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Abstract 

Constructive Negation in Logic Programs 

Clifford Walinsky, Ph.D. 
Oregon Graduate  Center, 1987 

Supervising Professor: Richard Hamlet 

Logic programming languages such a s  Prolog possess a relatively efficient 
evaluation procedure but  restrict the expressiveness of full predicate logic. Various 
implementations of negation within logic programming are directed a t  restoring 
expressiveness. Negation by failure, the predominant implementation, can be both 
incorrect and incomplete. Furthermore, negative queries solved by failure do  not 
return answer substitutions a s  do positive queries. Another implementation of nega- 
tion, model elimination, is complete but may be a s  inefficient a s  resolution. Other  
implementations have a similar tradeoff between completeness and efficiency. 

Constructive negation is an  effort t o  provide negation within logic programming 
based on ad  hoc methods commonly used by programmers t o  obtain answer substitu- 
tions from negative queries. The  ad hoc methods involve definition of both positive 
and negative information with definite clauses t o  retain efficient evaluation. 

While logic programs are  described with reference t o  classical logic, programs 
incorporating constructive negation must be described by a three-valued logic con- 
taining a n  additional undefined value. Programs with constructive negation may be 
inconsistent, and syntactic restrictions are  needed to ensure consistency. The  result- 
ing programs may contain universal quantifiers. An evaluation procedure for univer- 
sal  quantifiers is proposed t h a t  under further weak syntactic conditions is correct 
though necessarily incomplete. Thus, programs incorporating constructive negation 
are  assured t o  be consistent and have a relatively efficient evaluation procedure. 
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Chapter 1 

Introduction 

Logic programming languages such as "pure" Prolog [EIC76] are  declarative 

languages possessing a relatively efficient evaluation system. But efficient evaluation 

of logic programs comes at t h e  cost of expresskeness. Certain logical forms such a s  

negation and universal quantification are  absent, so  problems naturally containing 

negation and universal quantification must be transformed in order to conform t o  

the restrictions of logic programming languages. 

This  dissertation describes a logic-based language t h a t  satisfies many concerns 

about expressiveness. The  central new feature of this language is constructive proof 

of negation, called constructive negatim. With certain syntactic constraints on pro- 

grams, a correct evaluation system can be produced with a Prolog interpreter. Use 

of Prolog benefits from i ts  eEciency and the presence of meta-logical primitives. The 

Prolog implementation of constructive negation is incomplete, a s  would be any 

evaluation system. 

Constructive negation allows program definitions of negative as well a s  positive 

facts. This idea is already widely practiced on a n  ad hoc basis. In fact  Clark, in an  

article describing negation by failure [C178], provided a n  excellent example of a nega- 

tive definition in the  following logical formula: 

n o n - m a t h s - m a  j o r  (X) t m a t h s - c o u r s e  (Y) /\ -takes (X, Y) . 

Our  formalization of this practice ensures faithfulness t o  the logical foundation of 



logic programming. Formalization also provides guidelines for ensuring consistency 

and correctness. 

This approach is compared with negation by failure, the  predominant imple- 

mentation of negation in logic programming. Constructive negation is not meant t o  

supplant negation by failure entirely. Indeed, in many ways the two interpretations 

of negation complement each other. Negation by failure can be used t o  enhance the 

evaluation system of constructive negation. On the other hand, there are occasions 

where negation by failure is not sufficient t o  solve certain problems, leading pro- 

grammers to adopt constructive negation on an ad hoc basis. 

Syntactic constraints ensuring consistency and correctness a re  proposed for pro- 

grams with constructivc negation. By comparison, correctness of negation by failure 

is also ensured when certain syntactic constraints a re  obeyed; however, these con- 

s t ra in ts  greatly reduce expressiveness. 

No evaluation system for programs using constructive negation can be com- 

plete. But incompleteness exists in current logic programming systems. Prolog, the 

predominant logic programming language, is a n  implementation of a complete refu- 

tat ion procedure, called SLD-resolution, t h a t  uses a n  incomplete search strategy. 

Also, negation by failure is incomplete. Without completeness of a n  evaluation sys- 

tem, programs must contain "hints" for use by the evaluation system t o  ensure ter- 

mination. This  is a n  additional burden on programmers, but  is viewed a s  the cost of 

providing a n  efficient evaluation system for a n  expressive language. 



1 .l. Declarative Languages 

Logic programming languages, such a s  pure Prolog, fall into the class of 

declarative languages. These languages are radically different in character from con- 

ventional imperative languages, such as  Pascal (WJ741. The  natural  model for 

imperative languages is a s t a te  machine with addressable memory [HU79]. Input is 

converted into output through a series of s t a te  transformations. Therefore, full 

comprehension of an  imperative program requires knowledge of all s ta tes  reached 

during every computation. Techniques tha t  a t tempt  such analysis tend t o  be either 

informal, and capable of analysis of fairly large programs, or  formal, and capable of 

analysis of rather small programs [Fa85 (Ch.S)]. The  fundamental problem in any 

rigorous analysis of an  imperative program is the  vast size of the state-input space. 

By contrast, the underlying model of a declarative language program is a 

description of elements from a domain satisfying properties specified in the  program. 

The  underlying model is not based on s ta te  transition. Context free grammars are 

an  example of a declarative language (HU791. All strings generated by a context-free 

grammar satisfy the grammar's specification independent of any notion of s t a te  

transition. 

Decomposability and non-sequentiality aid in determining general properties of 

an  underlying model. Decomposability is apparent in the following grammar rules: 

IjLStatement --+ if Expression then Statement else Statement 
Ij-Statement --+ if Expression then Statement 

From these rules we can determine the structure of all Ij-Statements. And given 



strings representing an  Expression and Statement, the grammar rules describe how t o  

compose an  IjStatement.  

Elements of an underlying model reflect the non-sequentiality present in 

declarative programs. Sequentiality does exist; the above grammar rules describe a 

sequence of terminal and non-terminal symbols used t o  construct Ij-Statements. 

However, sequentiality is not imposed where i t  is not necessary. Again the grammar 

rules above demonstrate this fact, because changing the order of the rules has no 

effect on the underlying model. 

The  underlying model of a program often cannot be represented explicitly. For 

example, a context free language may be infinite. Queries are  posed t o  a n  evaluation 

procedure t o  determine the content of a program's underlying model. Certain 

evaluation procedures are recognizers, used t o  decide if an  element is present within 

the  underlying model. Other evaluation procedures are transducers, used t o  generate 

elements of the underlying model tha t  satisfy a query. When membership of a n  

underlying model is decidable and the model is enumerable, a recognizer can act  a s  a 

transducer by working in a generate-and-test manner. In the case of context-free 

grammars, pushdown automata  (PDAs) are recognizers t h a t  decide if a given string 

is generated by a context-free grammar. 

An evaluation system may rely on state-transition, as for PDAs. Nonetheless, 

detailed knowledge of the evaluation system is not essential t o  understanding i t s  

input-output behavior. This behavior is prescribed by the underlying model. There- 

fore, comprehension of a declarative program does not depend on knowledge of a 



state-input space or  i t s  evaluation procedure. 

As increased knowledge about an  evaluation system is garnered, evaluation sys- 

tem generators are usually devised. Such generators compile information from pro- 

grams t o  produce efficient evaluators. As an  example, a PDA generated by Yacc 

[AJ74] determines if an  input string is a member of the language given by a n  LALR 

grammar.  

Below, various representative examples of declarative languages, their underly- 

ing models, evaluation systems, and some notable implementations are listed: 

Context-free grammars: 

Underlying model: context-free language. 

Evaluation system: PDA. 

Evaluation system generators: Yacc [AJ74], Sac [Ro85]. 

Equational programming languages: 

Underlying model: least congruence of the initial algebra [ADJ78]. 

Evaluation system: term-rewriting [HuSO]. 

Evaluation system generator: E p  [085]. 

Implementation: OBJ [GM82]. 

Relational Algebra: 

Underlying modefi set  of relations. 

Evaluation system: operations on sets of tuples [Co70]. 

Implementations: see [Da86] for PRTV, SQL, Ingres, System R. 



Predicate Logic: 

Underlying model: all implied formulas [En72]. 

Evaluation system: resolution [Ro65]; tableaux [Sz69]. 

Implementation: MRPPS [N80 (Ch.5)]. 

All of the evaluation systems in this list are  transducers, except for PDAs. 

For the evaluation systems listed above, three important properties are 

apparent: 

Correctness: 

When a correct evaluation system terminates successfully in response t o  a 

query, i t  returns a member of the underlying model t h a t  satisfies the  query o r  

affirms t h a t  the query is a member of the underlying model. 

Completeness: 

In response t o  a query, a complete evaluation system can generate every 

member in a program's underlying model t h a t  satisfies the query. If a language 

is decidable and enumerable, correctness ensures completeness, since a 

generate-and-test strategy will generate all members of the underlying model. 

Eficiency: 

A measure of the evaluation system's speed and memory consumption compared 

t o  the length of a query or program. 

T o  illustrate these properties of evaluation systems, consider the language of 

first-order predicate logic [En72]. From a slightly unconventional viewpoint, all for- 

mulas implied by the clausal form of a program (the program's theory) are contained 



in the  underlying model. I t  has been shown tha t  the resolution theorem-proving 

method [Ro65], the evaluation system for this language, is both correct and com- 

plete. However, this evaluation system is generally quite inefficient [Sh86]. At  each 

s tep of the resolution procedure there may be a number of ways in which execution 

can proceed. 

1.2. Logic Programming 

Despite the poor performance of resolution theorem-proving methods, predicate 

logic remains a desirable language. As a declarative language, it lacks the state-  

input space problem of imperative languages. And a logic notation seems amenable 

t o  many forms of knowledge representation [Ni80], including of course mathematical 

knowledge [En72]. 

Efforts t o  enhance the performance of resolution theorem-proving continue. 

Impressive performance has  been obtained for a restricted form of predicate logic. 

The  restriction permits only definite clauses of the form A o t A l  . . A A , ,  where 

each Ai is an  atomic formula and n 20.  This clause is a statement of implication: 

VXl - - VXm:(Al I\ . - . l\A, -+Ao), where XI ,  . . . ,X, are  all of the variables 

occurring in the Ai. The  head of a definite clause is the atom Ao, while the body is 

the conjunction A l l \  . AA, .  A clause with an  empty body is a n  assertion. 

For a declarative language of definite clauses, the underlying model is still a 

program's theory. SLD-resolution [Ko74] can be used as a n  evaluation system for 

definite clause programs, and is much more efficient than  resolution theorem-proving. 



In fact  the efficient evaluation system has lead t o  use of the term "logic program- 

ming," rather than theorem-proving, for definite clause programs. 

The  Prolog language uses SLD-resolution. As s ta ted earlier, this implementa- 

tion of SLD-resolution is incomplete. Therefore, programmers ensure termination 

only through detailed knowledge of the s ta tes  of the evaluation system during execu- 

tion. 

The  expressiveness of predicate logic is seriously curtailed in logic programming 

languages. I t  is not possible t o  express disjunctive information of the form A V B  

with definite clauses. Also, negated atoms are prohibited everywhere within definite 

clauses. 

Because all variables are  universally quantified, existentially quantified vari- 

ables cannot be expressed directly within definite clauses. This is exemplified by the 

predicate logic formula 3 : p  (X) . The  existential quantifier can be removed 

through Skolemization [Ni80], producing the formula p (c) , where constant c 

occurs nowhere else in the program. Thus, the domain of discourse may expand by 

an  element outside of the program's original domain. Skolemization is justified when 

all possible domains are t o  be considered. However, addition of a new element may 

radically alter the programmer's intended underlying model, so in some applications 

Skolemization may not be desirable. 

Limiting expressiveness can also compromise the non-procedural nature of logic 

programs, even though the underlying model remains isolated from s t a t e  considera- 

tions. The  following logic program defines a predicate n o t - d i v p ( i , j )  which is true 



if integer i does not divide integer j evenly. This definition makes no mention of 

recursion, yet the program does contain recursion. 

Example 1.1 

% not-divp(1,J): true if I does not divide J evenly. 
not-divp (I, J) +- p (0, I, J) . 

Recourse is made t o  recursion in order t o  test t h a t  every value z < j when multi- 

plied by i does not equal j .  The recursion is artificial, for consider: 

% not-divp(1,J): true if I does not divide J evenly. 
not-divp (I, J) + (VX: XSJ + XXI#J) . 

Of course this formula is not in clausal form. 

Use of definite clauses requires certain logical statements t o  be encoded into 

algorithmic steps, even though a stepwise procedure is not manifested by the  logical 

statements.  A programmer must then determine if the encoding has been faithful t o  

the original statement,  a process we refer t o  as  the coding problem. 

1.3. Constructive Negation 

Constructive negation is a n  approach for improving the expressiveness of logic 

programs. I t  originally began a s  an  a t tempt  t o  provide negation within logic pro- 

gramming languages. Gradually the work widened t o  incorporate all other connec- 

tives and quantifiers from standard predicate logic. The distinctive features of this 

work include: 



(1) Negation is based on constructive proof, enabling the evaluation procedure t o  

return answer substitutions for negated queries. 

(2) Underlying models of programs with constructive negation may have formulas 

with neither true nor false valuations. 

(3) Evaluation, based on SLD-resolution, is efficient when compared t o  resolution. 

(4) Syntactic restrictions ensure consistency and correctness, but d o  not restrict 

expressiveness. 

Programs using constructive negation are  composed of Definite Injerence Forms 

(DIFs). Each DIF is written a s  L c F, where L is a literal (a  positive or  negative 

atom), and F is a well-formed formula. Constructive negation of a formula F is 

represented by the formula -F.  DIFs still cannot express disjunctive statements, 

such a s  pvq, and all variables within the head are always universally quantified. In 

contrast  with definite clauses, bodies of DIFs may contain negation, quantification, 

and all logical connectives. The following DIFs demonstrate this form: 

% divp (I, J) : true if I divides J evenly; otherwise, false. 
divp (I, J) + 3: X<J /\ XXI=J. 

-divp(I,J) c VX: X<J --+ XXIfJ. 

Recursion need not be introduced artificially, in contrast t o  Example 1.1 

DIF-programs provide definitions of all positive and negative propositions. I t  is 

therefore possible t h a t  some propositions will not be assigned a t ru th  value. For 

example, "nonsense" propositions, such a s  divp (0, fred) , are neither true nor 

false; they are  undefined. T o  acknowledge this characteristic of DIF-programs, the 



underlying model is based on three-valued logic, containing true, false, and undefined 

logical values. 

Three-valued logic is weaker than two-valued logic because formulas implied 

under two-valued logic may not be implied under three-valued logic. Consider the 

DIF-program below: 

For this program, ~q is implied under two-valued logic, but  ~q is undefined in 

three-valued logic. On  the other hand, any formula implied under three-valued logic 

is also implied under two-valued logic. 

T h e  evaluation system for DIF-programs is based on SLD-resolution, with a 

major enhancement t o  evaluate universally quantified queries. T h e  system retains 

much of the efficiency of SLD-resolution. 

1.4. Overview 

Following Chapter 2, describing notation and basic concepts, Chapter 3 reviews 

current a t t empts  a t  enhancing the expressiveness of logic programming. Much of 

this work concerns implementation of negation. The  main implementation of nega- 

tion is by "failure t o  prove." Negation by failure is not correct for all queries, and is 

not in general complete. Another implementation of negation, model elimination, is 

correct and complete, but can be much less efficient than SLD-resolution. 

Chapter 4 describes the underlying models of DIF-programs. Strong models, 

weak models and fixedpoints of a semantic operator are compared. Strong and weak 



models have undesirable closure properties, while fixedpoints always contain a least 

element. Therefore, least fixedpoints are chosen as underlying models of programs. 

The  least fixedpoint may be undefined. Programs with undefined least fixedpoint are 

called fixedpoint-inconsistent. T o  be efficient, a n  evaluation procedure cannot expend 

computation resources detecting fixedpoint-consistency. Therefore, fixedpoint- 

consistency must be detected from the text of a program. But, fixedpoint- 

consistency is undecidable. 

T o  define a fixedpoint-consistent set of programs, syntactic constraints are 

explored in Chapter 5. DEF-programs are statements of equivalence t h a t  compile t o  

fixedpoint-consistent DIF-programs. The compiled DIF-programs can, however, con- 

tain universal quantifiers, producing noncomputable le,ast fixedpoints. Thus, prevent- 

ing fixedpoint-inconsistency through syntactic constraints implies incompleteness for 

any evaluation procedure. 

An evaluation system is described for DIF-programs. This system is similar t o  

SLD-resolution. Evaluation of DIF-programs compiled from DEF-programs is correct 

only when an  additional syntactic constraint, self-coverage, is satisfied. Self-coverage 

implies t h a t  each proposition is defined by some DEF. 

Chapter 6 describes several enhancements t o  compilation and evaluation: 

(1) The  syntactic constraints on DEF-programs may require an  extremely large 

number of DEFs t o  describe base relations of database-oriented programs and 

polymorphic programs. The  explosion of DEFs is controlled by implementing 

equality within the  evaluation system. 



(2) The  self-coverage test  does not accommodate well-typed programs, because 

self-coverage requires even ill-typed propositions t o  be described by DEFs. 

Self-coverage is therefore generalized t o  incorporate types, eliminating the need 

for ill-typed DEFs. 

(3) Enhancements widen the scope of universally quantified queries t h a t  can be 

correctly evaluated. 

The  full implementation of the evaluation system uses C-Prolog, and is 

described in Chapter 7. The implementation encompasses tests  t o  ensure consistency 

and correctness. Query evaluation uses meta-programming techniques t h a t  t rea t  

DIF-program elements as d a t a  structures. 



Chapter 2 

Basic Concepts and Notation 

The syntactic structure of terms and predicate logic formulas is first described 

in the next section. Substitutions and the algebra of substitutions is then intro- 

duced. Any term can be used as the denotation for the se t  of all of i ts  instances 

resulting in a n  inclusion ordering of terms, which naturally incorporates unification. 

2.1. Syntax of Terms and Formulas 

Variables will always be written a s  strings of alphanumerics, beginning with a n  

uppercase let ter ,  e.g., A n s l .  T will be the set of all variables. Each function sym- 

bol will be written a s  a string of alphanumerics, beginning with a lowercase letter or  

a numeral, e.g., f ,  0. Every function symbol possesses a unique finite arity, the  

number of arguments taken by the function. When necessary, the  ari ty of a function 

(2) symbol is written a s  a parenthesized superscript, e.g., f means function f takes 

two arguments. Constants are  treated a s  function symbols with ari ty zero. 

Let C be a denumerable set  of function symbols. The set  T(C) is the set  of 

finite terms freely generated by the function symbols in C and the variables of T. 

Therefore, a term in T(C) is either a constant from C, a variable from T, or is of the 

(n) form f (t,, . . . , t,), where /(")EC, and each ti is a term over C. For example, if 

o (~ ) ,  s"), f ( 2 ) ~ ~ l ,  the following are  terms in T(C1): 0, s (r (X) ) , and f (Y, s ( 0 )  ) . 

When a term contains no variables, i t  is a ground term. The set  of all ground terms 



constructible in T(C) is written T(CI. 

Let II be a denumerable set of predicate symbols. Usually, predicate symbols 

are  distinct from function symbols. Each predicate symbol possesses a unique arity 

denoted by a superscript. Propositions are predicate symbols with ari ty zero. 

The  se t  A(II ,  C) is  the set  of atomic formulas (atoms) generated by the predi- 

ca te  symbols in ll and the terms in T(C). An atom in A (II, C) is either a proposi- 

(n) tion symbol, or is of the form p (t,, . . . , t , ) ,  where p ( n ) ~ l l  and each term ti is in 

(2) T(C). For example, with It Ell ,  and C, a s  given previously, It (X, s ( 0 )  ) is in 

A (HI, C,). Those atoms from A (II, C) without variables are ground atoms, denoted 

A cn. E). 

The set  no consists of the logical operators 7, /\ and V ,  designating negation, 

conjunction and disjunction, respectively. Given some set  C, the carrier, a Boolean 

algebra is B(C) ,  the set  of Boolean expressions formed from the  elements of the car- 

rier and the logical operators in no. Thus, any element z E C is a Boolean expres- 

sion. If x is a Boolean expression, then i x  is also a Boolean expression. And if S is 

a set  of Boolean expressions, both / \S  and V S  are  themselves Boolean expressions. 

Use of a n  unordered set  of Boolean expressions is justified because conjunction and 

disjunction are  commutative. Conjunction of a n  empty set will be considered a 

vacuously true formula, and disjunction of an  empty set  will be considered false. 

(This inversion of the customary meaning at tr ibuted t o  conjunction and disjunction 

of empty se ts  comes about because such formulas will arise only in queries, which are 

implicitly negated.) 



A logical jormula is a Boolean expression in B(A(II, C)), for some sets  II and C 

of predicate and function symbols, respectively. 

Boolean expressions a re  not usually written with the logical operators. Instead, 

connectives are  defined from abbreviations for Boolean expressions. The  set  of con- 

nectives and their meaning is presented in the following table: 

When general conjunction and disjunction are formed over finite sets  of expressions, 

conventional infix form can be used. For example, 

l t ( s ( 0 )  A l t o ( t s  (s (s ( 0 ) ) ) )  

is a n  abbreviation for: 

A (  { l t ( s ( O ) . X )  8 l t ( X , s ( s ( s ( O ) ) ) ) 3  1 .  

Implication and equivalence have the usual definitions, using finite conjunction 

and disjunction. 

Implication: F1 -+ Fq abbreviates -F1 V F, 

Equivalence: Fl ++ F2 abbreviates (F1 --+F2) A(F2-+Fl)- 

In writing definite clause forms, i t  is customary t o  reverse the direction of 



implication. 

Quantifiers can be viewed a s  finite denotations for conjunction and disjunction 

of infinite se ts  of formulas. Existentially and universally quantified formulas are 

written a s  X :  F  and VX: F ,  respectively, where X is the quantified variable in both 

formulas. 

The  presence of quantified variables requires scoping rules. A variable X is free 

a t  any occurrence of X in an atom. If X occurs free in formula F then X also 

occurs free in l F ,  3Y: F ,  and VY: F ,  where X # Y. If X occurs free in either for- 

mula F or  G ,  X also occurs free in F /\ G ,  F V G ,  F + G ,  and F  ++ G .  Every free 

occurrence of X in formula F is bound in quantified formulas X: F  and VX: F. For 

example, X  occurs free in 1 t ( s  ( 0 )  , X)  and: 

but  all occurrences of X  are  bound in the formula below: 

vx: ( ( l t ( s ( 0 )  , X ) / \ l t  ( X , P ) )  --, - d i v p ( X , P ) ) .  

Existentially and universally quantified formulas are  finite denotations for 

infinite disjunctive and conjunctive Boolean expressions. 

Existential quantification: X: F  abbreviates V { F ( t )  I t  E T(C)} 

Universal quantification: VX: F  abbreviates / \{F(t)  I t  ET(C')), 

where F ( t )  means term t  replaces every free occurrence of variable X in F. 

Each connective has  a binding precedence t h a t  eliminates overuse of 

parentheses. Negation has  highest precedence, followed by conjunction, disjunction, 



implication and equivalence, and finally the quantifiers. For example, the following 

formula: 

V x : l t ( s ( O ) . X ) / \ l t ( ~ , ~ )  -+ + i v p ( X , P )  

is equivalent t o  formula (I), above. 

A closed formula, or sentence, contains no free variables. An open formula con- 

tains a t  least one free variable. Formula ( I )  is open, because it contains the free 

variable P. 

The  existential closure of a formula, denoted 3 F ,  binds every free variable in F 

with a n  existential quantifier. So 3 F  is an  abbreviation for the sentence 

3X1 . - X : F ,  where X1 - . Xn are all of the free variables occurring in F. As 

seen by expanding the abbreviation, the meaning of XI - - 3%: F is independent 

of the  ordering chosen for existential quantifiers. Similarly, the universal closure of a 

formula V F  abbreviates VX1 . . . VXn: F. 

2.2. Substitutions 

The following discussion uses notation and concepts from Eder (Ed851. A substi- 

tution over C is a mapping from variables in T t o  terms in T(C). The  domain of a 

substitution is the set of variables t h a t  are not mapped t o  themselves. When the 

domain of a substitution is finite, the substitution can be fully expressed in written 

form as  a set of pairs X = t ,  meaning t h a t  variable X is replaced by term t ,  where 

X is a variable from the domain. 



