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F with a universal quantifier. ........ccoooimiioiiiimie e
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renaming substitution: a bijective substitution.
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mgct: most general common INSEANCE. ..o..cciiiiiiiciiiciie e e
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fying substitution, the unifying substitution can be partitioned accord-

ing to the variablesin sand & ...
template: t. of a set of ground terms T is a term ¢ such that T=t@X. ...
non-trivial set of function symbols: a set ¥ such that JT(X)] > 1. .o

interpretation: (see also constructive interpretation) a correspondence
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AN TelAtIONS. oottt et e e e nnea e
Herbrand interpretation: a symbolic interpretation. .........ccccoccviviiieiniieniccnenns
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plied by @ Program. ..ot e e
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Abstract

Constructive Negation in Logic Programs

Clifford Walinsky, Ph.D.
Oregon Graduate Center, 1987

Supervising Professor: Richard Hamlet

Logic programming languages such as Prolog possess a relatively efficient
evaluation procedure but restrict the expressiveness of full predicate logic. Various
implementations of negation within logic programming are directed at restoring
expressiveness. Negation by failure, the predominant implementation, can be both
incorrect and incomplete. Furthermore, negative queries solved by failure do not
return answer substitutions as do positive queries. Another implementation of nega-
tion, model elimination, is complete but may be as inefficient as resolution. Other
implementations have a similar tradeoff between completeness and efficiency.

Constructive negation is an effort to provide negation within logic programming
based on ad hoc methods commonly used by programmers to obtain answer substitu-
tions from negative queries. The ad hoc methods involve definition of both positive
and negative information with definite clauses to retain efficient evaluation.

While logic programs are described with reference to classical logic, programs
incorporating constructive negation must be described by a three-valued logic con-
taining an additional undefined value. Programs with constructive negation may be
inconsistent, and syntactic restrictions are needed to ensure consistency. The result-
ing programs may contain universal quantifiers. An evaluation procedure for univer-
sal quantifiers is proposed that under further weak syntactic conditions is correct
though necessarily incomplete. Thus, programs incorporating constructive negation
are assured to be consistent and have a relatively efficient evaluation procedure.
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Chapter 1

Introduction

Logic programming languages such as “pure” Prolog [EK76| are declarative
languages possessing a relatively efficient evaluation system. But efficient evaluation
of logic programs comes at the cost of expressiveness. Certain logical forms such as
negation and universal quantification are absent, so problems naturally containing
negation and universal quantification must be transformed in order to conform to

the restrictions of logic programming languages.

This dissertation describes a logic-based language that satisfies many concerns
about expressiveness. The central new feature of this language is constructive proof
of negation, called constructive negatiom. With certain syntactic constraints on pro-
grams, a correct evaluation system can be produced with a Prolog interpreter. Use
of Prolog benefits from its efficiency and the presence of meta-logical primitives. The
Prolog implementation of constructive negation is incomplete, as would be any

evaluation system.

Constructive negation allows program definitions of negative as well as positive
facts. This idea is already widely practiced on an ad hoc basis. In fact Clark, in an
article describing negation by failure [C178], provided an excellent example of a nega-

tive definition in the following logical formula:
non-maths-major (X) + maths-course(Y) /\ ~takes (X,Y).

Our formalization of this practice ensures faithfulness to the logical foundation of



logic programming. Formalization also provides guidelines for ensuring consistency

and correctness.

This approach is compared with negation by failure, the predominant imple-
mentation of negation in logic programming. Constructive negation is not meant to
supplant negation by failure entirely. Indeed, in many ways the two interpretations
of negation complement each other. Negation by failure can be used to enhance the
evaluation system of constructive negation. On the other hand, there are occasions
where negation by failure is not sufficient to solve certain problems, leading pro-

grammers to adopt constructive negation on an ad hoc basis.

Syntactic constraints ensuring consistency and correctness are proposed for pro-
grams with constructive negation. By comparison, correctness of negation by failure
is also ensured when certain syntactic constraints are obeyed; however, these con-

straints greatly reduce expressiveness.

No evaluation system for programs using constructive negation can be com-
plete. But incompleteness exists in current logic programming systems. Prolog, the
predominant logic programming language, is an implementation of a complete refu-
tation procedure, called SLD-resolution, that uses an incomplete search strategy.
Also, negation by failure is incomplete. Without completeness of an evaluation sys-
tem, programs must contain “hints” for use by the evaluation system to ensure ter-
mination. This is an additional burden on programmers, but is viewed as the cost of

providing an efficient evaluation system for an expressive language.



1.1. Declarative Languages

Logic programming languages, such as pure Prolog, fall into the class of
declarative languages. These languages are radically different in character from con-
ventional imperative languages, such as Pascal [WJ74]. The natural model for
imperative languages is a state machine with addressable memory [HU79]. Input is
converted into output through a series of state transformations. Therefore, full
comprehension of an imperative program requires knowledge of all states reached
during every computation. Techniques that attempt such analysis tend to be either
informal, and capable of analysis of fairly large programs, or formal, and capable of
analysis of rather small programs [Fa85 (Ch.8)|. The fundamental problem in any

rigorous analysis of an imperative program is the vast size of the state-input space.

By contrast, the underlying model of a declarative language program is a
description of elements from a domain satis{ying properties specified in the program.
The underlying model is not based on state transition. Context free grammars are
an example of a deélarative language [HU79]. All strings generated by a context-free
grammar satisfly the grammar’s specification independent of any notion of state

transition.

Decomposability and non-sequentiality aid in determining general properties of

an underlying model. Decomposability is apparent in the following grammar rules:

If_Statement — if Expression then Statement else Statement
If_Statement — if Ezpression then Statement

From these rules we can determine the structure of all If_Statements. And given



strings representing an Ezpression and Statement, the grammar rules describe how to

compose an If_Statement.

Elements of an underlying model reflect the non-sequentiality present in
declarative programs. Sequentiality does exist; the above grammar rules describe a
sequence of terminal and non-terminal symbols used to construct If_Statements.
However, sequentiality is not imposed where it is not necessary. Again the grammar
rules above demonstrate this fact, because changing the order of the rules has no

efflect on the underlying model.

The underlying model of a program often cannot be represented explicitly. For
example, a context free language may be infinite. Queries are posed to an evaluation
procedure to determine the content of a program’s underlying model. Certain
evaluation procedures are recognizers, used to decide if an element is present within
the underlying model. Other evaluation procedures are transducers, used to generate
elements of the underlying model that satisfy a query. When membership of an
underlying model is decidable and the model is enumerable, a recognizer can act as a
transducer by working in a generate-and-test manner. In the case of context-free
grammars, pushdown automata (PDAs) are recognizers that decide if a given string

is generated by a context-free grammar.

An evaluation system may rely on state-transition, as for PDAs. Nonetheless,
detailed knowledge of the evaluation system is not essential to understanding its
input-output behavior. This behavior is prescribed by the underlying model. There-

fore, comprehension of a declarative program does not depend on knowledge of a



state-input space or its evaluation procedure.

As increased knowledge about an evaluation system is garnered, evaluation sys-
tem generators are usually devised. Such generators compile information from pro-
grams to produce efficient evaluators. As an example, a PDA generated by Yacc
[AJ74] determines if an input string is a member of the language given by an LALR

grammar.

Below, various representative examples of declarative languages, their underly-

ing models, evaluation systems, and some notable implementations are listed:

Context-free grammars:
Underlying model: context-free language.
Evaluation system: PDA.

Evaluation system generators: Yacc [AJ74], Sac [Ro85].
Equational programming languages:

Underlying model: least congruence of the initial algebra [ADJ78).

Evaluation system: term-rewriting [Hu80].

Evaluation system generator: Ep [O85].

Implementation: OBJ [GM82].

Relational Algebra:
Underlying model: set of relations.
Evaluation system: operations on sets of tuples [Co70].

Implementations: see [Da86] for PRTV, SQL, Ingres, System R.



Predicate Logic:
Underlying model: all implied formulas [En72].
Evaluation system: resolution [Ro65]; tableaux [Sz69].

Implementation: MRPPS [N80 (Ch.5)].
All of the evaluation systems in this list are transducers, except for PDAs.

For the evaluation systems listed above, three important properties are

apparent:

Correctness:
When a correct evaluation system terminates successfully in response to a
query, it returns a member of the underlying model that satisfies the query or

affirms that the query is a member of the underlying model.

Completeness:
In response to a query, a complete evaluation system can generate every
member in a program’s underlying model that satisfies the query. If a language
is decidable and enumerable, correctness ensures completeness, since a
generate-and-test strategy will generate all members of the underlying model.
Efficiency:
A measure of the evaluation system’s speed and memory consumption compared

to the length of a query or program.

To illustrate these properties of evaluation systems, consider the language of
first-order predicate logic [En72]. From a slightly unconventional viewpoint, all for-

mulas implied by the clausal form of a program (the program’s theory) are contained



in the underlying model. It has been shown that the resolution theorem-proving
method [Ro65|, the evaluation system for this language, is both correct and com-
plete. However, this evaluation system is generally quite inefficient [Sh86]. At each
step of the resolution procedure there may be a number of ways in which execution

can proceed.

1.2. Logic Programming

Despite the poor performance of resolution theorem-proving methods, predicate
logic remains a desirable language. As a declarative language, it lacks the state-
input space problem of imperative languages. And a logic notation seems amenable
to many forms of knowledge representation [Ni80], including of course mathematical

knowledge [En72].

Efforts to enhance the performance of resolution theorem-proving continue.
Impressive performance has been obtained for a restricted form of predicate logic.
The restriction permits only definite clauses of the form Ajg+—A, /\ - - - A\A,, where
each A, is an atomic formula and n >0. This clause is a statement of implication:
VX, VX (A N\ NA, = Ay), where X, ..., X, are all of the variables
occurring in the A;. The head of a definite clause is the atom A, while the body is
the conjunction A, /\ - - - AA,. A clause with an empty body is an assertion.

For a declarative language of definite clauses, the underlying model is still a

program’s theory. SLD-resolution [Ko74] can be used as an evaluation system for

definite clause programs, and is much more efficient than resolution theorem-proving.



In fact the efficient evaluation system has lead to use of the term “logic program-

ming,” rather than theorem-proving, for definite clause programs.

The Prolog language uses SLD-resolution. As stated earlier, this implementa-
tion of SLD-resolution is incomplete. Therefore, programmers ensure termination
only through detailed knowledge of the states of the evaluation system during execu-

tion.

The expressiveness of predicate logic is seriously curtailed in logic programming
languages. It is not possible to express disjunctive information of the form A \/B

with definite clauses. Also, negated atoms are prohibited everywhere within definite

clauses.

Because all variables are universally quantified, existentially quantified vari-
ables cannot be expressed directly within definite clauses. This is exemplified by the
predicate logic formula I :p (X). The existential quantifier can be removed
through Skolemization [Ni80], producing the formula p (c), where constant c
occurs nowhere else in the program. Thus, the domain of discourse may expand by
an element outside of the program’s original domain. Skolemization is justified when
all possible domains are to be considered. However, addition of a new element may
radically alter the programmer’s intended underlying model, so in some applications

Skolemization may not be desirable.

Limiting expressiveness can also compromise the non-procedural nature of logic
programs, even though the underlying model remains isolated from state considera-

tions. The following logic program defines a predicate not_divp(i,j) which is true



if integer ¢ does not divide integer j evenly. This definition makes no mention of

recursion, yet the program does contain recursion,

Example 1.1

% not_divp(I,J): true if I does not divide J evenly.
not_divp(I,J) « p(0,1,J).

p(X,I,J) «~ X > J.
p(X,I,J) «— XXI#AJ N\ X1=X+1 A p(X1,I,J).

Recourse is made to recursion in order to test that every value z <7 when multi-

plied by ¢ does not equal j. The recursion is artificial, for consider:

% not_divp(I,J): true if I does not divide J evenly.
not_divp(I,J) « (¥X: X<J — XXIAJ).

Of course this formula is not in clausal form.

Use of definite clauses requires certain logical statements to be encoded into
algorithmic steps, even though a stepwise procedure is not manifested by the logical
statements. A programmer must then determine if the encoding has been faithful to

the original statement, a process we refer to as the coding problem.

1.3. Constructive Negation

Constructive negation is an approach for improving the expressiveness of logic
programs. It originally began as an attempt to provide negation within logic pro-
gramming languages. Gradually the work widened to incorporate all other connec-
tives and quantifiers from standard predicate logic. The distinctive features of this

work include:
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(1) Negation is based on constructive proof, enabling the evaluation procedure to

return answer substitutions for negated queries.

(2) Underlying models of programs with constructive negation may have formulas

with neither true nor false valuations.
(3) Evaluation, based on SLD-resolution, is efficient when compared to resolution.

(4) Syntactic restrictions ensure consistency and correctness, but do not restrict

expressiveness.

Programs using constructive negation are composed of Definite Inference Forms
(DIFs). Each DIF is written as L « F, where L is a literal (a positive or negative
atom), and F is a well-formed formula. Constructive negation of a formula F is
represented by the formula ~F. DIFs still cannot express disjunctive statements,
such as p\/q, and all variables within the head are always universally quantified. In
contrast with definite clauses, bodies of DIFs may contain negation, quantification,

and all logical connectives. The following DIFs demonstrate this form:

% divp(I,J): true if I divides J evenly:; otherwise, false.
divp(I,J) + I: x<J A XX1=J.
~divp(I,J) « VX: X<J — XXI#AJ.

Recursion need not be introduced artificially, in contrast to Example 1.1.
DIF-programs provide definitions of all positive and negative propositions. It is
therefore possible that some propositions will not be assigned a truth value. For

example, “nonsense” propositions, such as divp (O, fred), are neither true nor

false; they are undefined. To acknowledge this characteristic of DIF-programs, the
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underlying model is based on three-valued logic, containing true, false, and undefined

logical values.

Three-valued logic is weaker than two-valued logic because formulas implied
under two-valued logic may not be implied under three-valued logic. Consider the

DIF-program below:

p & q.
Np.

For this program, ~q is implied under two-valued logic, but ~q is undefined in

three-valued logic. On the other hand, any formula implied under three-valued logic

is also implied under two-valued logic.

The evaluation system for DIF-programs is based on SLD-resolution, with a
major enhancement to evaluate universally quantified queries. The system retains

much of the efficiency of SLD-resolution.

1.4. Overview

Following Chapter 2, describing notation and basic concepts, Chapter 3 reviews
current attempts at enhancing the expressiveness of logic programming. Much of
this work concerns implementation of negation. The main implementation of nega-
tion is by “failure to prove.” Negation by failure is not correct for all queries, and is
not in general complete. Another implementation of negation, model elimination, is

correct and complete, but can be much less efficient than SLD-resolution.

Chapter 4 describes the underlying models of DIF-programs. Strong models,

weak models and fixedpoints of a semantic operator are compared. Strong and weak
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models have undesirable closure properties, while fixedpoints always contain a least
element. Therefore, least fixedpoints are chosen as underlying models of programs.
The least fixedpoint may be undefined. Programs with undefined least fixedpoint are
called fizedpoint-inconsistent. To be efficient, an evaluation procedure cannot expend
computation resources detecting fixedpoint-consistency. Therefore, fixedpoint-
consistency must be detected from the text of a program. But, fixedpoint-

consistency is undecidable.

To define a fixedpoint-consistent set of programs, syntactic constraints are
explored in Chapter 5. DEF-programs are statements of equivalence that compile to
fixedpoint-consistent DIF-programs. The compiled DIF-programs can, however, con-
tain universal quantifiers, producing noncomputable least fixedpoints. Thus, prevent-
ing fixedpoint-inconsistency through syntactic constraints implies incompleteness for

any evaluation procedure.

An evaluation system is described for DIF-programs. This system is similar to
SLD-resolution. Evaluation of DIF-programs compiled from DEF-programs is correct
only when an additional syntactic constraint, self-coverage, is satisfied. Self-coverage

implies that each proposition is defined by some DEF.
Chapter 6 describes several enhancements to compilation and evaluation:

(1) The syntactic constraints on DEF-programs may require an extremely large
number of DEFs to describe base relations of database-oriented programs and
polymorphic programs. The explosion of DEFs is controlled by implementing

equality within the evaluation system.
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(2) The self-coverage test does not accommodate well-typed programs, because
self-coverage requires even ill-typed propositions to be described by DEFs.
Self-coverage is therefore generalized to incorporate types, eliminating the need

for ill-typed DEFs.

(3) Enhancements widen the scope of universally quantified queries that can be

correctly evaluated.

The full implementation of the evaluation system uses C-Prolog, and is
described in Chapter 7. The implementation encompasses tests to ensure consistency
and correctness. Query evaluation uses meta-programming techniques that treat

DIF-program elements as data structures.
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Chapter 2

Basic Concepts and Notation

The syntactic structure of terms and predicate logic formulas is first described
in the next section. Substitutions and the algebra of substitutions is then intro-
duced. Any term can be used as the denotation for the set of all of its instances

resulting in an inclusion ordering of terms, which naturally incorporates unification.

2.1. Syntax of Terms and Formulas

Variables will always be written as strings of alphanumerics, beginning with an
uppercase letter, e.g., Ansl. T will be the set of all variables. Each function sym-
bol will be written as a string of alphanumerics, beginning V\'Iith a lowercase letter or
a numeral, e.g., £, 0. Every function symbol possesses a unique finite arity, the
number of arguments taken by the function. When necessary, the arity of a function

(2

symbol is written as a parenthesized superscript, e.g., £ means function f takes

two arguments. Constants are treated as function symbols with arity zero.

Let X be a denumerable set of function symbols. The set T(X) is the set of
finite terms freely generated by the function symbols in £ and the variables of T.
Therefore, a term in T(X) is either a constant from X, a variable from T, or is of the
form f(")(tl, ..., t,), where f(")GZ, and each f; is a term over X. For example, if
0(0), s(l), f(2)€21, the following are terms in T(X,): 0, s(s (X)), and £(Y,s(0)).

When a term contains no variables, it is a ground term. The set of all ground terms
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constructible in T(X) is written T(Z).

Let II be a denumerable set of predicate symbols. Usually, predicate symbols
are distinct from function symbols. Each predicate symbol possesses a unique arity

denoted by a superscript. Propositions are predicate symbols with arity zero.

The set A(II, %) is the set of atomic formulas (atoms) generated by the predi-
cate symbols in IT and the terms in 7(X). An atom in A (II, X} is either a proposi-
tion symbol, or is of the form p(n)(tl, ..., t,), where p(")EH and each term ¢; is in

(2

T(X). For example, with 1t €II, and X, as given previously, 1t (X,s (0)) isin

A(II,, X,). Those atoms from A(II, ¥) without variables are ground atoms, denoted

A(LZ).

The set (), consists of the logical operators =, /\ and V/, designating negation,
conjunction and disjunction, respectively. Given some set C, the carrier, a Boolean
algebra is B(C), the set of Boolean expressions formed from the elements of the car-
rier and the logical operators in {);,. Thus, any element z € C' is a Boolean expres-
sion. If z is a Boolean expression, then —z is also a Boolean expression. And if S is
a set of Boolean expressions, both A S and \/ S are themselves Boolean expressions.
Use of an unordered set of Boolean expressions is justified because conjunction and
disjunction are commutative. Conjunction of an empty set will be considered a
vacuously true formula, and disjunction of an empty set will be considered false.
(This inversion of the customary meaning attributed to conjunction and disjunction
of empty sets comes about because such formulas will arise only in queries, which are

implicitly negated.)
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A logical formula is a Boolean expression in B(A(II, X)), for some sets IT and ¥

of predicate and function symbols, respectively.

Boolean expressions are not usually written with the logical operators. Instead,
connectives are defined from abbreviations for Boolean expressions. The set of con-

nectives and their meaning is presented in the following table:

Logical Connectives
Form Meaning
F A\ G | Finite conjunction
F\/G | Finite disjunction
F — G | Implication
F < G | Equivalence
ax: F Existential quantification
VX:F | Universal quantification

When general conjunction and disjunction are formed over finite sets of expressions,

conventional infix form can be used. For example,

1t(s(0).X) A\ 1t(X.s(s(s(0))))

is an abbreviation for:
A( {1t(s(0).X), 1t(X,s(s(s(0))))} ).

Implication and equivalence have the usual definitions, using finite conjunction

and disjunction.

Implication: F, ~+ F, abbreviates —=F, \/ F,

Equivalence: F| «+ F, abbreviates (F, = F,) \(F,— F,).

In writing definite clause forms, it is cust;omaryi to reverse the direction of
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implication.

Quantifiers can be viewed as finite denotations for conjunction and disjunction
of infinite sets of formulas. Existentially and universally quantified formulas are
written as AX: F and VX F, respectively, where X is the quantified variable in both

formulas.

The presence of quantified variables requires scoping rules. A variable X is free
at any occurrence of X in an atom. If X occurs free in formula F then X also
occurs free in =F, 3Y: F, and VY F, where X # Y. If X occurs free in either for-
mula F or G, X also occurs freein FAG, F\/G, F =G, and F « G. Every free
occurrence of X in formula F is bound in quantified formulas AX: ¥ and VX:F. For

example, X occurs free in 1t (s (0),X) and:
(1t (s (0) . X) \1t (X,P)) — =divp (X,P),
but all occurrences of X are bound in the formula below:

VX: ((1t(s(0).X)A\1t (X,P)) — =divp(X,P)). (1)

Existentially and universally quantified formulas are finite denotations for

infinite disjunctive and conjunctive Boolean expressions.

Existential quantification: 3X: F abbreviates \/{F(¢) | t € T(Z)}

Universal quantification: VX: F abbreviates A\{F(¢) | t e T(Z)},

where F(t) means term ¢ replaces every free occurrence of variable X in F'.

Each connective has a binding precedence that eliminates overuse of

parentheses. Negation has highest precedence, followed by conjunction, disjunction,
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implication and equivalence, and finally the quantifiers. For example, the following

formula:
¥X:1t (s (0),X) A1t (X,P) — =divp(X,P)
is equivalent to formula (1), above.

