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ABSTRACT

Hormonal stimulation of G protein-coupled receptors which signal to the heterotrimeric
G protein Gs, cAMP, and PKA exhibit cell-type specific effects on ERKs. Stimulation of
the f,-adrenergic receptor (3,AR) with isoproterenol results in rapid activation of cAMP
and PKA. The signaling mechanism by which PKA activates ERKs has not been well
characterized. Recent evidence has shown that ERKs can be activated by cAMP/PKA
via the activation of the small G protein Rapl and the serine/threonine kinase, B-Raf. B-
Raf 1s expressed in a cell-type specific manner and is closely related to Raf-1 and when
active, phosphorylates and activates MEK/ERK. Therefore, B-Raf expression may
provide a pathway for hormones which elevate cAMP/PKA to activate ERKs.
Experiments presented in this thesis suggest that isoproterenol can stimulate ERKs in
Hek293 cells, which express both endogenous 3,AR and B-Raf. Moreover, isoproterenol
stimulates ERKs through a Gsat/cAMP/PKA/Rapl and B-Raf pathway.

In many cell types, cAMP/PKA inhibits the physiological actions of growth
factors to stimulate ERKs and cell proliferation. Stimulation of ERKSs by growth factors
are required for a number of biological processes including, cellular proliferation. A
candidate protein that may function to antagonize Ras-dependent activation of ERKs and
cell proliferation is Rapl. Rapl can be activated by cAMP/PKA however, the role of
Rapl in cAMP-dependent inhibition of ERKs and cell growth has not been examined.
Results presented here demonstrate that Rap1 is required for cAMP’s inhibition of both
ERK activation and cell growth and proliferation in fibroblasts.

The mechanism by which PKA activates Rapl is unclear. Previous studies have
suggested that PKA may utilize the Rap! exchanger, C3G, its adapter protein Crk-L, and
the scaffold protein Cbl to indirectly activate Rapl. However, the ability of PKA to
utilize a C3G/Crk-L/Cbl pathway to activate Rapl has not been directly tested. We show
that cAMP/PKA stimulation of fibroblasts resulted in Rapl activation which requires
membrane recruitment and activation of a C3G/Crk-L/Cbl complex. Interestingly, cAMP
but not EGF stimulated Rap1 activation and the association of C3G, Crk-L, and Cbl,
which could be blocked by inhibitors of PKA or Src family kinases. Furthermore,
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CAMP/PKA’s ability to activate Rapl and inhibit ERKs and cell growth was also blocked
in fibroblasts derived from mice deficient of Src (SYF) but not fibroblasts derived from
mice which were wild type at the Src locus (Src++). Data presented within this thesis
demonstrates for the first time that cAMP activates Rapl in a PKA/Src/C3G/Crk-L/Cbl-
dependent manner to inhibit ERKSs and cell growth in fibroblasts.

In 1978, Erickson and colleagues demonstrated an increase in phospho-serine
within Src’s amino-terminus following cell treatment with cAMP which increased Src
kinase activity. A consensus PKA site at serine 17 of Src was proposed to be the major
site of serine phosphorylation but no physiological role for phosphorylation at serine 17
has been proposed. Therefore, we examined the mechanism of PKA’s activation of Src
and the significance of Src’s activation by PKA in fibroblasts.

Work presented in this thesis reveals that PKA stimulation resulted in Src kinase
activity by phosphorylating Stc on serine 17. A Src mutant which blocks PKA
phosphorylation of Src at serine 17 blocked cAMP’s activation of Src and Rapl, and
inhibition of ERKs and cell growth. A Src mutant containing aspartate at position 17
showed elevated kinase activity, activated Rap1, and inhibited growth factor-mediated
activation of ERKSs and cell growth. This novel pathway of cAMP/PKA/Src/Rapl
mediates inhibition of growth factor activation of ERKs and cell proliferation in
fibroblasts. This is the first example of the regulation of Src signaling by PKA and,
significantly, it identifies an anti-proliferative role for Src in the physiological regulation

of cell growth by cAMP.

vii



CHAPTER ONE

INTRODUCTION

cAMP’s Regulation of Rapl, ERKSs, and Cell Growth

John M. Schmitt and Philip J. S. Stork

Vollum Institute and the Department of Cell and Developmental Biology
Oregon Health Sciences University

Portland, Oregon 97201

Published, in part, in Trends in Cell Biology (2002); Vol. 12, No. 6, pg. 258-266




INTRODUCTION

Stimulation of cell surface G protein-coupled receptors (GPCRs) triggers a number of
biochemical and physiological cellular effects. A variety of stimuli including lipids,
photons, odorants, calcium ions, neurotransmitters, and hormones can act through GPCRs
giving rise to diverse physiological functions (Ji et al., 1998). Hormonal stimulation of
the intracellular heterotrimeric G protein, Gs, results in increases in intracellular cAMP.
The intracellular second messenger cyclic adenosine monophosphate (cAMP) has
become a central molecule which mediates hormone action on the intracellular pathways
to regulate cellular metabolism (Gottesman and Fleischmann, 1986). Moreover, cCAMP is
a key signaling molecule which integrates hormonal stimulation with cell growth and
proliferation (Gottesman and Fleischmann, 1986; Puck, 1977). Because of the
importance of cAMP in cell proliferation, both cAMP and its target the cAMP-dependent
protein kinase (PKA) have been recognized as important molecules in medicine (Aukrust
et al., 1999; Ciardiello et al., 1996). Examples of therapeutic uses include hormones
(Maruno et al., 1998) and cAMP analogues in anti-cancer treatments (Carlson et al.,
2000; Ciardiello et al., 1996; Tortora et al., 1995) and PKA activators to inhibit restenosis
following coronary angioplasty (Bonisch et al., 1998).

One of the key aspects of cAMP’s cellular growth effects is the cell-type specific
character of its effects. While cAMP inhibits the growth of a large group of cells, it also
cooperates in the proliferative actions of a number of hormones and growth factors. The
mitogen-activated protein (MAP) kinase (also called extracellular signal-regulated
kinases, or ERK) intracellular signaling cascade can be regulated by cAMP/PKA and

ERK:s play a central role in cellular growth and proliferation (see Figure 1.1). Data



presented in this thesis examines the cell-type specific effects of cAMP on ERKs and cell
growth. Several areas of cAMP’s regulation of ERKs are discussed and addressed by this
thesis work. Both the positive and negative biochemical pathways that regulate ERKs
and its relation to cAMP’s cell-type specific actions on cell proliferation are addressed.
Second, the specific intracellular signaling mechanisms that allow for the regulation of
ERKSs by cAMP are also considered. These pathways may provide for the cell-type
specificity of CAMP’s actions. We will describe systems where cAMP’s activation of
ERKSs utilizes a Rap1/B-Raf signaling pathway. We will also examine model systems
where cAMP-dependent inhibition of ERKs and cell growth depends on Rapl’s
inhibition of Raf-1 in fibroblasts. In addition, data demonstrating the requirement for Src
in cAMP’s activation of Rapl and its cell-type specific actions will also be presented.
Taken together, work described in this thesis demonstrates the ability of cAMP signaling
to cross talk with growth factor signaling pathways to regulate ERK activation and cell
growth. This work provides a significant contribution to understanding the molecular

basis for cell growth within the field of cell biology.

c¢AMP and the inhibition of cell growth

Hormones activate intracellular cAMP through stimulation of plasma membrane-
associated adenylyl cyclases. This occurs through G protein-coupled receptors (GPCRs)
that link hormones to the heterotrimeric G protein, Gas (Masters et al., 1988). The
ability of Gais to inhibit cell growth has been demonstrated in Rat-1 fibroblasts and
NIH3T3 cells using a constitutively active mutant of Gos (Chen and Iyengar, 1994).

Most of cAMP’s intracellular actions can be explained via the activation of PKA.
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Figure 1.1. cAMP’s regulation of ERKs and proliferation.

Stimulation of cells with growth factors results in activation of the extracellular signal-regulated
kinase, ERK. ERK can stimulate either proliferation or differentiation depending on the stimulus
and cell type. Hormonal stimulation of cells can activate Gows and adenylyl cyclases to stimulate
the production of cAMP. cAMP activates the cAMP-dependent protein kinase, PKA. In some
cells, PKA activation stimulates ERKs and cell proliferation (right path). In other cells, PKA
activation inhibits growth factor-dependent activation of ERKs and cell proliferation (left path).



Indeed, data presented within this thesis and elsewhere, suggests that cAMP mediates its
anti-proliferative effects via stimulation of PKA.

A broad mechanism by which PKA inhibits cell proliferation induced by growth
factors is to block one of multiple points in the cell cycle. For example, PKA has been
shown to inhibit cell proliferation by either decreasing the levels of cyclins (Stuart et al.,
2000; van Oirschot et al., 2001) or increasing cell cycle inhibitor proteins p21°*! (Lee et
al., 2000) or p27"®* (Stuart et al., 2000; van Oirschot et al., 2001).

cAMP inhibits cell proliferation in a broad array of cell types, which are discussed
below. A number of mesenchymally derived cells can be inhibited by stimulation of
cAMP including, smooth muscle cells (Bornfeldt and Krebs, 1999), cardiac myocytes
(Gupta et al., 1996), osteoblasts (Siddhanti et al., 1995; Verheijen and Defize, 1995), and
chondrocytes (Hirota et al., 2000). Work presented in this thesis and elsewhere also
demonstrates the ability of cAMP to inhibit proliferation of fibroblasts (Dubey et al.,
2001; Marienfeld et al., 2001; Schmitt and Stork, 2002).

Several other cell types whose growth is also inhibited by cAMP include, but are
not limited to hepatocytes (Thoresen et al., 1999), colo-rectal cells (Hopfner et al., 2001),
endothelial cells (Kim et al., 2001), astrocytes (Metz and Ziff, 1991), and adrenal cortical
cells (Lepique et al., 2000). Interestingly, adult neuronal cells which have already
undergone mitosis can also be inhibited by cAMP during early stages of differentiation
(Herman et al., 1994; Vogt Weisenhorn et al., 2001).

In addition, cAMP inhibits the proliferation of white blood cells including
macrophages, leukocytes (Tortora et al., 1988), and both T lymphocytes (Naderi et al.,

2000; Tamir and Isakov, 1994; Torgersen et al., 2002) and B lymphocytes



(Venkataraman et al., 1998). Taken together, the above data demonstrates that cAMP
stimulation inhibits cell growth in a broad range of cell types and suggests that cAMP is
an important molecule in regulating cellular phenotypes. The use of cAMP in anti-cancer

therapy may also prove a useful tool under certain scenarios.

Inhibition of ERK may mediate cAMP’s growth inhibitory effects
The growth-inhibitory actions of hormones, cAMP, and PKA have been linked to
inhibition of the ERK kinase cascade in many cell types. Growth factor stimulation of
cell surface receptors activates the small G protein Ras which leads to ERK activation
(Marshall, 1999). Active Ras (GTP loaded) recruits the MAP kinase kinase kinase
(MAPKKK), Raf-1, to the membrane where it is activated (Marais et al., 1995; Mason et
al., 1999). Activated Raf-1 phosphorylates and activates the MAPKK, MEK, which in
turn phosphorylates and activates ERK kinase (Huang et al., 1993; Jelinek et al., 1994;
Macdonald et al., 1993). ERK activation can trigger proliferation and cell growth via a
number of pathways including increasing cyclin D1 expression (Kerkhoff and Rapp,
1998) and stimulating both protein and DNA synthesis (Graves et al., 2000).
Classically, hormones which activate Gos stimulate cAMP/PKA. Interestingly,
ERK activation and transformation by Ras, in NIH3T3 cells, can be blocked by
constitutively activated mutants of Gas (Chen and Iyengar, 1994). This data would
suggest that hormonal stimulation of Gas utilizes the cAMP/PKA pathway to inhibit
ERKs and cell growth (Chen and Iyengar, 1994). Indeed, work presented in this thesis
demonstrates that both the B-adrenergic agonist, isoproterenol, and the hormone

prostaglandin E, inhibit ERKs and cell growth via stimulation of cAMP/PKA (Schmitt



and Stork, 2002). However, GPCRs are not the only receptors that can elevate cAMP
levels to inhibit ERKs. For example, stimulation of cAMP through estrogen receptors in
breast cancer cell lines mediates cAMP’s inhibition of EGF signals to ERKs (Filardo et
al., 2002). This inhibition also requires PKA and may play an anti-proliferative role in
these cells.

In contrast to work presented within this thesis, cAMP may also inhibit cell
growth without inhibiting ERKs (Kahan et al., 1992; McKenzie and Pouyssegur, 1996).
It should be noted that examining single or selected timepoints of ERK regulation by
cAMP may fail to recognize subtle regulatory effects. For example, in CCL39 fibroblast
cells growth factor stimulation of ERKSs is not inhibited by cAMP but is delayed
(McKenzie and Pouyssegur, 1996). Depending on the cell-type and stimulus cAMP may
inhibit either early or late ERK activation (Cospedal et al., 1999). Interestingly,
stimulation of PC12 with cAMP resulted in an early inhibition of ERKSs but an
enhancement of the late phase of ERK activation by NGF leading to differentiation

(Arslan and Fredholm, 2000).

Mechanisms of cAMP inhibition of ERKs

cAMP inhibits ERKs via PKA and Rapl

Contemporary studies by a number of research groups have examined the ability of
cAMP/PKA to inhibit ERKSs. Molecular and biochemical studies by Krebs (Graves et al.,
1993), Sturgill (Wu et al., 1993), Bos (Burgering et al., 1993), and McCormick (Cook
and McCormick, 1993) suggested that the target of cAMP’s inhibition of ERKs was

downstream of Ras activation. Subsequently, it was demonstrated that in c AMP-treated



fibroblasts Ras was activated normally in response to growth factors, but was unable to
bind and activate Raf-1 which resulted in ERK inhibition (Cook and McCormick, 1993;
Wuet al,, 1993). Therefore, the site of cAMP’s action was mapped downstream of Ras
and at the level of Raf-1 signaling. The requirement for PKA in cAMP’s effects was
later confirmed using a genetic approach in cells expressing mutant PKA (Sevetson et al.,
1993) however, the exact mechanism of PKA’s inhibition has remained elusive.

The mechanism of inhibition of Raf-1 by PKA is still a focus of recent studies as
well as work presented in this thesis (Piiper et al., 2000; Ramstad et al., 2000; Schmitt
and Stork, 2001). PKA can phosphorylate Raf-1 at a number of sites and evidence that
PKA phosphorylation directly inhibits Raf-1 activity has been shown (Hafner et al., 1994;
Mischak et al., 1996). The ability of PKA to phosphorylate serine 43 of Raf-1 has been
proposed to uncouple Raf-1 from Ras which can be achieved in vitro (Wu et al., 1993).
Moreover, phosphorylation of serine 43 has been proposed to account for PKA’s
inhibition of Raf-1 activation in fibroblasts (Wu et al., 1993) and T cells (Ramstad et al.,
2000). However, mutagenesis of this site failed to block PKA from inhibiting ERKs in
both NIH3T3 and Hek293 cells in vivo (Sidovar et al., 2000). Additional mechanisms for
PKA’s ability to uncouple Raf-1 from Ras must exist.

One possible mechanism involves the Ras family member Rapl. The small G
protein Rapl is also a target of PKA activation, and has become a focus of attention over
the last several years (Altschuler et al., 1995). Rapl is thought to be ubiquitously
expressed and exists as one of two isoforms, Rapla and Rap1b which mediate similar
physiological functions (Pizon et al., 1990; Pizon et al., 1994). Rapl was first identified

as an antagonist of Ras-induced ERK activation and cell transformation in NIH3T3 cells



(Cook et al., 1993; Kitayama et al., 1990). Interestingly, although Rap1 can block signals
from constitutively activated Ras, it cannot block signals from constitutively active Raf-1
(Sakoda et al., 1992). Similar to cAMP, Rap1’s inhibitory action targets upstream of
Raf-1 and downstream of Ras signaling (Burgering et al., 1993). Data presented in this
thesis, suggests that Rap1 antagonizes Ras activation of Raf-1 and ERKSs by binding to
and sequestering Raf-1 away from Ras (Schmitt and Stork, 2001). Rap1’s ability to bind
and inhibit Raf-1 requires Rapl1 activation by cAMP/PKA.

Studies presented here and elsewhere demonstrate that the role of Rapl in ERK
regulation can be examined by inhibiting Rap! activation through expression of either the
interfering mutant RapN17 (Chen et al., 1999; Dugan et al., 1999; Schmitt and Stork,
2000) or the Rap] inhibitor, RaplGAP1 (Mochizuki et al., 1999; Schmitt and Stork,
2001). Indeed, we have shown that in NIH3T3 cells, inhibition of endogenous Rapl
blocked cAMP/PKA’s inhibitory effects on both ERKs and cell growth (see Figure 1.2A)
(Schmitt and Stork, 2001). While Rap1 has been well characterized as an antagonist of

ERKSs and cell growth in cell lines, this has not been demonstrated in animal models.

PKA activates Rap1 via Src

Rapl is activated by hormones which signal to cAMP and PKA (Altschuler et al., 1995;
Schmitt and Stork, 2002) and can inhibit Ras-dependent signals therefore, Rapl is a
potential target of cAMP’s inhibition of Ras/Raf-1-dependent signals to ERKs (see
Figure 1.2A). PKA activation of Rapl has been demonstrated in a number of cell types
including, neurons (Vossler et al., 1997), glia (Dugan et al., 1999), fibroblasts (Altschuler

et al., 1995; Schmitt and Stork, 2001), neutrophils (Quilliam et al., 1991), and platelets



(Quilliam et al., 1991). Both Rapla and Raplb are targets of PKA phosphorylation
(serines 179 and 180 in Raplb) (Quilliam et al., 1991; Siess et al., 1990). However, early
studies revealed that these sites were dispensable for Rap1 activation by cAMP
(Altschuler and Lapetina, 1993). Additional studies have also suggested either negative
or positive roles for PKA phosphorylation of Rapl on Rapl activity itself (Hu et al.,
1999; Tsygankova et al., 2001). From these and other studies, it is clear that direct
phosphorylation of Rapl can not account for PKA’s activation of Rapl, and that PKA’s
activation of Rapl must be indirect.

Potential indirect mechanisms by which PKA could activate Rap1 include
activation of specific exchangers or inhibition of specific inhibitors. Inhibition of Rapl,
like other G proteins, is achieved via specific GTPase activating proteins (GAPs). The
Rapl-specific GAP, RaplGAP1, is a substrate of PKA, however PKA does not appear to
effect RapIGAPI’s ability to inhibit Rap1 activity (Polakis et al., 1992). PKA may also
regulate upstream exchangers/activators of Rapl. The first Rapl-specific exchanger
identified was C3G, or Crk SH3 guanine nucleotide exchanger (Gotoh et al., 1995). The
possibility that PKA could activate C3G exchange activity is suggested by studies
presented in this thesis in which PKA’s activation of Rapl was blocked by the expression
of an interfering mutant of C3G, in Hek293 cells (Schmitt and Stork, 2000). Subsequent
work has confirmed a requirement for C3G in PKA’s activation of Rap1 in NIH3T3 cells
and embryonic fibroblasts (Schmitt and Stork, 2002).

cAMP/PKA stimulation recruited C3G to the membrane fraction of cells in a
complex with the adaptor Crk-L and the scaffold protein Cbl. C3G/Crk-L is recruited to

Cbl following the phosphorylation of a specific tyrosine residue on Cbl that serves as a
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docking site for the SH2 domain of Crk-L (Schmitt and Stork, 2002; Thien and Langdon,
2001). This tyrosine phosphorylation of Cbl requires both PKA and the Src tyrosine
kinase (Schmitt and Stork, 2000). Interestingly, PKA activates Src via a direct
phosphorylation at serine 17 (Gottesman and Fleischmann, 1986; Roth et al., 1983).
Work presented here demonstrates that PKA phosphorylation of Src induces the
formation of the Cbl/Crk-L/C3G complex which is required for PKA’s activation of
Rapl. Furthermore, Src is required for PKA’s inhibition of ERKs and cell growth in both
NIH3T?3 cells and mouse embryonic fibroblasts (Schmitt and Stork, 2002). The
requirement of Src for PKA to inhibit ERKSs identifies a unique anti-proliferative function
for Src one that is distinct from the well studied proliferative actions of this proto-
oncogene. It will be important to define how PKA phosphorylation of Src dictates Src’s

activation of Rapl.

cAMP utilizes additional mechanisms to inhibit ERKs
PKA’s activation of Rapl supplies a potential mechanism for cAMP/PKA to disrupt
Ras/Raf-1 signaling in multiple cell types. However, other mechanisms by which
cAMP/PKA inhibit ERKSs have been proposed (see Figure 1.3). These mechanisms may
include non-adherent cell growth, additional kinase targets of cAMP, and MAP kinase
phosphatases.

Activation of ERKs by growth factors is blunted in non-adherent cells, and a role
for PKA in this block has been demonstrated (Howe and Juliano, 2000). While the
mechanism of PKA activation following loss of adherence is not well established, the

inhibition by PKA was associated with an inhibitory phosphorylation of the p21-
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associated kinase (PAK) (Howe and Juliano, 2000). PAK is a candidate Raf-1 kinase
whose phosphorylation of Raf-1 is required for Raf-1 to be fully activated by Ras (Sun et
al., 2000).

Additional kinase targets have been proposed. Recent studies have identified
AKT (PKB) as a potent negative regulator of the two major MAPKKK’s, Raf-1 (Scheid
and Woodgett, 2000) and B-Raf (Guan et al., 2000). Rapl has been proposed to activate
AKT through the activation of PI3-K (Tsygankova et al., 2001). In addition, direct
phosphorylation of AKT by PKA has been suggested (Sable et al., 1997). It is possible
that either mechanism of activation of AKT by cAMP may limit activation of Raf-1 and
ERKs.

The family of dual specificity phosphatases, MKPs, can also regulate ERKSs.
MKP-1 and MKP-2 are immediate early genes whose activity is regulated by
transcription (Misra-Press et al., 1995). cAMP is a potent inducer of MKP transcription
(Misra-Press et al., 1995) and this induction by cAMP limits ERKs’ activation (Plevin et
al., 1997). This is one of several mechanisms which may account for the delayed
inhibition of ERKSs following cAMP treatment that occurs in a time frame compatible
with transcriptional regulation. Taken together, these studies would suggest that
additional mechanisms exist for cAMP to inhibit ERKs however, these studies have not

examined the physiological role of these pathways which will be important to determine.
cAMP’s inhibition of cell growth can be independent of ERK inhibition

In many cell types the role of ERKSs has not yet been examined. However, studies have

identified cell types where inhibition of ERK signaling is not involved in PKA’s anti-
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proliferative effects. As mentioned previously, the examination of single or selected
timepoints of ERK regulation by cAMP may fail to recognize subtle regulatory effects as
can be seen in CCL309 fibroblast cells where growth factor stimulation of ERKs is not
inhibited by cAMP but is delayed (McKenzie and Pouyssegur, 1996). Additional studies
with ACTH, a pituitary hormone that signals via cAMP/PKA, inhibits FGF2 proliferation
in mouse Y1 adrenocortical cells without inhibiting ERKs (Lepique et al., 2000). While
the exact mechanism of inhibition was not determined, it was suggested that cAMP may
be inhibiting cell growth by blocking the expression of key cell cycle transription factors
and AKT activation.

The role of cAMP’s inhibition of ERKs in T cells is unclear. Limited reports
have suggested that PKA inhibited the activation of both T lymphocytes (Ramstad et al.,
2000) and B cells (Myklebust et al., 1999) via inhibition of ERKs. However other
pathways have also been proposed, including cAMP inhibition of JAK-STAT-mediated
immune responses (Ivashkiv et al., 1996; Sengupta et al., 1996). In addition, cAMP can
also block T lymphocyte proliferation by inhibiting the transcription of the IL-2 cytokine
(Rao et al., 1997), through the action of PKA to disrupt the function of NFAT, NF-kB,
and Elk-1 transcription factors (Chow and Davis, 2000; Whitehurst and Geppert, 1996;
Zhong et al., 1997). Clearly, studies examining PKA’s inhibition of ERKs in
lymphocytes is in its infancy and additional studies will need to be carried out to address

the role of PKA as well as Rap1 both in vitro and in vivo model systems.
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Figure 1.3. Mechanisms of cAMP/PKA inhibition of ERK activation. (1) cAMP can
activate Rapl, to antagonize Ras signaling to Raf-1. ¢cAMP activation of PKA activates
Rapl via a Src-dependent pathway. (2) PKA may also inhibit Raf-1 via phosphorylations
on Raf-1. PKA phosphorylation of serine 43 can inhibit Raf-1’s ability to bind to GTP-
loaded Ras. (3) cAMP/PKA may also inhibit Raf-1 by activating the serine/threonine
kinase AKT. AKT phosphorylation of Raf-1 at serine 259 blocks Raf-1 activation. (4)
PKA can also interfere with the activation of Raf-1 by the serine/threonine kinase PAK.
Following recruitment to Ras, Raf-1 requires phosphorylation at serine 338 by a putative
PAK kinase to be fully activated. PKA may inhibit PAK activity by direct phosphorylation,
thereby inhibiting Raf-1 activation by Ras.
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cAMP and cell proliferation/differentiation

Hormones coupled to cAMP have also been shown to stimulate ERKs and cell growth
(Ariga et al., 2000; Iacovelli et al., 2001). To understand cAMP’s cell-type specific
effects it is important to determine whether the signaling mechanisms mediating cAMP’s
anti-proliferative effects are similar to those mediating cAMP’s proliferative effects. We
will also describe a diverse group of cells for which cAMP activates ERKs and cell

growth. The ERK-dependence of cAMP’s activation of differentiation will also be

discussed.

cAMP activates ERKs and cell proliferation

CAMP not only inhibits cell growth but stimulates cell growth as well. Many of the cell
types in which cAMP stimulates proliferation belong to the endocrine system of tissues.
In these cells, proliferation is induced by hormones and GPCRs coupled to Gois and
cAMP production. For prostate cells, cAMP’s effects can be synergistic with growth
factors (Chen et al., 1999) and cytokines (Deeble et al., 2001). Additional examples
include, TSH stimulation in thyroid cells (Ariga et al., 2000; Kimura et al., 2001), GHRH
in somatotrophs (Mayo et al., 2000), VIP and PACAP in lacto-somatotrophs (Le Pechon-
Vallee et al., 2000), FSH in Sertoli cells (Crepieux et al., 2001), and VIP and CRF in
keratinocytes (Mitsuma et al., 2001). In many cases, ERK signaling is required for
cAMP’s proliferative effects including, brown fat (Lindquist and Rehnmark, 1998),
preadipocytes (Yarwood et al., 1996), pituitary (Le Pechon-Vallee et al., 2000), Sertoli
cells (Crepieux et al., 2001), and kidney (Yamaguchi et al., 2000). Interestingly,

polycystic epithelium is also stimulated by cAMP. A role for ERKSs in this action of
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cAMP has also been proposed (Hanaoka and Guggino, 2000; Sutters et al., 2001;
Yamaguchi et al., 2000). Clearly cAMP and ERKSs play an important role in stimulating
cell proliferation. It is interesting to speculate that Rap1 may also play a role in
mediating cAMP’s proliferative effects in certain cell types, although an oncogenic role

for Rapl has not been reported.

cAMP-dependent cell differentiation can be triggered by PKA and ERK

cAMP activation of ERKs has been associated with both proliferation and differentiation,
and the ERK cascade can mediate both proliferation and differentiation within the same
cell (Vossler et al., 1997). This phenomenon has been demonstrated in the neuronal-like
cell line, PC12, where transient activation of ERKs by EGF triggers proliferation, while
sustained activation of ERKs by NGF and FGF trigger differentiation (York et al., 1998).
In PC12 cells, differentiation by cAMP requires sustained ERK activation (Okumura et
al., 1994; Vossler et al., 1997).