Any substitution a can be naturally extended t o  a mapping Z on formulas in 

B(A (IT, C)) and terms in T(C), where ll and C are  sets  of predicate and function 

symbols, respectively. In this extension, conventional notation for application of sub- 

stitutions is adopted. When x  is a formula or term and a substitution, x  5 denotes 

application of F t o  x ,  defined a s  follows: 

X a = ~ ( x )  for X E T  

j '"'( t , ,  . . . , t n ) Z  = ~ ( ~ ' ( t ~ i ? ,  . . . , t ,  Z )  for n 2 0  and ~ ( " ' E c  

- (n) - p ( n ) ( t l ,  . . . , t n ) o  = p  ( t l u l  . . . , tn F )  for n 2 0  and p ( " ) ~ I l  

( 1 2 )  a = 1 ( x  a) 

( A { Z ~ , Z ~ ,  - - ) ) ~ = A { X ~ ~ , X ~ Q ~  - ' 1 

( V { x 1 , x 2 , .  - .  ) ) u = V { x 1 ~ , ~ 2 u l . .  - 1 

Application of a substitution t o  a n  abbreviation of a formula can produce an 

abbreviation, but  the resulting abbreviation must be equivalent t o  application of the 

substitution t o  the unabbreviated formula. Therefore, application of substitutions 

distribute over finite conjunction, disjunction, implication and equivalence: 

Also, a s  the rules below describe, application of a substitution t o  a quantified for- 

mula cannot al ter  occurrences of bound variables. 



a(Y) for X # Y 
( X :  F): = X: F 7 where d ( Y )  = 

Y for X = Y 

a(Y)  for X # Y 
(VX: F)i? = VX: F 3 where d (  Y) = 

Y for X = Y 

For example, suppose t h a t  X and U are distinct variables; 0, a and c are con- 

stants;  f and s are function symbols; It, mult, and add are  predicate symbols; 

and U(X) = a. Then the following equalities hold: 

(1) x Z = a .  

(2) u z = u .  

(3) f(~,c,~)Zi=f(a,c,U). 

(4) It (s (0) ,X) i? = It (S (0) ,a). 

(5) [(%:mult(~,s(O),X)) /\ add(~,s(~),s(s(~)))]~= 

(%:mult(O,s(O) ,X)) /\ add(a,s(O) ,s(s(O))). 

When no confusion results, a will be used in place of 5. 

Substitutions a and T may be composed, forming a new substitution a s  follows: 

x ( a 0 3  = (xu)  T, for all formulas and terms x. For example, if O(X) = f ( ~ )  and 

7(Y) = a, then S(X) ( a  or) = s(f(a)). When substitutions a and T are composed, the 

resulting function is always a substitution q such t h a t  q(X) = X(U*T)  for all vari- 

ables X. 

Since composition always results in a substitution, composition of substitutions 

can be shown t o  be associative. Consider any term or formula x. For arbitrary 



substitutions p, a and T, x ( p  . ( a  or)) = ((x p )  a) T. Since p and ( p  0 0 )  O T  are  substitu- 

tions, ((x p) a) T = x ((p .a) 07). 

There is a unique identity substitution c, such t h a t  e ( X )  = X for all variables X .  

Therefore, x r  = x for any term or formula x. The  identity substitution forms a left 

and right identity with respect t o  composition. 

A renaming is a bijective substitution. A renaming cannot map  any variable t o  

a non-variable. A renaming also does not introduce additional constraints between 

variables. For example, {x=u, Y=V) is a renaming, while {x=u, Y=U) is not a 

renaming because i t  is not 1-1. Every renaming p has  a n  inverse such t h a t  

-1 p o p - l  = p  op = c .  

2.3. Common Instances of Terms 

Terms s and t are variants if p is a renaming and s p = t .  Denote by s t the 

fact  t h a t  terms s and t are  variants. 

N 

Lemma 2.1: = is an  equivalence relation on terms. 

Proof: Trivial. 

The equivalence class of a term t determined by the renaming relation 2 will be 

denoted [ t ] .  Note t h a t  [ t ]  contains only t when t is a ground term. 

A te rm t is an  instance of a term s if there is a substitution a such t h a t  

s a = t . For example, f (a, Y, U) is a n  instance of f (X, Y, Z) . 

Now define a relation [s]  y [ t ]  on the equivalence classes of terms s and t ,  t o  

mean t h a t  every term in [ t ]  is a n  instance of every term in [ s ] .  Therefore, [ s l y  [ t ]  if 



for every variant  s' of s  and t' of t  there is a substitution d such t h a t  s ' d  = t'. 

The  number of variants of a term is usually infinite, so directly deciding if [ s ]  It] 

may be difficult. Fortunately, testing for [ s ]  5 [ t ]  reduces t o  finding just one substi- 

tution a such t h a t  s  o = t .  

Lemma 2.2: For any terms s  and t ,  [ s ]  ? [ t ]  iff there is a substitution u such tha t  

s o = t .  

Proof: Trivial. 

N 

The equivalence relation = is a subset of r. When terms s  and t are variants, 

[ s ]  ? [ t ]  and [ t ]  5 [ s ] .  Also, the following result holds. 

Lemma 2.3: The  relation ? is a partial ordering on equivalence classes of terms. 

Proof: 

RRRRXj\rltV: For all terms s ,  [sj?[sj ,  since s  E = s .  

-: Suppose [ s ]  ? [ t ]  and [ t ]?  [s] .  Then s  u = t  and t  T = s for some substi- 

tutions a and T. If s and t  are not variants, either (i) some variable X occurs in s 

and X u  is not a variable or (ii) distinct variables X and Y occur in s  and 

X a  = Yo. In case (i), if X u  is not a variable, there is no substitution T such tha t  

X ( a 0 r )  = X .  In case (ii), if X u  = Yo,  there is no substitution T S U C ~  t h a t  X ( u 0 ~ )  is 

distinct from Y (a o r ) .  Therefore, s  and t  must be variants, and s  t .  

. .  . 
-: Suppose [ s ]  ? [ t ]  and [ t ]?  [u] .  Then s  u = t  and t  T = u  for some sub- 

stitutions u and T. Since s  ( o  o r )  = U ,  [ s ]  ? [ u ] .  = 
N N 

The  greatest lower bound n S  and least upper bound U S  of equivalence classes 

of terms S is defined with respect t o  the ordering 5. When s is a variable, [ s ]  ? [ t ]  



N 

for all terms t ,  so U S  is defined for every set  S. However, consider two distinct 

constants c and d.  There is no term 1 for which [c] 5 [l] and [dl 5 [I], so n~ may 

not be defined for some sets S. 

A common instance of terms s and t is a n  equivalence class [u],  where [s] 7 [u ]  

and [ t ]  5 [u]. 

Lemma 2.4: Let C ( s ,  t )  be the set of common instances for terms s and t .  When 

N 

C ( s ,  t )  is nonempty, U C ( s ,  t )  s f i t  . 

Proof: Trivial. 

Therefore, if s and t have a common instance, the most general common instance 

(mgci) of terms s and t is defined t o  be s fl t .  Since s f i t  is in fact  a n  equivalence 

class, the mgci is unique up to renaming. 

Terms s and t a re  unifiable if there is a unifying substitution a such t h a t  

s a = t a .  The  next result demonstrates t h a t  unifiability of terms is equivalent t o  

determining if the terms have a common instance. 

Lemma 2.5: If terms s and t have no variables in common, then s and t are  

unifiable iff the terms have a common instance. 

Proof: 

(-+) The term s o  is a common instance of s and t ,  so when terms are  unifiable they 

have a common instance. 

(c) Next, assume terms s and t have a common instance. Then s a = t T for certain 

substitutions a and T, and since s and t have no variables in common a O T  = Too. 

The  substitution a O T  can serve a s  a unifying substitution for s and t .  



Robinson's unification algorithm [Ro65] is guaranteed t o  find a unifying substi- 

tution tha t  produces an  mgci of terms s and t if: 

(1) s and t have no variables in common; and 

(2) s and t have a common instance. 

The first constraint can be readily achieved. Since the presence of a common 

instance of terms s and t is independent of the variables within the terms, terms s 

and t can be renamed t o  satisfy constraint (1). 

Unification requires an  occurs check t o  insure t h a t  infinite terms will not be 

mgci's. Due t o  efficiency concerns, Prolog implementations typically omit this check. 

Hence, determination of unifiability may be made by an implementation when in fact 

the terms are not unifiable. 

When terms have a common instance, by Lemma 2.5 they are unifiable, and the 

unique mgci (modulo renaming) leads t o  a decomposition of the unifying substitution, 

also called a weak unifier [Ed85]. Consider terms s and t containing disjoint sets of 

variables V and W. If s and t have an  mgci [m], a decomposition of the mgci con- 

sists of substitutions a and T, where so = m = t T and the domains of a and T are V 

and W, respectively. 

2.4. Terms as Denotations for Sets 

A term t containing variables will commonly be used t o  denote the set of 

ground instances of t .  Define t @ C t o  be the set of terms t a t h a t  are  ground 

instances of t .  For example, f ( X ,  s (X) ) @ {o"), s")) contains f ( 0 ,  s (0) ) , 



f ( s  ( 0 )  , s  ( s  ( 0 )  ) ) , etc. Term t is the template of t @ C. 

As special cases, t @ C = {t)  when t is a ground term, and X @ C = 

when X is a variable. If C contains a t  least one constant, then t @ C # 0 for any 

term t .  

A se t  of function symbols C is non-trivial if ImI > 1. Non-triviality of C is 

ensured if 1x1 > 1 and C contains a t  least one constant. 

Use of non-trivial sets  of function symbols will determine t h a t  variables occur- 

ring within template terms serve only a s  placeholders. The actual  variable names 

used within a template term should not affect the set  of ground instances of the tem- 

plate. For example, ( f (X , Y) @ C) = ( f (U , V) @ C), for all "reasonable" sets  C of 

function symbols. There are  sets  C for which terms s and t may not be variants, yet 

s @ C = t @ C. As Lemma 2.7 demonstrates, this  occurs only when C is empty or 

contains only one constant. Consider, for example, C = {c) with templates X and 

c. These templates are  not variants, yet X @ C = c @ C. T o  avoid this anomaly, C 

should be non-trivial. We first demonstrate a result used several times within this 

section. 

Lemma 2.6: For all terms s  and t ,  if [ s ]  5 [ t ]  then ( s  @ C) > ( t  @ C). 

Proof: Consider any term t TE t @ C. There must be some substitution o such t h a t  

s o = t , s i n c e  [ e ] F [ t ] .  So  ~ T = s ( u ~ T ) E ( s @ C ) .  

The  next result demonstrates t h a t  terms must be variants if they generate 

identical se ts  of ground terms. 



Lemma 2.7: When C is non-trivial, for all terms s and t ,  s @ C = t @ C iff s 2 t .  

Proof: 

(+) The  contrapositive is demonstrated: s t implies s @ C # t @ C. If s and t 

are  not unifiable, they have no common instance so ( s  @ C) n ( t  @ C) = 0. Since 

II@I>l, s @ C a n d  t @ C  are nonempty, so  s @ C  # t @ C .  

If s and t are  unifiable, let m 2 s f i t .  Using decomposition, there are  substitutions 

a and T such t h a t  s a = m = t T, where either a or T is not a renaming substitution. 

Without loss of generality, assume a is not a renaming. Either (i) s contains a vari- 

able X and X a  is not a variable, or (ii) s contains variables X and Y and 

X u =  Yo. Incase(i)leta'={X=u),andincase(ii)leta'={X=Xa,Y=u), 

where u # Xa. Term u is guaranteed t o  exist because ]I@! > 1. By Lemma 2.6, 

( s d @ C ) G ( s @ C ) ,  and ( m @ C ) c ( t  @ C ) .  But by the construction of a', 

( s d @ C ) n ( m @ C ) = @ .  Since t h i s h o l d s f o r a l l m  g s n t , s @ C # t @ C .  

(+) Suppose s 2 t .  Then both [s] 5 [ t]  and [ t ]  5 [s]. By Lemma 2.6, both 

s @ C z t @ C a n d  t @ C > s @ C .  H e n c e , s @ C = t @ C .  

Under very loose restrictions, we have established a correspondence between 

sets  of ground terms and their templates. When sets  of ground instances of tem- 

plates are  equal, the templates must be variants. The converse is directly implied by 

Lemma 2.6. Henceforth, we will assume t h a t  every set of function symbols is non- 

trivial, so t h a t  Lemma 2.7 holds. As a consequence of this lemma, equivalence 

classes can be used a s  templates: [t] @ C denotes t l @  C, where t' is any representa- 

tive of [t]. 



Next, we demonstrate a connection between the most general common instance 

and sets  of ground terms. 

Lemma 2.8: 

(1) If terms s and t  have no common instance, then s @ C and t  @ C are disjoint. 

(2) If terms s and t  have a common instance, then ( ( s  fl t )  @ C) = 

( S  @ C ) n ( t  @ C). 

Proof: 

(1) Trivial. 

(2) (c) Consider a term x  ~ ( ( s  At)  @ C). Then [ s ]  5 [ X I  and [ t ]  5 [ X I ,  so  z ~ ( s  @ C) 

and x E(t  @ C). 

(2) Consider a term x  E(s @ C) and x  E( t  @ C). Then [ X I  is a unifier of s and 

t .  By definition, s f i t  5 [z ] .  Hence, x  ~ ( ( s  f i t )  @ C), by Lemma 2.6. 

When two terms have no variables in common, by Lemma 2.5 the  terms have a com- 

mon instance if and only if they are unifiable. So Lemma 2.8 also s t a t es  t h a t  if 

terms s and t have no variables in common and the terms are  unifiable, then 

( ( s A t ) @ C )  = ( s @ C ) ~ ( ~ @ C ) .  

Finally, an  inclusion relationship can be drawn between sets  of ground terms 

and the relation 5 between equivalence classes of template terms. 

Lemma 2.9: For all terms s and t ,  ( s  @ C ) 2 ( t  @ C) iff [ s ]  5 [ t ] .  

Proof: 

(+) Since ( t  @ C) c ( s  @ E), ( s  @ C) n ( t  @ C) = t  @ C, which is nonempty 



Therefore, s @ C and t  @ C are  not disjoint, and s and t  are  unifiable, by Lemma 

2.8. Lemma 2.4 ensures t h a t  s  t  exists. By Lemma 2.8, (s  t )  @ C = 

(s  @ C) n ( t  @ C) = t @ C. Therefore, s  t  t ,  by Lemma 2.7, and [ s ]  [ t ] .  

(t) Demonstrated in Lemma 2.6. 



Chapter 3 

Enhancing Expressiveness of Logic Programming 

Many approaches toward enhancing the expressiveness of logic programming 

have been proposed. Almost all center on implementing negation. T o  appreciate the 

implementation strategies, i t  is necessary first t o  review SLD-resolution, an  efficient 

evaluation system for definite clause programs. Negation by failure, the most 

predominant implementation of negation, is based on detecting failure of query 

evaluation. 

3.1. Underlying Model of Definite Clause Programs 

T o  recall the discussion of Chapter 1, the underlying model of a definite clause 

program is the program's theory, i.e., the set of all conjunctive formulas implied by 

the program. For definite clause programs, the underlying model can be derived 

from a unique minimal model. The results below are  presented in more detail in 

[L82]. 

Consider a program P, a member of Boolean algebra B(A (II, C)). An interpre- 

tation of P is a triple (D,Fc,P,) ,  where D is a nonempty domain, FE is a mapping 

of function symbols and constants from C into functions and constants over the 

domain D, and P, is a mapping of predicate and proposition symbols from II into 

relations on the domain D. 



Consider the program below: 

Example 3.1 

% l t ( 1 , J ) :  true i f  I < J .  
It (0. s (J) ) . 
l t ( s ( I ) , s ( J ) )  + l t ( 1 , J ) .  

One interpretation for this program could be Il  = ( N ,  F , P , where N is the set of 
El 4 

natura l  numbers, F translates 0 t o  the number 0 and s t o  the successor function, 
El 

and P translates I t  t o  the binary relation {<x, y> I x < y). 
C, 

Interpretations are used t o  assign a t ru th  valuation t o  formulas. The  valuation 

is based on classical logic. If I is a n  interpretation and F a formula, I [ F ]  denotes 

the valuation of F by I .  Computation of this valuation is described by Enderton 

[En72], for example. The  valuation of interpretation I on program P is I [ P ] .  I I  

places a true valuation on the program of Example 3.1. 

Assume t h a t  a program P is from B(A(II ,  C)).  A Herbrand interpretation is a 

symbolic interpretation with D and FE fixed. The domain D = is called the 

Herbrand Universe (HUp). F maps every function symbol ~ ( " ' E c  and n-tuple of 

terms ( t l ,  . . . , ~ , ) E H U ,  t o  the individual f ( t l ,  . . . , t,) of D. The  Herbrand Base 

(HBp)  of program P is equivalent t o  A f n .  C). When program P is understood, sub- 

scripts on HU and HB will be omitted. Since Herbrand interpretations are  symbolic, 

any Herbrand interpretation can be written by listing only the subset of ground 

a toms in HB t h a t  are  true in the interpretation. For example, interpretation I l l  

above, can be represented with a n  Herbrand interpretation HI1 consisting of all 



atoms l t ( s i ( ~ ) ,  s i(0))  such t h a t  i < j. 

Any two interpretations I and J are  equivalent if I[F] = J[F] for all sentences 

F. The following result demonstrates t h a t  Herbrand interpretations are  adequate t o  

represent all interpretations. Within this chapter, if a lemma or  theorem has  a 

reference, i ts  proof is contained in the referenced source. 

Lemma 3.1: Any interpretation for a definite clause program has  a n  equivalent Her- 

brand interpretation [EI<76]. 

Interpretation M is a m o d e l  for a program P if M [ P ]  is true. For definite 

clause programs, a q u e r y  is a conjunction of atoms. A query Q is logically  imp l i ed  by 

a program if 3 Q  is true in all models. The  following property reduces this test  t o  a 

single model. Let Mp (or just M when P is understood from context) be the class of 

all Herbrand models for a program P. 

Lemma 3.2 (Model Intersection [EK76]): M is closed with respect t o  n, i.e., 

rn EM. 

For example, i t  can be shown t h a t  HI1 is the least Herbrand model for the program 

of Example 3.1. 

According t o  the following result, the least Herbrand model of a program can 

derive the program's theory, the se t  of all logically implied queries. 

Lemma 3.3 (Logical Implication [L82 (Thm. 7.1)]): A query Q is logically implied by 

a definite clause program P iff 3Q is true in P's least Herbrand model. 



The  query: 

is logically implied by Example 3.1, since It (s (0) , s (s (0) ) ) and 

It (S (S (0) ) , s (S (S (0) ) ) ) are  contained in the program's least model, HI1. 

Thus  X = s (s (0) ) establishes 3X: Q. 

For any particular definite clause program, there is a lattice of Herbrand 

interpretations, ordered by set inclusion. This lattice is complete: every set  of Her- 

brand interpretations has a least upper bound and a greatest lower bound, where 

these elements are computed by set union and intersection, respectively. The  

minimal element of the lattice is the empty interpretation, 0. The maximal element 

is HB. 

The immediate consequence functional Tp (or just T when P is understood 

from context) is a mapping from Herbrand interpretations t o  Herbrand interpreta- 

tions, defined a s  follows: 

A E T ( I )  iff 

A is a ground instance of a n  assertion, 

or there is a ground instance A + A l l \  . - . l \A,  of a clause and 

IIAl l \  . . l \A,]  is true, i.e., {Al, . . . , A , ) C I .  

For any Herbrand interpretation I ,  powers of T can be computed a s  follows: 

TO(I) = I 

Tk+'(I) = T(T~( I ) )  for all successor ordinals k+l  



T'(I) = u T ~ ( I )  for all limit ordinals /3 

a<' 

A fixedpoint of T  is a n  Herbrand interpretation I  for which I  = T ( I ) .  Let Xp 

be the class of fixedpoints of T p .  Since T  is a monotonic mapping with respect t o  

the inclusion ordering of Herbrand interpretations, the Knaster-Tarski Theorem 

[Ta55] ensures completeness for the lattice of this class of fixedpoints. In particular 

unique minimal and maximal elements exist. Let u p p  = f i X p  be the l eas t  fixedpoint 

of P, and let gfpp  = L[Xp be the greates t  fixedpoint. As usual, when program P is 

understood from context, the subscripts on X, ljp and gfp are omitted. T o  compute 

fixedpoints of programs, define the following distinguished interpretations for all ordi- 

nals a: 

Lemma 3.4 (Characterization of Fixedpoints [L82 (Thm. 5.2)]): When P is a definite 

clause program: 

(1) There exist ordinals nl and n2 such t h a t  p 2 nl implies T  t p  = ijp and q 2 n2 

implies T  1 q = gjp. 

(2)  ijp = T  t y where w is the cardinality of the natura l  numbers. 

(3) gfpGT1w.  

The  following example (from [AE82]) provides a program for which the inclusion 

of (3) above is proper. 



Example 3.2 

In this program gfp = T 1 (NU) = {q(si(b)) I i >O),  while T w = 

{q(si(b)) I i 2 0 )  u{p(s i (a ) )  I 2.2 0). 

Lemma 3.5 (Characterization of Least Model by T [EK76]): When P is a definite 

clause program, Ifp = nM. 

In summary, Herbrand interpretations are  symbolic representations of all 

interpretations. For definite clause programs, logical implication of all queries by 

the least Herbrand model of a program is equivalent t o  logical implication by the 

program (Lemma 3.3). And determination of the least model requires a finite 

number of iterations of the T functional (Lemma 3.4). However, infinite iterations 

may be necessary t o  produce the greatest fixedpoint. Since negation by failure will 

rely on the  greatest fixedpoint for meaning (Section 3.3.2), negation by failure is gen- 

erally a n  incomplete evaluation procedure. 

SLD-resolution is a relatively efficient evaluation procedure for definite clause 

programs. I t  is a specialization of resolution [Ro65]. But because of the restriction 

to definite clauses, many efficiencies are  at tained by SLD-resolution over resolution. 

SLD-resolution is a linear-inpu t resolution strategy [Ni80]. Linear-input resolution 

resolves the initial query with a program clause t o  form a new query. Each new 



query is again resolved with a program clause. Because queries are  never resolved 

with previously obtained queries, evaluation is focused on a deduction from the ini- 

t ial  query and not on other unrelated proofs. For general clause programs, this stra-  

tegy is incomplete. But as  s ta ted  in Lemma 3.8, below, this  strategy is complete for 

definite clause programs. Finally, resolvents can be formed in a last-in first-out 

manner, permitting efficient construction and access of d a t a  structures representing 

resolvents. 

Given a query Q ,  SLD-resolution determines a n  answer substitution of values for 

variables occurring within Q .  The nature of the procedure ensures correctness: 

whenever a is a n  answer substitution for a query Q ,  V(Q a) is logically implied by 

the program. Further,  SLD-resolution is complete: if 3 Q is logically implied by the 

program, Q will execute successfully. On  the other hand, if 3 Q  is not logically 

implied, termination of the procedure is not guaranteed. 

Implicitly, SLD-resolution constructs a full search tree for a query and then a 

success path  is found within the tree. In fact  i t  is not necessary t o  represent the 

entire search tree within any actual  implementation. The search tree is developed 

while searching for a success path,  so t h a t  the procedure can terminate even if its 

full search tree is infinite. The manner in which full search trees are  traversed 

affects completeness of the implementation. Prolog implementations are incomplete, 

since full search trees are  developed in depth-first order. This may lead t o  non- 

termination, though success paths would be present in other branches of the full tree. 

O n  the other hand, no other search strategy can find a success path  faster than  



depth-first search. 

Description of a well-formed full search tree is based on the  structure of a 

query. A full search tree can be depicted a s  nodes labeled by queries (conjunctions of 

atoms), and directed edges labeled by substitutions. The full search tree for a query 

Q is the full search tree whose root is labeled Q. 

A full search tree consisting only of a node labeled by the empty conjunction, . 

denoted 0, is well-formed. The  empty conjunction designates a vacuously true for- 

mula. Otherwise, the root node of the tree is labeled by a nonempty conjunction of 

a toms A /\ C, where C is a conjunction of atoms. A variant of a clause is the result 

of applying a renaming t o  the clause so t h a t  variables in the clause will be distinct 

from all others in use. Collect variants of all clauses from the  program 

A l  t C1, . . . ,A,  t C,, for which the selected a tom A unifies with each Ai 

(1 5 i 5 n).  There is a unique mgci (modulo renaming) for each pair A and Ai.  Sec- 

tion 2.3 describes a unique decomposition of the mgci producing substitutions ui and 

T~ such t h a t  A ui = Ai ri. Suppose each query (Ci ri) /\(C ui )  (1 5 i 5 n )  has  a well- 

formed full search tree. Then the full search t ree  of Figure 3.1 is well-formed. 

