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ABSTRACT

THE DESIGN AND IMPLEMENTATION
OF A

PARALLEL PROLOG OPCODE-INTERPRETER
ON A

MULTIPROCESSOR ARCHITECTURE

Carolyn Ann Hakansson
Oregon Graduate Center, 1987

Supervising Professor: Peter Borgwardt

Various algorithms for reducing overhead in parallel Prolog systems are stu-

died, and an attempt to increase the speed of sequential Prolog execution is made by

implementing a Parallel Prolog Opcode-Interpreter (PAPI). This opcode-interpreter

exploits AND-parallelism and runs on a shared-memory multiprocessor architecture.

Efforts are made to reduce the potential for high overhead in the areas of communi-

cation, backtracking, and variable-binding conflict detection.

The design and implementation of PAPI is discussed and followed by bench-

mark tests and analysis. The results from benchmark testing indicate that Prolog

programs that backtrack do not show an improvement in performance over sequen-

tial execution, but deterministic Prolog programs executed in parallel illustrate a

marked improvement over sequential execution. Prolog programs that contain large

amounts of parallelism and create deep proof trees benefit most from this implemen-

tation of AND-parallelism. Possible explanations for these findings and suggestions

for future research are also presented.



CHAPTER 1

Introduction

With the recent growth and decreased cost of multiprocessor computers comes

the motivation and means for developing faster and more efficient programs. A

single-processor Von Neumann architecture will not satisfy the demands for a low-

cost, high-performance environment. The main drawback of this architecture is that

a point of diminishing returns is reached where each additional increase in perfor-

mance requires an excessive increase in cost. Recent research in areas such as VLSI

and computer architecture has developed cheaper methods of producing chips and

faster architectures incorporating parallelism. This improved technology has created

supercomputers that exploit multiprocessor architecture and parallelism to make use

of increased computational power effectively.

As hardware progresses, the opportunity for exploiting parallelism, hence

increasing speed, in software is presented. Logic programs are a likely candidate for

multiprocessor computers since (1) their sequential execution is inherently slower

than that of imperative language programs and (2) they offer more opportunities for

parallelism. There are many types of parallelism in logic programming to choose

from, each with its own problems and attributes. One such problem is the potential

for high overhead costs of time and memory. This overhead may, however, be

reduced by choosing efficient algorithms for areas where overhead may present a

problem.

1
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The implementation of an efficient parallel Prolog opcode-interpreter on a

shared-memory multiprocessor architecture is the focus of this thesis. The Prolog

opcode-interpreter, unlike a Prolog interpreter, requires that a Prolog program be

compiled into intermediate-code instructions and then assembled into opcode instruc-

tions before the program is executable. This method is used to gain greater

efficiency over a pure Prolog interpreter.

The source of parallelism chosen for this project and implemented in the

opcode-interpreter is AND-parallelism. Algorithms including the RAP scheme by

DeGroot [DeG84] [DeG85] and semi-intelligent backtracking by Chang and Despain

[ChD85] were incorporated in the parallel Prolog opcode-interpreter to minimize

overhead.

1.1. Parallelism in logic programs

Parallelism in logic programming languages is often described as natural, due

to the non-deterministic nature and declarative semantics of logic programs. Prolog

is a logic programming language consisting of clauses (or rules) and facts 1. Clauses

are made of a head and a body. The head is a literal that matches goals and the

body contains one or more goals. A goal is a literal with one or more arguments, in

parentheses. These arguments are either variables (first character is uppercase),

values (first character is lowercase), or terms (comprised of structures or functions).

A fact is a clause without a body, that is, a single goal, and always has values for

1 For a. thorough discussion or Prolog, see ICIM84].
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arguments. For example, the following are examples of clauses:

grandfather (X, alex):- male(X),

parent (X,

parent(Z,

Z) ,
alex) .

In the first clause, grandfather (X, alex) is the head, grandfather is the

predicate of the head, and X and alex are the head's arguments. The body, which

is everything to the right of the :- symbol, consists of the goals male (X) ,

parent (X, Z) and parent (Z, alex).Below are examples of facts.

male (nils) .
male (hemming) .
male(alex).

parent (nils, hemming).

parent (hemming, alex).

Prolog operates by matching (or unifying) a goal with a fact or a clause head.

Matching (or unification) occurs if the predicates of the goal and clause head or fact

are the same, and if the corresponding arguments match. If an argument is a vari-

able, it is instantiated to the corresponding value or variable. In a Prolog program,

often several facts and clause heads will match a goal. That is, there may be several

possible paths through the program that lead to a solution. Prolog programs in

which more than one fact or clause head matches a goal are non-deterministic,

whereas Prolog programs in which only one fact or clause head matches a goal are

deterministic.

The declarative semantics characteristic of Prolog arises from the separation

of logic and control. That is, the programmer does not control or direct the
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execution of the Prolog program (as one does, in say, "C"). Rather, the Prolog pro-

gram contains the logic, true information, and rules for determining if a goal is

true or not true, while the interpreter chooses the control, how and in what order

to evaluate the execution paths. It is the separation of logic and control and the

programmer's lack of control specifications that permit the evaluation of several exe-

cution paths in parallel, and hence, makes parallelism feasible in declarative

languages.

Based on these natural characteristics in logic programming languages for

parallelism, several types of parallelism have been defined and explored. Conery and

Kibler [CoK85] [CoK81] discuss four types of parallelism for logic programs, two of

which, AND-parallelism and OR-parallelism, are high level and exploit the non-

deterministic character of logic programming languages (although AND-parallelism

does not depend on non-determinism). The other two, STREAM-parallelism and

SEARCH-parallelism, are of finer granularity and take advantage of the declarative

semantics aspect of logic programming languages. A fifth type of parallelism,

UNIFICATION-parallelism, focuses on the unification process in logic programs. A

short description of each is given below.

AND-parallelism:
AND-parallelism is the execution of several goals in a single clause
body in parallel. The objective is to increase the speed of finding a
single solution by examining the subparts of a clause simultaneously.
If a possible solution fails at any point of execution, backtracking
must be done to find another execution path.
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OR-parallelism:
OR-parallelism occurs when a goal unifies with the head of more than
one clause and each of the clauses is then executed in parallel. The
objective is to increase the speed of execution by exploring multiple
paths for solutions simultaneously. This search for all solutions simul-
taneously removes the need for backtracking.

SEARCH-parallelism:
SEARCH-parallelism applies to logic programs with a very large data-
base of clauses. The database is broken into disjoint sets, and each
set is searched, in parallel, for clauses whose head unifies with a given
goal. This method is recommended for initializing OR-parallelism
[CoK8!].

STREAM-parallelism:
STREAM-parallelism is the examination of complex data structures
by several processes in parallel with the process producing the struc-
ture. That is, one process may create a list structure while the other
processes examine the finished members of the list structure as it is
being constructed. This type of parallelism permits the testing for
membership in a structure by several processes as the structure is
created by another process and is often used in conjunction with
AND-parallelism.

UNIFI CATI 0 N-parallelism:
UNIFICATION-parallelism occurs while unifying a goal with the head
of a clause. It may be possible to unify several pairs of corresponding
arguments or terms in parallel. For example, if the-goal is

stats(68, A, joyce)

and the clause head is

stats(Heightlnches, WeightPounds, joyce)

then the unifications of 68 with Heightlnches, A with Weight-
Pounds, and joyce with joyce are independent and may be done
in parallel.
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The latter three types of parallelism described above are lower level and

therefore pertain to specific functions of a logic program. For example, SEARCH-

parallelism may be employed in logic programs that frequently search a large data-

base of clauses. The program will have several processes searching the database in

parallel, decreasing search time. But when the program is not searching, parallelism

is not possible, and the program executes sequentially. Therefore, this type of paral-

.lelism is specific to logic programs that search databases extensively and only occurs

during the search. The specific application characteristic and low granularity of the

latter three types of parallelism is undesirable for this project, but the center of

attention for others.

SEARCH-parallelism has been the topic of several researchers [EKM82]

{WAD84] [TLJ84]. As searching is the most expensive part of sequential Prolog exe-

cution, it is not surprising that research has been in the direction of searching large

databases of clauses in parallel. This is the case in D.H.D. Warren's research

[WAD84] which presents an algorithm for which Prolog is used as a database query

language. The major disadvantage with this form of parallelism is that the alga-

rithms tend to be sophisticated and difficult to implement [TLJ84].

STREAM-parallelism has been researched in a pure form, as a part of a com-

,plex system [ClM79] [EmL81] [Kow74] [Sha83] [LiP84] [KTM86] [Bor84], and as the

.building block for several proposed parallel programming languages including: Rela-

tional Language, Concurrent Prolog, Parlog, Guarded Horn Clauses, and Oc [TaF86].

The fundamental scheme of this type of parallelism is the use of shared variables as

a communication channel between two or more processes through unification. One
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drawback, however, is that current implementations are restricted to deterministic

Prolog programs [CoK85].

Finally , UNIFICATION-parallelism is examined by several researchers

[TiW84] [MaU86] [DKM84] [MaM82]. Research by Mannila and Ukkonen [MaU86]

illustrates that there is potential for increasing speed in the unification process as

worst case sequential unifications require quadratic time. Their work outlines

several methods for improving unification based on reducing the set-union problem

[ARU 74] to the unification process in Prolog. The authors conclude, however, that

an implementation of such a scheme would be complicated. Fundamental theoreti-

cal research by Dwork, Kanellakis, and Mitchell [DKM84] illustrates that although

unification is a prime target for parallelism, it is inherently sequential, and thus, it is

unlikely that any improvements in speed will result from parallel unification algo-

rithms. The authors conclude that the special case of term matching, however, does

have the potential for significant improvement in parallel execution.

The first two types of parallelism mentioned, AND-parallelism and OR-

parallelism, are more attractive for their large granularity and hence applicability to

entire logic programs. As a result, these are the most popular forms of parallelism

[CoK85] [CoK8!] [Her86] [Bor86] [CiH84].

AND-parallelism was chosen for this project over OR-parallelism for its abil-

ity to handle both deterministic and non-deterministic logic programs, its natural

implementation on a multiprocessor shared-memory architecture, and the potential

to keep the overhead costs of time and memory relatively low. OR-parallelism's

improvement over sequential execution is limited to non-deterministic logic programs
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and requires more overhead in the form of memory and copying time for structures.

There are, however, algorithms that help control the overhead problems associated

with OR-parallelism. The following paragraphs will compare the advantages and

disadvantages of AND-parallelism and OR-parallelism and justify this choice.

1.2. AND VB.OR Parallelism

OR-parallelism is based on the principle that the clauses whose head unifies

with the current goal are executed simultaneously. For example, if the goal of a

Prolog program is:

uncle (roy, Y).

and the clauses whose heads match the goal are:

uncle (X, Y):- brothe~(X, Z), mother(Z, Y).
uncle (X, Y):- brother(X, Z), father(Z, Y).

then as the first clause is executed by the first process, another process executes the

second clause. The point where a new process begins execution is called the branch-

ing point. In order to find all solutions to a query in OR-parallelism, both processes

work independently to derive their own set of solutions, and the union of these sets is

the set of solutions for the query. When only one or a few solutions are desired, the

processes still work independently, and after the user is satisfied with the number of
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answers found, all processes are terminated. No backtracking is required for pure

OR-parallelism systems since each path of the program is executed and failing paths

result in empty solution sets. OR-parallelism is attractive for its straightforward

principle and was, until recently, the type of parallelism most often implemented for

logic programming languages.

OR-parallelism is not, however, without its drawbacks. One major disadvan-

tage is the high overhead of copy time and storage space required. Since each OR-

process is independent, many OR-parallel systems rely on passing a copy of the com-

plete state of work done prior to the branching point to a process in order for previ-

ous information to be accessible by that process. In addition, independent binding

environments are kept by each process from the branching point forward. As the

number of processes increases, more space is required to hold inherited information

and more time is required for copying the growing environment to new processes.

Soon, the overhead exceeds the benefits derived from OR-parallelism. This overhead,

however, may be limited by specialized hardware and copy time may be reduced by

only copying parts of the information and sharing others, as proposed by Warren

and implemented by Overbeek, Gabriel, Lindholm, and Lusk [OGL85]. Another

scheme for reducing memory costs in OR-parallelism is demonstrated in Ciepielewski

and Haridi's OR-Parallel Token Machine [CiH84]. Their machine builds the proof

tree in a depth first manner, to avoid the explosion of space required in a breadth

first traversal of the proof tree, and removes the paths in the proof tree that are no

longer necessary when a solution to a goal is found. That is, when a goal is satisfied,

their OR-Token Machine removes all of the other paths in the tree that search for



the same solution as the goal just solved. This scheme frees memory as

longer needed and hence, reduces the memory and copying time overhead of new

10
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processes.

Another disadvantage to OR-parallelism is the potential for runaway

processes. This ptoblem rarely arises when only one solution to a query is desired,

since the programmer terminates all processes when the first solution is given. But

as more answers are required, it may become necessary for the programmer to

decide if a running process is a runaway lost in useless work, or a slow process work-

ing on a difficult solution. In some cases, the Prolog program may be rewritten to

avoid these tendencies, but many programs, such as those where the ordering of the

clauses plays a crucial role, are not practicable for all-solutions OR-parallelism.

AND-parallelism is able to avoid this problem more often than OR-parallelism since

AND-paralJelism executes the goals in the bodyof a. ~la.use in paralletanatbu§the

ordering of the clauses is maintained.

The main drawback of OR-parallelism is that its improvements are limited to

highly non-deterministic programs. In order for a logic program to benefit from OR-

parallelism, it must have mauy possible branching points. Deterministic programs,

by my definition, do not have branching points. An example of a deterministic pro-

gram is the one below that calculates the Fibonacci seqnence. The nser specifiesa

value for the variable X, represeuting the position in the sequence of Fibonacci

numbers, and the program returns Y, the value of the number in position x. In this

example, the fourth number iu the Fibonacci sequence is requested.
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query(Y):- fibonacci(4, Y).

fibonacci(O, 1).
fibonacci(l, 1).
fibonacci(X, Y):- x >= 2,

Xl is X - 1,
fibonacci (Xl,
X2 is X - 2,

fibonacci (X2,
Y is Y1 + Y2.

Y1) ,

Y2) ,

OR-parallelismcannot improve upon sequential execution of this type of program.

AND-parallelism, on the other hand, provides beneficial results for determinis-

tic programs in addition to non-deterministic programs. As mentioned earlier,

AND-parallelism is the execution of several goals in a clause simultaneously to find a

single solution. An example of AND-parallelism involves the goal

graduates (johndoe, masters).

and the clause

graduates (Person, Degree):-

coursehours(Degree, NumOfHours),

thesis_signed (Person, Advisor1),

amount_owed_to_school(Person, 0).

The goal and clause head match, thus binding Person to j ohndoe and Degree

to masters in the clause. At this point, the clause is:
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graduates (johndoe, masters):-
coursehours(masters, NumOfHours),
thesis_signed (johndoe, Advisorl),
amount_owed_to_school(johndoe, 0).

with three independent goals in its body. These goals must be independent when

executed in parallel if variable binding conflicts are prevented.

AND-parallel execution begins when one process executes the goal

coursehours (masters,NumOfHours). another process executes the goal

thesis_signed (johndoe,Advisor!). and a third process executes the goal

amount_owed_to_school (johndoe,0) simultaneously.

Now suppose the goal is:

graduates (Student, masters).

and the clause is the same as above. After matching the new goal and the clause

head. the clause is:

graduates (Student, masters):-
coursehours(masters, NumOfHours),
thesis_signed (Student, Advisorl),
amount_owed_to_school(Student, 0).

where Person is bound to Student and Degree is bound to masters

throughout the clause. In this case, the goals in the clause body are not indepen-

dent. If these dependent goals are executed in parallel, then the second and third

processes will generate their own value for Student, but a unique value for
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Student is required by the semantics of the clause. When dependent goals are exe-

cuted in parallel, several processes may attempt to bind Student with different

values. The first process to bind Student to a value sets the value of Student

for all processes executing that clause. Processes that attempt to bind Student to

a different value will fail. If the bound value is' not semantically correct, then

unnecessary work is done by all processes executing that clause in their attempt to

match an incorrect value of Student. Thus, when dependent goals are executed in

parallel and different values are found for a variable, a variable-binding conflict

occurs.

Variable-binding conflicts and communication are the areas for expense in

AND-parallelism. In order to prevent binding conflicts, variable dependency analysis

must be done to ensure that the goals of a clause are independent. This analysis

may be done at compile-time, runtime, or both. The problem with compile-time

analysis is that not much informa.tion is available and the worst-case situation must

often be chosen. For example, at compile time, the arguments in a specific clause

may not be bound, but during runtime they are bound before reaching the clause. A

compile-time algorithm would require sequential execution of the clause when it

could have been executed in parallel. The runtime algorithm would allow the clause

parallelism, but requires a large overhead for testing the clause. The RAP scheme,

discussed in Chapter 3, reduces the large overhead of runtime costs and the inaccu-

racy of compile-time tests by conducting tests at both compile-time and runtime.

Communication is an area for potentially high overhead in AND-parallelism.

Although processes must have some form of communication to inform other processes
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when to backtrack and terminate, it need not be expensive. There are many possi-

bilities for creating and sending messages among processes, but it is important to

keep them small and infrequent. The overhead accrued through message passing is

dependent on the architecture and the implementation, and should be kept to a

mInimum.

OR-parallelism and AND-parallelism have their relative advantages and

disadvantages, but AND-parallelism was chosen as the focus of this project. AND-

parallelism and OR-parallelism apply in different situations in Prolog programs;

OR-parallelism searches for solutions in parallel while AND-parallelism works on

parts of-one solution in parallel. AND-parallelism requires backward execution, also

called backtracking, when a failure occurs, whereas OR-parallelism does not engage

in backward execution. One might conclude from this that AND-parallelism is

slower since it backtracks and only produces one solution at a time, but this need

not be the case. If the user desires only one solution to a query, then OR-parallelism

becomes expensive. This expense in OR-parallelism is due to each OR-process gen-

erating large trees in search of many solutions, which in this situation is unnecessary,

since only one solution is desired. AND-parallelism of independent goals does not

produce this extent of unnecessary work. OR-parallelism also has a greater ten-

dency for runaway processes and hence, potential difficulty for finding all solutions.

In addition, OR-parallelism is slowed by the copying of information at each branch-

ing point. The final drawback of OR-parallelism is its inability to improve upon the

sequential execution of deterministic programs.
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1.3. Goals

The goal of this Master's thesis is to design and implement an efficient paral-

leI Prolog opcode-interpreter that exploits AND-parallelism on a shared-memory

multiprocessor architecture. The user is responsible for incorporating parallel

expressions in the Prolog program, but is not burdened with excessive specifications

and declarations for parallelism. Finally, this implementation should produce an

increase in performance as the number of processes increase.

1.4. Outline

Chapter 2 presents an overview of the components of the Parallel Prolog

machine: the compiler, the assembler, the opcode-interpreter, and Chapter 3

discusses variable-binding conflicts. The opcode-interpreter's forward sequential and

parallel execution are analyzed in Chapter 4, and Chapter 5 focuses on the ope ode-

interpreter's backward sequential and parallel execution. Chapter 6 reports and

analyzes results of test programs and Chapter 7 concludes this research and presents

suggestions for further research.



