture, B, BB),
slot (room100, 1, lecture, C, CC),
slot (room200, 10, seminar, D, DD),
slot (room200, 11, seminar, E, EE),
slot (room200, 1, seminar, F, FF)

J).

The goal states that three professors are to be assigned to any of six classroom time

slots. By setting the backtracking mode to manual the user will be given the choice

of which professor(s) to undo in case there is a scheduling conflict.

In this particular scenario, the three one_pro fessor processes accessed the

schedule information before anyone of them had made an assignment. Using this

information the processes made assignments based upon their professor's external

file. In this case the assignments resulted in two conflicts. The first conflict was

that the name variable of the first slot, AA, was instantiated to both the values

becky and mark. The second conflict was that the name variable of the last slot,

78

FF, was instantiated to both the values nora and mark. This set of conflictscould

be removed by undoing the results, i.e.,bindings, of either both of the

one_professor subtasks for becky and nora or,of the one_professor sub.

task for mark. Backtracking was invoked and the user offered a choice of sets of

procedures to be undone in the following menu:

The user selectedset number 2, causing the bindings of the one_pro fessor

subtask for professor mark to be undone and the process rerun. The

one_pro fessor process then accessed the schedule, which stillincluded the binding

information from the one_professor subtasks for becky and nora, and made

mark's course assignments. This assignment resulted in a conflict-freeschedule and

the original goal was successfully solved.

1 :

assign professor 'becky' .

assign professor 'nora'.
2:

assign professor 'mark'.

79

Chapter 6

Implementation

A TICS application consists of a special-purpose functional database and

separate external processes that are used to solve evaluable predicates. The basic

top-level architecture of TICS was presented in Chapter 4, and illustrated in Figure

4-1. We now discuss TICS in further detail.

Our prototype implementation was written in C++ and run under the 4.3 BSD

UNIX operating system on a VAXl. When TICS is initially invoked, UNIX signal

handlers are established to service <contro1- c> abort, abnormal child process

termination, communication link failures and out-of-heap storage conditions. After

the window system and interprocess communication mechanism are initialized, TICS

polls for and services significant events. These events consist of keyboard input, mes-

sages from external processes and execution of the deduction engine. We now dis-

cuss, in more detail, each of these components of TICS.

6.1. Window Manager

The window manager maintains six windows called Transcript, State, Com-

mand, Processl, Process2 and Process3. Figure 6-1 depicts TICS' display. Keyboard

input is handled by the window manager. All windows are active for output, but

only one may be active for input. A special border is displayed around the window

that is active for input. The State window is active for input in Figure 6-1.

lUNIX is a trademark of Bell Laboratories, VAX is a trademark of Digital Equipment Corporation

80

...

.-..
. ,. .,

~

....................

,
,--- State --- 1
I _ I
I 1
I I
I I
I I
I I
: 1

, ,. ,. .,

Figure 6-1. TICS' Window Manager

The Transcript window displays the occurrence of significant TICS events, e.g.,

compilation of Horn clauses, messages received from external processes, system

errors. The State window allows the user to enter commands, e.g., compile a file of

Horn clauses. The State window is also used to reply to questions from the deduc-

tion engine such as whether additional solutions are required. Both the Transcript

and State windows record their displayed information in UNIX files. This informa-

tion is used to provide a scrolling mechanism and a log of events that can later be

analyzed. Process windows are allocated by external processes that need to interact

with the user. An external process can display information on and receive user key-

board information from a window that it has allocated. If there are no Process win-

dows available, a process will have its display messages printed in the Transcript

81

window by default.

The user can enter a window-manager command from the Command window.

The window manager can be directed to select a new active window or, if Transcript

or State is currently active, scroll the active window BACKwards or FRONTwards.

The Command window becomes active whenever the user enters a <control-x> in

any window. A command is selected by positioning the cursor using the <space>

and <back space> keys and entering <cr>.

The window manager is called when keyboard data is entered. The manager

buffers this input until a user message terminator occurs, i.e., <cr> or <esc>.

Data input via the keyboard, while a Process window is active for input, is sent to

the associated external process. If the Transcript or State window is active, the

message is handled as a TICS command by the database access manager (DAM).

6.2. Database AccessManager (DAM)

TICS' command messages are sent to the DAM from either the user, via the

keyboard as previously described, or by external processes. These messages are null-

terminated byte sequences, i.e., UNIX character strings. The DAM interprets mes-

sages from the user and external processes in the same way. This common interpre-

tation allows the designer to use the keyboard to simulate messages from external

processes during system development.

To allow for user keyboard entry, we use only the alphanumeric characters.

The first character of a message sent to the DAM specifies the function requested

82

and is sometimes followed by command specific information. The most common mes-

sages are:

Commands to manage the Horn clause base:

b<filename> read and parse a file of Horn clauses

g<str ing> read and parse a string containing a Horn clause
c clear the Horn clause base

Commands for utilizing the crt's Process windows:

vg allocate an available window) if none available return an error
vr release any allocated window belonging to this process
d<string> display a string in the process)s assigned window

A process must initially identify itself and eventually a process should complete.

This protocol is further described in the section on external processes. Commands

for process identification, completion and backtracking control:

i<process id> identification message
e<status> process completed with status (f or s)
f<variable id> fail goals instantiating the specified variable

Commands to read, write and be notified of changes to logical variables:

r<variable id>
w<variable id>
n<variable id>

return the variable)s current value
<value> write the value to the variable

return the variable's current value and notify of changes

Note:

<value> is a flattened logical term. The structure of a logical term is described

later in the section on data structures. A flattened term is a sequential character

representation of a logical term and can be reconstituted into a logical term by pars-

ing it.

83

<variable id> is the number assigned by TICS during deduction to represent a

specific instance of one of a clause's variables. An external process is invoked with

the identifiers of the variables in its environment. TICS numbering and handling of

variables is described later in this chapter.

A message from the DAM is normally sent only in response to a message

received by it,with the following exceptions. The firstexception is when TICS needs

to undo an evaluable predicate's active external procedure. If the process is of type

external, TICS has the operating system killthe process. If the process is of type

external_generator, TICS sends the process an abort message. When an abort

message, <control-d>, is received, a process must immediately suspend or ter-

minate. TICS will send an unsuspend message, a, if and when it requires the process

to generate another solution. This technique allows an external_generator to

preserveits local state information between invocations.

A second exception occurs when a process has asked to be notified about

changes to a variable. When the DAM receives such a request, it immediately

responds with the variable's current value. If, in the future, the variable's value

should change, then TICS will send an unsolicited message containing the variable's

id and value:

u <variable id> <value>.

Messages sent from the DAM, in response to a request, contain as their first

byte either an ACK or NAKdepending upon whether the the initial character of the

message being responded to made sense. The second byte is the same as the first

84

byte of the request, i.e., the function requested. The third byte is either an s or e,

depending upon whether the function was carried out successfully or if an error

occurred. These bytes may be followed by data or error messages.

6.3. Horn Clause Parser

The parser, built using lex and yacc, handles Horn clause syntax in the format

used by Clocksin and Mellish [Clocksin and Mellish 84]. When the DAM, via the win-

dow manager, receives a "compile file" command message or a "compile string" mes-

sage, the parser is invoked. The parser translates most Horn clauses into predicate

structures and stores these structures in TICS' Horn clause base. The base is imple-

mented as a hash table with linked-list overflow. The hash code is generated from

the clause head's functor and arity. Some types of clauses are not stored but instead

invoke actions. When the parser translates a clause wh,ose first term is

$deduction (Mode) , the parser sets the deduction engine's forward mode of opera-

tion. If the term is $backtrack (Mode) , TICS' backtracking mode is similarly set.

Clauses that begin with $pred contain a list of terms denoting predicate annota-

tions. These terms are parsed and stored in a separate hash table. If $pred con-

tains a clauses list, then the terms of this list are in turn parsed and added to the

base. When a clause that begins with ?- is parsed, the deduction engine is invoked

to resolve the goal.

To illustrate the implementation we will now introduce a simple example called

Sample. As was mentioned in Chapter 5, predicate annotations to control and

manage freedom are optional. For the sake of simplicity, we keep these annotations

85

to a minimum in our example. The Horn clause specification for Sample, stored in a

file of the same name, is as follows:

sample(R, S)
a (1) .
a (j) .
b (j) .
c (j) .
e(T, T).
$deduct1on(automat1c) .
$backtrack(automat1c) .
$pred (d (Z), [ptype (external_generator,
7- sample (X, Y).

