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ABSTRACT

Automatic Generation of Interfaces using Constraints

Raimund Karl-Heinz Ege, Ph.D.
Oregon Graduate Center, 1987

Supervising Professor: David Maier

Interfaces playa crucial role in today's computer technology and much effort is

spent to design and program user interfaces. This dissertation reports a new

approach to this area of research that is based on the concept of separating the

presentation from the data, and describing their relationship declaratively via

filters. A filter is a package of constraiuts and associated typed objects that

expresses that relationship of data and representation objects.

This dissertation introduces the basic concepts of object, constraint and filter,

and shows how they can be used to describe an interface. The syntax and semantics

of the object and filter type definition is given and related to the theory. Object

and filter types are implemented in an object-oriented language with the aid of a

constraint-satisfaction system. A graphical tool for constructing filters is provided

to build and test interfaces interacti,'cly.



Prologue

1.1. Introduction

Interfaces are a crucial part of any computer system, not only between users

and the computer, but also between programs. The quality of an application is

partly judged by the quality of its user interface. Significant effort is spent on

designing and programming the interface part of any application. This research is

aimed at reducing this effort. One goal is to provide the designer with a method or

model to produce interfaces that are acceptable to the user with respect to style,

usability and efficiency. Another goal is to reduce programming by automatically

generating interfaces and re-using parts of existing interfaces. We are not proposing

a particular style of interface, but a new architecture for building interfaces.

1.1.1. Object-Oriented Systems

The term "object-oriented" is used to denote a new direction in programming

languages. This direction is based on the realization that people work with

problem-domain concepts when they try to solve problems, while the computer

works with concepts such as bits and operations [Cox 861. Object-oriented systems

try to model the concepts in the world that are germane to a problem so that
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people have an easier transition from their concepts to the concepts that the com-

puter understands. In object-oriented programming languages, the computer under-

stands concepts that are called "objects." An object models a concept that has a

crisply defined boundary and encapsulates concept-specific properties and behavior.

Objects are grouped into classes. A class describes what properties and behaviors

its member objects share. Classes can be related: they can specialize or generalize

other classes. Related classes create hierarchies where objects of one class inherit

properties and behavior from more general classes.

An object in an object-oriented system is an entity that represents its proper-

ties as an aggregation of fields that form a local state, and its behavior as pro-

cedures that can affect the local state. The interaction between objects can be

viewed as the sending of messages that result in execution of local procedures, or as

remote procedure calls that invoke the local procedures remotely.

1.1.2. Interfaces For Object-Oriented Systems

In an object-oriented environment, objects that belong to an application and

objects that belong to the user interface can be separated. These objects communi-

cate with each other and with the user of the application. The user perceives these

objects presented to him on the screen and interacts with them by using the input

devices of a modern workstation. For example, the user of the interface sees a

graphical representation of a tree; however the application knows of the tree as a

data structure. Conceptually, the tree exists only once, but it may have aspects

that are only relevant to the application or relevant to the interface. The applica-

tion and the interface look at this tree object in the universe and model it in their
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Viewing

Figure 1.1: The Conceptual Model.

own world. The interface views the tree as a graphical image consisting of points

and lines within a bitmap, while the application views the tree in terms of a nested

collection of records. We can picture this abstraction as looking at an object in the

universe through telescopes using different filters. Figure 1.1 illustrates this concep-

tual model. Interface and application each have their own view of the object in the

uDlverse.

1.1.3. Declarative Specification of Interfaces

In order to declartively specify interface we first define the two objects that

result from the filtering. Then the object in the universe disappears and the two

filtering mechanisms are combined into one tw~way filter. Instead of having the

interface and the application look at the same object using a filtering technique

(Figure 1.1), we define two separate objects, one in the interface's reality and one in

the application's reality, which are connected via a control mechanism (Figure 1.2).
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source vIew

Figure 1.2: The Filter Paradigm.

We could call the control mechanism a "channel" [Kay 83] or a "mediator" [Gold-

berg 85], but because we want to reflect the original idea of filtering aspects of an

object in the universe into the reality of the interface, we name it "filter" 1.

Our notion of an interface has three parts, as illustrated in Figure 1.2. Two

objects, source and view, are connected by a filter. The source and view are objects

that can be part of the application or the interface. The filter constrains the source

and view objects to be representations of the same conceptual object. Both objects

belong to their respective environments, which could be the memory of a program in

an application or the user's display screen in the interface. In general, a filter can

connect any two objects. Bigger filters can be constructed from smaller filters using

intermediate objects or by sharing subparts of larger objects. Thus we can build

filters from subfilters, but the result is still a filter connecting a source and view

object. If either object is changed, then the filter has to enforce the conceptual

equality. If the application changes the data in the memory of the program, this

change has to be reflected on the screen. If the user expresses a change to the

lOur notion of "filter" should not be confused with filters in operating systems that are connect-
ed via pipes. Our filters could be viewed as "operating system" filters that work both directions.
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representation on the screen, the memory of the program has to be updated.

In contrast, consider a screen editor. The data on the screen (view) reflects the

contents of a file stored somewhere on a disk (source). The communication protocol

between the two objects, screen view and disk file, is well defined. The disk file is

displayed initially, the user updates his screen view and finally the new version is

saved back to the disk file. Here the equality of the two objects is not maintained

at all times. The constraint enforcement is separated into two phases, one at the

beginning of the editing session and one at the end. Another example is a

spreadsheet program where relations between objects (numeric values) can be

expressed by equations. Subsequent values can be defined in terms of previously

defined values. In common spreadsheet programs, changes are only forwarded in

one direction through the equations. In our notion, a change on either side of the

equation is reflected on the other side.

Interfaces built according to the filter paradigm are constructed in a bottom-

up fashion. They are assembled from atomic components that are constraints

defined for two objects of specific types. The filters built from these atomic com-

ponents also represent constraints. Since the atomic components are typed and the

construction is done in a structured way, the resulting filter has a well-defined type

for the source and view object. It can therefore be checked whether a filter is suit-

able for specific source and view objects.

Each constructed filter is available for use in other filter compositions. This

availability encourages the reuse of previously defined components in the definition

of new interfaces, making it easier to ensure that various interfaces in a system
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present a uniform appearance to the user.

1.2. Thesis Statement

This thesis explores a new approach to constructing interfaces. Interfaces in

an object-oriented environment relate application objects and presentation objects.

The goal of this work is to model this relationship in terms of constraints (filters)

and to provide a tool to generate interfaces from them. This dissertation represents

the first step towards the goal of automatic generation of interactive displays using

the filter paradigm. The scope of the research that is reported in this dissertation is

to provide

a specification language for objects and filters,

an implementation of filters,

an interface for constructing filters.

The interface, the Filter Browser, allows a designer to manipulate filter objects

graphically. The main implementation of the filter browser is done in Small talk

[Goldberg and Robson 83] using ThingLab [Borning 79] to perform the constraint-

satisfaction. Sample interfaces have been constructed with it. The description of

the Filter Browser in terms of filters will serve as demonstration of the feasibility of

this new approach to building interfaces.

Chapter 2 of this dissertation introduces the basic concepts, which are objects,

constraints and filters. Chapter 3 gives syntax and semantics for the object and

filter specification language. Chapter 4 introduces the Filter Browser, a graphical

tool to define and manipulate filters. Chapter 5 describes the implementation of the
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object type system and how filter types are modelled in this object type system. We

conclude this dissertation with a summary of the work that has been completed and

provide some ideas on future work on this topic. In the appendix we list the source

code for the examples that are used throughout the dissertation.

1.3. Related Work

The goal of this research is to provide a high-level specification of interfaces

and a good model for modular construction of displays that will allow automatic

generation of interactive displays and reuse of display code. This area of research

has drawn much attention and many results have been reported. The following sec-

tions will cover the four major issues that are involved: (1) abstractions or models

that are being developed to describe interfaces, (2) methods and tools to specify

interfaces and to generate them automatically, (3) constraints as a way to hide pro-

cedurality, (4) graphical specification of programs, as in visual programming.

1.3.1. Abstractions for Interfaces

Many abstractions or models have been proposed in order to grasp the com-

plexity of a user interface. These models are usually called user interface manage-

ment systems (UIMS). Figure 1.3 shows a logical model of a UIMS [Green 85]. It

shows the presentation, dialog-control and application interface model. The presen-

tation component is responsible for the external representation of the user interface.

This component generates the images that are perceived by the user. The dialog

control component defines the structure of the dialog between the user and the
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USER Presentation Dialog Control
Application
Interface
Model

Figure 1.3: Logical Model of a UIMS.

application program. The dialog component can be viewed as mediator between the

presentation and the application component. It interprets events in the presenta-

tion component and translates them into events for the application component and

VIce versa. The application-interface-model component defines the portion of the

application domain that is visible to the user. The dialog-control component con-

trois all communication between the presentation and the application component.

It can set up a direct connection between them, as is shown by the lower links and

the circle in Figure 1.3, to handle direct internal-external mappings.

This model is very general and has been accepted in the research community.

The filter paradigm fits this classification since the source-filter-view triple can be

mapped directly onto this logical model. View objects in the filter paradigm

represent the presentation component, source objects the application-interface-

model component. Filters represent constraints that control all communication
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between the source and view objects. Other approaches use similar ideas for

abstracting the user interface [Coutaz 85, Takala 85]. Others have implemented

user interface systems following their own abstractions [Buxton et al. 83, Shaw et

al. 83, Shaw 86].

Our approach was guided by experience with the Small talk model-view-

controller (MVC) paradigm [Goldberg and Robson 83]. This paradigm employs the

idea that all data of an application are kept by a model. The presentation is kept

in a view and a controller handles the interaction. This arrangement makes it

necessary that the model knows about any aspect from which it can be observed.

Programming experience has shown that this paradigm is hard to follow. The

Small talk Interaction Generator (SIG) tried to add a declarative interface on top of

the MVC mechanism [Maier, Nordquist and Grossman 86, Nordquist 85]. One con-

elusion of SIG is that display procedures need type information about the objects

they display and that Smalltalk does not provide this kind of typing.

The Incense system [Myers 83] uses type information supplied by a compiler to

display objects. The user can influence the display format, but cannot update

through this system. The display function in Allegro [Ege 84] also deals with view-

ing database information using the scheme of a network database system. The

IMPULSE system [Schoenand Smith 83,Smith et al. 84,Smith, Dinitz and Bart 86]

provides abstractions for objects as well as for interactions. Their main goal is to

ensure consistency throughout the interface and application description, but they do

not provide a declarative specification of the interface as we do for the filter para-

digm.
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A UIMS that uses the object-oriented programming paradigm is GWUIMS

(George Washington User Interface Management System) [Sibert, Hurley and

Bleser 861. It consists of a variety of object classes representing different levels of

abstractions. Representation objects (R_objects), interaction objects (Lobjects) and

application objects (A-objects) maintain a strict separation between the

lexical/syntactic domain in the UIMS and the semantic domain of the application.

The interface is then represented by a knowledge base. Our implementation of the

filter paradigm as constrained objects also represents a knowledge base, but we also

provide a tool, the Filter Browser, to maintain and manipulate the knowledge base.

Other systems [Broverman and Croft 85, Hirsch et al. 86] also use knowledge-based

approaches to building interfaces; others use graphical specifications of procedural

knowledge for expert systems [Musen, Fagan and Shortliffe 86]. Yet another area of

research uses windows as the main feature of its systems [Beach 84, Greenberg,

Peterson and Witten 86, Myers 84, Sweetman 85, Williams 85] and places the window

package at the center of the UIMS, thus ensuring uniformity of appearance to the

user across all interfaces.

1.3.2. Specification and Generation of Interfaces

Wasserman [Wasserman 85] states some requirements for specifications of

interfaces for interactive systems: The specification has to provide a formalism that

is complete and comprehensible to both the system designer and the user. The for-

malism has to allow flexibility in order to accommodate a broad variety of styles

and the formalism should be executable. Wasserman uses a state transition

diagram approach to describe user interfaces. The diagrams are executable, so that
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the specified interface can be evaluated during the design phase.

Using the Vienna Development Method, a group at University of Stuttgart

[Studer 84] defined dialog concepts not only in terms of windows, menus, etc., but

also for interaction such as user input, error handling and undo operations. Several

other theoretical approaches use algebraic techniques to specify user interfaces and

interaction axiomatically [Chi 85]. These approaches seem to work well only for

small example systems.

SYNGRAPH [Olsen and Dempsey 83] is a tool to generate graphical interfaces.

It uses a grammar specification to drive the generation of interactive Pascal pro-

grams. From the grammar it deduces information about how to manage devices

and detect and handle input errors. The authors conclude that after experience

with developing such systems, they feel that more emphasis should be put on the

display update problem [Olsen 83, Olsen 86], Le., how to produce the code to update

the display after each modification to the application data structure. Another for-

mal specification of user interfaces [Bournique and Treu 85] uses a BNF-like syntax

to generate personalized interfaces. The authors distinguish "action language

agents" in their language that address communicability, which is how the user can

express his wishes, and "display language agents" that address perceptibility, which

is how the user perceives data presented to him. Common to the two approaches is

that they automatically generate interfaces from a specification, although they are

using different abstractions. The filter paradigm also provides the generation of

interfaces from a specification, but we provide a tool, the filter browser, that lets a

designer develop the specification of an interface interactively.
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GUIDE is an interface development environment [Granor and

Badler 85, Granor 86]. It is an interactive graphical system for designing and gen-

erating graphical user interfaces. The concepts it uses are "tool," "task" and "con-

text." Tools are the techniques for graphical interaction; tasks are a set of tools;

contexts describe the state of the system. The designer does not have to write

interface code, instead he edits a user interface specification that consists of the

above concepts. Procedurality is achieved by providing "action routines" that are

invoked (parameterized) by the GUIDE-generated interface. The GUIDE system

itself is an example of a graphical system generated with GUIDE.

The GUIDE system uses explicit procedurality, while the filter paradigm hides

the procedurality in constraints. Various other approaches use forms [Bass 851,

input-output tools [van den Bos, Plasmeijer and Hartel 831, menus [Rubin and

Pato 84], and demonstration [Myers and Buxton 86] as their abstractions to

describe, specify and generate user interfaces.

1.3.3. Constraints

Constraints are used in our system to express conceptual relationships. These

relationships are declared and maintained by a constraint-satisfaction system. An

early system that employed constraints to express graphical relationships was

Sketchpad [Sutherland 63]. Graphical objects could be constructed by constraining

other objects to form the new object. For example, a triangle is constructed from

three lines by constraining their respective head and tail points to join. Other sys-

terns use constraints as their major construct, such as ThingLab

[Borning 79, Borning 81], which is an extension to Small talk where constraints can
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be associated with classes. Constraints can be used as a basis for programming

languages [Steele and Sussman 80]. The language Ideal, used in typesetting graphi-

cal pictures, is based on constraints and demonstrates their power and usefulness to

define graphical pictures2 [Van Wyk 80, Van Wyk 81, Van Wyk 82]. Bertrand

[LeIer 86] is a language that can specify and generate constraint satisfaction sys-

terns. It has been used to build graphics constraint languages.

An approach that is very similar to our filter description language is the

VIVID language [Maleki 871. VIVID is an object-oriented, interactive and declara-

tive language for developing knowledge representation environments. It distin-

guishes constraints and constraint types. The constraint types are generic patterns

defining the structure and behavior of a class of constraints. Constraints can be

clustered where common variables are connected by equality relationships. VIVID's

constraints and constraint types are very similar to filters and filter types in our

filter paradigm.

Constraints and logic programming can be combined. The CLP framework

[Jaffar and Lassez 87] of languages uses constraints to describe the basic com-

ponents of a problem, while the problem itself is constructed in logic using the com-

ponents. A similar idea is used to extend our filter paradigm to a user interface

management system where the components of the system are described as filters

that are combined using a distributed logic scheme [Grossman and Ege 87].

Our current implementation of the filter browser is based on ThingLab. Other

extensions to ThingLab that define constraints involving time were proposed and

2 Figure 1.1 of this chapter was produced using Ideal.
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implemented [Borning and Duisberg 86, Borning 86, Duisberg 86]. The "Human

Interface Graphical Generation System (HIGGENS)" [Hudson and King 86] can gen-

erate user interfaces to an office information system. It can express constraints

that are associated with conceptual data. It is notable that this system's con-

straints are satisfied using a data-flow computation and a demand-driven evaluation

strategy. Constraints are used to specify relations and dependencies in a so-called

active database interface system [Morgenstern 83]. In the context of a window

management system [Cohen, Smith and Iverson 86] constraints can help reducing

the complexity of controlling the layout and structure within the tiling process. An

editor based on constraints [Carter and LaLonde 84] uses Steele's constraint system

coupled with a syntax tree as the underlying mechanism for editing.

1.3.4. Graphical Programming

Graphical programming has gained momentum in recent years because the fal-

ling prices for graphical workstations have made it feasible to use pictures as means

of communication between the user and a computer system. Shu [Shu 85] distin-

guishes four categories of languages with respect to graphical programming: (1)

"visual programming languages" that allow users to actually program in a graphical

environment; (2) "languages supporting visual interaction" that help to program a

visual environment; (3) "visual aid languages" that deal with the graphical support

in the run-time environment; (4) "languages for processing visual information" that

deal with graphical information in the problem domain.

Our system, the Filter Browser, falls into category (1) in that it allows the user

to design an interface by assembling units graphically. The Animus system
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[Duisberg 86, London and Duisberg 85] falls into category (3) in that it displays

underlying data structures while a program is running. The program itself is writ-

ten in Smalltalk. The Alternate Reality Kit [Smith 86] is also based on Smalltalk

and provides an animated environment for interactive simulations. The PECAN

system [Reiss 85] also visualizes a program's progress at runtime. Based on experi-

ence with the PECAN system, the successor, the GARDEN programming environ-

ment [Reiss 86, Reiss, Golin and Rubin 86, Reiss and Pato 87, Reiss 87], is based on

object-oriented programming and provides a framework to support a wide range of

languages and graphics to support languages based on pictures. It also falls into

category (1). Other systems [Jacob 85, Moriconi and Hare 85] are emerging that

provide programming graphically. A survey of more graphical programmmg

languages and techniques was done by Georg Raeder [Raeder 85].

1.4. Terminology

This section introduces the terms object, constraint, object type, constraint-

satisfaction, filter, and filter type. We give a brief description for each term and its

use in the filter paradigm. Chapter 3 will define these terms in detail.

Objects are identifiable units in an object-oriented system. Objects are either

atomic, i.e., they have a value, or are structured, i.e., they have fields that reference

other objects. Objects are the primitive elements of object-oriented programming

and model all entities of concern. In the filter paradigm, objects model the source

and view of filters.
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A constraint is a Boolean predicate on the state of an object. The Boolean predi-

cate is true if the object obeys the constraint. Constraints can be imposed on

objects. In the filter paradigm, constraints are used to relate source and view

objects in a filter.

An object type is a description of a set of objects that have similar structure and

obey the same constraints. An object is an instance of a type if it conforms to the

description of the structure and obeys the constraints. In the filter paradigm,

object types are used to describe the objects that can be part of an interface.

Constraint-satisfaction is a mechanism to enforce constraints. A constraint IS

enforced by changing the state of the objects that have to obey the constraint. In

the filter paradigm, constraint-satisfaction is used to provide the procedurality of an

interface.

A filter is an object that represents constraints defined between two objects of

specific types that are enforced by constraint-satisfaction. The two objects are the

source and view of the filter. Filters can be atomic, Le., they have no substructure,

or they can be constructed from subfilters. In the filter paradigm, filters are used to

relate objects to form an interface.

A filter type is a description of a set of filters. The description specifies the types for

source and view object of the filters, the types of the subfilters and how the

subfilters, if any, are connected to the source and view objects. In the filter para-

digm, filter types are used to describe interfaces.



Chapter 2

Interfaces From Filters

The filter paradigm uses objects, constraints and filters to describe interfaces.

This chapter will introduce these three concepts. An extended example will serve as

an introduction and illustration of how we can use constraints to specify interfaces

declaratively.

2.1. Example: Factory Simulation

Many modern object-oriented languages derive their features from the pro-

gramming language Simula [Dahl and Nygaard 661. Simula is a ALGOL-like

language that was intended to support simulation systems. Smalltalk-80 [Goldberg

and Robson 831 can also be used in simulating systems. We chose an event-driven

simulation as an introductory example for how to build interfaces according to the

filter paradigm. We want to simulate a situation of a factory, where unfinished pro-

ducts enter the system at the "producer," pass through two "stations," where they

are refined and finished, and leave the system at the "consumer." Figure 2.1 shows

the general flow of products. The producer produces goods at a constant rate,

which can be varied. The stations can be manned with at most two workers. There
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Station One

Station Two

Figure 2.1: Flow Chart for Factory Simulation.

is one input queue for each station. The input queue of station one is filled by the

producer; the input queue of station two is filled by station one. The finished prcr

ducts of station one are consumed by the consumer without being queued. This

simulation has two variables: (1) the rate at which products are produced at the

producer, and (2) the number of workers that work at each of the stations.

2.1.1. Constraints for Interfaces

We assume that this simulation exists in an object-oriented system. Our goal

is to provide a user interface for it. The user interface has to portray the actions

that are happening within the simulation and provide some means to manipulate it.