As a n  example of this evaluation procednre, consider the program of Example 

3.1 and the query It (s ( 0 )  , X) /\lt (X, s ( s  ( s  ( 0 )  ) ) ) . A full search tree for this 

query is presented in Figure 3.2: 

A success node in a full search tree is any leaf labeled 0, indicating t h a t  no 

a toms are  left to be resolved. A success path is a path  from the root of the tree t o  a 

success node. The  value of a success path  is derived from composition of the labels of 



Well-Formed Full Search Tree 

Figure 3.1 



Example of the Full Search Tree Construction 

Figure 3.2 

edges along the path.  The value of the path  in Figure 3.3 is al .a2 o . . *0,-2 oQ,-l. 

In Figure 3.2, the value of the only success path  is: 

{x=s (s (0) ) , Xl=s (0) , x2=0). 

An answer substitution is the value of a success path  restricted t o  those variables 



A Success P a t h  

Figure 3.3 

occurring in the original query. Thus  the answer substitution for Figure 3.2 is 

{x=s (s ( 0 )  1)- 

A "Lifting Lemma" applies t o  the construction of full search trees. This lemma 

ensures a success path  in a full search tree for a query Q when some instance Q o of 

Q has  a full search tree with a success path. 

Lifting Lemma 3.6 [L82 (Thm. 8.2)]: If query Q o has  a success path ,  then Q has  a 

success path .  

A selection rule used t o  obtain a n  a tom from a conjunction of a toms is implicit 

in the  construction of full search trees. SLD-resolution selects the first a tom from a 



conjunction, reflecting efficiencies in adding and removing the first element from a 

d a t a  structure representing a conjunction. This selection rule may not be desirable 

for use with negation by failure. Other selection rules could be employed. Any par- 

ticular selection rule only affects the size of the tree, and does not affect answer sub- 

stitutions obtained from the tree, a s  will be seen in Lemma 3.8 providing for con- 

struction completeness. 

In addition t o  construction of a full search tree, an  implementation of SLD- 

resolution must search for a success node start ing from the root. As s t a t ed  earlier, 

usually this search is performed in conjunction with construction of the full search 

tree, because full search trees can be infinite. So the procedure for traversing a full 

search tree is the main factor in determining completeness of a n  SLD-resolution 

implementation. 

The  following properties concerning the construction of full search trees hold: 

Lemma 3.7 (Construction correctness [L82 (Thm. 7.4)]): For every answer substitu- 

tion a in the full search tree for Q (constructed using any selection rule), V Q  a is 

logically implied by the program. 

Lemma 3.8 (Construction completeness): For any ground query Q logically implied 

from the program, the full search tree for Q constructed using any selection rule has 

a success path.  

A corollary t o  completeness of the construction is slightly stronger: 

Corollary 3.9 (Construction Completeness & Correctness): 3Q is logically implied 

from the  program iff the full search tree for Q (constructed with any selection rule) 



contains a success path.  

Proof: 

(-+) If 3Q is logically implied, there is a substitution a such t h a t  Q a is a closed for- 

mula and is logically implied. By Lemma 3.8, the full search tree for Q a has  a suc- 

cess path.  Lifting Lemma 3.6 provides t h a t  the full search tree for Q has  a success 

path.  

(t) If Q contains a success path  with value a, then VQ a is logically implied from 

the program, according t o  Lemma 3.7. Thus  any closed instance of Q a is logically 

implied. Therefore, 3Q is also logically implied. 

Though the full search tree construction provides for correctness and complete- 

ness, another component in the implementation of SLD-resolution dilutes these pro- 

perties. This component is the procedure by which the full search tree is traversed 

from the root node t o  a success node. Correctness of the search procedure provides 

t h a t  success is declared only when a success node is found. Completeness of the  

search procedure ensures t h a t  every success node can eventually be located. Prolog 

relies on depth-first search. As  noted previously, depth-first search is incomplete 

because an  infinite non-success path  could be followed, while success paths remain 

unexplored. Another search technique, called staged depth-first search [St84], aborts 

a depth-first search as  soon as a certain depth is reached. When no success node is 

encountered, and nodes remain t o  be explored at greater depths, the  maximum depth 

is incremented by some amount, and the staged depth-first search resumed. Thus, 

this search technique is complete. 



3.3. Negation by Failure 

In order t o  obtain efficiency in the resolution theorem-proving procedure, the 

notation of predicate logic is restricted. This restriction dramatically reduces the 

expressiveness of the notation, leading t o  the coding problem described in Section 

Negation within definite clause programs can overcome many of the difficulties 

associated with the coding problem. Definite clause programs utilizing negation by 

failure permit negated atoms within the bodies of clauses. Such clauses are  referred 

t o  a s  general clauses. A negated a tom appearing in a program for execution under 

negation by failure is expressed a s  n o t  A .  Use of negation fundamentally alters the 

underlying model of the language, and requires revisions in the evaluation procedure. 

3.3.1. The Closed World Assumption 

Negated a tom n o t  A is logically implied from a program if A is false in all 

models. I t  may be, however, t h a t  A is t rue in some models and false in others, per- 

mitting no valuation of A .  For example, if a program contains only the clause 

p t q, Herbrand models of this program are  M, = 0 and M2 = {p, q).  Hence, 

neither p nor n o t  p are  logically implied (similarly for q) .  

This problem can be resolved using the Closed World Assumption (CWA) [Re78]: 

whatever is not logically implied is assumed false in all models. For programs 

without negation, SLD-resolution is capable of determining logical implication. I t  is 

thus  possible t h a t  SLD-resolution could be used t o  implement CWA. A full search 



tree without any success paths is a jailed full search tree. Lemma 3.8 (construction 

completeness) implies t h a t  a closed a tom A is not logically implied from a program 

if A has a failed full search tree. Thus, if A is a closed a tom and A has  a failed full 

search tree, n o t  A is implied by the CWA. This correctness result is not really 

justified for general clause programs. Determination of negation for such programs 

requires a full resolution theorem-proving system. 

3.3.2. Program Completion 

In contrast t o  the CWA, Clark has  suggested program completion [C178] t o  pro- 

vide a basis for negation. The assumption underlying program completion is t h a t  a 

program embodies complete knowledge about a domain. Rather  than  implicational 

statements,  a program is taken t o  provide definitions. The following algorithm 

transforms a definite clause program into a completed program: 

(1) The general jorm of each clause p(tl,  . . . , t,) c C is 

p(Xl,  . . . , X n ) + 3 Y l  Ym:Xl=t l l \ .  . . l \ X n = t n l \ C ,  where X I . .  .Xn 

are  variables not occurring in the clause and Y1 . - . Y, are all variables occur- 

ring in the original clause. Recall t h a t  C is a conjunction of atoms. 

(2) Let the general forms of all clauses defining predicate p be 

~ ( ~ 1 ,  . . . ,Xn)cE17 - . . 7 ~ ( ~ 1 7  . . . , X,,) c Ek. Then the completed form of 

predicate p is VXl . - Xn:p(X1, . . . , X n ) * E I V  . - - VEk. If there are  no 

clauses defining a predicate in the program, the completed form is 

VXI - . - Xn:q(X1, . . . ,Xn)*  false. 



(3) The  completion of a program P ,  comp(P), is the conjunction of the  completed 

form of all predicate symbols in P. 

Step (1) of this algorithm is a transformation of clauses t h a t  is meaning-preserving 

when equality is interpreted in a manner consistent with unification. Step (2) pro- 

vides t h a t  all facts  not logically implied by a program will be false in all models. 

As an example of the completion procedure, consider the program below: 

% add(I,J,K): true if I+J=K. 
add (0, J, J) . 
add(s(I), J,s(K)) + add(I,J,K). 

% mult(I,J,K): true if IXJ=K. 
mult (0, J, 0) . 
mult (s (I), J,K) c mult (I, J,X) /\ add(J,X,K) . 

The  completion consists of the two formulas: 

add (XI, X2, X3) ct 
3 :  [Xl=O /\ X2=J /\ X3=J] 
V 31, J, K: [Xl=s (I) /\ X2=J /\ X3=s (K) /\ add (I, J, K) 1 . 

mult (Yl, Y2,Y3) o 
3:  [Yl=O /\ Y2=J /\ Y3=0] 
V 31, J,K,X: [Yl=s (I) /\ Y2=J /\ Y3=K /\ 

mult(I,J,X) /\ add(J,X,K)]. 

Since equality is introduced into the completion, equality axioms must be added 

to the theory. The axioms [Cl78] will not be reproduced here; they provide for com- 

pleteness and correctness of unification. 

The  following result characterizes negation by failure in terms of completed 

programs. 



Lemma 3.10 (Meaning of Failure for Ground Atoms [L82 (Thm. 13.2))): Let P be a 

definite clause program. Ground atom A e g f p  iff n o t  A is logically implied from 

comp(P). 

Whenever an atom A is not contained in the greatest fixedpoint, the full search tree 

for query A does not have a success path [AE82]. Therefore, n o t  A is logically 

implied from comp(P). Lemma 3.10 is also generalized t o  non-ground queries. 

Lemma 3.11 (Meaning of Failure): Let P be a definite clause program. A query Q 

has a failed full search tree iff comp(P) logically implies V ( n o t  Q).  

Proof: If Q is a closed conjunction of atoms, the result follows: Q has a failed full 

search tree iff some atom A in Q has a failed full search tree, which holds iff 

comp(P) logically implies n o t  A .  And this holds iff comp(P) logically implies 

n o t  Q .  Now if Q contains variables, the general case, Q has a failed full search 

tree iff every ground instance Q a has a failed full search tree. This holds iff 

comp(P) logically implies n o t  ( Q  a), which holds iff comp(P) logically implies 

V ( n o t  Q). 0 

3.3.3. I n c o r r e c t n e s s  o f  Negation by F a i l u r e  

Lemma 3.11 points out the incorrectness inherent in use of negation by failure. 

Suppose a query Q succeeds. By Lemma 3.9, 3Q is logically implied by the program 

and i ts  completion. Also, the query n o t  Q fails, and Lemma 3.11 provides t h a t  

V ( n o t  ( n o t  9 ) )  is logically implied by the program's completion. But 

V ( n o t  ( n o t  Q)) is logically equivalent t o  V Q ,  which is not implied by 3 Q. 



This confusion of quantifiers surfaces in Example 3.1. The query It (X, s (0)  ) 

succeeds with answer substitution X = 0, and so  n o t  It (X, s ( 0 )  ) fails using 

negation by failure. By Lemma 3.11, \JX: lt (X ,  s (0 )  ) is logically implied by the 

program's completion, which is clearly not true due to all contradictory values of 

x = s " ( 0 )  (n 2 1). 

Correctness is assured only when ground negated atoms are evaluated. A 

correct selection rule thus selects a negated atom only if i t  is ground. Under correct 

selection rules, i t  is possible for the query containing non-ground negated a toms t o  

flounder. For example, the query p (X) /\ n o t  q (X) flounders on a program con- 

taining only the assertion p (Y) under every correct selection rule. 

To eliminate floundering, only allowed queries are  permitted on allowed pro- 

grams [C178]. A query is allowed if every variable occurring in a negated a tom 

occurs somewhere else within a positive atom. A clause is allowed if the body of the 

clause constitutes a n  allowed query, and every variable occurring in the  head of the 

clause occurs within a positive atom within the body of the clause. The restriction 

t o  allowed clauses ensures t h a t  termination of any query composed of positive atoms 

will instantiate all variables t o  ground terms. Evaluation of the positive a toms of an 

allowed query can then instantiate the variables occurring within negative atoms of 

the query, and any correct selection rule will never flounder under terminating 

evaluations. 

I t  should be clear t h a t  allowed queries on allowed programs do  not flounder. 

The result, however, is a severe restriction on the expressiveness of programs. For 



example, the assertion in Example 3.1, It (0, s (J) ) , is not allowed. This assertion 

is a concise s ta tement  t h a t  zero is less than  every positive number. The restriction 

t o  allowed clauses has  restricted the ability t o  s t a t e  universal properties within 

clauses. 

I t  can be argued t h a t  allowed programs do  not restrict the expressiveness of 

database-oriented programs [C178] (Section 6.1). Logic programs for such applica- 

tions typically have a large number of assertions and a small number of rules. Each 

assertion is conventionally represented by a record in a relational database,  and will 

contain neither variables nor structured terms. Clauses ac t  a s  database views [U80], 

capable of generating additional relations, and will not be able t o  introduce vari- 

ables or  structured terms into records. Under these constraints, restriction t o  

allowed programs seems reasonable. 

3.3.4. Incompleteness of Negation by Failure 

There a re  also several problems with respect t o  completeness of negation by 

failure. In order t o  determine t h a t  a full search tree is failed, i t  is necessary to 

traverse the entire tree searching for a success node. When a full search tree is 

infinite, this search is impossible. Hence, evaluation of a negated query using nega- 

tion by failure must ensure finiteness of the failed full search tree. It may be neces- 

sary  t o  construct various full search trees using al ternate selection rules to find one 

t h a t  is finite and failed. Fortunately, there are  maximal selection rules [Sh84], essen- 

tially those t h a t  are  fair, t h a t  can obtain finite failed full search trees if any exist. 

Still, there a re  examples of programs producing infinite full search trees t h a t  no 



maximal selection rule can make finite: 

For this program and query p ,  the only full search tree produced under every selec- 

tion rule, including maximal selection rules, is infinite. 

3.3.4.1. Canonical Programs 

Completeness of negation a s  failure is achieved for a certain class of programs. 

Definite clause program P is canonical if T 4 w = gfp. 

Lemma 3.12 (Completeness for Canonical Programs [JLM84]): When P is a canoni- 

cal program and a ground negated a tom n o t  A is logically implied from comp(P), 

the query A has  a finitely failed full search tree. 

As for Lemma 3.11, this generalizes t o  non-ground conjunctions of atoms. 

Example 3.2 is non-canonical. Canonical programs are  obtained only with stringent 

syntactic constraints, for example permitting only constant terms in programs 

[AE82]. Jaffar and Stuckey have shown t h a t  for every definite clause program there 

is a n  equivalent canonical program [JS86]. Their proof is not useful in deciding if a 

logic program is canonical, however, because they produce a canonical program from 

the description of a part ial  recursive function, rather than from another definite 

clause program. 

3.3.4.2. Inconsistency of a Program's Completion 

Completeness of negation by failure also depends on the consistency of the com- 

pletion of a program. If a program's completion is inconsistent, i ts  greatest 



fixedpoint will not exist. Any query is logically implied from a n  inconsistent pro- 

gram, but  SLD-resolution may not succeed for every query. Consider the  general 

clause program below: 

Example 3.3 

p t not p. 

This program has an  inconsistent completion: p c* n o t  p. Therefore, p is logi- 

cally implied by the program, but the query p fails with an  infinite full search tree. 

Inconsistency can be prevented by requiring strate'fied programs [ABW85]. A 

program from B(A (II, C)) is stratified if there is a well-founded ordering <, over 112 

such t h a t  p <= q whenever q(x) t C is contained in the  program and C contains 

the negated a tom n o t  p(y) .  In effect stratification prevents recursive references by 

negated atoms, a s  in Example 3.3. Stratification is sufficient t o  guarantee con- 

sistency of the program's completion. 

It is not clear t h a t  general programming tasks fit well within the requirements 

set down by stratification. However, negation for relational database applications is 

accomplished by the relative complement operation [Co70], which requires full 

definition of i t s  operands prior t o  evaluation. Thus  there are no recursive references 

by negated atoms. But strictly speaking, relational algebra has  no capacity a t  all t o  

express unbounded recursion. 

Negation by failure is a n  efficient implementation of negation within logic pro- 

gramming. With respect t o  the completion of a program, ground negative queries 

can be evaluated correctly. Only str ict  syntactic restrictions can ensure 



completeness. When negation is permitted within programs, stringent syntactic res- 

trictions ensure consistency and correctness. Consistency of a program's completion 

can be assured by stratifying the program. To prevent incorrectness of negation by 

failure, negated queries flounder if all selection rules cannot instantiate variables of 

these queries. Floundering is eliminated by evaluating only allowed queries on 

allowed programs. 

3.4. Enhancing Expressiveness of Programs with Negation 

Any implementation of negation is sufficient t o  significantly reduce the coding 

problem described in Section 1.2. Lloyd and Topor suggest a logic language of 

extended programs based on negation by failure. Implementation of this language 

therefore suffers from incorrectness and incompleteness. The  model elimination pro- 

cedure permits full predicate logic. I t s  implementation is a significant enhancement 

t o  SLD-resolution, and is complete for negative queries, unlike negation by failure. 

However, the implementation may be far  less efficient than SLD-resolution. 

3.4.1. Extended Programs 

Implementation of negation within logic programs permits implementation of 

all other logical connectives within the bodies of clauses. This increased expressive- 

ness reduces, though does not eliminate, the coding program suffered by logic pro- 

grams. T o  demonstrate the expressiveness obtained when negation is implemented, 

extended programs are  defined [LT84]. An extended program from B(A(I3, C)) is 

composed of extended clauses. An extended clause is of the form A t F, where F is 



a formula using all logical connectives and A is an  atom. 

Every extended program P can be converted algorithmically into a general 

clause program P' such t h a t  the set of sentences implied by comp(P1) is equivalent t o  

the set  of sentences implied by comp(P).  The conversion algorithm is applied t o  

every extended clause of an  extended program until every clause is just a general 

clause. 

The conversion rules preserve stratification of the original extended program 

(Section 3.3.4.2). It is not assured t h a t  the general clause program produced by the 

transformation will be allowed (Section 3.3.3). For example, the extended clause 

p t VX: q (X) is converted into two general clauses: 

p t not aux. 
aux t not q(X) . 

This program is not allowed because the variable X in the second clause does not 

appear within a positive a tom elsewhere within the body of the same clause. This 

leads t o  floundering of the query p, because the non-ground negative query 

not q(X) ensues. 

Extended programs partially resolve'the coding problem, described in Section 

1.2. Using a conversion procedure and an  implementation of negation, all logical 

connectives can be included within the bodies of clauses. Nonetheless, requiring t h a t  

programs will be allowed and stratified impedes these additional expressive capabili- 

ties. The  model elimination procedure, discussed next, permits the  full expressiveness 

of logic, though the procedure is not a s  efficient as SLD-resolution. 



3.4.2. Model Elimination 

Negation by failure relies on SLD-resolution t o  provide a n  implementation of 

negation within logic programs. This strategy retains the efficiency of SLD- 

resolution, though completeness of the evaluation system is sacrificed. The  model 

elimination procedure [Lo781 is an  evaluation system for full predicate logic. The  

expressiveness of the language is therefore equivalent t o  the expressiveness of predi- 

ca te  logic. But efficiency of the evaluation system is now in question. 

Model elimination is a n  enhancement t o  the linear-input resolution strategy,  

called ancestry-filtered resolution [Ni80]. While linear-input resolution is incomplete 

for general clauses, a n  ancestor search component restores completeness t o  linear- 

input resolution. Model elimination therefore enhances SLD-resolution. Efficiency of 

model elimination is somewhere between SLD-resolution and resolution. 

When using resolution, s ta tements  of predicate logic are  converted into clauses 

of the form: 

A I V .  . . VA,+Bll\ * .  . AB,, 

where each Ai and Bj is a n  atom. For model elimination, each clause is further con- 

verted into contrapositive forms. As an example, the  following contrapositives: 

a re  obtained from the clause pVq t rAs.  Every contrapositive obtained from a 

clause is logically equivalent t o  the clause. SLD-resolution can be used on programs 



consisting of contrapositives by generalizing the procedure t o  permit unification of a 

query 4 with the head of a contrapositive -AA'+- L1 . AL,. 

Model elimination constructs a full search tree with the same construction rules 

used by SLD-resolution. An additional reduct ion rule also applies. If A /\ C labels a 

node in the full search tree with a descendent node labeled -A1/\ C', where 

A ' a  = A for some substitution a ,  and -A1/\ C' arises from solving A ,  then -A' can 

be eliminated, resulting in the descendent C'o of -AA'l\C'. This implementation of 

negation effectively duplicates reasoning through reduct io  ad absurdurn. 

T o  detect reduction the full search tree t o  the root is traversed, though certain 

nodes along the way can be disregarded. Indexing schemes reduce the number and 

length of such searches [PG86]. As demonstrated in [MW87], i t  is not always advan- 

tageous t o  perform a reduction when instantiation of variables would occur. Thus, 

each s tep of model elimination involves more choices and more processing than each 

s tep of SLD-resolution. Experience of an actual  implementation on actual  programs 

will demonstrate if model elimination used in practice is a s  efficient a s  SLD- 

resolution [St84]. 



Chapter 4 

Constructive Negation 

Negation by failure, described in Chapter 3, is the predominant implementation 

of negation with logic programming. This procedure can be both incorrect and 

incomplete. And because negation by failure does not produce answer substitutions, 

i t  does not fulfill important programming requirements. For this  reason, program- 

mers often use ad hoc negative definitions of predicates within programs t o  produce 

answer substitutions. 

Constructive negation is a formalization of this approach. I t s  negated queries 

can produce answer substitutions. T o  derive answers, programs incorporating con- 

structive negation, DIF-programs, contain definitions for both positive and negative 

facts. 

The  first section of this chapter describes the syntax of DIF-programs. Section 

4.2 describes the underlying model of DIF-programs, based on 3-valued logic. DIF- 

programs may be inconsistent. While resolution can always detect inconsistency, 

detection imposes inefficiency on the evaluation system. Lemma 4.6 demonstrates 

t h a t  inconsistency is not decidable. Sufficient syntactic conditions ensuring con- 

sistency are  described in Chapter 5. 



4.1. A Language of Logic Programs with Constructive Negation 

Constructive negation requires definitions of both true and false information. 

In fact ,  the definitions can be completely disjoint. A Definite Inference Form (DIF) is 

used to express such definitions. Every DIF is either a n  assertion L or is of the form 

L t F where L is a literal, and F is a formula containing all logical connectives. 

All negated formulas t h a t  are t o  be evaluated under constructive negation are  

expressed a s  -F. Only variables occurring in the head of a DIF a re  permitted t o  

occur free in i t s  body. A DIF-program consists of a collection of DIFs. A fragment 

of a DIF-program follows: 

% mult (I, J, K) : true if IXJ=K: otherwise, false. 
mult (0, J, 0) . 
mult (s (I), J, K) t 

3: m u  (I, J, X) add (J,X, K) . 
~ m u l t  (0, J, s (K) ) . 
~ m u l t  (s (I), J, K) t 

VX: mult (I, J,X) --+ -add(J,X,K) . 

Because all logical connectives can be present within the body of a DIF, DIF- 

programs are  a s  expressive a s  a s  the extended programs of Lloyd and Topor (Section 

3.4.1); t rea tment  of negation is a key difference. 

In this language all literals are treated equally regardless of sign. An interpre- 

tat ion of a DIF-program is a constructive interpretation. Just  a s  a n  interpretation 

of a definite clause program can be given by a set  of ground atoms, a constructive 

interpretation is represented by a se t  of ground literals. A ground a tom A is con- 

structively t rue  (respectively, constructively false) in constructive interpretation I if 

A (respectively, - A )  is a member of I .  



I t  is essential t o  differentiate logical negation from constructive negation. Tem- 

porarily define the standard part of a constructive interpretation to be the set  of all 

ground atoms within the interpretation; hence, the standard pa r t  of a constructive 

interpretation is an  interpretation. For constructive interpretation I = {wP), pro- 

position p is constructively false and p is logically false in the s tandard pa r t  of I. 

On the other hand, for I = 0, proposition p is logically false in the s tandard pa r t  of 

I, but p is neither constructively true nor constructively false. Thus, the law of the 

excluded middle does not hold. This fact  leads naturally t o  development of a three- 

valued logic for DIF-programs. 

4.2. Underlying Model of DIF-Programs 

The  ability t o  define both true and false propositions within programs also 

entails the  possibility t h a t  the t ru th  value of some propositions may not be defined. 

