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Abstract 

Temporal patterns of frequency-localized features in ASR 

Pratibha Jain 

Supervising Professor: Hynek Hermansky 

This work investigates the use of frequency-localized temporal patterns of the speech sig- 

nal for developing robust front-end for Automatic Speech Recognition (ASR). Various 

linear transforms are investigated for parameterization of the frequency-localized tempo- 

ral patterns. We show that temporal patterns closely follow the properties of a first- 

order Markov proce,ss, which results in the PCA transforms being very close to the DCT 

transform. Better recognition performance is achieved on using the DCT components of 

temporal patterns as opposed to directly using temporal patterns for feature estimation. 

Other linear transforms such as Linear Discriminant Analysis (LDA) are also studied 

b r  the parameterization. The parameterized TempoRAl Patterns (TRAPS) are used to 

estimate broad-phonetic class-posteriors independently in each critical-band. These class- 

posteriors are combined and used as the features for word recognition. Our work shows 

that broad-phonetic features generalize better than other conventional features and yield 

considerable compleme~ltary information with respect to short-term cepstral features in 

ASR. Two practical applications are proposed for the broad-phonetic TRAPS features : 1) 

Distributed Speech Recognition (DSR) in cellular telephony, 2) Voice Activity Detection 

(VAD) tasks. These features yield a significant irnprovenient in the performance for these 

applications. New band-independent categories are proposed which represent distinct 



speech-events in the frequency-localized temporal patterns of the speech signal. These 

categories are obtained by clustering the mean temporal patterns of context-independent 

phones using an agglomerative hierarchical clustering technique. A Universal TempoRAl 

Patterns (UTRAPS) systern is proposed for the speech-event class-posteriors estimation. 

Combining UTRAPS features with cepstral features achieves a significant improvement in 

the recognition performance under noisy conditions. Finally, this work studies the effect 

of broadening the frequency-context on TRAPS Features and ASR. This study shows that 

cornlining tenlporal patterns from more than one critical-band is important to achieve 

higher recognition rates. 

xvi 



Chapter 1 

Introduction 

The goal of automatic speech recognition (ASR) is to interact with machines via voice 

commands and provide a mean of natural interface. The major problem with the current 

ASR systems is their limited ability to deal with the diversity and variability of real- 

world environments. For example, the performance of an ASR system degrades drastically 

in the presence of different speakers, different speech-context, communication channels. 

and backpound noises, i.e., in environments not seen by the system during its training 

[9]. Several studies have been carried out to develop noise-robust ASR systems that 

can perform well in different real-world environments [22]. This includes extraction of 

various robust front-end feat,ures from the speech signal that are relatively insensitive to 

operational environments [2, 25, 28, 491. Another approach that has been studied is the 

use of various adaptation techniques that can adapt an ASR system (at various levels such 

as at the feature-level or the model-level) to real-world operating conditions [32, 43, 701. 

The objective of this dissertation is to investigate frequency-localized temporal patterns 

of the speech signal for developing noise-robust front-end for ASR systems. 

This chapter is organized as follows. Section 1.1 gives a general frame-work of ASR 

systems. The first step in ASR systems is the estimation of useful features or measure- 

ments from the speech signal for speech recognition. The different approaches for feature 

extraction are described in detail in Section 1.2. Section 1.3 describes a recently proposed 

approach for robust feature estimation. The work proposed in this dissertation mainly 

expands, and explores upon on this approach for feature estimation. In this technique 

temporal patterns of frequency-localized features are used for robust feature detection 

for ASR. The chapter concludes with contributions of the thesis in Section 1.5 and an 



overview of the thesis in Section 1.6. 

1.1 General framework for Automatic Speech Recognition 

Systems 

Automatic speech recognition is a process which maps the speech signal to a sequence of 

speech sub-units such as phones, syllables: words. The mapping is based on statistical 

pattern recognition techniques [la]. The general framework of such a system is shown in 

Figure 1.1. The recognition process comprises three main processing steps - feature ex- 

traction, likelihood computation, and search for the most likely sub-unit sequence such as 

word sequence. In the feature extraction step, the incoming signal is typically divided into 

short-term segments (typically 20 to 32 ms) equally spaced in time, and a feature vector 

is extracted from each segment. This is followed by the computation of log-likelihoods 

or posterior probabilities of feature vectors with respect to the speech sub-units. The 

speech sub-units are modeled as a sequence of hidden states. The states corresponds to 

a particular part of speech sub-units. Each state is modeled as mixture of Gaussians. 

Neural Networks (EN) also have been used for modeling the states [24]. The mathematic 

structure known as Hidden Markov Model (HMM) [38, 421 is utilized to map sequence of 

acoustic features to the sequence of speech subunit log-likelihoods. Given the sequence of 

log-likelihoods, finally the recognition process performs a search over all possible sub-unit 

sequences to obtain the the highest likely or probable sequence. The Viterbi algorithm is 

commonly used to perform the search [42]. 

1.2 Feature extraction Process 

The major problem for high-accuracy recognition is the large variability in the speech 

signal characteristics. This includes variability due to different pitch, variability due to 

different speakers, the effect of background noises, and the transmission channel (e.g., 

microphone, telephone) etc. In ASR, the goal of the feature extraction process is to reduce 

these %pects of signal variability and extract a robust representation of the speech signal. 

The feat,ure extraction process can be divided into two parts : 1) short-term spectral 
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Figure 1.1: Block diagram of speech recognition system 

processing, and 2) long-term temporal processing. The spectral processing extracts short- 

term (typically 'LO - 32 LU~) spectral features kom the speech signal. The short-term 

spectral features are temporally procased using various techniques. 111 this section, we 

first describe conventional spectral processing techniques. Next we describe some of the 

comrnonly used techniques for temporal processing. 

1.2.1 Spectral processing for short-term spectral features 

The speech signal is divided into overlapping short (typically 20 - 32 rns or 160 - 256 sam- 

ples at 8 kHz) segments. The adjacent segments overlap by 10 - 20 ms ie 80- 160 samples. 

The segments are multiplied by a Hamming window to minimize the discontinuities at the 

edges of the short segments. A short-time Fourier transform is applied to convert these 

segments to the frequency domain. Only the magnitude of Fourier transformed segments 

is kept while phase is ignored. For a speech signal sampled at f ,  = 8 kHz this operation 

results in around 129 parameters. The resulting parameter vector corresponds to  frequen- 

cies that are uniformly spaced from 0 - 4000 Hz. The parameter vector is referred to 

as the short-term spectral density of the speech signal. This operation can be expressed 

mat hematically as, 
n=m 



Where s,(n) is given by, 

sm(n)  = h(mM - n) * x(n) 

Where x(n)  refers to the speech signal, s,(n) refers to windowed speech signal centered 

at mAM sample, h refers to the Hamming window which acts as a sliding analysis window, 

M refers t o  the amount of frame shift in samples, X,(k) refers to the short-term spectral 

density (sampled in frequency at frequencies wk = F: k = 0 , l ;  . . . , K - 1) at time instant 

n = m M /  f, sec, and m is an integer variable. The analysis of short-term spectrum of 

speech signal is more discussed in [3, 7, 6, 581. 

Human perceptual studies indicate that human hearing has a non-uniform frequency 

resolution. To emulate the human processing, non-uniform filterbanks based on non- 

uniform frequency scales such as the Me1 [63,66] or Bark scales [15, 251 have been proposed 

to warp the short-term spectrum into a non-uniform frequency spectrum. The magnitude 

coefficients of the short-term spectrum are binned by correlating them with each non- 

uniform filter. Here binning means that each FFT magnitude coefficient is multiplied by 

the corresponding filter gain and the results accumulated. Thus, each bin holds a weighted 

sum representing the spectral magnitude in that filter. This operation can be expressed 

mathematically as, 
k=Bandwidth 

Pm(i) = C ~ m ( k ) ~ ~ ( i ,  k) 
k=O 

Where i refers to the filterbank index, F B ( i ,  k)  is the values of kth filter coefficient of the 

ith filter in the frequency domain, and Pm(i) refers to the value of ith filter energy at time 

instant a = m M /  f, sec. 

Next, a compressive non-linear transformation such as log or cube-root is applied to 

the filterbank energies, and finally these energies are projected on a discrete cosine basis. 

These features form the basis of the conventional front-end used in -4SR. systems. Example 

of features based on this technique includes Me1 Cepstral Coefficients (MFCC) [40]. 



1.2.2 Temporal processing of short-term spectral features 

The short-term spectral features have the drawback that they are sensitive to changes 

in the communication environment, such as characteristics of different channels or back- 

ground noise. As a result, the performance of recognizers that uses only these features 

rapidly degrades in realistic communication ewironments. In ASR, the success of dy- 

namic features [21] . cepstral mean subtraction (CMS), and RelAtive SpecTrAl (RASTA) 

techniques, all of which involve temporal processing of short-term spectral features over 

50 ms to  several hundred milliseconds, indicates that temporal processing is required for 

improvhig robustness of ASR systems. Psychoacoustic studies also suggest that the pe- 

ripheral auditory system in humans integrates information from much larger time spans 

than the temporal duration of the short segments used in spectral processing One piece 

evidence is forward masking [34, 50, 511 which is an auditory process that operates over a 

relatively longer time span ( 200 - 500 ms). Recent studies based on Multivariate ANaly- 

sis Of VAriance (MANO'CrA) [59] and based on joint mutual information [29] also indicate 

that the effect of a phone lasts for approximately 500 ms. Several attempts were made to 

incorporate information from longer time spans of the speech signal into features 126, 621. 

One recent approach applies temporal processing in the multi-band fiarnework [26]. 

In this approach, acoustics and environment characteristics are estimated independently 

from rrarrow frequency regions of speech signal and later combined for final classification. 

This approach is motivated by the Fletcher and Stewart multi-channel model of phone 

recognition in human auditory system, which was brought up into attention later by 

Allen [4]. Their work suggests that the recognition errors in a given frequency band are 

independent of the errors in the other freq~~ency bands, thus each frequency channel should 

be processed independently for building reliable acoustic models [19]. The independent 

processi~lg of each frequency channel allows for selection of reliable (with high signal-to- 

noise ratio (SNR) ) feature estimates when combining information Gom narrow frequency 

regions. Several benefits have been reported on using the multi-band approach for robust 

recognition 112, 671. 



1.3 The TempoRAl Patterns based (TRAPS) approach for 

feature estimation 

With the previous studies as motivation, the temporal characteristics of individual phones 

were analyzed to understarld the nature of the linguiqtic information available in the tem- 

poral structure of speech. For this analysis, frequency-localized features such as cube-root 

or log compressed critical-band energies were used. Results showed that each phone has a 

unique pattern of energy evolution in each frequency band 1641. Utilizing the information 

present in the temporal patterns of the phones in each band: a TRAPS based system was 

developed for feature estimation [26, 611. The basic building blocks of this system are 

shown in Figure 1.2. This system consists of the following processing steps : 

Class-posteriors estimation from individual frequency-bands 

The temporal patterns of critical-band energies are uied to estimate the posterior prob- 

abilities of sub-word classes (phones) in each frequency band. Multilayer perceptrons 

(MLPs) are used a5 the class (phone) posterior estimators. The input features to each 

MLP (post,erior estimators) are cubic-root or log compressed Bark or Mel-scaled critical- 

band energies. Each MLP makes a local estimate of the posterior probability of sub-word 

(phone) classes .from a 101-sample window (150 samples around the current frame) of 

compressed critical-band energies at every 10 ms. MLPs are trained using error backprop- 

agation algorithm with a cross-entropy error criterion. Each 101-sample window (covers 

1 s of context) is normalized to have zero mean and unit variance before using it as input 

to the posterior estimators (MLPs). The normalized 101-sample vector of compressed 

critical-band energies is also referred to as temporal pattern which essentially captures 

temporal dynamics around the current .frame. 

Merging information from frequency bands 

The information about sub-word classes (phones) gained from narrow frequency bands is 

then combined for final recognition. For this, the estimated class-posterior probabilities 

Gom individual bands are concatenated and converted into class-conditional log-likelihoods 
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Figure 1.2: The TempoRAl PatternS (TRAPS) approach for feature estimation

by taking log of their estimates and scaling by class priors. The concatenated vector of

log-likelihoods is then treated as the input feature vector to a Tandem speech recognition

system [27]. The details of this recognizer are described in the following section.

1.4 The Tandem approach to speech recognition

The basic idea behind this approach is to use a Neural Network (NN) to map given

features into class-posterior (e.g. phone posteriors) probabilities. A Neural Network is

discriminantly trained using a labeled dataset to estimate posterior probabilities of the

phone classes given the observations. The observations are nothing but a set of features

(e.g. 9 frames of MFCC , class-posteriors estimated from individual critical-bands etc.).

At a given framerate (e.g. lO-ms) NN gives an estimate of a set of posterior probabilities

given a observation ot a feature vector. The distribution of these posteriors is heavily

skewed and these posteriors are correlated with each other. This makes these posteriors,

if used directly as input features, not suitable for successive Gaussian Mixture Modeling

(GMM) in a HMM-based recognizer. Due this reason, class-posterior probabilities are

first processed and then used further as input features for a conventional back-end HMM-

based recognizer. The posteriors are converted to log likelihoods by taking a log to their



values. The other alternative is to collect outputs from WN without the final non-linearity 

(e.g. sofimax) which gives a close estimate of log of the posterior probabilities. The 

distribution of the log likelihoods of classes is more Gaussian-like, which is required for the 

successive GMM. This step is referred to as Gaussianization of features. The log likelihoods 

values of the classes can be correlated with each other. Since most commoxJy GMM uses 

diagonal covariances assuming feature vectors are decorreleted, a KLT (Karhunen-Loeve 

Transform) is applied on the log of posterior probabilities to decorrelate them. This 

processing step is referred to as Diagonalization or De-correlation of features. The KLT 

transform is estimated a priori using the training dataset or using an independent dataset. 

KLT transform is also known as Principal Component Analysis (PCA) transform. Finally 

the processed posteriors that are estimated at every 10-ms are used as input features to 

the back-end HMM-based recognizer [27, 131. 

A Tandem system adds a layer of discriminability to the feature extraction process and 

provides a convenient mechanism for combining multiple feature sets [61]. The general 

block diagram of such a system is shown in Figure 1.3. 

Combining different feature streams in a Tandem system 

In a Tandem system, information from different feature streams can be combined for 

final classification. The block diagram of such a system is shown in Figure 1.4. A set of 

estimated features are mapped to class-posteriors (e.g. phone posteriors) using MLPs and 

different feature streams are combined at the level of class-posterior probabilities. The 

combination techniques can be as simple as averaging the class-posteriors or concatenating 

the posteriors (followed by decorrelation) estimated from different feature streams. A 

gain in recognition performance has been seen when two or more feature streams make 

complementary errors (611. 

1.5 Contributions of this work 

This thesis work further investigates the use of frequency-localized temporal patterns 

of features in ASR. First, it investigates various techniques for parameterization and 
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representation of the temporal patterns in each band. Then it investigates the use of 

broad-phonet,ic categories based on, for example nasality, affrication, voicing, and plosive 

nature of the speech sounds for feature estimation. It shows that broad phonetic features 

generalize better across different conditions and are robust to noisy environments. The 

estimated broad-phonetic category features are evaluated for two practical applications 

: Voice Activity Detection (VAD) and Distributed Speech Recognition (DSR) in cellular 

telephony. This thesis further presents a new approach for defining band-independent 

broad-phonetic categories for feature estimation. Tliese categories characterize distinct 

speech events manifested in the frequency-localized temporal patterns of the speech sig- 

nal. We also show that by using these new speech-activity based categories, band-specific 

class-posterior estimators c~an be replaced by a universal class-posterior estimator. Finally, 

this thesis work studies the effect of broadening the frequency-context presented to the 

class-posterior estimators. 

The contribution of this thesis can be summarized as follows 

Investigated various parametric representations for frequency-localized 

t empora l  pat terns  in ASR Several linear transforms such as  DFT, DCT, and 

LDA are investigated for the parameterization of temporal patterns. We show that 

the temporal patterns closely follow the properties of a hst-order Markov process 

which results in the PCA transforms being very close to the DCT transform. Better 

recognition performance is achieved on using linear components of temporal pat- 

terns a s  opposed to directly using p a t t e r s  as input to the posterior estimators for 

feature e~timat~ion. Frequency components of frequency-localized temporal patterns 

are referred to as modulation spectral components. These components capture the 

temporal dynamics of spectral envelopes. The 101-sample (1 s) temporal trajectory 

covers 0 - 50 Hz of modulation frequency components. The effect of cutting off the 

components of higher modulation spectra on ASR is also studied by limiting the 

higher order DCT components during parameterization. We show that on cutting 

off modulation Gequency components beyond 8 Hz, recognition performance severely 

degrades in different testing environments. With around 32 DCT components (cov- 

ers lipto 16 Hz range of modulation spectrum) better recognition performance can 



be achieved across different testing environments. 

Investigated broad-phonetic feature estimation from temporal patterns 

in ASR Various broad-phonetic categories are investigated for feature estimation. 

