
Constructive Negation in Logic Programs

Clifford Walinsky
B.A., University of California, San Diego, 1978

A dissertation submitted t o the faculty
of the Oregon Graduate Center

in part ial fulfillment of the requirements for the degree
Doctor of Philosophy

in
Computer Science and Engineering

August, 1987

The dissertation "Constructive Negation in Logic Programs" by Clifford Walinsky

has been examined and approved by the following Examination Committee:

Richard Hamlet, Thesis Advisor
Prnf63or

Richard Kieburtz
Professor and Chairman

David Maier
Associate Professor

Kamal Abdali
Adjunct Associate Professor

Dedication

I dedicate this work to my wife, who worked tirelessly t o finance my education, and

who provided endless encouragement. I must also acknowledge the fine work of

Betsy Moore who raised our child while both parents were away at work. I thank

Dick Hamlet for his consistently good advice and excellent reviewing. I also thank

David Maier for his vast store of knowledge about logic programming, Mark Gross-

man for advising me about the value of monotonicity, and Dick Kieburtz for allow-

ing me to a t tend the Oregon Graduate Center. Finally, I extend thanks t o Vincent

Sigillito a t the Air Force Office of Scientific Research for the generous financial s u p

port of his agency.

Table of Contents

List of Lemmata and Theorems ...
.. Glossary

List of Notation ...
Lists of Figures and Examples ..
Abstract ..
Chapter 1 . Introduction ...

1.1. Declarative Languages ..
1.2. Logic Programming ...
1.3. Constructive Negation ..
1.4. Overview ...

Chapter 2 . Basic Concepts and Notation ...
2.1. Syntax of Terms and Formulas ..
2.2. Substitutions ..
2.3. Common Instances of Terms ..
2.4. Terms as Denotations for Sets ...

Chapter 3 . Enhancing Expressiveness of Logic Programming
3.1. Underlying Model of Definite Clause Programs ..
3.2. SLD-Resolution ...
3.3. Negation by Failure ...
3.3.1. The Closed World Assumption ..
3.3.2. Program Completion ..
3.3.3. Incorrectness of Negation by Failure ..
3.3.4. Incompleteness of Negation by Failure ...
3.3.4.1. Canonical Programs ..
3.3.4.2. Inconsistency of a Program's Completion ..
3.4. Enhancing Expressiveness of Programs with Negation
3.4.1. Extended Programs ...
3.4.2. Model Elimination ...

Chapter 4 . Constructive Negation ..
.................. 4.1. A Language of Logic Programs with Constructive Negation

4.2. Underlying Model of DIF-Programs ...
4.2.1. Three-Valued Logic ...
4.2.2. Constructive Interpretations of Formulas ..
4.2.3. Constructive Models of DIF-Programs ...

vii
ix
...

X l l l

xv
xv i

1
3

Chapter 5 . Fixedpoint-Consistent DIF-Programs ..
5.1. Syntax of DEF-Programs ..
5.2. Compilation of DEF-Programs ...
Generating Dual DIFs ..
Non-Conflicting DEF-Programs ..
Fixedpoint-Consistency is Attained ..
5.3. Evaluation of DEF-Programs ...
5.4. Resolving Incorrectness of Universally Quantified Queries
Overly-General Generated Values ..
Insufficient Generated Values ...
No Generated Values ...
Summary ...
5.5. Correctness of the Evaluation System ...
5.6. Incompleteness of any Evaluation System for DEFs

Chapter 6 . Enhancements ..
... 6.1. Controlling Explosion of DEFs

Evaluation of Equality ...
... Database-Oriented Programs

.. Polymorphic Programs
Summary ...
6.2. Incorporating Type Information for Self-coverage
6.3. Enhancing Evaluation of Universal Quantification

... 6.3.1. Term-Matching
6.3.2. Free Variables in Universally Quantified Queries

.. Free Variables in Only the Generator or the Tester
... Free Variables in both Generator and Tester

Functional Generators ...
... Summary

6.4. Summarizing the Enhancements ..
Chapter 7 . Implementation Through Meta-Programming

7.1. Compilation of DEF-Programs ...
7.1 . 1. Variable Disambiguation ..
7.1.2. Overlap Checking ...
7.1.3. Typechecking ...
7.1.4. Self-coverage Testing ...
7.1.5. Generating Dual DIFs ..
7.2. Evaluating Queries ..
7.3. Summary ...

Chapter 8 . Summary and Future Work ... 141
8.1. Summary ... 141
8.2. Future Work ... 143

References .. 145
Appendix A . Three-Valued Tru th Tables ... 149

... Appendix B . Three-Valued Valuations 151

.. Appendix C . DEF-Program Example 155

List of Lemmata and Theorems

N

Lemma 2.1. = is a n equivalence relation on terms ...
Lemma 2.2. [s]s [t] iff t is an instance of s ...

.............. Lemma 2.3: s is a partial ordering on equivalence classes of terms

Lemma 2.4. fi produces the mgci of terms ...
Lemma 2.5: If terms s and t have no variables in common, then s and t are

.. unifiable iff the terms have a common instance
...................................... Lemma 2.6: If t is an instance of s, (s @ C) 2 (t @ C)

Lemma 2.7: When C is non-trivial, for all terms s and t, s@C = t@C iff
N

s= t ..
Lemma 2.8:

(1) If terms s and t have no common instance, then s@C and t@C are
disjoint .
(2) If terms s and t have a common instance, then f fit)@^) =

... (s@C) n(t@E)
.......................... Lemma 2.9: For all terms s and t, (s@C) > (t@C) iff [s] 5 [t]

Lemma 3.1: Any interpretation for a definite clause program has an
equivalent Herbrand interpretation ...

Lemma 3.2 (Model Intersection) ...
Lemma 3.3 (Logical Implication) ...

.. Lemma 3.4 (Characterization of Fixedpoints)

Lemma 3.5 (Characterization of Least Model by T) ..
Lifting Lemma 3.6: If query Qa has a success path, then Q has a success

path ...
Lemma 3.7 (Construction correctness) ..
Lemma 3.8 (Construction completeness) ...
Corollary 3.9 (Construction Completeness & Correctness)
Lemma 3.10 (Meaning of Failure for Ground Atoms) ..

.. Lemma 3.11 (Meaning of Failure)
Lemma 3.12 (Completeness for Canonical Programs)
Lemma 4.1 (Monotonicity of Interpretations) ..
Lemma 4.2 (Complement equivalent t o Negation) ...
Lemma 4.3 (T monotonic): ...
Lemma 4.4 (Relating Models and Fixedpoints) ...
Lemma 4.5 (Relating Strong Models and Fixedpoints)
Lemma 4.6: Fixedpoint-consistency of an arbitrary DIF-program is unde-

... cidable

Lemma 5.1 (Compilation is Meaning Preserving) ...
Lemma 5.2 (Non-Overlapping Programs are Non-Conflicting)
Lemma 5.3 (Non-conflicting DEF-programs are fixedpoint-consistent)
Lemma 5.4 (Correctness of Self-coverage Test) ...
Theorem 5.5 (Correctness for Finite Full Search Trees)
Theorem 5.6 (Correctness for General Full Search Trees)
Lemma 5.7: For any TM m and configuration c, a c c e p t (m , c) is

fixedpoint-implied from NonRE if a final configuration can be reached
via the relation km* from initial configuration c; otherwise,
-accept (m, c) is fixedpoint-implied. ..

Lemma 5.8 (N O ~ R E accepts LC) ..
Corollary 5.9: There is no complete evaluation system for DEF-programs.

...
Lemma 6.1 (Complement of Functionally-Determined Formula Equivalent

t o Negation) ...

...
V l l l

Glossary

(In order of appearance)

underlying model: descriptive characterization of a declarative language
program ..

evaluation procedure: procedural characterization of a declarative language .
...

recognizer: an evaluation procedure t h a t affirms or denies the presence of
elements satisfying a query ...

transducer: a n evaluation procedure tha t enumerates elements of an under-
lying model satisfying a query ..

definite clause: statement of implication ..
head: conclusion of a clause ...
body: premise of a clause ..
assertion: an unconditional definite clause with no body
arity: number of arguments of a function of predicate symbol
constant: function symbol with arity zero ..
ground: a term, a tom or literal without variables ..
proposition: predicate symbol with arity zero ..
atom: an atomic formula ..
logical operators: negation, and infinite disjunction and conjunction
jormula: a Boolean expression with atomic elements from A(& C), for some

................ arbitrary sets of predicate symbols II and function symbols C
connective: written forms of the logical operators ..
free variable: a variable not bound by a quantifier ...
bound variable: variable X i s bound in 3.X F and VX: F
closed formula: contains no occurrences of unbound variables
sentence: a closed formula ...
open formula: contains free occurrences of variables ..
existential closure: e.c. of formula F, denoted 3F, binds every free variable

in F with a n existential quantifier ..
universal closure: U.C. of formula F, denoted VF, binds every free variable in

.. F with a universal quantifier
substitution: mapping from variables t o terms . Later extended t o mappings

.. from formulas t o formulas
domain of a substitution: set of variables not mapped t o themselves by a

substitution ...
identity substitution: E maps every variable X t o X ...

renaming substitution: a bijective substitution ..
variant terms: terms t h a t differ only by a renaming ...
instance: a term t h a t can be produced from another by application of a

substitution ...
common instance: c.i. of terms S is (all variants of) a term t h a t is a n in-

stance of all terms in S ..
most general common instance (mgci): mgci of S is the most general term

t h a t is an instance of all terms in S ...
mgci: most general common instance ...
unifiability: terms s and t are unifiable if there is a substitution a such t h a t

so=b ..
unijying substitution: a u.s. of terms produces a common instance of the

terms ...
decomposition of mgci: when terms s and t have a mgci. and therefore a uni-

fying substitution. the unifying substitution can be partitioned accord-
ing t o the variables in s and t ...

template: t . of a set of ground terms T is a term t such t h a t T = t @ C
non-trivial set o j function symbols: a set C such t h a t I T a I > 1
interpretation: (see also constructive interpretation) a correspondence

between syntactic elements of a formula. and actual objects. functions
and relations ...

Herbrand interpretation: a symbolic interpretation ...
Herbrand Universe: set of all ground terms constructible from symbols in a

program ..
Herbrand Base: set of all ground atoms constructible from symbols in a pro-

gram ..
model: M is a model of program P if M[P] is true ...
query: a conjunction of atoms for a definite clause program. and a formula

for a DIF-program ...
logical implication: a query is 1.i. by a program if some instance of the query

is true in all models of a program ..
immediate consequence junctional: denoted by Tp; unique for each program.

producing all atoms inferred by the program from an Herbrand in-
.. terpretation

.................................... powers (of T): multiple applications of the functional T
fixedpoint (of T): an Herbrand interpretation I= T(Z) ..

.. least fixedpoint: intersection of all fixedpoints of TP
... greatest fixedpoint: union of all fixedpoints of TP

answer substitution: derived by SLD-resolution and the evaluation system
for DIF-programs tha t produces an instance of a query logically im-

plied by a program. ...
full search tree: d a t a structure used by SLD-resolution and the evaluation

system for DIF-programs t o obtain answer substitutions.
success node: a leaf of a full search tree indicating t h a t a query and all sub-

sequent subqueries have been resolved. ..
success path: a pa th from the root t o a success node in a full search tree.

...-....*.....*........-....................,..................................
value of success path: composition of the labels of all edges along a success

path. ..
general clause: a formula of the form A c L I I \ . . . AL,, where A is an atom

and each Li is a literal. Used t o express negation by failure.
Closed World Assumption: all facts not logically implied are assumed false.

...
failed full search tree: a full search tree without any success paths.
program completion: the "if-and-only-if" version of a definite clause pro-

gram.
general form (of a clause): an implication produced from a definite clause

used in generating a completed program. ..
completed form (of a predicate): the if-and-only-if definition of a predicate in

a completed program. ..
completion of a program: the if-and-only-if version of a program.
correct selection rule: selection rule for SLD-resolution with negation by

failure, selecting negated atoms only if ground. ...
jloundered query: a query for which no selection rule is correct.
allowed query: all variables occurring in a negated atom occur within a posi-

tive a tom elsewhere within the query. ...
allowed program: variables occurring within the head of every general clause

occur within a positive atom within the body of the clause.
canonical program: a definite clause program for which TJw=gfp.
DIF: see Definite Inference Form. ...
Definite Inference Form: a statement of implication used t o define positive

and negative information, denoted L t F, where L is a literal and F is
a formula. ...

constructive interpretation: a mapping from the Herbrand Base of a program
t o the three logical constants. ..

complement: c . of a formula is negation of the formula with negation ap-
plied only t o atoms. , ...

strong model: s.m. of a program is a constructive interpretation t h a t gives a
valuation of true t o the program. ..

weak model: w.m. of a program is a constructive interpretation t h a t does

not assign a false valuation t o the program. ..
inconsistent program: in 2-valued logic a program without models; in 3-

valued logic a program without strong models. ..
fixedpoint-inconsistent program: a DIF-program without fixedpoints.
closure ordinal: the least ordinal a such t h a t Tfa, is a fixedpoint and

T ~ C Y = ljp. ..
fixedpoint-implied formula: a formula assigned a true valuation by every

fixedpoint of a DIF-program. ..
DEF: see Definite Equivalence Form. ..
Definite Equivalence Form: a statement of equivalence used t o compile into

dual DIFs, denoted by A c* F, where A is an atom and F is a formula.
...

definition: all DEFs in a program with heads p(xl,. . . , xn) for some predicate

p . , . , .
conflicting DEFs: DEFs Alc*Fl and A2*F2 for which there are substitu-

tions al and a2 such t h a t Alal=A2a2. Conflicting DEFs in a DEF-
program may cause fixedpoint-inconsistency. ...

overlap test: determines if a program contains distinct DEFs whose heads
unify; used t o prevent fixedpoint-inconsistency. ..

generator: the formula G of a bounded universally quantified formula
V X G-+ T used t o generate values of X. ...

tester: the formula T of a bounded universally quantified formula V X G--+ T
used t o test all generated Xvalues. ...

term-matching: a procedure t o determine if a term is a n instance of another.
...

self-covering DEF-program: for each ground atom A there is a closed in-
stance of some DEF in the program with A a t i t s head; used t o ensure
correct evaluation of universally quantified formulas.

nesting depth: count of nested occurrences of subterms within a term.
configuration: a condition of a T M describing the contents of the tape and

the current s ta te
transition relation: describes all possible ways for a T M t o proceed in a sin-

gle step. ...
type: a subset of the function symbols occurring in a program.
type partition: partition of all function symbols into types.
predicate type assignment: assignment of types t o predicate symbols.
function type assignment: assignment of types t o function symbols.
variable type assignment: assignment of types t o variables.
functionally-determined quantifier: a logical formula denoted by E K F A G ;

true if whenever F determines a unique value x for F, G(x) is true.

xii

List of Notation

(In order of appearance)

T: set of all variable symbols ..
fin): function or predicate with ari ty n ...

.. q C) : set of finite terms freely-generated from C
... I@): set of ground terms in q C)

A(TIl C). set of atoms generated from predicate symbols in ll and terms in
Y E) ...

set of ground atoms in A(n. C) ..
.. no: all logical operators

B(C): all Boolean expressions freely generated from no and some carrier C .
...

... 3F: existential closure of formula F abbreviates Xl 3Xn: F, where
Xl ... Xn are all of the free variables occurring in F

... V F universal closure of formula F abbreviates VXl VXn: F, where
XI ... Xn are all of the free variables occurring in F

.... {XI = t l , Xn= tn): finite denotation of a substitution

......... oo T (u and T substitutions): x(o0 T) =(zu)r. where x is a term or formula
... E : identity substitution

p-': inverse of a renaming substitution p ..
N

s= t: terms s and t are variants ..
[t]: set of all all variants of term t ..
s] r [t] : all terms in [t] are instances of all terms in [s] L

....................... 0.9 greatest lower bound, w.r.t. 5, of all (variants of) terms S
............................ US: least upper bound. w.r.t. 5. of all (variants of) terms S -

s n t : mgci of terms s and t ...
t@C: set of ground instances of term t ..
(D.F,.P,). a n interpretation with domain Dl mapping FE of function sym-

bols in C t o functions. and mapping P, of predicate symbols in II t o
relations ..

44: valuation of a formula F by an interpretation I ...
.............. HUp (HU when P understood): The Herbrand Universe of program P

...................... HBp (HB when P understood): the Herbrand Base of program P

Mp (M when P understood): set of all Herbrand models of definite clause
program P ...

Tp (T when P understood): the immediate consequence functional for pro-
gram P . Also defined for DIF.programs ..

Xp (X when P understood): set of all fixedpoints of Tp
upp (Ifp when P understood): least fixedpoint of program P

....................... gfpp (gjp when P understood): greatest fixedpoint of program P

Tta: abbreviation for Tff(0) ...
Tla: abbreviation for T"(HB) ...
0: the empty conjunction; a vacuously true formula ..
n o t A: negation of an a tom A t o be proved with negation by failure
comp(P): completion of a program ..
-I? constructive negation of a formula F ...
t, u, f: the three logical constants standing for true, undefined, and false,

respectively ...
c E d: logical constant c is strictly less defined than logical constant d
c 1 d: logical constant c is less defined than logical constant d -
{L1, . . . ,L,). denotation for a constructive interpretation, where each Li is a

ground literal ..
true: a distinguished proposition symbol for DEF-programs always as-

signed to the logical constant t ..
m . the maximum nesting depth of heads of all DEFs in a program defining

P'
predicate p ..

%d: the set of all a toms from set S with maximum nesting depth a t most
d ...

TM: abbreviation for Turing machine ..
Cm: the transition relation for a T M rn ...
C m * : the reflexive and transitive closure of I-,,, ...
Lnc: all valid encoding of T M s t h a t accept nonempty languages
Le: all strings t h a t are not valid encodings of TMs, and all strings t h a t are

valid encodings of TMs accepting empty languages
dif: used in correct evaluation of equality queries ...
Jl' a n assignment of the empty type t o all variables

............................... TPT (T P when n understood): a predicate type assignment

................................. TFn (T F when n understood): a function type assignment

................................ TVx (T V when n understood): a variable type assignment

... El: the functionally-determined quantifier

Lists of Figures and Examples

Figure 3.1 .. 36
Figure 3.2 .. 36
Figure 3.3 .. 38

... Figure 4.1 ,. 67
.. Figure 4.2 71
.. Figure 5.1 85

Example 1.1 ..
.. Example 3.1

Example 3.2 ..
Example 3.3 ..
Example 5.1 ..
Example 5.2 ..
Example 5.3 ..
Example 6.1 ..
Example 6.2 ..

.. Example 6.3

Abstract

Constructive Negation in Logic Programs

Clifford Walinsky, Ph.D.
Oregon Graduate Center, 1987

Supervising Professor: Richard Hamlet

Logic programming languages such a s Prolog possess a relatively efficient
evaluation procedure but restrict the expressiveness of full predicate logic. Various
implementations of negation within logic programming are directed a t restoring
expressiveness. Negation by failure, the predominant implementation, can be both
incorrect and incomplete. Furthermore, negative queries solved by failure do not
return answer substitutions a s do positive queries. Another implementation of nega-
tion, model elimination, is complete but may be a s inefficient a s resolution. Other
implementations have a similar tradeoff between completeness and efficiency.

Constructive negation is an effort t o provide negation within logic programming
based on ad hoc methods commonly used by programmers t o obtain answer substitu-
tions from negative queries. The ad hoc methods involve definition of both positive
and negative information with definite clauses t o retain efficient evaluation.

While logic programs are described with reference t o classical logic, programs
incorporating constructive negation must be described by a three-valued logic con-
taining a n additional undefined value. Programs with constructive negation may be
inconsistent, and syntactic restrictions are needed to ensure consistency. The result-
ing programs may contain universal quantifiers. An evaluation procedure for univer-
sal quantifiers is proposed t h a t under further weak syntactic conditions is correct
though necessarily incomplete. Thus, programs incorporating constructive negation
are assured t o be consistent and have a relatively efficient evaluation procedure.

xvi

Chapter 1

Introduction

Logic programming languages such as "pure" Prolog [EIC76] are declarative

languages possessing a relatively efficient evaluation system. But efficient evaluation

of logic programs comes at t h e cost of expresskeness. Certain logical forms such a s

negation and universal quantification are absent, so problems naturally containing

negation and universal quantification must be transformed in order to conform t o

the restrictions of logic programming languages.

This dissertation describes a logic-based language t h a t satisfies many concerns

about expressiveness. The central new feature of this language is constructive proof

of negation, called constructive negatim. With certain syntactic constraints on pro-

grams, a correct evaluation system can be produced with a Prolog interpreter. Use

of Prolog benefits from i ts eEciency and the presence of meta-logical primitives. The

Prolog implementation of constructive negation is incomplete, a s would be any

evaluation system.

Constructive negation allows program definitions of negative as well a s positive

facts. This idea is already widely practiced on a n ad hoc basis. In fact Clark, in an

article describing negation by failure [C178], provided a n excellent example of a nega-

tive definition in the following logical formula:

n o n - m a t h s - m a j o r (X) t m a t h s - c o u r s e (Y) /\ -takes (X, Y) .

Our formalization of this practice ensures faithfulness t o the logical foundation of

logic programming. Formalization also provides guidelines for ensuring consistency

and correctness.

This approach is compared with negation by failure, the predominant imple-

mentation of negation in logic programming. Constructive negation is not meant t o

supplant negation by failure entirely. Indeed, in many ways the two interpretations

of negation complement each other. Negation by failure can be used t o enhance the

evaluation system of constructive negation. On the other hand, there are occasions

where negation by failure is not sufficient t o solve certain problems, leading pro-

grammers to adopt constructive negation on an ad hoc basis.

Syntactic constraints ensuring consistency and correctness a re proposed for pro-

grams with constructivc negation. By comparison, correctness of negation by failure

is also ensured when certain syntactic constraints a re obeyed; however, these con-

s t ra in ts greatly reduce expressiveness.

No evaluation system for programs using constructive negation can be com-

plete. But incompleteness exists in current logic programming systems. Prolog, the

predominant logic programming language, is a n implementation of a complete refu-

tat ion procedure, called SLD-resolution, t h a t uses a n incomplete search strategy.

Also, negation by failure is incomplete. Without completeness of a n evaluation sys-

tem, programs must contain "hints" for use by the evaluation system t o ensure ter-

mination. This is a n additional burden on programmers, but is viewed a s the cost of

providing a n efficient evaluation system for a n expressive language.

1 .l. Declarative Languages

Logic programming languages, such a s pure Prolog, fall into the class of

declarative languages. These languages are radically different in character from con-

ventional imperative languages, such as Pascal (WJ741. The natural model for

imperative languages is a s t a te machine with addressable memory [HU79]. Input is

converted into output through a series of s t a te transformations. Therefore, full

comprehension of an imperative program requires knowledge of all s ta tes reached

during every computation. Techniques tha t a t tempt such analysis tend t o be either

informal, and capable of analysis of fairly large programs, or formal, and capable of

analysis of rather small programs [Fa85 (Ch.S)]. The fundamental problem in any

rigorous analysis of an imperative program is the vast size of the state-input space.

By contrast, the underlying model of a declarative language program is a

description of elements from a domain satisfying properties specified in the program.

The underlying model is not based on s ta te transition. Context free grammars are

an example of a declarative language (HU791. All strings generated by a context-free

grammar satisfy the grammar's specification independent of any notion of s t a te

transition.

Decomposability and non-sequentiality aid in determining general properties of

an underlying model. Decomposability is apparent in the following grammar rules:

IjLStatement --+ if Expression then Statement else Statement
Ij-Statement --+ if Expression then Statement

From these rules we can determine the structure of all Ij-Statements. And given

strings representing an Expression and Statement, the grammar rules describe how t o

compose an IjStatement.

Elements of an underlying model reflect the non-sequentiality present in

declarative programs. Sequentiality does exist; the above grammar rules describe a

sequence of terminal and non-terminal symbols used t o construct Ij-Statements.

However, sequentiality is not imposed where i t is not necessary. Again the grammar

rules above demonstrate this fact, because changing the order of the rules has no

effect on the underlying model.

The underlying model of a program often cannot be represented explicitly. For

example, a context free language may be infinite. Queries are posed t o a n evaluation

procedure t o determine the content of a program's underlying model. Certain

evaluation procedures are recognizers, used t o decide if an element is present within

the underlying model. Other evaluation procedures are transducers, used t o generate

elements of the underlying model tha t satisfy a query. When membership of a n

underlying model is decidable and the model is enumerable, a recognizer can act a s a

transducer by working in a generate-and-test manner. In the case of context-free

grammars, pushdown automata (PDAs) are recognizers t h a t decide if a given string

is generated by a context-free grammar.

An evaluation system may rely on state-transition, as for PDAs. Nonetheless,

detailed knowledge of the evaluation system is not essential t o understanding i t s

input-output behavior. This behavior is prescribed by the underlying model. There-

fore, comprehension of a declarative program does not depend on knowledge of a

state-input space or i t s evaluation procedure.

As increased knowledge about an evaluation system is garnered, evaluation sys-

tem generators are usually devised. Such generators compile information from pro-

grams t o produce efficient evaluators. As an example, a PDA generated by Yacc

[AJ74] determines if an input string is a member of the language given by a n LALR

grammar.

Below, various representative examples of declarative languages, their underly-

ing models, evaluation systems, and some notable implementations are listed:

Context-free grammars:

Underlying model: context-free language.

Evaluation system: PDA.

Evaluation system generators: Yacc [AJ74], Sac [Ro85].

Equational programming languages:

Underlying model: least congruence of the initial algebra [ADJ78].

Evaluation system: term-rewriting [HuSO].