. a(R), b(S), c(S), d(R), e(R, S).

dsample, 1)]).

To execute the Sample task the user directs TICS to read and parse the file by

entering a command, bSample, in the State window. The parser is invoked and

creates and inserts the entries for the first six clauses into the base. The resulting

structures are shown in Figure 6-2.

The next two clauses cause the parser to set the deduction engine's global for-

ward and backtrack modes to automatic. The $pred clause creates a predicate

hash table entry for predicates with functor d and arity one. This entry indicates

that its predicate is an external generator with an associated external procedure

named Idsample I and with backtracking priority of 1. Parsing the final clause

invokes the deduction engine to resolve the goal: sample (X, Y).

6.4. Forward Deduction

The basic terminology and methodology of plan-based deduction was introduced

In Chapter 4. In this section we describe the steps of forward deduction in more

detail and then illustrate it with our program Sample.

86

:- a(R) ... e(R, S)

Horn clause base hash table

d(Z)

extenIa~tcr

1variable

'~Ie'

predicate annotation hash table

Figure 6-2. Sample's Parser Created Structures

(1) TICS first creates a plan, i.e., deduction tree and associated constraint

graph(s). The deduction tree's root represents the initial goal clause. This plan

becomes the first entry in the list of viable plans called the store.

(2) While there are no unification conflicts and there are unprocessed goals, TICS

services one subtask. This processing results in either the goal being solved or

the subtask being inserted into a gate for later processing; this operation is

described further below. If solving a subtask results in unification conflicts,

87

backtracking is invoked, otherwise we skip the next step.

(3) If TICS' intelligent backtracking, described in detail later, is able to generate a

new plan without unification conflicts, then we return to the previous step and

solve the new plan's goals. If a new plan cannot be generated, then TICS

informs the user that a solution cannot be generated. Backtracking first

attempts to generate the new plan from the current plan but if this fails, back-

tracking will use a plan from the store.

(4) At this point all open goals have been serviced initially, i.e., solved or gated. If

there are no gated subtasks, TICS proceeds to the next step. If there are gated

subtasks, then if the number of processes accessing the gate's resource is less

than the gate's limit, TICS selects and processes one. If the number of

processes accessing a non-empty gate's resource is not less than the limit, then

TICS waits until one of these processes completes.

(5) If at any time there are unification conflicts, TICS invokes backtracking (step

3). TICS waits until all external processes have returned a completion status

and then asks the user if the solution is acceptable.

(6) If the user desires another solution, then TICS creates artificial conflicts as

described in Chapter 4, and returns to step 3 to generate another resolution. If

the user accepts the solution, then TICS executes any delayed side-effects and

completes with success.

88

Processing one Subtask

Processing depends upon whether the deduction engine's forward mode is

automatic or manual. In automatic mode, the subtask to process is selected

automatically from the list of open goals and one of the following steps is executed:

(1) If the goal's predicate uses a limited resource and has not yet been gated, the

goal is inserted into the queue for the predicate's gate and no further processing

is done at this time.

(2) If a goal has a non-empty potential, then if the goal's or _mode is manual,

the user is prompted via a menu to select the clause to use from the goal's

potential. Otherwise the system selects the highest priority clause. The

selected clause is then removed from the goal's potential.

(3) If the goal can be solved by a built-in system predicate, e.g., external process or

arithmetic operation, the system dynamically creates a node to solve the goal

and, in the case of evaluable predicates, the associated external process is

invoked or unsuspended.

(4) If the goal cannot be serviced by either of the first 3 steps then it is unsolvable

and the goal is removed via backtracking.

In manual mode the steps are as follows:

(1) The user selects the open goal to be solved.

(2) The user selects the clause from the goal's potential to solve the goal or

specifies that a system predicate should be used.

89

For both modes of operation, a unique instance of a clause is used to solve the

goal. This action causes the plan's deduction and constraint graphs to be updated.

Any unification violations cause backtracking to be invoked.

Sample's Forward Deduction

Let us consider again our Sample program introduced in Section 6-3. The ini-

tial goal, sample (X, Y), causes the creation of node 0 in the deduction tree of the

initial plan shown in Figure 6-3. The initial goal's potential, i.e., clause(s) that may