The  broad-phonetic categories are obtained independently in each band by cluster- 

ing the mean temporal pat.terns of phones using a similarity measure. This results in 

broad-phonetic classes based on vowels, plosives, fricatives, flaps, nasals, schwa, and 

silence like groups of phones in each band. The broad-phonetic features are evaluated 

for ASR. Work this part shows that broad-phonetic category based features gener- 

alize bett,er than other conventional features and yield considerable complemer~tary 

information with respect to short-term spectral features. 

Proposed broad-phonetic features for VAD and DSR The estimated broad- 

phonetic category based features are evaluated for two practical applications : Voice 

Activit,y Detection (VAD) and Distributed Speech Recognition (DSR) in cellular 

telephony. The proposed features show significant improvements in performance for 

these applications. 

Proposed Universal Temporal Patterns (UTRAPS) based approach for 

feature estimation We found that mean temporal patterns are quite similar not 

only across similar phones but also across different fiequency bands. We propose new 

band-independent categories obtained by clustering temporal patterns from all the 

critical-bands. The resulting clusters represent distinct speech-activities manifested 

in frequency localized temporal patterns of the speech signal. The class-posterior 

probabilities for these new, band-independent categories can be estimated using 

a universal posterior estimator. We show significant improvement in recognition 

performance in various testing conditions on using UTRAPS for feature estimation. 

Studied the effect of broadening frequency-context for feature estimation 

on ASR This study shows that combining temporal patterns from more than one 

critical-band is important to achieve better recognition rates. This work indicates 



modeling the interaction among several adjacent critical-bands is important for ob- 

taining higher recognition performance. 

1.6 Organization of the thesis 

Chapter 2 describes different linear representations for the parameterization of temporal 

patterns of log critical-band energies. The effect of parametrization of temporal patterns 

on ASR is also studied. This work proposes Discrete Cosine Transform (DCT) or DFT 

components from 1 - 16 Hz frequency range for efficient representation of information 

carried by temporal patterns. 

Chapter 3 investigates band-dependent broad-phonetic categories for feature estima- 

tion using the parameterized temporal patterns. This work shows that broad-phonetic 

category features generalize better across different testing conditions. It shows that six 

broad-phonetic category features carry a significant amount of con~plementary information 

to short-term spectral features such as cepstral features. The effect of choosing different 

sets of broad-phonetic categories for feature estimation on ASR is also investigated. 

Chapter 4 investigates further the use of broad-phonetic category based features in two 

practical applications : Voice Activity Detection (VAD) and Distributed Speech Recog~li- 

tion (DSR) in cellular telephony. Results shows significant improvements in the recognition 

performance for both applications. 

Chapter 5 investigates a new set of band-independent categories for feature estimation. 

These categories are based on distinct speech-activities localized in time-frequency regions 

of the speech signal. As opposed to earlier work that used band-specific class posterior 

estimator, a universal class-posterior estimators is proposed for feature estimation. 

Chapter 6 studies the effect of broadening the frequency-context by using temporal 

patterns from several adjacent critical-hands for feature estimation on ASR. The work in 

this chapter proposes that temporal patterns from several adjacent critical-bands should be 

used jointly for feature estimation. A significant improvement in recognition performance 

is achieved on using more than one critical-band frequency-context for feature estimation, 

as opposed to using frequency-context spanning just a single critical-band. 



Chapter 7 summarizes the work and suggests future directions. 



Chapter 2 

Parametric represent at ion of temporal 

patterns of features 

As described earlier in section 1.3, the TRAPS based system was developed to incorporate 

information from syllable-length time spans of the speech signal into short-term features 

[26]. In this system, 1 s long (101 samples at a 10 ms frame-rate) temporal trajectories of 

log critical-band energies were used directly as input features for sub-word unit (phones) 

posterior estimation. The 101-point input vectors require the training of a large number 

of parameters in individual class-posterior estimators (MLPs) which cannot be accurately 

estimated from a lirrlited amount of available training data. We believe that by doing 

appropriate parameterization of the temporal feature vector; the large dimensionality of 

temporal patterns can be reduced without losing useful information required for estimating 

class-posterior probabilities. 

In this work, we investigate various linear transforms for efficient representation or pa- 

rameterization of frequency-localized temporal patterns. We show that temporal patterns 

closely follow the characteristics of a first order Markov sequence [a]. This results in the 

principal components of the temporal patterns being similar to Discrete Cosine Transform 

(DCT) components. We show that DCT components can be used to parameterize 1 s long 

(101-point) temporal patterns and can achieve a significant reduction in number of sys- 

tem parameters. The Linear Discriminant Analysis (LDA) [55j and the Fourier Transform 

(DFT) are also investigated for representing temporal patterns. 

The fkequency components of temporal patterns are referred to as modulation spectral 

compo~ients. They represent the change in the spectral erlvelope over time. The effect of 



low-pass filtering the modulation spectra of temporal patterns on ASR is also studied in 

this chapter. 

The chapter is organized as follows. Section 2.1 analyzes temporal patterns and show 

their association with first-order Markov sequences. Section 2.2 describes various linear 

transforms used for parameterization of temporal patterns. Section 2.3 describes the used 

databases and the experimental setup for evaluating parameterized temporal patterns 

in ASR. Section 2.4 shows the effect of parameterization of temporal patterns on ASR. 

Section 2.5 investigates the effect of low-pass filtering the modulation spectra of temporal 

patterns on ASR by limiting the linear transform basis. 

2.1 Temporal pat.terns as Markov-1 vector sequence 

For 101 point long, mean subtracted and variance normalized, temporal patterns of log 

critical-band energies, the estimated covariance matrix is shown in Figure 2.1. Its highest 

vallies lie dong the diagonal and the off-diagonal terms gradually decay. This rnatrix has 

a structure close to that of r (n ) ,  which is given by, 

where r (n)  represents the covariance function of a Markov-1 vector sequence [a]. For 

temporal patterns, the estimated value of the correlation coefficient, p, is around 0.85. 

This results in eigen vectors of the covariance matrix of the temporal patterns (Principal 

components i.e. PCAs) being close to the DCT base.. . The more details of the wvari- 

ance function of a Markov-1 vector sequences can be found in Appendix A. The PCA 

computation is described in detail in Appendix G. The estimated principal components 

are shown in Figure 2.2. Figure 2.3 shows the distribution of total variability in the es- 

timated principal components. It can be observed that around 50 principal components 

cover around 98 % of the total variability. These 50 bases span 1 - 25 Hz of modulation 

spectrum of temporal patterns. 
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2.2 Linear transforms for parameterization

temporal patterns.

In this section, we describe various linear transforms used for the parameterization of

The parameterized temporal patterns are used as input to class-

posterior estimators (MLPs) in each critical band. Later these posteriors are combined

(concatenated), converted to log-likelihoods, and used as input features in a Tandem

speech recognition system [13].
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DCT linear transform 

In the previous section we observed that the covariance matrix of 101 point long temporal 

feature vectors (spanning around 1 s of context) has a structure very similar to that 

of first-order Markov sequences and due to this reason, the PCA transform can well 

be approximated by a DCT. The 50 PCA components cover around 98 % of the total 

variability of 101-point long te~nporal patterns. We used 50 DCT components of mean 

subtracted, variance normalized temporal patterns as input features to sub-word class 

(phones) posterior estimators (MLPs) . 
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Discrete Fourier Transform (DFT) 

Fourier components covering 1 - 25 Hz of modulation spectrum are used for parameteri- 

zation of temporal patterns. The 50 DFT components of temporal patterns, which consist 

of 25 real and 25 imaginary parts, <are used as input features to sub-word class (phones) 

posterior estimators. 

Linear transform obtained from LDA 

This linear transform is obtain by using Linear Discriminant Analysis (LDA) [20, 551. The 

linear discriminants are derived from 101 point long temporal trajectories of log critical- 

band energies, which are mean subtracted and variance normalized. The 29 phones are 

used as the target classes for deriving 29 linear discriminant basis vectors. The LDA 

bases are derived on the clean, OGI-Stories corpus, a dataset described in section 2.3. 

The first 15 LDA components of the temporal patterns are then used as input features 

to sub-word class (phones) posterior estimators. We also derive the first 50 LDAs basis 

vectors from 554 Gaussian mixtures (from 3-state monophone HMM models), which are 

used a .  the target categories, for the second experiment. The more details of computing 

linear discriminants is covered in Appendix G. 



2.3 Databases 

Two databases are used in this work : 1) the OGI-Numbers database and 2) the OGI- 

Stories database. The training of band-specific MLPs is performed on OGI-Stories while 

the Tandem MLP is trained on OGI-Numbers. 

OGI-Numbers database 

The OGI-Numbers corpus [52] consists of a set of continuous, naturally spoken utterances 

collected from many different speakers over the telephone and sampled a t  8 kHz. The 

utterances represent the numbers portion of utterances where people recite their addresses, 

telephone numbers or zip codes. The utterances vary in length from one to ten numbers 

but most utterances have five numbers. The task has a 32-word vocabulary consisting 

of the words zero, oh, one, two, three, four, five, six, seven, eight, nine, ten, eleven, 

twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, thirty, 

forty, fifty, sixty, seventy, eighty, ninety, hundred, uh and urn. Three independent subsets 

of this database of approximately 1.7-hour, 0.6-hour and 0.2-hour respectively have been 

used for our experiments. The 1.7-hour subset is the training set, the 0.2 hours subset is 

the cross-validation set on which the kame-level error rates are reported. We used these 

datasets for training of the posterior estimators (MLPs). The Numbers database consists 

of 29 phonetic classes which are a subset of the 61 phones from the TIMIT database. The 

word recognition experiments are performed on the continuous digit-part of this database. 

This dataset is referred to as OGI-digits. It consists of 1.3-hour training set and 1.7-hour 

testing set. 

2.3.1 Testing conditions at different SNRs 

There are five testing conditions : 1) clean, 2) babble, 3) pink, and 4) white noises 

artificially added at 0, 5: 10, 15, and 20 dB signal-to-noise ratio (SNR) to the clean 

testing dataset. We define SNR as the ratio of signal to noise energy after filtering both 

speech and noise signal to 0 - 4000Hz frequency-range. The noise energy is calculated as 

the root mean square value (RMS) over the noise signal segment of same length as the 
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speech signal is. This noise segment is selected randomly from the noise signal. We assume 

duratior~ of the noise signal much longer than that of the speech signal. The level of the 

speech signal is not changed . Based on the desired SNR the scaling factor is calculated 

to multiply the noise samples before adding them to the speech signal. 

OGI-S tories database 

OGI-stories is the English portion of the OGI multi-lingual database [53]. The database 

consists of telephone quality c~nversational speech. A subset is phonetically hand labeled 

and comprises approximately 2.7 hours of extemporaneous speech from each of the 210 

different speakers. 

Experimental set up 

Different linear transforms for parameterization of temporal patterns are evaluated on a 

continuous digit recognition t a ~ k  using OGI-digits database. In this task, the vocabulary 

consists of 11 words (0 - 9 and "oh"). Each word is modeled as a sequence of context- 

independent phones and each phone is modeled using a five-state, three-mixture Gaussian 

hidden Markov model (HMM). The block diagram of this system is shown in Figure 

2.10. The training of the band-specific class-posterior estimators (MLPs) is performed on 

clean OGI-Stories and the posterior estimator used in Tandem system is trained on clean 



OGI-Numbers. The Multilayer perceptrons (MLPs) are trained using backpropagation 

algorithm with a cross-entropy error criterion. They were trained to estimate 29 phones 

posteriors from linearly transformed temporal patterns of log critical-band energies. The 

used critical-bands are described in Appendix H. The band-specific MLPs are trained 

using 150 hidden units and 29 phones the target categories used at the out-put nodes. 

The MLP used in the Tandem system (described in detail in section 1.4) is trained with 

300 hidden units and the same 29 phone targets for final class-posterior estimation. These 

posteriors are gaussianized (by taking the log), decorrelated (using a KLT transform), and 

then used as features in an HMM-based recognizer. 

2.4 Performance of linearly transformed temporal patterns 

Table 2.1 shows word error rates for features estimated from parameterized temporal 

patterns using various linear transforms at the clean condition. The performance of these 

features is compared with the features obtained by directly using temporal patterns as 

the input to the class-posterior estimators. From the results, it can be observed that 

the linearly transformed temporal patterns perform significantly better than using these 

patterns directly for feature estimation. The gain in the performance is significant at 98 % 

confidence interval. Figures 2.7, 2.8, and 2.9 show the recognition performance of linearly 

transformed temporal patterm using DFT, DCT, and LDA transforms at different noises 

and SNR conditions. 111 this experiment, 50 linear bases were used for the projection. 

The features estimated from DCT-transformed and DFT-transformed temporal patterns 

perform significantly better than LDA-transformed temporal patterns a t  lower SNR noisy 

conditions. This result is significant at 98% confidence interval. For confidence measure: 

we performed a Matched Pairs Sentence-Segment Word Error (MAPSSWE) test [23]. On 

the average, DCT and DFT-transformed temporal patterns give very similar recognition 

performance across most of the noisy conditions. 



2.5 On low-pass filtering the Modulation spectra 

Previous studies on t,he intelligibility of speech with filtered spectral tinie-trajectories show 

that speech intelligibility isn't severely impaired as long as the spectral envelope has a rate 

of change up to 16 Hz in modulation frequency [54]. The studies such as conducted by 

N. Kanedera et.al. [45, 461 indicate that modulation frequency components from range 

between 1 to 16 Hz carry most of the linguistic information important for robust ASR. 

In contrast to the above findings, the work by R. V. Shannon et. al. [57] had found 

that recognition scores from 50, 160, and 500 Hz modulation (speech envelop) filters for 

vowels, consonants, and sentences were not significantly different but the results fiom 16 

Hz modulation filter gave significantly lower recognition scores. 

With these studies as motivation, we investigate the effect of eliminating higher mod- 

ulation frequency components of temporal patterns on ASR at different noisy conditions 

and at different signal-to-noise ratios (SNR). Figures 2.4, 2.5, and 2.6 show the effect 

of cutting off higher modulation frequencies on the word error rate by dropping higher 

DCT components at different testing conditions. The recognition performance drastically 

reduces on cutting off the modulation frequencies beyond 8 IIz whereas it fairly remains 

the same for upto 12-35 of modulation spectrum for higher SNR (10 - 20 dB and clean) 

testing conditions. However, for lower SNR (0 - 5 dB) conditions, keeping modulation 

spectrum above 16 Hz reduces the recognition performance. 

Table 2.1: % Word Error Rate (Recognitiou Performance) on using different linear trans- 
forms on temporal patterns of log critical-band energies at clean condition 

2.6 Conclusion 

I11 this chapter! we investigated various linear transforms for the parameterization of tem- 

poral patterns. We showed that temporal patterns closely follow the properties of first 

15 LDA 1 101 temporal patterns 50 DFT 1 50 DCT 1 50 LDA 

7.1 6.4 1 6.4 1 6.3 6.6 1 



order Markov sequences and as a result the principal components (PCA) of temporal pat- 

term can be well approximated by DCT components. Around 50 PCA (DCT) components 

cover 25 Hz of modulation spectrum of 101-point frequency-localized temporal patterns. 

The features estimated from linealy transformed temporal patterns give significantly bet- 

ter recognition performance than those estimated directly from temporal patterns. Using 

50 linear components of temporal patterns reduces the total number of parameters in 

posterior estiniator horn 585 k to 178 k. DCT, DFT, and LDA components give very 

similar recognition performance in clean condition. However, DCT components and DFT 

cornponeuts of temporal patterns outperform those obtained from LDA components of 

temporal patterns [62] in 0 - 15 dB SNR conditions. The reason why LDA components 

of temporal patterns didn't perform well is that the posterior estimators (MLPs) play the 

role of non-linear discriminants that reduces the advantage of using linear discriminants 

for parameterizing temporal patterns. They were also derived from a clean dataset (OGI- 

stories corpus), so they do not generalize well to unseen conditions. We also showed the 

effect of low-pass filtering the modulation spectrum of temporal patterns on ASR. The 

results show that recognition performance drops significantly on cutting off modulation 

spectrum below 8 Hz. As long as upto 16 Hz of modulation spectrum is retained for the 

successive feature estimation, higher recognition rates can be achieved. This result holds 

good for noisy conditions ranging from 0 - 20 dB SNR in our experiments. 



Chapter 3 

Band-specific broad-phonet ic category 

features in ASR 

In the previous chapter. we investigated various linear transforms for parameterization 

of frequency-localized temporal patterns (temporal trajectories of log energies of indi- 

vidual critical-bands) of the speech signal. The parameterized temporal patterns were 

used to estimate phone dass-posterior probabilities, and later these posteriors were com- 

bined and used as input features to a Tandem recognizer (described in Section 1.4) for 

word recognition. In this work. the estimated phone-posterior probabilities are referred 

to as phone-category features. In this chapter, we investigate the estimation of broad- 

phonetic category features using parameterized temporal patterns independently from 

each frequency band. We further investigate the use of these features for robust speech 

recognit ion. 

The perceptual studies such as those performed by Miller and Nicely [44] suggest 

that early in the human recognition process, speech perception is based on categorical 

decisions that are other than phones. They attempted to measure the confusion matrix 

for spoken and perceived phones in a noisy, bandlimited speech signal. They showed that 

unlike phones, distinction implied by certain phonetic features such as voicing, nasality, 

frication, etc. can be heard accurately in noisy and corrupted speech. Their studies 

suggested that categorical decisions could be based on these phonetic features. Their 

findings are surrlmariaed by Jont B. Allen [5 ] .  The phonetic features categorize phones into 

broad-phonetic classes based on their articulation or acoustic properties. In this work, we 

refer phonetic features to broad-phonetic features. Several studies have been co~iducted, 



which attempt to incorporate phonetic features for robust recognition [37, 361. In our 

studies, We have also observed that terrlporal patterns of phones cluster very well into 

broad categories that are based on nasality, voicing, frication, etc. of the speech sounds. 