Figure 2.2 shows a possible screen layout for the user interface. To the left is the
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producer; connected to it are the two stations with their respective input queues; to

the right is the consumer. The simulation can be manipulated as it runs by adjust-

ing the rate of products that are introduced into the system and by adding or

removing workers from their stations.

2.1.2. Application Interface Model

According to the "Logical Model of a UIMS" [Green 85] an interface can be

viewed as consisting of three components (see Figure 1.3): (1) the presentation com-

ponent, (2) the dialog-control component, and (3) the application-interface-model

component. The application interface model for our factory simulation contains all

those objects that are used in the interface to the simulation. The model will

include the following application objects: the producer, with its number of produced

elements and the production rate; the two stations with their input queues and

workers; and the consumer, with its amount of consumed elements. The simulation

will modify the objects within the model as it progresses. Other information, like

8
8

8

Figure 2.2: Screen Layout for Simulation Example.



20

the connection between the four elements in our simulation or details about event

generation and timing, is not important to the interface and is local to the simula-

tion application.

2.1.3. Display

The data structures for the objects in the application model will be mapped

into the screen representations as shown in Figure 2.2. We can express these map-

pings with constraints. The screen bitmap is divided into four subparts by con-

straints to contain the presentations of the objects. We can view this constraint as

a filter from the screen bitmap, the source, to a list of four smaller bitmaps, the

view. The constraint specifies how the screen bitmap is divided up. The subparts

are for: the producer, station one, station two, and the consumer. Each of the four

subparts is then constrained to contain the display of its corresponding application

part. The presentations of stations are further constrained to display the length of

the input queues and icons for each worker. We use constraints instead of display

functions to ensure that changes to the application data are reflected on the screen

automatically, e.g., if the input queue shrinks or grows, or workers are added or

removed from the stations, the display is updated immediately.

2.1.4. User input

This user interface can influence the simulation in two ways:

(1) The production rate of the source can be adjusted by pointing with the mouse at

the gauge above the producer and pulling its needle within the markers. The pro-

ductivity rate in the application interface model for the producer is constrained to
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reflect the position of the needle within the gauge.

(2) Workers can be added or removed from the stations. This is done by moving the

mouse cursor into the presentation area of one of either stations. If the mouse cur-

sor points to an icon of a worker directly, then this worker can be removed by press-

ing the mouse button. Two types of workers are available to be added to a station:

experts and apprentices. A menu is available for the mouse button to select what

type of worker has to be added to the station.

The input actions affect the objects in the application model, which are con-

strained to be presented on the screen. After the application model has been

station 1

device

producer

station 2

consumer

Figure 2.3: Filter Diagram for Factory Simulation Interface.
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changed according to an input or the ongoing simulation, these changes are immedi-

ately visible on the screen. This example interface can be completely defined with

constraints. The relations between model, representation and input media are

declared. The procedurality of the interface is derived from the fact that the con-

straints are maintained by a constraint-satisfaction system.

Figure 2.3 shows the top level objects and constraints that are part of our

simulation interface example. Filters represent the constraints that are defined for

source and view objects. On its left side, the figure shows the four source objects

from the application: producer, station 1, station 2, and consumer. On the right

side it shows the view object that is the device used for this interface. For each of

the source objects there is a filter that constrains it to be represented on a part of

the view device. The "ProducerFilter" filter relates its source object, "producer," to

the first part, "part 1," that is the extracted as the left-most part from the view

"device." It displays the producer on the subpart of the screen and accepts input

from the user to change the producer's productivity. Two "StationFilter" filters

relate their source objects, "station 1" and "station 2," to the second and third part

that are extracted as the middle parts from the view "device." They display the

stations on the subpart of the screen and accept input from the user to add or

remove workers. The "Consumer Filter" filter relates its source object, "consumer,"

to the fourth part that is extracted as the right most part form the view "device."

It displays the consumer on the subpart of the screen and does not accept user

input. The "device" is the view object in four "Extract" filters that divide it into

four source parts. An "Extract" filter constrains its source object to be mapped
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into a subpart of its view object.

2.2. Basic Concepts

The introductory example shows how the filter paradigm employs objects, con-

straints and filters. Objects have structure that is defined by their types. Con-

straints can be defined for an object and between objects. A filter is an object that

represents a constraint that is defined between two objects of specific types. The

following three sections will define these concepts informally.

2.2.1. Objects

Objects are present at both sides of a filter. In order to define constraints on

them we need information about their structure. We define an object to be an

atomic value or a structured collection of fields. Fields consist of a name, called

address, and a slot. The address is used to identify what fields are subject to con-

straints; the slot contains a reference to another object. Structured objects are

Object Type Station
numberOfWorkers -+ Integer
workers [numberOfWorkers] -+ Worker
inNumber -+ Integer
inQueue [inNumber] -+ Queue
constraint LessThan (numberOfWorkers, 3)

end

Figure 2.4: Object Type for Station.
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formed from fields, which can be iterated or conditional. Objects can be accessed

by naming the address of a field. Subfields of fields can be accessed by concatenat-

ing addresses. A list of addresses, separated by a dot, is called an access path to an

object.

An object type describes a set of objects that have similar structure. Objects

have similar structure if their fields have the same addresses and reference objects

of the same type. An object type is a subtype of another type if its elements are

more specific, i.e., they have the same and more fields, than the elements of the

other type. An object type is a supertype of another type if its elements have fewer

fields than the elements of the other type. Constraints can be defined on fields to

express restrictions on objects in an object type.

An example object type is Station (Figure 2.4). It contains four addresses:

numberOfWorkers, workers, inNumber and inQueue. They name the four

fields of type Integer, array of Worker, Integer, and Queue, respectively.

The type Integer is atomic and we assume that the types Worker and Queue

are already defined. The iteration in the worker address uses the address num-

berOfWorkers to express how many workers fields are defined for this type.

The numberOfWorkers address is also used in the constraint statement,

which constrains the worker field to hold at most two workers.

Subtyping is an important notion. An object type can be defined to be a sub-

type of another type. The fields of the supertype are then inherited by all elements

of the subtype. Supertype and subtypes form a type hierarchy. A filter that is

defined to accept objects of a specific type also accepts objects of their subtypes.
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Object Type Worker
inherit from Person

salary -+ Integer
throughput -+ Integer

end

Object Type Apprentice
inherit from Worker

level -+ Integer

Object Type Expert
inherit from Worker

years -+ Integer
end end

Figure 2.5: Subtypes of Worker.

The constraints in a filter are expressed with access paths that name addresses of

fields. A subtype has at least all fields of its supertype, therefore the addresses in

the access paths will exist.

Figure 2.5 shows the three object types Worker, Apprentice and Expert.

Object type Worker is a supertype of Apprentice and Expert. Object type

Apprentice specifies in the inherit from statement that it will inherit all

fields from object type Worker, and it adds one more field, level, of type integer.

Object type Expert also inherits all fields from Worker and adds a years field.

Whenever an object of type Worker is required we can now use objects of type

Apprentice or Expert.

We chose this object-type model because it lets us describe the structure of

objects that are accepted for filters; it provides addresses, i.e., symbolic references

to parts of the objects, to express constraints; it provides dynamic fields to describe

objects of different structure with the type; and it distinguishes sub- and supertypes.
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Our object types are sufficient to characterize the objects that occur in our filter

paradigm.

2.2.2. Constraints

Constraints are the backbone and the basic building tool in our filter para-

digm: filters represent constraints and are used to express interfaces; constraints are

used to place conditions on objects as part of the object type definition. A con-

straint is a condition that is expressed with access paths. The condition must be

kept true upon updates to objects. The mechanism to maintain constraints is called

a constraint-satisfaction system.

2.2.3. Filters

A filter represents a package of constraints that have to be maintained

between two objects. A filter is defined for specific types of objects. We have to

distinguish atomic filters (filter atoms), which have to be provided by an implemen-

tation, and higher-level filters, which are constructed from atomic filters or other

constructed filters.

Like an object type, a filter type describes a set of filters that have similar

structure. The filter type defines the subfilter of a filter. Our filter specification

language provides constructors to define filter types. The basic constructor declares

an arbitrary collection of subfilters. The iteration constructor declares a variable

number of identical subfilters. The condition constructor declares a conditional

subfilter, i.e., the subfilter exists only if an expression is true. A subfilter is declared

by naming its type and its associations to the source and view objects within the
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containing filter type. The set of subfilters of an instance of a filter type is called a

configuration. The configuration can change with time since the iteration and con-

dition constructors depend on other objects.

In general, we can distinguish end-to-end and side-by-side subfilter combina-

tion. In end-to-end combination, a filter is constructed using a chain of subfilters.

The source object of the first subfilter is the source object of the constructed filter.

The view object of the first subfilter is also the source object of the next subfilter.

The view object of the last sub filter is the view object of the constructed filter. Two

adjacent subfilters in the chain agree on a common intermediate object. Figure 2.6

shows how a filter is constructed from two subfilters. The source of the left subfilter

is the source of the constructed filter. The view of the first subfilter is the source of

the second subfilter. The view of the second subfilter is the view of the constructed

filter. Note that this filter construction introduces intermediate variables as the

connecting objects.

Figure 2.6: End-to-End Combination.
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In side-by-side combination a filter is constructed using a set of two or more

subfilters. The source and view objects of the subfilters are parts of the source and

view object of the constructed filter. Figure 2.7 shows how a filter is constructed

from two subfilters. The source of the first and second subfilter are part of the

source of the constructed filter. The view of the first and second subfilter are part

of the view of the constructed filter.

End-to-end and side-by-side combination are the most general form of con-

structing filters. Any specific constructed filter will probably represent a mixture of

these two general forms.

Figure 2.7: Side-by-side Combination.
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2.3. Factory Simulation Filter

Using the concepts of "object" and "filter" we can now define our example

interface in more detail. The application interface model for the factory simulation

contains objects of type Producer, Consumer and Station. The structure of

these objects is given by their object types (Figure 2.4 and 2.8). The objects for the

simulation example are all aggregated into the object type Factory (Figure 2.8).

Our factory has exactly one producer, two stations and one consumer. Since we

want to describe an interface, we also have to supply an object type for the device

we are using to communicate with the user. Object type Device has a field for an

input medium of type Mouse and an output medium of type Bi tmap.

Figure 2.9 shows the type definition for the FactorySimulation filter type.

A FactorySimulation filter accepts an object of type Factory as source and

an object of type Device as view. The var statement defines four intermediate

Object Type Producer
productivity -+ Integer
produced -+ Integer

Object Type Consumer
consumed -+ Integer

end
end

Object Type Factory
producer -+ Producer
wsl -+ Station
ws2 -+ Station
consumer -+ Consumer

Object Type Device
input -+ Mouse
output -+ Bitmap

end

end

Figure 2.8: Object Types for Factory Simulation.



30

Filter Type FactorySimulation (source: Factory, view: Device)
var

part[4] -+ Device
make set of

ProducerFilter (source.producer, part[l])
StationFilter (source.wsl, part[2])
StationFilter (source.ws2, part[3])
ConsumerFilter (source.consumer, part[4])
iteration 4 times i

Extract (part[i], view)
end

Figure 2.9: Filter Type for Factory Simulation.

variables with an iterated field, part [4]. The four variables are of type Device

and are used to connect subfilters. The make statement defines the subfilters that

are used to construct filters of this type. The first subfilter, ProducerFil ter,

constrains the producer part of the source factory to be displayed within the

part [1] variable. This subfilter is connected with its source to the producer

field of source, expressed with the access path "source. producer," and with its

view to the part [1] variable.

Similarly, StationF i 1ter subfilters relate the two stations of the factory to

the second and third part variable. The consumer of the factory is rendered in

its part using a ConsumerFil ter subfilter. The iterationstatement defines

four subfilters to extract the four part variables from the view device. Figure 2.3

showed the filter configuration for the factory simulation filter.

The FactorySimulation filter decomposes the interface into sub-

constraints that are represented by subfilters. Each or these subfilters has to be
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Filter Type StationFilter (source: Station, view: Device)
var

left, part[2] -+ Device
workerDetected [2] -+ Boolean
selection -+ Integer
expert -+ Expert
apprentice -+ Apprentice

make set of

QueueRender (source.inNumber, left)
Extract (left, view)
iteration 2 times i

WorkerRender (source.worker[i], part[i])
Extract (part[i], view)
DetectCursor (part[i], workerDetected[i])
condition workerDetected[i]

condition source.worker[i] isNil
PopUpMenu (selection, "Expert, Apprentice")
condition selection = 1

Equality (expert, source.worker[i])
condition selection = 2

Equality (apprentice, source.worker[i])
condition source.worker[i] notNil

Equality (NIL, source.worker[i])
end

Figure 2.10: Filter Type for Station.

defined separately using other constructed or atomic filters. We give here the

definition of the StationE'i 1ter to show the expressiveness of filter types. A full

definition of all the filter and object types for the factory simulation interface is

listed in Appendix A.

Figure 2.10 shows the StationE'i 1ter filter type, which is defined for source

objects of type Station and view objects of type Device. It displays the station

for our simulation and allows the user to add or remove workers from it. As in the

FactorySimulationfilter, it defines variables and is constructed from subfilters.
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The first subfilter constrains the number of products in the input queue of the sta-

tion, inNumber, to be displayed within the le ft variable. The le ft variable is

extracted from the view device.

Since the part variable and the worker field of the station are iterated

fields, we can use an iteration constructor that ranges over the number of workers

per station. Each worker is rendered as icon within the corresponding part vari-

able with a WorkerRender subfilter, which is provided as a primitive. The

part [i] variable is extracted from the view device. A Boolean variable (worker-

Detected) is used in a DetectCursor subfilter to detect whether the cursor is

pointing at a worker within a station. The condition constructor (condition) is

used to evaluate the Boolean variable. The constructor defines further subfilters

that only exist if the condition is true.

If a worker field is not filled, i.e., it contains the value NIL, then a PopUp-

Menu subfilter is defined that causes a pop-up menu to appear on the screen. The

user can select from two types of workers: expert or apprentice. They are both sub-

types of Worker, so they can be referenced in the worker field of Station that

is of type Worker. The worker field is related to expert or apprentice

variable with an Equality filter.

If the worker field holds a worker, i.e., it does not contain the value NIL,

then this worker is removed. The removal is done by defining an Equa 1 i ty

subfilter with source NIL and view source. worker [i], which will set the i-th

worker field to value NIL.
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The StationF i 1ter filtertype uses all three subfilter constructors: set,

iteration and condition. The set constructor defines a static configuration of

subfilters,while the iteration and condition constructors define a dynamic

configuration of subfiltersthat depends on the state of the source and view objects.

This introductory example showed how we can decompose interfaces using con-

straints, and tried to describe the concepts of the filterparadigm in a less formal

way. Chapter 3 gives a complete definition of the filterand object specification

language that was used to describe the objects and filtersin this example.



Chapter 3

Filter Specification

This chapter formally defines the object and filter types that were introduced

informally in the last chapter. We introduce types to group and distinguish

different objects based on their structure and intended use. Section 3.1 defines our

model for objects. The syntax for object types is given in Section 3.2. Section 3.3

incorporates filter types in our object type system, Section 3.4 gives the syntax for

filter types, and Section 3.5 discusses the behavior of filters.

3.1. Object Model

Everything in our computation model is an object, which is a unit with a

umque identifier. An object is an atomic value or a collection of fields. Atomic

values are integer, character, boolean or bit data items. Fields consist of an

address, which names the field, and a slot, which contains the object that is the

value of the field.

We depict an object that is a collection of fields by a box labelled with the

object identifier and subdivided into fields. A field is labelled with its address; its

slot either contains an atomic value or a reference to another object, drawn as an
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Figure 3.1: Two Lines Sharing a Point.

arrow. For example, Figure 3.1 shows the five objects pI, p2, p3, 11 and 12.

Object 11 references object p1 at the head address and object p2 at the talI

address. Object 12 references p1 at head and p3 at talL Objects p1, p2

and p3 all have the same structure. We could interpret them, based on their

intended use, as points. The x field holds an integer value for the x coordinate; the

y field holds an integer value for the y coordinate. Objects 11 and 12 also have

the same structure as each other. We could interpret them as lines: a head field

holding a point and a talI fields, also holding a point.

p2

11
/

.!..30

-
head-
tail

. .

pI

12
/'

.!.. 10

-
head-
tail

. .

------
p3

y 20
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It is useful to group objects that model the same kind of thing in an applica-

tion into sets, as there is information about such objects that can be shared. We

can group atomic values into natural sets: the set of all integers, the set of all char-

acters, the set of the elements true and false, and the set of the elements 0

and 1. Objects that are a collection of fields have common structure if they have

some fields that are similar. Fields are similar if they have the same address and

their values are objects from the same set. Intuitively, objects with some similar

fields should be grouped into the same set. The following paragraphs will explain

how we describe these sets.

The structure of a set of objects is described by a signature. A signature S is a

list of pairs, each pair consisting of an address and a set of objects. An object 0

conforms to S if for every address-set pair (f, v) in the signature, 0 has a field with

address f with a value from vor the special atomic value NIL; Object 0 can have

other fields that are not in S. An object can conform to more than one signature,

because it can have more fields than each signature requires.

For example, objects 11 and 12 in Figure 3.1 conform to the signature

head, {P1, p2, p3}
tail, {p1, p2, p3},

since each has a head and tai 1 field with a value from the set.

Consider an object cl that models a colored line. It has fields head and

tail with references to p1 and p2, plus a field with address color, where the

slot contains a color code. Object cl also conforms to the signature above since it

has fields with addresses head and tail, where the slots take values form {p1,
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p2, p3}.

We use a collection D of signatures to describe a set of objects. An object is a

member of the set described by D if it conforms to some signature S in D. We use

collections of signatures to give meaning to conditional and iterated fields used in

the object type definition language in the next section.

For example, objects 11, 12 and cl are members of the set that is described

by the pair of signatures

head, {p1, p2, p3}
tail, {p1, p2, p3}
color, {1,2,3, ... }

and

head, {p1, p2, p3}
tail, {p1, p2, p3}.

Objects 11 and 12 conform only to the second signature, while cl conforms to

both signatures.

The state of an object is defined as a collection of fields, each field being a pair

(f, r) consisting of an address f and a value r. Addresses are used to retrieve field

values of an object. Addresses can be concatenated into access paths in order to

access subfields of fields. An access path A is a list of addresses f1, f2, ... ,fn,

denoted "f 1.f2. ... .fn". For example, "head.x" accesses the x coordinate in the

head point of a line object.

Access paths support retrieval and assignment operations on objects. The

retrieval operation Get = (0, A) accesses object 0 according to access path A = (f 1,

f2, ..., fi, ... ,fn) and returns a field value. Get selects the value r1 of field £1 of
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0, then it selects the value of field f2 of r 1, Get repeats this selection for all

addresses in A. The value of field fn is returned as result of Get. An access path A

exists for an object 0, if for each address fi in A there is a field with address fi

during the selection process. A retrieval operation Get is valid if A exists.

The assignment operation Put = (0, A, r) accesses object 0 with access path A

and stores value r in the slot for the field specified by the access path. Put follows

the path as for Get, but replaces the value of field fn with r. If A does not exist

for 0, then Put is invalid.

We also allow update operations that add or remove fields from an object,

which may affect the signatures that an object conforms to. We will define their

behavior after we have introduced object types.

Signatures are not the only means used to describe sets of objects. Objects can

be subjected to restrictions on their states, called constraints, which are represented

as Boolean predicates. A constraint is expressed with access paths and primitive

predicates, such as basic Boolean operations, existence of access path, equality for

atomic values, and external computational predicates, e.g., for arithmetic. An

object satisfies a constraint if the evaluation of the predicate with the field values

retrieved from the object yields true. Note, all the retrievals must be valid. For an

object to continue to satisfy a constraint, some updates may be disallowed.

We extent the description of sets of objects with constraints to express types.

An object type T = (D, C) is a collection of signatures D plus a collection of con-

straints C, where the sets in the signatures of D are object types or the predefined

sets of atomic values. An object 0 is an instance of object type T = (D, C) if 0
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conforms to one of the signatures in D and satisfies all constraints in c. Since the

sets in signatures are now denoted by object types, the value of a field must be an

instance of the appropriate object type. An object may be an instance of multiple

object types.

For example, consider colored line cl again. It is an instance of the object

type with the signature:

head,Point
tail, Point
color, Integer,

given that Point and Integer are other object types with appropriate

definitions. The value head must be an instance of object type Point. Object

cl is also an instance of the object type signature:

head, Point
tail, Point,

In order to determine whether an object conforms to an object type we define

a type map. Given a collection U of all objects in our universe and a type system TS

of all object types, the type map m: TS -+ 2U associates sets of objects in U with

types in TS. The type map is valid for U if for each 0 E m (T), 0 is an instance of T,

using mew) as the set denoted by W,for any type Wused in a signature of T. Object

o conforms to type T = (D, C) if there is a valid mapping m with 0 E m(T).

