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Abstract 

Cost-Based Object Query Optimization 

Quan Wang, B.S., M.S. 

Ph.D., OGI School of Science & Technology at Oregon Health & Science University 

March 22, 2002 

Thesis Advisors: Dr. David Maier, Dr. Leonard Shapiro 

This dissertation investigates cost-based object query optimization techniques. We focus on 

cost-based optimization, which has been adopted by all commercial relational database 

management systems (DBMSs). We identify several practical issues in developing cost-based 

optimizers for object queries. To attack these issues, we propose an algebraic framework for 

cost-based object query optimization with special attention paid to queries involving collection- 

valued attributes (CVAs) and multiple collection types. Our work contributes to research and 

engineering of cost-based object query optimization in four aspects: the algebra, the unnesting 

algorithm, the reference materialization technique and the cost model. 

The object algebra we propose, the COAL algebra, can express all queries in ODMG's OQL 

language. OQL is a standard object query language from the Object Data Management Group 

(ODMG) [CB97]. We provide a straightforward and mechanical mapping from OQL queries 

into algebraic expressions over our algebra. Besides this expressiveness, the algebra enables our 

treatment for nested OQL queries. 

Our unnesting technique subsumes the existing unnesting techniques for both relational and 

object-relational queries. It can completely unnest OQL queries, including those involving 

CVAs and multiple collection types, which cannot be represented or unnested by the existing 



algebraic approaches. Analytical and experimental study show that our unnesting approach 

outperforms others by its improvement of the optimization plan space and its seamless 

integration into algebraic optimizers. 

The new reference materialization technique we propose, the hybrid approach, improves upon 

previous techniques by processing CVAs and shared attributes more efficiently. The 

performance of the proposed techniques is evaluated analytically and experimentally. 

In spite of their impact in cost-based optimization, cost models themselves have not been 

sufficiently investigated. In particular, an appropriate quality measurement for cost models is 

still absent. The quality of cost models is important in cost-based query optimization because 

the quality of a cost-based optimizer depends on that of the cost model. A good measurement 

for cost models is a necessary step towards assessing the quality of cost-based optimizers. We 

propose the encpectedpenalty measurement as a quality metric for cost models. Derived from 

both experiments and analysis, this measurement corresponds well with several intuitive 

observations about the quality of cost models. 

Another issue for cost models is parameter representation and propagation. In relational 

DBMSs, the catalog stores the statistics used in costing evaluation plans. The catalog structure 

for object databases has not been investigated and documented. We present a simple catalog 

structure for storing object database statistics. The catalog, comparable to a relational catalog, 

can express data properties across an arbitrary object hierarchy. Based on this representation 

method, we are able to propagate the parameters used in our cost formulas. 

We implemented all the components proposed in this dissertation within COCOUN (Columbia 

with Collection and UNnesting), a cost-based OQL query optimizer based on a cost-based 

relational query optimizer framework Columbia [SMBOI]. Our experience shows that the 

components and techniques proposed in this dissertation are appropriate for OQL query 

optimization and can be implemented in an extensible relational optimizer framework such as 

Columbia. 

We also implemented an OQL query evaluator that can accept the evaluation plans output by 

COCOUN and execute those plans on a Java-based commercial OODBMS. The evaluator has 

been a useful platform for tuning and validating the cost model implemented in COCOUN. 



While the implementation and testing of the proposed techniques in this dissertation was done 

in the context of OQL, many of the techniques should carry over to object-relational models 

such as SQL: 1999 [EM99], and XML query languages, such as Quilt [CRFOO] and Xquery 

[W3C01]. 
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Chapter 1 Background and Related Work 

This dissertation focuses on object query optimization techniques and frameworks. This chapter 

introduces background knowledge relevant to the discussion in the later chapters. First, we 

review the concepts and mechanisms appearing in object-oriented database management 

systems (DBMSs). Then we introduce the principles of query optimization. Also we describe 

the Columbia cost-based optimizer framework, on which we implement the techniques 

proposed in this dissertation. 

1 .I Object Data Model 

A relational DBMS manages data in the relational data model, whose primary construct is the 

table. An object-oriented DBMS (OODBMS) manages data in an object data model, whose 

primary construct is the object. Compared to the relational data model, the object data model 

provides better support for the object-oriented programming paradigm and for modeling 

complex applications, such as computer-aided design systems (CAD), geographic information 

systems (GIs) and scientific data management. This dissertation focuses on object query 

optimization. Our work is based on the ODMG Object Model, an object data model standard 

proposed by the ODMG committee [CB97]. This model supports objects, which are mutable, 

and values, which cannot be updated. Object or values can be atomic, structured or collections. 