A closed formula, or sentence, contains no free variables. An open formula con-
tains at least one free variable. Formula (1) is open, because it contains the free

variable P.

The ezistential closure of a formula, denoted 3F, binds every free variable in F
with an existential quantifier. So IF is an abbreviation for the sentence
X, - - - 34X, : F, where X - - - X are all of the free variables occurring in F. As
seen by expanding the abbreviation, the meaning of 3X, - - - X :F is independent

of the ordering chosen for existential quantifiers. Similarly, the universal closure of a

formula VF abbreviates VX, - - - VX :F.

2.2. Substitutions

The following discussion uses notation and concepts from Eder [Ed85]. A substi-
tution over ¥ is a mapping from variables in T to terms in T(X). The domain of a
substitution is the set of variables that are not mapped to themselves. When the
domain of a substitution is finite, the substitution can be fully expressed in written
form as a set of pairs X = ¢, meaning that variable X is replaced by term £, where

X is a variable from the domain.
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Any substitution ¢ can be naturally extended to a mapping & on formulas in
B(A(II, X)) and terms in T'(X), where IT and X are sets of predicate and function
symbols, respectively. In this extension, conventional notation for application of sub-
stitutions is adopted. When z is a formula or term and o a substitution, z & denotes

application of o to z, defined as follows:

X = o(X) for XET

™, 0 )5=1"%,5, ...t 3)for n>0and fMex
p(")(tl, Lo, t)o= p(")(tla, ..., t,0)for n >0 and p(")GH
(mz)o ==(z0)

(N{zp 25 - - - Do =N{z,0,250,-- -}

(V{zy 2y - Yo =V{z,0,250, - - }

Application of a substitution to an abbreviation of a formula can produce an
abbreviation, but the resulting abbreviation must be equivalent to application of the
substitution to the unabbreviated formula. Therefore, application of substitutions

distribute over finite conjunction, disjunction, implication and equivalence:

(zAy)o=(z0)A(yo)
(z A\y)o = (za)\(yo)
(z—=y)o=(z0)—(yo)

(z+ry)o=(z0)er(y0)

Also, as the rules below describe, application of a substitution to a quantified for-

mula cannot alter occurrences of bound variables.
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o(Y)for X £ Y

AX:Flo=3AX . Fo ={
(AX: F)o = AX: F o where o/(Y) Y forX =Y

o(Y)for X #Y

VX:F)o =VX:Fo o’ ={
(VX:F)o = VX:F o where o'(Y) Y for X =Y

For example, suppose that X and U are distinct variables; O, a and c are con-
stants; f and s are function symbols; 1t, mult, and add are predicate symbols;

and o(X) = a. Then the following equalities hold:

(1) Xo=a.

(2) vo=u.

(3) f(X,c,U)o=f(a,c,U).

(4) 1t(s(0).X)o =1t (s(0),a).

(5) [(:mult(0,s(0),X)) A add(X,s(0).s(s(0)))]lo=
(:mult (0,s(0).X)) N\ add(a,s(0),.s(s(0))).

When no confusion results, o will be used in place of o.

Substitutions o and 7 may be composed, forming a new substitution as follows:
z (0 °7) = (2 0)7, for all formulas and terms z. For example, if o(X) = £(Y) and
1Y) = a, then s(X)(0 *7) = s(£(a)). When substitutions o and 7 are composed, the
resulting function is always a substitution  such that n(X) = X (o °7) for all vari-

ables X.

Since composition always results in a substitution, composition of substitutions

can be shown to be associative. Consider any term or formula z. For arbitrary
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substitutions p, 0 and 7, z (p (0 °7)) =((z p)0) 7. Since p-o and (p +0) *7 are substitu-
tions, ((z p)o)r =1z ((p-0) 7).

There is a unique identity substitution €, such that ¢ X) = X for all variables X.
Therefore, z€ = z for any term or formula z. The identity substitution forms a left

and right identity with respect to composition.

A renaming is a bijective substitution. A renaming cannot map any variable to
a non-variable. A renaming also does not introduce additional constraints between
variables. For example, {X=U, Y=V} is a renaming, while {X=U, Y=U} is not a

renaming because it is not 1-1. Every renaming p has an inverse p_l, such that

2.3. Common Instances of Terms

~

Terms s and ¢ are variants if p is a renaming and s p = t. Denote by s = ¢ the

fact that terms s and ¢ are variants.

~ . . -
Lemma 2.1: = is an equivalence relation on terms.

Proof: Trivial.

The equivalence class of a term ¢ determined by the renaming relation = will be

denoted [£]. Note that [¢] contains only ¢ when ¢ is a ground term.

A term ¢ is an instance of a term s if there is a substitution o such that

soc=1t. For example, f(a,Y,U) is an instance of £(X,Y,Z).

Now define a relation [S]S [t] on the equivalence classes of terms s and ¢, to

mean that every term in [t] is an instance of every term in [s]. Therefore, [s]> [¢t] if
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for every variant s’/ of s and ¢/ of ¢ there is a substitution ¢’ such that s'o’ = ¢/
The number of variants of a term is usually infinite, so directly deciding if [s] > [t]
may be difficult. Fortunately, testing for [s]> [t] reduces to finding just one substi-

tution o such that so =t.
Lemma 2.2: For any terms s and ¢, [s]> [¢] iff there is a substitution o such that
so=1t.

Proof: Trivial.

. . ~ . .
The equivalence relation = is a subset of >. When terms s and ¢ are variants,

[s]>[t] and [£]S[s]. Also, the following result holds.
Lemma 2.3: The relation > is a partial ordering on equivalence classes of terms.

Proof:
Reflexivity: For all terms s, [s]>[s], since s € = s.
Asymmetry: Suppose [s|> [t] and [¢]>[s]. Then so =t and ¢ 7= s for some substi-
tutions o and 7. If s and ¢ are not variants, either (i) some variable X occurs in s
and X o is not a variable or (ii) distinct variables X and Y occur in s and
Xo=7Yo. Incase (i), if X0 is not a variable, there is no substitution 7such that
X(o°1)=X. In case (ii), if X0 = Y 0, there is no substitution 7such that X (o 7) is
distinct from Y (o +7). Therefore, s and ¢ must be variants, and s = ¢.
Transitivity: Suppose [s]> [¢] and [¢]> [u]. Then so =t and ¢ 7= u for some sub-
stitutions o and 7. Since s (0 °7) = u, [s]>[u]. O

The greatest lower bound ﬁS and least upper bound |:|S of equivalence classes

of terms S is defined with respect to the ordering >. When s is a variable, [s]> [¢]
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for all terms ¢, so DS is defined for every set S. However, consider two distinct
constants ¢ and d. There is no term [ for which [¢]>[I] and [d]S[I], so ﬁS may

not be defined for some sets S.

A common instance of terms s and ¢ is an equivalence class [u], where [s]> [u]

and [t]> [u].

Lemma 2.4: Let C(s,t) be the set of common instances for terms s and ¢. When
C(s,t) is nonempty, | |C(s,t) = s[|t.

Proof: Trivial.

Therefore, if s and ¢ have a common instance, the most general common instance
(mgci) of terms s and ¢ is defined to be s[t. Since s[]¢ is in fact an equivalence

class, the mgci is unique up to renaming.

Terms s and ¢t are unifiable if there is a unifying substitution o such that
s 0 = to. The next result demonstrates that unifiability of terms is equivalent to

determining if the terms have a common instance.

Lemma 2.5: If terms s and ¢ have no variables in common, then s and ¢ are

unifiable iff the terms have a common instance.

Proof:

(—) The term s 0 is a common instance of s and ¢, so when terms are unifiable they
have a common instance.

(+) Next, assume terms s and ¢ have a common instance. Then s o = ¢ 7 for certain
substitutions ¢ and 7, and since s and ¢ have no variables in common 0 °7 = T°0.

The substitution ¢ -7 can serve as a unifying substitution for s and ¢. O
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Robinson’s unification algorithm [Ro65] is guaranteed to find a unifying substi-

tution that produces an mgci of terms s and ¢ if:
(1) s and t have no variables in common; and
(2) s and t have a common instance.

The first constraint can be readily achieved. Since the presence of a common
instance of terms s and ¢ is independent of the variables within the terms, terms s

and t can be renamed to satisfy constraint (1).

Unification requires an occurs check to insure that infinite terms will not be
mgci’s. Due to efficiency concerns, Prolog implementations typically omit this check.
Hence, determination of unifiability may be made by an implementation when in fact

the terms are not unifiable.

When terms have a common instance, by Lemma 2.5 they are unifiable, and the
unique mgci (modulo renaming) leads to a decomposition of the unifying substitution,
also called a weak unifier [Ed85]. Consider terms s and ¢ containing disjoint sets of
variables V and W. If s and ¢ have an mgci [m], a decomposition of the mgci con-
sists of substitutions o and 7, where s 0 = m = { 7 and the domains of 0 and 7are V

and W, respectively.

2.4. Terms as Denotations for Sets

A term ¢ containing variables will commonly be used to denote the set of
ground instances of ¢. Define ¢ @ X to be the set of terms ¢ ¢ that are ground

instances of t. For example, f (X,s (X)) @ {O(O), s(l)} contains £ (0,s (0)),
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f(s(0).s(s(0))), etc. Term ¢ is the template of t @ X.

As special cases, t @ X = {t} when { is a ground term, and X @ £ = T(X)
when X is a variable. If ¥ contains at least one constant, then ¢t @ X # & for any

term ¢.

A set of function symbols £ is non-trivial if |T{3)|>1. Non-triviality of T is

ensured if |$|>1 and ¥ contains at least one constant.

Use of non-trivial sets of function symbols will determine that variables occur-
ring within template terms serve only as placeholders. The actual variable names
used within a template term should not affect the set of ground instances of the tem-
plate. For example, (£(X.Y) @X) = (£ (U, V) @ X), for all “reasonable” sets ¥ of
function symbols. There are sets X for which terms s and ¢ may not be variants, yet
s@X=t@ZX. As Lemma 2.7 demonstrates, this occurs only when X is empty or
contains only one constant. Consider, for example, £ = {c} with templates X and
c. These templates are not variants, yet X@ X =c @ X. To avoid this anomaly, &
should be non-trivial. We first demonstrate a result used several times within this

section.
Lemma 2.8: For all terms s and £, if [s]>[t] then (s @ Z) 2 (t @ ).

Proof: Consider any term ¢t 7€t @ X. There must be some substitution o such that

sa =t,since [s]>[t]. Sotr=s(07)E(s@X). O

The next result demonstrates that terms must be variants if they generate

identical sets of ground terms.
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Lemma 2.7: When T is non-trivial, for all terms s and ¢, s @S =t @ S iff s = ¢.

Proof:
(—) The contrapositive is demonstrated: s # t impliess s @ X #t @ . If s and ¢

are not unifiable, they have no common instance so (s @ Z)N(t @ Z) = &. Since

|IZ(Z)>1,s@X and t @ X are nonempty, so s @ # t @ X.

If s and ¢ are unifiable, let m = s|:|t. Using decomposition, there are substitutions
o and 7such that sc = m =t 7, where either o or 7is not a renaming substitution.
Without loss of generality, assume ¢ is not a renaming. Either (i) s contains a vari-
able X and X o is not a variable, or (ii) s contains variables X and Y and
Xo=Yo. Incase (i) let o/ = {X=u}, and in case (ii) let o' = {X=X0,Y =u},
where u ¥ X 0. Term u is guaranteed to exist because |T(3}|>1. By Lemma 2.6,
(sd@X)C(s @ZX), and (m @ E)C (¢t @Z). But by the construction of o,

(sd@I)N(m @X) =@. Since this holds for all m = s[|t, s @ # t @ Z.

(«) Suppose s = t. Then both [s]>[t] and [¢]>[s]. By Lemma 2.6, both

s@EIDt@Zand t@XEDs@X. Hence, s @E=t@2X. D

Under very loose restrictions, we have established a correspondence between
sets of ground terms and their templates. When sets of ground instances of tem-
plates are equal, the templates must be variants. The converse is directly implied by
Lemma 2.6. Henceforth, we will assume that every set of function symbols is non-
trivial, so that Lemma 2.7 holds. As a consequence of this lemma, equivalence
classes can be used as templates: [{] @ X denotes t'@ I, where t' is any representa-

tive of [t].
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Next, we demonstrate a connection between the most general common instance

and sets of ground terms.
Lemma 2.8:

(1) If terms s and ¢t have no common instance, then s @ X and t @ X are disjoint.

(2) If terms s and ¢t have a common instance, then ((s[7]¢) @ Z) =
(s@D)N(t@X).
Proof:
(1) Trivial.
(2) (C) Consider a term z €((s[1¢)@ X). Then [s]>[z] and [t]>[z], so z €(s @ )
and z €(t @ X).
(D) Consider a term z €(s @ X) and z €(t @ X). Then [z] is a unifier of s and
t. By definition, s[ ]t > (z]. Hence, z €((s[7]t)@ ), by Lemma 2.6. O
When two terms have no variables in common, by Lemma 2.5 the terms have a com-
mon instance if and only if they are unifiable. So Lemma 2.8 also states that if
terms s and ¢ have no variables in common and the terms are unifiable, then
(M@ =(@oN(t @)
Finally, an inclusion relationship can be drawn between sets of ground terms

and the relation > between equivalence classes of template terms.
Lemma 2.9: For all terms s and ¢, (s @ £) D (t @ X) iff [s]> [t].

Proof:

(=) Since (t @) C(s @), (s @EYN(t @ L) =t @ I, which is nonempty.



Therefore, s @ X and ¢ @ X are not disjoint, and s and ¢ are unifiable, by Lemma
2.8. Lemma 2.4 ensures that s[ |t exists. By Lemma 2.8, (s M@ =
(s@I)N(t @) =t @X. Therefore, s| |t = t, by Lemma 2.7, and [s] > [¢].

(+) Demonstrated in Lemma 2.6. O

28
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Chapter 3

Enhancing Expressiveness of Logic Programming

Many approaches toward enhancing the expressiveness of logic programming
have been proposed. Almost all center on implementing negation. To appreciate the
implementation strategies, it is necessary first to review SLD-resolution, an efficient
evaluation system for definite clause programs. Negation by failure, the most
predominant implementation of negation, is based on detecting failure of query

evaluation.

3.1. Underlying Model of Definite Clause Programs

To recall the discussion of Chapter 1, the underlying model of a definite clause
program is the program’s theory, i.e., the set of all conjunctive formulas implied by
the program. For definite clause programs, the underlying model can be derived
from a unique minimal model. The results below are presented in more detail in
[L82].

Consider a program P, a member of Boolean algebra B(A(IL, X)). An interpre-
tation of P is a triple (D, Fy, Pp), where D is a nonempty domain, Fy, is a mapping
of function symbols and constants from % into functions and constants over the
domain D, and Py is a mapping of predicate and proposition symbols from II into

relations on the domain D.
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Consider the program below:

Example 3.1
% 1t(I,J): true if I < J.

1t (0.s(J)).
1t(s(I),s(J)) « 1t(I,J).

One interpretation for this program could be I, = (N,Fg, Py ), where N is the set of
1 1
natural numbers, Fy, translates O to the number 0 and s to the successor function,
1

and F’El translates 1t to the binary relation {<z,y> | z <y}.

Interpretations are used to assign a truth valuation to formulas. The valuation
is based on classical logic. If I is an interpretation and F a formula, I[F] denotes
the valuation of F by I. Computation of this valuation is described by Enderton
[En72], for example. The valuation of interpretation I on program P is I|P]. I,

places a true valuation on the program of Example 3.1.

Assume that a program P is from B(A(II,X)). A Herbrand interpretation is a
symbolic interpretation with D and Fy, fixed. The domain D = T(3) is called the
Herbrand Universe (HUp). F maps every function symbol f(")EZ and n-tuple of
terms (t;, . ..,t JEHU" to the individual f(¢,, ..., ) of D. The Herbrand Base
(HBp) of program P is equivalent to A(IL,¥). When program P is understood, sub-
scripts on HU and HB will be omitted. Since Herbrand interpretations are symbolic,
any Herbrand interpretation can be written by listing only the subset of ground
atoms in HB that are true in the interpretation. For example, interpretation I,

above, can be represented with an Herbrand interpretation HI, consisting of all
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atoms lt(si(o), sj(o)) such that ¢+ <j.

Any two interpretations I and J are equivalent if I|[F'] = J[F| for all sentences
F. The following result demonstrates that Herbrand interpretations are adequate to
represent all interpretations. Within this chapter, if a lemma or theorem has a

reference, its proof is contained in the referenced source.

Lemma 3.1: Any interpretation for a definite clause program has an equivalent Her-

brand interpretation [EK76].

Interpretation M is a model for a program P if M[P] is true. For definite
clause programs, a query is a conjunction of atoms. A query @ is logically implied by
a program if 3@ is true in all models. The following property reduces this test to a
single model. Let M (or just M when P is understood from context) be the class of

all Herbrand models for a program P.

Lemma 3.2 (Model Intersection [EK76]): M is closed with respect to N, i.e.,

MM eM.

For example, it can be shown that HI, is the least Herbrand model for the program
of Example 3.1.

According to the following result, the least Herbrand model of a program can

derive the program’s theory, the set of all logically implied queries.

Lemma 3.3 (Logical Implication [L82 (Thm. 7.1)]): A query @ is logically implied by

a definite clause program P iff 3Q is true in P’s least Herbrand model.
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The query:
Q =1t (s(0).X) A 1t(X,s(s(s(0))))
is logically implied by Example 3.1, since 1t (s(0).,s(s(0))) and
1t (s(s(0)).s(s(s(0)))) are contained in the program’s least model, HI,.

Thus X = s(s(0)) establishes 3X: Q.

For any particular definite clause program, there is a lattice of Herbrand
interpretations, ordered by set inclusion. This lattice is complete: every set of Her-
brand interpretations has a least upper bound and a greatest lower bound, where
these elements are computed by set union and intersection, respectively. The
minimal element of the lattice is the empty interpretation, 5. The maximal element

is HB.

The immediate consequence functional Tp (or just T when P is understood
from context) is a mapping from Herbrand interpretations to Herbrand interpreta-
tions, defined as follows:

AeT(I)iff

A is a ground instance of an assertion,

or there is a ground instance A «— A, A\ - - - A A, of a clause and

IA N\ - - - NA,]is true,ie, {A,, ... A, }CL
For any Herbrand interpretation I, powers of T can be computed as follows:

) =1

Tkﬂ(I) = T( Tk(I)) for all successor ordinals k+1
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/(1) = (| T%(I) for all limit ordinals A
a<f

A fixedpoint of T is an Herbrand interpretation I for which 7 = T(I). Let X,
be the class of fixedpoints of T),. Since T is a monotonic mapping with respect to
the inclusion ordering of Herbrand interpretations, the Knaster-Tarski Theorem
[Ta55] ensures completeness for the lattice of this class of fixedpoints. In particular
unique minimal and maximal elements exist. Let Ifpp, = MX, be the least fixedpoint
of P, and let gfpp = UXp be the greatest fixedpoint. As usual, when program P is
understood from context, the subscripts on X, Ifp and gfp are omitted. To compute

fixedpoints of programs, define the following distinguished interpretations for all ordi-

nals o
Tta = TYQ)
T |a = T*(HB)

Lemma 3.4 (Characterization of Fixedpoints [L82 (Thm. 5.2)]): When P is a definite

clause program:

(1) There exist ordinals n, and n, such that p >n, implies T tp = lfp and ¢ >n,
implies T § ¢ = gfp.

(2) Ifp =T tw, where wis the cardinality of the natural numbers.

(B) 9CT]w

The following example (from [AE82|) provides a program for which the inclusion

of (3) above is proper.
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Example 3.2
p(a) «~ p(X) N\ q(X).
P(s(X)) «~ p(X).
q (b) .
q(s(X)) « a(X).
In this program gfp = T | (wHw) = {q(si(b)) | ¢ >0}, while T Jw =
{als'(®)) |1 20} U{p(s'(a) | i 20}
Lemma 3.5 (Characterization of Least Model by T [EK76]): When P is a definite

clause program, Ifp = NM.

In summary, Herbrand interpretations are symbolic representations of all
interpretations. For definite clause programs, logical implication of all queries by
the least Herbrand model of a program is equivalent to logical implication by the
program (Lemma 3.3). And determination of the least model requires a finite
number of iterations of the T functional (Lemma 3.4). However, infinite iterations
may be necessary to produce the greatest fixedpoint. Since negation by failure will
rely on the greatest fixedpoint for meaning (Section 3.3.2), negation by failure is gen-

erally an incomplete evaluation procedure.

3.2. SLD-Resolution

SLD-resolution is a relatively efficient evaluation procedure for definite clause
programs. It is a specialization of resolution [Ro65|. But because of the restriction
to definite clauses, many efficiencies are attained by SLD-resolution over resolution.
SLD-resolution is a linear-input resolution strategy [Ni80]. Linear-input resolution

resolves the initial query with a program clause to form a new query. Each new
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query is again resolved with a program clause. Because queries are never resolved
with previously obtained queries, evaluation is focused on a deduction from the ini-
tial query and not on other unrelated proofs. For general clause programs, this stra-
tegy is incomplete. But as stated in Lemma 3.8, below, this strategy is complete for
definite clause programs. Finally, resolvents can be formed in a last-in first-out
manner, permitting efficient construction and access of data structures representing

resolvents.

Given a query @, SLD-resolution determines an answer substitution of values for
variables occurring within @. The nature of the procedure ensures correctness:
whenever « is an answer substitution for a query @, V(Q @) is logically implied by
the program. Further, SLD-resolution is complete: if 3Q is logically implied by the
program, @ will execute successfully. On the other hand, if 3@ is not logically

implied, termination of the procedure is not guaranteed.

Implicitly, SLD-resolution constructs a full search tree for a query and then a
success path is found within the tree. In fact it is not necessary to represent the
entire search tree within any actual implementation. The search tree is developed
while searching for a success path, so that the procedure can terminate even if its
full search tree is infinite. The manner in which full search trees are traversed
affects completeness of the implementation. Prolog implementations are incomplete,
since full search trees are developed in depth-first order. This may lead to non-
termination, though success paths would be present in other branches of the full tree.