T o  cope with this possibility, an  undefined logical value can be assigned t o  formulas 

by a n  interpretation. Models of DIF-programs may be strong or weak (Section 

4.2.3). Strong models assign true valuations t o  programs, while weak models assign 

either true or  undefined valuations. Unlike definite clause programs, the least strong 

model of a DIF-program may not exist, while the least weak model assigns t o  every 

formula the  undefined logical value. Thus, we take  fixedpoints of the T functional a s  

the basis for a DIF-program's meaning. The se t  of fixedpoints may be empty, but  

absence of fixedpoints cannot be detected by efficient evaluation systems or by any 

decision procedure. 



There are  several proposals for 3-valued t ru th  tables of the Boolean operators 

[Tu84]. T o  some extent the content of t ru th  tables for the logic is arbitrary,  though 

a monotonicity property should hold for all logical operators. The information ord- 

ering on t ru th  values is defined with u as  the least informative element: 

u[rt and u C f .  

4.2.1. Three-Valued Logic 

The  logical constants are: 

Logical Constants 

Monotonicity ensures that :  

, Symbol 
t 
u 
f 

Negation: 

if x C y  - then ( -~ )S ( -Y )  

Intended 
Meaning 
true 
undefined 
false 

Sets of expressions: 

if there is a bijection o: S + T ,  such t h a t  x - [7o(x) for all x E S ,  then S[I  - T 

Disjunction and Conjunction: 

if S E T ,  - then ( / \S )r ( / \  - T) and ( V S ) c ( V  T). 

For example, the t ru th  table of implication follows: 



Appendix A contains &valued t ru th  tables for all logical connectives. With respect 

t o  the ordering El - these 3-valued t ru th  tables are the strongest extension of the 

usual 2-valued t ru th  tables; Appendix B demonstrates this assertion. Appendix B 

also demonstrates t h a t  all laws observed by the usual t ru th  tables are  observed by 

the extension. 

Tru th  Table for Implication 

!I 

4.2.2. C o n s t r u c t i v e  Interpretations of  F o r m u l a s  

Suppose a DIF-program is from B(A(II, C ) ) .  I t  possesses a n  associated Her- 

brand Universe and Base, HU = T(C) and HB = A D ) ,  respectively. A construc- 

tive interpretation is a mapping from HB t o  the three logical constants t ,  u ,  and f .  

Valuation of a formula F by a constructive interpretation I is denoted I[F]. When- 

ever the meaning is clear from context, constructive interpretations will henceforth 

be referred to only a s  interpretations. 

As for Herbrand interpretations, set notation is used t o  denote constructive 

interpretations. A set  of ground literals qualifies as a n  interpretation if i t  contains 

no occurrence of a n  atom and i ts  negation. If a se t  S of ground literals qualifies a s  

a n  interpretation, then an interpretation Is may be constructed from S as follows. 

For every a tom A E HB: 

x 

x -+ y 

t 
u 
f 

t u f  

t u f  
t u u  
t t t  



If A  ES,  then Is[A] = t. 

If N A  ES, then Is[A] = f .  

If neither A  nor N A  are  in S, then Is [ A ]  = u. 

For  example, suppose HBI = {p, q, r), and S1 = {p, ~ q ) .  Then I  contains the fol- 
S l  

lowing mappings: 

's,Pl = t 

IS1[91 = f 

Is [r] = u. 
1 

When L is a ground literal and I  is a n  interpretation, L  GI is taken t o  mean 

t h a t  I [L]  = t. I  C J, where I  and J are  interpretations, means t h a t  for all ground 

literals L  J [ L ]  = t whenever I [L]  = t. As examples of this notation: p Els , and if 
1 

S2 = {p, --q, r ) ,  then I s , c  Isd Henceforth, sets of ground literals qualifying a s  

interpretations will be used freely t o  designate interpretations without the unneces- 

sary s tep  of designating the unique interpretations associated with the sets. 

An interpretation I  can be naturally extended t o  a mapping i over all formulas 

from B ( A  (IT, C)) a s  follows: 



The  extension i also distributes over abbreviations for formulas: 

Since VX: Fl is an  abbreviation for /\ Fl(t) ,  
t€HU 

Similarly, 3X: F1 is a n  abbreviation for V Fl( t ) ,  and therefore: 
t E H U  

Henceforth, a n  interpretation I will be used in place of i ts  extension 1 when no con- 

fusion can result. 

As a n  example of evaluation of a formula by a n  interpretation: 

Let  HU = {a, b), 

HB = {P ( a )  P ( b )  . q (a) . q ( b )  1, 

I1 = {P (a) * NP ( b )  . q ( a )  1. 

T h e n I l [ v X : P ( X ) + q ( X ) l  = ( ~ l ~ ~ ( a ) l + I l l q ( a ) I ) A ( ~ ~ [ ~ ( b ) l + I ~ [ q ( b ) l )  

= ( t -+t )A(f-+u)  

= t A t  



The  next result demonstrates a form of monotonicity maintained by formulas. 

Lemma 4.1 (Monotonicity of Interpretations): Let  I  and J  be interpretations. Then 

I  C J  iff I [ F ] C  - J [ F ] ,  for all sentences F .  

Proof: 

(+) Suppose I  C J .  The proof proceeds by induction on the nesting depth of opera- 

tors in F .  In the basis case, the nesting depth is zero, so  F  is a ground atom. There 

are  three subcases: 

(a) If F E I ,  then F E J ,  so I [ F ]  = J [ F ]  =t.  

(b) If N F  E l ,  then N F  E J, so I [ F ]  = J [ F ]  = f. 

(c) Otherwise, I [ F ]  = u, and J [ F ]  ~ { t ,  u,f}. 

In all three cases, I [ F ] C  - J [ F ] .  

For the induction hypothesis, assume t h a t  I  J  implies I  [ F ]  - C J [ F ]  for all sentences 

F  with nesting depth a t  most d.  Assume t h a t  I  J ,  and consider a sentence F  with 

nesting depth d +l. Let F  = c  S, where c  is a logical operator in no and S is a set 

of formulas of nesting depth at most d .  (When c  is the negation operator, S will be 

a singleton set.) The  induction hypothesis holds for each subformula in S ,  so  I [ F ; ] ~  

J [ F j ]  for all F,. ES. Consequently, c  {IIFl] ,  I [F2] ,  . . - ) L C  {J IF l ] ,  J[F2] ,  . - ). But 

I  denotes f and J  denotes j ,  so I [ c  s]E - J[c  S ] .  

I t  is easily shown t h a t  interpretations preserve any laws observed by the usual 

t ru th  tables. By applying De Morgan's laws, the logical connectives a re  expressive 

enough to dispense with negation applied t o  any non-atomic formula. The  comple- 



ment of a formula F ,  denoted F, produces a new formula with negation innermost, 

applied only t o  atoms. Complement is defined as follows: 

K = -A,  where A is an  atom 

The following result ensures t h a t  complement is meaning-preserving. 

Lemma 4.2 (Complement equivalent t o  Negation): For every interpretation I and 

sentence F ,  I [ -F]  = I[F]. 

Proof: This is just application of De Morgan's laws. 

Thus  the syntactic procedure for complementing a formula is equivalent t o  the 

semantic notion of constructive negation. 

Extending complement to the  logical connectives provides the following rules: 



In order t o  evaluate DIF-programs, Chapter 5 requires all quantifiers to be 

bounded, of the form 3.X: F /\ G and VX: F -+ G. Thus, the rules above can be 

refined t o  produce only bounded quantifiers from formulas with bounded quantifiers: 

' ~ ' X : k ' ~ - - , t ' ~  = 3 X : F 1 / \ q .  

Because the syntactic complement of a formula is equivalent to evaluating i ts  

negation, the complement form of a formula can always be used whenever negation 

is applied t o  a non-atomic formula. The resulting formula is logically equivalent t o  

the original negated formula. For example, the following DIFs are  logically 

equivalent: 

-mult(s(I),J,K) t -3: mult(I,J,X) A add(J,X,K). 
-mult (s (I), J,K) t 'dX: mult (I., J , X )  + -add(J,X,K) . 

Henceforth, only DIF-programs with negation applied t o  atomic formulas will be con- 

sidered. DIF-programs with negation applied to arbitrary formulas can be converted 

in a meaning-preserving manner t o  programs with negation applied only to atoms. 

As the  above example demonstrates, having negation applied only t o  a toms mani- 

fests occurrences of universal quantification. I t  is important  t o  detect implicit 

occurrences of universal quantification because universal quantification can make 

any evaluation procedure incomplete. 

4.2.3. Constructive Models of DIF-Programs 

Two notions of model are possible under 3-valued logic, a s  discussed in [LM85]. 

An interpretation M is a strong model of a DIF-program if M[VF]  = t for every DIF 



F  in the program. Therefore, M [ F a ]  = t for every closed instance F a  of F .  Recall 

from Lemma 3.2 t h a t  the least model nM is a model of any definite clause program. 

This is not generally the case for strong models of DIF-programs. A program con- 

taining only the DIF p t q has strong models: 

The  intersection of this collection is 0, which is not a strong model. I t  is important  

t o  obtain a unique least model. Without a least model the evaluation system must 

cope with indefinite information, which is not possible for a n  evaluation system based 

As a n  alternative, a n  interpretation M  is a weak model of a DIF-program if 

M [ V F ]  # f for every DIF F  in the program. Hence, M [ F  a] # f for every closed 

instance F a  of F. Weak models for the program containing only the DIF p t q 

are  those strong models listed above and the following: 

The  intersection 0 is now a weak model. The situation in the  example is general - 

0 is always the least weak model of any DIF-program. 

Within the framework of 3-valued logic, a program is inconsistent if i t  has  no 

strong models. For example, a program consisting of two assertions p and --p has 

no strong models, but  0 is a weak model. So consideration of weak models is too 



permissive. 

Thus  neither strong nor weak models are  suitable for assigning underlying 

models t o  programs. The  set  of strong models of a DIF-program may not possess a 

least element, while the least weak model is 0 even in the event of inconsistency. 

Instead we turn  again t o  the immediate consequence functional T of Section 3.1. 

The  definition is broadened to accommodate DIF-programs a s  follows: 

Closed literal L E T ( I )  iff: 

L is a ground instance of a n  assertion, 

or  L t F  is a closed instance of a DIF in the program and I[F] = t .  

Lemma 4.3 ( T  monotonic): T ( I )  T ( J )  whenever I C J. 

Proof: Suppose I C J and closed literal L E T(I) .  If L is a closed instance of a n  

assertion, then L E T(J ) .  Otherwise, there must be a closed instance L t F  of a 

DIF with I[F] = t. By monotonicity of interpretations (Lemma 4.1), J[F] = t, so 

L E T(J ) .  

Unlike definite clause programs, i t  is possible a t  some iteration cu for T tcu t o  

become undefined, a s  in the following DIF-program: 

For this  program, iterations of T are  the following: 



T t O = @  

T t l  ={-1r) 

T t 2  = {-~lq l r )  

T t 3 undefined. 

In general, T t becomes undefined a t  iteration a when T t a  at tempts  t o  include 

both a ground a tom A and i ts  negation -A. 

As for definite clause programs, we will be interested in fixedpoints of T .  

Often, we s ta te  t h a t  X is a fixedpoint of a program P, meaning t h a t  X is a fixed- 

point of Tp. The  following result places an  inclusion ordering on the classes of fixed- 

points of T ,  strong models, and weak models. 

Lemma 4.4 (Relating Models and Fixedpoints) 

(1) If M is a strong model then M is a weak model. 

(2) Every fixedpoint of T is a weak model. 

Proof: 

(1) Immediate from the definitions. 

(2) We will show t h a t  if M = T(M) then M is a weak model. Consider any closed 

instance L of a n  assertion. I t  must be t h a t  L E T(M). But then L E M ,  so M [ L ]  # f. 

Next consider any closed instance L t F  of a DIF. If M[F] = t then L f T(M), so 

L f M, and M[L t F ]  # f. Otherwise, M [ F ]  # t, so MIL c F ]  # f. Hence, M is a 

weak model. 



This result only provides t h a t  the collections of fixedpoints and strong models 

are contained in the collection of weak models. In general, the inclusions are  strict, 

as shown in Figure 4.1. Lemma 4.5 will demonstrate t h a t  the intersecting region of 

fixedpoints and strong models is nonempty. 

There is a connection between strong models and fixedpoints. The  following 

lemma demonstrates tha t  every strong model contains a fixedpoint. A DIF-program 

is fixedpoint-inconsistent if i t  has no fixedpoints. The  lemma also shows t h a t  

Relationships Between Fixedpoints and Models 

weak models 

Figure 4.1 



fixedpoint-inconsistency implies inconsistency 

Lemma 4.5 (Relating Strong Models and Fixedpoints): 

(1) If M is a strong model, then T"(M) & M is a fixedpoint for some ordinal a. 

(2) If a DIF-program is fixed point-inconsistent, then it is inconsistent. 

Proof: Point  (2) follows from (11, since every strong model M contains a fixedpoint 

T ~ ( M ) .  The existence of any strong model implies the existence of a fixedpoint. 

The proof of point (1) is in two parts. First,  we show t h a t  M > T ( M )  whenever M is 

a strong model. If there is a closed literal L E T(M), there are two cases: 

(a)  If L is a closed instance of a n  assertion, then L f M because M is a strong 

model. 

(b) There is a closed instance L c F  of a DIF, where M[F] = t. Since M is a 

strong model, L E M  also. 

Since T is monotonic, T ~ ( M ) ~  Ta+'(M) for all ordinals a. No chain 

M > T ( M )  > . . > Ta(M) can be ever-decreasing. A t  worst, cw can be the cardinal- 

ity of M and T'(M) = @. Therefore, for some ordinal a, T'(M) T" +'(M), so 

T ~ ( M )  = T" +'(MI = T( T"(M)). 

Lemma 4.5 demonstrates t h a t  there is a decreasing chain from each strong model to 

a fixedpoint. The converse of point (2) in Lemma 4.5 does not hold, a s  the following 

program demonstrates: 



This DIF-program is fixedpoint-consistent (Ifp = 0 ) )  but  is inconsistent. 

Let  Xp be the set  of fixedpoints of Tp, where P is a DIF-program. P is 

fixedpoin t-inconsistent if Xp is empty. When P is fixedpoint-consistent , the 

Knaster-Tarski Theorem [TaSS] guarantees existence of a least fixedpoint 

lfPp = mp. AS usual, when program P is understood, the subscripts will be omit- 

ted. 

Lemma 4.6: For every fixedpoint-consistent program, Ifp = T t a  for some ordinal a. 

Proof: The proof first demonstrates t h a t  T f a  is contained in every fixedpoint, for 

all ordinals a. In particular, T f a  C IfP. Next, we show t h a t  T t a C T t P  for all 

ordinals cu 5 P. Therefore, there is a "maximal" ordinal 7 such t h a t  T f a T 7 y for 

all ordinals cu; otherwise, there would be ordinals a such t h a t  HB C T fa .  T f 7 is a 

fixedpoint, so  IjpC T 17. 

T o  demonstrate the first par t ,  induction is performed on all ordinals a. Since 

T f O  = 0, the basis case holds. For the induction hypothesis, assume T f a  is con- 

tained in every fixedpoint. Consider the successor ordinal a+l .  Suppose L is a 

ground instance of a n  assertion in P .  Then L E T t(a+l); also, L is true in every 

fixedpoint. If L t F is a closed instance of a DIF in P ,  and T ta[F] = t, then 

L E T f(a+l).  Also, by the induction hypothesis, T f a  is contained in every fixed- 

point, and due t o  monotonicity of interpretations, Lemma 4.1, F is t rue in every 

fixedpoint. Therefore, L is true in every fixedpoint. The induction follows for limit 

ordinals also. 



T o  show t h a t  T t a, C T t  8 whenever a, 5 8, for all ordinals a, and P, let ordinal 

6 be such t h a t  a +6 = p. Since 05 T t  6, ~ ~ ( 0 )  T ~ ( T  t  6) by monotonicity of T, 

Lemma 4.3. Using the definition of 7, T ta 5 T tp. n 

The least ordinal a, for which T p  t a = T p  t (a + 1 )  = ljpp is called the closure 

ordinal  of program P.  

Fixedpoints of T will represent strong models, since the set of strong models of 

a program may not have a least element. Three characteristics of fixedpoints justify 

their use a s  representatives: 

(1) For any fixedpoint-consistent program, the set  of fixedpoints is closed under n. 

(2) Fixedpoint-inconsistency implies inconsistency. 

(3) Every strong model contains a fixedpoint. 

Fixedpoints are  therefore chosen as  the basis for the underlying model of DIF- 

programs. A formula F is f ixedpoint-implied by a program P if and only if X [ F ]  = t 

for every fixedpoint X of Tp.  When program P is fixedpoint-consistent, F is 

fixedpoint-implied by P if and only if I fp[F]  = t. 

Programs containing universal quantifiers and with infinite domains may have 

infinite closure ordinals. Consider the following program: 

p c VX : n a t  (X) +nat (s (X) ) . 
nat (0) . 
n a t  (s (N) ) + n a t  (N) . 

For this program, Ifp = T t  o+l. Since the completeness proof of the  SLD-resolution 

procedure relies on a correspondence between the iterations of the T functional and 



the depth of a success path  in the full search tree, there will be queries t h a t  cannot 

execute to completion on programs with transfinite closure ordinals. Consequently, 

completeness is sacrificed with DIF-programs. Chapter 5 will demonstrate the neces- 

sity of this incompleteness result through Turing-reducibility. 

Eliminating the universal quantifier from formulas, thereby reducing the expres- 

siveness of the language, necessarily results in completeness. However, DIF-programs 

may be fixedpoint-inconsistent, which will not be detected by efficient evaluation sys- 

tem such a s  SLD-resolution. 

The  resolution procedure is correct and complete even in the event of incon- 

sistency, because resolution need not use a program clause t o  form a resolvent. 

SLD-resolution a t ta ins  efficiency over resolution by forming each resolvent only from 

the previous resolvent and a program clause. SLD-resolution is correct and complete 

even with inconsistency because definite clause programs cannot be inconsistent. 

With introduction of negation in DIF-programs, fixedpoint-inconsistency can arise. 

T o  retain the efficiency of SLD-resolution for evaluation of DIF-programs, 

fixedpoint-consistency should be decided before evaluation. But,  a s  the following 

lemma demonstrates, fixedpoint-consistency is undecidable. 

Lemma 4.6: Fixedpoint-consistency of a n  arbitrary DIF-program is undecidable. 

Proof: I t  is easy t o  produce a contradiction. Consider Hilbert's tenth problem: pro- 

ducing integer solutions for polynomial equations in several variables. Matijasevic 

has  shown this  problem undecidable. Consider program Hilbert of Figure 4.2. 

Definitions of certain predicates used for lists and integers are  not included in this 



Program Hilbert 

% hilbert (Vars, Exprs) : true if there are bindings of integers 
% to constants standing for variables in Vars that evaluate 
% each expression in Exprs to 0. 
hilbert (Vars, Exprs) c 

%indings : (makeBindings (Vars, Bindings) /\ 
(VEXP~: in (Expr, Exprs) -+ eval (Bindings, Expr, 0) ) ) . 

% makeBindings(Vars,Bindings): true if Bindings contains 

% bindings b(Var,Value) for each variable Var in Vars 
% and some integer Value. 
makeBindings (Vars, Bindings) c 

(3 : length (Vars, N) /\ length (Bindings, N) ) 
/\ (VVar : in (Var,Vars) -+ 

(Walue: integer (Value) /\ in (b (Var, Value) , Bindings) ) 

% eval (Bindings, Expr, Value) : true if the value of 
% Expr is Value. 
eval (Bindings, Expr, Value) t 

in (b (Expr , Value) , Bindings) . 
eval (Bindings, add (Exprl, Expr2) ,Value) t 

3 1 , ~ 2 :  (eval (Bindings, Exprl, V1) /\ 
eval (Bindings, Expr 2, V2) /\ 
add (Vl, V2, Value) ) . 

eval (Bindings, mult (Exprl, Expr2) , Value) t 
3 1 , ~ 2 :  (eval (Bindings, Exprl, V1) /\ 

eval (Bindings, Expr2, V2) /\ 
mult (Vl, V2, Value) ) . 

eval (Bindings, power (Expr , N) , Value) c 
3 : (eval (Bindings, Expr , V) /\ 

power (V, N, Value) ) . 
Figure 4.2 

program. Their definitions should be self-explanatory from the program's text. Any 

other undecidable problem can be used in place of this one. 



If for some set  of variables v and expressions e ,  h i l b e r t ( v ,  e )  is not fixedpoint- 

implied by H i l b e r t ,  then any automated procedure for deciding fixedpoint- 

consistency should find t h a t  H i l b e r t  augmented with the assertion 

-hi lber t  (X,  Y) is fixedpoint-consistent. Hence, Hilbert's tenth  problem becomes 

decidable, while i t  has  been shown undecidable. CI 

Because fixedpoint-consistency cannot be decided, Chapter 5 introduces syntac- 

tic restrictions on programs t o  ensure fixedpoint-consistency- 



Chapter 5 

Fixedpoint-Consistent DIF-Programs 

Efficient evaluation of DIF-programs cannot detect fixedpoint-inconsistency. 

Since fixedpoint-inconsistency is undecidable, syntactic restrictions must be placed on 

DIF-programs t o  ensure fixedpoint-consistency. The syntactic restrictions are  easily 

ensured by using a new language containing s ta tements  of equivalence, called DEFs 

(Definite Equivalence Forms), rather than s ta tements  of implication (DIFs). DEF- 

programs are  then compiled into DIF-programs t h a t  are  guaranteed t o  be 

fixedpoint-consistent . 

An evaluation system for DIF-programs, based on SLD-resolution, is presented. 

Unlike SLD-resolution, the evaluation system must be able to evaluate universally 

quantified formulas. Such formulas arise naturally from DEF-programs. For evalua- 

tion, universally quantified formulas must be bounded, of the form VX: G + F. 

Evaluation utilizes G a s  a generator of values, and F a s  a tester. 

Correctness for evaluation of universally quantified formulas may not be 

at tained in certain cases. A combination of enhancements t o  the evaluation pro- 

cedure and syntactic requirements are used t o  ensure correctness. 

Theorems 5.5 and 5.6 verify correctness of the evaluation procedure for com- 

piled DIF-programs. Completeness of the evaluation system cannot be obtained for 

queries on these programs, however. 



5.1. Syntax of DEF-Programs 

Syntactic restrictions on DIF-programs will ensure fixedpoint-consistency. Two 

basic ideas underlie the syntactic restrictions; informally they are: 

Dual DIFs: 

Every DIF L t F in a program has  a dual t F. 

Non-conjlic ting DIFs: 

There is a t  most one closed instance A t F  of a DIF for each ground a tom 

A E H B .  

Each pair of dual  DIFs essentially produces a s ta tement  of equivalence. The 

resulting DIF-program is similar t o  the Clark completion [C178], though Clark's 

approach implicitly produces equivalence. 

T o  make these restrictions more easily verified by a n  automated procedure, a 

new language is introduced. Programs in this new language a re  "compiled" into 

DIF-programs. A Definite Equivalence Form (DEF) from B(A (IT, C)) is of the form 

A c* F, where A is a n  a tom from A ( n ,  C) and F is a formula from B(A(II ,  C)). A 

DEF-program is a finite collection of DEFs. The set of predicate symbols ll must 

contain a distinguished proposition symbol true. Underlying models of DEF- 

programs always assign the logical constant t t o  true. Assertions in DEF- 

programs take  the form A *true or A * -true. As with DIFs, only variables 

occurring within the head of a DEF may occur free in the body. All DEFs of the 

form p(xl, . . . ,z,)c+ F define predicate p .  Finally, no DEF is permitted t o  (re)- 

define the distinguished proposition true. 



5.2. Compilation of DEF-Programs 

The  compilation procedure t h a t  p r o d u e s  a p am piled D W w g r a m  from a 

DEF-program generates dual DIFs from DIElF- Gornp2laL%Gm also ensures tha t  

the compiled DIF-program will be faee .d c o n B i c ; ~ g  & i E m i t : k  

Generating Dual DIFs 

If A * F is a DEF in program Prmi 8ibm z r u m ~ k r n  !gmerz*s the DIFs 

A c F and K c F .  Notice t h a t  t h f  ir-km, x.st.p k gmmmiizd, rather than 

-A t -F. Lemma 4.2 has d e m m s h . ; a ~ ~  tha% lip] = B;bq Em my sentence F and 

interpretation I. Using the  amplemen% E ~ r m  d ~ k  ~%i'%it, emlmtt ion of compiled 

DIF-programs. T o  demonstrate con@:lath ,  aa.mii& &e Emqpmk OY a DEF- 

program below: 

Example 5.1 

% mult(I,J,K): ?&me If PX.J=E: ai%erwi.s,, false. 
mult(O,J,O) * J;r-. 
mu1 t (0, J, s (K) ) ++ -true, 
mult (s (I), J,K) * 3: d t t ( ( T , J , , X j  ,A &(@,JJ ,K)  . 