The phones cannot be recognized as robustly in narrow frequency bands as broad-phonetic 

categories. Motivated by perceptual studies and our observations, we investigate broad- 

phonetic category features for robust speech recognition. These features are estimated 

from temporal patterns of the speech signal independently in each frequency band. 

We show that estimated broad-phonetic category features generalize better across un- 

seen testing conditions than other conventional features (cepstral coefficients etc.) in ASR. 

We also show that broad-phonetic category features carry a significant amount of com- 

plementary information with respect to short-term spectral features such as Perceptual 

Linear Predictive coefficients (PLP). 

The chapter is organized as follows. Section 3.1 describes earlier work on using broad- 

phonetic features in ASR. In Section 3.2, we analyze mean temporal patterns of subword 

classes (phones) and describe broad-phonetic classes which are obtained by clustering 

mean temporal patterns of phones. Section 3.3 analyzes the confusion matrix of phones 

and groups of the phones based on the degree of confusion obtained on phone classification. 

Section 3.4 describes the system used for broad-phonetic category feature estimation. 

Section 3.6 analyzes phone classification rates obtained from using broad-phonetic features 

estimated independently from individual bands. Section 3.7 shows the performance of 

broad-phonetic category features in ASR. Section 3.8 gives summary and conclusion of 

this work. 

3.1 Earlier work on broad-phonetic features 

Saul and his collaborators [39] attempted to detect [+/- sonorant] features &om critical- 

band measurements of SNR and periodicity. This work suggested that greater under- 

standing of narrowband phonetic cues is required for robust feature estimation for ASR.. 

Kirchhoff [36] also demonstrated that broad-phonetic category features are quite noise- 

robust and can be used along with conventional features for robust recognition. Unlike 



our method, the whole spectrum (9 Games of cepstral coefficients) of speech was used for 

detecting broad-phonetic cues. Other related work can be found in [37, 41, 47, 41. 

3.2 Broad-phonetic classes from temporal patterns 

For understanding the nature of information available in the frequency-localized temporal 

domain of speech signal, temporal patterns of log critical-band energies , given a phone, 

were analyzed [64]. We used Me1 filterbank energies for our analysis. The computation 

of the filterbank is described in Appendix H. The mean temporal patterns of phones are 

computed as described earlier in [64]. The details of this computation can be found in 

Appendix B. The derived mean temporal t~a~jectories show distinct patterns of temporal 

evolution for different sounds. They indicate that the effect of the center phone lasts for 

about syllable-length duration (250 ms) around it. The estimated mean temporal patterns 

of some of the TIMIT phones are shown in Appendix B. The TIMIT phone-set is listed 

in Appendix C. The following observations are made by analyzing the mean temporal 

patterns of different phones. 

1. Mean temporal patterns of the phones spoken in a similar manner share very s i d m  

temporal characteristics. For example, the vowel sounds such as /ah/ and /ae/ are 

very similar in temporal characteristics in individual critical-bands. The same is 

true with unvoiced plosives (stopconsonants) such as / t /  and /p/. 

2. The mean temporal patterns of phones cluster well into 6 - 7 broad-phonetic cate- 

gories such as plosives, nasals, fricatives, flaps, schwas, vowels, and silence categories 

of speech sounds. A simple correlation measure is used to cluster similar patterns 

into one group [64]. The correlation based measure is given by 

where u&, CT", and a Y  represent the cross-correlation between temporal patterns 

x and y, the antecorrelation of pattern x, and the auto-correlation of pattern y 

respectively. 



The clusters of broad-phonetic categorip? show distinct temporal behavior in indi- 

vidual critical-bands. The cluster corresponding to vowels has an evolving peak 

i11 the center which characterizes formant like high energy regions in different fre- 

quency bands. The cluster corresponding to plosive-like sounds has a dip in energy 

off-center to left. This is due to the presence of a stop-closure of low energy which 

often precedes plosive sounds. The cluster corresponding to fricatives has a dip in 

the center, which depends on the low-energy frequency bands of individual fricative 

sounds. The energy increases around it due to the commor~ly surrounding vowels or 

high energy sounds. The clusters corresponding to 'flaps' and 'schwa' have rather 

complex temporal patterns. The mean temporal patterns of seven broad-categories 

are shown in Figure 3.5, 3.6. and 3.7. 

3. The temporal patterns of some of the phones such as fricative Is/, nasal /m/, vowel 

/uw/, glides arid approximants /w/,/l/, and /r/  differ considerably across critical 

bands. For example, the sounds /s/ and /sh/ show plosives-like temporal patterns 

in frequency bands up to 2 kHz. For higher frequencies, where these fricatives have 

high energy, they display vowel-like temporal pattern. The nasal sounds /m/ and 

/n/ show vowel-like temporal pattern up to 500 - 600 Hz. In higher frequency bands 

they display fricative-like temporal patterns. The glides such as /w/, /y/ and, /I/ 

show vowel-like patterns in lower bands and fricative-like or plosive-like patterns in 

higher -frequency bands. The mean temporal patterns of some of the phones such as 

the front-vowels lael, /iy/, schwa /am/, nasal /m/, plosive /b/, fricative /sh/, and 

glide /1/ are shown in Appendix B. 

Based on these observations we define seven broad-phonetic categories : nasals, vowels, 

fricatives, plosives, flaps, schwas, and silence. Note that here we ignored the fact that 

some sounds change cluster affiliation, e.g., fricative /s/ has vowel-like temporal char- 

acteristics in higher bands. We address this problem in the chapter 5 by defining new 

band-independent broad-phonetic categories. 



Table 3.1: Seven broad-phonetic categories used for feature estimation from temporal 

Plosives 
Flaps 

Fricatives 
Nasals 
Vowels 

patterns in individual critical-bands 

b,d7g7p7t,k7 
dx,m 

jh,ch,s,sh,z,zh,f,v,dh,th,hh 
m,n,ng,em,en,eng 

l,r,w,y,hv,el 
iy,ih,eh,ey 

3.3 Broad-phonetic classes from confusion matrix of phones 

In this section, we analyze phone confusion matrix to find clusters of phones that are most 

often confused with each other during phone classification. Unlike the grouping of phones 

based on the similarity of their temporal characteristics in individual critical bands, this 

method of grouping is based on the similarity of the class(phones)-conditional feature 

distributions. 

We train MLPs for estimating the phone posterior probabilities using DCT components 

of temporal patterns as the input feature vector in individual critical-bands. The phone 

confusion matrix obtained at the output of MLPs is far from being diagonal which suggests 

that narrow frequency-regions axe not sufficient to detect phones as the speech sub-units. 

The confusion matrices for the first, fifth, and fifteenth bands are shown in Appendix D. 

The estimated local phone posterior probabilities are used as input to a Tandem system. 

The class-posterior estimator (MLP) in the Tandem system is trained to estimate phone 

posteriors for final classification. The training of all the MLPs is performed on the TIMIT 

dataset. Appendix D shows the phones confusion matrix at the output of the Tandem 

MLP. It can be seen that the clusters of highly confused phones are very similar to the 

groups of phones which have very similar temporal characteristics in individual critical- 

bands. It can also be observed that clusters of highly confused phones contain phones 

that have similar articulation properties. 



3.4 Estimation of broad-phonetic category features 

In this section, we describe the estimation process for broad-phonetic class features using 

temporal pat,terns. Figure 2.10 shows the block diagram of a temporal patterns based 

systern for broad-phonetic feature estimation. The 50 DCT components computed from 

101-point mean and variance normalized temporal patterns of log critical-band energies 

are used as input to class-posterior estimators (MLPs) in each critical-hand. The phone 

labels are canonically mapped into the broad-phonetic categories. The output nodes of 

MLPs corresporld to the broad-phonetic categories. There are two sets of broad-phonetic 

categories that are investigated in this work : 1) three categories based on voiced, un- 

voiced sounds , and background ; 2) seven broad-phonetic categories based on vowels, 

nasals, plosives, fricatives, flaps, schwa, and silence or background. OGI-Stories was used 

for training the band-specific class-posterior estimators (MLPs). The OGI-Numbers 29 

phones were canonically mapped to one of the broad-categories. The category 'flap' was 

not present in the 29 phone set so it was ignored in the final broad-category set during 

feature estimation. The Tandem class-posterior estimator (MLP) was either trained on 

the target dataset, i.e., OGI-Numbers or an independent datayet, i.e., OGI-Stories. 

3.5 Analyzing confusion matrix of broad-categories 

Figures 3.1, 3.2, 3.3, and 3.4 show confusion matrix of seven broad-phonetic categories. 

We used TIMIT database for training MLPs and computing confusion matrices. The con- 

fusion matrix for these categories is more diagonal than the confusion matrix for phones. 

The confusion matrix of the broad-phonetic categories at the Tandem output is more di- 

agonal than that obtained at the output of the band-specific MLPs. This suggests that 

information from all the critical-hands is needed to identify the broad-categories. The con- 

fusion among broad-categories in individual bands is due the fact that some sounds such as 

fricatives /s/ or front-vowel /iy/ change cluster affiliation in individual critical-bands. For 

example fricatives, /s/ or /sh/ in higher bands (above 2 kHz) have vowel-like high energy 

at the center, so they are confused with vowels. The mean temporal pattern of nasal /m/ 

shows vowel-like (peak at the center frame of temporal patterns) temporal characteriqtics 



in lower frequency bands, while in higher bands it shows temporal characteristics simi- 

lar to those of plosive-sounds (characterized by a narrow dip in energy off-center to the 

left). So it is likely for nasals to be confused with vowels in lower frequency bands and 

to be confused with plosives-like sounds in higher frequency bands. Table 3.2 shows the 

broad-phonetic category frame-level error rate at the output of the Tandem MLP mea- 

sured (trained and tested) on the TIMIT dataset. The classification rates are higher for 

silence and vowel categories than other broad-phonetic categories. 

3.6 Phone classification using broad-cat egory features 

To understand the extent to which the seven broad-phonetic features estimated from 

individual bands carry information about different phones, we use these features for phone 

classification. The estimated 15 * 6 ('flap' was not present) broad-phonetic features 

horn individual critical-bands are used as input features to a Tandem speech recognition 

system. The 29 phones are used as the target categories for classification at the output of 

the Tandem MLP. We analyzed the frame-level classification error rate for these phones. 

Table 3.3 shows the frame-level phone classification error of 26% at the output of the 

Tandem MLP. 

3.7 Broad-phonetic category features in ASR 

In this section, we describe performance evaluation of the broad-phonetic features in the 

Tandem speech recognition system. To evaluate the word recognition rate, the class- 

posteriors at the output of the Tandem MLP are Gaussianized, diagonalized (decorre- 

lated), and used as  input features to an HMM based recognizer (Section 1.4). The fea- 

tures are evaluated for a continuous digit recognition task on OGI-Digits database. The 

vocabulary is 11 words (0 - 9 and "oh"). 

Table 3.3 shows the perfornlance of the broad-phonetic features in a Tandem speech 

recognition system. In this experiment, the broad-phonetic category 15 + 6 features are 

used to estimate 29 phone category posteriors using the Tandem MLP (Section 1.4). 

Around 26 '$6 frame-level phone classification error is obtained at the output of the Tandem 
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MLP. For word recognition performance evaluation, these 29 posteriors are gaussianized,

decorrelated, and used as input features to the HMM based back-end recognizer (Section

1.4). In the HMM based back-end recognizer, each word is modeled as a sequence of

context-independent monophones and each monophone is modeled using a five-state, three-

mixture Gaussian hidden Markov model (HMM). These features give around 8.75 % word

recognition error.

Table 3.4 shows the performance of broad-phonetic features when they are used in

conjunction with Perceptual Linear Predictive (PLP) cepstral coefficients. The cepstral

coefficients and broad-phonetic features are combined at the class-posterior level. In this

experiment, the 29-phone posteriors, estimated from 9 frames of 24 PLP cepstral co-

efficients and their dynamic features, are concatenat.ed with the final 6 broad-phonetic



class posteriors. The final 6 posteriors are obtained at the output of the Tandem MLP 

using 15 + 6 broad-phonetic features as the input. The concatenated posteriors, 29 + 6 

in dimension , are gaussiaxized (by taking the log) and decorrelated using a whitening 

transform. The total dimensionality is reduced from 35 to 29 and finally these 29 features 

are used as input to the HMM based back-end recognizer (Section 1.4). Using the same 

framework, we also evaluate three broad-phonetic features based on voicing (i.e. voiced 

speech, unvoiced speech, and background) when used in conjunction with PLP features. 

The result obtained using these features is also shown in Table 3.4. We compare perfor- 

mance of phone-category features with broad-phonetic category features. To obtain the 

phone-category features band-specific posterior estimators (MLPs) estimate phone poste- 

riors independently in each critical-band. The 29 * 15 phone posteriors estimated from 15 

critical bands are rnapped to 29 phone posteriors using the Tandem MLP. These posteri- 

ors are referred to as phone-category features which were also proposed in earlier system 

[64]. Table 3.4 also shows recognition performance of these features when they are used 

in conju~lction with PLP. The 29 phone posteriors at the output of the Tandem MLP are 

concatenated with 29 PLP-estimated phone posteriors. The concatenated posteriors are 

gaussianixed, decorrelated, reduced in dimension from 58 to 29, and used as input features 

to the HMM based back-end recognizer. From the results, it can be observed that gain in 

the recognition performance is the same for six broad-phonetic category features as it is for 

29 phone category features, both estimated from temporal patterns. This indicates that 

the amount of complementary information provided by 6 broad-phonetic features is the 

same as that carried by 29 phone-category features. This gain in the recognition perfor- 

mance is significant at 99 % confidence interval. We used Matched Pairs Sentence-Segment 

Word Error (MAPSSUTE) test to perform significance test. 

Table 3.5 compares the generalization properties of the broad-phonetic category and 

the phone-category features when parameters of the system are entirely trained on an 

independent dataset. For this experiment, we trained band-specific posterior estimators 

(MLPs) and the class-posterior estimator (MLP) used in the Tandem system on a task- 

independent dataset, OGI-stories. In this case, the broad-phonetic category features give 

better gain in word level recognition performance than phone category features. 



Categories I priors 
plosives i 17.0 

nasals 
vowels 38.9 
schwas 
silence 13.8 

% error rate -1 

Table 3.2: Frame-level broad-phonetic categories error rate (%) on TIMIT dataset. 

r 1 frame error [ word error 
broad- honet tic features 1 25.8 8.7 

Table 3.3: Frame-level phone classification error (%) and WER on OGI connected digits 
task using 6 * 15 broad-phonetic category features estimated from each band. 

Table 3.4: Word Error Rates (%I) on OGI-Digits, using cepstral features alone, or using 
cepstral augmented with temporal patterns estimated features. Band-specific posterior 
estimators (MLPs) were trained on OGI-Stories and the posterior estimator used in the 
Tandem system was trained on the OGI-Numbers. The dimensionality of final feature 

PLP 
features 
5.0 

vector was kept at 29 

with 3 broad-phonetic with 6 broad-phonetic with 29 phone category 
category features category features features 

4.8 4.3 4.3 

PLP with 6 broad-phonetic with 29 phone 
features category features category features 
7.4 6.9 7.3 

Table 3.5: Word Error Rates (%) on OGI-Digits task, using cepstral features alone or cep  
stral augmented with temporal patterns estimated features. The band-specific posterior 
estimators (MLPs) and the posterior estimator used in Tandem system were trained on 
OGI-Stories, an independent dataset. The dimensionality of final feature vector was kept 
at 29 



3.8 Conclusions 

We showed that temporal patterns cluster well into a set of broad-phonetic categories in 

each critical band. The confusion matrix of phones obtained from phone classification also 

shows similar clusters of phones. The temporal patterns of log critical-band energies can 

be used to estimate broad-phonetic category features, illdependently from each frequency 

band. 

The confusion matrix (obtained at the output of Tandem MLP) of broad-phonetic 

classes is more diagonal than that of phone classes. This indicates that broad-phonetic 

categories are better classified by t,emporal patterns than phones. By using just six broad- 

phonetic category features around 26 % frame-level phone error rate for 29 phones (Ap- 

pendix C) is achieved. These features give arourld 8.75 % word error rate when used for 

word recognition. 

A consistent and significant gain in the recognition performance is obtained by aug- 

menting broad-phonetic features with short-term spectral features such as PLP cepstral 

coefficients. This indicates that the broad-phonetic features are complementary in nature 

with respect to short-term cepstral features. The gain in the recognition performance is 

significant at 99 % confidence interval. For confidence measure, we applied Matched Pairs 

Sentence-Segment Word Error (MAPSSWE) test [23]. 