Evaluation system generator: E p [085].

Implementation: OBJ [GM82].

Relational Algebra:

Underlying modefi set of relations.

Evaluation system: operations on sets of tuples [Co70].

Implementations: see [Da86] for PRTV, SQL, Ingres, System R.

Predicate Logic:

Underlying model: all implied formulas [En72].

Evaluation system: resolution [Ro65]; tableaux [Sz69].

Implementation: MRPPS [N80 (Ch.5)].

All of the evaluation systems in this list are transducers, except for PDAs.

For the evaluation systems listed above, three important properties are

apparent:

Correctness:

When a correct evaluation system terminates successfully in response t o a

query, i t returns a member of the underlying model t h a t satisfies the query o r

affirms t h a t the query is a member of the underlying model.

Completeness:

In response t o a query, a complete evaluation system can generate every

member in a program's underlying model t h a t satisfies the query. If a language

is decidable and enumerable, correctness ensures completeness, since a

generate-and-test strategy will generate all members of the underlying model.

Eficiency:

A measure of the evaluation system's speed and memory consumption compared

t o the length of a query or program.

T o illustrate these properties of evaluation systems, consider the language of

first-order predicate logic [En72]. From a slightly unconventional viewpoint, all for-

mulas implied by the clausal form of a program (the program's theory) are contained

in the underlying model. I t has been shown tha t the resolution theorem-proving

method [Ro65], the evaluation system for this language, is both correct and com-

plete. However, this evaluation system is generally quite inefficient [Sh86]. At each

s tep of the resolution procedure there may be a number of ways in which execution

can proceed.

1.2. Logic Programming

Despite the poor performance of resolution theorem-proving methods, predicate

logic remains a desirable language. As a declarative language, it lacks the state-

input space problem of imperative languages. And a logic notation seems amenable

t o many forms of knowledge representation [Ni80], including of course mathematical

knowledge [En72].

Efforts t o enhance the performance of resolution theorem-proving continue.

Impressive performance has been obtained for a restricted form of predicate logic.

The restriction permits only definite clauses of the form A o t A l . . A A , , where

each Ai is an atomic formula and n 20. This clause is a statement of implication:

VXl - - VXm:(Al I\ . - . l\A, -+Ao), where XI , . . . ,X, are all of the variables

occurring in the Ai. The head of a definite clause is the atom Ao, while the body is

the conjunction A l l \ . AA, . A clause with an empty body is a n assertion.

For a declarative language of definite clauses, the underlying model is still a

program's theory. SLD-resolution [Ko74] can be used as a n evaluation system for

definite clause programs, and is much more efficient than resolution theorem-proving.

In fact the efficient evaluation system has lead t o use of the term "logic program-

ming," rather than theorem-proving, for definite clause programs.

The Prolog language uses SLD-resolution. As s ta ted earlier, this implementa-

tion of SLD-resolution is incomplete. Therefore, programmers ensure termination

only through detailed knowledge of the s ta tes of the evaluation system during execu-

tion.

The expressiveness of predicate logic is seriously curtailed in logic programming

languages. I t is not possible t o express disjunctive information of the form A V B

with definite clauses. Also, negated atoms are prohibited everywhere within definite

clauses.

Because all variables are universally quantified, existentially quantified vari-

ables cannot be expressed directly within definite clauses. This is exemplified by the

predicate logic formula 3 : p (X) . The existential quantifier can be removed

through Skolemization [Ni80], producing the formula p (c) , where constant c

occurs nowhere else in the program. Thus, the domain of discourse may expand by

an element outside of the program's original domain. Skolemization is justified when

all possible domains are t o be considered. However, addition of a new element may

radically alter the programmer's intended underlying model, so in some applications

Skolemization may not be desirable.

Limiting expressiveness can also compromise the non-procedural nature of logic

programs, even though the underlying model remains isolated from s t a t e considera-

tions. The following logic program defines a predicate n o t - d i v p (i , j) which is true

if integer i does not divide integer j evenly. This definition makes no mention of

recursion, yet the program does contain recursion.

Example 1.1

% not-divp(1,J): true if I does not divide J evenly.
not-divp (I, J) +- p (0, I, J) .

Recourse is made t o recursion in order t o test t h a t every value z < j when multi-

plied by i does not equal j . The recursion is artificial, for consider:

% not-divp(1,J): true if I does not divide J evenly.
not-divp (I, J) + (VX: XSJ + XXI#J) .

Of course this formula is not in clausal form.

Use of definite clauses requires certain logical statements t o be encoded into

algorithmic steps, even though a stepwise procedure is not manifested by the logical

statements. A programmer must then determine if the encoding has been faithful t o

the original statement, a process we refer t o as the coding problem.

1.3. Constructive Negation

Constructive negation is a n approach for improving the expressiveness of logic

programs. I t originally began a s an a t tempt t o provide negation within logic pro-

gramming languages. Gradually the work widened t o incorporate all other connec-

tives and quantifiers from standard predicate logic. The distinctive features of this

work include:

(1) Negation is based on constructive proof, enabling the evaluation procedure t o

return answer substitutions for negated queries.

(2) Underlying models of programs with constructive negation may have formulas

with neither true nor false valuations.

(3) Evaluation, based on SLD-resolution, is efficient when compared t o resolution.

(4) Syntactic restrictions ensure consistency and correctness, but d o not restrict

expressiveness.

Programs using constructive negation are composed of Definite Injerence Forms

(DIFs). Each DIF is written a s L c F, where L is a literal (a positive or negative

atom), and F is a well-formed formula. Constructive negation of a formula F is

represented by the formula -F. DIFs still cannot express disjunctive statements,

such a s pvq, and all variables within the head are always universally quantified. In

contrast with definite clauses, bodies of DIFs may contain negation, quantification,

and all logical connectives. The following DIFs demonstrate this form:

% divp (I, J) : true if I divides J evenly; otherwise, false.
divp (I, J) + 3: X<J /\ XXI=J.

-divp(I,J) c VX: X<J --+ XXIfJ.

Recursion need not be introduced artificially, in contrast t o Example 1.1

DIF-programs provide definitions of all positive and negative propositions. I t is

therefore possible t h a t some propositions will not be assigned a t ru th value. For

example, "nonsense" propositions, such a s divp (0, fred) , are neither true nor

false; they are undefined. T o acknowledge this characteristic of DIF-programs, the

underlying model is based on three-valued logic, containing true, false, and undefined

logical values.

Three-valued logic is weaker than two-valued logic because formulas implied

under two-valued logic may not be implied under three-valued logic. Consider the

DIF-program below:

For this program, ~q is implied under two-valued logic, but ~q is undefined in

three-valued logic. On the other hand, any formula implied under three-valued logic

is also implied under two-valued logic.

T h e evaluation system for DIF-programs is based on SLD-resolution, with a

major enhancement t o evaluate universally quantified queries. T h e system retains

much of the efficiency of SLD-resolution.

1.4. Overview

Following Chapter 2, describing notation and basic concepts, Chapter 3 reviews

current a t t empts a t enhancing the expressiveness of logic programming. Much of

this work concerns implementation of negation. The main implementation of nega-

tion is by "failure t o prove." Negation by failure is not correct for all queries, and is

not in general complete. Another implementation of negation, model elimination, is

correct and complete, but can be much less efficient than SLD-resolution.

Chapter 4 describes the underlying models of DIF-programs. Strong models,

weak models and fixedpoints of a semantic operator are compared. Strong and weak

models have undesirable closure properties, while fixedpoints always contain a least

element. Therefore, least fixedpoints are chosen as underlying models of programs.

The least fixedpoint may be undefined. Programs with undefined least fixedpoint are

called fixedpoint-inconsistent. T o be efficient, a n evaluation procedure cannot expend

computation resources detecting fixedpoint-consistency. Therefore, fixedpoint-

consistency must be detected from the text of a program. But, fixedpoint-

consistency is undecidable.

T o define a fixedpoint-consistent set of programs, syntactic constraints are

explored in Chapter 5. DEF-programs are statements of equivalence t h a t compile t o

fixedpoint-consistent DIF-programs. The compiled DIF-programs can, however, con-

tain universal quantifiers, producing noncomputable le,ast fixedpoints. Thus, prevent-

ing fixedpoint-inconsistency through syntactic constraints implies incompleteness for

any evaluation procedure.

An evaluation system is described for DIF-programs. This system is similar t o

SLD-resolution. Evaluation of DIF-programs compiled from DEF-programs is correct

only when an additional syntactic constraint, self-coverage, is satisfied. Self-coverage

implies t h a t each proposition is defined by some DEF.

Chapter 6 describes several enhancements t o compilation and evaluation:

(1) The syntactic constraints on DEF-programs may require an extremely large

number of DEFs t o describe base relations of database-oriented programs and

polymorphic programs. The explosion of DEFs is controlled by implementing

equality within the evaluation system.

(2) The self-coverage test does not accommodate well-typed programs, because

self-coverage requires even ill-typed propositions t o be described by DEFs.

Self-coverage is therefore generalized t o incorporate types, eliminating the need

for ill-typed DEFs.

(3) Enhancements widen the scope of universally quantified queries t h a t can be

correctly evaluated.

The full implementation of the evaluation system uses C-Prolog, and is

described in Chapter 7. The implementation encompasses tests t o ensure consistency

and correctness. Query evaluation uses meta-programming techniques t h a t t rea t

DIF-program elements as d a t a structures.

Chapter 2

Basic Concepts and Notation

The syntactic structure of terms and predicate logic formulas is first described

in the next section. Substitutions and the algebra of substitutions is then intro-

duced. Any term can be used as the denotation for the se t of all of i ts instances

resulting in a n inclusion ordering of terms, which naturally incorporates unification.

2.1. Syntax of Terms and Formulas

Variables will always be written a s strings of alphanumerics, beginning with a n

uppercase let ter , e.g., A n s l . T will be the set of all variables. Each function sym-

bol will be written a s a string of alphanumerics, beginning with a lowercase letter or

a numeral, e.g., f , 0. Every function symbol possesses a unique finite arity, the

number of arguments taken by the function. When necessary, the ari ty of a function

(2) symbol is written a s a parenthesized superscript, e.g., f means function f takes

two arguments. Constants are treated a s function symbols with ari ty zero.

Let C be a denumerable set of function symbols. The set T(C) is the set of

finite terms freely generated by the function symbols in C and the variables of T.

Therefore, a term in T(C) is either a constant from C, a variable from T, or is of the

(n) form f (t,, . . . , t,), where /(")EC, and each ti is a term over C. For example, if

o (~) , s"), f (2) ~ ~ l , the following are terms in T(C1): 0, s (r (X)) , and f (Y, s (0)) .

When a term contains no variables, i t is a ground term. The set of all ground terms

constructible in T(C) is written T(CI.

Let II be a denumerable set of predicate symbols. Usually, predicate symbols

are distinct from function symbols. Each predicate symbol possesses a unique arity

denoted by a superscript. Propositions are predicate symbols with ari ty zero.

The se t A(II , C) is the set of atomic formulas (atoms) generated by the predi-

ca te symbols in ll and the terms in T(C). An atom in A (II, C) is either a proposi-

(n) tion symbol, or is of the form p (t,, . . . , t ,) , where p (n) ~ l l and each term ti is in

(2) T(C). For example, with It Ell , and C, a s given previously, It (X, s (0)) is in

A (HI, C,). Those atoms from A (II, C) without variables are ground atoms, denoted

A cn. E).

The set no consists of the logical operators 7, /\ and V , designating negation,

conjunction and disjunction, respectively. Given some set C, the carrier, a Boolean

algebra is B(C) , the set of Boolean expressions formed from the elements of the car-

rier and the logical operators in no. Thus, any element z E C is a Boolean expres-

sion. If x is a Boolean expression, then i x is also a Boolean expression. And if S is

a set of Boolean expressions, both / \S and V S are themselves Boolean expressions.

Use of a n unordered set of Boolean expressions is justified because conjunction and

disjunction are commutative. Conjunction of a n empty set will be considered a

vacuously true formula, and disjunction of an empty set will be considered false.

(This inversion of the customary meaning at tr ibuted t o conjunction and disjunction

of empty se ts comes about because such formulas will arise only in queries, which are

implicitly negated.)

A logical jormula is a Boolean expression in B(A(II, C)), for some sets II and C

of predicate and function symbols, respectively.

Boolean expressions a re not usually written with the logical operators. Instead,

connectives are defined from abbreviations for Boolean expressions. The set of con-

nectives and their meaning is presented in the following table:

When general conjunction and disjunction are formed over finite sets of expressions,

conventional infix form can be used. For example,

l t (s (0) A l t o (t s (s (s (0))))

is a n abbreviation for:

A ({ l t (s (O) . X) 8 l t (X , s (s (s (O)))) 3 1 .

Implication and equivalence have the usual definitions, using finite conjunction

and disjunction.

Implication: F1 -+ Fq abbreviates -F1 V F,

Equivalence: Fl ++ F2 abbreviates (F1 --+F2) A(F2-+Fl)-

In writing definite clause forms, i t is customary t o reverse the direction of

implication.

Quantifiers can be viewed a s finite denotations for conjunction and disjunction

of infinite se ts of formulas. Existentially and universally quantified formulas are

written a s X : F and VX: F , respectively, where X is the quantified variable in both

formulas.

The presence of quantified variables requires scoping rules. A variable X is free

a t any occurrence of X in an atom. If X occurs free in formula F then X also

occurs free in l F , 3Y: F , and VY: F , where X # Y. If X occurs free in either for-

mula F or G , X also occurs free in F /\ G , F V G , F + G , and F ++ G . Every free

occurrence of X in formula F is bound in quantified formulas X: F and VX: F. For

example, X occurs free in 1 t (s (0) , X) and:

but all occurrences of X are bound in the formula below:

vx: ((l t (s (0) , X) / \ l t (X , P)) --, - d i v p (X , P)) .

Existentially and universally quantified formulas are finite denotations for

infinite disjunctive and conjunctive Boolean expressions.

Existential quantification: X: F abbreviates V { F (t) I t E T(C)}

Universal quantification: VX: F abbreviates / \{F(t) I t ET(C')),

where F (t) means term t replaces every free occurrence of variable X in F.

Each connective has a binding precedence t h a t eliminates overuse of

parentheses. Negation has highest precedence, followed by conjunction, disjunction,

implication and equivalence, and finally the quantifiers. For example, the following

formula:

V x : l t (s (O) . X) / \ l t (~ , ~) -+ + i v p (X , P)

is equivalent t o formula (I), above.

A closed formula, or sentence, contains no free variables. An open formula con-

tains a t least one free variable. Formula (I) is open, because it contains the free

variable P.

The existential closure of a formula, denoted 3 F , binds every free variable in F

with a n existential quantifier. So 3 F is an abbreviation for the sentence

3X1 . - X : F , where X1 - . Xn are all of the free variables occurring in F. As

seen by expanding the abbreviation, the meaning of XI - - 3%: F is independent

of the ordering chosen for existential quantifiers. Similarly, the universal closure of a

formula V F abbreviates VX1 . . . VXn: F.

2.2. Substitutions

The following discussion uses notation and concepts from Eder (Ed851. A substi-

tution over C is a mapping from variables in T t o terms in T(C). The domain of a

substitution is the set of variables t h a t are not mapped t o themselves. When the

domain of a substitution is finite, the substitution can be fully expressed in written

form as a set of pairs X = t , meaning t h a t variable X is replaced by term t , where

X is a variable from the domain.

Any substitution a can be naturally extended t o a mapping Z on formulas in

B(A (IT, C)) and terms in T(C), where ll and C are sets of predicate and function

symbols, respectively. In this extension, conventional notation for application of sub-

stitutions is adopted. When x is a formula or term and a substitution, x 5 denotes

application of F t o x , defined a s follows:

X a = ~ (x) for X E T

j '"'(t , , . . . , t n) Z = ~ (~ ' (t ~ i ? , . . . , t , Z) for n 2 0 and ~ (" ' E c

- (n) - p (n) (t l , . . . , t n) o = p (t l u l . . . , tn F) for n 2 0 and p (") ~ I l

(1 2) a = 1 (x a)

(A { Z ~ , Z ~ , - -)) ~ = A { X ~ ~ , X ~ Q ~ - ' 1

(V { x 1 , x 2 , . - .)) u = V { x 1 ~ , ~ 2 u l . . - 1

Application of a substitution t o a n abbreviation of a formula can produce an

abbreviation, but the resulting abbreviation must be equivalent t o application of the

substitution t o the unabbreviated formula. Therefore, application of substitutions

distribute over finite conjunction, disjunction, implication and equivalence:

Also, a s the rules below describe, application of a substitution t o a quantified for-

mula cannot al ter occurrences of bound variables.

a(Y) for X # Y
(X : F): = X: F 7 where d (Y) =

Y for X = Y

a(Y) for X # Y
(VX: F)i? = VX: F 3 where d (Y) =

Y for X = Y

For example, suppose t h a t X and U are distinct variables; 0, a and c are con-

stants; f and s are function symbols; It, mult, and add are predicate symbols;

and U(X) = a. Then the following equalities hold:

(1) x Z = a .

(2) u z = u .

(3) f(~,c,~)Zi=f(a,c,U).

(4) It (s (0) ,X) i? = It (S (0) ,a).

(5) [(%:mult(~,s(O),X)) /\ add(~,s(~),s(s(~)))]~=

(%:mult(O,s(O) ,X)) /\ add(a,s(O) ,s(s(O))).

When no confusion results, a will be used in place of 5.

Substitutions a and T may be composed, forming a new substitution a s follows:

x (a 0 3 = (xu) T, for all formulas and terms x. For example, if O(X) = f (~) and

7(Y) = a, then S(X) (a or) = s(f(a)). When substitutions a and T are composed, the

resulting function is always a substitution q such t h a t q(X) = X(U*T) for all vari-

ables X.

Since composition always results in a substitution, composition of substitutions

can be shown t o be associative. Consider any term or formula x. For arbitrary

substitutions p, a and T, x (p . (a or)) = ((x p) a) T. Since p and (p 0 0) O T are substitu-

tions, ((x p) a) T = x ((p .a) 07).

There is a unique identity substitution c, such t h a t e (X) = X for all variables X .

Therefore, x r = x for any term or formula x. The identity substitution forms a left

and right identity with respect t o composition.

A renaming is a bijective substitution. A renaming cannot map any variable t o

a non-variable. A renaming also does not introduce additional constraints between

variables. For example, {x=u, Y=V) is a renaming, while {x=u, Y=U) is not a

renaming because i t is not 1-1. Every renaming p has a n inverse such t h a t

-1 p o p - l = p op = c .

2.3. Common Instances of Terms

Terms s and t are variants if p is a renaming and s p = t . Denote by s t the

fact t h a t terms s and t are variants.

N

Lemma 2.1: = is an equivalence relation on terms.

Proof: Trivial.

The equivalence class of a term t determined by the renaming relation 2 will be

denoted [t] . Note t h a t [t] contains only t when t is a ground term.

A te rm t is an instance of a term s if there is a substitution a such t h a t

s a = t . For example, f (a, Y, U) is a n instance of f (X, Y, Z) .

Now define a relation [s] y [t] on the equivalence classes of terms s and t , t o

mean t h a t every term in [t] is a n instance of every term in [s] . Therefore, [s l y [t] if

for every variant s' of s and t' of t there is a substitution d such t h a t s ' d = t'.

The number of variants of a term is usually infinite, so directly deciding if [s] It]

may be difficult. Fortunately, testing for [s] 5 [t] reduces t o finding just one substi-

tution a such t h a t s o = t .

Lemma 2.2: For any terms s and t , [s] ? [t] iff there is a substitution u such tha t

s o = t .

Proof: Trivial.

N

The equivalence relation = is a subset of r. When terms s and t are variants,

[s] ? [t] and [t] 5 [s] . Also, the following result holds.

Lemma 2.3: The relation ? is a partial ordering on equivalence classes of terms.

Proof:

RRRRXj\rltV: For all terms s , [sj?[sj , since s E = s .

-: Suppose [s] ? [t] and [t]? [s] . Then s u = t and t T = s for some substi-

tutions a and T. If s and t are not variants, either (i) some variable X occurs in s

and X u is not a variable or (ii) distinct variables X and Y occur in s and

X a = Yo. In case (i), if X u is not a variable, there is no substitution T such tha t

X (a 0 r) = X . In case (ii), if X u = Yo, there is no substitution T S U C ~ t h a t X (u 0 ~) is

distinct from Y (a o r) . Therefore, s and t must be variants, and s t .

. . .
-: Suppose [s] ? [t] and [t]? [u] . Then s u = t and t T = u for some sub-

stitutions u and T. Since s (o o r) = U , [s] ? [u] . =
N N

The greatest lower bound n S and least upper bound U S of equivalence classes

of terms S is defined with respect t o the ordering 5. When s is a variable, [s] ? [t]

N

for all terms t , so U S is defined for every set S. However, consider two distinct

constants c and d. There is no term 1 for which [c] 5 [l] and [dl 5 [I], so n~ may

not be defined for some sets S.

A common instance of terms s and t is a n equivalence class [u], where [s] 7 [u]

and [t] 5 [u].

Lemma 2.4: Let C (s , t) be the set of common instances for terms s and t . When

N

C (s , t) is nonempty, U C (s , t) s f i t .

Proof: Trivial.

Therefore, if s and t have a common instance, the most general common instance

(mgci) of terms s and t is defined t o be s fl t . Since s f i t is in fact a n equivalence

class, the mgci is unique up to renaming.

Terms s and t a re unifiable if there is a unifying substitution a such t h a t

s a = t a . The next result demonstrates t h a t unifiability of terms is equivalent t o

determining if the terms have a common instance.

Lemma 2.5: If terms s and t have no variables in common, then s and t are

unifiable iff the terms have a common instance.

Proof:

(-+) The term s o is a common instance of s and t , so when terms are unifiable they

have a common instance.

(c) Next, assume terms s and t have a common instance. Then s a = t T for certain

substitutions a and T, and since s and t have no variables in common a O T = Too.

The substitution a O T can serve a s a unifying substitution for s and t .

Robinson's unification algorithm [Ro65] is guaranteed t o find a unifying substi-

tution tha t produces an mgci of terms s and t if:

(1) s and t have no variables in common; and

(2) s and t have a common instance.

The first constraint can be readily achieved. Since the presence of a common

instance of terms s and t is independent of the variables within the terms, terms s

and t can be renamed t o satisfy constraint (1).

Unification requires an occurs check t o insure t h a t infinite terms will not be

mgci's. Due t o efficiency concerns, Prolog implementations typically omit this check.

Hence, determination of unifiability may be made by an implementation when in fact

the terms are not unifiable.

When terms have a common instance, by Lemma 2.5 they are unifiable, and the

unique mgci (modulo renaming) leads t o a decomposition of the unifying substitution,

also called a weak unifier [Ed85]. Consider terms s and t containing disjoint sets of

variables V and W. If s and t have an mgci [m], a decomposition of the mgci con-

sists of substitutions a and T, where so = m = t T and the domains of a and T are V

and W, respectively.

2.4. Terms as Denotations for Sets

A term t containing variables will commonly be used t o denote the set of

ground instances of t . Define t @ C t o be the set of terms t a t h a t are ground

instances of t . For example, f (X , s (X)) @ {o"), s")) contains f (0 , s (0)) ,

f (s (0) , s (s (0))) , etc. Term t is the template of t @ C.

As special cases, t @ C = {t) when t is a ground term, and X @ C =

when X is a variable. If C contains a t least one constant, then t @ C # 0 for any

term t .

A se t of function symbols C is non-trivial if ImI > 1. Non-triviality of C is

ensured if 1x1 > 1 and C contains a t least one constant.

Use of non-trivial sets of function symbols will determine t h a t variables occur-

ring within template terms serve only a s placeholders. The actual variable names

used within a template term should not affect the set of ground instances of the tem-

plate. For example, (f (X , Y) @ C) = (f (U , V) @ C), for all "reasonable" sets C of

function symbols. There are sets C for which terms s and t may not be variants, yet

s @ C = t @ C. As Lemma 2.7 demonstrates, this occurs only when C is empty or

contains only one constant. Consider, for example, C = {c) with templates X and

c. These templates are not variants, yet X @ C = c @ C. T o avoid this anomaly, C

should be non-trivial. We first demonstrate a result used several times within this

section.

Lemma 2.6: For all terms s and t , if [s] 5 [t] then (s @ C) > (t @ C).

Proof: Consider any term t TE t @ C. There must be some substitution o such t h a t

s o = t , s i n c e [e] F [t] . So ~ T = s (u ~ T) E (s @ C) .

The next result demonstrates t h a t terms must be variants if they generate

identical se ts of ground terms.

Lemma 2.7: When C is non-trivial, for all terms s and t , s @ C = t @ C iff s 2 t .

Proof:

(+) The contrapositive is demonstrated: s t implies s @ C # t @ C. If s and t

are not unifiable, they have no common instance so (s @ C) n (t @ C) = 0. Since

II@I>l, s @ C a n d t @ C are nonempty, so s @ C # t @ C .

If s and t are unifiable, let m 2 s f i t . Using decomposition, there are substitutions

a and T such t h a t s a = m = t T, where either a or T is not a renaming substitution.

Without loss of generality, assume a is not a renaming. Either (i) s contains a vari-

able X and X a is not a variable, or (ii) s contains variables X and Y and

X u = Yo. Incase(i)leta'={X=u),andincase(ii)leta'={X=Xa,Y=u),

where u # Xa. Term u is guaranteed t o exist because]I@! > 1. By Lemma 2.6,

(s d @ C) G (s @ C) , and (m @ C) c (t @ C) . But by the construction of a',

(s d @ C) n (m @ C) = @ . Since t h i s h o l d s f o r a l l m g s n t , s @ C # t @ C .