Without a type map we would not always be able to efficiently check whether

an object conforms to a type. Consider the following example: Object 01 has field

f1 with value 02; object 02 has field f2 with value 01. Type t1 has signature

f1, t2; type t2 has signature f2, t1. To see if 01 is an instance of t1, we
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check whether it has a field f1 with a value that is an instance of type t2. Now

we have to check whether 02 is an instance of t2, which leads us back to deter-

mining whether 01 is an instance of tl. This check is cyclic. Given a valid type

map m we can check what objects are instances of object type t1 and t2 relative

to m. For our implementation, we will store a partial type map to make type check-

. .
mg eaSIer.

For two object types A and B, B is defined to be a subtype of A if any object

that is an instance of A is also an instance of B for a valid type mapping. All

objects are instances of the universal type U. Thus, all other object types are sub-

types of U. In general, it is hard to check the subtype relationship, because it

involves determining if the constraints for B imply the constraints for A.

This section defined object types using signatures and constraints. The next

section will give a language to express the signatures and constraints of an object

type.

3.2. Object Types

We support aggregation and specialization as type definition mechanisms

[Albano, Cardelli and Orsini 85] [Borgida, Mylopoulos and Wong 84]. With aggrega-

tion we build object types by enumerating the fields the object has. The field is

specified by naming its address and the type for its slot. The field type is an object

type that is already defined, the object type being defined, or one of the following

predefined atomic types:
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- Integer for integers
- Character for single characters
- Boolean for truth values 'true' and 'false'
- Bit for bit values '0' and '1'

A new object type can be defined by inheriting fields and constraints of existing

object types and adding more fields or constraints. This inheritance (specialization)

mechanism is only a notational convenience, however, it guaranties that the new

object type is a subtype of the existing object types. We are using strict inheri-

tance, which means that all fields of the supertypes are inherited by the new object

type.

An object type may also list constraints.

The syntax is for object types is as follows:

Object Type <Name>
inherit from <object types>
<field definition list>
constraint<constraint statement list>

end

Where

<Name>

is a unique name for the type. Subsequent object and filter definitions can use

this name when constructing more complex objects or filters. The name must

start with a capital letter.

<object types>

are the names of previously defined object types, from which components are

inherited. If inherited fields have the same address in more than one super-

type, then the supertypes are concatenated to the field. For example, A
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inherits fields from Band C; Band C both define a "x" field; then A has "B.x"

and "C.x" fields.

<field definition list>

establishes the structure of the object type by defining the signatures. The list

contains field definitions of basic, iteration and condition form, which are

defined below.

<constraint statement list>

is a list of constraint statements. Each can name addresses of fields in the

current object type definition or from supertypes. The constraint statement

has to be in a form that can be understood by the constraint-satisfaction sys-

tern.

The inherit from, <field definition list> or constraint statements can be

omitted if not needed.

The <field definition list> is a list of one or more field definitions of the form:

<address> <object type>

where <address> is the address for the field and <object type> is the type for

values of the field. We also allow literals from the atomic types. Literals of type

Integer are denoted by numbers, of type Character by quoted characters, of

type Boolean by the words true and false, and of type B1t by OB and lB.

A literal specifies that the field will contain a constant value for all instances of the

object type. The value NIL is an element of all types and can be stored in any field

slot. In Figure 3.2, the ListOne and L1stTwo object types use basic field
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Object Type ArrayOne
array [4] -+ Integer

end

Object Type ArrayTwo
label -+ Integer
dependents -+ ArrayOne

end

Object Type ListTwo
label -+ Integer
dependents -+ ListOne

end

end

Figure 3.2: Sample Object Types.

definitions.

The iteration field definition format defines multiple fields of the same type:

<address> [ <iteration factor> I-+ <object type>

where <iteration factor> specifies how many times this address should be repli-

cated. The <iteration factor> can be an integer literal or the address of an integer

field within this object type. Figure 3.2 shows object type ArrayOne where 4

Object Type ListOne
str _1 -+ . ('

sub_1 -+ Integer

str _2 -+
. .
,

sub_2 -+ Integer

str _3 -+
. .
,

sub_3 -+ Integer

str_4 -+
. .
,

sub_4 -+ Integer

str _5 -+ ') .
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array subfields are summarized as an iteration.

To express object types with variable structure we introduce the condition field

definition:

( <condition expression> ) : <field definition>

where the <field definition> exists only if the <condition expression> evaluates to

true. The <field definition> can be of basic or iteration form. The

<condition expression> uses field addresses of the object type and Boolean opera-

tors, and must evaluate to type Boolean. Figure 3.3 shows object types

ArrayThree and ListThree, among others, each with a conditional field

definition.

Recursion is specified by using the type name of the current definition in the

<object type> specification of a field definition. Figure 3.3 shows object types

Object Type ArrayThree
label - Integer
( label = NIL ) :

dependents- ArrayOne

Object Type ArrayFour
label - Integer

( label = NIL ) :
dependents- ArrayFour

end end

Object Type ListThree
label - Integer

( label = NIL ) :

dependents- ListOne

Object Type ListFour
label - Integer

( label = NIL ) :

dependents- ListFour
end end

Figure 3.3: Object Types with Condition and Recursion.
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ArrayFour and ListFour, which are defined recursively.

The iteration and condition fielddefinitionsallow an object to change itsstruc-

ture and stillbe an instance of the same object type. An object type with an itera-

tion fieldcan be described with multiple signatures plus a listof access path

existence constraints. The path existence constraints specify that for a specific

iteration factor i there have to be i paths in the iteration, one for each field. The

number of signatures and constraints could be infinite,depending on the range of

the iteration factor. If the iterationfactor for an instance changes, then the

number of fieldsin the instance changes, and the instance might now conform to a

new signature from the object type. Figure 3.4 shows the object type ArrayF ive,

where the number of array fieldsisdetermined by the size field.

An object type with a condition fieldis described with two signatures,one

including the field, the other not, plus the constraint that objects for which the con-

dition is true must have a path to the field. If the condition is true, then the object

Object Type ArrayFive
size - Integer
array [size] - Integer

end

Object Type ArraySix
inherit from ArrayFive
constraint IntegerIdentity(size,4)

end

Figure 3.4: Object Types using Inheritance.
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has to conform to the signature including the field; if not, the object conforms to the

other signature.

Our specification language for object types cannot define all types, since the

multiple signatures that describe iterated and conditional fields are not arbitrary.

The examples so far covered object structure. The constraint statement

restricts the state of instances. A constraint is expressed with access paths that

may contain addresses of fields and subfields for the object types. Figure 3.4 shows

ArraySix, which is a subtype of ArrayFi ve that imposes the constraint that the

number of array subfields is always four.

Once we have defined an object type, we can create instances of it. The syn-

tax for object instantiation is:

<object type> ( <initialization list> )

The <object type> is a type name. The <initialization list> contains zero or more

<initialization pairs>. An <initialization pair> is:

<address> +- <instance>

The <address> names the field to be initialized in the new object. The <instance>

is a literal or another object instantiation expression that defines the value for the

field. The instantiation expression returns a new instance of type <object type>.

If a field is absent from the initialization list, then the field is NIL. Figure 3.5

shows how instances of type ArrayThree and ArrayFive are instantiated with

initial values for all fields.
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Object Type ArrayThree (
label - NIL

dependents - ArrayOne

array [1] - 99
array [2] - 98
array [3] - 97
array [4] - 96 ) )

Object Type ArrayFive
size - 2

array [1]

array [2]

- 99

- 98 )

Figure3.5: Instantiation of Object Types.

In general, it is hard to check that an object is an instance of an object type,

because we have to generate a type map. In order to make type checking tractable,

we require that every object remain an instance of the type from which it is

created. This type is called the creation-time type of the object. The creation-time

types give a partial type map.

An object can be a field value of many other objects. Therefore, if the contain-

ing object has a type defined for the field, then the value must be of that type as

well as its creation-time type. The constraints on an object derived from its

creation-time type are called creation-time constraints, whereas the constraints on

an object derived from object types whose instances reference the object are called

imposed constrain ts.
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Object Type Point
x - Integer
y - Integer

end

Object Type Line
head - Point
tail - Point

end

Object Type HorizontalLine
inherit from Line

constraint

head.y = tail.y
end

Figure 3.6: Object Types for Point, Line, and HorizontalLine.

Consider the object types in Figure 3.6 and an object that has creation-time

object type Line, which does not define any constraints. If this object is now

referenced in a field of type HorizontalLine, then it must satisfy the imposed

horizontal line constraint.

We have to distinguish the constraints that are imposed on a given object and

the restrictions that are associated with a particular field slot in an object.

The imposed restrictions on a field slot in object 0 are the type given for the

field by o's creation-time type, plus the imposed constraints of 0 that affect the

field. Some of the imposed restrictions are not expressible as constraints on 0 since

they involve fields that are not accessible from 0, but only from objects containing

o. To determine the imposed restrictions for a slot in 0, we have to check all refer-
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ences to 0 and find all access paths that traverse through o. If all objects in our

universe conform to their creation-time types, then they satisfy all their imposed

restrictions, because every imposed restriction is expressed as a creation-time con-

straint of some other object.

Consider the object type in Figure 3.7. The TwoLines type defines fields

source and view of type Line and four constraints that relate the coordinates

of head and tai 1 points in the two lines. Figure 3.8 shows object fl, which is

an instance of this type, where source references line object 11 with points pI

and p2, and view references line object 12 with points p3 and p4. Suppose

object 11 has creation-time type HorizontalLine (Figure 3.6). Since the Two-

Lines type constrains its source and view fields, there are imposed restrictions

on the view slot of object fl. Any object in this slot has to satisfy the imposed

restrictions, Le., in this special case, be a vertical line.

Object Type TwoLines
source - Line
view - Line
constraint

source. head. x =
source.head.y =
source. tail. x =
source.tail.y =

view.tail.y
view. tail. x

view.head.y
view. head. x

end

Figure 3.7: Object Type for TwoLines.
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:.-Int

:r- Jnt

12

head-+Pant

taU-Pant

Figure 3.8: Instance of Object Type TwoLines.

Objects can be changed by storing values in their fields, or by adding or remov-

mg fields. The assignment operation has already been defined. The assignment

operation Put = (0, A, r) is defined to be consistent if the imposed restrictions of

the field slot specified by A = (f1, f2, ..., fn) within object 0 are satisfied by value

r. To check whether an assignment is consistent we must check whether r con-

forms to the imposed restrictions for the field fn specified by A. To see whether r

satisfies the imposed restrictions is hard, since we cannot easily find all objects that

place constraints on the slot. (In general, it might be necessary to check all

creation-time constraints.)

We only allow updates that add or remove fields for objects that have iterated

or conditional field definitions in their creation-time types. After an assignment to
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a field that is either a condition in a conditional field or an iteration factor in an

iterated field, the path existence constraints will add or remove a field to make the

object conform to a different signature in its creation-time type. (The general

constraint-satisfaction mechanism is defined later.) The new field is then accessible

in assignment and retrieve operations.

Our object type system has a very powerful notion of type. As we saw in the

discussion of the assignment operation, an implementation could be quite inefficient

because of the constraint checking. The filters that are modelled within this object

model will be structured in a way so they have no imposed constraints and therefore

allow a more efficient implementation.

3.3. Filter Model

A filter is an object that represents constraints defined between two objects of

specific types, where the constraints will be enforced by constraint-satisfaction. A

filter type is a description of a set of filters. This section defines filters and their

types in terms of the object model from Section 3.1.

Filters are objects with special structure and behavior. One aspect of the spe-

cial structure is that all filters must have a source and view field for which con-

straints can be defined. Another aspect is that we distinguish atomic filters from

constructed filters. Atomic filters represent primitive constraints, whereas con-

structed filters are built from atomic filters. Filters have special behavior in that

they allow an assignment of a field value that violates a constraint. Filters try to
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accommodate the update by changing other field values or adding or removing fields

to resatisfy the constraints. This mechanism is called constraint-satisfaction.

For example, consider an atomic filter with source and view fields containing

integer values. The value of its source is constrained to be equal to the value of its

view. After we change the source value, the constraint is violated. The filter

accommodates this change by replacing the view value.

Now consider a constructed filter with a source and view fields that each con-

tain a point. The filter is build from two atomic filters similar to the one in the pre-

vious example connected to the x and y coordinates of the two source and VIew

points. The constructed filter represents the constraint that its source and VIew

points have the same coordinates. After we change a coordinate in the source point

of the filter the constraint is violated and the filter will resatisfy it by changing the

corresponding coordinate in the view point.

We categorize filters that share common structure and constraints by types, as

for objects, using terminology similar to that of Section 3.1. Signatures define

addresses and types of fields and constraints impose restrictions on the existence

and possible values of fields.

A filter atom is an object, whose creation-time type defines a signature with

two address-type pairs and a collection of constraints. The addresses for the fields

are always "source" and "view." A filter atom conforms to a filter type if its source

and view values are instances of the appropriate types, and the constraints evaluate

to true. Constraints for filter atoms are certain primitive predicates that can be

satisfied directly; which primitive predicates are allowed is determined by the
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constraint-satisfaction used.

Consider again the atomic filter that constrains its source integer to be equal

to its view. Its filter type has the signature

source, Integer
view, Integer,

and the constraint that the source field is equal to the view field.

Constructed filters also have a source and a view field, but also can have fields

for subfilters and fields for variables. Variable fields reference intermediate objects

that are used to connect the subfilters, e.g., as in end-to-end combination of

subfilters. Subfilter and variable fields are special in that they do not have

addresses accessible from outside the constructed filter. However, each has an

address that can be used to express constraints within the filter.

Only path existence constraints and merge constraints are allowed for con-

structed filters. Merge constraints are used to attach the source and view fields of

subfilters to the variables and the source and view fields of the constructed filter.

Merge constraints specify that one object is referenced from two different field slots.

It is expressed with two access paths that use addresses from the source, view,

subfilter and variable fields.

A filter type F is a tuple (ES , IS, C) with an external signature ES, a collec-

tion IS of internal signatures, and a list of constraints C. ES is a signature that

types just the source and view fields. IS = (SS, VS) has a collection SS of subfilter

signatures and a collection VS of signatures for variable fields. Each signature in

ss is a list of address-filter-type pairs where the address is internal to the con-
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structed filter. Each signature in VS is a list of address-object-type pairs where the

address is internal to the constructed filter. C is a list of constraints that are

expressed with access paths that use addresses external and internal to the object.

A constructed filter conforms to a filter type F = (ES , IS, C) if (1) the values

of the source and view fields conform to ES; and for IS = (SS, VS) (2) the values of

subfilter fields conform to one of the signatures in SS; (3) the values of variable

fields conform to one of the signatures in VS; and (4) the filter satisfies all con-

straints in C.

The signatures ES and IS could be combined into one set of signatures, but it

is easier to consider the signatures broken into independent pieces.

Access to filters is restricted, since only source and view fields are visible exter-

nally. Only fields of the source and view objects (and their sub6elds) can be

retrieved and updated externally.

Since subfilters do not have externally visible addresses and are only referenced

from a single slot, they do not have imposed constraints, i.e., the creation-time type

of a filter always matches the filter type for the slot it occupies.

The regular structure of constructed filters makes it easier to determine the

constraints that are imposed on their source and view objects and variables, which

helps to determine whether an assignment operation is consistent. The precise

behavior of filters on assignments will be described after we have presented the

language for filter types in the next section.
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3.4. Filter Types

Filter types are specified by enumerating their subfilters and variables and by

relating them to the source and view objects. Some filter types for filter atoms are

predefined. Constructed filters are defined from other filter types.

3.4.1. Filter Atoms

A filter atom has a predefined filter type that declares the types for source and

view objects and the constraints that hold for them. We distinguish three groups of

filter atoms. There are:

- equality filter atoms
- constraint filter atoms
- implementation filter atoms

Each group represents a class of filter types.

3.4.1.1. Equality Filter Atoms

For each of the atomic object types there is a filter atom representing an

equality constraint (types that are accepted for source and view in parentheses):

- IntegerIdenti ty ( Integer, Integer)
- Characterldenti ty ( Character, Character)
- BooleanIdenti ty ( Boolean, Boolean)
- Bitldentity (Bit, Bit)

Equality filter atoms ensure that their source and view fields hold the same atomic

value. They do constraint-satisfaction by replacing, rather than modifying, the

values in the slots they are attached to.
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3.4.1.2. External Constraint Filter Atoms

Our filter specifications represent constraints, but we want to invoke certain

geometric and computational constraints directly. Constraint filter atoms represent

externally defined constraints for which the system knows a satisfaction technique.

3.4.1.3. Implementation Filter Atoms

Additional primitives are defined that allow an implementor to incorporate

objects such as the display bitmap, the keyboard, or a pointing device in the object

model and provide primitives that are used like filter atoms but are written in a

procedural language. For example, consider a filter atom that maintains the posi-

tion of the cursor in a point object. This filter atom can be used when constructing

filters, thus allowing objects to be changed according to user input. Chapter 5 on

implementation describes input and output primitives that are modelled as filter

atoms.

3.4.2. ConstructedFilters

Filter types for constructed filters define multiple signatures. In this section

we describe their filter type definition.

The filter type definition follows the syntax:

Fil ter Type <Name> ( source: <source type> ,view: <view type> )
var

<variable declaration list>
make

<filter construction list>

merge
<merge list>

end
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Where:

<Name>

is a unique name for the type. Subsequent filter type definitions can reference

this name when constructing other filters. The name must start with a capital

letter.

<source type>

is labelled by the keyword source and specifies the object type for the source

slot of the filter instance. The <source type> names an object type.

<view type>

is labelled by the keyword view and specifies the object type for the view slot

of the filter instance. The <view type> names an object type.

<variable declaration list>

is a list of variable definitions of the form:

<variable> -+ <object type> ( <initialization list> )

where <variable> is the name of the new variable, <object type> is the type

for the variable, and <initialization list> is an initialization expression. The

variable name can optionally be iterated (using "[ ]"). The iteration factor can

be an integer literal or the address of an integer field within this filter type.

<filter construction list>

lists the subfilters that are declared for an instance of this filter type. In anal-

ogy to the object type definition, we provide a basic, iteration and condition
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format. These valid formats to declare subfilters are:

- set of <body>
- iteration <expression> times <variable> <body>
- condition <condition> <body>

where <body> is either a nested <filter construction list> or a declaration of

subfilters in the format:

<filter type> ( <source object> , <view object> ).

Here <filter type> names the filter type for the subfilter, and <source object>

and <view object> are access path expressions that are used to connect the

subfilter to fields of source, view or variables within the filter type. (The con-

nections are realized with merge constraints.)

The set of format declares several subfilters of possibly different types and

arguments. It can be used for side-by-side or end-to-end composition. End-to-

end composition requires a variable to serve as an intermediate object.

The iteration format declares a variable number of subfilters all of the

same type. The <expression> defines the range of the <variable>, which can

be used in the access path expressions for the source and view objects for the

subfilter. The <expression> can contain an integer literal or an access path to

an integer field in the source, the view or a variable. Therefore, the iteration

can depend on another object that is itself part of an instantiated filter.

The conditionformat declares a subfilter that depends on a condition. The

<condition> can mention access paths to fields, Boolean operations and com-

parisons of atomic values. The <condition> is evaluated within the instance
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of the filter type; therefore, the value can depend on an object that is part of

another subfilter.

The set of, iteration and condition formats can be nested within

each other, e.g., the iteration format can declare a set of subfilters with a

set of format.

<merge list>

is a list of merge constraints for the filter type. The merge is expressed with

two access paths and the special symbol '=()='. It says that the two paths

must always lead to the same object. This merge constraint is the same as the

merge constraints that are used to connect source and view of subfilters to

source, view and subfilters of the constructed filter. The merge statement

can be used to improve the clarity of the filter type by merging variables with

fields of source and view objects; it is provided as a syntactic convenience.

Any of the statements var, make or merge can be omitted if not needed.

With the given syntax we are able to define a powerful set of filter types. However,

certain sets of signatures are not expressible, since multiple signatures are only

derived from conditional and iterated fields.

Figure 3.9 shows a filter type IterationExample constructed from four

subfilters of type Integerldenti ty. It uses object types defined in Figure 3.2.

This filter establishes an equality constraint between an integer array of size 4 and

the components of a list. Note that the literal 4 in this example is necessary since

none of the participating objects contain information about the size of the arrays.

If the source or view object or a variable within the filter type definition could be
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Filter Type IterationExample (source: ArrayOne, view: ListOne)
var

v[4] - Integer
make

iteration 4 times i

IntegerIdentity (source.subfield[i], v[i])
merge

view.sub_1
view.sub_2
view.sub_3
view.sub_4

=0=
=0=
=0=
=0=

v [1]
v [2]
v [3]
v[4]

end

Figure 3.9: Filter Type with Iteration Constructor.

used to express the iteration factor, the literal is not needed. The merge state-

ment merges the four fields of the view with the four fields of the variable. Because

we used a variable that is an array, we were able to define the four subfilters with

an iteration format.

If we want to combine filters of different types, we use the set of format.

Figure 3.10 shows the SetExample type where an Integerldenti ty filter

Filter Type SetExample (source: ArrayTwo, view: ListTwo)
make set of

IntegerIdentity (source.label, view.label)
IterationExample (source.dependents, view.dependents)

end

Figure 3.10: Filter Type with Set Constructor.
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atom and the IterationExampleof the last example are composed (object types

were defined in Figure 3.2). Note that the connection of subfilters to subparts of

source and view objects of the defined filter establishes merge constraints.