In contrast to values, objects have mutable state and have object identifiers that help retrieve the 

objects they reference. Figure 1 lists the built-in type hierarchy of the ODMG object model. As 

a convention, a value type starts with a lower-case letter, for instance, set. An object type starts 

with a capital letter, for instance, Set. For a collection type, the symbol T denotes the element 

type. For instance, set<T> denotes a set collection with instances of type T as its elements. 



Collection elements can be objects or values. Here, an instance of set is a set literal. An instance 

of Set is a set object. An instance of set<T> is a set literal whose elements are of type T. Any 

type in Figure 1 can be used for Tin a collection type definition. A user-de$ned object type is 

an object data type defined by a user program, for instance, a class in a C++ or JAVA program. 

A user-defined structure is a value that consists of several attributes. An attribute in a user- 

defined structure can be of any type in Figure 1. 

Figure 1: The built-in type hierarchy of the ODMG object model 

Value 

Object 

Object Identifiers (OIDs) are akin to primary keys in the relational context that identify 

individual rows in tables. OIDs can serve as attributes in other objects, in which case the 

attributes are called reference attributes. The relational counterpart of a reference attribute is a 

foreign key. The object that contains a reference attribute is the parent of the object referenced 

by the attribute. Since an OID can appear as the reference attributes in several objects, object 

sharing, i.e., an object with several parents, is common in object data. 

Attributes that refer to collection objects are called collection-valued attributes (CVAs). CVAs 

first were introduced in extensions to the relational model such as the Non-First-Normal-Form 

(NF2) data model [FT83] and are included now in most object-relational and object-oriented 

data models. A CVA instance is a collection object referred to by a CVA attribute. A CVA 

element is a member object or value in a CVA instance. As for query processing, the main 

issues arising from the presence of CVAs include efficient access to CVA elements and 

processing sub-queries involving CVAs. 

Atomic literal 

Collection literal 

Structured literal 

Atomic object 

Collection object 

Structured object 

long, short, int, float, char, etc. 

set*, bag-, list<T>, array<?), dictionary<?) 

date, time, timestamp, interval, structure<ll:T1,. . .,ln:Tn> 

User-defined types 

Set*, Bag-, List<T>, Array-, Dictionary- 

Date, Time, Timestamp, Interval 



Figure 2 shows a sample database schema that reflects some features of an object data model. 

The database stores the information related to some schools and companies in a certain area. 

This schema defines eleven object types: Student, TranscriptEntry, Professor, Course, Book, 

Department, Program, Building, School, Employee and Company. Mostly, the types and their 

attributes in the sample database schema should be self explanatory. In the Student type, the 

Transcript attribute is a set, holding TranscriptEntry objects. The attribute Core stands for the 

set of courses the student must finish to meet the program requirements. The attribute Take 

stands for the set of courses the student has taken. The Program instances stand for the 

academic programs in the departments. In a Course instance, the text attribute holds the ISBN 

number of the primary text book for that course. 

Our naming convention for types and attributes is that single-valued attributes begin with a 

lowercase letter, e.g., dept. CVAs begin with uppercase, e.g., Instructors. User-defined types 

begin with uppercase as well, e.g., Department. Primitive types start with lowercase letters, e.g., 

int and string. 

Student: (sname: string, ssn: int, age: int, dept: Department, advisor: Professor, status: string, 

Core: {Course), Takes: {Course), Transcripts: {TranscriptEntry)) 

TranscriptEntry: (ctitle: string, cno: int, grade: char) 

Professor: (pname: string, dept: Department, specialty: string, salary: int, Teaches: {Course)) 

Course: (ctitle: string, cno: int, dept: Department, instructor: Professor, Participants: {Student}, 

text: int) 

Book: (btitle: string, isbn: int) 

Department: (dname: string, head: Professor, Majors: {Student), Courses: {Course), Faculty: 

(Professor}, AVGGPAS: [float], building: Building) 

Program: (pname: string, dept: Department, Core: {Course)) 

Building: (bname: string, address: string) 

School: (sname: string, Depts: {Department), Students: {Student), Graduates: {Student)) 

Employee: (ename: string, ssn: int, manager: Employee, salary: int) 

Company: (cname: string, Emps: {Employee)) 

Figure 2: A university database schema 



Let T be a type. In Figure 2, we use {T) and [TI to represent collection types Set<T> and 

List<T>. For instance, the term A VGGPAS:float] in the Department type denotes a list-valued 

attribute AVGGPAS that records the average GPA for each year. 

Figure 3 shows an instance of the schema. In Figure 3, square boxes stand for objects and round 

boxed for collections. Solid edges represent CVAs of an object, while dashed edges represent 

single-valued attributes. This database instance starts with a department object. Two reference 

attributes of the object are shown: head and Majors. The value of the CVA Majorxrefers to a 

collection of student objects. Each student object contains the CVA Core, referring to a 

collection of course objects. Object sharing is illustrated through the object ~ 2 ,  referred to by the 

two Core instances, Corel and Core2, also through the dl object, referred to by the sl, sz and s3 

student objects. Sharing also occurs with Core2, referred to by both s2 and s3. 