The broad-phonetic TRAPS features give a similar gain in the recognition performance 

as that given by phone category TRAPS features. However, broad-phonetic category 

TRAPS features generalize better than phone-category TRAPS features when the system 

is entirely trained on an independent dataset. The reason for this is attributed to having 

more data to train each broad-phonetic categories as each category comprises several 

phones. The system uses 120 k (15 * (50 * 101 + 101 * 6)  + 15 + 6 * 200 + 200 * 6) parameters 

which is around 50 % less than the parameters (15*(50*101+101*29) -t15*29*300+300*29) 

used in the earlier proposed TRAPS system (Section 1.3). 



Figure 3.5: Mean Temporal Patterns of seven broad categories in 1st critical-band 
Nasals 

Figure 3.6: Mean Temporal Patterns of seven broad categories in 5th critical- 
band Fq pas{ 

Figure 3.7: Mean Temporal Patterns of seven broad categories in 15th critical- 
band 



Chapter 4 

Broad-phonetic features : Applications 

In the previous chapter, we investigated the estimation of broad-phonetic features from 

temporal patterns and showed benefits in recognition performance on incorporating these 

features in a conventional ASR systern. In this chapter, we investigate further the use of 

broad-phonetic features in two practical applications : 1) robust Voice Activity Detection 

(VAD) and 2) Distributed Speech Recognition (DSR) in cellular telephony. 

The broad-phonetic features that are investigated for these practical applicatioris are 

the same features as described in Chapter 3 i.e. 1) based on Voicing the three categories : 

voiced sounds, unvoiced sounds, background; 2) based on seven broad-phonetic categories 

: vowels. nasals, fricatives, plosives, flaps, and background or silence. 

The chapter is organized as follows. Section 4.1 describes proposed temporal patterns 

based system for voice activity detection (VAD). It also describes a GMM-based VAD 

scheme, the baseline system used for evaluating the proposed VAD. It presents some 

results and conclusions of this work in the Subsection 4.1.5. Section 4.2 describes the use 

of broad-phonetic features in DSR system. It gives a summary and conclusion of this work 

in Subsection 4.2.6. 

4.1 Broad-phonetic features for Voice Activity Detection 

WAD) 

In previous section, we investigated TempoRAl Patterns (TRAPS) of log critical-band 

energies for the estimation of broad-phonetic features. We observed that temporal pat- 

terns are quite accurate for detecting non-speech or background portions of the speech 



signal in individual bands. That leads us to investigate the use of temporal patterns for 

robust speech/non-speech detection or VAD . The results show the benefits of exploiting 

the multi-band framework of this system in band-limited noisy conditions. We compare 

the proposed VAD technique with another GMM-based VAD technique by using word 

re~ognit~ion performance on the hypothesized speech segments as an evaluation metric. 

4.1.1 Voice activity detection (VAD) 

The separation of an audio signal into speech and non-speech segments, a process known 

as voice activity detection, is an important part of many speech processing systems. Effi- 

cient speech and non-speech segmentor has two benefits in speech recognition. In speech 

recognition systems, processing time is reduced because recognition is performed only on 

speech segments and recognition accuracy is improved by eliminating noisy non-speech 

segments that may be erroneously recognized as speech (causing insertion errors). 

4.1.2 Frequency-localized temporal patterns for VAD 

The temporal patterns of log critical-band energies are used to estimate the posterior 

probabilities of three cla..ses : voiced speech, unvoiced speech, and non-speech, given a 

feature vector. The stream of non-speech posterior probabilities is then processed through 

a median filter or Viterbi search to produce a segmentation. The critical-band MLPs have 

101 hidden units, a softmax output layer and are trained using error backpropagation 

algorithm with a cross-entropy error criterion. The final class posteriors are estimated by 

averaging the band-local log-posteriors and processing the vector of averaged log-posteriors 

through a softmax non-linearity. Two procedures for obtaining the final speech segments 

from the averaged log-posteriors were tested. In first case, the speech and non-speech 

segments are generated by passing the stream of non-speech posteriors through a 51- 

sample ( 0.51 s) median filter and marking fiames with filtered silence posteriors less 

than 0.5 as speech. Hypothesized speech segments separated by less than 250 ms. of 

silence are merged , and the remaining speech segments are expanded by an additional 

20 frames (10 at the beginning and 10 at the end of the segment). In second case, a 

Viterbi search is applied to the averaged log-posteriors to mark final speech segments. 



101 dim ---+ - 
Mean & 
variance 
n o d i z c d  
t e m p 4  pattern 

voiced,umtoiccd, 

/ I '  

Class 
5-  

posterior Hypotksiztd 
cstknator speech 

segments 

Figure 4.1: Frequency-localized temporal pat terns for VAD 

The speech segments produced by the Viterbi search are expanded by an additional 40 

frames to keep enough surrounding context and low-energy unvoiced speech sounds around 

the hypothesized speech segments. The block diagram of this system is shown in Figure 

4.1. We refer this system as the TRAPS-based V44D system. 

4.1.3 GMM/HMM based VAD 

In this section we briefly describe a baseline system for the VAD task. This system was 

developed at IBM [lo, 111 recently. This system is different from the temporal patterns 

system (Section 4.1) in two aspects : 1) it uses Gaussian mixture models (GMM) for 

acoustic  nodel ling of the speech and non-speech regions and 2) it uses log-energy and 

degree of voicing as features. 

The HMM-based VAD system uses two five-state, left-to-right HMMs with no skip 

transitions to model speech and non-speech segments. The output distributions are mix- 

tures of sixteen diagonal-covariance Gaussian densities. They are tied across all five states 



in an HMM. The features used in the HMM system are derived from frame-level estimates 

of log-energy and degree of voicing. Both the log-energy a~ ld  degree-of-voicing estimates 

are co~uputed from 25 Ins, mean-removed frames that have been weighted with a Han- 

ning window. The log-energy features are normalized to have zero mean over ax1 entire 

conversation side. The degree of voicing measure , v(t), is 

ri ( t )  v ( t )  = mas-, t  = 50, ..., 150 
TO ( t)  

where r z ( t )  is the biased autocorrelation at lag i (in sample, with a 16 kHz sampling 

rate) computed from frame t. The range of lags over which the maximization is per- 

formed corresponds to a pitch range of 106 - 320 Hz. The degree of voicing measure is a 

very similar to the periodicity measure proposed by Thomson and Chengalvarayan [14]. 

The features for segmentation are computed by concatenating 17 frames of raw energy 

and voicing features, sorting the features of each type into increasing order and project- 

ing the resulting 34- dimensional vector down to two dimensional using a discriminant, 

diagonalizing transform. Finally, segmentation is performed using a Viterbi search. A 

segment-insertion penalty controls the number and duration of hypothesized segments. 

The speech segments produced by the Viterbi search are expanded by 40 frames, 20 on 

each side of the segment-, to capt,ure any low-energy, unvoiced speech sounds at the seg- 

ment boundaries and to provide sufficient acoustic context to the speech recognizer. This 

HMM VAD algorithm was used in IBM's entry in the SPINE2 evaluation [lo]. 

4.1.4 The Database and Task description 

We used the SPINE-2 dataset for evaluation of the three VAD schemes. SPINE audio data 

is collected from a pair of speakers playing a collaborative war-game in which they locate 

and destroy targets on a game grid. The speakers sit in individual sound booths in which 

some background noise environment is reproduced. The noise environments represent a 

range of military environments, including a quiet office, the combat information center of 

an aircraft carrier, the cockpit of a helicopter and the interior of a Bradley fighting vehicle. 

The signal-to-noise ratio in the training and testing conditions ranges from 5 - 20 dB. As of 

the SPINE-2 evaluation there were 17 hours of data available for training and development 



testing. The SPINE-2 evaluation data comprises 128 unsegmented conversation sides with 

an average duration of 200 s. To measure the quality of the three VAD algorithms, the 

segmenit,ation~ of the SPIXE-2 evaluation data were generated using each algorithm. These 

hypothesized speech segments were recognized using an ASR system and the word error 

rates on the evaluation data are used as the quality metric. Earlier work on SPINE data 

has demonstrated that accurate speech/non-speech segmentation is crucial for obtai~ling 

accurate recognition performance [56]. The raw features used by the ASR system are 19 

PLP features computed from the 16 kHz audio signal. Vocal tract length normalization 

is applied via linear scaling of the frequency axis up to *20% prior to the Me1 binning. 

The PLP features are normalized on a per-side baqis to have zero mean and unit variance, 

except for cO, which is normalized to have a fixed maximum value in each segment. The 

featurre vectors on which recognition is performed are produced by concatenating 9 fiames 

of normalized PLP features (+.4 frames around the current frame) and projecting to  a 

39 dimensional feature space using a discriminant, diagonalizing transform. A Multi-pass 

decoding strategy is applied in recognizing the SPINE-2 evaluation data using a series of 

adaptation steps a ~ ~ d  two speaker- and environment-normalized acoustic models. The first 

acoustic model is a VTLN (Vocal Tract Length Normalization) model for which training 

and testing data are warped to match the characteristics of a canonical speaker. The 

second acoustic model is trained using speaker adaptive training (SAT). For the SAT 

system, both training and testing data are &ne transformed into a canonical space. This 

process is identical to applying constrained maximum-likelihood linear regression (MLLR) 

to the acoustic models, but operates in the feature space. Three decoding passes are 

performed on each segmentation of the SPINE-2 evaluation data. The first pass uses the 

VTLN acoustic models and the VTLN-warped PLP features. The second decoding pass 

SAT uses the SAT acoustic model and single FMLLR (Full-covariance maximum-likelihood 

Ijnear regression) transform per test speaker. The FMLLR transforms are trained on the 

one-best hypothesis from the VTLN decode. For the third pass of decoding (SAT-n), 

multiple regression clavs based FMLLR transforms are trained for each test speaker on 

the one-best hypotheses kom the SAT-1 decoding, and recognition is performed using 

the SAT acoustic model. All passes of decoding are performed using IBM's rank-based 



stack decoder. The language model is a class trigram trained only on SPINE training 

data. Words in the 5720-word recognition lexicon are modeled as sequences of decision- 

network clustered, co~ltext-dependent sub-phone units. Each sub-phone unit is modeled 

by a one-state HMM with a self-loop and a forward transition. Output distributions on the 

HMM transitions are modeled using mixtures of diagonal covariance Gaussian densities. 

The VTLN acoustic model comprises 1912 sub-phone units and 18842 mixtures, while the 

SAT model comprises 1537 sub-phone units and 15302 mixtures. 

4.1.5 Results and Conclusions 

Table 4.1 summarizes the recognition performance on decoding hypothesized speech seg- 

ments from three different VAD schemes at various stages of feature and model adapta- 

tion. For all three decoding stages, recognition performance is 1 % absolute better for 

the TRAPS with Viterbi based segmentation than for t,he GMM based segmentation. By 

looking at the breakdown of recognition errors into substitutions, deletions, insertions and 

gap insertions (words hypothesized during non-speech segments): it is observed that the 

VAD systems differ mostly in deletions and gap insertion error rates. The GMM-based 

segments has low gap insertion and high deletion rates, whereas the TRAPS with median 

filtering VAD has high gap insertion and low deletion rates. The reason for this can be at- 

tributed to using locally mean and variance normalized temporal patterns of critical-band 

energies. By replacing median filtering by global Viterbi search as the final post-processing 

step to get hypothesized speech segments, the gap insertions in the TRAPS VAD can be 

reduced. Tables 4.2 and 4.3 show a breakdown of recognition performance by noise con- 

ditions for each VAD scheme. For narrow-band noises such as car, street, and office the 

TRAPS with Viterbi VAD works significantly better than the GMM-based system due 

to its multi-band framework. For carrier noise, which includes bursts of relatively high 

energy speech i11 time, the gap insertion rate for the TRAPS VAD is higher than for the 

GMM-based VAD scheme, which results in its poor performance in this particular condi- 

tion. This indicates that the TRAPS VAD does not handle time-localized, non-stationary 

noisy conditions well. 



VAD 

HMM 
TRAPS+ Median 
TRAPS+Viterbi 

VTLN 
WER 

SAT-1 

Table 4.1: % Recognition performance for each segmentation of the SPINE2 evaluation 
data and each pass of decoding. The word error rate is broken down in terms of substitu- 
tions, deletions, insertions and gap insertions. Gap insertions are caused by segmentation 
errors: the recognizer hypothesizes words during non-speech segments. For all three de- 
coding passes, the best accuracy is obtained with the TRAPS-kViterbi segmentation. 
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41.5 
42.4 
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HMM 
TRAPS+Median 
TRAPStViterbi 

4.2 Broad-phonetic features in cellular telephony for DSR 

sub. 

HMM 
TRAPS+Median 

In this section, we evaluate broad-phonetic features, estimated from the temporal patterns, 

for DSR. We propose the estimation of broad-phonetic features at the server-end. The 

broad-phonetic features are used as an additional feature-stream in the recognizer. 

S AT-n 

12.8 
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10.8 

33.7 
33.8 
32.7 

4.2.1 Distributed Speech Recognition (DSR) for cellular telephony speech 

del. 

22.2 
23.4 
22.8 

34.3 
34.6 

This section describes briefly different processing blocks of a distributed speech recognition 

(DSR) system, which was submitted to the AURORA-2 evaluation [I]. The AURORA- 

2 task comprises English (TIDIGITS) and European languages (Spanish, Italian, and 

Finnish) connected digits. There were three different testing conditions which were based 

on the degree of mismatch between training and testing environments. The recognizer 

was fixed in configuration by an ETSI committee [31, 171 where each digit was modeled 

using a whole-word model. The models were based on 16-state, 3-mixture whole word 

HMMs. The silence model had 3-state and 6-mixture per state. Also, a one-state short 
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TRAPS+Viterbi 33.5 
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5.2 
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0.9 
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gap 
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1.4 

12.8 
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10.5 

3.3 j 0.9 ' 
3.9 
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Channel A speakers 
noise gap 

VAD WER sub. del. ins. ins. 
HMM Bradley 41.9 20.4 14.2 5.9 1.4 

office 32.6 14.3 15.4 2.2 0.8 
carrier 24.3 12.9 6.6 3.5 1.4 
car 32.3 14.0 15.5 2.3 0.4 

Table 4.2: SAT-n recognition performance for SPINE-2 evaluation data, by noise condition 
and segmentation. The table is divided into two parts corresponding t,wo speaker groups 
in the data. Because there are only sixteen speakers per group, meaningful comparisons 
can only be made within a speaker group. 

pause model is used and is tied with the middle state of the silence model. The processing 

of features for noise compensation was divided into two parts. 

4.2.2 Handset-side processing 

In the proposed DSR system [I], the following techniques were incorporated for compensat- 

ing the various mismatched testing conditions. The feature processing at the handset-side 

is as follows: 

1. Wiener filtering was applied in the power spectral density domain as a first step for 

additive noise compensation. 

2. RASTA like filtering was applied on 23 Me1 critical-band energies, which were com- 

puted on the Wiener filtered power spectral densities, as a channel compensation 

technique. The filter-bank complitatiorl is described in detail in Appendix H. 

3. Finally 15 cepstral coefficients were computed on RASTA filtered Me1 critical-band 

energies. 



Table 4.3: SAT-11 recognition perforn~ance for SPINE-2 evaluation data, by noise condition 
and segmentation. The table is divided into two parts corresponding two speaker groups 
in the data. Because there are only sixteen speakers per group, meaningful comparisons 
can only be made within a speaker group. 

Channel B speakers 

4.2.3 Server-side Processing 

The server-side feature processing further compensates for mismatched noise arid channel 

testing conditions. The following techniques were proposed for feature processing at the 

server-side: 

\'AD 
HMM 

TRAPS 

1. Adaptive mean and variance normalization was applied on the received 15 cepstral 

features. The estimates for local mean and variance were updated only for speech- 

detected frames using information horn a voice activity detector. 

del. 
14.0 
9.4 

13.9 
12.3 
13.1 
9.7 

12.3 
9.7 

2. Dynamic features (15 delta and 15 double-delta) were computed on 'the normalized 

cepstral features. 

noise 

helicopter 
F-16 
quiet 
street 
helicopter 
F-16 
quiet 
street 

The di~nension of find feature vector was 45 after including dynamic features. We refer 

these features as robust MFCC features. More details of the proposed DSR system can 

be found in [I]. 

ins. 
3.5 
3.8 
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3.1 
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3.4 
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4.2.4 Aurora Dataset 
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Aurora-2 is the TIDIGITS dataset artificially distorted by additive noise and simulated 

channel distortion. Two kinds of training are used: clean speech training (denoted as 

sub. 
21.6 
20.8 
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16.9 
22.8 
20.6 
17.1 
17.5 
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Figure 4.2: Distributed Speech Recognition (DSR) system

Clean), and training by using both clean and noisy speech (denoted as Multi). For each

training set, three tests are realized: (A) - matched training and testing noises, (B)

- mismatched training and testing additive noises, and (C) - mismatched training and

testing additive noises and channel (convolutive) distortions. Aurora-3 is a set of multi-

language SpeechDat-Car databases recorded in-car under different driving conditions with

close-talking and hands-free microphones. Three recognition experiments are defined for

Aurora-3 with different levels of training and testing mismatch: Well-matched, Medium

-mismatched, and Highly-mismatched.