The ERK-dependence of cAMP-induced cellular differentiation has been well
studied in neuronal cells lines. For example, cCAMP stimulation can differentiate
pluripotent embryonic carcinoma cells along a neuronal lineage (Sharma et al., 1990) as
well as induce differentiation of immortalized neurons (Cibelli et al., 2001). Interestingly,
cAMP can also potentiate NGF’s stimulation of ERKs and PC12 differentiation (Calleja
et al., 1997). Neuronal differentiation is evident by the cellular phenotypes of increased
neuronal activity, depolarization induce changes in gene expression, and increased
synaptic plasticity (Martin et al., 1997). Interestingly, some of these differentiated

phenotypes of neurons have been shown to require both PKA and ERK activities (Grewal
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et al., 2000b; Vincent et al., 1998; Waltereit et al., 2001; Winder et al., 1999).
Differentiation of endocrine-responsive prostatic tumor cells by cAMP also requires
ERKSs (Deeble et al., 2001). A number of other cell types can also be differentiated by
cAMP stimulation through PKA and ERK including, cardiac myocytes, where
isoproterenol induces cellular hypertrophy (Zou et al., 1999). VIP stimulation of retinal
pigment epithelial cells also results in melanogenesis and regulates fluid transport
capacity (Koh, 2000). Interestingly, the role for Src in the cellular differentiation of
retinal pigment epithelial cells by cAMP was suggested. An additional example can be
seen in granulosa cells, where cAMP stimulates steroidogenesis and requires both PKA
and ERK (Seger et al., 2001).

One aspect of the cAMP-mediated differentiation phenotype is the induction of
specific genes. cAMP activates gene expression via the binding of phosphorylated
CREB to cAMP-responsive elements (CREs) within the promoters of specific genes. In
neurons, activation of CRE-containing genes mediates both neurotrophic and
differentiation functions (Ahn et al., 1998; Riccio et al., 1999). Interestingly, a
requirement for ERKs has been identified in PKA dependent-activation of CREB
transcription, downstream of CREB phosphorylation (Grewal et al., 2000b). Similar
requirements for ERKs have been shown for cAMP induction of several genes including,
the dopamine beta-hydroxylate gene in PC12 cells (Swanson et al., 1998) and the myelin

basic protein gene (Clark et al., 1998).

Mechanisms by which cAMP stimulates ERK signaling

Rapl activation of B-Raf
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cAMP’s activation of ERKs was originally described in PC12 cells (Frodin et al., 1994).
These and other studies identified the target of cAMP stimulation to be upstream of MEK
and ERKs. Careful examination of the signaling pathway from cAMP to ERKs revealed
that cAMP’s effects might be Ras-independent. This was confirmed by studies
examining the regulation of ERKs by parathyroid hormone (PTH) and cAMP in Chinese
hamster ovary cells (Verheijen and Defize, 1997) and by Forskolin stimulation of cAMP
in PC12 cells (Vossler et al., 1997). In both systems, Ras-independent activation of
ERKs by cAMP was demonstrated by the absence of inhibition on ERKs by the
interfering mutant of Ras, RasN17. A requirement for Rap1 in cAMP’s activation of
ERKs was demonstrated using interfering mutants of Rapl (Vossler et al., 1997), and
validated using a genetic approach (Wan and Huang, 1998).

Despite Rapl’s ability to inhibit Ras/Raf-1 signaling to ERKs, work presented in
this thesis and elsewhere demonstrate that Rap1 activates ERKSs in several cell types
(Faure and Bourne, 1995; Schmitt and Stork, 2000; Vossler et al., 1997). This is because
Rapl can activate ERKSs via B-Raf (Schmitt and Stork, 2000; Vossler et al., 1997). This
is depicted in Figure 1.2B. B-Raf is a member of the Raf family of MAPKKKS that is
highly expressed in the brain (Morice et al., 1999) and other tissues (Barnier et al., 1995).
It is highly homologous to Raf-1 within both its kinase and Ras-binding domains, and,
like Raf-1, has only one known substrate: the MAPKK, MEK.

Rap1 activation of B-Raf was first demonstrated in vitro, using B-Raf purified
from brain extracts (Ohtsuka et al., 1996) and was shown to be dependent on Rapl
activation (Liao et al., 2001; York et al., 2000). Recently, a role for the B-Raf binding

partner 14-3-3 in Rapl activation of B-Raf by cAMP has also been demonstrated (Qiu et
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al., 2000). Furthermore, studies in B-Raf-expressing cells have shown that cAMP
activation of ERKs requires Rapl and B-Raf (Dugan et al., 1999; Schmitt and Stork,
2000; Zanassi et al., 2001). Rapl’s activation of B-Raf and ERKSs has been shown in
multiple cell types including PC12 cells (Vossler et al., 1997), neurons (Zanassi et al.,
2001), cortical astrocytes (Schinelli et al., 2001), testes (Berruti, 2000), and Hek293 cells
(Schmitt and Stork, 2000).

The physiological consequences of the PKA/Rap1/B-Raf pathway is dependent
on cell type. For example, PKA/Rap1/B-Raf is utilized by certain cells to regulate
proliferation (Chen et al., 1999), and by other cells to regulate differentiation (York et al.,
1998). Rapl/B-Raf signaling may also be involved in specific pathophysiological
responses such as susceptibility to infection (de Magalhaes et al., 2001; Wessler et al.,
2002) and cancer (Yamaguchi et al., 2000). Tt is interesting to speculate that in situations

where ERKSs are oncogenic the PKA/Rap1/B-Raf pathway may play a key role.

cAMP activation of ERKSs is regulated by B-Raf expression

cAMP’s activation of Rapl may provide a model for cAMP’s cell-type specific actions.
Depending on the cell-type, active Rap! may stimulate B-Raf/ERK and/or inhibit Raf-
I/ERK. In this model, the consequence of cAMP’s action on ERKs depends on B-Raf
expression (see Figure 1.2). Work presented here suggests that concurrent activation of
B-Raf and inhibition of Raf-1 by both cAMP and Rap1 occurs in the same cells (see
Figure 1.2B). For example, in Hek293 cells, which express B-Raf, Rapl activation by
either isoproterenol or cAMP antagonizes Ras activation of Raf-1 but activates ERKs via

B-Raf. The consequence of isoproterenol/cAMP stimulation in these cells is the
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activation of ERKs via a Rap1l-dependent, but Ras-independent pathway (Schmitt and
Stork, 2000). This dual action of cAMP is also seen in purinergic neurons, where PKA
activates B-Raf while inhibiting Raf-1 (Gao et al., 1999). Other groups have confirmed
similar effects in PC12 cells where adenosine stimulation of cAMP inhibits the early
phase of ERK activation by NGF but enhances the late effects (Arslan and Fredholm,
2000).

In B-Raf-negative cells, like NIH3T3 cells and glial cells, cAMP activation of
Rapl inhibits growth factor activation of ERKs and cell growth (Dugan et al., 1999;
Schmitt and Stork, 2001). Transfection of B-Raf into these cells converts Rapl into an
activator of ERKs (Dugan et al., 1999; Vossler et al., 1997). Surprisingly, expression of
B-Raf also converts integrin signaling from inhibition to activation of ERKs and a Rap1-
dependent mechanism has been proposed (Barberis et al., 2000). One important area for
future study is to determine whether changes in B-Raf expression levels account for the

reversal of cAMP regulation of ERKs and cell growth in physiological systems.

Role of Src in PKA activation of ERKs via Rap1/B-Raf

The requirement of PKA for cAMP’s activation of Rap1 in many studies has confirmed
the importance of PKA in Rapl activation (Altschuler et al., 1995; Schmitt and Stork,
2000; Schmitt and Stork, 2001). We have recently revealed, a pathway from PKA to
Rapl through Src activation in fibroblasts (see Figure 1.3). These cells do not express B-
Raf and Rap1 blocks Ras activation of Raf-1 and ERKSs (Schmitt and Stork, 2002). It is
possible that Src also mediates PKA’s activation of Rapl in B-Raf-positive cells as well

(see Figure 1.4). Previous studies have proposed a requirement for Src family kinases in
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Figure 1.4. Mechanisms by which cAMP/PKA can activate ERKs.

(1) In B-Raf-expressing cells, hormonal stimulation of PKA may activate ERKs via
the Src-dependent activation of Rapl, which can activate ERKs through B-Raf. (2)
PKA may also stimulate Ras activation in response to G protein-coupled receptor
stimulation which results in ERK activation through Ras activation of either B-Raf
or Raf-1. (3) PKA may activate ERKs by phosphorylating the ERK phosphatase,
HePTP, which releases ERK from inhibition by the phosphatase. (4) cAMP may also
activate Rap1 and Ras through PKA-independent pathways involving cAMP-GEFs.
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PKA’s activation of ERKs which may reflect specific examples of the use of the
PKA/Src/Rapl pathway (Crepieux et al., 2001; Gentili et al., 2001; Kobierski et al.,

1999; Lindquist et al., 2000). For example, VIP stimulation of retinal pigment epithelia
requires a pathway through cAMP and Src (Koh, 2000). It is also possible that both NGF
and norepinephrine actions on PC12 cells may also utilize signals from Src to Rapl and
ERKs (D'Arcangelo and Halegoua, 1993; Zhong and Minneman, 1999). Signaling via f-
adrenergic receptors to ERKs has also been shown to require PKA, Src (Cao et al., 2000;
Daaka et al., 1997; Lindquist et al., 2000), and Rap1 (Schmitt and Stork, 2000). It should
be noted that in some cases Src has been shown to play a proliferative role independent of
ERK activation (Angel Fresno Vara et al., 2001). Selective pharmacological inhibitors of
Src family kinases (Hanke et al., 1996) make it possible to test the requirement of Src in

cAMP’s regulation of ERK and cell growth in these and other systems.

cAMP can activate Rapl in the absence of PKA activity

Work from this thesis suggests that cAMP exerts most of its effects through PKA
however, PKA-independent actions of cAMP may also exist, including the activation of
Rapl. In dog thyroid cells, Rapl1 is activated by cAMP via both PKA-dependent and
PKA-independent mechanisms (Dremier et al., 2000). Rapl activation by TSH and
cAMP, in rat thyroid cells, does not require PKA (Tsygankova et al., 2001). Studies in
leukemic cells have also identified a PKA-independent activation of Rapl (von Lintig et
al., 2000). The recent identification of a family of cAMP-binding proteins that are
guanine nucleotide exchange factors (GEFs) for Rap1, Rap2 and Ras, have opened the

door for cAMP’s actions on Rap1, Ras, and cell growth. These GEFs, called cAMP-

23



GEFI and II (Kawasaki et al., 1998a) (or Epacl and 2 (de Rooij et al., 1998)), show
increased GEF activity towards Rapl, and the related Rap2 (Schmidt et al., 2001a), upon
their binding to cAMP (Kraemer et al., 2001). In addition, a Ras GEF called CnrasGEF
can also be activated by cAMP (Pham et al., 2000). These, or related GEFs, may play a
role in the cAMP-dependent, PKA-independent activation of small G proteins in thyroid
cells (Tsygankova et al., 2000) (see Figure 1.4). It is possible to speculate that these
GEFs may also play a role in cAMP-stimulated ERK-dependent cell growth and
differentiation. These GEFs appear to be expressed in a cell-type specific manner and
may represent a growing family of GEFs that have yet to be discovered. However, the

physiologic role of these GEFs has yet to be determined.

cAMP activation of ERKSs can require Ras

As suggested above, Ras may also be a target of cAMP signaling to ERKSs in
certain cell types and depending on the stimulus (see Figure 1.4). B-adrenergic receptor
signaling has been shown to involve a PKA-dependent switch of B-adrenergic receptor
coupling from Gas to Gad, and subsequent activation of Ras via the By subunits of Gi
(Daaka et al., 1997). Ras activation following GPCR stimulation utilizes signals
generated from the By subunits of the heterotrimeric G proteins (Crespo et al., 1994;
Lopez-Llasaca et al., 1997). Interestingly, these studies have also identified a role for
Gas and PKA signaling in ERK activation (Daaka et al., 1997).

Ras activation by this pathway can proceed simultaneously with PKA’s activation
of Rapl (Schmitt and Stork, 2000). For example, in Hek293 cells the B-adrenergic

receptor can activate Rapl and ERKs through Gos /cAMP, and can activate Ras through
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By (Schmitt and Stork, 2000). Interestingly, Rap1’s activation appears to block the
ability of Ras to bind to Raf-1 and activate ERKS. In COS-7 cells, isoproterenol has
also been shown to utilize both Gas and Gy to regulate ERK signaling. In these cells,
the B-adrenergic receptor can inhibit ERKs via cAMP (possibly via Rap1), but can
activate ERKSs via By (Crespo et al., 1995).

It appears as though in some neuronal cells B-Raf is be the major Raf isoform
activated by Ras (Jaiswal et al., 1994). In these cells, cAMP’s activation of ERKs
requires both Ras and B-Raf but not Rap-1. Interestingly, PKA was not required for
cAMP’s activation of Ras (Busca et al., 2000). In contrast, Ras has also been shown to
be activated by cAMP in cortical neurons, in a PKA-dependent manner (Ambrosini et al.,
2000). The above data suggest that Ras can be activated by cAMP however, the ability
of cAMP to activate Ras appears to be cell-type and stimulus specific and will need

further examination.

PKA can activate ERKs through additional mechanisms
The primary mechanisms that have been proposed to explain how cAMP can activate
ERKSs have focused on Rap1 or Ras activation lying upstream of ERK. However, there
are reports of cAMP’s activation of ERKs being independent of MEK (Lee and
Esselman, 2001). Several possibilities exist including, decreasing ERK phosphatase
activity or through an indirect pathway.

One mechanism that can account for PKA-dependent and G protein-independent
activation of ERK is through the inhibition of downstream ERK phosphatases. Two

studies examining PKA’s inhibition of potential ERK directed PTPases, including HePTP
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(Saxena et al., 1999), PTP-SL and STEP (Blanco-Aparicio et al., 1999). The
hematopoietic protein tyrosine phosphatase HePTP was negatively regulated by PKA, by
direct phosphorylation within the kinase interaction motif (KIM) (Saxena et al., 1999).
Release of ERKs from HePTP upon PKA phosphorylation was associated with increased
ERK activity (see Figure 1.4). This mechanism is similar to that proposed for protein
tyrosine phosphatases PTP-SL and STEP (Blanco-Aparicio et al., 1999).

Recent studies in neurons have also suggested an indirect role for cAMP/PKA in
ERK activation at the Schaffer collateral-CA1 synapse within the hippocampus. In these
cells cAMP was shown to induce rapid activation of BDNF/TrkB signals (Patterson et al.,
2001). Interestingly, although ERK activation by Forskolin was independent of BDNF,
the nuclear localization of ERKSs required BDNF signaling (Patterson et al., 2001). Thus,

additional pathways exist for PKA to activate ERKSs independent of those discussed in

previous sections.

Conclusions

One important aspect of this thesis is that cAMP regulation of the ERK cascade provides
an important cross talk between hormones and growth factor signaling. The cell-type
specificity of cAMP’s actions correlates with that of Rapl activation. The specificity is
determined by the effects of both Rap1’s actions on Raf-1 and B-Raf (see Figure 1.2).
Therefore, cCAMP’s activation of Rapl can account for both cAMP’s inhibition and
activation of ERKs. Indeed, work presented in this thesis will suggest that cAMP and
Rapl can activate ERKSs in cells that express B-Raf but not in cells that lack B-Raf.

Because cAMP can activate Rapl in a variety of cells, it will be important to examine the
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expression of B-Raf when evaluating the mechanism of action of cAMP in specific cell
types. It will also be important to examine the ability of Src to carry a stimulatory signal
from PKA to ERKs through Rapl and to examine the role of Src in developmental or

physiological models of cell growth.
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THESIS AIMS

The major focus of this thesis is to test the following:

1) Does stimulation of endogenous -adrenergic receptors utilize a Rapl/B-Raf pathway

to activate ERKs?

As discussed, stimulation of cells with the B-adrenergic receptor agonist, isoproterenol,
may use a cAMP/PKA- and Ras-dependent mechanism to activate ERKs. Based on
previous results from our lab and others, cAMP/PKA may also activate ERKSs via Rapl
in B-Raf expressing cells. This hypothesis will be tested in Hek293 cells which express

both endogenous ,-adrenergic receptors as well as B-Raf.

2) Is Rapl required for cAMP/PKA’s ability to inhibit ERKs and cell growth?

cAMP/PKA has been shown to inhibit ERK activation and cell growth and proliferation
in NIH3T3 fibroblasts. Rapl1 is activated by cAMP/PKA and can antagonize ERK
activation by Ras. Therefore, the possibility that Rapl may mediate cAMP/PKA’s
inhibitory effects on ERKs and cell growth will be examined in NTH3T3 cells.

3) What is the mechanism for PKA’s activation of Rapl?

PKA activates Rapl to inhibit ERKs and cell growth in fibroblasts. Previous work
suggests that PKA activates Rapl indirectly via the guanine nucleotide exchange factor,
C3G. C3G associates with Crk-L and Cbl following Cbl’s tyrosine phosphorylation. It is
possible that PKA may activate the tyrosine kinase, Src, to activate C3G/Crk-L/Cbl.
Depending on the cell-type, Stc activation by PKA may lead to inhibition of ERKs and
cell proliferation. Therefore, the role of these molecules in Rap1 activation and
inhibition of ERKSs and cell growth will be examined in NIH3T3 cells. Parallel studies
will be carried out in mouse embryonic fibroblasts derived from mice expressing only

wild type endogenous Src (Src++) or mice deficient of all Src family kinases (SYF).
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ABSTRACT

G protein-coupled receptors can induce cellular proliferation by stimulating the MAP
kinase cascade. Heterotrimeric G proteins are composed of both « and By subunits that
can signal independently to diverse intracellular signaling pathways including those that
activate MAP kinases. In this study, we examined the ability of isoproterenol, an agonist
of the B,-adrenergic receptor (8,AR), to stimulate ERKs. Using Hek293 cells, which
express endogenous B,AR, we show that isoproterenol stimulates ERKs via B,AR. This
action of isoproterenol requires PKA and is insensitive to pertussis toxin (PTx)
suggesting that Gsa activation of PKA is required. Interestingly, B,AR activates both the
small G proteins Rapl and Ras, but only Rapl is capable of coupling to Raf isoforms.
B.AR inhibits the Ras-dependent activation of both Raf isoforms Raf-1 and B-Raf,
whereas Rapl activation by isoproterenol recruits and activates B-Raf. B,AR’s activation
of ERKs is not blocked by expression of RasN17, an interfering mutant of Ras, but is
blocked by expression of either RapN17 or Rapl GAP1, both of which interfere with

Rapl signaling. We propose that isoproterenol can activate ERKs via Rapl and B-Raf in

these cells.
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INTRODUCTION

Cell proliferation is regulated by extracellular signals including growth factors and
hormones. Growth factors activate receptor tyrosine kinases (RTKSs) to stimulate a
number of intracellular signaling cascades. One cascade, the MAP kinase (or ERK)
cascade triggers cellular proliferation through multiple mechanisms including inducing
stimulation of progression through the G1/S transition of the cell cycle and by activating
rate-limiting proteins involved in both DNA and protein synthesis (Graves et al., 2000;
Whitmarsh and Davis, 2000). ERKs are activated in cancerous cells through the action of
proto-oncogenes like Ras that lie upstream of the MAP kinase cascade. Hormones can
also activate the MAP kinase cascade to stimulate proliferation in many cell types
(Dhanasekaran et al., 1995). Some hormones, like insulin, act like growth factors to
activate RTKSs to stimulate intracellular cascades leading to ERK (Avruch, 1998; Boulton
et al, 1991). However, most hormones act via serpentine (or seven-transmembrane
receptors), and couple to heterotrimeric GTP binding proteins (G proteins) to elicit their

effects (Bourne, 1997; Ginell and Brown, 1996).

Heterotrimeric G proteins are composed of two functional units, an alpha () subunit and
a beta-gamma (Py) subunit. Both « and By are released from hormone receptors upon
ligand binding and can directly bind to and activate specific effectors. For «, one of these
effectors is adenylate cyclase. Historically o subunits that stimulate adenylate cyclase are
called as for stimulatory, while those that inhibit adenylate cyclase are termed o, for
inhibitory. Over the past five years, cross-talk between G protein-coupled signaling

pathways have been identified for many G protein-coupled receptors (Dhanasekaran et
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al., 1995; Sugden and Clerk, 1997). The activation of MAP kinase cascades has been
established for G proteins of diverse classes, including Gs, Gi, and Gq (Budd et al., 1999;
van Biesen et al., 1996; Vossler et al., 1997). For some of these, direct or indirect
involvement of cytoplasmic tyrosine kinases has been shown (Florio et al., 1999; Lev et
al., 1995; Luttrell et al., 1996; Tang et al., 1999; Wan et al., 1996). For others,
association with regulatory molecules like RasGAP (Jiang et al., 1998) or RaplGAP1
(Jordan et al., 1999; Mochizuki et al., 1999) provides the cross-talk necessary to

modulate signals to the small G proteins Ras or Rap1, respectively, to regulate the MAP

kinase cascade.

Perhaps the best studied mechanism of cross-talk between G proteins and the MAP
kinase cascade involves the By subunit of heterotrimeric G proteins. Activation of both
Gqg- and Gi-coupled receptors releases By to activate the tyrosine kinase c-src which can
activate Ras via the phosphorylation of the adaptor molecule She, which then recruits a
complex consisting of Grb2 and SOS, the Ras-specific guanine nucleotide exchange
factor (GEF), to the membrane where it can activate Ras (Hawes et al., 1996). In some
cases, arole for PI3-Ky in src activation has been shown (Lopez-Llasaca et al., 1997). In
other cases, src is activated by a calcium-sensitive kinase PYK2 (Lev et al., 1995).
Despite variations on the mechanisms used, all examples of By signaling to ERKs require

Ras activation.

Recently, the o subunits of heterotrimeric G proteins have also been shown to signal to

the MAP kinase cascade. The o subunits of Gi and Go (which share extensive sequence
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homology and PTx-sensitivity) both bind to RaplGAP1, a GTPase activating protein
specific for a distinct small G protein Rapl (Mochizuki et al., 1999). Rapl is a cell type-
specific antagonist of Ras-dependent signaling and its inhibition by RaplGAP1 can allow
Ras to signal effectively to ERKs. The o subunit of Gs has also been implicated in MAP
kinase activation. For example, constitutively activated mutants of Gsa are oncogenic
(Faure et al., 1994; Landis et al., 1989; Lyons et al., 1990; Zachary et al., 1990). These
mutants encode an oncogene called Gsp that can activate ERKs when expressed in
transfected cells. Activated Gso triggers the synthesis of the second messenger cAMP
through direct association with specific adenylate cyclases (Masters et al., 1988; Pieroni
et al., 1993). The major target of cAMP is the cAMP-dependent protein kinase PKA
(Beavo et al., 1975; Butcher et al., 1968). PKA has cell type-specific actions on MAP
kinase signaling. In many cell types, PKA antagonizes Ras-dependent activation of Raf-
I, an ubiquitously expressed MAP kinase kinase kinase (Cook and McCormick, 1993;
Graves et al., 1993; Sevetson et al., 1993; Wu et al., 1993) to inhibit cellular proliferation
and Ras-dependent transformation (Chen and Iyengar, 1994). In other cell types, PKA
can activate MAP kinase through a distinct pathway involving Rap1 and a cell type-
specific isoform of Raf called B-Raf (Dugan et al., 1997; Vossler et al., 1997; Wan and
Huang, 1998). Recently, a second enzyme target for cAMP, cAMP-GEF (or Epac), was
1dentified as a Rapl-specific GEF (de Rooij et al., 1998; Kawasaki et al., 1998a).
Therefore, in B-Raf-expressing cells, cAMP has at least two potential mechanisms to

activate ERKs through Ras-independent pathways, one via PKA and another through

direct activation of Rap1-GEFs.
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The ability of hormones that couple to Gsa to activate Rapl and ERKSs has been
examined in transfected cell lines over-expressing specific serpentine receptors. In CHO
cells overexpressing the adenosine A,,-receptor, adenosine has been shown to activate
ERKSs via Rapl (Seidel et al., 1999). In Hek293 cells, a well-studied model of G protein
coupling, over-expression of B,-adrenergic receptor (B,AR) was shown to couple to ERKs
via a Ras-dependent pathway (Daaka et al., 1997; Della Rocca et al., 1997). The best
studied receptor system coupled to Gsa is the B,AR and its activation by the agonist
isoproterenol. In this study, we examine the mechanism by which isoproterenol activates

ERKSs in Hek293 cells expressing endogenous levels of §,AR.

34



EXPERIMENTAL PROCEDURES

Materials. Antibodies to Rapl, B-Raf, Raf—l, recombinant MEK-1 protein, and agarose-
conjugated antibodies to ERK1, ERK2 (c-16), and myc-Erk were purchased from Santa Cruz
Biotechnology Inc (Santa Cruz, CA). Anti-Ras antibody was purchased from Upstate
Biotechnology (Lake Placid, NY). Phosphorylation-specific ERK antibodies (pERK) that
recognize phosphorylated ERK1 (pERK 1) and ERK2 (pERK?2), at residues threonine 183 and
tyrosine 185 were purchased from New England Biolabs (Beverly, MA). Isoproterenol,
thrombin, carbachol, Flag (M2) antibody, and LPA were purchased from Sigma (St. Louis,
MO). Forskolin, clonidine, PTx, alprenolol, atenolol, epidermal growth factor (EGF), AG1478,
and N-[2-(p-Bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide (H89) were purchased
from Cal Biochem (Riverside, CA). Nickel agarose (Ni-NTA-Agarose) was purchased from

Qiagen Inc. (Chatswoth, CA.). Radioisotopes were from NEN-DuPont Life Science Products.

Cell culture. Hek293 cells were cultured in Dulbecco-Modified Eagle Medium (DMEM) plus

10% fetal calf serum at 37° C. in 5% CO,. Cells were maintained in serum-free DMEM for 16
hours at 37° C. in 5% CO, prior to treatment with various reagents for both immune complex

assays and western blotting. Cells pre-treated with PTx, (100 ng/ml) were incubated in serum-

free media for 16 hours prior to stimulations. All inhibitors, unless otherwise indicated, were

added to cells 20 minutes prior to treatment.

Western blotting. Cell lysates were prepared as described (Vossler et al., 1997). Cell lysate
protein concentrations were quantified using Bradford protein assay. For detection of B-Raf,

ERK2, myc-ERK, Rapl, Flag, Ras, and phospho-ERK1/2 (pERK), equal protein amounts of
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cell lysate per treatment condition were resolved by SDS-PAGE, blotted onto PVDF (Millipore
Corporation, Bedford, MA) membranes and probed with the corresponding antibodies

according to the manufacturers guidelines.