Note that besides sets, a database instance may also contain other collection types such as multi- 

set (or bag), list, array and dictionary. For instance, it may store a list of departments that sorted 

in the order of the department name. The difference between sets and lists, sets and arrays is 

that the elements in a set do not have an order, while the elements in a list or an array can be 

accessed by specifying their ordering or positions. 

Core 

......... 

...................................................................... 
: ...... ...... ..... head 1 ....... 

S2 ...... ..... ...... ...... ..... .... ..... ...... 
si - a student object 

s3 Core2 ci - a course object 

pl - a professor object 
dl - a department object 

Figure 3: A partial instance of the example schema 



I .2 Object Query Languages 

The ODMG standard also includes a query language standard, OQL (Object Query Language). 

Syntactically, OQL is similar to the relational query language SQL. In SQL, entities are related 

to each other by joining different relations. In OQL, an object can lead to other objects by the 

reference attributes contained in the object. Apath expression [Z83] is a chain of reference 

attributes. A path expression may be single-valued or collection-valued. By default, a path 

expression is evaluated by retrieving the object references successively along the chain of 

attributes. Alternatively a path expression can be evaluated using joins explicitly instead of 

implicitly (reference retrieval) [BMG93]. 

Example 1.1: The following query returns students in the department headed by Professor Joy. 

SELECT S 

FROM Students AS S 

WHERE S.dept.head.pnarne = "Joy". 

This query employs a path expression S.dept.head.pnarne, which leads fiom a student to the 

department, then the department head and finally the name of the department head. 

Both SQL and OQL allow nested queries. All SQL nested queries can be directly mapped to 

OQL nested queries. In addition, OQL allows sub-queries to appear in the SELECT clause and 

to be correlated with the outer blocks through CVAs. Note that SQL only allows for sub-queries 

in the FROM and WHERE clauses and for sub-queries to be correlated with the outer blocks via 

range variables. 

Example 1.2: The following query returns records of departments and the sets of students in 

those department who are older than 25. 

SELECT STRUCT(D: D, 0: (SELECT S 

FROM D.Students AS S 

WHERE S.age>25) 

FROM Depts AS D. 

This query contains a sub-query in the SELECT clause. The sub-query generates a CVA in the 

query result. 



1.3 The Object Storage Model 

Various database systems support their object models in different ways. The object storage 

model deals with two aspects: dividing objects into records and placing the records on disk. 

Here we consider a typical object storage model that serves as the basis for our query execution 

engine and cost model. Object systems that support this storage model include the Gemstone 

object database system [Gem961 and the SHORE object storage manager [CDF94]. 

Objects are represented as an object identifier (OID) and a record with one or more attributes. 

Object identifiers (OIDs) are unique literals that identify objects. An attribute can be an O D  

(representing a reference attribute) or of a primitive type. A collection-valued attribute (CVA) is 

stored as an OID that identifies a collection object. A collection object is stored as a group of 

OIDs of its elements. Note that other systems may not represent CVAs as collection objects. For 

instance, some systems use variable-length attributes to store collection elements. 

Figure 4 illustrates the storage of the objects depicted in Figure 3. A composite object is shown 

in the format OID:(labelr:valuel, ..., label,,: value,J, where labeli and valuei are the label and 

value of the ith attribute of the objects. A CVA value, which is a collection object, is shown in 

the format OID:{e,, ... e$, where ei is a collection element. 

Figure 4: Storing the objects in Figure 3 

dl: 

Note that object sharing is implemented via OIDs. For instance, in Figure 4, the student objects 

with s2 and s3 share the same set of core courses by both referring to Corez. Two collection 

(dname: "CS", head: pl, Majors: Majorl, . . .) 

pl: 

c2: 

(pname: "J. Smith", . . .) c3 : (ctitle: "Calculus", . . .) 

(ctitle: "Compiler", . . .) 

s1: (sname: "T. Joy", dept: dl, Core: Core,, . . .) 

~ 2 :  1 (sname: "M. Wu", dept: dl, Core: C o r ~ ,  . . .) 1 a :  1- 
c4: 

s3: 

(ctitle: "Networking", . . .) 

(sname: "D. Lee", dept: dl, Core: Core2, . . .) I core,: 

cl: (ctitle: "Databases", . . .) 



objects may also share elements via OIDs. For instance, in Figure 4, Core, and Corel both 

contain cz. 