For Italian, the training and testing conditions coverstop-motor-running, town-traffic,

low-speed-rough-road, and high-speed-good-road driving conditions. The data is recorded

using close-talking (CT) and hand-free microphones (HF) . The Well-matched training

and testing data.<;ets have CT and HF recorded data from all the driving conditions. The

Medium-mismatched training set has HF recorded data covering three driving conditions



: stop-motor-running, town-traffic, and low-speed-rough-road. Whereas the Medium- 

mismatched testing condition ha7 HF recorded high-speed-good-road condition. The 

Highly-mismatched training set has CT recorded all the driving conditions whereas testing 

condition has HF recorded data in the town-trac ,  low-speed-rough-road: and high-speed- 

good-road conditions [68]. 

For Finnish, the data is recorded in 0 kmh and engine on (low-noise), 40 - 60 kmh 

car-speed (low-noise), 40 - 60 kmh and window open (low-noise), 100 - 120 kmh (high- 

noise), and 100 - 120 kmh with nlusic on (high-noise) driving conditions. The data is 

recorded with CT and HF microphones. The WelEmatched training and testing datasets 

cover all the driving conditions with both HF and CT microphone recorded data. The 

Medium-mismatched training dataset covers 70% of quiet and low noise (with HF micro- 

phone) conditions whereas Medium-mismatched testing dataset covers 30% of high-noise 

driving conditions. The Highly-mismatched training set comprises 70% of all the driving 

conditions with CT microphone whereas Highly-mismatched testing dataset has 30% of 

low-noise and high-noise conditions, recorded with HF microphone [48]. 

For Spannish, the data is recorded in quiet (stop-motor-running), low-noise (town- 

traffictlow-speed-rough-road) , and high-noise ( high-speed-good-road) driving conditions 

again with HF and CT microphones. The Well-matched training and testing datasets 

cover all the driving conditions with data recorded with both HF and CT microphones. 

The Medium-mismatched training set has HF recorded in quiet and low-noise condi- 

tions whereas the testing condition has HF recorded high-noise conditions. The Highly- 

misniatched training set has CT recorded all the driving conditions whereas testing set 

has HF recorded low- and high-noisy conditions [69]. 

4.2.5 Broad phonetic features estimated from temporal patterns in DSR 

In the DSR framework, we propose estimation of broad-phonetic features from temporal 

patterns of log critical-band energies of 15 bands, which are reconstructed from the received 

15 cepstral features (prior to adaptive mean and variance normalization and dynamic 

feature computation), at the server-side. 50 DCT components of temporal trajectories of 

log critical-band energies are used to estimate posteriors of seven broad phonetic classes : 



vowels, plosives, fricatives, nasals, flaps, schwa and silence (Table 3.1). A set of multilayer 

perceptrons are trained using the backpropagation algorithm with cross-entropy criterion 

and these seven categories as target classes in individual critical-bands. The estimated 

posteriors from the multilayer perceptron (MLP) in each critical-band are then used as 

input features to a Tandem MLP for final posterior estimation. The seven outputs from 

this MLP are taken out without applying the softmax non-linearity and concatenated with 

the robust MFCC features. The components of the resulting 52-dimensional feature vector 

are decorrelated and used in an HMM based back-end recognizer. Table 4.5 and Table 4.6 

show the results of speech recognition experiments. The results show that by incorporating 

the seven additional features with cepstral features a 1 - 3% absolute reduction in % 

word error rate is obtained in various testing conditions of the TIDIGITS task. Whereas 

for the SpeechDat car condition a 0.3 to 0.7 % absolute reduction in word error rate is 

achieved but this improvement does not hold good on the highly mismatched condition. 

The improvements in the most of the widely varying testing conditions in TIDIGITS 

and SpeechDat car tasks show that seven features largely generalize well across different 

environments. Note that the training of the posterior estimators (MLPs) are entirely 

performed on an independent dataset i.e. the ~ ~ o i s y  TIMIT dataset. 

Table 4.4 shows the effect of using shorter temporal context (190 ms) on the recognitiori 

performance. It can be observed that the gain in the recognition performance is consistent 

with reduced system delay (90 ms) in a real-time applications however longer context (1 

s) further improves the recognition performance but introduces more delay (0.5 s) in a 

real-time applications. 



multi-style clean-style 
robust with robust with 
MFCC TRAPS MFCC TRAPS 

1 Medium mismatched / 9.4 1 
1 I I I 

7.9 1 14.8 1 14.2 1 

Table 4.4: Word error rates (%) on Aurora-2, TIDIGITS data, by training data (multi-style 
vs. clean) and by feature set (noise-robust MFCCs alone,or robust MFCCs augmented 
with TRAPS-estimated broad-phonetic features, context window = 190 ms). 

1 I 

Highly mismatched 1 9.9 1 9.0 1 14.5 
overall 1 9.4 1 8.3 / 14.6 

robust with 
MFCC TRAPS 

Well matched 

Highly mismatched 13.0 14.2 

13.6 
13.6 

Table 4.5: Word error rates 1%) on Aurora-3, SpeechDat-car data, by testing conditions 
by feature set (noise-robust MFCCs alone,or robust MFCCs augmented with TRAPS- 
estimated broad-phonetic features, context window = 1 s). 

,Table 4.6: Word error rates (%) on Aurora-2, TIDIGITS data, by training data (multi-style 
vs. clean) <and by feature set (noise-robust MFCCs alone,or robust MFCCs augmented 
with TRAPS-estimated broad-phonetic features, context window = 1 s). 



4.2.6 Conclusions 

We obtain consistent gains in recognition performance on combining broad-phonetic fea- 

tures and conventional cepstral features. We achieve 0.3 to 3.0 % absolute reduct,ion in 

word error rates on most of the conditions of AURORA datasets. The number of parame- 

ters used in the temporal pattern system is around 98040. The temporal patterns system 

has an algorithmic latency of 190-500 ms. We showed that it is feasible to reconstruct 

critical-band energies from the transmitted cepstra for a temporal patterns system at the 

server-end without disturbing the terminal-side feature processing. Thus an additional set 

of features can be extracted by utilizing the information from frequency-localized temporal 

patterns of the speech signal and improved recognition performance can be achieved. 



Chapter 5 

Universal TempoRAl Pat terns 

(UTRAPS) based system 

In the previous chapter, band-specific broad-phonetic categories were investigated for fea- 

ture estimation. The broad-phonetic categories were obtained by clustering mean temporal 

patterns of phones in individual critical-bands (Section 3.4). By looking at the confusion 

matrices of broad-phonetic categories, it can be seen that the nasals and vowel categories 

axe most often confused with each other in lower frequency bands, while the nasals and plo- 

sive categories are confused with each other in higher frequency bands. Likewise fricatives 

and plosives are confused with each other in lower bands while in higher bands fricatives 

and voweLs are confused with each other ( Figures 3.1, 3.2, 3.3, and 3.4) This is due to the 

fact that some of the phones change cluster dl ia t ion in different frequency bands. This 

depends often on the type of speech activity present in that particular band. For example 

fricative /sh/ has a high concentration of energy in higher frequency regions which makes 

temporal patterns of /sh/ in these regions have a peak at the center , much like vowels 

have (Appendix B). 

These observations lead us to define clusters (new categories) based on distinct speech 

activities in different frequency bands. Instead of defining broad-phonetic categories by 

clustering temporal patterns independently in individual critical-bands, we propose new 

band-independent broad-phonetic categories which can be obtained from clustering tem- 

poral patterns from all the critical-bands. These clusters of temporal patterns represent 

distinct speech activities or events manifested in log critical-band energies of the speech 

signal. In our work described in the previous chapters, we have used independent posterior 



estimators in each frequency band. In this chapter, We propose a new systeni which uses 

single, universal class-posterior estimator for estimating posterior probabilities of speech- 

events categories. These posteriors are used as features in the Tandem speech recognizer 

for final recognj tion. 

This approach is a step towards providing more sharable acoustic information by defin- 

ing consistent and distinct acoustic regions in the time-frequency representation of the 

speech signal. We show that the new features axe robust across various noisy environments. 

They are also complementary in nature with respect to short-term spectral features such 

as cepstral coefficients. 

The chapter is organized as follows. In Section 5.1, we describe the clustering of ten]- 

poral patterns of phones into speech-event categories. Section 5.2 describes a Universal 

TempoRAl Patterns (UTRAPS) system for feature estimation. Section 5.4 shows the per- 

formance of the UTRAPS features in ASR. Section 5.5 gives the summary and conclusion 

of this work. 

5.1 Clustering the temporal patterns to define speech events 

This section describes how we obtain band-independent speech-event categories for feature 

estimation. The mean temporal patterns are computed using 101-sample ( 1 s in tem- 

poral context) mean subtracted, variance normalized, and hamming windowed temporal 

patterns of log critical-band energies for each phone on a labeled dataset (TIMIT) 1601. 

The details of computation of mean temporal patterns is described in Appendix B. An 

agglomerative hierarchical clustering technique [55] is used to obtain new categories. A 

correlation measure is used as a similarity measure for clustering the temporal patterns. 

It is given by, 

S(z:y) = - 
Q ~ U Y  

For number of TIMIT phones = 56 and number of bands = 15, the agglomerative clustering 

procedure starts with 56 * 15 mean tenlporal patterns as the singleton clusters. At each 

iteration the two closest together clusters are merged with each other. This is performed 

iteratively until the number of clusters reach finally to 9 clusters. The matlab code used 



for generating these cluster is given in the Appendix F. 

This stopping point in clusterir~g is based on some heuristics - had we continued fur- 

ther in the clustering, final clusters would not be able to capture the distinct 'flap' or 

'schwa' mean temporal patterns, and we have chosen to keep these distinct patterns in 

our inventory of speech events. The final nine clllsters are shown in the Figure 5.1. They 

represent distinct frequency-localized temporal patterns of the speech signal. 

1. SILENCE-like - e.g. mean temporal patterns of the silent speech regions for all the 

critical-bands. 

2. PLOSIVE-like - e.g. mean temporal characteristics of most of the plosives which 

shows a dip in energy off-center to the left as plosives are usually preceded by a 

stop-closure. This pattern is also found in the 8-9 bands of the glide /w/ and in the 

5-6 bands of the glide /y/. 

3. NASAL-like - e.g. mean temporal characteristics of a nasal /em/ in the lower 1-7 

bands. 

4. GLIDE-like - a peak in energy off-center to the right which represents mean temporal 

characteristics of glides /r/, /w/ in 1-6 bands , and of /y/ in the lower 1-4 bands 

and the higher 10-15 bands. 

5. LOW VOCALIC ENERGY - a small burst in the energy off-center to the left followed 

by a small dip in energy off-center to the right. This pattern is often seen in the 

middle bands of vowel /iy/ and higher bands of vowel / a x /  etc. 

6. SCHWA-like - mean temporal characteristics of the schwa sounds such as /ix/, /ax/ 

in most of the bands. 

7. FLAP-like - mean ternporal characteristics of the flaplike sounds such as /nx/, /dx/ 

in most of the bands. 

8. HIGH VOCALIC ENERGY - mean temporal characteristics of most of the vowels 

such as /aa/, /ae/ in 1-15 critical-bands, of a vowel /iy/ in the lower 1-5 and upper 
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Figure 5.1: Mean temporal patterns of nine speech-events 

10-15 bands, and of a dipthong /oy/ in the lower 1-6 bands. This pattern is also 

found in the higher 12-15 bands of fricatives such as /zh/, /sh/ etc. 

9. FRICATIVE-like - The nineth cluster represents mean temporal patterns of most 

of the fricatives such as /s/, /sh/, /f/ and of dricatives such as /ch/, /jh/ in the 

lower 1-9 bands. It also represents mean temporal characteristics of nasals /m/, /n/ 

in the higher bands 

The grouping of the phones based on these nine clusters in individual bands is shown in 

the Appendix E. 

5.2 A Universal TemPoRAl Patterns (UTRAPS) system 

A single posterior estimator (MLP) is trained with 9 clusters as the target categories. The 

50 lowest DCT components computed from 101-point, mean and variance normalized tem- 

poral patterns of log critical-band energies are used as input to the MLP. The MLP has 101 

hidden units. The new class-labels are obtained by mapping mean temporal patterns of 

phones from each of the critical-bands to one of the 9 speech-event clusters using a similar- 

ity (correlation coefficient) measure. The phone-labels of the training dataset are obtained 

by forced-alignment or manual-transcription. The MLP is trained with backpropagation 
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Figure 5.2: Block diagram of the UTRAPS system 

algorithm with cross- entropy as the error criterion. At every frame, class-posteriors are 

obtained by doing a forward pass for each temporal pattern from the 15 frequency bands 

through the MLP. The 9 * 15 class-posteriors are used as input features to a Tandem sys- 

tem for final recognition. The block diagram of the UTRAPS system is shown in Figure 

5.2. 

5.3 Speech-event for phone and broad-phonetic category 

classification 

In this section we compare phone classification rates for 56 TIMIT phones based on speech- 

event features and based or1 the previously described broad-phonetic features. We used 

temporal patterns of 15 Me1 filterbank, which are described in Appendix H, for this exper- 

iment. The 9 * 15 features are used as input to the Tandem MLP which targets 56 phones 

for classification. The UTRAPS MLP is trained with 101 hidden units and the Tandem 

MLP is trained with 200 hidden units. Similarly the 7 * 15 broad-phonetic features are 

used as input to the Tandem MLP for phone classification rate. In this system, the band- 

specific MLPs are trained with 101 hidden units and the Tandem MLP is trained with 200 

hidden units. All the MLPs are trained on the TIMIT dataset using the backpropagation 

algorithm with a cross-entropy error criterion. 



Table 5.1 shows that similar or lower phone frame-level error rates are obtained for 

most of the phones using speech-event UTRAPS features. Table 5.2 shows frame-level 

classification error rates for the seven broad-phonetic categories obtained using speech- 

event UTRAPS features and broad-pho~letic TRAPS features. The speech-event features 

give similar classification error rates for vowels: nasals, fricatives, and plosives categories 

than broad-phonetic features that are estimated independently from each frequency band. 

For flap, schwa, and silence categories they perform worse than broad-phonetic features. 

5.4 Speech-event features in ASR 

The speech-event features are evaluated on the small vocabulary continuous digits tasks : 

OGI-Digits and AURORA tasks. Description of the datasets can be found in Section 2.3 

and Section 4.2.4. 

For OGI-Digits task, we uqed 50 DCT components of temporal patterns of 15 logBark 

filterbanks energies. The used filterbank is described in Appendix H. The UTRtlPS MLP 

is trained with 101 hidden units and 9 target classes on an independent dataset i.e. OGI- 

stories. The 15 * 9 speech-event posteriors horn UTRAPS MLP are taken before soft-max 

non-linearity and used as the input features to a Tandem MLP that estimates posteriors 

for the seven broad-phonetic categories posteriors. For this task, since 'flap' was not 

present we used six broad-phonetic categories for posterior estimation at the output of the 

Tandem MLP. The Tandem MLP is trained with 200 hidden units. These six posteriors 

output from the Tandem MLP are used as features and evaluated in conjunction with PLP 

cepstral features. The posteriors are combined at the class-posterior level as described 

earlier in section 3.7. For estimating classposteriors from cepstral features, 9 frames of 

24 PLP cepstra along with dynamic features (delta+ double delta) are used as input to 

a MLP for estimating 29 phone posteriors. These posteriors are concatenated with 6 

broad-phonetic posteriors. The 35 concatenated posteriors are gaussianized, decorrelated, 

reduced in dimension to 29 (using the PCA transform), and finally used as input to the 

HMM based back-end (Section 3.7). We had two cases based on the dataset used for 
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Table 5.1: % Frame-level phone classification error rates obtained at the output of the 
Tandem MLP, using the UTRAPS features and using broad-phonetic TRAPS features es- 
timated independently from individual critical-bands. Results are obtained on the TIMIT 
dataset. The minimum error is shown in bold type 

TRAPS UTRAPS Phone TRAPS 
82.3 80.1 m 56.4 
89.8 87.6 em 99.9 
86.1 80.9 n 56.7 
71.7 72.1 nx 80.6 
61.6 60.5 ng 86.9 
59.2 55.7 en 83.4 
44.7 49.8 1 50.8 
77.2 77.0 el ' 69.6 
77.0 77.9 r 51.9 
91.4 93.1 w 54.8 
79.8 77.0 Y 79.5 
63.6 64.9 hh 88.9 
62.5 62.4 hv 69.8 
75.0 72.9 iy 1 33.1 
75.9 72.9 ih ' 74.5 
32.8 31.4 eh 69.4 
47.6 45.6 eY 54.0 
69.3 66.9 ae 48.8 
91.4 90.0 M 58.6 
69.1 68.7 aw 80.1 
99.6 99.4 aY 50.2 
83.5 83.5 ah 76.4 
83.6 83.0 ax) 59.5 
75.6 71.5 ow 74.2 
97.0 96.0 uw 71.3 
63.7 59.7 axr , 65.9 1 68.2 68.0 ix 56.4 

si 7.1 7.9 9 73.5 



training the Tandem MLP. In the first case, we trained it on the target dataset i.e. OGI- 

Numbers (contains OGI-Digits) and in the second case, we trained it on an independent 

dataset i.e. OGI-stories. 