Plasmids and Transfections. Seventy to eighty percent confluent Hek293 cells were co-
transfected with the indicated cDNAs using a lipofectamine kit (Gibco BRL) according to the
manufacturer’s instructions. The control vector, pcDNA3 (Invitrogen Corp.), was included in
each set of transfections to assure that each plate received the same amount of DNA. Following
transfection, cells were allowed to recover in serum containing media for 24 hr. Cells were then

starved overnight in serum free DMEM before treatment and lysis.

Immune complex assays. For ERK assays, all cell treatments were lysed in ice-cold lysis
buffer (50 mM Tris-HCL (pH 8.0), 10% glycerol, 1% nonidet P-40, 200 mM NaCl, 2.5 mM
MgCl,, 1 mM phenylmethylsulfonyl fluoride, 1 pM leupeptin, 10 pg/ml soybean trypsin
inhibitor, 10 mM NaF, 0.1 uM aprotinin, and 1 mM NaVO,). The lysates were centrifuged at
low speed to remove nuclei and the supernatant was examined for ERK activity using myelin
basic protein (MBP) as a substrate and [32P]-YATP as a phosphate donor with equal protein
amounts per assay condition as described (Vossler et al., 1997). For B-Raf assays, untreated
and treated cells were lysed in ice-cold 1% NP-40 buffer containing 10 mM Tris pH 7.4, 5 mM
EDTA, 50 mM NaCl, and 1 mM PMSF. Immune complex kinase assays were performed as
described (Vossler et al., 1997) using MEK-1 as a substrate and [32P]-yATP as a phosphate

donor with equal protein amounts per assay. The reaction products of all kinase assays were
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resolved by 10% SDS-polyacrylamide gel and analyzed with a Molecular Dynamics

PhosphorImager (Sunnyvale, CA).

Nickel affinity chromatography. Experiments utilizing polyhistidine-tagged Rap1 (His-Rapl
and His-RapV12) and Ras (His-Ras), were performed by transfecting Hek293 cells using
lipofectamine reagent. Cells were lysed in ice-cold buffer containing 1% NP40, 10mM Tris, pH
8.0, 20 mM NaCl, 30 mM MgCl,, ImM PMSF, and 0.5mg/m! aprotinin. Supernatants were
prepared by low speed centrifugation. Transfected His-tagged proteins were precipitated from
supernatants containing equal amounts of protein using Ni-NTA Agarose and washed with
20mM imidazole in lysis buffer and eluted with 500 mM imidazole and SmM EDTA in
phosphate-buffered saline. One-half of the eluates containing His-tagged proteins were
separated on SDS-PAGE and B-Raf or Raf-1 proteins were detected by western blotting
(Vossler et al.,, 1997). The remaining His-Rap-1 eluates, of equal amounts, were
immunoprecipitated with B-Raf antisera and B-Raf kinase activity was measured by immune

complex assay. Equal amounts of His-Rapl and His-Ras was confirmed by western blotting.

Affinity Assay for Rap1 Activation in Hek293 cells. GST fusion protein of the Rap1-binding
domain of RalGDS was expressed in Escherichia coli following induction by isopropyl-1thio-b-
D-galactopyranoside (GST-RalGDS was a gift from Dr. Bos, Utrecht University, The
Netherlands to P. J. S. S.). Bacterial lysates were prepared and GST fusion proteins were
immobilized by incubating lysates for 1 hour at 4° C. with glutathione-sepharose. Sepharose
beads were washed three times in order to remove excess GST fusion protein. Hek293 cells

were grown as described, and were stimulated at 37° C. for the indicated times and immediately
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lysed in ice-cold lysis buffer (50 mM Tris-HCL (pH 8.0), 10% glycerol, 1% nonidet P-40, 200
mM NaCl, 2.5 mM MgCl,, 1 mM phenylmethylsulfonyl fluoride, 1 uM leupeptin, 10 pg/ml
soybean trypsin inhibitor, 10 mM NaF, 0.1 uM aprotinin, and 1 mM NaVO,). Active Rapl was
isolated using methods as described by Franke et al. (Franke et al., 1997a). Briefly, cell lysates
were cleared by centrifugation, and equal amounts of supernatants were incubated with GST-
RalGDS-Rapl binding domain pre-coupled to glutathione beads. Following a 1 hour incubation
at 4° C., beads were pelleted and rinsed threes times with ice-cold lysis buffer, protein was
eluted from the beads using 2X Laemmli buffer and applied to a 12% SDS-polyacrylamide gel.
Proteins were transferred to PVDF membrane, blocked in 5% milk for 1 hour and, probed with
a-Rapl/Krev-1 or Flag (M2) antibody overnight at 4° C., followed by an HRP-conjugated anti-

rabbit secondary antibody. Proteins were detected using enhanced chemiluminescence.

Affinity Assay for Ras Activation in Hek293 cells. Hek293 cells were grown as described,
and were stimulated at 37° for the indicated times and immediately lysed in ice-cold lysis buffer
(50 mM Tris-HCL (pH 8.0), 10% glycerol, 1% nonidet P-40, 200 mM NaCl, 2.5 mM MgCl,, 1
mM phenylmethylsulfonyl fluoride, 1 uM leupeptin, 10 pg/ml soybean trypsin inhibitor, 10 mM
NaF, 0.1 uM aprotinin, and 1 mM NaVO,). Following the manufacturer’s recommended
protocol, activated Ras was isolated from stimulated lysates using agarose coupled GST-Raf1-
RBD provided in the Ras Activation Assay Kit (Upstate Biotechnology, Lake Placid, N.Y.).
Proteins were eluted from the beads using 2X Laemmli buffer and applied to a 12% SDS-
polyacrylamide gel. Proteins were transferred to PVDF membrane, blocked in 5% milk for 1
hour and, probed with a-Ras antibody overnight at 4° C., followed by an HRP-conjugated anti-

mouse secondary antibody. Proteins were detected using enhanced chemiluminescence.

38



RESULTS

Isoproterenol activates ERK via endogenous B,ARs - Isoproterenol treatment of
Hek293 cells with the p-adrenergic agonist, isoproterenol, induces phosphorylation of
MAP kinase ERK in a dose-dependent manner (Fig. 2.1A). Three minute stimulations
with increasing concentrations of isoproterenol, revealed maximal ERK kinase activity at
concentrations over 10 uM. Similar to previously published data, 10 uM isoproterenol
induced endogenous ERK kinase activity maximally between 3 and 5 minutes (Fig. 2.1B)
(Crespo et al., 1995). Isoproterenol-induced ERK kinase activation was completely
blocked by pretreatment with the selective B,,-adrenergic antagonist alprenolol (Fig.
2.1C). Pretreatment with the selective B;-adrenergic antagonist, atenolol, did not inhibit
isoproterenol-mediated activation of MAP kinase. These results suggest that
isoproterenol activates ERKs via endogenously expressed B,ARs with maximal activation

between 3 and 5 minutes.

B,ARs mediate their intracellular signals via Gso which, upon isoproterenol binding is
released to activate adenylate cyclase. This results in the rapid elevation of intracellular
cAMP levels and activation of the cAMP-dependent protein kinase PKA. To determine
whether PKA plays a role in mediating endogenous ERK activation we utilized the
selective PKA inhibitor H89 (Chijiwa et al., 1990). Pretreatment of serum-starved
Hek293 cells with H89 completely eliminated the ability of isoproterenol to activate ERK
kinase (Fig. 2.2). As a positive control, we treated cells with forskolin, an activator of
adenylate cyclase. Forskolin activated ERKs and H89 abolished forskolin activation of

ERKSs (Fig. 2.2). Taken together, the above data demonstrate that isoproterenol activates
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FIG. 2.1. ERK activation by p2AR. A, Isoproterenol dose-response of phosphorylated
ERKs (pERK). Hek293 cells were serum-starved and treated with increasing concentrations
of isoproterenol for 3 min. Cell lysates were prepared as detailed in the "experimental
procedures”. B, Time course of endogenous ERK activation following isoproterenol
stimulation in Hek293 cells. Hek293 cells were harvested for either immune complex kinase
assay using myelin basic protein (MBP) as a substrate or western blotting, using phospho-
specific ERK1/2 (pERK) antibodies. Cells were treated with isoproterenol or EGF, as
indicated. Upper panel: a representative western blot probed with pERK antibody. Middle
panel: a representative autoradiogram with the position of MBP shown. Lower panel:
western blotting showing equal loading of protein amounts within cell lysate was performed
using ERK2 antibody. C, Blockade of isoproterenol stimulation of pERK. Serum-starved
cells were treated with isoproterenol following a 10 minute pretreatment with either atenolol
or alprenolol. Upper panel: a representative western blot probed for pERK antibody.
Bottom panel: Equal amounts of protein were utilized as evidenced by the western blot
probed with ERK2 antibody.
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FIG. 2.2. Endogenous B2-adrenergic receptors in Hek293 cells activate ERKs
via PKA. Serum-starved Hek293 cells were treated with isoproterenol for 3 minutes
or forskolin for 5 minutes in the absence or presence of the PKA inhibitor H89
(10mM), as indicated. Cells were then lysed and equal protein amounts per-treat-
ment condition were used for western blot with pERK or kinase assay using MBP as
a substrate. A representative experiment showing both pERK (upper panel) and
kinase activity (middle panel) is shown. The lower panel demonstrates equal
protein levels as evidenced by western blot probed for ERK2,
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endogenous signaling pathways which utilize both the B,AR and the cAMP-dependent

kinase PKA.

ERK activation by isoproterenol is insensitive to PTx treatment - Recent reports
using Hek293 cells transiently transfected with cDNA encoding the B,AR have shown
that isoproterenol-induced activation of ERK was blocked by PTx (Daaka et al., 1997;
Pierce et al., 2000). These data imply that ERK activation utilizes a Gia (or Goo)
pathway to stimulate ERK activity. To investigate whether B,AR can activate
endogenous signaling pathways in the presence of PTx we pretreated Hek293 cells
overnight with PTx and assessed the ability of isoproterenol to activate ERKs. In an
extended time course measuring ERK activation by isoproterenol, no differences between
PTx-treated cells and untreated cells were seen (Fig. 2.3A). ERK activation following
treatment of Hek293 cells with both the muscarinic agonist carbachol (Fig. 2.3A) and
lysophosphatidic acid (LPA, data not shown) was blocked by PTx, consistent with their
ability to couple to Gia. To further confirm that the activation of ERKs by isoproterenol
was insensitive to PTX, immune complex kinases assays were performed on endogenous
ERK1/2. As can be seen in Fig. 2.3B, isoproterenol’s activation of ERKs was not
blocked by PTx. However, activation of ERKs by the a-adrenergic receptor agonist,
clonidine, was blocked by PTx. As a negative control, we show that EGF-mediated

activation of ERKs was not blocked by PTx (Fig. 2.3A). These results would indicate

that B,AR is able to activate endogenous ERKs via a Gia/Goo-independent pathway.
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ERK activation by .AR requires Rap1- Recent studies have identified a role for Rapl
in signaling via G proteins (Jordan et al., 1999; Mochizuki et al., 1999; Vossler et al.,
1997). Therefore, we sought to determine whether endogenous B,AR stimulation by
isoproterenol could activate Rapl. To determine whether Rapl was activated in response
to isoproterenol treatment we performed a time course of Rap! activation. Endogenous
Rapl was activated at the earliest time point examined with maximal activation observed
from 3 to 5 minutes, and a return to baseline by 20 minutes (Fig. 2.4A). As previously
demonstrated, thrombin was also able to induce endogenous Rapl activity in these cells
(Seidel et al., 1999). To investigate the requirement for PKA in activating Rap1, cells
were pretreated with H89. Pretreatment of Hek293 cells with 10 uM H89 blocked the
ability of either forskolin or isoproterenol to activate Rap1 at 3 minutes (Fig. 2.4B).
Taken together, these results would suggest that B,AR activates Rapl in a PKA-
dependent manner. Recent studies have suggested that the guanine-nucleotide exchange
factor, C3G, may play a role in activating Rap1 (Gotoh et al., 1995). C3G is
constitutively associated with a member of the Crk adaptor family and is stabilized by its
association with Crk-L (York et al., 1998). As can be seen in Fig. 2.4C, cotransfection of
Flag-Rapl along with Crk-L and C3G results in Rap1 activation in Hek293 cells as in
other cell types (York et al., 1998). To determine whether C3G is playing a role in
activating Rapl in response to isoproterenol we used a truncated mutant of C3G
containing the CRK-binding region, CBR, which interferes with CRK function (Gotoh et
al., 1995; York et al., 1998). Transfection of CBR along with Flag-Rapl blocked the
ability of isoproterenol to activate Rapl (Fig. 2.4C). To further confirm the role for PKA

in activating Rap1 in response to isoproterenol we co-transfected the PKA-specific
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FIG. 2.4. Isoproterenol activation of Rap1. A, Time course of activation of Rap1 by iso-
proterenol. Serum-starved Hek293 cells were treated with 10 M isoproterenol or 0.1u/ml
thrombin for the indicated times. Equal amounts of cell lysate were incubated with pre-
coupled GST-RalGDS protein, and analyzed by western blot for GTP loaded Rap1. Hek293
cell lysate was used to indicate the position of Rap1. B, Isoproterenol activation of Rap1 is
sensitive to H89. Cells were stimulated with 10 yM isoproterenol for 3 minutes and 10 yM
forskolin for 5 minutes, following a pretreatment with H89 (10mM), equal amounts of cell
lysate were used to assay for GTP loaded Rap1. Thrombin was used as a control for Rap1
activation. C, Isoproterenol activation of Rap is sensitive to PKI and CBR. Hek293 cells
were co-transfected with Flag-Rap1 and the indicated cDNAs, serum-starved, and stimu-
lated with 10 M isoproterenol for 3 minutes. Cells transfected with Crk-L/C3G were not
stimulated. Equal amounts of cell lysate were incubated to assay for GTP loaded Rap1
using GST-RalGDS and a Flag (M2) antibody to identify Flag-Rap1 protein. D, Hek293
cells express C3G. Western blotting of equal amounts of protein were used to represent cell
lysates from various cell types: COS 7 (lane 1), PC12 (lane 2), and Hek293 (lane 3).
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inhibitory protein, PKI, which abolished the ability of isoproterenol to activate Rap1 (Fig.
2.4C). These results would suggest that Rap activation in response to $,AR stimulation is
PKA-dependent and also utilizes the guanine-nucleotide exchange factor C3G. Indeed,

Hek293 cells express endogenous levels of C3G (Fig. 2.4D) indicating that the B,AR may

utilize C3G to activate Rapl.

Recent data have suggested that the small G protein Ras may play a role in mediating
ERK activation by B,AR (Daaka et al., 1997; Zou et al., 1999). To examine the ability of
B.AR to activate Ras we examined a time course of Ras activation. Similar to Rapl
activation, Ras appeared to be activated very early following isoproterenol stimulation
and was inactive by 5 to 10 minutes (Fig. 2.5A). Hek293 cells were treated with EGF as
a positive control for Ras activation. To determine whether Ras activation was PKA-
dependent Hek293 cells were pretreated with H89 and stimulated with isoproterenol.
HB89 pretreatment had no effect on Ras activation (Fig. 2.5B), suggesting that Ras is
activated by isoproterenol in a PKA-independent fashion. Consistent with this result,
forskolin, did not activate Ras. Moreover, EGF stimulation of Ras was not blocked by
H&89 suggesting that H89’s effect was specific for PKA. These data would indicate that
Ras activation by 8,AR did not require cAMP or PKA and suggests that Gso stimulation

of adenylate cyclase was not directly involved in Ras activation.
Based on the finding that both Rapl and Ras were rapidly activated in response to

isoproterenol treatment, we next examined the role of these small G proteins in mediating

ERK activation. Hek293 cells were transiently transfected with cDNAs encoding an
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FIG. 2.5. Isoproterenol activation of Ras. A, Time course of acti-
vation of Ras by isoproterenol. Hek293 cells were serum-starved
and treated with 10 pM isoproterenol or 100 ng/ml EGF for the indi-
cated times. Equal quantities of cell lysate were incubated with
GST-Raf1RBD, and analyzed by western blot for GTP loaded Ras.
Hek293 cell lysate was used to indicate the position of Ras. B, Iso-
proterenol activation of Ras is insensitive to H89. Serum-starved
Hek293 cells were treated with isoproterenol for 3 minutes, 10 M
forskolin for 5 minutes, or 100 ng/ml EGF for 5 minutes following a
pretreatment with H89 (10mM), equal amounts of cell lysate were
used to assay for GTP loaded Ras. EGF was used as a control for
Ras activation.
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interfering mutant of Rapl, RapN17, the Rapl antagonist RaplGAPI, and the interfering
mutant of Ras, RasN17. These mutants have previously been characterized by our
laboratory and others and function as selective blockers of Rap1 or Ras signaling (Carey
et al., 2000; Feig and Cooper, 1988; Tsukamoto et al., 1999; Vossler et al., 1997). Cells
transfected with myc-Erk and stimulated with 10 uM isoproterenol for 3 minutes
displayed robust ERK kinase activity (Fig. 2.6A). Isoproterenol-induced ERK activation
was significantly reduced when cells were co-transfected with either RapN17 or
RaplGAPI. RasN17 did not appear to have a significant effect (Fig. 2.6A). The
differences in kinase activity were not attributed to varying levels of myc-ERK
expression (Fig. 2.6A, lower panel). Quantification of three independent experiments
revealed that ERK kinase activity, induced by isoproterenol for 3 minutes, was
significantly reduced by either RapN17 or RaplGAP1 (Fig. 2.6B). These data indicate
that endogenous Rapl, but not endogenous Ras, is required for B,AR to activate MAP

kinase at this time point.

Isoproterenol induces Rap1/B-Raf association and B-Raf kinase activity - To further
investigate the function of active Rap! in mediating MAP kinase activation in Hek293
cells we examined the downstream target of Rapl, B-Raf. Prior studies from our
laboratory have demonstrated in PC12 cells, which express high levels of B-Raf, that
cAMP is able to activate ERKs through a PKA/Rap1/B-Raf pathway (Vossler et al.,
1997). Hek293 cells also express high levels of endogenous B-Raf protein (Fig. 2.7A).
Hek293 cells were left untransfected or transfected with His-Rap or a constitutively

active mutant of His-Rap, His-RapV12 (Cook et al., 1993; Vossler et al., 1997), serum-
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starved, and treated with isoproterenol for 3 minutes in the absence or presence of H89.
Isoproterenol stimulation induced Rap1/B-Raf association and B-Raf kinase activity (Fig.
2.7B). Both the association and kinase activity was blocked by the PKA inhibitor H89.

Results from three independent experiments are shown in Fig. 2.7C.

Isoproterenol stimulation of Hek293 cells induced the activation of Ras (Fig. 2.5A). To
determine whether active Ras could couple to relevant downstream effectors, we
investigated its ability to associate with the Raf isoforms B-Raf and Raf-1. Previous
studies have suggested that recruitment of Raf to Ras is necessary for its activation
(Marais et al., 1995; Marais et al., 1997; Mineo et al., 1997; Morrison and R. E. Cutler,
1997). Hek293 cells were transfected with His-tagged Ras cDNA (His-Ras) and treated
with either isoproterenol or EGF, or pretreated with isoproterenol and then treated with
EGF. Results presented in Fig. 2.7D suggest that isoproterenol stimulation did not induce
the association of endogenous Raf-1 with Ras. More importantly, pretreatment with
isoproterenol inhibited the ability of EGF to induce the association of endogenous Raf-1
with Ras (Fig. 2.7D). Parallel experiments examining the association of B-Raf with Ras
indicated that isoproterenol alone inhibited basal as well as EGF-induced association of
B-Raf with Ras (Fig. 2.7E). These results suggest that, while Ras is activated by B,AR, it

is unable to couple to either Raf-1 or B-Raf kinases.
ERK activation by B,AR occurs independently of EGF receptor phosphorylation - A

recent study has suggested a role for the EGF receptor in mediating B,AR-induced ERK

activation (Maudsley et al., 2000). To address the requirement for the EGF receptor in
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B.AR signaling we treated cells with the EGF receptor kinase inhibitor AG1478, which
specifically inhibits kinase activity of the receptor. Pretreatment of cells with AG1478
did not block isoproterenol-induced activation of endogenous ERKs (Fig. 2.8A). The
above results would suggest that Rap-1-dependent activation of ERKSs by B,AR does not

require EGF receptor transactivation.

Recent studies have also suggested that the activation of Ras by 8,AR may also utilize the
EGF receptor, via non-classical coupling to Gia (Maudsley et al., 2000). To further
elucidate the mechanism by which Ras is activated by 8,AR, we determined whether
endogenous Ras activation by isoproterenol was dependent on EGF receptor activation.
Pretreatment of Hek293 cells with AG1478 did not block Ras activation by isoproterenol
at 3 minutes (Fig. 2.8B). To investigate the possibility that Gic. may signal to Ras we
pretreated Hek293 cells with PTx and stimulated cells with either isoproterenol or
carbachol for 3 and 5 minutes, respectively. Representative data presented in Fig. 8C
demonstrate that Ras activation by isoproterenol, but not by carbachol, was insensitive to
PTx. As a positive control, we show that Ras activation by carbachol was sensitive to
PTx (Fig. 2.8C). The above data as well as that presented in Fig. 2.5A indicate that Ras

is activated by the endogenous B,AR independently of either the EGF receptor or Gic.

DISCUSSION

The second messenger cAMP is the best studied intracellular signal. Its major action, the
activation of the cAMP-dependent protein kinase, PKA (Beavo et al., 1975; Butcher et

al., 1968) allows hormonal signals to couple to intracellular phosphorylation events.
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Hormonal elevation of cAMP levels is triggered by the specific heterotrimeric G protein
subunit Gas. The range of extracellular ligands that couple to Gas is extensive and
includes moderately sized peptides, including vaso-active intestinal peptide like (VIP),
members of the glucagon/secretin superfamily, adrenocorticotropic hormone (ACTH),
parathyroid stimulating hormone (PTH), and a large family of hypothalamic releasing
factors, as well as the family of large glycoproteins thyroid stimulating hormone (TSH),
follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Small molecules can
also activate Gs to stimulate adenylate cyclases, including dopamine (via the D1
receptor), adenosine (via the A,,-receptor), prostaglandin E, and the family of adrenergic
molecules, including epinephrine and nor-epinephrine (lismaa and Shine, 1992; Ji et al.,
1998; Spiegel et al., 1992). The cognate receptors for all these ligands are heptahelical

transmembrane proteins (also called serpentine receptors) that associate with Gsa.

In the unliganded, resting state, these receptors bind inactive GDP-bound Gso subunits
that are associated with specific By subunits. Upon ligand binding, exchange of GTP for
GDP converts o into its active GTP-bound state, causing it to be released from the
receptor, where it is free to bind to, and activate, membrane-associated adenylate
cyclases. At the same time that Gsa dissociates from the receptor, By is released from
Gsa and can activate effectors independently of Gsa. Py signaling from Gs-coupled
receptors has not been reported. However, By release from Gi and Gq is well known to
activate a number of intracellular kinases, including phosphoinositol-3 kinase (PI3-K)
(Hawes et al., 1996; Lopez-Llasaca et al., 1997), phospholipase C (Birnbaumer, 1992),

src (Luttrell et al., 1996) and ERK (Florio et al., 1999; Luttrell et al., 1995).
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The ability of Gs-coupled receptors to modulate the MAP kinase (or ERK) cascade
provides a mechanism for cAMP-coupled signaling pathways to regulate cell growth
(Dhanasekaran et al., 1995). The best studied actions of cAMP on ERK signaling are
inhibitory and lead to a decrease in cellular proliferation (Graves et al., 1993; Sevetson et
al., 1993; Wu et al., 1993). This is achieved, in part, by a PKA-dependent
phosphorylation of the MAP kinase kinase kinase Raf-1 on serine 43 which uncouples
Raf-1 from its upstream activator Ras (Wu et al., 1993). In cells that express the Raf
isoform B-Raf (which does not contain a PKA site corresponding to serine 43), cCAMP
can activate ERKs (Dugan et al., 1999; Vossler et al., 1997; Wan and Huang, 1998).
While this has been shown in multiple cell types, additional factors may influence
cAMPs ability to activate B-Raf. Indeed, cAMP has also been reported to inhibit the
activation of B-Raf through a PKA phosphorylation near the kinase domain itself.
However, this effect is only seen in truncated proteins lacking the N-terminus of B-Raf
(MacNicol and MacNicol, 1999). In cells which express a truncated splice variant of B-
Raf that also lacks the N-terminus, cAMPs inhibitory effects may predominate
(Vaillancourt et al., 1994). However, cAMP robustly activates the full length B-Raf
protein which is achieved via the activation of the small G protein Rapl (Ohtsuka et al.,
1996; Okada et al., 1999; Vossler et al., 1997). Interestingly, Rapl is also an antagonist
of Ras-dependent signaling (Cook et al., 1993; Kitayama et al., 1990; Palsson et al.,
2000) and blocks Ras-dependent activation of Raf-1 (Boussiotis et al., 1997; Cook et al.,
1993; Hu et al., 1997; Hu et al., 1999). Unlike Ras, Rapl is activated by increased cAMP

levels via PKA. Recently, Rapl activators have been identified that can be directly
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activated by cAMP, suggesting that cAMP can activate Rap1 via both PKA-dependent
and PKA-independent mechanisms (de Rooij et al., 1998; Kawasaki et al., 1998a). The
ability of B,AR to inhibit ERK signals has been demonstrated in adipocytes (Sevetson et
al., 1993) and smooth muscle cells (Graves et al., 1993). Recently, B,AR has been shown
to activate ERKs in Hek293 cells (Daaka et al., 1998; Daaka et al., 1997; Della Rocca et
al., 1997). In this study, we show that B,AR can activate ERKs in Hek293 cells by

activating a Rap1/B-Raf pathway, while simultaneously blocking Ras-dependent signals.

Hek293 cells are commonly used to examine signaling pathways downstream of
transfected receptors (Daaka et al., 1997; Della Rocca et al., 1997; Schramm and
Limbird, 1999; Seidel et al., 1999). We show that these cells express endogenous 8,AR

and upon isoproterenol stimulation utilize p,AR to activate ERKs. This activation shows

an ECs; of roughly 1-3 uM, consistent with other actions of isoproterenol, and is rapid

and transient (Crespo et al., 1995). Its actions on ERKs are mimicked by forskolin and
require PKA, suggesting the involvement of Gsa and cAMP. Although signaling via Gsa
is classically thought to be insensitive to PTx, recent reports have demonstrated that 8,AR
can couple to ERKs via PTx-sensitive pathways (Daaka et al., 1997). These studies,
which utilized transiently transfected cDNAs encoding B,AR in Hek293 cells, proposed a
PKA-dependent switch in B,AR affinity from Gs to Gi. In our hands, PTx did not block
B,AR’s activation of ERKs, while blocking the action of known Gi-coupled agents,
including carbachol, LPA, and clonidine. It is possible that the ability of §,AR to couple

to PTx-sensitive pathways is dependent on elevated levels of ,AR expression.