OIDs are logical: they do not dictate the physical location of the referenced objects. An object 

table is a data structure that maps an object identifier (OID) to the physical address @ID) of the 

referenced object. A PID contains the information to locate the referenced object on disk or in 

memory. There are potentially two object tables. One maps OIDs to memory locations, called 

the memory object table. Another maps OIDs to disk locations, called the disk object table. The 

initial de-reference of an object may cause disk reads due to a lookup in the disk object table. 

Whether information elements are close on disk has performance implications. Thus, ordering 

and clustering are aspects of the object storage model. Ordering specifies in what order a group 

of records, usually of the same type, are written or scanned on disk. Clustering specifies how 

data, either of the same type or of different types, are physically situated relative to each other. 

In relational DBMSs, the rows of a given table are usually placed together on disk. In 

OODBMSs, objects can be arbitrarily distributed on disk. Objects can be placed together with 

those of the same types or different types. Ordering has been explored by existing query 

optimizers to improve query execution algorithms. However, various clustering strategies bring 

new challenges to query optirnizers, which are required to find the optimal way of accessing 

objects under various clustering patterns. 

Object clustering has been investigated in several research projects, most of which focus on 

objects with single-valued attributes [FCP96]. We consider three clustering patterns that apply 

to both objects with single-valued attributes and those with CVAs: attribute clustering, parent 

clustering and sibling clustering. 

A collection of objects is in attributep clustering if the records representing these objects are 

distributed on disk such that the records with the same values for the p attribute are on the same 

or neighboring disk pages. The quantum cluster factor denotes the number of these records per 

disk page. This clustering pattern can result fiom an order-by query, or the creation of a 

clustered index. Note that p can be a single-valued attribute or a single-valued path expression. 

The objects referred to by a single-valued attribute are inparent clustering if the records 

representing these objects (children) are located on the same page as the object (parent) that 

contain the attribute. The objects contained in CVA instances are in parent clustering if the 

objects belonging to one CVA instance are located in the same disk page as the object that 



contains the CVA instance. Figure 5(a) shows the CVA Majors of Department objects in this 

clustering pattern. The quantum cluster factor denotes, in such clustering pattern, the number of 

parent records allocated to each disk page. For single-valued attributes, the number of child 

records is the same as that of the parents. For CVAs, the number of CVA instances is also the 

same as that of the parents, though the number of CVA elements is generally greater. 

A group of CVA instances are in sibling clustering if the records representing the elements in 

one CVA instance are located in the same or neighboring disk pages. The quantum cluster 

factor denotes the number of CVA instances whose elements are located in the disk page. 

Figure 5(b) shows this pattern. The students from the same CVA Majors instances are placed in 

the same disk pages. The distinction between "clustered with parent" and. "clustered by parent" 

is that, in the latter case, children and their parents are not necessarily placed together. 

The three basic clustering patterns can be combined to form many clustering patterns that have 

been previously investigated. For instance, depth-first clustering [BDK96] is the case where all 

the objects referred to by certain attributes are in parent clustering. Breadth-first clustering is 

equivalent to the case where all the objects referred to by certain attributes are in sibling 

clustering. 

0 An instance of Department.Majors 
A Student object 

(a) (b) 

Figure 5: (a) Parent clustering (b) Sibling clustering 

1.4 Indexing 

New indexing methods have been proposed to speed up the evaluation of path expressions. The 

access support relation method [KM90] computes all the instances of a path expression and 

stores them in a table called an access support relation. Another kind of index is path index. A 

path index is a straightforward extension to the traditional indexes used in relational DBMSs. A 



path index maps an object to one or several objects that reference the object through a path 

expression [MS86, V87, BK89, KM941. The nested path index, proposed by Bertino and Kim 

[BK93], supports both single-valued and collection-valued path expressions. 

I .5 Cost-based Query Optimization 

Query languages such as SQL allow database users to state inquiries over a database in a 

declarative fashion. Given a user query, a query processor generates alternative evaluation 

algorithms for that query, then selects an efficient algorithm, and finally computes the query 

result using the choosen algorithm. Query processing is query-comprehensive and data-aware. 

It is query-comprehensive as it must generate and choose an efficient plan for any user query 

within its scope. In this sense, it is similar to an optimizing compiler for a programming 

language. It must also be data-aware in that it compares alternative execution plans by 

examining these plans and the properties of the data they apply to. Therefore it can choose an 

efficient plan no matter what the data properties are. In this sense, it differs from programming 

language optimizers, which generally do not consider data properties in choosing among 

alternatives. 

The goal of the optimizer in a query processor is to find a good algorithm to evaluate a query. 

Most existing optimizer frameworks and techniques are aimed at the relational data model and 

relational query languages. To build an object query optimizer, we need to examine whether the 

relational optimization techniques apply to object queries. If not, we need to develop new 

techniques to optimize queries possessing new features from object models such as reference 

attributes, collection-valued attributes and method invocations. 