On the other hand, no other search strategy can find a success path faster than
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depth-first search.

Description of a well-formed full search tree is based on the structure of a
query. A full search tree can be depicted as nodes labeled by queries (conjunctions of
atoms), and directed edges labeled by substitutions. The full search tree for a query

@ is the full search tree whose root is labeled Q.

A full search tree consisting only of a node labeled by the empty conjunction,
denoted O, is well-formed. The empty conjunction designates a vacuously true for-
mula. Otherwise, the root node of the tree is labeled by a nonempty conjunction of
atoms A /\ C, where C is a conjunction of atoms. A variant of a clause is the result
of applying a renaming to the clause so that variables in the clause will be distinct
from all others in use. Collect variants of all clauses from the program
A;+~C,, ..., A +C for which the selected atom A unifies with each A,

(1<7< n). There is a unique mgci (modulo renaming) for each pair A and A;. Sec-
tion 2.3 describes a unique decomposition of the mgci producing substitutions o; and
7, such that A o, = A, 7,. Suppose each query (C;7,) \(C0;) (1<i<n) has a well-

formed full search tree. Then the full search tree of Figure 3.1 is well-formed.

As an example of this evaluation procedare, consider the program of Example
3.1 and the query 1t (s (0).X) A1t (X.s(s{s(0)))). A full search tree for this

query is presented in Figure 3.2:

A success node in a full search tree is any leaf labeled O, indicating that no
atoms are left to be resolved. A success path is a path from the root of the tree to a

success node. The value of a success path is derived from composition of the labels of
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Well-Formed Full Search Tree

(Ci)N\(Cay)

/\

ANC

Figure 3.1

(C.)N(Ca,)

/\
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Example of the Full Search Tree Construction

1t (s (0) . X) A1t (X,s(s(s(0))))
X=s (X1)
1t (0, X1) ALt (s (X1).s(s(s(0))))

X1=s (X2)

1t(s(s(X2)).s(s(s(0))))

1t (s (X2),.s(s(0)))

1t (X2, s (0))
X2=0 X2=s (X3)

O 1t (X3,0)

Figure 3.2

edges along the path. The value of the path in Figure 3.3 is 0, °0,° - - - 0, _,°0

n n-—1°

In Figure 3.2, the value of the only success path is:
{X=s (s (0)). X1=s(0), X2=0}.

An answer substitution is the value of a success path restricted to those variables
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A Success Path

Figure 3.3

occurring in the original query. Thus the answer substitution for Figure 3.2 is
{x=s (s (0))}.

A “Lifting Lemma” applies to the construction of full search trees. This lemma
ensures a success path in a full search tree for a query @ when some instance @ o of
@ has a full search tree with a success pa‘th.

Lifting Lemma 3.6 [L82 (Thm. 8.2)]: If query @ o has a success path, then @ has a
success path.

A selection rule used to obtain an atom from a conjunction of atoms is implicit

in the construction of full search trees. SLD-resolution selects the first atom from a
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conjunction, reflecting efficiencies in adding and removing the first element from a
data structure representing a conjunction. This selection rule may not be desirable
for use with negation by failure. Other selection rules could be employed. Any par-
ticular selection rule only affects the size of the tree, and does not affect answer sub-
stitutions obtained from the tree, as will be seen in Lemma 3.8 providing for con-

struction completeness.

In addition to construction of a full search tree, an implementation of SLD-
resolution must search for a success node starting from the root. As stated earlier,
usually this search is performed in conjunction with construction of the full search
tree, because full search trees can be infinite. So the procedure for traversing a full
search tree is the main factor in determining completeness of an SLD-resolution

implementation.
The following properties concerning the construction of full search trees hold:

Lemma 3.7 (Construction correctness [L82 (Thm. 7.4)]): For every answer substitu-
tion o in the full search tree for @ (constructed using any selection rule), V@ o is

logically implied by the program.

Lemma 3.8 (Construction completeness): For any ground query @ logically implied
from the program, the full search tree for @ constructed using any selection rule has

a success path.
A corollary to completeness of the construction is slightly stronger:

Corollary 3.9 (Construction Completeness & Correctness): 3Q is logically implied

from the program ifl the full search tree for @ (constructed with any selection rule)
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contains a success path.

Proof:

(=) If 3@ is logically implied, there is a substitution o such that @ o is a closed for-
mula and is logically implied. By Lemma 3.8, the full search tree for @ o has a suc-
cess path. Lifting Lemma 3.6 provides that the full search tree for @ has a success
path.

(+) If @ contains a success path with value o, then V@ 0o is logically implied from
the program, according to Lemma 3.7. Thus any closed instance of @ o is logically

implied. Therefore, 3@ is also logically implied. O

Though the full search tree construction provides for correctness and complete-
ness, another component in the implementation of SLD-resolution dilutes these pro-
perties. This component is the procedure by which the full search tree is traversed
from the root node to a success node. Correctness of the search procedure provides
that success is declared only when a success node is found. Completeness of the
search procedure ensures that every success node can eventually be located. Prolog
relies on depth-first search. As noted previously, depth-first search is incomplete
because an infinite non-success path could be followed, while success paths remain
unexplored. Another search technique, called staged depth-first search [St84], aborts
a depth-first search as soon as a certain depth is reached. When no success node is
encountered, and nodes remain to be explored at greater depths, the maximum depth
is incremented by some amount, and the staged depth-first search resumed. Thus,

this search technique is complete.
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3.3. Negation by Failure

In order to obtain efficiency in the resolution theorem-proving procedure, the
notation of predicate logic is restricted. This restriction dramatically reduces the
expressiveness of the notation, leading to the coding problem described in Section

1.2,

Negation within definite clause programs can overcome many of the difficulties
associated with the coding problem. Definite clause programs utilizing negation by
failure permit negated atoms within the bodies of clauses. Such clauses are referred
to as general clauses. A negated atom appearing in a program for execution under
negation by failure is expressed as not A. Use of negation fundamentally alters the

underlying model of the language, and requires revisions in the evaluation procedure.

3.3.1. The Closed World Assumption

Negated atom not A is logically implied from a program if A is false in all
models. It may be, however, that A is true in some models and false in others, per-
mitting no valuation of A. For example, if a program contains only the clause
p + q, Herbrand models of this program are M; = & and M, = {p, q}. Hence,
neither p nor not p are logically implied (similarly for q).

This problem can be resolved using the Closed World Assumption (CWA) [Re78]:
whatever is not logically implied is assumed false in all models. For programs
without negation, SLD-resolution is capable of determining logical implication. It is

thus possible that SLD-resolution could be used to implement CWA. A full search
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tree without any success paths is a failed full search tree. Lemma 3.8 (construction
completeness) implies that a closed atom A is not logically implied from a program
if A has a failed full search tree. Thus, if A is a closed atom and A has a failed full
search tree, not A is implied by the CWA. This correctness result is not really
justified for general clause programs. Determination of negation for such programs

requires a full resolution theorem-proving system.

3.3.2. Program Completion

In contrast to the CWA, Clark has suggested program completion [C178| to pro-
vide a basis for negation. The assumption underlying program completion is that a
program embodies complete knowledge about a domain. Rather than implicational
statements, a program is taken to provide definitions. The following algorithm

transforms a definite clause program into a completed program:

(1) The general form of each clause p(t,, . ..,t, )« Cis

p(X,, ..., X,)3Y, - - Y X;=t; \ - AX,=t, \C, where X, - - - X,

n

are variables not occurring in the clause and Y, - - - Y, are all variables occur-

ring in the original clause. Recall that C is a conjunction of atoms.

(2) Let the general forms of all clauses defining predicate p be
p(Xy, ..., X,)—E, ..., p(X,,...,X,)—E,. Then the completed form of

predicate p is VX, - - - X, :p(X;, . . . , X, ) E\/ - - - VE,. If there are no
(n)

clauses defining a predicate ¢ ' in the program, the completed form is

VX, - X, (X, ..., X,) e false.
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(3) The completion of a program P, comp(P), is the conjunction of the completed

form of all predicate symbols in P.

Step (1) of this algorithm is a transformation of clauses that is meaning-preserving
when equality is interpreted in a manner consistent with unification. Step (2) pro-

vides that all facts not logically implied by a program will be false in all models.
As an example of the completion procedure, consider the program below:

% add(I,J,.K): true if I+J=K.
add (0,J,J).

add(s(I).J.s(K)) ¢ add(I,J,K).
% mult(I,J,K): true if IXJ=K.

mult (0,J,0).
mult(s(I),J,K) <« mult(I,J,X) A add(J.X,K).

The completion consists of the two formulas:

add (X1,X2,X3) «
Ar: [(X1=0 A X2=3 A X3=J]
V 3,7,k [X1=s(I) A X2=J A\ X3=s(K) A\ add(I,J,K)].
mult (Y1,Y2,Y3) <
Ar: [Yi=0 A Y2=J A ¥Y3=0]
V 31,3,K,X: [Yl=s(I) A Y2=J A\ Y3=K A
mult(I,J,X) /\ add(J,.X.K)].

Since equality is introduced into the completion, equality axioms must be added
to the theory. The axioms [C178] will not be reproduced here; they provide for com-

pleteness and correctness of unification.

The following result characterizes negation by failure in terms of completed

programs.
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Lemma 3.10 (Meaning of Failure for Ground Atoms [L82 (Thm. 13.2)]): Let P be a
definite clause program. Ground atom A ¢ gfp iff not A is logically implied from

comp(P).

Whenever an atom A is not contained in the greatest fixedpoint, the full search tree
for query A does not have a success path [AE82]. Therefore, not A is logically

implied from comp(P). Lemma 3.10 is also generalized to non-ground queries.

Lemma 3.11 (Meaning of Failure): Let P be a definite clause program. A query Q

has a failed full search tree iff comp(P) logically implies V(not Q).

Proof: If @ is a closed conjunction of atoms, the result follows: @ has a failed full
search tree iff some atom A in @ has a failed full search tree, which holds iff
comp(P) logically implies not A. And this holds iff comp(P) logically implies
not Q. Now if @ contains variables, the general case, @ has a failed full search
tree iff every ground instance @ o has a failed full search tree. This holds iff
comp(P) logically implies not (Q o), which holds iff comp(P) logically implies

V(not @). O

3.3.3. Incorrectness of Negation by Failure

Lemma 3.11 points out the incorrectness inherent in use of negation by failure.
Suppose a query Q succeeds. By Lemma 3.9, 3Q is logically implied by the program
and its completion. Also, the query not @ fails, and Lemma 3.11 provides that
V(not(not Q)) is logically implied by the program’s completion. But

V(not(not Q)) is logically equivalent to ¥ @, which is not implied by 3Q.
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This confusion of quantifiers surfaces in Example 3.1. The query 1t (X,s (0))
succeeds with answer substitution X = 0, and so not 1t (X,s (0)) fails using
negation by failure. By Lemma 3.11, VX:1t (X, s (0)) is logically implied by the
program’s completion, which is clearly not true due to all contradictory values of
X =s"(0) (n>1).

Correctness is assured only when ground negated atoms are evaluated. A
correct selection rule thus selects a negated atom only if it is ground. Under correct
selection rules, it is possible for the query containing non-ground negated atoms to
flounder. For example, the query p (X) /\ not q(X) flounders on a program con-

taining only the assertion p (Y) under every correct selection rule.

To eliminate floundering, only allowed queries are permitted on allowed pro-
grams [CI78]. A query is allowed if every variable occurring in a negated atom
occurs somewhere else within a positive atom. A clause is allowed if the body of the
clause constitutes an allowed query, and every variable occurring in the head of the
clause occurs within a positive atom within the body of the clause. The restriction
to allowed clauses ensures that termination of any query composed of positive atoms
will instantiate all variables to ground terms. Evaluation of the positive atoms of an
allowed query can then instantiate the variables occurring within negative atoms of
the query, and any correct selection rule will never flounder under terminating

evaluations.

It should be clear that allowed queries on allowed programs do not flounder.

The result, however, is a severe restriction on the expressiveness of programs. For
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example, the assertion in Example 3.1, 1t (0, s (J)), is not allowed. This assertion
is a concise statement that zero is less than every positive number. The restriction

to allowed clauses has restricted the ability to state universal properties within

clauses.

It can be argued that allowed programs do not restrict the expressiveness of
database-oriented programs [C178] (Section 6.1). Logic programs for such applica-
tions typically have a large number of assertions and a small number of rules. Each
assertion is conventionally represented by a record in a relational database, and will
contain neither variables nor structured terms. Clauses act as database views [U8Q],
capable of generating additional relations, and will not be able to introduce vari-
ables or structured terms into records. Under these constraints, restriction to

allowed programs seems reasonable.

3.3.4. Incompleteness of Negation by Failure

There are also several problems with respect to completeness of negation by
failure. In order to determine that a full search tree is failed, it is necessary to
traverse the entire tree searching for a success node. When a full search tree is
infinite, this search is impossible. Hence, evaluation of a negated query using nega-
tion by failure must ensure finiteness of the failed full search tree. It may be neces-
sary to construct various full search trees using alternate selection rules to find one
that is finite and failed. Fortunately, there are maximal selection rules [Sh84], essen-
tially those that are fair, that can obtain finite failed full search trees if any exist.

Still, there are examples of programs producing infinite full search trees that no
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maximal selection rule can make finite:
P <« p.

For this program and query p, the only full search tree produced under every selec-

tion rule, including maximal selection rules, is infinite.

3.3.4.1. Canonical Programs

Completeness of negation as failure is achieved for a certain class of programs.

Definite clause program P is canonical if T | w = gfp.

Lemma 3.12 (Completeness for Canonical Programs [JLM84]): When P is a canoni-
cal program and a ground negated atom not A is logically implied from comp(P),

the query A has a finitely failed full search tree.

As for Lemma 3.11, this generalizes to non-ground conjunctions of atoms.
Example 3.2 is non-canonical. Canonical programs are obtained only with stringent
syntactic constraints, for example permitting only constant terms in programs
[AE82|. Jaflar and Stuckey have shown that for every definite clause program there
is an equivalent canonical program [JS86]. Their proof is not useful in deciding if a
logic program is canonical, however, because they produce a canonical program from
the description of a partial recursive function, rather than from another definite

clause program.

3.3.4.2. Inconsistency of a Program’s Completion

Completeness of negation by failure also depends on the consistency of the com-

pletion of a program. If a program’s completion is inconsistent, its greatest
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fixedpoint will not exist. Any query is logically implied from an inconsistent pro-
gram, but SLD-resolution may not succeed for every query. Consider the general

clause program below:

Example 3.3

P +«— not p.

This program has an inconsistent completion: p +> not p. Therefore, p is logi-

cally implied by the program, but the query p fails with an infinite full search tree.

Inconsistency can be prevented by requiring stratified programs [ABWS85]. A
program from B(A(II, X)) is stratified if there is a well-founded ordering <j; over 1§
such that p < ¢ whenever ¢(z)+« C is contained in the program and C contains
the negated atom not p(y). In effect stratification prevents recursive references by
negated atoms, as in Example 3.3. Stratification is sufficient to guarantee con-

sistency of the program’s completion.

It is not clear that general programming tasks fit well within the requirements
set down by stratification. However, negation for relational database applications is
accomplished by the relative complement operation [Co70], which requires full
definition of its operands prior to evaluation. Thus there are no recursive references
by negated atoms. But strictly speaking, relational algebra has no capacity at all to

express unbounded recursion.

Negation by failure is an efficient implementation of negation within logic pro-
gramming. With respect to the completion of a program, ground negative queries

can be evaluated correctly. Only strict syntactic restrictions can ensure
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completeness. When negation is permitted within programs, stringent syntactic res-
trictions ensure consistency and correctness. Consistency of a program’s completion
can be assured by stratifying the program. To prevent incorrectness of negation by
failure, negated queries flounder if all selection rules cannot instantiate variables of
these queries. Floundering is eliminated by evaluating only allowed queries on

allowed programs.

3.4. Enhancing Expressiveness of Programs with Negation

Any implementation of negation is sufficient to significantly reduce the coding
problem described in Section 1.2. Lloyd and Topor suggest a logic language of
extended programs based on negation by failure. Implementation of this language
therefore suffers from incorrectness and incompleteness. The model elimination pro-
cedure permits full predicate logic. Its implementation is a significant enhancement
to SLD-resolution, and is complete for negative queries, unlike negation by failure.

However, the implementation may be far less efficient than SLD-resolution.

3.4.1. Extended Programs

Implementation of negation within logic programs permits implementation of
all other logical connectives within the bodies of clauses. This increased expressive-
ness reduces, though does not eliminate, the coding program suffered by logic pro-
grams. To demonstrate the expressiveness obtained when negation is implemented,
eztended programs are defined [LT84]. An extended program from B(A(II, X)) is

composed of extended clauses. An extended clause is of the form A «— F', where F 1s
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a formula using all logical connectives and A is an atom.

Every extended program P can be converted algorithmically into a general
clause program P’ such that the set of sentences implied by comp(P') is equivalent to
the set of sentences implied by comp(P). The conversion algorithm is applied to
every extended clause of an extended program until every clause is just a general

clause.

The conversion rules preserve stratification of the original extended program
(Section 3.3.4.2). It is not assured that the general clause program produced by the
transformation will be allowed (Section 3.3.3). For example, the extended clause

p + VX:q(X) is converted into two general clauses:

p +« not aux.
aux <+ not gq(X).

This program is not allowed because the variable X in the second clause does not
appear within a positive atom elsewhere within the body of the same clause. This
leads to floundering of the query p, because the non-ground negative query

not g (X) ensues.

Extended programs partially resolve the coding problem, described in Section
1.2. Using a conversion procedure and an implementation of negation, all logical
connectives can be included within the bodies of clauses. Nonetheless, requiring that
programs will be allowed and stratified impedes these additional expressive capabili-
ties. The model elimination procedure, discussed next, permits the full expressiveness

of logic, though the procedure is not as efficient as SLD-resolution.
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3.4.2. Model Elimination

Negation by failure relies on SLD-resolution to provide an implementation of
negation within logic programs. This strategy retains the efficiency of SLD-
resolution, though completeness of the evaluation system is sacrificed. The model
elimination procedure [Lo78| is an evaluation system for full predicate logic. The
expressiveness of the language is therefore equivalent to the expressiveness of predi-

cate logic. But efficiency of the evaluation system is now in question.

Model elimination is an enhancement to the linear-input resolution strategy,
called ancestry-filtered resolution [Ni80|. While linear-input resolution is incomplete
for general clauses, an ancestor search component restores completeness to linear-
input resolution. Model elimination therefore enhances SLD-resolution. Efficiency of

model elimination is somewhere between SLD-resolution and resolution.

When using resolution, statements of predicate logic are converted into clauses

of the form:

AV VA, <B N\ - N\B,,

where each A; and BJ. is an atom. For model elimination, each clause is further con-

verted into contrapositive forms. As an example, the following contrapositives:

p+~r As A\ —q
g—r As A\ -p
-r «s A p A\
s ~—r Np A\ -

are obtained from the clause p\/q «— r/\s. Every contrapositive obtained from a

clause is logically equivalent to the clause. SLD-resolution can be used on programs
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consisting of contrapositives by generalizing the procedure to permit unification of a

query —mA with the head of a contrapositive =A’«=L, A\ - - - AL,.

Model elimination constructs a full search tree with the same construction rules
used by SLD-resolution. An additional reduction rule also applies. If A /\ C labels a
node in the full search tree with a descendent node labeled A’ A\ C’, where
A'o = A for some substitution o, and =A’ /\ C' arises from solving A, then mA’ can
be eliminated, resulting in the descendent C'o of mA' /A C’. This implementation of

negation effectively duplicates reasoning through reductio ad absurdum.

To detect reduction the full search tree to the root is traversed, though certain
nodes along the way can be disregarded. Indexing schemes reduce the number and
length of such searches [PG86]. As demonstrated in [MW87], it is not always advan-
tageous to perform a reduction when instantiation of variables would occur. Thus,
each step of model elimination involves more choices and more processing than each
step of SLD-resolution. Experience of an actual implementation on actual programs
will demonstrate if model elimination used in practice is as efficient as SLD-

resolution [St84].
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Chapter 4

Constructive Negation

Negation by failure, described in Chapter 3, is the predominant implementation
of negation with logic programming. This procedure can be both incorrect and
incomplete. And because negation by failure does not produce answer substitutions,
it does not fulfill important programming requirements. For this reason, program-
mers often use ad hoc negative definitions of predicates within programs to produce

answer substitutions.

Constructive negation is a formalization of this approach. Its negated queries
can produce answer substitutions. To derive answers, programs incorporating con-
structive negation, DIF-programs, contain definitions for both positive and negative

facts.

The first section of this chapter describes the syntax of DIF-programs. Section
4.2 describes the underlying model of DIF-programs, based on 3-valued logic. DIF-
programs may be inconsistent. While resolution can always detect inconsistency,
detection imposes inefficiency on the evaluation system. Lemma 4.6 demonstrates
that inconsistency is not decidable. Sufficient syntactic conditions ensuring con-

sistency are described in Chapter 5.
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4.1. A Language of Logic Programs with Constructive Negation

Constructive negation requires definitions of both true and false information.
In fact, the definitions can be completely disjoint. A Definite Inference Form (DIF) is
used to express such definitions. Every DIF is either an assertion L or is of the form
L «— F where L is a literal, and F is a formula containing all logical connectives.
All negated formulas that are to be evaluated under constructive negation are
expressed as ~F. Only variables occurring in the head of a DIF are permitted to
occur free in its body. A DIF-program consists of a collection of DIFs. A fragment

of a DIF-program follows:

% mult(I,J.K): true if IXJ=K; otherwise, false.
mult (0,J,0).
mult(s(I),J,K) «

I: mult(I,J,.X) A add(J,.X.K).
~mult(0,J,s(K)).
~mult(s(I),J,K) «

VX: mult(I,J,X) =+ ~add(J,X,K).

