
Animating Multiprocessing Programs in The Smalltalk-SO Environment

Kurt B. Modahl
B.S., University of North Dakota, 1971

A thesis submitted to the faculty
of the Oregon Graduate Center

in partial fulfillment of the
requirements for the degree

Master of Science
In

Computer Science & Engineering

June, 19S7

The research described in this draft was successfully defended by

Kurt B. Modahl, as part of his requirements for the Master of Science degree

in Computer Science & Engineering at Oregon Graduate Center. Kurt died

as the result of an automobile accident before the final revisions suggested

by his examining committee were incorporated. The degree of Master of

Science was awarded posthumously by the trustees of OGC in April 1988.

David Maier

Professor and Acting Chair

Robert G. Babb II

Associate Professor

ABSTRACT

Programming in a multiprocessing environment creates additional complexity

issues above those encountered in a uniprocessing model. Animation of the

underlying software data structures has been shown to help in management of

such issues in uniprocessing environments. Animation tools for multiprocess-

ing environments should also be of assistance to software engineers c<:mstruct-

ing parallel processing software systems. :MPA is an environment that sup-

ports creation of animations that support multiprocessing applications in the

Smalltalk programming environment.

1

1. INTRODUCTION

Software systems can become exceedingly complex entities whose

meaning cannot easily be grasped by their builders, much less by those

unfamiliar with their intricacies. This complexity becomes amplified .in

multiprocessing systems where multiple processes execute independently

of each other and may at times need to exchange information, via mes-

sages or by updating values in a shared. Multiprocessing software sys-

terns are more difficult to develop, test, debug, and maintain than

uniprocessing systems because of the additional complexity resulting

from the need for independence, synchronization and sharing of infor-

mation.

The difficulty of programming multiprocessing systems stems

largely from lack of appropriate abstraction. The programmer tends to

view a program as consisting of discrete objects that must perform as a

whole in coordination to accomplish the requirements of the software.

The problem with multiprocessing or parallel processing is that the

software abstraction of the user rarely matches what the system's

architecture presents. This is particularly true for users new to the

concepts of programming systems that involve multiple processes.

One approach to controlling this complexity that has become an

increasingly discussed research area involves unifying the fields of

2

graphics, computer languages and software engineering [Grafton and

Ichikawa 85]. Dynamic graphical representations of the inner workings

of software can simplify complexity by reducing the software abstrac-

tiOD into readily comprehensible graphical images. Observing graphical

images representing data and control structures that animate as the

programs execute can give software engineers better insight into the

functionality and meaning of a system than attained by looking at

snapshots of run-time data values or at just the final output. Such self-

animating programs should increase programmer productivity

significantly by assisting during the test, debug and maintenance phases

of the software development cycle. The concept of a "...software oscillo-

scope which makes the invisi.ble visible" has been suggested as holding

great potential for promoting understanding and insight into the com-

plexity of software development [Boeker, et.al. 86].

1.1. Objectives of MP A

The project on which this thesis is based is the construction of a

simple novice programming environment for simulating MultiProcessing

Animations (MP A) that allows: animation of the user's program during

execution to reveal it's internal behavior, easy construction of these ani-

mations, and user interaction with an active process. The main prob-

lem with visualizations or animation of programs until now has been

3

the tedium of constructing appropriate graphical representations that

are used once and then discarded. The process of animating a mul-

tiprocessing algorithm, beyond the original coding involved, should be

relatively easy for the user, and should involve minimal code

modifications. Animation facilities should be appropriate for a variety

of algorithms and should be easily extensible and reusable.

:N.IPA is a prototype environment, running under Smalltalk-80, that

attempts to provide these tools for animation of programs with multiple

processes executing the same or different programs asynchronously, pos-

sibly communicating with other processes, and accessing shared data

structures. The paradigm of 'views' of Smalltalk objects representing

data structures that are dynamically displayed as they are updated to

create animations has proven successful [London and Duisberg 85].

Although Pegasus is a uniprocessor architecture design and cannot

execute as a true multiprocessor, it does support multitasking which can

be viewed as multiprocessing on a single processor. This is similar to

the software simulator for Intel's hypercube that runs on the Oregon

Graduate Center's VAX 11/780.

- . - - -- - - - -- -- - -- - - -

4:

1.2. Contributions of MP A

The following discussion concerns some of the features that the

NIPA environment provides.

1.2.1. VISualization and Animation Toolkit

The classes of MP A provide basic graphical entities (along with

their traditional functions) for processes, data structures for simple

variables and arrays, and semaphores. Processes display their internal

state, while Animating Data Structures (ADS) provides for animation

of data access. Semaphores graphically indicate when a process has

referenced them and whether the reference was successful. Graphical

links between a process and an ADS provide a path for symbolic anima-

tion of data access.

1.2.2. Graphical Construction of Process Views

A graphical specification of process and ADS views is provided to

allow positioning and labeling of view diagrams. This establishes the

correspondence between an executing process and appropriate view

within MPA. The animation process has been kept as simple as possi-

ble by providing an interactive interface that allows the user to describe

and position view diagrams. The programmer codes programs as part

of the normal Smalltalk development process with the exception that

5

instances of :MPA methods are used where visualization or animation is

desired. Since the entirety of the Smalltalk system is open and

modifiable by the user, these animating classes and methods are open

for any tailoring needed to adjust to a specific program model.

1.2.3. Multi-Level Process Views

Three hierarchical levels of views have been provided: at the top

level animation and process viewing is switched off: no animation is visi-

ble, at the next level the overall system state of each process can be

viewed and at a lower level the program animation of the current active

process can be observed as its program containing the ADS executes.

The changing state of a process will be reflected by corresponding view

updates. These levels are under user control during program execution,

making it possible to switch dynamically between the two view levels.

1.2.4. Speed Control

Speed control is essential for program visualization environments

because the newer workstations permit rapid display of graphics. Set-

ting the speed (actually the amount of slowdown) provides for viewing

the animations and visualizations in a slower mode, thereby increasing

comprehension of the graphical displays. In order that a user can view

an animation as slowly as desired, a provision for adjusting the speed

6

and stopping the animation entirely has been implemented.

1.2.5. MP A as a Debugger and Inspector

~ A allows for stepping through an execution and provides access

to Smalltalk's debugger and inspector facilities, which allows inspection

and modification of code during development and testing.

~ A enables the programmer to observe the execution of processes

by visual inspection of process and shared data states. Errors detected

by observing the behavior of the program can be corrected during execu-

tion.

1.2.6. MP A as a PerformanceMonitor Assistant

Although MP A was not intended to provide performance monitor-

ing capabilities, it indirectly, by means of the visual pathways, allows

the programmer to observe performance bottlenecks and abnormalities.

This is a result of direct observation of a program's visual behavior.

1.3. Overview of Thesis

The next section provides a brief survey of related work in the field

of program visualization. Then a programmer's view of the environ-

ment and the programming model is presented. A definition of relevant

terms is provided. The design and implementation section is then dis-

- - -- ---..- -. -. .. .-.-

cussed. A detailed example of a multiprocessing version of the Sieve of

Eratosthenes is presented demonstrating how :NIPA helps the user create

an animation for a program and how the visualization can assist in

debugging and monitoring performance. The last section provides a

summary of the thesis and directions for future research.

8

2. RELATED WORK

The following is not intended to provide a comprehensive survey of

all relevant research in program visualization or animation. The reader

is referred to Grafton .and Ichikawa's paper for a more detailed

review[Grafton and Ichikawa 85]. Dynamic program visualization has

been defined as specifying the program in the usual textual manner,

with graphics (in this case animations) used to illustrate some aspect of

the program or its run-time execution [Myers 86]. For this thesis ani-

mation is defined as the dynamic display of graphical images to give the

illusion of motion, whereas visualization utilizes graphical displays

without animation.

The Brown ALgorithm Simulator and Animator (BALSA) is

an integrated software environment designed to animate programs

[Brown and Sedgewick 85]. Animation views dynamically change in

response to interesting events identified in the program's code. Scripts

(key-stroke history of a program's execution in BALSA) are provided for

that allow replay of desired events. Multiple views of the same data

structure and the ability to run multiple algorithms are also supported.

Construction of animations are labor intensive and BALSA designers

intend to automate the process by providing a standard libray of views.

g

The Program Visualization (PV) environment was developed to

support and help visualize large program's structure and function

[Brown, et al. 85]. It supports multi-level views, speed control and

dynamic visualizations of data structures. Data structure views are

changed as data values are updated. There is no smooth animation

between the old and new views of the updated data structure. The sys-

tern does provide for the separation between the code and graphics

allowing for independent development of each.

Animus is a prototype system, written in Smalltalk-80, that allows

construction of an animation from a library of components [Duisberg

86]. Constraints involving time are used to maintain consistency among

the elements of a data structure and their supporting graphical views.

Smooth animation views between old and updated states of a data

structure, as well as animations involving multiple processes are sup-

ported. However, construction of an animation to support some pre-

existing code appears to be complex. Animus is, at present, a guru sys-

tem and the ability of a novice Animus user t<? instrument animations

of some existing code is unknown.

The Programming and InstrumentationEnvironment for

Parallel Processing (PIE) is, as its name describes an environment.

specializing in creation and monitoring parallel programs[Segall and

10

Rudolph 85]. A metalanguage, :MP, is used by the user to express and

manipulate all parallel processing constructs while the sequential con-

structs are in an existing programming language. A runtime environ-

ments provides the support for :MP abstractions. Software sensors are

used to instrument a program automatically and can also be directed

by the user. These sensors are performance oriented, providing timing

statistics, but also provides runtime values of variables. Monitoring is

multi-level, but no provision for animation is provided.