(+) Suppose s 2 t . Then both [s] 5 [t] and [t] 5 [s]. By Lemma 2.6, both

s @ C z t @ C a n d t @ C > s @ C . H e n c e , s @ C = t @ C .

Under very loose restrictions, we have established a correspondence between

sets of ground terms and their templates. When sets of ground instances of tem-

plates are equal, the templates must be variants. The converse is directly implied by

Lemma 2.6. Henceforth, we will assume t h a t every set of function symbols is non-

trivial, so t h a t Lemma 2.7 holds. As a consequence of this lemma, equivalence

classes can be used a s templates: [t] @ C denotes t l @ C, where t' is any representa-

tive of [t].

Next, we demonstrate a connection between the most general common instance

and sets of ground terms.

Lemma 2.8:

(1) If terms s and t have no common instance, then s @ C and t @ C are disjoint.

(2) If terms s and t have a common instance, then ((s fl t) @ C) =

(S @ C) n (t @ C).

Proof:

(1) Trivial.

(2) (c) Consider a term x ~ ((s At) @ C). Then [s] 5 [X I and [t] 5 [X I , so z ~ (s @ C)

and x E(t @ C).

(2) Consider a term x E(s @ C) and x E(t @ C). Then [X I is a unifier of s and

t . By definition, s f i t 5 [z] . Hence, x ~ ((s f i t) @ C), by Lemma 2.6.

When two terms have no variables in common, by Lemma 2.5 the terms have a com-

mon instance if and only if they are unifiable. So Lemma 2.8 also s t a t es t h a t if

terms s and t have no variables in common and the terms are unifiable, then

((s A t) @ C) = (s @ C) ~ (~ @ C) .

Finally, an inclusion relationship can be drawn between sets of ground terms

and the relation 5 between equivalence classes of template terms.

Lemma 2.9: For all terms s and t , (s @ C) 2 (t @ C) iff [s] 5 [t] .

Proof:

(+) Since (t @ C) c (s @ E), (s @ C) n (t @ C) = t @ C, which is nonempty

Therefore, s @ C and t @ C are not disjoint, and s and t are unifiable, by Lemma

2.8. Lemma 2.4 ensures t h a t s t exists. By Lemma 2.8, (s t) @ C =

(s @ C) n (t @ C) = t @ C. Therefore, s t t , by Lemma 2.7, and [s] [t] .

(t) Demonstrated in Lemma 2.6.

Chapter 3

Enhancing Expressiveness of Logic Programming

Many approaches toward enhancing the expressiveness of logic programming

have been proposed. Almost all center on implementing negation. T o appreciate the

implementation strategies, i t is necessary first t o review SLD-resolution, an efficient

evaluation system for definite clause programs. Negation by failure, the most

predominant implementation of negation, is based on detecting failure of query

evaluation.

3.1. Underlying Model of Definite Clause Programs

T o recall the discussion of Chapter 1, the underlying model of a definite clause

program is the program's theory, i.e., the set of all conjunctive formulas implied by

the program. For definite clause programs, the underlying model can be derived

from a unique minimal model. The results below are presented in more detail in

[L82].

Consider a program P, a member of Boolean algebra B(A (II, C)). An interpre-

tation of P is a triple (D,Fc,P,) , where D is a nonempty domain, FE is a mapping

of function symbols and constants from C into functions and constants over the

domain D, and P, is a mapping of predicate and proposition symbols from II into

relations on the domain D.

Consider the program below:

Example 3.1

% l t (1 , J) : true i f I < J .
It (0. s (J)) .
l t (s (I) , s (J)) + l t (1 , J) .

One interpretation for this program could be Il = (N , F , P , where N is the set of
El 4

natura l numbers, F translates 0 t o the number 0 and s t o the successor function,
El

and P translates I t t o the binary relation {<x, y> I x < y).
C,

Interpretations are used t o assign a t ru th valuation t o formulas. The valuation

is based on classical logic. If I is a n interpretation and F a formula, I [F] denotes

the valuation of F by I . Computation of this valuation is described by Enderton

[En72], for example. The valuation of interpretation I on program P is I [P] . I I

places a true valuation on the program of Example 3.1.

Assume t h a t a program P is from B(A(II , C)). A Herbrand interpretation is a

symbolic interpretation with D and FE fixed. The domain D = is called the

Herbrand Universe (HUp). F maps every function symbol ~ (" ' E c and n-tuple of

terms (t l , . . . , ~ ,) E H U , t o the individual f (t l , . . . , t,) of D. The Herbrand Base

(HBp) of program P is equivalent t o A f n . C). When program P is understood, sub-

scripts on HU and HB will be omitted. Since Herbrand interpretations are symbolic,

any Herbrand interpretation can be written by listing only the subset of ground

a toms in HB t h a t are true in the interpretation. For example, interpretation I l l

above, can be represented with a n Herbrand interpretation HI1 consisting of all

atoms l t (s i (~) , s i(0)) such t h a t i < j.

Any two interpretations I and J are equivalent if I[F] = J[F] for all sentences

F. The following result demonstrates t h a t Herbrand interpretations are adequate t o

represent all interpretations. Within this chapter, if a lemma or theorem has a

reference, i ts proof is contained in the referenced source.

Lemma 3.1: Any interpretation for a definite clause program has a n equivalent Her-

brand interpretation [EI<76].

Interpretation M is a m o d e l for a program P if M [P] is true. For definite

clause programs, a q u e r y is a conjunction of atoms. A query Q is logically imp l i ed by

a program if 3 Q is true in all models. The following property reduces this test t o a

single model. Let Mp (or just M when P is understood from context) be the class of

all Herbrand models for a program P.

Lemma 3.2 (Model Intersection [EK76]): M is closed with respect t o n, i.e.,

rn EM.

For example, i t can be shown t h a t HI1 is the least Herbrand model for the program

of Example 3.1.

According t o the following result, the least Herbrand model of a program can

derive the program's theory, the se t of all logically implied queries.

Lemma 3.3 (Logical Implication [L82 (Thm. 7.1)]): A query Q is logically implied by

a definite clause program P iff 3Q is true in P's least Herbrand model.

The query:

is logically implied by Example 3.1, since It (s (0) , s (s (0))) and

It (S (S (0)) , s (S (S (0)))) are contained in the program's least model, HI1.

Thus X = s (s (0)) establishes 3X: Q.

For any particular definite clause program, there is a lattice of Herbrand

interpretations, ordered by set inclusion. This lattice is complete: every set of Her-

brand interpretations has a least upper bound and a greatest lower bound, where

these elements are computed by set union and intersection, respectively. The

minimal element of the lattice is the empty interpretation, 0. The maximal element

is HB.

The immediate consequence functional Tp (or just T when P is understood

from context) is a mapping from Herbrand interpretations t o Herbrand interpreta-

tions, defined a s follows:

A E T (I) iff

A is a ground instance of a n assertion,

or there is a ground instance A + A l l \ . - . l \A, of a clause and

IIAl l \ . . l \A,] is true, i.e., {Al, . . . , A ,) C I .

For any Herbrand interpretation I , powers of T can be computed a s follows:

TO(I) = I

Tk+'(I) = T(T~(I)) for all successor ordinals k+l

T'(I) = u T ~ (I) for all limit ordinals /3

a<'

A fixedpoint of T is a n Herbrand interpretation I for which I = T (I) . Let Xp

be the class of fixedpoints of T p . Since T is a monotonic mapping with respect t o

the inclusion ordering of Herbrand interpretations, the Knaster-Tarski Theorem

[Ta55] ensures completeness for the lattice of this class of fixedpoints. In particular

unique minimal and maximal elements exist. Let u p p = f i X p be the l eas t fixedpoint

of P, and let gfpp = L[Xp be the greates t fixedpoint. As usual, when program P is

understood from context, the subscripts on X, ljp and gfp are omitted. T o compute

fixedpoints of programs, define the following distinguished interpretations for all ordi-

nals a:

Lemma 3.4 (Characterization of Fixedpoints [L82 (Thm. 5.2)]): When P is a definite

clause program:

(1) There exist ordinals nl and n2 such t h a t p 2 nl implies T t p = ijp and q 2 n2

implies T 1 q = gjp.

(2) ijp = T t y where w is the cardinality of the natura l numbers.

(3) gfpGT1w.

The following example (from [AE82]) provides a program for which the inclusion

of (3) above is proper.

Example 3.2

In this program gfp = T 1 (NU) = {q(si(b)) I i >O), while T w =

{q(si(b)) I i 2 0) u{p(s i (a)) I 2.2 0).

Lemma 3.5 (Characterization of Least Model by T [EK76]): When P is a definite

clause program, Ifp = nM.

In summary, Herbrand interpretations are symbolic representations of all

interpretations. For definite clause programs, logical implication of all queries by

the least Herbrand model of a program is equivalent t o logical implication by the

program (Lemma 3.3). And determination of the least model requires a finite

number of iterations of the T functional (Lemma 3.4). However, infinite iterations

may be necessary t o produce the greatest fixedpoint. Since negation by failure will

rely on the greatest fixedpoint for meaning (Section 3.3.2), negation by failure is gen-

erally a n incomplete evaluation procedure.

SLD-resolution is a relatively efficient evaluation procedure for definite clause

programs. I t is a specialization of resolution [Ro65]. But because of the restriction

to definite clauses, many efficiencies are at tained by SLD-resolution over resolution.

SLD-resolution is a linear-inpu t resolution strategy [Ni80]. Linear-input resolution

resolves the initial query with a program clause t o form a new query. Each new

query is again resolved with a program clause. Because queries are never resolved

with previously obtained queries, evaluation is focused on a deduction from the ini-

t ial query and not on other unrelated proofs. For general clause programs, this stra-

tegy is incomplete. But as s ta ted in Lemma 3.8, below, this strategy is complete for

definite clause programs. Finally, resolvents can be formed in a last-in first-out

manner, permitting efficient construction and access of d a t a structures representing

resolvents.

Given a query Q , SLD-resolution determines a n answer substitution of values for

variables occurring within Q . The nature of the procedure ensures correctness:

whenever a is a n answer substitution for a query Q , V(Q a) is logically implied by

the program. Further, SLD-resolution is complete: if 3 Q is logically implied by the

program, Q will execute successfully. On the other hand, if 3 Q is not logically

implied, termination of the procedure is not guaranteed.

Implicitly, SLD-resolution constructs a full search tree for a query and then a

success path is found within the tree. In fact i t is not necessary t o represent the

entire search tree within any actual implementation. The search tree is developed

while searching for a success path, so t h a t the procedure can terminate even if its

full search tree is infinite. The manner in which full search trees are traversed

affects completeness of the implementation. Prolog implementations are incomplete,

since full search trees are developed in depth-first order. This may lead t o non-

termination, though success paths would be present in other branches of the full tree.

O n the other hand, no other search strategy can find a success path faster than

depth-first search.

Description of a well-formed full search tree is based on the structure of a

query. A full search tree can be depicted a s nodes labeled by queries (conjunctions of

atoms), and directed edges labeled by substitutions. The full search tree for a query

Q is the full search tree whose root is labeled Q.

A full search tree consisting only of a node labeled by the empty conjunction, .

denoted 0, is well-formed. The empty conjunction designates a vacuously true for-

mula. Otherwise, the root node of the tree is labeled by a nonempty conjunction of

a toms A /\ C, where C is a conjunction of atoms. A variant of a clause is the result

of applying a renaming t o the clause so t h a t variables in the clause will be distinct

from all others in use. Collect variants of all clauses from the program

A l t C1, . . . ,A, t C,, for which the selected a tom A unifies with each Ai

(1 5 i 5 n). There is a unique mgci (modulo renaming) for each pair A and Ai. Sec-

tion 2.3 describes a unique decomposition of the mgci producing substitutions ui and

T~ such t h a t A ui = Ai ri. Suppose each query (Ci ri) /\(C ui) (1 5 i 5 n) has a well-

formed full search tree. Then the full search t ree of Figure 3.1 is well-formed.

As a n example of this evaluation procednre, consider the program of Example

3.1 and the query It (s (0) , X) /\lt (X, s (s (s (0)))) . A full search tree for this

query is presented in Figure 3.2:

A success node in a full search tree is any leaf labeled 0, indicating t h a t no

a toms are left to be resolved. A success path is a path from the root of the tree t o a

success node. The value of a success path is derived from composition of the labels of

Well-Formed Full Search Tree

Figure 3.1

Example of the Full Search Tree Construction

Figure 3.2

edges along the path. The value of the path in Figure 3.3 is al .a2 o . . *0,-2 oQ,-l.

In Figure 3.2, the value of the only success path is:

{x=s (s (0)) , Xl=s (0) , x2=0).

An answer substitution is the value of a success path restricted t o those variables

A Success P a t h

Figure 3.3

occurring in the original query. Thus the answer substitution for Figure 3.2 is

{x=s (s (0) 1)-

A "Lifting Lemma" applies t o the construction of full search trees. This lemma

ensures a success path in a full search tree for a query Q when some instance Q o of

Q has a full search tree with a success path.

Lifting Lemma 3.6 [L82 (Thm. 8.2)]: If query Q o has a success path , then Q has a

success path .

A selection rule used t o obtain a n a tom from a conjunction of a toms is implicit

in the construction of full search trees. SLD-resolution selects the first a tom from a

conjunction, reflecting efficiencies in adding and removing the first element from a

d a t a structure representing a conjunction. This selection rule may not be desirable

for use with negation by failure. Other selection rules could be employed. Any par-

ticular selection rule only affects the size of the tree, and does not affect answer sub-

stitutions obtained from the tree, a s will be seen in Lemma 3.8 providing for con-

struction completeness.

In addition t o construction of a full search tree, an implementation of SLD-

resolution must search for a success node start ing from the root. As s t a t ed earlier,

usually this search is performed in conjunction with construction of the full search

tree, because full search trees can be infinite. So the procedure for traversing a full

search tree is the main factor in determining completeness of a n SLD-resolution

implementation.

The following properties concerning the construction of full search trees hold:

Lemma 3.7 (Construction correctness [L82 (Thm. 7.4)]): For every answer substitu-

tion a in the full search tree for Q (constructed using any selection rule), V Q a is

logically implied by the program.

Lemma 3.8 (Construction completeness): For any ground query Q logically implied

from the program, the full search tree for Q constructed using any selection rule has

a success path.

A corollary t o completeness of the construction is slightly stronger:

Corollary 3.9 (Construction Completeness & Correctness): 3Q is logically implied

from the program iff the full search tree for Q (constructed with any selection rule)

contains a success path.

Proof:

(-+) If 3Q is logically implied, there is a substitution a such t h a t Q a is a closed for-

mula and is logically implied. By Lemma 3.8, the full search tree for Q a has a suc-

cess path. Lifting Lemma 3.6 provides t h a t the full search tree for Q has a success

path.

(t) If Q contains a success path with value a, then VQ a is logically implied from

the program, according t o Lemma 3.7. Thus any closed instance of Q a is logically

implied. Therefore, 3Q is also logically implied.

Though the full search tree construction provides for correctness and complete-

ness, another component in the implementation of SLD-resolution dilutes these pro-

perties. This component is the procedure by which the full search tree is traversed

from the root node t o a success node. Correctness of the search procedure provides

t h a t success is declared only when a success node is found. Completeness of the

search procedure ensures t h a t every success node can eventually be located. Prolog

relies on depth-first search. As noted previously, depth-first search is incomplete

because an infinite non-success path could be followed, while success paths remain

unexplored. Another search technique, called staged depth-first search [St84], aborts

a depth-first search as soon as a certain depth is reached. When no success node is

encountered, and nodes remain t o be explored at greater depths, the maximum depth

is incremented by some amount, and the staged depth-first search resumed. Thus,

this search technique is complete.

3.3. Negation by Failure

In order t o obtain efficiency in the resolution theorem-proving procedure, the

notation of predicate logic is restricted. This restriction dramatically reduces the

expressiveness of the notation, leading t o the coding problem described in Section

Negation within definite clause programs can overcome many of the difficulties

associated with the coding problem. Definite clause programs utilizing negation by

failure permit negated atoms within the bodies of clauses. Such clauses are referred

t o a s general clauses. A negated a tom appearing in a program for execution under

negation by failure is expressed a s n o t A . Use of negation fundamentally alters the

underlying model of the language, and requires revisions in the evaluation procedure.

3.3.1. The Closed World Assumption

Negated a tom n o t A is logically implied from a program if A is false in all

models. I t may be, however, t h a t A is t rue in some models and false in others, per-

mitting no valuation of A . For example, if a program contains only the clause

p t q, Herbrand models of this program are M, = 0 and M2 = {p, q). Hence,

neither p nor n o t p are logically implied (similarly for q) .

This problem can be resolved using the Closed World Assumption (CWA) [Re78]:

whatever is not logically implied is assumed false in all models. For programs

without negation, SLD-resolution is capable of determining logical implication. I t is

thus possible t h a t SLD-resolution could be used t o implement CWA. A full search

tree without any success paths is a jailed full search tree. Lemma 3.8 (construction

completeness) implies t h a t a closed a tom A is not logically implied from a program

if A has a failed full search tree. Thus, if A is a closed a tom and A has a failed full

search tree, n o t A is implied by the CWA. This correctness result is not really

justified for general clause programs. Determination of negation for such programs

requires a full resolution theorem-proving system.

3.3.2. Program Completion

In contrast t o the CWA, Clark has suggested program completion [C178] t o pro-

vide a basis for negation. The assumption underlying program completion is t h a t a

program embodies complete knowledge about a domain. Rather than implicational

statements, a program is taken t o provide definitions. The following algorithm

transforms a definite clause program into a completed program:

(1) The general jorm of each clause p(tl, . . . , t,) c C is

p(Xl, . . . , X n) + 3 Y l Ym:Xl=t l l \ . . . l \ X n = t n l \ C , where X I . . .Xn

are variables not occurring in the clause and Y1 . - . Y, are all variables occur-

ring in the original clause. Recall t h a t C is a conjunction of atoms.

(2) Let the general forms of all clauses defining predicate p be

~ (~ 1 , . . . ,Xn)cE17 - . . 7 ~ (~ 1 7 . . . , X,,) c Ek. Then the completed form of

predicate p is VXl . - Xn:p(X1, . . . , X n) * E I V . - - VEk. If there are no

clauses defining a predicate in the program, the completed form is

VXI - . - Xn:q(X1, . . . ,Xn)* false.

(3) The completion of a program P , comp(P), is the conjunction of the completed

form of all predicate symbols in P.

Step (1) of this algorithm is a transformation of clauses t h a t is meaning-preserving

when equality is interpreted in a manner consistent with unification. Step (2) pro-

vides t h a t all facts not logically implied by a program will be false in all models.

As an example of the completion procedure, consider the program below:

% add(I,J,K): true if I+J=K.
add (0, J, J) .
add(s(I), J,s(K)) + add(I,J,K).

% mult(I,J,K): true if IXJ=K.
mult (0, J, 0) .
mult (s (I), J,K) c mult (I, J,X) /\ add(J,X,K) .

The completion consists of the two formulas:

add (XI, X2, X3) ct
3 : [Xl=O /\ X2=J /\ X3=J]
V 31, J, K: [Xl=s (I) /\ X2=J /\ X3=s (K) /\ add (I, J, K) 1 .

mult (Yl, Y2,Y3) o
3: [Yl=O /\ Y2=J /\ Y3=0]
V 31, J,K,X: [Yl=s (I) /\ Y2=J /\ Y3=K /\

mult(I,J,X) /\ add(J,X,K)].

Since equality is introduced into the completion, equality axioms must be added

to the theory. The axioms [Cl78] will not be reproduced here; they provide for com-

pleteness and correctness of unification.

The following result characterizes negation by failure in terms of completed

programs.

Lemma 3.10 (Meaning of Failure for Ground Atoms [L82 (Thm. 13.2))): Let P be a

definite clause program. Ground atom A e g f p iff n o t A is logically implied from

comp(P).

Whenever an atom A is not contained in the greatest fixedpoint, the full search tree

for query A does not have a success path [AE82]. Therefore, n o t A is logically

implied from comp(P). Lemma 3.10 is also generalized t o non-ground queries.

Lemma 3.11 (Meaning of Failure): Let P be a definite clause program. A query Q

has a failed full search tree iff comp(P) logically implies V (n o t Q).

Proof: If Q is a closed conjunction of atoms, the result follows: Q has a failed full

search tree iff some atom A in Q has a failed full search tree, which holds iff

comp(P) logically implies n o t A . And this holds iff comp(P) logically implies

n o t Q . Now if Q contains variables, the general case, Q has a failed full search

tree iff every ground instance Q a has a failed full search tree. This holds iff

comp(P) logically implies n o t (Q a), which holds iff comp(P) logically implies

V (n o t Q). 0

3.3.3. I n c o r r e c t n e s s o f Negation by F a i l u r e

Lemma 3.11 points out the incorrectness inherent in use of negation by failure.

Suppose a query Q succeeds. By Lemma 3.9, 3Q is logically implied by the program

and i ts completion. Also, the query n o t Q fails, and Lemma 3.11 provides t h a t

V (n o t (n o t 9)) is logically implied by the program's completion. But

V (n o t (n o t Q)) is logically equivalent t o V Q , which is not implied by 3 Q.

This confusion of quantifiers surfaces in Example 3.1. The query It (X, s (0))

succeeds with answer substitution X = 0, and so n o t It (X, s (0)) fails using

negation by failure. By Lemma 3.11, \JX: lt (X , s (0)) is logically implied by the

program's completion, which is clearly not true due to all contradictory values of

x = s " (0) (n 2 1).

Correctness is assured only when ground negated atoms are evaluated. A

correct selection rule thus selects a negated atom only if i t is ground. Under correct

selection rules, i t is possible for the query containing non-ground negated a toms t o

flounder. For example, the query p (X) /\ n o t q (X) flounders on a program con-

taining only the assertion p (Y) under every correct selection rule.

To eliminate floundering, only allowed queries are permitted on allowed pro-

grams [C178]. A query is allowed if every variable occurring in a negated a tom

occurs somewhere else within a positive atom. A clause is allowed if the body of the

clause constitutes a n allowed query, and every variable occurring in the head of the

clause occurs within a positive atom within the body of the clause. The restriction

t o allowed clauses ensures t h a t termination of any query composed of positive atoms

will instantiate all variables t o ground terms. Evaluation of the positive a toms of an

allowed query can then instantiate the variables occurring within negative atoms of

the query, and any correct selection rule will never flounder under terminating

evaluations.

I t should be clear t h a t allowed queries on allowed programs do not flounder.

The result, however, is a severe restriction on the expressiveness of programs. For

example, the assertion in Example 3.1, It (0, s (J)) , is not allowed. This assertion

is a concise s ta tement t h a t zero is less than every positive number. The restriction

t o allowed clauses has restricted the ability t o s t a t e universal properties within

clauses.

I t can be argued t h a t allowed programs do not restrict the expressiveness of

database-oriented programs [C178] (Section 6.1). Logic programs for such applica-

tions typically have a large number of assertions and a small number of rules. Each

assertion is conventionally represented by a record in a relational database, and will

contain neither variables nor structured terms. Clauses ac t a s database views [U80],

capable of generating additional relations, and will not be able t o introduce vari-

ables or structured terms into records. Under these constraints, restriction t o

allowed programs seems reasonable.

3.3.4. Incompleteness of Negation by Failure

There a re also several problems with respect t o completeness of negation by

failure. In order t o determine t h a t a full search tree is failed, i t is necessary to

traverse the entire tree searching for a success node. When a full search tree is

infinite, this search is impossible. Hence, evaluation of a negated query using nega-

tion by failure must ensure finiteness of the failed full search tree. It may be neces-

sary t o construct various full search trees using al ternate selection rules to find one

t h a t is finite and failed. Fortunately, there are maximal selection rules [Sh84], essen-

tially those t h a t are fair, t h a t can obtain finite failed full search trees if any exist.

Still, there a re examples of programs producing infinite full search trees t h a t no

maximal selection rule can make finite:

For this program and query p , the only full search tree produced under every selec-

tion rule, including maximal selection rules, is infinite.

3.3.4.1. Canonical Programs

Completeness of negation a s failure is achieved for a certain class of programs.

Definite clause program P is canonical if T 4 w = gfp.

Lemma 3.12 (Completeness for Canonical Programs [JLM84]): When P is a canoni-

cal program and a ground negated a tom n o t A is logically implied from comp(P),

the query A has a finitely failed full search tree.

As for Lemma 3.11, this generalizes t o non-ground conjunctions of atoms.

Example 3.2 is non-canonical. Canonical programs are obtained only with stringent

syntactic constraints, for example permitting only constant terms in programs

[AE82]. Jaffar and Stuckey have shown t h a t for every definite clause program there

is a n equivalent canonical program [JS86]. Their proof is not useful in deciding if a

logic program is canonical, however, because they produce a canonical program from

the description of a part ial recursive function, rather than from another definite

clause program.

3.3.4.2. Inconsistency of a Program's Completion

Completeness of negation by failure also depends on the consistency of the com-

pletion of a program. If a program's completion is inconsistent, i ts greatest

fixedpoint will not exist. Any query is logically implied from a n inconsistent pro-

gram, but SLD-resolution may not succeed for every query. Consider the general

clause program below:

Example 3.3

p t not p.

This program has an inconsistent completion: p c* n o t p. Therefore, p is logi-

cally implied by the program, but the query p fails with an infinite full search tree.

Inconsistency can be prevented by requiring strate'fied programs [ABW85]. A

program from B(A (II, C)) is stratified if there is a well-founded ordering <, over 112

such t h a t p <= q whenever q(x) t C is contained in the program and C contains

the negated a tom n o t p(y) . In effect stratification prevents recursive references by

negated atoms, a s in Example 3.3. Stratification is sufficient t o guarantee con-

sistency of the program's completion.