From this program fragrneat, t k  iWcn&g DWs m e  g e ~ ~ &  

mult(O,J,O) c 3rw- 

mult (0, J, s (K) ) c -&rue.. 
mult(s(I),J,K) 4c 3.: mul%(I,,J,,X)) /A add((XvJ,K). 

-mult(O, J,O) t -4xiue, 
~mult(O,J,s(K)) c m.ue. 
wnult(s(1) ,J,K) +- VX: mmd-t(l,J,X,) -+ -add@, J,K) . 

The meaning preservation bmq, %elmw, r f O ~ *  supporte a m p i l a t i o n .  



Lemma 5.1 (Compilation is Meaning Preserving): Let PDEF be a DEF-program and 

PDIF the compiled DIF-program. For every interpretation I, IIPDEF] = IIPDIF]' 

Proof: Logical equivalence of the DEF-program and i ts  compiled form results from 

the logical equivalence of A o F and (A c F) I\(-A c N F ) .  

Non-Conflicting DEF-Programs 

A DEF-program has  non-conflicting DEFs if there is a t  most one closed instance 

A * F of all DEFs for each atom A in the Herbrand Base of the program. For 

example, the program below is fixed point-inconsistent and has  DEFs t h a t  conflict: 

Example 5.2 

p(X,b) * q. 
p(a ,Y)  * r .  
q c* t r u e .  
r * - t rue .  

The compiled program contains the DIFs: 

p(X,b) + q. 
-p(a,Y) t -r. 

q t t r u e .  
Nr c t r u e .  

When t r u e  is assigned t in all interpretations, the conflict arises for the  a tom 

p (a ,  b) . Without this conflict, the program would be fixedpoint-consistent. 

Conflicting DEFs can be found with a syntactic test .  DEFs A cc F and B * G 

overlap if: 

(1) the DEFs contain disjoint sets  of variables, and 



(2) A and B unify. 

A DEF-program is overlapping if i t  contains distinct DEFs whose variants unify. 

L e m m a  5.2 (Non-Overlapping Programs are Non-Conflicting): If a DEF-program is 

non-overlapping, i t  is non-conflicting. 

Proof: We will show t h a t  a conflicting DEF-program is overlapping. Suppose the 

DEF-program is from B(A(IX, C)). If the  program is conflicting, there are  distinct 

closed instances (A o F1) al and (A o F2)  u2 of DEFs such t h a t  A al = A a2 = A .  

Since (A1 @ C) n ( A 2  @ C )  is nonempty, Lemma 2.8 provides t h a t  A l  and A 2  are  

unifiable. Therefore, the program is overlapping. 

In Example 5.2, the program is overlapping and has conflicting definitions. 

F ixedpo in t -Cons i s t ency  is Attained 

Combination of dual DIFs and non-conflicting DEFs ensures fixedpoint- 

consistency. 

L e m m a  5.3 (Non-conflicting DEF-programs are fixedpoint-consistent): If PDEF is a 

non-conflicting DEF-program, then PDEF  true) is fixedpoint-consistent. 

Proof: Notice t h a t  addition of the assertion true to the DEF-program PDEF assures 

assignment o f t  t o  true. By Lemma 5.1, compilation of PDEF t o  a DIF-program 

PDIF is meaning-preserving. Therefore, if PDIF  true) is fixedpoint-consistent, so 

is PDEF  true). Let P = PDIF  true). We now prove by induction t h a t  T p  f a  

is defined for all ordinals a. In the basis case, T 10 = 0. For the induction 

hypothesis, assume t h a t  T ta is defined. Consider a successor ordinal a+l .  



T t (a+ 1) is undefined in the following cases: 

(a) There are  closed instances A +- F1 and -A t Fa,  and 

T t a [ F 1 ]  = T t a [ F 2 ]  = t. Since the DEF-program is non-conflicting, there is 

only one closed instance A ++ F1 of a11 DEFs. Therefore, -A c FZ is the dual  

of A t F1, and F 2  = c. By Lemma 4.2, T t a [ -F1]  = T t a [ F 2 ] .  Hence, 

T t a[F1]  = T t a[F2] only when both are undefined. 

(b) There is a closed instance - t r u e +  F ,  and T tcv[F] = t. (Recall t h a t  P con- 

tains the assertion t r u e . )  However, PDEF cannot contain definitions for the 

proposition true. 

Therefore, T t (a  + 1) is defined. The induction holds for limit ordinals also. Using 

the contrapositive form of Lemma 4.6, since T fa is defined for every ordinal a, 

T t a  = Ifp for some ordinal a. 

From the s ta tement  of Lemma 5.3, formula F is fixedpoint-implied from a 

DEF-program PDEF if compilation produces DIF-program PDIF and V F  is fixedpoint- 

implied from PDIF u {t rue) .  

By Lemma 5.3, non-conflicting DEF-programs are  always fixedpoint-consistent. 

And Lemma 5.2 assures t h a t  the overlap test  can detect conflicting DEFs. Finally, 

compilation of DEF-programs is meaning preserving, by Lemma 5.1. So any com- 

piled DIF-program produced from a fixedpoint-consistent DEF-program is also 

fixedpoint-consistent. We have therefore ensured fixedpoint-consistency of DIF- 

programs through syntactic conditions on DEF-programs. These conditions are  only 



sufficient to ensure fixedpoint-consistency. As shown in Lemma 4.6, necessary and 

sufficient syntactic conditions do not exist. Finally, as discussed in Chapter  4, 

because compiled DIF-programs may contain universal quantifiers in bodies of DIFs, 

such programs may possess infinite closure ordinals. The presence of infinite closure 

ordinals eliminates possibilities for completeness of the evaluation system. 

5.3. Evaluation of DEF-Programs 

Having guaranteed fixedpoint-consistency of DEF-programs, we now discuss the 

evaluation system for DEF-programs. Given t h a t  a DEF-program can be compiled 

into a DIF-program, queries on the DEF-program are evaluated against the DIF- 

program. 

In order t o  provide a feasible evaluation system, all universally quantified for- 

mulas within a generated DIF-program are required t o  be "bounded," of the form 

VX: G +F. In essence, this restriction permits computation within the Herbrand 

Universe. Since the bounded formula VX: true + F is logically equivalent t o  VX: F, 

requiring bounded formulas is not a restriction on expressiveness. 

The bounded universal quantifier is amenable t o  computation. Essentially, 

bounded universally quantified queries of the form VX: G + F are  interpreted as 

having a generator G of X-values and a tester F of the generated X-values. Genera- 

tion and testing of values may be conducted sequentially or  in parallel. Evaluation 

of universally quantified formulas with a generate-and-test procedure is limited 

because when the set  of values satisfying the generator is infinite, the computation 

may not terminate. Computability results prohibit completeness of any procedure, 



a s  seen in Section 5.6. 

The  evaluation system for DIF-programs is based on construction of full search 

trees and fair traversal of these trees. Many a t t r ibutes  of full search trees for DIF- 

programs are similar t o  full search trees constructed by SLD-resolution. Every node 

of any well-formed full search tree is labeled by a conjunction of formulas. Edges in 

the tree are  labeled by substitutions. A success node is labeled by the empty con- 

junction, denoted 0. The empty conjunction is assigned the logical value t. The 

value of a success path  is the composition of all substitutions along edges from the 

root to a success node. 

T o  define the well-formed full search trees, consider all possible structures of the 

label a t  the root (C is a conjunction of formulas): 

D: A full search tree consisting only of the node labeled by the empty conjunction 

is well-formed. 

true /\ C: 

If the full search tree C is well-formed, the following tree is well-formed: 

true /\ C 



L /\ C ( L  a literal): 

When L is a literal distinct from true, and all trees ( F i r i ) A ( C u i )  for 

1 < i 5 n are well-formed, the following tree is well-formed: 

For this diagram, Ll  c F1 - . Ln c Fn are  variants of all clauses in program 

P for which L unifies with each Li (1 5 i 5 n ) .  There is a unique (modulo 

renaming) mgci for each pair of literals L and L;. Section 2.3 describes a 

decomposition producing substitutions ui and ri such t h a t  L ui = L,. 7;. N7hen 

there are  no variants of clauses whose heads unify with L ,  n = 0, and the tree 

consists of only the node L /\ C. 

( F V G ) / \ C :  

When trees F /\ C and G A C are well-formed, the following tree is well- 

formed: 



( F A G )  A C :  

When the tree labeled by F  A ( G  A C )  is well-formed, the following tree is 

well-formed: 

( 3 X : F ) A  C :  

When X,,, is a variable occurring nowhere else, and ( F  {X =X,,,)) C has a 

well-formed tree, the following tree is well-formed: 



The  substitution {X=XneW) disambiguates multiple occurrences of X in 

different binding scopes by setting all free occurrences of X t o  a unique variable 

Xnew. 

(VX: G --, F) l\ C: 

When the only free variable in G is X, and the tree (F r1 /\ . . . l\F r n )  /\ C is 

well-formed, the following tree is well-formed: 

(VX: G + F )  /\ C 

where T ~ ,  . . . , rn are the values of all success paths in the full search tree for 

G .  Section 6.3.2 will suggest methods t o  evaluate universally quantified formu- 

las with occurrences of free variables other than  the universally quantified vari- 

able in the generator. 



T o  demonstrate the evaluation procedure, consider the DEF-program below: 

% divp ( I ,  J) : t r u e  i f  I d iv ide s  J evenly; 

% otherwise,  f a l s e .  
d i v p ( 1 , J )  * 3:  l e (X , J )  /\ r nu l t (X , I , J ) .  

% le  ( I ,  J) : t r u e  i f  ISJ: otherwise,  false. 
le (0, J )  * t r u e .  
l e ( s ( 1 )  , 0 )  * - t rue .  
l e ( s ( 1 )  , s ( J ) )  * l e ( 1 , J ) .  

The DIFs present in the compiled DIF-program of interest for this demonstration are 

the following: 

~ d i v p  ( I ,  J) t VX: l e  (X, J )  + -mul.t (X, I ,  J) . 
l e  (0, J) t t r u e .  
le (s(1)  , 0 )  t  true. 
le(s(1)  , s ( J ) )  t l e ( 1 , J ) .  

Consider the query: 

The  only direct descendent of this query in i t s  full search tree is a node labeled by 

the query: 

T o  produce the full search tree for this query, a full search tree for the generator 

l e  ( X ,  s (s (s (0) ) ) ) is produced. This is presented in Figure 5.1. As expected, the 

answer substitutions obtained from the generator are: 



Full Search Tree for le (X, s (s (s (0) ) ) ) 

true le (Xl, s (s ( 0 )  ) ) 

D true 

true le (X3,O) 

true -true 

Figure 5.1 



X = s (s (0) ) , and 

x = s (s (s (0) ) ) . 

The  direct descendent of the  universally quanttified query is then: 

Using the definitions provided in Example 5.1, titiis conjunction produces a full search 

tree with a success path. Hence, &he entire $I= for the original query has a success 

path ,  which is t o  be expected since 2 does n& eve& divide 3. 

5.4. Resolving Incorrectnes~ of U n i v d y  Quantified Queries 

As specified here, the full search tree cmstruction is not generally correct for 

universally quantified queries. There are t h e e  cases where the incorrectness arises: 

(1) The generator produces a value is more general than some value satisfying 

the tester. Utilization of tern-matching within the tester, rather than 

unification, ensures t h a t  generated values will not be too general. 

(2) The  generator produces too few values. A self-coverage requirement ensures 

t h a t  every ground a tom can be described by a program. Self-coverage has  a 

syntactic test.  

(3) The generator produces no values, because the universally quantified variable 

does not occur free in the generator. The entire universally quantified formula 



can be rewritten in a meaning-preserving manner t o  resolve this problem. 

These three problems and their solutions are discussed in the next three sections. 

Overly-General Generated Values 

Consider the DEF-program below: 

Example 5.3 

p (X) * true. 
q ( a )  * true. 
q ( b )  * -true. 

The  query VX: p (X) -+q (X) succeeds but  is not fixedpoint-implied by the program. 

The  problem is t h a t  the tester q (X) performs full unification on the X-value gen- 

erated by p (X) . Instead, for any generated X-value t ,  the tester should be satisfied 

by a value t' more general than t ,  i.e. [t'] y [t].  T o  determine when [t'] 5 [ t ]  holds, a 

form of one-sided unification, commonly called term-matching is used. Implementa- 

tion of this  enhancement will be discussed in Section 6.3.1. 

This correctness problem can be avoided by ensuring t h a t  every generated X- 

value is ground using a "type predicate" within each generator. The  type predicate 

will be t rue  for every ground term in the Herbrand Universe. For Example 5.3, the 

definition of the type predicate is: 

hu ( a )  . 
hu (b) . 

Now the query VX: ( p  (X) Ahu (X) ) +q (X)  fails, because the  generator produces 

values a and b for X, and the query q ( a )  A q  ( b )  fails. 



Recall t h a t  negated queries solved through negation by failure a re  also required 

t o  be ground. Requiring generated X-values t o  be ground is far  less stringent. 

Negated queries still yield answer substitutions under constructive negation. And a 

type predicate can be easily added t o  the generator t o  produce ground values during 

evaluation. Nonetheless, this solution is less desirable from the standpoint of perfor- 

mance than  term-matching. In the extreme, generation of only ground values could 

result in a n  infinite stream, when the s t ream generated for non-ground values would 

have been finite. 

Insufficient Generated Values 

A more difficult problem is posed by the following program: 

p (a)  * true. 
q ( a )  * true. 
q  (b) * -true. 

The query VX: p (X) -+q  (X) is assigned the undefined value by the least fixed- 

point, since p (b) is undefined. However, the evaluation procedure produces a full 

search tree with a success path. 

The problem here is t h a t  definitions for the p predicate did not describe all ele- 

ments of the Herbrand Universe. T o  resolve this problem, a new requirement is 

placed on all predicates defined within a program. A DEF-program is self-covering if 

there is some closed instance A o F of a DEF for each closed a tom A EHB. As 

described below, self-coverage can be decided, and therefore incorporated into compi- 

lation of DEF-programs into DIF-programs. Since compilation also checks for non- 



overlapping DEFs, conjunction of the two properties requires the existence of exactly 

one closed instance A * F  of some DEF for each atom A EHB.  

The  test for self-coverage of a program is performed for each predicate symbol 

occurring in the program. A predicate p is self-covering if there is a closed instance 

~ ( x )  * F of some DEF for each ground atom p ( x ) f  HB. A program is therefore 

self-covering iff every predicate occurring in the program is self-covering. 

When a term or atom is represented as  a directed acyclic graph, the nesting 

depth of a term is the length of the longest path from the root node t o  a leaf. For 

example, if p is a proposition, the nesting depth is 0. Also, the atom p ( f  (c) , b) 

has nesting depth 2. Suppose predicate p  is defined by  the DEFs 

P ( X , ) * F I ,  . . . , P ( ~ ~ ) ~ F ~  . If each atom p ( x i )  occurring in the head of some DEF 

defining predicate p has nesting depth di ( 1  5 i _< n )  the maximum nesting depth for 

predicate p  is m, = max d, .  In Example 5.1, mWl, = 2. Next, we define a special 
lsisn 

operation t h a t  selects from a set of atoms those of limited nesting depth. If S is a 

set of atoms, S %  d = { A  E S  I the nesting depth of A is a t  most d ) .  

Predicate p satisfies the self-coverage test if there is a closed instance p ( z )  * F  

of some DEF in the program for every atom p ( x )  EHB % (mp + 1 ) .  In Example 5.1 

the self-coverage test mandates t h a t  all ground atoms m u l t ( x l ,  x2,  x3)  with nesting 

depth a t  most 3 shall be matched against DEFs in the program. Example 5.1 

satisfies the self-coverage test because every such atom matches with the head of 

some DEF defining m u l t .  This test always terminates, since HB %(mp +1) is 

always finite. 



Lemma 5.4 (Correctness of Self-coverage Test): Suppose a program P is from 

B(A (II, C)) and predicate p EII .  The self-coverage test for predicate p succeeds iff 

predicate p is self-covering in program P. 

Proof: 

(+) Suppose the self-coverage test for predicate p is satisfied. Consider an a tom 

p ( z ) E H B  with nesting depth d. If d < m p  +1 then the self-coverage test verifies 

t h a t  p(z)  is a ground instance of the head of some DEF in P. 

Otherwise, d > mp + l .  We now define a strip function t h a t  produces an  atom of 

depth mp +1 from p(z) by replacing every subterm at  depth m, +l by a unique vari- 

able. This function is defined recursively a s  follows: 

strip(c, d)  = c for all constants c and str ip depths d. 

strip(f (zl, . . . , z,),O) = Xne, where X,,, is a unique variable. 

strip(f (zl, . . . , z,), d +1) = j(strip(zl, d), . . . , strip(xn, d)). 

Let p(y)  = strip(p(z), m, +I). Consider a ground atom p(yo) €(p(y) @ 6) % (m,  +I) .  

This ground a tom is obtained from p(z )  by replacing every non-constant sub- 

term a t  depth mp +l by a constant from C. Since predicate p satisfies the self- 

coverage test and p(yo) is a ground atom with depth mp + I ,  there is a DEF 

p(x)  w F such t h a t  ip(x)] 5 [p(yo)]. Since p(x) has depth a t  most mp , matching of 

p ( z )  with p(yo) does not depend on the particular constants chosen t o  replace vari- 

ables occurring a t  depth m, +1 of p(y). So ip(z)] 5 [p(y)]. By Lemma 2.9, 



(P(x)@ X ) ~ ( P ( Y ) @  X). Since P ( ~ ) E ( P ( Y )  @ C), P ( ~ ) € ( P ( x )  @ XIJ and therefore a 

closed instance of p ( z )  * F  has  head p(a). 

(t) Trivial. 

The self-coverage test terminates in all cases, even when the Herbrand Universe is 

infinite. Section 6.2, will present improvements incorporating d a t a  types. 

DEFs must usually be added t o  a program t o  satisfy the self-coverage test.  The 

extreme case occurs with a program containing just the DEF p(cl, . . . , en)  * t r u e ,  

where the ci are  all distinct constants. Satisfaction of the self-coverage and overlap 

tests  would require n n  -1 additional DEFs. However, with a n  implementation of 

inequality these additional DEFs would not be required. Inequality is discussed 

further in Section 6.1. 

The  self-coverage property also affects the evaluation system presented earlier 

in this section. Suppose a DEF-program compiles successfully to a DIF-program, and 

satisfies the self-coverage test.  When a literal distinct from t r u e  and - t r u e  is 

selected a s  the  root label of a full search tree, i t  will always unify with the head of 

some DIF. The  only nodes without descendents are  labeled with the  empty conjunc- 

tion 0, o r  with --true /\ C ,  for some conjunction C. 

No Generated Values 

The  final instance where the evaluation procedure for universally quantified 

queries is incorrect occurs when there a re  no generated values, due to the absence of 

free occurrences of the universally quantified variable in the generator. Consider, for 



example, a program consisting only of the DEF p (c) o - t r u e  and the query 

VX: t r u e + p  (X) , equivalent t o  VX :p (X) . The  evaluation procedure produces no 

values for X, so the query succeeds even though there is a value c t h a t  disputes the 

query. 

The  universally quantified variable must occur free in the generator of any 

universally quantified formula, which is a decidable property. When this property is 

violated by a formula, a s  in the example above, there a re  two remedies. 

When the tester contains a free occurrence of the universally quantified vari- 

able, convert the original formula VX: G + F t o  the logically equivalent VX: F + G. 

The generator of the new formula now contains a free occurrence of the universally 

quantified variable. In the example above, the query is converted t o  VX: 

-p (X) --+-true. When evaluated, the new generator produces the value c, giving 

rise to the conjunction - t r u e ,  which correctly fails. This strategy is not a com- 

plete remedy, since the new generator may produce an infinite s t ream of values. 

When the tester does not contain a free occurrence of the universally quantified 

variable, the universal quantifier is superfluous. The  quantified variable occurs nei- 

ther in the generator nor tester. Therefore, the original formula VX: G + F can be 

rewritten t o  the logically equivalent formula F V F. 

Summary 

Evaluation of universally quantified queries poses three different correctness 

problems. First,  i t  is possible t o  generate overly-genera1 values. This  problem can 



be avoided by utilizing term-matching, or requiring generation only of ground terms. 

Second, i t  is possible t o  generate a n  insufficient number of values. This problem is 

avoided by requiring programs t o  be self-covering, a decidable property. Finally, i t  is 

possible t h a t  no values are  generated, due to the absence of a free occurrence of the 

universally quantified variable in the generator. This problem can  be detected, and 

the violating formula rewritten t o  resolve this problem. Resolution of these concerns 

is sufficient t o  demonstrate correctness of the evaluation procedure. We assume a t  

this point t h a t  compilation invokes the following syntactic tests: 

(1) Overlapping DEFs. 

(2) Self-coverage. 

(3) All universal quantifiers bounded. 

(4) Generators of universally quantified formulas contain free occurrences of the 

universally quantified variable. 

Having remedied faults with the evaluation procedure for universally quantified 

queries, the next section presents proof t h a t  the entire evaluation system is correct. 

5.5. Correctness of the Evaluation System 

Evaluation of a universally quantified query requires searching the generator's 

full search tree for all answer substitutions. The search examines every leaf of the 

full search tree; therefore, the full search tree of the generator must be finite. All 

paths  of a finite full search tree are  traversed t o  detect the presence of success 

nodes, thereby producing all generated values. Thus, correctness of the  evaluation 



system relies on correctness with respect t o  finite full search trees. 

For  the following two correctness theorems, we temporarily make some 

definitions. Consider a DEF-program from B(A (II, C)). Let 

Ans(F) = u{Fa@ C I cu is a n  answer for F ) ,  and let m)' = ( F  @ C) -Ans(F). 

Informally, Ans(F) is the set of closed instances of all answers obtained for query F .  

Ans(F)] is the complement of Ans(F), relative to all closed instances of F .  For exam- 

ple, if C = {o'~), s(')), F = -lt (X, s ( 0 )  ) ,  and the only answer t o  query F is x = 

s (XI) , then Ans(F) = {-It (S ( 0 )  , s ( 0 )  ) , -1t (S (S ( 0 )  ) , s ( 0 )  ) , . . . ). Also 

A 4 j  = {-lt ( 0 ,  S (0 )  )). 

Theorem 5.5 (Correctness for Finite Full Search Trees): For any DEF-program from 

B(A (II, E)) t h a t  compiles successfully t o  a DIF-program P, if a query F has  a finite 

full search tree, then: 

(1) Ifp[Fa] = t i f f  F o f A n s ( F ) .  

(2) up[Fa] = f  iff FofA1ZS(F). 

Proof: By induction on the height of all full search trees. We define the height of a 

full search tree for the formula VX: G +F to be the  maximum height of the trees 

for G and the ensuing conjunction produced from F. 

A tree of height 0 can be labeled by - t r u e  /\ C or 0. In the former case, 

Ans(F) = 0, and so  yp(F  a] = f for all F U E ~ ) ,  since u p [ - t r u e  /\ C] = f. In 

the la t ter  case, the answer substitution is E .  The theorem holds vacuously, since the 

empty conjunction is assigned value t. 



For the induction hypothesis, assume the theorem is true for all trees of height a t  

most h .  Consider a full search tree for a query F with height h +l .  

The direct descendent of the root is a leaf labeled by the empty conjunction. This 

leaf is a success node, and the edge from the root is a success path  with value E .  

Therefore, Ans(F) = { t r u e )  and lfp[true] = t .  Also, A T )  = 0. 

F = vx: F ,  -+Fa: 

The  direct descendent of the root is a full search tree for G = F2 a1 I\ - - - I\ F2 a,, , 

where al, . . . , a n  are  all answer substitutions in the full search tree for F1. Every 

answer substitution for G is a n  answer substitution for F .  So G a € A n s ( G )  iff 

F a€Ans(F) .  We are  assuming t h a t  the only free variable in F1 is X. This a s s u m p  

tion is weakened in Section 6.3. For convenience, let F i ( t ) a  denote the formula 

Fi ({X= t )  *a) ,  for i = 1,2.  By the definition of height for universally quantified 

queries, both F1 and G have full search trees of height at most h .  Therefore, the 

theorem holds for F1 and G .  