We compare the result with six broad-phonetic features that are obtained from the 

previously described TR.APS systern (Section 3.4). In the TRAPS system, six broad- 

phonetic posteriors are obtained from each frequency band independently at the output 

of band-specific posterior estimators. The estimated 15 * 6 posteriors are mapped to 6 

final broad-phonetic posterior using a Tandern MLP. These 6 posteriors are evaluated in 

c~njunct~iorl with PLP cepstral features a3 the speech-event features are. We also compare 

this result with phone-based TRAPS features. The phone-based TRAPS features are 

obtained from each frequency band independently at the output of band-specific posterior 

estimators using the 29 phonas as the target categories. Table 5.4 shows that we obtain 

similar gain in recognition performance using the UTRAPS speech-event features or the 

both phonetic and broad-phonetic TRAPS features in conjunction with PLP cepstral 

features. In this experiment, the Tandem MLP is trained on the target dataset, OGI- 

Numbers, and the UTRAPS MLP and band-specific TRAPS MLPs are trained on OGI- 

Stories. 

Table 5.5 shows the performance of the features when the Tandem MLP, the UTRAPS 

MLP, and the band-specific MLPs, all are trained on OGI-Stories. In this case the 

UTRAPS features outperforrn the broad-phonetic category features. The U T M P S  fea- 

tures are significantly better (at 98 % confidence interval) than both phone-based and 

broad-phonetic TRAPS features. For confidence measure, we applied Matched Pairs 

Sentence-Segment Word Error (MAPSSWE) test [23]. 

Table 5.3 shows that speech-event features performance when they are used alone in 

the Tandem recognizer. In this experiment, 15 t 9 features are used as input to the Tandem 

MLP. The Tandem MLP estimates 29 phone posterior probabilities and these posteriors 

are gaussianized, decorrelated, and used as input to the HMM back-end recognizer. The 

result is compared with that obtained from 15 * 6 broad-phonetic TRAPS features. The 

15 * 6 broad-phonetic TRAPS features are used as input to the Tandem MLP for esti- 

mating again 29 phone posterior probabilities. These phone posteriors are gaussianized, 



decorrelated, and used as input to the HMM back-end recognizer for WER computation. 

For the AURORA t a ~ k  (Section 4.2), 15 c 9 speech-event features are evduated in 

conjunction with the robust MFCC features in the DSR Eramework. In this experiment, 

speech-event features are estimated horn the reconstructed 15 Me1 critical-band energies at 

the server-end. The computation of reconstructed Me1 critical-band energies is described 

in Appendix H. The 50 DCT components of 101-sample temporal patterns are used as 

input to the GTRAPS MLP. The MLP is trained with 101 hidden units and 9 target 

categories at the output layer. Every 10 ms, 15 * 9 class-posteriors are estimated using 

temporal patterns from all the frequency bands. They are mapped to 7 broad-phonetic 

class posteriors using the Tandem MLP. The Tandem MLP is trained with 200 hidden 

units and 7 target categories at its output layer. These 7 posteriors are taken from the 

Tandem MLP without applying the softmax non-linearity and then concatenated with the 

robust MFCC features at the server-end. The description of the robust MFCC features can 

be found in Section 4.2.1. The final 52 dimensional feature vector is decorrelated (using 

a whitening transform) and is used as input to the HMM based back-end recognizer. 

The description of this back-end recognizer can be found in Section 4.2.1. The speech- 

event UTRAPS features are compared with previously described broad-phonetic TRAPS 

features used in DSR {Section 4.2). Table 5.6 and Table 5.7 show that the speech-event 

UTRAPS features give very sin~ilas word recognition performance on the Aurora-2 and 

Aurora-3 datasets as the broad-phonetic TRAPS features give. 

Note that the UTRAPS system has only 5959 (50 * 101 + 101 * 9) parameters as  

opposed to the TRAPS system which has 86355 (N*(50 i 101 + 101 * 7) where N= 15 

bands) parameters. 

5.5 Summary and Conclusion 

We proposed band-independent categories for robust feature estimation. These categories 

characterize distinct speech events in the ftequency-localized temporal domain of the 

speech signal. These categories exploit the redundancy of events across different fre- 

quency bands as well as across different phones. Each category has more data for training 
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Table 5.2: % Frame-level broad-phonetic classification error rates obtained at the output 
of the Tandem MLP, using the UTRAPS features and using broad-phonetic features esti- 
mated independently fiom individual critical-bands. Results are obtained on the TIMIT 
dataset 
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Table 5.3: Word Error Rates (5%) on OGI-Digits : PLP cepstrd features, the UTRAPS 
features, or the broad-phonetic TRAPS features. 
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Table 5.6: Word error rates (%) on the Aurora-2, TIDIGITs data and by feature set (noise- \ .  
robust MFCCs alone, robust MFCCs augmented with broad-phonetic TRAPS features or 
the UTRAPS features), with context window = 1 s. 
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Table 5.7: Word error rates (%) on the Aurora-3, by testing conditions and by feature 
set (noise-robust MFCCs alone, robust MFCCs augmented with broad-phonetic TRAPS 
features or robust MFCCs augmented with the UTRAPS features), with context window 
= 1 s. 



as it uses temporal patterns from all the critical-bands as opposed to using band-specific 

patterns for training (as used in the broad-category features). These categories are defined 

by the clusters obtained from an agglomerative clustering technique which is applied to 

mean temporal patterns of context-independent phones. The used clustering techniques 

is only one of many alternatives which may be employed for deriving the speech events 

from speech data so this particular technique for deriving speech events is very much an 

open issue. 

We proposed a universal class potrterior estimator for speech-events feature estimation. 

We showed that similar or better phone classification rates can be obtained using speech- 

event features versus using the broad-phonetic features. A consistent and significant gain 

(at 98 % confide~lce interval) in recognition performance is achieved by augmenting these 

features with cepstral features. This indicates features are complementary to short-term 

cepstral features. We compared speech-event UTRAPS features with broad-phonetic and 

phone-based TRAPS features. We showed UTRAPS features give similar gain as TRAPS 

features, when used in conjunction with PLP cepstral features. We showed UTRAPS 

features generalize better than both sets of TRAPS features. A significant reduction in 

the number of parameters is achieved on using a UTRAPS system over earlier proposed 

TRAPS system. 



Chapter 6 

Incorporating broader-frequency context 

In the previous chapters, we investigated various categories such as context-independent. 

phones, band-dependent broad-phonetic classes , and band-independent speech-events cat- 

egories for noise-robust feature estimation using the temporal patterns of the speech signal. 

The temporal patterns of individual critical-bands were treated as  independent feature 

streams for estimating posterior probabilities of classes (Section 3). 

To know the nature and the spread of signal interaction across the critical-bands, we 

investigate the effect of broadening the frequency context on the estimated features and 

ASR. The frequency context is gradually increased from a single critical-band to several 

critical-bands by using temporal patterns jointly from adjacent critical-bands as input to 

class-posterior estimators. 

Section 6.1 analyzes two-dimensional principal components (PCAs) from the time- 

frequency feature space. It shows the effect of broadening the frequency context by incor- 

porating temporal patterns Gom several adjacent critical-bands on the estimated features. 

Section 6.2 describes the experimental setup. It shows the effect of broadening the fre- 

quency context on the recognition performance using the features in ASR. Section 6.3 

describes a joint transform using a DCT basis as a replacement for joint PCAs. It also 

describes the results obtained from using the joint DCT transform and compares it with 

that obtained fkom joint PCAs. The chapter ends with summary of this work in Section 

6.4. 



6.1 On incorporating broader frequency context 

In contrast to estimating features from the entire frequency spectrum in a single step, pre- 

viously proposed TRAPS systems estimate features (class-posterior probabilities) from I 

s (or 101 -samples) temporal trajectory of log critical-band energies from a single critical- 

band (Se~t~ions 1.3, 3.4) in its first stage of feature processing. In such a system, only 

within-channel (critical-band) cues are used and across-channel cues are ignored for esti- 

mating class (phone) posteriors in its initial stage of processing. To study the effect of 

incorporatirlg the local across-channel cues on ASR, we investigate combining temporal 

dynamics of patterns from several adjacent critical-bands in a TRAPS based system. The 

results also show the effect of broadening the frequency-context on ASR. 

6.1.1 Evidence of across-channel processing 

S. A. Shamma et. al. work on Spectro-Temporal Modulation Transfer function (STMF) 

[35, 651 indicates spectral-temporal modulations play significant role in the perception of 

speech signal. They measured the sensitivity of human subjects to a range of spectre 

temporal modulations. Their results indicate that STMF exhibits low-pass characteristics 

in both the dimensions, spectral and temporal. They also investigated STRF (spectre 

t,emporal response field) which represents the spectro-temporal patterns that best excites 

the auditory cells. They found that the temporal selectivity of these cells ranges from 

rapid (over 16 Hz) to very slow (under 2 Hz) whereas spectral selectivity ranges fiom 0.5 

to 2 octaves. This indicates that receptive fields gather information not only from longer 

temporal-span (order of 250 ms) of the signal but aLso from a range of spectral frequencies. 

These studies indicate that auditory system utilizes not only within-clannel cues but also 

across-channel cues for identifying a particular sound. The other evidence for across- 

channel processing is comodulation masking release (CMR), known as a psycoacoustic 

phenomenon. The work on CMR by Hall et. al. [16] indicates that initial stage of auditory 

filtering is followed by across-channel processing. They found that for masker bandwidths 

larger than the critical-band signal-thresholds in the modulated-noise condition go down 

than in the reference condition whcre unmodulated bandpass noise was used as the masker. 



This difference between the modulated and the unmodulated condition diminishes when 

the masker bandwidth is smaller than the critical band-width. Based on these findings 

Hall et . al. suggested [30] that the energy-envelops fluctuations between different auditory 

channels are compared and thereby across-channel cues are used in detecting the signal 

during auditory processing [33]. 

6.1.2 Computation of joint PCAs 

To incorporate broader frequency-context, joint principal components (PCAs) are esti- 

mated from a two dimensional time-frequency tile of log critical-band energies. The tern- 

poral context is kept the same as before : 1 s (101-samples from 8 kHz speech). The 

frequency context is increased from one critical-band to five critical-bands in steps of one 

critical-band. The joint PCAs are used as input features to successive phone posterior 

estimators (MLPs). 

For joint principal components computation, the 101-sample long temporal patterns 

are concatenated from the adjacent N critical-bands where N is the used frequency con- 

text. These temporal patterns are mean and variance normalized prior to estimating 

joint PCAs. For the NXlOl sample long vector total covariance is computed using a 

dataset. We used an independent TIMIT dataset for this computation. The joint PCAs 

computation can be described mathematically as follows, 

Where vector Y$ represents a normalized 101-sample temporal pattern of Nth critical- 

band at time n, X g  represents 101-sample temporal vector of log critical-band energies of 

the same critical-band formed by concatenating 50 samples in the past and in the future of 

the current frame at time n. At every 10ms, the temporal pattern X.:, is mean subtracted 

and variance normalized. The local mean m$ and the variance p> of temporal patter11 

X$ in Nth critical-band are computed as follows, 



The vector Yn is forrned by concateriating the temporal patterns from N adjacent critical- 

bands. C is the total covariance matix computed over vector Y. Singular value decompc>- 

sition of matrix C gives eigenvalue matrix S and eigenvector matrix U .  The columns of 

the matrix U represent joint principal components (PCAs) of the concatenated temporal 

patterns. This computation can be described mathematically as follows, 

For N= 3 critical-bands, the joint PCAs are shown in Figures 6.5 and 6.6. It can 

be seen that the joint PCAs can be approximated by combinations of cosine functions 

of different modulation fi-equencies. For example in Figure 6.5 each principal component 

can be viewed as a concatenation of three segments of each 101-samples which can be 

approximated by a cosine Function of appropriate frequency. All three cosine components 

are inphase with each other. Whereas in Figure 6.6, each principal component can be 

viewed as a concatenation of two out of phase 101-sample cosine segments. These joint 

PCA basis vectors in effect do spectral subtraction ( Figure 6.6 ) along the'frequency axis, 

which essentially incorporates information about local spectral-slope into the projected 

feature components. 

6.2 Experiment and Results 

We have used two databases for evaluation : OGI-Stories and OGI-Numbers (described 

in Sections 2.3 and 2.3.1). OGI-Stories database is used for training the band-specific 

posterior estimators (MLPs), and the Tandem MLP is trained on OGI-Numbers. Testing 

is done on continuous OGI-Digits. 



The mean subtracted, variance normalized, and hamming windowed 101-sample tem- 

poral patterns of log critical-band energies are concatenated from the given number of 

critical-bands. The concatenated patterns are projected to 75 components using the joint 

Principal components (PCAs) and used as input to class-posterior estimators (MLPs). 

The class-posterior estimators are trained with 29 phones as the target categories in each 

frequency channel. Here, a frequency channel is a group of N adjacent critical-bands. The 

channels have an overlap of A7 - 1 critical-bimds where N is the number of critical-bands 

that are combined and used as input to the class-posterior estimators. The joint PCAs are 

computed a priori on an independent dataset (TIMIT) using N * 101-samples from a 2-D 

time-hequency tile of log critical-band energies. The estimated local phone posteriors are 

used as input to a Tandem MLP for the final phone posterior estimation. All MLPs have 

300 hidden units and 29 phones as the target categories for the class-posterior estimation. 

The 29 phone posteriors at the output of the Tandem MLP are gaussianized, decorrelated, 

and used as the input features to the HMM based back-end recognizer (Section 2.3.1). 

Table 6.1 shows WER in clean condition for different number of combined critical- 

bands. From the result it can be seen that on increasing frequency-context from 1 band 

to 3 bands recognition performance significantly (at 98 % confidence interval) increases. 

011 increasing further the context it decreases. Figures 6.1, 6.2, 6.3, and 6.4 show ASR 

performance for different number of combined critical-bands in noisy conditions. The 

results show that word error rate reduce significantly (at 98 '% confidence interval) when 

the frequency context increases from 1 critical-band to 3 critical-bands in all the 10 - 20 

dB SNR, noisy testing conditions. For these conditions, beyond three critical-bands of 

frequency context, the recognition error rate increases or remains the same. However, for 

low SNR (0-5 dB), in Pink and Babble noisy conditions, the WER significarltly reduces on 

increasing frequency-context from 1 band to 3 bands but it increases on increasing context 

from 3 to 4 bands and then it again decreases on increasing further the context from 4 to 

5 bands. We used a Matched Pairs Sentence-Segment Word Error (MAPSSWE) test to 

perform significance test on the results [23]. The effects of increasing frequency-context 

on frame-level phone accuracies on clean testing condition are shown in Table 6.3. For 



most of the vowels, plosives, and fricatives, accuracy increases with increasing frequency- 

context from one critical-band to three critical-bands. For more than 3 critical-bands of 

Gequency context, the phone accuracy reduces or remains the same. 

Table 6.1: % Word Error Rate (Recognition Performance) on using joint PCAs on time- 
frequency plane of speech representation for feature estimation at clean condition 

Frequency-context 1-band 2-band 3-band 4-band 5-band 
(number of critical-bands) (WER.) (WER) (WER) (WER) (WER) 

WER 6.6 5.3 5.0 5.9 5.8 

6.3 Replacing Joint PCAs by DCT bases 

The previous section, we noticed that the joint PCAs can be represented by a combina- 

tion of DCT bases. In this experiment, for the bband case, two 101-sample vectors are 

computed. The first 101-sample is obtained by averaging 101-sample temporal patterns 

from three adjacent critical-bands, while the second is obtained by taking the difference 

between patterns in the first and third bands. These two 101-sample vectors axe projected 

independently onto a 38-component DCT basis. This gives 76 projected components 

spanning 1 - 20 Hz of modulation frequency. These components are used as input to the 

class-posterior estimators for estimating phone posterior probabilities in each frequency 

channel. Table 6.2 shows the recognition performance obtained using 3-band joint DCT 

Table 6.2: % Word Error Rate on using 76 joint DCTs on the temporal patterns of three 
adjacent critical-bands, 75 joint 3-bands PCAs, 50 1-band DCT in clean, and in noisy 
condition 

Frequency-context ( clean / babble I pink I white 1 
(number of critical-bands) (WER) (WER) (WER) (WER) 

3-band DCT 5.7 8.6 5.8 5.8 
3-band PCAS 5.0 8.7 5.8 5.3 
I-band DCT 6.0 10.3 7.5 7.1 

components, 3-band joint PCAs components, and 1-band DCT components on clean as 



well as 10 dB SNR noisy condition. With joint DCT components, we obtain similar or 

worse results than those obtained from 3-band joint PCAs, But the joint DCT results are 

still significantly (at 98 % confidence interval) better than those obtained from 1-band 

DCT components. 

Table 6.3: XI Frame-level phone error rates obtained using 1 - 5 critical-bands of frequency 
context. The minimrrm error is shown in bold type. 
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6.4 Summary 

In this work, we investigated the effect of broadening the frequency-context on ASR. The 

joint PCA components are computed and used as input for phone posterior estimation. 

From the structure of the joint PCAs it can be seen that joint PCA bases capture local 

spectral-slope information in the projected temporal patterns. We showed that broader 

than one critical-band frequency context is required for higher recognition performance. 
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Figure 6.3: % Effect of broadening frequency Figure 6.4: Effect of broadening frequency 
context on ASR using TR.APS features context on ASR using TRAPS features, At 0 

dB SNR conditions 

The robustness of the estimated features doesn't suffer on incorporating more than 1 

critical-bands of frequency context during feature estimation in all the testing condi- 

tions. This indicates that local spectral-slope information is required for achieving higher 

phones accuracies. We showed that joint PCA bases can be approximated by a combina- 

tion of several DCT bases. The trend of improved recognition performance on increasing 

frequency-context still holds on using joint DCT components. The 3-band DCT corn- 

poner~ts outperform (significant at 98 % confidence interval) 1-band DCT components. 