Because all logical connectives can be present within the body of a DIF, DIF-
programs are as expressive as as the extended programs of Lloyd and Topor (Section

3.4.1); treatment of negation is a key difference.

In this language all literals are treated equally regardless of sign. An interpre-
tation of a DIF-program is a constructive interpretation. Just as an interpretation
of a definite clause program can be given by a set of ground atoms, a constructive
interpretation is represented by a set of ground literals. A ground atom A is con-
structively true (respectively, constructively false) in constructive interpretation I if

A (respectively, ~A) is a member of I.
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It is essential to differentiate logical negation from constructive negation. Tem-
porarily define the standard part of a constructive interpretation to be the set of all
ground atoms within the interpretation; hence, the standard part of a constructive
interpretation is an interpretation. For constructive interpretation I = {~p}, pro-
position p is constructively false and p is logically false in the standard part of I.
On the other hand, for I = @, proposition p is logically false in the standard part of
I, but p is neither constructively true nor constructively false. Thus, the law of the
excluded middle does not hold. This fact leads naturally to development of a three-

valued logic for DIF-programs.

4.2. Underlying Model of DIF-Programs

The ability to define both true and false propositions within programs also
entails the possibility that the truth value of some propositions may not be defined.
To cope with this possibility, an undefined logical value can be assigned to formulas
by an interpretation. Models of DIF-programs may be strong or weak (Section
4.2.3). Strong models assign true valuations to programs, while weak models assign
either true or undefined valuations. Unlike definite clause programs, the least strong
model of a DIF-program may not exist, while the least weak model assigns to every
formula the undefined logical value. Thus, we take fixedpoints of the T functional as
the basis for a DIF-program’s meaning. The set of fixedpoints may be empty, but
absence of fixedpoints cannot be detected by efficient evaluation systems or by any

decision procedure.
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4.2.1. Three-Valued Logic

The logical constants are:

Logical Constants

Intended
Symbol Meaning

t true
u undefined
f false

There are several proposals for 3-valued truth tables of the Boolean operators
[Tu84]. To some extent the content of truth tables for the logic is arbitrary, though
a monotonicity property should hold for all logical operators. The information ord-

ering on truth values is defined with u as the least informative element:
ult and ulf.
Monotonicity ensures that:

Negation:
if z[y then (~z)(~y)

Sets of expressions:

if there is a bijection 0: S — T, such that z[_o(z) for all z €S, then SL T

Disjunction and Conjunction:

if SC T, then (AS)C(AT) and (V S)C(V 7).

For example, the truth table of implication follows:
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Truth Table for Imglication
Yy

Ha:c'-l
+ ot o |
- - -]
ot [ = |

Appendix A contains 3-valued truth tables for all logical connectives. With respect
to the ordering [, these 3-valued truth tables are the strongest extension of the
usual 2-valued truth tables; Appendix B demonstrates this assertion. Appendix B
also demonstrates that all laws observed by the usual truth tables are observed by

the extension.

4.2.2. Constructive Interpretations of Formulas

Suppose a DIF-program is from B(A(II, 3)). It possesses an associated Her-
brand Universe and Base, HU = T(%) and HB = A(IL ¥} respectively. A construc-
tive interpretation is a mapping from HB to the three logical constants t, u, and f.
Valuation of a formula F by a constructive interpretation I is denoted I[F]. When-
ever the meaning is clear from context, constructive interpretations will henceforth

be referred to only as interpretations.

As for Herbrand interpretations, set notation is used to denote constructive
interpretations. A set of ground literals qualifies as an interpretation if it contains
no occurrence of an atom and its negation. If a set S of ground literals qualifies as

an interpretation, then an interpretation Iy may be constructed from S as follows.

For every atom A € HB:
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If A€S, then I [A] =t.
If ~A €S, then I([A] =1
If neither A nor ~A are in S, then I¢[A] = u.

For example, suppose HB, = {p.q.r}, and S, = {p, ~q}. Then ISl contains the fol-

lowing mappings:

Ig[p] =t
Isl[Q] =f
Isl[r‘] = u.

When L is a ground literal and 7 is an interpretation, L €1 is taken to mean
that I[L] =t. I CJ, where I and J are interpretations, means that for all ground

literals L J[L] =t whenever I[L] =t. As examples of this notation: p €1 o andif
S, ={p.~q.r}, then Islg 152. Henceforth, sets of ground literals qualifying as

interpretations will be used freely to designate interpretations without the unneces-

sary step of designating the unique interpretations associated with the sets.

An interpretation I can be naturally extended to a mapping I over all formulas

from B(A(I, X)) as follows:

fiF)) = ~11F)
AR Fy - Y = NUIFLIF, - )

INAF L Fy - N =VUIFLIF), -}
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The extension I also distributes over abbreviations for formulas:

[[F,—F,) =IF|—1F)
[F e F)] =IF ] I|F,]
IF N\FY) = TP NIIF)
1PNV Fy| = TF)VIIF)

Since VX: F, is an abbreviation for /\ F(t),
tEHU

IvX:F| = t !}zuf[F‘(t)]'

Similarly, 3X: F, is an abbreviation for \/ F,(t), and therefore:
teHU

fAx:.r) = , G\{I Ui[Fl(t)].

Henceforth, an interpretation I will be used in place of its extension I when no con-

fusion can result.

As an example of evaluation of a formula by an interpretation:

Let HU = {a, b},
HB ={p(a).p(b).q(a).q(b)},
I, ={p(a).~p(b) . q(a)}
Then I,[VX:p (X) =q (X)] = (L1[p (2) | = La (a) N AU;[p (b) | = [} [a (b) ])
=(t—t)\(f—u)
=t /At

=t.
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The next result demonstrates a form of monotonicity maintained by formulas.

Lemma 4.1 (Monotonicity of Interpretations): Let I and J be interpretations. Then
ICJiff I|F][LJ[F], for all sentences F.
Proof:

(—) Suppose I CJ. The proof proceeds by induction on the nesting depth of opera-
tors in F'. In the basis case, the nesting depth is zero, so F' is a ground atom. There

are three subcases:

(a) I FEI, then FEJ, so I[F] =J[F] =t.

(b) If ~F€I, then ~F€J,s0I[F]|=JF]=H.

(¢) Otherwise, I[F] =u, and J[F|€{t,u,f}.

In all three cases, I|F]_ J[F)].

For the induction hypothesis, assume that I CJ implies I[F] J[F] for all sentences

F with nesting depth at most d. Assume that I C J, and consider a sentence F' with
nesting depth d +1. Let F = ¢ S, where ¢ is a logical operator in {}) and S is a set

of formulas of nesting depth at most d. (When ¢ is the negation operator, S will be

a singleton set.) The induction hypothesis holds for each subformula in S, so I|F;]C
J[F;] for all F; €S. Consequently, ¢ {I[F |, I[F,], - - - }Lec{J[F,],J[F,], -} But

I denotes I and J denotes J, so I[c S|[CJ[¢ S]. D

It is easily shown that interpretations preserve any laws observed by the usual
truth tables. By applying De Morgan’s laws, the logical connectives are expressive

enough to dispense with negation applied to any non-atomic formula. The comple-
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ment of a formula F, denoted F, produces a new formula with negation innermost,

applied only to atoms. Complement is defined as follows:

A = ~A, where A is an atom

The following result ensures that complement is meaning-preserving.

Lemma 4.2 (Complement equivalent to Negation): For every interpretation I and

sentence F, I|~F| = I[F].
Proof: This is just application of De Morgan’s laws.

Thus the syntactic procedure for complementing a formula is equivalent to the

semantic notion of constructive negation.
Extending complement to the logical connectives provides the following rules:
FiNF,=FVF,

110]2=F;/\F;
11_’]2=F1/\F;

FieF,=F—>F,A\F,—F,
IX-F =VX:F
VX-F =3x:F
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In order to evaluate DIF-programs, Chapter 5 requires all quantifiers to be
bounded, of the form AX: F /\ G and VX:F — G. Thus, the rules above can be

refined to produce only bounded quantifiers from formulas with bounded quantifiers:

T AF, = VX:F, - T,
VX =T, = XA AR
Because the syntactic complement of a formula is equivalent to evaluating its
negation, the complement form of a formula can always be used whenever negation
is applied to a non-atomic formula. The resulting formula is logically equivalent to
the original negated formula. For example, the following DIFs are logically

equivalent:

~mult(s(I),J,K) + ~IK: mult(I,J,X) /A add(J,X.K).
~mult (s (I),J,K) + WX: mult(I,J,X) — ~add(J.X.K).

Henceforth, only DIF-programs with negation applied to atomic formulas will be con-
sidered. DIF-programs with negation applied to arbitrary formulas can be converted
in a meaning-preserving manner to programs with negation applied only to atoms.
As the above example demonstrates, having negation applied only to atoms mani-
fests occurrences of universal quantification. It is important to detect implicit
occurrences of universal quantification because universal quantification can make

any evaluation procedure incomplete.

4.2.3. Constructive Models of DIF-Programs

Two notions of model are possible under 3-valued logic, as discussed in [LM85].

An interpretation M is a strong model of a DIF-program if M[VF] =t for every DIF
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F in the program. Therefore, M[F o] =t for every closed instance F o of F. Recall
from Lemma 3.2 that the least model MM is a model of any definite clause program.
This is not generally the case for strong models of DIF-programs. A program con-

taining only the DIF p <« g has strong models:

{p.a},

{p. ~a},

{~a},

{~p.,~q}.
The intersection of this collection is @, which is not a strong model. It is important
to obtain a unique least model. Without a least model the evaluation system must

cope with indefinite information, which is not possible for an evaluation system based

on SLD-resolution.

As an alternative, an interpretation M is a weak model of a DIF-program if
M|VF] # f for every DIF F in the program. Hence, M|F o] # f for every closed
instance F o of F. Weak models for the program containing only the DIF p + ¢

are those strong models listed above and the following:

{a},
9,
{~p}.
The intersection ¢J is now a weak model. The situation in the example is general —

@ is always the least weak model of any DIF-program.

Within the framework of 3-valued logic, a program is tnconststent if it has no
strong models. For example, a program consisting of two assertions p and ~p has

no strong models, but (3 is a weak model. So consideration of weak models is too
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Thus neither strong nor weak models are suitable for assigning underlying
models to programs. The set of strong models of a DIF-program may not possess a
least element, while the least weak model is {J even in the event of inconsistency.
Instead we turn again to the immediate consequence functional T of Section 3.1.
The definition is broadened to accommodate DIF-programs as follows:

Closed literal L € T(I) iff:

L is a ground instance of an assertion,

or L «F is a closed instance of a DIF in the program and I[F] =t.
Lemma 4.3 (T monotonic): T(I)C T(J) whenever IC J.
Proof: Suppose I C J and closed literal L € T(I). If L is a closed instance of an
assertion, then L € T(J). Otherwise, there must be a closed instance L «—F of a
DIF with I[F] =t. By monotonicity of interpretations (Lemma 4.1), J[F] =t, so

LeT(J)).o

Unlike definite clause programs, it is possible at some iteration a for T toto

become undefined, as in the following DIF-program:

For this program, iterations of T are the following:

65
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T10=0Q
T11={~p,r}

Tt2={~p,qr}

T 13 undefined.

In general, T T becomes undefined at iteration a when T 1o attempts to include

both a ground atom A and its negation ~A.

As for definite clause programs, we will be interested in fixedpoints of T.
Often, we state that X is a fixedpoint of a program P, meaning that X is a fixed-
point of Tp. The following result places an inclusion ordering on the classes of fixed-

points of T, strong models, and weak models.
Lemma 4.4 (Relating Models and Fixedpoints)

(1} If M is a strong model then M is a weak model.
(2) Every fixedpoint of T is a weak model.

Proof:

(1) Immediate from the definitions.

(2) We will show that if M = T(M) then M is a weak model. Consider any closed
instance L of an assertion. It must be that L € T(M). But then L €M, so M[L] #f.
Next consider any closed instance L < F of a DIF. If M[F] =t then L € T(M), so

L €M, and M[L « F] # f. Otherwise, M[F] #t,so M|[L «— F]| #f. Hence, M isa

weak model. O
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This result only provides that the collections of fixedpoints and strong models
are contained in the collection of weak models. In general, the inclusions are strict,
as shown in Figure 4.1. Lemma 4.5 will demonstrate that the intersecting region of

fixedpoints and strong models is nonempty.

There is a connection between strong models and fixedpoints. The following
lemma demonstrates that every strong model contains a fixedpoint. A DIF-program

is fizedpoint-inconsistent if it has no fixedpoints. The lemma also shows that

Relationships Between Fixedpoints and Models

fixedpoints

weak models

Figure 4.1
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fixedpoint-inconsistency implies inconsistency.

Lemma 4.5 (Relating Strong Models and Fixedpoints):

(1) 1f M is a strong model, then T*(M)C M is a fixedpoint for some ordinal .
(2) If a DIF-program is fixedpoint-inconsistent, then it is inconsistent.

Proof: Point (2) follows from (1), since every strong model M contains a fixedpoint

TQ(M). The existence of any strong model implies the existence of a fixedpoint.

The proof of point (1) is in two parts. First, we show that M D T'(M) whenever M is

a strong model. If there is a closed literal L € T(M), there are two cases:

(a) If L is a closed instance of an assertion, then L €M because M is a strong

model.

(b) There is a closed instance L = F of a DIF, where M[F] =t. Since M is a

strong model, L €M also.

Since T is monotonic, T (M) TaH(M) for all ordinals @. No chain

MDT(M)D - - D T%M) can be ever-decreasing. At worst, @ can be the cardinal-
ity of M and T*(M) = @. Therefore, for some ordinal &, T*(M)C Ta+1(M), so
TM) = T* (M) = T(T%(M)). ©

Lemma 4.5 demonstrates that there is a decreasing chain from each strong model to
a fixedpoint. The converse of point (2) in Lemma 4.5 does not hold, as the following

program demonstrates:

p < ~p
~p = P.
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This DIF-program is fixedpoint-consistent (Ifp = &), but is inconsistent.

Let X, be the set of fixedpoints of Tp, where P is a DIF-program. P is
fixedpoint-inconsistent if X, is empty. When P is fixedpoint-consistent, the
Knaster-Tarski Theorem [Ta55] guarantees existence of a least fixedpoint
lfpp = NXp. As usual, when program P is understood, the subscripts will be omit-

ted.
Lemma 4.6: For every fixedpoint-consistent program, Ifp = T T a for some ordinal a.

Proof: The proof first demonstrates that T T« is contained in every fixedpoint, for
all ordinals @. In particular, T taClfp. Next, we show that TtaC T 18 for all
ordinals @ < . Therefore, there is a “maximal” ordinal + such that TtaC T 1~ for
all ordinals o; otherwise, there would be ordinals a such that HBC T ta. T1xisa

fixedpoint, so IfpC T 11.

To demonstrate the first part, induction is performed on all ordinals . Since

T 10 = &, the basis case holds. For the induction hypothesis, assume T t« is con-
tained in every fixedpoint. Consider the successor ordinal a+1. Suppose L is a
ground instance of an assertion in P. Then L € T t(a+1); also, L is true in every
fixedpoint. If L +—F is a closed instance of a DIF in P, and T ta[F] =t, then

L €T t(a+1). Also, by the induction hypothesis, T t o is contained in every fixed-
point, and due to monotonicity of interpretations, Lemma 4.1, F' is true in every
fixedpoint. Therefore, L is true in every fixedpoint. The induction follows for limit

ordinals also.
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To show that TtaC T 18 whenever o < S, for all ordinals & and S, let ordinal
6 be such that a+6= . Since @C T 16, T*(@)C T*(T 16) by monotonicity of T,
Lemma 4.3. Using the definition of {, TtaC T 18 DO

The least ordinal a for which Tp ta = Tp t(a+1) = Ifp,, is called the closure

ordinal of program P.

Fixedpoints of T will represent strong models, since the set of strong models of
a program may not have a least element. Three characteristics of fixedpoints justify

their use as representatives:

(1) For any fixedpoint-consistent program, the set of fixedpoints is closed under N.
(2) Fixedpoint-inconsistency implies inconsistency.

(3) Every strong model contains a fixedpoint.

Fixedpoints are therefore chosen as the basis for the underlying model of DIF-
programs. A formula F is fizedpoint-implied by a program P if and only if X[F| =1t
for every fixedpoint X of Tp. When program P is fixedpoint-consistent, F is

fixedpoint-implied by P if and only if Ifp[F] =t.

Programs containing universal quantifiers and with infinite domains may have

infinite closure ordinals. Consider the following program:

p « VX: nat(X)—nat(s(X)).
nat (0) .
nat(s(N)) <« nat(N).

For this program, Ifp = T tw+1. Since the completeness proof of the SLD-resolution

procedure relies on a correspondence between the iterations of the T functional and
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the depth of a success path in the full search tree, there will be queries that cannot
execute to completion on programs with transfinite closure ordinals. Consequently,
completeness is sacrificed with DIF-programs. Chapter 5 will demonstrate the neces-

sity of this incompleteness result through Turing-reducibility.

Eliminating the universal quantifier from formulas, thereby reducing the expres-
siveness of the language, necessarily results in completeness. However, DIF-programs
may be fixedpoint-inconsistent, which will not be detected by efficient evaluation sys-

tem such as SLD-resolution.

The resolution procedure is correct and complete even in the event of incon-
sistency, because resolution need not use a program clause to form a resolvent.
SLD-resolution attains efficiency over resolution by forming each resolvent only from
the previous resolvent and a program clause. SLD-resolution is correct and complete
even with inconsistency because definite clause programs cannot be inconsistent.

With introduction of negation in DIF-programs, fixedpoint-inconsistency can arise.

To retain the efficiency of SLD-resolution for evaluation of DIF-programs,
fixedpoint-consistency should be decided before evaluation. But, as the following

lemma demonstrates, fixedpoint-consistency is undecidable.
Lemma 4.6: Fixedpoint-consistency of an arbitrary DIF-program is undecidable.

Proof: It is easy to produce a contradiction. Consider Hilbert’s tenth problem: pro-
ducing integer solutions for polynomial equations in several variables. Matijasevic
has shown this problem undecidable. Consider program Hilbert of Figure 4.2.

Definitions of certain predicates used for lists and integers are not included in this
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Program Hilbert

% hilbert (Vars,Exprs): true 1f there are bindings of integers
% to constants standing for variables in Vars that evaluate
% each expression in Exprs to O.
hilbert (Vars,Exprs) <«
3Bindings: (makeBindings (Vars,Bindings) A
(VExpr: in(Expr,Exprs) — eval (Bindings,Expr,0))).

% makeBindings (Vars,Bindings): true if Bindings contains

% bindings b (Var,Value) for each variable Var in Vars
% and some integer Value.

makeBindings (Vars, Bindings) <+
(:N: length(Vars,N) /\ length(Bindings,N))
/A (VYvar: in(Var,Vars) —»
(Value: integer (Value) /\ in(b(Var,Value),bBindings)).

% eval (Bindings, Expr,Value): true if the value of
% Expr is Value.
eval (Bindings, Expr,Value) +«
in(b (Expr,Value), Bindings).
eval (Bindings, add (Exprl, Expr2),Value) <+«
Ivi,va: (eval (Bindings,Exprl, V1) A
eval (Bindings,Expr2,V2) A
add (V1,V2,Value)).
eval (Bindings,mult (Exprl,Expr2),Value) <+
vi,v2: (eval (Bindings,Exprl, Vi) A
eval (Bindings, Expr2,V2) A
mult (V1,V2,Value)).
eval (Bindings, power (Expr,N) ,Value) <+
v: (eval (Bindings, Expr,V) /\
power (V,N,Value)).

Figure 4.2

program. Their definitions should be self-explanatory from the program’s text. Any

other undecidable problem can be used in place of this one.
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If for some set of variables v and expressions e, hilbert(v,e) is not fixedpoint-
implied by Hilbert, then any automated procedure for deciding fixedpoint-
consistency should find that Hilbert augmented with the assertion

~hilbert (X,Y) is fixedpoint-consistent. Hence, Hilbert’s tenth problem becomes

decidable, while it has been shown undecidable. O

Because fixedpoint-consistency cannot be decided, Chapter 5 introduces syntac-

tic restrictions on programs to ensure fixedpoint-consisteney.
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Chapter 5

Fixedpoint-Consistent DIF-Programs

Efficient evaluation of DIF-programs cannot detect fixedpoint-inconsistency.
Since fixedpoint-inconsistency is undecidable, syntactic restrictions must be placed on
DIF-programs to ensure fixedpoint-consistency. The syntactic restrictions are easily
ensured by using a new language containing statements of equivalence, called DEFs
(Definite Equivalence Forms), rather than statements of implication (DIFs). DEF-
programs are then compiled into DIF-programs that are guaranteed to be

fixedpoint-consistent.

An evaluation system for DIF-programs, based on SLD-resolution, is presented.
Unlike SLD-resolution, the evaluation system must be able to evaluate universally
quantified formulas. Such formulas arise naturally from DEF-programs. For evalua-
tion, universally quantified formulas must be bounded, of the form VX: G — F.

Evaluation utilizes G as a generator of values, and F' as a tester.

Correctness for evaluation of universally quantified formulas may not be
attained in certain cases. A combination of enhancements to the evaluation pro-

cedure and syntactic requirements are used to ensure correctness.

Theorems 5.5 and 5.6 verify correctness of the evaluation procedure for com-
piled DIF-programs. Completeness of the evaluation system cannot be obtained for

queries on these programs, however.
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5.1. Syntax of DEF-Programs

Syntactic restrictions on DIF-programs will ensure fixedpoint-consistency. Two

basic ideas underlie the syntactic restrictions; informally they are:

Dual DIFs:

Every DIF L «F in a program has a dual L « F'.

Non-conflicting DIFs:
There is at most one closed instance A « F of a DIF for each ground atom

A €HB.

Each pair of dual DIFs essentially produces a statement of equivalence. The
resulting DIF-program is similar to the Clark completion [Cl178], though Clark’s

approach implicitly produces equivalence.