It is not clear t h a t general programming tasks fit well within the requirements

set down by stratification. However, negation for relational database applications is

accomplished by the relative complement operation [Co70], which requires full

definition of i t s operands prior t o evaluation. Thus there are no recursive references

by negated atoms. But strictly speaking, relational algebra has no capacity a t all t o

express unbounded recursion.

Negation by failure is a n efficient implementation of negation within logic pro-

gramming. With respect t o the completion of a program, ground negative queries

can be evaluated correctly. Only str ict syntactic restrictions can ensure

completeness. When negation is permitted within programs, stringent syntactic res-

trictions ensure consistency and correctness. Consistency of a program's completion

can be assured by stratifying the program. To prevent incorrectness of negation by

failure, negated queries flounder if all selection rules cannot instantiate variables of

these queries. Floundering is eliminated by evaluating only allowed queries on

allowed programs.

3.4. Enhancing Expressiveness of Programs with Negation

Any implementation of negation is sufficient t o significantly reduce the coding

problem described in Section 1.2. Lloyd and Topor suggest a logic language of

extended programs based on negation by failure. Implementation of this language

therefore suffers from incorrectness and incompleteness. The model elimination pro-

cedure permits full predicate logic. I t s implementation is a significant enhancement

t o SLD-resolution, and is complete for negative queries, unlike negation by failure.

However, the implementation may be far less efficient than SLD-resolution.

3.4.1. Extended Programs

Implementation of negation within logic programs permits implementation of

all other logical connectives within the bodies of clauses. This increased expressive-

ness reduces, though does not eliminate, the coding program suffered by logic pro-

grams. T o demonstrate the expressiveness obtained when negation is implemented,

extended programs are defined [LT84]. An extended program from B(A(I3, C)) is

composed of extended clauses. An extended clause is of the form A t F, where F is

a formula using all logical connectives and A is an atom.

Every extended program P can be converted algorithmically into a general

clause program P' such t h a t the set of sentences implied by comp(P1) is equivalent t o

the set of sentences implied by comp(P). The conversion algorithm is applied t o

every extended clause of an extended program until every clause is just a general

clause.

The conversion rules preserve stratification of the original extended program

(Section 3.3.4.2). It is not assured t h a t the general clause program produced by the

transformation will be allowed (Section 3.3.3). For example, the extended clause

p t VX: q (X) is converted into two general clauses:

p t not aux.
aux t not q(X) .

This program is not allowed because the variable X in the second clause does not

appear within a positive a tom elsewhere within the body of the same clause. This

leads t o floundering of the query p, because the non-ground negative query

not q(X) ensues.

Extended programs partially resolve'the coding problem, described in Section

1.2. Using a conversion procedure and an implementation of negation, all logical

connectives can be included within the bodies of clauses. Nonetheless, requiring t h a t

programs will be allowed and stratified impedes these additional expressive capabili-

ties. The model elimination procedure, discussed next, permits the full expressiveness

of logic, though the procedure is not a s efficient as SLD-resolution.

3.4.2. Model Elimination

Negation by failure relies on SLD-resolution t o provide a n implementation of

negation within logic programs. This strategy retains the efficiency of SLD-

resolution, though completeness of the evaluation system is sacrificed. The model

elimination procedure [Lo781 is an evaluation system for full predicate logic. The

expressiveness of the language is therefore equivalent t o the expressiveness of predi-

ca te logic. But efficiency of the evaluation system is now in question.

Model elimination is a n enhancement t o the linear-input resolution strategy,

called ancestry-filtered resolution [Ni80]. While linear-input resolution is incomplete

for general clauses, a n ancestor search component restores completeness t o linear-

input resolution. Model elimination therefore enhances SLD-resolution. Efficiency of

model elimination is somewhere between SLD-resolution and resolution.

When using resolution, s ta tements of predicate logic are converted into clauses

of the form:

A I V . . . VA,+Bll\ * . . AB,,

where each Ai and Bj is a n atom. For model elimination, each clause is further con-

verted into contrapositive forms. As an example, the following contrapositives:

a re obtained from the clause pVq t rAs. Every contrapositive obtained from a

clause is logically equivalent t o the clause. SLD-resolution can be used on programs

consisting of contrapositives by generalizing the procedure t o permit unification of a

query 4 with the head of a contrapositive -AA'+- L1 . AL,.

Model elimination constructs a full search tree with the same construction rules

used by SLD-resolution. An additional reduct ion rule also applies. If A /\ C labels a

node in the full search tree with a descendent node labeled -A1/\ C', where

A ' a = A for some substitution a , and -A1/\ C' arises from solving A , then -A' can

be eliminated, resulting in the descendent C'o of -AA'l\C'. This implementation of

negation effectively duplicates reasoning through reduct io ad absurdurn.

T o detect reduction the full search tree t o the root is traversed, though certain

nodes along the way can be disregarded. Indexing schemes reduce the number and

length of such searches [PG86]. As demonstrated in [MW87], i t is not always advan-

tageous t o perform a reduction when instantiation of variables would occur. Thus,

each s tep of model elimination involves more choices and more processing than each

s tep of SLD-resolution. Experience of an actual implementation on actual programs

will demonstrate if model elimination used in practice is a s efficient a s SLD-

resolution [St84].

Chapter 4

Constructive Negation

Negation by failure, described in Chapter 3, is the predominant implementation

of negation with logic programming. This procedure can be both incorrect and

incomplete. And because negation by failure does not produce answer substitutions,

i t does not fulfill important programming requirements. For this reason, program-

mers often use ad hoc negative definitions of predicates within programs t o produce

answer substitutions.

Constructive negation is a formalization of this approach. I t s negated queries

can produce answer substitutions. T o derive answers, programs incorporating con-

structive negation, DIF-programs, contain definitions for both positive and negative

facts.

The first section of this chapter describes the syntax of DIF-programs. Section

4.2 describes the underlying model of DIF-programs, based on 3-valued logic. DIF-

programs may be inconsistent. While resolution can always detect inconsistency,

detection imposes inefficiency on the evaluation system. Lemma 4.6 demonstrates

t h a t inconsistency is not decidable. Sufficient syntactic conditions ensuring con-

sistency are described in Chapter 5.

4.1. A Language of Logic Programs with Constructive Negation

Constructive negation requires definitions of both true and false information.

In fact , the definitions can be completely disjoint. A Definite Inference Form (DIF) is

used to express such definitions. Every DIF is either a n assertion L or is of the form

L t F where L is a literal, and F is a formula containing all logical connectives.

All negated formulas t h a t are t o be evaluated under constructive negation are

expressed a s -F. Only variables occurring in the head of a DIF a re permitted t o

occur free in i t s body. A DIF-program consists of a collection of DIFs. A fragment

of a DIF-program follows:

% mult (I, J, K) : true if IXJ=K: otherwise, false.
mult (0, J, 0) .
mult (s (I), J, K) t

3: m u (I, J, X) add (J,X, K) .
~ m u l t (0, J, s (K)) .
~ m u l t (s (I), J, K) t

VX: mult (I, J,X) --+ -add(J,X,K) .

Because all logical connectives can be present within the body of a DIF, DIF-

programs are a s expressive a s a s the extended programs of Lloyd and Topor (Section

3.4.1); t rea tment of negation is a key difference.

In this language all literals are treated equally regardless of sign. An interpre-

tat ion of a DIF-program is a constructive interpretation. Just a s a n interpretation

of a definite clause program can be given by a set of ground atoms, a constructive

interpretation is represented by a se t of ground literals. A ground a tom A is con-

structively t rue (respectively, constructively false) in constructive interpretation I if

A (respectively, - A) is a member of I .

I t is essential t o differentiate logical negation from constructive negation. Tem-

porarily define the standard part of a constructive interpretation to be the set of all

ground atoms within the interpretation; hence, the standard pa r t of a constructive

interpretation is an interpretation. For constructive interpretation I = {wP), pro-

position p is constructively false and p is logically false in the s tandard pa r t of I.

On the other hand, for I = 0, proposition p is logically false in the s tandard pa r t of

I, but p is neither constructively true nor constructively false. Thus, the law of the

excluded middle does not hold. This fact leads naturally t o development of a three-

valued logic for DIF-programs.

4.2. Underlying Model of DIF-Programs

The ability t o define both true and false propositions within programs also

entails the possibility t h a t the t ru th value of some propositions may not be defined.

T o cope with this possibility, an undefined logical value can be assigned t o formulas

by a n interpretation. Models of DIF-programs may be strong or weak (Section

4.2.3). Strong models assign true valuations t o programs, while weak models assign

either true or undefined valuations. Unlike definite clause programs, the least strong

model of a DIF-program may not exist, while the least weak model assigns t o every

formula the undefined logical value. Thus, we take fixedpoints of the T functional a s

the basis for a DIF-program's meaning. The se t of fixedpoints may be empty, but

absence of fixedpoints cannot be detected by efficient evaluation systems or by any

decision procedure.

There are several proposals for 3-valued t ru th tables of the Boolean operators

[Tu84]. T o some extent the content of t ru th tables for the logic is arbitrary, though

a monotonicity property should hold for all logical operators. The information ord-

ering on t ru th values is defined with u as the least informative element:

u[rt and u C f .

4.2.1. Three-Valued Logic

The logical constants are:

Logical Constants

Monotonicity ensures that :

, Symbol
t
u
f

Negation:

if x C y - then (-~)S (-Y)

Intended
Meaning
true
undefined
false

Sets of expressions:

if there is a bijection o: S + T , such t h a t x - [7o(x) for all x E S , then S[I - T

Disjunction and Conjunction:

if S E T , - then (/ \S)r (/ \ - T) and (V S) c (V T).

For example, the t ru th table of implication follows:

Appendix A contains &valued t ru th tables for all logical connectives. With respect

t o the ordering El - these 3-valued t ru th tables are the strongest extension of the

usual 2-valued t ru th tables; Appendix B demonstrates this assertion. Appendix B

also demonstrates t h a t all laws observed by the usual t ru th tables are observed by

the extension.

Tru th Table for Implication

!I

4.2.2. C o n s t r u c t i v e Interpretations of F o r m u l a s

Suppose a DIF-program is from B(A(II, C)) . I t possesses a n associated Her-

brand Universe and Base, HU = T(C) and HB = A D) , respectively. A construc-

tive interpretation is a mapping from HB t o the three logical constants t , u , and f .

Valuation of a formula F by a constructive interpretation I is denoted I[F]. When-

ever the meaning is clear from context, constructive interpretations will henceforth

be referred to only a s interpretations.

As for Herbrand interpretations, set notation is used t o denote constructive

interpretations. A set of ground literals qualifies as a n interpretation if i t contains

no occurrence of a n atom and i ts negation. If a se t S of ground literals qualifies a s

a n interpretation, then an interpretation Is may be constructed from S as follows.

For every a tom A E HB:

x

x -+ y

t
u
f

t u f

t u f
t u u
t t t

If A ES, then Is[A] = t.

If N A ES, then Is[A] = f .

If neither A nor N A are in S, then Is [A] = u.

For example, suppose HBI = {p, q, r), and S1 = {p, ~ q) . Then I contains the fol-
S l

lowing mappings:

's,Pl = t

IS1[91 = f

Is [r] = u.
1

When L is a ground literal and I is a n interpretation, L GI is taken t o mean

t h a t I [L] = t. I C J, where I and J are interpretations, means t h a t for all ground

literals L J [L] = t whenever I [L] = t. As examples of this notation: p Els , and if
1

S2 = {p, --q, r) , then I s , c Isd Henceforth, sets of ground literals qualifying a s

interpretations will be used freely t o designate interpretations without the unneces-

sary s tep of designating the unique interpretations associated with the sets.

An interpretation I can be naturally extended t o a mapping i over all formulas

from B (A (IT, C)) a s follows:

The extension i also distributes over abbreviations for formulas:

Since VX: Fl is an abbreviation for /\ Fl(t) ,
t€HU

Similarly, 3X: F1 is a n abbreviation for V Fl(t) , and therefore:
t E H U

Henceforth, a n interpretation I will be used in place of i ts extension 1 when no con-

fusion can result.

As a n example of evaluation of a formula by a n interpretation:

Let HU = {a, b),

HB = {P (a) P (b) . q (a) . q (b) 1,

I1 = {P (a) * NP (b) . q (a) 1.

T h e n I l [v X : P (X) + q (X) l = (~ l ~ ~ (a) l + I l l q (a) I) A (~ ~ [~ (b) l + I ~ [q (b) l)

= (t -+t)A(f-+u)

= t A t

The next result demonstrates a form of monotonicity maintained by formulas.

Lemma 4.1 (Monotonicity of Interpretations): Let I and J be interpretations. Then

I C J iff I [F] C - J [F] , for all sentences F .

Proof:

(+) Suppose I C J . The proof proceeds by induction on the nesting depth of opera-

tors in F . In the basis case, the nesting depth is zero, so F is a ground atom. There

are three subcases:

(a) If F E I , then F E J , so I [F] = J [F] =t.

(b) If N F E l , then N F E J, so I [F] = J [F] = f.

(c) Otherwise, I [F] = u, and J [F] ~ { t , u,f}.

In all three cases, I [F] C - J [F] .

For the induction hypothesis, assume t h a t I J implies I [F] - C J [F] for all sentences

F with nesting depth a t most d. Assume t h a t I J , and consider a sentence F with

nesting depth d +l. Let F = c S, where c is a logical operator in no and S is a set

of formulas of nesting depth at most d . (When c is the negation operator, S will be

a singleton set.) The induction hypothesis holds for each subformula in S , so I [F ;] ~

J [F j] for all F,. ES. Consequently, c {IIFl] , I [F2] , . . -) L C {J IF l] , J[F2] , . -). But

I denotes f and J denotes j , so I [c s]E - J[c S] .

I t is easily shown t h a t interpretations preserve any laws observed by the usual

t ru th tables. By applying De Morgan's laws, the logical connectives a re expressive

enough to dispense with negation applied t o any non-atomic formula. The comple-

ment of a formula F , denoted F, produces a new formula with negation innermost,

applied only t o atoms. Complement is defined as follows:

K = -A, where A is an atom

The following result ensures t h a t complement is meaning-preserving.

Lemma 4.2 (Complement equivalent t o Negation): For every interpretation I and

sentence F , I [-F] = I[F].

Proof: This is just application of De Morgan's laws.

Thus the syntactic procedure for complementing a formula is equivalent t o the

semantic notion of constructive negation.

Extending complement to the logical connectives provides the following rules:

In order t o evaluate DIF-programs, Chapter 5 requires all quantifiers to be

bounded, of the form 3.X: F /\ G and VX: F -+ G. Thus, the rules above can be

refined t o produce only bounded quantifiers from formulas with bounded quantifiers:

' ~ ' X : k ' ~ - - , t ' ~ = 3 X : F 1 / \ q .

Because the syntactic complement of a formula is equivalent to evaluating i ts

negation, the complement form of a formula can always be used whenever negation

is applied t o a non-atomic formula. The resulting formula is logically equivalent t o

the original negated formula. For example, the following DIFs are logically

equivalent:

-mult(s(I),J,K) t -3: mult(I,J,X) A add(J,X,K).
-mult (s (I), J,K) t 'dX: mult (I., J , X) + -add(J,X,K) .

Henceforth, only DIF-programs with negation applied t o atomic formulas will be con-

sidered. DIF-programs with negation applied to arbitrary formulas can be converted

in a meaning-preserving manner t o programs with negation applied only to atoms.

As the above example demonstrates, having negation applied only t o a toms mani-

fests occurrences of universal quantification. I t is important t o detect implicit

occurrences of universal quantification because universal quantification can make

any evaluation procedure incomplete.

4.2.3. Constructive Models of DIF-Programs

Two notions of model are possible under 3-valued logic, a s discussed in [LM85].

An interpretation M is a strong model of a DIF-program if M[VF] = t for every DIF

F in the program. Therefore, M [F a] = t for every closed instance F a of F . Recall

from Lemma 3.2 t h a t the least model nM is a model of any definite clause program.

This is not generally the case for strong models of DIF-programs. A program con-

taining only the DIF p t q has strong models:

The intersection of this collection is 0, which is not a strong model. I t is important

t o obtain a unique least model. Without a least model the evaluation system must

cope with indefinite information, which is not possible for a n evaluation system based

As a n alternative, a n interpretation M is a weak model of a DIF-program if

M [V F] # f for every DIF F in the program. Hence, M [F a] # f for every closed

instance F a of F. Weak models for the program containing only the DIF p t q

are those strong models listed above and the following:

The intersection 0 is now a weak model. The situation in the example is general -

0 is always the least weak model of any DIF-program.

Within the framework of 3-valued logic, a program is inconsistent if i t has no

strong models. For example, a program consisting of two assertions p and --p has

no strong models, but 0 is a weak model. So consideration of weak models is too

permissive.

Thus neither strong nor weak models are suitable for assigning underlying

models t o programs. The set of strong models of a DIF-program may not possess a

least element, while the least weak model is 0 even in the event of inconsistency.

Instead we turn again t o the immediate consequence functional T of Section 3.1.

The definition is broadened to accommodate DIF-programs a s follows:

Closed literal L E T (I) iff:

L is a ground instance of a n assertion,

or L t F is a closed instance of a DIF in the program and I[F] = t .

Lemma 4.3 (T monotonic): T (I) T (J) whenever I C J.

Proof: Suppose I C J and closed literal L E T(I) . If L is a closed instance of a n

assertion, then L E T(J) . Otherwise, there must be a closed instance L t F of a

DIF with I[F] = t. By monotonicity of interpretations (Lemma 4.1), J[F] = t, so

L E T(J) .

Unlike definite clause programs, i t is possible a t some iteration cu for T tcu t o

become undefined, a s in the following DIF-program:

For this program, iterations of T are the following:

T t O = @

T t l ={-1r)

T t 2 = {-~lq l r)

T t 3 undefined.

In general, T t becomes undefined a t iteration a when T t a at tempts t o include

both a ground a tom A and i ts negation -A.

As for definite clause programs, we will be interested in fixedpoints of T .

Often, we s ta te t h a t X is a fixedpoint of a program P, meaning t h a t X is a fixed-

point of Tp. The following result places an inclusion ordering on the classes of fixed-

points of T , strong models, and weak models.

Lemma 4.4 (Relating Models and Fixedpoints)

(1) If M is a strong model then M is a weak model.

(2) Every fixedpoint of T is a weak model.

Proof:

(1) Immediate from the definitions.

(2) We will show t h a t if M = T(M) then M is a weak model. Consider any closed

instance L of a n assertion. I t must be t h a t L E T(M). But then L E M , so M [L] # f.

Next consider any closed instance L t F of a DIF. If M[F] = t then L f T(M), so

L f M, and M[L t F] # f. Otherwise, M [F] # t, so MIL c F] # f. Hence, M is a

weak model.

This result only provides t h a t the collections of fixedpoints and strong models

are contained in the collection of weak models. In general, the inclusions are strict,

as shown in Figure 4.1. Lemma 4.5 will demonstrate t h a t the intersecting region of

fixedpoints and strong models is nonempty.

There is a connection between strong models and fixedpoints. The following

lemma demonstrates tha t every strong model contains a fixedpoint. A DIF-program

is fixedpoint-inconsistent if i t has no fixedpoints. The lemma also shows t h a t

Relationships Between Fixedpoints and Models

weak models

Figure 4.1

fixedpoint-inconsistency implies inconsistency

Lemma 4.5 (Relating Strong Models and Fixedpoints):

(1) If M is a strong model, then T"(M) & M is a fixedpoint for some ordinal a.

(2) If a DIF-program is fixed point-inconsistent, then it is inconsistent.

Proof: Point (2) follows from (11, since every strong model M contains a fixedpoint

T ~ (M) . The existence of any strong model implies the existence of a fixedpoint.

The proof of point (1) is in two parts. First, we show t h a t M > T (M) whenever M is

a strong model. If there is a closed literal L E T(M), there are two cases:

(a) If L is a closed instance of a n assertion, then L f M because M is a strong

model.

(b) There is a closed instance L c F of a DIF, where M[F] = t. Since M is a

strong model, L E M also.

Since T is monotonic, T ~ (M) ~ Ta+'(M) for all ordinals a. No chain

M > T (M) > . . > Ta(M) can be ever-decreasing. A t worst, cw can be the cardinal-

ity of M and T'(M) = @. Therefore, for some ordinal a, T'(M) T" +'(M), so

T ~ (M) = T" +'(MI = T(T"(M)).

Lemma 4.5 demonstrates t h a t there is a decreasing chain from each strong model to

a fixedpoint. The converse of point (2) in Lemma 4.5 does not hold, a s the following

program demonstrates:

This DIF-program is fixedpoint-consistent (Ifp = 0)) but is inconsistent.

Let Xp be the set of fixedpoints of Tp, where P is a DIF-program. P is

fixedpoin t-inconsistent if Xp is empty. When P is fixedpoint-consistent , the

Knaster-Tarski Theorem [TaSS] guarantees existence of a least fixedpoint

lfPp = mp. AS usual, when program P is understood, the subscripts will be omit-

ted.

Lemma 4.6: For every fixedpoint-consistent program, Ifp = T t a for some ordinal a.

Proof: The proof first demonstrates t h a t T f a is contained in every fixedpoint, for

all ordinals a. In particular, T f a C IfP. Next, we show t h a t T t a C T t P for all

ordinals cu 5 P. Therefore, there is a "maximal" ordinal 7 such t h a t T f a T 7 y for

all ordinals cu; otherwise, there would be ordinals a such t h a t HB C T fa . T f 7 is a

fixedpoint, so IjpC T 17.

T o demonstrate the first par t , induction is performed on all ordinals a. Since

T f O = 0, the basis case holds. For the induction hypothesis, assume T f a is con-

tained in every fixedpoint. Consider the successor ordinal a+l . Suppose L is a

ground instance of a n assertion in P . Then L E T t(a+l); also, L is true in every

fixedpoint. If L t F is a closed instance of a DIF in P , and T ta[F] = t, then

L E T f(a+l). Also, by the induction hypothesis, T f a is contained in every fixed-

point, and due t o monotonicity of interpretations, Lemma 4.1, F is t rue in every

fixedpoint. Therefore, L is true in every fixedpoint. The induction follows for limit

ordinals also.

T o show t h a t T t a, C T t 8 whenever a, 5 8, for all ordinals a, and P, let ordinal

6 be such t h a t a +6 = p. Since 05 T t 6, ~ ~ (0) T ~ (T t 6) by monotonicity of T,

Lemma 4.3. Using the definition of 7, T ta 5 T tp. n

The least ordinal a, for which T p t a = T p t (a + 1) = ljpp is called the closure

ordinal of program P.

Fixedpoints of T will represent strong models, since the set of strong models of

a program may not have a least element. Three characteristics of fixedpoints justify

their use a s representatives:

(1) For any fixedpoint-consistent program, the set of fixedpoints is closed under n.

(2) Fixedpoint-inconsistency implies inconsistency.

(3) Every strong model contains a fixedpoint.

Fixedpoints are therefore chosen as the basis for the underlying model of DIF-

programs. A formula F is f ixedpoint-implied by a program P if and only if X [F] = t

for every fixedpoint X of Tp. When program P is fixedpoint-consistent, F is

fixedpoint-implied by P if and only if I fp[F] = t.

Programs containing universal quantifiers and with infinite domains may have

infinite closure ordinals. Consider the following program:

p c VX : n a t (X) +nat (s (X)) .
nat (0) .
n a t (s (N)) + n a t (N) .

For this program, Ifp = T t o+l. Since the completeness proof of the SLD-resolution

procedure relies on a correspondence between the iterations of the T functional and

the depth of a success path in the full search tree, there will be queries t h a t cannot

execute to completion on programs with transfinite closure ordinals. Consequently,

completeness is sacrificed with DIF-programs. Chapter 5 will demonstrate the neces-

sity of this incompleteness result through Turing-reducibility.

Eliminating the universal quantifier from formulas, thereby reducing the expres-

siveness of the language, necessarily results in completeness. However, DIF-programs

may be fixedpoint-inconsistent, which will not be detected by efficient evaluation sys-

tem such a s SLD-resolution.

The resolution procedure is correct and complete even in the event of incon-

sistency, because resolution need not use a program clause t o form a resolvent.

SLD-resolution a t ta ins efficiency over resolution by forming each resolvent only from

the previous resolvent and a program clause. SLD-resolution is correct and complete

even with inconsistency because definite clause programs cannot be inconsistent.

With introduction of negation in DIF-programs, fixedpoint-inconsistency can arise.

T o retain the efficiency of SLD-resolution for evaluation of DIF-programs,

fixedpoint-consistency should be decided before evaluation. But, a s the following

lemma demonstrates, fixedpoint-consistency is undecidable.

Lemma 4.6: Fixedpoint-consistency of a n arbitrary DIF-program is undecidable.

Proof: I t is easy t o produce a contradiction. Consider Hilbert's tenth problem: pro-

ducing integer solutions for polynomial equations in several variables. Matijasevic

has shown this problem undecidable. Consider program Hilbert of Figure 4.2.

Definitions of certain predicates used for lists and integers are not included in this

Program Hilbert

% hilbert (Vars, Exprs) : true if there are bindings of integers
% to constants standing for variables in Vars that evaluate
% each expression in Exprs to 0.
hilbert (Vars, Exprs) c

%indings : (makeBindings (Vars, Bindings) /\
(VEXP~: in (Expr, Exprs) -+ eval (Bindings, Expr, 0))) .