CHAPTER 2

Introduction to the Parallel Prolog Machine

The first section of this Chapter presents an overview of the components of

the Parallel Prolo~ Machine while the second section discusses variable-binding

conflicts and methods of detecting these conflicts. The third section presents the

variable-binding conflict detection method implemented in the parallel Prolog

opcode-interpreter (PAPI), and finally, the fourth section presents several example

programs.

2.1. The Parallel Prolog Machine

The Parallel Prolog Machine consists of three components; the compiler, the

assembler, and the interpreter. A Prolog program is first compiled into

intermediate-code instructions by a compiler written in C-Prolog. The

intermediate-code instructions produced by the compiler include the instructions

implemented by D.H.D. Warren in his Warren Abstract Machine in addition to

several instructions specific to parallel execution. The set of intermediate-code

instructions can be found in Appendix A of D.H.D. Warren's dissertation [War77] and

Appendix A of this thesis.

After compiling the Prolog source code into intermediate-code instructions,

the assembler, also written in C-Prolog, translates each intermediate-code instruc-

16
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tioD into an opcode instruction. An opcode instruction consists of a list of an upper-

case letter, an integer between 1 and 100, and the intermediate-code instruction's

a.rguments. The uppercase letter represents the type or characteristic of the instruc-

tioD; for example, P specifies that the instruction is an entry to a procedure, M is for

aD insttuction with three arguments, and C specifies a procedure call instruction.

The integer value represents an intermediate-code instruction and the integer value

is followed by the arguments of the intermediate-code instruction. AI; an example,

intermediate-code instructions and opcode instructions for the fibonacci program

presented in Chapter 1 are provided in Appendix B.

The first implementa.tion of the opcode-interpreter was written in "C" by

Doris Rea, Robert Herndon, and Peter Borgwardt at the University of Minnesota.

Their opcode-interpreter executed stack-based sequential Prolog, except backtrack-

ing and the cut operation, which were not completed. Using this sequential stack-

based opcode-interpreter for a backbone, I have added AND-parallelism and back-

tracking to create, PAPI, a parallel Prolog opcode-interpreter.

PAPI consists of about 7,500 lines of "C" code and runs on a Balance1 21000

made by Sequent Computer Systems. PAPI begins execution by initializing its

environment for parallelism and loading the opcode file created by the assembler for

the Prolog program into memory. The number of processes specified by the user are

created, but all except the parent are put to sleep with the sigpause (0) system

call. The opcodes are interpreted by the parent process and when parallelism is

applicable, the child processes are awakened with the kill (SIGALRM) system call

1Balance and DYNIX are registered trademarks or Sequent Computer Systems.
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and put to work, resulting in parallel execution of the Prolog program. Parallel exe-

cution ends after all solutions to the query have been found or the user does not

desire more solutions. At this point, the processes are terminated.

Before continuing with a more detailed description of PAPI's execution, the

problem of detecting variable-binding conflicts must be addressed and resolved. The

following Chapter is dedicated to the variable-binding conflict issue.



CHAPTER 3

V ariable- Binding Conflicts

As mentioned in Chapter I, implementing AND-parallelism presents the

potential for variable-binding conflicts. Although AND-parallelism does not require

that these conflicts be avoided, encountering a variable-binding conflict can greatly

reduce the benefits of parallelism. Since variable-binding conflicts are easily avoided

by executing only independent goals in parallel, the cost involved with conflict detec-

tion is minimal compared to the cost when these conflicts arise. Therefore, a

variable-binding conflict detection scheme is justified, and of course, the scheme with

the lowest overhead is preferred.

3.1. Variable-Binding Conflict Detection

There are several approaches for detecting and preventing variable-binding

conflicts. One approach requires that the programmer determines and specifies

which goals in the Prolog program are guaranteed independent. This scheme, used

in Delta Prolog and PARLOG, places the burden of variable-binding conflict detec-

tion in the hands of the programmer. Although this solution is acceptable for many

applications, it violates the goal to keep the programmer free from excessive

specifications. Therefore, other approaches that limit the programmer's involvement

are preferred. These approaches involve algorithms which detect variable-binding

19
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conflicts at runtime, compile-time, or both.

Conery employs a runtime variable-binding conflict detection scheme in his

AND-process model [Con831. By executing a series of runtime algorithms with some

user specifications, he creates dataflow graphs. These graphs depict generator and

consumer relationships!, and determine goal ordering for the clause. The dataflow

graphs also produce information determining if variables alias one another or are

bound to values that share variables. Aliasing may occur in the following situation.

If a Prolog program contains the clause:

a (X, Y): - b (X) , c (Y) .

it appears that X and Yare independent, hence permitting b (X) and c (Y) to be

executed in parallel without variable-binding conflicts. Yet, X and Y may not be

independent. For example, if the goal matching the clause head, a (X, Y), is any

one of the goals:

a (P, P).
a (P, 9 (P) ) .
a (g (P), h (2, P».

then at runtime X and Y are aliases or share at least one variable between them.

This type of variable-binding detection requires runtime testing and Conery's run-

time scheme is efficient in detecting aliases. In addition, backward execution, or

backtracking, traverses the dataflow graph to fail previous goals. Although Conery's

1 When two or more goals have a variable in common, the goal whose variable is bound first is the generator
or the variable while other goals containing the variable a.re consumers or the variable. The dIJtIJflowgra.phs deter-
mine which variables will be bound when the clause is rea.ched, and hence, which goals in the body of the cla.use
are independent.
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algorithms extract all information relevant to parallelism and create the dataflow

graph, there is an enormous amount of runtime support required for implementing

and maintaining the graphs. This amount of required runtime support arises from

the fact that the graphs must be recomputed when involved variables are bound and

when work is redone during backward execution. Thus, this method is too expensive

and does not limit overhead as desired.

A compile-time analysis scheme has been proposed and discussed by Chang,

Despain, and DeGroot [CDD85]. This method, Static Dependency Analysis (STDA),

involves the generation of data dependency graphs for each clause and each goal in

the body of the clause by the data dependency analyzer. The analyzer also produces

information for backward execution. The programmer, however, must supply the

analyzer with information, such as, which queries are the entry points to the pro-

gram and the state of the arguments when the query is called (i.e. ground, indepen-

dent, or dependent). The graphs will then provide information as to which goals are

independent and may be executed in parallel, in what order to execute dependent

goals, and a scheme for backtracking semi-intelligently. Although this technique has

the advantage over the previous method of avoiding high runtime overhead, it is

based on a worst-case situation. Since very little information about variable-

bindings is available at compile-time, there is a strong possibility that parallelism

will be missed. In addition, the worst-case analysis and entry point declarations are

not able to detect aliasing as accurately as Conery's runtime scheme does. STDA's

inefficient alias detection may result in variable-binding conflicts despite work done

by the detection algorithm. Intelligent backward execution also suffers as a result of
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the worst-case analysis. This method has the advantage of reduced overhead, but

forsakes parallelism and misses conflicts only detectable at runtime.

The final scheme is a combination of compile-time and runtime detection.

DeGroot takes this approach in his Restricted AND-Parallelism (RAP) technique

[DeG84] [DeG85]. At compile time, his typing algorithm assigns a type to each of the

arguments in each of the clauses. There are three possible types:

type 1: a ground argument
such as pop in the goal drink (Person, pop).

type 2: a non-ground, non-variable argument
such as [A, 1, 2, 3] in the goal list ([A, 1, 2, 3]).

type 3: a variable argument
such as Person in the goal drink (Person, pop).

As the STDA method makes worst-case type assignments among clauses, the RAP

scheme makes worst-case type assignments within each clause due to the lack of

binding information at compile-time. It is too expensive, as proved by Conery's

method, to utilize only runtime algorithms for assigning variables. Therefore,

DeGroot avoids the runtime overhead by assigning worst-case types to arguments at

compile-time and then permitting arguments to inherit lower-valued types through

normal runtime execution.

Type inheritance occurs at runtime during the matching (or unification) pro-

cess. An example for the goal:

drink (tom, milk).
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with argument type 1 for both tom and milk assigned during compile-time

analysis, and the clause

drink (Person, milk):- likes (Person, milk),
thirsty (Person) .

which has compiler assigned type 1 for milk and type 3 for Person (assigned at

compile-time) is as follows: during forward execution, drink (tom, milk) and

drink (Person, milk) are matched. The argument Person becomes bound to

tom and the type of tom, type 1, is inherited by Person. Since the second argu-

ment, mi lk, is the same in both the goal and the clause head, no bindings are made

and no type inheritance is done. After unification, the clause has arguments of type

1 only.

Another example matches the goal:

drink (Someone, milk).

with the clause above. In this case, the argument Person is bound to Someone

and if the type number of Someone is less than that of Person, then Person

inherits Someone's type. Otherwise, no type inheritance is done since the types are

the same. Again, mi lk has the same type in both goals so no binding or type inher-

itance occurs for the argument.

As in the conflict detection methods mentioned above, the RAP scheme

creates an execution graph at compile-time. RAP differs from the previous schemes

by utilizing execution graph expressions in the execution graph to express potential
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t parallelism of the clause. These expressions are evaluated at runtime and alleviate
;1
Kthe need for more than one graph to be created. The six execution graph expressions
>\
-,Ii.'

*:i ,employed by DeGroot are:

where 9 represents a single goal to be executed, seq requires the goals El E2

. .. to be executed sequentially, and par requires the goals El E2 ... to be

executed in parallel. The gpar and ipar expressions indicate either sequential or

parallel execution, depending on the types of arguments Xl, X2 ... tested at run-

time. If the gpar arguments are all type 1, then goals El E2 ... are executed in

parallel, otherwise they are executed sequentially. If all of ipar's arguments are

independent of each other, then the goals following ipar are executed in parallel,

otherwise they are executed sequentially. And finally, the if expression indicates

that goal E2 is executed if the Boolean goal El evaluates to true, otherwise goal

E3 is executed.

At compile-time, DeGroot's method assigns types to each of the arguments

based on worst-case conditions and creates an execution graph with execution

9

(seq El E2 ...)

(par El E2 ...)

(gpar(Xl, X2, ...) El E2 ...)

(ipar(Xl, X2, ...) El E2 ...)

(if El E2 E3)
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expreSSIOns. The seq and par expressions are employed when the dependency of

the variables is known at compile-time, but if it is not known, instead of assuming

the worst case of sequential execution, ipar and gpar are utilized and the appli-

cable arguments are listed. At runtime, arguments may inherit better types through

unification and when the execution expressions ipar and gpar are reached, their

argument types are examined to determine how execution will proceed. This scheme

is also able to detect aliasing of variables by testing the variable's types at runtime

and determining the dependencies. However, it does not extract as much parallelism

as Conery's scheme. For example, the compiler may fail to find parallelism, due to

the approximations made by the typing algorithm, as explained by DeGroot [DeG85],

and there may be a loss of parallelism as a result of the limited execution graph

expressions. DeGroot's RAP scheme combines the positive aspects of Chang's and

Conery's ideas, but the implementation has less compile-time overhead and over-

comes some of the drawbacks encountered by Chang and Conery.

3.2. A Modified RAP Scheme

The variable-binding conflict detection method implemented in PAPI is a

slight variation of DeGroot's RAP scheme. One small difference is that types are

referred to as ground, complex, and variable, rather than type 1, type 2, and type 3.

The major difference is that some of the compiler's responsibilities are shifted on to

the programmer. Since the purpose of this project is to implement a parallel Prolog

opcode-interpreter, the compiler was not modified to perform the variable-

dependency analysis required by DeGroot's scheme. Rather, PAPI sets and modifies
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the argument types and the programmer creates the execution graphs by inserting

execution graph expressions into the Prolog program as it is written. If no execution

graph expressions are present, then P API assumes sequential execution.

The optimal variable-binding conflict detection scheme, however, would be to

permit the programmer to specify the execution graph expressions desired and imple-

ment the compiler such that it recognizes these specifications and adds more execu-

tioD graph expressions where applicable. This scheme would provide the programmer

with the option of specifying all, some, or none of the execution graph expressions

while the compiler completes the task.

3.3. Example Programs

This modified RAP scheme is best illustrated through examples. The first

example program, mapcolor, solves a map-coloring problem for a map with five

regIOns:
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and three colors:

red
blue
yellow

Using the colors above, the problem is to fill in each of the five regions of the map

with a color, such that neighboring regions do not have the same color. That is, if

region B is red, then regions C, A and E cannot be red since they are neighbors

of region B.

The sequential version of mapcolor is given below. The variable arguments

1D the query and mapco 1or goal represent the five regions of the map, the colors

are specified in the facts, and the next 0 goals specify the relationship of the

regIOns.

A

B. C D

E
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query (V, W, X, Y, Z):- mapcolor(V, W, X, Y, Z).

mapcolor(A, B, C, D, E):- next (A, B),
next(C, D),
next(B, C),

next (A, C),
next (A, D),
next(B, E),

next(C, E),

next(D, E).

next (red, blue).

next (blue, red).

next (yellow, red).

next (red, yellow).

next (blue, yellow).

next (yellow, blue).

The sequential mapcolor program is modified to a parallel Prolog program

by adding execution graph expressions as follows:
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query (V, W, X, Y, Z):- mapcolor(V, W, X, Y, Z).

mapcolor(A, B, C, D, E):- gpar([A, B, C, D],

next (A, B),

next (C, D)

) ,

par (

next(B, C),

next (A, C),

next (A, D),

seq(
next(B, E),
par (

next(C, E),

next(D, E)
) ,

) ,

) .

next (red, blue).

next (blue, red).

next (yellow, red).

next (red, yellow).
next (blue, yellow).

next (yellow, blue).

The two execution graphs for the parallelversion of mapcolor are gIven

below. The graph to the leftoccurs when gpar succeeds and turns into a par,

while the graph to the right occurs when gpar fails and requires sequential execu-

tion.
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mapcolor(A,B,C,D,E}

~
next (A,B) next (C,D)

mapcolor(A,B,C,D,E}

I

next (A,B)

I

next (B,C) next (A,C) next (A,D)

next(B,C} next (A,C) next (A,D)

next(B,E)

~
next(C,E} next (D,E)

~
end

next(B,E)

~
next(C,E) next(D,E)

~
end

Mapcolor's Execution Graphs
Figure 3.1

This use of gpar and par in mapco 1or is beneficial, as the programmer

knows that the goals after the par are independent (since the next (A, B) and

next (C, D) goals prior to the par bind the arguments A, B, C, and D). Thus,

it is not necessary to implement gpar in place of par and require that P API test

the arguments of the goals when the programmer is sure that the arguments are

bound. In some instances, however, it may be preferrable to use gpar rather than

par. One such instance is the gpar before the first goal in the body of the clause.

The arguments A, B, C, and D may be variables or values in the query. If all of
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the arguments are values, then par is the best choice, but if at least one argument

is a variable, then the goals must be executed sequentially. Since the programmer

writing the mapcolor program is unable to predetermine the type of the argu-

ments that will be specified in mapcolor's query, gpar is the preferred execution

graph expression for this situation.

The sequential fibonacci program, presented in Chapter 1, is rewritten for

parallel execution with execution graph expressions as follows:

query (X, Y):- fibonacci(4, Y).

fibonacci(O,
fibonacci(1,
fibonacci(X,

1) .
1) .
Y) :- x >= 2,

par (
seq(

Xl is X - 1,

fibonacci(X1,
) ,

seq(
X2 is X - 2,

fibonacci(X2,
),

Yl)

Y2)

) ,
Y is Yl + Y2.

The execution graph for fibonacci is:
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fibonacci(X,Y)

I

x >= 2

Xl is X - 1

I

fibonacci (Xl, Yl)

X2 is X - 2

I

fibonacci(X2,Y2)

Y is Yl + Y2

Fibonacci's Execution Graph
Figure 3.2

The final example is the program fast fact, which returns the factorial of

an integer argument specified by the programmer. Fastfact is not the most

efficient program for calculating the factorial of an integer, but its inefficiencies pro-

vide work for parallel execution. The sequential version of fastfact is:

query (F) :- fact(4, F).

fact(N, F):- fast fact (I, N, F).

fastfact(N, N, N).
fast fact (Low, High, F):- MidI is (Low + High)/2,

Mid2 is (Low + High)/2+1,
fastfact (Low, MidI, FI),
fastfact(Mid2, High, F2),
F is FI * F2.
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The second goal in the body of the fast fact (Low, High, F) clause may be

moved to the position after goal fast fact (Low, Midl, Fl), without changing

the semantics of the fast fact program. Changing the order of the goals in the

body of the clause permits parallelism in the program as seen below:

query (F) :- fact (4, F).

fact(N, F):- fastfact(l, N, F).

fastfact(N, N, N).
fast fact (Low, High, F):-

. gpar([Low, High],
seq(

Midl is (Low + High)/2,
fastfact (Low, Midl, Fl)

) ,

seq(
Mid2 is (Low + High)/2+l,
fastfact (Mid2, High, F2)

) ,
) ,

F is Fl * F2.

The execution graph for fastfact is:
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fast(N,F)

I

fast fact (Low,High,F)

~
Midl is Mid2 is

(Low+High)/2 (Low+High)/2+l

I I

fastfact(Low,Mdl,Fl) fastfact (Mid2,High,F2)

~
F is Fl + F2

:r..

Fastfact'sExecution Graph
Figure 3.3
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CHAPTER 4

Forward Execution of P API

Forward execution of the stack-based opcode-interpreter is presented in two

parts. First, single process memory management and sequential execution are dis-

cussed, and then multiple process memory management and parallel execution over

distributed stacks are presented. Sequential execution of PAPI closely follows D.H.D.

Warren's stack-based method for executing compiled Prolog [War77] [War83].

4.1. Single Process Memory Management

The data structures employed in PAPI's sequential execution include a goalist

of goal structures, a local stack, a global stack, a trail stack, and a goal stack. A

goal structure is allocated for a goal when the goal becomes the current goal to be

matched with a clause head. Each goal structure holds information for sequential

forward and backward execution of the goal for which it was created. Most of the

information stored in a goal structure is in the form of pointers to other goal struc-

tures or pointers into the stacks listed above. The proof tree, for example, is

represented through the forward sibling, backward sibling, parent, right child, and

left child pointers maintained in each goal structure.

Each goal structure is allocated from the goalist, a large static array of goal

structures. The goalist's index is incremented as each goal structure is allocated, but

is never decremented. Thus, memory for goal structures discarded through

35
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backward execution is not reallocated for new goal structures. This method of allo-

cation results from the costs involved with marking a discarded goal structure in the

goalist "available" and then searching the large array of memory for a.n a.vailable

goal structure each time PAPI allocates a goal structure. In addition, since goal

structures contain pointers to other goal structures, once a goal structure is allo-

cated, it cannot be moved within the goalist. As a result, P API may run out of space

in the goalist during forward execution and be forced to terminate. This problem is

discussed in more detail below.

As a clause head is unified with a goal, each argument in the clause is put in a

record in the local stack and a pointer in the clause head's goal structure points to

its arguments in the local stack. The local stack's records include fields for the argu-

ment type and the reference pointer for the argument. The argument type is either

ground, variable, or complex, which is assigned to the argument by the modified RAP

scheme. The reference field is a pointer to another record on the local stack if the

type is variable, a pointer into the global stack if the type is complex, or a pointer to

a value in a symbol table if the argument is ground.

The global stack contains the complex arguments, such as lists or functions.

The fields in the records of the global stack are the same as those in the local stack.

The argument type field is ground, variable, or complex (for structures within struc-

tures) and the reference field is a pointer to values or other records in the global or

local stacks.