1- - - - - - - - - - - - - - - I
I node 0
I

:1- sample(X, Y)

~~~~~~~]~~~~~~~~----------------------------
: node 1

: sample(R, S)

Boxes are nodes, i.e., cla.useinstances

Vertical lines connect a. goal with the node used to solve it

Deduction Tree

conr/raint 1
x R

conr/rain/ 1

Y S

Linea repreaent unification impOlled conatrainta

Figure 6-3.

Constraint Graphs

Sample's Initial Plan With Two Nodes



gO

be used to solve it, consists of the single clause:

sample(R, 8) :- a(R), b(8), c(8), d(R), e(R, 8).

The use of this clause results in the creation of node 1 in Figure 6-3. The unification

constraints between terms is reflected in the plan's constraint graph(s). In the upper

constraint graph of Figure 6-3, X and R represent their respective variables. The

edge between the variables represents the unification constraint imposed by solving

the initial goal by node 1. The unification of Y and 8 is similarly reflected in the

lower constraint graph.

Node 1 establishes 5 new goals, a (R), b (8), c (8), d (R), and e (R, 8).

The first of these goals is solved by the first of its two potential clauses, a (i) ,

establishing node 2 and adding a new constraint node, i, on an edge from R. These

structures are shown in Figure 6-4. The second and third goals are solved by their

single potential clauses, b (j) and c (j), respectively. These actions add nodes 3

and 4 to the deduction tree, and two constraints between 8 and j to the constraint

graph. Solving goal d (R) , an evaluable predicate, results in node 5 being generated

to provide the environment of the external process "dsample". The process "dsam-

pIe" is invoked and sends TICS a message requesting the value of its variable Z.

The process receives in reply i, the value that the variable Z is bound to by the

plan's unification constraints. The last goal is solved by its single potential,

e (T, T), creating node 6 and constraining R to 8. There is now a unification

conflict between the j terms of nodes 3 and 4, and the i term of node 2, causing

backtracking to be invoked. This state of affairs is shown in Figure 6-4.



91

,..--------------.
I node 0
1

:1- sample(X, Y)

:~~~~~~J~~~~~~~~____________________________
1

I

I

1

1

I

I node 1

: sample(R, 8) :- _~lB.L_.'b(8) , c(8) , d(R) , e(R,8)
i paleDtiaJ i. aU) .

L - - - - - - - - - - - - _~I~'~'~'~J_- ]
- - - - - -

I

- - - - -

r

- - - - -

I

- - ~

r- - - - -., ,- - - - I 1- - - -, I - - - -,
I 1
1 node e 1

: a(i) :------

1 1
1 node 9 1

: b(j) :-----

1 I
1 node . I

: _ C_(V_ _

I 1
I node 6 1
1

(
1

1 e T,T) 1-----

-----------

Vertical lines connect a goal with
the Dode used to solve it

1 node 5 1
1 1

1 d(Z) 1
1 I
1 oywtem ~ted 1
I eo.vil'ClDlDeDt lor I
1 ~tcr 1
I p_'~~' 1
,- - - - - - - - - - _,

Boxes are nodes, i.e., clause instances

Deduction Tree

con,'rain' .
j

Lines represent unification imposed constraints

Constraint Graphs

Figure 6-4. Sample's Initial Plan With Conflicts

6.5. Intelligent Backtracking

Conflicts occur either when a unsolvable goal is encountered or when there is a

unification violation, i.e., non-unifiable logical terms are connected by edges in a con-

straint graph. The way extended plan-based deduction works is that forward deduc-

tion only operates on a conflict-free plan. When one or more conflicts occur, back-

con,'rain' 5

X con,'rain' 1
I Z

R
con,'rain'e

con,'rain' 6 I t

eon,'rain' 9

con,'rain' 1 I j
Y 8



92

tracking is invoked. AJ:,previously described, backtracking returns, if possible, a new

plan that is created by removing a set of nodes that eliminates all conflicts from the

old plan.

Unification violations are stored as a list of conflict pairs. Each conflict paIr

consists of two non-unifiable logical terms that are connected by edges in a con-

straint graph. For each of these conflict pairs, we determine all the ways possible to

traverse the constraint graph between them, as discussed in the next section. These

traversals generate a set of paths. A path is described by the set of deduction graph

node numbers, representing the unification constraints used in one particular traver-

sal. In our example, one path between the conflict pair i and j in Figure 6-4 con-

sists of the nodes 2, 6 and 3. Removing anyone node from a path's set of nodes will

break the path. To remove a conflict, one node must be removed from every path

for that conflict. To remove all conflicts one element must be removed from every

path in the list. If we view a path as a logical term consisting of the disjunction of

its nodes, then removing conflicts can be viewed as satisfying a logical formula whose

terms are the conjunction of paths. Figure 6-4 contains a second path between i

and j consisting of the nodes 2, 6 and 4. Restoring unifiability requires the removal

of those nodes that satisfy the following logical formula:

(2U3U6)n(2U4U6)

We next remove redundant nodes from each path using Matwin and

Piertrzykowski's eliminate function [Matwin and Pietrzykowski 85]. We seek to

restore unifiability by destroying as little of our previous work as possible, l.e.,



93

removing the smallest amount of the deduction tree. A redundant node is one whose

removal results in a deduction tree which is a subtree of a tree obtained by the

removal of some other node in the path. For example, consider a path containing

the two nodes "a" and "b". If "a" is a parent of node "b", then removing "a" would

produce a subtree of the tree produced by removing "b". Thus, the node "a" is

redundant. The eliminate function uses information in the deduction tree to remove

redundancies. A node is removed if that node is an ancestor of another node in the

path. Since none of the nodes in the paths in our example is redundant, the elim-

inate function has no effect. Had node 1 been included in either path, it would have

been removed because it is the ancestor of some other node in the path.

Next we convert the conjunctions of disjunctions into a disjunction of conjunc-

tions. In our example this operation results in the formula:

(2)U(2n4)U(2n6)U
(3n2)U(3n4)U(3n6)U
(6n2)U(6n4)U(6)

Removal of all the nodes belonging to anyone of the disjunctive terms eliminates all

unification conflict paths. Redundant terms - terms subsumed by another - are

now eliminated. A term is subsumed if there is another term in the formula whose

nodes form a subset of the subsumed term's nodes. For example, the term ( 2 n 4 )

is subsumed by the term ( 2). Since unification can be restored by removing just the

node 2 we need not consider removing both nodes 2 and 4. In our example this remo-

val results in:



94

( 2 ) U (3 n 4 ) U ( 6 )

There is no point in removing a node if the parent goal has an empty potential, i.e.,

there are no more clauses that can be used to solve that goal. Therefore, we imple-

ment Matwin and Pietrzykowski's pruning function as described in Chapter 4. Prun-

ing results in substituting for such a node its most recent ancestor node, which

results in a plan whose unsolved goals have non-empty potentials. If this pruning

fails to produce such a plan, then we discard this alternative, i.e., remove the con-

junction of nodes of which it is a member. The resulting formula represents the set

of sets of nodes that can be undone to restore unifiability. In our example, nodes 3

and 4 and 6 have only ancestor goals with empty potentials. Therefore, the only

viable choice for removal is node 2, i.e., the set of sets of nodes is { {2} }.

To handle unsolvable goals and external process failures, we modified plan-

based deduction to incorporate, for each plan, a list of nodes that must be removed.

Each of these nodes is added to each set of backtracking alternatives, Le., each ele-

ment of the set of sets. In our example, if the external process "dsample" had ter-

minated with failure, then node 5 would have been added to the single backtracking

set resulting in the set of sets becoming { {2, 5}}. Since there is no other way to

solve the goal d (R) or the goal sample (X, Y), the deduction would fail.

Each of the backtracking alternatives can be used to generate a new plan. The

original method for plan-based deduction creates all derivable new plans at once.

We have modified this strategy to lazily generate new plans, one at a time, on

demand. This strategy was adopted because people tend to solve problems by build-



mg upon current results, backing up only when required. When backing up, people

usually return to the most recent state offering possible alternatives.

If backtrack mode is automatic, TICS selects the set of nodes to undo to create

the new plan based upon priority. We have initially chosen to make a set's back-

tracking priority be the sum of the backtrack priorities of its elements. If the mode

is manual, the user selects the set from a menu. A new plan is generated from the

old plan by creating a new deduction tree and associated constraint graph(s) for all

the nodes in the old plan, with the exception of those in the set of nodes to be

undone.

External processes complicate the situation and force a major extension to

plan-based deduction. The following external process validation procedure must be

performed to ensure that causality constraints are not violated. As previously dis-

cussed, an evaluable predicate is solved by a system-generated node that represents

the environment of the evaluable predicate's associated external process. All exter-

nal processes that are part of the new plan must have the writes they issued, i.e.,

instantiations of logical variables, applied in the new plan. We must then ensure

that causality constraints are not violated. Since processes are non-atomic, they can

dynamically and incrementally examine variables, and may become causally depen-

dent upon the values of those variables. The new plan's external processes must be

checked to ensure that all the values they read are present, i.e., instantiated, in the

new plan. If a value read by an external process is not present, TICS must remove

the system-generated node that was used to solve the process's evaluable predicate.



In this case, another new plan is created and the entire external process validation

procedure begun again. This procedure is repeated until a new plan's external

processes are all found to be valid.

In our example, the first attempt at generating a new plan results in node 2

being removed. The resulting plan no longer has the variables Rand Z constrained

to i. Because the process "dsample" read the value i, it is no longer valid and

another plan, with node 5 removed, is generated. Removal of node 5 does not cause

the pruning of node 1 because d (R) is an evaluable predicate of type

external_generator and thus can be re-solved, i.e., has potential. This plan,

depicted in Figure 6-5, has no external processes and so its validation is trivial.

TICS can now resume forward deduction. The goal a (R) will be solved by the fact

a (j) and the external generator process "dsample" will be re-invoked. A solution

will be achieved if "dsample" eventually terminates with success after reading the

value of z.

If the old plan has remaining elements in the set of sets of nodes, the plan is

saved, because it may be used in the future to generate additional new plans. Exter-

nal processes cause additional complexity that may require us to update the old

plan. All pending processes (as opposed to completed processes) must have their

associated system-generated nodes marked for removal from the old plan. This

action is necessary because we cannot be certain that the process will be in the same

state if and when we return to the old plan. Consider the case where a plan has an

external process that solicits information from the user. If backtracking is invoked



87

1

I node 0 I
I I

: 1-sample(X,Y) :

~~~~~~~]~~~~~~~~----------------------------
I
I
I
I
I

I

I node 1

: sample(R, S) :- _alB1,_ b(S) , c(S) ,jiBl._' e(R,S)
i ~.ial i oort.en>al i
, aU) ' .L - - - - - - - - - - - - - '='-::'-::'-::'-::- -

]- - - - - - I - -'-::'-::'-::'-::'-::'- - - - I - - ...!,-- --I ,-- --I ,-- --,
I I I I
I node e I I node 9 I

: bO) : : cO) :

I I
I node .. I

: e(T,T)----- ----- -----

Boxes are nodes, Le., clause instances

Vertical lines connect a. goa.l with the node used to solve it

Deduction Tree

j

conatraint 9
j

Lines represent unification imposed constra.ints

Constraint Graphs

Figure 6-5. Sample's New Plan

with such a process and we do not remove the process from the old plan, then the

following scenario might occur. The user, on the basis of the state of the new plan,

supplies information to this process. The new plan is later discarded by backtrack-

ing and the old plan is again used to generate another plan. This latest plan would

contain the pending process that was modified by the user in the context of a now

defunct plan.

conatraint 1

X R
I

conatraint ..

I
conatraint e

conatraint1
Y S

98

The system-generated node associated with an external process that completes

with success is normally retained by the old plan. However, if the node's parent is a

goal that has an inverse side-effect associated with it, then TICS removes the node

because the responsibility for handling the inverse side-effect is passed to the new

plan. If we did not take this action, the following scenario could occur. Goal "a" is

specified to have an inverse side-effect procedure and is solved in the original plan by

an external process represented by the system-generated node "n". A new plan is

generated that also contains goal "a" and node "n". The new plan invokes back-

tracking and has node "n" removed. This action causes the goal's inverse procedure

to be executed. TICS eventually uses the original plan to generate another new

plan. This new plan also contains goal "a" and node "n". Backtracking is invoked

and node "n" is removed from this new plan. As a result, the inverse procedure is

again executed. There has been only one execution of the original procedure but

there have been two executions of the inverse procedure. An alternative solution to

this problem would be for TICS to globally track inverse side-effect goals. \\Then an

inverse side-effect procedure is executed, all plans that contained that goal would

need to be updated. We chose, on the basis of simplicity, to implement the first solu-

tion in our prototype.