The Interactive Parallel Program Monitor (IPPM) is a

softwa~e monitor for Intel's Hypercube multiprocessor architecture that

collects user-directed trace event information to perform post-execution

analysis and display graphical views of program behavior [Brandis 86].

The user interactively selects elements of the collected events to view.

Performance analysis statistics are displayed which allows the user to

view bar graphs of CPU utilization, inter-CPU message distribution,

and animation of message traffic. The display environment allows for

single stepping, fast scrolling, and rewinding the execution trace. IPPM

was designed as a performance measurement monitor for algorithms

mapped to various cube topologies and control structures. Analysis of

the statistics provided is helpful in fine tuning algorithms and topologies

for performance.

11

The GARDEN environment is intended to provide a conceptual

programming environment wherein the programmer's graphical design is

executed directly [Reiss 87].

"Programmers should be able to design, code,. debug and maintain

their system using their own conceptual models."

It incorporates many elements of graphical programming with the

ability to describe graphical data structures that are displayed as the

program executes. Programmers use their own visual concepts to model

and develop software. Editors are provided that support drawing pic-

tures. of programs and data structures. GARDEN does not support ani-

mation and display placement is controlled entirely by the environment,

which has created layout problems.

12

3. DESIGN AND IMPLEMENTATION

MP A was designed as a prototype environment to support visuali-

zation of multiple processes and animation of accesses to shared data

structures during execution. Graphical objects for processes, sema-

phores, data access paths, and data structures are supplied as basic ele-

ments of the toolkit. These objects (except for datapaths) are also

represented in the normal Small talk environment. The current imp le-

mentation was done on a Tektronix 4404/5 (Pegasus) workstation.

The programmer creates an ?,nimation by interactively designating

locations and labels for those elements of the toolkit that are

represented in a Smalltalk program. By referencing MP A methods for

creation and access, the designated entities are displayed and animated

during the execution of the user's program. The user can control the

display level of the animation and its speed. MP A supports stepping

through an execution and control over process execution order.

The following sections describe the menu functions for run-time

support. Each of the MP A classes are presented and briefly described.

Finally, the problems of dealing with Smalltalk's Model- View-

Controller paradigm are discussed.

13

3.1. Run-time System Menu

Access to the environment is supported by a menu in the MP An i-

mator window. The menu commands are chosen by selecting the

appropriate item with the mouse. The commands and a brief descrip-

tion of their function are:

speed

Displays the current amount of slowdown in effect and accepts a
new user-input integer. A value of 0 produces no slowdown in the
system, increasing values produce increasing amounts.

animate

Selection of this item displays a prompt that asks the user to turn
the animation on or off. When the animation is off no visualization
or animation is displayed.

step mode

Sets step mode on, and puts control of execution order of processes
under user control. During execution, a process's access of shared
data structures allows the user to halt and bring up a standard
Smalltalk debugger.

continuous mode

Sets step mode off, and control of process execution order is deter-
mined by the control flow of the user's code.

select process

When in step mode, selection of this item allows the user to point
to a process icon and select it to be executed by clicking of the
mouse button. The designated process executes until it yields or
terminates. When a process accesses a shared data structure a
prompter is displayed and allows the user to continue or halt.

set level

Displays the current display number level in effect and accepts a
new user-input integer. A value of 1 sets the level to display the
activity at the process level, no animation of shared data struc-
tures is shown. A value of 2 sets the level to display process
activity and accesses of shared data structures are animated. Has
no effect on current display view.

14

change level

Toggles the display level between 1 and 2. Results in the new view
level to be displayed.

create animation

Allows the user to interactively designate the number, locations
and labels for processes and shared data structures. Animation
paths are also designated by selecting which process or processes
access a shared data. Prompts are displayed for designating the
labels for semaphores that restrict access to shared data.

PiStartup

Starts execution of a multiprocessing example for calculation of the
value of Pi. Requires that the animation for this program be setup
prior to selection.

PrimesStartup

Starts execution of a multiprocessing example for calculation of
prime numbers. Requires that the animation for this program be
setup prior to selection.

GenericStartup

Starts execution of a user's multiprocessing program. Requires that
the animation for this program be setup prior to selection.

3.2. MP A Class Hierarchy

Object-oriented languages, such as Smalltalk, are based on a model

of programming in which objects that perform actions communicate by

way of messages. This abstraction encourages a more natural design

methodology than that provided by procedural languages [Cox 86].

Small talk supports inheritance, which allows methods to be shared and

modified by different classes of objects. This led to encourage a pro-

gram design where each of the graphical objects are subclasses of the

class MPA, as shown in Figure 3.1. This allowed methods of :MPA to be

MP AProcess SharedData

SharedArray

MP ASemaphore MPALink

MPAUserPrimes

15

used by all of it's subclasses as desired, and for each subclass to over-

ride a method if it was required to meet some special need. An expla-

nation of the functionality of each of the classes follows.

3.2.1. Class MPA

The class MPA provides all of the methods for creating an anima-

tion:

1) Specification of number, location, label and size for processes and
shared data and message view diagrams.

2) Datapaths rr~m processes to shared data and messages.
3) And semaphores used for mutual exclusion.

~ A contains the global class variable data structures for:

1) Icons.
2) Processes.
3) Process, shared data, datapath and semaphore view diagrams.
4) Schedule queue.

Methods for display of view diagrams and level are included and are

inherited by all of the MPA subclasses. The methods that are invoked

by the run-time menu are also included here.

16

3.2.2. Class MP AProcess

A process is, "... a sequence of actions described by expressions and

performed by the Smalltalk-80 virtual machine" [Goldberg and Robson

83]. A process can execute independently of, or synchronize with, other

processes. Class:MP AProcess supports graphical display of the current

state of a process. Each of the possible states of a process (nil, sleep,

waiting, active, or terminated) have corresponding icons (class Icon)

that are displayed as a process changes from one state to another.

Methods are provided for process creation, changing the state of a

process and display of a process's state.

3.2.3. Class SharedData

This class implements the methods that access a shared data struc-

ture. Methods are provided that support initialization, addition,

retrieval and tests for presence or absence of a value. Execution of

these methods invoke various display methods designed to visualize a

given operation.

3.2.4. Class SharedArray

This class provides for animation of operations for an arrayed data

structure. Graphical display methods are provided that support initiali-

zation, retrieval and storage operations. Each element of a shared

17

array is an instance of class SharedData. This allowed each cell of a

large array to be displayed individually in a restricted are of the display

screen.

3;2.5. Class MPALink

This class was designed to provide a graphical datapath link

between a process and a shared data or message. The state of a link

provides visual verification that a process is accessing a shared data or

message.

3.2.6. Class MP ASemaphore

Semaphores provide for synchronization and mutual exclusion. A

process can synchronize with another by issuing a signal message. to a

semaphore, while another process will wait by issuing a wait message to

the same semaphore. These messages can be given in any order. The

process issuing the wait message will suspend itself if the corresponding

semaphore has not been given a signal message.

This class provides the graphical support for semaphores. Methods

are provided for creation, signal and wait, and display of a semaphore's

state.

18

3.2.7. Class Icon

This class provides for the display of all icons used within MP A.

Methods are also provided for editing the bit maps of icons and for their

file storage and initialization. The following icons are used to display.

the state of a process: Void, Sleep, Wait, Active and Dead. Icons for

the state of a semaphore (ISem) and animation of shared data (Datum)

are also provided by this class.

3.2.8. Class MPAUser and MP AUserPrimes

These two classes provide examples for the user of MPA. They

show the user how MP A methods are used in creating an animation.

Class MP AUser provides the methods for an example that uses 5

processes to compute the value of Pi. Class MP AUserPrimes is a mul-

tiprocessing version of the Sieve of Eratosthenes that uses 4 processes to

compute prime numbers.

3.3. Model- View-Controller Problems

The Model-View-Controller (MVC) abstraction that underlies the

Smalltalk programming environment can hinder animation, mostly

because of the system overhead involved in multiple MVC schemas and

the difficulty in gaining view control when desired to update an anima-

tion. Therefore, animation views were implemented in a simpler scheme

19

(avoiding MVC) so that as much view update control as possible resided

within the lv1PA environment.

MVC facilities were used to create the lv1PAnimator window and

run-time menu as previously described; MP A views were displayed

within this window. This had the side effect of actually causing display

update problems when continuing from a halt from within MPA. The

problem was caused by the updating of the :MPAnimator menu window

after MP A had updated some of its views. The MP Animator window

re-displayed the previous bit map saved when the halt occurred,

overwriting the new display information. The problem was overcome by

reducing the browser menu window so that all :MPA views were

displayed outside of its boundaries.

Another problem sometimes occurred when the Smalltalk debugger

was invoked during an animation. Closure of the debugger window

erased parts of underlying MP A display views. This problem was

caused when the MP Animator window was not the current active win-

dow, or more properly, when there was no currently active MVC win-

clow. Activation of the debugger then resulted in the debugger display-

ing in the center of the screen. This was solved by establishing the

MP Animator window as the active MVC window by clicking the mouse

inside its boundaries.

20

The avoidance of MVC in updating display views also requires

more direct control of all updates. Every update of display information

was effected by sending the appropriate display messages to each MP A

class entity when it was determined an update was needed. This

requires more methods and code than would have been required by

using MVC directly, but allowed better control.

21

4. A PROGRAMMER'S VIEW

W A provides a simulated multiprocessing environment for prototyping

multiple process software systems. The tool allows control over and

view of the internal state of processes and shared data structures.

Smalltalk and :MPA provide a rapid prototyping environment for

multiprocessing. The software model provides for multiple processes

that act autonomously and communicate via shared data structures.