The local and global stacks share a single static array in memory. The local

stack occupies the top portion of the array with the index value 0 as bottom of
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stack, while the global stack resides on the lower portion of the static array with the

index value END OF ARRAY as its bottom of stack. A pointer is maintained for each

stack by PAPI, Ltop and Gtop. As an argument is pushed onto the local stack during

forward execution, Ltop is incremented, but if an argument is pushed onto the global

stack, Gtop is decremented. Backward execution often pops the local and global

stacks, thus maintaining the stack characteristics and preventing holes from occur-

ring in either stack. It may occur, however, that the Ltop and Gtop meet at some

point in the array structure. Thus, due to the declaration of the array, the stacks

have run out of space and PAPI must terminate. This occurrance is discussed below.

The trail stack is a stack of pointers to arguments in the local and global

stacks that are not local to the current clause, but are bound during the matching

process of the current clause. PAPI's backward execution relies on the binding infor-

mation stored in the trail stack to unbind arguments while backtracking. As the

arguments are unbound, the record in the trail stack for that argument is popped

from the stack. Thus, the trail stack does not have holes. The trail stack is a static

array in memory with an index pointer, TRtop, maintained by PAPI. The trail stack

may also run out of space during forward execution and force the early termination

of PAPI.

The goal stack is a stack of pointers that point to goal structures in the goal-

ist. The goal stack records the goals executed by PAPI and the order in which they

were executed. As a goal structure is allocated for a goal from the goal£st, a pointer

to that new goal structure is pushed onto the goal stack. The ordering of the

pointers to the goal structures in the goal stack is important as it aids m
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determining the location of goal structures in the proof tree without the overhead of

{oHowing sibling and parent pointers across individual goal structures. During back-

ward execution, PAPI removes goal structures from the proof tree, by reseting

appropriate goal structures' parent and sibling pointers, and pops the goal struc-

tures' records from the goal stack. The goal stack is a static array with an index

pointer, goaltop, maintained by PAPI. Due to the static declaration of the goal

stack, PAPI may be forced to terminate execution if more space is required.

If PAPI runs out of space in any of the static arrays of memory allocated for

the goalist or the local, global, trail or goal stacks during execution, an error message

is issued and execution terminates. At this point, the user must redeclare the size of

the offending static array. Note tha~ this problem also occurs in C-Prolog.

The local, global, trail, and goal stacks encounter fewer problems with this

memory allocation scheme than the goalist since the stack arrays, unlike the goalist,

are cleaned during backward execution. There is no unuseable empty space where

outdated bindings of arguments or old goal structures reside in the stacks, rather,

records in the stacks are reallocated in forward execution. Reallocation of memory

is much easier in the local, global, trail, and goal stacks as the stack characteristic is

maintained. Due to semi-intelligent backtracking, goal structures are not allocated

from the goalist in a stack-based order. As a result, reusing memory in the stack

structures is efficient, but is not efficient in the goalist.
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4.2. Forward Sequential Execution

Forward execution of PAPI is the mechanism for matching goals, binding vari-

ables, and expanding the proof tree. It continues until all goals in the proof tree are

proven true and hence, a solution is found, or until a goal fails and backward exe-

cution is initiated.

Forward execution begins with the query, the first goal, that the program will

prove true, fail to prove true, or solve. To execute the query, which is the root

of the proof tree, PAPI searches for the first clause head that matches the query.

The query and matching clause head are unified, the first goal in the clause body is

made into a goal structure, and a pointer to the goal structure is put on the goal

stack. The bindings made in unification are put on the local and global stacks. The

goal structure is put in the proof tree in a depth first manner, built from left to

right, making it the leftmost child of the query. The newest goal structure in the

proof tree is executed next under the bindings made in the unification. When a goal

is found true, (i.e., matched with a fact) PAPI moves up a level in the proof tree to

the parent of the true goal. If there is a goal following the true goal in the

true goal's parent's clause, that goal is made into a goal structure and put in the

proof tree as the forward sibling of the current goal and this newest goal is executed.

In the case that the true goal is the last goal in the clause body, P API moves up

another level to the grandparent of the true goal and looks at that clause body for

the next goal to execute. When PAPI returns to the root of the proof tree (the

query) and finds that all of the goals in the query have been executed, P API declares

a solution or success. See Figure 4.7 for an example of a proof tree.
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An example of forward sequential execution of the program mapcolor fol-

lows. In order to avoid discussion of backward execution at this point, only the exe-

cution of successful goals is shown. Consequently, the goal stack is not relevant and

will not be illustrated in the diagrams.

4.3. Forward Sequential Execution Example

Before execution begins, the query's goal structure is created, and the local

stack is initialized for the query's arguments.

GLOBAL

query(V,W,X,Y,Z)

LOCAL

TRAIL

Structures The Proof Tree

The Structures and Proof Tree

Figure 4.1

The query mapcolor (V, W, x, Y, Z) matches clause head mapcolor (A, B,

c, D, E). A goal structure is created for the mapcolor (A, B, C, D, E) goal

V var .
W var .
X var .
Y var .
Z var .
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and put in the proof tree as the left child of query (V, w, X, Y, Z). The argu-

ments A, B, C, D and E are put on the local stack with type variable and refer-

ence pointers pointing to the corresponding arguments of query (V, w, X, Y,

Z) on the stack. In order to keep the examples simple, the example programs do not

contain lists or functions. Thus, the global stack is not utilized and hence, is riot

illustrated in the diagrams.

TRAIL

Structures The Proof Tree

The Structures and Proof Tree
Figure 4.2

The first goal in the clause body, next (A, B), is the current goal and it is put in

LOCAL I var

WI var I I "- ,
query(V,W,X,Y,Z)

XI var I . I " \I
I

mapcolor(A,B,C,D,E)
Z var-

var

B var-
C var

D var

E var



r 42

the proof tree as the first child of mapcolor (A, B, C, D, E). Since next (A,

B) 's arguments are variables of mapcolor (A, B, C, D, E), they are already

on the local stack.

TRAI L

Structures The Proof Tree

The Structures and Proof Tree

Figure 4.3

The current goal next (A, B) matches the fact next (red, blue), binding A

to red and B to blue. The binding is made by following the reference pointers of

A and B in mapcolor (A, B, C, D, E) 's arguments and continuing up the local

stack to the query's arguments V and W. These topmost variables are bound to

LOCAL I var

WI var I I ...... \
query(V,W,X,Y,Z)

XI var I . I ' -............ \J
IYI var I .I ---..... IV mapcolor(A,B,C,D,E)

ZI var I .IXI /A var
next (A, B)

,- I B var

C var

D var

E var



43

red and blue respectively, by changing their type to ground and their reference

pointers from nil to the values red and blue. After binding these variables, PAPI

records the bindings on the trail stack by creating records for the variables A and B

and pointing the reference pointers to the newly bound variables.

TRAIL
Point to

grounded
V and W on
LOCAL

Structures The Proof Tree

The Structures and Proof Tree
Figure 4.4

Since the goal next (A, B) succeeded, P API moves up a level in the proof tree to

mapcolor (A, B, C, D, E) and looks for the next goal in the body of its clause.

V grLOCAL
W gr blue

query(V,W,X,Y,Z)
X var . V = red

Y var .

W 1 blueZ
mapcolor(A,B,C,D,E)

A A = red

B I var I --.--- ./ /1 B =blue

J next (A,B)
D var A = red

EI var I
I B = blue

A ...

,

B ...

,
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The goal next (C, D) is put in the proof tree and again, its arguments are already

on the stack when it is executed.

TRAIL
Point to

grounded
V and W on
LOCAL

Structures The Proof Tree

The Structures and Proof Tree

Figure 4.5

The goal next (C, D) matches the fact next (yellow, blue), binding C to

yellow and D to blue in the same manner as A was bound to red and B was

bound to blue.

LOCAL V gr

W gr blue
query(V,W,X,Y,Z)

X var . V = red

Y var .

W I blueZ var
mapcolor(A,B,C,D,E)

A var A = red

B B = bluevar

C var

3 next (A, B) next (C, D)

D var A =red

E B = bluevar

A .....

,

B ..

,
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query(V,W,X,Y,Z)
V =red

W = blue

X = yellow

Y = blue

TRAIL
Point to

grounded

V, W, X, and Y

on LOCAL

I

mapcolor(A,B,C,D,E)
A = red
B =blue

C = yellow

D = blue

~
next(A,B) next(C,D)
A = red C = yellow
B = blue D = blue

Structures The Proof Tree

The Structures and Proof Tree

Figure 4.6

Again, PAPI moves up a level in the proof tree from the true goal to

mapcolor (A, B, C, D, E) and looks for the next goal in the clause to execute.

The next goal, next (B, C), matches the fact next (blue, yellow) and is put

in the proof tree. Since the arguments A, B, C, and D are bound, the local stack

LOCAL Igr I I

-
....... PI red

W gr I I -
-
.......\ PI blue

X gr e 11 ow

Y gr blue

Z var

A var

B var

C var

D var

E var

A ..
,.

B ,.

C ..
,

D ..
,.
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and trail stack remain as in Figure 4.6 until argument E in the goal next (B, E)

is bound. Thus, only the proof tree will be presented in the diagrams until

next (B, E) is executed.

query(V,W,X,Y,Z)

V = red

W = blue

X = yellow

Y =blue

I

mapcolor(A,B,C,D,E)

A =red

B =blue

C = yellow

D = blue

The Proof Tree
Figure 4.7

PAPI continues forward execution with the next goal in mapcolor (A, B, C, D,

E)'s clause, next (A, C), which matches the fact next (red, yellow) and

then executes next (A, D), which matches the fact next (red, blue). These

goals are put in the proof tree, expanding the proof tree as illustrated in Figure 4.8.

next (A,B) next (C,D) next (:B,C)

A = red C = yellow B = blue

B = blue D = blue C = yellow
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query(V,W,X,Y,Z)

V =red

!:

The Proof Tree

Figure 4.8

The next goal PAPI executesis next (B, E). Next (B, E) matches the fact

next (blue, red) and E, already on the localstack, isbound to red and put on
.<

the trailstack.

W = blue

X = yellow

Y = blue

I

mapcolor(A,B,C,D,E)

A = red

B = blue

C = yellow

D = blue

next (A,B) next (C,D) next(B,C) next (A,C) next (A,D)

A =red C = yellow B =blue A = red A = red

B = blue D = blue C =yellow C = yellow D =blue



1 48

.

TRAIL
Point to

grounded
V, W, X, Y, and Z
on LOCAL

Structures

The Structures

Figure 4.9

The goal next (B, E) is put in the proof tree as mapcolor (A, B, C, D, E)'s

rightmost child.

LOCAL I gr I I - -
"- PI red

W gr I I - -
"- \ J>I blue

X gr e 11ow
y gr blue

Z gr I I -x' XI J>I red

A var

B var

C var

D var

E var

A ,

B ,

C
..,

D ,

E
..,
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The Proof Tree

Figure 4.10

At this point, each of the query's arguments are bound and the local and trail stacks

do not change as the remaining goals are executed. Thus, these stacks will not be

illustrated in the final diagrams.

PAPI again moves up a level of the proof tree to mapcolor (A, B, e, D,

E), the parent of the true goal, and executes the next goal, next (C, E). Goal

next (e, E) matches the fact next (yellow, red) and is put in the proof tree.

.

query(V,W,X,Y,Z)

V = red

W = blue

X = yellow

Y =blue

Z red
mapcolor(A,B,C,D,E)

A =red
t-:

B = blue

C = yellow

D =blue

E = red

next (A, B) next(C,D) next (B, C) next (A, C) next (A, D) next(B,E)

A = red C = yellow B = blue A = red A = red B = blue

B = blue D = blue C = yellow C = yellow D = blue E = red
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query(V.W.x.Y.Z)

v - red
W.. blue

X- yellow
Y- blue

Z -red
mapcolor(A,B,C,D,E)

A-red

B- blue

C ""yellow

D ""blue

E-red

A-red

next(B,C) next(A,C) next(A,D)

B- blue A- red A""red

C - yellow C- yellow D- blue

next(B,E)
B - blue

next(C,E)
C .. yellow
E-redB .. blue

C- yellow
D.. blue E-red

The Proof Tree

Figure 4.11

Finally, the last goal in the clause, next (D, E), is put in the proof tree and exe-

cu ted.



51

query(V.W,x.y,Z)

V-red

W- blue

X- yellow
y.. blue

Z-red
mapcolor(A,B,C.D,E)

A-red

B .. blue

C ... yellow

D.. blue

E=red

next(A,B)

A... red

B- blue
C - yellow
D- blue

B- blue A- red A- red

C- yellow C- yellow D- blue

B- blue
E-red

C- yellow
E - red E- red

The Proof Tree
Figure 4.12

This last goal succeeds by matching the fact next (blue, red) and PAPI moves

up a level of the proof tree to the goal mapcolor (A, B, C, D, E). Since each

of the goals in the clause have been executed, PAPI moves up another level of the

proof tree to the query. At this point, all goals in the program have been executed

successfully, PAPI claims a success, and returns the solution:



for the program mapco1or.

4.4. Multiple Process Memory Management

4.4.1. The Balance Series

In the Balance Series, a process's memory contains an area of shared memory

and an area of private memory. The process's shared region of memory is accessible

to all processes while the process's private region of memory is only accessible to the

corresponding process. Thus, shared memory serves as a mechanism for communi-

eating data among processes. This form of communication, however, requires a

means of synchronizing the processes that alter the shared data in order to prevent

collisions among these processes. The simplest mechanism for synchronization avail-

able on the Balance Series is the spinlock type of semiphore.

The spinlock is a lock used to ensure that only one process has access to a

shared variable or a shared data structure at a time. Before a process attempts to

access a shared data object, the process must wait until the spinlock associated with

the shared data object is unlocked. The process locks the spinlock, accesses the

shared data object, and then unlocks the spinlock after completeing its task. If a

process attempts to lock a locked spinlock, the process spins in a spin loop until the

.
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A = red
B = blue

C = yellow
D = blue
E = red
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lock is unlocked. Due to the hardware characteristics of the spinlock, it is impossible

for more than one process to lock a spinlock at the same time. Throughout the

remaining chapters, references to locks and locking of data structures implies the

locking and unlocking of the spinlocks associated with the mentioned data structure.

4.4.2. Data Structures

The parallel execution model maintains the stack-based methodology observed

III the sequential execution model by distributing trail, goal, local, and global stacks

to the shared memory of each process. Goalists are also distributed to the shared

memory region of each process. Although these data structures reside in the

process's shared memory, they cannot be expanded or cleaned by other processes.

Rather, each process pushes and pops its own stacks and allocates goal structures

from its own goalist in the same manner described previously in the sequential model.

A process may, however, examine the contents of another process's shared data and

set reference pointers within the stacks to bind variables during unification. Res-

tricted access to shared data and the RAP scheme's forced sequential execution of

dependent goals (i.e., one process binds a variable and modifies the appropriate

stacks at a time) prevents collisions within the above shared data structures and

eliminates the locking requirement for these shared data structures.

Despite the distribution of goalists among processes, the proof tree remams

centralized, yet consists of goal structures residing in various processes' memory.

The process that allocates a goal structure from its goalist records the goal
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structure's bindings on its local, global, and trail stacks and pushes a pointer to the

goal structure onto its goal stack.

In addition to the data structures presented for sequential execution, each

process maintains an availist, a stolenlist, and an intlist in its shared memory region.

The availist and the stolenlist were created as a result of the distributed work

scheme; free processes steal work from processes with extra work. The availist is a

list of pointers to goal structures that are available for other processes to steal and

the stolenlist is a list of pointers to goal structures that have been stolen by other

processes. A pointer to a goal structure is never in a stolenlist and an availist at the

same time, since a goal structure cannot be available for a process to steal and

stolen. Moving the pointer to a goal structure from the availist to the stolenlist as

the goal structure is stolen ensures that one goal structure is not stolen by more

than one process.

A process's availist and stolenlist are frequently accessed and altered by other

processes. As a result, each of these structures must be locked and unlocked as it is

examined or altered by a process, including the process that owns the memory in

which the list resides. In this case, locking these structures not only prevents colli-

sions among processes, but it also ensures that 1) a goal structure is only on one list

at each instant, and 2) a goal structure available for stealing is still on the availt'st

by the time the process steals it (i.e., one process cannot steal an available goal

structure as another process examines it on the availist).

Another shared data structure utilized in parallel execution is the intlist, a list

of pointers to interrupt structures. An interrupt structure is crea.ted a.nd initialized
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by one process and passed to another during execution. Interrupt structures are

required in P API since processes are not permitted to alter the stacks or goal struc-

tures owned by other processes. A process sends an interrupt structure to another

process when 1) a backtracking process reaches a goal structure that is owned by

another process, 2) a backtracking process iinvalidates another process's goal struc-

ture by undoing its bindings made by the backtracking process's goal structure, or 3)

a process must terminate. An interrupt structure is allocated dynamically from the

sending process's shared memory and a pointer to this interrupt structure is put on

the receiving process's intlist by the sending process. The intlist structure, like the

availist and stolenlist structures, is frequently altered and hence, must be locked.

Interrupts are required in PAPI since processes are not permitted to alter the

goal structures or stacks owned by other processes. Thus, an interrupt is sent from

one process to another to inform the receiving process of the goal structure where

backward execution is to resume and what type of backward execution the first pro-

cess was engaged in when it encountered the second process's goal structure. In

addition, interrupts are sent to processes owning no longer valid goal structures that

are to be removed from the proof tree and stacks.

The availist, stolenlist, and intlist are arrays of static memory, as in the case

of the stacks and goal structures. A process maintains two indices, also in shared

memory, to both its availist and stolenlist. One index points to the top-most occu-

pied position in the array and the other index points to the bottom-most occupied

position in the array. These indices prevent a process from searching the entire

availist or stolenlist; instead, a process searches from the top index of either list to
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the bottom index. A process also maintains an index for its intlist that points to the

most recent interrupt added to the intlist. After a process completes the work

required by an interrupt, the interrupt is finished and the process removes the

finished interrupt structure from its intlist by decrementing the index value. If the

finished interrupt is not the most recent interrupt in the intlist, then the newer inter-

rupts are moved backward into the space occupied by the finished interrupt and the

index is decremented. As goals structures are removed from the availist or stolenlist,

the indices and remaining goal structures are shifted to reflect this deletion. Thus, a

form of garbage collection is performed on the avail£st, stolenlist, and intlist. This

type of maintanence is relatively inexpensive since these structures are typically

small.

4.5. Forward Parallel Execution

Parallel execution begins with forking the number of processes specified by the

user upon invoking PAPI. The parent process, procO, is initialized to a normal state

while the child processes, proc1, proc2, proc3 ..., are in a new state. A normal pro-

cess executes the Prolog program, while new processes are put to sleep with the sys-

tern call sigpauseO. The new processesremain asleep until procO creates work

and awakens them with the kill(SIGALRM) system call.