56



Both Ras-dependent and Rapl-dependent mechanisms of ,AR’s activation of ERKs
have been proposed (Della Rocca et al., 1997; Wan and Huang, 1998). Indeed, we show
that both Ras and Rap1 were activated by isoproterenol. Ras is activated rapidly and
transiently, whereas Rapl activation is slower and is sustained. This is similar to the
kinetics seen in other cell types, including PC12 cells (York et al., 1998) and in platelets
(Franke et al., 2000). Interestingly, the activation of Rapl, but not Ras, required PKA.
Forskolin, which acts downstream of Gsa to elevate cAMP, also activated Rapl but did
not activate Ras. These data suggest that §,AR utilized distinct pathways to activate Ras
and Rapl. We propose that Rapl is activated by Gsa (via cAMP and PKA), and that Ras
is activated independently of Gsa, possibly by a py-dependent pathway. For Rapl, PKA
appears to act upstream of Rapl itself, possibly through a mechanism involving the Rapl
guanine-nucleotide exchanger C3G (York et al., 1998). C3G is expressed in Hek293
cells and is distinct from recently proposed exchangers like cAMP-GEF’s (Epacs) that
appear to be activated by cAMP in a PKA-independent manner (de Rooij et al., 1998;

Kawasaki et al., 1998a).

Surprisingly, only Rapl, but not Ras, was required for B,AR’s activation of ERKs. Two
agents that interfere with Rap1 signaling, RapN17 and Rap1 GAP1 were used.
Overexpression of RapN17 is thought to sequester endogenous activators of Rapl,
whereas RaplGAP1 stimulates the GTPase activity of endogenous Rapl to terminate
Rapl signaling (Jordan et al., 1999; Reedquist et al., 2000; Vossler et al., 1997). RasN17
is a well characterized selective interfering mutant of Ras (Feig and Cooper, 1988; Stacey

et al., 1991). These data suggest that while both Ras and Rapl are activated by B,AR,
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only Rapl is capable of transmitting a signal to ERKs. The signal to ERKs is likely to be
B-Raf, since B-Raf is the only known MAP kinase kinase kinase that can be activated by
Rapl. Indeed, Hek293 cells express the 96 kD isoform of B-Raf that is activated by
cAMP (Vossler et al., 1997), and endogenous B-Raf is recruited to Rap1 upon
isoproterenol stimulation, in a PKA-dependent manner. Both Raf-1 and B-Raf have been
shown to be efficiently recruited to Ras under the appropriate conditions (Hallberg et al.,
1994; Marais et al., 1995; Okada et al., 1999; Vojitek et al., 1993). However, neither
Raf-1 nor B-Raf were recruited to Ras by isoproterenol treatment, although Ras was
GTP-loaded (activated) at the time point used for this study. The inability of Ras to

couple to Raf explains why B,AR’s activation of ERK was independent of Ras.

Isoproterenol not only did not induce Ras association with effectors, it reversed the
ability of Ras to recruit both Raf-1 and B-Raf following EGF stimulation. For Raf-1, this
may be due to the phosphorylation of Raf-1 at serine 43 by PKA, which dissociates Raf-1
from activated Ras. However, the ability of isoproterenol to block the recruitment of B-
Raf to Ras cannot be explained by this mechanism and suggests that an additional action
of PKA is antagonizing Ras function, in general. Indeed, cAMP can also block
recruitment of B-Raf to Ras (data not shown). A potential mediator of this effect is Rap1
itself. We propose a model in which Rapl1 activation by PKA has two opposing functions
in B-Raf/Raf-1 expressing cells; the activation of B-Raf and the antagonism of Ras. The

net effect of these two actions will depend on the relative levels of Rapl as well as B-Raf

and Raf-1 in each cell type.
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Although we show that activated Ras cannot activate ERKSs in these cells, the mechanism
by which Ras was activated by B,AR in these cells is not known. Recently, the ability of
B.AR to activate Ras-dependent signaling has been suggested by Lefkowitz and
colleagues. In their model, transiently transfected 8,AR utilized a PTx-sensitive pathway
to transactivate the endogenous EGF receptor (EGFR). However, using cells expressing
endogenous B,AR, we show that isoproterenol’s ability to activate either ERK or Ras did
not require EGFR kinase activity. In addition, Ras activation by isoproterenol was not
blocked by PTx. Since Ras activation by isoproterenol was not sensitive to H89, we
propose that Ras activation by B,AR is not mediated by either PKA, Gi, or EGFR. We
suggest that By subunits, which have been shown to activate Ras in many systems, may
contribute to B,AR’s actions. The ability of both o and By to regulate ERK signaling
following receptor binding may be a common mechanism of coordinating signals to
ERKSs. For example, hormones that are able to activate Gi-coupled pathways have been
shown to modulate ERKs via both By and o subunits. By activates Ras via PI3-Ky (Lopez-
Llasaca et al., 1997) and Gia activates a RaplGAPII to inactivate Rapl (Mochizuki et al.,
1999). Here, we show a second mechanism of Rapl regulation by o subunits, the
activation of Rapl via elevation of intracellular cAMP levels. Although PKA-
independent regulation of Rapl by cAMP has been proposed (de Rooij et al., 1998;
Kawasaki et al., 1998a), the data shown here demonstrate that cAMP requires PKA to
activate Rapl in Hek293 cells, as well as other cell types (Seidel et al., 1999; Vossler et

al., 1997; Wan and Huang, 1998).
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The Rap1/B-Raf pathway identified here may be an important mechanism by which g,AR
stimulates ERKSs in multiple systems. This may be especially true in neurons and in
prostate cells that express high levels of B-Raf and where cAMP signaling to ERKs has
been shown to require Rapl (Chen et al., 1999; Dugan et al., 1999; Vossler et al., 1997).
For example, B,AR-dependent models of long term potentiation (LTP) in hippocampal
neurons has recently been shown to require ERKs (Winder et al., 1999) and deficits in
this form of LTP have been identified in transgenic mice deficient in hippocampal Rap1
signaling (Morozov et al., 1999). Taken together, these studies suggest that the ability of
Gs-coupled receptors to activate or inhibit ERKs may depend, in part, on the expression
of B-Raf (Schaeffer and Weber, 1999). While the activation of Rapl may‘ have a
significant positive effect on ERK signaling in B-Raf-expressing cells, one can speculate
that the activation of Rap1 by Gs-coupled receptors may antagonize Ras-dependent

signaling to ERKs in cells that do not express B-Raf.
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ABSTRACT

In many normal and transformed cell types, the intracellular second messenger cyclic
adenosine monophosphate (cAMP) blocks the effects of growth factors and serum on
mitogenesis, proliferation, and cell cycle progression. cAMP exerts these growth
inhibitory effects via inhibition of the MAP kinase cascade. Here, using Hek293 cells
and NIH3T3 cells, we show that cAMP’s inhibition of the MAP kinase cascade is
mediated by the small G protein Rapl. Activation of Rapl by cAMP induces the
association of Rapl with Raf-1 and limits Ras-dependent activation of ERK. In NIH3T3

cells, Rapl 1s required not only for cAMP’s inhibition of ERK activation, but inhibition

of cell proliferation and mitogenesis as well.
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INTRODUCTION

Hormones that elevate intracellular cyclic adenosine monophosphate (cAMP) have a
wide range of cell type-specific effects on cell growth and differentiation (Dhanasekaran
et al., 1995; Pastan et al., 1975). In many cell types, cAMP inhibits the physiological
actions of growth factors (Indolfi et al., 1997) and blocks the transformation phenotype in
selected malignant cells (Chen and Iyengar, 1994). For example, in fibroblasts and
smooth muscle cells, cAMP inhibits MAP kinase activation by growth factors (Cook and
McCormick, 1993; Graves et al., 1993) and during anchorage-independent cell growth
(Howe and Juliano, 2000). These growth inhibitory actions are thought to be mediated
by G protein pathways that regulate cAMP (Chen and Iyengar, 1994; Kim et al., 1997)
and the cAMP-dependent protein kinase PKA (Indolfi et al., 1997).

One of the ways that PKA can oppose the actions of growth factors is to block
growth factor activation of the mitogen-activated protein (MAP) kinase cascade. The
mechanism of cAMP action has been proposed in a number of model systems including
adipocytes (Sevetson et al., 1993), smooth muscle cells (Graves et al., 1993) and
fibroblast cell lines (Cook and McCormick, 1993). MAP kinases (or ERKs, extracellular
signal-regulated kinases) are required for a broad array of biological processes, including
two that are tightly linked to cellular transformation; mitogenesis (Kolch et al., 1991;
Thomas et al., 1992) and anchorage-independent cell growth (Howe and Juliano, 2000).
ERKSs are required for the proliferative actions of growth factors in many cell types
(Blenis, 1993; Cowley et al., 1994; Lewis et al., 1998; Mansour et al., 1994) through
multiple mechanisms (Graves et al., 2000) including the regulation of the levels of

critical cell cycle proteins (Wilkinson and Millar, 2000) including cyclin D1 (Kerkhoff
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and Rapp, 1997; Lavoie et al., 1996) and p27kipl (Woods et al., 1997). ERKs are
activated by growth factors through consecutive cascades of tyrosine and serine/threonine
phosphorylations (Crews and Erikson, 1993). The activation of the small G protein Ras
serves as a link between this phosphorylation cascade and the receptors to which growth
factors bind (Crews and Erikson, 1993; Leevers and Marshall, 1992). This cascade is
initiated by Ras' association with (Vojitek et al., 1993; Zhang et al., 1993) and activation
of Raf-1, a ubiquitously expressed protein kinase (Alest et al., 1993; Moodie et al., 1993).
Raf-1, in turn, activates MAP kinase kinase (mitogen and extracellular signal-regulated
kinase or MEK), which then activates ERK (Crews and Erikson, 1993).

It has previously been established that cAMP’s inhibition of ERKs maps to a site
downstream of Ras and upstream of Raf-1 (Cook and McCormick, 1993). cAMP-
dependent inhibition of the MAP kinase cascade requires PKA (Graves et al., 1993;
Sevetson et al., 1993). MEK and ERK are not targets of PKA, nor is Ras activation by
growth factors itself a target of PKA inhibition (Burgering et al., 1993; Cook and
McCormick, 1993; Graves et al., 1993; Wu et al., 1993). In contrast, Raf-1 is both
phosphorylated and inhibited by PKA in vivo. Thus, direct phosphorylation of Raf-1 by
PKA has been proposed to be the site of action of PKA’s antimitogenic effects (Wu et al,,
1993). Two potential sites for PKA phosphorylation on Raf-1 have received significant
attention: serine 43 (Morrison et al., 1993; Wu et al., 1993) and serine 621 (Hafner et al.,
1994; Mischak et al., 1996). Phosphorylation of serine 43 has been shown to interfere
with Raf-1’s interactions with Ras in vitro (Wu et al., 1993). Although the serine 43 site
may participate in the inhibitory actions of other kinases, for example PKG (Suhasini et

al., 1998), recent studies have shown that phosphorylation of this site is not required for
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PKA'’s inhibition of Raf-1 signaling (Sidovar et al., 2000). Serine 621 phosphorylation
has also been proposed to be a site of PKA-dependent inhibition of Raf-1 activity (Hafner
etal., 1994; Mischak et al., 1996). However, the ability of PKA to phosphorylate serine
621 in vivo (Mischak et al., 1996) has recently been challenged (Sidovar et al., 2000).
Therefore, it is likely that additional mechanisms of PKA’s inhibition of Raf-1 may play
a role in regulating the action of this kinase.

Another candidate protein that may function to antagonize Ras-dependent
activation of Raf-1 is the small G protein Rapl. Rapl was first cloned based on its ability
to revert Ras-dependent transformation of fibroblasts and was initially named Krev-
I(Kirsten Ras Revertant) (Kitayama et al., 1989). It shares 50% amino acid sequence
homology with Ras, which is greatest in the effector and the GTPase domains. Two
human proteins, Rapla and Raplb, share 97% homology within their amino acid
sequence (Pizon et al., 1990) and both antagonize Ras-induced activation of mitogenesis
and MAP kinase in multiple cell types (Campa et al., 1991; Cook et al., 1993). For
example, the constitutively active mutant of Raplb, RapV 12, has been shown to block
Ras-dependent activation of ERK-2 in Rat-1 fibroblasts (Cook et al., 1993), and to
potentiate the transformation-reverting effect of Rap1 (Kitayama et al., 1989). Although
Rapl can be activated by cAMP (de Rooij et al., 1998; Kawasaki et al., 1998a) and is
phosphorylated by PKA (Altschuler and Lapetina, 1993; Altschuler et al., 1995), the role
of Rapl in cAMP-dependent growth inhibition has not been examined. The ability of
Rapl to block Ras-dependent signals to ERK has generally been examined in studies
using transfected Rap1 proteins (Cook et al., 1993; Hu et al., 1997; Kitayama et al., 1989;

Lin et al., 2000). Indeed, it has been suggested that endogenous Rapl does not
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antagonize Ras signaling (Bos, 1998; Zwartkruis and Bos, 1999; Zwartkruis et al., 1998).
In this study we asked whether endogenous Rapl is required for cAMP’s inhibitory

actions on the MAP kinase cascade and cellular proliferation.

EXPERIMENTAL PROCEDURES

Materials. Antibodies to Rapl, Raf-1, ERK2 (c-14), c-myc (9E10), and agarose-
conjugated antibodies to HA (F-7) and myc-ERK were purchased from Santa Cruz
Biotechnology Inc (Santa Cruz, CA). Antibodies to HA (12CAS5) were purchased from
Boehringer Mannheim (Indianapolis, IN). Anti-Ras antibody was purchased from
Upstate Biotechnology (Lake Placid, NY). Phosphorylation-specific AKT antibodies
(pAKT) that recognize phosphorylated AKT/PKB at threonine 308 was purchased from
New England Biolabs (Beverly, MA). Phosphorylation-specific ERK antibodies (pERK)
that recognize phosphorylated ERK1 (pERK1) and ERK2 (pERK?2), at residues threonine
183 and tyrosine 185 were purchased from New England Biolabs (Beverly, MA).
Isoproterenol, Flag (M2) antibody, and MTT were purchased from Sigma (St. Louis,
MO). Forskolin, PD98059, epidermal growth factor (EGF), and N- [2-(p-
Bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide (H&89) were purchased from Cal
Biochem (Riverside, CA). Nickel agarose (Ni-NTA-Agarose) was purchased from

Qiagen Inc. (Chatswoth, CA.). [3H]—thymidine was purchased from N.E.N. Life Science

Products (Boston, MA.).

Cell culturing conditions and treatments. Hek293 and NIH3T3 cells were cultured in

Dulbecco-Modified Eagle Medium (DMEM) plus 10% fetal calf serum at 37° C. in 5%
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CO;. Cells were maintained in serum-free DMEM for 16 hours at 37° C in 5% CO, prior
to treatment with various reagents for co-immunoprecipitation assays, western blotting,
MTT, and [3H]—thymidine labeling. In all experiments, cells were treated with

isoproterenol (10 uM), EGF (100 ng/ml) or Forskolin (10 uM), for 5 minutes unless
otherwise indicated. Where indicated, cells were pretreated with isoproterenol or
Forskolin for 5 minutes and then stimulated with EGF for 5 minutes. H89 (10 uM) and

PD98059 (10 uM),were added to cells 20 minutes prior to treatment.

Western blotting. Cell lysates were prepared as described (Schmitt and Stork, 2000;
Vossler et al., 1997). Cell lysate protein concentrations were quantified using Bradford
protein assay. For detection of Raf-1, myc-Raf-1, ERK2, myc-ERK2, HA, Flag, Ras,
Rapl, pAKT, and phospho-ERK1/2 (pERK), equal protein amounts of cell lysate per
treatment condition were resolved by SDS-PAGE, blotted onto PVDF (Millipore
Corporation, Bedford, MA) membranes and probed with the corresponding antibodies

according to the manufacturers guidelines.

Plasmids and transfections. Seventy to eighty percent confluent Hek293 or NIH3T3
cells were co-transfected with the indicated cDNAs using a Lipofectamine kit (Gibco
BRL) according to the manufacturer’s instructions. The control vector, pcDNA3
(Invitrogen Corp.), was included in each set of transfections to assure that each plate
received the same amount of DNA. The control vector pMACS 14.1 (Miltenyi Biotec.)

was used for MACS selection. Following transfection, cells were allowed to recover in

67



serum containing media for 24 hr. Cells were then starved overnight in serum free

DMEM before treatment and lysis.

Nickel affinity chromatography. NIH3T3 and Hek293 cells were transfected using
Lipofectamine reagent with polyhistidine-tagged Rapl (His-Rapl and His-RapV12) and
Ras (His-Ras) as previously described (Schmitt and Stork, 2000). Briefly, cells were
lysed in ice-cold buffer containing 1% NP40, 10mM Tris, pH 8.0, 20 mM NaCl, 30 mM
MgCl,, 1mM PMSF, and 0.5mg/ml aprotinin and supernatants were prepared by low
speed centrifugation. Transfected His-tagged proteins were precipitated from
supernatants containing equal amounts of protein using Ni-NTA Agarose and washed
with 20mM imidazole in lysis buffer and eluted with 500 mM imidazole and 5SmM EDTA
in phosphate-buffered saline. The eluates containing His-tagged proteins were separated
on SDS-PAGE and Raf-1 proteins were detected by western blotting (Schmitt and Stork,
2000; Vossler et al., 1997). Western blots for Raf-1 were scanned and analyzed using
NIH Image (Version 1.57) to quantitate the amount of Raf-1 protein. Equal amounts of

His-Rapl and His-Ras was confirmed by western blotting.

Affinity assay for Rapl activation in NIH3T3 cells. A GST fusion protein of the
Rapl-binding domain of RalGDS was expressed in Escherichia coli following induction
by isopropyl-1thio-f-D-galactopyranoside (GST-RalGDS was a gift from Dr. Bos,
Utrecht University, The Netherlands to P. J. S. S.). NIH3T3 cells were grown as
described, and were stimulated at 37° C. for the indicated times and immediately lysed in

ice-cold lysis buffer (50 mM Tris-HCL (pH 8.0), 10% glycerol, 1% nonidet P-40, 200
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mM NaCl, 2.5 mM MgCl,, 1 mM phenylmethylsulfonyl fluoride, 1 uM leupeptin, 10
pug/ml soybean trypsin inhibitor, 10 mM NaF, 0.1 uM aprotinin, and 1 mM NaVO,).
Active Rapl was isolated using methods as described by Franke et al. (Franke et al.,,
1997a). Briefly, cell lysates were cleared by centrifugation, and equivalent amounts of
supernatants (500 pg) were incubated with GST-RalGDS-Rap! binding domain pre-
coupled to glutathione beads. Following a 1 hour incubation at 4° C., beads were
pelleted and rinsed threes times with ice-cold lysis buffer, protein was eluted from the
beads using 2X Laemmli buffer and applied to a 12% SDS-polyacrylamide gel. Proteins
were transferred to PVDF membrane, blocked in 5% milk for 1 hour and, probed with
either a-Rapl/Krev-1 or Flag antibody overnight at 4° C., followed by an HRP-
conjugated anti-rabbit secondary antibody (or anti-mouse secondary for anti-Flag blots).

Proteins were detected using enhanced chemiluminescence.

Affinity assay for Ras activation in NIH3T3 cells. NTH3T3 cells were grown as
described, and were stimulated at 37° C for the indicated times and immediately lysed in
ice-cold lysis buffer (50 mM Tris-HCL (pH 8.0), 10% glycerol, 1% nonidet P-40, 200
mM NaCl, 2.5 mM MgCl,, 1 mM phenylmethylsulfonyl fluoride, 1 pM leupeptin, 10
pg/ml soybean trypsin inhibitor, 10 mM NaF, 0.1 uM aprotinin, and 1 mM NaVO,).
Following the manufacturer’s recommended protocol, activated Ras was isolated from
stimulated lysates using agarose coupled GST-Raf1-RBD provided in the Ras Activation
Assay Kit (Upstate Biotechnology, Lake Placid, N.Y.). Proteins were eluted from the
beads using 2X Laemmli buffer and applied to a 12% SDS-polyacrylamide gel. Proteins

were transferred to PVDF membrane, blocked in 5% milk for 1 hour and, probed with
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either a-Ras or Flag antibody as indicated overnight at 4° C., followed by an HRP-
conjugated anti-mouse secondary antibody. Proteins were detected using enhanced

chemiluminescence.

Magnetic selection of transfected NIH3T3 cells. NIH3T3 cells were transfected with
either Flag-Rapl orRap1Gap1 or the pMACS 14.1 control vector along with the pMACS
K“.II positive selection plasmid according to the manufacture’s guidelines (Miltenyi
Biotec, Auburn, CA) (Innocente et al., 1999; Tetsu and McCormick, 1999). Cells were
also transfected with GFP to monitor both selection and protein expression. Briefly, cells
were transfected using Lipofectamine kit (Gibco BRL) for 5 hours and then allowed to
recover for 24 hours. Cells were prepared according to the manufacturer’s guidelines and
incubated with MACSelect K* microbeads for 20 minutes with gentle rocking. Cells
were then passed over sterile-prepared MACS separation columns (type BS) while using
the Vario MACS separation magnet. Columns were washed 4 times with PBE wash
buffer (phosphate buffered saline supplemented with 0.5% bovine serum albumin and 5
mM EDTA). Columns were then removed from the Vario MACS separation magnet and
cells were eluted using Dulbecco-Modified Eagle Medium (DMEM) plus 10% fetal calf

serum and recovered on 10 cm plates. Selected cells were then utilized for Rapl assay,

the MTT assay, and [3H]-thymidine incorporation (described below) at the indicated

times.

MTT Assay for cell proliferation in NIH3T3 cells. NIH3T3 cells were grown as

described, serum starved overnight and plated onto 96 well plates. Cells were then
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treated and incubated as indicated. Two and one-half hours prior to lysis, 20 ul of sterile
2.5 pg/ml MTT was added to the cells and allowed to incubate at 37° C. At the
appropriate time, cells were lysed and proteins solubilized in 50% volume/volume H,0O
and N,N,-dimethylformamide containing 20% SDS, 0.5% of 80% acetic acid, and 0.4%
IM HCL. Plates were read using a microplate reader and presented as the difference

between optical densities at 570 and 650nm.

Thymidine uptake assay for DNA synthesis and proliferation in NIH3T3 cells.
Serum-starved NIH3T3 cells were plated at 2 X 10 cells/well on 96-well plates. Cells
were then treated and incubated with serum or EGF in the presence or absence of
Forskolin pre-treatment, as indicated. The cells were labeled with 1 pci/well [H]-
thymidine (NEN, Boston, MA) 12 hours prior to lysis. Cells were then lysed in 50%
volume/volume H,O and N,N,-dimethylformamide containing 20% SDS, 0.5% of 80%
acetic acid, and 0.4% 1M HCL. Unincorporated counts were aspirated off with an
automated harvester and incorporated counts were harvested onto filters. The amount of

[°H]-thymidine incorporated was determined with an automated TopCount NXT v2.13

scintillation and luminescence counter and software (Packard Instr. Co., Meriden, CT).

RESULTS

Rap1 inhibition of the association of Ras and Raf-1 in Hek293 cells. Epidermal
growth factor (EGF) stimulates cell growth in a variety of cell types, via activation of a
Ras-dependent signaling cascade to ERKs. Following stimulation by growth factors, Ras

is activated and subsequently recruits Raf-1 to initiate the MAP kinase cascade.
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Association with Ras can be utilized as an assay for Raf-1 activation. The association of
endogenous Raf-1 with polyhistidine-tagged Ras (His-Ras) was measured within lysates
harvested from transfected cells using Nickel affinity chromatography, elution, and
western blotting for Raf-1. The Raf-1 antibody is specific for Raf-1 and does not cross
react with B-Raf isoforms (Schmitt and Stork, 2000). In Hek293 cells, EGF, but not
isoproterenol, stimulated the recruitment of endogenous Raf-1 to Ras. Importantly,
EGF’s recruitment of Raf-1 to Ras was inhibited by isoproterenol (Fig. 3.1A),
demonstrating that isoproterenol’s inhibition of Raf-1 activation is occurring at the level
of Ras recruitment of Raf-1, consistent with previous reports in other cell types (Cook

and McCormick, 1993; Graves et al., 1993; Wu et al., 1993). In Hek293 cells,

isoproterenol can signal through endogenous [3,-adrenergic receptors to activate PKA via

Gs-coupled signaling pathways (Daaka et al., 1997; Schmitt and Stork, 2000). In these
cells, isoproterenol can activate Ras, but this action does not require PKA (Schmitt and
Stork, 2000). In contrast, isoproterenol’s inhibition of Raf-1/Ras association was
completely blocked by pretreatment with H89, an inhibitor of the cAMP-dependent
protein kinase PKA (Chijiwa et al., 1990) (Fig. 3.1A), suggesting the involvement of

PKA via the intracellular second messenger cAMP.

Previously, it has been shown that isoproterenol and cAMP could activate the
small G protein Rapl (Schmitt and Stork, 2000; Wan and Huang, 1998). Endogenous
Rapl activity can be selectively inhibited by the expression of RaplGAP1 (Polakis et al.,
1991), a Rapl-specific GTPase-activating protein that can block Rapl pathways when
expressed ectopically within cells (Anneren et al., 2000; Reedquist et al., 2000; York et

al., 2000). To test the hypothesis that Rapl was involved in the inhibition of Raf-1, we
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examined Raf-1 recruitment to Ras in cells transfected with RaplGAP1. EGF stimulated
Raf-1 recruitment to Ras which was unaffected by Rap! inhibition (Fig. 3.1B, lanes 5,
and 6), suggesting that endogenous Rap1 does not participate in EGF signaling to
Ras/Raf-1 in these cells. However, isoproterenol’s ability to inhibit EGF’s actions was
completely blocked following Rapl inhibition (Fig. 3.1B, lanes 7, 8), demonstrating that
endogenous Rapl mediates isoproterenol’s inhibitory effects in these cells. Since Rapl is
activated by isoproterenol through the actions of cAMP and PKA (Schmitt and Stork,
2000), these results show that cAMP/PKA’s inhibition of Raf-1 recruitment to Ras
required Rapl. Interestingly, although isoproterenol by itself was incapable of
stimulating the recruitment of Raf-1 to Ras, blocking Rap1 action with Rap1GAP1
revealed isoproterenol’s ability to recruit Raf-1 to Ras (Fig. 3.1B, lanes 3, 4). We have
previously shown that despite isoproterenol’s ability to activate Ras in these cells,
isoproterenol does not permit signaling from activated Ras to Raf-1/ERK (Schmitt and
Stork, 2000). The data presented here demonstrate that isoproterenol’s activation of
Rap1 uncouples isoproterenol’s activation of Ras signaling from Raf-1, and provides an
explanation for isoproterenol’s inability to activate Raf-1 while activating Ras.

The mechanism of Rap1 antagonism of Ras-dependent signaling pathways is not
well understood. To determine whether or not Rap1 antagonism of Ras function could be
generalizable to other Ras effectors, we examined another Ras effector in these cells:
phosphoinositide 3-kinase (PI3-K) (Downward, 1998b). PI3-K activation can be
monitored by the phosphorylation of the kinase AKT (PKB) at threonine 308, through the
action of PDK1 (Franke et al., 1997b; Peterson and Schreiber, 1999). Isoproterenol

activated AKT in a PKA-independent manner (Fig. 3.1C). This suggests that the
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activation of at least one Ras effector (Raf-1) is blocked by PKA while another (PI3-K) is
not. We have shown that isoproterenol’s activation of Ras in these cells is PKA-
independent (Schmitt and Stork, 2000), and others have shown that this requires the
action of the By subunits of the heterotrimeric G proteins that couple to the B-adrenergic
receptor (Koch et al., 1994). To determine whether the By subunits of G proteins are
necessary for AKT phosphorylation in response to isoproterenol, a peptide derived from
the carboxyl terminus of the f-adrenergic receptor kinase 1 ($-ARKct) that sequesters
GPy subunits (Koch et al., 1993) was transfected into cells. 3-ARKct has previously
been shown to block By-dependent signaling downstream of G protein-coupled receptors
(Lopez-Llasaca et al., 1997). AKT phosphorylation was blocked by B-ARKct expression
(Fig. 3.1D) which suggests that, like isoproterenol’s activation of Ras, isoproterenol’s
activation of AKT is not mediated by Gsat signaling to PKA, but utilizes the By subunits
instead. The Ras-dependence of isoproterenol’s activation of AKT was confirmed by the
ability of RasN17, an interfering mutant of Ras (Stacey et al., 1991), to completely block
the activation of AKT. In contrast, RaplGAP1 (Fig. 3.1D) did not block this activation.
The inability of Rapl to interfere with other Ras-dependent signaling pathways suggests
that Rapl antagonism is selective for Raf-1.