6.6. Data Structures

In this section we describe the data structures that TICS uses to implement the

functions previously described. All logical terms are built out of the basic structure

developed by Pase for his parser [Pase 86]. This structure consists of four fields and

gg

IS illustrated in Figure 6-6. The fields contain the term's type, value, arity and a

pointer to either an array of pointers to subterms or, if the arity is 0, to nil. A term

of type VAR is assigned a value equal to the variable's relative variable number as

described below.

During forward deduction the current plan is developed by solving goals. Nodes

are added to the plan's deduction tree and new unification constraints are reflected

in the plan's constraint graphs. A node represents a clause instance and is described,

Type ATOM, VAR, NUM

C"a,aoter String
Value Pointe,

Subterms Pointer

Arity [ntege,

Logical Term Structure

2

o
nil

f(A) :- g(A, 1, test).

Figure 6-6. TICS' Logical Terms

100

1D part, by pointing to the clause's entry in the hash table containing the Horn

clause base. However, each clause instance must be assigned a unique set of logical

variables.

When the parser creates a clause's hash table entry it generates a structure

with the variable subterms having numeric names. A clause's variables receive

sequential numbers, the first variable being assigned o. Variables with the same

name receive the same number. TICS refers to these numbers as relative variable

numbers. TICS assigns each node in a deduction tree a modifier number. The first

node, node 0, is assigned a modifier of o. Subsequent nodes have modifiers equal to

their predecessor node's modifier plus the number of variables used in the predecessor

node. The id for a node's variables is defined to be the sum of the node's modifier

and the variable's relative number. In Sample, the variable Y of node 0 has a rela-

tive number of 1 and an id of 1. Node 1 is assigned the modifier 2 and its variable S

has a relative number of 1 and an id of 3.

A variable's id is used to index an array of pointers to find the constraint graph

structure, described below, that establishes the variable's value. When a new plan is

generated, the nodes it initially copies from the old plan are assigned the same

modifiers. This numbering scheme ensures that the ids for an external process's vari-

abIes are the same in both the old and new plan. Thus, external processes that con-

tinue execution from one plan to the next will have the correct references for the

variables in their environment.

101

The solving of goals result in unification constraints between logical terms that

are reflected in a plan's associated constraint graphs. These graphs are composed of

constraint elements that represent and link logical terms, as in Figure 6-7. This

structure and its use is more fully described and illustrated by Cox [Cox 84]. A con-

straint element contains the following four fields. The first field is a pointer to the

logical term it represents. The next field contains pointers to those constraint ele-

ments whose associated terms contain this constraint element's term as one of their

Constraint Element

g(l)

nil

Boxes represeDt cODstr&iDtelemeDts

Unification Constraints Structure

Figure 6-7. TICS' Constraint Graphs

Term Pointer Logic&lTerm I
Ups PDint.r CODstr&iDt ElemeDts

DowDs Point.r CODstr&iDt ElemeDts

CODstr&int PDint.r CODstr&iDt ElemeDts

102

subterms. The third field contains pointers to constraint elements whose associated

terms are subterms of this constraint element's term. The next field contains

pointers to constraint elements of terms that were unified with this constraint

element's term.

When a unification constraint is established for a logical term, TICS creates a

constraint element for that logical term if one does not already exist. If a new term

is being constrained to a term with an existing constraint element, then its con-

straint element is added into the same constraint list, otherwise a new constraint list

is created. The subterms of these logical term also have constraint elements associ-

ated with them and they too are added to the constraint lists. Figure 6-7 shows the

structure that results from the following unifications:

1 - f (A) and f (B)
2 - A and 9 (a)
3- f(B) and f(g(1»

The first unification initially generates constraint elements for the term f (A) and

its subterm A. These constraint elements cause the creation of, and are added to,

the first two constraint lists. Next, constraint elements are made for the term

f (B) and its subterm B. These structures are linked to the constraint elements for

the term f (A) and its subterm A, respectively. The rest of the structure of Figure

6-7 is generated by the remaining unifications.

The constraint pointer of a constraint element represents the unification

created by a particular node in the deduction graph. Therefore, the constraint ele-

ments of subterms of terms being constrained do not have their pointers set. In

103

Figure 6-7, the element associated with A has its constraint pointer set to the ele-

ment associated with 9 (a) but the element a does not have its constraint pointer

set to the element associated with 1.

TICS can dynamically determine if a unification conflict has occurred by check-

ing the new constraint elements against the other constraint elements in its associ-

ated constraint list. In the example described in Figure 6-7, unification 3 causes the

creation of 3 constraint elements representing the term f (g (1» and its subterm

9 (1) and 9 (1) 's subterm 1. When the constraint element for 1 is added to con-

straint list 3, a conflict with the constraint element for a is noted.

The graph of constraint elements can be used to determine the ways to restore

unifiability. Paths between conflicting term's are determined by traversing the

graph of constraint elements as per Cox [Cox 84]. This data is used to provide the

intelligence in TICS' backtracking scheme. In the structure represented by Figure

6-7, there is only one way to traverse the structure between a and 1. This path

requires using the constraint links created by the unifications 2, 1 and 3. Removing

any of the nodes that created these unification constraints will remove the conflict.

To support the external-process validation, a procedure previously described,

we incorporated the following additional structures into TICS. For each plan, TICS

maintains a list of pending and a list of completed external processes. Each list has

entries that record a process's id and pointers to the process's read and write lists.

Read and write lists contain entries that record each reading or writing of a variable

by the associated process. Each of these read and write records identifies the vari-

104

able accessed and the value that was read or written.

In Matwin and Pietrzykowski's implementation of plan-based deduction, many

of the above structures were generated eagerly, i.e., before being required, to improve

run-time efficiency [Matwin and Pietrzykowski 85]. We have modified their tech-

niques to create all required structures dynamically upon demand. In this regard,

TICS' extended plan-based deduction is both simpler and more space efficient. The

additional run-time costs are offset by limiting the base to Horn clauses, eliminating

the need for ancestor resolution: a technique used in plan-based deduction to achieve

completeness for full first-order logic. TICS' evaluable predicates minimize the com-

plexity of the deduction, thus further enhancing the efficiency and response of our

system.

6.7. External Processes

As mentioned before, an external process is a UNIX process invoked by TICS to

solve an evaluable predicate. Initially, a process needs to send an identifier message

to TICS so that its process id, pid, can be associated with its socket descriptor

number. If the process was designed to use the crt screen, the process must send a

request to allocate a window, vg message, to the DAM.

Normally the next action a process takes is to parse its command line. The

command line contains a flattened description of the process's local environment.

The parse produces a logical term that may contain subterms containing logical

variables. The value fields of these variable terms contain the variable's id, a

number assigned by TICS as previously described. Different processes cannot access

105

the same variable because each process's environment is based on a unique deduction

graph node and each node is assigned unique variables. However, there is nothing to

prevent multiple processes from writing different values to variables constrained by

unification. In such cases, TICS will invoke backtracking to remove the conflict.

A process can determine a variable's current value by sending a read message,

r<variable id>, to the DAM. The DAM returns the unified value of all the logi-

cal terms to which the specified variable is constrained. In our Sample example,

when the process "dsample" first read its variable Z, the DAM returned the value i;

the unified value of the terms X, R, Z and i. When a process must ensure that a

variable is instantiated, the process will normally first find out if some other pro-

cedure has already assigned the variable a value. How the process performs this

action depends upon whether the process will, if the variable is unbound, write the

variable or whether the process must wait for another predicate to issue the write.

If the process intends to supply a value if the variable is uninstantiated, the

process issues a read request. If the variable is unbound, the process can then

prompt the user, via a display message, to enter the required information. A write

message is issued by the process to instantiate the variable. An example of this

functionality is illustrated by the process user _atom, described in Section 5.2. If

the process must wait until another predicate instantiates the variable, then it issues

a notify request, n<variable id>, and will periodically check for an unsolicited-

variable-changed message from TICS. Such a message will inform the process when

and to what value the variable has become instantiated. The process

106

bottoID_line_constraint in Section 5.1 uses this technique to obtain the values

for the variables that contain the value of the trade-in, the cost of the new vehicle

and the maximum amount that can be financed.

After a process has performed its required function, it normally will release any

crt display space that it had allocated by sending a release window, vr message, to

the DAM. The process can then terminate with an ending message indicating either

success or failure, es or ef. A success status means that the subtask specified by

the process's evaluable predicate has been satisfied. A failure status means that the

process was unable to solve the subtask, i.e., the goal is unsolvable, and that TICS'

backtracking mechanism should be invoked. An external_generator type pro-

cess can, after successfully completing, suspend itself. The process can then use its

internal state to provide another solution upon request.