Figure 3.11 shows the ConditionExample, which is similar to the Itera-

tionExample except that the existence of the IterationExample subfilter is

conditional on the value of the labeladdress of the source and view object (object

types were defined in Figure 3.3).

Filter Type ConditionExample (source: ArrayThree, view: ListThree)
make set of

IntegerIdentity ( source.label , view.label )
oondition source.label = NIL or view.label = NIL

IterationExample (source.dependents, view.dependents)
end

Figure 3.11: Filter Type with Condition Constructor.

Filter Type RecursionExample (source: ArrayFour, view: ListFour)
make set of

IntegerIdentity ( source.label , view. label )
oondition source. label = NIL or view. label = NIL

RecursionExample (source.dependents , view. dependents)
end

Figure 3.12: Filter Type with Recursion.
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Figure 3.12 shows the RecursionExample type, which is the same as the

SetExample except that it instantiatesthe RecursionExample agam recur-

sively, depending on whether the label address of either source or view object is

NIL. It is possible to define infinitely recursive filter structures. The recursion in

filtersusually follows the structure of some tree-like object, and terminates at the

leaves of the object.

3.5. Filter Behavior

Each filtertype describes a large universe of different possible objects and

atomic constraints, but each instance of a filtertype has exactly one configuration

at any time. The differentconfigurations possible for a filterare described by multi-

pIe signatures in the filtertype, which arise from conditional and iterated subfilters

and iterated variables. The initialconfiguration of a filteris built when the filteris

instantiated and may change to another configuration when objects within the filter

instance change. The configurationis never changed directlyfrom without the

filter. Rather, filterschange their objects and their configuration in response to

changes in their source and view objects when attempting to resatisfytheir con-

straints. This section will describe two aspect of filters:filterinstantiation and

changes to objects that are part of a filter.

A filter object is instantiated from a filter type (ES, IS, C). It will accept

objects for itssource and view fieldsthat conform to the ES signature. There are
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no further imposed constraints, therefore, this initial assignment is consistent.

When a filter is instantiated it follows this procedure:

(1) instantiate declared variables from their instantiation lists.
(2) for all declared subfilter constructors do:

(a) if the subfilter constructor is sequence, then
for all subfilters in body of sequence do:

determine the merge constraints for the subfilter;
retrieve subfields from source, view or variable
according to access path in merge constraint;
instantiate subfilter with values of subfields as source and view.

(b) if the subfilter constructor is condition, then
evaluate condition, if true, then perform (2)

(c) if the subfilter constructor is iteration, then
evaluate iteration factor and perform (2) for each
iteration of the body in the constructor.

This procedure is invoked recursively until it reaches a filter atom, which is instan-

tiated like an object with values for the source and view field. If one of the objects

is not completely specified, i.e., a slot does not contain a value or a reference, then

it will be initialized according to the constraints. This behavior of filter atoms is

called initial value propagation, and is not necessarily directed from either source to

view or view to source. After initial value propagation the constraints for the filter

atoms are checked. If there is a conflict, then the source object overrides the view

object. After all filter atoms are instantiated and connected together with merge

constraints, initial constraint-satisfaction is invoked for the complete filter instance.

If the initial constraint-satisfaction fails, then the instantiation procedure fails.

For example, consider the filter type Example in Figure 3.13, with source and

view objects of type Point. The x coordinates are kept equal with an

IntegerIdenti ty filter atom, while the y coordinates are only kept equal if the

x coordinate of the source point is greater than zero. If we instantiate a filter from
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Filter Type Example (source: Point, view: Point)
make set of

Integerldentity ( source. x, view.x )
condition source.x > 0

Integerldentity (source.y, view.y)
end

Figure 3.13: Filter Instantiation.

this filter type with the point (x: 10, y: 10) as source object and an unspecified

point object (x: NIL, y: NIL) for the view field, the procedure is as follows. The

first subfilter in the set of constructor is a filter atom; it is instantiated like an

object with the x coordinate of the source point as source object and NIL as

view object; initial value propagation will set the value of the view field to 10.

Then, the expression in the conditionconstructor is evaluated and the second

IntegerIdenti ty filter atom is instantiated with the y coordinate of the

source point as source object and NIL as view object; initial value propagation

will set the value of the view field to 10. The resulting configuration of the filter

instance consists of two filter atoms.

The only objects that can be accessed from outside a filter are the source and

view objects and their subfields. Such an object can be changed in a way that tem-

porarily violates its creation-time and imposed constraints. The filter tries to

accommodate the change by changing the value of other fields within the filter or by

changing the configuration of the filter. The only constraints that are considered

are local to the filter, therefore we do not have to search for all references to
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objects, but can restrict the search to within the filter. If the configuration changes,

then new filters are instantiated with the same procedure as described above.

Change in a part of the source and view object may mean that a. 8ubfilter must

reconnect to a new object. Therefore, the merge constraints hold dynamically; all

paths that are merged with a merge constraints have to be considered when the

value along one of them is changed. If the constraints cannot be satisfied for an

update to an object, then the update is disallowed.

For example, consider the filter from the previous example. If the value of the

x coordinate of the source point is changed to -10, then constraint-satisfaction

can accommodate this change by changing the value of the x coordinate of the

view point. Moreover, since the x coordinate of the source point is now less

than zero, the second IntegerIdentity filter atom will be removed. Any

change to the y coordinate of one point will no longer affect the y coordinate of

the other.

Constraint-satisfaction is inherently non-deterministic. A given constraint can

be resatisfied in multiple ways. Also constraint-satisfaction systems have different

levels of power, as we will describe in Chapter 5 on implementation. A method that

tries to resatisfy the constraints locally may not find a solution, whereas a method

that considers the constraints globally might succeed. The exact behavior of a filter

therefore depends on the constraint-satisfaction mechanism that is used in an actual

implementation; but any implementation must respect the constraints of the filter's

type.
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Defining Interfaces Graphically

Filter types can describe interfaces. In order to define interfaces graphically

we represented filter types in an object-oriented system and provided a graphical

tool that manipulates the representation. Filter types could also be defined with

the filter specification language described in Chapter 3 and translated by a compiler

into code that describes the appropriate classes in an object-oriented system. The

code produced by such a compiler does not necessarily have to be object-oriented.

We chose to provide a graphical tool, since we are mainly interested in the flexibil-

ity of the filter paradigm, but are aware that a compiler will eventually be needed

to produce optimized and efficient interfaces. Our tool, the Filter Browser, can

define, manipulate and test filter types graphically. The filter browser has been

implemented in Smalltalk-801 on a Tektronix 4405 AI workstation.

This chapter describes the filter browser. The first section outlines the general

organization of this tool to define interfaces graphically. Sections 4.2, 4.3 and 4.4

explain the features of the filter browser. Figures 4.3, 4.4 and 4.5 show the filter

browser as we step through the definition of the filter type ProducerFi 1 ter from

our introductory example in Chapter 2. Section 4.5 explains some possible

1Smalltalk-80 is a trademark of Xerox Corporation.
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enhancements that would improve the filter browser. The last section concludes

with a comparison of the filter specification language and the filter browser.

4.1. The Filter Browser

A filter type describes a set of filter instances. As discussed in Chapter 3,

types are described with signatures and constraints. Filter types can be represented

as classes in an object-oriented system that supports types for instance variables

and constraints. The filter browser creates the classes that represent filter types. It

also maintains a sample filter instance (prototype) that can be used to instantiate

and test the filter type. Object types can be implemented directly in such a system

as classes where instances of classes are instances of the object type. The filter

browser cannot be used to define object types; Chapter 5 gives the details of the

implementation.

The filter browser is similar to the Smalltalk [Goldberg 84], ThingLab [Born-

ing 79] and Animus [Duisberg 86] browsers, which also browse classes. Except for

the name of a new filter type, the filter browser specifies filter types entirely graphi-

cally, using menus, icons and a pointing device.

In defining filter types, we distinguish the external and internal parts of the

definition. Figure 4.1 shows a filter type. Externally, a filter type is identified by its

name (ProducerFi 1ter) and the types of its source (Producer) and view (Dev-

ice) object. Internally, a filter type declares subfilters (e.g., IntegerEquali ty)

and variables (gauge). These details are encapsulated inside the filter type. A ses-
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Filter Type ProducerRender (source: Producer, view: Device)
var

gauge - Gauge
make set of

IntegerEquality (source.productivity, gauge.number)
Render (gauge, view. output)

PointSensor (gauge.needle.point2, view. input)
end

Figure 4.1: ProducerFilter Filter Type.

sion with the filter browser has three different steps. Step one represents the exter-

nal, step two the internal definition, and step three tests the filter type. In step one,

the name of the filter type and the type of source and view objects are given. In

step two, the variables and subfilters that participate in filter constructors, such as

sequence, iteration and condition are specified. In step three, a constructed filter

type is instantiated and exercised. The designer of a filter type will first proceed

from step one to step two and then test the filter type in step three. Then he can

go back to step two and add or delete subfilters and variables. At any time he can

test the filter type in step three. If he goes back to step one and changes the source

or view object type he will invalidate the internal parts of the filter type and has to

redo step two from the beginning.

Figure 4.2 shows the general screen layout of the filter browser interface to

filter types. The same layout is used for steps one and two. Area 1 displays the list

of existing filter types. Filter types can be selected; a pop-up menu is available that
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Figure 4.2: Filter Browser Layout.

can be used to create a new filter type, delete an existing filter type, instantiate a

filter type, i.e., proceed to step three, or file out the description of the filter type

onto the external file system in a form that is understood by the implementation.

Area 2 is not used in step one. In step one, area 3 displays a list of all object types

that can be defined as source types for the currently selected filter type. Area 4

contains the same list for view types. After either of the object types has been

1
Insert delete 2
move variable

source sequence I Iteration
I condition I view

3 4-
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selected a pop-up menu is available to inspect the object type definition.

Below area 1 is a button, labelled source, that when selected will cause the

filter browser to switch from step one to step two, or vice versa; the view button

below area 2 has exactly the same function, which is just a convenience for the user.

To the right of area 1 is a block of 4 actions (insert, move, delete, variable) that can

be selected. If the insert action is selected, then area 2 lists all filter types that are

available for insertion. This list includes filter atoms, but the list in area 1 does

not, because filter atoms are predefined and cannot be changed with the filter

browser. If the variable action is selected then area 2 lists all object types that are

available for variables. The buttons labelled sequence, iteration and condition,

select the filter constructor. In step two, areas 3 and 4 are combined to display a

graphical representation of the variables, subfilters and their connections within the

defined filter type. How subfilters and variable are inserted is described in Section

4.3.

In step three, the whole filter browser window is replaced. It now displays only

two panes as shown in Figure 4.5. The left pane shows the bitmap that serves as

the display screen for the filter type that is instantiated. The right pane contains a

list of source, view and variable objects that can be inspected and changed, thus

influencing the filter and the display in the left pane.

The next three sections will describe how to create a filter type using the filter

browser. The ProducerFi 1ter filter type will serve as an example. Figure 4.1

shows its filter type definition. Filters of this type constrain a producer object to be

displayed on a device screen with a gauge and to accept user input to change its
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productivity. The definition of all object and filter types for the complete example is

listed in the Appendix A.

4.2. External Definition

In this step only the upper left, lower left and lower right panes are used. The

upper left pane shows a list of all filter types that are known to the system. The

user can add a new filter type or select an existing filter type for modification. The

current subject of the filter type definition, i.e., the filter type that will be modified

Filter Browser (Version 2.1)
------------ ------------
Conditional Demo
FactorySimulation

:i~!~PJ~.

Insert delete Conditional Demo (FilterPalr, FilterDevlce)
FaBarchart (FilterPalr. FllterForm)
FaConstantDistance (Point, Point)
FaConstantLength (Number, Unesegment)
FactorySimulation (SimFactory, FllterDevice)

move variable

sourc::m~m:::\~...~~:m,::m:mm: iteration condition
SimConsumer FaNodeAddone
SimDemo FaNodeEquallty
SimExpert FaNodesensor
SimExpertNew FaPointEquality
SimFactory FaPolntlnRect
SimFactoryNel" FaPointsensor
SimGauge FaProductlvltyEquality

~'W~h_~.!!!~~_.~_~ ~:~:~J:"Uality
SimProducerNe,y , ,,' FaTextEquality
SimQueue FilterAtomThlng
SimQueueNel" FilterBitmap
SimStation FilterBoolean

~~:~:"New ~~~~~~ii~~~W~:I~m~im~illi~1!~1
SimWorkerNew FilterDisplayObject
StationFilter FilterForm
StationMenu FilterMergeObject
TextThing FilterMouse
Tree Demo FilterPackThlng
Tree Mapper FllterPalr
TreeNode FilterRenderAtom
TreeTraverse Filter5ensorAtom

FllterThing

Figure 4.3: Filter Browser Step One.
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or newly defined, is highlighted. The filter browser displays two lists of all object

types that are available for source and view types in the two panes below. The user

can inspect all object types and select one for source and one for view. In Figure 4.3

the ProducerF i 1ter filter type is defined on source objects of type SimPro-

ducer2 and on view objects of type Fil terDevice; these object types are

highlighted in the lists.

4.3. Internal Definition

In the second step, the upper left pane still displays the list of filter types with

the current selection, ProducerF i 1 ter, emphasized. To the right there are four

panes to select the action that is to be performed on the current filter type. The

user can insert subfilters, add variables, move or delete subfilters or variables in the

picture pane below. The picture pane replaces the two lists of object types from

step one. If the insert action is selected, then the upper right pane shows a list of

all filter types and the types of their source and view objects. This list also contains

the filter type currently being defined to allow a recursive definition. The selected

element in this list names the filter type to be inserted as subfilter if the insert

action is selected. If the variable action is selected, then the upper right pane shows

a list of all available object types from which the user may select. The kind of

subfilter constructor (sequence, iteration, condition) is selected with one of the three

panes in the middle of the filter browser.

2 The type S1mProducer represents the object type Producer. In the actual implementation
of the simulation we preceded all object types with the prefix "81m".



73

The picture pane is used to display the subfilters, variables and their connec-

tions. A variable is placed in the picture pane by selecting the variable action and

selecting an object type from the list in the upper right-hand pane. The variable

appears as a box that shows its name and type and the addresses its fields with

their types; the types of subfields are expanded to show their fields. A unique name

for the variable is generated from its type, e.g., the variable of type SimGauge has

name simGauge4. The access path is abbreviated so that only the last field name

is shown. The access paths to fields of subfields are also displayed. Conditional and

iterated fields are not displayed, since our current implementation does not support

them for objects. The user selects a location and places the variable. The variable

is then inserted into the current filter type definition. A subfilter is placed in the

picture pane by selecting the insert action and a filter type from the upper right

pane. The added subfilter is then connected (linked) to paths in either the source,

view or variable objects by pointing at their location on the screen. For iteration or

condition constructors, an iteration or condition object has to be selected by point-

ing to a path that represents the iteration factor or the condition. After the

subfilter is placed in the picture pane it is inserted into the current filter type

definition.

Figure 4.4 shows the filter browser as the user inserts the FaIntegerEqual-

i ty3 subfilter into the ProducerF i 1 ter filter type. A variable of type

SimGauge has already been defined and connected to an FaPointSensor and

FaRender subfilter. The FaRender filter atom renders the gauge object on the

8 All filter atom names are preceded by a "Fa" prefix.
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------------ FaDivisorEqiiaiity (SimProducerNew, SimBarCltart)
delete I FaExtract (RlterPalr, RlterForm)