After the fork, the normal process, procO, begins sequential execution of the

query and continues until parallelism is specified, by par or the parallel evaluation

of ipar or gpar. At this point, a goal structure is created for each of the parallel

goals in the scope of the execution graph expression and put in the proof tree as
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siblings. The first goal structure, oldest and leftmost sibling, is put on procO's goal

stack while the other goal structures are put on its availist. Before continuing for-

ward execution with the new goal on its goal stack, procO records the number of goal

structures created for parallelism, no_of..Jorks, and stores this value in the goal

structure of the new goals' parent. The no_of..Jorks field of Ii.goal structure is shared

(since goal structures are shared) and must be locked by processes that access or

alter its value. Each time a parallel goal is completed, no_of..Jorks is locked and

decremented. When the value of no_of..Jorks is decremented to zero, the first goal

beyond the scope of the execution graph expression is executable. For example, if a

clause contains the goals:

par(a(A), b(B), c(C», d(D)

then no_of..Jorks is set to 3 in a (A) 's parent's goal structure for the goals a (A) ,

b (B) ,and c (C) in the scope of the par execution graph expression. After each of

the parallel goals, a (A), b (B), and c (C), are finished and no_of..Jorks is decre-

mented to 0, d (D) becomes eligible for execution. If procO finishes its current goal

before no_of..Jorks reaches zero, procO removes a goal structure from its own avail£st,

puts it on its goal stack, and executes it. (Since procO took a goal structure from its

own avaiUst, the goal structure is removed from the availist, but it is not put on the

stolenlist. The procedure of a process taking a goal structure from its own availist is

called getwork 0.)

After procO puts the parallel goals on its availist and sets no_of..Jorks, it

awakens the new processes and puts them in a free state. Free processes search for
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goals to steal from other processes' availists by following the steal rule. The steal

rule maintains the stack-based characteristic of the stacks by specifying the condi-

tions for goals that a process may steal. Basically, this rule requires that only goals

newer than the last goal on the process's goal stack may be stolen, and if the goal

stack is empty, any goal may be stoien. The steal rule is stated as follows:

The steal rule:

1) The first child is never stolen.

2) If the current proof tree were traversed inorder and each
goal were assigned a number corresponding to its position
in the proof tree, then any goal with a position number greater
than that of the last goal executed (the top goal on the
process's goal stack) may be stolen by that process.

3) If the process's goal stack is empty, then its last
executed goal position number is zero.

Once a free process finds an acceptable goal to steal, the free process:

1) makes an exact copy of the acceptable goal structure that it
is stealing

2) marks the original goal structure stolen

3) puts its copy of the goal structure in the proof tree as the
only child of the stolen goal and then pushes a
pointer to its copy of the stolen goal structure onto
its goal stack

4) moves the pointer to the stolen goal structure
from the victim process's ava£listto the victim
process's stolenlist

5) changes its state from free to normal and
begins forward execution of the goal on its goal stack
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In some programs, there may be many acceptable goals for a free process to

steal. It is important in these situations that a process steals a goal that will not

prevent it from stealing other goals. For example, if a process steals the rightmost

available goal in the proof tree, the steal rule prohibits the process from taking any

other available goals that are to the left of it (since traversing the proof tree inorder

reveals that the remaining available goals would have lower position numbers than

the stolen goal). Thus, this process remains free, or idle, for the rest of the

program's execution and the benefits of parallelism are greatly reduced. Backward

execution may free an idle process by undoing its goals, hence making it available to

steal acceptable goals again. Yet, if an inefficient scheme for choosing goals to steal

is followed, the process will end up in the same idle situation again. Thus, a stealing

scheme that directs the search throughout the proof tree for goals to steal, is neces-

sary.

The stealing scheme implemented in PAPI (and hence, the stealing procedure

steal () ) begins the search for an acceptable goal to steal high in the proof tree at

the ancestor of the last goal on the free process's goal stack. The motivation behind

beginning the search for stealable goals high in the proof tree is to keep processes

busy with large subtrees of goals. Since wasted time occurs when a process is idle

and when it is looking for work, it is important to steal goals that will keep a pro-

cess busy and not require it to steal often. By stealing goals high in the proof tree, it

is more likely that the stolen goal will expand into a large subtree than if the goal

were stolen low in the proof tree. Therefore, the process will spend more time com-

puting than being idle. In addition to stealing high in the proof tree, the process
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steals the closest or leftmost available goal in the desired level of the proof tree.

Stealing the leftmost available goal permitted by the steal rule enables the free pro-

cess to also steal that goal's forward available siblings. Although it is possible that

a process may spend more time searching the proof tree for eligible goals under this

scheme, there is also more of a chance that a goal stolen high in the proof tree will

yield more work to the free process. Shallow proof trees will not suffer or benefit

from this scheme as searching for work will not be as expensive, but it will occur

more often.
l'
1.

Another means for a process to get more work is to getwork (). The get-

work 0 procedure is executed when a process finishes executing its current goal and

still has available goals on its own availist. Since getwork0, similar to a process

stealing from itself, only involves one process, it is cheaper to execute than

stealO. Thus, a process always tries to getwork 0 before it tries to steal () .

As a process executes getwork 0 , it locks its availist and transfers the next goal to

its goal stack. After transferring the goal, the process begins forward execution of

the new goal. The new goal is not put on the process's stolenlist and copies are not

made of the new goal since the new goal remained on the same process that created

it.

Once a solution to the query is found, the process that completed the last goal

and returned to the query declares a success. The other processes are notified that a

solution has been found via an interrupt (discussed in Chapter 5). The solution to

the query is printed to the screen and if another solution is requested, the succeeding

proce55 sends another interrupt to the same processes telling them to continue
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,

i. execution. Otherwise, if another answer is not requested or the query fails (no more

answers exist), the process sends an interrupt the other processes telling them to ter-

minate and then terminates itself.

4.6. Forward Parallel Execution Example

Forward parallel execution with 2 processes for the program mapcolor is

described in this section. The parallel version of the program mapco 1or is pro-

vided below.

mapcolor(A, B, C, D, E):- gpar([A, B, C, DJ,
next (A, B),
next (C, D)

) ,
par (

next(B, C),
next (A, C),
next (A,. D),
seq(

next(B, E),
par (

next(C, E),
next(D, E)

)
)

) .

P API begins Corward parallel execution by Corking the child process, proc1,

Crom the parent, proeO, and initialing the stacks and structures Cor both processes.

ProeO is in the normal state and begins Corward execution while proc1, in the new

state, sleeps.
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Evaluation of the first execution graph expression, gpar, determines that

sequential execution for the goals next (A, B) and next (C, D) is required, since

.,

.~~ the arguments A, B, C, and D are not ground. Thus, PAPl's forward parallel
f'

execution of mapcolor is the same as its forward sequential execution until the

par execution graph expression is reached. After procD finishes the goal

next (C, D), proc1 is still sleeping and proeD's stacks are the same as those

presented in the sequential execution example.
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TRAIL Point to

grounded
V, W, X, and Y
on LOCAL

f-

The Structures
Figure 4.13

The proof tree at this point of mapcolor's execution is provided in Figure 4.14.

..

PROCl PROCO

t LOCAL0 D
LOCALr-; I gr

I I - """" }II red,
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.. Y blue
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.
21 var

.
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t I81 var
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query(V, W, X, y, Z)

v = red

W = blue

X = yello....

Z 1 blue
mapcolor(A, B, C, D, E)

A = red

B = blue

C = yello....
D = blue

~
next (A,B) next(C,D)

A = red C = yello....
B = blue D = blue

The Proof Tree
Figure 4.14

As procO executes the par execution graph expression, it allocates and ini-

tializes goal structures from its goalist for the goals within the scope of par. ProcO

puts the first goal structure, for the goal next (B, C), on its goal stack and the

remaining goal structures, for the goals next (A, C), next (A, D), and seq,

on its availist for processes to take. These four goal structures are also put in the

proof tree in the same order as if they were executed sequentially.
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query(V,W,X,Y,Z)

V =red
W =blue
X = yellow

Y = blue

I

mapcolor(A,B,C,D,E)
A =red

B =blue

C = yellow

D = blue

next (A,B)

A = red
B = blue

next (C,D) next(B,C) next (A,C)
C = yellow
D = blue

next (A,D) seq

The Proof Tree

PROCO
AVAILIST

PROCO

GOAL STACK

mapcolor(A,B,C,D,E)

next (A,B)

next (C,D)

next (B,C)

PROCO
STOLENLIST

I
seq

next (A, D)

seq

The Proof Tree and ProcO's Structures

Figure 4.15

Note in Figure 4.15 that a goal structure was created for the execution graph expres-

sion seq, but not for par or gpar. Sincethe seq executiongraph expressionis
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! within the scope of the par, seq must have a goal structure in the proof tree. The.

par execution graph expression, unlike seq, creates and positions goal structures in

the proof tree before the goals are executed by PAPI, thus, seq holds a position in

the proof tree for the goals in its scope and preserves the depth first ordering in the

proof tree.

ProcO also locks and sets the no_of~orks field in mapcolor (A, B, C, D,

E)'s goal structure to 4, for the four goal structures created, and sends a

kill (SIGALRM) system call to the sleeping proc1, to awaken it. Proc1 is put into

the free state while procO continues forward execution with the oldest (leftmost) goal

structure in the par scope, next (B, C).

Proc1 is in the free state looking for work. Since its goal stack is empty,

proc1 may steal any goal from procO's availist (see the third steal rule in the previous

section). Proc1 steals the leftmost available 'goal from procO's availist, next (A,

C), by making a copy of the goal structure, marking the original goal structure

stolen, and putting the new copy of next (A, C) in the proof tree.
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query(V,W,X,Y,Z)
V = red
W = blue

X = yellow
Y = blue

I PROCO
mapcolor(A,B,C,D,E)
. A = red

B =blue

C =yellow
D =blue

next (A, B)

A = red
B =blue

next (C,D) next (B,C)

C = yellow
D = blue

next (A, C)

stolen

-t-
next (A, C)

next (A, D) seq

PROCI

The Proof Tree

Figure 4.16

ProcO's availist and stolenlist are locked and modified to reflect this steal and the

new goal structure is put on proc1 's goal stack.
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PROCO
AVAILIST

next (A, D)

PROCO
STOLENLIST

I next(A, C) I

PROCI
GOAL STACK

I next (A, C) I

seq

ProcO and Proc1 Structures

Figure 4.17

Note that proc1's copy of next (A, C) contains the same pointers to the binding

information maintained in the stolen goal, so proc1 is able to access this information

during its forward execution.

Proc1 changes its state from free to normal and begins forward execution with

the goal next (A, C) while procO finishes execution of the goal next (B, C).

When each process finishes its parallel goal or parallel goal's subtree, the executing

process locks and decrements no_of-forks in the parent of the parallel goal and looks

for more work. Thus, procO locks and decrements no_of-forks, in the goal structure

mapcolor (A, B, C, D, E), to 3 and executes getwork O. The goal

next (A, D) is removed by procO from its availist, put on its goal stack, and exe-

cuted while prod finishes the goal next (A, C). Again, no_of-forks is decremented

and prod steals the last goal on procO's availist, seq.
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query(V,W,X,Y,Z)
V =red

W = blue

X =yellow
Y = blue

Z = red

I

mapcolor(A,B,C,D,E)
A = red
B = blue

C = yellow

D = blue
E = red

PROCO

next (A,B)

A = red
B =blue

next(C,D)

C = yellow

D = blue

next(B,C)
B = blue

C =yellow

next (A,C)

A = red

C =yellow
8tolen

+
next (A,C)

A = red

C = yellow

PROCI

next (A,D) seq
8tolen

+
seq

/'
next(B,E)

PROCI

The Proof Tree

Figure 4.18
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PROCO
AVAILIST

PROCO
STOLENLIST

I
next (A, C)

PROCl
GOAL STACK

next (A, C)

seq seq

ProcO and Proc1 Structures

Figure 4.19

Proc1 executes the no-operation seq and the goal next (B, E) as procO

finishes its goal, next (A, D). The par execution graph expression is executed by

proc1 is the same manner that procO executed the previous par: goal structures are

created for the parallel goals next (C, E) and next (D, E), the goal structures

are put in the proof tree and on the appropriate stacks, and no_ofJorks in the seq

goal structure is locked and set to 2.
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next (A,B)

A = red
B = blue

next (C,D)

C = yellow
D = blue

next(B,C)
B = blue

C = yellow

next (A, C)

A = red
C = yellow
8to/en

+
next (A, C)

A = red

C =yellow

next (A,D)

A = red

D.= blue

seq
8tolen

-+-
seq

PROCI next(B,E)
B = blue
E = red

next(C,E) next (D.

PROCI

The Proof Tree

Figure 4.20

' -L

query(V,W,X,Y,Z)
V = red
W = blue

X = yellow
Y = blue

.:If'

t-

Z = red PROCO
I

mapcolor(A,B,C,D,E)
. " A = red

B = blue

C = yellow
. D = blue

E = red
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PROCl
AVAILIST

I next (D, E)

PROCl
STOLENLIST

I

PROCl
GOAL STACK

next (A, C)

seq

next(B,E)

next(C,E)

Proc1 Structures

Figure 4.21

Proc1 executes the goal next (e, E) while procO steals the goal next (D, E)

from proc1 's availist. As procO and proc1 finish their goals, the processes lock and

decrement no_of-forks in .the goal structure seq. The last process to decrement

no_of-forks sets its value to zero. This process, suppose it's procO, continues execu-

tion by determining that the seq goal is finished and decrementing the no_of-forks

in mapcolor (A, B, e, D, E) 's goal structure. Meanwhile, the other process,

proc1, has finished all of its goals and is in the free state searching for available

goals to steal.

Since no_of-forks in mapcolor (A, B, e, D, E) is also zero, procO exam-

ines the mapcolor (A, B, e, D, E) clause for the next goal after the scope of

the par. There are no more goals so procO moves up a level in the proof tree to the

parent of the true goal, mapcolor (A, B, e, D, E). Each of the goals in the

clause have been executed, so procO moves up another level in the proof tree to the
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query. All goals in the program have been executed successfully and PAPI declares

the solution presented in section 4.3.

query (V,W,X,Y,Z)
V =red

W =blue

X =yellow
Y =blue
Z =red

I

mapcolor(A,B,C,D,E)
A =Ted

B =blue

C =yellow
D =blue

E =red

PROCO

next (A, B)

A =Ted
B =blue

next (C. D) next(B,C)

C = yellow B = blue

D = blue C = yellow

next (A, C)

A =Ted
C =yellow

IIolen

~
next (A, C)

A = Ted

C =yellow

PROCI

next (A. D)

A = Ted
D =blue

seg
.Iofen

-+-
seg

next (B,E)

B =blue
E =Ted

next(C,E)

C =yellow
E =Ted

next (D,E)

D =blue
E =Ted
.'olen

-t-
next (D. E)

D .. blue
E =Ted

PROCO

The Final Proof Tree

Figure 4.22
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PROCl
LOCAL STACK

D D

TRAIL STACK TRAI L STACK

GOAL STACK GOAL STACK

Point to

grounded
V,W,X,y,Z
on LOCAL

next (A,C)

seq

next(B,E)

next(C,E)

red

blue

yellow

blue

red

The Final Structures

Figure 4.23

PROCO
LOCAL STACK

.

V gr

y gr

Z gr

A var

B var

C var

D var

E var

A ,

B ,

C ....

,

D ,

E .....

,

mapcolor(A,B,C,D,E)

next (A, B)

next (C,D)

next (B,C)

next (A,D)

next(D,E)
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As an answer is presented to the user, the succeeding process "freezes" the

other processes by issuing an interrupt. The user is then asked if more solutions are

desired; if the answer is "no", then the processes are told to terminate via an inter-

rupt, and the succeeding processes terminates, otherwise the other processes are

"unfrozen" and backward execution begins.

<.

'.



CHAPTER 5

Backward Execution of PAPI

Backward execution, or backtracking, is the series of actions following a

failure. A failure results when the current goal fails to match the current clause

head or fact. Most sequential Prolog interpreters reduce a failure with naive back-

tracking; returning to the most recent choicepoint and restarting forward execution

at that goal's next alternative1. Although naive backtracking is effective, it is very

slow, and unnecessary work is often done. For example, if the goal:

f(1,2).

matches the clause:

f (X, Y) : - 9 (X), h (Y), i (X) .

In a Prolog program where 9 (X) and h (Y) are choice points and the goal i (X)

fails, naive backtracking resumes forward execution at the next alternative for

h (Y), the most recent choicepoint. Since h (Y) and i (X) are independent, it is

useless to explore each of h (Y)'s alternatives in the attempt to satisfy i (X) .

Instead, forward execution could restart at the next alternative for 9 (X) upon

1The most recent choicepoint is the most recent goal where alternative clauses are yet to be explored.
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which i (X) depends. Thus, an efficient method for eliminating useless work III

naive backtracking would reduce time spent in backward execution.

5.1. ImprovingNaive Backtracking

Intelligent backtracking schemes to remedy execution of useless work in naive

backtracking have been studied by Cox, Pietrzykowski, Matwin [CoP8I] and

Brunooghe, Pereira, and Porto [BrP8I] [PeP8I]. These authors observe that naive

backtracking always considers the whole proof tree as its failure tree when a goal

fails. In their intelligent backtracking scheme, the authors attempt to reduce the

inefficient search of naive backtracking by pruning the proof tree to a minimal fail-

ing deduction2 subtree. A minimum failing deduction subtree is a subtree (of the

proof tree) that can be determined to have caused the failure of the goal. In addi-

tion, unification is not possible.in a minimum failing deduction subtree. For exam-

pIe, if a Prolog program containing the clause and goals:

i f(X, Y, Z):- g(X), h(Y), i (X, Z).
g (2) .
g (3) .
1(3, 4).

fails at the goal i (X, Z), the deduction tree for the clause at the failure is:

2 A deduction tree is a proof tree without substitutions for variables.
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f(X, Y, Z)

g{X) h (Y) i (X, Z)

fails

Naive Backtracking Failure Tree
Figure 5.1

Naive backtracking would consider the entire proof tree as the failure tree and back-

track throughout the proof tree for the most recent choicepoint. Intelligent back-

tracking, however, would prune the naive backtracking failure tree to the minimal

failure subtree below:

f(X,Y,Z)

~
g(X) i(X,Z)

fails

Minimal Failure Deduction Subtree

Figure 5.2

and reduce the amount of useless work done in backward execution. The problem
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with this intelligent backtracking scheme, however, is that it requires expensive run-

time bookkeeping.

Cox, Pietrzykowski, and Matwin claim that the overhead associated with this

bookkeeping is unacceptable for the sequential execution of most logic programs.

Chang and Despain [ChD85] show that for deterministic programs, such as

fibonacci, there is no backtracking, so the intelligent backtracking scheme only

introduces overhead during execution. For other programs, such as mapcolor, a

good ordering of the goals in the body of the clause by the programmer reduces the

applicability of intelligent backtracking and again the overhead of intelligent back-

tracking outweighs its benefits. Thus, this intelligent backtracking scheme intro-

duces high overhead without sufficient improvement in backtracking performance.

Another scheme, developed by Chang and Despain [ChD85], is semi-intelligent

backtracking. Semi-intelligent backtracking is an improvement over naive back-

tracking, yet it requires very little runtime overhead. This method examines data

dependency graphs [CDD85]created for each clause to determine variable dependen-

cies among the variables in the clause. An analysis of the dependencies determines

the backtracking path taken when a goal in the clause fails. These backtracking

paths permit a semi-intelligent form of backtracking without high runtime overhead.

An example data dependency graph for the color (A, B, C, D, E)

clause in the program color is illustrated in Figure 5.3. This color program is

Chang and Despain's version of a Prolog program that solves a map-coloring prob-

lem for a map eontaining five regions and four colors.
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color (A, B, C, D, E):- next(A, B),

next (A, C),

next (A, D),

next(B, C),

next(C, D),

next(B, E),

next(C, E),

next(D, E).

Chang and Despain's data dependency graph for this clause is depicted below. Th~

circles in the graph represent a goal in the body of the color (A, B, C, D, E)

clause and the number inside of the circles is the goal's position in the clause body,

e.g., 1 is next (A, B). The arcs illustrate the dependencies of the variables

between the goals. Further analysis of t,his graph yields the semi-intelligent back-

tracking paths discussed by the authors.