Let o be a substitution such t h a t  F aEAns(F). Then G oEAns(G) .  Since 

G a = F2(a1  0 0 )  A . . - I \ F 2 ( a n  OO), let G o  = F 2 ( t l ) o l \  . . . l\ F2( tn )o ,  where each 

ti (1 5 i < n )  is a ground term. Specific terms ti can be selected because only term- 

matching is employed in obtaining answers for F2. Consider any ground term t .  If 

t  = ti for some 15 i 5 n ,  then by the induction hypothesis, Ifp[G a] = t ,  and 

lfp[F2(t)a] = t .  Also, Fl(ti)E(Flcui @ C), so  Fl(t)EAns(F1),  and again by the induc- 

tion hypothesis, Ifp[Fl(t)o] = t .  Therefore, Ifp[(F1+F2)( t )a]  = t. If t  # ti for all 



1 5  i 5 n ,  then F l ( t )  E A T ) ,  so  Ifp[Fl(t)a] = f, by the induction hypothesis. 

Therefore, Ifp[(F1 -+ F2) ( t )  a]  = t .  This holds for all terms t ,  so Ifp[F a] = t. 

Alternatively, F a€AnstE), so G a€A72S(G. By the induction hypothesis, 

Ifp[G a]  = f ,  so Ifp[F2(ti)a] = f, for some 1 5 i 5 n .  As has  been shown, 

Ifp[F,(ti) a ]  = t .  Therefore, Ifp[(F1 -+ F2)(ti)u] = f, and vp[F a] = f.  

F i s  a litlerd: 

When literal F is distinct from t r u e  and - t r u e ,  the direct descendents of the 

root are  trees labeled F1 T ~ ,  . . . , F, 7,. There must be variants 

L l  c F1, . . . , L, t F ,  in the compiled DIF-program, where F ai = Li for all 

1 5 i 5 n .  Then F(ai 4 0 )  €Ans(F) iff F,.(T~ 0a)f Ans(Fi 7;). The induction hypothesis 

holds for each direct descendent Fi of F .  Therefore, Ifp[Fi(ri .a)] = t for all 

Fi(7, 0u)€Ans(Fi T ~ ) .  Since ljp is a fixedpoint, I ~ ~ [ L ; ( T ~  .a)] = t .  F ai = Li r i ,  so  

Ifp[F (ai .a)] = t, and F(ai 0 0 )  f Ans(F). 

On the other hand, suppose Fi(7; o a ) € A T 7 i )  By the induction hypothesis, 

Ifp[Fi (ri .a)] = f. Consequently Ifp[C(7; .a)] = t .  Because program P is non- 

conflicting and self-covering, there is exactly one closed instance ( T + ~ ( T ;  00)  of a 

DIF in the compiled program. Since Ifp is a fixedpoint, I ~ P [ ~ ( T ~  .a)] = t .  Therefore, 

Ifp[Li ( T ~  .a)] = f, and F(ai 0 0 )  E A ~ ) .  

F = F,l\F,: 

For every answer a of F ,  cu = cul .a2, where al is a n  answer for F1 and a2 is a n  

answer for F2. The full search tree can be divided into a n  upper prefix solving the 



query F1, and lower subtrees solving queries of the form F 2 a l ,  where a, is a n  answer 

t o  F1. The induction hypothesis holds for the upper and lower segments of the full 

search tree. 

Consider F a ~ A n s ( F ) .  Then F a € ( F  (a ,  .a2) @ C). From the tree construction, 

F, a ~ A n s ( F , )  and F2a €Ans(F2 a,). By the induction hypothesis, Ifp[F1 a] = t and 

Ifp[F2a] = t, so Zfp[F a] = t .  

Alternatively, consider F a ~ w '  F). Then, from the tree construction, either (i) 

F,UEA-, or  (ii) F2a€-j for some answer ctj of F1. In case (i), 

lfp[Fla] = f. In case (ii), Ifp[F2a] = f. Therefore, in both cases Ifp[F a] = f. 

F = F,VF,: 

The direct descendents of F are full search trees for F1 and FZ. The induction 

hypothesis holds for these subtrees. Any answer substitution for F1 is a n  answer 

substitution for F, and similarly for F2 .  Suppose Flo€Ans(F1).  By the induction 

hypothesis, Ifp[Fla] = t ,  so lfp[F a] = t .  Also, Ifp[F a] = t if F 2 a € ~ n s ( F 2 ) .  Alterna- 

tively, suppose Fl a EW~ and F2 a €%I. By the induction hypothesis, 

Ifp[Fla] = Ifp[F2a] = f. So Ifp[Fo] = f. 

The  direct descendent of F is a full search tree for Fl with X renamed t o  a new 

unique variable. Any answer substitution for F1 is a n  answer substitution for F. 

Consider any substitution a such t h a t  F a E ( F  @ C). If there is a ground term t 

where F l ( t ) o ~ A n s ( F 1 ) ,  the induction hypothesis provides Ifp[Fl(t)a] = t. Therefore, 

Up[(=: F1)a]  = t. On the other hand, suppose there is no ground term t where 



Fl(t)a€Ans(F1).  Then F l ( t ) a € 3 i  for all ground terms t .  By the induction 

hypothesis, Ifp[Fl(t)a] = f for all ground terms t .  Therefore, I f p [ ( = :  FJa] = f. 

The correctness theorem for finite full search trees expands t o  general full 

search trees, but must be weakened because of the possibility of infinite paths. 

Theorem 5.6 (Correctness for General Full Search Trees): For any DEF-program 

from B(A(II,  C)) t h a t  compiles successfully t o  a DIF-program P, Ifp[Fu] = t for all 

F uEAns(F).  

Proof: Similar t o  the correctness proof for finite full search trees, except induction is 

now over the length of a success path. 

5.8. Incompleteness of any Evaluation System for DEFs 

There is no possibility of finding a complete execution system for DEF- 

programs. T o  prove this point, a program t h a t  defines a non-r.e. relation is 

presented. Any complete evaluation system would therefore accept a non-r.e. 

language, which is not possible. 

A configuration z q y of a Turing machine (TM) is a situation where the T M  is 

in s t a t e  q,  s tr ing z precedes the tape  head, and string y follows the  t ape  head. The 

transition relation c t m c l  indicates t h a t  TM m can move from configuration c t o  

configuration c' in one step. The reflexive and transitive closure of the transition 

relation c km * c' indicates t h a t  TM m can proceed from configuration c t o  

configuration c' in any number of steps (possibly zero). An initial configuration for a 

TM m is qo w ,  where qo is m's initial s t a t e  and w is the input string. An accepting 



configuration for a TM m is x qf y ,  where qf is a n  accepting (final) s t a t e  and x and 

y a re  strings. A TM m accepts a string w if go w krn * x pf y ,  where go and qf are  

m's  initial and accepting states,  respectively. A TM m accepts a language L if and 

only if m accepts only the strings in L .  

Consider the following DEFs taken from a DEF-program called NonRE: 

% a c c e p t ( M , C ) :  t r u e  i f f  TM M c a n  accept f r o m  c o n f i g u r a t i o n  C .  
accept (M, C) * 

f i n a l  (M,C) V ( X I  : t r a n s i t  ( C , M , C 1 )  /\ accept ( M , C 1 ) )  . 

The DEF-program NonRE also contains definitions of predicates f i n a l  and t r a n -  

s i t .  Informally, f i n a l ( m ,  c )  is t rue if c is a n  accepting configuration for TM m ;  

otherwise, f i n a l ( m ,  c )  is false. Also, t r a n s i t ( c ,  m ,  c') is t rue if c krn c'; other- 

wise, t r a n s i t ( c ,  m ,  c') is false. When compiled, the DEF defining accept pro- 

duces the following DIFs: 

accept (M, C) +- 
f i n a l  (M,C) V ( X I  : t r a n s i t  (C ,M,C1)  A accept ( M , C 1 ) ) .  

-accept (M, C) c 
- f i n a l  (M,C) /\ ( t /C1 :  t r a n s i t ( C , M , C 1 )  + - a c c e p t ( M , C 1 ) ) .  

Notice t h a t  the second generated DIF above contains a universal quantifier. This is 

essential in demonstrating incompleteness. 

The  following lemma demonstrates t h a t  accept defines the intended relation: 

Lemma 5.7: For any TM m and configuration c ,  a c c e p t ( m ,  c )  is fixedpoint-implied 

by NonRE if a final configuration can be reached via the relation k, * from initial 

configuration c ;  otherwise, - a c c e p t ( m ,  c )  is fixedpoint-implied. 



Proof: 

There  are two cases, depending on whether a final configuration can be reached. 

(1) Suppose t h a t  a final configuration can be reached by TM m from configuration c .  

Either c is a n  accepting configuration, or c k, c' and m can accept from c'. 

(2) Suppose t h a t  a final configuration cannot be reached by TM m from 

configuration c .  Then c is not a n  accepting configuration and whenever c k, c', m 

cannot accept from c'. Generally, this argument requires infinite transitions by m 

and infinite closure ordinals. 

This  lemma will be used to demonstrate t h a t  DEF-programs can describe non- 

r.e. languages. As in [HU79], let < m  > be the string encoding TM m . Consider the 

following languages: 

It  has  been shown [HU79] t h a t  L,, is r.e. and not recursive, and L,  is not r.e. T o  

describe these languages, program NonRE is augmented with the following DEF: 

% ne(W) : true if string W is a valid TM and L(W) nonempty; 
% otherwise, false. 
ne(W) o X :  (3: initial(W,X,C)) /\ accept(W,C). 

This DEF is compiled into the following DIFs: 

ne(W) t 2: (3: initial(W,X,C)) /\ accept(W,C). 
-ne (W) t VC: (2:  initial (W, X, C) ) + -accept (W, C) . 

Again, note t h a t  a generated DIF includes a universal quantifier, making complete- 



ness of any evaluation procedure doubtful. Program NonRE also contains a 

definition for i n i t i a l :  i n i t i a l ( w ,  x, c)  is t rue if w = <m > is a valid encoding of 

a TM and c = qox  is an  initial configuration for TM m ;  otherwise, i n i t i a l ( w ,  x ,  c )  

is false. 

As the  next lemma demonstrates, this program describes both languages L,, 

and L,. 

Lemma 5.8 ( N O ~ R E  accepts L,): 

(I) Any string w EL,, iff n e ( w )  is fixedpoint-implied by NonRE. 

(2) Any string w EL,  iff --ne(w) is fixedpoint-implied by NonRE. 

Proof: 

(1) <m>EL, ,  iff there is a n  initial configuration c t h a t  can reach a final 

configuration for T M  m .  By the previous lemma, this holds iff a c c e p t ( m ,  c )  is 

fixedpoint-implied by NonRE. Using the DEF defining ne, a c c e p t ( m ,  c )  is 

fixedpoint-implied from the program iff n e ( m )  is fixedpoint-implied. 

(2) < m > E L ,  iff there is no initial configuration capable of reaching a final 

configuration. By Lemma 5.7 - a c c e p t ( m ,  c )  is fixedpoint-implied by NonRE for all 

initial configurations c .  Therefore, -ne(w) is fixedpoint-implied by NonRE. I3 

Corollary 5.9: There is no complete evaluation system for DEF-programs. 

To summarize, a DEF-program NonRE has been constructed t h a t  describes a 

non-r.e. language, L,. Any complete evaluation system for DEF-programs must be 

capable of succeeding only for those queries -ne(w) on program NonRE where 



w EL,. Such an evaluation system would therefore accept non-r.e. language L,. If 

Church's Thesis is t o  be believed, no evaluation system can accept a non-r.e. 

language, so  no evaluation system can be complete for DEF-programs. 

How important  is completeness of a n  evaluation system? The  most efficient 

implementation of a n  evaluation system for definite clause programs currently avail- 

able is Prolog. Chapter 3 demonstrated t h a t  Prolog's depth-first search is incom- 

plete. Yet the evaluation system is still used. Evidently, concern for completeness is 

subordinate t o  concerns for efficiency and correctness. Finally, the alternative imple- 

mentation of negation within logic programs, negation by failure, is also incomplete. 

Despite this fact ,  negation by failure is used a s  the predominant implementation of 

negation in logic programming languages, primarily due t o  i t s  ease of implementa- 

tion. 



Chapter 6 

Enhancements 

A number of topics have been deferred in Chapter 5 for further exploration. 

These topics fall under three main areas: 

(1) Use of equality t o  control the explosion of DEFs required t o  satisfy the self- 

coverage test .  

(2) Incorporating type information within the self-coverage test .  

(3) Permitt ing free variables in universally quantified queries. 

6.1. Controlling Explosion of DEFs 

Self-coverage of programs is necessary for correctness of the evaluation pro- 

cedure (Section 5.4). A program is self-covering if there is a closed instance A * F 

of a DEF for every ground a tom A in the program's Herbrand Base. This require- 

ment can lead t o  a n  explosion in the number of DEFs in database-oriented and 

polymorphic programs. The explosion is controlled by providing a n  equality predi- 

ca te  within the evaluation system. 

Evaluation of Equality 

Definite clause programs can define equality of finite terms succinctly with the 

following assertion: 



% equal (X,Y) : true if X=Y. 
equal (X,X) . 

This succinctness cannot be at tained by DEF-programs t h a t  are self-covering and 

non-conflicting. Within a DEF-program from B(A(II, C)), the following groups of 

DEFs a re  needed t o  define the equal predicate: 

For all constants c EC:  
equal (c, c) o true. 

For  all distinct constants c, d EC: 
equal (c, d) o -true. 

For  all function symbols f EC: 
equal (f (XI, . . . , Xn) , f(Y1, . . . , Yn) ) o 

equal ( ~ 1 . ~ 1 )  /\. . . /\equal (Xn,Yn) . 
For  all distinct function symbols f("), g ( n ) ~ C :  

equal (f (XI, . . . , Xm) , g (Yl, . . . , Yn) ) c+ -true. 

(m) ( n )  F o r m # n a n d f  ,f EX: 
equal ( f (XI, . . . , Xm) , f (Yl, . . . , Yn) ) o -true. 

With n constants in C, on the order of n n  DEFs are  required t o  define equal. 

Furthermore, any query Q = equal(x, y) will be evaluated far  less efficiently using 

the DEF-program than  with the definite clause version. Evaluation of Q with the 

definite clause program produces a full search tree consisting only of Q and i ts  direct 

descendent, the empty conjunction. Evaluation of Q with the DEF-program pro- 

duces a tree proportional in size t o  the number of subterms in Q.  While unification 

is performed only once in constructing the full search tree for the definite clause pro- 

gram, the number of unifications for the DEF-program is proportional to the number 

of subterms in Q. 



Both the excessive number of DEFs and poor performance of the evaluation sys- 

tem with the DEF-program argue for a special case of equality. Therefore, definition 

of e q u a l  is embodied within the evaluation system. 

T o  incorporate the definition of e q u a l ,  a binary function d q  is defined return- 

ing one of the  three logical constants. 

t if x and y are not unifiable 

f if x and y are syntactically identical 

u otherwise 

This function is available t o  the programmer as a system-defined predicate within 

the Prolog-I1 system [Co82]. I t  provides a correct implementation of inequality of 

terms, distinct from non-unifiability. When dif(x, y) = t, terms x and y have no 

common instances. On the other hand, dij(x, Y) = f ,  when there is no way t o  

differentiate x and y. Finally, dij(x, y) = u when x and y have common instances, 

but  x and y are  not equal; further instantiation of variables within x and y can 

either equate or differentiate the terms. As a n  example, dif(f (X, c) , f (b, c) ) = u 

because f (X, c) {~=b) = f (b, c) and f (X, c) { ~ = a )  # f (b, c) . 

With the e q u a l  predicate implemented by the evaluation system, DEF- 

programs cannot contain definitions for e q u a l .  Evaluation of equality and inequal- 

ity queries is through construction of full search trees, as follows: 

Root node is e q u a l ( x ,  y ): 

When x and y are  unifiable, m is a variant  of the mgci of x and y ,  and 

x p = y p = m ,  then the following full search tree is well-formed: 



When x and y are  not unifiable, the full search tree consists only of the node 

Root node is w e q u a  1 (x, y ): 

When dif(x, y )  = t ,  then the following full search tree is well-formed: 

When dif(x, y)  = f, the full search tree consists only of the node - e q u a l ( z ,  y ) .  

When dif(x, y )  = u, x and y are  unifiable but  they are  not equal. Consider the 

query of Example 6.1, below: 

Example 6.1 

VX : - e q u a l  (X, c) + - t r u e .  

If - e q u a l  (X, c) fails because X and c are  unifiable, then Example 6.1 will 

succeed. This is incorrect, since the query of Example 6.1 is logically equivalent t o  

VX: equal (X, c) , which is false in any domain containing more than  one element. 



In fact  d i f ( ~ ,  c) = u, so  the evaluation system must abort  further construction of the 

full search tree for Example 6.1, due t o  possible incorrectness. 

Prolog-I1 permits delay in evaluation of dif queries until variables within the 

query are  instantiated t o  ground values sufficiently for dif(x, y) # u. Delaying 

queries is analogous t o  use of a fair selection rule (see Section 3.2). There are  still 

instances, a s  in Example 6.1, where the evaluation system must halt  t o  avoid a n  

incorrect action. 

Since dif(f (X) , f (X) ) = f, the query - e q u a l  ( f (X) , f (X) ) fails without 

abnormal termination. This action is acceptable. For example, the query: 

VX: - e q u a l  ( f  (X) , f (X) ) + - t r u e  

succeeds and is true, because the query is equivalent t o  the formula 

V x : e q u a l ( f ( x ) ,  f ( X ) ) .  

The  evaluation system with equality enhancement is correct: When a query 

e q u a l ( x ,  y )  succeeds, z and y are  unifiable, so  3 (x  = y). When a query 

-equa l (x ,  y) succeeds, dif(z, y) = t, and V(x # y)  implying t h a t  3 (x  # Y). 

Database-Oriented Programs 

Provision of equality resolves problems in satisfying self-coverage and non- 

conflict requirements for certain categories of DEF-programs. The explosion in the 

number of DEFs for database-oriented programs occurs when defining base relations. 

Definition of a base relation r(n) within a definite clause program is typically 

achieved with assertions. There is usually one assertion r (c l ,  . . . , c,) for each tuple 



(cl ,  . . . , c,) f r ,  where each ci is a constant. 

A DEF-program defining base relation r contains either r(c l ,  . . . , c,)* true 

if (c l ,  . . . , c,) € r ,  or r(c l ,  . . . , c,) *-true if (cl ,  . . . , c,) r .  The  resulting 

DEF-program contains n lTW' DEFs. 

Using the equal predicate, all of the DEFs defining a single base relation can 

be reduced t o  a single DEF whose length is approximately the size of the base rela- 

tion. Suppose a base relation r'") contains t tuples: 

. . , cl,n), . . t ( ~ t , l >  . . . t ct,n) 

The following DEF defines a corresponding predicate r: 

In this scheme, the function symbol f is unique to the DEF. 

As a n  example, suppose base relation r contains the following tuples: 

Representation of relation r within a definite clause program requires only the two 

assertions: 



Representation of relation r within a DEF-program, using the  e q u a l  predicate, 

employs the following DEF: 

r (X1,XZ) o 
e q u a l  ( f ( a , b ) ,  f ( X 1 , X Z ) )  V 
e q u a l  ( f ( c , d )  , f ( X l , X 2 ) ) .  

The following properties of this encoding are easily verified: 

(cl, . . . , c , ) E r  iff r ( c l ,  . . . , c,) is fixedpoint-implied. 

(cl, . . . , c,) 6 r iff -r(c1, . . . , c,) is fixedpoint-implied. 

Reflecting on the evaluation of - e q u a l ,  i t  is also clear t h a t  any non-ground query 

-r(xl, . . . ,x,) cannot produce a correct full search tree. Similarly, negation by 

failure is incorrect for non-ground queries. But negation by failure requires all nega- 

tive queries t o  be ground, even for programs t h a t  are  not database-oriented. 

Polymorphic Programs 

Often in definite clause programs, predicates are  defined for arbitrary d a t a  

types. As an example, consider the definite clause program below: 

% p r e f i x ( L , P ) :  t r u e  i f  P is a p r e f i x  o f  l i s t  L .  
p r e f i x ( L , n i l )  +- t r u e .  
prefix(cons(X,L),cons(X,P)) + p r e f i x ( L , P ) .  

In this  program any list whose first element is z and whose tai l  is 1 is represented by 

a term c o n s ( x ,  1). An empty list is denoted by the constant n i l .  Using this pro- 

gram, the query: 

p re f ix  ( c o n s  ( c ,  cons ( d ,  n i l )  ) , X) 



has answers: 

X = n i l ,  
X = c o n s ( c , n i l ) ,  
X = c o n s  ( c ,  c o n s  (d,  n i l )  ) . 

This program is polymorphic because i t  can be used for lists of integers, characters, 

names, etc. 

Use of polymorphism has the following benefits: 

Succinct clauses: 

The  same group of clauses can be msed for different d a t a  types, instead of hav- 

ing different groups of clauses providing identical definitions for different d a t a  

types. 

Independence from change: 

If d a t a  types change in a clause tha t  invokes a polymorphic predicate, i t  may 

be possible t o  continue using the polymorphic predicate without change. 

Adaptability: 

Polymorphic predicates are applicable t o  arbitrary d a t a  types. So when new 

d a t a  types are used within a program, the polymorphic predicates can be 

reused in new roles. 

These benefits provide strong reason t o  support polymorphism within DEF- 

programs. However, self-coverage and non-conflict requirements on DEF-programs 

make i t  difficult t o  provide polymorphism. For example, a possible self-covering 

non-conflicting representation of the prefix program above within a DEF-program 



is the following: 

Example 6.2 

% p r e f i x ( L , P )  : t r u e  i f  P is a  p r e f i x  of  l is t  L: 

% otherwise ,  f a l s e .  
p r e f i x ( L , n i l )  * t r u e .  
p r e f i x  ( n i  1 ,  cons (Y, P) ) o -true. 
p r e f i x  (cons ( X ,  L) , cons (Y,P) ) * 

(eqNats (X, Y) V eqChars (X ,  Y) V eqNames (X,  Y) ) 
/\ p r e f i x  (L,P) . 

The self-coverage and non-conflict requirements force use of distinct equality tests  

for each d a t a  type t h a t  can constitute a list. 

Example 6.2 is not polymorphic, as it is specialized only t o  lists of natura l  

numbers, lists of characters, and lists of names; however, i t  suggests t h a t  use of the 

equal  predicate can restore polymorphism, since equal  is defined over arbitrary 

d a t a  types. Thus,  the  third DEF of Example 6.2 can be replaced by the following 

DEF, at taining polymorphism for the p r e f i x  predicate: 

p r e f i x  (cons ( X ,  L) , cons (Y, P) ) * 
equal  (X ,  Y) /\ p r e f i x  (L, P) . 

In fact  this technique is general. To satisfy self-coverage and non-conflict, 

heads of DEFs do  not contain multiple occurrences of any single variable. Without 

multiple occurrences of variables in heads of DEFs, equality testing cannot be 

achieved in a polymorphic manner. The equal  predicate provides for polymorphic 

equality testing. Since evaluation of a n  equal  query is just a s  efficient as testing 

for unifiability, use of the equal  predicate does not compromise efficiency of the 

evaluation system. 



Summary 

Evaluation of a n  equal predicate has been described. I t s  definition is embo- 

died within the evaluation system for DIF-programs, providing conciseness and 

efficiency. Evaluation of equal queries may abort  t o  avoid any possible incorrect- 

ness. The  equal predicate has applications within database-oriented and 

polymorphic programs, increasing the range of programs t h a t  can practically use 

constructive negation. Programs utilizing d a t a  types also require special accommo- 

dation for practical use of constructive negation. 

6.2. Incorporating Type Information for Self-coverage 

I t  is proper to invoke certain predicates with only certain types of arguments. 

For example, suppose a predicate length([, n)  is true if the length of list 1 is 

number n .  Arguments other than a list and a number a re  improper. By extension 

--length is properly invoked only with terms denoting a list and integer. For 

example, i t  is proper t o  query: 

-length (cons (a, cons (b, ni 1) ) ,0) , 

and i t  is improper t o  query -length (0, nil) . 