FaExtractRender (SimOblect, RlterForm)
FaFormEquality (RlterForm
~~~;~~;j
FaMasterS/ave (UneSegment,

I .
Iteration

ConditionaiDemo
FactorvSlmulation
NewFilter
~if:_~miJim
SlmDemo

Figure 4.4: Filter Browser Step Two.

display bitmap. The FaPointSensor filter atom moves the second point of the

gauge needle according to the location of the mouse input device. After the insert

action has been selected and the user moves the mouse cursor into the picture pane

a lozenge for the FalntegerEquali ty filter appears. The source link is con-

nected to the < .productivi ty> address of the source object and the view link is

connected to the <. bi tmap> address of the view object. After insertion it is

displayed with its name, falntegerEquali ty6, that is also generated from its

filter type.
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The picture pane represents the network of subfilters. The absolute position of

the subfilters in the picture pane is not important, but it will be stored to redraw

the subfilter network in the same way as it was defined. The move action is avail-

able to move subfilters or variables in the picture pane to enhance the appearance

of the network. Subfilters or variables can be deleted from the filter type with the

delete action. If a subfilter is deleted, then all its connections are also removed.

An important issue in connecting subfilters is typing. The external definition of

a subfilter specifies the object type for its source and view object. Thus, when a

source or view link of a subfilter is connected to addresses of source, view or vari-

able objects of the currently defined filter type, it is necessary to check the

corresponding types. These source and view links can be connected to object types

that are of the same type as, or are subtypes of, their specified object types. For

example, the source of the FaIntegerEquality filter has to be of type

Integer or one of its subtypes. The producti vi ty field of the source Pro-

ducer is of type SmallInteger, which is a subtype of Integer. The filter

browser checks the types of a subfilter when it is inserted. If the type checking fails,

then the subfilter is not inserted and an error is reported to the user.
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Filter Browser (Version 2.1)
<source> Sim oducer
<.produced> smalllnteger
<.productlvity > smallinteger
<view> RlterDevice
<.mouse > RlterMouse
<.bitmap> RlterBitmap
<slmGauge4> SlmGauge
<.number> smalllnteger
<.needleUne> Une5egment
<.frame> Rectangle

Figure 4.5: Filter Browser Step Three.

4.4. Filter Instantiation

Instantiating a filter type means creating an instance of the class that

represents the filter type. When instantiating a filter, object instances of the

correct object types have to be supplied for source, view and variables. This instan-

tiation operation is accessible from a pop-up menu in the upper left pane of the

browser, where the filter type has been selected. The left pane of the filter browser

simulates the display bitmap for the filter and all input is controlled by the filter

browser, so it is possible to switch back to the previous steps. The right pane of the

filter browser shows the participating instantiated objects. They can be selected,
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inspected and updated. Any change to participating objects may immediately

change the display in the left pane. Figure 4.5 shows the instantiated Producer-

F i 1 ter filter type for a prototype Producer. The F i 1 terDevice is simulated

by the filter browser. The pane on the left displays a sample producer object with a

gauge. The gauge needle can be moved with the mouse cursor. Appendix A lists the

complete filter and object type definitions.

4.5. Possible Enhancements

Our experience with the initial version of the filter browser has shown that

additional textual output would be helpful to the designer of an interface. Filter

types can be described with the filter description language and there is an almost

one-to-one mapping from filter types as defined by the language and their represen-

tation as classes in an object-oriented system. Therefore the filter browser could

produce this language representation to give the interface designer additional feed-

back.

Another area for enhancements is the display and manipulation of the network

of subfilters and variables in step two. More functionality, such as hiding and clus-

tering of detail or lookup of subfilters by zooming, would be desirable.



78

4.6. Filter Browservs. Specification Language

The filter browser was meant to provide the same expressibility as the filter

specification language described in Chapter 3. In this section we will show that for

each feature of the language there is a corresponding feature in the filter browser,

but that there is no exact one-to-one structural mapping between the two.

The filter specification language has three aspects: objects, filter atoms and

constructed filters. The goal of the filter browser was to be able to specify filter

types for constructed filters. Types for objects and filter atoms were assumed to

exist.

A filter type for a constructed filter specifies six properties: (1) the name of the

filter type; (2) the object types for source and view; (3) the variables of the filter

type and their types; (4) the subfilter constructors such as sequence, iteration and

condition; (5) the subfilters of the filter type with their types and their connections

to source, view and variables; (6) the additional merges, which can be viewed as

notational convenience. The following paragraphs will explain how each of these

properties is specified with the filter browser.

(1) The name of the filter type is defined when creating it. This name identifies

the filter type when it is used as subfilter in subsequent filter type definitions.

(2) The source and view object types are selected from the list of all object types

that are available. This object type is later used to check whether the filter

type can be inserted as subfilter in another constructed filter.

(3) Variables can be defined by selecting the variable action in step two, and

selecting an object type for the variable from the list of all object types in the
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top-left pane. The variable is then displayed in the lower pane of the filter

browser in step two. The filter specification language allows the initialization

of fields within variables. The filter browser cannot express this initialization,

but values for fields in variables can be set in step three where all participat-

ing objects are listed and accessible in the right pane.

(4) Filter constructors are selected with one of the three buttons in the middle of

the filter browser that are labelled "sequence", "iteration" and "condition".

(5) Subfilters can be defined by selecting the insert action in step two, and select-

ing a filter type for the subfilter from the list of all available filter types in the

top-left pane. The subfilter is then displayed in the lower pane of the filter

browser and the user has to connect it to fields within source, view or a vari-

able according to the selected subfilter constructor. All possible access paths

are available, since the object types for all fields of the source, view and vari-

able objects are expanded.

The condition subfilter constructor in the filter specification language allows a

conditional expression whereas the filter browser uses only a single object of

type Boolean for the condition. In order to have a conditional expression for

the condition subfilter constructor, the user may first use constraint filter

atoms that evaluate a Boolean expression into a variable of type Boolean.

Such constraint filter atoms have to be provided by the implementation. This

Boolean variable can then be used in the condition subfilter constructor. The

iteration subfilter constructor allows an iteration factor of type Integer

exactly as defined in the language.
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Another difference to the filter specification language is that it allows nesting

of subfilters within constructors. The filter browser can only define a flat

sequence of subfilters where each subfilter may be conditional, iterated or

basic. However, arbitrary nesting can be achieved by defining separate filter

types for sequences of subfilters and then using these filter types as subfilters

within the appropriate constructors.

(6) Additional merges cannot directly be expressed with the filter browser. How-

ever, the implementation can provide a "merge" filter atom that can be

inserted as a subfilter into the filter type. It would be possible to add the

direct support of merges to the filter browser by adding another action button

that would work the same way as the insert button but would select the spe-

cial "merge" filter atom automatically. We do not think that the absence of

merges is a serious limitation, since they are only provided in the language as a

notational convenience.

Overall, we can say that the filter browser matches but does not exceed the

expressibility of the filter specification language, but offers more flexibility by letting

the user test his design immediately and allowing interactive changes.



Chapter 5

Implementation

The goal of our research is to provide an architecture to generate interfaces

interactively. The filter specification language provides a way to specify interfaces.

In addition, we wanted to implement these ideas in an object-oriented system on a

graphical workstation. In the course of our research we implemented the filter

paradigm twice. However, the first version did not include an implementation of

the filter browser. The first system mapped the filter types that describe interfaces

onto Smalltalk-80 classes [Goldberg and Robson 83] and attempted to provide a

hand-coded constraint-satisfaction. The constraint-satisfaction strategy was local

and therefore very limited in that it could only handle forward propagation of

values. Fortunately, we had available ThingLab [Borning 79], which extends

Smalltalk with constraints. We used ThingLab for the second implementation of

our filter paradigm. This implementation has two aspects: (1) filter and object

types are represented as Smalltalk classes and ThingLab "things," and (2) the filter

browser is an interface to these classes that can create and manipulate objects that

represent filter types.

The first section in this chapter describes our first implementation of the filter

paradigm. Section 5.2 reports how filters would be represented as objects in an
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ideal object-oriented system that provides constraint-satisfaction. Section 5.3

describes the implementation of filter types and the filter browser in the Smalltalk

and ThingLab environment. Section 5.4 compares the different features of the two

implementations. The last section concludes with a few examples of filter types

that have been defined, including the filter browser itself.

5.1. First Implementation

The first implementation of the filter paradigm was done in Smalltalk without

a pre-existing constraint-satisfaction mechanism. It was used to explore the

features of the filter paradigm. The strategy of the implementation was to map

object and filter types into classes and represent constraints as hand-coded methods.

This implementation is also described in a technical report [Ege 86].

In order to detect updates to objects, the classes that represent the object and

filter types implement a monitoring protocol that controls the access to the objects

and filters. Instances of these classes that hold the actual objects and filters are

called object holders. The object holder accepts registrations from objects that use

the held object in constraints. Any update of the held objects is done through the

object holder. Whenever an update message is received the holder forwards this

message to the held object and notifies the objects that had registered their

interest. An object is installed in an object holder by using Smalltalk's becomes

message that changes the object holder's identity to the identity of the held object.
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Filter types are represented as classes that implement methods to map the

source object into the view object, and vice versa. The idea is that the filter knows

what constraints are to be enforced for the source and view objects. When a filter

is created, it has to be supplied with instances for source and view object. The filter

instance registers with the source and view objects, which are held by object hold-

ers. The filter is then notified when source or view objects are changed and exam-

ines their values to make other updates if necessary. Connection of subfilters for a

filter is done in methods defined for the filter by creating instances of classes that

represent object types and creating instances of subfilters with them.

Constructed filters are built by defining instance variables to hold subfilters

and variables in the class that represents the filter type. Subfilter instances are not

directly referenced in instance variable, but indirectly through a subfilter descriptor

object. Three classes of subfilter descriptors are available, for basic, iterated and

conditional subfilters. All subfilter descriptor objects have an instance variable to

reference the subfilters. The basic subfilter descriptor references the subfilter

instance; the iterated subfilter descriptor registers with the object holder that holds

the iteration factor and references a collection of subfilters; the conditional subfilter

descriptor registers with the object holder that holds the condition object and a

subfilter. The subfilter descriptors also store symbolic information on how to access

the source and view objects for the subfilters. This symbolic information is similar

to the access paths described in Chapter 3. The class for the iterated subfilter con-

structor implements the behavior for when the iteration factor is updated and the

subfilter constructor is notified, i.e. the constructor adds or removes subfilters from
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the collection of subfilters using the symbolic information on the source and view

objects for the subfilters. The class for the conditional subfilter constructor imple-

ments a similar behavior in that it creates or deletes the subfilter depending on the

value of the condition object.

This first implementation is able to support the full expressibility of our filter

description language. However, the constraint-satisfaction is local to the filter

objects and requires hand-coding of the constraints. The only method of resolving

conflicts is propagation of values. The restricted constraint-satisfaction limits the

usability of this implementation for complex interfaces. Therefore, we did not try

to provide a tool to specify and generate interfaces automatically for this implemen-

tation.

5.2. Filters as Objects

Our initial approach to implement filters and filter types in an object-oriented

environment is that we assume that we have an implementation of objects and

object types as defined by our object model. This imaginary implementation will

provide object types with multiple signatures and sets of constraints, and creation-

time types for objects. We also assume a special assignment operation that allows

temporary violation of constraints and tries to accommodate the change of objects

by changing other objects or their configuration using constraint-satisfaction.

This section describes how filters and filter types can be represented as objects

and object types by mapping filter types to object types. How filter types are
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mapped into object types is described in the next two subsections with some exam-

pIes for filter atoms and constructed filters.

In general, a filter type is modelled as an object type with at least two fields,

for its source and view object type. Object types for filter atoms declares their con-

straints directly, while object types for constructed filters have additional fields for

variables and subfilters, and constraints to merge the subfilters with source and

view objects.

5.2.1. Filter Atoms

Filter atoms are used as the lowest-level components when building interfaces.

As described in Section 3.4.1, there are different types of filter atoms. Filter types

for filter atoms can be represented directly as object types. The object type defines

the signature for the source and view field and defines the constraints that are used

for the filter atom: Equality filter atoms have equality constraints; constraint filter

atoms name their external constraints; implementation filter atoms don't name a

constraint, but they will be recognized by the implementation and their behavior

will be modelled as procedures.

For example, consider the Integerldenti ty filter atom. Figure 5.1 shows

its object type definition. The fields for source and view reflect the types

defined for the Integerldenti ty filter atom. The constraint is a primitive

equality predicate on atomic integer values and says that the value stored in the

source field is identical to the value stored in the view field.
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Object Type IntegerIdentity
source -+ Integer
view -+ Integer
constraint

source = view

end

Figure 5.1: Object Type for Filter Atom.

5.2.2. Constructed Filters

Constructed filters are built from subfilters using the three different subfilter

constructors: basic, condition and iteration. They can also have variables. The

variables are added as fields to the object type representing the filter type.

Subfilters are also defined as fields in the object type. Subfilters are then connected

by placing constraints on their source and view fields that merge them with the

appropriate fields within the filter type. These constraints are the merge con-

straints as defined in Section 3.3, and we assume that they are supported by our

ideal implementation of our object model.

The basic sequence constructor is modelled by listing the subfilters and equat-

ing their source and view fields with fields of the filter type. For example consider

the SetExample filter type in Section 3.4 (Figure 3.10). Figure 5.2 shows its

object type definition. The symbol "==" denotes a merge constraint. The merge

constraints equate the source and view fields of the subfilters with fields of source

and view of the containing filter.
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Object Type SetExample

source -+ ArrayTwo
view -+ ListTwo

subfilterl -+ Integerldentity
subfilter2 -+ IterationExample
constraint

subfilterl.source == source. label

subfilterl.view == view. label

subfilter2.source == source. dependents

subfilter2.view == view. dependents
end

Figure 5.2: Object Type for Sequence Filter Constructor.

The condition constructor can be represented by an object type that lists the

merge constraints within the conditional field. A conditional field that is declared

for an object type produces two different signatures (see Section 3.1), one listing the

additional field and merges, the other not. Figure 5.3 shows the ConditionExam-

pIe described in Section 3.4 (Figure 3.7) as an object type with the merge con-

straints placed only if the access path to the field subfil ter2 exists. The

PathExistence constraint has to be provided by our ideal implementation.

The iteration constructor is either of static or dynamic nature depending on

whether the filter type specifies a constant for the iteration factor or a field. If the

iteration factor is a constant, then the iteration can be unfolded to yield a sequence,

which will be represented by a sequence constructor. If the iteration factor is a field

value, then the number of subfilters is dynamic, and so is the number of merge con-

straints to be generated. The mapping of filter type to object type with iterated

fields is similar to the mapping as shown for conditional subfilters.
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Object Type ConditionExample
source -+ ArrayThree
view -+ ListThree

subfilterl -+ IntegerIdentity
(source. label = NIL or view. label = NIL)

subfilter2 -+ IterationExample
constraint

subfilterl.source == source.label
subfilterl.view == view.label

PathExistence('subfilter2') and
(subfilter2.source == source.dependents)

PathExistence('subfilter2') and
(subfilter2.view == view.dependents)

end

Figure 5.3: Object Type for Condition Filter Constructor.

The iteration subfilter constructor can also be modelled by using recursion and

the mapping for the conditional subfilter constructor. Figure 5.4 shows a filter and

object type definition where the dynamic iteration is converted into a condition and

a recursive invocation. This example defines an object type whose instances have as

many subfilters as specified in the factor field. The example assumes that an

iterated field «some array» can respond to the selectors first and rest to

retrieve the first and remaining elements in the array like a list.
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Filter Type DynamicIteration (source:<some array>,view:<some array»
var

factor -+ Integer
make

iteration factor times i

IntegerIdentity (source[i], view[i])
end

Object Type DynamicIteration
source -+ <some array>
view -+ <some array>
factor -+ Integer
(factor> 0)

subfilter -+ IntegerIdentity
restfilter -+ DynamicIteration

constraint

(factor > 0) and
(factor > 0) and
(factor > 0) and
(factor > 0) and

(sub filter. source == source. first)

(sub filter. view == view. first)

(rest filter. source == source. rest)

(rest filter. view == view. rest)
end

Figure 5.4: Object Type for Iteration Filter Constructor.

5.3. ThingLab Implementation

The last section showed how the filter paradigm could be implemented easily

by mapping the filter types to object types under the assumption of an ideal (for our

filter paradigm) object system with a constraint-satisfaction system that handles

our notion of dynamic types and constraints. The implementation that is described

in this section uses ThingLab as the object and constraint-satisfaction system.

ThingLab does not fulfill all our needs, but we show how we realized an almost com-

plete implementation of our filter paradigm.
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ThingLab is an extension to the Smalltalk programming environment.

Smalltalk groups objects into classes that are part of a class hierarchy. Objects

that belong to a class are instances of that class. Classes define instance variables,

i.e., the fields an instance has, but there is no type information on what kind of

object can be stored in them. Classes also define class variables that hold values

that are common to all instances of a class.

ThingLab is a constraint-satisfaction system that extends Small talk classes to

Things that can have constraints defined for them. An instance of a Thing obeys

the constraints that are defined for the class that represents the Thing. A detailed

description of ThingLab can be found in Alan Borning's Ph.D. Thesis [Borning 79].

Instance variables for Things are called "parts". Parts extend Smalltalk

instance variables, in that the class stores field descriptions in class variables for

each part. The field description contains the field name of the instance variable6.

The field description is static, and does not feature iterated or conditional parts.

The field descriptions are used to support access paths and to provide information

about the fields content that can be used during constraint-satisfaction planning.

A prototype is a distinguished sample instance of a Thing. The prototype IS

used to infer the type of instance variables in instances of the Thing. Each Thing

must have a prototype and can be changed only through its prototype. The field

descriptions and the prototype establish a signature (see Section 3.1) that instances

of Things conform to: the field name is stored in the field description, the type of the

IIThe field description also contains a reference to a class that represents the type of the part,
but this field is not maintained correctly in the current version of ThingLab.
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field slot is deduced from the object that is stored in the corresponding instance

variable of the prototype. Therefore, we can only represent object types with a sin-

gle signature. The conditional and iterated fields that can be defined for object

types establish a union of signatures. This feature cannot be implemented directly

in the current version of ThingLab.

Constraints are defined for classes that represent Things and stored in class

variables. A constraint is defined with a Boolean predicate and fragments of

pseudo-code that specify how to maintain the constraint. The Boolean predicate

and the code fragments are expressed in terms of access paths and Smalltalk mes-

sages. All instances of a Thing have to obey the defined constraints. If an instance

is updated, then the code fragments are used to compile a Smalltalk method that is

executed to enforce the constraints. These constraints are static, and cannot be

defined conditionally or for a dynamic set of objects.

ThingLab distinguishes merges and constraints. Merges can be defined for

Things. Merges are expressed with access paths and are stored in class variables for

classes that represent Things. They express the fact that the two paths always

have to access the same object. ThingLab implements merges by sharing of objects.

Not all constraints that are used when mapping filter types onto object types

can be modelled by the current version of ThingLab. Conditional and iterative con-

straints are not supported in the current version of ThingLab, so we have provided

mechanisms to implement them directly in Smalltalk.
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5.3.1. Object Types as Things

This section describes the representation of object types in ThingLab. The

creation-time type of an object is modelled as a ThingLab class. Object fields are