. -
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Data Dependency Graph for color ,Clause
Figure 5.3

One limitation of Chang and Despain's approach is that, unlike intelligent

backtracking, semi-intelligent backtracking behavior cannot cross clause boundaries

since data dependency graphs only represent variables of one clause. Yet, the

authors conclude that there are many programs for which this form of backtracking

suffices. In addition, when compared to other more intelligent backtracking schemes,

the semi-intelligent method proved more favorable, despite its limitations, due to its

low runtime overhead. Furthermore, this scheme is called only when it is advanta-

geous to do so, not for say, deterministic programs.
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The advantages of the semi-intelligent backtracking method outweigh its limi-

tations, and hence this scheme was chosen for improving backward execution in

f PAPI. Although PAPI does not implement data dependency graphs, the underlying

ideas behind semi-intelligent backtracking have been modified for use in PAPI.

5.2. Backward Sequential Execution

Backward sequential execution begins when forward sequential execution

encounters a failure. Upon reaching the failure, PAPI executes backtrack ()

which determines the backtracking path required for the failing goal. Once the

backtracking path for backward execution is established, the relevant backtracking

code is executed, the proof tree and goal structures are restored to the selected

choicepoint's environment, and forward execution resumes in the new environment

created by backward execution.

In order to analyze the failed goal and its environment, backtrack ()

examines several fields in the goal structure. The first field, flabel, is a pointer to the

next alternate clause to try if the goal is a choicepoint when it fails, and the goal

structure's choicept field records 1 if the goal is a choicepoint and 0 if it is not. The

goal's choicetree field is 1 if there is a choicepoint in the goal structure's subtree and

o otherwise. The smartchoice pointer points to the goal's closest back sibling on

which it depends. If the goal is not dependent on a back sibling (it may not have a

back sibling), then its smartchoice is nil. Furthermore, the goal's lastchoiceptr is a

pointer to the most recent choicepoint before this goal structure in the proof tree.

These fields in the goal structures are set and modified throughout forward and
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backward execution.

With this information, backtrack 0 analyzes the failing goal and continues

with the appropriate backtype () routine. These backtype 0 routines, similar

to those in Chang and Despain's scheme, are backtracking paths directing the search

for the choicepoint at which forward execution will resume. Throughout the search,

the backtype 0 routines restore the structures and proof tree to the environment

of a goal in the backtracking path and eventually to that of the choicepoint. For-

~ ward execution then resumes with the next alternative of the choicepoint, until
1-

another failure is encountered. Figure 5.4 summarizes the backtrack 0 routine

and is followed by a short description of the backtracking routines.
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goal fails

backtrack (goal)
y

is the goal
a choicepoint?

yes . I no
.

backtypeO(goal)
V

smartchoice of goal

nil I sibling
'it if

backtype4(goal->parent) remove all
siblings for ard
of smartchoice

.
is the smartchoice
a choicetree?

yes

DRMC = drmc(smartchoice)
for ard execute DRMC

~
backtypeO(smartchoice)

is the smart choice

a choicepoint?

1
noyes

v
U = lastchoice

of smartchoice

U = nil

backtype4(smartchoice->parent) cleanup ()
and for ard
execute at U

Backtrack () Flow Chart
Figure 5.4

cleanup () :
The cleanup () routine removes specified goals from the proof tree and pops
the local, global, tra£/, and goal stacks of the arguments belonging to those goals.
This routine is responsible for resetting the environment to that of the
choicepoint in order for forward execution to resume with the next alternative
of the choicepoint.
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drmc () :
Drmc() returnsthe deepest rightmost choicepoint in the subtree of the specified
goal. The right child and sibling pointers in the goal structures are followed
down the subtree of the specified goal and the choice point and choicetree fields
of the goal structures determine which goal is the drmc. Once the drmc is
found, drmc () resets the environment such that forward execution may resume
at the drmc's next alternative.

backtypeO (): (shallow)
Type 0 backtracking is often referred to as shallow backtracking (vs. deepback-
tracking), since the failing goal is a choicepoint and is the goal at which forward
execution will resume. The proof tree also remains the same. The local, global,
and goal stacks are not popped, but the trail is unwound to its position before
the failing match was attempted. Forward sequential execution resumes with
the next alternate clause of the current goal stored in the goal's flabel.

backtypel 0: (smartchoice to sibling)
Type 1 backtracking3 begins backward execution by examining the failing goal's
smartchoice. The smartchoice may be nil, in which case backward execution con-
tinues with the failing goal's parent in backtype40 . Otherwise,
cleanup () removes all goal structures forward of the smartchoice from the
proof tree and goal stack, and pops the bindings made by the removed goals
from the local, global, and trail stacks. At this point, the smartchoice's
choicetree field is checked. If the choicetree is I, then the drmc in the
smartchoice's sub tree is returned by drmc () and cleanup () again cleans the
environment to that of the choicepoint. Forward execution resumes after the
choicepoint is sent to backtypeO (). If the smartchoice's choicetree is 0, the
smartchoice's choicept field is checked. In the case that the smartchoice is a
choicepoint, forward sequential execution resumes with the alternate clause
specified by the smartchoice's flabel. If the smartchoice is not a choicepoint and
has a back sibling, the back sibling is sent to backtype2 (), otherwise the
smartchoice's parent is sent to backtype4 (). A flow chart for this routine is
in Figure 5.5. Note that only one smartchoice move can be made within a set of
siblings; other backtracking moves between siblings must be naive.

8 Backtypel () is never directly called by backtrack() during backward sequential execution, but a
variation or backtypel () is incorporated in backtrack() and this routine is used in backward parallel execu-
tion. For this reason I chose to include backtypelO in these descriptions.
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backtypel (goal)

~
smartchoice

of the goal

backtype4(parent goal) cleanup () all.
goals forward
of smartchoice

~
is smartchoice's
choicetree = 17

DRMC = drmc(smartchoice)
forward execute DRMC

is smartchoice

a choicepoint7

backtypeO(smartchoice) B = back sibling
of smartchoice

backtype4(parent) backtype2 (B)

Backtypel () Flow Chart
Figure 5.5

backtype20: (naive to sibling)
Type 2 and type 3 backtracking, in sequential execution, search for the drmc in
the subtree of the argument goal. The goal passed to backtype2 () may be a
choicepoint and not have any children, in which case cleanup () is executed
and removes any forward goals of the argument goal. Forward execution then
resumes with the }label of the choicepoint. Otherwise the goal's choicetree field
is checked and if it is 0, the goal's back sibling is passed to backtype2() , but
if it is 1, the goal's rightmost child is sent to backtype3 (). In the event that
the back sibling is nil, the parent of the goal is passed to backtype40. Fig-
ure 5.6 illustrates this routine.
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backtype30: (backtrack to children)
Type 3 backtracking continues the search for the drmc. If the goal passed to
backtype30 is a choicepoint and is childless, then the structures and the
proof tree are cleaned by cleanup () and forward execution continues as in
the previous cases, but if the goal is not a choicepoint or has children, the
choicetree is checked and the same action is taken as in the backtype2 ()
case. See Figure 5.6 below.

backtype2(goal)

~
cleanup () all
forward siblings

of the goal

backtype3(goal)

~
send right child
to backtype30

is the goal
a choicetree

~
.

is the goal
a choicepoint?

yes

no

backtypeO(goal)

.
send parent

of goal to
backtype4 ()

back sibling
of the goal?

nil I not nil
y

send back

sibling to
backtype2 ()

Backtype2() and Backtype3 () Flow Chart
Figure 5.6

backtype40: (backtrack to parent)
Type 4 backtracking begins by removing all of the goal's (the goal passed to
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backtype4 () ) children from the proof tree and removing their .arguments and
bindings from the stacks. Backtype4() continues by sending the passed goal
to backtrack () where it is sifted through the flow chart again.

backtype4(goal)

~
cleanup 0 all

of goal's children

~
backtrack (goal)

Backtype4 () Flow Chart
Figure 5.7

5.3. Backward Sequential Execution Example

An example of backward sequential execution for the program G:
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query :- g(X, Y, 2).

9 (X, Y, 2): - h (X), i (Y), j (X), k (2) .
h(A) :- s(A, B), t(B, C).
1 (1) .
i (2) .
1(3).
j (A) : - u (A, B), v (B) .
k (A) : - 1 (B), m(C), n (A, B, C).
s (1, 2).
s (2, 3).
t (2, 2).
t(3, 3).
u (2, 2).
v (2) .
1 (2) .
m (1) .
m (2) .
n(1, 2, 2).

begins at the first failure in forward sequential execution with the proof tree and

bindings illustrated below. Note that goals followed by a "*" are choicepoints.
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;

query

I

g(X,Y,Z)
X = 1
Y = 1
Z = unbound

h (X)
X = 1

~
s(X,B) * t(B,C) *
X = 1 B = 2

B = 2 C = 2

i (Y)*
1=1

j (X)
X = 1

/
u(X,B)
FAILURE

Proof Tree Before Backward Execution

Figure 5.8

Backward execution begins with the failing goal, u (X, B), as its current

goal in backtrack O. Since u (X, B) is not a choicepoint and its smartchoice is

nil (u (X, B) does not depend on a back sibling), its parent, j (X) is sent to back-

type40. Backtype40 removes j (X) 's children from the proof tree, pops the

stacks, and passes j (X) to backtrack (). The backtrack () routine examines

j (X) 's smartchoice, h (X), and removes the goals i (Y) and j (X) and their chil-

dren from the proof tree and stacks. The goal, h (X), is a choice tree so drmc ()

returns the drmc in h (X) 's subtree, t (B, C). Forward execution resumes with

the goal t (B, C) and itsflabel, the fact t (3, ~) J and the proof tree:
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query

I

g(X,Y,Z)
X = 1
Y = 1
Z = unbound

~
h (X)
X = 1

~
s(X,B) * t(B,C)
X = 1
B = 2

Proof Tree After Backward Execution

Figure 5.9

The goal t (B, C) failsto match the fact t (3, 3) and is passed to back-

track (). AB t (B, C) is no longer a choicepoint, itssmartchoice, s (X, B), is

failed and the goal t (B, C) is removed from the proof tree and stacks. Goal

s (X, B) becomes the current goal,the stacks are reset,and forward execution con-

tinues at s (X, B)'s flabel,s (2, 3), until another failureis encountered at the

goal n (Z, B, C).
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query

I

g(X,Y,Z)
X = 2

Y = 1
Z = unbound

h (X)
X = 2

~
s(X,B) t(B,C)
X = 2 B = 3

B = 3 C = 3

i (Y) *
Y = 1

j (X)
X = 2

~
u(X,B) v(B)
X=2 B=2
B = 2

k (Z)
2 = unbound

~
l(B) m(C) * n(2,B,C)

B = 2 C = 1 fAILURE

tinues until the solution:

x =
y =
Z =

2
1
1

Proof Tree at Second Failure

Figure 5.10

f Since the failing goal is not a choicepoin t, backtr ack () removes n (Z, B,

f~ C) from the proof tree and the structures, and then examines n (2, B, C)'s

i smorlchoice, m (C). This goal is a choicepoint, the stacks are reset, m (C) becomes
~ the current goal, and forward execution resumes at m (C) 's flabel, m (2) , and con-~I
:'\

is declared for the program. The proof tree for this solution to Gis:
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query

I

g(X,Y,Z)
X = 2

Y = 1

Z = 1

h (X)
X = 2

~
s(X,B) t(B,C)
X = 2 B = 3

B = 3 C = 3

i (Y) *
Y = 1

j (X)
X = 2

~
u(X,B) v(B)
X=2 B=2
B = 2

k (Z)
Z = 1

~
l(B) m(C) * n(Z,B,C)
B = 2 C = 2 Z = 1

B = 2

C = 2

Proof Tree after Success

Figure 5.11

Although the semi-intelligent backtracking scheme described earlier does not

eliminate all unnecessary work in backward execution, it does provide advantages

over the naive backtracking scheme implemented in most Prolog interpreters. One

example is its "skipping" over the goal i (Y) when backtracking u (X, B). Since

the goal u (X, B) did not depend on i (Y) , PAPI was relieved from using each of

i (Y) 's alternatives in useless work. This scheme, however, would not save work in

this particular program if the next alternative for the goal t (B, C) were the fact

t (2, 3). In this case, the local variable binding would change but the global vari-

able binding for X would remain the same (X = 1) and the goal u (X, B) would fail
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agam smce it requires X to be bound to 2 for a success. Therefore, the semI-

intelligent backward execution would require the same amount of work as naIve

backward execution. Yet, when the semi-intelligent scheme does eliminate unneces-

sary work, it is a significant improvement over naive backtracking. The benefits of

this scheme are also evident in the parallel version of backward execution.

5.4. Backward Parallel Execution

Backward parallel execution involves backward execution over one or more

processes [Bor86]. Since each process is responsible for its own goal structures and

stacks, backward execution often crosses process boundaries when it searches the

proof tree for a choicepoint. For example, backward execution initiated on one pro-

cess may require stacks and goal structures owned by other processes to be cleaned

and removed from the proof tree, or perhaps, another process to continue backward

execution until a choicepoint is found or that process reaches another process's boun-

dary. That is, a process may not execute a backtype () routine with another

process's goal. Instead, the process issues an interrupt to the processes owning the

foreign goal and that goal's process continues backward execution in the specified

routine. For this reason, a means of communication enabling a process to tell

another process which routines to execute is required.

In addition, a free process needs to determine which processes are backtrack-

ing and which are not when searching for a goal to steal. A backtracking process is

in the backtrachng state and a process that has finished backward execution but is

waiting for the other processes to finish backtracking is in the waiting state. No
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process is allowed to steal goals from the availist of a backtracking or .waiting process.

When a choicepoint is found and before forward execution resumes, all waiting

processes are put back into a normal or free state by the routine, resetcpus () .

(At this point, all processes involved in this particular failure are in a waiting state).

The backtracking and waiting states prevent goals that are no longer valid from being

stolen and executed by other processes.

Communication among processes is accomplished via the interrupt system.

This mechanism does not interrupt processes at any point. Instead, processes check

for interrupt structures throughout forward execution and while looking for goals to

steal. The interrupt system consists of interrupt structures that are put on other

processes' intlis~ and each process locks and checks its own intlist for interrupt

structures at specific points during forward execution. The interrupt structure con-

tains several fields: receiver, the goal that the interrupt effects; sender, the sending

process's current goal; type, the type of interrupt structure; nosent, keeps track of

the number of interrupts the sending process issued with the same sender goal (used

for special types only); and choicefound, set to 1 if the receiver's process finds a

choice point while servicing the interrupt.

An interrupt is issued when the sending process allocates shared memory for

the interrupt structure, initializes the fields in the interrupt structure, and puts a

pointer to the interrupt structure on the intlist of the receiving process, the process

owmng the receiver goal. Throughout forward execution, each process locks and

checks its intlist for an interrupt structure. If a process encounters an interrupt

structure on its intlist, the process stops its execution and services the interrupt by
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executing the routine associated with the type of interrupt. After finishing the inter-

rupt, the process executes retinterrupt (), which locks and removes the inter-

rupt structure from the process's in tlist, and determines if the process will continue

forward execution in a normal state where it left off, or look for a goal to steal in a

free state. The process's continuation state depends on the type field of the interrupt

serviced and whether or not the process's current goal was removed as a result of the

interrupt. Processes completing idie interrupts do not not execute retinter-

rupt 0 .

The interrupt type corresponds to the routine that the sending process

requires the receiving process to execute. For example, the i wai t interrupt

corresponds to the wait 0 routine. The receiving process executes the specified

routine with the receiver goal as its current goal. After issuing an interrupt, the

sending process continues backward execution or waits for the receiving process to

finish servicing the interrupt, depending on the type of interrupt it issued. The rou-

tines and interrupt types are summarized below. Note that these backward execu-

tion routines differ from those implemented in backward sequential execution.

drmc 0
The drmc 0 routine is a combination of the backtype2 () and the back-
type30 routines that searches a goal's subtree for the deepest rightmost
choicepoint. If the search crosses a process boundry as it moves deeper into the
proof tree, an ibacktype3 interrupt is issued to the process that will continue
the search, and if the process crosses a process boundry as it moves across the
proof tree, an ibacktype2 () interrupt is issued. The sending process is then
put into a waiting state.
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waito:
The iwait interrupt is issued to all other processes by the process that finds a

solution to the query. It is issued after the solution is printed and suspends the

receiving processes until the user specifieswhether or not another solution to the

query is desired. If no more solutions are requested, the sending process issues

an idie interrupt to all processes and terminates itself.Otherwise, the receiv-

ing processesgo to retinterrupt (), where the interrupt is removed from

each process's intlist and the process continue.s execution where it was when it

received the iwai t interrupt.

die () :

The idle interrupt is issued to all processes if the user does not want any

more solutions to the query. The receiving process terminates as a result of

the idle interrupt.

cancelwait 0 :

The icancel wai t interrupt is unique in that it is the only interrupt that a

goal issues to itselfonly. It serves an administrative role for process by record-

ingthe number of icancel interrupts sent by the process. An icancelwai t
interruptis always issuedbefore the icancel interrupts. As each of the
icancel interrupts are issued by the sender, the nosent field of the ican-
cel wai t interrupt structure is locked and incremented, and as each icancel
is completed by the receiving process, the nosent field of the icancel wai t
interrupt structure is locked and decremented. When the icancel wai t's
nosent field returns to 0, the icancel wai t interrupt is removed from the
process's intlist and the process may continue backward execution.

The cancelwai t interrupt ensures that a backtracking process does not con-
tinue backtracking until the environment is reset to the appropriate state, as
dictated by the backtracking routines. That is, when a backtracking process is
responsible for resetting the environment to a specific state, that process may
not continue backtracking until the state is completely restored and all assisting
processes finish.

cancel 0 :
The icancel interrupt is issued when the goal to be "cancelled" is owned by
another process. The process receiving the icancel interrupt cancels a goal,
which is specified as the receiver in the icancel interrupt structure, by remov-
ing the goal and its descendents from the proof tree, the process's local, global,
and trail stacks, the process's goal stack, and the process's stolenlist or availist.
Each of the receiver goal's children are cancelled, which in turn cancel their chil-
dren. If any of the receiver goal's children were stolen by another process, the
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process executing cancel () issues a icancelwait to itself and then ican-
cel interrupts to the processes owning the stolen children. After each of the
processes complete their icancel interrupt, the processes lock and decrement
the nosent field in the cance/wait interrupt associated with their icancel
interrupt. When nosent reaches zero, the process that sent the icancel inter-
rupts continues backward execution.

backtrack () :

The ibacktrack interrupt is issued from a process to another process when it
is necessary for the receiving process to backtrack () with the receiver as its
argument. The sequential backtrack () routine has been expanded for paral-
lel backtracking across boundaries. When the process executing backtrack ()
reaches a process boundry, it issues an interrupt. The icancel interrupt is to
cancel goals, the sending process must wait for all icancel interrupts to com-
plete before continuing its execution in backtrack (). Otherwise, the process
continues backward execution, or if it has finished, it is put in the waiting state
until forward execution restarts. A flow chart summarizing the backtrack ()
routine is shown in Figure 5.12. Note that in the diagram, calltypel () ,
calltype2 (), call type 3 (), call type4 () , and calldrmc () are rou-
tines that determine if the executing process continues with the routines back-
typel (), backtype2 (), backtype3 (), backtype4 (), and drmc ()
respectively, or if the executing process must issue an interrupt to another pro-
cess to execute the corresponding routine.

backtypeO() :

Type 0 backtracking is often referred to as shallow backtracking (vs. deep back-
tracking), since the failing goal is a choicepoint and remains the current goal.
The proof tree also remains the same. The local, global, and goal stacks are not
popped, but the trail is unwound to its position before the failing match was
attempted. Forward sequential execution resumes with the next alternate
clause of the current goal stored in the goal'sfiabel.

backtypelO :

backtype20 :

backtype30 :
The ibacktypel, ibacktype2, and ibacktype3 interrupts are issued to
the process owning the current goal when a process in backward execution
reaches backtypel (), backtype2 (), or backtype3 0 and the current
goal is owned by another process. After receiving the interrupt, the process
owning the receiver executes the appropriate backtype () with the receiver as
its argument. Each of these routines require the executing process to issue an
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.1cancel wai t interrupt to itself and cancel the current goal's forward siblings.
The forward sibling goals must be cancelled by the process owning them, thus
the executing process may have to issue icancel interrupts. If icancels
are issued, the executing process must wait for all icancels to complete
before continuing. In addition, whenever a backtype 0 routine crosses a prcr
cess boundary, the executing process issues an interrupt and is put into a waiting
state until forward execution resumes. See Figure 5.13 for a flow chart of these
routines.