To make these restrictions more easily verified by an automated procedure, a
new language is introduced. Programs in this new language are ‘“compiled” into
DIF-programs. A Definite Equivalence Form (DEF) from B(A(II, X)) is of the form
A «—F, where A is an atom from A(II,X) and F is a formula from B(A(II,X)). A
DEF-program is a finite collection of DEFs. The set of predicate symbols IT must
contain a distinguished proposition symbol true. Underlying models of DEF-
programs always assign the logical constant t to true. Assertions in DEF-
programs take the form A ++ true or A «+ ~true. As with DIFs, only variables
occurring within the head of a DEF may occur free in the body. All DEF's of the
form p(z,, . . . ,z,)«>F define predicate p. Finally, no DEF is permitted to (re)-

define the distinguished proposition true.
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5.2. Compilation of DEF-Programs

The compilation procedure that produces 2 zompiled DIF-program from a
DEF-program generates dual DIFs from each DEF. Compilation also ensures that

the compiled DIF-program will be free of conflictimg deff pitions.

Generating Dual DIF's

If A ++F is a DEF in program P, thex sumpilatior gemerates the DIFs
A —F and A «—F. Notice that the somphrramt, A «—F s gemersted, rather than
~A +—~F. Lemma 4.2 has demorstnated that FfF'| = ¥|~F] fior amy sentence F' and
interpretation /. Using the complement fform emables efficrent ewaluation of compiled
DIF-programs. To demonstrate compilatinun, consider the Fragmemt of a DEF-

program below:

Example 5.1

% mult(I,J,K): ttroe if IXI=K; otherwise, false.
mult (0,J,0) <« true.

mult (0,J,s(K)) +» ~true.

mult(s(I),J,K) «» e muldt(I,I,X) /\ =2dd{X.T, K).

From this program fragment, the fdiewing DIFs mre generated:

mult (0,J,0) <« frue.

mult (0,J,s(K)) +— ~tbruoe.

mult (s (I),J,K) « FK: mudt(I,J.X) /A add(X, 6 J. K).
~mult (0,J,0) < ~true.
~mult (0,J,s (K)) < itrue.
~mult(s(I),J,K) « VX: mwlt(I,J.X) — ~add(X,J, K).

The meaning preservation lemma, below, formally supports compilation.
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Lemma 5.1 (Compilation is Meaning Preserving): Let Pp be a DEF-program and

Ppp the compiled DIF-program. For every interpretation I, I[Pppr| = I|Ppp].

Proof: Logical equivalence of the DEF-program and its compiled form results from

the logical equivalence of A «—F and (A «F)/\(~A «—~F). D

Non-Conflicting DEF-Programs

A DEF-program has non-conflicting DEF's if there is at most one closed instance
A «>F of all DEFs for each atom A in the Herbrand Base of the program. For

example, the program below is fixedpoint-inconsistent and has DEFs that conflict:

Example 5.2
p(X,b) < q.
p(a,Y) « r.

q +« true.
r +*+ ~true.

The compiled program contains the DIFs:

p(X,b) « q.
~p(a,Y) + ~r.
q 4+ true.
~r <+ true.

When true is assigned t in all interpretations, the conflict arises for the atom

p (a,b). Without this conflict, the program would be fixedpoint-consistent.

Conflicting DEFs can be found with a syntactic test. DEFs A «+F and B+ G

overlap if:

(1) the DEFs contain disjoint sets of variables, and
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(2) A and B unify.
A DEF-program is overlapping if it contains distinct DEFs whose variants unify.

Lemma 5.2 (Non-Overlapping Programs are Non-Conflicting): If a DEF-program is
non-overlapping, it is non-conflicting.

Proof: We will show that a conflicting DEF-program is overlapping. Suppose the
DEF-program is from B(A(II,X)}. If the program is conflicting, there are distinct
closed instances (A, ++ F,)o, and (A, F,)o, of DEFs such that A,0, = A,0, = A.
Since (A, @ Z)N(A, @ X) is nonempty, Lemma 2.8 provides that A, and A, are

unifiable. Therefore, the program is overlapping. O

In Example 5.2, the program is overlapping and has conflicting definitions.

Fixedpoint-Consistency is Attained

Combination of dual DIFs and non-conflicting DEF's ensures fixedpoint-

consistency.

Lemma 5.3 (Non-conflicting DEF-programs are fixedpoint-consistent): If Ppp is a

non-conflicting DEF-program, then P, U{true} is fixedpoint-consistent.

Proof: Notice that addition of the assertic;n true to the DEF-program P, assures
assignment of t to true. By Lemma 5.1, compilation of Ppgr to a DIF-program
Ppr is meaning-preserving. T.herefore, if Pp;rU{true} is fixedpoint-consistent, so
is Ppgr U{true}. Let P = P U{true}. We now prove by induction that T ta
is defined for all ordinals @. In the basis case, T'10 = &. For the induction

hypothesis, assume that T o is defined. Consider a successor ordinal a+1.
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T t(a+1) is undefined in the following cases:

(a) There are closed instances A +-F, and ~A < F,, and
TtalF,)| = T to[F,| =t. Since the DEF-program is non-conflicting, there is
only one closed instance A ++F, of all DEFs. Therefore, ~A «—F, is the dual
of A+F, and F, =F|. By Lemma 42, T ta[~F,] = T ta|F,]. Hence,

T ta|F,| = T ta[F,| only when both are undefined.

(b) There is a closed instance ~true+F,and T ta[F] =t. (Recall that P con-
tains the assertion true.) However, P, . cannot contain definitions for the

proposition true.

Therefore, T t(ar+1) is defined. The induction holds for limit ordinals also. Using
the contrapositive form of Lemma 4.6, since T T« is defined for every ordinal ¢,

T t o = Ifp for some ordinal . O

From the statement of Lemma 5.3, formula F' is fizedpoint-implied from a
DEF-program Ppp if compilation produces DIF-program Pp,;» and VF is fixedpoint-

implied from Pp;- U{true}.

By Lemma 5.3, non-conflicting DEF-programs are always fixedpoint-consistent.
And Lemma 5.2 assures that the overlap test can detect conflicting DEFs. Finally,
compilation of DEF-programs is meaning preserving, by Lemma 5.1. So any com-
piled DIF-program produced from a fixedpoint-consistent DEF-program is also
fixedpoint-consistent. We have therefore ensured fixedpoint-consistency of DIF-

programs through syntactic conditions on DEF-programs. These conditions are only
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sufficient to ensure fixedpoint-consistency. As shown in Lemma 4.6, necessary and
sufficient syntactic conditions do not exist. Finally, as discussed in Chapter 4,
because compiled DIF-programs may contain universal quantifiers in bodies of DIFs,
such programs may possess infinite closure ordinals. The presence of infinite closure

ordinals eliminates possibilities for completeness of the evaluation system.

5.3. Evaluation of DEF-Programs

Having guaranteed fixedpoint-consistency of DEF-programs, we now discuss the
evaluation system for DEF-programs. Given that a DEF-program can be compiled
into a DIF-program, queries on the DEF-program are evaluated against the DIF-

program.

In order to provide a feasible evaluation system, all universally quantified for-
mulas within a generated DIF-program are required to be “bounded,” of the form
VX:G — F. In essence, this restriction permits computation within the Herbrand
Universe. Since the bounded formula VX:true — F is logically equivalent to VX: F,

requiring bounded formulas is not a restriction on expressiveness.

The bounded universal quantifier is amenable to computation. Essentially,
bounded universally quantified queries of the form VX: G — F are interpreted as
having a generator G of X-values and.a tester F' of the generated X-values. Genera-
tion and testing of values may be conducted sequentially or in parallel. Evaluation
of universally quantified formulas with a generate-and-test procedure is limited
because when the set of values satisfying the generator is infinite, the computation

may not terminate. Computability results prohibit completeness of any procedure,
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as seen in Section 5.6.

The evaluation system for DIF-programs is based on construction of full search
trees and fair traversal of these trees. Many attributes of full search trees for DIF-
proérams are similar to full search trees constructed by SLD-resolution. Every node
of any well-formed full search tree is labeled by a conjunction of formulas. Edges in
the tree are labeled by substitutions. A success node is labeled by the empty con-
junction, denoted 0. The empty conjunction is assigned the logical value t. The
value of a success path is the composition of all substitutions along edges from the

root to a success node.

To define the well-formed full search trees, consider all possible structures of the

label at the root (C is a conjunction of formulas):

O: A full search tree consisting only of the node labeled by the empty conjunction

1s well-formed.

true \ C:

If the full search tree C is well-formed, the following tree is well-formed:

true A\ C

C

/\
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L N\C (L aliteral):
When L is a literal distinct from true, and all trees (F;7,) A(C o;) for

1< i< n are well-formed, the following tree is well-formed:

LNAC
o g,
(Fim)N\(Ca)) (F,7,)\(Co,)
For this diagram, L, «=F, - - - L, «F are variants of all clauses in program

P for which L unifies with each L; (1<¢<n). There is a unique {modulo
renaming) mgci for each pair of literals L and L;. Section 2.3 describes a
decomposition producing substitutions o; and 7; such that L o, = L;7,. When

there are no variants of clauses whose heads unify with L, n =0, and the tree

consists of only the node L A C.

(FVGIAC:
When trees F /A C and G /\ C are well-formed, the following tree is well-

formed:
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(FVG)AC

FAC GAC

(FAGINC:
When the tree labeled by F A (G A\ C) is well-formed, the following tree is

well-formed:

(FAG)AC

FNA(GAC)

/\

(AX:F)NC:
When X is a variable occurring nowhere else, and (F {X =X, })/A\C hasa

well-formed tree, the following tree is well-formed:
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3x:-FAC

(F{X=X, o J\C

The substitution {X =X ___} disambiguates multiple occurrences of X in

new

different binding scopes by setting all free occurrences of X to a unique variable

X

new’
(VX:G—=F)\C:
When the only free variable in G is X, and the tree (Fr, \ - - - AFr,)AC is

well-formed, the following tree is well-formed:

(VX: G—=F)\C

Fr N NFr)N\C

A\

where 7, . . ., 7, are the values of all success paths in the full search tree for
G. Section 6.3.2 will suggest methods to evaluate universally quantified formu-
las with occurrences of free variables other than the universally quantified vari-

able in the generator.
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To demonstrate the evaluation procedure, consider the DEF-program below:

% divp(I,J): true if I divides J evenly:
% otherwise, false.

divp(I,J) + : le(X,J) A mult(X,I,J).

% le(I,J): true if I<J; otherwise, false.
le (0,J) <=+ true.

le(s(I).0) «+ ~true.

le(s(1).s(J)) «> le(I,bJ).

The DIF's present in the compiled DIF-program of interest for this demonstration are

the following:

~divp(I,J) + ¥X: le(X,J) — ~mult(X,I,bJ).
le(0,J) <+ true.
le(s(I),0) « ~true.
le(s(I),s(J)) « le(I,lJ).

Consider the query:

~divp(s(s(0)).s(s(s(0)))) -
The only direct descendent of this query in its full search tree is a node labeled by
the query:

VX:le(X,s(s(s(0)))) — ~mult(X.s(s(0)).s(s(s(0)))).

To produce the full search tree for this query, a full search tree for the generator

le(X,s(s(s(0)))) is produced. This is presented in Figure 5.1. As expected, the

answer substitutions obtained from the generator are:
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Full Search Tree for 1e (X, s (s (s(0))))

le(X,s(s(s(0))))

W o)

true le(X1,s(s(0)))

AS x2)

true le (X2,s(0))

st (x3)

true le(X3,0)

/\3_ - x4y

true ~true

Figure 5.1
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>
I

s(s(0)), and

s
Il

s(s(s(0))).
The direct descendent of the universally quantified query is then:
~mult (0,5 (s(0)).s(s(s(0))))
/\ ~mult(s(0).s(s(0)).s(s(s(0)y))
A\ ~mult(s(s(0)).s(s(0)).s(s(s(D))))
A\ ~mult(s(s(s(0))).s(s(0)),sl{s{s(0))))
Using the definitions provided in Example 5.1. this conjunction produces a full search

tree with a success path. Hence, the entire tnee for the original query has a success

path, which is to be expected since 2 does noti evesly divide 3.

5.4. Resolving Incorrectness of Universally Quantified Queries

As specified here, the full search tree comstruction is not generally correct for

universally quantified queries. There are three cases where the incorrectness arises:

(1) The generator produces a value that is more general than some value satisfying
the tester. Utilization of verm-matching within the tester, rather than

unification, ensures that generated values will not be too general.

e generator produces too few values. A self-coverage requirement ensures
2) Th t d too f 1 A self. g t
that every ground atom can be described by a program. Self-coverage has a

syntactic test.

(3) The generator produces no values, because the universally quantified variable

does not occur free in the generator. The entire universally quantified formula
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can be rewritten in a meaning-preserving manner to resolve this problem.

These three problems and their solutions are discussed in the next three sections.

Overly-General Generated Values
Consider the DEF-program below:

Example 5.3
p(X) < true.

g(a) « true.
g(b) +> ~true.

The query VX: p (X)—+q(X) succeeds but is not fixedpoint-implied by the program.
The problem is that the tester q (X) performs full unification on the X-value gen-
erated by p (X). Instead, for any generated X-value ¢, the tester should be satisfied
by a value ¢/ more general than ¢, i.e. [t'|>[t]. To determine when [¢/] > [¢] holds, a
form of one-sided unification, commonly called term-matching is used. Implementa-

tion of this enhancement will be discussed in Section 6.3.1.

This correctness problem can be avoided by ensuring that every generated X-
value is ground using a “type predicate” within each generator. The type predicate
will be true for every ground term in the Herbrand Universe. For Example 5.3, the

definition of the type predicate is:

hu (a) .
hu (b) .

Now the query VX: (p(X)/\hu(X))—q(X) fails, because the generator produces

values a and b for X, and the query g (a) /\q(b) fails.
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Recall that negated queries solved through negation by failure are also required
to be ground. Requiring generated X-values to be ground is far less stringent.
Negated queries still yield answer substitutions under constructive negation. And a
type predicate can be easily added to the generator to produce ground values during
evaluation. Nonetheless, this solution is less desirable from the standpoint of perfor-
mance than term-matching. In the extreme, generation of only ground values could
result in an infinite stream, when the stream generated for non-ground values would

have been finite.

Insufficient Generated Values
A more difficult problem is posed by the following program:

p(a) <« true.
g(a) « true.
g(b) <> ~true.

The query VX: p (X) —=q(X) is assigned the undefined value by the least fixed-
point, since p (b) is undefined. However, the evaluation procedure produces a full

search tree with a success path.

The problem here is that definitions for the p predicate did not describe all ele-
ments of the Herbrand Universe. To resolve this problem, a new requirement is
placed on all predicates defined within a program. A DEF-program is self-covering if
there is some closed instance A ++ F of a DEF for each closed atom A EHB. As
described below, self-coverage can be decided, and therefore incorporated into compi-

lation of DEF-programs into DIF-programs. Since compilation also checks for non-
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overlapping DEFs, conjunction of the two properties requires the existence of exactly

one closed instance A <+ F of some DEF for each atom A €HB.

The test for self-coverage of a program is performed for each predicate symbol
occurring in the program. A predicate p is self-covering if there is a closed instance
p(z)++ F of some DEF for each ground atom p(z)E€HB. A program is therefore

self-covering iff every predicate occurring in the program is self-covering.

When a term or atom is represented as a directed acyclic graph, the nesting
depth of a term is the length of the longest path from the root node to a leaf. For
example, if p is a proposition, the nesting depth i1s 0. Also, the atom p (f (c),b)
has nesting depth 2. Suppose predicate p is defined by the DEFs
p(z)F,, ...,p(z,)eF,. If each atom p(z;) occurring in the head of some DEF
defining predicate p has nesting depth d; (1 <: < n) the mazimum nesting depth for

predicate p is m, = max d;. In Example 5.1, m_ ., = 2. Next, we define a special
1<i<n

operation that selects from a set of atoms those of limited nesting depth. If S is a

set of atoms, S%d = {A €85 | the nesting depth of A is at most d}.

Predicate p satisfies the self-coverage test if there is a closed instance p(z) < F
of some DEF in the program for every atom p(z) €HB %(m, +1). In Example 5.1
the self-coverage test mandates that all ground atoms mult(z,, z,, z;) with nesting
depth at most 3 shall be matched against DEFs in the program. Example 5.1
satisfies the self-coverage test because every such atom matches with the head of
some DEF defining mult. This test always terminates, since HB %(mp +1)is

always finite.
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Lemma 5.4 (Correctness of Self-Coverage Test): Suppose a program P is from
B(A(IL, X)) and predicate p €II. The self-coverage test for predicate p succeeds iff
predicate p is self-covering in program P.

Proof:

(—) Suppose the self-coverage test for predicate p is satisfied. Consider an atom
p(z) EHB with nesting depth 4. If d <m, +1 then the seif-coverage test verifies

that p(z) is a ground instance of the head of some DEF in P.

Otherwise, d > m, +1. We now define a strip function that produces an atom of

depth m, +1 from p(z) by replacing every subterm at depth m, +1 by a unique vari-

able. This function is defined recursively as follows:

strip(c, d) = ¢ for all constants ¢ and strip depths d.
strip(f(=z,, . . . ,%,),0) = X, where X is a unique variable.

strip(f (2, . . . ,z,), d+1) = f(strip(z,,d), . . ., strip(z,, d)).

For example, strip(f (£ (£ (a,.b).b).,a),2)= £(£(X,b),a).

Let p(y) = strip(p(z), m, +1). Consider a ground atom p(y,) E(p(y) @ X)% (m, +1).
This ground atom p(y,) is obtained from p(z) by replacing every non-constant sub-
term at depth m, +1 by a constant from . Since predicate p satisfies the self-
coverage test and p(y,) is a ground atom with depth m, +1, there is a DEF
p(z)+ F such that [p(z)] > [p(y,)]- Since p(z) has depth at most m,, matching of
p(z) with p(y,) does not depend on the particular constants chosen to replace vari-

ables occurring at depth m, +1 of p(y). So [p(z)] >[p(y)]. By Lemma 2.9,
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(p(z) @Z) 2(p(y)@X). Since p(2)E(p(y) @X), p(2) E(p(2) @ ), and therefore a

closed instance of p(z)+> F has head p(2).
() Trivial. O

The self-coverage test terminates in all cases, even when the Herbrand Universe is

infinite. Section 6.2, will present improvements incorporating data types.

DEFs must usually be added to a program to satisfy the self-coverage test. The
extreme case occurs with a program containing just the DEF p(c,, . . . , ¢, ) > true,
where the c; are all distinct constants. Satisfaction of the self-coverage and overlap
tests would require n" —1 additional DEFs. However, with an implementation of
inequality these additional DEFs would not be required. Inequality is discussed

further in Section 6.1.

The self-coverage property also affects the evaluation system presented earlier
in this section. Suppose a DEF-program compiles successfully to a DIF-program, and
satisfies the self-coverage test. When a literal distinct from true and ~true is
selected as the root label of a full search tree, it will always unify with the head of
some DIF. The only nodes without descendents are labeled with the empty conjunc-

tion O, or with ~true /\ C, for some conjunction C.

No Generated Values

The final instance where the evaluation procedure for universally quantified
queries is incorrect occurs when there are no generated values, due to the absence of

free occurrences of the universally quantified variable in the generator. Consider, for
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example, a program consisting only of the DEF p(c) <++ ~true and the query
VX: true—p (X), equivalent to VX:p (X). The evaluation procedure produces no
values for X, so the query succeeds even though there is a value < that disputes the
query.

The universally quantified variable must occur free in the generator of any
universally quantified formula, which is a decidable property. When this property is

violated by a formula, as in the example above, there are two remedies.

When the tester contains a free occurrence of the universally quantified vari-
able, convert the original formula VX: G — F to the logically equivalent VX:F — G.
The generator of the new formula now contains a free occurrence of the universally
quantified variable. In the example above, the query is converted to VX:
~p (X) =~true. When evaluated, the new generator produces the value <, giving
rise to the conjunction ~true, which correctly fails. This strategy is not a com-

plete remedy, since the new generator may produce an infinite stream of values.

When the tester does not contain a free occurrence of the universally quantified
variable, the universal quantifier is superfluous. The quantified variable occurs nei-
ther in the generator nor tester. Therefore, the original formula VX: G — F' can be

rewritten to the logically equivalent formula G \/F.

Summary

Evaluation of universally quantified queries poses three different correctness

problems. First, it is possible to generate overly-general values. This problem can
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be avoided by utilizing term-matching, or requiring generation only of ground terms.
Second, it is possible to generate an insufficient number of values. This problem is
avoided by requiring programs to be self-covering, a decidable property. Finally, it is
possible that no values are generated, due to the absence of a free occurrence of the
universally quantified variable in the generator. This problem can be detected, and
the violating formula rewritten to resolve this problem. Resolution of these concerns
is sufficient to demonstrate correctness of the evaluation procedure. We assume at

this point that compilation invokes the following syntactic tests:
(1) Overlapping DEFs.

(2) Self-coverage.

(3) All universal quantifiers bounded.

(4) Generators of universally quantified formulas contain free occurrences of the

universally quantified variable.

Having remedied faults with the evaluation procedure for universally quantified

queries, the next section presents proof that the entire evaluation system is correct.

6.5. Correctness of the Evaluation System

Evaluation of a universally quantified query requires searching the generator’s
full search tree for all answer substitutions. The search examines every leaf of the
full search tree; therefore, the full search tree of the generator must be finite. All
paths of a finite full search tree are traversed to detect the presence of success

nodes, thereby producing all generated values. Thus, correctness of the evaluation
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system relies on correctness with respect to finite full search trees.

For the following two correctness theorems, we temporarily make some
definitions. Consider a DEF-program from B(A(II, X)). Let
Ans(F) =U{F a@Z | o is an answer for F}, and let Ans(F) = (F @ ) — Ans(F).
Informally, Ans(F) is the set of closed instances of all answers obtained for query F.
Ans(F) is the complement of Ans(F), relative to all closed instances of F. For exam-
ple, if ¥ = {O(O),s(l)}, F = ~1t(X,s(0)), and the only answer to query F is X =
s (X1), then Ans(F) = {~1t (s (0),s(0)),~1t(s(s(0)).,s(0)).,...}. Also
Ans(F) = {~1t (0, (0)) }.
Theorem 5.5 (Correctness for Finite Full Search Trees): For any DEF-program from
B(A(II, X)) that compiles successfully to a DIF-program P, if a query F has a finite

full search tree, then:
(1) IlfplFo]=tiff Foc€Ans(F).