Query optimization is one of the major components of query processing. A query processor 

consists of a parser, an optimizer and an evaluator. Given a user query as input, the parser 

interprets it into an internal representation. The optimizer transforms the internal representation 

into an efficient evaluation algorithm called the optimal plan. Note that this plan is judged 

optimal based on heuristics or cost estimates; it may not always have the lowest execution cost. 

The evaluator executes the optimal plan to compute the output of the query. In some cases, a 

query is evaluated multiple times after optimization. In other cases, such as ad hoc or dynamic 

query environments, a query is optimized before each evaluation. In the latter cases, the 

efficiency of the optimizer is In particular important. Figure 6 shows the structure and working 



process of a typical query processor. The parser generates the input to the optimizer, which in 

turn generates the optimal plan as the input to the query evaluator. 

Figure 6: Transformation-based and cost-based query processing 

Parser 

Various query optimizers differ in their internal representations, plan generation strategies and 

optimal plan determination methods. Internally, queries can be represented using algebra, 

calculus, monoid comprehensions or query graphs. They might even take different forms at 

different times in the same optimizer. The search engine can be transformation-based or 

stochastic. Transformation-based optimization generates plans by randomly applying 

transformation control algorithms and transformation rules. Stochastic optimization generates 

plans by permuting the original query. Probabilistic reasoning is used for determining the 

optimal plan. In general determining the optimal plan in an optimizer can be based on cost 

estimation or heuristics. A cost-based strategy selects the optimal plan by estimating and 

comparing the costs of available plans. A heuristic strategy selects the optimal plan using some 

deterministic rules. Because of its effectiveness, the cost-based approach has become the 

standard for commercial query processors. 
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In this dissertation, we deal with transformation-based and cost-based optimization. Internally, 

we represent queries using an operator algebra, because algebra can be expressive enough to 

represent standard relational and object query languages. Also, relational query processing 

research and engineering has developed plenty of good algorithms for evaluating relational 

algebraic operators. Using algebra, a query is internally represented as an operator tree: Each 

algebraic operator in a tree node accepts as inputs the data output by the algebraic operators in 

its child nodes. The leaf nodes in the operator tree accept stored collections as input. The output 

of the top node of the tree is the final query result. 

Also shown in Figure 6 are the components and operation of a typical transformation-based and 

cost-based optimizer. Accepting an input expression fiom the parser, the optimizer applies 

logical transformation rules to produce logically equivalent expressions, simply called logical 

expressions. When an algebra is used for internal representation, the logical expressions consist 

of logical algebraic operators, simply called logical operators. Logical transformation can 

generate a large number of logical expressions. For instance, join reordering rules can produce 

an exponential number of expressions in terms of the number of tables mentioned by the input 

query [V97]. Because logical transformation is the major consumer of optimization resources, 

its efficiency directly determines the overall efficiency of an optimizer. 

The optimizer also converts logical expressions into their evaluation algorithms, called 

evaluation plans, via physical transformation, where the operators in the logical expressions are 

converted into their implementation algorithms, called physical operators. When algebra is used 

for internal representation, the collection of physical operators is called the physical algebra, in 

contrast to the logical algebra that contains the logical operators. A logical operator can be 

considered as the abstraction of a group of physical operators that implement the logical 

operator using different algorithms. 

Each logical expression corresponds to none, one or several evaluation plans. If some operators 

in a logical expression have no physical implementation, the expression will have no 

corresponding evaluation plan. Such expressions may serve as intermediate expressions for 

generating other logical expressions. 

As a convention, the rules that transform logical expressions into equivalent logical expressions 

are called transformation rules. The rules that transform logical expressions into physical 

expressions are called implementation rules. Typically, a query optimizer does not perform 



transformation between physical expressions, although such transformations are possible. 

Instead, all the transformations are performed between logical expressions, or from logical 

expressions to physical expressions. 

The evaluation results of physical operators are characterized by data properties. Logical 

properties capture the common features among the evaluation results of the physical operators 

that correspond to the same logical operator. For instance, the cardinality and schema are logical 

properties, because it is impossible for two implementations of the same logical operator to 

produce results with different cardinalities or schemas. Physicalproperties capture the 

difference among the evaluation results of the physical operators for the same logical operator. 

For instance, sort order is a physical property, because different physical operators such as 

merge join and hash join produce results with different sort orders. 

Note that Figure 6 is a simplified model. Some transformation-based optimizers follow this 

model, for instance, the Volcano optimizer [GM93]. Others vary &om it. For instance, the 

Cascades optimizer fi-amework [G95] mixes logical transformation, physical transformation and 

plan selection, resulting in a more complicated, but more efficient, search process. 