% makeBindings(Vars,Bindings): true if Bindings contains

% bindings b(Var,Value) for each variable Var in Vars
% and some integer Value.
makeBindings (Vars, Bindings) c

(3 : length (Vars, N) /\ length (Bindings, N))
/\ (VVar : in (Var,Vars) -+

(Walue: integer (Value) /\ in (b (Var, Value) , Bindings))

% eval (Bindings, Expr, Value) : true if the value of
% Expr is Value.
eval (Bindings, Expr, Value) t

in (b (Expr , Value) , Bindings) .
eval (Bindings, add (Exprl, Expr2) ,Value) t

3 1 , ~ 2 : (eval (Bindings, Exprl, V1) /\
eval (Bindings, Expr 2, V2) /\
add (Vl, V2, Value)) .

eval (Bindings, mult (Exprl, Expr2) , Value) t
3 1 , ~ 2 : (eval (Bindings, Exprl, V1) /\

eval (Bindings, Expr2, V2) /\
mult (Vl, V2, Value)) .

eval (Bindings, power (Expr , N) , Value) c
3 : (eval (Bindings, Expr , V) /\

power (V, N, Value)) .
Figure 4.2

program. Their definitions should be self-explanatory from the program's text. Any

other undecidable problem can be used in place of this one.

If for some set of variables v and expressions e , h i l b e r t (v , e) is not fixedpoint-

implied by H i l b e r t , then any automated procedure for deciding fixedpoint-

consistency should find t h a t H i l b e r t augmented with the assertion

-hi lber t (X, Y) is fixedpoint-consistent. Hence, Hilbert's tenth problem becomes

decidable, while i t has been shown undecidable. CI

Because fixedpoint-consistency cannot be decided, Chapter 5 introduces syntac-

tic restrictions on programs t o ensure fixedpoint-consistency-

Chapter 5

Fixedpoint-Consistent DIF-Programs

Efficient evaluation of DIF-programs cannot detect fixedpoint-inconsistency.

Since fixedpoint-inconsistency is undecidable, syntactic restrictions must be placed on

DIF-programs t o ensure fixedpoint-consistency. The syntactic restrictions are easily

ensured by using a new language containing s ta tements of equivalence, called DEFs

(Definite Equivalence Forms), rather than s ta tements of implication (DIFs). DEF-

programs are then compiled into DIF-programs t h a t are guaranteed t o be

fixedpoint-consistent .

An evaluation system for DIF-programs, based on SLD-resolution, is presented.

Unlike SLD-resolution, the evaluation system must be able to evaluate universally

quantified formulas. Such formulas arise naturally from DEF-programs. For evalua-

tion, universally quantified formulas must be bounded, of the form VX: G + F.

Evaluation utilizes G a s a generator of values, and F a s a tester.

Correctness for evaluation of universally quantified formulas may not be

at tained in certain cases. A combination of enhancements t o the evaluation pro-

cedure and syntactic requirements are used t o ensure correctness.

Theorems 5.5 and 5.6 verify correctness of the evaluation procedure for com-

piled DIF-programs. Completeness of the evaluation system cannot be obtained for

queries on these programs, however.

5.1. Syntax of DEF-Programs

Syntactic restrictions on DIF-programs will ensure fixedpoint-consistency. Two

basic ideas underlie the syntactic restrictions; informally they are:

Dual DIFs:

Every DIF L t F in a program has a dual t F.

Non-conjlic ting DIFs:

There is a t most one closed instance A t F of a DIF for each ground a tom

A E H B .

Each pair of dual DIFs essentially produces a s ta tement of equivalence. The

resulting DIF-program is similar t o the Clark completion [C178], though Clark's

approach implicitly produces equivalence.

T o make these restrictions more easily verified by a n automated procedure, a

new language is introduced. Programs in this new language a re "compiled" into

DIF-programs. A Definite Equivalence Form (DEF) from B(A (IT, C)) is of the form

A c* F, where A is a n a tom from A (n , C) and F is a formula from B(A(II , C)). A

DEF-program is a finite collection of DEFs. The set of predicate symbols ll must

contain a distinguished proposition symbol true. Underlying models of DEF-

programs always assign the logical constant t t o true. Assertions in DEF-

programs take the form A *true or A * -true. As with DIFs, only variables

occurring within the head of a DEF may occur free in the body. All DEFs of the

form p(xl, . . . ,z,)c+ F define predicate p . Finally, no DEF is permitted t o (re)-

define the distinguished proposition true.

5.2. Compilation of DEF-Programs

The compilation procedure t h a t p r o d u e s a p am piled D W w g r a m from a

DEF-program generates dual DIFs from DIElF- Gornp2laL%Gm also ensures tha t

the compiled DIF-program will be faee .d c o n B i c ; ~ g & i E m i t : k

Generating Dual DIFs

If A * F is a DEF in program Prmi 8ibm z r u m ~ k r n !gmerz*s the DIFs

A c F and K c F . Notice t h a t t h f ir-km, x.st.p k gmmmiizd, rather than

-A t -F. Lemma 4.2 has d e m m s h . ; a ~ ~ tha% lip] = B;bq Em my sentence F and

interpretation I. Using the amplemen% E ~ r m d ~ k ~%i'%it, emlmtt ion of compiled

DIF-programs. T o demonstrate con@:lath , aa.mii& &e Emqpmk OY a DEF-

program below:

Example 5.1

% mult(I,J,K): ?&me If PX.J=E: ai%erwi.s,, false.
mult(O,J,O) * J;r-.
mu1 t (0, J, s (K)) ++ -true,
mult (s (I), J,K) * 3: d t t ((T , J , , X j ,A &(@,JJ ,K) .

From this program fragrneat, t k iWcn&g DWs m e g e ~ ~ &

mult(O,J,O) c 3rw-

mult (0, J, s (K)) c -&rue..
mult(s(I),J,K) 4c 3.: mul%(I,,J,,X)) /A add((XvJ,K).

-mult(O, J,O) t -4xiue,
~mult(O,J,s(K)) c m.ue.
wnult(s(1) ,J,K) +- VX: mmd-t(l,J,X,) -+ -add@, J,K) .

The meaning preservation bmq, %elmw, r f O ~ * supporte a m p i l a t i o n .

Lemma 5.1 (Compilation is Meaning Preserving): Let PDEF be a DEF-program and

PDIF the compiled DIF-program. For every interpretation I, IIPDEF] = IIPDIF]'

Proof: Logical equivalence of the DEF-program and i ts compiled form results from

the logical equivalence of A o F and (A c F) I\(-A c N F) .

Non-Conflicting DEF-Programs

A DEF-program has non-conflicting DEFs if there is a t most one closed instance

A * F of all DEFs for each atom A in the Herbrand Base of the program. For

example, the program below is fixed point-inconsistent and has DEFs t h a t conflict:

Example 5.2

p(X,b) * q.
p(a ,Y) * r .
q c* t r u e .
r * - t rue .

The compiled program contains the DIFs:

p(X,b) + q.
-p(a,Y) t -r.

q t t r u e .
Nr c t r u e .

When t r u e is assigned t in all interpretations, the conflict arises for the a tom

p (a , b) . Without this conflict, the program would be fixedpoint-consistent.

Conflicting DEFs can be found with a syntactic test . DEFs A cc F and B * G

overlap if:

(1) the DEFs contain disjoint sets of variables, and

(2) A and B unify.

A DEF-program is overlapping if i t contains distinct DEFs whose variants unify.

L e m m a 5.2 (Non-Overlapping Programs are Non-Conflicting): If a DEF-program is

non-overlapping, i t is non-conflicting.

Proof: We will show t h a t a conflicting DEF-program is overlapping. Suppose the

DEF-program is from B(A(IX, C)). If the program is conflicting, there are distinct

closed instances (A o F1) al and (A o F2) u2 of DEFs such t h a t A al = A a2 = A .

Since (A1 @ C) n (A 2 @ C) is nonempty, Lemma 2.8 provides t h a t A l and A 2 are

unifiable. Therefore, the program is overlapping.

In Example 5.2, the program is overlapping and has conflicting definitions.

F ixedpo in t -Cons i s t ency is Attained

Combination of dual DIFs and non-conflicting DEFs ensures fixedpoint-

consistency.

L e m m a 5.3 (Non-conflicting DEF-programs are fixedpoint-consistent): If PDEF is a

non-conflicting DEF-program, then PDEF true) is fixedpoint-consistent.

Proof: Notice t h a t addition of the assertion true to the DEF-program PDEF assures

assignment o f t t o true. By Lemma 5.1, compilation of PDEF t o a DIF-program

PDIF is meaning-preserving. Therefore, if PDIF true) is fixedpoint-consistent, so

is PDEF true). Let P = PDIF true). We now prove by induction t h a t T p f a

is defined for all ordinals a. In the basis case, T 10 = 0. For the induction

hypothesis, assume t h a t T ta is defined. Consider a successor ordinal a+l .

T t (a+ 1) is undefined in the following cases:

(a) There are closed instances A +- F1 and -A t Fa, and

T t a [F 1] = T t a [F 2] = t. Since the DEF-program is non-conflicting, there is

only one closed instance A ++ F1 of a11 DEFs. Therefore, -A c FZ is the dual

of A t F1, and F 2 = c. By Lemma 4.2, T t a [-F1] = T t a [F 2] . Hence,

T t a[F1] = T t a[F2] only when both are undefined.

(b) There is a closed instance - t r u e + F , and T tcv[F] = t. (Recall t h a t P con-

tains the assertion t r u e .) However, PDEF cannot contain definitions for the

proposition true.

Therefore, T t (a + 1) is defined. The induction holds for limit ordinals also. Using

the contrapositive form of Lemma 4.6, since T fa is defined for every ordinal a,

T t a = Ifp for some ordinal a.

From the s ta tement of Lemma 5.3, formula F is fixedpoint-implied from a

DEF-program PDEF if compilation produces DIF-program PDIF and V F is fixedpoint-

implied from PDIF u {t rue) .

By Lemma 5.3, non-conflicting DEF-programs are always fixedpoint-consistent.

And Lemma 5.2 assures t h a t the overlap test can detect conflicting DEFs. Finally,

compilation of DEF-programs is meaning preserving, by Lemma 5.1. So any com-

piled DIF-program produced from a fixedpoint-consistent DEF-program is also

fixedpoint-consistent. We have therefore ensured fixedpoint-consistency of DIF-

programs through syntactic conditions on DEF-programs. These conditions are only

sufficient to ensure fixedpoint-consistency. As shown in Lemma 4.6, necessary and

sufficient syntactic conditions do not exist. Finally, as discussed in Chapter 4,

because compiled DIF-programs may contain universal quantifiers in bodies of DIFs,

such programs may possess infinite closure ordinals. The presence of infinite closure

ordinals eliminates possibilities for completeness of the evaluation system.

5.3. Evaluation of DEF-Programs

Having guaranteed fixedpoint-consistency of DEF-programs, we now discuss the

evaluation system for DEF-programs. Given t h a t a DEF-program can be compiled

into a DIF-program, queries on the DEF-program are evaluated against the DIF-

program.

In order t o provide a feasible evaluation system, all universally quantified for-

mulas within a generated DIF-program are required t o be "bounded," of the form

VX: G +F. In essence, this restriction permits computation within the Herbrand

Universe. Since the bounded formula VX: true + F is logically equivalent t o VX: F,

requiring bounded formulas is not a restriction on expressiveness.

The bounded universal quantifier is amenable t o computation. Essentially,

bounded universally quantified queries of the form VX: G + F are interpreted as

having a generator G of X-values and a tester F of the generated X-values. Genera-

tion and testing of values may be conducted sequentially or in parallel. Evaluation

of universally quantified formulas with a generate-and-test procedure is limited

because when the set of values satisfying the generator is infinite, the computation

may not terminate. Computability results prohibit completeness of any procedure,

a s seen in Section 5.6.

The evaluation system for DIF-programs is based on construction of full search

trees and fair traversal of these trees. Many a t t r ibutes of full search trees for DIF-

programs are similar t o full search trees constructed by SLD-resolution. Every node

of any well-formed full search tree is labeled by a conjunction of formulas. Edges in

the tree are labeled by substitutions. A success node is labeled by the empty con-

junction, denoted 0. The empty conjunction is assigned the logical value t. The

value of a success path is the composition of all substitutions along edges from the

root to a success node.

T o define the well-formed full search trees, consider all possible structures of the

label a t the root (C is a conjunction of formulas):

D: A full search tree consisting only of the node labeled by the empty conjunction

is well-formed.

true /\ C:

If the full search tree C is well-formed, the following tree is well-formed:

true /\ C

L /\ C (L a literal):

When L is a literal distinct from true, and all trees (F i r i) A (C u i) for

1 < i 5 n are well-formed, the following tree is well-formed:

For this diagram, Ll c F1 - . Ln c Fn are variants of all clauses in program

P for which L unifies with each Li (1 5 i 5 n) . There is a unique (modulo

renaming) mgci for each pair of literals L and L;. Section 2.3 describes a

decomposition producing substitutions ui and ri such t h a t L ui = L,. 7;. N7hen

there are no variants of clauses whose heads unify with L , n = 0, and the tree

consists of only the node L /\ C.

(F V G) / \ C :

When trees F /\ C and G A C are well-formed, the following tree is well-

formed:

(F A G) A C :

When the tree labeled by F A (G A C) is well-formed, the following tree is

well-formed:

(3 X : F) A C :

When X,,, is a variable occurring nowhere else, and (F {X =X,,,)) C has a

well-formed tree, the following tree is well-formed:

The substitution {X=XneW) disambiguates multiple occurrences of X in

different binding scopes by setting all free occurrences of X t o a unique variable

Xnew.

(VX: G --, F) l\ C:

When the only free variable in G is X, and the tree (F r1 /\ . . . l\F r n) /\ C is

well-formed, the following tree is well-formed:

(VX: G + F) /\ C

where T ~ , . . . , rn are the values of all success paths in the full search tree for

G . Section 6.3.2 will suggest methods t o evaluate universally quantified formu-

las with occurrences of free variables other than the universally quantified vari-

able in the generator.

T o demonstrate the evaluation procedure, consider the DEF-program below:

% divp (I , J) : t r u e i f I d iv ide s J evenly;

% otherwise, f a l s e .
d i v p (1 , J) * 3: l e (X , J) /\ r nu l t (X , I , J) .

% le (I , J) : t r u e i f ISJ: otherwise, false.
le (0, J) * t r u e .
l e (s (1) , 0) * - t rue .
l e (s (1) , s (J)) * l e (1 , J) .

The DIFs present in the compiled DIF-program of interest for this demonstration are

the following:

~ d i v p (I , J) t VX: l e (X, J) + -mul.t (X, I , J) .
l e (0, J) t t r u e .
le (s(1) , 0) t true.
le(s(1) , s (J)) t l e (1 , J) .

Consider the query:

The only direct descendent of this query in i t s full search tree is a node labeled by

the query:

T o produce the full search tree for this query, a full search tree for the generator

l e (X , s (s (s (0)))) is produced. This is presented in Figure 5.1. As expected, the

answer substitutions obtained from the generator are:

Full Search Tree for le (X, s (s (s (0))))

true le (Xl, s (s (0)))

D true

true le (X3,O)

true -true

Figure 5.1

X = s (s (0)) , and

x = s (s (s (0))) .

The direct descendent of the universally quanttified query is then:

Using the definitions provided in Example 5.1, titiis conjunction produces a full search

tree with a success path. Hence, &he entire $I= for the original query has a success

path , which is t o be expected since 2 does n& eve& divide 3.

5.4. Resolving Incorrectnes~ of U n i v d y Quantified Queries

As specified here, the full search tree cmstruction is not generally correct for

universally quantified queries. There are t h e e cases where the incorrectness arises:

(1) The generator produces a value is more general than some value satisfying

the tester. Utilization of tern-matching within the tester, rather than

unification, ensures t h a t generated values will not be too general.

(2) The generator produces too few values. A self-coverage requirement ensures

t h a t every ground a tom can be described by a program. Self-coverage has a

syntactic test.

(3) The generator produces no values, because the universally quantified variable

does not occur free in the generator. The entire universally quantified formula

can be rewritten in a meaning-preserving manner t o resolve this problem.

These three problems and their solutions are discussed in the next three sections.

Overly-General Generated Values

Consider the DEF-program below:

Example 5.3

p (X) * true.
q (a) * true.
q (b) * -true.

The query VX: p (X) -+q (X) succeeds but is not fixedpoint-implied by the program.

The problem is t h a t the tester q (X) performs full unification on the X-value gen-

erated by p (X) . Instead, for any generated X-value t , the tester should be satisfied

by a value t' more general than t , i.e. [t'] y [t]. T o determine when [t'] 5 [t] holds, a

form of one-sided unification, commonly called term-matching is used. Implementa-

tion of this enhancement will be discussed in Section 6.3.1.

This correctness problem can be avoided by ensuring t h a t every generated X-

value is ground using a "type predicate" within each generator. The type predicate

will be t rue for every ground term in the Herbrand Universe. For Example 5.3, the

definition of the type predicate is:

hu (a) .
hu (b) .

Now the query VX: (p (X) Ahu (X)) +q (X) fails, because the generator produces

values a and b for X, and the query q (a) A q (b) fails.

Recall t h a t negated queries solved through negation by failure a re also required

t o be ground. Requiring generated X-values t o be ground is far less stringent.

Negated queries still yield answer substitutions under constructive negation. And a

type predicate can be easily added t o the generator t o produce ground values during

evaluation. Nonetheless, this solution is less desirable from the standpoint of perfor-

mance than term-matching. In the extreme, generation of only ground values could

result in a n infinite stream, when the s t ream generated for non-ground values would

have been finite.

Insufficient Generated Values

A more difficult problem is posed by the following program:

p (a) * true.
q (a) * true.
q (b) * -true.

The query VX: p (X) -+q (X) is assigned the undefined value by the least fixed-

point, since p (b) is undefined. However, the evaluation procedure produces a full

search tree with a success path.

The problem here is t h a t definitions for the p predicate did not describe all ele-

ments of the Herbrand Universe. T o resolve this problem, a new requirement is

placed on all predicates defined within a program. A DEF-program is self-covering if

there is some closed instance A o F of a DEF for each closed a tom A EHB. As

described below, self-coverage can be decided, and therefore incorporated into compi-

lation of DEF-programs into DIF-programs. Since compilation also checks for non-

overlapping DEFs, conjunction of the two properties requires the existence of exactly

one closed instance A * F of some DEF for each atom A EHB.

The test for self-coverage of a program is performed for each predicate symbol

occurring in the program. A predicate p is self-covering if there is a closed instance

~ (x) * F of some DEF for each ground atom p (x) f HB. A program is therefore

self-covering iff every predicate occurring in the program is self-covering.

When a term or atom is represented as a directed acyclic graph, the nesting

depth of a term is the length of the longest path from the root node t o a leaf. For

example, if p is a proposition, the nesting depth is 0. Also, the atom p (f (c) , b)

has nesting depth 2. Suppose predicate p is defined by the DEFs

P (X ,) * F I , . . . , P (~ ~) ~ F ~ . If each atom p (x i) occurring in the head of some DEF

defining predicate p has nesting depth di (1 5 i _< n) the maximum nesting depth for

predicate p is m, = max d, . In Example 5.1, mWl, = 2. Next, we define a special
lsisn

operation t h a t selects from a set of atoms those of limited nesting depth. If S is a

set of atoms, S % d = { A E S I the nesting depth of A is a t most d) .

Predicate p satisfies the self-coverage test if there is a closed instance p (z) * F

of some DEF in the program for every atom p (x) EHB % (mp + 1) . In Example 5.1

the self-coverage test mandates t h a t all ground atoms m u l t (x l , x2, x3) with nesting

depth a t most 3 shall be matched against DEFs in the program. Example 5.1

satisfies the self-coverage test because every such atom matches with the head of

some DEF defining m u l t . This test always terminates, since HB %(mp +1) is

always finite.

Lemma 5.4 (Correctness of Self-coverage Test): Suppose a program P is from

B(A (II, C)) and predicate p EII . The self-coverage test for predicate p succeeds iff

predicate p is self-covering in program P.

Proof:

(+) Suppose the self-coverage test for predicate p is satisfied. Consider an a tom

p (z) E H B with nesting depth d. If d < m p +1 then the self-coverage test verifies

t h a t p(z) is a ground instance of the head of some DEF in P.

Otherwise, d > mp + l . We now define a strip function t h a t produces an atom of

depth mp +1 from p(z) by replacing every subterm at depth m, +l by a unique vari-

able. This function is defined recursively a s follows:

strip(c, d) = c for all constants c and str ip depths d.

strip(f (zl, . . . , z,),O) = Xne, where X,,, is a unique variable.

strip(f (zl, . . . , z,), d +1) = j(strip(zl, d), . . . , strip(xn, d)).

Let p(y) = strip(p(z), m, +I). Consider a ground atom p(yo) €(p(y) @ 6) % (m, +I) .

This ground a tom is obtained from p(z) by replacing every non-constant sub-

term a t depth mp +l by a constant from C. Since predicate p satisfies the self-

coverage test and p(yo) is a ground atom with depth mp + I , there is a DEF

p(x) w F such t h a t ip(x)] 5 [p(yo)]. Since p(x) has depth a t most mp , matching of

p (z) with p(yo) does not depend on the particular constants chosen t o replace vari-

ables occurring a t depth m, +1 of p(y). So ip(z)] 5 [p(y)]. By Lemma 2.9,

(P(x)@ X) ~ (P (Y) @ X). Since P (~) E (P (Y) @ C), P (~) € (P (x) @ XIJ and therefore a

closed instance of p (z) * F has head p(a).

(t) Trivial.

The self-coverage test terminates in all cases, even when the Herbrand Universe is

infinite. Section 6.2, will present improvements incorporating d a t a types.

DEFs must usually be added t o a program t o satisfy the self-coverage test. The

extreme case occurs with a program containing just the DEF p(cl, . . . , en) * t r u e ,

where the ci are all distinct constants. Satisfaction of the self-coverage and overlap

tests would require n n -1 additional DEFs. However, with a n implementation of

inequality these additional DEFs would not be required. Inequality is discussed

further in Section 6.1.

The self-coverage property also affects the evaluation system presented earlier

in this section. Suppose a DEF-program compiles successfully to a DIF-program, and

satisfies the self-coverage test. When a literal distinct from t r u e and - t r u e is

selected a s the root label of a full search tree, i t will always unify with the head of

some DIF. The only nodes without descendents are labeled with the empty conjunc-

tion 0, o r with --true /\ C , for some conjunction C.

No Generated Values

The final instance where the evaluation procedure for universally quantified

queries is incorrect occurs when there a re no generated values, due to the absence of

free occurrences of the universally quantified variable in the generator. Consider, for

example, a program consisting only of the DEF p (c) o - t r u e and the query

VX: t r u e + p (X) , equivalent t o VX :p (X) . The evaluation procedure produces no

values for X, so the query succeeds even though there is a value c t h a t disputes the

query.

The universally quantified variable must occur free in the generator of any

universally quantified formula, which is a decidable property. When this property is

violated by a formula, a s in the example above, there a re two remedies.

When the tester contains a free occurrence of the universally quantified vari-

able, convert the original formula VX: G + F t o the logically equivalent VX: F + G.

The generator of the new formula now contains a free occurrence of the universally

quantified variable. In the example above, the query is converted t o VX:

-p (X) --+-true. When evaluated, the new generator produces the value c, giving

rise to the conjunction - t r u e , which correctly fails. This strategy is not a com-

plete remedy, since the new generator may produce an infinite s t ream of values.

When the tester does not contain a free occurrence of the universally quantified

variable, the universal quantifier is superfluous. The quantified variable occurs nei-

ther in the generator nor tester. Therefore, the original formula VX: G + F can be

rewritten t o the logically equivalent formula F V F.

Summary

Evaluation of universally quantified queries poses three different correctness

problems. First, i t is possible t o generate overly-genera1 values. This problem can

be avoided by utilizing term-matching, or requiring generation only of ground terms.

Second, i t is possible t o generate a n insufficient number of values. This problem is

avoided by requiring programs t o be self-covering, a decidable property. Finally, i t is

possible t h a t no values are generated, due to the absence of a free occurrence of the

universally quantified variable in the generator. This problem can be detected, and

the violating formula rewritten t o resolve this problem. Resolution of these concerns

is sufficient t o demonstrate correctness of the evaluation procedure. We assume a t

this point t h a t compilation invokes the following syntactic tests:

(1) Overlapping DEFs.

(2) Self-coverage.

(3) All universal quantifiers bounded.

(4) Generators of universally quantified formulas contain free occurrences of the

universally quantified variable.

Having remedied faults with the evaluation procedure for universally quantified

queries, the next section presents proof t h a t the entire evaluation system is correct.

5.5. Correctness of the Evaluation System

Evaluation of a universally quantified query requires searching the generator's

full search tree for all answer substitutions. The search examines every leaf of the

full search tree; therefore, the full search tree of the generator must be finite. All

paths of a finite full search tree are traversed t o detect the presence of success

nodes, thereby producing all generated values. Thus, correctness of the evaluation

system relies on correctness with respect t o finite full search trees.

For the following two correctness theorems, we temporarily make some

definitions. Consider a DEF-program from B(A (II, C)). Let

Ans(F) = u{Fa@ C I cu is a n answer for F) , and let m)' = (F @ C) -Ans(F).

Informally, Ans(F) is the set of closed instances of all answers obtained for query F .

Ans(F)] is the complement of Ans(F), relative to all closed instances of F . For exam-

ple, if C = {o'~), s(')), F = -lt (X, s (0)) , and the only answer t o query F is x =

s (XI) , then Ans(F) = {-It (S (0) , s (0)) , -1t (S (S (0)) , s (0)) , . . .). Also

A 4 j = {-lt (0 , S (0))).