Mutual exclusion for access to these shared data structures is provided

by semaphores. A programmer codes his program using normal

Smalltalk methods. :MPA provides self-visualizing objects for processes

and semaphores, and self-animating objects for shared numbers and

arrays. The user utilizes :MPA methods and objects wherever visualiza-

tion or animation is desired. These normally would be for processes,

semaphores, and shared data.

Smalltalk processes running under :MPA are in various states dur-

ing their existence. There is no pre-emption under Smalltalk. A pro-

cess executes until normal termination, or until it receives a message

that causes it to relinquish the CPU. Prior to creation, a process is

considered to be in the nil state. After creation, a process is in the

sleep state until it is scheduled for execution by the Smalltalk process

scheduler. After a process receives the message resume, it is scheduled,

22

and if no other processes are waiting for execution, it becomes the

active process and is allowed to execute by the process scheduler. A

process can yield to allow other processes to execute, and then enters a

waiting state, where it is scheduled to execute when the CPU is avail-

able, in a first come first served process queue. The last state of a -pro-

cess is termination, achieved by natural termination of its last method

or by receiving the message terminate. [~:r-- Ii, 1.J
After a programmer has created his program(s) using f\.1PA

methods, the animation display environment must be specified. This is

initiated by selecting the create animation item from the f\.1PA browser

menu [Figure 4.2].

torkABlock:

newProceuLabel:

reaume:

signal

Normal
wait \. termination

or
terminate

Figure 4.1 State Transition Diagram tor MP A Proce88e8.

rorkABlock:

new ProcessLabel:

resume:

signal

wait
Normal

termination

Figure 4.1 State Transition Diagram for MP A Processes.

23

Selection of this menu item will walk the programmer through anima-

tion creation by asking a series of questions. The user is first asked for

the number of processes that are to be viewed [Figure 4.3].

The programmer is then prompted to select screen locations and labels

for each of the processes. Figure 4.4 shows a process location being

specified by dragging the crosshair cursor from a starting and ending

location.

24

Figure 4.5 shows the prompter that asks for the process label after the

location and size have been specified.

Enter unique Identification label

After the display locations for each of the processes have been specified,

the programmer is asked to enter the number of shared data structures

to be animated [Figure 4.6]. Shared data structures are represented as

graphical entities that have datapath links to the process(es) that refer-

ence it. A shared data can have only one link with a process, but can

have as many links as there are processes. MPA currently supports ani-

mation of shared variables and arrays. For each shared data structure

the programmer must supply a location, size, and label in a manner

similar to processes. The user also designates datapaths for animation

during data structure access by a process, if animation is desired. Fig-

ure 4.7 shows the programmer responding to the prompter for display-

ing datapaths.

F,t»K.. '-t.7 Pruw..f~' ~ Jt\.~ p~ ~ s.
A datapath link has a starting point in a process and an ending point

in the shared data. This is specified by selecting a point (in the display

view) for each of the processes that will access the shared data with the

mouse. The ending point of the link in the shared data must also be

specified. Figure 4.8 shows the MPA programmer about to click the

mouse as the crosshair rests on a process view. A process (already

specified) is shown with its data link and semaphore displayed. The

process of specifying datapaths is terminated by clicking the crosshair

on two points outside the views of processes or shared data.

26

If semaphores are to be used for mutual exclusion to the designated

data structure, the programmer responds with a yes to the prompter as

shown in Figure 4.Q. . This prompter is displayed after each datapath

link has been specified. Labels for semaphores are entered by way of a

prompter just as they were entered for processes and shared data. .

Shared messages are similar to shared data except that exactly two

datapath links must be specified for each shared message. A shared

message is a graphical abstraction that contains a single value stored

27

by one process and referenced by another. The number of shared mes-

sages is entered via a prompter as was done for shared data. The loca-

tion, size, and label are also similarly specified. Displaying datapaths is

performed just as it was for shared data, by selecting yes in the

prompter window. The ending point is specified by selecting a location

inside the shared message view. Figure 4.10 shows the second datapath

link being specified by clicking the crosshair on the shared message

referenced by the process. If semaphores are used to provide mutual

exclusion to the shared message, they are specified just as they were for

shared data.

28

Figure 4.11 shows the finished animation, ready for execution.

Mter the animation environment for a program has been described

the programmer must set runtime parameters : view level, animation

speed, and execution mode.

There are three view levels. The highest level determines whether

animation or viewing is shown at all. The first viewing level displays

the state of each MPA process. The second viewing level displays the

state of each process and animations of the access to shared data as

r

20

,

they are made. The animate and setLevel menu items are usually set

beCore starting an animation, while changeLevel is best used during ani-

mation. Figure 4.12 shows the prompter displayed after selecting ani-

mate in the MPA menu, while Figure 4.13 shows the prompter displayed

after selecting setLevel in the MPA menu; the current level is ind~cated

and the user enters the new level if a change is desired. Selecting

changeLevel in the menu also allows the user to change the display

level, but works slightly different. It toggles between level 1 and level 2,

displaying the levels after the change.

-;

- - -- -

30

The speed of the animation is determined by the amount of slow-

down exhibited as MPA updates display views. The current speed is

shown in the prompter and a new value is entered by the programmer

to control how much slowdown is performed [Figure 4.14]. The value of

this feature is of more importance when the programmer is first becom-

ing familiar with the behavior of an MPA application. Later in the

development life cycle, increased speed is usually appreciated and can

lead to better comprehension.

Prior to executing the program the MPA user must preset the

mode of execution to step or continuous. Step mode requires the pro-

grammer to control the order of process execution by selecting a process

to execute. Once a process has been chosen for execution via select pro-

cess from the MPA menu, the designated process will execute until it

,rh:

'.

--

31

performs a process yield or terminates. A process is designated for exe-

cution by positioning the crosshair cursor over a process view and click-

ing the mouse. Step mode pauses at predetermined points during a

process's access of shared data to query the programmer whether to

continue or halt [Figure 4.15]. Figure 4.15 shows process PI pausing

prior to updating a shared data. Selecting yes in the prompter causes

the process to halt and a Small talk debugger window to appear. Con-

tinuation proceeds with the execution of the active process until the

next access to shared data, whereas halting causes a halt to be executed

which brings up a standard Small talk debugger. Selection of debug in

the debugger window allows examination and modification of the run-

time stack and the current methods being executed [Figure 4.16]. The

programmer can further examine instance variables in that -process's

methods.

32

D<:b\J1~e r p L'Mf kr q.f+ev- 5~(~c.+\,,'a-

f\'C \"- ~~~ l{-.\t;:.

Continuous mode, on the other hand executes the programmer's

methods without pauses or queries. Once the primary execution mode

has been selected the programmer can start execution of his program by

himself or through selection of the generic startup menu item in MPA.

33

As each of the processes is created, scheduled, terminated, or

yields, icons for those respective states are displayed at the

programmer-designated process location. Similarly, as shared data is

initialized, or accessed by individual processes, animated data icons are

shown traversing the paths from the relevant process to the shared

data. The contents of the shared data is also displayed. If shared data

are protected by mutual exclusion then messages by a process that

reference semaphores cause the respective semaphore icons to display

their state.

34

5. SIEVE OF ERATOSTHENES

The Sieve of Eratosthenes is a classic algorithm for generating

prime numbers. Because of the recent popularity of new parallel pro-

cessor architectures, the algorithm has been used as a paraHelization

example several times [Bokhari 87]. Although relatively simple, actual

implementation of the algorithm on a modern parallel architecture

machine (Sequent Balance 8000) was not trivial [OGC 87]. The algo-

rithm requires extensive synchronization between processes. The bugs

and misbehavior displayed by the :MPA environment are similar to

actual parallel programming bugs encountered as mentioned. The visu-

alizations and animations of MP A illustrate the advantage that graphi-

cal environments have for parallel or multiprocessing.

The version that has been used here for demonstrating MP A has

what can best be described as a "pipelined" approach. Prime numbers

are computed by four sequential communicating processes. The main

Primes process forks off three new processes. Each of these processes

collects a finite number of prime numbers from another process (up to

the square of its starting prime) and then communicates potential prime

numbers to the next process. The third process simply collects prime

numbers that the second process has sent it. After the first process

receives and computes the the number of primes it is to find, it

35

generates possible primes and passes them onto the second process. The

second process collects primes from process one up to the square of its

starting prime and then passes all subsequent primes it receives onto

the third process. Process three collects primes up to the square of its

starting prime and then signals Primes that it is finished. The main

process displays the primes it has found and terminates the other

processes. The starting number of primes received by process one deter-

mines the number of primes found. For n = 2 , 15 primes are found ;

for n = 3 , 99 primes are found.

Each of the computing processes stores the prime numbers it finds

in a global array. No mutual exclusion is provided for accessing the

shared array since each process has its own, non-overlapping, starting

and ending indices. Processes 2 and 3 receive their starting indices, for

the global primes array and possible primes, via shared integer values.

Access to these shared data are controlled via semaphores. Each pro-

cess receives its data from the preceding process in a pipelined fashion.

5.1. Creating the Animation

The programmer constructs the animation by specifying view

diagrams for the processes, shared data and messages, and semaphores.

For shared data and messages, datapaths are also specified. For this'

36

example, there are 4 processes, 1 shared data (an array), and 5 shared

messages. Access to each of the shared messages is controlled by sema-

phoresj the shared array has no mutual exclusion protection.

Figure 5.1 shows the completed animation as specified by the pro-

grammer, prior to executing the program. Indexl and Index2 a~e the

starting array indices that PR2 and PR3 receive from PRl and PR2

respectively. Primel contains the possible primes that PRl sends to

PR2j Prime2 contains the possible primes that PR2 sends to PR3. The
-,

primes array contains the actual primes that are found by the processes

after they have been sieved. Done is a value that is set by PR3 and

tested by the Primes process to determine when the other processes are

37

5.2. Using MP A Objects

The animation described in Figure 5.1 can be viewed as a design

specification diagram that must be coded into Small talk methods. The

algorithm as presented here requires the use of MP A objects and

methods where visualization and animation is desired. In the following

sections the algorithm's Smalltalk code containing :MPA methods

(shown in boldface) will be presented and briefly discussed.