(2) UYplF o] =1 iff F o €Ans(F).
Proof: By induction on the height of all full search trees. We define the height of a
full search tree for the formula VX: G — F to be the maximum height of the trees

for G and the ensuing conjunction produced from F'.

A tree of height O can be labeled by ~true /\ C or 0. In the former case,
Ans(F) = @&, and so Ifp[F o] = f for all F 0 €Ans(F), since fp[~true AC]=f. In
the latter case, the answer substitution is €. The theorem holds vacuously, since the

empty conjunction is assigned value t.
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For the induction hypothesis, assume the theorem is true for all trees of height at
most h. Consider a full search tree for a query F with height h +1.

F =true:

The direct descendent of the root is a leaf labeled by the empty conjunction. This

leaf is a success node, and the edge from the root is a success path with value €.

Therefore, Ans(F) = {true} and lfp[true| =t. Also, Ans(F) = &.

F=VX:F,—F,

The direct descendent of the root is a full search tree for G = F,a; \ - - - AF,a,,
where ¢, . . ., @, are all answer substitutions in the full search tree for F';. Every
answer substitution for G is an answer substitution for F. So G 0 €Ans(G) iff
Fo€Ans(F). We are assuming that the only free variable in F, is X. This assump-
tion is weakened in Section 6.3. For convenience, let F;(¢)o denote the formula
F;({X =t} +0), for i =1,2. By the definition of height for universally quantified
queries, both F'; and G have full search trees of height at most . Therefore, the
theorem holds for F, and G.

Let o be a substitution such that F o €Ans(F). Then G o€ Ans(G). Since
Go=Fy(a, o)\ NFyla, *0) let Go=Ft)a - - \Fyt,)o, where each
t, (1<i<n)is a ground term. Specific terms ¢; can be selected because only term-
matching is employed in obtair.ling answers for F,. Consider any ground term ¢. If
t = ¢, for some 1<7<n, then by the induction hypothesis, lfp[G o] = t, and
Ifp|F(t)o] =t. Also, Fy(t,)€(F,a, @X), so F\(t)€Ans(F,), and again by the induc-

tion hypothesis, Ifp[F,(t)o] = t. Therefore, Ifp[(F, — F,)(t)o] =t. If t # ¢, for all
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1<i<n, then F(t)EAns(F,), so lfp[F,(t)o] =f, by the induction hypothesis.

Therefore, Ifp[(F; — F,)(t)o] =t. This holds for all terms ¢, so Ifp[F o] = t.

Alternatively, F o €Ans(F), so G o €Ans(G). By the induction hypothesis,

Ifp|G o] ={, so lfp[F,(t,)o] =1, for some 1<i<n. As has beer shown,

ifp[F,(t,)0] =t. Therefore, lfp[(F; — F,)(t;)0] =f, and ifp[F o] =1.

FE is a literal:

When literal F is distinct from true and ~true, the direct descendents of the
root are trees labeled ', 7, ... ,F, 7,. There must be variants

L,«~F,, ...,L «F, in the compiled DIF-program, where F o, = L, 7, for all
1<i<n. Then F(o; -0)EAns(F) iff F(r; o) € Ans(F; 7;). The induction hypothesis
holds for each direct descendent F; 7; of F. Therefore, Ifp[F;(r; c0)] =t for all

F(1, :0)EAns(F; ;). Since lfp is a fixedpoint, lfp[L;(7; o)l =t. Fo, =L, so
lfplF (0, <0)] =t, and F(0; 0) EAns(F).

On the other hand, suppose F(7; -:0) EAns(F; 7;). By the induction hypothesis,
IfplF;(r; -0)] = 1. Consequently Ifp[F; (7, -0)] = t. Because program P is non-
conflicting and self-covering, there is exactly one closed instance (L; « F)(7; -0) of a

DIF in the compiled program. Since lfp is a fixedpoint, ifp[L, (7; -0)] =t. Therefore,

YplL; (7; *0)] =f, and F(o; -0) EAns(F).

F =F N\Fy

For every answer a of F', a = a, *@,, where &, is an answer for F; and o, is an

answer for F',. The full search tree can be divided into an upper prefix solving the
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query F';, and lower subtrees solving queries of the form F,a,, where @, is an answer
to F';. The induction hypothesis holds for the upper and lower segments of the full
search tree.

Consider F 0 €Ans(F). Then Fo€(F (a; *a,) @ X). From the tree construction,
F,0€Ans(F|) and F,0 € Ans(F,a,). By the induction hypothesis, lfjp[F, 0] =t and
IifplFy0]| =t,s0 lfp[F o] =t.

Alternatively, consider F 0 €Ans(F). Then, from the tree construction, either (i)
F,0€Ans(F)), or (ii) Fy0 €Ans(F,a,) for some answer ¢; of F,. In case (i),

Ifp[F o] =1f. In case (ii), ifp[F,0] =f. Therefore, in both cases Ifp[F o] =f.

F=F \F,

The direct descendents of F are full search trees for F, and F,. The induction
hypothesis holds for these subtrees. Any answer substitution for F, is an answer
substitution for F', and similarly for F,. Suppose F,0€Ans(F,). By the induction
hypothesis, lfp[F, 0] = t, so lfp|[F o] =t. Also, ifp[F o] =t if Fy0 € Ans(F,). Alterna-
tively, suppose F'; 0 EAns(F,) and F,0 €Ans(F,). By the induction hypothesis,

Yp[F o] = fp|[F,0] =f. So fp[F o] =1.

F=3X:F:

The direct descendent of F' is a full search tree for F; with X renamed to a new
unique variable. Any answer substitution for F'| is an answer substitution for F.
Consider any substitution o such that F o €(F @ X). If there is a ground term ¢
where F (t)o€Ans(F,), the induction hypothesis provides Ifp[F,(t)o] =t. Therefore,

ifp[(AX: F,)o] =t. On the other hand, suppose there is no ground term ¢ where
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F.(t)o€Ans(F,). Then F(t)o€Ans{F,) for all ground terms ¢. By the induction

hypothesis, Ifp[F,(t)o] = f for all ground terms t. Therefore, Ifp[(IX: F,)o] =£. O

The correctness theorem for finite full search trees expands to general full

search trees, but must be weakened because of the possibility of infinite paths.

Theorem 5.8 {Correctness for General Full Search Trees): For any DEF-program
from B(A(IL, X)) that compiles successfully to a DIF-program P, Ifp[F o] =t for all

FocAns(F).

Proof: Similar to the correctness proof for finite full search trees, except induction is

now over the length of a success path.

5.6. Incompleteness of any Evaluation System for DEFs

There is no possibility of finding a complete execution system for DEF-
programs. To prove this point, a program that defines a non-r.e. relation is
presented. Any complete evaluation system would therefore accept a non-r.e.

language, which is not possible.

A configuration z q y of a Turing machine (TM) is a situation where the TM is
in state ¢, string z precedes the tape head, and string y follows the tape head. The
transition relation ¢ |—, ¢’ indicates that TM m can move from configuration ¢ to
configuration ¢’ in one step. The reflexive and transitive closure of the transition
relation ¢ |-, * ¢’ indicates that TM m can proceed from configuration ¢ to

!

configuration ¢/ in any number of steps (possibly zero). An initial configuration for a

TM m is gy w, where g, is m’s initial state and w is the input string. An accepting
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configuration for a TM m is z Y, where q is an accepting (final) state and z and
y are strings. A TM m accepts a string w if gqyw |-, * = q; y, where ¢, and g; are
m’s initial and accepting states, respectively. A TM m accepts a language L if and

only if m accepts only the strings in L.
Consider the following DEFs taken from a DEF-program called NonRE:

% accept(M,C): true iff TM M can accept from configuration C.
accept (M,C) «
final (M,C) V (X': transit(C,M,C') A accept(M,C')).
The DEF-program NonRE also contains definitions of predicates final and tran-
sit. Informally, final(m,¢) is true if ¢ is an accepting configuration for TM m;
otherwise, final(m,¢) is false. Also, transit(c,m,c')is true if ¢ |-, c’; other-
wise, transit(c,m,c') is false. When compiled, the DEF defining accept pro-

duces the following DIF's:

accept (M,C) <«
final (M,C) \V (X': transit(C,M,C') /\ accept(M.C')).

~accept (M,C)
~final (M,C) /\ (VC': transit(C.M,C') — ~accept(M,C')).

Notice that the second generated DIF above contains a universal quantifier. This is
essential in demonstrating incompleteness.
The following lemma demonstrates that accept defines the intended relation:

Lemma 5.7: For any TM m and configuration ¢, accept(m, ¢) is fixedpoint-implied
by NonRE if a final configuration can be reached via the relation |-, * from initial

configuration c; otherwise, ~accept(m,¢) is fixedpoint-implied.
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Proof:
There are two cases, depending on whether a final configuration can be reached.

(1) Suppose that a final configuration can be reached by TM m from configuration c.

Either ¢ is an accepting configuration, or ¢ |—,, ¢’ and m can accept from c'.

(2) Suppose that a final configuration cannot be reached by TM m from
configuration ¢. Then ¢ is not an accepting configuration and whenever ¢ | ¢/, m

cannot accept from ¢’. Generally, this argument requires infinite transitions by m

and infinite closure ordinals. O

This lemma will be used to demonstrate that DEF-programs can describe non-

r.e. languages. As in [HU79], let <m> be the string encoding TM m. Consider the

following languages:

L, ={<m>|L(m)# &}

L, ={<m> | L(m) =@}

It has been shown [HU79] that L, is r.e. and not recursive, and L, is not re. To

describe these languages, program NonRE is augmented with the following DEF:

% ne(W): true if string W is a valid TM and L (W) nonempty;
% otherwise, false.
ne (W) « I: (IK: initial (W,X,C)) A accept(W,C).

This DEF is compiled into the following DIFs:

ne (W) « 3: (I: initial (W,X,C)) /\ accept(W.C).
~ne (W) + VC: (IK: initial (W,X,C)) — ~accept(W,C).

Again, note that a generated DIF includes a universal quantifier, making complete-
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ness of any evaluation procedure doubtful. Program NonRE also contains a
definition for initial: initial{w,z,c) is true if w = <m> is a valid encoding of
a TM and ¢ = ¢,z is an initial configuration for TM m; otherwise, initial(w,z,c)

is false.

As the next lemma demonstrates, this program describes both languages L,

and L,.

Lemma 5.8 (NonRE accepts L, ):

(1) Any string w €L, iff ne(w) is fixedpoint-implied by NonRE.

(2) Any string w €L, iff ~ne(w) is fixedpoint-implied by NonRE.

Proof:

(1) <m>e€L,, iff there is an initial configuration ¢ that can reach a final
configuration for TM m. By the previous lemma, this holds iff accept(m,c) is
fixedpoint-implied by NonRE. Using the DEF defining ne, accept(m,c) is
fixedpoint-implied from the program iff ne(m) is fixedpoint-implied.

(2) <m>€L, iff there is no initial configuration capable of reaching a final

configuration. By Lemma 5.7 ~accept(m, ¢) is fixedpoint-implied by NonRE for all

initial configurations ¢. Therefore, ~ne(w) is fixedpoint-implied by NonRE. O
Corollary 5.9: There is no complete evaluation system for DEF-programs.

To summarize, a DEF-program NonRE has been constructed that describes a
non-r.e. language, L,. Any complete evaluation system for DEF-programs must be

capable of succeeding only for those queries ~ne(w) on program NonRE where
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w€L,. Such an evaluation system would therefore accept non-r.e. language L,. If
Church’s Thesis is to be believed, no evaluation system can accept a non-r.e.

language, so no evaluation system can be complete for DEF-programs.

How important is completeness of an evaluation system? The most efficient
implementation of an evaluation system for definite clause programs currently avail-
able is Prolog. Chapter 3 demonstrated that Prolog’s depth-first search is incom-
plete. Yet the evaluation system is still used. Evidently, concern for completeness is
subordinate to concerns for efficiency and correctness. Finally, the alternative imple-
mentation of negation within logic programs, negation by failure, is also incomplete.
Despite this fact, negation by failure is used as the predominant implementation of
negation in logic programming languages, primarily due to its ease of implementa-

tion.
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Chapter 6

Enhancements

A number of topics have been deferred in Chapter 5 for further exploration.

These topics fall under three main areas:

(1) Use of equality to control the explosion of DEF's required to satisfy the self-

coverage test.
(2) Incorporating type information within the self-coverage test.

(3) Permitting free variables in universally quantified queries.

6.1. Controlling Explosion of DEFs

Self-coverage of programs is necessary for correctness of the evaluation pro-
cedure (Section 5.4). A program is self-covering if there is a closed instance A <+ F
of a DEF for every ground atom A in the program’s Herbrand Base. This require-
ment can lead to an explosion in the number of DEFs in database-oriented and
polymorphic programs. The explosion is controlled by providing an equality predi-

cate within the evaluation system.

Evaluation of Equality

Definite clause programs can define equality of finite terms succinctly with the

following assertion:
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% equal (X,Y): true if X=Y.
equal (X, X) .

This succinctness cannot be attained by DEF-programs that are self-covering and
non-conflicting. Within a DEF-program from B(A (II, X)), the following groups of

DEFs are needed to define the equal predicate:

For all constants c €%:
equal{c,c) <> true.

For all distinct constants c,d €3
equal (c,d) <« ~true.

For all function symbols £ €X:
equal (£(X1,...,Xn),f(¥1l,...,¥Yn)) <«
equal (X1,Y1)A.../\equal (Xn,¥n).

For all distinct function symbols f(m), g(")GZ:
equal (f(X1,...,Xm),g(¥1,...,¥n)) <« ~true.

For m # n and f(m), f(")GE:
equal (£(X1,...,Xm),f(Y1l,...,¥n)) <« ~true.

With n constants in X, on the order of n" DEFs are required to define equal.
Furthermore, any query @ = equal(z,y) will be evaluated far less efficiently using
the DEF-program than with the definite clause version. Evaluation of @ with the
definite clause program produces a full search tree consisting only of @ and its direct
descendent, the empty conjunction. Evaluation of @ with the DEF-program pro-
duces a tree proportional in size to the number of subterms in @. While unification
is performed only once in constructing the full search tree for the definite clause pro-
gram, the number of unifications for the DEF-program is proportional to the number

of subterms in .
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Both the excessive number of DEFs and poor performance of the evaluation sys-
tem with the DEF-program argue for a special case of equality. Therefore, definition

of equal is embodied within the evaluation system.

To incorporate the definition of equal, a binary function dif is defined return-

ing one of the three logical constants.

t if z and y are not unifiable
dif(z,y) = {f if z and y are syntactically identical

u otherwise

This function is available to the programmer as a system-defined predicate within
the Prolog-II system [Co82]. It provides a correct implementation of inequality of
terms, distinct from non-unifiability. When dif(z,y) =t, terms z and y have no
common instances. On the other hand, dif(z,y) =f, when there is no way to
differentiate z and y. Finally, dif(z,y) = u when z and y have common instances,
but z and y are not equal; further instantiation of variables within z and y can
either equate or differentiate the terms. As an example, dif(£(X.c),f(b.c))=u

because f(X,c){X=b} = f(b,c) and f(X,c){X=a} # f(b,c).

With the equal predicate implemented by the evaluation system, DEF-
programs cannot contain definitions for equal. Evaluation of equality and inequal-

ity queries is through construction of full search trees, as follows:

Root node is equal(z, y):
When z and y are unifiable, m is a variant of the mgei of z and y, and

z it = y ¢ = m, then the following full search tree is well-formed:
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equal(z,y)

7

o

When z and y are not unifiable, the full search tree consists only of the node
equal(z,y).
Root node is ~equal(z,y):

When dif(z,y) =t, then the following full search tree is well-formed:

~equal(z,y)

When dif(z,y) =1, the full search tree consists only of the node ~equal(z,y).

When dif(z,y) = u, z and y are unifiable but they are not equal. Consider the

query of Example 6.1, below:
Example 6.1
VX: ~equal (X,c) — ~true.

If ~equal (X,c) fails because X and c are unifiable, then Example 6.1 will
succeed. This is incorrect, since the query of Example 6.1 is logically equivalent to

VX:equal (X, c), which is false in any domain containing more than one element.
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In fact dif(X,c) = u, so the evaluation system must abort further construction of the

full search tree for Example 6.1, due to possible incorrectness.

Prolog-1II permits delay in evaluation of dif queries until variables within the
query are instantiated to ground values sufficiently for dif(z,y) # u. Delaying
queries is analogous to use of a fair selection rule (see Section 3.2). There are still
instances, as in Example 6.1, where the evaluation system must halt to avoid an

incorrect action.

Since dif(f (X), £ (X)) =1, the query ~equal (£ (X), £ (X)) fails without

abnormal termination. This action is acceptable. For example, the query:
VX: ~equal (f(X), f(X)) — ~true

succeeds and is true, because the query is equivalent to the formula

VX:equal (£ (X), £(X)).

The evaluation system with equality enhancement is correct: When a query
equal(z,y) succeeds, z and y are unifiable, so 3(z = y). When a query

~equal(z,y) succeeds, dif(z,y) =t, and V(z # y) implying that I(z # y).

Database-Oriented Programs

Provision of equality resolves problems in satisfying self-coverage and non-
conflict requirements for certain categories of DEF-programs. The explosion in the
number of DEFs for database-oriented programs occurs when defining base relations.

(n)

Definition of a base relation r' ’ within a definite clause program is typically

achieved with assertions. There is usually one assertion r(c,, . . ., ¢,) for each tuple
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(¢y, .. .,c,)Er, where each ¢, is a constant.
A DEF-program defining base relation r contains either r(¢;, . . . , ¢, )+ true
if (¢, ...,¢,)€r,orr(e,,...,c,)er~trueif(c;,...,c,)¢r. The resulting

DEF-program contains nlﬂx’)I DEFs.

Using the equal predicate, all of the DEFs defining a single base relation can
be reduced to a single DEF whose length is approximately the size of the base rela-

(n)

tion. Suppose a base relation r" ' contains ¢ tuples:

("'1,1r . ’Cl,n)’ .. ,(cm, .. ,ct’n)
The following DEF defines a corresponding predicate r:
r (X1, ...,Xn) «+equal(f(c,,, ..., cl’n), f(X1,...,Xn))
Vequal(f(cyy, - - ., ¢5,), £(X1, ..., Xn))

\/equal(f(ct’l, ce s h E(XL, ..., Xn)).
In this scheme, the function symbol f is unique to the DEF.

As an example, suppose base relation r contains the following tuples:

(a.b),
(c.qd).

Representation of relation r within a definite clause program requires only the two

assertions:

r(a.b).
r(c,d).
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Representation of relation r within a DEF-program, using the equal predicate,

employs the following DEF:

r(X1,X2) +>
equal (f(a,b), £(X1,X2)) V
equal (f(c,d), £(X1,X2)).

The following properties of this encoding are easily verified:

(cpp .- -,c,)€riff r(cy, ..., ¢,) is fixedpoint-implied.

(cyy - sc,)Er iff ~r(cy, ... ,¢,) is fixedpoint-implied.

Reflecting on the evaluation of ~equal, it is also clear that any non-ground query
~r(z,, . ..,z,) cannot produce a correct full search tree. Similarly, negation by
failure is incorrect for non-ground queries. But negation by failure requires all nega-

tive queries to be ground, even for programs that are not database-oriented.

Polymorphic Programs

Often in definite clause programs, predicates are defined for arbitrary data

types. As an example, consider the definite clause program below:

% prefix(L,P): true if P is a prefix of list L.
prefix(L,nil) < true.
prefix(cons (X,L) ,cons (X,P)) «+ prefix(L,P).

In this program any list whose first element is z and whose tail is / is represented by
a term cons(z,!). An empty list is denoted by the constant nil. Using this pro-

gram, the query:

prefix(cons (c,cons (d,nil)) b X)
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has answers:

= nil,
cons (c,nil),
cons (c,cons (d,nil)).

X
X
X

This program is polymorphic because it can be used for lists of integers, characters,

names, etc.
Use of polymorphism has the following benefits:

Succinct clauses:
The same group of clauses can be msed for different data types, instead of hav-
ing different groups of clauses providing identical definitions for different data

types.

Independence from change:
If data types change in a clause that invokes a polymorphic predicate, it may
be possible to continue using the polymorphic predicate without change.
Adaptab:ility:
Polymorphic predicates are applicable to arbitrary data types. So when new
data types are used within a program, the polymorphic predicates can be

reused In new roles.

These benefits provide strong reason to support polymorphism within DEF-
programs. However, self-coverage and non-conflict requirements on DEF-programs
make it difficult to provide polymorphism. For example, a possible self-covering

non-conflicting representation of the prefix program above within a DEF-program
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is the following:

Example 6.2
% prefix(L,P): true if P is a prefix of list L:
% otherwise, false.
prefix(L,nil) <+ true.
prefix{nil,cons (Y,P)) ++ ~true.
prefix(cons (X,L),cons (Y ,P)) <«

(egNats(X,Y) V eqChars(X.,Y) \ egNames (X,Y))
N\ prefix(L,P).

The self-coverage and non-conflict requirements force use of distinct equality tests

for each data type that can constitute a list.

Example 6.2 is not polymorphic, as it is specialized only to lists of natural
numbers, lists of characters, and lists of names; however, it suggests that use of the
equal predicate can restore polymorphism, since equal is defined over arbitrary
data types. Thus, the third DEF of Example 6.2 can be replaced by the following

DEF, attaining polymorphism for the prefix predicate:

prefix(cons (X,L),cons(Y,P)) «
equal (X,Y) /\ prefix(L,P).