One model for Rapl’s action is that it binds to Raf-1, sequestering it from Ras
(Okada et al., 1999). Indeed, as isoproterenol blocked Raf-1’s recruitment to Ras, it
increased Raf-1 binding to Rap1 (Fig. 3.1E, lane 3). Activation of Rapl was necessary
and sufficient for this effect, since Rapl1GAPI blocked this effect (Fig. 3.1E, lane 4) and
RapV12, a constitutively active mutant of Rapl (Vossler et al., 1997) (but not wild type

Rapl) mimicked this effect. (Fig. 3.1E, lane 2, 7). EGF did not trigger Raf-1 recruitment
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to Rapl (Fig. 3.1E) nor did it stimulate GTP loading (data not shown), confirming that

EGF did not activate Rap1 in these cells.

Rap1 inhibition of the association of Ras and Raf-1 in NIH3T3 cells. The best
studied consequence of Raf-1’s recruitment to Ras is the subsequent activation of the
MAP kinase kinase MEK and ERK (Ahn, 1993; Avruch et al., 1994; Cobb and
Goldsmith, 1995) to stimulate cell proliferation (Mansour et al., 1994; Pagés et al., 1993).
However, the ability of Rapl to antagonize the activation of MEK and ERK and cell
growth is cell type-specific (Altschuler and Ribeiro-Neto, 1998; Dugan et al., 1999;
Vossler et al., 1997; Xing et al., 2000; Yoshida et al., 1992), and depends on the specific
Raf isoform(s) expressed in a given cell (Okada et al., 1999). For example, both cAMP
(Vossler et al., 1997) and Rapl can activate B-Raf (Ohtsuka et al., 1996), a potent
activator of MEK, and both cAMP and Rap1 are activators of ERK signaling in B-Raf-
expressing cells (Vossler et al., 1997). Hek293 cells express the 95 kD isoform of B-Raf
which confers regulation by PKA (MacNicol and MacNicol, 1999; Qiu et al., 2000). In
these cells, both isoproterenol and cAMP/PKA can activate ERK through Rap1 (Schmitt
and Stork, 2000). To examine cAMP’s inhibition of ERK in a B-Raf-negative cell type,
we chose NIH3T3 cells. These cells do not express B-Raf (Vossler et al., 1997), and they
have been a model system for the study of cAMP on ERKSs and cell growth (Chen and
Iyengar, 1994; Wu et al., 1993).

Forskolin is a potent activator of adenylyl cyclase, and rapidly increases cAMP
levels and PKA activity in all cell types. In NIH3T3 cells, Forskolin rapidly activated

Rapl (Fig. 3.2A and B), as measured by a GST-RalGDS assay (Franke et al., 1997a). In
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contrast, EGF did not activate Rap1 (Fig, 3.2B and C), nor did it stimulate the association
between Rapl and Raf-1 (Fig. 3.2D). As an independent test for the requirement of PKA
in Forskolin’s actions, we transfected the cDNA encoding PKI, a specific inhibitor of

PKA (Day et al., 1989). Briefly, cells were transfected with Flag-Rapl, RaplGAP1, PKI,

cPKA (catalytic subunit of PKA), or vector DNA along with cDNA encoding the

truncated mouse MHC class I molecule H-2K*, and transfected cells were separated using

anti-H-2K* coupled to MACSelect K* microbeads (Miltenyi Biotec.), as described in

Materials and Methods. Importantly, either PKI or Rapl1GAPI blocked the actions of
both transfected and endogenous Rapl (Fig. 3.2C). These results demonstrate that
CAMP’s activation of endogenous Rapl in these cells required PKA and was blocked by
Rap1GAPI1. Binding of GTP-Ras to the Ras-binding domain (RBD) of Raf-1 in vitro can
be used to monitor EGF’s stimulation of Ras GTP loading (Fig. 3.2E). While EGF
potently activated Ras, Forskolin did not, nor did Forskolin alter EGF’s activation of Ras
(Fig. 3.2E). This suggests that Forskolin inhibits Ras-dependent activation of Raf-1,
without affecting Ras activation (GTP loading) itself. Moreover, Rap1GAP1 did not
block Ras activation (Fig. 2F), suggesting that its actions on Rap1 (Fig. 3.2C and D) were
selective (Rubinfeld et al., 1991).

Forskolin inhibited Ras recruitment of endogenous Raf-1 in NIH3T3 cells, as shown
for Hek293 cells (Fig. 3.3A and C). The action of Forskolin was blocked by
pretreatment with H89 or transfection of PKI, and was mimicked by RapV 12 (Fig. 3.3A).
Examining endogenous Ras association with myc-tagged Raf-1 showed the same results;
Forskolin blocked EGF’s action, and this was blocked by H89 (Fig. 3.3B). The

requirement of Rapl activation for Forskolin’s inhibition of Ras/Raf-1 association is
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shown in Fig. 3.3C. Inactivating endogenous Rap1 by expressing RaplGAP1 in these
cells prevented Forskolin’s inhibitory actions (Fig. 3.3C, lanes 7 and 8). Not only did the
activation of Rapl by Forskolin uncouple Raf-1 from Ras activation, but it also triggered
the association of Rapl with endogenous Raf-1 (Fig. 3.3D and F). This association
required PKA, since it was blocked by either H89 or PKI (Fig. 3.3D). In addition,
Forskolin stimulated the association of endogenous Rapl with myc-tagged Raf-1 in the
presence or absence of EGF, and this was blocked by H89 (Fig. 3.3E). Moreover, it
required activated Rapl, as it was blocked by the ectopic expression of RaplGAP! (Fig.
3.3F), and could be mimicked by RapV12 (Fig. 3.3D and F). Thus, in both Hek293 and

NIH3T3 cells, cAMP’s inhibition of Raf-1 binding to Ras required Rapl and PKA.

Rap1 and cAMP’s inhibition of ERKSs and cell proliferation in NIH3T3 cells. ERK
activation can be measured by western blotting using phospho-specific antibodies that
recognize the activating phosphates within the ERK activation loop (Yung et al., 1997).
Using this assay, Forskolin inhibited activation of endogenous ERK by EGF in NIH3T3
cells (Fig. 3.4A), confirming previous results (Wu et al., 1993), and this action of
Forskolin, but not EGF, was blocked by H89, demonstrating the specificity of H89 and
confirming a role for PKA in Forskolin’s inhibition of ERKs. An extended time course
of Forskolin’s action is shown in Fig. 3.4B. Activated Rapl (RapV12) did not stimulate
ERKs in NIH3T3 cells; rather it blocked the activation of ERKs by activated Ras
(RasV12) (Fig. 3.4C), suggesting that overexpression of Rapl was sufficient to
antagonize Ras-dependent signals in NIH3T3 cells, as in other cell types (Cook et al.,

1993). The proteins appeared to be expressed to equivalent levels, as judged by Flag
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FIG. 3.2. Rap1 activation by cAMP in NIH3T3 cells. (A) cAMP stimulation activates Rap1. NIH3T3 cells were serum
starved and stimulated with Forskolin for the indicated times. Lysates containing equivalent amounts of protein (500 pg)
were incubated with GST-RalGDS and probed by western blotting for active Rapi. NIH3T3 lysate (3T3 lysate; 10 mg) was
used as a control to indicate the position of Rap1 (upper panel). Total lysates were probed for Rap1 as a control for protein
loading (lower panel). (B) EGF does not activate Rap1 in NIH3T3 cells. Serum starved NIH3T3 cells were treated with EGF
for the indicated times or with Forskolin (5 min). Lysates containing equivalent amounts of protein were incubated with GST-
RalGDS and probed by western blotting for active Rap1. NIH3T3 lysate (3T3 lysate; 50 mg) was used as a control to indi-
cate the position of Rap1 (upper panel). Total lysates were probed for Rap1 to control for protein loading (lower panel). (C)
Rap1GAP1 and PKI block Forskolin’s activation of both transfected and endogenous Rap1. NIH3T3 cells were transfected
with Rap1GAP1, PKI, cPKA, or vector along with pMACS Kk.II, and transfected cells were positively selected (as described
in methods). Transfected cells were treated with Forskolin or EGF, or left untreated, as indicated, and Rap1 assays per-
formed using Gst-RalGDS. Western blotting with anti-Rap1 antibodies identified activation of endogenous Rap1 (lower
band) and transfected Flag-Rap1 (upper band). (D) EGF does not induce the association of Rap1 with endogenous Raf-1.
NIH3T3 cells were transfected with HisRap1 and Rap1Gap1, serum starved, and stimulated with EGF, or Forskolin as a pos-
itive control. Lysates containing equivalent amounts of protein were then purified using a Nickel column and eluates were
examined for the presence of Raf-1 (upper panel) or His-Rapt (lower panel) by western blot using Raf-1 and Rap1 antisera,
respectively. (E) EGF, but not cAMP, activates Ras in NIH3T3 cells. Cells were serum starved, and stimulated with For-
skolin, EGF for the indicated times, or pretreated with Forskolin and then stimulated with EGF. Lysates containing equivalent
amounts of protein were incubated with GST-Raf1-RBD and probed by western blotting for active Ras (upper panel). Total
lysates were probed for Ras to control for protein loading (lower panel). NIH3T3 lysate (3T3 lysate; 50 mg) was used as a
control to indicate the position of Ras. (F) Rap1GAP1 does not interfere with Ras activation. NIH3T3 cells were co-trans-
fected with Flag-Ras and Rap1GAP1 or Flag-Ras alone. Transfected cells were left untreated, treated with Forskolin or EGF
as indicated, and Ras assays were performed using GST-Raf1-RBD. Western blotting with Flag antibody was performed to
identify activated Flag-Ras.
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western blotting (data not shown). To determine whether endogenous Rapl was
necessary for Forskolin’s inhibition of ERK activation, we examined ERK activation in
the presence and absence of RaplGAP1. The expression of RaplGAP1 blocked the
action of Forskolin to inhibit EGF-dependent activation of ERK (Fig. 3.4D). These data
demonstrate that cAMP’s activation of Rapl mediated cAMP’s block of Ras-dependent
signaling to Raf-1, MEK and ERK in NIH3T3 cells. To compare the relative
effectiveness of Forskolin to activate Rap! and inhibit ERK, we examined the dose
dependency of these actions of Forskolin. For both actions, Forskolin showed a similar
EC50 (roughly 1.0 uM) (Fig. 3.4E). H89 blocked both actions of Forskolin with an IC50
of roughly 0.4 uM (Fig. 3.4F), a dose that is selective for PKA (Chijiwa et al., 1990). At
the highest dose used, H89 had no effect on the PKA-independent activation of Rapl by
thrombin (data not shown) (Franke et al., 2000; Schmitt and Stork, 2000). These results
and those using PKI (Fig. 3.3) demonstrate that, in NIH3T3 cells, PKA is required for
Rapl’s activation by cAMP. To determine whether Rapl mediates cAMP’s inhibition of
cell growth in NIH3T3 cells, we first confirmed that Forskolin blocked EGF’s
proliferative actions in these cells. Both EGF and serum (10%) stimulated cell
proliferation, as measured 96 hrs later. Similar results were seen at 24 and 48 hrs (data
not shown). All these proliferative responses were blocked by inhibiting MEK with
PD98059, and by pretreatment with Forskolin (Fig. 3.5A). Forskolin’s actions were
blocked by H89, demonstrating that PKA was required. Forskolin did not induce
apoptotic changes in these cells during the course of the experiment (data not shown).
Taken together, the data confirm that EGF stimulates proliferation via ERK, and that

cAMP/PKA inhibition of ERK activation blocks EGF’s proliferative effects (Fig. 3.5A).
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FIG. 3.4. cAMP blockade of EGF’s activation of ERKs via Rap1. (A) cAMP’s inhibition of ERK phosphorylation
by EGF requires PKA. NIH3T3 cells were serum-starved and treated with Forskolin, H89, or EGF, or pretreated with
Forskolin and/or H89 and then treated with EGF, as indicated. Lysates containing equivalent amounts of protein
were probed for phosphorylation of endogenous ERK (pERK1/2) as well as total ERK (ERK2) to contral for loading.
(B) An extended time course of Forskolin’s inhibition of EGF’s activation of ERK. Cells were treated with EGF,
Forskolin, or H89 for the times indicated and analyzed as in 4A. (C) Rap1 antagonizes Ras' activation of ERKs.
NIH3T3 cells were transfected with cDNAs encoding mycERK2, Flag-RasV12, and Flag-RapV12, serum starved and
treated with EGF as indicated. Lysates containing equivalent amounts of protein were immunoprecipitated (IP) with
conjugated-myc antibody and immunoblotted (IB) by western blotting for phospho-ERK (p-mycERK2) or myc
(mycERK2} to control for protein loading. The levels of both transfected proteins RasV12 and RapV12 are also
shown, following Flag immunopreciptation (IP) and Ras or Rap1 immunoblot (I1B), as indicated (Jower panels). (D)
Rap1 mediates cAMP’s ability to inhibit EGF stimulation of ERK phosphorylation. NIH3T3 cells were transfected with
c¢DNAs encoding mycERK2, RapV12, and Rap1Gap1, serum starved and treated with Forskolin, EGF or pretreated
with Forskolin and then treated with EGF, as indicated. Lysates containing equivalent amounts of protein were
immunoprecipitated with conjugated-myc antibody and probed by western blotting for phospho-ERK (p-mycERK2) or
myc (mycERK2) to control for protein loading. (E) Forskolin activates Rapt and inhibits ERKSs in a dose-dependent
manner. NIH3T3 cells were serum-starved and pretreated with the indicated concentrations of Forskolin and then
treated with EGF, as indicated. Lysates containing equivalent amounts of protein were either probed for
phosphorylation of endogenous ERK (pERK1/2) (top panel), total ERK (ERK2) to control for protein loading (middle
panel}, or used for Rap1 activation assay (lower panel). (F) H89 blocks Forskolin’s activation of Rap1 and its
inhibition of ERKs in a dose-dependent fashion. NIH3T3 cells were serum-starved, pretreated with the indicated
concentration of H89, treated with Forskolin, and then stimulated with EGF, as indicated. Lysates containing
equivalent amounts of protein were either probed for phosphorylation of endogenous ERK (pERK1/2) (top panel),
total ERK (ERK2) to control for protein loading (middle panel), or used for Rap1 activation assay (lower panel).
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To test whether Rapl activation was required for Forskolin’s antiproliferative actions, we
examined proliferation in cells transfected with RaplGAP1 and positively selected as
described in the previous section. In all conditions where Forskolin inhibited the
proliferative effects of EGF or serum, these effects were completely blocked by the

expression of RaplGAPI (Fig. 3.5B). Similar results were seen examining mitogenesis,

as measured by [3H]-thymidine uptake (Fig. 3.6). The ability of EGF or serum to

stimulate [3H]—thymidine uptake was blocked by PD98059, demonstrating the

requirement of MEK for these effects. Forskolin also blocked the mitogenic actions of
both EGF and serum. This inhibition required PKA, as Forskolin’s antimitogenic ac‘tions
were blocked by H89 (Fig. 3.6A). H89 had no effect on the proliferation of untreated
cells. As for cell proliferation, in all conditions where Forskolin inhibited the mitogenic
effects of EGF or serum, these effects were completely blocked by the expression of
RaplGAPI (Fig. 3.6B). These data demonstrate that the activation of endogenous Rapl

is required to mediate cAMP’s inhibition of cell growth and proliferation.

DISCUSSION

Most studies examining cAMP’s inhibition of ERK have focused on cAMP’s regulation
of either Ras (Burgering et al., 1993) or Raf-1 signaling (Cook and McCormick, 1993;
Hafner et al., 1994; Mischak et al., 1996; Sidovar et al., 2000; Wu et al., 1993). This is
largely because of the critical role of Ras signaling in proliferation (Feig and Cooper,
1988), oncogenesis and metastasis (Webb et al., 1998). Ras is thought to stimulate cell

cycle progression by multiple mechanisms (Gille and Downward, 1999). One of the

earliest consequences of Ras action on cell proliferation is the stimulation of G/S
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FIG. 3.6. Requirement of Rap1 for cAMP’s ability to block EGF-induced DNA synthe-
sis. (A) Forskalin blocked DNA synthesis induced by either serum or EGF. NIH3T3 cells
were serum starved, plated into 96 well plates, and placed into either 0.5% serum (low
serum), EGF, or 10% serum (serum} plus Forskolin, PD98059, or H89, as indicated. For-
skolin was applied 5 minutes prior to either EGF or serum addition, as indicated. [3H]-Thy-
midine uptake assays were performed as described in Methods and the data presented as
counts per minute (cpm) (n=5 + S.E.). (B) Rap1Gap1 reverses cAMP’s inhibitory effects
on NIH3T3 cell mitogenesis. NIH3T3 cells were transfected with cDNAs encoding pMACS
14.1 or Rap1GAP1 and pMACS Kk.1l, and positively selected (as described in methods).
Selected cells were serum starved, plated into 96 well plates, and placed into either 0.5%
serum (low serum), EGF, or 10% serum (serum) plus Forskolin, PD98059, or H89, as indi-
cated. Forskolin was applied 5 minutes prior to either EGF or serum addition, as indicated
and [3H]}-thymidine uptake was measured as described in Methods. The bar graph repre-
sents data presented as counts per minute (cpm) from multiple independent experiments
(n=5 + S.E.).
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transition (Gille and Downward, 1999; Takuwa and Takuwa, 1997; Taylor and
Shalloway, 1996). Although Raf-1/ERK is the best studied stimulator of cellular
proliferation in NIH3T3 cells (Cowley et al., 1994; Pagés et al., 1993) as well as other
fibroblast cells (Stang et al., 1997), oncogenic Ras activation of non-Raf-1/ERK
pathways is sufficient to cause malignant transformation (Khosravi-Far et al., 1996).
Specific Ras effectors distinct from Raf-1 have been implicated in Ras’ actions on cell
growth and proliferation in selected cell types, including Rho (Khosravi-Far et al., 1996;
Qiu et al., 1995), Rac-1 (Cobellis et al., 1998; Joyce et al., 1999; Moore et al., 1997;
Olson et al., 1995), PI-3K (Downward, 1995b; Takuwa et al., 1999; Treinies et al., 1999)
and RalGDS (de Ruiter et al., 2000; Hernandez-Munoz et al., 2000; Miller et al., 1997;
Wolthuis et al., 1996). Although the stimulation of cell growth clearly involves multiple
Ras effectors, Raf-1/ERK appear to mediate the initial events in this transition, by
stimulating the expression of cyclin D1 (Gille and Downward, 1999) and possibly by
decreasing the levels of the cell cycle inhibitor p27 (Kawada et al., 1997; Kerkhoff and
Rapp, 1997; Woods et al., 1997). Therefore, cAMP’s inhibition of Ras/ERK signaling
may inhibit cell growth in a variety of cell types where cell cycle proteins are tightly
regulated by ERK. In NIH3T3 cells, growth factor stimulation of cell growth requires
Ras and MEK (Cowley et al., 1994; Mansour et al., 1994), suggesting that Raf-1 is a
critical effector of Ras’ proliferative actions in these cells.

The ability of cAMP to block Ras-dependent signals was examined in both Hek293
and NIH3T3 cells. In Hek293 cells, both Raf-1 and PI3-K are downstream of Ras (Fig.
3.1). Although cAMP inhibited Ras recruitment of Raf-1, it did not block the Ras-

dependent activation of PI3-K, ruling out the general inhibition of Ras function as a
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mechanism for cAMP’s actions. Indeed, recent reports suggest that under certain
circumstances, cAMP can actually stimulate Ras (Busca et al., 2000; Pham et al., 2000;
Tsygankova et al., 2000). The studies presented here using Hek293 cells demonstrate
that cAMP can selectively block Raf-1-dependent processes without affecting Ras
activation and function.

A number of potential models by which cAMP can inhibit Raf-1 signaling have
been proposed, some of which postulate a direct action of PKA on Raf-1 itself (Hafner et
al., 1994; Mischak et al., 1996; Wu et al., 1993). Most studies have examined the
phosphorylation of Raf-1 at serine 43 within the amino-terminus (Wu et al., 1993). In
one study, recombinant Raf-1 phosphorylated by PKA at this site in vitro bound less well
to GTP-loaded Ras than did unphosphorylated Raf-1, although this difference was not
greater than 50%, and was absent when higher concentrations of unphosphorylated and
phosphorylated Raf-1 proteins were examined (Kikuchi and Williams, 1996). Indeed,
contrary conclusions have been drawn from studies performed in vivo. Studies in both
Hek?293 and NIH3T3 cells have demonstrated that phosphorylation at serine 43 in Raf-1
is dispensable for cAMP’s inhibitory effects (Sidovar et al., 2000), and the role of serine
43 phosphorylation in Raf-1 regulation remains unknown.

Support for additional mechanisms of PKA’s ability to regulate Raf-1 comes from
examination of the Raf isoform B-Raf. It has been previously shown that the association
of B-Raf with Ras, like that of Raf-1, is also blocked following cAMP stimulation
(Peraldi et al., 1995; Schmitt and Stork, 2000; Sidovar et al., 2000; Vaillancourt et al.,
1994). B-Raf lacks a PKA consensus site at the residue analogous to serine 43.

Therefore, the ability of cAMP to block B-Raf/Ras association suggests that the direct

87



phosphorylation of Raf cannot fully account for PKA’s inhibition of the Raf family of
kinases (Sidovar et al., 2000). We propose that the same protein or proteins upstream of
both Raf-1 and B-Raf may mediate these effects. Interestingly, like Ras/Raf-1, this block
of Ras/B-Raf association by cAMP is also inhibited by the expression of Rap1GAP1
(data not shown). However, this action does not block ERK activation, since ERKs are
activated by Rapl in B-Raf-expressing cells (Schmitt and Stork, 2000; Vossler et al.,
1997, Xing et al., 2000), via the activation of B-Raf by Rapl itself (Ohtsuka et al., 1996).
Our data suggest that PKA’s actions do not require direct phosphorylation of Raf-
1. Itis possible that cAMP’s activation of Rap1 prevents Ras from associating with Raf-
1 by direct binding as suggested by other studies (Okada et al., 1999; Zhang et al., 1993),
although additional studies may be necessary to establish this model in vivo. For
example, biochemical experiments have shown that Ras has a higher affinity for Raf-1
than does Rapl (Herrmann et al., 1996), suggesting that sequestration of Raf-1 by Rap1
in vivo may only occur when the level of activated Rapl protein exceeds that of Ras.
Given that the transfection of Rapl and Ras result in similar levels of expression (Fig.
3.4C), it is possible that the ability of Rapl to block Ras signals to ERKS in vivo may
proceed by another mechanism. We propose that Rap1 activation by cAMP may block
the activation of Raf-1 by Ras, thereby limiting signals downstream of Raf-1, including
MEK and ERK, resulting in the inhibition of cell proliferation and mitogenesis. These
studies implicating cAMP/PKA activation of Rapl are distinct from those studies in other
cell types identifying a PKA-independent activation of Rapl (Dremier et al., 2000;
Tsygankova et al., 2001; von Lintig et al., 2000), presumably via cAMP-GEFs (de Rooij

et al., 1998; Kawasaki et al., 1998a).
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Studies examining PKA actions on Rap1 have focused on the direct phosphorylation
of Rapl by PKA. PKA phosphorylates both Rapla and Raplb at a site within the
carboxyl terminus (serine 179 in Raplb). Rapl is a target of phosphoryation following
cAMP elevation in vivo (Quilliam et al., 1991; Vossler et al., 1997) and in vitro
(Altschuler and Lapetina, 1993). PKA phosphorylation of Rapl1 at this site has been
proposed to enhance Rap1 activation (Hata et al., 1991), inhibit Rap1 coupling (Hu et al.,
1999), or have only modest effects (Altschuler and Lapetina, 1993).

Although the regulation of Rapl by direct phosphorylation remains controversial,
direct phosphorylation of Rap1 has been proposed to influence its association with
specific effectors (Hu et al., 1999). Hu et al. showed that PKA decreases the association
of Rapl and Raf-1. In contrast, using transfected Rap1b, we show that in both Hek293
cells and NIH3T3 cells PKA increases the association of Raplb with Raf-1 (Figs. 3.1E
and 3.3D, E, and F) via the activation of Rapl itself. In that study, the decrease in
affinity of Rapl and Raf-1 was due to the PKA-dependent phosphorylation of serine 180
in Rapla, which decreases Rapl’s affinity for the cysteine-rich domain of Raf-1. Both
Rapla and Rap1b are targets of PKA phosphorylation in vivo. Therefore, it is unlikely
that the differences in our finding with Hu ez al. relate to differences between the two
Rapl isoforms. Possibly, these differences may be due to distinct biochemical properties
of truncated Raf-1 fragments used in those studies, or may reflect cell type-specific
effects. In any case, the precise mechanism of Rapl stimulation by PK A remains
unknown and the role of PKA’s phosphorylation of Rapl in this process is not well
understood. Importantly, targets of PKA that lie upstream of Rapl itself have not been

ruled out. These targets will be subjects of future research.
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Because Hek293 cells express B-Raf, examination of the inhibitory role of Rapl
in cAMP inhibition of ERKs is complicated by Rap1’s simultaneous activation of B-Raf
and ERKs in these cells (Schmitt and Stork, 2000; Xing et al., 2000). To enable us to
examine the role of Rapl in cAMP-mediated inhibition of ERKs we utilized NIH3T3
cells. These cells express little or no B-Raf (Vossler et al., 1997) and have been
previously used as a model for cAMP-dependent inhibition of cell growth. One study
showed that expression of constitutive activation of Gso. suppresses Ras-dependent
proliferation and cellular transformation (Chen and Iyengar, 1994). In another study,
PKA activation during anchorage-independent growth of these cells blocked ERK
activation by growth factors, in part, via PKA’s inhibition of PAK (Howe and Juliano,
2000). However, inhibition of PAK could not entirely account for PKA’s inhibitory
actions and additional targets of PKA were proposed (Howe and Juliano, 2000).
Interestingly, in studies examining signaling pathways during anchorage-dependent cell
growth, and cell adhesion, Rap! regulation has been reported (Posern et al., 1998;
Reedquist et al., 2000; Tsukamoto et al., 1999).