Among all the evaluation plans, the plan selection step selects the one with the lowest cost 

estimated by the cost model according to the data properties provided by the database catalog 

and property estimation mechanism. The cost model needs not only the properties of input data, 

but also needs estimates of those properties on intermediate results. 

1.5.1 Example 

In this section, we use an example to illustrate the components and the working principles of the 

query processor depicted in Figure 6. We use algebraic expressions for internal representation. 

The illustration, however applies to optimizers that use other internal representation methods as 

well. 

Example 1.3: The following OQL query returns the names of graduate students and the names 

of their departments. 

SELECT STRUCT (sname: S.sname, dname: D.dname) 

FROM Students AS S, Depts AS D 

WHERE S.dept = D AND S.status = "Graduate". 



Accepting this query as input, the query processor parses it into the initial algebraic expression 

This logical expression consists of a join operator (Ws.dept=~), a selection operator 

(oS.status=~~Graduate") and a projection operator (nS,snarne, D.dname). The join operator matches each 

student with his or her department, returning records consisting of student and department 

attributes. The projection operator extracts the student name and department name from each 

record returned by the join operation. Given the Shtdents and Depts collections as Figures 7 (a) 

and (b), the expression above will compute the query result as Figure 7 (c). 

S1: 

s2: 

(a) The Students collection (b) The Depts collection 

(sname: "T. Joy", dept: dl, status:"Graduate", . . .) 

(snarne: "F. Lea", dept: dl, status:"Senior", . . .) 

dl (dname: "CS", . . .) 1 

(sname: "R. Fisher", dnarne: "EE", . . .) 

(sname: "D. Quirk", dname: "Math", . . .) 

s3: 

r, : 

(c) The query result 

(sname: "R. Fisher", dept: d2, status:?'Graduate", 

d2 : 

(sname: "T. Joy'?, dname: "CS", . . .) 

Figure 7: The inputs and result 

(dname: "EE, . . .) 

r7: 

rt : 

- 

sq: (sname: "M. Wu", dept: d3, status: "Senior", . . .) 

sg: 

d3 : 

(sname: "D. Lee", dept: d2, status: "Junior", . . .) 

(dname: "Math", . . .) 

Depts 

'6: (sname: "D. Quirk", dept: d3, status: "Graduate", 

Students 



The initial expression generated by the parser is logical: Even though semantically it specifies 

the query result shown in Figure 7, it does not designate what algorithms the computation uses. 

The rest of query processing is to find and execute the best algorithm that computes the query 

result. After parsing, the logical transformation step applies logical transfonnation rules to the 

initial expression, generating one or several logical expression equivalent to the initial 

expression. For this example, one relevant logical transfonnation rule is the join commutativity 

rule, specified as R w S = S w R. The join commutativity rule is based on the observation 

that switching the order of two join operands does not change the join result. Another logical 

transformation rule is to combine adjacent selection and join operators. Applying the join 

commutativity rule and combining rules to the initial expression yields the following logical 

expressions: 

Next, the physical transfonnation step applies implementation rules to the logical expressions 

derived previously. Among the implementation rules relevant to this example are the rules that 

convert a logical join operator into a nested-loops join (NL-JOIN) and an index nested-loops 

join (IDX-JOIN). To compute the join result, a nested-loops join scans the left operand. For 

each element from the left operand, it scans the right operand. A pair of elements &om the left 

and right operand is returned in the join result if they satisfy the join predicate. The pair is 

discarded otherwise. An index nested-loops join operator requires that the right join operand 

possess an index on the join attribute. To compute the join result, the index nested-loops join 

scans the left operand. For each element from the left operand, the index is consulted for the 

elements that satisfy the join predicate together with the element from the left operand. 

Also we have two other implementation rules that convert logical projection and selection 

operators into their physical counterparts, physical selection (SEL) and projection (PRI) 

operators. SEL scans the operand and output the elements that satisfy the selection predicate. 

PRJ scans the operand and extracts the projection attributes. 



Applying the implementation rules to the initial expression and the derived expression yields 

the following physical plans (among others). 

PRJ~.sname, D.dname ( (SEL~.status=**~raduat~ Students) NL-JOms.dept=d Depts) 

All three physical plans compute the query result correctly. However, their execution costs may 

differ dramatically. For instance, the index nested-loops join is more efficient if the index used 

for join has both dept and status attributes as the key. On the another hand, the index nested- 

loops join may incur heavy I/0 accesses and thus be less efficient than the nested-loops join if 

the index used is non-clustered and has only the dept attribute as key. 

The cost model will estimate the costs of these three physical plans (and all others) and pick the 

one with the lowest estimated cost as the optimal plan. Besides the operators in the physical 

plans, data statistics also plays a significant role in cost estimation. 