modelled as instance variables, parts, of a Thing. Constraints and merges can be

defined on parts of a Thing. If a Thing has superclasses, then it inherits their parts,

constraints and merges. For example, consider the SetExampleThing in Figure

5.5. It lists the fields of the object type (see Figure 5.2) as parts. Our merge con-

straints are expressed directly as merges for ThingLab classes.

Iterated fields are not available for object types but could be simulated by

chosing an appropriate class for parts, e.g., class "Array." A conditional field can be

modelled by a part that exists but contains only a valid value if the condition is

true. ThingLab supports recursive Things, but because it requires a prototype for

0la88 SetExample
Supercla88

FilterPackThing
Part8

source: an ArrayTwo
view: a ListTwo

subfilter1: an Integerldentity
subfilter2: an IterationExample

Merge8
subfil ter1

subfilter1

subfil ter2

subfil ter2

source == source label
view == view label

source == source dependents
view == view dependents

Figure 5.5: Thing Definition for SetExample.
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each Thing, the depth of the recursion is always explicit. For example, it is possible

to define a tree Thing, but since its type is defined by the prototype it will be a tree

that has a specific height (0, 1, 2, ...).

Since type information is inferred from the prototype, there is another prob-

lem: if the prototype stores NIL in an instance variable, it means that anything

can be stored in it, i.e., it is of type "Object," which has all possible types as sub-

types, whereas the type of NIL is actually "UndefinedObject," which has no sub-

types.

Therefore, we cannot use the prototype to check the possible types for source

and view objects of a filter. Instead, we store the names of admissible types for

source and view in the Smalltalk class definition for a filter type. When a subfilter

is inserted into a constructed filter and connected to fields of source, view and vari-

ables, we check whether the source and view of the subfilter are of the correct type,

i.e., are supertypes of the object types of the fields to which they are to be con-

nected. Smalltalk has an explicit type hierarchy and can list all subtypes of a type

(types are classes in Smalltalk). With the explicit type definition for source and

view we produce a list of admissible types. We then check whether the type of the

field, inferred from the prototype, is an element in the list of admissible types.

The representation of object types as classes in ThingLab is a restricted ver-

sion of what we defined in Chapter 3. We could not model multiple signatures that

describe object types and are only using the explicit hierarchy information provided

by Smalltalk to type check the composition of filters.
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5.3.2. Filter Types as Things

Filter atoms can be viewed as instances of object types. These object types

can be represented by Things as shown in the previous section. In addition to equal-

ity and constraint filter atoms we provide implementation filter atoms that model

input and output. Input is modelled by filter atoms that sense input from the key-

board, detect the click of a mouse button, or locate the cursor. Output is modelled

by filter atoms that render objects onto the display screen. Additional filter atoms

can be defined easily in ThingLab to complete the list of interaction primitives

[Mallgren 83], such as picking, button selection, valuators and locators.

Filter types can be viewed as object types as described in Section 5.2 and then

represented as Things. The types that are allowed for source and view objects are

stored explicitly in the class definition for filters as references to Smalltalk classes.

When a subfilter is inserted into a filter type in step two of the filter browser, then

the types of the source and view objects are checked. The Smalltalk class hierarchy

is used to check the admissible types. This mechanism is provided by the Fi 1ter-

PackThing class, which is a superclass for all Things that represent filter types.

Figure 5.5 shows the SetExample Thing with its superclass F i 1terPackThing.

Since ThingLab does not provide a mechanism to handle conditional con-

straints, we had to implement a mechanism that simulates conditional merges. If a

subfilter is inserted in a filter type that uses a conditional subfilter constructor, then

code is compiled automatically that controls access to the object that makes up the

conditional expression. The compiled code checks the value of the conditional

expression whenever the value is accessed, and activates or deactivates the merges
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accordingly. This mechanism is rather slow since insertion or deletion of a merge

causes ThingLab to forget all previously compiled constraint satisfaction methods;

these methods have then to be recompiled.

ThingLab provides special mapping mechanisms that can impose a constraint

on dynamic objects. Such a mapping mechanism has three parameters: (1) a source

object, which is dynamic, i.e., its type is defined with a union of signatures; (2) a

view object, which is dynamic also and matches the structure of the source object;

(3) a filter type, instances of which are to be created for specific fields in the source

and view objects. Such a mapping mechanism really models two constraints: one

that enforces corresponding structure of the source and view object; the other that

connects the same fields in corresponding elements of the source and view object.

The TreeMapper, for example, relates label fields in two objects of type

BinaryTree with a given filter. It takes dynamic changes of either object into

account. If a subtree is added or deleted in one tree, then it is also deleted in the

other tree and the corresponding filter is added or deleted. Figure 5.6 shows the

filter type definition for a tree mapper that relates the integer labels in two binary

trees with Integerldenti ty filter atoms. This filter type is implemented with a

TreeMapper where the first and second parameter are the source and view objects,

and the third parameter is an Integerldentlty filter atom.

In the current version of ThingLab, only TreeMappers are provided, but

other mapping mechanisms, like reversing a tree or mapping two arrays of dynamic

length, could be easily added by writing the appropriate Smalltalk code. We under-

stand that the mapping mechanism limits the expressibility of the filter types. We



Object Type BinaryTree
label - Integer
left - BinaryTree

right - BinaryTree
end

Filter Type TreeMapper (source: BinaryTree view: BinaryTree)
make

condition (source notNi1 or view notNi1)
IntegerIdentity (source.label, view.label)
TreeMapper (source.left, view.left)
TreeMapper (source.right, view.right)

end

Figure 5.6: Filter Type for TreeMapper.

have a version of the filter browser that can construct iterated subfilters in step

two, but it cannot proceed to step three to instantiate the filter, since ThingLab

does not support dynamically adding or removing parts. Instead, our current ver-

sion of the filter browser uses the mapping mechanism. If the iteration subfilter

constructor is selected in step two (labelled "mapper" in this version), then the

inserted subfilter is imbedded in a mapping mechanism according to the type of the

source and view objects.

5.3.3. Manipulating Filter Types

The filter browser is an interface to the objects and Things that represent

filter types. It can create a filter type with its source and view object types, insert

variables and subfilters, and instantiate filter types to yield a test interface. The

filter browser is written in Smalltalk-80 using its Model-View-Controller paradigm

for user interfaces. The MVC paradigm has many problems, the biggest of which is



97

its lack of documentation. Other problems include [Deutsch 861: complicated

display updating; no strict separation of model, view and controller; insufficient

coordinate transformations and event handling. Smalltalk, however, guided the

modularization of our implementation into small pieces of code that are easy to

maintain. Much of previously written code from the Smalltalk or ThingLab browser

was reused. Slight disadvantages of Smalltalk are that (1) the dependencies among

program components are not always apparent, and (2) that system code that has

been changed by a user is not distinguishable from original system code. The second

point is a problem, since the user can with an inadvertent change made to system

code cause the Smalltalk system to behave totally different, but he and others are

not easily able to locate that change.

The filter browser is described in Chapter 4. Step one creates a Thing class, a

subclass of FilterPackThing, and stores the source and view types in class variables.

When creating a class in ThingLab the prototype is also created. Step two inserts

fields in ThingLab field descriptions for the subfilters and variables. Fields that are

added to the class definition are also added to the prototype. The field descriptions

have been subclassed with special descriptors for variables and subfilters to distin-

guish them from parts. When a subfilter is inserted, the type checking is done

according to the subfilter's source and view types and the prototypes of the fields

that it is inserted in. If the type checking is successful, then the merges are defined

for the Things that represent the filter type. For the "sequence" and "iteration"

("mapper") subfilter constructors, the merges are inserted directly into the

definition; for the "condition" constructor, code is compiled that will insert them at
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run-time.

Step three works on prototypes of the selected filter type and its source and

view object types. In step one and two the filter browser builds the prototype for

the Thing that represents the filter type. Special implementation filter atoms,

renderers and sensors are used to provide visualization and modification of a filter.

Renderer filter atoms are defined with a B1tmap as the view object type. Sensor

filter atoms are defined with an InputMed1um as the source object type. When

the filter browser switches to step three, it examines all subfilters of the selected

filter and detects all renderer and sensor filter atoms. The left pane of the filter

browser is used to simulate an instance of the B1tmap object type; the renderer

filter atoms display their source there. The mouse and keyboard of the workstation

are used to simulate an instance of InputMedium. If the user modifies his input

medium, e.g., pushes a button on the mouse, the sensor filter atom changes its view

field, thus invoking the constraint-satisfaction mechanism. After the constraints are

satisfied the renderer filter atoms examine their source objects again and display

them in the left pane of the filter browser to show their new values.

The right pane of the filter browser gives access to source, view and variable

parts within the selected filter type. Any part can be selected and inspected. The

inspection of a part opens a pane that shows the current value of the part. The

value can be changed, possibly invoking constraint-satisfaction. After the con-

straints are satisfied, the renderer filter atoms examine their sources again and

update the left pane of the filter browser.
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5.3.4. ThingLab Constraint Satisfaction

Each instance of a Thing obeys the constraints that are defined for it. If a

part within a Thing is changed then ThingLab compiles and executes a Small talk

method that enforces the constraints. This satisfaction method is saved and run

immediately whenever the same part is updated again. After the structure of a

Thing has been changed, i.e., parts, constraints or merges are added or deleted, all

previously defined satisfaction methods are deleted. This "compile-on-need"

mechanism leads to a rather slow behavior of the filter browser since it interactively

adds or deletes variables or subfilters within the filter type, causing any satisfaction

method to be discarded at each change.

The hand-coded conditional constraint causes the satisfaction methods to be

recompiled because it adds and removes merge constraints. Future versions of

ThingLab should address this problem, maybe by examining dependencies between

constrained objects to determine what satisfaction methods need not be recompiled

when the structure of a Thing is changed.

5.4. Comparison: First and SecondImplementation

Section 5.1 described our initial implementation. Our initial implementation

represented filter and object types as classes in Smalltalk. It did not provide a

graphical tool to manipulate this representation. Our main implementation

represented filter and object types in ThingLab and provided a graphical tool, the

filter browser, to build and maintain filter types. Both implementations represented
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and maintained constraints. This section tries to highlight their differing features.

The first implementation represented object types as Smalltalk classes without

constraints. Therefore objects could not have creation-time constraints enforced

directly. Filter types defined constraints on source and view objects by providing

update methods in case one of them was changed. Therefore to only way a con-

straint could be enforced on an object was that it had to occupy the source or view

slot of a filter or be a subpart of a source or view object.

Access control was done with object holders. Thus, changes to objects could

come from anywhere, and did not have to expressed as path down from the top-level

filter. This implementation could deal with any sharing of objects as values of mul-

tiple fields. Filter types did not have to define merge constraints, since the source

and view fields of subfilters were connected explicitly to existing objects when those

filters were created.

An object could have imposed constraints if it was part of a filter.

Constraint-satisfaction was done locally for each filter and the only global

constraint-satisfaction was done by propagation of values throughout a network of

connected filters.

A positive aspect of this implementation was that it could handle conditional

and iterative subfilters with dynamic creation and deletion of subfilters, since the

local constraint-satisfaction methods of the filters encoded this behavior explicitly.

A major drawback of this implementation was the lack of global planning for the

constraint-satisfaction, so that certain networks of filters could not be satisfied,

even so there existed a solution. Also, the filter types did not keep any type
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information about their source and view objects; therefore, there was no type check-

ing. The constraint-satisfaction procedure was slow, since only the local satisfaction

methods were compiled, while the propagation of values was achieved with depen-

dency chains kept by the object holders.

The ThingLab implementation represents object and filter types as Things,

thus allowing creation-time constraints for objects. All constraints, creation-time

and imposed, are satisfied by a by a global constraint-satisfaction mechanism that

is very powerful. Sharing of objects as values for multiple fields have to be

expressed with merge constraints. The merge constraints to connect subfilters are

maintained by ThingLab and are used during constraint-satisfaction planning.

Changes to objects have to be expressed via access paths. Constraints are satisfied

for all objects that are reachable from where the access path starts. Our implemen-

tation relied on the fact that all constraints in a constructed filter are local to the

filter, and that all changes are expressed with access paths that start at the top-

level filter. ThingLab's approach to constraint-satisfaction is global and monolithic,

i.e., for a given change it compiles all necessary resulting changes at once into satis-

faction methods. Once a satisfaction method is compiled, then the constraint-

satisfaction is very fast.

A drawback of the second implementation is that ThingLab does not support

dynamic types and constraints for conditional and iterated fields in objects and

filters. Our environment, the filter browser, managed to provide reasonable substi-

t utes.
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Summarizing, we can say that the first implementation lacked a global stra-

tegy to constraint-satisfaction and a notion of type. It provided dynamic con-

straints and showed that they are feasible. The second implementation lacks

dynamic types and constraints, but provided a very powerful global constraint-

satisfaction. The second implementation also provided a graphical tool to specify

and automatically generate interfaces. Some of the interfaces produced with the

second implementation are described in the next section.

5.5. Filters Defined With the Filter Browser

The following sections describe examples that have been defined with filter

types and the filter browser. They highlight different features of the filter para-

digm, such as dynamic behavior, input sensors and output renderers, the mapping

mechanism, the independence of interface and application, and the ability of the

filter paradigm to define complex interfaces, such as the filter browser itself. The

appendix lists the complete filter and object type definitions for all examples.

5.5.1. Master-Slave Filter

The Master-Slave filter demonstrates the use of the condition subfilter con-

structor and the filter atoms for sensing input and rendering output to the display

bitmap. Figure 5.7 shows the filter browser in step three. The left pane displays

two icons on the screen that are labelled with the text "Master" and "Slave". The

possible labels on each are "Master", "Slave" or "Colleague". The two icons can be

moved with the mouse. The icon labels change according to the relative position of
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Filter Browser (Version 2.1)

<source> Unesegment
<.polnt1 > Point
<.polnt2 > Point
<view> AlterDevlce
<.mouse> AlterMouse
< .bltmap > AlterBitmap
dlnesegment5> Unesegment
< .polnt1 > Point
< .point2> Point

Figure 5.7: Master - Slave Interface.

the two icons. The higher of the two icons displays "Master", the icon below

"Slave". If both icons are at the same level, then the label reads "Colleague" for

both of them.

We represent a person with an object of type LineSegmentwhere the first

point in the line models the location where the person will be displayed, and the

second point models the location of his colleague. Figure 5.8 shows the object and

filter type definitions. There are three filter types: MasterSlave,

PersonAtPoint and Relativity. The MasterSlave filter is defined for

source objects of type LineSegment and view objects of type Text. It uses three
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Object Type CenteredText
text - Text
location - Point

Object Type Personlcon
icon - Form
location - Point

end end

Filter Type MasterSlave (source: LineSegment, view: Text)
make

(source.pointl > source.point2)

TextEquality ( "Master", view)

(source.pointl = source.point2)

TextEquality ( "Colleague", view)

(source.pointl < source.point2)

TextEquality ( "Slave", view)
end

Filter Type PersonAtPoint (source: LineSegment, view: FilterDevice)
var

ct - CenteredText

pi - Personlcon
make

PointEquality (source.pointl, ct. location)

PointEquality (source.pointl, pi. location)
MasterSlave (source, ct. text)

PointSensor (source.pointl, view.mouse)

Renderer (ct, view.bitmap)
Renderer (pi, view.bitmap)

end

Filter Type Colleagues (source: LineSegment, view: FilterDevice)
var

Is - LineSegment
make

PersonAtPoint
PersonAtPoint

PointEquality
PointEquality

(source, view)

(Is, view)
(source. pointl,
(source. point2,

Is .point2)

Is.pointl)
end

Figure 5.8: Master - Slave Example.

condition constructors to set the view of type Text to either "Master", "Colleague"

or "Slave". Only one of the TextEqual ity subfilters is ever active, since the
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conditions are mutually exclusive. The PersonAtPointfilter is defined for source

objects of type LineSegment and view objects of type E"il terDevice. It

declares variable ct of type CenteredText and variable pi of type Personl-

con. The PersonAtPoint filter uses the PointSensor filter atom to set the

first point in the source LineSegment, which is the location where the person will

be displayed, to the location of the mouse. This filter also uses Renderer filter

atoms to copy the centered text and the person icon into the display bitmap, and a

MasterSlave subfilter to select the text for the icon label. The PersonAtPoint

filter is used to define the Relativi ty filter for two persons, each represented as

a LineSegment. The Relativity filter also defines Pointldenti ty

subfilters to identify one persons location as the location of the colleague.

5.5.2. Tree Manipulation Filter

The "Tree Manipulation" filter shows the dynamic behavior that can be

achieved with filters. Two binary trees with integer node labels are displayed on

the screen. Figure 5.9 shows the filter browser in step three displaying the two

binary trees. There is a filter defined between the two trees that expresses the con-

straints that both trees have the same structure and that the integer values for

corresponding labels differ by 1. For example, if the root node of the first tree holds

the integer 25 then the root node of the second tree holds the integer 26. This

AddlE" i 1ter is mapped over the tree using the TreeMapper construct in

ThingLab. Both trees can be moved on the screen by selecting a new location for

the root node. The left tree can be traversed. Initially the top node of the left tree

is selected. A pop-up menu is available that select one of the following actions for
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Filter Erowser (Version 2.1)
<source) flltert-ree-Node
<.value) Slnallinteger
<.location) Point
<.Iefb FllterTree Node
<.righb UndefinedObject
<.at) UndefinedObject
<view) FllterDevlce
<.mouse) FllterMouse
<.bltmap) FllterBltmap
<filterTreeNode4) FllterTreeN
<.value) Slnallinteger
<.Iocatlon) Point
<.Iefb FllterTreeNode
<.right) UndefinedObJect
<.ab UndefinedObJect

Figure 5.9: Tree Manipulation Filter.

the selected node:

- decrease value of node by 1,
- delete or create left and right subtrees,
-select father node, left or right subtree.

As values within the left tree are changed, the right tree is also updated. As sub-

trees are added to or deleted from the left tree the right tree is also changed

accordingly. The right pane of the filter browser in Figure 5.9 displays the parts of

the Thing that represents the filter type. All parts can be inspected and changed,

thus changing the display of the two trees in the left pane. The right tree can only

be changed in the right pane of the filter browser.
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5.5..3. Factory Simulation Filter

This filter has already been described in Chapter 2. It visualizes the simula-

tion of some workstations in a factory. This interface demonstrates that a filter

can be "plugged" onto existing data structures without disturbing the application.

This simulation application, however, is imbedded into the ThingLab class hierarchy

in order to be able to define constraints for the simulation objects. Figure 5.10

shows the filter browser in step three, displaying in the left pane the producer, the

two workstations and the consumer. The right pane lists the participating objects

filter Browser (Version 2.1)

<source> Siml'actoryNew
<.producer> SimProducerNew
<.ws,> SlmStationNew
<.ws2> SlmStationNew
<.consumer> SimCOnsumer
<view> AlterDevlce
<.mouse> AlterMouse
<.bltmap > AlterBltmap
<slmBarchartS> SimBarchart
<.dlvidend> Smallinteger
<.divlsor> SmaJllnteger
<.frame> Rectangle

Figure 5.10: Factory Simulation Filter.
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that can be inspected and changed.

5.5.4. Filter Browser as Filter Type

The filter browser is a user interface itself. It provides access to the Smalltalk

class hierarchy that models the filter types through the input and output media of a

graphical workstation. The application objects are the list of all filter types and

the list of all object types in the system. The presentation objects are the appear-

ance of these types on the workstation in the three steps. The filter browser can be

described by a filter, making it an instance of a filter type. This filter type is

defined to accept the Small talk and ThingLab class hierarchies as source and the

workstation with its input and output parts as view.

Object Type FilterMetaType

filterName -+ String

sourceType -+ Class

viewType -+ Class
end

Object Type FilterAtomMetaType
inherit from FilterMetaType

end

Object Type FilterPackMetaType

inherit from FilterMetaType

variables [] -+ FieldDescription

subfilters [] -+ SubfilterDescription
end

Figure 5.11: Filter Meta Types.
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Figure 5.11 shows some of the object types that have to be defined for the filter

type hierarchy as it is constructed by the filter browser. We included "meta" in

their object type names to distinguish them from the classes that they describe.

Newly defined filter types are instances of the F i 1terPackMetaType, which is a

subtype of the F i 1 terMetaType. F i 1terMetaType is the object type for all

filter types. The Fil terPackMetaType has fields for variable and subfilter

descriptions. The "[]" notation is a shorthand for an iterated field with variable

length. The Fil terPackMetaType inherits the fields fil terName, source-

Type and viewType from its supertype. These fields store the name of the filter

type and its admissible source and view object types. These fields are also inherited

by the Fil terAtomMetaType for the meta type of filter atoms. ,Any filter type

that is a filter atom will be a subtype of Fil terAtomMetaType and will add con-

straints that describe its atomic behavior.