As with other members of the MAP kinase family (Gong et al., 2000), the kinetics
of ERK activation are critical for determining the consequence of ERK signaling
(McKenzie and Pouyssegur, 1996; Woods et al., 1997; York et al., 1998), and modest
reductions in ERK activation may be physiologically significant. For example, in CCL39
fibroblast cells, PKA inhibition of ERK is transient (McKenzie and Pouyssegur, 1996).
We show in NIH3T3 cells that sustained activation of cAMP blocks ERK activation
completely and for an extended period of time, suggesting that the extent of cCAMP’s

inhibition may be cell type-specific.
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In NIH3T3 cells, EGF stimulated ERK phosphorylation, cell proliferation, and
mitogenesis. EGF’s stimulation of cell proliferation and mitogenesis was blocked by
PD98059 consistent with the requirement for MEK and ERK for growth factor-induced
cell growth in these cells (Cowley et al., 1994; Mansour et al., 1994; Pagés et al., 1993).
cAMP blocked all three aspects of EGF’s actions; stimulation of ERKSs, cell proliferation,
and mitogenesis, suggesting that cAMP’s inhibition of mitogenesis was dictated, in part,
by its inhibition of ERKs. We show here that Rap1 is required for cAMP’s inhibitory
actions of Raf-1, ERK activation, cellular proliferation, and mitogenesis. The ability of
cAMP and PKA to block ERK activation by growth factors inhibits two central aspects of
malignant transformation; cellular proliferation and anchorage-independent cell growth
(Howe and Juliano, 2000). We show here that Rapl is a critical component of PKA’s

inhibition of ERK-dependent mitogenesis.
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ABSTRACT

In fibroblast cells, cAMP antagonizes growth factor activation of ERKs and cell growth
via PKA and the small G protein Rapl. We demonstrate here that PKA’s activation of
Rapl was mediated by the Rapl guanine nucleotide exchange factor C3G, the adaptor
Crk-L, the scaffold protein Cbl, and the tyrosine kinase Src. Src was required for cAMP
activation of Rapl, and the inhibition of ERKs and cell growth. PKA activated Src both
in vitro and in vivo by phosphorylating Src on serine 17 within its amino-terminus. This
phosphorylation was required for cAMP’s activation of Src and Rapl, as well as cAMP’
inhibition of ERKSs and cell proliferation. This study identifies an anti-proliferative role

for Src in the physiological regulation of cell growth by cAMP.

S
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INTRODUCTION

Intracellular signaling by second messengers has played a central role in our
understanding of cell growth and proliferation for many decades (Ryan and Heidrick,
1968). In particular, hormones linked to cAMP have displayed well-studied effects on
cell growth and differentiation (Dhanasekaran et al., 1995). cAMP is synthesized by the
action of adenylyl cyclases which are themselves targets of hormonal regulation.

Positive and negative regulation is achieved via the stimulatory G protein Gs and the
inhibitory G protein Gi, respectively, which activate and inhibit membrane-bound
adenylyl cyclases (Gilman, 1984). The anti-proliferative action of cAMP has been well
studied largely in conjunction with hormone receptors linked to Gs, adenylyl cyclase, and
the activation of the cyclic AMP-dependent protein kinase PKA (Beavo et al., 1974). For
example, hormones like epinephrine, norepinephrine, prostaglandins, adenosine, VIP,
glycagon, and parathyroid hormone inhibit the proliferation of a diverse group of cells
and tissues including myocytes (Graves et al., 1993; Indolfi et al., 1997), adipocytes
(Sevetson et al., 1993), fibroblasts (Burgering et al., 1993; McKenzie and Pouyssegur,
1996; Wu et al., 1993), lung cells (Maruno et al., 1998), endothelial cells (Sexl et al.,
1997), glial cells (Dugan et al., 1997; Wang et al., 2001), osteoblasts (Chaudhary and
Avioli, 1998), chondrocytes (Zuscik et al., 1994), lymphocytes (Tamir et al., 1996), and
hepatocytes (Dixon et al., 1999), via the stimulation of cAMP synthesis and PKA. Given
these growth inhibitory effects, strategies to regulate cAMP and PKA have been

proposed as anti-tumor therapies (Cho-Chung et al., 1999; Puck, 1977; Tortora et al.,

1995).
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One important feature of cAMP’s growth effects is its cell-type specificity
(Burgering et al., 1993). A dramatic example of this specificity takes advantage of the
discovery of Gsp oncogenic mutations within the G protein subunit Gso protein (Lyons
et al., 1990). These mutations lead to constitutively activated Gsct, and hence adenylyl
cyclase and elevated cAMP levels within the human pituitary adenomas in which they are
found (Landis et al., 1989). Interestingly, these oncogenic mutations are anti-
proliferative when introduced into NIH3T3 fibroblast cells (Chen and Okayama, 1987)
but are mitogenic when introduced into Swiss 3T3 cells (Zachary et al., 1990).

This cell-type specificity can be explained by cAMP’s cell-type specific
regulation of the extracellular signal regulated kinase (ERK) (Altschuler and Ribeiro-
Neto, 1998; Burgering et al., 1993; Faure and Bourne, 1995; Schmitt and Stork, 2001;
Zachary et al., 1990). ERK is a critical regulator of cell growth and mediates the
mitogenic effects of many growth factors (Graves et al., 2000). cAMP activates ERKs in
many neuronal and endocrine cells (Busca et al., 2000; Crepieux et al., 2001; Dugan et
al., 1999; Grewal et al., 1999; Seger et al., 2001; Vossler et al., 1997) and potentiates the
action of growth factors (Chen et al., 1999; Yao et al., 1995). In contrast, cAMP inhibits
ERK activation in a variety of non-neuronal cells including NIH3T3 cells (Schmitt and
Stork, 2001), Rat-1 fibroblasts (Burgering et al., 1993; Cook and McCormick, 1993; Wu
et al., 1993), hepatocytes (Dixon et al., 1999), cardiomyocytes, myocytes (Graves et al.,
1993), adipocytes (Sevetson et al., 1993), and others. cAMP blocks growth factor
activation of ERK by PDGF (Graves et al., 1993), FGF (D'Angelo et al., 1997), EGF
(Cook and McCormick, 1993; Wu et al., 1993) and insulin (Sevetson et al., 1993), by

blocking the ability of the small G protein Ras to activate the MAP kinase kinase kinase
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Raf-1 (Burgering et al., 1993; Cook and McCormick, 1993; Graves et al., 1993). Early
studies proposed that PKA phosphorylation of Raf-1 uncoupled Raf-1 from Ras (Wu et
al., 1993), however this has been recently debated (Sidovar et al., 2000).

One candidate mediating cAMP’s inhibition of Raf-1 and ERKs is the small G
protein, Rapl (Dugan et al., 1999; Schmitt and Stork, 2001; Tsygankova et al., 2001).
Rapl is a ubiquitously expressed small GTP-binding protein that is activated by cAMP
(Altschuler et al., 1995). It was first identified in NIH3T3 cells for its ability to
antagonize mitogenic signals (Kitayama et al., 1989) and was subsequently shown to
block Ras-dependent activation of Raf-1 (Cook et al., 1993). Depending on the cell type,
Rapl, like cAMP, can either activate or inhibit ERKs (Altschuler and Ribeiro-Neto,
1998; Dugan et al., 1999; Vossler et al., 1997). In cells where cAMP activates ERKs,
Rapl has been shown to be required for this activation (Dugan et al., 1999; Vossler et al.,
1997, Wan and Huang, 1998). In NIH3T3 cells where cAMP inhibits ERKs, Rap1
mediates this effect as well (Schmitt and Stork, 2001). Despite abundant literature on
cAMP’s ability to activate Rapl (Altschuler et al., 1995; Chen et al., 1999; de Rooij et
al., 1998; Dugan et al., 1999; Seidel et al., 1999; Tsygankova et al., 2001; von Lintig et
al., 2000; Vossler et al., 1997; Wan and Huang, 1998; Zanassi et al., 2001), the
mechanism of cAMP’s activation of Rapl is unknown.

One direct link between cAMP and Rapl came with the discovery of Rap1-
specific guanine nucleotide exchange factors (GEFs) that are themselves activated by
direct binding of cAMP (de Rooij et al., 1998; Kawasaki et al., 1998a). The hallmark of
this route of Rap1 activation is its independence of PKA. These cAMP-activated GEFs

(Epacs, cAMP-GEFs) are expressed in a wide variety of cell types (de Rooij et al., 1998;
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Kawasaki et al., 1998a) and have been implicated in selected cells where cAMP
activation of Rap1l does not require PKA (Dremier et al., 2000; Leech et al., 2000;
Tsygankova et al., 2001). However, in many cell types, Rap1 activation by cAMP
requires PKA (Chen et al., 1999; Dugan et al., 1999; Grewal et al., 2000a; Schmitt and
Stork, 2000; Schmitt and Stork, 2001; Vossler et al., 1997, Wan and Huang, 1998;
Zanassi et al., 2001), and it is possible that cAMP-GEF activates small G proteins other
than Rapl. Recently, a role for cAMP-GEFs has been proposed in physiological
processes that are not thought to involve Rapl (Ozaki et al., 2000). Many other potential
Rapl exchangers have been identified including C3G (Gotoh et al., 1995), CalDag-GEF
(Kawasaki et al., 1998b; Yamashita et al., 2000), GFR (Ichiba et al., 1999), MR GEF
(Rebhun et al., 2000), RasGRP2 (Clyde-Smith et al., 2000), nRap GEP (Ohtsuka et al.,
1999), AND-34 (Gotoh et al., 2000), RA-GEF (Liao et al., 1999), and PDZ-GEF (de
Rooij et al., 1999) for which neither their regulation by cAMP nor their physiological
roles have been examined fully.

In this study, we set out to examine the mechanism by which cAMP activates
Rapl in fibroblast cells. We show that cAMP’s actions require the Rapl exchanger C3G,
which is recruited to the membrane by cAMP in a complex containing the adapter protein
Crk and the scaffold protein Cbl. Surprisingly, cAMP’s recruitment of this complex and
its activation of Rapl required the activation of the Src tyrosine kinase via the direct
phosphorylation within the amino-terminus of Src by PKA. These studies define a novel

cross talk between two well-studied kinases, PKA and Src and demonstrate a role for Src

in mediating PKA’s antiproliferative effects.
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EXPERIMENTAL PROCEDURES

Materials

Phosphorylation-specific ERK antibodies (pERK) that recognize phosphorylated ERK1
(pERK1) and ERK?2 (pERK?2), at residues threonine 183 and tyrosine 185 were purchased
from New England Biolabs (Beverly, MA). Phospho-Src (Tyr416) and phospho-
(Ser/Thr) PKA substrate antibodies were purchased from Cell Signaling Technology
(Beverly, MA). Antibodies to Rapl, C3G, Cbl, Raf-1, ERK2, Src, SOS, c-myc (9E10),
pTyr, and agarose-conjugated antibodies to myc were purchased from Santa Cruz

Biotechnology Inc (Santa Cruz, CA). Flag (M2) antibody, epidermal growth factor

(EGF), platelet-derived growth factor (PDGF), PGE |, isoproterenol, and MTT were

purchased from Sigma (St. Louis, MO). Forskolin, PD98059, PP2, and N- [2-(p-
Bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide (H89) were purchased from Cal
Biochem (Riverside, CA). Nickel agarose (Ni-NTA-Agarose) was purchased from

Qiagen Inc. (Chatswoth, CA.).

Cell Culturing Conditions and Treatments

NIH3T3, SYF, and Src** cells were purchased from ATCC and cultured in Dulbecco-

Modified Eagle Medium (DMEM) plus 10% fetal calf serum, penicillin/streptomycin,

and L-glutamine at 37° C. in 5% CO,. Cells were maintained in serum-free DMEM for
16 hours at 37° C in 5% CO,, prior to treatment with various reagents for

immunoprecipitation assays, membrane preparations, western blotting, and MTT assay.

In all experiments, cells were treated with PDGF (100ng/ml), EGF (100 ng/ml),
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1soproterenol (10 uM), PGE | (10 uM), or Forskolin (10 uM), for 5 minutes unless

otherwise indicated. Where indicated, cells were pretreated with Forskolin for 5 minutes
and then stimulated with EGF or PDGF for 5 minutes. PP2 (10uM), H89 (10 uM), and
PD98059 (10 uM) were added to cells 20 minutes prior to treatment, unless otherwise

indicated.

Western Blotting and immunoprecipitation

Cell lysates and western blotting were prepared as described (Schmitt and Stork, 2001;
Vossler et al., 1997). For detection of Raf-1, ERK2, myc-ERK?2, C3G, Cbl, Crk-L, Flag,
Src, Rapl, phospho-Src, phospho-PKA substrate, and phospho-ERK1/2 (pERK), equal
protein amounts of cell lysate per treatment condition were resolved by SDS-PAGE,
blotted onto PVDF (Millipore Corporation, Bedford, MA) membranes and probed with
the corresponding antibodies according to the manufacturers guidelines. For
immunoprecipitation of myc-ERK2, Src, Flag-Src, Cbl, and myc-Cbl equal amounts of
cell lysate per condition were precipitated at 4° C for 4 to 6 hours in lysis buffer. Proteins
were then resolved by SDS-PAGE, blotted onto PVDF membranes and probed with the
indicated antibodies. All western blots and immunoprecipitations were performed at least

three times, and representative gels shown.

Plasmids and Transfections
The wild type Src cDNA was purchased from Upstate Biotechnology (Lake Placid, NY).
The wild type Flag-Src construct was generated following subcloning Src into Bluescript

KS (Clonetech, Palo Alto, CA). The N-terminal half of Src was then cut with Hind 11
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and an internal BspHI site. The C-terminal half of Src was generated by PCR from wild
type Src, using specific primers to the sequence

(sense 0ligo:ATGTCCCCAGAGGCCTTCCTGCAGGAC and antisense oligo:
TTAAATCCTAGGTTCTCCCCGGGCTCGTACTGTGGCTCAGTGGA) and then cut
with BspHI and BamHI and subcloned with the N-terminal fragment of Src into pcDNA3
containing a 2X C-terminal Flag. SrcS17A and Src17S-D were generated by PCR
directed mutagenesis. Coding regions of all plasmids were sequenced in both directions
prior to transfection. Wild type Fyn, Lck, and Yes were provided by Andrey Shaw
(Washington University, St. Louis, MI) and subcloned into pcDNA3. Cbl-ct was
provided by Brian Druker (OHSU, Portland, OR). SrcK296R (d.n.Src) was provided by

Karin Rodland (OHSU, Portland, OR). NIH3T3, SYF, or Src** cells were co-transfected

at seventy to eighty percent confluency with the indicated cDNAs using a Lipofectamine
2000 kit (Gibco BRL) according to the manufacturer’s instructions. The control vector,
pcDNA3 (Invitrogen Corp.), was included in each set of transfections to assure that each
plate received the same amount of DNA. Following transfection, cells were allowed to
recover in serum containing media for 24 hr. Cells were then starved overnight in serum-

free DMEM before treatment and lysis.

Src kinase assay

SYF cells were transfected with the indicated cDNAs and left untreated or stimulated
with Forskolin, as indicated. Following immunoprecipitation and washing of Flag
proteins, samples were subjected to an in vitro protein tyrosine kinase assay according to

the manufacturer's guidelines (Life Technologies-Invitrogen, Carlsbad, CA). The assay
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utilizes a peptide substrate (RR-Src) specific for tyrosine kinases. Immunoprecipitated
proteins were reconstituted in 10 pl of buffer and incubated with 10 ul of either 2X
substrate solution or 2X control solution both containing 0.5 uCi [y-*P]JATP. The
reaction mixture was incubated at 30° C for 30 minutes and the reaction was stopped by
the addition of 20 ul of ice cold 10% trichloroacetic acid. Following a 10-minute spin at
4° C and 14,000 rpm, 20 ul of supernatant from each reaction was spotted onto individual
phosphocellulose discs. Discs were washed 2X in 1% acetic acid, placed into
scintillation vials, and counted using a scintillation counter. Specific activity
incorporated into peptide was calculated according to the manufacturer's guidelines and

presented as counts per minute (cpm).

Nickel Affinity Chromatography

INIH3T3 cells were transfected using Lipofectamine reagent with polyhistidine-tagged
Rapl (His-Rapl) as previously described (Schmitt and Stork, 2000; Schmitt and Stork,
2001). Briefly, cells were lysed and supernatants were prepared by low speed
centrifugation. Transfected His-tagged proteins were precipitated from supernatants
containing equal amounts of protein using Ni-NTA agarose and washed with 20mM
imidazole in lysis buffer and eluted with 500 mM imidazole and SmM EDTA in
phosphate-buffered saline. The eluates containing His-tagged proteins were separated on
SDS-PAGE and Raf-1 proteins were detected by western blotting (Schmitt and Stork,

2000; Schmitt and Stork, 2001).

Affinity Assay for Rap1 Activation
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Active Rapl was assayed as previously described by Franke et al. (Franke et al., 1997a).
Equivalent amounts of supernatants (500 ug) were incubated with GST-RalGDS-Rapl
binding domain coupled to glutathione beads. Following a 1 hour incubation at 4° C,
beads were pelleted and rinsed threes times with ice-cold lysis buffer, protein was eluted
from the beads using 2X Laemmli buffer and applied to a 12% SDS-polyacrylamide gel.
Proteins were transferred to PVDF membrane, blocked in 5% milk for 1 hour and, probed
with either a-Rap1/Krev-1 or Flag antibody overnight at 4° C., followed by an HRP-
conjugated anti-rabbit secondary antibody (or anti-mouse secondary for anti-Flag western

blots). Proteins were detected using enhanced chemiluminescence.

Membrane Preparations and Rapl Activation

Cells were starved and stimulated with Forskolin for 5 min or pretreated or post-treated
with H89 and then stimulated Forskolin, as indicated. After treatment, cells were lysed in
ice cold lysis buffer. Nuclei and cytoskeleton were removed from equivalent amounts of
lysate by centrifugation at 5,000 rpm for 5 min. The supernatant was then spun at
100,000 X g for 1 hour at 4° C and, the resultant membrane was resuspended in cold lysis
buffer. Aliquots of the membrane fraction were analyzed for the presence of C3G by
western blotting. The cytosolic or membrane fractions of treated or untreated cells were
mixed with equivalent amounts of lysates from untreated Flag-Rapl transfected cells.
The mixture was incubated at 37° C for 5 minutes and equal amounts of lysate were

subjected to the Rapl activation assay (as described above).

Immunodepletion
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The membrane fractions of treated or untreated cells were resuspended in equal volumes
of lysis buffer. 10 ul of either C3G, SOS, or ERK?2 antibodies (200ug/ml stock) were
added to the membrane fraction and immunoprecipitated 6 hours at 4°. Following the
immunoprecipitation, the precipitates were cleared from the tubes and analyzed by
western blotting for C3G. The remaining membrane components were either incubated
at 37° C for 5 minutes with equal amounts of Flag-Rapl lysate and subjected to the Rap1

activation assay (as described above) or analyzed by western blotting for C3G.

Phosphorylation of Src Peptides

A peptide identical to amino acids 9-25 within the amino-terminus of Src, which contains
potential PKA phosphorylation sites, was generated using an Auto-Spot Robot ASP 222
(ABIMED, Langenfeld, Germany) and spotted onto membranes. Similar to previous
protocols (Tegge et al., 1995), the membranes were pre-incubated at room temp.
overnight in buffer containing 20 mM Hepes, pH 7.4, 100 mM NaCl, 2 mM MgCl,, ImM
EDTA, ImM DTT, and 0.2 mg/ml BSA. Membranes were then blocked at 30° C for 1
hour in buffer containing 20 mM Hepes, pH 7.4, 100 mM NaCl, 2 mM MgCl,, ImM
EDTA, ImM DTT, and 1 mg/ml BSA and 30 uM cold ATP. To perform the kinase
‘assay, the membranes were incubated at 30° C for 30 minutes in buffer containing 20
mM Hepes, pH 7.4, 100 mM NaCl, 2 mM MgCl,, ImM EDTA, 1mM DTT, and 0.2
mg/ml BSA, and 12.5 nM purified catalytic subunit of PKA (a gift of John Scott, Vollum
Institute). Membranes were washed at room temp. 10 X 10 minutes in 1M NaCl, 3 X 5

minutes in ddH,0, 3 X 10 minutes in 5% H,PO,, and 3 X 5 in ddH,0. The membranes
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were then blocked, probed, and analyzed using chemiluminescence according the

manufacturers guidelines for the phospho-PKA substrate antibody.

Selection of Transfected Fibroblasts

SYF cells were transfected with either pcDNA3 vector, Flag-Src, Flag-SrcS17A, Flag-
SrcS17D or the pMACS 14.1 control vector along with pMACS K*.II positive selection
plasmid as specified by the manufacturers guidelines (Miltenyi Biotec) (Tetsu and
McCormick, 1999). Cells were transfected and selected similar to previously published
methods (Schmitt and Stork, 2001). Following the selection of SYF cells, cells were
eluted in DMEM plus 10% fetal calf serum and recovered for 24 hours on 10 cm plates.

SYF cells were then used for the MTT assay (described below) at the indicated times.

MTT Assay for Cell Proliferation

SYF and Src™™ cells were grown as described, and subjected to the MTT cell growth assay as
previously described (Schmitt and Stork, 2001). Briefly, cells were serum-starved overnight
and plated onto 96 well plates. Cells were then treated and incubated as indicated. Two and
one-half hours prior to lysis, 20 ul of sterile 2.5 pg/ml MTT was added to the cells and allowed
to incubate at 37° C. At the appropriate time, cells were lysed and proteins solubilized in 50%
volume/volume H,O and N,N,-dimethylformamide containing 20% SDS, 0.5% of 80% acetic
acid, and 0.4% 1M HCL. Plates were read using a microplate reader and presented as the

difference between optical densities at 570 and 650nm.

104



RESULTS

cAMP/PKA Activation of Rap1 Requires C3G

Forskolin is a potent activator of adenylyl cyclases and rapidly elevates intracellular
cAMP levels (Seamon and Daly, 1986). Forskolin’s activation of endogenous Rapl in
NIH3T3 cells is blocked by pretreatment of cells with H89, a selective inhibitor of PKA
(Chijiwa et al., 1990), as well as the protein kinase inhibitor of PKA, PKI (Schmitt and
Stork, 2001), demonstrating that cAMP’s activation of Rapl required PKA in these cells.

PKA phosphorylates Rap1 directly (Altschuler and Lapetina, 1993; Altschuler et
al., 1995; Vossler et al., 1997), but the consequences of this phosphorylation are not clear
(Hata et al., 1991; Hu et al., 1999; Tsygankova et al., 2001). To test the possibility that
PKA activates Rapl by phosphorylating proteins lying upstream of Rapl, we examined
the ability of lysates from Forskolin-treated cells to activate Rapl within lysates prepared
from unstimulated cells. In Figure 4.1A, we show that lysates from Forskolin-treated
cells retained the ability to activate Flag-Rap1 expressed in untreated cells, and this
activation in trans was blocked by pretreatment with H89, confirming a role for PKA.

To ask whether PKA was required to activate Flag-Rap1 directly, we added H89
ten minutes after the addition of Forskolin to permit PKA-dependent phosphorylation of
substrates to occur prior to mixing of Forskolin-treated and untreated Flag-Rap1-
expressing lysates. Interestingly, lysates from cells in which H89 was applied after
Forskolin were still able to activate Flag-Rap1 in trans (Figure 4.1A). Since this protocol
ensures that PKA can not phosphorylate Flag-Rap1 directly, these results demonstrate

that PKA can activate Rapl via proteins upstream of Rap1.
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Figure 4.1. PKA stimulation of Rap1 activity occurs via stimulation of membrane-associated C3G, Crk,
and Cbl. (A) PKA’s activation of Rap1 is indirect. Separate plates of NIH3T3 cells were either transfected with
Flag-Rap1 or stimulated with Forskolin. Forskolin treated cells received either a pretreatment (pre-tx) or post-
treatment (post-ix) with H89. Flag-Rap1 lysates were incubated with treated lysates and analyzed for Flag-Rap1
activation (Flag-Rap1-GTP) by Gst-Ral GDS. Flag-Rap1 levels are shown in the lower panel.

(B) PKA activates Rap1 via a membrane-associated protein. Separate plates of NIH3T3 celis were treated as in
Figure 1A. Forskolin treated cells received a pretreatment (pre-tx) with H89. The cytosolic (C) or membrane (M)
fractions from treated lysates were prepared and incubated with Flag-Rap1 lysates and analyzed for Flag-Rap1
activation as in Figure 1A. Flag-Rap1 levels are shown in the lower panel.

(C) C3G is necessary for Rap1 activation by PKA. Membranes of lysates from untreated or Forskolin treated
NIH3T3 cells were incubated with the immunoprecipitating antibodies C3G, SOS, or ERK2, as indicated and the
remaining supernatant (supe) analyzed for the presence of C3G by western blot {top panel). The membrane
supernatant was then incubated with lysates from Flag-Rap1 transfected cells and analyzed for Flag-Rap1 acti-
vation (Lower panels, Flag-Rap1-GTP). Flag-Rap1 levels are shown in the bottom panel.

(D) Forskolin stimulation recruits C3G into membranes. NIH3T3 cells were left unireated or stimulated with For-
skolin in the presence or absence of H89. Membranes were then analyzed for C3G by western blot (upper
panel). Total cell lysates were also examined for the presence of C3G (lower panel).

(E) Forskolin stimulates Cbl tyrosine phosphorylation in a PKA and Src-dependent manner. NIH3T3 cells were
treated with Forskolin in the presence or absence of H89 or PP2 and endogenous Cbi was immunoprecipitated
from cell lysates and analyzed by western blot for tyrasine phosphorylation (pTyr). Lower panel: Total cell
lysates were also examined for endogenous Cbl by western blot (Cbl).

(F) C3G, Crk-L, and Cbl form a complex following Farskolin treatment of NIH3T3 cells. Cells were left untreated
or stimulated with Forskolin, PDGF, or EGF. Myc-Cbl was immunoprecipitated from cells and the pellets ana-
lyzed by western blot using antibodies specific for Crk-L and C3G (upper and middle panels, respectively). Total
cell lysates were examined for myc-Cbl by western blot using a myc antibody (lower panel).
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We next investigated whether the proteins required to activate Rapl reside within the
membrane or cytosolic components of the treated cells. Only the membrane fraction of
Forskolin-treated NIH3T3 cells could activate Rapl in trans and this required PKA
(Figure 4.1B). Previous studies have suggested that the Rap1-GEF, C3G, might be
involved in cAMP activation of Rapl (Schmitt and Stork, 2000). In the following
experiments, we asked whether removing C3G from this membrane fraction would limit
Forskolin’s activation of Rapl. In Figure 4.1C, we show that immunodepletion with
antibodies to C3G, but not control antibodies, eliminated C3G from the membrane (supe;
upper panel). Membranes immunodepleted of C3G could no longer activate Rapl in
trans (Figure 4.1C, lower panels), whereas immunodepletion of the related Ras
exchanger, SOS, did not block Forskolin’s effects. Immunodepletion of ERK2 served a
negative control.