In conclusion, we showed that modeling the interaction among adjacent critical-bands is 

required for obtaining higher recognition performance. 



Figure 6.5: First 8 PCAs over 3 critical-bands and 1 s (101-samples) temporal context 



Figure 6.6: Some of the next 6 PCAs over 3 critical-bands and 1 s (101-samples) temporal 
context 



Chapter 7 

Summary 

Tn this chapter, we summarize the thesis work in the section 7.1. We present some of the 

future directions in the section 7.2 and the final comments in the section 7.3. 

7.1 Summary 

The thesis was organized in five parts. Chapter 2 described various ways of parameterizing 

ten~poral patterns. The work in this chapter showed that linear components of temporal 

patterns can be used to parameterize patterns for obtaining better recognition performance 

in clean as well as in noisy environments. The temporal patterns closely follow the proper- 

ties of a first-order Markov sequence, which results in their principal components (PCAs) 

being close to a DCT basis. Around 50 PCA (DCT) components cover 1 - 25 Hz of mod- 

ulation spectrum and 98 % of the total variability of 101-sample temporal patterns. Using 

DCT or DFT components of temporal patterns give significantly better recognition perfor- 

mance than using temporal patterns directly for recognition. DCT and DFT components 

performance very similarly in most of the testing conditions. However, LDA components 

of temporal patterns perform significantly worse than DFT or DCT components in low 

SNR, noisy environments. This work also showed the effect of low-pass filtering the mod- 

ulation spectrum of temporal patterns on ASR. The recognition performance drastically 

goes dowxi on cutting off modulation spectrum below 8 kHz of modulation frequency com- 

ponents. The recognition performance doesn't drop significantly as long as upto around 

16 Hz of modulation spectrum of temporal patterns is retained for the successive feature 

estimation. 



Chapter 3 investigated broad-phonetic category features. These features are estimated 

from temporal patterns illdependently in each frequency band. The features are evalu- 

ated for phone classification and continuolis word recognition tasks. We showed that 

broad-phonetic features give significant gain in the recognition performarlce when they 

are combined with short-term features (PLP cepstra) in ASR. This indicates their com- 

plementary nature to short-term cepstral features. On using broad-phonetic features, 

the gain in recognition performance is the same as that carried by phone category fea- 

tures which are estimated from temporal patternq. By using broad-phonetic features, the 

number of parameters of the system is drastically reduced with improved generalization 

properties of these parameters. 

Chapter 4 showed two practical applications of broad-phonetic features estimated from 

temporal patterns. The first one is robust Voice Activity Detection (ITAD). The proposed 

VAD scheme is compared with a state-of-art GMM VAD technique. Speech recognition 

performance on the hypothesized speech segments was used as the performance metric 

for evaluating different VAD techniques. The proposed temporal patterns VAD system 

outperforined the GMM based VAD scheme in various noisy conditions. The second ap- 

plicatiori is DSR in cellular telephony. We showed that broad-phonetic features can be 

estimated from the temporal patterns obtained from the reconstructed critical-band ener- 

gies at the server-end without disturbing the terminal-end feature processing modules. On 

augmenting the broad-phonetic features with the short-term cepstral features we achieved 

significant gain in the recognition performance in various noisy conditions. 

Chapter 5 proposed a new UTRAPS system. This system uses a single, universal, 

class-posterior estimator for estimating the speech-event category posteriors. The band- 

independent categories are obtained by using an agglomerative hierarchical clustering 

technique applied to the mean temporal patterns of the context-independent phones col- 

lected from all the critical-bands. A simple correlation measure was used as a distance 

measure to obtain the final clusters of temporal patterns. These patterns indicate distinct 

te~nporal activities manifested in the frequency localized temporal domain of the speech 

signal. We showed that UTRAPS features give consistent gains, similar to TRAPS broad- 

phonetic features, in recognition performance when they are combined with conventional 



ASR features. These features are complementary to short-term cepstral features. They 

have better generalization properties than previously proposed broad-phonetic features, 

as data is shared not only across different phones but also across different frequency bands 

during system training. The UTRAPS system used just 5959 parameters as opposed to 

86355 parameters used in the earlier TRAPS system. 

Chapter 6 studies the effect of broadening the frequency-context on the estimated 

phone category features. We show that broader than one critical-band frequency context 

is required for higher recognition performance. The robustness of the estimated features 

doesn't suffer on incorporating more than 1 critical-band of frequency context during 

feature estimation in most of the testing conditions. We show that joint PCA bases 

can be approximated by a combination of several DCT bases. The trend of improved 

recognition performance on increasing frequency-context still holds on using joint DCT 

components. The 3-band DCT componer~ts outperform 1-band DCT components. In 

conclusion, we showed that modeling the interaction among adjacent critical-bands is 

required for obtaining higher recognition performance. 

7.2 Future Directions 

This work can be further extended by exploring band-independent speech-event cate- 

gories obtained from 2-D dimensional time-frequency regions of the speech signal. A 

universal posterior estimator can be used to classify these categories and the estimated 

class-posteriors can be used as the robust features for ASR. The categories should target 

consistent and trainable the acoustic regions of the speech signal. The frequency-context 

can be around 3 critical-bands wide and the temporal-context can be around 200 - 500 

ms long to identify different speech-events of the speech recognition. 

For merging the inforniation from individual frequency-balds, we used the Tandem 

system. 111 this system, narrowband features (broad-phonetic or speech-events ) are con- 

catenated and mapped to the final class-posteriors using the Tandem MLP. The other 

methods for features combination need to be investigated. The reliability measure needs 

to be incorporated for selecting narrowband features on their reliability during combining 



them. 

7.3 Final Comments 

In this work, we defined broad-phonetic categories and speech-events categories on the 

similarity in temporal characteristics of context-independent phones in different critical- 

bands. We assumed that phone like entities represents different sounds and thus can be 

used as tho basis to find different events in tirne-frequency plane of t,he speech signal. The 

speech-event like categories were also obtained by clustering mean temporal patterns of the 

context-independent phones. Choosing the context-independent phones as the basis for 

defining speech-events categories may not be an optimal way for robust feature estimation. 

The more investigation is needed for defining these categories for feature estimation. 



Appendix A 

First-order Markov sequences 

.4 random sequence u(n) is called Markov-p or pt,h-order Markov if the conditional prob- 

ability of u(n) given the entire past is equal to the conditional probability of u(n) given 

only u(n - I) ,  ..., u(n - p ) ,  

Another interpretation of a pth-order Markov sequence is that if the present., i.e. 

u ( j ) ,  n - p 5 j < n - 1, is known, then the past i.e., u(j) ,  j 5 n - p, and the future, 

i.e. u( j ) ,  j 2 n, are independent. A Markov-p scalar sequence can also be expressed as 

a (pxl) Markov-1 vector sequence. The covariance function of a first-order stationary 

Markov sequence u(n) is given as 

where JpJ is close to 1. The NXN discrete cosine transform (DCT) is very close to 

the Karhunen Loeve (KL) transform of a first-order stationary Markov vector sequence of 

length N whose covariance matrix is given by r (n) ,  when the correlation parameter p is 

close to 1. The reason is that R-' , the inverse of the covariance matrix, is a symmetric 

tridiagonal matrix [8]. 

The covmiance matrix of a first order N-point long Markov sequence has a followi~lg 



structure. 

It is a Toeplitz matrix. The inverse matrix of R, for the value of p2 = and 

a = & satisfies the followhlg relation. 

For p 1, the R-I matrix can be approximated by the following symmetric tridiagonal 

matrix Qc 

The basis vectors of the cosine transform are the eigen-vectors of the symmetric tridi- 

agonal matrix Qc. 



Appendix B 

Mean Temporal patterns 

The computation of 101-sample mean temporal patterns of different phones is as follows, 

Where Mphae,B is the mean temporal pattern computed over Nphone observatio~w of 

a phone, phone in the critical-band B. Where X;ho,e,B represents 101-sample temporal 

vector of log critical-band energies formed by concatenating 50 samples in the past and 

in the future of the current frame at time n. At every lOms, the temporal pattern X is 

mean subtracted and variance normalized. The local mean mn and the variance pn of Xn 

are computed as follows, 

We used 15 Me1 critical-band energies for computing mean temporal patterns. The 

colnputation of 15 MeI critical-bands are described in detail in the Appendix H. We used 

TIMIT dataset for this computation. 

The mean temporal patterns of some of the phones are shown in the following figures. 



Figure B.l: Mean Temporal Patterns for a front vowel /iy/ 

Figure B.2: Mean Temporal Patterns for a fricative /sh/ 
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Figure B.3: Mean Temporal Patterns for silence /sill 
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Figure B.4: Mean Temporal Patterns for a glide /1/ 



Figure B.5: Mean Temporal Pat- Figure B.6: Mean Temporal Pat- 
terns for a vowel /ae/ terns for a plosive /b/ 

Figure 8.7: Mean Temporal Patterns for a schwa /axr/ 
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Figure B.8: Mean Temporal Patterns for a glide /nil 



Appendix C 

Phone Set 

ah but ao b s h t  OY ow boat 
uh book 11w boot er bird axr bn t tg  
ax - about iu , debit sil pause q glottal stop 

t - sil I pause 



Appendix D 

Confusion matrices for phones 

In a TRAPS based system (Section 1.3, the confusion matrices are computed at the 

output of the band-specific class posterior estimators (MLPs) as well as at the output of 

the ,Tandem MLP. For that, the MLPs are trained with 56 phones as the target classes. For 

every 101ns, a decision is made about the winning phone whose posterior probability was 

found greater than the other phone classes. Usirig the correct phone labels of each feature 

frame, confusion matrix was estimated. We used TIMIT dataset for this estimation. 

The confusion matrices at the output of band-specific MLPs show more confusion 

among those phone classes which have similar temporal patterns of log critical-band en- 

ergies. The Tandem MLP learns the specific patterns of the confusion matrices from 

individual critical-bands and try to combine that knowledge to estimate final phone class- 

posteriors. It plays the role of a merging net in a TRAPS based system. 
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Appendix E 

Clusters of speech events 

The table shows which phone classes fall under which speech-event after applying cluster- 

ing in a given critical-band. Each phone is quantified by one of the 9 speech-events in each 

critical-band. Phones change cluster affiliations based on distinct speech-activities present 

in each critical-band. Here N represent the critical-band index and C1 - C9 represent 

nine speech-event clusters. 
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Appendix F 

Code for generating Speech events 

The following code is used to generate nine speech events. 

clear Data Data 

Data= C] ; 

%% Number of critical-bands 

Bands=l5 

%% Number of phones 

Classes=56; 

% Reading the mean temporal patterns of  56 phones 

% (TIMIT dataset) from individual critical-bands (15) 

for i = 1:15, 

str=strcat ('Mean-TRAPS-phones ' , int2str(i-1)) ; 
MeanTRAPS(i)=load(str) ; 

Data= [MeanTRAPS{i) ; Data1 ; 

end 

% Randomizing the data 

~~=randperm(length(Data)) ; 

Data=Data(NN, : ; 

% Calculating the correlation matrix 

Cv= (Dat a*Data' ; 

dd=sqrt (diag(Cv1) ; 



TMP=Dat a; 

for iter = 1 : 831, 

% position of the maxima in the correlation matrix 

[my XI =max (Corr) ; 

Cmx yl = m u  (my) ; 

searchVec=i : size (TMF',l) ; 

X=x(y) ; 

Y=y ; 

% Merging the tuo nodes of maximum correlation 

tmp=mean( [TMP(X, : 1 ;TMP(Y, : ) I )  ; 
searchvec=setdif f (searchvec , X) ; 
search~ec=setdiff(searchVec,Y); 

TMP=TMP(searchVec , : ) ; 
TMP= CTMP ; tmpl ; 

% Updating the correlation matrix after merging the nodes 

CV= (TMP*TMP ) ; 

dd=sqrt (diag(Cv1) ; 

pp=dd*ddJ; 

Corr=Cv./pp; 

DD=diag(diag (Corr) ) ; 

DD=-1*DD; 

Corr=Corr+DD; 

end 



Appendix G 

Linear Transforms of temporal patterns 

G. 1 Linear transform from Principal Component Analysis 

(PCA) 

For PC,4 transfornl computation 1201 of the temporal patterns, first total covariance matrix 

of the normalized temporal patterns is estimated using TIMIT or OGI-Stories dataset. 

yn = ( X n  - mn) . 
P" 

1 

Where Xn represents 101-sample temporal vector of log critical-band energies formed 

by concatenating 50 samples in the past and in the future of the current frame at time 

n. At every 10nls, the temporal pattern Xn is mean subtracted and variance normalized. 

Yn represents a mean and normalized temporal pattern. For normalization, local mean 

mT1 and the variance pn of Xn are computed as follows, 

1 
pn = - 1 (Xn (k) - mn)2 

101 
k= l  

Next total covariance matrix is estimated as follows, 



Where m, is given by, 

Where Cow represents 101x101 covariance matrix of the vector Y, m?, represents mean 

of nor~nalized temporal vector Y, and N is the total number of frames in the dataset. 

After computing total covariance matrix, singular decornposition is applied t o  compute 

eigenvector matrix V and eigenvalue matrix S. 

The columns of the eigenvector matrix V represent principal component bases of the 

temporal vector X. We used first 50 bases for estimating class-posterior probabilities. 

These 50 bases cover 98 % of the total covariance of dataspace Y. 

G.2 Linear transform from Linear Discriminant Analysis 

F D A )  

For LDA transform computation [55] of the temporal patterns, first within-class covariance 

and across-class covariance matrices are computated as follows, 

Where mi is the mean of the ith class, Ni is the number of sample-points for ith 

class, m is the global mean of the normalized temporal pattern, Yn7 SB and Sw are the 

between-class and within-class covariances respectively for the C number of classes. 



On singular value decomposition of matrix D the eigenvector matrix V and eigenvalue 

matrix S are obtained. The eigenvectors are referred to as linear discriminants. These 

discriminants are sorted based on their eigenvalues. The leading discriminants are used 

as the projection bases. 

We used 29 phones a5 the target classes for deriving 29 Linear Discriminant basis 

vectors (LDAs). The LDA bases are derived on the clean: OGI-Stories corpus, a dataset 

described in section 2.3.1. The first 15 LDA components of the temporal patterns are 

used as input features to sub-urord class (phones) posterior estimators. 

We also derive the first 50 LDAs basis vectors from 554 Gaussian mixtures (kom 3-state 

monophone HMM models), used as the target categories, for our second experiment. 



Appendix H 

Computation of PLP critical-bands and 
Me1 crit ical-bands 

We used 1-Bark spaced PLP critical-bauds for the continuous numbers task on OGI- 

Numbers. The cut-off frequencies are listed in the following table. 

Table H . l :  Cut-off frequencies of the 1-Bark spacing critical band filters used in PLP 
feature representation for 8 kHz sampling frequency. 

For Aurora experiments, we used 23 MEL filterbank energies for feature extraction. 

Critical band i Lower cut-off frequency 
number I I 

(Hz) 
r 1 I 17 

The frequency range (64 - 4000Hz) was used for computing MEL-warped spectrum for 

feature extraction. The cut-off frequencies of 23 critical-bands are listed in the following 

Upper cut-off frequency 
(Hz) 
161 

table. The 23 MEL filterbanks are generated as follows, 



Table H.2: Cut-off frequencies of the used Me1 critical band filters for 8 kHz sampling 
frequerlcy. 

Critical band Lower cut-off frequency Upper cut-off frequency 
. 

number (Hz) (Hz) 
1 64 186 
2 155 248 
3 217 34 1 
4 2 79 403 
5 3 72 496 
6 434 589 
7 527 682 
8 620 806 
9 713 930 
10 837 1054 
11 961 1178 
12 1085 1333 

1209 1488 :: 1 1364 1674 
15 1519 1860 
16 1705 2047 
17 1891 2264 
18 2078 2512 
19 2295 2760 
20 2543 3008 
2 1 2791 3318 
22 3039 3628 
23 3349 3969 

Me1 {x) = 2595 * log 1 + - { Go} 

Where floor(.) stands for rounding downwards the nearest integer. The output of the 

Me1 filter is the weighted sum of the 256-point FFT power spectrum values (bini) in each 

band. fs (800OHz) is the sampling frequency. Triangular half-overlapped windowing is 

used as foIlows. 



Where k = 1,. . - ,23, chino, and cbem4 denote the FFT bin indices corresponding to the 

starting frequency of 64Hz and final frequency of 4000Hz respectively. Sk is the short-term 

power spectral density of the speech signal. 

The 23 critical-band energies are projected to 15 DCT components and 15 cepstral based 

features (referred to as 15 robust MFCC) are computed at the handset side and transmitted 

to the network. At the server these 15 features are projected back to critical-band energies 

using a 15 point IDCT transform and that gives 15 reconstructed critical-band energies. 

These reconstructed energies are used in the TRAPS and UTMPS based system for 

class-posteriors estimation for the DSR experiments. 