An instance of class MP AProcess is required for each process that

is to be visualized during an animation. Since the animation requires

visualization of the main Primes process, a startup method is required

as follows:

PrimesStartUp

"adds startup Primes as a newprocess;
Primes in turn creates other primesprocesses."

I Primes II I
"forkABlock will display the current level"

primes <- MP AProcessor forkABlock: [MPAUserPrimes Primes]
new ProcessLabel: 'Primes'.

MP AProcessor resume: primes.

A suspended (state of sleeping) process is created by sending the mes-

sage forkABlock: [MPAUserPrimes Primes] newProcessLabel: 'Primes'

to MPAProcessor. MPAProcessor (instance of class MPA) is a global

Smalltalk variable. Execution of this message causes a new process,

consisting of the method Primes in class MPAUserPrimes, to be created

1

38

and assigned to the local variable primes. At the same time, an inter-

nal binding of this process to the process view diagram labeled 'Primes'

is also performed by l\1PA. This establishes the mapping between the

programmer's code and the animations that are specified within MPA.

MPA will display the Sleep Icon at the view diagram location for

'Primes' indicating that a suspended process has been created. The

process (containing the method Primes) is scheduled for execution by

the Smalltalk process scheduler by sending the message resume: primes

to MPAProcessor. This message causes the display of the Wait icon at

the process's view diagram, and immediate execution if there are no

other processes active. The Active icon is displayed at a process's view

diagram when there are no processes executing and it is the next pro-

cess the Smalltalk scheduler will execute.

Primes

"This is the main Primes process. It invokes other child processes."
I x y prl pr2 pr3 pr4 wans xans

yans zans pview numprimes test forever I

"init all shared data and messages & semaphores"
self initSharedData .
self initSemaphores .
FillInTheBlank request: 'How many Primes should first process create? '

displayAt: Sensor cursorPoint
centered: true

action: [:num I num <- Number readFrom: (ReadStream on: num).]
initialAnswer: '2' .

"get number from string"
numprimes <- num.
Debug transShow: 'Primes start seed ****, and: numprimes .

39

Initialization of shared data and messages and semaphores is performed

by the methods initSharedData and initSemaphores. A Smalltalk

prompter is displayed asking the user for the number of primes the first

process should find. This number determines how many primes each of

the processes will find. The message transShow: and: issued to Debug is

an MPA method that displays its information in the Smalltalk System

Transcript window. It is useful for supplying debugging information

.11 that is not part of the animation. Figure 5.2 shows the state of the ani-

mation after the prompter has been displayed. Primes is the active pro-

cess and PRl, PR2 and PR3 have not been created yet (state is nil).

The shared data and messages have been initialized to o. The sema-

phores for the shared messages indicate that they have received a signal

(indicated by gray ISem icon), However, th~ semaphore for the message
..

Done has not received a signal, indicated by the white Isem icon.

40

prl <- MPAProcessorlorkABlock: [self primesProcessl: numprimes]
newProcessLabel: 'PRl'.

pr2 <- MP AProcessor torkABlock: [self primesProcess2]
newProcessLabel: 'PR2'.

pr3 <- MP AProcessor lorkABlock: [self primesProcess3]
new ProcessLabel: 'PR3'.

.. resume: schedules the processes for execution on the cpu "
MP AProcessor resume: prl
MP AProcessor resume: pr2
MP AProcessor resume: pr3

After the shared data and semaphores have been initialized the Primes

process then creates 3 new processes. These 3 processes (prl, pr2 and

pr3) have view diagram labels ('PRl', 'PR2' and 'PR3') that correspond

to those specified during animation layout. The appropriate icons for

process creation and scheduling is displayed as the methods forkABlock:

newProcessLabel: and resume: are executed. The three processes exe-

cute three different methods: primesProcessl: numprimes, primesPro-

cess2 and primesProcess3.

''Main yields to other PRI-PR3 processes
that are waiting for the processor"

MP AProcessor yield.
''WAIT FOR SIGNAL FROM PR3 THAT WE'RE DONE"

forever <- true.
[forever]

while True: [
.. CRITICAL SECTION"
DoneSem wait .

(Done testFor: 0)
ifTrue: [DoneSem signal .

MP AProcessor yield .]
ifFalse: [Done set: 0 .

forever <- false.

4J.

DoneSem signal .
]

II. f F II. 1 test or
"END CRITICAL SECTION"

]
" h.l f ". W 1 e orever

Mter execution of the resume: messages to the processes, Primes

suspends itself from execution by sending the message yield to th~

MP AProcessor. Primes then enters a state of waiting (indicated by

display of the Wait icon) and allows the next process in the queue to

execute. When Primes is next scheduled to execute it enters a loop that

checks the contents of the shared message Done for a non-zero value

(which indicates that the processes are done with their work). Done is

a shared message that requires mutual exclusion to control access; this

is provided by the semaphore DoneSem. Primes is suspended (a state of

sleep) after it sends the message wait to DoneSem if a corresponding

signal message has not been sent to the semaphore [Figure 5.5]. If a

signal had previously been issued to DoneSem then Primes acquires the

semaphore and continues execution. Successful acquisition of the sema-

phore DoneSem (process returns from execution of the wait method) is

indicated on the screen by the display of a black form of the ISem icon

and the label for the semaphore, in this case 'Dl'. PR3 is responsible

for issuing the signal message to DoneSem when it has finished collect-

ing primes. If the contents of Done is zero, it sends a signal message to .

42

DoneSem and suspends itself again. If the value is non-zero, it sets

Done to 0, signals DoneSem and exits the loop.

"TERMINATE OTHER PROCESSES STILL SCHEDULED OR WAITING"
MP AProcessot... .terminate: prl
MP AProcessor terminate: pr2
MP AProcessor terminate: pr3

The final step for Primes is to terminate the other three processes by

sending the message terminate: to MP AProcessor. Execution of this

message causes termination of that process and the Terminate icon to

be displayed at each process's view diagram. Figure 5.3 shows Primes

as the active process and the display after PRI has been terminated.

i.'
'-

43

The Primes process initializes the shared data and messages by

executing the method initSharedData.

initSharedData

''performs shared data initialization of classvars."
PrimeAfray <- SharedArray newArray: 'primes'

size: !OOvalue: O.
Index! <- SharedData newNumber: 'Index!' value: O.
Index2 <- SharedData newNumber: 'Index2' value: O.
Prime! <- SharedData newNumber: 'Prime!' value: O.
Prime2 <- SharedData newNumber: 'Prime2' value: O.
Done <- SharedData newNumber: 'Done' value: O.

PrimeArray is a global class variable that is initialized by sending the

message newArray: 'primes' size: !OOvalue: 0 to the class SharedArray.

The contents of the array labeled 'primes' are initialized to 0 and

displayed at the appropriate view diagram. Figure 5.2 shows the array

and messages after they have been initialized. 11PA displays that por-

tion of the array that fits within the view diagram. Index! is also agio-

bal class variable and is initialized by sending the message newNumber:

'Index!' value: O. The view diagram for 'Index!' is displayed as it is ini-

tialized. The other class variables, Index2, Prime!, Prime2 and Done,

are initialized in a similar manner.

The Primes process initializes the semaphores to be used by execut-

ing the method initSemaphores.

initSemaphores

44

"Initializes all classvar semaphores used"
'DoneSem does not get an initial signal ."
"label sem & signals set to 0"
DoneSem <-MP ASemaphore newSemaphore: 'Dl'.

"label sem & signals set to 0"
IndexlSem <- MPASemaphore newSemaphore: '4.'.
IndexlSem signal. "set initial signal for other processes"

"label sem & signals set to 0" .
Index2Sem <- MPASemaphore newSemaphore: '4.'. .

Index2Sem signal. "set initial signal for other processes"
"label sem & signals set to 0"

PrimeiSem <-MP ASemaphore newSemaphore: 'PI'.
PrimeiSem signal. "set initial signal for other processes"

"label sem & signals set to 0"
Prime2Sem <-MP ASemaphore newSemaphore: 'P2'.
Prime2Sem signal. "set initial signal for other processes"

The semaphore DoneSem is declared by sending the message newSema-

phore: 'DI' to the :MPA class MPASemaphore. The ISem icon is

displayed as a white form at the location(s) for 'DI'. IndexiSem is

declared and sent a signal message, that causes the ISem icon to be

displayed as a gray form (indicating a signal) at the location(s) for '4.'.

The other semaphore class variables, Index2Sem, PrimelSem,

Prime2Sem, are declared and signaled in a similar manner [Figure 5.2].

primesProcessI: numPrimes

I startx endx possibleprime forever primefull" k l' P It

wor tor process 1
"set first few primes in classvar PrimeArray ; not semaphore restricted"
startx <- 1 .
numPrimes == 1

ifTrue: [PrimeArray at: 1 put: 2 .
endx<- 2.]

45

ifFalse: [numPrimes == 2
iITrue: [PrimeArray at: 1 put: 2 .

PrimeArray at: 2 put: 3 .
endx<- 3.]

ifFalse: [numPrimes >= 3
iITrue: [self halt:

'More primes than I want to compute ?? ').
).

].

The first process receives the number of primes it is to find from

the Primes process as an argument in its method. Depending on the

value of numPrimes, one or two primes are stored into the global array

PrimeArray by sending it the message at: put:. Access to the array is

not restricted since the algorithm assumes that each process accesses

non-overlapping elements of the array. Access to the array is animated

along the datapath specified for this process, displaying a black line to

indicate an active path, a Datum icon animating along the path from

the process to the array view diagrams, and and a black array element

when the value is stored. Mter storing its primes the ending index,

endx, is set to the last array index accessed + 1. Figure 5.4 shows PR2

after it has retrieved the number 5 from Primel and is storing it in the

primes array at index 3.