Theorem 5.5 (Correctness for Finite Full Search Trees): For any DEF-program from

B(A (II, E)) t h a t compiles successfully t o a DIF-program P, if a query F has a finite

full search tree, then:

(1) Ifp[Fa] = t i f f F o f A n s (F) .

(2) up[Fa] = f iff FofA1ZS(F).

Proof: By induction on the height of all full search trees. We define the height of a

full search tree for the formula VX: G +F to be the maximum height of the trees

for G and the ensuing conjunction produced from F.

A tree of height 0 can be labeled by - t r u e /\ C or 0. In the former case,

Ans(F) = 0, and so yp(F a] = f for all F U E ~) , since u p [- t r u e /\ C] = f. In

the la t ter case, the answer substitution is E . The theorem holds vacuously, since the

empty conjunction is assigned value t.

For the induction hypothesis, assume the theorem is true for all trees of height a t

most h . Consider a full search tree for a query F with height h +l .

The direct descendent of the root is a leaf labeled by the empty conjunction. This

leaf is a success node, and the edge from the root is a success path with value E .

Therefore, Ans(F) = { t r u e) and lfp[true] = t . Also, A T) = 0.

F = vx: F , -+Fa:

The direct descendent of the root is a full search tree for G = F2 a1 I\ - - - I\ F2 a,, ,

where al, . . . , a n are all answer substitutions in the full search tree for F1. Every

answer substitution for G is a n answer substitution for F . So G a € A n s (G) iff

F a€Ans(F) . We are assuming t h a t the only free variable in F1 is X. This a s s u m p

tion is weakened in Section 6.3. For convenience, let F i (t) a denote the formula

Fi ({X= t) *a) , for i = 1,2. By the definition of height for universally quantified

queries, both F1 and G have full search trees of height at most h . Therefore, the

theorem holds for F1 and G .

Let o be a substitution such t h a t F aEAns(F). Then G oEAns(G) . Since

G a = F2(a1 0 0) A . . - I \ F 2 (a n OO), let G o = F 2 (t l) o l \ . . . l\ F2(tn)o , where each

ti (1 5 i < n) is a ground term. Specific terms ti can be selected because only term-

matching is employed in obtaining answers for F2. Consider any ground term t . If

t = ti for some 15 i 5 n , then by the induction hypothesis, Ifp[G a] = t , and

lfp[F2(t)a] = t . Also, Fl(ti)E(Flcui @ C), so Fl(t)EAns(F1), and again by the induc-

tion hypothesis, Ifp[Fl(t)o] = t . Therefore, Ifp[(F1+F2)(t)a] = t. If t # ti for all

1 5 i 5 n , then F l (t) E A T) , so Ifp[Fl(t)a] = f, by the induction hypothesis.

Therefore, Ifp[(F1 -+ F2) (t) a] = t . This holds for all terms t , so Ifp[F a] = t.

Alternatively, F a€AnstE), so G a€A72S(G. By the induction hypothesis,

Ifp[G a] = f , so Ifp[F2(ti)a] = f, for some 1 5 i 5 n . As has been shown,

Ifp[F,(ti) a] = t . Therefore, Ifp[(F1 -+ F2)(ti)u] = f, and vp[F a] = f.

F i s a litlerd:

When literal F is distinct from t r u e and - t r u e , the direct descendents of the

root are trees labeled F1 T ~ , . . . , F, 7,. There must be variants

L l c F1, . . . , L, t F , in the compiled DIF-program, where F ai = Li for all

1 5 i 5 n . Then F(ai 4 0) €Ans(F) iff F,.(T~ 0a)f Ans(Fi 7;). The induction hypothesis

holds for each direct descendent Fi of F . Therefore, Ifp[Fi(ri .a)] = t for all

Fi(7, 0u)€Ans(Fi T ~) . Since ljp is a fixedpoint, I ~ ~ [L ; (T ~ .a)] = t . F ai = Li r i , so

Ifp[F (ai .a)] = t, and F(ai 0 0) f Ans(F).

On the other hand, suppose Fi(7; o a) € A T 7 i) By the induction hypothesis,

Ifp[Fi (ri .a)] = f. Consequently Ifp[C(7; .a)] = t . Because program P is non-

conflicting and self-covering, there is exactly one closed instance (T + ~ (T ; 00) of a

DIF in the compiled program. Since Ifp is a fixedpoint, I ~ P [~ (T ~ .a)] = t . Therefore,

Ifp[Li (T ~ .a)] = f, and F(ai 0 0) E A ~) .

F = F,l\F,:

For every answer a of F , cu = cul .a2, where al is a n answer for F1 and a2 is a n

answer for F2. The full search tree can be divided into a n upper prefix solving the

query F1, and lower subtrees solving queries of the form F 2 a l , where a, is a n answer

t o F1. The induction hypothesis holds for the upper and lower segments of the full

search tree.

Consider F a ~ A n s (F) . Then F a € (F (a , .a2) @ C). From the tree construction,

F, a ~ A n s (F ,) and F2a €Ans(F2 a,). By the induction hypothesis, Ifp[F1 a] = t and

Ifp[F2a] = t, so Zfp[F a] = t .

Alternatively, consider F a ~ w ' F). Then, from the tree construction, either (i)

F,UEA-, or (ii) F2a€-j for some answer ctj of F1. In case (i),

lfp[Fla] = f. In case (ii), Ifp[F2a] = f. Therefore, in both cases Ifp[F a] = f.

F = F,VF,:

The direct descendents of F are full search trees for F1 and FZ. The induction

hypothesis holds for these subtrees. Any answer substitution for F1 is a n answer

substitution for F, and similarly for F2 . Suppose Flo€Ans(F1). By the induction

hypothesis, Ifp[Fla] = t , so lfp[F a] = t . Also, Ifp[F a] = t if F 2 a € ~ n s (F 2) . Alterna-

tively, suppose Fl a EW~ and F2 a €%I. By the induction hypothesis,

Ifp[Fla] = Ifp[F2a] = f. So Ifp[Fo] = f.

The direct descendent of F is a full search tree for Fl with X renamed t o a new

unique variable. Any answer substitution for F1 is a n answer substitution for F.

Consider any substitution a such t h a t F a E (F @ C). If there is a ground term t

where F l (t) o ~ A n s (F 1) , the induction hypothesis provides Ifp[Fl(t)a] = t. Therefore,

Up[(=: F1)a] = t. On the other hand, suppose there is no ground term t where

Fl(t)a€Ans(F1). Then F l (t) a € 3 i for all ground terms t . By the induction

hypothesis, Ifp[Fl(t)a] = f for all ground terms t . Therefore, I f p [(= : FJa] = f.

The correctness theorem for finite full search trees expands t o general full

search trees, but must be weakened because of the possibility of infinite paths.

Theorem 5.6 (Correctness for General Full Search Trees): For any DEF-program

from B(A(II, C)) t h a t compiles successfully t o a DIF-program P, Ifp[Fu] = t for all

F uEAns(F).

Proof: Similar t o the correctness proof for finite full search trees, except induction is

now over the length of a success path.

5.8. Incompleteness of any Evaluation System for DEFs

There is no possibility of finding a complete execution system for DEF-

programs. T o prove this point, a program t h a t defines a non-r.e. relation is

presented. Any complete evaluation system would therefore accept a non-r.e.

language, which is not possible.

A configuration z q y of a Turing machine (TM) is a situation where the T M is

in s t a t e q, s tr ing z precedes the tape head, and string y follows the t ape head. The

transition relation c t m c l indicates t h a t TM m can move from configuration c t o

configuration c' in one step. The reflexive and transitive closure of the transition

relation c km * c' indicates t h a t TM m can proceed from configuration c t o

configuration c' in any number of steps (possibly zero). An initial configuration for a

TM m is qo w , where qo is m's initial s t a t e and w is the input string. An accepting

configuration for a TM m is x qf y , where qf is a n accepting (final) s t a t e and x and

y a re strings. A TM m accepts a string w if go w krn * x pf y , where go and qf are

m's initial and accepting states, respectively. A TM m accepts a language L if and

only if m accepts only the strings in L .

Consider the following DEFs taken from a DEF-program called NonRE:

% a c c e p t (M , C) : t r u e i f f TM M c a n accept f r o m c o n f i g u r a t i o n C .
accept (M, C) *

f i n a l (M,C) V (X I : t r a n s i t (C , M , C 1) /\ accept (M , C 1)) .

The DEF-program NonRE also contains definitions of predicates f i n a l and t r a n -

s i t . Informally, f i n a l (m , c) is t rue if c is a n accepting configuration for TM m ;

otherwise, f i n a l (m , c) is false. Also, t r a n s i t (c , m , c') is t rue if c krn c'; other-

wise, t r a n s i t (c , m , c') is false. When compiled, the DEF defining accept pro-

duces the following DIFs:

accept (M, C) +-
f i n a l (M,C) V (X I : t r a n s i t (C ,M,C1) A accept (M , C 1)) .

-accept (M, C) c
- f i n a l (M,C) /\ (t /C1 : t r a n s i t (C , M , C 1) + - a c c e p t (M , C 1)) .

Notice t h a t the second generated DIF above contains a universal quantifier. This is

essential in demonstrating incompleteness.

The following lemma demonstrates t h a t accept defines the intended relation:

Lemma 5.7: For any TM m and configuration c , a c c e p t (m , c) is fixedpoint-implied

by NonRE if a final configuration can be reached via the relation k, * from initial

configuration c ; otherwise, - a c c e p t (m , c) is fixedpoint-implied.

Proof:

There are two cases, depending on whether a final configuration can be reached.

(1) Suppose t h a t a final configuration can be reached by TM m from configuration c .

Either c is a n accepting configuration, or c k, c' and m can accept from c'.

(2) Suppose t h a t a final configuration cannot be reached by TM m from

configuration c . Then c is not a n accepting configuration and whenever c k, c', m

cannot accept from c'. Generally, this argument requires infinite transitions by m

and infinite closure ordinals.

This lemma will be used to demonstrate t h a t DEF-programs can describe non-

r.e. languages. As in [HU79], let < m > be the string encoding TM m . Consider the

following languages:

It has been shown [HU79] t h a t L,, is r.e. and not recursive, and L, is not r.e. T o

describe these languages, program NonRE is augmented with the following DEF:

% ne(W) : true if string W is a valid TM and L(W) nonempty;
% otherwise, false.
ne(W) o X : (3: initial(W,X,C)) /\ accept(W,C).

This DEF is compiled into the following DIFs:

ne(W) t 2: (3: initial(W,X,C)) /\ accept(W,C).
-ne (W) t VC: (2: initial (W, X, C)) + -accept (W, C) .

Again, note t h a t a generated DIF includes a universal quantifier, making complete-

ness of any evaluation procedure doubtful. Program NonRE also contains a

definition for i n i t i a l : i n i t i a l (w , x, c) is t rue if w = <m > is a valid encoding of

a TM and c = qox is an initial configuration for TM m ; otherwise, i n i t i a l (w , x , c)

is false.

As the next lemma demonstrates, this program describes both languages L,,

and L,.

Lemma 5.8 (N O ~ R E accepts L,):

(I) Any string w EL,, iff n e (w) is fixedpoint-implied by NonRE.

(2) Any string w EL, iff --ne(w) is fixedpoint-implied by NonRE.

Proof:

(1) <m>EL, , iff there is a n initial configuration c t h a t can reach a final

configuration for T M m . By the previous lemma, this holds iff a c c e p t (m , c) is

fixedpoint-implied by NonRE. Using the DEF defining ne, a c c e p t (m , c) is

fixedpoint-implied from the program iff n e (m) is fixedpoint-implied.

(2) < m > E L , iff there is no initial configuration capable of reaching a final

configuration. By Lemma 5.7 - a c c e p t (m , c) is fixedpoint-implied by NonRE for all

initial configurations c . Therefore, -ne(w) is fixedpoint-implied by NonRE. I3

Corollary 5.9: There is no complete evaluation system for DEF-programs.

To summarize, a DEF-program NonRE has been constructed t h a t describes a

non-r.e. language, L,. Any complete evaluation system for DEF-programs must be

capable of succeeding only for those queries -ne(w) on program NonRE where

w EL,. Such an evaluation system would therefore accept non-r.e. language L,. If

Church's Thesis is t o be believed, no evaluation system can accept a non-r.e.

language, so no evaluation system can be complete for DEF-programs.

How important is completeness of a n evaluation system? The most efficient

implementation of a n evaluation system for definite clause programs currently avail-

able is Prolog. Chapter 3 demonstrated t h a t Prolog's depth-first search is incom-

plete. Yet the evaluation system is still used. Evidently, concern for completeness is

subordinate t o concerns for efficiency and correctness. Finally, the alternative imple-

mentation of negation within logic programs, negation by failure, is also incomplete.

Despite this fact , negation by failure is used a s the predominant implementation of

negation in logic programming languages, primarily due t o i t s ease of implementa-

tion.

Chapter 6

Enhancements

A number of topics have been deferred in Chapter 5 for further exploration.

These topics fall under three main areas:

(1) Use of equality t o control the explosion of DEFs required t o satisfy the self-

coverage test .

(2) Incorporating type information within the self-coverage test .

(3) Permitt ing free variables in universally quantified queries.

6.1. Controlling Explosion of DEFs

Self-coverage of programs is necessary for correctness of the evaluation pro-

cedure (Section 5.4). A program is self-covering if there is a closed instance A * F

of a DEF for every ground a tom A in the program's Herbrand Base. This require-

ment can lead t o a n explosion in the number of DEFs in database-oriented and

polymorphic programs. The explosion is controlled by providing a n equality predi-

ca te within the evaluation system.

Evaluation of Equality

Definite clause programs can define equality of finite terms succinctly with the

following assertion:

% equal (X,Y) : true if X=Y.
equal (X,X) .

This succinctness cannot be at tained by DEF-programs t h a t are self-covering and

non-conflicting. Within a DEF-program from B(A(II, C)), the following groups of

DEFs a re needed t o define the equal predicate:

For all constants c EC:
equal (c, c) o true.

For all distinct constants c, d EC:
equal (c, d) o -true.

For all function symbols f EC:
equal (f (XI, . . . , Xn) , f(Y1, . . . , Yn)) o

equal (~ 1 . ~ 1) /\. . . /\equal (Xn,Yn) .
For all distinct function symbols f("), g (n) ~ C :

equal (f (XI, . . . , Xm) , g (Yl, . . . , Yn)) c+ -true.

(m) (n) F o r m # n a n d f ,f EX:
equal (f (XI, . . . , Xm) , f (Yl, . . . , Yn)) o -true.

With n constants in C, on the order of n n DEFs are required t o define equal.

Furthermore, any query Q = equal(x, y) will be evaluated far less efficiently using

the DEF-program than with the definite clause version. Evaluation of Q with the

definite clause program produces a full search tree consisting only of Q and i ts direct

descendent, the empty conjunction. Evaluation of Q with the DEF-program pro-

duces a tree proportional in size t o the number of subterms in Q. While unification

is performed only once in constructing the full search tree for the definite clause pro-

gram, the number of unifications for the DEF-program is proportional to the number

of subterms in Q.

Both the excessive number of DEFs and poor performance of the evaluation sys-

tem with the DEF-program argue for a special case of equality. Therefore, definition

of e q u a l is embodied within the evaluation system.

T o incorporate the definition of e q u a l , a binary function d q is defined return-

ing one of the three logical constants.

t if x and y are not unifiable

f if x and y are syntactically identical

u otherwise

This function is available t o the programmer as a system-defined predicate within

the Prolog-I1 system [Co82]. I t provides a correct implementation of inequality of

terms, distinct from non-unifiability. When dif(x, y) = t, terms x and y have no

common instances. On the other hand, dij(x, Y) = f , when there is no way t o

differentiate x and y. Finally, dij(x, y) = u when x and y have common instances,

but x and y are not equal; further instantiation of variables within x and y can

either equate or differentiate the terms. As a n example, dif(f (X, c) , f (b, c)) = u

because f (X, c) {~=b) = f (b, c) and f (X, c) { ~ = a) # f (b, c) .

With the e q u a l predicate implemented by the evaluation system, DEF-

programs cannot contain definitions for e q u a l . Evaluation of equality and inequal-

ity queries is through construction of full search trees, as follows:

Root node is e q u a l (x , y):

When x and y are unifiable, m is a variant of the mgci of x and y , and

x p = y p = m , then the following full search tree is well-formed:

When x and y are not unifiable, the full search tree consists only of the node

Root node is w e q u a 1 (x, y):

When dif(x, y) = t , then the following full search tree is well-formed:

When dif(x, y) = f, the full search tree consists only of the node - e q u a l (z , y) .

When dif(x, y) = u, x and y are unifiable but they are not equal. Consider the

query of Example 6.1, below:

Example 6.1

VX : - e q u a l (X, c) + - t r u e .

If - e q u a l (X, c) fails because X and c are unifiable, then Example 6.1 will

succeed. This is incorrect, since the query of Example 6.1 is logically equivalent t o

VX: equal (X, c) , which is false in any domain containing more than one element.

In fact d i f (~ , c) = u, so the evaluation system must abort further construction of the

full search tree for Example 6.1, due t o possible incorrectness.

Prolog-I1 permits delay in evaluation of dif queries until variables within the

query are instantiated t o ground values sufficiently for dif(x, y) # u. Delaying

queries is analogous t o use of a fair selection rule (see Section 3.2). There are still

instances, a s in Example 6.1, where the evaluation system must halt t o avoid a n

incorrect action.

Since dif(f (X) , f (X)) = f, the query - e q u a l (f (X) , f (X)) fails without

abnormal termination. This action is acceptable. For example, the query:

VX: - e q u a l (f (X) , f (X)) + - t r u e

succeeds and is true, because the query is equivalent t o the formula

V x : e q u a l (f (x) , f (X)) .

The evaluation system with equality enhancement is correct: When a query

e q u a l (x , y) succeeds, z and y are unifiable, so 3 (x = y). When a query

-equa l (x , y) succeeds, dif(z, y) = t, and V(x # y) implying t h a t 3 (x # Y).

Database-Oriented Programs

Provision of equality resolves problems in satisfying self-coverage and non-

conflict requirements for certain categories of DEF-programs. The explosion in the

number of DEFs for database-oriented programs occurs when defining base relations.

Definition of a base relation r(n) within a definite clause program is typically

achieved with assertions. There is usually one assertion r (c l , . . . , c,) for each tuple

(cl , . . . , c,) f r , where each ci is a constant.

A DEF-program defining base relation r contains either r(c l , . . . , c,)* true

if (c l , . . . , c,) € r , or r(c l , . . . , c,) *-true if (cl , . . . , c,) r . The resulting

DEF-program contains n lTW' DEFs.

Using the equal predicate, all of the DEFs defining a single base relation can

be reduced t o a single DEF whose length is approximately the size of the base rela-

tion. Suppose a base relation r'") contains t tuples:

. . , cl,n), . . t (~ t , l > . . . t ct,n)

The following DEF defines a corresponding predicate r:

In this scheme, the function symbol f is unique to the DEF.

As a n example, suppose base relation r contains the following tuples:

Representation of relation r within a definite clause program requires only the two

assertions:

Representation of relation r within a DEF-program, using the e q u a l predicate,

employs the following DEF:

r (X1,XZ) o
e q u a l (f (a , b) , f (X 1 , X Z)) V
e q u a l (f (c , d) , f (X l , X 2)) .

The following properties of this encoding are easily verified:

(cl, . . . , c ,) E r iff r (c l , . . . , c,) is fixedpoint-implied.

(cl, . . . , c,) 6 r iff -r(c1, . . . , c,) is fixedpoint-implied.

Reflecting on the evaluation of - e q u a l , i t is also clear t h a t any non-ground query

-r(xl, . . . ,x,) cannot produce a correct full search tree. Similarly, negation by

failure is incorrect for non-ground queries. But negation by failure requires all nega-

tive queries t o be ground, even for programs t h a t are not database-oriented.

Polymorphic Programs

Often in definite clause programs, predicates are defined for arbitrary d a t a

types. As an example, consider the definite clause program below:

% p r e f i x (L , P) : t r u e i f P is a p r e f i x o f l i s t L .
p r e f i x (L , n i l) +- t r u e .
prefix(cons(X,L),cons(X,P)) + p r e f i x (L , P) .

In this program any list whose first element is z and whose tai l is 1 is represented by

a term c o n s (x , 1). An empty list is denoted by the constant n i l . Using this pro-

gram, the query:

p re f ix (c o n s (c , cons (d , n i l)) , X)

has answers:

X = n i l ,
X = c o n s (c , n i l) ,
X = c o n s (c , c o n s (d, n i l)) .

This program is polymorphic because i t can be used for lists of integers, characters,

names, etc.

Use of polymorphism has the following benefits:

Succinct clauses:

The same group of clauses can be msed for different d a t a types, instead of hav-

ing different groups of clauses providing identical definitions for different d a t a

types.

Independence from change:

If d a t a types change in a clause tha t invokes a polymorphic predicate, i t may

be possible t o continue using the polymorphic predicate without change.

Adaptability:

Polymorphic predicates are applicable t o arbitrary d a t a types. So when new

d a t a types are used within a program, the polymorphic predicates can be

reused in new roles.

These benefits provide strong reason t o support polymorphism within DEF-

programs. However, self-coverage and non-conflict requirements on DEF-programs

make i t difficult t o provide polymorphism. For example, a possible self-covering

non-conflicting representation of the prefix program above within a DEF-program

is the following:

Example 6.2

% p r e f i x (L , P) : t r u e i f P is a p r e f i x of l is t L:

% otherwise , f a l s e .
p r e f i x (L , n i l) * t r u e .
p r e f i x (n i 1 , cons (Y, P)) o -true.
p r e f i x (cons (X , L) , cons (Y,P)) *

(eqNats (X, Y) V eqChars (X , Y) V eqNames (X, Y))
/\ p r e f i x (L,P) .

The self-coverage and non-conflict requirements force use of distinct equality tests

for each d a t a type t h a t can constitute a list.

Example 6.2 is not polymorphic, as it is specialized only t o lists of natura l

numbers, lists of characters, and lists of names; however, i t suggests t h a t use of the

equal predicate can restore polymorphism, since equal is defined over arbitrary

d a t a types. Thus, the third DEF of Example 6.2 can be replaced by the following

DEF, at taining polymorphism for the p r e f i x predicate:

p r e f i x (cons (X , L) , cons (Y, P)) *
equal (X , Y) /\ p r e f i x (L, P) .

In fact this technique is general. To satisfy self-coverage and non-conflict,

heads of DEFs do not contain multiple occurrences of any single variable. Without

multiple occurrences of variables in heads of DEFs, equality testing cannot be

achieved in a polymorphic manner. The equal predicate provides for polymorphic

equality testing. Since evaluation of a n equal query is just a s efficient as testing

for unifiability, use of the equal predicate does not compromise efficiency of the

evaluation system.

Summary

Evaluation of a n equal predicate has been described. I t s definition is embo-

died within the evaluation system for DIF-programs, providing conciseness and

efficiency. Evaluation of equal queries may abort t o avoid any possible incorrect-

ness. The equal predicate has applications within database-oriented and

polymorphic programs, increasing the range of programs t h a t can practically use

constructive negation. Programs utilizing d a t a types also require special accommo-

dation for practical use of constructive negation.

6.2. Incorporating Type Information for Self-coverage

I t is proper to invoke certain predicates with only certain types of arguments.

For example, suppose a predicate length([, n) is true if the length of list 1 is

number n . Arguments other than a list and a number a re improper. By extension

--length is properly invoked only with terms denoting a list and integer. For

example, i t is proper t o query:

-length (cons (a, cons (b, ni 1)) ,0) ,

and i t is improper t o query -length (0, nil) .

A type of a DEF-program is a subset of i ts function symbols. All types of a pro-

gram must be disjoint. For example, suppose a program consists only of the follow-

ing DEFs:

Example 6.3

% length(L, N) : true if list L has length N:
% otherwise, false.
length (nil, 0) o true.
length (nil, s (N)) * -true.
length (cons (X, L) , 0) c* -true.
length (cons (X, L) , s (N)) * length (L, N) .

The function symbols are:

(2) C, = {o"), s"), nil"), cons 1.
One partition of Co is no:

lists = {cons, nil)
nats = {s, 01.

Suppose a DEF-program is from B(A(II, C)), and n is a partition of C. A predi-

cate type assignment under n is an assignment of a list of types from n t o each predi-

ca te symbol in II. For example:

TP,Jlength) = [lists, nats]

Similarly, a function type assignment under n is an assignment of a list of types from

n t o each function symbol in C. For example:

TF,$s) = [nats]

TF, (nil) = [I
0

TF (cons) = [nats, lists]
=o

Finally, a variable type assignment under n is a n assignment t o each variable in 'Y'

either a type from A or the empty type 0. When a variable type assignment maps a

variable t o the empty type, the variable's type is unassigned. T h e distinguished type

assignment TY maps every variable t o 0. Usually TP,, TF, and TV, will denote

predicate, function and variable type assignments, respectively, under type partition

T. When T is understood from context, i t will be omitted.

The following algorithm determines if various syntactic par ts of a DEF-

program are well-typed. The algorithm is "top-down" so t h a t variable type assign-

ments can differentiate between different binding scopes.

(1) A DEF-program is well-typed by (T P , T F) if every DEF in the program is well-

typed by (T P , TF).

(2) A DEF A o F is well-typed by (T P , T F) if V(A o F) is well-typed by

(T P , T F , Z) .

(3) A quantified formula VX: F or 3.Y: F is well-typed by (T P , TF, TV) if T con-

tains a type T and F is well-typed by (T P , T F , TV'), where:

(4) Any formula F o G , F -+ G , F /\ G , F V G , or -F is well-typed by

(T P , T F , TV) if F and G are both well-typed by (T P , T F , TV).