Bibliography 

[I! A .  ADAMI, L .  BURGET, S. DUPONT, H .  GARUDADRI, F .  GREZL, H .  HERMANSKY, 
P. JAIN, S .  KAJAREKAR, N. MORGAN AND S. Snr~I3As. QUALCOMM-ICSI-OGI 

Features for ASR. In Proc. of ICSLP (Colorado, USA, 2002); vol. 1, pp. 21-24. 

[2] ACERO, A . ,  AND STERN, R. Environmental robustness in automatic speech recog- 

nition. In Proc. of ICASSP'SO (1990), vol. 1, IEEE, pp. 849-852. 

[3] ALLEX, J . Short term spectral analysis, synthesis and modification by discrete fourier 

transform. IEEE - ASSP 25 (1977), 235-238. 

[4j ALLEN, J .  HOW do humans process and recognize speech? IEEE %ns. on Speech 
and Audio Processing 2 [1994), 567-577. 

[5] ALLEN, J . Articulation and intelligibility. DIMA CS workshop on complexity and 
inference 1 (2003), 200-212. 

161 ALLEN, J. ,  AND RABINER, L .  Unified approach to short-time fourier analysis and 

synithesis. Proceedings of the IEEE 65 (Nov. 1977), 1558-1564. 

[7] ALLEN, J.  B.  Applications of the short-time fourier transform to speech processing, 

spectral analysis. Proc. ASSP Workshop on Spectral Estimation (1981), 6.3.1-6.3.5. 

[8] ANIL K.  JAIN. Fundamental of Digital Image Processing. PRANTICE HALL, New 

Jersey, 1989. 

[9] B .  H.  JUANG. Speech recognition in adverse environments. Com,puter speech and 
language 1 (1991), 275-294. 

[lo] B.  KINGSBURY, G .  SAON, L.  MANGU, M .  PADMANABHAN, AND R .  SARIKAYA. 
b b u s t  speech recognition in noisy enviro~~ments: The 2001 ibm spine system. In 

Proc. of IGASSP (Orlando, USA, 2002), vol. 1, pp. 53-56. 

[ l l ]  B. KINGSBURY, P. JAIN, AND A .  ADAMI. A hybrid hmrn/traps system for robust 

voice activity detection. In Proc. of ICSLP (Denver, USA, 2002), pp. 1073-1076. 



[12] BOURLARD, H . ,  AND DUPONT, S. A new ASR approach based on independent pro- 

cessing and re-combination of partial frequency bands. In Proc. of ICSLP (Philade- 

phia,PA, 1996), vol. 1, pp. 426-429. 

[13] D . ELLIS, R.  SINGH AND S. SIVADAS. Tandem acoustic modeling in large-vocabulary 

recognition. In Proc. of ICASSP (Salt Lake City, Utah, 2001), vol. 2, pp. 12-18. 

1141 D.L. TIIOMSON AND R. CHENGALVARAYAN. Use of periodicity and jitter as speech 

recognition features. In Proc. of ICASSP (Seattle, USA, 1998), vol. 1, pp. 21-23. 

[15] E. ZWICKER AND E. TERHARDT. Analytical expressions for critical band rate and 

critical bandwidth as a function of frequency. The Journal of The Acoustical Society 

of America 68 (1980), 1523-1525. 

[16] EMILY BUSS, JOSEPH W. HALL. The role of auditory filters in comodulation masking 

release (cmr). Journal of the Acoustical Society of America 103 (1998), 3561-3566. 

[17] ETSI STANDARD DOC. Speech prcessing, transmission, and quality aspects ; dis- 

tributed speech recognition; advanced front-end feature extraction algorithm; com- 

pression algorithm. ETSI ES 202 050 v0.1.O (,f%Oi?-U4) (2002). 

[18] F. JELINEK. Statistical Methods for Speech Recognition. MIT Press, Cambridge, 

1997. 

[19] FLETCHER, H .  Speech and Hearing in Communication. Krieger, New York, 1953. 

[20] FUKUNAGA, K.  Introduction to Statistical Pattern Recognition. Academic Press, 

Indiana, 1990. 

[211 FURUI, S.  Speaker-independent isolated word recognition using dynamic features of 

speech spectrum. IEEE - ASSP 34 (1986): 52-59. 

[22] FURUI, S. Recent advances in robust speech recognition. Tutorial and Research 

Workshop on Robust Speech Recognition for unknown communication channels (Apr. 

1997). 

[23] GILLICK, L., AND COX, S. Some statistical issues in the comparison of speech 

recognition algorithms. In Proc. of ICASSP (1989), vol. 1, IEEE, pp. 532--535. 

[24] H. BOURLARD AND N .  MORGAN. Connectionist Speech Recognition - A Hybrid 

Approach. Kluwer Academic Publishers, Boston, 1994. 

[25] H .  HER.MANSKY. Perceptual linear predictive (PLP) analysis for speech. The Journal 

of The Acoustical Society of America 87 (Apr. 1990), 1738-1752. 



1261 H. HERMANSKY AND S. SHARMA. Traps classifiers of tempord patterns. In Proc. of 

ICSLP'98 (Sydney, Australia, 1998), vol. 2, pp. 615-618. 

[27] H. HERMANSKY, D. ELLIS, AND S. SHARMA. Tandem connectionist feature extrac- 

tion stream extraction for conventional hmm systems. In Proc. of ICASSP (Istanbul, 

2000), pp. 1635-1638. 

[28] H. HERMANSKY, N.  MORGAN, A .  BAYYA, AND P. KOHN. Compensation for the 

effect of the communication channel in auditory-like analysis of speech RASTA-PLP. 

In Proc. of EUROSPEECH '91 (Genova, Switzerland, 1991), ESCA, pp. 1367-1370. 

[29] H. YANG, S. VAN VUUREN AND H. HERMANSKY. Relevancy of Time-Frequency 

Features for Phonetic Classification Measured by Mutual Information. In Proc, of 

ICASSP (Phoenix, US.4, 1999), pp. 225-228. 

[30] HALL J .  W.: HAGGARA, M.  P., AND FERNANDEZ, M. A .  Detection in noise by 

spectro-temporal pattern analysis. Journal of the Acoustical Socdiety of America 76 

(1984), 50-56. 

[31] FIrnsca, H.-G., PEARCE, D. The aurora experimentral framework for the per- 

formance evaluations of speech recognition systems under noisy conditions. ISCA, 

ITRW, ASR 2000 (2000). 

[32] J. R. BELLEGARDA, P. V. DE SOUZA, A. J. NADAS, D. NAHAMOO, M. A.  
PICHENY, AND L. B AHL. Robust speaker adaptation using a piecewise linear acoustic 

mapping. In Proc. of ICASSP (, USA, 1992), pp. 445-448. 

1331 J.  W. HALL, 111, JOHN H. GROSE. Comodulation masking release and auditory 

grouping. Journal of the Acoustical Society of Anaerica 88 (1990), 119-125. 

1341 J .R. LEHMAN, W. JESTEAD, S. B. Forward masking as a function of frequency, 

masker level and signal delay. The Journal of The Acoustical Societg of America 7'1 

(Apr. 1982): 950-962. 

[35] K.  WANG, S. SKAMMA. Representation of acoustic signals in the primary auditory 

cortex. lEEE Trans. Audio and Speech Processing 3 (1995), 382-395. 

[36] KIRCHHOFF, K.  Combining articulatory and acoustic information for speech recog- 

nition in noisy and reverberant environments. In ICSLP (Sydney, Australia, 1998), 

pp. 891-894. 



[37] L.  DENG, D. SUN. A statistical approach to automatic speech recognition using the 

atomic speech units constructed from overlapping articulatory features. Journal of 
Acoustic Society of America (1994), 2702-2719. 

1381 L. R. BAHL, S. BALAKRISHNAN-AIYER, J.  BELLEGARDA, M. FRANZ, P. 
GOPALAKRISHNAN, D. NAHAMOO, hI. NOVAK, M. PADMANABHAN, M. PICHENY 
AND S. ROUKOS. Performance of the IBh4 large vocabulary continuous speech recog- 

nition system on the ARPA wall street journal task. In Proc. of ICASSP (Detroit, 

U S A ,  1995), pp. 41-44. 

[39] LAWRENCE K.  SAUL. ~ J A Z I N  G.  RAHIM, AND J. B. ALLEN. A s ta t i s t id  model for 

robust integration of narrowband cues in speech. Computer Speech and Language 15 

(2001), 175-194. 

1401 LAWRENCE RABINER, BIING-HWANG JUANG, BILNG-HWANG JUANG. Fundamentals 

of speech recognition. Prentice Hall Signal Processing Series, 1998. 

1411 LIU, S. Landmark detection of distinctive feature-based speech recognition. In JASA 

(1996), pp. 3417-3430. 

[42] L.R. RABINER. A tutorial on hidden markov models and selected applications in 

speech recognition. Proceedings of the IEEE 77 (Feb. 1989), 257-285. 

[43] M. J .  F. GALES AND S. J .  YOUNG. An improved approach to the hidden markov 

model decomposition of speech and noise. In Proc. of ICASSP (, USA, 19921, pp. 181- 

184. 

[44] MILLER G., NICELY P . An analysis of perceptual confusions among some english 

consonants. J. Acoust. Soc. Am. 27 (1955), 338-352. 

[45] N .  KANEDERA, T. ARAI, H. H.,  AND PAVEL, M. On the importance of various mod- 

ulation frequencies for speech recognition. In PTOC. of EUROSPEECH997 (Rhodes, 

Greece, 1997), ESCA, pp. 1079 - 1082. 

[46] N. KANEDERA, H. HERMANSKY, T. A .  Desired characteristics of modulation spec- 

trum for robust automatic speech recognition. In Pmc. of ICASSP'YB (Seattle WA, 

USA, 1998), vol. 2, pp. 613-616. 

[47] Wruo~r, P. R.  Distinctive feature detection using support vector machines. In Proc. 

of ICASSP (Phonix, USA,  1999), pp. 425-428. 

1481 NOKIA. Availability of finnish speechdat-car database for etsi stq wi008 front-end 

standardisation. STQ Aurora DSR working group, au21799 (1999). 



[49] 0. G HITZA. Temporal non-place information in the audi tory-nerve firing patterns as 

a front-end for speech recognition in a noisy environment. Journal of Phonetics 16 

(1988), 109-124. 

[50] PAVEL, M. Homogeneity in co,mplete and partial masking. PhD thesis, New York 

University, New York, 1980. 

1511 PAVEL, hl., AND HERMANSKY, H. Temporal masking in automatic speech recogni- 

tion. The Journal of The Acoustical Society of America 95 (May 1!994), 2876-2880. 

[52] R. COLE, M.  NOEL, T. L,., AND DURHAM, T .  New telephone speech corpora at 

cslu. In The Fourth European Conference on Speech Communicatzon and Technotog?, 

(1995), pp. 821-824. 

1531 R. COLE, M.  NOEL AND T. LANDER. Telephone speech corpus development at 

CSLU. In Proc. of ICSLP (Yokohama, Japan, 1994), pp. 1815-1818. 

[54] R. DR.ULLMAN, J .  F., AND PLOMP, R. Effect of temporal envelope smearing on 

speech reception. The Journal of The Acoustical Society of America 95 (1994), 1053- 

1064. 

[55] R. DUDA, P. HART, D. S. Pattern Classification. Wiley Interscienc, 2001. 

[56] R. SINGH, MICHAEL L. SELTZER, B. R., AND STERN, R. M. Speech in noisy 

environments: robust automatic segmentation, feature extraction, and hypothesis 

combination. In Proc. of ICASSP (Salt Lake City, Utah, 2001), pp. 7-11. 

1571 ROBERT V. SHANNON, FAN-GANG ZENG: VNEK KAMATH, JOHN WYGONSKI, 

MICHAEL EKELID. Speech recognition with primarily temporal cues. Science 270 

(1995), 303-304. 

[58] RONALD E. CROCHIERE, LAWRENCE R. RABINER. Multirate Digital Signal Pmcess- 

ing, fifth ed. PRANTICE HALL Signal Processing series, New Jersey, 1983. 

[59] S. KAJAREKAR AND H. HERMANSKY. Analysis of information in speech and its 

application in speech recognition. In P ~ o c .  of TSD (Brno, Czech Republic, 20001, 

pp. 283-288. 

[60] S. SHARMA, P .  V., AND HERMANSKY, H. Combining information from multiple 

classifiers for speaker verification. In Speaker Recogniton and its Commercial and 

Forestic Applications (France, 1998), pp. 20-24. 



[GI] S. SHARMA, D. ELLIS, S. KAJAREKAR, P. JAIN AND H. HERMANSKY. Feature 

extraction using non-linear transformation for robust speech recognition on the AU- 

RORA data-base. In Proc. of ICASSP (Istanbul, Turkey, 2000), pp. 1117-1120. 

1621 S. VAN VUUREN AND H. HERMANSKY. Data-driven design of rasta-like filters. In 
Proc. of EUROSPEECH (Rhodes, Greece, 1997), pp. 409-412. 

[63] S. B. DAVIS AND P. MERMELSTEIN. comparison of parametric representations for 

monosyllabic word recognition in continuously spoken sentences. IEEE Transactions 

on Acoustic, Speech and Signal Processing 28 (Aug. 1980), 357-366. 

[64] SNARMA, S. MuEti-Stream Approach To Robust Speech Recognition. PhD thesis, OGI, 

Portland, USA, Apr. 1999. 

[65] SHIHAB A.  SHAMMA, TAISHIH CHI, YUJIE GAO, MATTHEW C GUYTON. Spectro- 

temporal modulation transfer functions and speech intelligibility. Journal of the 
Acoustical Society of America 106 (1999), 2719-2732. 

[66] S.S. STEVENS. On the psychophysical law. Psychol. Rev. 64 (1957), 153-181. 

1671 TIBREWALA, S.: AND HERMANSKY, H. Multi-band and adaptation approaches to 

robust speech recognition. In Proc. of EUROSPEECH197 (Rhodes, Greece, 19971, 

vol. 5, ESCA, pp. 2619-2622. 

[68] ULF KNOBLICH, ALCATEL. Description and baseline results for the subset of the 

speechdat-car italian database used for etsi stq aurora wi008 advanced dsr front-end 

evaluation. STQ Aurora DSR working group, au23700 (2000). 

[69] ULF KNOBLICH, ALCATEL. Spanish sdc-aurora database for etsi stq aurora wi008 

advanced dsr fiont-end evaluation : Description and baseline results. ST& Aurora 

DSR working group, aumx00 (2000). 

1701 X. D. HUANG AND K . F. LEE. On speaker-independent, speaker-dependent, and 

speaker-adaptive speech recognition. IEEE Ransactioras on speech and Audio pro- 

cessing 1 (1993), 150-157. 



Biographical Note 

Pratibha was born in Jabalpur, Madhyapradesh, India, on the 22nd of October 1973. She 

completed Bachelor of Electrical Engineering degree in 1995 from Goverment College of 

Engineering, Jabalpur. In August 1995, she got admission in Indian Institute of Technol- 

ogy (IIT), Kanpur, one of the prestegious school of India, for pursuing her master-level 

studies. She specialized in Digital Signal Processing (DSP). After finishing masters in Feb 

1997, she moved to Indian Institute of Science (IISc), Bangalore for pursuing research in 

the area of image restoration techniques. In 1998 she joined Oregon Graduate Institute 

(OGI) as a Ph.D student. She worked in the area of automatic speech recognition (ASR) in 

Anthropic Signal Processing Group, OGI under the guidance of Prof. Hynek Hermansky. 

She worked on several projects which include recognition of speech in noisy environments 

(SPINE), Distributed Speech Recognition (AURORA). The following year in 2001, she 

was a summer intern at the T. J. Watson, IBM lab where she worked on techniques for 

improving robustness of speech recognition in noisy environment and techniques for ro- 

bust Voice Activity Detection (VAD) under the supervision of Dr. Mukund Padmanabban 

and Dr. Brian Kingsbury. During her Ph.D, she presented her work in many internation 

conferences. She authored and co-authored several international conference papers. The 

fields of her interest include machine learning, human-machine interaction systems, and 

information retrieval fkom multimedia signals. 

Selected Publications 

1. Hynek Hermansky and Pratibha Jain, Band-independent speech-event categories for 

TRAP based ASR, EUROSPEECH, Geneva, Switzerland, Sep. 2003. 

2. Pratibha Jain and Hyrlek Hermansky, Beyond a single critical-band in TRAP based 

ASR? EUROSPEECH , Geneva, Switzerland, Sep. 2003. 



3. Pratibha Jain, Hynek Hermansky, and Brian Kingsbury, Distributed speech recog- 

nition using noiserobust MFCC AND TRAPS-estimated manner features, ICSLP, 

'C'ol 1, pages 473-476, Denver, USA, Sep. 2002. 

4. Brian Kingsbury, Pratibha Jain, and Hynek Hermansky, A Hybrid HMM/TRAPS 
model for robust voice activity detection, ICSLP, Vol 2, pages 1073-1076, Denver, 

USA, Sep. 2002. 

5. Pratibha Jain and Hynek Hermansky, Down-sampling speech represent -ation in 

ASR; Ev~ropean Conference on Speech Comncunication and Tech.noEogy (EUROSPEECH), 

Vol 1, pages 73-76, Budapest, Hungarx 1999. 