- -- - - - -- ..--

46

"FOUND MY PRTh.ffiS;SEND PRIMEARRAY ENDX ONTO PROCESS2 "
IndexlSem wait. " CRITICAL SECTION"

Indexl set: endx .
IndexlSem signal. "END CRITICAL SECTION"

The starting index (Indexl) for the next process must be set to endx.

Access is restricted by the semaphore IndexlSem. Execution of the

messages wait and signal generate a gray and black form for the ISem

icon respectively. Similarly, execution of the method set: causes data-

path display, animation of the Datum icon, and momentary flashing of

the view diagram for Index!.

" LOOP & YIELD FOREVER; GENERATE POSSIBLE PRIMES"
forever <- true .
primefull <- true.
possibleprime <- (PrimeArray at: endx - l) + 2.
[forever]

whileTrue: [
(self isPrime: possibleprime from: startx to: endx)

ifTrue: [" SIEVE BY MY NUMPRIMES & IF PRIME SEND ONTO PROCE~
[primefull]

whileTrue: [
"CRITICAL SECTION"
PrimelSem wait.

(Primel testFor: 0)
ifTrue: [Prime! set: possibleprime .

primefull <- false .
Debug transShow:

, PRI Primel = '
and:(possibleprime printString)
]

".f F ". 1 test or

PrimelSem signal.
" END CRITICAL SECTION"

MP AProcessor yield .
]. " while primefull"

]. "is prime"

.1 ,~r"
,: ~

i
,t,

~
if'

- - - - -- -- - -. -'.. - .. --

47

possibleprime <- possibleprime+ 2 . "generate next prime"
"reset for next loop and this new possibleprime"

primefull <- true .
]
" hO l l' ". W 1 e .lorever

The last step for this process is to execute a non-terminating loop in

order to generate possible primes and send them on to the next proces~.

Generation of primes is accomplished by adding 2 onto to the last prime

generated. For each possible prime generated the method

is?rime:from:to: performs the sieving process. This method returns true

if the prime sieved properly and false otherwise. New prime numbers

must be sent onto the next process by gaining control of the semaphore

PrimeSem by issuing a wait message. Once it has the semaphore the

contents of Prime! must be tested to verify that the last prime number

stored was retrieved by the next process. If the next process retrieved

the previous prime from Prime! then the new possible prime is stored

with the set: possibleprime message. However, if the previous prime

was not retrieved then the process must release the semaphore and

repeat the testing procedure again after suspending itself. This pro-

cedure, of generating new possible prime numbers and sending them

onto to the next process by way of the shared message Prime!, is

repeated until terminated by the Primes process .

isPrime: aNum from: startx to: endx

48

i

"checks for prime by dividing by primes
less than the square root of aNum + 1"

"for primes already stored in classvar
PrimeArray from startx to from endx"

I sqrootl i ok curnum :

sqrootl <- (aNum sqrt) + 1 .
i <- startx .
ok <- true .
[(i < endx) & ok]

whileTrue: [
"read only, animation in reverse"

curnum <- PrimeArray at: i .
curnum > sqrootl

ifTrue: [ok <- false.]
ifFalse: [(aNumrem: curnum) == 0

ifTrue: [Afalse].].
i <- i + 1 .

].
" if arrived here then it's prime "

A true

The procedure for determining if a number is prime is performed by this

method. It sieves by dividing by' primes (stored in the global PrimeAr-

ray) less than the square root of the number + 1. It uses prime

numbers for the range of array indices that a particular process has

access. It executes a loop testing for a remainder of 0; if the result of

the division has a remainder of 0 then the' number is not prime and the

method returns false to the process. If it executes the loop successfully

then the number is prime (as far as the current process has sieved) and

",; a value of true is returned.

49

The second process executes the method primesProcess2: it receives

its starting index in PrimeArrayj collects primes from Prime! and stores

them in PrimeArraYj sends its ending array index onto the next proceSSj

and finally collects possible primes from the first process, sieves the

number by its own primes, and sends them onto the next process. .

primesProcess2

I startx endx possibleprimeforever
primelfull endprime thisprime prime2fulll

"work for process PR2"
''LOOP & YIELD UNTIL I GET PRIMEARRA Y STARTX FROM PROCESSl

forever <- true.
[forever]

whileTrue: [
II CRITICALSECTION"

IndexlSem wait .
(Index! testFor: 0)

ifTrue: [lndexlSem signal.
MPAProcessor yield .]

ifFalse: [startx <- Index! get .
Indexl set: 0 .
forever <- false .
Index!Sem signal .

]
II. f F ". 1 test or

" END CRITICAL SECTION"

]
" h.l so ". W 1 e lorever

The process suspends (state of waiting) itself each iteration of the loop

until it finds a non-zero value in Index!. Access to Index! is restricted

by matching wait and signal messages to the semaphore Index!Sem

[Figure 5.5].

t, "COLLECT POSSIBLE PRIMES FROM PRl,

t
L

..

-

---.-

Pit'?> A.(!CCSS'~:} ~~:l.) Prl~~ ,So S\lSp~"J.~el D"-

SC.Mo...{JkCl~ fov- 1) 0 I\e. .

t

f

I

f

I

J

f

t

50

LOOP & YIELD UP TO PRI'S LAST PRIME SQUARED"
endx <- startx .
endprime <- (PrimeArray at: (startx-!)) squared.
forever <- true.
[forever]

whileTrue: [
"CRITICAL SECTION"

PrimelSem wait.
(Prime! testFor: 0)

ifFalse: [thisprime <- Prime! get.
(thisprime < endprime)
ifTrue: [PrimeArray at: endx

put: thisprime .
Prime! set: 0 .
endx <- endx+ ! .

]
ifFalse: [

" stop collecting primes; pass thisprime onto PR3 if isprime "
forever <- false .
Primel set: o.].

]
".f F ". 1 test or

Prime!Sem signal.
" END CRITICAL SECTION"
MP AProcessor yield .

]
"

h
.l ~ ". W 1 e .lorever

Prime numbers are collected from the first process and stored in

PrimeArray; sieving is not necessary since the algorithm uses the fact

that numbers it receives less than the square of the previous process's

last prime, are guaranteed to be prime. Mutual exclusion of Prime! is

provided by matching signal and wait messages to the semaphore

PrimelSem. The main loop is executed until the new possible prime

number in Prime! is greater than or equal to the previous process's

squared prime.

--- ,~

51

''FOUND MY PRIMES; SEND PRIMEARRAY ENDX ONTO PROCESS3 "
" CRITICAL SECTION"

Index2Sem wait .
Index2 set: endx .

Index2Sem signal .
" END CRITICAL SECTION"

The ending array index is sent onto the next process after gaining con-

trol of the semaphore Index2Sem.

"COLLECT POSSIBLE PRIMES;
SIEVE BY MY NUMPRIMES & IF PRIME SEND ONTO PROCESS3 "

forever <- true.
primelfull <- false.
[forever]

whileTrue: [
[primelfull]
"not executed first time through; test thisprime first"

whileTrue: [
"CRITICAL SECTION"

PrimelSem wait.
(Prime! testFor: 0)

ifFalse: [thisprime <- Primel get.
Primel set: 0 .
primelfull <- false.
PrimelSem signal.

]
ifTrue: [PrimelSem signal.

MP AProcessor yield .
]

"'
f F ". 1 test or
II END CRITICAL SECTION"

]. " while primelfull"
(self isPrime: thisprime from: startx to: endx)

if True: [prime2full <- true .
[prime2full]

while True: [
"CRITICAL SECTION"

Prime2Sem wait.

(Prime2 testFor: 0)
ifTrue: ["empty put in next prime, exit loop"

r...

'
.

...'

~
52

,..,
f

Prime2 set: thisprime ." tt . f P "
now se 0 get next prImel rom Rl
primelfull <- true.
prime2full <- false .

]
"' f F ". I test or

Prime2Sem signal .
" END CRITICALSECTION"

MP AP rocessor yield .
]. " while prime2full"

]
ifFalse:[primelfull<- true].

]
" he

l l' ". W 1 e 10reVer

It. . II
IS prime

There are two inner loops inside the outer loop which are executed until

terminated by the Primes process. The first inner loop (not executed

the first time through) simply tests Primel for a non-zero value and

retrieves it, while the second loop sieves by the current process's primes

th~.Jre S\ <":1
and passes valid numbers onto the next process in the pipeline.~rimel

contain valid possible prime numbers from the first process and Prime2 .

contains valid sieved primes that this process is sending onto the third

process. Mutual exclusion is maintained to these shared messages by

appropriate semaphores.

",
rii This is the last process in the pipeline and executes the method

",
primesProcess3. Its actions are similar to the previous process except

that after it has received its starting index and collected all valid

primes it sends a message to the main Primes process that work is done.

primesProcess3
I startx endx forever endprime thisprime test:

l

~ -
-----..-....

..

I"

~~2. ~--hY-~"'d-Sq ~,,~ sh4~A J..~h....
Pr:M<s "tt's S~o.. f J...fJK- t)~ Al\cl I\QS b~e'W\.

c;d..~J.J ft>J. W ~ C"'-\-,~"-".

-- - --...