In fact this technique is general. To satisfy self-coverage and non-conflict,
heads of DEFs do not contain multiple occurrences of any single variable. Without
multiple occurrences of variables in heads of DEFs, equality testing cannot be
achieved in a polymorphic manner. The equal predicate provides for polymorphic
equality testing. Since evaluation of an equal query is just as efficient as testing
for unifiability, use of the equal predicate does not compromise efficiency of the

evaluation system.
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Summary

Evaluation of an equal predicate has been described. Its definition is embo-
died within the evaluation system for DIF-programs, providing conciseness and
efficiency. Evaluation of equal queries may abort to avoid any possible incorrect-
ness. The equal predicate has applications within database-oriented and
polymorphic programs, increasing the range of programs that can practically use
constructive negation. Programs utilizing data types also require special accommo-

dation for practical use of constructive negation.

6.2. Incorporating Type Information for Self-Coverage

It is proper to invoke certain predicates with only certain types of arguments.
For example, suppose a predicate length(/, n) is true if the length of list [ is
number n. Arguments other than a list and a number are improper. By extension
~length is properly invoked only with terms denoting a list and integer. For

example, it is proper to query:
~length (cons (a,cons (b,nil)), 0),
and it is improper to query ~length (0,nil).

A type of a DEF-program is a subset of its function symbols. All types of a pro-

gram must be disjoint. For example, suppose a program consists only of the follow-

ing DEF's:
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Example 6.3
% length(L,N): true if list L has length N:
% otherwise, false.
length(nil,0) <> true.
length(nil,s (N)) <+ ~true.
length (cons (X,L),0) + ~true.
length(cons (X,L),s (N)) <« length(L,N).
The function symbols are:
5, = {0(0), s(l),nil(o),cons(2)}.
One partition of X is 7

0

lists = {cons,nil}
nats = {s, 0}.

Suppose a DEF-program is from B(A(II, X)), and 7 is a partition of . A predi-
cate type assignment under 7 is an assignment of a list of types from 7 to each predi-
cate symbol in II. For example:

TP"o(length) = [lists,nats]
Similarly, a function type assignment under 7 is an assignment of a list of types from

T to each function symbol in £. For example:

TF, (0) = [1
TF”o(s) = [nats]
TF,(nil) =[]

TFﬂo(cons) = [nats, lists]

Finally, a variable type assignment under 7 is an assignment to each variable in T
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either a type from 7 or the empty type &. When a variable type assignment maps a
variable to the empty type, the variable’s type is unassigned. The distinguished type
assignment TV maps every variable to @. Usually TP, TF and TV _ will denote

predicate, function and variable type assignments, respectively, under type partition

m. When 7 is understood from context, it will be omitted.

The following algorithm determines if various syntactic parts of a DEF-
program are well-typed. The algorithm is “top-down” so that variable type assign-

ments can differentiate between different binding scopes.

(1) A DEF-program is well-typed by (TP, TF) if every DEF in the program is well-
typed by (TP, TF).

(2) A DEF A < F is well-typed by (TP, TF) if V(A < F) is well-typed by
(TP, TF,TIV).

(3) A quantified formula VX: F or AX: F is well-typed by (TP, TF, TV) if 7 con-

tains a type 7and F is well-typed by (TP, TF, TV'), where:

7 fY=X

TVI(Y)={TV(Y) Y %X

(4) Any formula F++ G, F—=-G, FA\G, F\/G, or ~F is well-typed by
(TP, TF,TV)if F and G are both well-typed by (TP, TF, TV).
(5) Every proposition p is well-typed.

(6) Any atom p(z,, ...,z,) (n2>1)is well-typed by (TP, TF, TV) if:



116

TP(p"™) =[r,, .. .,7,], and each z, (1 <i < n) is assigned 7, by (TP, TF, TV).

(7)  Any constant ¢ €7 is assigned type 7.
(8) Any term f(z;,...,2,)(n>1)is assigned type 7 by (TP, TF, TV) if:
f €7 and

TF(f"Y =[r, ... ,7,}, and

each z; (1<¢<n)is assigned 7; by (TP, TF,TV).

(9) Any variable X is assigned type by (TP, TF, TV)if TV(X) =r.
As an example, suppose TV"o(N) = nats. Then the following observations
hold:
N is assigned type nats by (TP,O, TF,O, TV"O); hence, s (N) is assigned type
nats by (TP,ro, TF,,O, TV”();
nil is assigned type lists; hence, length (nil, s (N)) is well-typed by
(TP,,O, TF ng TV,r();
true is well-typed by (TPWO, TF”D, TVWD); hence:
~true is well-typed by (TP,O, TF"O, TVWO);
length(nil,s (N)) <+ ~true is well-typed by (TP,O, TF,O, TV,,O);

DEF length(nil,s(N)) <« ~true is well-typed by (TP,O, TF,ro).

In fact the program of Example 6.3 is well-typed by (TPIO, TF,,O).
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Systems to infer a minimal type partition and type assignment for a given
definite clause program have been suggested [Mi84,MK84]. It is not difficult to

extend these systems to DEF-programs.

Unless the self-coverage test is modified to observe type restrictions, well-typed
programs will not be self-covering. Example 6.3 is not self-covering, because (among
others) length (O,nil) is not a ground instance of the head of any DEF in the

program.

A DEF-program well-typed by (TP, TF) is self-covering for (TP, TF) if there is
a closed instance A <+ F of a DEF in the program for every ground atom A well-
typed by (TP, TF,TV). Under this refined criterion, the length program is self-

covering for type assignments (TPWO, TF,,O).

The self-coverage test is similarly altered. Suppose a DEF-program is well-
typed by (TP, TF). Define T(TF,7) to be the set of all ground terms assigned type

7. For example, T( TF,,O, lists) contains among other elements:

nil,
cons (0, nil),
cons (s (0),cons (0,nil)).

Similarly, let A(TP, TF) be the set of all ground atoms well-typed by (TP, TF,TV).
Thus, if TP(p) =|[r, ..., 7,], then p(z, ... ,2,)EA(TP, TF) if and only if each
z; ET(TF,7;). For example, length (cons (0,nil),0) is a member of

A(TP,, TF,).
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Recall that m, is the maximum nesting depth of heads of all DEF's defining
predicate p (Section 5.4). Also, if S is a set of atoms, S%d is the subset of S con-
sisting of only those atoms with nesting depth at most d. A predicate p occurring in
a program satisfies the self-coverage test with respect to type assignments (TP, TF)
if:

(1) All DEFs defining p are well-typed by (TP, TF) and

(2) There is a closed instance p(z,, . ..,z,)+>F of a DEF for every atom
p(zy, .. .,2,)EA(TP, TF)%(m, +1).

Under this new criterion, Example 6.3 satisfies the self-coverage test with respect to

type assignments (TP”o’ TF,,O). With an argument similar to Lemma 5.4, it can be

shown that if a program P is well-typed by type assignment TA = (TP, TF), then P
satisfies the self-coverage test with respect to TA if and only if P is self-covering.
Correctness of the evaluation procedure for well-typed programs follows automati-

cally.

Utilizing typed programs can aid in writing programs that perform as intended
[MK84]. Accommodating typed DEF-programs mandates a simple revision to the
self-coverage test. Typed programs also reduce the number of DEFs needed to

satisfy self-coverage.

6.3. Enhancing Evaluation of Universal Quantification

The implementation of universally quantified queries within the evaluation sys-

tem (Section 5.3) left several issues outstanding. Correctness of the procedure
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(Theorem 5.5) relied on use of term-matching within the filter for every generated
term. Implementing term-matching efficiently within a logic programming evalua-
tion system is straightforward. Also, the correctness proof for the evaluation pro-
cedure makes the assumption that every universally quantified query is closed. Per-
mitting free variables within universally quantified queries increases the flexibility of
the evaluation procedure. Queries that could flounder under a correct implementa-
tion of negation by failure can be efficiently evaluated with the evaluation procedure

for DEF-programs.

8.3.1. Term-Matching

In Section 5.4, term-matching was required to ensure correctness of certain
universally quantified queries. While unifiability of terms s and ¢ determines if an
mgei st exists, term s matches term ¢ if [s]>[t] (Section 2.3). The evaluation sys-
tem already has a unification component. As suggested in [Dw84], term-matching is
a special case of unification. Matching term s against term £ is achieved by unifying
terms s and t/, where ¢/ is a ground instance of ¢ with every variable of ¢ set to a

unique constant.

Instead of binding every variable in a term to a unique constant before
attempting term matching, an actual implementation could associate a tag with
each variable. The tag is set if the variable should not be further instantiated. The
unification procedure must be revised to check the tag of a variable whenever an
attempt is made to set a variable to a value. If a variable is tagged and unification

attempts to set the variable equal to another untagged variable, the untagged
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variable should be set equal to the tagged variable. If a variable is tagged and the
variable will be set equal to a non-variable term or another tagged variable,

unification should fail.

When term-matching is incorporated within the procedure for evaluating
universally quantified queries, all variables occurring within a generated term will be
tagged. Any attempt by the filter to further instantiate a generated value should
terminate abnormally, in order to notify the user of an incorrect condition. Consider

Example 5.3 reproduced below:

p(X) <« true.
g(a) < true.
g(b) + ~true.

The generator p (X) of the query ¥X:p (X) —q (X) produces a tagged value X.
The evaluation procedure then produces a query q(X). Any attempt to further
instantiate X will meet with failure, eliminating the possibility of incorrectness

caused by overly-general generated values.

Implementation of term-matching requires checking a variable’s tag any time it
is to be set to a value, and an initial sweep through every generated value tagging
all variables. Tag checking of terms during unification is performed anyway, for
other purposes. Term-matching can also be used when free variables are included

within universally quantified queries, as described in the next section.

Term-matching has not yet been implemented within a logic programming
evaluation system. In its absence, correctness is assured by generating only ground

values. Ground terms can be generated with a type predicate such as hu, as
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described in Section 5.4. The NU-Prolog system [TZ87] is capable of delaying

evaluation of queries until certain variables are instantiated to ground values.

6.3.2. Free Variables in Universally Quantified Queries

The correctness proof of the evaluation system for DEF-programs (Theorem 5.5)
makes the assumption that free variables do not occur within universally quantified
queries. This section will discuss how this restriction can be weakened while retain-

ing correctness of the evaluation procedure.

Free Variables in Only the Generator or the Tester

In fact the evaluation procedure and proof accommodates free variables within

the tester of a universally quantified query. Consider the program below:

p(a) « true.
p(b) <> true.

g(a,1l) <« true.
g(b,1l) +* true.

The query VX: p(X)—q(X.Y) contains the free variable Y. The answers
obtained from the generator are X=a and X=b. The evaluation procedure then
creates the conjunction q(a,Y) Ag(b.Y). Evaluation of the conjunction produces

an answer Y=1 to the full query.

Extended programs (Section 3.4.1) cannot correctly evaluate query VX:

p(X) =g (X,Y). The extended query produces the general clause:

aux (Y) +— p(X) /\ not gq(X.Y).
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and query not aux (Y). Since negation by failure is incorrect for negated queries
containing free variables, this query will flounder. As just demonstrated, under con-

structive negation the query can be evaluated.

Thus, when free variables occur only in the tester of a universally quantified
query, the evaluation procedure can correctly produce answer substitutions for these
variables. When free variables occur only within the generator G of a query
VX:G — F, the query can be rewritten to VX:F — G without changing the query’s
meaning. Now variables occur only within the tester, and the evaluation procedure

can proceed correctly.

Free Variables in both Generator and Tester

Free variables occurring within both the generator and tester of a universally
quantified query pose the greatest challenge to the evaluation procedure. Univer-
sally quantified queries are transformed to instantiate free variables occurring within
generators prior to evaluation. Following the transformation, if free variables
remain, term-matching can ensure that they are not instantiated within the univer-
sally quantified formula. This transformation scheme has also been proposed for

negation by failure [D87).

The following identity is used to rewrite the original universally quantified
query:

IVX:G—F] =I{AX: G)A(VX: G = F)}V{(3AX: G) A ~(3X: G)}].
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This identity holds for any interpretation I such that I[G o] # u for every closed
instance G o of G, which holds whenever VX: G — F terminates. If the identity

does not hold, evaluation will not terminate in any case.

The second disjunct (AX: G) /A ~(3X: G) can be evaluated with negation by
failure. The query not G succeeds with negation by failure if G has a finitely failed
full search tree. By Theorem 5.5, if a query AX: G has a finitely failed full search
tree, ~3X: G is fixedpoint-implied by the program. Consequently, when not IAX: G
succeeds with negation by failure, ~3dX: G is fixedpoint-implied. The second disjunct

can therefore be rewritten to [(3X: G) A(not IX:G)).

As an illustration of the transformation, consider the query

~mult (s (0),J,K) with the program fragment of Example 5.1, repeated here:

% mult(I,J,K): true if IXJ=K:; otherwise, false.
mult (0,J,0) <+ true.

mult(0,J,s(K)) +*> ~true.

mult (s(I),J,K) « : mult(I,J.X) /\ add(X.J.K).

The evaluation procedure produces the subquery:
VX: mult(0,J,X) — ~add(X,J.K).
The following new subquery results from the transformation:

(1) [(:mult(0,J,X)) A (VX:mult(0,J,X) — ~add(X,J.K))] V
(2) [(:~mult(0,J.X)) A (not :mult(0,J,X))].

In solving disjunct (1) of this query, its first conjunct I :mult (0,J,X) is true
for X=0 without further instantiating J. With a term-matching implementation,

variable J is tagged indicating no further instantiation can occur. Without term-
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matching, when the universally quantified subquery is entered, presence of a non-
ground free variable should bring the evaluation procedlmre to abmormal termination.
Termination avoids incorrect full search tree construciion. Ewxaluation of the univer-
sal quantifier in disjunct (1) produces the subquery ~=dd (0, J,K).

In solving disjunct (2) of this query, its first conjunet W:~mult (0,J,X) is
true for X=s (X') without further instantiating J. Again, the variable J should be
tagged to prevent further instantiation. Negation by failure #s mow used for the
query not mult (0,J,X). The query correctly fail due to the comtradictory value

O for X. So disjunct (2) produces no answers to the ariginal query.

Functional Generators

Frequently, a universally quantified variable is functiomallly determined by the
generator of its universally quantified formula. This occurs v Eisxample 5.1, repeated

in the previous section. This program contains the DEF:

mult(s(I).J,K) «
A mult(I,J,X) A add(X.J.K).

The associated object program then contains the DIF:
~mult(s(I),J,.K) <« VX: mult(I,J,X) — ~add(X,J.K).

Given values ¢ and j, mult(¢, 7, X) yields exactly one value for X, because mult
behaves as a total function. Therefore, the universal quantifier can be replaced by

an existential quantifier, and the DIF:

~mult(s(I),J,K) + W: mult(I,J,X) /\ ~add(X,J.K)
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is equivalent to the previous DIF.

A functionally-determined quantifier His used within DEF-programs to mean
that a predicate such as mult behaves asa total function. A formula containing
the functionally-determined quantifier BX: ' /A G is an abbreviation for the formula
(X F)—(3X: F \ G). Within this definition, 3X: F abbreviates
AX:(F A(VY:F(Y)— X =Y)): “there exisiz & unique X satisfying F.”
Functionally-determined formulas are always fwumded, containing a conjunction of
formulas. The DEF defining mult can be zzwritten with a functionally-determined

quantifier as:

mult(s(I),J,K) <«
BX: mult(I,J,X) A add(X.J.X).

Use of the functionally-determined quemtiifier within a program may arise from
syntactic analysis or semantic knowledyge possessed by s programmer. It is undecid-
able in general if a predicate behawes as a twotal function. Certain classes of pro-
grams, such as primitive recursive programs, always define predicates to be total
functions. If a programmer’s semantic knowledge is erroneous, compilation will no

longer preserve meaning.
The complement of a functionally determined formula is defined to be:

EXFNG = BX:F AT

If there is exactly one value z such that F(z,) is fixedpoint-implied, then the com-

plement is logically equivalent to negation.
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Lemma 6.1 (Complement of Functionally-Determined Formula Equivalent to Nega-
tion): For any interpretation I and closed formula BX: F A\ G, if I[3X: F] = t, then

I~BX:F \G]=1IBX:F \~QG].

Proof: The proof first demonstrates that if I[3X: F| = t, then I[F(z)] # u for all z.

Suppose that I[F(z,)] =t. Then I(2X:F| =+t implies I[F(z)—z =2z =t for all

terms z. Since I[z =z,] = f for all terms z 5 z,, I[F(z)] =1

For the main part of the proof, note that:

I[~BX:F A\ G| = I[AX: F)\(VX: F — ~G)]

= I[VX:F — ~G], because I[AX: F] =t.
As above, suppose I[F(z,)] =t, and hence, I[F(z)] = f for all z # z,.

IVX:F —~G] = I[(F = ~G)(z)] N (ANI[(F = ~G)(z)] | = # z,})
= I[(~G)(z,)]
= It A~G)(z)] V (VUIEA~G)2) | 2 # z,})
= I[(F N~G)(zo)] V (VAI[(F \~G)(2)] | = # 2})
= IAX:F \~G)]
= I[AX:F \~G], because I[AX:F] =t.

As a result, if BX: F /\ G is a closed formula and 3'X: F is fixedpoint-implied,
then HX: F /\ G is logically equivalent to ~BY:F A\ G in all fixedpoints. Definition
of the complement form of functionally-determined formulas enables compilation of

these formulas. For example, the DEF below:
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mult(s(I).J.K) +
BX: mult(I,J,X) A\ add(X,J.K).

compiles to the dual DIFs:

mult (s(I).J.K) +« BX: mult(I,J.X) A add(X,J.X).
~mult(s(I),J.K) « BX: mult(I,J,.X) A ~add(X.J.K).

A functionally-determined formula BHX: F' /\ G is equivalent to an existentially
quantified formula 3X: F' /\ G along with a uniqueness hypothesis. Therefore,
evaluation of a functionally-determined formula is identical to evaluation of an
existentially quantified formula: BX: F /\ G is evaluated with the same procedure as
AX:F AG.

Use of the functionally-determined quantifier eliminates occurrences of universal
quantification within compiled DIF-programs. Hence, the appearance of free vari-
ables within universally quantified formulas are also limited. For example, the origi-
nal DIF defining ~mult contained a universal quantifier, so a query such as
~mult (s (s (0)),J.K) produces a universally quantified query with a free vari-
able in its generator. When mult is defined with a functionally-determined

quantifier, this query can be evaluated, returning answers:
{J=0, K=0},

{J=s(0), K=s(s(0))},
{J=s(s(0)) .K=s(s(s(s(0))))}, ete.

Summary

The presence of free variables within universally quantified queries can be han-

dled in a number of ways. If free variables occur only in the tester, the evaluation
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procedure will produce correct values for the free variables. If the free variables
occur only in the generator, the contrapositive form of the query brings the free vari-
ables into the tester, where correct values can be obtained. If the free variables
occur both in the tester and generator, the query can be altered to instantiate free
variables prior to evaluation of the universally quantified query. Any attempt to
further instantiate the free variables within evaluation of the universally quantified
query should result in abnormal termination. Finally, the number of universal
quantifiers in a program can sometimes be reduced drastically by using a function-

ally determined quantifier.

6.4. Summarizing the Enhancements

The topics of this chapter have involved practical implementation and coding
issues. Satisfying the self-coverage and non-conflict requirements can lead to an
explosion in the number of DEFs. The explosion occurs especially for database-
oriented and polymorphic programs. An equality predicate resolves concerns about
database-oriented and polymorphic programs. Self-coverage is also generalized to
accommodate data types. Introduction of the equality predicate and the enhance-

ment to self-coverage broadens the scope of applications for DEF-programs.

Correctness of universally quantified queries depends on the absence of free
variables (Theorem 5.5). Strategies for evaluating universally quantified queries with
free variables have been developed. Finally, a functionally-determined quantifier
reduces occurrences of universal quantifiers, thereby reducing the number of univer-

sally quantified queries containing free variables.
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Chapter 7

Implementation Through Meta-Programming

This chapter will discuss actual implementation of the evaluation system for
DEF-programs. A sample DEF-program is contained in Appendix C. This implemen-

tation includes:

(1) Disambiguation of variables by scoping.

(2) Typechecking.

(3) Overlap-checking.

(4) Self-coverage testing.

(5) Generation of dual DIFs from every DEF.

(6) Evaluation of queries on object DIF-programs.

The implementation was performed entirély in C-Prolog [P85]. Prolog has
many facilities for self-reference, providing an excellent prototyping environment,
and the pattern-matching facilities of Prolog are also useful in the implementation,

especially for typechecking and obtaining the complement of formulas.

The Prolog program fragments presented in this chapter obey the syntax con-
ventions required by C-Prolog. In particular, clauses are written as A:-
A,,...,A, where the A; are all atomic formulas. This clause is equivalent to a

clause of the form Ag«—A; A\ - - - /A A, in the notation of this dissertation. The

different notation will be helpful in differentiating the Prolog program from formulas
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that are to be compiled or evaluated.

All logical connectives, except equivalence (++) and implication (+), are
treated within Prolog as uninterpreted function symbols. All of the predicate sym-
bols present in DEF-programs are also treated as uninterpreted function symbols.
The equivalence and implication connectives are treated as uninterpreted predicate

symbols. For example, a DEF:

prime (P) <«
VX: (1t(s(0).X)Alt(X,P)) — ~divp(X,P)

1s treated as the assertion:

+* (prime (P),
VX, = (AQt(s(0).X),1t(X,P)),~(divp (X.P))))).

When necessary, the more readable infix form of the logical connectives will appear

within program fragments.

7.1. Compilation of DEF-Programs

Compilation involves a number of steps. Variables produced in different scopes
are disambiguated first. Next, the overlap test is performed to eliminate fixedpoint-
inconsistent DEF-programs. The DEF-program is then typechecked. The self-
coverage test is performed next, ensuring correctness of the evaluation system.