TICS may cancel a process by either issuing an operating system kill command

or sending a suspend/abort message. When so required, a process should be able to

gracefully abort itself. We have also incorporated in all our external processes a

user abort facility. In response to a process's prompt for information, a user can

enter an abort request, <esc><cr>. When an abort request is received, the process

sends a display message acknowledging the abort request and then terminates with

failure. The user can thus force the system to try an alternative approach. This

feature can be demonstrated in the Car Buying example, described in Section 5.1.

Normally the book_value subtask is invoked with its Method variable instan-

tiated to low, representing a dealer trade-in. If a user wanted to sell the old vehi-

107

cle privately, he or she could enter an abort request to the book_value subtask.

The abort request results in the subtask terminating with failure and TICS generat-

ing, via backtracking, a new plan. This plan will solve the do_ tradein subtask

with its remaining potential, a clause that invokes book_value with its Method

variable instantiated to high.

6.8. Implementation Considerations

The previous sections of this chapter have described, in detail, the different

parts of TICS' design and implementation. Our prototype implementation combines

these parts to provide a user-oriented task interaction and control system. To pro-

vide the functionality of extended plan-based deduction we utilize the following

operating system features. The UNIX signal and fork facility are used to execute

and control concurrent processes that implement external procedures for evaluable

predicates. These processes communicate with TICS via UNIX sockets. We used the

UNIX curses library to provide some of our window manager's functionality. The

terminal independence of the curses routines allows us to run TICS applications on a

wide variety of terminals.

The current TICS implementation requires approximately 5500 lines of C++

source code. This count does not include the code required for external function

definition files, miscellaneous in-line functions, external processes and the Horn clause

parser. The parser, based upon a lex and yacc specification provided by a colleague,

Douglas Pase [Pase 86], required approximately 700 lines to specify and generated

about 1800 lines of C code.

108

The example problem's external processes described in the last chapter were

implemented in C++ These TICS applications had satisfactory performance and

user-response times when the time-sharing VAX system was not heavily loaded. For

the applications implemented so far, the computational complexity of TICS'

extended plan-based deduction procedure does not seem unreasonable. We feel that

even better performance could result from refining and tuning our prototype TICS to

a specific operating system's hardware and software.

109

Chapter 7

Conclusions

In summary, TICS was found to provide a powerful problem-solving enVlron-

ment incorporating the following user-oriented features:

(1) Horn clause logic provides a clear and concise way to specify what constitutes

an acceptable solution to a task. Logic's non-determinism supports multiple

approaches to solving a task while indeterminism permits information to be

supplied from any of a number of sources.

(2) Concurrent processes permit subtasks to be solved in any order consistent with

the inherent nature of the task.

(3) The special-purpose functional database provides communication and supports

synchronization between processes to allow subtasks to cooperate to solve

inter-dependent subproblems.

(4) TICS tracking of dependencies provides an undo facility, via intelligent back-

tracking, that allows the system or user to modify answers with a mInimum

amount of lost work.

(5) TICS' delayed and inverse procedures provide two ways to cope with the issue

of side-effects.

We noted the following designer-oriented features:

110

(1) The ability to logically decompose a task provides different levels of abstraction

and detail, Le., hierarchical modularity.

(2) The internals of external processes are hidden and isolated from the logic, pro-

viding the flexibility to use and re-use a wide variety of languages, tools and

environments.

(3) The ability to decompose a task into multiple subtasks allows the designer to

more easily separate the user-interface procedures from application procedures.

(4) The communication and synchronization mechanisms that support concurrent

processes give the designer the potential to distribute the solving of subtasks to

multiple processors. This distribution would require incorporating a means to

allow the TICS process to communicate with, invoke and terminate external

processes.

7.1. Observations

While designing and interacting with the various TICS application programs we

made a number of observations. The ability to focus on subtasks allowed us to fol-

low our own train of thought instead of the computer's. Repetitive tasks, such as

giving demonstrations of the system, became much more interesting because there

were so many new and different ways to solve a problem. A problem-solving session

often held surprises, even for the system designer, as unexpected paths were explored.

Backtracking was especially interesting because the complexity of subtask dependen-

cies in many situations exceeded the designer's mental memory space. The user

111

could not always anticipate how the system would act but as the prototype's prob-

lems were fixed and our confidence and trust grew, this feature became a plus rather

than a minus.

One example of this type of behavior occurred with the Car Buy£ng task. After

completing the initial task the user could request an alternative solution. If the user

specified that the choice of color was to be changed (undone), then determining

whether or not the style subtask had to also be re-done depended upon which had

been done first: style or color selection. This unanticipated behavior arises because

whichever subtask was last solved read the value instantiated by the subtask solved

first. Reading this information allowed the second subtask to appropriately restrict

the choices. A model is only available in certain colors and a color is only available

in certain models. If the style selection was originally solved first, then it was

independent of the color subtask. However if the color selection was solved first,

then the style subtask read the information instantiated by color and became

causally dependent upon the color subtask. Undoing the color subtask only affects

the style subtask in the latter case.

Designing the applications described in Chapter 5 was a very positive experI-

ence. Each application took us less than one week to develop and test. While there

is a significant effort required for a designer unfamiliar with TICS to learn the sys-

tern, we believe that this overhead will be more than offset during an application's

design, debug and maintenance phases. The time spent learning TICS should be less

than that required to implement TICS' user-oriented features with traditional

112

methods. Freedom from arbitrary constraints translates into an exponentially large

number of ways events can happen. The down-side of incorporating concurrency into

a system is that such systems are more difficult to design, test and debug than con-

strained linear versions. TICS' provisions for the synchronization and communica-

tion of processes removes many of the problems a designer faces in developing sys-

terns incorporating concurrency. We have started developing a library of standard

functions to help a designer implement concurrent processes.

To implement scrolling, our window manager logs all information written to the

Transcript and State windows in a file. This log has also proved invaluable in

analyzing what events occurred and what happened during system test and debug.

TICS was found to allow for the easy re-use of existing solutions. Our work with

Raimund Ege demonstrated the ability of using the power of other programming

methodologies within TICS, generating a combined system with the advantages of

both [Grossman and Ege 87].

While designing systems we confirmed what TICS is not. In TICS the subtasks

that do the actual solving are specified by evaluable predicates, with associated

processes. There is a temptation to use TICS' normal - non-evaluable - logic

predicates to perform explicit problem solving, e.g., ensure that facts and bindings

generated by external processes are correct, rather than just the problem decomposi-

tion they were intended to do. However, such techniques run into difficulties because

with and-parallelism we cannot impose an ordering on predicate evaluation. TICS

cannot ensure that a specific predicate is the one that instantiates the variables.

113

Thus, we cannot mix normal logic and evaluable predicates to create the traditional

"generate and test" paradigm. (In Prolog we can be sure when two predicates work

together to generate and test, the predicate that is leftmost in the clause is the gen-

erator.) The gating mechanism was not designed for this purpose and cannot always

provide adequate sequencing of predicates to accomplish this style of problem solv-

ing. TICS could be extended to support optional mode declarations; however the

thrust of our current research is to develop a system to coordinate the interaction

between external modules, i.e., DIMS dialogue management. In some cases we can

use normal logic predicates to resolve subtasks, as we demonstrated with Car

Buying's in_stock subtask.

We found that sometimes TICS' users would like to have certain complex

actions performed by the system automatically. These actions require that TICS

incorporate domain-specific knowledge. For example, in our version of Knuth's Pas-

cal program, the user (or the system if in automatic backtrack mode) may have

requested that the value for population size, N, be undone. Realizing that this is not

what he or she desired, the user would like to say "No" and have the system undo

sample size, M, instead. This "No" command requires that the "population size" sub-

task instantiate its previous value for N, and cause the system to fail and re-do the

"sample ~ize" subtask. The ability to handle this particular domain-specific com-

mand could be built into the external processes by the designer. A more general

approach to domain-specific commands is a question for future research.

114

7.2. Future Resea.rch

Given enough money and time we would like to fully incorporate the following

features into TICS. Some of the hooks are already in the code, a polite way of say-

ing we have not implemented everything we have specified. Stream communication

and private terms are not yet operational. Streams require that we provide an exter-

nal process with the ability to dynamically create variables. We still need to imple-

ment an efficient means to create storage and assign identifiers to such variables.