Figure 5.12 shows the field descriptions for filter types. FieldDescription

IS the common supertype, which is defined and used in ThingLab. Sequence-

Constructor, ConditionConstructor and IterationConstructor are

subclasses of Sub fi 1terDescr iption and their instances can be inserted in the

subfil ters field of instances of type Fil terPackMetaType. The Sequence-

Constructor type is only used to distinguish filter field descriptions from

ThingLab field descriptions. The types for the field descriptions declare fields to

hold the merge constraints that are of type AccessPath. An AccessPath is a

list of field names. The merge constraints for a sequence constructor identify an

access path for the source and for the view field of the subfilter. For condition and
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Object Type FieldDescription
fieldName -+ String
fieldClass -+ Class

end

Object Type SubfilterDescription
inherit from FieldDescription

end

Object Type SequenceConstructor
inherit from SubfilterDescription

sourceMerge [] -+ AccessPath
viewMerge [] -+ AccessPath

end

Object Type ConditionConstructor

inherit from SubfilterDescription

sourceMerge [] -+ AccessPath
viewMerge [] -+ AccessPath
conditonMerge [] -+ AccessPath

end

Object Type IterationConstructor

inherit from SubfilterDescription
sourceMerge [] -+ AccessPath
viewMerge [] -+ AccessPath
factorMerge [] -+ AccessPath

end

Object Type AccessPath
fields [] -+ String

end

Figure 5.12: Filter Constructor Types.
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Filter Type FilterBrowser ( source: ClassList, view: FilterDevice)
var

filterType -+ FilterPackMetaType
step -+ Integer
selection -+ Integer

make

PopUpMenu (step, 'Step 1/Step 2/Step 3')
(step = 1)

PopUpMenu (selection, 'create/select')
(selection = 1)

NewFilter (filterType, view)
AddToList (source.filters.filterPacks, filterType)

(selection = 2)
SelectFilter (filterType, view)

ModifyTypes «source, filterType), view)
(step = 2 & filterType notNil)

ModifyFilter «source, filterType), view)
(step = 3 & filterType notNil)

InstantiateFilter (filterType, view)
end

Figure 5.13: FilterBrowser Filter Type.

iteration constructors there is an additional field to identify the condition or itera-

tion factor.

Figure 5.13 shows the definition of the Fi 1terBrowser filter type. It is

defined for a source object of type ClassList, which lists all existing object and

filter types, and a view object of type Fi1terDevice,which represents a worksta-

tion. Using a pop-up menu, one of the three steps of the filter browser can be

selected. A pop-up menu filter is a implementation filter atom that presents a menu

to the user when a mouse button is pressed. It constrains its source object to reflect

the selection from the list given by its view object. In step 1, either a new filter is
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created or an existing filter is selected and unified with the fll terType variable.

Step 1 can also change the admissible source and view object types for the selected

filter. Step 2 modifies the selected filter by adding or removing variables or

subfilter. Step 3 instantiates the selected filter.

k:, the filter type definition for the filter browser shows, we assume the

existence of many subfilters. These subfilters have to capture the behavior of the

filter browser, e.g., how it creates and modifies objects. Many of these subfilters

have to be implemented as filter atoms. Since the current implementation of

ThingLab has some performance problems, the filter browser was not re-

implemented in itself. The description here served to show that we can build filter

types that model such a complex interface as the filter browser. The appendix con-

tains more filter and object types for this filter type.



Epilogue

6.1. Summary

This thesis explored a new approach to constructing interfaces. It introduced

the filter paradigm, which uses the concepts of object, constraint and filter as build-

ing blocks. An object and filter model was defined that gives semantics to our

specification language for objects and filters, and that provides a terminology for

declaratively constructing structured interfaces. The language distinguishes object

and filter types, but for the implementation we showed how to represent filter types

as special cases of object types. Object types were implemented in an object-

oriented environment that supports constraints. Object types that represent filter

types can be manipulated with a graphical tool, the filter browser, which is an inter-

face to these special object types. Several examples were built using the filter

browser, showing the feasibility of this new approach to building interfaces.
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6.2. Conclusion

Our filter and object model that incorporates constraints is very powerful. It

was shown that it is expressive enough to declaratively specify interfaces and hide

the complex procedurality found in user interfaces in constraint-satisfaction. Inter-

faces are of dynamic nature: this has to be supported by the constraint system.

Our first implementation attempted to do the constraint-satisfaction directly in

Smalltalk but was limited in the strategies used for constraint-satisfaction. We

soon learned that a more complex solution was necessary.

Our current implementation uses ThingLab as an extension to Smalltalk.

ThingLab is an elegant system that has a powerful constraint-satisfaction mechan-

Ism. However, there were some drawbacks:

(1) ThingLab has a more limited notion of type than our filter paradigm. The

type information in ThingLab is represented by prototypes, which are static

instances and which cannot express type constructions such as condition,

dynamic iteration and recursion. Therefore, object types are limited to only

one signature for describing the set of all its instances. Filter types thus imple-

mented are therefore limited to only one configuration of the constraints they

represent. These limitations are the reason why our implementation usmg

ThingLab cannot express all the dynamic features of the filter paradigm.

(2) ThingLab compiles satisfaction methods on demand, i.e., when they are

invoked. This mechanism is slow. When the structure of the object types

changes, which is common when using the filter browser, these compiled satis-

faction methods have to be recompiled. Dynamic con5traint5 are not handled
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directly, which leads to handcoded additions that slow down the constraint

satisfaction even more.

(3) Each atomic constraint that is defined for ThingLab has to give its satisfaction

methods. ThingLab uses these method fragments to compile satisfaction code

for constraints that are build from these atomic constraints. ThingLab uses

some heuristics to deduce dependencies between different parts of an object for

which the constraints are defined. These dependencies are important when

filter atoms are defined. However, these dependencies are not stated explicitly

and require knowledge of the ThingLab implementation.

Based on our experience with the current version of ThingLab we propose the

following extensions to ThingLab:

(1) A facility to define iterated and structured parts, where the type information

is stored explicitly.

(2) Constraints that can be placed on a dynamic collection of instances and con-

straints that are satisfied depending on the dynamic value.

(3) Reuse of previously compiled satisfaction methods that are still valid after the

structure of a Thing has been changed.

Overall, our work has shown that constraints can be used to define interfaces.

The implementation of the filter paradigm showed the limits in our constraint-

satisfaction techniques. The next section will discuss whether the filter paradigm

could serve as the general interface mechanism in an object-oriented system.
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6.2.1. The Filter: A Paradigm for Interfaces!

We believe that our filter paradigm is powerful enough to express complex

interfaces. The specification of the filter browser interface as a filter type showed

that an interface can be decomposed using the filter paradigm, but that some of the

procedurality of the interface has to be captured by filter atoms. What we will dis-

cuss in this section is whether the filter paradigm could replace an existing interface

paradigm, such as the Smalltalk Model-View-Controller paradigm [Goldberg and

Robson 83]. The Small talk class browser [Goldberg 84] will serve as an example of

an interface that is implemented according to the MVC paradigm.

The MVC paradigm represents interfaces as a triple of a model, a view and a

controller. The model represents the application, the view the presentation, and the

controller the dialog control component. Communication between them is done

with certain standard Smalltalk messages, such as "update" that is send by the con-

troller to the view in order to redisplay it, or "aspect" that is sent by the view to

the model in order to retrieve to current model data. The kind of messages that

are sent depends on the nature of the interface that is modelled with an MVC tri-

pIe.

An interface is represented as one top-level MVC triple, which is decomposed

into sub-triples. All these MVC triples build a hierarchy where the leaf nodes imp le-

ment the specific behavior of the interface. There is a collection of basic triples

available in the Small talk environment, e.g., for views that display text, views that

display lists, or views that detect cursor clicks for switches.
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An example of an interface that is built according to the MVC paradigm, let

us consider the Small talk class browser. It represents an interface to all classes in

Smalltalk. Its presentation on the screen, the view, shows different levels of details

about the classes: the classes are organized in a tree structure; classes that are

related belong to a category; and classes have a collection of methods that are

grouped into protocols. Figure 6.1 shows the Smalltalk class browser view. It IS

decomposed into five panes. The top left pane lists all categories of classes. A

category can be selected and is then highlighted. In Figure 6.1 the category

"Numeric-Numbers" is selected. The next pane to the left shows the classes for the

------------
Numeric-Magnitudes Float

Fraction
Collections-Abstract Integer
Collections-Unordered LargeNegative Integer
Collections-sequenceabl LargePosltive Integer
Collections-Text Number
Collections-Arrayed Random
Collections-Streams SmallInteger
Collections-SUpport
Graphics-PrImitives _11~'''1I10[_ class

NameOfSUperclass subclass: #NameOfClass
InstanceVariableNames: 'InstVarName1 instVarName2'
classVariableNames: 'CassVarName1 CassVarName2'
pool Dictionaries: ..
category: 'Numeric-Numbers'

Figure 6.1: Smalltalk Class Browser.
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selected category, which, in this case, are all classes that are related to numbers.

The other three panes display their default content, which is either blank or a tem-

plate for a class definition, as in the bottom pane.

The Smalltalk class browser has a model that represents the organization of

all Smalltalk classes. The controller handles the input from the user and communi-

cates with model and view by sending messages to them. The top-level MVC triple

is decomposed into triples for the five panes of the browser presentation. The model

of the second pane is the list of classes within the selected category and an indicator

------------ ------------ ------------
Numeric-Magnitudes

. .
Collections-Abstract
COllections-Unordered LargeNegativelnteger
COliections-5equenceabl LargePositive Integer
COllections-Text Number
COliections-Arraved Random
COllections-Streams SmaJllnteger
COllections-SUpport
Graphics-Primitives _"L'''"'__ class
Number subclass: .Integer

InstanceVariableNames: II

cIassVariableNames: II

poolDlctionarles: II

category: 'Numeric-Numbers'

testing
comparing
arithmetic
truncation and round off
enumerating
factorization and dlvlslbll
bit manipulation
printing
converting
coercing

Figure 6.2: Class Selection.
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that tells which element in the list is selected. Initially there is no selection made.

If the user wishes to select a class within this list, he places the cursor on the

appropriate line and clicks a mouse button. The controller detects this input and

sends a message to the model indicating the user's selection. The model then

changes its selection indicator and notifies its dependents, e.g., its view, that it has

changed. The view then reexamines the model and redisplays the pane.

Figure 6.2 shows that the user has selected the "Integer" class. The selection

of the class caused changes in other parts of the interface. The third pane in the

top row now shows all the different protocols that are defined for the "Integer"

class. There are dependencies between different panes in the Smalltalk browser that

are maintained explicitly by the model by notifying depending views after a change

occurred.

Figure 6.3 shows the class browser where a method has been selected. The bot-

tom pane now displays the code for the selected method. The code can be changed

by the user, which causes the invocation of the Smalltalk compiler after the user

has accepted his changes. The compiler is not really part of the interface, but could

be considered as part of the application that the Small talk class browser represents,

i.e., defining classes.

If we want to represent such an interface with the filter paradigm we have to

consider these four aspects: (1) the decomposition of the interface into application,

control and presentation; (2) the decomposition of the interface into subcomponents,

e.g., for the five different panes; (3) the dependencies between the different com-

ponents; and (4) the application behavior that is part of the interface. The
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------------ ------------ ------------
Numeric-Magnitudes Roat

Fraction
testing

~
.

comparing gcd:
arithmetic Icm:
truncation and round off ------------
enumerating
it:TiI8J IIIr6:lt[tl.8'01Iulri

bit manipulation
printing
converting
coercing

Collections-Abstract
Collectlons- Unordered LargeNegativelnteger
Collectlons-Sequenceabl LargePositive Integer
Collections-Text Number
Collectlons-Arraved Random
Collections-Streams Smallinteger
Collections-SUpport
Graphics-PrImitives

Jactorial
"Answer the factorial of the receiver. For example. 6 factorial .. 68584838281.
Signal an error If the receiver is less than 0."

class

self > 0
IfTrue: [tself 8 (self - 1) factorial].

self . 0
IfTrue:[tn.

self error: 'factorial invalid for: ..self printStrlng

Figure 6.3: Method Definition.

following four paragraphs will address each of the four aspects.

(1) The filter paradigm represents the application (source), the control (filter), and

the presentation (view) as objects. The Smalltalk environment does not really

provide all aspects of the model as object, but rather calculates them as they

are requested by the controller or view. If we want to represent the Small talk

browser with filters, we would have to provide all aspects of the model as

objects. Small talk also provides a set of view classes that handle aspects such

as coordinate transformations or highlighting of certain areas within the view

automatically. For the filter paradigm we could provide a similar set of
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predefined object types where constraints could define aspects such as coordi-

nate transformations and highlighting.

(2) Filters can be constructed from subfilters to create a hierarchy. Leaf nodes in

this hierarchy are filter atoms that implement the specific behavior of the

interface. Some complex input and output behavior can be further decomposed

into subfilters as was shown by the simulation interface example in Chapter 2.

However, basic input/output sequences have to be modelled as filter atoms.

For example, consider a user who defines a new protocol for a class with the

Smalltalk browser. He selects the "add protocol" option from a pop-up menu;

the browser then prompts him for the name of the new protocol; the user then

types in the name and accepts the new name by typing a carriage return char-

acter; the browser then adds the new protocol to the list of defined protocols.

Such a behavior cannot be modelled by further decomposing filters and has to

be provided as a filter atom.

(3) In the filter paradigm source and view components of the interface do not have

to specify their dependencies explicitly. The dependencies are captured by con-

straints that are maintained by the constraint-satisfaction mechanism. For

example, if the selection indicator for the class list changes, then the filter that

is responsible for displaying the protocol of classes will detect a change in its

source object and will redisplay the correct list of protocols. Filters declare

the dependencies explicitly with constraints, taerefore, the source component

does not have to anticipate its view as has to be done in the MVC paradigm.
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(4) Specific behavior of an application should be factored out as much as possible

from the interface. However, the invocation of application specific functions is

part of an interface. The filter paradigm does not handle such procedural

behavior, since the constraints defined with filters can change only the state of

the source component, but not invoke procedures defined for the source com-

ponent. However, the filter paradigm offers the possibility to express applica-

tion behavior with constraints. It is conceivable to represent the Smalltalk

compiler as a constraint from a text to its machine-code representation. Such

constraints are certainly beyond the scope of this research.

In conclusion, we can say the filter paradigm has the potential to be used as

the major interface model in an object-oriented system, but that we need an imple-

mentation that supports its full expressibility. The current implementation lacks

the handling of dynamic lists, which is a major feature of the Small talk browser.

Also, in order to produce reasonable interfaces it also needs a well though-out set of

filter atoms and object types, and an extented filter browser.

6.3. Future Work

Some aspects of this research deserve further investigation. The areas are:

- textual extensions to the filter browser
- graphical extensions to the filter browser
-extension to the object type system
-different systems for constraint-satisfaction

The filter browser only provides one view of a filter type, but it could be

extended to include a textual view for the filter specification language. This view
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could accept the language as input to form the internal object structure and deduce

a graphical layout for it. The language could also be decompiled after the internal

object structure has been defined graphically in step two of the filter browser. This

textual view of the filter type representation is useful to the designer of an inter-

face, because it will give him a more structured view of the interface he is designing.

In addition, this textual view could be combined with a compiler that would optim-

ize the filter type representation.

Graphical extensions to the filter browser in step two are necessary. The net-

work of subfilters and variables becomes obscure as more elements are added.

Techniques that help manage the semantic information could be developed, such as

automatic layout of subfilters and variables, removal of line crossings, panning and

zooming of detail and look-up of participating filter and variable definitions. Also,

providing nesting for subfilter constructors would help manage the complexity of

filter types.

The object type system is implemented in the Smalltalk class hierarchy. The

type information for the source and view types of filters are stored explicitly. Other

type information is not stored but inferred from sample instances, prototypes.

Instead of adding more explicit type information in terms of class references, we

would like to represent the typing information as constraints: a field would be con-

strained to hold only objects of a specific type. The type information and the type

checking would then be handled by the constraint system.

Since our filter paradigm is dynamic in nature we will have to explore other

constraint systems. There are two relevant approaches published in the literature.
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One is based on term-rewriting [Leier 86], the other uses logic programming to solve

constraints [Jaffar and Lassez 871. Both approaches have features to express con-

straints conditionally.
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Appendices

The following appendices include the complete filter type definitions that were

used in examples throughout this dissertation. Appendix A describes the filter type

for the factory simulation interface described in Chapter 3. Appendix B defines the

filter type that was implemented with the tree mapper mechanism as described in

Chapter 5. Appendix C defines the filter and object types that define the filter

browser as an interface to the filter class hierarchy. Appendix D lists the object

types that are common to all of our examples. Appendix E contains a list of filter

atoms that are provided with our current implementation. Appendix F contains a

listing of the MasterSlave filter type (Chapter 5) that was produced with the "file-

out" mechanism of the filter browser.
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A. Factory Simulation

The interface to a factory simulation was used as introduction to the concepts

of our filter paradigm. This interface visualizes the flow of products from a pr~

ducer through two work stations to a consumer. The user can manipulate the simu-

lation by varying the rate of productivity of the producer and by adding or remov-

ing workers from work stations. The FactorySimulation filter type is the top

level filter that defines this interface. It decomposes the source and view objects

and establishes subfilters, like StationFilter, ProducerFilter, Consumer-

Render and BarChart for them.

rilter Type FactorySimulation ( source: Factory, view: Device)
var

part[4] -+ Device
make .et of

ProducerFilter (source.producer, part[l])

StationFilter (source.wsl, part[2])

StationFilter (source.ws2, part[3])

ConsumerFilter (source.consumer, part[4])
iteration 4 time. i

Extract (part[i), view)
end

Object Type Producer

productivity -+ Integer

produced -+ Integer
end

Object Type Station

numberOfWorkers -+ Integer

workers [numberOfWorkers] -+ Worker

inNumber -+ Integer

inQueue [inNumber] -+ Queue

con.traint LessThan (numberOfWorkers, 3)
end
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Objeot ~e Consumer

consumed -+ Integer
end

Objeot ~e Factory

producer -+ Producer
wsl -+ Station

ws2 -+ Station

consumer -+ Consumer

end

Objeot Type Worker

inherit from Person

salary -+ Integer

throughput -+ Integer
end

Objeot ~e Apprentice
inherit from Worker

level -+ Integer
end

Objeot ~e Expert
inherit from Worker

years -+ Integer
end
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rilter Type StationFilter (source: Station, view: Device)
var

left, part[2] -+ Bitmap

workerDetected [2] -+ Boolean

selection -+ Integer

expert -+ Expert

apprentice -+ Apprentice
make .et of

QueueRender (source. inN umber , left)

Extract (left, view)
iteration 2 time. i

WorkerRender (source.worker[i], part[i])

Extract (part[i], view)

DetectCursor (part[i], workerDetected[i])

oondition workerDetected[i]

oondition source.worker[i] isNil

PopUpMenu (selection, "Expert, Apprentice")
oondition selection = 1

Equality (expert, source.worker[i])
oondition selection = 2

Equality (apprentice, source.worker[i])

oondition source.worker[i] notNil

Equality (NIL, source.worker[i])
end

Objeot Type Gauge

number -+ Integer

needle -+ LineSegment
end

rilter Type ProducerRender (source: Producer, view: Device)
var

gauge -+ Gauge
make .et of

IntegerEquality (source.productivity, gauge.number)

Render (gauge, view.output)

PointSensor (gauge.needle.point2, view.input)
end
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rilter Type ConsumerFilter (source: Consumer, view: Device)
var

ct -+ CenteredText

make .et of

Render (source, view.output)

IntegerStringConversion (source.consumed, ct.text)

Render (ct, view.output)
end
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B. Manipulating Trees

Two trees are used to illustrate the tree mapper mechanism. The trees are

defined recursively and have an integer label at each node. The filter type defines

that all nodes from one tree are connected to the corresponding nodes in the other

tree with AddlFi 1ter filters. The two trees are displayed on the bitmap of the

workstation and can be moved with the mouse cursor. The left tree can be

traversed with a TraverseTreefilter that walks the tree depending on selections

from a pop-up menu and can add or delete subtrees. This filter type was imple-

mented with the filter browser using the mapper mechanism.

Object Type BinaryTree

value -+ Integer
location -+ Point

left -+ BinaryTree

right -+ BinaryTree
end

~i1ter Type TreeManipulation (source: BinaryTree, view: BinaryTree)
var

device -+ Device

make .et of

TreeRender (source, device.output)

TreeRender (view, device.output)

PointSensor (source.location, device.input)

PointSensor (view.location, device.input)

TreeNodeAdder (source, view)

TreeTraverse (source, device)
end
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Filter Type TreeRender (source: BinaryTree, view: Bitmap)
make set of

NodeRender (source, view)
oondition source. left notNil

LineRender «source. location, source. left.location) , view)

NodeRender (source.left, view)
oondition source.right notNil

LineRender «source. location, source.right.location) , view)

NodeRender (source.right, view)
end

Filter Type NodeRender (source: BinaryTree, view: Bitmap)
var

ct -+ CenteredText