Finally, dual DIFs are generated from each DEF in a program.
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7.1.1. Variable Disambiguation

Disambiguation of variables is necessary when using C-Prolog, because this
language has no facility for variable scoping. For example, if the first conjunct
:p (X) of:

(X:p (X)) N (K:q(X))
succeeds during query evaluation, the answer for X will be incorrectly passed to the
second conjunct, IX:q (X) (Section 5.3). This possibility is eliminated by introduc-

ing a new quantified variable for each new scope. Disambiguation creates the for-

mula:
(1:p(X1)) A (2:q(X2))

for the preceding formula. Disambiguating nested scopes requires disambiguating

sub-formulas first, and then generating a new variable in the outermost scope.

NU-Prolog [TZ87] has variable scoping, thus requiring no variable disambigua-

tion.

7.1.2. Overlap Checking

Section 5.1 introduced the overlap test, ensuring fixedpoint-consistency (Lemma
5.2). The test fails if there are distinct DEFs A «+ F' and A'«> F' such that A and

A' unify. This test is achieved with the following definite clause:
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% overlap: true if there are distinct DEFs A+—F and A'«sF'
P

% such that A and A' unify.
overlap :-

A+«F1,

AF2,

distinct(F1,F2).

The predicate distinct(Fl, F2) determines if formulas F1 and F2 are syntacti-

cally distinct.

7.1.3. Typechecking

Types are assigned to function symbols and predicates appearing in the DEF-

program. The type assignments are declared as assertions within a DEF-program.

A declaration f:[r,, . .., 7, ] —7indicates that function symbol f is a member of
type 7, and its arguments 1, . . . ,n are of types 7, . . ., 7,. Similarly, for predicate
symbols the declaration p:[r), . . ., 7,] indicates the argument types. Type parti-

tions of programs are not declared; however, the programmer must ensure that every

function symbol appearing within a program is a member of a type. The type

declarations are viewed by the C-Prolog system as assertions defining a binary infix
.

predicate “:”. For example, the declaration s: [nats] —nats is actually an asser-

tion : (s, [nats]—nats). Again, the readable form will be used.

Typechecking terms utilizes 2 typecheckTerm predicate that is true of argu-
ments z and 7if term z can be; assigned type 7. If z is a variable, r is instantiated
to 7 ensuring that each occurrence of a variable is assigned only one type. If
z=f(z,,...,2,)(n>0), typecheckTerm obtains a type assignment

film, oo 7,]— 7 from the program, and typecheckTerm is recursively invoked
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to assign type 7; to subterm z; for all 1<¢i < n.

As an example, consider the type declarations below:

O: []—nats.
s: [nats]—nats.

nil: []—lists.
cons: [nats,lists]—lists.

The term cons (0, X) is successfully assigned type lists by typecheckTerm
using the following informal derivation:
typecheckTerm (cons (0,X), 1ists) is true if:
typecheckTerm (0O, nats) and typecheckTerm (X, lists) are true.
typecheckTerm (0O, nats) is true.
typecheckTerm (X, 1ists) is true with X instantiated to lists.
The following unsuccessful derivation demonstrates that typecheckTerm cannot
assign type lists to term cons(X,X):
typecheckTerm (cons (X,X), 1lists) is true if:
typecheckTerm (X, nats) and typecheckTerm (X, lists) are true.
typecheckTerm (X, nats) is true with X instantiated to nats.
typecheckTerm (X, 1ists) is not true because X has been previously

instantiated to nats and cannot be instantiated to lists.

Instantiation of variables to type names by the typecheckTerm predicate is

correct only if type names are distinct from function symbols.

The predicate typecheckPred is true of an atomic formula A if A is well-

typed. When A =p(z,,...,z,)(n>0), typecheckPred obtains a type
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assignment p:[r,, . .., 7,] and typechecks the subterms by invoking
typecheckTerm(z;,7;) for all 1<¢<n. For example, suppose the predicate

1]

length is declared to have the following type:
length: [lists,nats].

Then typecheckPred(length(cons (X,L),s(N))) is true if:
typecheckTerm (cons (X,L), lists) and
typecheckTerm (s (N) ,nats) are true.

These subqueries are true with variables instantiated as follows:

X = nats, L = lists, N = nats.

The predicate typecheckFormula determines if a formula is well-typed by
recursively determining if each non-atomic subformula is well-typed; atomic formulas
are well-typed using the typecheckPred predicate. Disambiguation of variables
is important for this task, since variables are instantiated to type names. Consider

the well-typed formula:
(I:length(nil, X)) A (I:length(X,0)).

The typecheckFormula predicate instantiates X in the first conjunct to nats
and in the second conjunct to lists. Without explicit disambiguation, typecheck-

ing would fail for the formula above.

7.1.4. Self-Coverage Testing

The test for self-coverage makes use of the type declarations. For prototyping

purposes, the self-coverage test is slightly simplified from the test specified in Section
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5.4. A maximum depth d, , is determined for all heads of DEF's, and is computed
using system predicates. Then all well-typed ground atoms with depth at most
d, . +1 are generated non-deterministically. Prolog is again a good language choice

for this task. Every generated atom must match the head of some DEF in the pro-

gram for the self-coverage test to succeed.

To generate all well-typed ground atoms p(z,, . . . ,z,) of maximum depth

d,...+1, the type declaration of predicate p, p:[r;, .. . ,7,], is obtained. All well-

maz

typed ground terms z, - - - z, of maximum depth d_,_ are then generated from types
Ty T,

To generate all well-typed ground terms of type 7and maximum depth d, each

type declaration f:[r,, ... ,7,| =7 for type 7is obtained. Recursively, all well-typed
ground terms z, - - - 7, of types 7, - - - 7, and maximum depth d —1 are generated.
These are combined to form a term f(z,, . . ., z,) whose maximum depth is d. In

the basis case, all constants ¢ with type declarations c¢: [] — 7 produce all terms of

nesting depth O and type 7.

7.1.5. Generating Dual DIF's

When a DEF-program has passed all tests, an object DIF-program can be gen-
erated. Two tasks are performed. Negation applied to non-atomic formulas is
moved inward. And the dual DIFs A «~F and A «<F are generated from each DEF

AF.
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Negation is moved inward by computing the complement of non-atomic formu-
las. In the process, only bounded universal and existential quantifiers, of the form
VX:G —F and AX:F /\ G, are generated. Since negation of a formula is equivalent

to its complement (Lemma 4.8), this transformation is meaning-preserving.

The predicate compformula(F, CF) is true if formula F' has complement CF
in negation-innermost form. The definition of this predicate is taken almost directly
from the rules for producing the complement. Symbolic manipulation capabilities of

Prolog make this especially easy. Some of the clauses defining compformula are:

compformula (\(F1,F2),\/(CF1,CF2)) :-
compformula(F1,CFl), compformula(F2,CEF2).

compformula (3(X, A(F1,F2)),V(X,—(F1,CF2)) :-
compformula (F2,CE2).

The compformula predicate is used within the following clause to generate

dual DIFs:

% compile(F1,F2,F3): true if F2 and F3 are dual DEFs
% for the DEF F1.
compile (A«F,A+F, ~A+«CF) :-

compformula (F,CF) .

7.2. Evaluating Queries

Queries can now be evaluated against compiled DIF-programs. Evaluation is
based on enhancements to the usual implementation of SLD-resolution through
meta-programming [SB86]. The usual implementation contains the following

definitions of a predicate sld:
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% s1d(Q): true if query Q succeeds through SLD-resolution.
sld (true).

s1d (Q1/\Q2) :- s1d(Q1), sld(Q2).
s1d(A) :- clause(A,Q), s1d(Q). % A is an atom.

The system predicate clause obtains an instance of a clause from the program
whose head unifies with the first argument. The enhancements to this program
cover the additional logical connectives, and obtain instances of DIFs from assertions

defining the « predicate.

% s1d(Q): true if query Q succeeds through SLD-resolution.
sld (true).

sld(equal (X,X)).

sld(~equal (X,Y)) :- dif(X,Y).

s1d (Q1/AQ2) :- s1d(Q1), s1d(Q2).

s1d (Q1\/Q2) :- s1d(Q1).

s1d (Q1\/Q2) :- s1d(Q2).

s1d(:Q) :- sld(Q).

sld(Bx:Q) :- s1d(Q).

sld(L) :- L«Q, s1d(Q). % L is a literal.

The system-defined predicate dif implements the dif function described in Section

6.1.1.
Evaluation of the universal quantifier has various cases depending on
occurrences of free variables in the generator and tester. In the first case, the gen-

erator is a closed formula.

s1d(VX:G—F) :-
closed (VX:G),
forall (VX:G—FE).

where forall is defined with the following clause:
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forall (VX:G—F) :-
bagof (F,s1d(C),Bag),
makeConj (Bag, Conj),
sld (Conj) .

Upon evaluation of a query forall(VX: G —»¥), the following steps are taken:

(1) The variable Bag is instantiated to a It [F o}, . . ., F @, ] composed of

instances of F' such that each o; is an amswer substitution for s14(G).

(2) Given an instantiation for Bag, variahk Conj is instantiated to the conjunc-

tion Faoy \ - - - \Fa,,.
(3) s1disinvoked recursively on query Comj.

If free variables occur in the tester, but not i the generator, these two formulas can

be swapped within the implication:

sld (VX:G—F) :-
open (VX:G),
closed (VX:F),
compformula (G, CG) ,
compformula (F,CF),
forall (VX:CE—CG) .

In this clause, the predicate open(F) is true iif formula F' contains free variables.

Finally, if free variables occur both in the generator and tester, a new query
that attempts to instantiate the free variabkes is created. This query makes use of

negation by failure.
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s1d (VX:G—F) :-
open (VX:G) ,
open (VX:E),
disambiguate (IK:G,G1),
s1d (G1),
s1d (VX:G—E) .
s1d(VX:G—F) :-
open (VX:G),
open (VX:F),
compfornmula (G, CG),
disambiguate (IX:CG, CG1),
s1d (CG1),
not sld(G).

These clauses make use of the predicate disambiguate(F1,F2) which disambigu-
ates variable scoping in formula F'1, creating a formula F'2 with distinct names for
variables in different scopes. Because C-Prolog does not utilize a correct selection
rule for negation by failure, incorrectness may result from use of the last clause
above. When this deficiency is corrected in the C-Prolog system, the full implemen-

tation will be correct.

The clauses defining s1d are evaluated with SLD-resolution in conjunction
with the encoding of a DIF-program. For example, using the program of Appendix

C, this implementation produces the following results:
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?- sld( ~divp(Ans,s(s(s(0)))) ).
Ans = O;
Ans = s(s(0));
Ans = s(s(s(s(0))}))):
Ans = s(s(s(s(s(0)))))
?- sld( ~divp(s(0).s(s(s(0)))) ).

no

In this example, one answer substitution is produced at a time by the C-Prolog sys-
tem; an additional answer is obtained by typing a semi-colon. The first query would
continue to enumerate all representations of natural numbers greater than 3. The

second query returned no indicating finite failure.

7.3. Summary

Compilation and the actual implementation of the evaluation system have been
described. The implementation uses C-Prolog. The main shortcoming in using C-
Prolog is that variables must be disambiguated. Its advantages include pattern-
matching, self-reference, and non-determinism. These facilities were used extensively
in typechecking, overlap-checking, self-coverage testing, and generation of dual DIFs.
Since the evaluation system for DIF-programs is similar to SLD-resolution, imple-

mentation of the evaluation system was also eased.
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Chapter 8

Summary and Future Work

8.1. Summary

This dissertation proposes an enhancement, called constructive negation, to the
expressiveness of logic programming languages. The enhancement is based on for-
malizing the ad hoc methods of defining negative as well as positive facts. A three-
valued logic is required, because some facts will inevitably be assigned neither true

nor false.

Fixedpoints are chosen as the underlying model of DIF-programs. Certain pro-
grams are fixedpoint-inconsistent: no fixedpoints exist. Fixedpoint-consistency is
undecidable and efficient evaluation systems cannot detect fixedpoint-inconsistency.
Therefore, syntactic constraints are imposed on programs to ensure fixedpoint-

consistency.

A set of consistency constraints are proposed involving dual definitions and
absence of conflicting definitions. The resulting programs are DEF-programs.
Underlying models of DEF-programs can be non-computable; hence, any evaluation
system is necessarily incomplete. An evaluation system for DEF-programs is pro-
posed based on enhancements to SLD-resolution. This evaluation system is correct

only if a self-coverage test is satisfied.



Enhancements are needed to enable practical use of DEF-programs. An equal-
ity predicate is incorporated into the evaluation system, data types are introduced,
and evaluation of universally quantified formulas is made more flexible. A prototype

implementation of this system has been achieved with the C-Prolog language.

Other strategies for enhancing the expressiveness of logic programming
languages also involve implementation of negation. The predominant implementa-
tion is by failure. But answer substitutions are not returned after evaluation of
negated queries, and correctness of negation by failure is ensured only if negated
queries are variable-free. Negation by failure is also incomplete, and cannot detect

inconsistent programs. Consistency is ensured only through stratification.

Model elimination is a complete evaluation system for programs with negation.
This system converts clauses (not necessarily definite) into contrapositive forms.
These forms are similar to DIFs, in that negated atoms may occur in the heads of
contrapositives. The evaluation system uses SLD-resolution and searches at ancestor
nodes in the full search tree. Unless the ancestor search can be controlled through

indexing, model elimination can suffer from the same inefficiencies as resolution.

Examples have demonstrated the use of constructive negation. In many cases,
constructive negation is more flexible than negation by failure, because answer sub-
stitutions can be returned from evaluation of negative queries. Increased expressive-
ness is achieved by DEF-programs, because all logical connectives may be present

within the bodies of DEFs.
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8.2. Future Work

The weakest part of the evaluation system for DEF-programs is evaluation of
universal quantifiers. The current implementation uses a system-defined construct
that stores generated values within heap memory. A large conjunction is then

formed from the generated values and tester, again in heap memory.

Tamaki and Sato [TS83,KH87| have investigated transforming universally
quantified formulas into recursive clauses. Recursion effectively stores generated
values on a stack. In fact, if the recursive clauses are tail recursive, only a fixed
amount of space is required from the stack. Also, explicit storage of a conjunction is
not needed. The transformation rules are not incorporated into a compiler, because
the search space of transformations is too large. The transformations must be
guided step-by-step by a programmer. The transformation rules are applicable to
DEF-programs, but further work is needed to perform the transformation automati-

cally for some interesting class of programs.

Use of non-conflicting DEF's to produce dual DIFs ensures fixedpoint-
consistency. Since these syntactic constraints on programs are merely sufficient,

better constraints may exist to ensure fixedpoint-consistency.

Ad hoc techniques for describing negation may also be used in equational pro-
gramming languages. Constructive negation within logic programs relies on three-
valued logic and quantifiers. Replacement of the ad hoc techniques for describing
negation within equational programming languages by a constructive negation may

require analogs to three-valued logic and quantifiers. The non-conflict and self-
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coverage properties could also be important in satisfying the Church-Rosser property

for term-rewriting systems.

The non-conflict and self-coverage properties of programs are applicable to
functional programming languages. Non-conflict ensures that each function is well-
defined. Self-coverage ensures that all functions have definitions for all possible
arguments. Self-coverage does not ensure total functions, but constitutes a useful

precondition for defining total functions.
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Three-Valued Truth Tables
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This appendix contains three-valued truth tables for all of the logical connec-

tives in (1}

Negation:

Conjunction:

Disjunction:

Truth Table
for Negation

X

=

t
u
f

Sl -

Truth Table for Conjunction

Yy
zN\y | t u f
t t u f
‘ u u u f
f f f f

Truth Table for Disjunction

y
z\Vy | t u f
z t t u t
u t u u
f t u f




Implication:

FEquivalence:

Truth Table for Implication
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Truth Table for Equivalence
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Appendix B
Three-Valued Valuations

This appendix contains justification for the three-valued truth tables of Appen-

dix A. The assignment of a logical constant to a Boolean expression is called a
valuation. The truth tables of Appendix A are the strongest extension of the classi-
cal 2-valued truth tables. The 3-valued truth tables agree with the usual truth
tables on Boolean expressions that do not contain u. When u is viewed as contain-
ing less information than t and f, the truth tables are monotonic. Monotonicity
ensures that a better defined valuation always results from a more informative
Boolean expression. As a result, all laws, such as De Morgan’s, are observed by the

3-valued truth tables.

As in Chapter 4, the relation [ on the logical constants is defined, based on

their information content.

ul_fand ult

This relation may be extended to Boolean expressions constructed from algebra

B({t, u,f}), as follows:
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Logical constants:

zLyifz=yorzly

Set of expressions:

SL_T if there is a bijection 0: 5 — T, such that z[_o(z) for all z €S.

Logical operators:
(~2)C(~y)if zCy
(ASYTIAT) if SCT
(VSC(VT) it SCT

Through induction on the structure of Boolean expressions, [ is a partial ordering.

As particular Boolean algebras, let:

B, = B({t,f}), and

B, = B({t, u,f}).

B, is the set of Boolean expressions containing only the logical constants t and f,
while B, is the set of expressions containing all logical constants. Note that the
maximal expressions in By with respect to the partial ordering [ are expressions

from B,.

A 2-valued valuation is a mapping from B, to {t,f}. The classical valuation v,
is a particular valuation (there could be others). For example, v :t Afi=>f. Simi-

larly, a 3-valued valuation is a mapping from Bj; to {t,u,f}.

A 3-valued valuation v’ is an extension of a 2-valued valuation v if v'(z)_v(z)

for all z €B,. That is, v’ is no better defined than v on any 2-valued expression. We
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will be describing a particular 3-valued extension v,' of v,. In this extension

v,(z) = v (z) for all z €B,. For example, since v’ is an extension of v,, it must be

that v, t Afi>f.

According to the usual definition, 3-valued valuation v' is monotonic if z[_y
implies v'(z)[_v'(y) for all expressions z and y from B,. This property ensures that

increased information will enhance the information provided by the valuation.

If S is a set of expressions, as shorthand, let v(S) = {v(z) | z €S}. As a partic-
ular class of 3-valued valuations, V is a functional producing a 3-valued valuation
from its 2-valued input. Define V(v)(z) =[] v(M,), where M, ={y €B, | zCy}.
Each 3-valued valuation V(v) is an extension of 2-valued valuation v. For example,
the classical extension is defined as v,' = V(v,). Appendix A provides truth tables
for the operations of €, using this definition of v,’. It is necessary to show that the

resulting 3-valued valuation conforms to its 2-valued component, and is well-

behaved.
Lemma B.1: For all 2-valued valuations v, V(v) is a monotonic extension of v.

Proof: Suppose expressions z and y are in B, and z[_y. Then M, QMy, SO
v(M,)Dv(M,), and [ ] v(M,)L[ | v(M,). Hence, V(v)(z)L V(v)(y), and V(v) is
monotonic. O

We now show that the functional V is as strong as any other method for pro-

ducing monotonic extensions of 2-valued valuations. Valuation w is stronger than

valuation v, denoted v[_w, if v(z)_w(z) for all z €B,. Since this relation on valua-
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tions is a simple extension of the partial ordering [_ on Boolean expressions, it is easy

to show that the relation on valuations is also a partial ordering.

Lemma B.2: If valuation w is a monotonic extension of 2-valued valuation v, then
wl_ V(v).
Proof: If w(z) = u, then w(z)_ V(v)(z) regardless of the actual valuation V(v). If
w(z) # u, then w(z) = w(y) for all y such that z[_y. In particular, for any maxi-
mal element m €M, w(z) = w(m). Since w is an extension of v, w(m)_v(m). And
by the definition of V, v(m) = V(v)(m). Since w(z)L V(v)(m) for all m €M,
w(z)C[ 1o(M,). O

We have therefore established that v,/ is the strongest monotonic extension of
the classical 2-valued valuation v,. Within Chapter 4, it is important to determine
that certain properties, including De Morgan’s laws, still hold for the valuation v,'.
Because the associative and commutative operation [ | is used in the construction of
V(v), the 3-valued valuation v,’ is indeed associative and commutative for conjunc-

tion and disjunction. De Morgan’s laws are strengthened for infinite conjunctions

and disjunctions, as follows:

N(/\{Zl,z2, T }) = V{Nzlr'\’xw T }
N(V{Ing, T }) = /\{lex’\’zz» o }
It is not difficult to show that De Morgan’s laws are also observed for v,'.

Having justified the construction of v/, its use is implicit within the disserta-

tion. Thus, a Boolean expression z will stand for its valuation under v,’.
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The following program is used as an example of a DEF-program. The program

defines a prime predicate, among others. The program is not especially efficient,

but does clearly represent certain relations about natural numbers. Included in the

program are assertions utilized for typechecking, discussed in Chapter 6, Section 2.

O: []—nats.
s: [nats] —nats.

% 1t(I,J): true iff I<J.
1t: [nats,nats].

1t (0,s(J)) <> true.

1t (I,0) +*> ~true.
1t(s(I).s(J)) <« 1t (I.J).

% le(I,J): true iff I<J.
le: [nats,nats].
le(I,J) <+ ~1t(J,I1).

% ge(I,J): true iff I>J.
ge: [nats,nats].
ge(Il,J) « ~1t(I,J).

% gt(I,J): true iff I>J.
gt: [nats,nats].
gt(I,J) + 1t(J,I).

% eq(I,J): true iff I=J.
eq: [nats,nats].
eq(I,J) + le(I,J) A le(J.I).

% add(I.J.K): true iff I+J=K.
add: [nats,nats,nats].

add (0,J,K) <« eq(J.X).

add (s (1),J.0) <+ ~true.

add (s (I),J,s(K)) +> add(I,J. K).
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% mult(I,J,K): true iff I*J=K.

mult: [nats,nats,nats].

mult (0,J,0) «+ true.

mult (0,J,s(K)) <> ~true.

mult(s(I),J,K) « HX: mult(I,J,X) /\ add(X,J.K).

% divp(I,J): true iff I divides J evenly.
divp: [nats,nats].
divp(I,J) +« : le(X,J) N mult(X,I,J).

% prime (P): true iff P is prime.
prime: [nats].
prime (P)
gt (P.s(0))
A (¥X: 1t(s(0).X) A\ 1t(X.P) — ~divp(X,P)).
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