We have not fully implemented the techniques to protect private type objects from

being accessed directly by the logic because the only such objects we have encoun-

tered in our examples are external files.

We would like to expand the current explanation and help facility. However,

much of the difficulty of using TICS came from having a small display area and a lot

of information to show the user. To effectively convey this information, we envision

running TICS on a workstation with high-resolution graphics and multi-windowing

support.

To support domain-specific requests it would be nice to incorporate a macro

command facility whereby a single event could invoke a sequence of events to occur.

The sequence could be made dependent upon the current state of the system, e.g.,

bindings of variables, global deduction and backtrack modes, external process status.

One area where this feature would be useful is to better control automatic back-

tracking. For the Car Buying program the designer knows that the maximum

amount of financing is available through the dealer. If the maximum financing,

115

FMax, only slightly exceeds the amount needed and if the financing method,

FMethod, is dealer, then undoing the arrange_financing subtask would have

a low chance of providing a successful solution and would probably make the situa-

tion worse. Under these circumstances it would be beneficial for TICS to lessen the

possibility of undoing arrange_financing.

To provide these features, we would need to incorporate into TICS a mechan-

Ism to define and respond to selected events. We could create a special command

message that when received by the DAM declares such an event. We could also

create a new system predicate that would allow the designer to specify these events

in terms of the state of the system. To respond to these events we might provide

control points in TICS' algorithms that would transfer control to a designer-written

routine. This methodology would be similar to the escape mechanism provided by Lex

and yacc to provide for the incorporation of arbitrary functionality via designer

implemented C functions. These procedures could check for and take action based

upon current system state information. In our Car Buying example, the designer

might specify that whenever backtracking were invoked the system should execute a

specified procedure to determine the backtracking choice. This procedure would be

written to make its decision based upon its examination of the logical variable bind-

ings and the status of external processes.

Currently, many asynchronous events are handled at the same level as the rest

of the application. Handling asynchronous inter-process messages and user keyboard

input via traps or interrupts, separate from the rest of the code, would be much

116

cleaner and more efficient. We did not have the time or ambition to tackle the job

of getting UNIX sockets, terminal i/o and child termination to work together

correctly via signals. A real-time operating system that supports asynchronous sys-

tern traps (AST), event flags and shared memory for inter-process synchronization

and communication would provide a more suitable environment in which to imple-

ment TICS.

117

BmLIOGRAPHY

[Archer, Conway and Schneider 84]
Archer, James E., Richard Conway and Fred B. Schneider, User Recovery and
Reversal in Interactive Systems, ACM Transactions on Programming Languages
and Systems Vol. 6, No.1 (January 1984), pp. 1-19.

[Bailey 85]
Bailey, D., The University of Salford Lisp/Prolog System, Software Practice and
Experience Vol. 15, No.6 (June 1985), pp. 595-609.

[Bentley and Knuth 86]
Bentley, Jon and Donald Knuth, Literate Programming, Communications of the
ACM Vol. 29, No.5 (May 1986), pp. 364-369.

[Borgwardt 84]
Borgwardt, Peter, Parallel Prolog Using Stack Segments On Shared-Memory
Multiprocessors, Proceedings of the the IEEE Symposium on Logic Programming,
1984.

[Broverman and Croft 85]
Broverman, C. A. and W. B. Croft, A Knowledge-Based Approach To Data
Management For Intelligent User Interfaces, Proceedings of VLDB 85, Stock-
holm, 1985, pp. 96-104.

[Cardelli and Pike 85]
Cardelli, L. and R. Pike, Squeak: a Language for Communicating with Mice,
ACM SIGGRAPH'85 Vol. 19, No.3 (July 1985), pp. 199-204.

[Chang and Despain 85]
Chang, Jung-Herng and Alvin M. Despain, Semi-Intelligent Backtracking of Pro-
log Based on Static Data Dependency Analysis, 1985 IEEE International Sympo-
sium on Logic Programming, Boston, July 1985, pp. 10-21.

[Clark and McCabe 82]
Clark, K. L. and F. G. McCabe, PROLOG: A Language For Implementing
Expert Systems, in Intelligent Systems: Practice and Perspective (Machine Intelli-
gence #10), J. E. Hayes, D. Michie and Y. H. Pao (ed.), John Wiley and Sons,
1982, pp. 455-475.

[Clark and Gregory 85]
Clark, Keith and Steve Gregory, Notes on the Implementation of PARLOG, J.
Logic Programming Vol. 2, No.1 (April 1985), pp. 17-42.

[Clocksin and Mellish 84]
Clocksin, W. F. and C. S. Mellish, Programming in Prolog, second edition
Springer-Verlag, Berlin, 1984.

[Conery and Kibler 81]
Conery, John S. and Dennis F. Kibler, Parallel Interpretation of Logic

118

Programs, Proceedings of the Conference on Functional Programming Languages
and Computer Architecture, October 1981, pp. 163-170.

[Conery and Kibler 85]
Conery, John S. and Dennis F. Kibler, AND Parallelism and Non-determinism
in Logic Programs, New Generation Computing Vol. 9, No.1 (March 1985), pp.
43-70.

[Cox and Pietrzykowski 81]
Cox, Philip T. and Tomasz Pietrzykowski, Deduction Plans: A Basis for Intelli-
gent Backtracking, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence Vol. 9, No.1 (January 1981), pp. 52-65.

[Cox 84]
Cox, Philip T., Finding Backtrack Points For Intelligent Backtracking, in Imple-
mentations of PROLOG, J. A. Campbell (ed.), Ellis Horward Limited, Chiches-
ter, 1984, pp. 216-233.

[Croft and Lefkowitz 84]
Croft, W. B. and L. S. Lefkowitz, Task Support in an Office System, ACM
Transactions on Office Information Systems Vol. 2, No.3 (July 1984), pp. 197-
212.

[Davis 82]
Davis, Ruth E., Runnable Specification As A Design Tool, in Logic Program-
ming, K. L. Clark and S. -A. Tarnlund (ed.), Academic Press, London, 1982, pp.
141-149.

[Draper and Norman 84]
Draper, Stephen W. and Donald A. Norman, Software Engineering For User
Interfaces, Proceedings of the Seventh International Conference on Software
Engineering, Orlando, Florida, March 1984, pp. 214-220.

[Forsythe and Matwin 84]
Forsythe, Kenneth and Stanislaw Matwin, Implementation Strategies For
Plan-Based Deduction, in International Conference on Automated Deduction.
Proceedings of the 7th conference (Napa, 1984) [Lecture Notes In Computer Sci-
ence; 170], R. E. Shostak (ed.), Springer-Verlag, New York, 1984, pp. 426-443.

[Furukawa, Nakajima and Yonezawa 83]
Furukawa, K., R. Nakajima and A. Yonezawa, Modularization and Abstraction
in Logic Programming, New Generation Computing Vol. 1, No.2 (1983), pp.
169-177.

[Gray, Moffat and Boulay 85]
Gray, P. M. D., D. S. Moffat and J. B. H. du Boulay, Persistent Prolog: A Secon-
dary Storage Manager for Prolog, Persistence and Data Types Papers for the
Appin Workshop, University of Glasgow, Glasgow, August 1985, pp. 353-368.

[Green 85]
Green, Mark, The University of Alberta User Interface Management System,

llg

ACM SIGGRAPH'85 San Francisco Vol. 19, No.3 (July 1985), pp. 205-213.

[Grossman 85]
Grossman, Mark, Humanizer - A framework for implementing flexible human-
machine interfaces, unpublished manuscript, Department of Computer Science
& Engineering, Oregon Graduate Center, May 1985.

[Grossman and Ege 87]
Grossman, Mark and Raimund Ege, Logical Composition of Object-Oriented
Interfaces, accepted for OOPSLA '87, Orlando, October 1987.

[Hu 82]
Hu, T. C., Combinatorial Algorithms, Addison Wesley, Reading, Massachusetts,
1982.

[Jacob 83]
Jacob, Robert J. K., Executable Specifications for a Human-Computer Inter-
face, Proceedings of the CHI 1989 Conference on Human Factors in Computer
Systems, December 1983, pp. 28-34.

[Kahn and MacQueen 77]
Kahn, Gilles and David B. MacQueen, Coroutines and Networks of Parallel
Processes, Information Processing 77, 1977, pp. 993-998.

[Kieburtz and Nordstrom 85]
Kieburtz, Richard B. and Bengt Nordstrom, The Design of Apple -A Language
For Modular Programs, Computer Languages Vol. 10, No.1 (January 1985), pp.
1-22, Pergamon Press Ltd.