A type of a DEF-program is a subset of i ts  function symbols. All types of a pro- 

gram must be disjoint. For example, suppose a program consists only of the follow- 

ing DEFs: 



Example 6.3 

% length(L, N) : true if list L has length N: 
% otherwise, false. 
length (nil, 0) o true. 
length (nil, s (N) ) * -true. 
length (cons (X, L) , 0) c* -true. 
length (cons (X, L) , s (N) ) * length (L, N) . 

The  function symbols are: 

(2) C, = {o"), s"), nil"), cons 1. 
One partition of Co is no: 

lists = {cons, nil) 
nats = {s, 01. 

Suppose a DEF-program is from B(A(II, C)), and n is a partition of C. A predi- 

cate type assignment under n is an assignment of a list of types from n t o  each predi- 

ca te  symbol in II. For example: 

TP,Jlength) = [lists, nats] 

Similarly, a function type assignment under n is an assignment of a list of types from 

n t o  each function symbol in C. For example: 

TF,$s) = [nats] 

TF, (nil) = [I 
0 

TF (cons) = [nats, lists] 
=o 

Finally, a variable type assignment under n is a n  assignment t o  each variable in 'Y' 



either a type from A or the empty type 0. When a variable type assignment maps a 

variable t o  the  empty type, the  variable's type is unassigned. T h e  distinguished type 

assignment TY maps every variable t o  0. Usually TP,, TF, and TV, will denote 

predicate, function and variable type assignments, respectively, under type partition 

T. When T is understood from context, i t  will be omitted. 

The  following algorithm determines if various syntactic par ts  of a DEF- 

program are  well-typed. The algorithm is "top-down" so t h a t  variable type assign- 

ments can differentiate between different binding scopes. 

(1) A DEF-program is well-typed by ( T P ,  T F )  if every DEF in the program is well- 

typed by ( T P ,  TF). 

(2) A DEF A o F is well-typed by ( T P ,  T F )  if V(A o F )  is well-typed by 

( T P ,  T F , Z ) .  

(3) A quantified formula VX: F or  3.Y: F is well-typed by ( T P ,  TF, TV) if T con- 

tains a type T and F is well-typed by ( T P ,  T F ,  TV'), where: 

(4) Any formula F o G ,  F -+ G ,  F /\ G ,  F V G ,  or -F is well-typed by 

( T P ,  T F ,  TV) if F and G are  both well-typed by ( T P ,  T F ,  TV). 

(5 )  Every proposition p is well-typed. 

(6) Any atom p(xl, . . . , x,) (n  2 1) is well-typed by ( T P ,  T F ,  TV) if: 



T P ( ~ ( " ) )  = [rl, . . . , r,], and each xi ( 1  5 i 5 n )  is assigned T, by ( T P ,  TF, TV).  

(7) Any constant c E T  is assigned type T. 

(8) Any term f (xl, . . . , z,) ( n  2 1) is assigned type T by (TP ,  TF, T V )  if: 

j €7, and 

TF(/  ("I) = [ T ~ ,  . . . 7 r n ,  ] and 

each xi ( l s i s n )  is assigned ri by ( T P ,  TF, TV).  

(9) Any variable X is assigned type T by (TP ,  TF, T V )  if T V ( X )  = r. 

As a n  example, suppose TV ( N )  = n a t s .  Then the following observations 
,o 

hold: 

N is assigned type n a t s  by (TP rO1 TF no, TV ). hence, s ( N )  is assigned type 
,o 

n a t s  by (TPTo1 TFy TV,); 

n i l  is assigned type l i s t s ;  hence, l e n g t h  ( n i l ,  s ( N )  ) is well-typed by 

( TPro1 TF,$ TV,); 

t r u e  is well-typed by (TPV TF,$ TV,,); hence: 

.-true is well-typed by ( T P y  TFTd TV,,); 

l e n g t h  ( n i l ,  s ( N )  ) cr - t rue  is well-typed by (TProl TFy TV,); 

DEF l e n g t h  ( n i  1, s ( N )  ) cr -true is well-typed by (TP  TF ). "0, "0 

In fact  the program of Example 6.3 is well-typed by (TP,$ TF,,). 



Systems t o  infer a minimal type partition and type assignment for a given 

definite clause program have been suggested [Mi84,MK84]. I t  is not difficult to 

extend these systems t o  DEF-programs. 

Unless the self-coverage test is modified to observe type restrictions, well-typed 

programs will not be self-covering. Example 6.3 is not self-covering, because (among 

others) length (0, nil) is not a ground instance of the head of any DEF in the 

program. 

A DEF-program well-typed by ( T P ,  T F )  is self-covering for ( T P ,  T F )  if there is 

a closed instance A c* F of a DEF in the program for every ground a tom A well- 

typed by ( T P ,  T F , n ) .  Under this refined criterion, the length program is self- 

covering for type assignments ( T P  T F S .  
"d 

The self-coverage test  is similarly altered. Suppose a DEF-program is well- 

typed by ( T P ,  TF).  Define T ( T F ,  T) t o  be the set  of all ground terms assigned type 

T. For example, T ( T F  l i s t s )  contains among other elements: 
*ol 

ni 1, 
cons (0, nil) , 
cons (s (0) , cons (0, nil) ) . 

Similarly, let A ( T P ,  T F )  be the set  of all ground a toms well-typed by ( T P ,  TF,I IY) .  

Thus, if T P ( p )  = [ T ~ ,  . . . , T,], then p(xl, . . . , z , ) E A ( T P ,  T F )  if and only if each 

xi E T ( T F ,  7;). For example, length (cons (0, ni 1) , 0) is a member of 

A ( TP,: TF,). 



Recall t h a t  mp is the maximum nesting depth of heads of all DEFs defining 

predicate p (Section 5.4). Also, if S is a set  of atoms, S% d is the subset of S con- 

sisting of only those a toms with nesting depth a t  most d .  A predicate p occurring in 

a program satisfies the self-coverage test  with respect t o  type assignments ( T P ,  TF) 

if: 

( 1 )  All DEFs defining p are  well-typed by ( T P ,  TF)  and 

(2) There is a closed instance p ( x l ,  . . . , x , )  c* F of a DEF for every atom 

p ( x l ,  . . . , x , )EA(TP,  TF)%(mp + I ) .  

Under this  new criterion, Example 6.3 satisfies the self-coverage test  with respect t o  

type assignments ( T P  T F , )  With an argument similar t o  Lemma 5.4, i t  can be 
"0' 

shown t h a t  if a program P is well-typed by type assignment TA = ( T P ,  TF) ,  then P 

satisfies the self-coverage test with respect t o  TA if and only if P is self-covering. 

Correctness of the evaluation procedure for well-typed programs follows automati- 

cally. 

Utilizing typed programs can aid in writing programs t h a t  perform a s  intended 

[MI<84]. Accommodating typed DEF-programs mandates a simple revision t o  the 

self-coverage test .  Typed programs also reduce the number of DEFs needed t o  

satisfy self-coverage. 

6.3. Enhancing Evaluation of Universal Quantification 

The implementation of universally quantified queries within the  evaluation sys- 

tem (Section 5.3)  left several issues outstanding. Correctness of the procedure 



(Theorem 5.5)  relied on use of term-matching within the filter for every generated 

term. Implementing term-matching efficiently within a logic programming evalua- 

tion system is straightforward. Also, the correctness proof for the evaluation pro- 

cedure makes the assumption t h a t  every universally quantified query is closed. Per- 

mitting free variables within universally quantified queries increases the flexibility of 

the evaluation procedure. Queries t h a t  could flounder under a correct implementa- 

tion of negation by failure can be efficiently evaluated with the evaluation procedure 

for DEF-programs. 

6.3.1. Term-Matching 

In Section 5.4, term-matching was required t o  ensure correctness of certain 

universally quantified queries. While unifiability of terms s and t determines if a n  

mgci s n t  exists, te rm s matches term t if [ s ]  5 [ t ]  (Section 2.3). The evaluation sys- 

tem already has  a unification component. As suggested in [Dw84] ,  term-matching is 

a special case of unification. Matching term s against term t is achieved by unifying 

terms s and t', where t' is a ground instance of t with every variable of t se t  t o  a 

unique constant. 

Instead of binding every variable in a term to a unique constant before 

at tempting term matching, an  actual  implementation could associate a t a g  with 

each variable. The t a g  is set  if the variable should not be further instantiated. The 

unification procedure must be revised t o  check the t a g  of a variable whenever a n  

a t t empt  is made to set  a variable t o  a value. If a variable is tagged and unification 

a t t empts  t o  set  the variable equal t o  another untagged variable, the untagged 



variable should be set  equal t o  the tagged variable. If a variable is tagged and the 

variable will be set  equal t o  a non-variable term or another tagged variable, 

unification should fail. 

When term-matching is incorporated within the procedure for evaluating 

universally quantified queries, all variables occurring within a generat,ed term will be 

tagged. Any a t t empt  by the filter t o  further instantiate a generated value should 

terminate abnormally, in order t o  notify the user of a n  incorrect condition. Consider 

Example 5.3 reproduced below: 

p (X)  o t r u e .  
q ( a )  * t r u e .  
q (b) * - t r u e .  

The  generator p (X) of the query VX: p (X)  --+q (X) produces a tagged value X. 

The  evaluation procedure then produces a query q (X) . Any a t t empt  to further 

instantiate X will meet with failure, eliminating the possibility of incorrectness 

caused by overly-general generated values. 

Implementation of term-matching requires checking a variable's t a g  any time i t  

is t o  be set  t o  a value, and a n  initial sweep through every generated value tagging 

all variables. T a g  checking of terms during unification is performed anyway, for 

other purposes. Term-matching can also be used when free variables a re  included 

within universally quantified queries, a s  described in the next section. 

Term-matching has  not yet been implemented within a logic programming 

evaluation system. In i t s  absence, correctness is assured by generating only ground 

values. Ground terms can be generated with a type predicate such as h u ,  a s  



described in Section 5.4. The NU-Prolog system [TZ87] is capable of delaying 

evaluation of queries until certain variables are  instantiated t o  ground values. 

6.3.2. Free Variables in Universally Quantified Queries 

The correctness proof of the evaluation system for DEF-programs (Theorem 5.5) 

makes the assumption t h a t  free variables do not occur within universally quantified 

queries. This section will discuss how this restriction can be weakened while retain- 

ing correctness of the evaluation procedure. 

Free Variables in Only the Generator or the Tester 

In fact  the evaluation procedure and proof accommodates free variables within 

the tester of a universally quantified query. Consider the program below: 

p (a) * true. 
p ( b )  * true. 

q ( a , l )  * true. 
q ( b , l )  * true. 

The query VX : p (X) -+q (X, Y) contains the free variable Y. The answers 

obtained from the  generator are X=a and X=b. The  evaluation procedure then 

creates the conjunction q (a, Y) /\q ( b ,  Y) . Evaluation of the conjunction produces 

a n  answer Y=l t o  the full query. 

Extended programs (Section 3.4.1) cannot correctly evaluate query VX: 

p (X) -+q (X,  Y) . The extended query produces the general clause: 

aux (Y) t p (X) /\ no t  q (X, Y) . 



and query n o t  aux (Y) . Since negation by failure is incorrect for negated queries 

containing free variables, this  query will flounder. As just demonstrated, under con- 

structive negation the query can be evaluated. 

Thus,  when free variables occur only in the tester of a universally quantified 

query, the evaluation procedure can correctly produce answer substitutions for these 

variables. When free variables occur only within the generator G of a query 

VX: G + F ,  the query can be rewritten t o  VX: F + G without changing the query's 

meaning. Now variables occur only within the tester, and the evaluation procedure 

can proceed correctly. 

Free Variables in both Generator and Tester 

Free variables occurring within both the generator and tester of a universally 

quantified query pose the greatest challenge to the evaluation procedure. Univer- 

sally quantified queries are  transformed t o  instantiate free variables occurring within 

generators prior t o  evaluation. Following the transformation, if free variables 

remain, term-matching can ensure t h a t  they a re  not instantiated within the univer- 

sally quantified formula. This transformation scheme has also been proposed for 

negation by failure [D87]. 

The  following identity is used t o  rewrite the original universally quantified 

query: 

I [VX: G + F] = I[{(%: G )  /\(VX: G + F ) )  V {(s: F) /\ --(%: G))]. 



This identity holds for any interpretation I  such t h a t  I [ G a ]  # u for every closed 

instance G o  of G ,  which holds whenever VX: G -+ F terminates. If the identity 

does not hold, evaluation will not terminate in any case. 

The second disjunct ( X :  G) A - ( X :  G )  can be evaluated with negation by 

failure. The  query not G succeeds with negation by failure if G has a finitely failed 

full search tree. By Theorem 5.5, if a query 3.X: G has a finitely failed full search 

tree, -3X: G is fixedpoint-implied by the program. Consequently, when not ZY: G 

succeeds with negation by failure, w3.X: G is fixedpoint-implied. The  second disjunct 

can therefore be rewritten t o  [(%: G ) / \ ( n o t  3X:G)l. 

As a n  illustration of the transformation, consider the query 

-mult (s (0) , J, K) with the program fragment of Example 5.1, repeated here: 

% mult (I, J, K) : true if IXJ=K; otherwise, false. 
mult(O,J,O) * true. 
mult(O,J,s(K)) * -true. 
mult (s (I) , J, K) * 3: mult (I, J,X) /\ add (X, J, K) . 

The evaluation procedure produces the subquery: 

VX: mult ( 0 ,  J, X) 4 -add (X, J ,  K)  

The  following new subquery results from the transformation: 

(1) [(%:mult (0 ,  J,X)) /\ (vX:mult (0, J,X) --+ w a d d ( X ,  J,K))] V 
( 2 )  ~(3:-mult (0, J,X)) A (not 3:mult (0, J,X))]. 

In solving disjunct (1) of this query, i ts  first conjunct 3X:mult (0, J, X) is t rue 

for X=O without further instantiating J. With a term-matching implementation, 

variable J is tagged indicating no further instantiation can occur. Without term- 



matching, when the universally quantified subquery is entered,  presence of a non- 

ground free variable should bring the evaluation promdwre t o  db'11orma1 termination. 

Termination avoids incorrect full search tree constructlikm. E r n h a t i o n  of the univer- 

sal  quantifier in disjunct (1) produces the subquery --a&d,(O, 3 ,K) . 

In solving disjunct (2) of this query, i t s  first conj ,m~~f  3t: -.nn~ll t (0, J, X) is 

t rue for X=s (X ' ) without further instantiating J. Agam, the vm-iable J should be 

tagged t o  prevent further instantiation. Negation by lbdrmre is x m  used for the 

query n o t  mu1 t (0, J, X) . The query correctly fa& dlue em ttb comt,~adictory value 

0 for X. So disjunct (2) produces n o  answers to the cAdgina1 query. 

Functional Generators 

Frequently, a universally quantified variable is functimdIy determined by the 

generator of i ts  universally quantified formula. This occurs ia &ample 5.1, repeated 

in the previous section. This program eonhim the DF3: 

mult(s(I),J,K) * 
3: mult (I, J,X) da\ add(X, J,K). 

The  associated object program then contains the DIF: 

~ m u l t  (s (I), J,K) t m: mult (I, J,X) -+ ~ a d d ( X ,  J,K). 

Given values i and j, mult(i, j , X )  yields exactly one value for X, because mult 

behaves a s  a to ta l  function. Therefore, the universal quantifier can be replaced by 

a n  existential quantifier, and the DIF: 



is equivalent t o  the previous DIF 

A functionally-determined quantifier Biis used within DEF-programs t o  mean 

t h a t  a predicate such a s  mult behaves a s  a aotal  function. A formula containing 

the  functionally-determined quantilier ELX: F,l\ G is a n  abbreviation for the formula 

(3!X: F )  +(X:  F  A G).  Within this definitikm, 3X: F  abbreviates 

X : ( F  n ( V Y :  F ( Y )  +X  = Y)):  "there errism za; unique X satisfying F." 

Functionally-determined formulas are a l w a p  &namded, itontaining a conjunction of 

formulas. The  DEF defining mult can be ;IF?-written with a functionally-determined 

quantifier as: 

mult (s (I), J, K) * 
EX : mult (I, J , X) C?%, add (X,,J,, K) . 

Use of the functionally-determined q u d a f i e r  within a program may arise from 

syntactic analysis or  semantic k~xm~M,ge 'plmxessed by 8, programmer. I t  is undecid- 

able in general if a predicate behaves as a & . a 1  function. Certain classes of pro- 

grams, such as primitive recursive program,  always defiae predicates t o  be to ta l  

functions. If a programmer's semantic knowledge is erroneous, compilation will no 

longer preserve meaning. 

The complement of a funct3mally d e t e ~ m i n e d  formula is defined t o  be: 

a x E i X  =BX:F/\G 

If there is exactly one value zo such t h a t  F(xo)  is fixedpoint-implied, then the com- 

plement is logically equivalent to negation. 



Lemma 8.1 (Complement of Functionally-Determined Formula Equivalent to Nega- 

tion): For any interpretation I  and closed formula EK: F  A G ,  if I[3!X:  F ]  = t, then 

I[-EK: F  A GI = I [ W :  F  A-GI.  

Proof: The  proof first demonstrates t h a t  if I[3!X: F ]  = t, then I [ F ( x ) ]  # u for all x .  

Suppose t h a t  IIF(xo)] = t. Then I [3 !X:F]  = t implies I [F(x )+x  =xo] = t for all 

terms x. Since I [ x  =so] = f for all terms x  # xo, I [ F ( x ) ]  = f. 

For the main pa r t  of the proof, note that :  

I[--EK: F A G ]  = 1 [ ( 3 X : F ) / \ ( V X : F + - G ) ]  

= I  [VX: F  + - GI , because I  [ 3 X :  F ]  = t. 

As above, suppose IIF(xo)] = t, and hence, I [ F ( x ) ]  = f for all x  # xo. 

I [ v x : F  +--GI = I[ (F 4 --G)(xo)] A (l \{I[(F + -G)(x)]  1 x  # xO)) 

= I[(--G)(x,)l 

= A --G)(xo)l V ( V { I [ ( f  A--G)(x)  I x  # 2,)) 

= I[ (F A-G)(xO)l V ( V { I [ ( F  A - G ) ( x ) ]  I x  z xO)) 

= I [ X : F  A - G ]  

= I [ W :  F  /\--GI, because I  [3!X: F ]  = t. 

As a result, if EK: F  G  is a closed formula and 3!X: F  is fixedpoint-implied, 

then T G  is logically equivalent to -BY: F  A G  in a11 fixedpoints. Definition 

of the complement form of functionally-determined formulas enables compilation of 

these formulas. For example, the DEF below: 



compiles t o  the dual  DIFs: 

mult (s (I), J, K) t &: mult (I, J,X) /\ add (X, J, K) . 
-mult(s(I),J,K) t &: mult(I,J,X) /\ --add(X,J,K). 

A functionally-determined formula ELY: F /\ G is equivalent to a n  existentially 

quantified formula 3X: F /\ G along with a uniqueness hypothesis. Therefore, 

evaluation of a functionally-determined formula is identical t o  evaluation of a n  

existentially quantified formula: ELY: F /\ G is evaluated with the same procedure a s  

= : F A G .  

Use of the functionally-determined quantifier eliminates occurrences of universal 

quantification within compiled DIF-programs. Hence, the appearance of free vari- 

ables within universally quantified formulas are  also limited. For example, the origi- 

nal DIF defining -mult contained a universal quantifier, so a query such a s  

--mult (s (s (0) ) , J, K) produces a universally quantified query with a free vari- 

able in i t s  generator. When mult is defined with a functionally-determined 

quantifier, this  query can be evaluated, returning answers: 

{J=o, K=o), 

{J=S (0) , K=s (s (0) ) ), 
{J=S (s (0) ) , K=s (s (s (s (0) ) ) ) ), etc. 

Summary 

The  presence of free variables within universally quantified queries can be han- 

dled in a number of ways. If free variables occur only in the tester, the  evaluation 



procedure will produce correct values for the free variables. If the free variables 

occur only in the generator, the contrapositive form of the query brings the free vari- 

ables into the tester, where correct values can be obtained. If the free variables 

occur both in the tester and generator, the query can be altered t o  instantiate free 

variables prior t o  evaluation of the universally quantified query. Any a t tempt  t o  

further instantiate the free variables within evaluation of the universally quantified 

query should result in abnormal termination. Finally, the number of universal 

quantifiers in a program can sometimes be reduced drastically by using a function- 

ally determined quantifier. 

6.4. Summarizing the Enhancements 

The  topics of this chapter have involved practical implementation and coding 

issues. Satisfying the self-coverage and non-conflict requirements can lead t o  a n  

explosion in the number of DEFs. The explosion occurs especially for database- 

oriented and polymorphic programs. An equality predicate resolves concerns about 

database-oriented and polymorphic programs. Self-coverage is also generalized t o  

accommodate d a t a  types. Introduction of the equality predicate and the enhance- 

ment t o  self-coverage broadens the scope of applications for DEF-programs. 

Correctness of universally quantified queries depends on the absence of free 

variables (Theorem 5.5). Strategies for evaluating universally quantified queries with 

free variables have been developed. Finally, a functionally-determined quantifier 

reduces occurrences of universal quantifiers, thereby reducing the number of univer- 

sally quantified queries containing free variables. 



Chapter 7 

Implementation Through Meta-Programming 

This chapter will discuss actual  implementation of the evaluation system for 

DEF-programs. A sample DEF-program is contained in Appendix C. This implemen- 

tat ion includes: 

(1) Disambiguation of variables by scoping. 

(2) Typechecking. 

(3) Overlap-checking. 

(4) Self-coverage testing. 

(5) Generation of dual  DIFs from every DEF. 

(6) Evaluation of queries on object DIF-programs. 

The  implementation was performed entirely in GPro log  [P85]. Prolog has  

many facilities for self-reference, providing a n  excellent prototyping environment, 

and the pattern-matching facilities of Prolog are also useful in the implementation, 

especially for typechecking and obtaining the complement of formulas. 

The Prolog program fragments presented in this chapter obey the syntax con- 

ventions required by C-Prolog. In particular, clauses a re  written as Ao:- 

A1, . . . , A ,  where the Ai are  all atomic formulas. This clause is equivalent t o  a 

clause of the form A .  + A l  /\ . . . /\A, in the notation of this dissertation. The 

different notation will be helpful in differentiating the Prolog program from formulas 



t h a t  are t o  be compiled or evaluated. 

All logical connectives, except equivalence (*) and implication (t), are 

treated within Prolog as uninterpreted function symbols. All of the predicate sym- 

bols present in DEF-programs are also treated as  uninterpreted function symbols. 

The  equivalence and implication connectives are  treated as  uninterpreted predicate 

symbols. For example, a DEF: 

p r i m e  (P) * 
vx: ( I t  (s ( 0 )  , x )  /\lt ( x , P )  ) -+ ~ d i v p  ( X , P )  

is treated as the assertion: 

w ( p r i m e  ( P )  , 
v ( X ,  -+ (/\ ( l t  ( s  (0) . X )  , I t  (X, P )  ) . ( d i v p  (X.  P) ) ) 

When necessary, the more readable infix form of the logical connectives will appear 

within program fragments. 

7.1. Compilation of DEF-Programs 

Compilation involves a number of steps. Variables produced in different scopes 

are disambiguated first. Next, the overlap test is performed t o  eliminate fixedpoint- 

inconsistent DEF-programs. The DEF-program is then typechecked. The self- 

coverage test  is performed next, ensuring correctness of the evaluation system. 

Finally, dual DIFs are generated from each DEF in a program. 



7.1.1. Variable Disambiguation 

Disambiguation of variables is necessary when using C-Prolog, because this 

language has  no facility for variable scoping. For example, if the first conjunct 

3 :p (X) of: 

(*:P(X)) A (3:q(X)) 

succeeds during query evaluation, the answer for X will be incorrectly passed t o  the 

second conjunct, 3: q (X) (Section 5.3). This possibility is eliminated by introduc- 

ing a new quantified variable for each new scope. Disambiguation creates the for- 

mula: 

(31 :P (XI) A ( 3 2  : q (X2) 

for the preceding formula. Disambiguating nested scopes requires disambiguating 

sub-formulas first, and then generating a new variable in the outermost scope. 

NU-Prolog [TZ87] has  variable scoping, thus requiring no variable disambigua- 

tion. 