1.5.2 Bottom-up and Top-down Optimization 

Transformation-based optimizers can be further divided into bottom-up and top-down varities. 

Being a dynamic programming approach, bottom-up transformation searches sub-plan spaces 

and combines the optimal plans for these spaces into optimal plans for larger plan spaces, until 

the optimal plan for the entire plan space is obtained. Here, a sub-plan space means the plan 

space for a sub-expression. In contrast, top-down transformation starts with an entire 

expression, and generates alternative expressions by transforming its top operator and then 

considering sub-expressions recursively. Top-down optimization can remember solutions for 

sub-expressions in case it encounters them again. 

We follow the top-down approach. Top-down optimization is a relatively new technique, and 

many issues in top-down optimization need to be investigated, for instance, pruning and 

unnesting. One attraction of top-down transformation is that it promises to be more extensible 

than bottom-up optimization. Because our algebra includes many non-relational operators, e.g., 

map and d-joins (presented in Chapter 4), extensibility is a key factor for easy implementation. 



Bottom-up transformation requires that a search space be decomposed before the smaller spaces 

can be explored. For instance, the search space for joining three tables is decomposed into 

smaller spaces such as those for single tables and those for joins of two tables. Decomposing the 

search space for join ordering is straightforward. However, for any new operator introduced, the 

decomposition technique has to be revisited and re-designed. For instance, introducing a group- 

by operator requires non-trivial modification to the decomposition technique, especially when 

group-by migration is considered for generating alternative plans [CS94]. 

Top-down transformation, however, decomposes the search space according to the transformed 

algebraic expressions. In other words, top-down transformation does not have to know sub- 

search spaces in advance. Those sub-search spaces are generated via rewriting the original 

operator tree and its equivalent trees. 

Another advantage of top-down optimization lies in query unnesting. We will demonstrate later 

in this dissertation a complete query unnesting schema that works under top-down optimization 

frameworks. To our knowledge, such a complete unnesting schema does not exist for bottom-up 

optirnizers. Also, the top-down approach supports certain kinds of safe pruning [SMBOl] that 

are not feasible for bottom-up optimizers. For these reasons, our optimization work adopts the 

top-down approach. 

1.5.3 Search Spaces 

The optimizer is the most complex part of a query processor. The goal of optimization is to find 

the best estimated evaluation plan for a query. The equivalence space for a given query consists 

of all the possible evaluation algorithms that compute the correct query result. Theplan space 

of a query for a particular optimizer denotes all the plans in the equivalence space that are 

expressible using the optimizer's internal representation. Usually the plan space is a subset of 

the equivalence space, limited by the expressiveness of the internal query representation. Most 

optimizers represent plans as a combination of a fixed set of operator implementations, whereas 

the equivalence space includes arbitrary sequences of code. Loop optimization [LD91] is one of 

the few examples that takes a different optimization approach - it deals with arbitrary nestings 

of programming language loops. Often even the plan space becomes forbiddingly large. For a 

transformation-based optimizer, the plan space usually grows exponentially with the number of 

the operators in the initial internal representation of the user query. Consequently, for large 

queries, generating and examining the entire plan space becomes prohibitively expensive. The 



purpose of the search strategy of an optimizer is to confine the generation process to the most 

effective parts of the plan space. A search strategy can be heuristic or safe. A heuristic search 

strategy employs some deterministic rules to guide plan generation and pruning. A huristic 

search strategy is typically unsafe, in that huristic plan generation and pruning may miss the 

optimal plan. A safe search strategy guarantees that the chosen plan is optimal or close to 

optimal within a certain bound. One example of safe pruning strategies is that of Shapiro et al. 

[SMBOl], which can guarantee the optimality of the chosen plan. The search space of an 

optimizer is the subset of the plan space that a search strategy will consider. For an optimizer 

with an exhaustive search strategy, the search space is equal to the plan space. 

There is an interesting tension between the choice of an internal representation and the choice of 

a search strategy in designing an optimizer. An internal representation attempts to provide a 

larger plan space, in order to include as many of the good plans from the equivalence space as 

possible, while a search strategy strives to limit the search space to only part of the plan space, 

to reduce search cost. This tension comes down to minimizing query execution time vesus 

minimizing query optimization time. 

Equivalence space 
(physical-representation, data-model, and 
computer-language dependent) 

Plan space 
(internal-representation and 
generation-strategy dependent) 

Search space 
(search-algorithm and data- 
property dependent) 

Figure 8: Equivalence space, plan space and search space 

Figure 8 illustrates the relationships among the equivalence, plan and search spaces. The 

equivalence space depends on the expressive power of the computer language used by the query 

evaluator and the physical representations available for data. The plan space depends on the 

expressiveness of the internal representation of an optimizer and the strategy it uses for 



generating plans over that representation. The search space depends on the search strategy of 

the optimizer and the properties of the data over which the query will execute. 