make set of

IntegerTextConversion (source.value, ct.text)

PointEquality (source.location, ct.location)

Render (ct, view)
end

Filter Type TreeNodeAdder (source: BinaryTree, view: BinaryTree)
make

oondition source notNil and view notNil

AddlFilter (source.value, view.value)

TreeNodeAdder (source.left, view. left)

TreeNodeAdder (source.right, view.right)
end



~ilter Type TreeTraverse (source: BinaryTree, view: Device)
var

newTree -+ BinaryTree (value +- 0)

selection -+ Integer
make .et of

oondition source notNil

PopUpMenu (selection, 'Left/Right/Add Left/Add Right/

Delete Left/Delete Right')
oondition selection = 1

TreeTraverse (source.left, view)
oondition selection = 2

TreeTraverse (source.right, view)
oondition selection = 3

Equality (source.left, newTree)
oondition selection = 4

Equality (source.right, newTree)
oondition selection = 5

Equality (source.left, NIL)
oondition selection = 6

Equality (source.right, NIL)
end
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C. Filter Browser Filter Type

The FilterBrowser filter type defines an interface to the object and filter class

hierarchy as implemented in ThingLab and Small talk. The object type definitions

use the shorthand «[]" to denote an iterated field of variable length where the

length is stored in an implicit count field.

Object Type ClassL~st

objects [] -+ Class
f~lters -+ F~lterClassL1st

end

Objeot Type F11terClassL1st

f11terAtoms [] -+ F11terAtomMetaType

f11terPacks [] -+ F11terPackMetaType
end

Objeot Type F~lterMetaType

f11terName -+ Str1ng

sourceType -+ Class

v~ewType -+ Class
end

Object Type F11terAtomMetaType

inherit from F11terMetaType
end

Objeot Type F11terPackMetaType

inherit from F11terMetaType

variables [] -+ F1eldDescr1pt1on

subf11ters [] -+ Subf11terDescr1pt1on
end

Objeot Type FieldDescr1pt1on

fieldName -+ String

fieldClass -+ Class

end
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O~jeot Type Sub!11terDescr1pt1on

inherit ~rom F1eldDescr1pt1on
end

O~jeot Type SequenceConstructor

inherit ~rom Sub!11terDescr1pt1on

sourceMerge [] -+ AccessPath
v1ewMerge [] -+ AccessPath

end

O~jeot Type Cond1t1onConstructor

inherit from Subf11terDescr1pt1on

sourceMerge [] -+ AccessPath

v1ewMerge [] -+ AccessPath
cond1tonMerge [] -+ AccessPath

end

O~jeot Type Iterat1onConstructor

inherit from Subf1lterDescr1pt1on

sourceMerge [] -+ AccessPath

v1ewMerge [] -+ AccessPath

factorMerge [] -+ AccessPath
end

O~ject Type AccessPath

f1elds [] -+ Str1ng

end



rilter Type FllterBrowser ( source: ClassLlst, vlew: FllterDevlce)
var

make

end

fllterType -+ FilterPackMetaType

step -+ Integer

selectlon -+ Integer

PopUpMenu (step, 'Step 2/Step 2/Step 3')

oondition (step = 1)

PopUpMenu (selection, 'create/select')

oondition (selection = 1)

NewFilter (filterType, vlew)

AddToLlst (source.filters.filterPacks, filterType)

oondition (selection = 2)

SelectFilter (filterType, view)

ModlfyTypes «source, filterType), vlew)

oondition (step = 2)

ModlfyFllter «source, filterType), view)

oondition (step = 3)

InstantlateFilter (fllterType, view)

rilter Type NewFllter (source: FilterPackMetaType, vlew: FllterDevlce)
var

ma.ke

end

fllter -+ FllterPackMetaType (filterName +- 'NewFllter'

sourceType +- Bottom

vlewtype +- Bottom)

FllterEquallty (filter, source)

StrlngSensor (source.filterName, view.input)
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~ilter Type ModifyTypes(source: (ClassList.FilterPackMetaType).viev:FilterDevice)
var

uppers. lovers -+ Bitmap

selection -+ Integer

part[) -+ Bitmap

detected[) -+ Boolean
make

ExtractHorizontal «viev.output. (0.0.1».

ExtractHorizontal «viev.output. (0.1.1».

Render (source.second.filterName. uppers)

RenderList (source.first.objects. (lovers.parts»
iteration source.first.count times n

DetectCursor (part[n). detected[n)
oondition detected

PopUpMenu (selection. "source/viev")
condition selection = 1

Equality (source.second.sourceType.source. first.objects [n)
oondition selection = 2

Equality(source.second.vievType.source.first.objects[n])

uppers)

lovers)

end
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~ilter Type Mod1fyF11ter(source: (ClassL1st,F11terPackMetaType),v1ew:F1lterDevice)
var

left, m1ddle, r1ght -+ B1tmap

subf11ters[), var1ables[), selectables[) -+ B1tmap
tobeInserted, sourceVar, v1ewVar, iterVar, condVar -+ Class

selected[), subSelected[), varSelected[) -+ Boolean

select10n -+ Integer

newF1eld -+ F1eldDescription
make

ExtractVert1cal «v1ew.output, (0,0.3», left)

ExtractVert1cal «v1ew.output, (0.3,0.6), m1ddle)

ExtractVert1cal «view.output, (0.6,1), right)

RenderList (source.second.subfilters, (left, subfilters»

RenderList (source.second.variables, (middle, variables»

RenderList (source.f1rst, (right, selectables»
iteration selectables.count times i

DetectCursor (selectables[n), selected)

Equality (source. first [i) , tobeInserted)

condition tobeInserted isFilterType

PopUpMenu (selection, "source/view/iteration/condition")
iteration variables. count times n

DetectCursor (variables[n), varSelected[n)

condition varSelected[n)
condition selection = 1

Equality(source.f1rst.objects[n), sourceVar)
condition selection = 2

Equality(source.f1rst.objects[n), viewVar)
condition selection = 3

Equality(source.first.objects[n), iterVar)
condition selection = 4

Equality(source.first.objects[n), condVar)
CreateSubf11terConstructor(

(sourceVar,viewVar,iterVar,condVar), newField)

AddToList (source.second.subf11ters, newField)

condition tobeInserted isObjectType

CreateF1eldDescript1on (tobeInserted, newF1eld)

AddToL1st (source.second.var1ables, newF1eld)
iteration subf11ters.count times n

DetectCursor (subf11ters[n), subSelected[n)

condition subSelected[n)

PopUpMenu (selection, "delete")
condition selection = 1

RemoveFormList(source.second.subfilters,

subf11ters[n)

iteration variables.count times n



DetectCursor (variables[n), varSelected[n)

oondition subSelected[n)

PopUpMenu (selection, "delete")
oondition selection = 1

RemoveFormList(source.second.variables,

variables[n)
end
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7ilter Type CreateSubfilterConstructor(source:Object[4),view:SubfiIterDescription)
make .et of

oondition source[3) notNil

CreateObjectInstance

Equality (source [3) ,

oondition source[4) notNil

CreateObjectInstance ("ConditionConstructor", view)

Equality (source[4), view.conditionMerge)
oondition source[3) isNil and source[4) isNil

CreateObjectInstance ("SequenceConstructor", view)

Equality (source[1), view.sourceMerge)

Equality (source[2), view.viewMerge)

("Iteration Constructor" , view)

view.factorMerge)

end

7ilter Type InstantiateFilter (source: Fi,IterPackMetaType view: FilterDevice)
var

filterInstance, source Instance , viewInstance -+ Object
make

CreateObjectInstance

CreateObjectInstance

CreateObjectInstance
CreateFilterInstance

(source, filterInstance)

(source.sourceType, source Instance)

(source.viewType, viewInstance)

(sourceInstance, viewInstance)
end
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D. Object Types

Objects are constructed from atomic values that can be of type Integer,

Character, Boolean or B1 t. Object types Str 1ng and Text are represented

as an array of characters. In addition our implementation gives the types Mouse

and B1tmap. The following common object types were used in the previous sec-

tions. These object types are defined in the current implementation of the filter

browser. They are represented as Things in ThingLab.

A device models the workstation and has an input and output medium.

The input medium is a mouse, the output medium a display bitmap.

Object Type Device

input - Mouse

output - Bitmap
end

A centered text centers a text around a location when it is

copied into a bitmap.

Object Type CenteredText

location- Point
text - Text

end

An interval has two elements.

Object Type Interval

low - Integer

high - Integer
end
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E. Implementation Filter Atoms

The following filter atoms were used in the previous examples. They are

defined as Things in ThingLab and have constraints associated with them.

Filter Type IntegerEquality (source: Integer, view: Integer)

Filter Type PointEquality (source: Point, view: Point)

equality filter atoms

Filter Type PointSensor (source: Point, view: Mouse)

reflects the location of the mouse in a point

Filter Type TextSensor (source: Text, view: InputMedium)

Filter Type StringSensor (source: String, view: InputMedium)
inputs a text into source

Filter Type Render (source: Object, view: Bitmap)

copies a source object into the view bitmap

Filter Type LineRender (source: LineSegment, view: Bitmap)

copies a source line into the view bitmap

Filter Type RenderList (source: Object[], view: (Bitmap[], Bitmap»

copies a list of source objects into the subparts

of the second part of the view pair

Filter Type IntegerTextConversion (source: Integer, view: Text)
converts integers into text and vice versa

Filter Type IntegerDivide (source: (Integer, Integer), Integer)

divides first element of source pair by second giving view

Filter Type AddlFilter (source: Integer, view: Integer)
view is one more than source

Filter Type AddToList (source: Object[], view: Object)

adds view object to list of source objects

Filter Type RemoveFromList (source: Object[], view: Object)

removes view object from list of source objects

Filter Type TextConcat (source: (Text, Text), view: Text)

concatenates the source text pair into the view text

Filter Type ExtractHorizontal (source: (Bitmap, Interval), view: Bitmap)

horizontally extracts part from bitmap in source

that is specified by the source interval into view bitmap

Filter Type ExtractVertical (source: (Bitmap, Interval), view: Bitmap)

vertically extracts part from bitmap in source
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that is specified by the source interval into view bitmap

~ilter Type PopUpMenu (source: Integer, view: Text)

selects option from list specified in view text

~ilt.r Type DetectCursor (source: Bitmap, view: Boolean)

indicates whether the cursor is within bitmap

~ilt.r Type GaugeSensor (source: Gauge, view: Integer)

sets view integer according to location of gauge needle

~ilter Type BarChart (source: (Integer, Integer), view: Bitmap)

displays barchart in view bitmap specified by source

~ilt.r Type CreateFieldDescription (source: Object, view: FieldDescription)

creates a field description view object for the source object

~ilter Type CreateObjectInstance (source: Class, view: Object)

creates an instance (prototype) of the source class
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F. Master-Slave Filter

This listing of the MasterSlave filter type was filed out from the filter browser.

If this text is filed in by Small talk, then it will produce the same filter type that can

be used by the filter browser.

"From Smalltalk-80 version T2.2.0, of March 13, 1986 on 15 July 1987 at 1:56:07 pm" I

"Filed out from Filter Browser (Version 2.1) of Saturday, June 27, 1987"1

ThingLabObject subclass: #CenteredText

instanceVariableNames: 'text center

classVariableNames: "

poolDictionaries: "

category: 'Prototypes't

ICenteredText methodsFor: 'showing'l

showPicture: medium

I para cr I

para _ text asParagraph.

cr _ para compositionRectangle.

para displayOn: medium at: center - (cr width / 2@ -4).

(cr expandBy: 2) showPicture: medium I I

CenteredText prototype parts: 'center text 'I

IText lookupClassl

CenteredText prototype instVarAt: 1 put:

(Text string: 'text' runs: (RunArray runs: 1(4 ) values: 1(1 ») 1

IPoint lookupClassl

CenteredText prototype instVarAt: 2 put: (Point x: 25 y: 10)1

Constraint owner: CenteredText prototype

rule: 'self stay'

methods: I(

'sel f stay')
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priority: (ConstraintPriority at: #default) 1

CenteredText prototype performAllMergesl

ThingLabObject subclass: #PersonIcon

instanceVariableNames: 'point

classVariableNames: 'PictureForm

poolDictionaries: "

category: 'Prototypes'l

IPersonIcon methodsFor: 'quickCompile'!

enclosingFrameOrNil

I tl t2 I

tl _ point + PictureForm offset extent: PictureForm width 0 PictureForm height.

t2 super enclosingFrameOrNil.

t2 -- nil

if True: [Atl]

if False : [Atl merge: t2] I

showPicture: tl

auper ahowPicture: tl.

PictureForm

displayOn: tl

at: point

rule: Form paintl I

PersonIcon prototype primitives: 'point 'I

#Point lookupClassl

PersonIcon prototype instVarAt: 1 put: (Point x: 80 y: 80)1

Constraint owner: PersonIcon prototype

rule: 'self stay'

methods: # (

'self stay')

priority: (ConstraintPriority at: #default) I

PersonIcon prototype performAllMergesl
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FilterAtomTbing subclass: #FaHasterSlave

instanceVariableNames: "
classVariableNames: ,t

poolDictionaries: "

category: 'Filter-Atoms"

'FaMasterSlave metbodsFor: 'all"

check

«source pointl y) > (source point2 y» ifTrue: [

.self view = 'slave' asText

].

«source pointl y)

.self view

(source point2 y» ifTrue: [

'colleague' asText

].

«source pointl y) < (source point2 y» ifTrue: [

.self view: 'master' asText

].

getText

«source pointl y) > (source point2 y» ifTrue: [

.'slave' asText

] .

«source pointl y) = (source point2 y» ifTrue: [

.'colleague' asText

].

«source pointl y) < (source point2 y» ifTrue: [

.'master' asText

] ., ,

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ",

FaHasterSlave class

instanceVariableNames: "I

IFaHasterSlave class methodsFor: 'initialize class'l

initializePrototype

"initialize tbe prototype"
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Constraint owner: self prototype

rule: 'self check'

methods: #('self primitiveSet.view: self getText'

'source point1 referenceOnly'

'source point2 referenceOnly') .

self prototype performAllMerges.

"FaMasterSlave initializePrototype"l I

FilterPackThing subclass: #PersonAtPoint

instanceVariableNames: 'centeredText4 personlcon5 faPointEquality6

faPointEquality7 faPointSensorS faRender9 faRender10 faMasterSlave11

classVariableNames: "

poolDictionaries: "
category: 'FilterPrototypes'l

PersonAtPoint sourceType: #LineSegmentl

PersonAtPoint viewType: #FilterDevicel

PersonAtPoint prototype parts: 'source view 'I

PersonAtPoint prototype variables: 'centeredText4 personlcon5 'I

PersonAtPoint prototype subfilters: 'faMasterSlave11 faPointEquality6

faPointEquality7 faPointSensorS faRender10 faRender9 'I

PersonAtPoint prototype primitives: 'picture 'I

PersonAtPoint prototype instVarAt: 1 put:

(LineSegment basicNew instVarAt: 1 put:

(Point x: 270 y: 143); instVarAt: 2 put: (Point x: 50 y: 20); yourself) I

PersonAtPoint prototype instVarAt: 2 put:

(FilterDevice basicNew instVarAt: 1 put:

(FilterMouse basicNew yourself); instVarAt: 2 put: nil; yourself) I

PersonAtPoint prototype instVarAt: 3 put:

«Dictionary new)

add: (Association basicNew instVarAt: 1 put: 4; instVarAt: 2 put:

self sourceType: #LineSegment.

self viewType: #Text.

self prototype parts: 'source view '

self prototype pritives: 'picture
,

self prototype instVarAt: 1 put: (110 line: 50@50).

self prototype instVarAt: 2 put: 'master' asText.

self prototype instVarAt: 3 put: nil.



(Point x: (215/634) y: (176/359»; yourself);

add: (Association basicNew instVarAt: 1 put: 5; instVarAt: 2 put:

(Point x: (232/317) y: (87/359»; yourself);

add: (Association basicNew instVarAt: 1 put: 11; instVarAt: 2 put:

(Point x: (50/317) y: (140/359»; yourself); yourself) I

PersonAtPoint prototype instVarAt: 4 put:

(CenteredText basicNew instVarAt: 1 put:

(Text string: 'master' runs: (RunArray runs: #(6 ) values: #(1 »);

instVarAt: 2 put: (Point x: 270 y: 143); yourself) I

PersonAtPoint prototype instVarAt: 5 put:

(PersonIcon basicNew instVarAt: 1 put: (Point x: 270 y: 143); yourself) I

PersonAtPoint prototype instVarAt: 6 put:

(FaPointEquality basicNew inscVarAt: 1 put:

(Point x: 270 y: 143); instVarAt: 2 put:

(Point x: 270 y: 143); instVarAt: 3 put: nil; yourself) I

PersonAtPoint prototype instVarAt: 7 put:

(FaPointEquality basicNew instVarAt: 1 put:

(Point x: 270 y: 143); instVarAt: 2 put:

(Point x: 270 y: 143); instVarAt: 3 put: nil; yourself) I

PersonAtPoint prototype instVarAt: 8 put:

(FaPointSensor basicNew instV~rAt: 1 put:

(Point x: 270 y: 143); instVarAt: 2 put:

(FilterMouse basicNew j'vurself); instVarAt: 3 put: nil; yourself)'

PersonAtPoint prototype instVarAt: 9 ;,~t:

(FaRender basicNew instVarAt: . put:

(CenteredText basicN~~ instVarAt: 1 put:

(Text string: 'master' runs: (RunArray runs: #(6 ) values: #(1 »);

instVarAt: 2 put: (Point x: 270 y: 143); yourself); instVarAt: 2

put: nil; instVarAt: 3 put: nil; yourself) I
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(Point x: (236/317) y: (121/359»; yourself);

add: (Association basicNew instVarAt: 1 put: 6; instVarAt: 2 put:

(Point x: (211/634) y: (75/359»; yourself);

add: (Association basicNew instVarAt: 1 put: 7; instVarAt: 2 put:

(Point x: (251/634) y: (134/359»; yourself);

add: (Association basicNew instVarAt: 1 put: 8; instVarAt: 2 put:

(Point x: (135/317) y: (28/359»; yourself);
add: (Association basicNew instVarAt: 1 put: 9; instVarAt: 2 put:

(Point x: (359/634) y: (67/359»; yourself);
add: (Association basicNew instVarAt: 1 put: 10; instVarAt: 2 put:
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PersonAtPoint prototype instVarAt: 10 put:

(FaRender basicNev instVarAt: 1 put: (PersonIcon basicNev in.tVarAt: 1 put:

(Point x: 270 y: 143); yourself); instVarAt: 2 put: nil;

instVarAt: 3 put: nil; yourself) I

PersonAtPoint prototype instVarAt: 11 put:

(FaMasterSlave basicNev instVcrAt: 1 put:

(LineSegment basicNev instVarAt: 1 put: (Point x: 270 y: 143);

instVarAt: 2 put: (Point x: 50 y: 20); yourself); instVarAt: 2 put:

(Text string: 'master' runs: (RunArray runs: #(6 ) values: #(1 »);

instVarAt: 3 put: nil; yourself)!

Constraint owner: PersonAtPoint prototype

rule: 'self stay'

methods: # (

'self stay')

priority: (ConstraintPriority at: #default)!

Constraint owner: PersonAtPoint prototype

rule: 'source stay'

methods: #(

'source stay')

priority: (ConstraintPriority at: #default) I

Constraint owner: PersonAtPoint proto'..]'pe

rule: 'view stay'

methods: #(

'view stay')

priority: (ConstraintPriority at: #default)!

Constraint owner: PersonAtPoint prototype

rule: 'picture stay'

methods: #(

'picture stay')

priority: (ConstraintPriority at: #default) I

PersonAtPoint prototype merge: #( 'so~rce point1' 'faPointEquality6 source')!

PersonAtPoint prototype merge: # ( 'c<>"teredText4 center' 'faPointEquali ty6 view') !

PersonAtPoint prototype merge: #( 's0"rce point1' 'faPointEquality7 source') I

PersonAtPoint prototype merge: #( 'p~'sonIcon5 point' 'faPointEquality7 view')!

PersonAtPoint prototype merge: #( 's0~rce pointl' 'faPointSenaor8 source') I



PersonAtPoint prototype merge: #( 'view mouse' 'faPointSensor8 view') I

PersonAtPoint prototype merge: #( 'centeredText4' 'faRender9 source')'

PersonAtPoint prototype merge: #( 'view bitmap' 'faRender9 view') I

PersonAtPoint prototype merge: #( 'personlconS' 'faRender10 source')'

PersonAtPoint prototype merge: #( 'view bitmap' 'faRender10 view') I

PersonAtPoint prototype merge: I( 'source' 'faMasterSlave11 source') I

PersonAtPoint prototype merge: #( 'centeredText4 text' 'faMasterSlave11 view') 1

PersonAtPoint prototype performAllMergesl

FilterPackThing subclass: #Relativity

instanceVariableNames: 'lineSegment4 personAtPointS personAtPoint6

faPointEquality7 faPointEquality8 '

classVariableNames: "

poolDictionaries: "

category: 'FilterPrototypes'1

Relativity sourceType: #LineSegmentl

Relativity viewType: #FilterDevicel

Relativity prototype parts: 'source view 'I

Relativity prototype variables: 'lineSegment4 "

Relativity prototype subfilters: 'faPointEquality7 faPointEquality8

personAtPoint5 personAtPoint6 'I

Relativity prototype primitives: 'picture "

Relativity prototype instVarAt: 1 put: (LineSegment basicNew instVarAt: 1 put:

(Point x: 30 y: 30); instVarAt: 2 put: (Point x: 50 y: 20); yourself)'

Relativity prototype instVarAt: 2 put: (FilterDevice basicNew instVarAt: 1 put:

(FilterMouse basicNew yourself); instVarAt: 2 put: nil; yourself) 1

Relativity prototype instVarAt: 3 put: «Dictionary new)

add: (Association basicNew instVarAt: 1 put: 4; instVarAt: 2 put:

(Point x: (73/634) y: (200/359»; yourself);

add: (Association basicNew instVarAt: 1 put: 5; instVarAt: 2 put:

(Point x: (579/1268) y: (79/359»; yourself);
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add: (Association basicNew in.tVarAt: 1 put: 6; instVarAt: 2 put:

(Point x: (637/1268) y: (144/359»; yourself);

add: (Association basicNew instVarAt: 1 put: 7; instVarAt: 2 put:

(Point x: (205/634) y: (114/359»; yourself);

add: (Association basicNew instVarAt: 1 put: 8; instVarAt: 2 put:

(Point x: (66/317) y: (152/359»; yourself); yourself)!

Relativity prototype in.tVarAt: 4 put:

(LineSegment basicNew instVarAt: 1 put:

(Point x: 30 y: 30); instVarAt: 2 put: (Point x: 50 y: 20); yourself)!

Relativity prototype instVarAt: 5 put: (PersonAtPoint basicNew instVarAt: 1 put:

(LineSegment basicNew instVarAt: 1 put: (Point x: 30 y: 30); instVarAt: 2 put:

(Point x: 50 y: 20); yourself); instVarAt: 2 put:

(FilterDevice basicNew instVarAt: 1 put: (FilterMouse basicNew yourself);

instVarAt: 2 put: nil; yourself); instVarAt: 3 put: nil; instVarAt: 4 put:

(CenteredText basicNew instVarAt: 1 put: (Text string: 'master' runs:

(RunArray runs: #(6 ) values: #(1 »); instVarAt: 2 put:

(Point x: 270 y: 143); yourself); instVarAt: 5 put: (PersonIcon basicNew

instVarAt: 1 put: (Point x: 270 y: 143); yourself); instVarAt: 6 put:

(FaPointEquality basicNew instVarAt: 1 put: (Point x: 30 y: 30); instVarAt: 2 put:

(Point x: 270 y: 143); instVarAt: 3 put: nil; yourself); instVarAt: 7 put:

(FaPointEquality basicNew instVarAt: 1 put: (Point x: 30 y: 30); instVarAt: 2 put:

(Point x: 270 y: 143); instVarAt: 3 put: nil; yourself); instVarAt: 8 put:

(FaPointSensor basicNew instVarAt: 1 put: (Point x: 30 y: 30); instVarAt: 2 put:

(FilterMouse basicNew yourself); instVarAt: 3 put: nil; yourself); instVarAt: 9 put:

(FaRender basicNew instVarAt: 1 put: (CenteredText basicNew instVarAt: 1 put:

(Text string: 'master' runs: (RunArray runs: #(6 ) values: #(1 »); instVarAt: 2 put:

(Point x: 270 y: 143); yourself); instVarAt: 2 put: nil; instVarAt: 3 put: nil;

yourself); instVarAt: 10 put: (FaRender basicNew instVarAt: 1 put: (PersonIcon basicNew

instVarAt: 1 put: (Point x: 270 y: 143); yourself); instVarAt: 2 put: nil;

instVarAt: 3 put: nil; yourself); instVarAt: 11 put: (FaMasterSlave basicNew

instVarAt: 1 put: (LineSegment basicNew instVarAt: 1 put: (Point x: 30 y: 30);

instVarAt: 2 put: (Point x: 50 y: 20); yourself); instVarAt: 2 put:

(Text string: 'master' runs: (RunArray runs: #(6 ) values: #(1 »);

instVarAt: 3 put: nil; yourself); yourself)!

Relativity prototype instVarAt: 6 put: (PersonAtPoint basicNew instVarAt: 1

put: (LineSegment basicNew instVarAt: 1 put: (Point x: 30 y: 30); instVarAt: 2

put: (Point x: 50 y: 20); yourself); instVarAt: 2 put: (FilterDevice basicNew

instVarAt: 1 put: (FilterMouse basicNew yourself); instVarAt: 2 put: nil; yourself);

instVarAt: 3 put: nil; instVarAt: 4 put: (CenteredText basicNew instVarAt: 1 put:

(Text string: 'master' runs: (RunArray runs: #(6 ) values: #(1 »); instVarAt: 2

put: (Point x: 270 y: 143); yourself); instVarAt: 5 put: (PersonIcon basicNew

instVarAt: 1 put: (Point x: 270 y: 143); yourself); instVarAt: 6 put:

(FaPointEquality basicNew instVarAt: 1 put: (Point x: 30 y: 30); instVarAt: 2 put:
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(Point x: 270 y: 143); instVarAt: 3 put: nil; yourself); instVarAt: 7 put:

(FaPointEquality basicNew instVarAt: 1 put: (Point x: 30 y: 30); inatVarAt: 2 put:

(Point x: 270 y: 143); instVarAt: 3 put: nil; yourself); instVarAt: 8 put:

(FaPointSensor basicNew instVarAt: 1 put: (Point x: 30 y: 30); instVarAt: 2 put:

(FilterMouse basicNew yourself); instVarAt: 3 put: nil; yourself); instVarAt: 9 put:

(FaRender basicNew instVarAt: 1 put: (CenteredText basicNew instVarAt: 1 put: (Text

string: 'master' runs: (RunArray runs: #(6 ) values: #(1 »); instVarAt: 2 put:

(Point x: 270 y: 143); yourself); instVarAt: 2 put: nil; instVarAt: 3 put: nil;

yourself); instVarAt: 10 put: (FaRender basicNew instVarAt: 1 put: (PersonIcon

basicNew instVarAt: 1 put: (Point x: 270 y: 143); yourself); instVarAt: 2 put: nil;

instVarAt: 3 put: nil; yourself); instVarAt: 11 put: (FaMasterSlave basicNew

instVarAt: 1 put: (LineSegment basicNew instVarAt: 1 put: (Point x: 30 y: 30);

instVarAt: 2 put: (Point x: 50 y: 20); yourself); instVarAt: 2 put: (Text

string: 'master' runs: (RunArray runs: #(6 ) values: #(1 »);

instVarAt: 3 put: nil; yourself); yourself)!

Relativity prototype instVarAt: 7 put:

(FaPointEquality basicNew instVarAt: 1 put:

(Point x: 30 y: 30); instVarAt: 2 put:

(Point x: 50 y: 20); instVarAt: 3 put: nil; yourself) I

Relativity prototype instVarAt: 8 put:

(FaPointEquality basicNew instVarAt: 1 put:

(Point x: 50 y: 20); instVarAt: 2 put:

(Point x: 30 y: 30); instVarAt: 3 put: nil; yourself)!

Constraint owner: Relativity prototype

rule: 'aelf stay'

_thods: t (

'.elf .tay')

priority: (ConstraintPriority at: #default)!

Constraint owner: Relativity prototype

rule: 'source stay'

_thods: # (

,source stay')

priority: (ConstraintPriority at: #default) I

Constraint owner: Relativity prototype

rule: 'view atay'

_thods: I (

'view atay')

priority: (ConstraintPriority at: Idefault)!

Constraint owner: Relativity prototype

rule: 'picture stay'



methods: I(

'picture stay')

priority: (ConstraintPriority at: Idefault) I

Relativity prototype merge: I( 'source' 'personAtPointS source') I

Relativity prototype merge: I( 'view' 'personAtPointS view') I

Relativity prototype merge: I( 'lineSegment4' 'personAtPoint6 source') I

Relativity prototype merge: I( 'view' 'personAtPoint6 view') I

Relativity prototype merge: I( 'source pointl' 'faPointEquality7 source')!

Relativity prototype merge: I( 'lineSegment4 point2' 'faPointEquality7 view')!

Relativity prototype merge: I( 'source point2' 'faPointEquality8 source')!

Relativity prototype merge: I( 'lineSegment4 pointl' 'faPointEquality8 view') I

Relativity prototype performAllHergesl
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