(5) Every proposition p is well-typed.

(6) Any atom p(xl, . . . , x,) (n 2 1) is well-typed by (T P , T F , TV) if:

T P (~ (")) = [rl, . . . , r,], and each xi (1 5 i 5 n) is assigned T, by (T P , TF, TV).

(7) Any constant c E T is assigned type T.

(8) Any term f (xl, . . . , z,) (n 2 1) is assigned type T by (TP , TF, T V) if:

j €7, and

TF(/ ("I) = [T ~ , . . . 7 r n ,] and

each xi (l s i s n) is assigned ri by (T P , TF, TV).

(9) Any variable X is assigned type T by (TP , TF, T V) if T V (X) = r.

As a n example, suppose TV (N) = n a t s . Then the following observations
,o

hold:

N is assigned type n a t s by (TP rO1 TF no, TV). hence, s (N) is assigned type
,o

n a t s by (TPTo1 TFy TV,);

n i l is assigned type l i s t s ; hence, l e n g t h (n i l , s (N)) is well-typed by

(TPro1 TF,$ TV,);

t r u e is well-typed by (TPV TF,$ TV,,); hence:

.-true is well-typed by (T P y TFTd TV,,);

l e n g t h (n i l , s (N)) cr - t rue is well-typed by (TProl TFy TV,);

DEF l e n g t h (n i 1, s (N)) cr -true is well-typed by (TP TF). "0, "0

In fact the program of Example 6.3 is well-typed by (TP,$ TF,,).

Systems t o infer a minimal type partition and type assignment for a given

definite clause program have been suggested [Mi84,MK84]. I t is not difficult to

extend these systems t o DEF-programs.

Unless the self-coverage test is modified to observe type restrictions, well-typed

programs will not be self-covering. Example 6.3 is not self-covering, because (among

others) length (0, nil) is not a ground instance of the head of any DEF in the

program.

A DEF-program well-typed by (T P , T F) is self-covering for (T P , T F) if there is

a closed instance A c* F of a DEF in the program for every ground a tom A well-

typed by (T P , T F , n) . Under this refined criterion, the length program is self-

covering for type assignments (T P T F S .
"d

The self-coverage test is similarly altered. Suppose a DEF-program is well-

typed by (T P , TF). Define T (T F , T) t o be the set of all ground terms assigned type

T. For example, T (T F l i s t s) contains among other elements:
*ol

ni 1,
cons (0, nil) ,
cons (s (0) , cons (0, nil)) .

Similarly, let A (T P , T F) be the set of all ground a toms well-typed by (T P , TF,I IY) .

Thus, if T P (p) = [T ~ , . . . , T,], then p(xl, . . . , z ,) E A (T P , T F) if and only if each

xi E T (T F , 7;). For example, length (cons (0, ni 1) , 0) is a member of

A (TP,: TF,).

Recall t h a t mp is the maximum nesting depth of heads of all DEFs defining

predicate p (Section 5.4). Also, if S is a set of atoms, S% d is the subset of S con-

sisting of only those a toms with nesting depth a t most d . A predicate p occurring in

a program satisfies the self-coverage test with respect t o type assignments (T P , TF)

if:

(1) All DEFs defining p are well-typed by (T P , TF) and

(2) There is a closed instance p (x l , . . . , x ,) c* F of a DEF for every atom

p (x l , . . . , x ,)EA(TP, TF)%(mp + I) .

Under this new criterion, Example 6.3 satisfies the self-coverage test with respect t o

type assignments (T P T F ,) With an argument similar t o Lemma 5.4, i t can be
"0'

shown t h a t if a program P is well-typed by type assignment TA = (T P , TF) , then P

satisfies the self-coverage test with respect t o TA if and only if P is self-covering.

Correctness of the evaluation procedure for well-typed programs follows automati-

cally.

Utilizing typed programs can aid in writing programs t h a t perform a s intended

[MI<84]. Accommodating typed DEF-programs mandates a simple revision t o the

self-coverage test . Typed programs also reduce the number of DEFs needed t o

satisfy self-coverage.

6.3. Enhancing Evaluation of Universal Quantification

The implementation of universally quantified queries within the evaluation sys-

tem (Section 5.3) left several issues outstanding. Correctness of the procedure

(Theorem 5.5) relied on use of term-matching within the filter for every generated

term. Implementing term-matching efficiently within a logic programming evalua-

tion system is straightforward. Also, the correctness proof for the evaluation pro-

cedure makes the assumption t h a t every universally quantified query is closed. Per-

mitting free variables within universally quantified queries increases the flexibility of

the evaluation procedure. Queries t h a t could flounder under a correct implementa-

tion of negation by failure can be efficiently evaluated with the evaluation procedure

for DEF-programs.

6.3.1. Term-Matching

In Section 5.4, term-matching was required t o ensure correctness of certain

universally quantified queries. While unifiability of terms s and t determines if a n

mgci s n t exists, te rm s matches term t if [s] 5 [t] (Section 2.3). The evaluation sys-

tem already has a unification component. As suggested in [Dw84] , term-matching is

a special case of unification. Matching term s against term t is achieved by unifying

terms s and t', where t' is a ground instance of t with every variable of t se t t o a

unique constant.

Instead of binding every variable in a term to a unique constant before

at tempting term matching, an actual implementation could associate a t a g with

each variable. The t a g is set if the variable should not be further instantiated. The

unification procedure must be revised t o check the t a g of a variable whenever a n

a t t empt is made to set a variable t o a value. If a variable is tagged and unification

a t t empts t o set the variable equal t o another untagged variable, the untagged

variable should be set equal t o the tagged variable. If a variable is tagged and the

variable will be set equal t o a non-variable term or another tagged variable,

unification should fail.

When term-matching is incorporated within the procedure for evaluating

universally quantified queries, all variables occurring within a generat,ed term will be

tagged. Any a t t empt by the filter t o further instantiate a generated value should

terminate abnormally, in order t o notify the user of a n incorrect condition. Consider

Example 5.3 reproduced below:

p (X) o t r u e .
q (a) * t r u e .
q (b) * - t r u e .

The generator p (X) of the query VX: p (X) --+q (X) produces a tagged value X.

The evaluation procedure then produces a query q (X) . Any a t t empt to further

instantiate X will meet with failure, eliminating the possibility of incorrectness

caused by overly-general generated values.

Implementation of term-matching requires checking a variable's t a g any time i t

is t o be set t o a value, and a n initial sweep through every generated value tagging

all variables. T a g checking of terms during unification is performed anyway, for

other purposes. Term-matching can also be used when free variables a re included

within universally quantified queries, a s described in the next section.

Term-matching has not yet been implemented within a logic programming

evaluation system. In i t s absence, correctness is assured by generating only ground

values. Ground terms can be generated with a type predicate such as h u , a s

described in Section 5.4. The NU-Prolog system [TZ87] is capable of delaying

evaluation of queries until certain variables are instantiated t o ground values.

6.3.2. Free Variables in Universally Quantified Queries

The correctness proof of the evaluation system for DEF-programs (Theorem 5.5)

makes the assumption t h a t free variables do not occur within universally quantified

queries. This section will discuss how this restriction can be weakened while retain-

ing correctness of the evaluation procedure.

Free Variables in Only the Generator or the Tester

In fact the evaluation procedure and proof accommodates free variables within

the tester of a universally quantified query. Consider the program below:

p (a) * true.
p (b) * true.

q (a , l) * true.
q (b , l) * true.

The query VX : p (X) -+q (X, Y) contains the free variable Y. The answers

obtained from the generator are X=a and X=b. The evaluation procedure then

creates the conjunction q (a, Y) /\q (b , Y) . Evaluation of the conjunction produces

a n answer Y=l t o the full query.

Extended programs (Section 3.4.1) cannot correctly evaluate query VX:

p (X) -+q (X, Y) . The extended query produces the general clause:

aux (Y) t p (X) /\ no t q (X, Y) .

and query n o t aux (Y) . Since negation by failure is incorrect for negated queries

containing free variables, this query will flounder. As just demonstrated, under con-

structive negation the query can be evaluated.

Thus, when free variables occur only in the tester of a universally quantified

query, the evaluation procedure can correctly produce answer substitutions for these

variables. When free variables occur only within the generator G of a query

VX: G + F , the query can be rewritten t o VX: F + G without changing the query's

meaning. Now variables occur only within the tester, and the evaluation procedure

can proceed correctly.

Free Variables in both Generator and Tester

Free variables occurring within both the generator and tester of a universally

quantified query pose the greatest challenge to the evaluation procedure. Univer-

sally quantified queries are transformed t o instantiate free variables occurring within

generators prior t o evaluation. Following the transformation, if free variables

remain, term-matching can ensure t h a t they a re not instantiated within the univer-

sally quantified formula. This transformation scheme has also been proposed for

negation by failure [D87].

The following identity is used t o rewrite the original universally quantified

query:

I [VX: G + F] = I[{(%: G) /\(VX: G + F)) V {(s: F) /\ --(%: G))].

This identity holds for any interpretation I such t h a t I [G a] # u for every closed

instance G o of G , which holds whenever VX: G -+ F terminates. If the identity

does not hold, evaluation will not terminate in any case.

The second disjunct (X : G) A - (X : G) can be evaluated with negation by

failure. The query not G succeeds with negation by failure if G has a finitely failed

full search tree. By Theorem 5.5, if a query 3.X: G has a finitely failed full search

tree, -3X: G is fixedpoint-implied by the program. Consequently, when not ZY: G

succeeds with negation by failure, w3.X: G is fixedpoint-implied. The second disjunct

can therefore be rewritten t o [(%: G) / \ (n o t 3X:G)l.

As a n illustration of the transformation, consider the query

-mult (s (0) , J, K) with the program fragment of Example 5.1, repeated here:

% mult (I, J, K) : true if IXJ=K; otherwise, false.
mult(O,J,O) * true.
mult(O,J,s(K)) * -true.
mult (s (I) , J, K) * 3: mult (I, J,X) /\ add (X, J, K) .

The evaluation procedure produces the subquery:

VX: mult (0 , J, X) 4 -add (X, J , K)

The following new subquery results from the transformation:

(1) [(%:mult (0 , J,X)) /\ (vX:mult (0, J,X) --+ w a d d (X , J,K))] V
(2) ~(3:-mult (0, J,X)) A (not 3:mult (0, J,X))].

In solving disjunct (1) of this query, i ts first conjunct 3X:mult (0, J, X) is t rue

for X=O without further instantiating J. With a term-matching implementation,

variable J is tagged indicating no further instantiation can occur. Without term-

matching, when the universally quantified subquery is entered, presence of a non-

ground free variable should bring the evaluation promdwre t o db'11orma1 termination.

Termination avoids incorrect full search tree constructlikm. E r n h a t i o n of the univer-

sal quantifier in disjunct (1) produces the subquery --a&d,(O, 3 ,K) .

In solving disjunct (2) of this query, i t s first conj ,m~~f 3t: -.nn~ll t (0, J, X) is

t rue for X=s (X ') without further instantiating J. Agam, the vm-iable J should be

tagged t o prevent further instantiation. Negation by lbdrmre is x m used for the

query n o t mu1 t (0, J, X) . The query correctly fa& dlue em ttb comt,~adictory value

0 for X. So disjunct (2) produces n o answers to the cAdgina1 query.

Functional Generators

Frequently, a universally quantified variable is functimdIy determined by the

generator of i ts universally quantified formula. This occurs ia &le 5.1, repeated

in the previous section. This program eonhim the DF3:

mult(s(I),J,K) *
3: mult (I, J,X) da\ add(X, J,K).

The associated object program then contains the DIF:

~ m u l t (s (I), J,K) t m: mult (I, J,X) -+ ~ a d d (X , J,K).

Given values i and j, mult(i, j , X) yields exactly one value for X, because mult

behaves a s a to ta l function. Therefore, the universal quantifier can be replaced by

a n existential quantifier, and the DIF:

is equivalent t o the previous DIF

A functionally-determined quantifier Biis used within DEF-programs t o mean

t h a t a predicate such a s mult behaves a s a aotal function. A formula containing

the functionally-determined quantilier ELX: F,l\ G is a n abbreviation for the formula

(3!X: F) +(X: F A G). Within this definitikm, 3X: F abbreviates

X : (F n (V Y : F (Y) +X = Y)): "there errism za; unique X satisfying F."

Functionally-determined formulas are a l w a p &namded, itontaining a conjunction of

formulas. The DEF defining mult can be ;IF?-written with a functionally-determined

quantifier as:

mult (s (I), J, K) *
EX : mult (I, J , X) C?%, add (X,,J,, K) .

Use of the functionally-determined q u d a f i e r within a program may arise from

syntactic analysis or semantic k~xm~M,ge 'plmxessed by 8, programmer. I t is undecid-

able in general if a predicate behaves as a & . a 1 function. Certain classes of pro-

grams, such as primitive recursive program, always defiae predicates t o be to ta l

functions. If a programmer's semantic knowledge is erroneous, compilation will no

longer preserve meaning.

The complement of a funct3mally d e t e ~ m i n e d formula is defined t o be:

a x E i X =BX:F/\G

If there is exactly one value zo such t h a t F(xo) is fixedpoint-implied, then the com-

plement is logically equivalent to negation.

Lemma 8.1 (Complement of Functionally-Determined Formula Equivalent to Nega-

tion): For any interpretation I and closed formula EK: F A G , if I[3!X: F] = t, then

I[-EK: F A GI = I [W : F A-GI.

Proof: The proof first demonstrates t h a t if I[3!X: F] = t, then I [F (x)] # u for all x .

Suppose t h a t IIF(xo)] = t. Then I [3 !X:F] = t implies I [F(x)+x =xo] = t for all

terms x. Since I [x =so] = f for all terms x # xo, I [F (x)] = f.

For the main pa r t of the proof, note that :

I[--EK: F A G] = 1 [(3 X : F) / \ (V X : F + - G)]

= I [VX: F + - GI , because I [3 X : F] = t.

As above, suppose IIF(xo)] = t, and hence, I [F (x)] = f for all x # xo.

I [v x : F +--GI = I[(F 4 --G)(xo)] A (l \{I[(F + -G)(x)] 1 x # xO))

= I[(--G)(x,)l

= A --G)(xo)l V (V { I [(f A--G)(x) I x # 2,))

= I[(F A-G)(xO)l V (V { I [(F A - G) (x)] I x z xO))

= I [X : F A - G]

= I [W : F /\--GI, because I [3!X: F] = t.

As a result, if EK: F G is a closed formula and 3!X: F is fixedpoint-implied,

then T G is logically equivalent to -BY: F A G in a11 fixedpoints. Definition

of the complement form of functionally-determined formulas enables compilation of

these formulas. For example, the DEF below:

compiles t o the dual DIFs:

mult (s (I), J, K) t &: mult (I, J,X) /\ add (X, J, K) .
-mult(s(I),J,K) t &: mult(I,J,X) /\ --add(X,J,K).

A functionally-determined formula ELY: F /\ G is equivalent to a n existentially

quantified formula 3X: F /\ G along with a uniqueness hypothesis. Therefore,

evaluation of a functionally-determined formula is identical t o evaluation of a n

existentially quantified formula: ELY: F /\ G is evaluated with the same procedure a s

= : F A G .

Use of the functionally-determined quantifier eliminates occurrences of universal

quantification within compiled DIF-programs. Hence, the appearance of free vari-

ables within universally quantified formulas are also limited. For example, the origi-

nal DIF defining -mult contained a universal quantifier, so a query such a s

--mult (s (s (0)) , J, K) produces a universally quantified query with a free vari-

able in i t s generator. When mult is defined with a functionally-determined

quantifier, this query can be evaluated, returning answers:

{J=o, K=o),

{J=S (0) , K=s (s (0))),
{J=S (s (0)) , K=s (s (s (s (0))))), etc.

Summary

The presence of free variables within universally quantified queries can be han-

dled in a number of ways. If free variables occur only in the tester, the evaluation

procedure will produce correct values for the free variables. If the free variables

occur only in the generator, the contrapositive form of the query brings the free vari-

ables into the tester, where correct values can be obtained. If the free variables

occur both in the tester and generator, the query can be altered t o instantiate free

variables prior t o evaluation of the universally quantified query. Any a t tempt t o

further instantiate the free variables within evaluation of the universally quantified

query should result in abnormal termination. Finally, the number of universal

quantifiers in a program can sometimes be reduced drastically by using a function-

ally determined quantifier.

6.4. Summarizing the Enhancements

The topics of this chapter have involved practical implementation and coding

issues. Satisfying the self-coverage and non-conflict requirements can lead t o a n

explosion in the number of DEFs. The explosion occurs especially for database-

oriented and polymorphic programs. An equality predicate resolves concerns about

database-oriented and polymorphic programs. Self-coverage is also generalized t o

accommodate d a t a types. Introduction of the equality predicate and the enhance-

ment t o self-coverage broadens the scope of applications for DEF-programs.

Correctness of universally quantified queries depends on the absence of free

variables (Theorem 5.5). Strategies for evaluating universally quantified queries with

free variables have been developed. Finally, a functionally-determined quantifier

reduces occurrences of universal quantifiers, thereby reducing the number of univer-

sally quantified queries containing free variables.

Chapter 7

Implementation Through Meta-Programming

This chapter will discuss actual implementation of the evaluation system for

DEF-programs. A sample DEF-program is contained in Appendix C. This implemen-

tat ion includes:

(1) Disambiguation of variables by scoping.

(2) Typechecking.

(3) Overlap-checking.

(4) Self-coverage testing.

(5) Generation of dual DIFs from every DEF.

(6) Evaluation of queries on object DIF-programs.

The implementation was performed entirely in GPro log [P85]. Prolog has

many facilities for self-reference, providing a n excellent prototyping environment,

and the pattern-matching facilities of Prolog are also useful in the implementation,

especially for typechecking and obtaining the complement of formulas.

The Prolog program fragments presented in this chapter obey the syntax con-

ventions required by C-Prolog. In particular, clauses a re written as Ao:-

A1, . . . , A , where the Ai are all atomic formulas. This clause is equivalent t o a

clause of the form A . + A l /\ . . . /\A, in the notation of this dissertation. The

different notation will be helpful in differentiating the Prolog program from formulas

t h a t are t o be compiled or evaluated.

All logical connectives, except equivalence (*) and implication (t), are

treated within Prolog as uninterpreted function symbols. All of the predicate sym-

bols present in DEF-programs are also treated as uninterpreted function symbols.

The equivalence and implication connectives are treated as uninterpreted predicate

symbols. For example, a DEF:

p r i m e (P) *
vx: (I t (s (0) , x) /\lt (x , P)) -+ ~ d i v p (X , P)

is treated as the assertion:

w (p r i m e (P) ,
v (X , -+ (/\ (l t (s (0) . X) , I t (X, P)) . (d i v p (X. P)))

When necessary, the more readable infix form of the logical connectives will appear

within program fragments.

7.1. Compilation of DEF-Programs

Compilation involves a number of steps. Variables produced in different scopes

are disambiguated first. Next, the overlap test is performed t o eliminate fixedpoint-

inconsistent DEF-programs. The DEF-program is then typechecked. The self-

coverage test is performed next, ensuring correctness of the evaluation system.

Finally, dual DIFs are generated from each DEF in a program.

7.1.1. Variable Disambiguation

Disambiguation of variables is necessary when using C-Prolog, because this

language has no facility for variable scoping. For example, if the first conjunct

3 :p (X) of:

(*:P(X)) A (3:q(X))

succeeds during query evaluation, the answer for X will be incorrectly passed t o the

second conjunct, 3: q (X) (Section 5.3). This possibility is eliminated by introduc-

ing a new quantified variable for each new scope. Disambiguation creates the for-

mula:

(31 :P (XI) A (3 2 : q (X2)

for the preceding formula. Disambiguating nested scopes requires disambiguating

sub-formulas first, and then generating a new variable in the outermost scope.

NU-Prolog [TZ87] has variable scoping, thus requiring no variable disambigua-

tion.

7.1.2. Overlap Checking

Section 5.1 introduced the overlap test , ensuring fixedpoint-consistency (Lemma

5.2). The test fails if there are distinct DEFs A o F and A'c+F1 such t h a t A and

A' unify. This test is achieved with the following definite clause:

% overlap: true if there are distinct DEFs A*F and A'c+F1

% such that A and A' unify.
overlap :-

A*F1,
A*F2,
distinct (F1,FZ) .

The predicate distinct(F1, F 2) determines if formulas F1 and F 2 are syntacti-

cally distinct.

7.1.3. Typechecking

Types are assigned t o function symbols and predicates appearing in the DEF-

program. The type assignments are declared as assertions within a DEF-program.

A declaration f : [T~, . . . , T,] + T indicates t h a t function symbol f is a member of

type r, and i t s arguments 1, . . . , n are of types rl, . . . ,T,. Similarly, for predicate

symbols the declaration p: [rl, . . . , T,] indicates the argument types. Type parti-

tions of programs are not declared; however, the programmer must ensure t h a t every

function symbol appearing within a program is a member of a type. The type

declarations are viewed by the C-Prolog system as assertions defining a binary infix

predicate ":". For example, the declaration s: [nats] -+nats is actually an asser-

tion : (s, [nats] -+nats) . Again, the readable form will be used.

Typechecking terms utilizes a typecheckTerm predicate t h a t is true of argu-

ments z and T if term z can be assigned type r. If z is a variable, z is instantiated

t o 7 ensuring tha t each occurrence of a variable is assigned only one type. If

z = f (zl, . . . , z,) (n 2 O), typecheckTerm obtains a type assignment

f : [rl, . . . , r,] --+ T from the program, and typecheckTerm is recursively invoked

to assign type ri t o subterm zi for all 1 5 i 5 n.

As a n example, consider the type declarations below:

0 : [I-+nats.
s : [nats] +nats .
nil: []+lists.
cons: [nats, lists] +lists.

The term cons (0, X) is successfully assigned type 1 ists by typecheckTerm

using the following informal derivation:

typecheckTerm (cons (0, X) , lists) is t rue if:

typecheckTerm (0, nats) and typecheckTerm (X, 1 ists) are true.

typecheckTerm (0 , nats) is true.

typecheckTerm (X, lists) is t rue with X instantiated t o lists.

The following unsuccessful derivation demonstrates t h a t typecheckTerm cannot

assign type lists t o term cons (X, X) :

typecheckTerm (cons (X, X) , lists) is t rue if:

typecheckTerm (X, nats) and typecheckTerm (X, 1 ists) are true.

typecheckTerm (X, nats) is t rue with X instantiated t o nats.

typecheckTerm (X, lists) is not t rue because X has been previously

instantiated t o nats and cannot be instantiated to lists.

Instantiation of variables t o type names by the typecheckTerm predicate is

correct only if type names are distinct from function symbols.

The predicate typecheckpred is t rue of a n atomic formula A if A is well-

typed. When A = p(zl , . . . , z,) (n >0), typecheckpred obtains a type

assignment p: [T ~ , . . . , T,] and typechecks the subterms by invoking

typecheckTerm(xi, T ~) for all 1 < e' 5 n . For example, suppose the predicate

length is declared t o have the following type:

length: [lists,nats].

Then typecheckpred (length (cons (X, L) , s (N))) is t rue if:

typecheckTerm (cons (X, L) , lists) and

typecheckTerm (s (N) , nats) are true.

These subqueries are true with variables instantiated a s follows:

X = nats, L = lists, N = nats.

The predicate typecheckFormula determines if a formula is well-typed by

recursively determining if each non-atomic subformula is well-typed; atomic formulas

are well-typed using the typecheckpred predicate. Disambiguation of variables

is important for this task, since variables are instantiated t o type names. Consider

the well-typed formula:

(3: length (nil, X)) /\ (a: length (X, 0)) .

The typecheckFormula predicate instantiates X in the first conjunct to nats

and in the second conjunct to 1 ists. Without explicit disambiguation, typecheck-

ing would fail for the formula above.

7.1.4. Self-coverage Testing

The test for self-coverage makes use of the type declarations. For prototyping

purposes, the self-coverage test is slightly simplified from the test specified in Section

5.4. A maximum depth dm,, is determined for all heads of DEFs, and is computed

using system predicates. Then all well-typed ground a toms with depth at most

d,,,+l are generated non-deterministically. Prolog is again a good language choice

for this task. Every generated atom must match the head of some DEF in the pro-

gram for the self-coverage test t o succeed.

T o generate all well-typed ground atoms p(xl, . . . , z,) of maximum depth

d,,,+l, the type declaration of predicate p, p : [r1, - . - , T,], is obtained. All well-

typed ground terms x l . . . x, of maximum depih dm,, are then generated from types

T o generate all well-typed ground terms of type T and maximum depth d , each

type declaration j : [T,, . . . , T,] -+ T for type T is obtained. Recursively, all well-typed

ground terms x, . . - x, of types r1 . . T, and maximum depth d -1 are generated.

These are combined t o form a term f (xl, . . . , x,) whose maximum depth is d . In

the basis case, all constants c with t y p declarations c : [I -+ T produce all terms of

nesting depth 0 and type T.

7.1.5. Generating Dual DIFs

When a DEF-program has passed all tests, an object DIF-program can be gen-

erated. Two tasks are performed. Negation applied t o non-atomic formulas is

moved inward. And the dual DIFs A c F and t F are generated from each DEF

A * F .

Negation is moved inward by computing the complement of non-atomic formu-

las. In the process, only bounded universal and existential quantifiers, of the form

VX: G --+ F and 3X: F /\ G, are generated. Since negation of a formula is equivalent

t o i t s complement (Lemma 4.8), this transformation is meaning-preserving.