[Kirkpatrick, Gelatt and Vecchi 83]
Kirkpatrick, S., C. D. Gelatt and M. P. Vecchi, Optimization by Simulated
Annealing, Science Vol. 220, No. 4598 (1983), pp. 671-680.

[Komorowski 82]
Komorowski, H. J., QLOG - The Programming Environment for Prolog in LISP,
in Logic Programming, K. L. Clark and S. A. Tarnlund (ed.), Academic Press,
London, 1982, pp. 315-324.

[Kowalski 82]
Kowalski, R. A., Logic As A Computer Language, in Logic Programming, K. L.
Clark and S. A. Tarnlund (ed.), Academic Press, London, 1982, pp. 3-16.

[Lamport 78]
Lamport, Leslie, Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem, Communications of the ACM Vol. 21, No.7 (July 1978), pp. 558-565.

[Lientz and Swanson 81]
Lientz, B. P. and E. B. Swanson, Problems in Application Software Mainte-
nance, Communications of the ACM Vol. 24, No. 11 (November 1981), pp. 763-
769.

[Maier, Nordquist and Grossman 86]
Maier, David, Peter Nordquist and Mark Grossman, Displaying Database

120

Objects, First International Conference on Expert Database Systems, Charleston,
April 1986, pp. 15-30.

[Matwin and Pietrzykowski 85]
Matwin, Stanislaw and Tomasz Pietrzykowski, Intelligent Backtracking in
Plan-Based Deduction, IEEE Transactions on Pattern Analysis and Machine
Intelligence Vol. 7, No.6 (November 1985), pp. 682-692.

[Moffat and Gray 86]
Moffat, D. S. and P. M. D. Gray, Interfacing Prolog to a Persistent Data Store,
9rd International Conference on Logic Programming, London, July 1986.

[Mycroft and O'Keefe 84]
Mycroft, A. and R. O'Keefe, A Polymorphic Type System for Prolog, Artificz'al
Intelligence Vol. 29, No.3 (August 1984), pp. 295-308.

[Nilsson 80]
Nilsson, N., Principles of Artificial Intelligence, Tioga Publishing Company, Palo
Alto, California, 1980.

[Norman 83]
Norman, Donald A., Design Principles For Human-Computer Interfaces,
Proceedings of the CHI 1989 Conference on Human Factors in Computer Sys-
tems, December 1983.

[Pase 86]
Pase, Douglas, personal communication, September 1986.

[Prywes and Pnueli 83]
Prywes, Noah S. and Amir Pnueli, Compilation of Nonprocedural Specifications
into Computer Programs, IEEE Transactions On Software Engineering Vol. 9,
No.3 (May 1983), pp. 267-279.

[Reisner 81]
Reisner, Phyllis, Formal Grammar and Human Factors Design of an Interactive
Graphics System, IEEE Transactions On Software Engineering Vol. 7, No.2
(March 1981), pp. 229-240.

[Roach and Nickson 83]
Roach, J. W. and M. Nickson, Formal Specifications For Modeling And Develop-
ing Human/Computer Interfaces, Proceedings of the CHI 1989 Conference on
Human Factors in Computer Systems, December 1983, pp. 35-39.

[Robinson and Sibert 82]
Robinson, J. A. and E. E. Sibert, LOGLISP: Motivation, Design and Implemen-
tation, in Logic Programming, K. L. Clark and S. A. Tarnlund (ed.), Academic
Press, London, 1982, pp. 299-314.

[Shapiro and Takeuchi 83]
Shapiro, Ehud and A. Takeuchi, Object Oriented Programming In Concurrent
Prolog, New Generation Computing Vol. 1, No.1 (1983), pp. 25-48.

121

[Srivastava 86]
Srivastava, Aditya, The Explorer Prolog Toolkit, TI Engineering Journal Vol. 8,
No.1 (January-February 1986), pp. 93-107.

[Teitelman 75]
Teitelman, W., INTERLISP Reference Manual, Xerox PARC, Palo Alto,
December 1975.

[Wadge and Ashcroft 85]
Wadge, William W. and Edward A. Ashcroft, Lucid, the Dataflow Programming
Language, Academic Press, London, 1985.

[Walker 82]
Walker, Adrian, Automatic Generation Of Explanations Of Results From
Knowledge Bases, Technical Report RJ3481 (41238), IBM Research Laboratory,
San Jose, 1982.

[Wasserman 85]
Wasserman, A., Extending State Transition Diagrams for the Specification of
Human-Computer Interaction, IEEE Transactions On Software Engineering Vol.
11, No.8 (August 1985), pp. 699-713.

122

APPENDIX

System Predicates

The following summarizes the system predicates used to manage TICS' flexible

deduction mechanism. A designer can use these predicates both to perform system

debugging and to limit and guide the end-user's search strategy. TICS also incor-

porates system predicates to provide some arithmetic functions. Most of the system

predicates have been illustrated in the example problems of Chapter 5.

Global Deduction Control

System predicates that cause, as a side-effect, changes in the deduction engine's

global mode of operation are as follows:

$deduction(Mode)

This predicate specifies forward deduction control. Mode must be instantiated

to either automatic or manual. In automatic mode, the selection of the

subtasks to solve and clauses to use are made by the system on the basis of

assigned priorities. This mode may be altered by $pred on a per predicate

basis to allow selective control. In manual mode, usually used for single-step

operation during debugging, the operator selects from a menu the subtask to

solve and the clause to use.

$backtrack(Mode)

This predicate specifies backtrack deduction control. Mode must be

123

instantiated to either automatic or manual. When there is a unification

failure in automatic mode, the system selects the set of nodes to remove from

the deduction tree to restore unification on the basis of assigned priorities. In

manual mode, the operator selects the set from a menu.

$gate(Id, Limit, Mode)

This predicate specifies a limited system resource. I d identifies the resource

to be controlled. Limit specifies how many simultaneously executing sub-

tasks can use this resource at any instant. Mode determines how gated sub-

tasks are selected for solving. Mode must be instantiated to either

automatic or manual. Predicates use the $pred system predicate,

described below, to specify the limited resource they use and their priority for

access to that resource. When the deduction engine tries to solve a subtask

that uses a limited resource, it first puts that subtask into that resource's gate.

When all subtasks have been serviced, i.e., solved or put into a gate, the deduc-

tion engine proceeds as follows. The gates are considered in the order they

were specified. For each limited resource, subtasks are removed from the gate

one at a time until the Limit is reached. If the Limit for that resource will

not be exceeded by the subtasks in the gate then all the subtasks for this

resource are removed from the gate and solved. If the Limit can be exceeded

then only enough subtasks are selected, by the methods described below, to

reach the limit. When a process that uses a limited resource completes, and

there are subtasks in the gate for that resource, the deduction engine will select

124

one waiting subtask to solve. Selections are made according to the gate's

Mode. In automatic mode, the system makes the selections on the basis of

priority. In manual mode, the user selects from a priority-ordered menu. For

example, $gate (crt, 3, automatic), specifies that no more than 3 sub-

tasks that use the crt can be active at once and that the system will automati-

cally determine which subtasks to select from the gate.

Local Deduction Control and Predicate Annotation

Rules and facts that specify a task are stored together in the Horn clause base.

Optionally, control and descriptive information about these rules and facts can be

specified on a per-predicate basis by including assertions in the base of the form:

$pred (name (variable, ...), [Field, ...])

The first argument of $pred is a structure that identifies the predicate being an no-

tated. The functor, name, is an atom whose value is the name of the annotated

predicate. The subterms of the name structure are variables; the number of these

variables is equal to the arity of the annotated predicate. The second argument con-

tains a list of one or more Field terms. Each Field specifies one annotation;

their order does not matter. All Fields are optional, however, the inclusion of cer-

tain Fields may preclude the inclusion of other incompatible fields as noted below.

In TICS, a number of different priorities are used to control and/or guide the opera-

tion. Priorities are always positive integers, the higher the number the higher the

priority. Field can be any of the following:

125

ptype(Type, Procedure, BP)

The predicate'stype is specifiedby this field.The designer uses ptype to

declare an evaluable predicate. TICS solves an evaluable predicate by creating

a new clause, i.e.,node of the deduction graph, that provides an environment

for the operating system process specifiedby Procedure. This process is

invoked with a command line containing the new clause's environment, i.e.,logi-

cal terms, which is described in Chapter 6. With this information the process

can access the variables in its associated clause's environment. Backtracking

priority, BP, is used when a unification conflict is detected, to determine the

order of selection from the set of sets of clauses that can be undone to remove

the conflict.This operation is described further in clauses below. Type

must be instantiatedto either external or external_generator. An

external procedure can only be used once to solve an evaluable predicate.