Unlike sequential backward execution, backtypel() is a routine called by
backtrack 0 (via calltypel0) in parallel backward execution. This call
to backtypel() in backtrack() results from the possibility that the prcr
cess executing backtrack0 does not own the current goal at the point where
backtypelO is executed in backtrackO. In this situation, an iback-
typel interrupt must be issued to the process owning the current goal for back-
ward execution to continue.
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Parallel Backtype () Routines
Figure 5.13

backtype4 () :
Tb.e ibacktype4 interrupt is issued when the process engaged in backward
execution reaches backtype4 () and the current goal is owned by another
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process. The process executing backtype40 begins by canceling each of the
current goal's children and continues by sending the current goal to back-
track O. See Figure 5.14 for a flow chart illustrating backtype40.

backtype4(goal)

. ~
cancel all

of goal's children

~
backtrack (goal)

Parallel Backtype4 0 Routine
Figure 5.14

5.5. Backward Parallel Execution Example

The parallel version of the program Gis:
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query :- g(X, Y, 2).

9 (X, Y, Z): - h (X) ,

par ( i (Y), j (X), k (Z) ).

h (A)
i (1) .
i (2) .
i (3) .
j (A) : - U (A,
k (A) : - par (
n (A, B, C).
s (1, 2).
s (2, 3).
t (2, 2).
t (3, 3).
u(2, 2).
v (2) .
1 (2) .
m(1) .
m(2) .
n(l, 2, 2).

. s (A, B), t (B, C).

B), v (B) .
1 (B), m(C) ).

This example of backward parallel execution of G involves three processes;

procO, proc1, and proc2. As stated earlier, backward execution begins when forward

execution encounters a failure. When more than one process executes a program, it

is not certain which process will execute a failing goal first, hence, the synchroniza-

tion of the processes is difficult to determine. In this example, two processes execute

failing goals, but the order in which the processes fail is not critical for demonstrat-

ing backward execution. Thus, the order in which processes fail is not the key issue.

ProcO begins forward execution of the program G and when it executes the

execution graph expression, par, the goals j (X) and k (2) are put on it's availisl.

The processes proc1 and proc2 steal the goals j (X) and k (Z) , respectively, from

procO's availisl and begin forward execution. The first failure occurs on proc1 at the
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goal u (X, B) while procO executes i (Y) and proc2 executes k (Z). The proof

tree at this point is:

query

I

g(X,Y,Z)
X = 1
Y = 1
2 = unknown

PROCO

h (X)
X = 1

~
s(X,B)* t(B,C)*
X = 1 B = 2
B = 2 C = 2

j (X)
X = 1

stolen

---r-
j(X)

X = 1

PROCY
u(X,B)

FAILURE

i (Y)*
I = 1

k (2)
2 = unknown

stolen

---r-
k (2)
2 = unknown

PROC2

Proof Tree after icancel Interrupts
Figure 5.15

As proel fails, procO and proc2 continue forward execution of their current goals.

Proel executes the backtrack () routine and changes its state from normal

to backtracking. Backtrack () determines that the failing goal, u (X, B), is not a

choice point and it does not have a smartchoice. Thus, the parent, j (X) , is sent to

calltype4 (). The calltype4 () routine determines that both the failing goal
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and its parent are owned by proc1, thus proc1 executes backtype40 to continue

backward execution. In backtype4 () proc1 cancels its child u (X, B) and then

sends the goal j (X) to backtrack (), which determines that the smartchoice of

j (X) is h (X). Since h (X) is owned by procO, proc1 continues in backtrack 0

to calltypelO with h(X) as its argument. Once in calltypelO, proc1

Issues an ibacktypel interrupt to procO with h (X) as the receiver goal, and

changes its process state to waiting. Proc1 has completed its part in backward exe-

cution and waits for forward execution to resume.

ProcO finds the ibacktypel inter~upt on its in tlist, changes its state to

backtracking, and executes backtypelO with h (X) as its argument. In back-

typel 0, procO cancels each of its dependent forward siblings; i (Y), j (X) , and

k (2). Although, in this example, i (Y) and k (2) are not directly dependent on

h (X), they could be dependent on h (X) . and must be cancelled. ProcO cancels the

goal i (Y) , and since j (X) and k (2) are stolen, procO cancels its copy of the ori-

ginal stolen goals, issues an icancelwai t interrupt to itself, and issues icancel

interrupts to proc1 and proc2 for their copies of the goals.

After the icancel interrupts are completed, proc1 and proc2 lock and

decrement the nosent field in procO's icancelwai t interrupt and are put into the

waiting state. The proof tree after the icancel interrupts are completed is

reduced to that in Figure 5.16.
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query

I

9 (X,Y,Z) PROCO
X = 1

Y = unknown

Z =unknown

h(X)
X = 1

~
s(X,B) * t(B,C) *
X = 1 B = 2
B = 2 C = 2

Proof Tree at First Failure

Figure 5.16

ProcO continues backward execution by determining that h (X) is a choicetree and

hence, searches for the drmc in h (X) 's subtree. The goal t (B, C) is the drmc

and is owned by procO. ProcO continues backward execution in backtypeO ()

where the structures are reset and t (B, C) becomes procO's current goal. ProcO

then executes retinterrupt () and resetcpus () . Retinterrupt ()

removes the interrupt structure from procO's intlist and resetcpus () changes

procO's process state back to normal and prod and proc2's process state to free. At

this point, the proof tree is the same as Figure 5.9 in the backward sequential execu-

tio.n example and forward execution is ready to continue on procO at t (B, C)'s
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f flabel, t (3, 3). The other processes, proc1 and proc2, are free, searching for goals

to steal, while procO is normal, executing t (B, C).

ProcO continues forward execution and puts the goals j (X) and k (2) on its

availist after executing par. Again, prod steals j (X) and proc2 steals k (2) .

The goal u (X, B) does not fail with these new bindings, thus, when prod and

procO finish their work they must wait for proc2 to complete its tasks and decrement

no_of-forks in 9 (X, Y, 2) to zero.

During its forward execution, proc2 reaches a par, sets no_of-forks in k (2)

to 2, and puts the goal m (C) on its availist for a free process to steal. Either procO

or proc1, or both, may be free at this point. If neither procO or prod are free, then

proc2 executes the goal itself. For this example, procO steals the goal m (C) and

executes it while proc2 executes 1 (B). After finishing its goal 1 (B), proc2 locks

and decrements no_of-forks in k (2) 's goal structure and takes the goal n (2, B,

C) from its availist. ProcO also finishes its goal, m (C), locks and decrements

k (2) R 's no_of-forks, and is put in the free state since there are no more goals on

its availist. Proc2 fails at the goal n (2, B, C) in the proof tree below.



108

query

I

9 (X, Y, Z)
X = 2

Y = 1

Z = unknown

PROCO

h (X)
X = 2

~
s(X,B) t(B,C)
X = 2 B = 3
B = 3 C = 3

i(Y) *
Y = 1

j (X)
X = 2

stolen

-t
j (X)
X = 2

~
u(X,B) v(B)
X=2 B=2
B = 2

k (Z)
Z = unknown
stolen

-t
PROC2 k (Z)

Z = unknown

PROC1

~
l(B) m(C) * n(Z,B,C)

B = 2 C = 1 FAI LURE
stolen

--r-
m(C) *
C = 1

PROCO

Proof Tree at Second Failure

Figure 5.17

Backward execution begins with proc2, which changes its process state to

backtracking and executes backtrack0 with the failing goal as the argument.

The failing goal, n (2, B, C), is not a choicepoint, but its smartchoice, m (C) is.

ProcO owns the smartchoice, so proc2 issues an ibacktypel interrupt to procO

with m (C) as the receiver, and changes its state to waiting. ProcO receives the
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ibacktypel interrupt and executes backtypel (). In backtypel (), procO

cancels the goal m (C) 's forward dependent sibling, n (2, B, C) by issuing an

icancelwai t interrupt to itself and an icancd interrupt to proc2. Proc2 receives

the icancel interrupt and removes n (2, B, C) from the environment. The

nose.nt field in procO's icance1wai t is locked and decremented to zero and procO

continues with backtypeO (). At this point, the structures are reset and m (C)

becomes procO's current goal in the proof tree as depicted in Figure 5.18.
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query

I

g(X,Y,2)
X = 2
Y = 1
2 = unknown

PROCO

h (X)
X = 2

~
s(X,B) t(B,C)
X = 2 B = 3

B = 3 C = 3

j (X)
X = 2
stolen

--t
j (X)
X = 2

~
u(X,B) v(B)
X=2 B=2
B = 2

i (Y) *
Y = 1

PROCI

k (2)
2 = unknown

stolen

--t
PROC2 k (2)

2 = unknown

/1
1(B) m (C) *
B = 2 C = unknown

stolen

--r-
m (C) *
C = unknown

PROCO

The Proof Tree after icancel Interrupt
Figure 5.18

ProcO executes retinterrupt 0 ro remove the ibacktypel interrupt

from its intlist and continues forward execution with the current goal, m (C) at its

flabel, m (2). Meanwhile, proc2 waits for k (Z) 's no_of-forks to decrement to zero

and proc1 looks for goals to steaL After procO finishes m (C) , its state is changed to

free and proc2 continues forward execution with n (Z, B, C), which succeeds. At

this point, k (Z) is finished so 9 (X, YI Z)'s no_of-forks is decremented to zero
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and procO completes forward execution by claiming a success. The proof tree for this

success IS:

query

I

g(X,Y,2)
X = 2
Y = 1
2 = 1

PROCO

h (X)
X = 2

~
s(X,B) t(B,C)
X = 2 B = 3
B = 3 C = 3

i (Y) *
Z = 1

j (X)
X = 2
stolen

-1
j (X)
X = 2

~
u(X,B) v(B)
X=2 B=2
B = 2

PROCl

k (2)
2 = 1

stolen

-1
PROC2 k (2)

2 = 1

~
l(B) m(C) n(2,B,C)
B = 2 C = 2 2 = 1

stolen B = 2

---r-- C = 2
m(C)
C = 2

PROCO

Success Proof Tree

Figure 5.19

After the solution is presented, the user may request PAPI to search for more

solutions to the query. If more solutions are desired, then the deepest rightmost

child of the entire proof tree, n (2 I B I C) is failed and the process owning n (2 I BI
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C) begins backward execution in backtrack () to find another solution to the

query. This involves much more backward execution, therefore, it is not included as

part of this example. Walking through the proof tree in Figure 5.19 and following

the parallel backtrack () and backtype 0 routines closely, however, will even-

tually lead the reader to the next solution:

x =
Y =
2 =

2

2
1

The example above covered the situation in which procl failed first and then

after all backward execution completed, proc2 failed. This simplistic situation is not

always the case for parallel programs, but makes parallel program examples easier

to present. It often happens that processes fail while other processes are backtrack-

ing. This situation does not create problems since 1) processes do not check their

intlists for interrupts until they are in a position to service them and 2) if the receiv-

ing goal has been removed already (i.e., the process removed the goal for some other

reason while the interrupt was waiting to be serviced), then the process simply

ignores the interrupt and removes it in retinterrupt (). Therefore, if proc1 is

backtracking while n (2, B, C) fails on proc2, proc1 and proc2 issue their inter-

rupts to procO, and these are put on procO's intlist in a first-come-first-served order.

If proc2's ibacktypel interrupt is received first, then procO cancels n (2, B, C)

and resumes forward execution before finding proc1's backtype1 interrupt. This time,

procO cancels i (Y), j (X), and k (2) and then resumes forward execution at

t (B, C)'s ftabel. Note that while there is no clashing if proc2's interrupt is serviced
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first, the work done by the first interrupt will be redone since the goal m (C) will fail

again as a result of k (2) being cancelled.



CHAPTER 6

Benchmark Testing and Analysis

This Chapter analyzes the performance of PAPI based on its parallel execu-

tion of several benchmark tests. The Prolog programs selected as benchmarks are

. fibonacci, quicksort, mapcolor, deriv, and partiming.1. The quick-

sort program, which sorts a list of elements, and the fibonacci program are
(

t
deterministic programs that exhibit PAPI's "number crunching" abilities, while map-

color helps in analyzing PAPI's semi-in~elligent backtracking and communication

schemes. The partiming and deriv programs, which analyze parallel execution

and determine the derivative of a value, yield results that are compared to those

obtained by Hermenegildo's AND-parallel Abstract Machine simulator [Her86].

The benchmark tests were compiled and assembled on Oregon Graduate

Center's VAX 11/780 using Prolog V2.5 and the opcode instruction files were exe-

cuted by PAPI on mkt3, a Balance 21000 computer made by Sequent Computer Sys-

tems. Mkt3 runs DYNIX and 15 processors were available at the time that the

benchmark tests were executed. Throughout benchmark testing, the load average

was approximately 0.0 and no other users were using the mkt3 machine.

1 See Appendix C for the Prolog source code of the benchma.rk tests.

114
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6.1. Preliminaries

Parallel execution of an assembled Prolog program using PAPI is initiated

with the command line:

execute <file> lfiag][datafilename]

where file is the opcode file for the Prolog program created by the assembler

described in Chapter 2, flag is any character or string indicating that a datafile is to

be created, and datafilename is the name for the datafile. Flag must be set to save

timing data returned by PAPI.

As PAPI fork () s the number of processes specified by the user, DYNIX puts

each process on a separate processor, as long as there is a processor available. Since

there were no other users on the machine during benchmark testing, all 15 processors

were available. At this point, forward execution and data collection begins.2

6.2. Data

Data collected by PAPI consists of: the initialization time, totaLiniLtime; the

time to execute the program, totaLtime; the ideal time in which there is no charge

for system calls, ideaLtime; and the number of goals that each processor steals,

goals_stolen. In addition, a value for finaLtime, totaLtime minus totaLiniLtime is

presented with the data above. Note that the execution time spent by each indivi-

dual processor in forward execution, backward execution, and looking for work is not

2 For the remainder of this discussion, "process" and "processor" a.re synonomous.
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dual processor in forward execution, backward execution, and looking for work is not

recorded due to the large amount of overhead resulting from implementing a timing

scheme over many short periods of time. As a result, analysis of the benchmark

results can only suggest where most of a processor's execution occurs.

TotaLtime and totaLiniLtime are collected using the system call

getrusage 0 , which is accurate to 10 milliseconds. TotaLtime is the duration of

PAPI's execution of the Prolog opcode program, but does not include user response

time (to PAPI's queries) or the creation and initialization of the datafile.

TotaLiniLtime is PAPI's initialization time: the amount of time it takes to fork the

child processes, put the child processes to sleep with the sigpause() system call,

and load the Prolog opcode instruction file. Both totaLtime and totaLiniLtime are

broken into the components of user time, usr_time, and system time, sys_time. The

totaLtime's sys_time and usctime times are accumulated throughout -execution in

totaLsys_time and totaLusr _time.

FinaLtime is totaLtime minus totaLiniLtime. Since totaLiniLtime increases

as the number of processors increase and consists almost entirely of fork () ing

time, it is subtracted from totaLtime. Thus, finaLtime represents how long it takes

PAPI 'to execute the Prolog program. IdeaLtime is finaLtime minus totaLsys_time

and represents the ideal world of no charge for system calls. IdeaLtime is important

to exa.mine since totaLsys_time varies for the number of processors. For example,

totaLsYLtime includes the time to lock and unlock structures (but not the amount of

time that a processor spins in the spinlock), to print the answer, and to wake the

child processors. As a result, it is expected that totaLsys_time will increase as the
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systems, thus an ideal world in which PAPI would not depend on an operating sys-

tern for these services is represented through ideaLtime.

6.3. A Sample Run

As an example, the program mapcolor is executed and a datafile is created.

The execution and datafile are presented below.

Script started on Sat Jul 4 12:49:37 1987

% execute tests/mapcolor.as p map

Parallel Prolog Opcode-Interpreter

Enter number of processes desired (1 - 15) -> 6

Creating map

query succeeds on proc 0
varO = red
varl = blue

var2 = yellow
var3 = blue

Backtrack on procO? (y/n)-> y

query succeeds on proc 0
varO = blue
varl = red

var2 = yellow
var3 = red

Backtrack on procO? (y/n)-> y

query succeeds on proc 0
varO = yellow
varl = red
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query succeeds on proc 0
varO = yellow
var1 = blue

~ var2 = red
var3 = blue

Backtrack on procO? (y/n)-> y

query fails on procO
%

% cat map

Date: Sat Ju1 4 12:50:07 1987

Program: tests/mapco1or.as
Number of Procs: 6
Machine: mkt3

Initialization:

usr_time = 160 milliseconds

sys_time = 3160 milliseconds
total_time = 3320 milliseconds

varO
var1

= red
= blue

var2 = blue
var3 = red

Backtrack on procO? (y In) -> y

; query succeeds on proc 0
,

varO = red
t

I

var1 = yellow
var2 = blue

I
var3 = yellow

"

Backtrack on procO? (y/n)-> y

t

query succeeds on proc 0i
t

varO = blue,
t

var1 = yellowi
I

var2 = red

var3 = yellow

Backtrack on procO? (y In) -> y
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var2
var3

= yellow
= blue

usr_time = 470 milliseconds

sys_time = 40 milliseconds
total_time = 3830 milliseconds

varO = blue

varl = red

var2 = yellow
var3 = red

usr_time = 160 milliseconds
sys_time = 0 milliseconds
total_time = 3990 milliseconds

varO = yellow
var1 = red
var2 = blue

var3 = red

usr_time = 230 milliseconds

sys_time = 20 milliseconds
total_time = 4240 milliseconds

varO = red

var1 = yellow
var2 = blue

var3 = yellow

usr_time = 300 milliseconds

sys_time = 30 milliseconds
total_time = 4570 milliseconds

varO = blue

var1 = yellow
var2 = red

var3 = yellow

usr_time

sys_time

= 200 milliseconds

= 30 milliseconds
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total_time = 4800 milliseconds

varO = yellow
varl = blue
var2 = red
var3 = blue

usr_time = 140 milliseconds
sys_time = 30 milliseconds
total_time = 4970 milliseconds

Query fails

usr_time = 190 milliseconds

sys_time = 0 milliseconds
total_time = 5160 milliseconds

PAPI Timing Totals
total_time = 5160 milliseconds
total_init_time = 3320 milliseconds

total_sys_time = 150 milliseconds
final_time = 1840 milliseconds
ideal_time = 1690 milliseconds

proc[O] :

proc[l] :

proc[2] :

proc[3] :
proc[4] :

proc[5] :

o goals_stolen
28 goals_stolen
29 goals_stolen
32 goals_stolen
31 goals_stolen
29 goals_stolen

6.4. Test Results

This section presents the results of the benchmark testing. The benchmark

programs were executed several times and the run exibiting the best results3 for the
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benchmark is graphed below. Each graph, except mapcolor's, contains three

curves; the program's final curve, the program's ideal curve, and the program's

theoretical speedup, avaiLpar. The final and ideal curves illustrate the programs'

speedup derived from its finaLtime and ideaLtime respectively. The avaiLpar curve

for a program is determined from the amount of parallelism available in the pro-

gram and illustrates the theoretical speedup that can be obtained from the program.