53

t

"WORK FOR PR3; COLLECTS PRIMES & NOTIFIES MAIN THAT WE'RE DOl
''LOOP & YIELD UNTIL I GET PRIMEARRA Y STARTX FROM PROCESS2 "
forever <- true 0

[forever)
whileTrue: [

" CRITICAL SECTION"
Index2Semwait 0

(Index2 testFor: 0)
ifTrue: [Index2Semsignal 0

MP AProcessor yield 0]
ifFalse: [startx <- Index2 get 0

Index2 set: 0 0

forever <- false 0

Index2Sem signal 0

]
"o f F ..

o 1 test or

.. END CRITICAL SECTION"
]

" hO I " "oWl e lorever

" COLLECT POSSIBLE PRIMES FROM PR2,
LOOP & YIELD UP TO PR2'S LAST PRIME SQUARED"

endx <- startx 0

endprime <- (PrimeArray at: (startx-l)) squared 0

forever <- true 0

[forever)
whileTrue: [

"CRITICAL SECTION"
Prime2Sem wait ,

(Prime2 testFor: 0)
ifFalse: [thisprime <- Prime2 get,

(thisprime < endprime)
ifTrue: [PrimeArray at: endx

put: thisprime ,

Prime2 set: 0 0

endx <- endx + 1 ,

]
ifFalse:[

"stop collecting primes; Notify Main we're done"
forever <- false,
Prime2 set: 0,),

)
"'

f F ". 1 test or
Prime2Sem signal 0

.. END CRITICALSECTION"
MP AProcessor yield .

- - . . - .

64

]
..

h
.
l f ". W 1 e orever

The code for collecting primes is identical to that of the previous pro-

[~b-VK- :),1]
cess except for the semaphores and shared messages referenced. "-

. ' ._~

"NOTIFY MAIN THAT WE'RE DONE COMPUTING PRIMES"
"CRITICAL SECTION BUT I SHOULDN'T HAVE TOOWAIT, JUST SIGNAL
(Done testFor: 0)

ifTrue: [forever <- false.
Done set: 1 .

]
".f F ". 1 test or

DoneSem signal. "END CRITICAL SECTION"

The final action for this process is to signal the main Primes process

that it has collected all of the primes. Mutual exclusion is not main-

tained here since Primes has suspended (state of sleep) itself when it

executed a wait on the semaphore DoneSem [Figure 5.5]. When

DoneSem was declared in the method initSemaphores there was no ini-

tial signal message issued, consequently when Primes issued a wait to

DoneSem it was suspended until a corresponding signal was issued (as

this process did at the end of this method).

6.3. PerformanceMonitoring

MP A supports rudimentary performance monitoring. If perfor-

mance is a primary goal of an application, then metrics that may be of

interest are:

Total process computation time.

.-....- -.---.
---.-.-

.. -- ~---. .. -.. --

55

Time spent waiting for the CPU.
Time spent blocked on a semaphore.
Amount of inter-process synchronization.

Normally these would be presented as a statistic or graphical chart to

represent the information collected. :MPA does not currently provide

such facilities, although they would be relatively easy to implement.

However, a more interesting and intuitive analysis is provided by means

of the behavioral displays that are presented during execution of an

MP A application. By observing the behavior of the program during

execution, a programmer can develop an intuitive feel for performance

bottlenecks in an :MPA program. This often requires repeated observa-

tion of the program's behavior.

For example, after the bugs were removed from the Sieve program,

observation of its behavior enabled the author to detect subtle

bottlenecks in the pipeline. When the second and third processes are

collecting there primes from the previous process, they gain control of

the semaphore for the prime shared data and keep it until after they

have stored the number in the shared primes array. A more efficient

algorithm would zero the prime shared data immediately after access,

and then release the semaphore before storing the prime number in the

array.

t
L

''\:

!)
t,

;jj ri

I ;}
I 'J;.

t '
\<

j ,..
1f

56

Another bottleneck occurs as the pipeline is filling up and when the

program is terminating. At startup, the third process wastes execution

cycles checking for its starting array index, which the second process

hasn't set. At termination, the first and second processes are wasting

CPU cycles, by continuing to fill the pipeline, while the third process is

signaling the main process that all work has finished. This is caused by

a lack of synchronization in the algorithm. If each process waited on

semaphores (suspended) for execution, then they would produce only

when the appropriate process signaled. For example, at startup the

third process would suspend itself on the array index semaphore until

the second process had stored the starting index and sent a signal mes-

sage to the semaphore. The third process would be scheduled to exe-

cute knowing that it has data to consume.

--. -. - --- - -- -- -- --

57

6. BEHAVIORAL ABERRATIONS

The primary design goal for MP A was to provide programmers

~.:
assistance to:

1) Pinpoint where bugs occur in a program.
2) Determine which process or processes are responsible.
3) Provide some indication of the nature of the problem for a partkular bug.

Of course, it should do all of the above graphically, so that the pro'gram-

mer can observe the bugs as they occur. This assumes that the pro-

grammer recognizes what is correct and incorrect for program behavior

during the execution of a program. This section presents some

!5Ilapshots of the MPA environment during execution of the Sieve pro-

gram. The code responsible for the bugs is also presented. The previ-

ous section presented what a correct execution of the program should

look like; this section presents an incorrect version that exhibits what I

call behavioral aberrations. The bugs discussed here are actual bugs
"
I"

that were present in an earlier version of the Sieve program. Unfor-

tunately, observations of an actual MP A animation cannot be ade-

quately presented by static snapshots. Infinite loops were a problem

that were handled by loop counters that terminated the loop when the

counter value was exceeded (this code is not shown).

t

~I
1
c.I

..

, ~
i-"
-~...;

it.
~io!
q!,

1:1-

.-. -.. - --.-

58

6.1. Failure to release a Semaphore

The first indication of a bug in the program was exhibited by PR3

in Figure 6.1. PR2 is the active process and is about to retrieve the

number 11 from Prime! (inserted by PRI). It has control of the sema-

phore PI that provides mutual exclusion .to the shared data. PR~ and

PR3 are waiting there turn to execute. However, PR3 still has control

'"
of the semaphore X2 that provides protected access to Index2 (the

starting array index for PR2). The algorithm calls for access and

release of the semaphores that provide mutual exclusion for the array

indices and prime number shared data.

".!a

- --- ----..---

The piece of code in PR3 that caused the problem was:

I
i forever <- true.

[forever]
whileTrue: [

" CRITICALSECTION"
Index2Semwait .

(Prime2 testFor: 0)
ifTrue: [MP AProcessor yield .]
ifFalse: [startx <- Index2 get .

Index2 set: 0 .
forever <- false.

]
"' f F ". 1 test or

Index2Sem signal .
" END CRITICAL SECTION"

]
" h' l f ". W 1 e orever

I

I
c

f
.
.

t
~

~

This code was intended to loop forever until the contents of Index2 was

non-zero. After issuing the wait message to Index2Sem, Prime2 is

tested for O. For the first few iterations of the loop it is 0 and executes

a yield (suspending itself), without releasing the semaphore. After col-

lecting the primes 5 and 7 from PRl, PR2 attempts to send the starting

array index (5) onto PR3 by issuing a wait message to the semaphore

that PR3 is holding. This causes PR2 to be suspended. Figure 6.2

shows the execution of PR2 after it has retrieved the prime number 11

i

~

I,
I
I

and has issued a wait message to the semaphore Xl. Since PR3 still

has the semaphore, PR2 is suspended until PR3 releases the semaphore

with a signal message. PRI has generated another possible prime and

L
inserted it into Prime I. All is not lost, since PR3, on its next executionf

I

l

I'

. . - . -._---.

60

after the yield issues a signal to Index2Sem. This signal message causes

scheduling of PR2. However, PR3 now executes a wait message at the

top of the loop and is itself suspended. When PR2 becomes the active

process it sets Index2 to 5 for PR3 and then issues a signal, which has

the effect of scheduling PR3. Sometimes a program makes progress, ill

spite of the programmer.

R',v~ (,.~ PR~ S\Js.ferJe~.. Prl~-e.$ -+e.r~~~+~ ~Ct\-('Y.

There is another problem with the program, as shown in Figure

6.2; the Primes process has already terminated. The algorithm calls for

"fi
. '';i!.

.

.
'

-J)~

~f; ~~ ~~3

t~1 s~p s

~e~\':(} .
p("I"'~

VI1\~~ ~ ~

.~2. 0"\1
~...J.s +lCo.

k""'b~ I f.

61

Primes to wakeup after PR3 has signaled and terminate the other

processes. The Primes process was missing the code that checked Done

for a non-zero value and terminates the other processes. This error was

caused by an omission--of code.

6.2. Redundant Prime Numbers

PR3 does release control of the semaphore and PR2 does send the

number 5 onto PR3 for its starting array index. The next bug that

becomes apparent in the observation of the program occurs when PR3

repeatedly stores tbe number 11 into the primes array. Figures 6.3 and

6.4 viewed together show the developing story; PRI stops sending new

prime numbers onto PR2 because PR2 no longer retrieves new primes

from Prime!. PR2 continually stores the prime number 11 into Prime2,

which PR3 dutifully retrieves and stores into the primes array.

5 o o oo o7 11 11 o o

--------.- -- ------.- ------.-..

62

,
u;

We appear to have a problem with generating new prime numbers.

PRI appears to be behaving, since it shouldn't store anotherprime

number into Prime! if PR2 hasn't retrieved it. PR3 appears ok,

since it is retrieving and storing prime numbers. PR2 seems to be

the immediate culprit; it isn't retrieving new prime numbers from

PRl. The code that was causing the problem in PR2 was as fol-
lows:

",-

",

-. -. - - '.'.-

64

loops depended on different objects (primelfull and prime2full).

6.3. Correct Mutual Exclusion, Wrong Shared Data

This is an example of a bug, that for this particular algorithm, did

not cause any problems. This is an example where slowing down the

animation is usefull, because the duration of the behavior is short. The

code that causes the problem was contained in PR2 and PR3 as follows:

Index!Sem wait.
(Prime! testFor: 0)

ifTrue: [MPAProcessor yield.]
ifFalse: [startx <- Index! get .