An external_generator procedure may be used to solve an evaluable

predicate multiple times when required to by backtracking. A predicate not

specified as evaluable is treated as a standard logical predicate. An evaluable

predicate may not have a cl auses field(seebelow). For example, the term,

ptype (external_generator, 'test', 1), specifiesthat the predicate is

evaluable and will be solved by a new clause associated with the process test,

i.e.,a dynamic fact generator. This new clause is assigned a backtracking

priority of 1.

126

pdesc(String, DisplayLevel)

This attribute is used to specify a predicate's description. String is a list of

atoms and variable names that provide a natural language description of the

predicate. The variable names in this list must be identical to the variable

names in the $pred's name term. To describe a predicate, TICS prints the

elements of the string replacing the variable names by the bindings of the

corresponding arguments in the associated subtask at the time of printing. The

DisplayLevel feature has not yet been implemented in TICS. Display-

Level is to be used by the explain facility to provide different levels of detail

to the user. The description will be printed when the desired display level is

less than DisplayLevel. When no pdesc annotation is supplied, the actual

predicate text is displayed by default. For example, consider the annotation:

$pred (person_city_state (A, B),
pdesc(['The preson " A,

[
resides in B], 1)

]).

This term would cause the following to be printed to describe the subtask

person_address (C, D) if the variable C was instantiated to

'Jay Grossman' and the variable D was uninstantiated at the time:

The person 'Jay Grossman' resides in <unbound>.

If instead, the variable D were bound to the value 'Aloha, OR', the following

would be output:

The person 'Jay Grossman' resides in 'Aloha, OR'.

127

clauses([...])

This field contains a list of terms that describe clauses that can be used to solve

the predicate. A clause term has the following format:

clause (Code, FP, BP, String, DisplayLevel)

Code is a Horn clause. FP, forward priority, is used to order the clauses used

to solve a predicate. If clause selection is manual because either the deduc-

tion mode is set to manual or the predicate has an or _mode manual

annotation (see below), then the user is presented with a menu with the goal's

potential clauses listed in forward priority order. If clause selection is

automatic because both the deduction mode is set to automatic and the

predicate does not have an or _mode manual annotation, then the system

automatically selects the highest forward priority procedure. Backward deduc-

tion priority, BP, is used to determine which predicate to undo during back-

tracking. If there is more than one element of the set of sets of goals that can

be undone to restore unifiability then the sets are ordered by the sum of the

backtracking priorities of each set's members. If backtracking mode has

been set to automatic, then the system undoes the set with the lowest sum of

backtracking priorities. If backtr acking mode has been set to manua l, the

user selects the set from a priority ordered menu. Str ing is a list of atoms

and variable names that provide a natural language description of the clause.

String and DisplayLevel work the same as for pdesc, providing a

natural language format for the clause. The clauses annotation may not

128

appear for external and external_generator ptype evaluable predi-

cates. For example, the following term:

clauses([

clause ((c(Vl)
clause((c(Vl) .

cl(Vl»,2,l, ['clause one'],l),
c2(Vl»,l,2, ['clause two'],l)

])

specifies two Horn clauses that can be used to solve the predicate being anno-

tated. The firstclause has the highest forward priority and the second clause

has the highest backtracking priority. The last argument of the clause term

specifiesthat the clause'sDisplayLevel is1. The DisplayLevel feature

has not yet been implemented in TICS.

or_mode (Mode, Priority)

This field specifies the method for selecting the clause used to solve subtasks

over this predicate. Mode is automatic for system clause selectionon the

basis of clause forward priority, or manua 1 to provide selection by the user

from a menu. Clause selectionis implemented via a gate with an Id of

select and a Limit of one. (If or _mode fieldsare specified,then a designer

must explicitlyprovide a $gate term for select.) Priority is a number

that is used to order system selectionor menu presentation of the subtasks

waiting for the select gate and isequivalent in function to the Priority

argument of the gate predicate. Once an or _mode subtask isremoved from

the select gate it is solved as follows. If the subtask's or _mode is

automatic mode, the system chooses a clause to solve the subtask on the

basisof the forward prioritiesof the subtask'spotentialclauses. Otherwise the

129

user selects from a forward priority ordered menu containing the subtask's

potential clauses. For example, a subtask described by a $pred annotation

that includes the field or _mode (manual, 2), will be inserted into the

select gate with a priority of 2. When the subtask is removed from the gate

the user will choose a clause to solve it from a menu containing the subtask's

potential. The entries of this menu will be ordered by their forward priorities.

gate(Id, Priority)

This field indicates that the predicate utilizes a limited resource and its execu-

tion may be gated. Id is an atom that is used to identify the resource.

Priori ty is a number that is used to order system selection or menu presen-

tation. The default assumes that no limited resource is used. For example,

consider a subtask whose associated $pred annotation contains the term,

gate (crt, 4). When that subtask is initially encountered by the deduction

engine, it will be placed into the crt gate with a priority of 4.

side_effect (Type, Procedure, ArgumentList)

This field provides a subtask with the means to deal with side-effects. Type is

either delayed or inverse. (The inverse side-effect can only be used

with evaluable predicates.) The type delayed is used to prevent the

occurrence of a side-effect until the problem is solved, i.e., an answer is commit-

ted to by the user. A subtask that is part of the final solution and whose predi-

cate is of typedelayed will have the process called Procedure executed.

Procedure is used to cause the subtask's side-effect to take place after the

130

user's commitment. A subtask whose predicate is of type inverse will have

the process called Procedure executed if and when the subtask is undone.

Procedure is used to undo the predicate's side-effect. Both types invoke their

process with a command line Argument_l ist. Argument_11st is a list of

logical terms. The variable names in this list must be identical to the variable

names in the $pred's name term. TICS replaces the names of the variables

in this list with the current values of the corresponding argument in the associ-

ated subtask. For example, consider the following evaluable predicate annota-

tion:

$pred (a (A, B), [

ptype(external, 'p', 1),
side_effect (delayed, 'q', [B])

]).

TICS will solve a predicate, a (F, G), with a new system generated clause,

a (H, I) that provides an environment for the associated external process p.

If this process has bound the variable I to the value 1 at the time the problem

solution is accepted, then TICS will invoke the process q with a command line

containing the numeric constant 1.

Arithmetic Predicates

System predicates that perform arithmetic operations are as follows:

is

The is operator is an infix operator. Its right-hand term must be an expres-

slon representing a numeric value, employing infix operators, +, *, /,

131

m representing plus, minus, times, division and modulo arithmetic operations.

The right-hand term is evaluated and its value unified with the left-hand term.

< ,> ,<=, >=, ==, !=

These infix operators return true if their left-hand term is less than, greater

than, less than or equal, greater than or equal, equal or not equal to their

right-hand term, respectively. These operators require both left-hand and

right-hand terms to be evaluable to numeric values.

132

Biographical Note

The author was born under the sign of Virgo on September 15th of the mid-
year of the twentieth century, in the city of New York, borough of Brooklyn. At an
early age he moved to Levittown, New York; the first suburban tract housing
development. There he developed his distaste for unimaginative repetitive struc-
tures, e.g., dissertation formats. The author attended public school until 1968. He
then attended Cornell University, majoring in engineering and was awarded a 2S,
student draft deferment.

The next year the author transferred to S.U.N.Y. Stony Brook where he
majored in psychology. After graduating in 1972 he joined the U.S. Coast Guard
and underwent flight training with the U.S. Navy in Pensacola, Florida. He returned
to the scene of his birth where he was stationed as a Coast Guard Aviator, flying
helicopters for three years.

Upon his release, the author traveled until he obtained a job, house, wife and a
child in the New England area. The work evolved from fixing terminals for Tek-
tronix to diagnostic programming, writing device drivers and creating turnkey cus-
tom real-time computer systems for Digital Equipment Corporation. The author
headed west in 1981 and a year later entered the University of California at San
Diego. He worked as a teaching assistant and completed his M.S. in Computer Sci-
ence in 1984. He then headed north to work on his Ph.D. at the Oregon Graduate
Center.

The author is once again single and has a son, Jay, age 8, with whom he shares
the summers. He is leaving Oregon to accept a faculty position at the University of
Hawaii at Hilo.

	198706.grossman.mark to p. 92.pdf
	198706.grossman.mark to p. 132.pdf