It has been proposed that C3G may be recruited to membranes upon its activation
(Tanaka et al., 1994). As shown in Figure 4.1D, C3G rapidly moved into the membranes
following Forskolin stimulation, and this required PKA. Taken together, these data
demonstrate that PKA activation of Rapl was indirect and required a component of the

membrane fraction of treated cells that we determined to be the Rapl GEF, C3G.

cAMP/PKA Activation of Rap1 requires Crk-L, Cbl, and Src

C3G exists in the cytoplasm in a complex with a member of the Crk family of small
adaptor molecules including Crk-L, Crk-I, and CrkII (Knudsen et al., 1994; Tanaka et al.,
1994). Upon stimulation by growth factors, the Crk/C3G complex is thought to be

recruited to the membrane where it binds to scaffolding molecules including FRS2 (Kao
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et al., 2001), IRS-1 (Sorokin et al., 1998), and Cbl (Reedquist et al., 1996; Xing et al.,
2000). All of these molecules are tyrosine phosphorylated following growth factor
stimulation and bind Crk upon phosphorylation via Crk’s SH2 domain. Multiple scaffold
molecules are expressed in NIH3T3 cells including Cbl and IRS-1 (Broome et al., 1999).
IRS-1 1s not tyrosine phosphorylated by Forskolin in these cells (Calleja et al., 1997).
Surprisingly, endogenous Cbl was tyrosine phosphorylated following Forskolin
stimulation of NIH3T3 cells (Figure 4.1E). This phosphorylation was inhibited by either
H89 or PP2, a selective inhibitor of Src family kinases (SFKs) (Hanke et al., 1996),
suggesting that both PKA and SFKs are required for this effect (Figure 4.1E). NIH3T3
cells express Crk-L (Figure 4.1F), an isoform of Crk that is constitutively bound to C3G
(Kiyokawa et al., 1997). Forskolin treatment of NIH3T3 cells stimulated the formation
of a complex containing C3G, Crk-L, and Cbl (Figure 4.1F), which was also blocked by
both H89 and PP2 (data not shown). Interestingly, neither PDGF nor EGF stimulated the
formation of this complex (Figure 4.1F).

To investigate whether this Cbl/Crk/C3G complex was required for Rap1
activation by PKA, we transfected NIH3T?3 cells with Flag-Rapl and one of the
following mutants: CBR, a truncated form of C3G which interferes with Crk function;
Cbl-ct; a carboxyl-terminal fragment of Cbl that blocks Cbl function, or a kinase-dead
Src mutant (SrcK296R, or d.n.Src). As can be seen in Figure 4.2A, Rap! activation by
Forskolin was blocked by each interfering mutant. Transfection of constitutively active
Src (SrcY527F, or c.a.Src) is sufficient to activate Rapl, and this also required both
C3G/Crk as well as Cbl (Figure 4.2B). Thus, cAMP’s activation of Rapl involves the

recruitment of C3G/Crk to a membrane-associated complex with Cbl, and Src is both
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Figure 4.2. cAMP activation of Rap1 and inhibition of ERKs occurs via C3G, Crk-L, Cbl, and Src family
kinases in NIH3T3 cells

(A) Crk, Cbl, and Src are required for Rap1 activation by cAMP. NIH3T3 cells were transfected with Flag-Rap1
along with d.n.Src, Cbl-ct, and CBR, and left untreated or stimulated with Forskolin. Lysates were then analyzed
for Flag-Rap1 activation. The lower panel is a western blot control for levels of Flag-Rap1 expression.

(B) Constitutively active Src (c.a.Src) activates Rap1 via Crk and Cbl. Flag-Rap1 was co-transfected with ¢.a.Src
into NIH3T3 cells, along with CBR and Cbl-ct. Cells lysates were then analyzed for Flag-Rap1 activation. The
lower panel is a western blot control for levels of Flag-Rap1 expression.

(C) Isoproterenol activates endogenous Rap1 via PKA and SFKs. Cells were left untreated or treated with isopro-
terenol in the presence or absence of either H89 or PP2. Lysates were then analyzed for activation of endoge-
nous Rap1 (Rap1-GTP). The lower panel is a western blot control for levels of Rap1 expression.

(D) C3G, Crk, Cbl, and SFKs mediate cAMP-stimulated Rap-1 association with Raf-1. NIH3T3 cells were trans-
fected with His-Rap1 along with either CBR or Chl-ct. Cells were left untreated or stimulated with Forskolin, as
indicated. His-Rap1 was purified from lysates using a Nickel column and eluates were analyzed by western blot
for the presence of Raf-1 (top panel) and His-Rap1 (lower panel).

(E) SFKs and PKA are necessary for cAMP’s ability to inhibit EGF-mediated activation of ERKs in NIH3T3 cells.
Cells were treated with Forskolin or EGF, in the presence or absence of either H89 or PP2. Cell lysates were ana-
lyzed by western blot for phosphorylation of endogenous ERK1/2 (pERK, top panel) or total ERK2 (bottom panel).
(F) SFKs and PKA are necessary for cAMP’s ability to inhibit PDGF-mediated activation of ERKs in NIH3T3 cells.
Cells were left untreated or treated with Forskolin and/or PDGF, as indicated, in the presence or absence of either
H89 or PP2. Cell lysates were analyzed by western blot for phosphorylation of endogenous ERK1/2 (pERK, top
panel) or total ERK2 (bottom panel).
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necessary and sufficient for this action. Next, we determined whether this pathway was
shared by hormones and agonists of G protein-coupled receptors (GPCRs) that are known
to be linked to Gsow and cAMP. Isoproterenol, an agonist of the 2-adrenergic receptor
has been shown to activate Rapl (Schmitt and Stork, 2001). Both isoproterenol and
prostaglandin PGE, activated Rapl in NIH3T3 cells via PKA and SFKs (Figure 4.2C and
data not shown). These data demonstrate that Forskolin and hormonal elevation of

cAMP use similar mechanisms to activate Rapl.

PKA'’s Inhibition of ERKSs and Cell Proliferation Requires Src
The antagonism of growth factor signaling by Rapl1 is thought to be due to Rap1’s ability
to sequester Raf-1 away from Ras (Cook et al., 1993). In NIH3T3 cells, we have
previously shown that cAMP/PKA triggers the association of Rapl and Raf-1, and that
this requires active Rapl (Schmitt and Stork, 2001). In Figure 4.2D, we show that this
association was blocked by CBR, Cbl-ct, and PP2 suggesting that sequestration of Raf-1
by Rapl, as well as Rap1 activation itself, required C3G, Crk, Cbl, and SFKs. Next, we
investigated the requirement of SFKs in cAMP’s antagonism of ERK activation.
Forskolin blocked both EGF and PDGF-mediated ERK activation in NIH3T3 cells
(Figures 4.2E and 4.2F), similar to what has been shown in other cells (Cook and
McCormick, 1993; Graves et al., 1993). Although inhibition of SFKs had no effect on
- either EGF’s or PDGF’s activation of ERKs, it prevented Forskolin’s inhibition of ERKs
(Figures 4.2E and 4.2F).

To directly examine the role of Src in cAMP’s activation of Rapl, we used mouse

embryonic fibroblasts in which the genes encoding Src, Yes, and Fyn have been ablated
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(SYF) (Klinghoffer et al., 1999). As a control, we used fibroblasts that were ablated for
Yes and Fyn, but remained wild type at the Src locus (Src™) (Klinghoffer et al., 1999). Tt
has been previously shown that PDGF stimulation of ERKs and proliferation does not
require Src family kinases in SYF cells (Klinghoffer et al., 1999). Therefore, this model
system is well suited to examine Src’s potential anti-proliferative role in cAMP signaling.

As expected, cAMP was able to inhibit PDGF-mediated ERK activation in Src** cells.

However, cAMP was not able to do so in SYF cells (Figure 4.3A). Moreover, although

cAMP robustly activated Rapl in Src™ cells, cAMP did not activate Rapl in SYF cells

(Figure 4.3A, lower panel). Similar responses to cAMP (activation of Rapl1, inhibition of
ERKSs) were seen in SYF cells that were transfected with wild type Flag-Src (Figures
4.3B and 4.3C). Taken together these results demonstrate that Src mediated cAMP’s
inhibition of ERK via Rapl activation. The ability of Src to mediate cAMP’s activation
of Rapl was not shared by related members of the SFK family including Yes, Fyn, and
Lck (Figure 4.3D), suggesting that this action of Src is unique among SFKs.

Since the scaffolding protein Cbl appeared to be required for PKA’s activation of
Rapl in NIH3T3 cells (Figure 4.2A), we next asked whether Src was required for the
PKA-dependent phosphorylation of Cbl in mouse embryonic fibroblasts. As in NIH3T3
cells, Forskolin stimulated the tyrosine phosphorylation of Cbl in a PKA- and Src-

dependent fashion in Src*™ cells (Figure 4.3E), as well as SYF cells reconstituted with

Flag-Src (Figure 4.3F), but did not stimulate Cbl phosphorylation in untransfected SYF
cells (Figure 4.3E).

PDGEF stimulation of proliferation was dependent on ERK signaling in both Src™

and SYF cells, as shown by experiments using the selective MEK inhibitor PD98059
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Figure 4.3. Inhibition of growth factor-mediated activation of ERKs and cell proliferation by cAMP requires Src kinase

(A) Src kinase is necessary for Forskolin’s activation of Rap1 and inhibition of ERKs in Fibroblasts, Src++ or SYF cells were
untreated or stimulated with Forskolin and/or PDGF, as indicated. Lysates were analyzed by western blot for activation of either
endogenous ERK1/2 (pERK, top panel), or Rapl (Rap1-GTP, bottom panel). Lysates were also examined for total ERKs to control
for protein loading (ERK2, middle panel).

(B) Wild type Src restores the ability of cAMP to inhibit ERKs in SYF cells. Cells were transfected with the indicated cDNAs and
stimulated as in panel A. Lysates were analyzed by western blot for phosphorylation of myc-ERK2 (pmyc-ERK?2, top panel). The
lysates were also probed with antibodies to ERK2 as a loading and transfection control. Note the detection of transfected myc-ERK2
migrating just above endogenous ERK?2 (bottom panel).

(C) cAMP activates Rapl in SYF cells that have been transfected with wild type Src. SYF cells were transfected with Flag-Rapl
and Flag-Src as indicated, and stimulated with Forskolin in the presence or absence of H89 or PP2. Cell lysates were examined for
Flag-Rapl activation.

(D) Only Src can reconstitute cAMP activation of Rapl in SYF cells. SYF cells were transfected with Flag-Rap1 and cDNAs
encoding wild type Sre, Yes, Fyn, or Lck, and stimulated with Forskolin. Cell lysates were examined for Rapl activation (Flag-
Rapl-GTP).

(E) Tyrosine phosphorylation of endogenous Cbl by cAMP stimulation is rescued by Src. Src++ or SYF cells were treated with For-
skolin in the presence or absence of H89 or PP2. Endogenous Cbl was immunoprecipitated from cell lysates and analyzed by
western blot for tyrosine phosphorylation of Cbl (pTyr, top panel) or total Cbl protein (Cbl, bottom panel).

(F) Reconstitution of SYF cells with wild type Src restores Cbl tyrosine phosphorylation. Fibroblasts were transfected with myc-
Cbl and Src, as indicated, and treated with Forskolin in the presence or absence of H89 or PP2. Myc-Cbl was immunoprecipitated
from cell lysates and examined by western blot for either tyrosine phosphorylation (pTyr, upper panel), or myc-Cbl as a control for
transfection and protein loading (bottom panel).

(G) cAMP stimulation blocks growth factor-stimulated cell growth in Src++ cells. Fibroblasts were treated with PDGF, EGF, For-
skolin, H89, and/or PD98059 (PD), as indicated. Cells were analyzed 48 hours later by MTT assay (see experimental procedures)
and data was quantified (n=4 + S.E.).

(H) cAMP’s inhibition of cell growth by PDGF and EGF is prevented in cells lacking Src kinase, Cells were treated with PDGF,
EGF, Forskolin, H89, and/or PD98059 (PD), as indicated. Cells were analyzed 48 hours later by MTT assay (see experimental pro-
cedures) and data was quantified (n=4 + S.E.).
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(Dudley et al., 1995) (Figures 4.3G and 4.3H), which is similar to previous results

examining EGF’s action in NIH3T3 cells (Schmitt and Stork, 2001). Forskolin treatment
of Src™" cells completely inhibited this response in a PKA-dependent manner (Figure

4.3G). However, in SYF cells, Forskolin was unable to inhibit growth factor stimulation
of cell growth (Figure 4.3H). These data demonstrate for the first time a requirement for

Src in cAMP’s anti-proliferative actions.

PKA Phosphorylation of Src at Serine 17
To examine the mechanism of cAMP regulation of Src, Src kinase activity was assayed
in vivo by monitoring the autophosphorylation of Src itself, on tyrosine 416 (Brown and
Cooper, 1996; Martin, 2001). Forskolin stimulated phosphorylation of tyrosine 416 in
both endogenous Src (Figure 4.4A) and transfected Flag-Src (Figure 4.4B). This required
the kinase activities of both PKA and Src (Figures 4.4A and 4.4B). Activated Src
associates with and directly phosphorylates Cbl in vivo (Thien and Langdon, 2001).
Forskolin treatment induced an association between Src and Cbl in Flag-Src-transfected
SYF cells which was also dependent on the kinase activities of both PKA and Src (Figure
4.4C). These data suggest that PKA stimulates Src kinase activity as measured by Src’s
autophosphorylation and association/phosphorylation with one of its endogenous
substrates, Cbl.

Src contains one consensus PKA site at serine 17 (Serl7) within its amino-
terminus that represents the major site of serine phosphorylation within Src (Brown and
Cooper, 1996, Cross and Hanafusa, 1983; Roth et al., 1983). To provide additional

evidence that PKA phosphorylates endogenous Src in vivo, we used an antibody designed
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to recognize substrates phosphorylated by PKA (provided by Cell Signaling, Beverly,
MA). This antibody recognizes phospho-serine/threonine residues that are preceded by
arginine at the -3 position (RXXpS/T), comprising the recognition site of PKA as well as
other arginine-directed kinases that are not activated by Forskolin (Kemp and Pearson,
1990). Indeed, the ability of this antibody to recognize Src protein was increased by
Forskolin treatment, in a manner that required kinase activity of PKA (but not Src)
(Figure 4.4D). Using this antibody, we examined the ability of PKA to phosphorylate
Serl7 directly. Peptide fragments containing the N-terminal 5-25 amino acids of wild
type Src (WT) were phosphorylated in vitro by the catalytic subunit of PKA. Control
peptides with serines 12 and/or 17 replaced by alanine (S12A, S17A, and S12AS17A),
serine 17 replaced by aspartate (S17D), and arginines at 14-16 replaced by alanine
(R14A,R15A R16A), as well as peptides designed to both a scrambled and an unrelated
(FLAG) sequence, were also included (Figure 4.5A). Only the peptides containing Serl17
and adjacent arginines (WT and S12A) were recognized by the antibody, consistent with
the consensus PKA recognition motif (Kemp and Pearson, 1990) (Figure 4.5A). These
studies verify the utility of this antibody for these and subsequent studies.

Next, we examined the requirement of Serl7 for PKA phosphorylation of Src in
vivo. For these experiments, we transfected a cDNA encoding a Src protein that had its
serine at residue 17 substituted by an alanine (Flag-SrcS17A). Following transfection
and Forskolin treatment, we detected phosphorylation of wild type Src but not Flag-
SrcS17A (Figure 4.5B), confirming that Serl7 was the major PKA phosphorylation site
located within Src that was recognized by this antibody, consistent with the findings of

Erickson (Collett et al., 1979) and Hanafusa (Cross and Hanafusa, 1983). In summary,
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Figure 4.5. PKA Phosphorylates Src on serine 17 in vitro and in vivo
See next page for figure legend.
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Figure 4.5. PKA phosphorylates Src on Ser17 in vitro and in vivo

(A) PKA directly phosphorylates Serl7 of Stc in vitro. N-terminal Src peptides (whose
sequences are indicated in the figure) were spotted onto membranes and incubated with
the catalytic subunit of PKA. Membranes were then examined for PKA phosphorylation
using the phospho-PKA substrate antibody.

(B) PKA phosphorylates wild type Src but not SrcS17A in vivo. SYF cells were
transfected with either Flag-Src or Flag-SrcS17A and stimulated with Forskolin or PDGF
or EGF, as indicated. Flag-Src was immunoprecipitated from cell lysates and analyzed
by western blot for either PKA phosphorylation of Src [phospho-Src (phospho-PKA Ab),
upper panel] or the presence of Flag-Src (bottom panel).

(C) Forskolin activates wild type Src, but not SrcS17A, in SYF cells. Cells were
transfected with either Flag-Src or Flag-SrcS17A and treated with Forskolin and/or
PDGF or EGF, as indicated. Flag-Src was immunoprecipitated from cell lysates and
analyzed by western blot for either phosphorylation of Src on tyrosine 416 (pSrc416,
upper panel) or the presence of Flag-Src (bottom panel).

(D) cAMP stimulates tyrosine kinase activity of wild type Src protein, but not the
SrcS17A mutant. SYF cells were transfected with Flag Src, Flag-SrcS17A, or Flag-
SrcS17D and treated with Forskolin as indicated. Kinase activity was assayed following
Flag immunoprecipitation using RR-Src peptide as an in vitro substrate. Activity was
measured as cpm incorporated into peptide and the data quantified (n=3 + S.D.).

(E) SrcS17D displays constitutive phosphorylation of 416. SYF cells were transfected
with either Flag-Src (WT) or Flag-SrcS17D(S17D) and treated with Forskolin, as
indicated. Proteins were immunoprecipitated from cell lysates using the Flag antibody
and analyzed by western blot for either phosphorylation of Src on tyrosine 416 (pSrc416,
upper panel) or the presence of the Flag epitope (bottom panel).

(F) SrcS17D induces constitutive activation of Rapl. SYF cells were transfected with
Flag-Rapl and either pcDNA3 vector DNA (V) or Flag-Src (WT) and treated with
Forskolin, or transfected with Flag-SrcS17D(S17D) as indicated. Lysates were then
analyzed for Rap1 activation (Flag-Rap1-GTP). The lower panel is a western blot control
for levels of Flag-containing proteins (Flag-Src and Flag-Rapl).

(G) SrcS17D inhibits PDGF activation of ERKs. SYF cells were transfected with
mycERK?2 and either vector DNA (V), Flag-Src (WT), or Flag-SrcS17D(S17D) and
treated with PDGF plus or minus Forskolin, as indicated. ERK phosphorylation was
assayed following myc immunoprecipitation and western blotting (pmycERK?2). The
lysates were also probed with antibodies to ERK2 (mycERK?2) as a loading and
transfection control.

(H) SrcS17D inhibits PDGF-mediated cell growth. SYF cells were transfected with
either pcDNA3 (Vector), Flag-Src, Flag-SrcS17A, or Flag-SrcS17D and transfected cells
were positively selected. Fibroblasts were treated with Forskolin and/or PDGF. Cells
were analyzed 48 hrs later by MTT assay and data quantified (n=4 + S.E.).
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we have demonstrated the specificity of the phospho-PKA substrate antibody and have
shown that Src is primarily phosphorylated both in vitro and in vivo at Ser17 by PKA, but
not by EGF or PDGF (Figure 4.5B).

The activation of wild type Src by Forskolin was confirmed by two assays,
autophosphorylation of Src at 416 (Figure 4.5C) and in vitro kinase (Figure 4.5D).
Forskolin was unable to activate the SrcS17A mutant in either assay (Figures 4.5C and
4.5D). Interestingly, a Src mutant containing aspartate at position 17 (SrcS17D) showed
elevated kinase activity (Figure 4.5D) and constitutive phosphorylation on tyrosine 416
that was not further increased by Forskolin treatment (Figure 4.5E). In addition, SYF
cells expressing SrcS17D showed constitutive Rap1 activation (Figure 4.5F) and blocked
ERK activation in response to PDGF (Figure 4.5G), and inhibited growth factor
activation of cell proliferation (Figure 4.5H). This is consistent with the mutant aspartate
residue mimicking serine phosphorylation at this site. These data suggest that PKA
activation of Src in vivo requires Ser17, and this site specifically mediates cAMP’s
activation of Src. Importantly, EGF as well as PDGF activated both wild type Src and
SrcS17A equally (Figure 4.5C). Moreover, both SrcS17A and wild type Src potentiated
PDGEF stimulation of cellular proliferation to the same degree (Figure 4.5H). These data
demonstrate that the SrcS17A mutant retained proper protein folding for activation of
catalytic activity by growth factors and was capable of participating in growth factor

signaling pathways.

Ser17 Phosphorylation and Activation of Src is Required for Rapl Activation and

ERK Inhibition by PKA
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To investigate the requirement of Serl7 phosphorylation of Src in cAMP’s activation of
Rapl, Rapl activation was assayed in SYF cells expressing the mutant Src protein (Flag-
SrcS17A). In contrast to wild type Flag-Src, Flag-SrcS17A was not able to reconstitute
Forskolin’s activation of Rapl1 in these cells (Figure 4.6A), suggesting that PKA
phosphorylation of Ser17 on Src was required for Rapl activation. Interestingly,
expression of SrcS17A inhibited the ability of Forskolin to stimulate Rap1 activation in

Src™* cells as well, despite the presence of endogenous wild type Src in these cells

(Figure 4.6B). This may suggest that overexpression of the mutant interfered with the

function of endogenous Src to mediate cAMP’s action. As seen in NIH3T3 cells, d.n.Src,
Cbl-ct, and CBR all blocked Forskolin’s actions in Src*™ cells (Figure 4.6B). Next, we

examined the role of Serl7 in Forskolin’s ability to inhibit PDGF’s activation of ERK.
Again, only wild type Src, but not Src17A, restored Forskolin’s inhibition of ERK in
SYF cells (Figure 4.6C).

To determine whether Flag-SrcS17A could block cAMP’s inhibition of cell
growth, SYF cells were transfected with either Flag-Src or Flag-SrcS17A, selected, and
assayed for cell proliferation. PDGF and EGF both stimulated SYF cell growth in an
ERK-dependent manner that was blocked by PD98059 (Figure 4.6D). Expression of
Flag-Src in SYF cells restored Forskolin’s ability to inhibit PDGF- and EGF-mediated
cell growth. In contrast, expression of Flag-SrcS17A in these cells was not able to
restore Forskolin’s ability to inhibit either PDGF or EGF-stimulated cell growth (Figure
4.6D). Taken together, we have shown that phosphorylation of Serl7 of Src is a primary

target of PKA and that phosphorylation of this site is required for cAMP’s ability to
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activate both Src and Rap1, as well as to antagonize growth factor signaling to both

ERKSs and cell growth.
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DISCUSSION
PKA phosphorylation of Src

It was suggested over twenty years ago that Src was a direct substrate of PKA. In 1978,
Erickson and colleagues demonstrated an increase in phospho-serine within Src’s amino-
terminus following treatment with cAMP (Collett et al., 1978; Collett et al., 1979) that
increased the kinase activity of Src (Roth et al., 1983). A consensus PKA site at Serl7 of
both v-Src and c-Src was proposed to be the major site of serine phosphorylation in both
Src proteins (Takeya et al., 1982). Although deletion of amino acids 15-27 within v-Src
reduced serine phosphorylation of v-Src, this did not interfere with constitutive kinase
activity or oncogenicity of the mutant v-Src protein (Cross and Hanafusa, 1983), and no
physiological role for phosphorylation at Ser17 has since been proposed (Brown and
Cooper, 1996). Interestingly, we show here that the SrcS17A mutant also retained proper
activation by growth factors, consistent with the lack of effect of this mutant on
proliferative pathways. We suggest that the inability of previous studies to identify a role
for this phosphorylation was due, in part, to the focus on Src’s proliferative functions at
that time. Here we show that the PKA site at Serl7 of Src regulated Src’s anti-

proliferative effects.

Src kinase in G protein signaling

Src has been implicated in hormonal signaling via other GPCR-linked pathways to
activate the MAP kinase cascade. For example, mitogenic G protein signaling via
thrombin, bradykinin, and lysophosphatidic acid signal through Src to couple G protein

By subunits and Src to activate Ras (Chen et al., 1994; Crespo et al., 1994; Della Rocca et
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al., 1997, Luttrell et al., 1996). Similarly, other studies examining B-adrenergic receptor
signaling to ERKs have identified a requirement for Src downstream of G Py in the
activation of Ras (Daaka et al., 1997).

B-adrenergic receptors can also activate Rap1 via PKA and Src (Figure 4.2C).
The requirement for PKA in the activation of Src in this pathway is distinct from other
models where adrenergic receptor or Gso can activate Src directly (Cao et al., 2000; Ma
et al., 2000). In cells expressing the Raf isoform B-Raf, this activation results in ERK
activation (Schmitt and Stork, 2000). In many other cells that express B-Raf, cAMP
activation of Rapl1 can activate ERKs (Chen et al., 1999; Qiu et al., 2000; Vossler et al.,
1997). It is possible that Src may be important for Rapl activation in these and other

cells where PKA and Rapl can activate ERKSs, as well as in fibroblast cells where PKA

and Rap] inhibit ERKs.

Cbl/C3G/Crk in Src signaling

The studies shown here demonstrate that the positive regulation of Rapl by PKA is
indirect, and requires the Rapl activator C3G. C3G was the first Rapl GEF cloned
(Gotoh et al., 1995) and has recently been shown to be required for Rapl-mediated cell
adhesion (Ohba et al., 2001), as well as activation of Rap1 by growth factors (Kao et al.,
2001; York et al., 1998). We show here that cAMP’s activation of PKA triggers the
recruitment of Crk-C3G complexes to the scaffold protein Cbl (Thien and Langdon,
2001). Coupled with the previous studies that show that Crk/C3G is required for

isoproterenol’s activation of Rapl (Schmitt and Stork, 2000), these data strongly suggest
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that the Cbl/Crk/C3G complex is assembled following stimulation of cells by both
cAMP-linked hormones and selected growth factors.

The Crk/C3G complex is recruited to a wide variety of membrane-targeted
molecules following growth factor signaling. For example, Crk/C3G is recruited to the
membrane by integrins (Buensuceso and O'Toole, 2000) and insulin via binding of the
SH2-domain of Crk to phosphorylated membrane proteins (Okada et al., 1998; Okada
and Pessin, 1997). In addition, NGF, HGF, and T cell receptors all recruit Crk/C3G to
the membrane using three different docking proteins: NGF uses FRS2 (Kao et al., 2001),
HGF uses Gab1 (Sakkab et al., 2000), and T cell receptors use Cbl (Reedquist et al.,

1996). Interestingly, neither EGF not PDGF induced formation of this complex in
NIH3T3 cells (Figure 4.1F) or Src*™ cells (data not shown).

Src activation of Cbl/Crk/C3G can be triggered by pathways other that those
initiated by cAMP/PKA. For example, Src-family kinases have been proposed to
phosphorylate specific sites in Cbl to initiate binding of Crk. In lymphocytes, Cbl
phosphorylation and Crk/C3G recruitment correlate with the activation of the SFK Fyn
(Anderson et al., 1997; Boussiotis et al., 1997). In erythroid cells, erythropoietin induces
the formation of a Cbl/Crk/C3G complex via the SFK Lyn (Arai et al., 2001a).
Overexpression studies examining the activation of Src via the proteins Sin (Src
interacting protein) (Alexandropoulos and Baltimore, 1996) and Cas (Crk-associated
substrate) (Sakai et al., 1994) have also demonstrated a Src-dependent assembly of
Crk/C3G that functions to activate Rapl (Xing et al., 2000). Cbl has also been shown to
act downstream of Src in osteoblast reabsorbtion (Tanaka et al., 1996) and upstream of

Rapl in the regulation of integrin-dependent cell adhesion of fibroblasts (Teckchandani
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et al., 2001) and hematopoietic cells (Arai et al., 2001b). The studies presented here are
consistent with previous reports defining Cbl as a negative regulator of ERK signaling
(Rellahan et al., 1997) and cell growth (Broome et al., 1999; Murphy et al., 1998; Thien
and Langdon, 2001). Although Cbl-mediated ubiquination and degradation of mitogenic
signaling contributes to these actions (Lee et al., 1999; Miyake et al., 1999), we propose
that Rapl1 is an additional anti-proliferative target.