The avaiLpar curve calculation for a program involves an analysis of: the execution

graph expressions in the program, the number of parallel and sequential goals in the

program, and the number of processors executing the program. Detailed calculations

for each of the avaiLpar curves below are presented in Appendix D. Due to the

difficulty in determining the amount of parallelism in backward execution,

mapco 1 or's avaiLpar curve was not calculated.

6.4.1. Partiming

The partiming programs were designed to have easily detectable and

exploitable parallelism such that parallel execution of PAPI can be tested accu-

rately. This easily exploitable parallelism in the partiming programs is illus-

trated in the partiming4 benchmark program:

8 The fastest run for the benchmark programs is only 10 to 20 milliseconds faster than its slowest run.



query:- times4(X), gpar([X],
p (X), P (X), P (X), P (X)

).

p(O).

p(X):- Y is (X-l), p(Y).

times4(32) .
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P API's execution of the partiming benchmark programs was generally

more successful than its execution of the other benchmark programs. The decrease

towards the end of the ideal partiming curves (Figures 6.1 through 6.3) reflects an

increased overhead when there is not enough work to distribute to each of the
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processors executing the program. That is, one or more processors remain in the free

state throughout the entire execution of the benchmark program. In addition, the

gap between the ideal and final curves indicates that a significant amount of the

program's execution time is spent servicing system calls (i.e., waking up the child

processors and locking and unlocking shared data structures). For the remaining dis-

cussion, a benchmark's ideal curve will be analyzed rather than its final curve, since

the ideal curve is indicative of PAPI's performance without the overhead associated

with the DYNIX operating system.

The ideal curves for partiming2 and partiming4 in Figures 6.1 and 6.2

increase with the avaiLpar curve as expected. Partiming8's ideal curve indicates

a large overhead in partiming8's execution by 1 to 7 processors, but a much

smaller overhead for execution by 7 and 8 processors. Since timing data was not col-

le'Cted for the individual processors, it is not possible to determine exactly h?w much

time was spent by each processor in steal (). However, it appears, based on

partiming8's ideal curve and the complexity of steal () , that stealing is expen-

sive when a processor steals more than one goal. Thus, executing a program with

too few processors may introduce more overhead than executing the program with

the ideal number of processors.

The ideal curve for partiming16 closely resembles that of partiming8 in

Figure 6.3. The greatest overhead in partiming16 occurs from 1 to 14 processors

and the best speedup occurs using 15 processors. Unfortunately, only 15 processors

were available at the time of testing, thus the speedup for partiming16 using the

ideal number of processors, 16, was not obtainable.
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As stated in the beginning of this Chapter, the partimingprograms were

tested as benchmarks to compare PAPI's performance to that of Hermenegildo's

Abstract Machine. Hermenegildo executed partiming16, from 1 to 32 processors,

using a multiprocessor simulator. His results are given in Figure 6.5 below.

Hermenegildo's Simulation Results for Partiming16
Figure 6.5

Note that the ideal curve in Figure 6.5 and the avaiLpar curve in Figure 6.4

do not agree. According to his graph, Hermenegildo expects linear speedup from this

benchmark, but I do not believe that this is feasible, based on the calculations made

in Appendix D. Figure 6.5 also indicates that Hermenegildo's simulation
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demonstrated a speedup from 8 to 15 processors that exceeds the speedup I found

attainable for this program. Further analysis of Figure 6.5, however, indicates that

measurements for Hermenegildo's simulator's execution of partiming16 were only

made for 1, 2, 4, 8, 16, and 32 processors, and then these values were connected to

create the close to linear speedup curve. Therefore, only the measured values of

Hermenegildo's results can be compared to those of P API.

Hermenegildo's simulation does not reflect the costs of parallelism and his

scheme to find work for free processors does not search the proof tree or lock data

structures. Rather, his work distribution scheme contains all available goals in a

centralized location and free processors are given work by a "master" work distri-

buter. As a result, P API's overhead from stealing, unequal work distribution, and

parallelism costs is not present in Hermenegildo's system.

Hermenegildo's execution of partiming16 experiences closer to ideal

speedup with fewer than 8 processors than it does with 16 processors. PAPI's perfor-

mance is the opposite. In PAPI's case, as the amount of parallelism in the partim-

ing benchmarks and the number of processors executing the benchmark become

equal, PAPI's performance peaks. Again, due to the lack of individual processor tim-

ing data, I conjecture that this peak performance is related to an equal distribution

of work among processors (guaranteed by the benchmark), processors only stealing

one goal, and stolen goals yielding a fair amount of work to overcome the overhead

of stealO.
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The ideal and final curves for fibonacci in Figure 6.6 reflect an increase in

PAPI's performance as more processors are added to its execution, and a small

amount of execution time spent executing system calls. The step-like shape of these

curves most likely results from the 10 millisecond error for each call to

getrusage (). This error is a consequence of the limitation of the getrusage ()

system call. The best-fit curve for Figure 6.6 has a slope of approximately 1/2, one

half of that of fibonacci's ava£Lpar curve.

The fibonacci benchmark is a deterministic program that creates a deep

proof tree containing several available goals on every other level of the proof tree.

Although these available goals yield large subtrees of work for the stealing processor,

free processors must search this large proof tree for available goals to steal () .

Since a free processor begins its search high in the proof tree and moves down a level

if an available goal is not found, this search may become expensive as the proof tree

grows. In addition, it is believed that as the number of free processors searching for

work at the same time increases, the time spent in steal () also increases. There-

fore, it is suggested that the less than optimal speedup in PAPI's execution of the

fibonacci benchmark may be contributed to the overhead of steal () and

perhaps an unequal distribution of work.

6.4.3. Quicksort

The ideal and final curves in Figure 6.7 indicate the sharpest increase in

speedup from 2 to 5 processors and then a less dramatic speedup from 5 to 15 pro-

cessors. Quicksort's avaiLpar curve illustrates a similar pattern, except that it
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follows a logarithmic curve and continues to move slightly upward after 5 processors.

The roughness in quicksort's ideal and final curves is again attributed to the 10

millisecond error in getrusage0 .
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Unfortunately, the quicksort benchmark contains a list of only 100 ele-

ments, rather than the 128 elements expected when the avaiLpar curve was calcu-

lated. In addition, these 100 elements were not listed in any specific order. Hence,

the quicksort benchmark was not written to ensure that the elements in the list

would be distributed evenly among processors or that each goal would render an

equal amount of work. Thus, these shortcomings and the lack of timing data for

each individual processor prevents a thorough analysis of PAPI's execution of the

quicksort benchmark.

6.4.4. Deriv

The ideal and final curves for der iv, in Figure 6.8, are not as smooth as

those of the other benchmark programs. The roughness of the curves is most likely

the effect of getrusage's error and the perhaps the costs associated with parallel-

ism on der iv's short execution time. Note that the final and ideal curves are close

together, indicating that a small amount of PAPI's execution is time spent servicing

system calls.
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Hermenegildo's simulation results of the der i v benchmark, Figure 6.9, illus-

trate a marked improvement over P API's execution, but does not reach the avaiLpar

curve calculated for deriv. Rather, Hermenegildo claims a speedup of 10 when 32

processors are used. In his analysis, Hermenegildo refers to der i v as "a small and

not particularly parallel" problem, which contributes to his simulator's sub-linear

speedup. He also concludes that the goals available for stealing yield little work for

the stealing processors. Thus, processors are forced to steal more often, creating a

greater overhead than can be overcome by the work available in the stolen goals.
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As discussed in previous sections and in the following section, stealing goals

that yield only a small amount of work to the free processors may be too expensive.

Thus, overhead from steal () combined with the costs of parallelism in a real sys-

tern, rather than a simulation, may attribute to the differences between PAPI's per-

formance an'd Hermenegildo's simulation of the der i v benchmark.

6.4.5. Mapcolor

The ideal and final curves in Figure 6.10 illustrate a slowdown (i.e., increased

execution time) as more processors are added to the execution of mapcolor. These

curves drop sharply at 2 processors, less dramatically from 2 to 7 processors, and

even less dramatically from 7 to 15 processors.
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The decreased speedup in Figure 6.10 may be explained by the following

observations. First, mapcolor requires deep backtracking when a goal fails and

when the user requests another solution to the query (which causes the last goal on

the proof tree to fail). Parallel backward execution is expensive since it often
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reqUIres that only one processor may backtrack or cancel goals while other proces-

sors wait for this processor to complete its task. For example, a backtracking pr<r

cessor, proc1, may reach a goal owned by another processor, proc2, or require that a

goal that is owned by another proceSSOf, proc2, be cancelled. In both cases, an inter-

rupt is issued to proc2. Depending on the type of interrupt issued, proc1 either waits

for proc2's return before continuing its backward execution, or waits until forward

execution restarts. The worst situation in parallel backtracking, however, is when

proc1 issues an icance/ interrupt to proc2 and then proc2 must issue icance/ inter-

rupts to other processors, proc3 and proc4. This occurs when descendents of proc2's

goal that it is canceling have been stolen by proc3 and proc4. In this case, proc2

must wait for proc3 and proc4 to cancel their copies of the stolen goals (and their

stolen goal's descendents) before continuing to cancel its goal and its goal's descen-

dents. Meanwhile, proc1 waits for proc2 to complete its icancel interrupt before con-

tinuining backward execution.

Second, mapcolor creates a shallow proof tree, thus the goals in this pr<r

gram do not expand into deep subtrees of work. Steal () ing goals most likely

creates a a fair amount of overhead which may be overcome if free processors steal

goals that keep the processor busy fOf a significant amount of time. Mapco lor's

shallow proof tree suggests that this benchmark program is not able to compensate

for the overhead in steal () .

In addition to the overhead, steal () may indirectly be responsible for an

unequal distribution of work among processors. Free processors with an empty goal

stack can steal any goal on any processor's availist, but free processors with at least
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one goal on their goal stack only steal specific goals, and free processors with goals

on their own availist do not steal0, but getwork O. As a result, free proces-

sors that getwork 0 from their own availist may get work faster than those that

search the proof tree for work and are more likely to execute the goals on their own

availist. Thus, steal0 may also affect the distribution of work by putting steal-

ing processors at a disadvantage to those that getwork 0 .

Finally, there is a price to pay for parallel execution; referred to as the cost of

parallelism. Although this cost was not measured, it is conjectured that the over-

head from copying structures from one processor's memory to that of another proces-

sor, putting processors to sleep, waking processors, locking structures in shared

memory, and the synchronization of processors has some effect on P API's perfor-

mance. In addition, this cost will most likely increase as the number of processors

executing the Prolog program increases.

Combining these areas of especially high overhead in mapcolor's execution

may explain the discouraging situation depicted in Figure 6.10. The sharp decrease

at 2 processors for example, may be attributed to one processor waiting for another

during backward execution and perhaps overhead from steal O. The continued

downward slope after 2 processors graph suggests an increase in overhead as the

number of processors increase. Hence, based on the results of this benchmark, it

appears that it is not advantageous to execute Prolog programs that require exten-

sive backward execution using P API.
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6.5. Analysis

Execution of the benchmark programs using 1 to 15 processors permitted the

evaluation of PAPI's performance in specific circumstances. Although the individual

processor timing data was not recorded, analysis of the benchmark results suggests

that the most expensive areas in P API's execution include parallel backward execu-

tion and stealO. Parallel backward execution forces sequential execution and, in

the case of icancd interrupts, forces many backtracking processors to wait for one

processor to cancel its goals. The cost of the interrupts and communication was

difficult to ascertain since it was lost in the high backtracking overhead and was not

directly measured.

Stealing was conjectured to be expensive for several reasons: 1) free processors

may spend a fair amount of their time searching for available goals, 2) free proces-

sors may bottleneck in availist spinlocks, 3) it is possible that free processors with

non-empty availist may getwork 0 faster than other processors stea/(), resulting in

an unequal distribution of work among processors, and 4) the goals stolen may not

always provide enough work to overcome the overhead of stealing. The ideal situa-

tion for steal0 occurs when the number of available goals is equivalent to the

number of processors executing the program.

P API's worst performance occured executing a program that requires back-

tracking, while its best performance occured executing deterministic programs with

deep proof trees and plenty of parallelism. It is suggested that if steal () is

improved such that its overhead is reduced and work is distributed evenly, PAPI's

overall performance would demonstrate a marked improvement.



CHAPTER 7

Conclusions and Future Research

7.1. Conclusions

The task of designing a parallel Prolog opcode-interpreter that exploits AND-

parallelism, and implementing the opcode-interpreter on a shared-memory multipro-

cessor architecture was the focus of this thesis. Throughout PAPI's design, areas

presenting a potential for high overhead were examined and in several situations,

algorithms that avoid or reduce this overhead were incorporated. For example,

variable-binding conflicts were discussed and a modified RAP algorithm to detect

and avoid these conflicts was adopted. Backward execution, another area of high

overhead, was examined and a semi-intelligent backtracking scheme was imple-

mented. Finally, a means of communication among processors was incorporated into

the opcode-in terpreter.

The opcode-interpreter's performance was analyzed by executing a series of

benchmark programs using the 1 to 15 processors available on the Balance 21000.

This analysis suggested that parallel backward execution and stea 1 () are the

main areas of wasted time in the opcode-interpreter's execution. The forced sequen-

tial execution of processors in backward execution indicates that a logic program-

ming language that does not require backward execution would derive more benefits

from this system than Prolog does. In order to improve upon backward execution, it

140
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may prove profitable to incorporate a centralized controller that backtracks for the

entire shared-memory multiprocessor, rather than requiring each processor to back-

track for itself.

The execution time lost by free processors searching the proof tree for avail-

able goals to steal and waiting in spin-locks for other free processors searching for

work, indicates that a centralized, rather than distributed scheme may be more

appropriate for this application. A centralized work controller responsible for distri-

buting work among the free processors would most likely reduce the overhead of

searching and locking structures.

Further improvement for work distribution may result by surrendering the

pure stack-based model of this implementation. By allocating new stacks for the

goals stolen and maintaining the stack in segments rather than as a whole, proces-

sors would be freed of the strictness of the steal rule and work distribution overhead.

would be reduced as processors become eligible to steal any available goal. In the

pure stack-based model, processors are only permitted to steal those available goals

which maintain the stack property of their stacks.

In addition to the areas of high overhead discussed above, the opcode-

interpreter's perfomance suffered as a result of variable dependencies in the goals of

a Prolog clause. In order to avoid the excessive overhead that may occur from exe-

cuting dependent goals in parallel, goals with dependent variables in a clause were

executed sequentially, hence reducing the amount of parallelism derivable from that

clause and the program. The reduction of parallelism resulting from avoiding

variable-binding conflicts is illustrated in the avaiLpar curves in Chapter 6.
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Therefore, given the areas of high overhead in this parallel Prolog opcode-

interpreter and the limited amount of parallelism derivable from a Prolog program,

due to AND-parallelism and variable dependencies, it is concluded that AND-

parallelism alone is likely to yield only moderate degrees of parallelism, which would

be best attained under a centralized work controller. These results of implementing

a distributed work allocation scheme also indicate that implementing a similar

scheme on a message-passing multiprocessor would result in excessive overhead.

7.2. Future Research

It is hoped tha.t this research has made the reader aware of some of the basic

issues and problems involved with implementing an AND-parallel Prolog interpreter

on a multiprocessor a.rchitecture. Listed below are several areas in which PAPI may

be improved and expanded.

Automatic Generation of Execution Graph Expressions: As mentioned in

Chapter 3, the compiler may be updated to supplement the execution graph expres-

sions provided by the programmer or generate all execution graph expressions for a

Prolog program. This scheme would enable a programmer to supply some, none, or

all execution graph expressions in the Prolog source code.

Centralized Pool of Work: Maintaining goals available for execution in a cen-

tralized location rather than on each processor's availist may aid in reducing the

overhead associated with stealing goals. In the present implementation of

steal 0, high overhead results from free processors searching the proof tree for
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available goals to steal, and free processors locking and unlocking availists of other

processors. This proposed scheme would reduce the amount of time spent by free

processors finding work and the frequency of locking structures if the number of pro-

cessors executing the program were kept to an acceptable amount for this implemen-

tation of distributing work.

Non-Backtracking Languages: As revealed in Chapter 6, PAPI does not per-

form well during backward execution. As a result, it may prove beneficial to modify

P API to support other logic programming languages that do not engage in backward

execution.

Support OR-parallelism: PAPI may serve as a starting point for an AND-OR-

parallelism system. Note that incorporating both AND-parallelism and OR-

parallelism is traditionally a difficult task.
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APPENDIX A

Opcode Instructions

The intermediate-code instructions exec]J.ted by PAPI that are not included in
D.H.D. Warren's instruction set [War77] are described below. These are the
intermediate-code instructions for the execution graph expressions: ipar, gpar,
par, seq, and end. As stated earlier, these instructions result from the addition
of AND-parallelism to the sequential opcode-interpreter.

ipar(A,label(endl),G)

ARGUMENTS:
The A argument is an integer value specifying the number of arguments that
iparmust check for dependencies, label(endl)is the address of the end
that corresponds to the ipar, and G is an integer value for the number of
goals that are within lpar's scope.

USE:
The ipar intermediate-code instruction is used for the ipar execution graph
expression. in the Prolog source code. The N arguments are tested for depen-
dencies during runtime. If dependencies exist among any of the N arguments,
the corresponding end instruction at L is marked for sequential execution and
the G goals are executed sequentially. Otherwise, the end instruction is
marked for parallelism and the G goals are executed in parallel.

gpar(A,label(endl),G)

ARGUMENTS:

The A argument is an integer value specifying the number of arguments that
ipar must check for dependencies, label(endl) is the address of the end
that corresponds to the gpar, and G is an integer value for the number of
goals that are within gpar's scope.

USE:

The gpar intermediate-code instruction is used for the gpar execution graph
expression in the Prolog source code. The N arguments' argument types are
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checked during runtime. If anyone type is not ground, the corresponding end
instruction at L is marked for sequential execution and the G goals are exe-
cuted sequentially. Otherwise, all N are type ground, the end instruction is
marked for parallelism, and the G goals are executed in parallel.

par(label(endl),G)

ARGUMENTS:
Label(endl) is the address of the end that corresponds to the par and G
is an integer value for the number of goals that are within par's scope.

USE:
The par intermediate-code instruction is used for the par execution graph
expression in the Prolog source code. Parallel execution for the G goals is
specified through this instruction. At runtime, the end instruction is marked
for parallelism and the G goals are executed in parallel.

seq (label (endl»

ARGUMENTS:

Label (endl) is the address of the end that corresponds to the seq.