Index! set: 0 .
forever <- false.

]
".f F II

. 1 test or
Index!Sem signal .

The code is the same in PR3 except fof. names of the semaphore and

shared data. The problem is that the correct semaphore is referenced

for mutual exclusion, but the wrong shared data (Prime!) is tested

(without mutual exclusion). This does not cause an error during execu-

tion because the contents of Prime! is set after Index! is set. During

animation, the testFor: message causes the shared data view to display

black. The link is not displayed and the Datum icon is not animated.

This was a implementation decision that made it somewhat difficult to

observe this type of error and required slowing the animation down.

r
I

,
L

65

6.4. Sending The Wrong Message To Another Process

The last major problem that was observed for this version of the

program, was caused by PR3 setting the shared data Done to the wrong

value [Figure 6.5].

The error was one of sending Done the message set:O rather than set:l.

It didn't matter in this case, since Primes had already terminated.

66

However, if Primes was testing for a non-zero value as follows:

'WAIT FOR SIGNAL FROM PR3 THAT WE'RE DONE"
forever <- true .
[forever]

whileTrue: [
" CRITICAL SECTION"
DoneSem wait .

(Done testFor: 0)
ifTrue: [DoneSem signal .

MP AProcessor yield 0]
ifFalse: [Done set: 0 .

forever <- false 0
DoneSem signal 0

]
"0f F "

o 1 test or
" END CRITICAL SECTION"

]
" hO I ~ ". W 1 e forever

In this case Primes would not receive the correct message, and would

loop forever as would PRI and PR2 since Primes is responsible for their

termination.

6.5. Miscellaneous Behavioral Bugs

There are a variety of bugs possible in programs such as the Sieve

version presented here. Some of the other bugs that can be observed

easily within MPA are:

1) Initialization of shared data and semaphores. Shared data that
are not initialized display a ! symbol. Semaphores display as
white forms.

2) Creation of too few processes. A process that has not been created
displays the nil icon [Figure 4.1].

67

7. SUMMARY

Myers [Myers 86] states that program visualization systems have

the following problems:

1) It is difficult to find correct graphical representations for a
data structure.

2) It is hard to program the system to produce the graphics once a
representation has been chosen.

3) It is difficult to get large amounts of data on the screen.
4) There is a layout problem: deciding where to place all the

graphical representations that may have lines connecting them.
5) In animations, there is the problem of deciding when to update

a display. Timing is critical to produce useful animations.

~ A has attempted to deal with these critical problems by providing: a

basic animation toolkit, reusable graphical objects, programmer

directed layout, readily extensible Smalltalk-based system. There is no

easy solution for displaying large amounts of data on standard display

screens. This has been mitigated by larger 19 inch bit-mapped screens

used on some workstations.

Smalltalk provides for rapid prototyping for environments such as

~ A. Smalltalk supports multiple inheritance, data abstraction and

encapsulation. There are some problems with Smalltalk as a program-

ming environment. Performance problems related to memory and

length of the execution cycle do not support numerical applications

well. Smalltalk has not been extensively used commercially and has a .

steep learning curve. The Model-View-Controller paradigm has caused

_. -- ... ------

68

problems related to updating display information.

:MPA is a prototype, and has satisfied its design goals. However, it

has shortcomings that could be improved on:

1) It needs more experimentation to determine if the implementation
is appropriate for a wide variety of programs.

2) It does not provide run-time support for more than one
program application.

3) The graphical specification interface could be improved to
provide for easier specification of an animation and an editor
to allow change of an existing animation layout.

4) There is no automated layout support, all layout must be
specified by the programmer.

5) There are no run-time statistics provided to monitor performance.
6) There is no provision for recording a script of an execution that

could be rewound to various points and replayed.
7) The graphical toolkit for data structures only supports simple

variables and arrays.
8) The Smalltalk process scheduler does not provide for pre-emption

of processes, which would provide a more realistic simulation
for multiprocessing.

Aside from improvements to MPA itself there are other directions

for future research. Do simulations such as those described here

transfer directly to actual shared memory multiprocessor architectures?

In other words, would it be possible to provide a translator that con-

verted Smalltalk and :MPA methods of a multiprocessing program into

another language (such as Fortran or C) that would execute correctly

on some multiprocessing hardware? The simple examples that the

author has experimented with in MPA would map easily to a Cray or

Sequent architecture.

6Q

Hardware support

Most operating systems provide for some manner of debugging sup-
r.:'

port during program development. Most of these de buggers are tedious

to use and many programmers bypass these tools in favor of their own

methods. Programmers would be more inclined to use such tools, If

they supported visualization and animation of their programs.

- ~__ u_.. _.~.._ -.. - - - .--. - - - - -

70

8. REFERENCES

{Boeker, et.al. 86]

Boeker, H., Fischer, G., Nieper,H. The Enhancement of Under-
standing through Visual Representations. SIGCHI'86 Conference
Proceedings, ACM, pp44-50, 1986.

(Bokhari 86]

Bokhari, S. Multiprocessing the Sieve of Eratosthenes. IEEE Com-
puter 20(4) , April 1987.

{Brandis 86]

Brandis, C. IPPM:Interactive Parllel Program Monitor MS thesis,
Oregon Graduate Center, 1986.

[Brown and Sedgewiek 85]

Brown, M.H., and Sedgewick, R. Techniques for Algorithm Anima-
tion. In Proceedings of thl:! 18th Hawaii International Conference
on System Sciences, ppl04-113. 1985.

[Brown, et al. 85]

Brown, G., Carling R., Herot, C., Kramlich, D., Souza, P. Program
Visualization: Graphical Support for Software Development. IEEE
Computer 18(8):27-37, August 1985.

{Cox 86]

Cox, B. Object-Oriented Programming An Evolutionary Approach.
Addison-Wesley Publ., Reading, MA., 274pp, 1986.

J

I
{Duisberg 86]

Duisberg R. Constraint-Based Animation: the Implementation of
Temporal Constraints in the Animus System. PhD thesis, Univer-
sity of Washington, 1986.

J

i
J

J.

l
i
I

I
~
t

l

[Goldberg and Robson 83]

71

Goldberg, A. and Robson, D. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, Reading,Mass. 1983.

(Grafton and Ichikawa 85]
Grafton, R.B. and Ichikawa, T., editors. Visual programming. IEEE
Computer 18(8) , August 1985.

t
[London and Duisberg 85]

London,Ralph L., and Duisberg,Robert A. Animating Programs
Using Smalltalk. IEEE Computer 18(8):61-71, August 1985.

I ,

(Myers 86]

Myers, B. Visual Programming, Programming by Example, and
Program Visualization: A Taxonomy. In Computers and Human
Interaction: SIGCHI'86 Conference Proceedings. ACM, 1986.

[OGC 87]

Oregon Graduate Center, Software Engineering Lab: Parallel Pro-
cessing. Spring Quarter, 1986.

[Reiss 87]

Reiss, S. A Conceptual Programming Environment. Proc 9th Int'l
Conf. Software Engineering, 1987.

t
I

[Segall and Rudolph 85]

Segall, S., and Rudolph, R. PIE: A Programming and Instrumenta-
tion Environment for Parallel Processing. IEEE Software,
November, 1985. Proc 9th Int'l Conf. Software Engineering, 1987.

.. - - --. - ---.--

72

1. APPENDIX A

The following presents the code listing of the methods for the class
MPAUserPrimes as described in the text. In Smalltalk: comments are

enclosed by double quotation marks ("comment"); <- is the assignment
operator; and A causes return of a value from a method. References to
MPA methods are shown in boldface type.

MPA subclass: MPAUserPrimes
instance VariableNames: "
classVariableNames: 'Done DoneSem Indexl IndexlSem

Index2 Index2Sem Primel PrimelSem
Prime2 Prime2Sem PrimeArray ,

poolDictionaries: "
category: 'MPAnimator'

MPAUserPrimes class methodsFor: 'Primes'

PrimesStartUp

"adds startup Primes as a newproceSSj
Primes in turn creates other primesprocesses."

I
P rimes II I

"forkABlock will MPAnimator initLevel. as needed"
primes <- MPAProcessorlorkABlock: [MPAUserPrimes Primes]

newProcessLabel: 'Primes'.
MP AProcessor resume: primes.

F

73

I

I
,

Primes

"This is the main Primes process. It invokes other child processes."
I x y prl pr2 pr3 pr4 wans xans

yans zans pview numprimes test forever I

"init all shared data and messages & semaphores"
self initSharedData .
self initSemaphores .
FillInTheBlank request: 'How many Primes should first process create? '

displayAt: Sensor cursorPoint
centered: true

action: [:num I num <- Number readFrom: (ReadStream on: num).]
initialAnswer: '2' .

" b f ."
get num er rom strmg

numprimes <- num.
Debug transShow: 'Primes start seed ****, and: numprimes .
prl <- MP AProcessor !orkABlock: [selfprimesProcessl: numprimes]

new ProcessLabel: 'PRl'.
pr2 <- :MPAProcessor !orkABlock: [self primesProcess2]

new ProcessLabel: 'PR2'.

pr3 <. MP AProcessor !orkABlock: [self primesProcess3]
newProcessLabel: 'PR3'.

" resume: schedules the processes for exection on cpu "
MP AProcessor resume: prl
MP AProcessor resume: pr2 .
MP AProcessor resume: pr3 .
"Main yields to other PRI-PR3 processes

that are waiting for the processor"
MP AProcessor yield.

''WAIT FOR SIGNAL FROM PR3 THAT WE'RE DONE"
forever <- true .
[forever]

whileTrue: [
" CRITICAL SECTION"
DoneSem wait .