7.1.2. Overlap Checking 

Section 5.1 introduced the overlap test ,  ensuring fixedpoint-consistency (Lemma 

5.2). The  test  fails if there are distinct DEFs A o F  and A'c+F1 such t h a t  A and 

A'  unify. This test  is achieved with the following definite clause: 



% overlap: true if there are distinct DEFs A*F and A'c+F1 

% such that A and A' unify. 
overlap :- 

A*F1, 
A*F2, 
distinct (F1,FZ) . 

The predicate distinct(F1, F 2 )  determines if formulas F1 and F 2  are syntacti- 

cally distinct. 

7.1.3. Typechecking 

Types are assigned t o  function symbols and predicates appearing in the DEF- 

program. The  type assignments are declared as  assertions within a DEF-program. 

A declaration f : [T~, . . . , T,] + T indicates t h a t  function symbol f is a member of 

type r, and i t s  arguments 1, . . . , n are of types rl, . . . ,T,. Similarly, for predicate 

symbols the declaration p:  [rl, . . . , T,] indicates the argument types. Type parti- 

tions of programs are not declared; however, the programmer must ensure t h a t  every 

function symbol appearing within a program is a member of a type. The type 

declarations are viewed by the C-Prolog system as  assertions defining a binary infix 

predicate ":". For example, the declaration s: [nats] -+nats is actually an  asser- 

tion : (s, [nats] -+nats) . Again, the readable form will be used. 

Typechecking terms utilizes a typecheckTerm predicate t h a t  is true of argu- 

ments z and T if term z can be assigned type r. If z is a variable, z is instantiated 

t o  7 ensuring tha t  each occurrence of a variable is assigned only one type. If 

z = f (zl, . . . , z, ) ( n  2 O), typecheckTerm obtains a type assignment 

f : [rl, . . . , r,] --+ T from the program, and typecheckTerm is recursively invoked 



to assign type ri t o  subterm zi for all 1 5 i 5 n.  

As a n  example, consider the type declarations below: 

0 :  [I-+nats. 
s : [nats] +nats . 
nil: []+lists. 
cons: [nats, lists] +lists. 

The  term cons (0, X) is successfully assigned type 1 ists by typecheckTerm 

using the following informal derivation: 

typecheckTerm (cons (0, X) , lists) is t rue if: 

typecheckTerm (0, nats) and typecheckTerm (X, 1 ists) are  true. 

typecheckTerm ( 0 ,  nats) is true. 

typecheckTerm (X, lists) is t rue with X instantiated t o  lists. 

The following unsuccessful derivation demonstrates t h a t  typecheckTerm cannot 

assign type lists t o  term cons (X, X) : 

typecheckTerm (cons (X, X) , lists) is t rue if: 

typecheckTerm (X, nats) and typecheckTerm (X, 1 ists) are true. 

typecheckTerm (X, nats) is t rue with X instantiated t o  nats. 

typecheckTerm (X, lists) is not t rue  because X has  been previously 

instantiated t o  nats and cannot be instantiated to lists. 

Instantiation of variables t o  type names by the typecheckTerm predicate is 

correct only if type names are distinct from function symbols. 

The  predicate typecheckpred is t rue of a n  atomic formula A if A is well- 

typed. When A = p(zl ,  . . . , z,) ( n  >0), typecheckpred obtains a type 



assignment p:  [ T ~ ,  . . . , T,] and typechecks the subterms by invoking 

typecheckTerm(xi, T ~ )  for all 1 < e' 5 n .  For example, suppose the predicate 

length is declared t o  have the following type: 

length: [lists,nats]. 

Then typecheckpred (length (cons (X, L) , s (N) ) ) is t rue if: 

typecheckTerm (cons (X, L) , lists) and 

typecheckTerm (s (N) , nats) are  true. 

These subqueries are true with variables instantiated a s  follows: 

X = nats, L = lists, N = nats. 

The  predicate typecheckFormula determines if a formula is well-typed by 

recursively determining if each non-atomic subformula is well-typed; atomic formulas 

are  well-typed using the typecheckpred predicate. Disambiguation of variables 

is important  for this task,  since variables are  instantiated t o  type names. Consider 

the well-typed formula: 

(3: length (nil, X) ) /\ (a: length (X, 0) ) . 

The  typecheckFormula predicate instantiates X in the first conjunct to nats 

and in the second conjunct to 1 ists. Without explicit disambiguation, typecheck- 

ing would fail for the formula above. 

7.1.4. Self-coverage Testing 

The test  for self-coverage makes use of the type declarations. For prototyping 

purposes, the self-coverage test is slightly simplified from the test  specified in Section 



5.4. A maximum depth dm,, is determined for all heads of DEFs, and is computed 

using system predicates. Then all well-typed ground a toms with depth at most 

d,,,+l are generated non-deterministically. Prolog is again a good language choice 

for this task. Every generated atom must match the head of some DEF in the pro- 

gram for the self-coverage test t o  succeed. 

T o  generate all well-typed ground atoms p(xl, . . . , z,) of maximum depth 

d,,,+l, the type declaration of predicate p, p :  [r1, - . - , T,], is obtained. All well- 

typed ground terms x l  . . . x, of maximum depih dm,, are then generated from types 

T o  generate all well-typed ground terms of type T and  maximum depth d ,  each 

type declaration j : [T,, . . . , T,] -+ T for type T is obtained. Recursively, all well-typed 

ground terms x, . . - x, of types r1 . . T, and maximum depth d -1 are generated. 

These are combined t o  form a term f (xl, . . . , x,) whose maximum depth is d .  In 

the basis case, all constants c with t y p  declarations c :  [I -+ T produce all terms of 

nesting depth 0 and type T. 

7.1.5. Generating Dual DIFs 

When a DEF-program has passed all tests, an  object DIF-program can be gen- 

erated. Two tasks are performed. Negation applied t o  non-atomic formulas is 

moved inward. And the dual DIFs A c F and t F  are  generated from each DEF 

A * F .  



Negation is moved inward by computing the complement of non-atomic formu- 

las. In the process, only bounded universal and existential quantifiers, of the form 

VX: G --+ F and 3X: F /\ G, are generated. Since negation of a formula is equivalent 

t o  i t s  complement (Lemma 4.8), this transformation is meaning-preserving. 

The  predicate comp f ormul a(F, CF) is t rue if formula F has  complement CF 

in negation-innermost form. The definition of this predicate is taken almost directly 

from the rules for producing the complement. Symbolic manipulation capabilities of 

Prolog make this especially easy. Some of the clauses defining compformula are: 

compformula(~(~l,~2) , V ( C F ~ , C F ~ ) )  : -  
compf ormula (Fl, CFl) , compformula ( ~ 2 ,  C F ~ )  . 

compformula(~(~,/\(~1.~2)) .V(X,-+(FltCF2)) :- 
compf ormula (F2, CF2) . 

The compformula predicate is used within the following clause t o  generate 

dual  DIFs: 

% compile(Fl,F2,F3) : true if F2 and F3 are dual DEFs 
% for the DEF F1. 
compi le (Ac*F, A t F  , wAcCE) : - 

comp f ormul a (F , CF) . 

7.2. Evaluating Queries 

Queries can now be evaluated against compiled DIF-programs. Evaluation is 

based on enhancements t o  the usual implementation of SLD-resolution through 

meta-programming [SB86]. The usual implementation contains the following 

definitions of a predicate sld: 



% s l d ( Q ) :  t r u e  i f  query Q succeeds through S L D - r e s o l u t i o n .  
s l d  ( t r u e )  . 
s l d  ( Q l A Q 2 )  : - s l d  ( Q l )  , s l d  ( Q 2 )  . 
s l d  (A) : - clause ( A , Q )  , s l d  (Q) . % A  is an a t o m .  

The system predicate c lause  obtains an  instance of a clause from the program 

whose head unifies with the first argument. The enhancements t o  this program 

cover the additional logical connectives, and obtain instances of DIFs from assertions 

defining the t predicate. 

% s l d ( Q ) :  t r u e  i f  query Q  succeeds through S L D - r e s o l u t i o n .  
s l d  (true) . 
s l d  ( e q u a l  ( X , X )  ) . 
s l d  ( - e q u a l  ( X , Y ) )  : - d i f  ( X , Y )  . 
s l d  ( Q l / \ Q 2 )  : - s l d  ( Q l )  , s l d  ( Q 2 )  . 
s l d  ( Q ~ V Q ~ )  : - s i d  (QI) . 
s l d  ( Q l V Q 2 )  : - s l d  ( Q 2 )  . 
s l d ( 3 : Q )  :- s l d ( Q )  . 
s l d ( 6 X : Q )  :- s l d ( Q )  . 
s l d  (L)  : - L t Q ,  s l d ( Q )  . % L  i s  a l i t e r a l .  

The system-defined predicate d i  f implements the d i j  function described in Section 

Evaluation of the universal quantifier has  various cases depending on 

occurrences of free variables in the generator and tester. In the first case, the gen- 

era tor  is a closed formula. 

s l d  (VX:G+E) : - 
c losed  (VX:  G) , 
f o r a l l  ( V X : G + F ) .  

where f o r a l  1 is defined with the following clause: 



forall (VX:G+F) : - 
bagof (F,sld(G) ,Bag), 
makecon j (Bag, Conj ) , 
sld (Conj) . 

Upon evaluation of a query forall(\c/X: G ++.E), the following steps are taken: 

(1) T h e  variable Bag is instantiated t o  a I d ,  [[F al, . . . , F a , ]  composed of 

instances of F such t h a t  each ai is an awnwer substitution for sld(G). 

(2) Given an  instantiation for Bag, v a r i a k  Conj is instantiated t o  the  conjunc- 

tion F a l I \ .  . - A F c Y , .  

(3) sld is invoked recursively on query C m j . .  

If free variables occur in the tester, but not k, $he generator, these two formulas can 

be swapped within the implication: 

sld(vX:G+F) :- 
open (VX : G) , 
closed (vX:F) , 
compformula (G, CG) , 
compf ormula (F, CF) , 
forall (vX:CF-bCG) . 

In this clause, the predicate open(F) is true ui Tormula F contains free variables. 

Finally, if free variables occur both in tfBT, generator and tester, a new query 

t h a t  a t tempts  t o  instantiate the  free v a r i a b b  is created. This query makes use of 

negation by failure. 



sld(VX:G+F) :- 
open (VX : G) , 
open (VX : F) , 
disambiguate (%:G, GI) , 
sld (Gl) , 
sld (VX:G+F) . 

sld (VX: G-+F) : - 
open (VX: G) , 
open (VX: E) , 
compf ormula (G, CG) , 
disambiguate (3: CG, C G ~ )  , 
sld (CG1) , 
not sld (G) . 

These clauses make use of the predicate disambiguate(F1, F 2 )  which disambigu- 

a tes  variable scoping in formula F1, creating a formula F2 with distinct names for 

variables in different scopes. Because C-Prolog does not utilize a correct selection 

rule for negation by failure, incorrectness may result from use of the  last clause 

above. When this  deficiency is corrected in the C-Prolog system, the  full implemen- 

tat ion will be correct. 

The  clauses defining sld are evaluated with SLD-resolution in conjunction 

with the encoding of a DIF-program. For example, using the program of Appendix 

C, this implementation produces the following results: 



?-  s l d (  -d ivp(Ans ,s (s (s (O)) ) )  ) . 
Ans = 0; 

Ans = s (s (0) ) ; 

= s (s (s (s (0) ) ) ) ; 

Ans = s (s (s (s (s (0) ) ) 

7 -  s l d  ( wdivp (s (0) , s (s (s (0) ) ) ) ) . 
n o  

In this example, one answer substitution is produced a t  a time by the C-Prolog sys- 

tem; a n  additional answer is obtained by typing a semi-colon. The first query would 

continue t o  enumerate all representations of natural  numbers greater than  3. The 

second query returned no indicating finite failure. 

7.3. Summary 

Compilation and the ac tual  implementation of the evaluation system have been 

described. The  implementation uses C-Prolog. The main shortcoming in using C- 

Prolog is t h a t  variables must be disambiguated. I t s  advantages include pattern- 

matching, self-reference, and non-determinism. These facilities were used extensively 

in typechecking, overlap-checking, self-coverage testing, and generation of dual  DIFs. 

Since the evaluation system for DIF-programs is similar to SLD-resolution, imple- 

mentation of the evaluation system was also eased. 



Chapter 8 

Summary and Future Work 

8.1. Summary 

This  dissertation proposes a n  enhancement, called constructive negation, t o  the 

expressiveness of logic programming languages. The enhancement is based on for- 

malizing the ad  hoc methods of defining negative a s  well a s  positive facts. A three- 

valued logic is required, because some facts  will inevitably be assigned neither true 

nor false. 

Fixedpoints are  chosen a s  the underlying model of DIF-programs. Certain pro- 

grams a re  fixedpoint-inconsistent: no fixedpoints exist. Fixedpoint-consistency is 

undecidable and efficient evaluation systems cannot detect fixedpoint-inconsistency. 

Therefore, syntactic constraints are  imposed on programs t o  ensure fixedpoint- 

consistency. 

A set  of consistency constraints are  proposed involving dual  definitions and 

absence of conflicting definitions. The  resulting programs are  DEF-programs. 

Underlying models of DEF-programs can be non-computable; hence, any evaluation 

system is necessarily incomplete. An evaluation system for DEF-programs is pro- 

posed based on enhancements t o  SLD-resolution. This evaluation system is correct 

only if a self-coverage test  is satisfied. 



Enhancements a re  needed t o  enable practical use of DEF-programs. An equal- 

ity predicate is incorporated into the evaluation system, d a t a  types a re  introduced, 

and evaluation of universally quantified formulas is made more flexible. A prototype 

implementation of this system has been achieved with the C-Prolog language. 

Other  strategies for enhancing the expressiveness of logic programming 

languages also involve implementation of negation. The predominant implementa- 

tion is by failure. But answer substitutions are  not returned after evaluation of 

negated queries, and correctness of negation by failure is ensured only if negated 

queries are  variable-free. Negation by failure is also incomplete, and cannot detect 

inconsistent programs. Consistency is ensured only through stratification. 

Model elimination is a complete evaluation system for programs with negation. 

This system converts clauses (not necessarily definite) into contrapositive forms. 

These forms are  similar t o  DIFs, in t h a t  negated atoms may occur in the heads of 

contrapositives. The evaluation system uses SLD-resolution and searches a t  ancestor 

nodes in the full search tree. Unless the ancestor search can be controlled through 

indexing, model elimination can suffer from the same inefficiencies a s  resolution. 

Examples have demonstrated the use of constructive negation. In many cases, 

constructive negation is more flexible than negation by failure, because answer sub- 

stitutions can be returned from evaluation of negative queries. Increased expressive- 

ness is achieved by DEF-programs, because all logical connectives may be present 

within the bodies of DEFs. 



8.2. Future Work 

The  weakest pa r t  of the evaluation system for DEF-programs is evaluation of 

universal quantifiers. The current implementation uses a system-defined construct 

t h a t  stores generated values within heap memory. A large conjunction is then 

formed from the generated values and tester, again in heap memory. 

Tamaki  and S a t o  [TS83,KH87] have investigated transforming universally 

quantified formulas into recursive clauses. Recursion effectively stores generated 

values on a stack.  In fact ,  if the recursive clauses are  tai l  recursive, only a fixed 

amount of space is required from the stack. Also, explicit storage of a conjunction is 

not needed. The transformation rules are  not incorporated into a compiler, because 

the search space of transformations is too large. The transformations must be 

guided step-by-step by a programmer. The transformation rules are  applicable t o  

DEF-programs, but  further work is needed t o  perform the transformation automati- 

cally for some interesting class of programs. 

Use of non-conflicting DEFs t o  produce dual DIFs ensures fixedpoint- 

consistency. Since these syntactic constraints on programs are  merely sufficient, 

better  constraints may exist to ensure fixedpoint-consistency. 

Ad hoc techniques for describing negation may also be used in equational pro- 

gramming languages. Constructive negation within logic programs relies on three- 

valued logic and quantifiers. Replacement of the ad  hoc techniques for describing 

negation within equational programming languages by a constructive negation may 

require analogs to three-valued logic and quantifiers. The non-conflict and self- 



coverage properties could also be important  in satisfying the Church-Rosser property 

for term-rewriting systems. 

The non-conflict and self-coverage properties of programs a re  applicable t o  

functional programming languages. Non-conflict ensures t h a t  each function is well- 

defined. Self-coverage ensures t h a t  all functions have definitions for all possible 

arguments. Self-coverage does not ensure to ta l  functions, but  constitutes a useful 

precondition for defining to ta l  functions. 
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Appendix A 

Three-Valued Truth Tables 

T h i s  appendix contains three-valued t r u t h  tab les  for all  of the  logical connec- 

tives in no: 

Negation: 

Conjunction: 

Disjunction: , 

T r u t h  Tab le  

, T r u t h  Tab le  for Conjunction 

Y 

T r u t h  Tab le  for Disjunction 

Y 

t u f  
t u f  
u u f  
f f f  

2 
t 
u 
f  

t u f  
t u t  
t u u  
t u f  

2 
t 
u  
f  



Implication: 

T r u t h  Table  for Implication 

Equivalence: 

Y 

T r u t h  Tab le  for Eauivalence 

Z 

x -+ y 

t 
u  
f  

t u f  
t u f  
t u u  
t t t  



Appendix B 

Three-Valued Valuations 

This appendix contains justification for the three-valued t ru th  tables of Appen- 

dix A. The assignment of a logical constant t o  a Boolean expression is called a 

valuation. The  t ru th  tables of Appendix A are the strongest extension of the classi- 

cal Zvalued t ru th  tables. The  &valued t ruth  tables agree with the usual t ru th  

tables on Boolean expressions t h a t  do not contain u .  When u is viewed a s  contain- 

ing less information than t and f, the t ru th  tables are  monotonic. Monotonicity 

ensures t h a t  a better defined valuation always results from a more informative 

Boolean expression. As a result, all laws, such as  De Morgan's, are observed by the 

3-valued t ru th  tables. 

As in Chapter 4, the relation 1 on the logical constants is defined, based on 

their information content. 

uEf and uCt 

This relation may be extended to Boolean expressions constructed from algebra 

B({t, u ,  f}), as follows: 



Logical constants: 

x[Ly - if x = y or  x C y .  

Set of expressions: 

SC - T if there is a bijection o: S -+ T ,  such t h a t  x C o ( x )  - for all x ES. 

Logical operators: 

(-x)tI(-y) if 5 CY 

( A s > L ( A  T )  if S L T  

( V S ) L ( V  T )  if S C T  

Through induction on the structure of Boolean expressions, C - is a part ial  ordering. 

As particular Boolean algebras, let: 

B, = B({t, f}), and 

B3 = B({t, u, f}). 

B2 is the  se t  of Boolean expressions containing only the logical constants t and f ,  

while B3 is the se t  of expressions containing all logical constants. Note t h a t  the 

maximal expressions in B3 with respect t o  the part ial  ordering 1 - are  expressions 

from B2. 

A Zvalued valuation is a mapping from B2 t o  {t,f}. The classical valuation v, 

is a particular valuation (there could be others). For example, v , : t l \ f b f .  Simi- 

larly, a &valued valuation is a mapping from B3 t o  {t,u,f}. 

A bvalued valuation v' is a n  extension of a Zvalued valuation v if v l ( x ) ~ v ( x )  - 

for all x EB2.  T h a t  is, v1 is no better defined than v on any Zvalued expression. We 



will be describing a particular 3-valued extension vcl of v,. In this extension 

vCr(z) = v,(x) for all z E B 2  For example, since vCr is an  extension of u,, i t  must be 

t h a t  v c l : t A f k f .  

According t o  the usual definition, %valued valuation v' is monotonic if z E y  - 

implies v ' ( ~ ) E v ' ( ~ )  - for all expressions x and y from B,. This property ensures t h a t  

increased information will enhance the information provided by the valuation. 

If S is a set  of expressions, as  shorthand, let v(S) = {u(x) I z ES). As a partic- 

ular class of 3-valued valuations, V is a functional producing a 3-valued valuation 

from i ts  2-valued input. Define V(v)(x) = n v(Mz), where M, = {y E B 2  I x C y ) .  - 

Each 3-valued valuation V(v) is a n  extension of Zvalued valuation v. For example, 

the classical extension is defined as v,' = V(v,). Appendix A provides t ru th  tables 

for the operations of f& using this definition of vcl. I t  is necessary to show t h a t  the 

resulting 3-valued valuation conforms t o  i ts  %-valued component, and is well- 

behaved. 

Lemma B.l: For all Zvalued valuations v, V(v) is a monotonic extension of v 

Proof: Suppose expressions x and y are  in B,, and x Ey. - Then M, > M u ,  so  

v (M z )> - v(Mu), and n v ( M  2 )En - v(MU). Hence, V(v)(x)L V(v)(y), and V(v) is 

monotonic. 

We now show t h a t  the functional V is a s  strong a s  any other method for pro- 

ducing monotonic extensions of Zvalued valuations. Valuation w is stronger than  

valuation v, denoted v C - w, if v ( x ) E  - w(x) for all x EB,. Since this  relation on valua- 



tions is a simple extension of the part ial  ordering C - on Boolean expressions, i t  is easy 

to show t h a t  the relation on valuations is also a part ial  ordering. 

Lemma B.2: If valuation w is a monotonic extension of Zvalued valuation v, then 

w 5 V(v). 

Proof: If w(x) = u ,  then w(x)CV(v)(x) - regardless of the actual  valuation V(v). If 

w(x) # u ,  then w(x) = w(y)  for all y such t h a t  x r y .  - In particular, for any maxi- 

mal  element m EM,, w(x) = w(m). Since w is a n  extension of v ,  w ( m ) E v ( m ) .  - And 

by the definition of V, v(m) = V(v)(m). Since w ( x ) C  - V(v)(m) for all m EM,, 

w ( x ) c n  v(M,). 

We have therefore established t h a t  vct is the strongest monotonic extension of 

the classical Bvalued valuation v,. Within Chapter 4, it is important  t o  determine 

t h a t  certain properties, including De Morgan's laws, still hold for the valuation v,'. 

Because the associative and commutative operation n is used in the construction of 

V(v), the  3-valued valuation vct is indeed associative and commutative for conjunc- 

tion and disjunction. De Morgan's laws are strengthened for infinite conjunctions 

and disjunctions, a s  follows: 

I t  is not difficult t o  show t h a t  De Morgan's laws are  also observed for vCt. 

Having justified the construction of vC1, i t s  use is implicit within the disserta- 

tion. Thus, a Boolean expression x will s tand for i ts  valuation under vC1. 



Appendix C 

DEF-Program Example 

The  following program is used a s  an  example of a DEF-program. The program 

defines a prime predicate, among others. The  program is not especially efficient, 

but  does clearly represent certain relations about natura l  numbers. Included in the 

program a re  assertions utilized for typechecking, discussed in Chapter 6, Section 2. 

0 : [I +nats . 
s : [nats] dnats. 

% lt(1,J): true iff ICJ. 
It : [nats, nats] . 
It (0, s (J) ) o true. 
It (I, 0) o -true. 
lt(s(I),s(J)) * lt(1,J). 

% le(1,J) : true iff ISJ. 
le: [nats, nats] . 
le(1,J) * -lt(J,I). 

% ge(1,J): true iff I2J. 
ge : [nats, nats] . 
ge(1,J) * -lt(I,J). 

% gt(1,J): true iff I>J. 
gt : [nats, nats] . 
gt(1,J) * lt(J,I). 

% eq(1,J): true iff I=J. 
eq: [nats, nats] . 
eq (I, J) o le (I, J) /\ le (J, I) . 
% add(I,J,K) : true iff I+J=K. 
add: [nats, nats, nats] . 
add(O,J,K) o eq(J,K). 
add(s(I), J,0) o -true. 
add(s(I),J,s(K)) o add(I,J,K). 



% mult(1, J,K) : true iff I*J=K. 
mult: [nats, nats, nats] . 
mult(O,J,O) o true. 
mult (0, J, s (K) ) * -true. 
mult (s(I), J,K) c* &: mult(1, J,X) /\ add(X, J,K) . 
% divp (I, J) : true iff I divides J evenly. 
divp : [nats, nats] . 
divp(1,J) o 3: le(X, J) /\ mult(X,I, J) . 
% prime (P) : true iff P is prime. 
prime : [nats] . 
prime (P) o 

st (Pa s (0) 
/\ (VX: lt(s(O),X) /\ lt(X,P) --+ -divp(X,P)). 
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