USE:

The seq intermediate-code instruction is used for the seq execution graph
expression in the Prolog source code. The seq instruction is a no-op instruc-
tion since sequential execution of goals is the default. The corresponding end
instruction is marked for sequential execution and the goals that follow this
instruction are executed sequentially. It also serves as a parenthesis for sequen-
tial segments within a par, thus allowing the par to statement to correctly
find the goals or sements of goals that will be executed in parallel.

end(G,label(endl),G)

ARGUMENTS:

Label (endl) is the address of the next end that follows this instruction.
The label is anything if this is the last end instruction in the program. G is
an integer value for the number of goals that are within the ipar, gpar,
par, or seq's scope to which this end belongs.
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USE:
The end instruction prevents execution from continuing until all G goals in
the scope of the corresponding ipar, gpar, or par are finished. If the end
instruction is marked for sequential execution, it is a no-op, but if marked for
parallel execution, it makes processes steal () or getwork () before the
next goal beyond the scope of parallelism may be executed.



APPENDIX B

Source, Intermediate-Code, and Opcode Files

The Prolog source code for the fibonacci program is given below.

query (X,Y) :- fibo(4,Y).
fibo(O,1) .
fibo (1, 1) .
fibo(X,Y):- X >= 2,

gpar ( [X] ,
seq(X1 is X-1,

fibo (Xl, Yl)
) ,

seq(X2 is X-2,
fibo (X2,Y2)

)

) ,

Y is Y1 + Y2.
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The fibonacci program is compiled by the compiler which generates the
intermediate-code instructions:

proc (query) .

enter (2) .

trylast(clause(l» .

clause (1) .

uvar(l,O) .

neck (1) .

call(2,fibo) .

int(4) .

local (0) .

deflabel(outlabel) .

foot (2) .

proc(fibo) .

enter (2) .

try(clause(l» .

try(clause(2» .

trylast(clause(3» .

clause(l) .

uint(O,O) .

uint(l,l) .

neckfoot(2) .

clause(2) .

uint(O,l) .

uint(l,l) .

neckfoot(2) .

clause(3) .

uvar(O,O) .

uvar(l,l) .

locinit(2,9) .

neck (9) .

call(2,>=) .

local (0) .

int(2) .

gpar(1,label(1),2) .

local (0) .

seq(label(2» .

call (2, is) .

local (2) .

label (3) .
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call(2,fibo) .

local (2) .

local (3) .

deflabel (2) .

end (7, label (1) ) .

seq (label (4» .

call (2, is) .

local (4) .

label (5) .

cal1(2,fibo) .

local (4) .

local (5) .

deflabel (4) .

end(8,label(1» .

deflabel (1) .

end(6,label(outlabel» .

call (2, is) .

local (1) .

label (6) .

deflabel(outlabel) .

foot (2) .

deflabel (3) .

fn (-) .

ref (0) .

int (1) .

deflabel (5) .

fn(-) .

ref (0) .

int (2) .

deflabel(6) .

fn(+) .

ref (3) .

ref(5).
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The intermediate-code instructions are then translated by the assembler into
the opcode instructions that are interpreted by P API. The opcode instructions for
the fibonacci program are:

Q 1
I 26 0 2
I 100 0 0
I 13 0 1
I 29 1 0
C 25 2 fibo
I 44 4 0
I 42 0 0
I 99 1 2

P fibo
I 28 2 0
I 26 0 3
I 26 0 5
I 27 0 7
I 700
171 1
I 34 2 0
I 701
171 1
I 34 2 0
I 100
I 111
I 13 2 9
I 29 9 0
I 75 2 5
I 42 0 0
I 44 2 0

M 61 1 18 2
I 42 0 0

I 63 0 7
I 75 2 7
I 42 2 0
I 47 0 18
C 25 2 fibo
I 42 2 0
I 42 3 0
I 64 7 9
I 63 0 7
I 75 2 7
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I 42 4 0
I 47 0 13
C 25 2 fibo
I 42 4 0
I 42 5 0
I 64 8 1
I 64 6 4
I 75 2 7
I 42 1 0
I 47 0 8
I 32 2 0
B 46 2
I 48 0 0
I 44 1 0
B 46 2
I 48 0 0
I 44 2 0
B 46 2 +
I 48 3 0
I 48 5 0



APPENDIX C

Source Code for Benchmark Tests

C.!. Mapcolor

The mapcolor program solves a map-coloring problem for a map consisting

of five regions as discussed in Chapter 2.

query (V, W, X, Y, Z).

query (A, B, C, D, E):- mapcolor(A, B, C, D, E).

mapcolor(A, B, C, D, E):- gpar([A, B, C, DJ,
next (A, B),
next(C, D)
),

par (

next(B, C),

next (A, C),

next (A, D),

seq(

next(B, E),

par (

next(C, E),

next(D, E)

)

)

) .

next (red, blue).

next (blue, red).

next (yellow, red).

next (red, yellow).

next (blue, yellow).

next (yellow, blue).
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C.2. Fibonacci

The fibonacci program determines and returns the number in the 15th

position of the Fibonacci sequence.

query(Y):- fibo(15, Y).

fibo {O,
fibo (1,
fibo (X,

1) .
1) .
Y) : - X >= 2,

par (
seq(

Xl is X-1,
fibo(Xl, Yl)

) ,
seq(

X2 is X-2,

fibo (X2, Y2)
)

) ,
Y is Yl + Y2.
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0.3. Quicksort

The quicksortprogram sorts the list of 100 elements, the first argument in

sort, and returns the sorted 100 element list as B, sort's second argument.

query (B) :- sort([79,59,34,10,98,6l,49,20,67,16,99,77,12,
50,0,80,41,30,8,68,3,78,24,52,1,48,91,

71,25,6,23,51,89,66,15,96,43.76,95~69,

39,40,63,81,11,55,45,88,18,9,70,93,38,2,

60,58,82,62,42,26,75,36,5,29,17,32,85,74,

4,73,53,87,44,7,94,13,35,97,14,21,64,54,

83,27,90,46,31,57,19,33,28,86,47,84,22,72,

65,37,92,56],B) .

sort([HIT], S):- split(H, T, U1, U2),
par (

sort(Ul, V1),
sort(U2, V2)

) ,

append (VI, [H IV2], S).

sort ( [], []).

append ([], L, L).
append ([H IT], L, [H IU]) : - append (T, L, U).

split (H, [H1ITl], [H1IUl], U2):- Hl=<H,
split(H, T1, U1, U2).

spli t (H, [H1ITl], U1, [H11 U2] ) : - HI>H,
split(H, T1, UI, U2).

spIit(D, [] , [] , []) .
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C.4. Partiming

The partiming programs below were used by Hermenegildo as "efficiency"

benchmarks because the amount of parallelism available in these programs is fixed

and isknown "a priori".The clause p (X) isa loop that isexecuted as many times

as times (X) 's argument indicates and does not create new goals to be executed in

parallel. Once a p (X) goal is stolen,the stealing processor finishesthe goal and

looks for work. Only the p (X) goals in the query clause are available for parallel

execution throughout the entireprogram.

partiming2

query:- times2(X), gpar([X],

p (X), P (X)

) .

p(O).
p(X):- Y is (X-I), p(Y)~

times2(64) .

partiming4
query:- times4(X), gpar([X],

p(X), p(X), p(X), p(X)
) .

p (0) .

p (X) :- Y is (X -1), P (Y) .

times4(32).
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partiming8
query:- times8(X),gpar([X],

p (X), P (X), P (X), P (X) ,

p(X), p(X), p(X), p(X)
) .

p (0) .

p(X):- Y is (X-l), p(Y).

times8(l6) .

partimingl6

query:- timesl6(X),gpar([X],

p (X),

P (X),

P (X),

P (X),

) .

p(X),

P (X),

P (X),

P (X),

p (X),

P (X),

P (X),

p(X),

p (X),

P (X),

p(X),

P (X)

p (0) .

p(X):- Y is (X-l), p(Y).

times16(8).
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C.S. Deriv

The der i v program is another of Hermenegildo's benchmarks. This program

calculates the derivative of the specified expression, x, defined in expression,

with respect to x. and returns the result as Y. The d () clauses are simple

definitions of symbolic derivation, the expression clause contains the expression

to be evaluated in a simplified form, and the value clause is the expanded version

of the components in the expression clause. The expression is presented in two

clauses for simplicity.

query:- expression(X), d(X, x, Y).

d(U+V,
d(U-V,
d(U*V,
d(U/V,

X, DU+DV):- gpar([X], d(U, X, DU), d(V, X, DV».
x, DU-DV):- gpar([X], d(U, X, DU),d(V, X, DV».
x, DU*V+U*DV):- gpar([X], d(U, X, DU), d(V, X, DV».
X, (DU*V-U*DV) /pow(V, 2» : - gpar( [X], d (U, X, DU),

d(V, X, DV».
d (pow (U, N), X, DU*N*pow(U, Nl»:- integer(N),

NI is N - l,d(U, X, DU).

d(-U, X, -DU):- d(U, X, DU).
d(exp(U), X, exp(U)*DU):- d(U, X, DU).
d(log(U), X, DU/U):- d(U, X, DU).
d (X, X, 1).
d (C, X, 0).

value«(3*x + (4*exp(pow(x, 3»*log(pow(x, 2» - 2» /
( -(3*x) + 5/(exp(pow(x, 4»+2»».

expression( Exp + Exp - Exp*Exp / Exp*Exp / Exp):- value (Exp) .



APPENDIX D

Calculation of AvaiLpar Curves

As discussed in Chapter 3, specific goals in a clause may require sequential

execution due to dependencies among their variables. This sequential execution

reduces the amount of parallelism that can be derived from the program. . Hence, in

order to make a fair estimate of PAPI's expected performance as more processors

are added to the execution of a benchmark program, the avaiLpar curve is created.

The calculation of the avaiLpar curve is by no means scientific or rigid. Rather, it is

an estimate of the optimal speedup that P API can derive from a program, based on

an educated evaluation of the amount of parallelism available in the program. The

following statements are assumed while calculating the avaiLpar curve for a pro-

gram:

1) all processors work (if work is available)
2) work is distributed equally among all processors
3) processors that finish their work steal more
4) idle processors find work quickly
5) stealing goals takes no time
6) programs do not backtrack
7) clause heads take roughly equal time to unify with a goal

Reference to Appendix C, which contains the source code for each of the

benchmark programs, will greatly facilitate the reader's understanding of the

remaining discussion.
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D.l. Example Calculation of an AvaiLpar Curve

Calculation of a program's avaiLpar curve begins with the creation of the

program's essential execution graph. An essential execution graph (EEG) is an exe-

cution graph stripped of its "insignificant" goals and all remaining goals' vari.ables

are instantiated. Only goals requiring a significant amount of computation (i.e.,

fibonacci (14) in the fibonacci (15) program) compose the EEG. For exam-

pIe, the execution graph for the benchmark partiming4 is:

query

I

times4(X)

X)

Partiming4's Execution Graph
Figure D.l

which becomes:
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PartimiDg4's EEG
Figure D.2

Once created, the EEG is examined and analyzed to estimate the number of

goals that would be executed by each processor if from 1 to 15 processors executed

the program under the assumptions made above. Since partiming4 is a relatively

small program, the number of significant goals in the program is easily determined

from Figure D.2 to be 133.

Sequential execution of partiming4 would result in one processor executing

all 133 goals one after another, creating a "goal-string" of 133 goals. (The goal-

string measures the maximum number of goals executed by one processor.) Two

times4(32)

::-----
p (32) P (32) P (32) P (32)

I I I I
p(31) p(31) P (31) P (31)

I I I I
P (30) P (30) p(30) p(30)

I I I I
P (29) P (29) P (29) p (29)

. . . .

. . . .

. . . .
p (0) p (0) . p (0) p (0)
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processors executing partiming4 would split the goals such that procO executed

the partlming4 (32) goal and two of the p (32) streams, while proc1 executed

the other two p (32) streams. Thus, the goal-string for two processors is 67 goals

(33 + 33 + 1). The addition of a third processor, proc~, would result in: procO exe-

cuting partiming4 (32) and one p (32) stream; proc1 executing one p (32)

stream; proc2 executing one p (32) stream; and the first process to finish steals and

executes the remaining p (32) goal stream. Hence, one processor must execute two

p (32) streams, creating a goal-string of 66 goals for three processors. If four pro-

cessors execute partiming4, one processor will execute the partiming4 (32)

goal, and each of the four processors will execute one p (32) stream. Thus, the

goal-string for four processors is 34 goals.

As more processors are added to the execution of partiming4, the goal-

string remains the same. Due to the sequentiality of the p (32) streams, partim-

ing4 has enough work for 4 processors only) all additional processors will remain

idle throughout execution.

After the goal-string value for 1 to 15 processors is established, the most

speedup that the program offers is determined from these values. The speedup is cal-

culated using goal-string values in place of timing values and plotted as the avaiLpar

curve. See Figure 6.2 for partiming4's avaiLpar curve. The avaiLpar curves for

the other benchmark programs are calculated similarly.
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D.2. AvaiLpar Curve Calculations

Below are the calculations of the ava£Lpar curves for the benchmark pro-

grams.

D.2.1. Mapcolor

Due to its backward execution, the calculation of the EEG and ava£Lpar

curve for mapcolor is very difficult. Processors cannot steal during backward exe-

cution and processors must often wait for other processors before continuing their

own execution. Thus, synchronization of processors must be considered, which is

beyond the ava£Lpar curve calculation scheme devised here. Therefore, an avaiLpar

curve is not created for mapco 1or.

D.2.2. Fibonacci

Fibonacci's execution graph is stripped and fibonacci is shortened to

fib to arrive at the EEG below:
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fib (15)

~
fib (14) fib (13)

~ ~
fib (13) fib (12) fib (12) fib (11)

fibonacci's EEG

Figure D.3

The exact number of goals in fibonacci'sEEG is approximately 3 * fib (N) .

Due to the sequential segments in the fibonacci program, the avaiLpar curve

may be formed using just fib (N). That is, the number of goals in fibonacci's

EEG is 987, the value of fib (15). The same is true for all fib 0 goals in the

EEG, fib (14) is 610, fib (13) is 377, and so on. Thus, the goal-string for one

processor is 987. Execution with two processors would begin with procO would exe-

cute the goal, fib (15), and the tree of fib (14) , while proc1 would execute the

tree of fib (14). Thus, procO executes 1 + 610 goals and proc1 executes 377 goals.

But, proel would finish its execution before procO and, due to the assumptions made,

. .

. .

. .
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steal some of procO's goals such that the number of goals executed by each processor

would most likely split evenly. As a result, the goal-string for two processors would

be close to 500.

As more processors are added to fibonacci's execution, work is expected

to be divided evenly among the processors and, due to the large amount of parallel-

ism in the fibonacci program, the avaiLpar curve is expected to have a slope of

1, as illustrated in Figure 6.6.

D.2.3. Quicksort

For quicksort, the spl it and append goals generate a sequential list of

goals equal to the length of the list to be sorted. Thus, by symmetry, only the

lengths of the lists need to be considered when determining the number of goals in

quicksort's EEG.

Quicksort's EEG in Figure DA contains the sort goals with the size of the

list that will be sorted by the goal as its argument, rather than the actual list. It is

assumed in this discussion that the spl it clause splits its argument list evenly and

returns two lists one half the length of the argument list. In addition, the execution

of each sort (LENGTH) goal creates a goal-string of LENGTH since the sort con-

sists of LENGTH calls to sort (). Goal strings are calculated for the execution of

quicksort by 1, 2, 4, 8, and 16 processors, as these are the natural breaks in the

program's EEG. Later, the speedup based on goal-strings will be interpolated for the

missing goal-string values.
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sort(128)

~
sort (64) sort(64)

~~
sort (32) sort (32) sort (32) sort (32)

~:
sort(16) sort (16)

: ~
. sort (8) sort (8)

~
~ sort:(4) .

sort(2) sort(2)

: ~.
sort(l) sort(l)

. .

. .

. .

.

.

Quicksort's EEG
Figure D.4

Sequential execution of quicksort creates a goal-string of 1024 goals (8 * 128 for

the eight levels in the EEG that sort 128 goals on each level). Execution by two pro-

cessors would split the EEG goals such that procO executes sort (128) and the

sort (64) subtree, while proc1 executes the other sort (64) subtree. The goal-

string for two processors has 576 goals (128 + 7 * 64). Four processors would



16g

execute the EEG such that: procO executes goal sort (128) I sort (64) I and the

sort (32) tree; proc1 executes the sort (32) tree next to that executed by procO;

and proc2 executes the remaining sort (64) tree. Thus, the goal-string for four

processors has 384 goals (128 + 64 + 6*32). The EEG is further analyzed for the

addition of processors until goal-string values are determined for execution of

quicksort with 1, 2, 4, 8, and 16 processors. From these values, the speedup is

calculated and graphed and speedup for 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, and 15 proces-

sors is interpolated, resulting in the avaiLpar curve in Figure 6.7 (which is essentially

a logarithamic curve).

D.2.4. Partiming

The partimingprograms are easier to evaluate since they are the smallest

of the benchmark programs. In .each of these programs, the amount of parallelism

available is large, but due to the loop of sequential execution in the p (X) clause,

speedup is not always linear. For example, partiming16 has 16 calls to p (X)

and p (X) is a sequential loop of 8 calls to itself. If this benchmark is executed by 8

to 15 processors, the best speedup that can be obtained is eight. That is, all 8 to 15

processors will execute one p (X) loop in parallel, but there are still 1 to 8 branches

of p (X) left to be executed after the processors finish. Since these are sequential

segments, processors must finish their own segments before starting another. .AE a

result, at least one processor must execute two sequential p (X) segments, creating

a goal-string one eighth of that created by one processor executing partiming16.

Hence, the best speedup possible for up to 15 processors is 8, and the best speedup
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for 16 processors is 16, since each processor executes only one p (X) segment.

The evaluation of the avaiLpar curves for the partiming2, partim-

ing4, partiming8, and partiming16 benchmarks follow the same pattern

presented in partiming4'savaiLpar calculation example above. Due to the sim-

plicity of these benchmarks, the EEGs and evaluation of the avaiLpar curves is not

discussed here, but the reader is referenced to the graphs in Figures 6.4 through 6.8.

D.2.5. Deriv

An estimate of the amount of parallelism in the der i v benchmark is difficult

to determine, due to the large expression evaluated in the query. As a result, this is

most likely the least accurate of the avaiLpar curves.

Deriv begins evaluation of the large expression by examining the expression

in terms of its larger 'components:

EXP + EXP - EXP*EXP / EXP*EXP / EXP

Thus, the EEG for Der i v is:
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~
EXP EXP - EXP*EXP / EXP*EXP /EXP

~
EXP EXP*EXP / EXP*EXP /EXP

~
EXP EXP / EXP *EXP /EXP

~
EXP EXP*EXP / EXP

~
EXP EXP / EXP

~
EXP EXP

Der iv's EEG

Figure D.5

where each EXP represents the large term in the fact value. After the overall

expression is broken and distributed, the individual EXP terms are evaluated. Thus,

the der i v of EXP appears to be rich in parallelism.

Based on the EEG in Figure D.5 and the size of the terms, it is estimated that

there may be enough work to keep up to 7 processors busy at all times. Further

examination of the der i v of EXP indicates that there is plenty of work to share

among 15 processors at all times. Thus, a linear curve is presented for der iv's

avaiLpar curve in Figure 6.8.
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