The predicate comp f ormul a(F, CF) is t rue if formula F has complement CF

in negation-innermost form. The definition of this predicate is taken almost directly

from the rules for producing the complement. Symbolic manipulation capabilities of

Prolog make this especially easy. Some of the clauses defining compformula are:

compformula(~(~l,~2) , V (C F ~ , C F ~)) : -
compf ormula (Fl, CFl) , compformula (~ 2 , C F ~) .

compformula(~(~,/\(~1.~2)) .V(X,-+(FltCF2)) :-
compf ormula (F2, CF2) .

The compformula predicate is used within the following clause t o generate

dual DIFs:

% compile(Fl,F2,F3) : true if F2 and F3 are dual DEFs
% for the DEF F1.
compi le (Ac*F, A t F , wAcCE) : -

comp f ormul a (F , CF) .

7.2. Evaluating Queries

Queries can now be evaluated against compiled DIF-programs. Evaluation is

based on enhancements t o the usual implementation of SLD-resolution through

meta-programming [SB86]. The usual implementation contains the following

definitions of a predicate sld:

% s l d (Q) : t r u e i f query Q succeeds through S L D - r e s o l u t i o n .
s l d (t r u e) .
s l d (Q l A Q 2) : - s l d (Q l) , s l d (Q 2) .
s l d (A) : - clause (A , Q) , s l d (Q) . % A is an a t o m .

The system predicate c lause obtains an instance of a clause from the program

whose head unifies with the first argument. The enhancements t o this program

cover the additional logical connectives, and obtain instances of DIFs from assertions

defining the t predicate.

% s l d (Q) : t r u e i f query Q succeeds through S L D - r e s o l u t i o n .
s l d (true) .
s l d (e q u a l (X , X)) .
s l d (- e q u a l (X , Y)) : - d i f (X , Y) .
s l d (Q l / \ Q 2) : - s l d (Q l) , s l d (Q 2) .
s l d (Q ~ V Q ~) : - s i d (QI) .
s l d (Q l V Q 2) : - s l d (Q 2) .
s l d (3 : Q) :- s l d (Q) .
s l d (6 X : Q) :- s l d (Q) .
s l d (L) : - L t Q , s l d (Q) . % L i s a l i t e r a l .

The system-defined predicate d i f implements the d i j function described in Section

Evaluation of the universal quantifier has various cases depending on

occurrences of free variables in the generator and tester. In the first case, the gen-

era tor is a closed formula.

s l d (VX:G+E) : -
c losed (VX: G) ,
f o r a l l (V X : G + F) .

where f o r a l 1 is defined with the following clause:

forall (VX:G+F) : -
bagof (F,sld(G) ,Bag),
makecon j (Bag, Conj) ,
sld (Conj) .

Upon evaluation of a query forall(\c/X: G ++.E), the following steps are taken:

(1) T h e variable Bag is instantiated t o a I d , [[F al, . . . , F a ,] composed of

instances of F such t h a t each ai is an awnwer substitution for sld(G).

(2) Given an instantiation for Bag, v a r i a k Conj is instantiated t o the conjunc-

tion F a l I \ . . - A F c Y , .

(3) sld is invoked recursively on query C m j . .

If free variables occur in the tester, but not k, $he generator, these two formulas can

be swapped within the implication:

sld(vX:G+F) :-
open (VX : G) ,
closed (vX:F) ,
compformula (G, CG) ,
compf ormula (F, CF) ,
forall (vX:CF-bCG) .

In this clause, the predicate open(F) is true ui Tormula F contains free variables.

Finally, if free variables occur both in tfBT, generator and tester, a new query

t h a t a t tempts t o instantiate the free v a r i a b b is created. This query makes use of

negation by failure.

sld(VX:G+F) :-
open (VX : G) ,
open (VX : F) ,
disambiguate (%:G, GI) ,
sld (Gl) ,
sld (VX:G+F) .

sld (VX: G-+F) : -
open (VX: G) ,
open (VX: E) ,
compf ormula (G, CG) ,
disambiguate (3: CG, C G ~) ,
sld (CG1) ,
not sld (G) .

These clauses make use of the predicate disambiguate(F1, F 2) which disambigu-

a tes variable scoping in formula F1, creating a formula F2 with distinct names for

variables in different scopes. Because C-Prolog does not utilize a correct selection

rule for negation by failure, incorrectness may result from use of the last clause

above. When this deficiency is corrected in the C-Prolog system, the full implemen-

tat ion will be correct.

The clauses defining sld are evaluated with SLD-resolution in conjunction

with the encoding of a DIF-program. For example, using the program of Appendix

C, this implementation produces the following results:

?- s l d (-d ivp(Ans ,s (s (s (O))))) .
Ans = 0;

Ans = s (s (0)) ;

= s (s (s (s (0)))) ;

Ans = s (s (s (s (s (0)))

7 - s l d (wdivp (s (0) , s (s (s (0))))) .
n o

In this example, one answer substitution is produced a t a time by the C-Prolog sys-

tem; a n additional answer is obtained by typing a semi-colon. The first query would

continue t o enumerate all representations of natural numbers greater than 3. The

second query returned no indicating finite failure.

7.3. Summary

Compilation and the ac tual implementation of the evaluation system have been

described. The implementation uses C-Prolog. The main shortcoming in using C-

Prolog is t h a t variables must be disambiguated. I t s advantages include pattern-

matching, self-reference, and non-determinism. These facilities were used extensively

in typechecking, overlap-checking, self-coverage testing, and generation of dual DIFs.

Since the evaluation system for DIF-programs is similar to SLD-resolution, imple-

mentation of the evaluation system was also eased.

Chapter 8

Summary and Future Work

8.1. Summary

This dissertation proposes a n enhancement, called constructive negation, t o the

expressiveness of logic programming languages. The enhancement is based on for-

malizing the ad hoc methods of defining negative a s well a s positive facts. A three-

valued logic is required, because some facts will inevitably be assigned neither true

nor false.

Fixedpoints are chosen a s the underlying model of DIF-programs. Certain pro-

grams a re fixedpoint-inconsistent: no fixedpoints exist. Fixedpoint-consistency is

undecidable and efficient evaluation systems cannot detect fixedpoint-inconsistency.

Therefore, syntactic constraints are imposed on programs t o ensure fixedpoint-

consistency.

A set of consistency constraints are proposed involving dual definitions and

absence of conflicting definitions. The resulting programs are DEF-programs.

Underlying models of DEF-programs can be non-computable; hence, any evaluation

system is necessarily incomplete. An evaluation system for DEF-programs is pro-

posed based on enhancements t o SLD-resolution. This evaluation system is correct

only if a self-coverage test is satisfied.

Enhancements a re needed t o enable practical use of DEF-programs. An equal-

ity predicate is incorporated into the evaluation system, d a t a types a re introduced,

and evaluation of universally quantified formulas is made more flexible. A prototype

implementation of this system has been achieved with the C-Prolog language.

Other strategies for enhancing the expressiveness of logic programming

languages also involve implementation of negation. The predominant implementa-

tion is by failure. But answer substitutions are not returned after evaluation of

negated queries, and correctness of negation by failure is ensured only if negated

queries are variable-free. Negation by failure is also incomplete, and cannot detect

inconsistent programs. Consistency is ensured only through stratification.

Model elimination is a complete evaluation system for programs with negation.

This system converts clauses (not necessarily definite) into contrapositive forms.

These forms are similar t o DIFs, in t h a t negated atoms may occur in the heads of

contrapositives. The evaluation system uses SLD-resolution and searches a t ancestor

nodes in the full search tree. Unless the ancestor search can be controlled through

indexing, model elimination can suffer from the same inefficiencies a s resolution.

Examples have demonstrated the use of constructive negation. In many cases,

constructive negation is more flexible than negation by failure, because answer sub-

stitutions can be returned from evaluation of negative queries. Increased expressive-

ness is achieved by DEF-programs, because all logical connectives may be present

within the bodies of DEFs.

8.2. Future Work

The weakest pa r t of the evaluation system for DEF-programs is evaluation of

universal quantifiers. The current implementation uses a system-defined construct

t h a t stores generated values within heap memory. A large conjunction is then

formed from the generated values and tester, again in heap memory.

Tamaki and S a t o [TS83,KH87] have investigated transforming universally

quantified formulas into recursive clauses. Recursion effectively stores generated

values on a stack. In fact , if the recursive clauses are tai l recursive, only a fixed

amount of space is required from the stack. Also, explicit storage of a conjunction is

not needed. The transformation rules are not incorporated into a compiler, because

the search space of transformations is too large. The transformations must be

guided step-by-step by a programmer. The transformation rules are applicable t o

DEF-programs, but further work is needed t o perform the transformation automati-

cally for some interesting class of programs.

Use of non-conflicting DEFs t o produce dual DIFs ensures fixedpoint-

consistency. Since these syntactic constraints on programs are merely sufficient,

better constraints may exist to ensure fixedpoint-consistency.

Ad hoc techniques for describing negation may also be used in equational pro-

gramming languages. Constructive negation within logic programs relies on three-

valued logic and quantifiers. Replacement of the ad hoc techniques for describing

negation within equational programming languages by a constructive negation may

require analogs to three-valued logic and quantifiers. The non-conflict and self-

coverage properties could also be important in satisfying the Church-Rosser property

for term-rewriting systems.

The non-conflict and self-coverage properties of programs a re applicable t o

functional programming languages. Non-conflict ensures t h a t each function is well-

defined. Self-coverage ensures t h a t all functions have definitions for all possible

arguments. Self-coverage does not ensure to ta l functions, but constitutes a useful

precondition for defining to ta l functions.

References

[ABW85] Apt, Blair & Walker, "Towards a Theory of Declarative Knowledge,"
Technical Report, IBM Corp., Yorktown Heights, 1985.

[ADJ78] Goguen, Thatcher & Wagner, "An Initial Algebra Approach to the
Specification, Correctness, and Implementation of Abstract D a t a Types," in
Current Trends in Programming Methodology, vol. 4, Yeh (ed.), Prentice-Hall,
1978, pp. 80-149.

[AE82] Apt & van Emden, "Contributions t o the Theory of Logic Programming,"
JACM, 29(3), July 1982, pp. 841-862.

[AJ74] Aho & Johnson, "LR Parsing," Computing Surveys, June 1974.

[C178] Clark, "Negation a s Failure", in Logic and Data Bases, Gallaire & Minker
(eds.), Plenum Press, New York, 1978, pp. 293-322.

[Co70] Codd, "A Relational Model for Large Shared D a t a Banks," CACM, 13(6),
June 1970, pp. 377-387.

[Co82] Colmerauer, "Prolog and Infinite Trees," in Logic Programming, Clark &
Tarnlund (eds), Academic Press, New York, 1982, pp. 324-340.

[D87] Decker, "The Range Form of Database Clauses: O r How t o Avoid Flounder-
ing," Technical Report, European Computer-Industry Research Centre, 1987.

[Da86] Date, A n Introduction to Database Systems, Addison-Wesley, Reading, MA,
1986.

[Dw84] Dwork, e t al l "On the Sequential Nature of Unification,'' J. of Logic Program-
ming, 1(1), 1984, pp. 35-50.

[Ed851 Eder, "Properties of Substitutions and Unifications," J. of Symbolic Cornputa-
tion, vol. 1, 1985, pp. 31-46.

[EK76] van Emden & Kowalski, "The Semantics of Predicate Logic as a Program-
ming Language," JACM, 23(4), October 1976, pp. 733-742.

[En721 Enderton, A Mathematical Introduction to Logic, Academic Press, New York,

[Fa851 Fairley, Software Engineering Techniques, McGraw-Hill, New York, 1985.

[GM82] Goguen & Meseguer, "Rapid Prototyping in the OBJ Executable
Specification Language," ACM SigSoft Software Engineering Notes, 7(5),
December 1982, pp. 75-84.

[GMW79] Gordon, Milner & Wadsworth, "Edinburgh LCF," Lecture Notes in Com-
puter Science, vol. 78, Springer-Verlag, Berlin, 1979.

[He801 Henderson, Functional Programming, Prentice-Hall, Englewood-Cliffs, 1980.

[HU79] Hopcroft & Ullman, Introduction to Automata Theory, Languages and Compu-
tation, Addison Wesley, Reading, MA, 1979.

[Hu80] Huet, "Confluent Reductions: Abstract Properties and Applications t o Term
Rewriting Systems," JACM, 27(4), October 1980, pp. 797-821.

[JLM84] Jaffar, Lassez & Maher, "A Theory of Complete Logic Programs with Equal-
ity," J. of Logic Programming, 1(3), 1984, pp. 211-223.

[JS86] Jaffar & Stuckey, "Canonical Logic Programs," J . of Logic Programming, 2(2),
1986, pp. 143-155.

[KH87] Kanamori & Horiuchi, "Construction of Logic Programs Based on General-
ized Unfold/Fold Rules," Proceedings of the 4th International Conference on
Logic Programming, MIT Press, 1987, pp. 744-768.

[Ko74] Kowalski, "Predicate Logic as a Programming Language," in Information Pro-
cessing '74, Rosenfeld (ed.), North-Holland, Amsterdam, 1974, pp. 556-574.

[L82] Lloyd, "Foundations of Logic Programming," TR-8217, University of Mel-
bourne, 1982. Also see Foundations of Logic Programming, Springer-Verlag,
New York, 1984.

[LM85] Lassez & Maher, "Optimal Fixedpoints of Logic Programs," Theoretical Com-
puter Science, vol. 39, no. 1, 1985, pp. 15-25.

(Lo781 Loveland, Automated Theorem Proving: A Logical Basis, North-Holland,
Amsterdam, 1978.

[LT84] Lloyd & Topor, "Making Prolog More Expressive," J. of Logic Programming,
3(3), 1984, pp. 225-240.

[Mi841 Mishra, "Towards a Theory of Types in Prolog," Proc. 1s t International IEEE
Symposium on Logic Programming, Atlantic City, 1984, pp. 289-298.

[MK84] Mycroft & O'Keefe, "A Polymorphic Type System for Prolog," Artificial
Intelligence, vol. 23, 1984, pp. 295-307.

[MW87] Maier & Warren, Computing with Logic, Benjamin-Cummings, Menlo Park,
CA, 1987.

[Na85] Naish, "All Solutions Predicates in Prolog," Proc. 2nd IEEE Symposium on
Logic Programming, 1985, pp. 73-77.

[Ni80] Nilsson, Principles of Artificial Intelligence, Tioga, Palo Alto, 1980.

[085] OIDonnell, Equational Logic as a Programming Language, MIT Press, 1985.

[P85] Pereira, e t al., C-Prolog User's Manual, edCAAD, Dept. of Architecture,
University of Edinburgh, 1985.

[PG86] Poole & Goebel, "Gracefully Adding Negation and Disjunction t o Prolog,"
Proceedings 3rd International Conj. on Logic Programming, London, 1986, also
in Lecture Notes in Computer Science, Shapiro (ed.), vol. 225, Springer-Verlag,
Berlin, pp. 635-641.

we781 Reiter, "On Closed World Databases," in Logic and Data Bases, Gallaire &
Minker (eds.), Plenum Press, New York, 1978, pp. 55-76.

[Ro65] Robinson, "A Machine-Oriented Logic Based on the Resolution Principle,"
JACM, 12(1), January 1965, pp. 23-41.

[Ro85] Rollins, A Syntax-Directed Compiler Constructor, TR-851005, Oregon Gradu-
a t e Center, 1985.

[SB86] Sterling & Beer, "Incremental Flavor-Mixing of Meta-Interpreters for Expert
System Construction," Proc. 3rd IEEE Symposium on Logic Programming, 1986,
pp. 20-27.

[Sh84] Shepherdson, "Negation as Failure," J. of Logic Programming, 1(1), 1984, pp.
51-79.

[Sh85] Shepherdson, "Negation a s Failure. 11," J. of Logic Programming, 2(3), 1985,
pp. 185-202.

[Sh86] Shepherdson, "Negation in Logic Programming: A Survey," Foundations of

Deductive Databases and Logic Programming, Minker (ed.), Washington, DC,
1986.

[SS82] Sebelik & Stepanek, "Horn Clause Programs for Recursive Functions," in
Logic Programming, Clark & Tarnlund (eds), Academic Press, New York, 1982,
pp. 324340.

[St771 Stoy, Denotational Semantics, MIT Press, Cambridge, MA, 1977

[St841 Stickel, "A Prolog Technology Theorem Prover," Proceedings 1st International
IEEE Symposium on Logic Programming, Atlantic City, 1984, pp. 211-217.

[Sz69] Szabo (ed.), Collected Papers of Gerhard Gentzen, North-Holland, Amsterdam,
1969.

[Ta55] Tarski, "A Lattice-Theoretical Fixpoint Theorem and i ts Applications,"
Pacific Journal of Mathematics, 1955, pp. 285-309.

[TS83] Tamaki & Sato, "A Transformation System for Logic Programs with
Preserves Equivalence," TR-018, ICOT, 1983.

[Tu76] Turner, SASL Language Manual, Computer Laboratory, University of Kent,
1976.

[Tu84] Turner, Logics for Artificial Intelligence, Halsted Press, New York, 1984.

[TZ87] Thom & Zobel (eds.), NU-Prolog Reference Manual, TR-86/10, University of
Melbourne, 1987.

[U80] Ullman, Principles of Database Systems, Computer Science Press, Potomac, MD,
1980.

[WJ74] Wirth & Jensen, Pascal User Manual and Report, Springer-Verlag, Berlin,
1974.

Appendix A

Three-Valued Truth Tables

T h i s appendix contains three-valued t r u t h tab les for all of the logical connec-

tives in no:

Negation:

Conjunction:

Disjunction: ,

T r u t h Tab le

, T r u t h Tab le for Conjunction

Y

T r u t h Tab le for Disjunction

Y

t u f
t u f
u u f
f f f

2
t
u
f

t u f
t u t
t u u
t u f

2
t
u
f

Implication:

T r u t h Table for Implication

Equivalence:

Y

T r u t h Tab le for Eauivalence

Z

x -+ y

t
u
f

t u f
t u f
t u u
t t t

Appendix B

Three-Valued Valuations

This appendix contains justification for the three-valued t ru th tables of Appen-

dix A. The assignment of a logical constant t o a Boolean expression is called a

valuation. The t ru th tables of Appendix A are the strongest extension of the classi-

cal Zvalued t ru th tables. The &valued t ruth tables agree with the usual t ru th

tables on Boolean expressions t h a t do not contain u . When u is viewed a s contain-

ing less information than t and f, the t ru th tables are monotonic. Monotonicity

ensures t h a t a better defined valuation always results from a more informative

Boolean expression. As a result, all laws, such as De Morgan's, are observed by the

3-valued t ru th tables.

As in Chapter 4, the relation 1 on the logical constants is defined, based on

their information content.

uEf and uCt

This relation may be extended to Boolean expressions constructed from algebra

B({t, u , f}), as follows:

Logical constants:

x[Ly - if x = y or x C y .

Set of expressions:

SC - T if there is a bijection o: S -+ T , such t h a t x C o (x) - for all x ES.

Logical operators:

(-x)tI(-y) if 5 CY

(A s > L (A T) if S L T

(V S) L (V T) if S C T

Through induction on the structure of Boolean expressions, C - is a part ial ordering.

As particular Boolean algebras, let:

B, = B({t, f}), and

B3 = B({t, u, f}).

B2 is the se t of Boolean expressions containing only the logical constants t and f ,

while B3 is the se t of expressions containing all logical constants. Note t h a t the

maximal expressions in B3 with respect t o the part ial ordering 1 - are expressions

from B2.

A Zvalued valuation is a mapping from B2 t o {t,f}. The classical valuation v,

is a particular valuation (there could be others). For example, v , : t l \ f b f . Simi-

larly, a &valued valuation is a mapping from B3 t o {t,u,f}.

A bvalued valuation v' is a n extension of a Zvalued valuation v if v l (x) ~ v (x) -

for all x EB2. T h a t is, v1 is no better defined than v on any Zvalued expression. We

will be describing a particular 3-valued extension vcl of v,. In this extension

vCr(z) = v,(x) for all z E B 2 For example, since vCr is an extension of u,, i t must be

t h a t v c l : t A f k f .

According t o the usual definition, %valued valuation v' is monotonic if z E y -

implies v ' (~) E v ' (~) - for all expressions x and y from B,. This property ensures t h a t

increased information will enhance the information provided by the valuation.

If S is a set of expressions, as shorthand, let v(S) = {u(x) I z ES). As a partic-

ular class of 3-valued valuations, V is a functional producing a 3-valued valuation

from i ts 2-valued input. Define V(v)(x) = n v(Mz), where M, = {y E B 2 I x C y) . -

Each 3-valued valuation V(v) is a n extension of Zvalued valuation v. For example,

the classical extension is defined as v,' = V(v,). Appendix A provides t ru th tables

for the operations of f& using this definition of vcl. I t is necessary to show t h a t the

resulting 3-valued valuation conforms t o i ts %-valued component, and is well-

behaved.

Lemma B.l: For all Zvalued valuations v, V(v) is a monotonic extension of v

Proof: Suppose expressions x and y are in B,, and x Ey. - Then M, > M u , so

v (M z)> - v(Mu), and n v (M 2)En - v(MU). Hence, V(v)(x)L V(v)(y), and V(v) is

monotonic.

We now show t h a t the functional V is a s strong a s any other method for pro-

ducing monotonic extensions of Zvalued valuations. Valuation w is stronger than

valuation v, denoted v C - w, if v (x) E - w(x) for all x EB,. Since this relation on valua-

tions is a simple extension of the part ial ordering C - on Boolean expressions, i t is easy

to show t h a t the relation on valuations is also a part ial ordering.

Lemma B.2: If valuation w is a monotonic extension of Zvalued valuation v, then

w 5 V(v).

Proof: If w(x) = u , then w(x)CV(v)(x) - regardless of the actual valuation V(v). If

w(x) # u , then w(x) = w(y) for all y such t h a t x r y . - In particular, for any maxi-

mal element m EM,, w(x) = w(m). Since w is a n extension of v , w (m) E v (m) . - And

by the definition of V, v(m) = V(v)(m). Since w (x) C - V(v)(m) for all m EM,,

w (x) c n v(M,).

We have therefore established t h a t vct is the strongest monotonic extension of

the classical Bvalued valuation v,. Within Chapter 4, it is important t o determine

t h a t certain properties, including De Morgan's laws, still hold for the valuation v,'.

Because the associative and commutative operation n is used in the construction of

V(v), the 3-valued valuation vct is indeed associative and commutative for conjunc-

tion and disjunction. De Morgan's laws are strengthened for infinite conjunctions

and disjunctions, a s follows:

I t is not difficult t o show t h a t De Morgan's laws are also observed for vCt.

Having justified the construction of vC1, i t s use is implicit within the disserta-

tion. Thus, a Boolean expression x will s tand for i ts valuation under vC1.

Appendix C

DEF-Program Example

The following program is used a s an example of a DEF-program. The program

defines a prime predicate, among others. The program is not especially efficient,

but does clearly represent certain relations about natura l numbers. Included in the

program a re assertions utilized for typechecking, discussed in Chapter 6, Section 2.

0 : [I +nats .
s : [nats] dnats.

% lt(1,J): true iff ICJ.
It : [nats, nats] .
It (0, s (J)) o true.
It (I, 0) o -true.
lt(s(I),s(J)) * lt(1,J).

% le(1,J) : true iff ISJ.
le: [nats, nats] .
le(1,J) * -lt(J,I).

% ge(1,J): true iff I2J.
ge : [nats, nats] .
ge(1,J) * -lt(I,J).

% gt(1,J): true iff I>J.
gt : [nats, nats] .
gt(1,J) * lt(J,I).

% eq(1,J): true iff I=J.
eq: [nats, nats] .
eq (I, J) o le (I, J) /\ le (J, I) .
% add(I,J,K) : true iff I+J=K.
add: [nats, nats, nats] .
add(O,J,K) o eq(J,K).
add(s(I), J,0) o -true.
add(s(I),J,s(K)) o add(I,J,K).

% mult(1, J,K) : true iff I*J=K.
mult: [nats, nats, nats] .
mult(O,J,O) o true.
mult (0, J, s (K)) * -true.
mult (s(I), J,K) c* &: mult(1, J,X) /\ add(X, J,K) .
% divp (I, J) : true iff I divides J evenly.
divp : [nats, nats] .
divp(1,J) o 3: le(X, J) /\ mult(X,I, J) .
% prime (P) : true iff P is prime.
prime : [nats] .
prime (P) o

st (Pa s (0)
/\ (VX: lt(s(O),X) /\ lt(X,P) --+ -divp(X,P)).

Biographical Note

The author was born 25 October 1957, in London, England. In 1961 he moved

t o the San Francisco Bay Area where he attended public schools and graduated from

San Carlos High School in 1974. He received a Bachelor of Ar t s degree from the

University of California a t San Diego, majoring in the Management Science specialty

of the Economics department.

After graduation, the author began work a s a commercial programmer; first, a t

Freightliner Corporation in Portland, Oregon; and then a t Microsoft of Redmond

Washington. After four years, the author moved back t o Port land to begin com-

puter science studies a t the Oregon Graduate Center. While a t the Graduate

Center, the author was awarded first prize a t the first annual Computer Science

Research Symposium, and during the academic year 1986-1987, his last year a t the

Graduate Center, obtained a generous grant from Vincent Sigilito at the Air Force

Office of Scientific Research.

The author has been married for nine years to the former Deborah Lynn

Morrison and they have one daughter, Sarah Elizabeth, age 2.

The author is leaving the Graduate Center t o accept a tenure-track position in

the Mathematics and Computer Science department of Dartmouth College, Hanover,

New Hampshire. The author will continue work in logic programming and declara-

tive languages.

	198708.walinsky.clifford to p. 69.pdf
	198708.walinsky.clifford to p. 157.pdf