These studies demonstrate that Src is required for the ability of cAMP/PKA to 1)
assemble a Cbl/Crk/C3G complex; 2) activate Rapl; 3) inhibit growth factor stimulation

of ERKSs; and 4) inhibit cell proliferation. The pathway utilized by Src is schematized in

Figure 4.7.

Anti-proliferative actions of Src

By identifying an anti-proliferative action of Src coupled to the second messenger cAMP,
we extend the possible physiological roles of this proto-oncogene (Thomas and Brugge,
1997). Following the discovery of c-Src as the cellular homologue of v-Src, it was clear
that ¢-Src could not replicate the oncogenic potential of v-Src (Iba et al., 1984; Johnson et
al., 1985). Physiological roles for c-Src in non-proliferative functions such as cell
motility, differentiation (D'Arcangelo and Halegoua, 1993), and adhesion are now well
established (Parsons and Parsons, 1997; Thomas and Brugge, 1997). However, defining
its role in growth factor signaling has been more complex. SFKs have been shown to be
important in mitogenesis by some (Boney et al., 2001; Broome and Hunter, 1996) but not
all growth factors (Roche et al., 1995a). Src, Fyn and Yes are all activated by PDGF, yet

all three SFKs appear dispensable for PDGF’s activation of ERKs and stimulation of
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mitogenesis when examined in immortalized mouse embryo fibroblasts lacking all known
SFKs (Klinghoffer et al., 1999). Consistent with this result, we show that although
inhibition of SFKs blocked cAMP's inhibition of ERK, it did not block the activation of
ERKs by either PDGF or EGF. This suggests that in these cells, Src activation of Rapl
and inhibition of ERKs may be more significant than Src’s potentiation of ERK
signaling. In other cell types, it is likely that Src can exert anti-proliferative effects
downstream of cAMP, as well as proliferative effects downstream of growth factors
within the same cell.

One of the surprising conclusions of this study is that specific modes of activation
of Src can trigger distinct effector pathways of Src. In this regard, it is significant that
SrcS17A selectively inhibited cAMP-dependent activation of Src, but retained the ability
to be activated by growth factors and to potentiate growth factor-induced proliferation.
We propose that hormonal activation of Src via PKA may utilize a mechanism of
activation that is distinct from that used in growth factor activation of Src. Similar
models have been proposed examining “ligand” activation of Src by both Sin and Cas,
which results in Rapl, but not Ras, activation (Xing et al., 2000). This contrasts with the
activation of both Ras and Rapl by constitutively active v-Src (Xing et al., 2000). It has
also been proposed that Ras mediates between distinct intracellular signals initiated by v-
Src (Qureshi et al., 1992), suggesting that the consequences of Src activation can be
regulated at multiple levels.

It is possible that the selective response of Src following activation by PKA
reflects the restricted activation of downstream effectors. This restricted response may be

due to phosphorylation-dependent changes in subcellular localization of Src, as
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previously proposed (Walker et al., 1993) and/or the regulation of the binding of
accessory proteins to Src’s amino-terminus. Like other known binding proteins, this
binding regulates the activity of the Src kinase domain (Sicheri and Kuriyan, 1997; Xu et
al., 1999), as shown for other Src-binding proteins (Ma et al., 2000; Moarefi et al., 1997;
Xing et al., 2000).

In summary, we have demonstrated a requirement for Src in cAMP’s activation of
Rapl, inhibition of ERKSs, and inhibition of cell growth using molecular,
pharmacological, and genetic tools. These actions require the direct phosphorylation of
Src on Serl7 by PKA itself. This represents a novel example of a physiological
regulation of Src function by PKA. More importantly, it identifies for the first time a

physiological role of Src in the anti-proliferative actions of hormones linked to increased

levels of intracellular cAMP.
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CHAPTER FIVE

CONCLUSIONS AND FUTURE DIRECTIONS



CONCLUSIONS
cAMP and the regulation of Src, Rap1l, ERKSs and cell growth

The past 30 years has seen tremendous advances in our understanding of how hormones
and cAMP regulate cellular physiology (Koyama et al., 2001). Over the last decade, it
has also become well established that ERKs are important in the regulation of cellular
proliferation and differentiation in many cell types (Kerkhoff and Rapp, 1998;
Mazzucchelli and Brambilla, 2000). In particular, hormonal regulation of ERKs through
G protein-coupled receptors (GPCRs) and cAMP has become an exciting area of cell
biology. ERKSs have been shown to mediate both hormonal and growth factor stimulation
of proliferation and/or differentiation (Ariga et al., 2000; Schmitt and Stork, 2001;
Vossler et al., 1997). One area of cell signaling that has developed in recent years is
understanding how cAMP pathways may crosstalk with growth factor pathways to
regulate ERKs and cell growth. In many cell types, cAMP stimulation inhibits growth
factor activation of ERKs (Chen and Iyengar, 1994; Cook and McCormick, 1993) while
in others CAMP may activate ERKs (Chen et al., 1999; Vossler et al., 1997). Work
presented in this thesis has demonstrated the ability of cAMP to both activate (Schmitt
and Stork, 2000) and inhibit (Schmitt and Stork, 2001) ERKSs depending on the cell type.
The small G protein Rap1 has also emerged as a critical player in cAMP’s regulation of
ERKSs and cell growth (Schmitt and Stork, 2001). Similar to cAMP, results presented
here suggest that Rapl either activates or inhibits ERKs depending on the cell-type
expression of B-Raf. More importantly, these data demonstrate for the first time that
hormonal elevation of cAMP/PKA requires Rapl as a mediator of ERK inhibition
(Schmitt and Stork, 2001). Previous work from our laboratory, as well as data supplied

here have also demonstrated the requirement for Rap! in cells where cAMP activates
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ERKs. Thus, cAMP signaling uses a similar signaling mechanism for both ERK
inhibition and activation.

The ability of cAMP to activate ERKs was demonstrated here in Hek293 cells.
This cell line was a valuable tool for examining GPCR signaling to Gs/cAMP/PKA and
ERKs because they express both endogenous 3-adrenergic receptors and B-Raf (Schmitt
and Stork, 2000). These cells are responsive to stimulation with the B-adrenergic agonist,
isoproterenol, which is crucial for examining the intrinsic signaling pathways
downstream of GPCRs and Gs. The results presented in this thesis, demonstrate that
hormones coupled to cAMP can activate a Rap1/B-Raf-dependent pathway to activate
ERKs in Hek293 cells. The physiologic outcome of this pathway was not examined in
these cells and may provide an area for future study in the laboratory. However, the
activation of this pathway has been shown to have important physiologic outcomes in
PC12 cells, where cAMP promotes neuronal differentiation (Vossler et al., 1997).
Interestingly, isoproterenol has also been shown to induce hypertrophy of primary mouse
cardiac myocytes (Xiao et al., 1999; Zou et al., 1999) and increase ERKs and long term
potentiation in the CA1l area of the hippocampus (Vanhoose et al., 2002). Indeed, it was
suggested that the Rap1/B-Raf module may play a role in mediating these cellular
responses in the hippocampus (Vanhoose et al., 2002) .

Isoproterenol stimulation of Hek293 cells also activated the small G protein Ras.
Rapl and Ras activation proceeded nearly simultaneously, however active Ras was
unable to bind to Raf-1 and contribute to ERK activation (See Figure 5.1). This is in
contrast to previous work suggesting that Ras activation by the B-adrenergic receptor may

activate ERKs (Daaka et al., 1997). One explanation for these differences may be that
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Figure 5.1. Model for 3-adrenergic receptor activation of ERKs. Isoproterenol
stimulation of the B-adrenergic receptor, in Hek293 cells, results in the activation of Rapl
through Gas, cAMP, and PKA. Rap] activation results in stimulation of B-Raf and ERKs.
Ras is activated by isoproterenol through the Gys subunits or growth factors. Rapl
activation blocks Ras activation of Raf-1 and ERKSs, but not AKT.
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Ras signaling to ERKs was suggested by studies which over expressed the B-adrenergic
receptor (Pierce et al., 2000). Over expression of GPCRs have been shown to cause
several deleterious effects including augmentation of ERK activation (Wang et al., 2000)
and receptor hetero-dimerization which may cause enhanced signaling activities (Liu et
al., 2000; Rocheville et al., 2000). Furthermore, the precise role of Ras in ERK
activation was not examined with interfering mutants of Ras, but rather with molecules
believed to interfere with Ras activators (Daaka et al., 1997). Interestingly, data
described in this thesis does demonstrate the first example of isoproterenol’s ability to
activate the serine/threonine kinase AKT through a By and Ras pathway. Subsequent
studies have confirmed AKT activation through the By subunits following B-adrenergic
stimulation (Schmidt et al., 2001b). AKT has previously been shown to be stimulated
downstream of Ras activation (Datta et al., 1996; Downward, 1998b; Gille and
Downward, 1999). AKT is a serine/threonine kinase known to participate in a variety of
cellular effects including cell survival, adhesion, and growth (Downward, 1995a;
Downward, 1995b; Downward, 1998a; Downward, 1998b). Interestingly, GPCR and
Gy activation of CHO cell growth has been shown to be mediated by AKT (Sellers et
al., 2000). Examining the mechanism of isoproterenol’s activation of AKT and its
physiological significance is a goal of future studies.

Isoproterenol simultaneously stimulated both a Rap1/B-Raf/ERK and Ras/AKT
pathway (See Figure 5.1). Recent data has suggested that Ras activation by GPCRs may
occur through a switching from Gs to Gi followed by transactivation of receptor tyrosine
kinases (RTKs) (Daaka et al., 1997; Maudsley et al., 2000; Pierce et al., 2000). We have

shown that the Rap1 pathway required a Gso/cAMP/PK A while the Ras pathway did not.
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Surprisingly, Ras activation proceeded primarily through a Gi and RTK-independent
mechanism. This is the first data to suggest that the GsBy subunits mediate Ras
activation in a signaling pathway downstream of GPCRs. This is consistent with the
observation that the By subunits may mediate Ras activation (Luttrell et al., 1997)
however, the precise mechanism of fy activation of Ras has not been determined.

The inability of Ras to signal to Raf-1 and ERKSs following isoproterenol
stimulation was a surprising result. This data suggested that cAMP and/or Rapl may be
antagonizing Raf-1 activation in Hek293 cells. cAMP and PKA have been proposed to
inhibit growth factor activation of Raf-1 and ERKSs in several cell types (Burgering et al.,
1993; Cook and McCormick, 1993; Wu et al., 1993). A number of mechanisms have
been suggested for this inhibition including direct phosphorylation of Raf-1 by PKA in
vitro (Wu et al., 1993). As mentioned previously, PKA is unable to directly inhibit Raf-1
in vivo (Sidovar et al., 2000). Work presented here and elsewhere suggests that Rapl is a
candidate protein to antagonize growth factor activation Raf-1 and ERKs (Cook et al.,
1993). Rapl has previously been shown to inhibit Ras activation of ERKs and cell
growth in fibroblasts (Cook et al., 1993; Kitayama et al., 1989). In addition, work
presented within this thesis clearly demonstrates the importance of cAMP/PKA to
activate Rapl (Schmitt and Stork, 2002; Schmitt and Stork, 2000; Schmitt and Stork,
2001). Therefore, we examined both the biochemical and physiological contribution of
Rapl in cAMP’s inhibition of ERKs and cell growth in NIH3T3 cells. Importantly,
NIH3T3 cells do not express B-Raf (Vossler et al., 1997). Consistent with previous
studies, both epidermal growth factor (EGF) and platelet-derived growth factor (PDGF)

stimulated Ras, Ras/Raf-1 association, ERK, and cell growth in NIH3T3 cells (Marais et
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al., 1998; Marais et al., 1995; Marshall, 1999; Roche et al., 1995b). cAMP stimulation
but not growth factors activated Rapl in these cells however, previous work has
suggested that growth factors may stimulate Rap1 in certain cell types (Garcia et al.,
2001; Posern et al., 1998; Sakkab et al., 2000; Zwartkruis et al., 1998). For example,
EGF and NGF have both been shown to activate Rap1 in neuronal cells (Kao et al., 2001;
Vossler et al., 1997; York et al., 1998). The varying ability of specific growth factors to
activate Rapl may be due to cell-type specific effects or different timepoints of activation
analysis. cAMP stimulation of NIH3T3 cells both dose- and time-dependently activated
Rapl and blocked ERK activation (Schmitt and Stork, 2001). Interestingly, the EC,, for
Rapl activation and IC,, or ERK inhibition displayed similar values. Moreover, cAMP’s
activation of Rap1 blocked Ras/Raf-1 association, and recruited endogenous Raf-1 onto
Rapl in NIH3T3 cells. Taken together, this data would suggest that Rap1 may be
mediating cAMP’s inhibition of ERKs. To examine the requirement for Rapl in cAMP’s
inhibition of ERKs and cell proliferation we employed a molecular approach.

Several molecular tools have been generated to examine the signaling role of Rapl and
Ras proteins including, constitutively active mutants, interfering mutants, inhibitory
GTPases (GAPs), and activators (GEFs). Expression of the constitutively active Rapl,
RapV12, recruited Raf-1 association and inhibited both growth factor- and Ras-mediated
activation of ERKs (Schmitt and Stork, 2001). Some studies have disputed the ability of
the interfering mutant, RapN17 to block Rap1 activation (van den Berghe et al., 1999)
however, our laboratory has made use of the Rap1 inhibitory protein, Rap1Gapl (Schmitt
and Stork, 2001; York et al., 2000). Activation of Rapl but not Ras was completely

inhibited by Rapl1Gapl moreover, cAMP’s ability to inhibit growth factor stimulation of
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- ERKSs and cell growth was absent in cells expressing Rap1Gap1 (Schmitt and Stork,
2001). These data are the first to demonstrate a requirement for Rap1 in mediating
cAMP’s inhibitory effects in fibroblasts (See Figure 5.2). Moreover, the actions of Rapl
are consistent with the original observation that Rapl may antagonize ERKs and Ras-
dependent cell transformation (Cook et al., 1993; Kitayama et al., 1989). Studies
examining Rapl activation in fibroblasts have also shown its ability to bind Raf-1(Okada
et al., 1998; Okada and Pessin, 1997), but Rapl is unable to activate Raf-1 (Okada et al.,
1999). Taken together, these data argue that Rapl antagonizes ERK activation and cell
growth by binding and sequestering Raf-1 away from Ras. It is important to note that the
requirement for Rapl’s binding to Raf-1 to inhibit ERKSs has not been directly tested.
However, one recent study has also suggested that Rap!’s ability to bind Raf-1 may
indeed be important for inhibiting Raf-1 signaling (Li et al., 2002).

A major focus of this thesis is that Rap1 is an important regulator of cAMP
signaling. The results from this thesis and elsewhere (Altschuler et al., 1995), have
suggested that Rap1’s activation by GPCRs and cAMP require PKA activation. In
particular, the ability of cAMP to activate Rap1 and inhibit ERKs and cell growth was
PKA-dependent (Schmitt and Stork, 2001). The mechanism for how PKA may activate
Rapl has been the focus of a number of studies including results presented here. The
inability of PKA to directly activate Rapl (Altschuler and Lapetina, 1993; Schmitt and
Stork, 2002) suggested that PKA may activate Rapl by phosphorylating an upstream
target of Rapl. A number of GEFs for Rapl have recently been identified including, Cal-

DAG-GEFI, Cal-DAG-GEFII, PDZ-GEEF, Epac1/2, C3G, and others (Grewal et al.,
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1999). Neither the mechanism for how these activators of Rapl are regulated nor their
physiological relevance have been examined.

C3G was the first activator of Rapl1 to be identified and it associates with the
adaptor molecule Crk-L (Gotoh et al., 1995). Early results from our laboratory suggested
that NGF’s activation of Rapl may require C3G (York et al., 1998). Work presented
here extends these findings to include the requirement for C3G in GPCR-stimulated
activation of Rapl by PKA (Schmitt and Stork, 2002). Moreover, PKA stimulated the
recruitment of C3G and Crk-L into the membrane fraction of cells, which was required
for Rapl activation. In contrast to previous studies (Sakkab et al., 2000), C3G and Crk-L
were not recruited into the membrane fraction of fibroblasts following growth factor
stimulation. This is consistent with our data which suggests that Rapl is not activated by
growth factors. C3G and Crk-L where also found to be associated with the large adapter
molecule Cbl following its tyrosine phosphorylation. The C3G/Crk-L/Cbl molecules
were each required for Rapl activation by PKA. Recent work has alsq suggested that
C3G and Crk-L may associate with the adaptor and scaffold molecules Sin and Cas,
respectively to activate Rapl (Kao et al., 2001; Xing et al., 2000). These proteins appear
to be important for Rap1 activation in certain model systems however, their function
downstream of PKA signaling to activate Rap1 has yet to be reported. Moreover, it will
also be important to examine the ability of Cas and Sin to associate with Cbl following
PKA stimulation.

One surprising finding from this thesis work was that PKA activation resulted in
tyrosine phosphorylation of Cbl. Cbl contains several tyrosine phosphorylation sites

(Thien and Langdon, 2001). We did not examine the exact residue(s) of Cbl
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Cell Growth
Proliferation

Figure 5.2. Rap1 mediates cAMP/PKA’s inhibition of ERKs and cell growth.
Stimulation of cAMP leads to Rap1 activation. Rapl is able to bind to and
antagonize Ras-dependent activation of Raf-1. Inhibition of Raf-1 by Rap1 blocks

growth factor stimulation of ERKs and cell growth.
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phosphorylation following cAMP stimulation, although Cbl phosphorylation could be
blocked with pharmacological inhibitors of Src kinases. This would suggest that Cbl
phosphorylation occurred on one or more Src-specific sites which are important for Crk-
L binding to Cbl through its SH2 domain (Thien and Langdon, 2001). It will be
important to determine which sites of phosphorylation are specific to PKA stimulation,
and which Cbl domains are important for Rapl activation in fibroblasts as well as other
cell systems.

Our demonstration that Src is required for PKA’s assembly of C3G/Crk-L/Cbl
and activation of Rap1 and inhibition of ERKSs raised a number of interesting questions.
For example, is Src important for PKA’s activation of Rapl in other cell types?
Definitive proof came with our observation that cAMP/PKA’s ability to activate Rapl
and inhibit ERKSs and cell growth was abolished in fibroblasts derived from mice lacking
Src (Schmitt and Stork, 2002). ERK activation and proliferation by growth factors is not
blocked in cells lacking Src (SYF), however cell migration is dramatically reduced
(Klinghoffer et al., 1999). Therefore, these cells provide a good model system to
examine the requirement of Src in cAMP’s activation of Rapl and inhibition of ERKs
and cell growth. Itis interesting to speculate as to whether under certain circumstances
Rapl may also play a role in Src’s regulation of cell adhesion, as Rap1 has been proposed
to play a role in cell adhesion (Bos et al., 2001; Ohba et al., 2001; Posern et al., 1998;
Tsukamoto et al., 1999). In support of our model, recent work by Matsuda et al.
demonstrated the requirement for Rap1 in C3G-dependent cell adhesion (Ohba et al.,

2001). Interestingly, a role for the C3G/Crk-L/Cbl pathway to Rap1 was also suggested
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recently in Src-mediated fibroblast adhesion (Li et al., 2002). It will be important to
examine the role of the Src to Rapl pathway using physiologic stimuli, such as integrins.
The ability of PKA to activate Src was observed in both fibroblasts expressing
only endogenous Src (Src++) as well as the SYF cells reconstituted with wild type Src.
These results are consistent with early studies which demonstrated the ability of PKA to
activate Src kinase activity (Collett et al., 1979; Collett and Erikson, 1978; Roth et al.,
1983). Src contains a consensus PKA phosphorylation site at serine 17, which was
proposed to be the site of PKA’s activation of Src (Brown and Cooper, 1996; Roth et al.,
1983). Indeed, work presented within this thesis suggests that serine 17 is the only site
within Src that is phosphorylated by PKA (Schmitt and Stork, 2002). This
phosphorylation of Src is both necessary and sufficient for PKA to activate Rapl and
inhibit ERKSs and cell growth in fibroblasts (See Figure 5.3). This work is the first
demonstration for the novel ability of Src to inhibit cell growth. It will be important to
examine the biochemical and physiological regulation of Src by PKA in other model
systems. Previous work has suggested a role for a PKA/Src pathway to ERKs in cAMP-
stimulated differentiation of PC12 cells (Minneman et al., 2000), adipocytes (Lindquist et
al., 2000), and retinal pigment epithelial cells (Koh, 2000). Future studies in the
laboratory will also examine whether Src plays a role in cCAMP’s activation of ERKs.
The structural regulation of Src kinase function by PKA phosphorylation has yet
to be reported. However, it is possible to speculate that phosphorylation of Src may lead
to its activation through several mechanisms including, recruitment of a cofactor to Src,
steric opening of the Src molecule, redirecting Src’s subcellular localization, or one or

more of the above combinations. It is possible that the proximity of the serine 17
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Figure 5.3. PKA phosphorylation of Src mediates cAMP’s activation of Rapl and
inhibition of ERKSs and cell growth. Stimulation of fibroblasts with hormones activates
cAMP/PKA which leads to serine 17 (S17) phosphorylation of Src and Src activation (p416).
Serine 17 phosphorylation of Src by PKA is both necessary and sufficient for Rap! activation
and inhibition of ERKSs and cell growth, which are stimulated by growth factors (GF). Src
activation by PKA also assembles a membrane associated complex of Cbl/Crk-L/C3G which

are also required for Rap! activation and ERK inhibition.
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phosphorylation to the N-terminal myristoylation of Src may influence proper membrane
targeting. Indeed, one previous study suggested that PKA’s phosphorylation of Src may
be sufficient to redirect Src’s membrane localization (Walker et al., 1993). While these
studies were primarily carried out in in vitro reconstituted membrane systems it is
interesting to speculate that similar effects may be present in vivo. Interestingly, Src also
contains two PKC phosphorylation sites near its amino-terminus which are sufficient to
activate Src (Bjorge et al., 2000).

Recent studies have also suggested that Src association with the adaptor protein
Cas is sufficient to activate Src leading to activation of Rapl but not Ras (Xing et al.,
2000). Whether this pathway is activated by PKA or capable of inhibiting cell growth
was not examined however, this pathway was suggested to inhibit Raf-1 activation (Li et
al., 2002). Taken together, the above studies reveal that several mechanisms exist for Src
activation and function, but they do not explain how Src activation can be directed down
a Rapl pathway. Clearly, serine 17 phosphorylation of Src is important for directing its
signaling toward Rapl. Understanding the mechanism of Src signaling following PKA

phosphorylation, and its specificity, is a goal of future studies in the laboratory.
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FUTURE DIRECTIONS
How does serine 17 phosphorylation of Src dictate its downstream signaling?

Src has previously been shown to be activated by growth factor stimulation
furthermore, this activation has been shown to contribute to ERK activation and cell
growth in fibroblasts (Broome and Hunter, 1996; Roche et al., 1995a; Roche et al.,
1995b). One notable and interesting finding in this thesis was that Src activation by
cAMP/PKA inhibited cell growth. This data would suggest that Src activation by PKA
provides a unique regulation of Src signaling pathways. This raises the interesting
question of how Src activation by different stimuli leads to distinct cellular outcomes?
One way to try and address this question is to examine Src-dependent signaling
pathways. Interestingly, work provided in this thesis and elsewhere suggest that
stimulation of both Rapl and Ras by the -adrenergic receptor agonist, isoproterenol,
requires Src (Daaka et al., 1997; Schmitt and Stork, 2002). To this end, we have
examined whether Src is necessary and sufficient to activate Rapl and Ras following
isoproterenol stimulation (manuscript in preparation). In Hek293 cells both endogenous
Rapl and Ras activation were blocked in the presence of pharmacological inhibitors of
Src. In both Hek293 cells and SYF cells, isoproterenol stimulation of Rapl but not Ras
was blocked in cells expressing SrcS17A. In addition, SrcS17D does not activate Ras but
is sufficient to activate Rapl. This data, coupled with our previous results, would suggest
that Src is required for isoproterenol’s activation of both the Rap1/B-Raf/ERK and
Ras/AKT pathways in Hek293 cells. Indeed, unpublished work suggests that PKA
activation of Src specifically activates the Rap1/B-Raf/ERK pathway but does not effect

Ras/AKT signaling (See Figure 5.4). It is worth noting that while Ras/AKT could be
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Figure 5.4. Src phosphorylation dictates its downstream signaling. Stimulation of the
B-adrenergic receptor with isoproterenol activates two distinct Src-dependent pathways, in
Hek293 cells. One pathway utilizes Gso, PKA, Src, Rapl, to activate ERKs which is
dependent upon Src phosphorylation at serine 17 (S17). An additional pathway utilizes the
GsPy subunits to activate Src, Ras, and AKT however, serine 17 phosphorylation of Src

does not contribute to Ras/AKT activation.
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activated by isoproterenol, Ras/AKT activation could be augmented by overexpressing
any of the Src plasmids. This data would suggest that Src is utilized by the Ras pathway
and that the Src mutants function as wild type Stc in pathways other than Rapl
activation. The physiologic consequences of the activation ERKs and AKT in Hek293
cells or other cell types are an area for future examination in the laboratory.

The distinct actions of Src may be achieved by its interaction with a specific
cofactor(s). In other words, does Src phosphorylation by PKA induce a novel protein-
protein interaction? Current studies in the lab have been directed at examining Src’s
interaction with proteins following its phosphorylation by PKA (See Figure 5.5). One
approach we have taken is to transfect Hek293 cells with Flag-Src, Flag-SrcS17A, Flag-
SrcS17D, or pcDNA3 and stimulate the cells with Forskolin or leave them untreated.
Following a Flag immunoprecipitation from cell lysates, the proteins have been subjected
to SDS polyacrylamide gel, and silver-stained for unique protein band associations.
Preliminary results suggest that Src may be interacting with a protein in the 80-90
kilodalton size range. Examination of the literature did not suggest any known Src
interacting proteins in that range therefore, the protein was purified and analyzed by mass
spectroscopy. Future work will be directed at analyzing the protein masses to determine
the interacting protein. If a candidate protein is identified, a number of interesting
hypotheses could be imagined. For example, is this protein required for Rap1 activation
by PKA and Src? Does this protein confer Src signaling specificity to Rapl and
inhibition of ERKSs and cell growth? How does this protein interact with Src and what

are the structural requirements for this interaction? Examining these and other questions
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Figure 5.5. PKA phosphorylation of Src may mediate Src’s association with
an unknown protein. It is possible that serine 17 phosphorylation of Src by
PKA may serve to recruit a cofactor(s) to Src. These proteins may regulate Stc’s

ability to selectively activate Rapl.
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may provide simple yet important clues for further understanding how hormones and
cAMP regulate Rapl, ERKSs, and cell growth.

In conclusion, the primary focus of this thesis was to further understand the role
of Rapl in cAMP signaling. In this regard, work presented here demonstrates that
cAMP’s activation of PKA, Src, and Rapl mediate its signaling to ERKs. In addition,
activation of Src and Rap1 by PKA in fibroblasts inhibited ERKs and cell growth. These
studies provide a strong groundwork for future studies examining Src and Rapl signaling

in fibroblasts as well as other cell types.
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