(Done testFor: 0)
ifTrue: [DoneSem signal .

MP AProcessor yield .]
ifFalse: [Done set: 0 .

forever <- false .
DoneSemsignal .

]
If.r F ". 1 test or

" END CRITICAL SECTION"

74

]
" hO I ~ "oWl e J.orever

"TERMINATE OTHER PROCESSES STll..L SCHEDULED OR WAITING"
MP AProcessorterminate: prl
MP AProcessorterminate: pr2
MP AProcessor terminate: pr3

..

t

I

75

primesProcessl: numPrimes

: startx endx possibleprime forever primefull"
kf P OI

wor or process 1
"set first few primes i,n classvar PrimeArray ; not semaphore restricted"
startx <- 1 0

numPrimes == 1

ifTrue: [PrimeArray at: 1 put: 2 0

endx <- 2 0)
ifFalse: [numPrimes == 2

ifTrue: [PrimeArray at: 1 put: 2 0

PrimeArray at: 2 put: 3 0

endx<- 3 0) .

ifFalse: [numPrimes >= 3
ifTrue: [self halt:

'More primes than I want to compute ?? ')0
)0

) 0

"FOUND MY PRIMES; SEND PRIMEARRAY ENDX ONTO PROCESS2'
IndexlSem wait 0 " CRITICALSECTION"

Indexl set: endx 0

IndexlSem signal 0 " END CRITICAL SECTION"
" LOOP & YIELD FOREVER; GENERATE POSSIBLE PRIMES"

forever <- true 0

primefull <- true.
possibleprime<- (PrimeArray at: endx - l) + 2 0

[forever)
whileTrue: [

(self isPrime: possibleprime from: startx to: endx)
ifTrue: [" SIEVE BY MY NUMPRIMES & IF PRIME SEND ONTO PRO

[primefull)
whileTrue: [

"CRITICAL SECTION"
PrimelSem wait 0

(Primel testFor: 0)
ifTrue: [Primel set: possibleprime 0

primefull <- false 0

Debug transShow:
, PRl Prime! = '
and:(possibleprime printString)
)

"of F ... 1 test or

PrimelSem signal.

76

" END CRITICAL SECTION"
MP AProcessor yield .

]. " while primefull"
]

". .". IS prIme

possibleprime<- possibleprime+ 2 . "generate next prime"
"reset for next loop and this new possibleprime"

primeCull <- true' .
]

"
h
.
l l" ". W 1 e lorever

- -- .- - . - - - - -- -- -- - - - - _.. - -- -. -.-

77

primesProcess2

: startx endx possibleprime forever
primelfull endprime thisprime prime2full I

"work for process PR2"
''LOOP & YIELD UNTll.. I GET PRIMEARRA Y STARTX FROM PROCE

forever <- true .
[forever]

while True: [
" CRITICAL SECTION"

Index!Sem wait.

(Index! testFor: 0)
ifTrue: [Index!Sem signal.

:MPAProcessor yield .]
ifFalse: [startx <- Index! get .

Index! set: 0 .
forever <- false .
Index!Sem signal .

]
"' r F " .. 1 test or

" END CRITICAL SECTION"

]
" h' l ~ ". W 1 e lorever

"COLLECT POSSIBLE PRIMES FROM PRI,
LOOP & YIELD UP TO PRI'S LAST PRIME SQUARED"

endx <- startx .
endprime <- (PrimeArray at: (startx-!)) squared .
forever <- true .
[forever]

whileTrue: [
"CRITICAL SECTION"

PrimeISem wait .
(Primel testFor: 0)

ifFalse: [thisprime <- Primel get .
(thisprime < endprime)
irTrue: [PrimeArray at: endx

put: thisprime .
Prime! set: 0 .
endx <- endx + ! .

]
ifFalse: [

" stop collecting primes; pass thisprime onto PR3 if isprime "
forever <- false .

Primel set: O.].

-- - - . - -. - ~ _. - - - - _. - - . ..

78

]
"of F "

o 1 test or
PrimelSem signal 0

"END CRITICAL SECTION"
MP AProcessoryield 0

]
" h O I l' "oWl e 10rever j

'TOUND MY PRIMES; SEND PRIMEARRA Y ENDX ONTO PROCESS3 '

" CRITICAL SECTION"
Index2Sem wait 0

Index2 set: endx 0

Index2Sem signal 0

"END CRITICAL SECTION"
"COLLECT POSSIBLE PRIMES;
SIEVE BY MY NUMPRIMES & IF PRIME SEND ONTO PROCESS3 "

forever <- true 0

primelfull <- false 0

[forever]
whileTrue: [

[primelfull] ~

"not executed first time through; test thisprime first"
whileTrue: [

"CRITICAL SECTION"
PrimelSem wait 0

(Primel testFor: 0)
ifFalse: [thisprime <- Primel get 0

Primel set: 0 0

primelfull <- false 0

PrimelSem signal 0

]
ifTrue: [PrimelSem signal 0

MP AProcessor yield 0

]
"of F "

o 1 test or

"END CRITICAL SECTION"

]0 "while primelfull"
(self isPrime: thisprime from: startx to: endx)

ifTrue: [prime2full <- true .
[prime2full]

while True: [
"CRITICAL SECTION"

Prime2Sem wait .
(Prime2 testFor: 0)
ifTrue: ["empty put in next prime, exit loop"

Prime2 set: thisprime 0

..- -...... .-. - -. -

7Q

"now set to get next primel from PRI"
primelfull <- true 0

prime2full <- false 0

]
"o f F "

o 1 test or
Prime2Sem signal °

" END CRITICAL SECTION"
:MPAProcessor yield °

]0 " while prime2fuII"
]

ifFalse: [primelfull<- true] 0

]
" hO I f "

oWl e orever

It- _ "
IS prIme

80

primesProcess3
I startx endx forever endprime thisprime test I

"WORK FOR PR3; COLLECTS PRll\1ES & NOTIFIES MAIN THAT WE'RE:
''Loop & YIELD UNTIL I GET PRIMEARRAY STARTX FROM PROCESS2
forever <- true 0

[forever]
whileTrue: [

" CRITICAL SECTION"
Index2Sem wait 0 .

(Index2 testFor: 0)
ifTrue: [Index2Semsignal 0

MP AProcessor yield 0]
ifFalse: [startx <- Index2 get o.

Index2 set: 0 0

forever <- false 0

Index2Sem signal 0

]
"of F "

o 1 test or

"END CRITICAL SECTION"

]
.. hO I l' ". W 1 e lorever

" COLLECT POSSIBLE PRll\1ES FROM PR2,
LOOP & YIELD UP TO PR2'S LAST PRIME SQUARED"

endx <- startx .
endprime <- (PrimeArray at: (startx-l)) squared.

forever <- true.
[forever]

whileTrue: [
"CRITICAL SECTION"

Prime2Sem wait .
(Prime2 testFor: 0)

ifFalse: [thisprime <- Prime2 get .
(thisprime < endprime)

ifTrue: [PrimeArray at: endx
put: thisprime .

Prime2 set: 0 .
endx <- endx+ 1 0

]
ifFalse: [

"stop collecting primes; Notify Main we're done"
forever <- false .
Prime2 set: 0 0].

]
"'f F "

o 1 test or

Prime2Sem signal .

,
I

81

" END CRITICAL SECTION"
MPAProcessor yield "

]
"

h
"l l' "" W 1 e J.orever

"NOTIFY MAIN THAT WE'RE DONE COMPUTING PRllvlES"
"CRITICAL SECTION BUT I SHOULDN'T HAVE TO WAIT, JUST SICt
(Done testFor: 0) .

ifTrue: [forever <- false"
Done set: 1 "

]
"" f F "

"1 test or

DoneSem signal" II END CRITICALSECTION"

82

initSemaphores

"Initializes all classvar semaphores used"
''DoneSem does not get an initial signal ."
"label sem & signals set to 0"
Done~em <- MP ASemaphore new Semaphore: 'DI'.

"label sem & signals set to 0" .

IndexlSem <- MP ASemaphore newSemaphore: 'Xl'.
Index1Sem signal. "set initial signal for other processes"

"la bel sem & signals set to 0"
Index2Sem <- MP ASemaphore newSemaphore: 'X2'.
Index2Sem signal. "set initial signal for other processes"

"label sem & signals set to 0"
PrimelSem <- MP ASemaphore newSemaphore: 'PI'.
PrimelSem signal. "set initial signal for other processes"

"label sem & signals set to 0"
Prime2Sem <- MP ASemaphore newSemaphore: 'P2'.
Prime2Sem signal. "set initial signal for other processes"

initSharedData

''performs shared data initialization of classvars."
PrimeArray <-SharedArraynewArray: 'primes'

size: 100 value: o.
Index1 <- SharedData newNumber: 'Indexl' value: o.
Index2 <- SharedData newNumber: 'Index2' value: o.
Primel <- SharedData newNumber: 'Prime1' value: o.
Prime2 <- SharedData newNumber: 'Prime2' value: o.
Done <- SharedData newNumber: 'Done' value: o.

83

isPrime: aNum from: startx to: endx

"checks for prime by dividing by primes
less than the square root of aNum + 1"

"for primes already stored in classvar
PrimeArray from startx to from endx"

: sqroot 1 i ok curnurn :

sqrootl <- (aNum sqrt) + 1 .
i <- startx .
ok <-true .
[(i < endx) & ok]

whileTrue: [" d I . t .. "
rea on y, amma Ion In reverse

curnum <- PrimeArray at: i .
curnurn > sqroot 1

ifTrue: [ok <- false.]
ifFalse: [(aNum rem: curnum) == 0

ifTrue: [A false].].
i <- i + 1 .

~,

].
" if arrived here then it's prime"

A true