1.6 The Cascades Optimizer Framework 

The Cascades optimizer framework [G95] is a top-down, cost-based optimizer that serves as the 

prototype for optimizers in two commercial DBMSs: Microsoft SQL Server [G96] and Tandem 

Non-Stop Data Server [C96]. 

The Cascades optimizer uses a memo structure to store intermediate transformation results, 

namely, equivalent expressions and evaluation plans. The memo is a tree structure. The nodes in 

the tree structure are called groups. Several groups can reference the same sub-group. A group 

stores logically equivalent expression and evaluation plans. Two expressions (or evaluation 

plans) are logically equivalent if they produce the same result on all database states. 

The main data structure in a group is a list of multi-expressions. A multi-expression is an 

operator instance with groups as operands. If the operator is logical, the multi-expression is 

called a logical multi-expression. If the operator is physical, the multi-expression is called a 

physical multi-expression. In a logical or physical multi-expression, the operator may form an 

expression or plan with each of the operators contained in its input groups. Thus a multi- 

expression potentially represents multiple expressions or plans. Furthermore, a group expresses 

all the expressions and plans represented by the multi-expressions in the group. 

Group 0: o( 1 ), FILTER(1 ), INDEX-FILTER(1) 

Group 1 : W (2,3), w (3,2), HASH_JOIN(2,3), HASH_JOIN(3,2) 

Group 2: Get ("Depts"), FILE-SCAN("Deptsm) 

Group 3: Get ("Students"), FILE-SCAN("Students") 

Figure 9: A sample memo structure 



Figure 9 is a sample memo structure. The top group contains one logical and two physical 

multi-expressions. Our convention is that logical operators are symbol (e.g., o) or capitalized 

(e.g., Get). The names of physical operators consist of all uppercase letters, e.g., HASH-JOIN. 

The memo structure is space efficient. A multi-expression may represent many expressions or 

plans, as the top operator can form multiple expressions or plans with the operators in the input 

groups. For instance, the multi-expression o(1) represents both 

o ( Get("Depts9') w Get("StudentsW)) and o ( Get("Students") W Get("DeptsW)). 

Logicalproperties characterize the common data properties for the evaluation results of all the 

plans represented in a group. For instance, cardinality is a logical property. Other data 

properties, calledphysicalproperties, are specific to individual plans. For instance, sort order is 

a physical property, since two evaluation plans, while logically equivalent, may output results 

with different sort order. Within a group, all the multi-expressions have the same logical 

properties, but physical properties may differ across the physical multi-expressions. Therefore 

logical properties apply to groups, logical and physical multi-expressions, logical expressions 

and evaluation plans, while physical properties make sense only for physical multi-expressions 

or evaluation plans. 

The optimization algorithm in Cascades is broken into several parts, called tasks. All tasks that 

need to be performed to optimize a query are stored in the task stack, a last-in-first-out (LIFO) 

structure. 

Figure 10 shows the tasks that make up the optimizer's search algorithm. A box stands for a 

task. A solid arrow represents function invocations fiom one task to another, with both tasks 

applied to one multi-expression. A dashed arrow stands for function invocations between one 

task to another, with the second task applied to the input groups of the multi-expression that the 

first task deals with. A task to optimize a group (0-GROUP) means finding the best plan for 

any expression in the group and therefore applies transformation and implementation rules to all 

expressions. Optimizing an expression (0-EXPR) means to find the best plan for a multi- 

expression. The task 0-GROUP essentially pushes 0-EXPR tasks for all the multi-expressions 

in the group into the task stack. An 0-EXPR task pushes APPLY-RULE tasks for all the rules 

that are applicable to the multi-expression. An APPLY-RULE task attempts to transform the 

subject multi-expression using a transformation or implementation rule. Each transformation or 



implementation rule has a pattern that defines the topology of the before-transformation 

operator tree and the kinds of operators in that tree. Only expressions matching the pattern of a 

rule can be transformed using the rule. Before the APPLY-RULE task searches for expressions 

within the subject multi-expression that match the pattern of the corresponding rule, it issues an 

E-GROUP task that helps generate corresponding patterns in the input groups of the multi- 

expression. The 0 - N U T S  task optimizes the inputs of an operator. Essentially, an 

0-INPUTS task fires the 0-GROUP task on each input (which is a group) of the operator. 

Exploring a group (E-GROUP) creates within a group all the expressions that match a given 

pattern. For each multi-expression contained in the group, the E-GROUP task invokes an 

E - EXPR (explore expression) task on that multi-expression. E-EXPR issues APPLY-RnE 

tasks for all the transformation rules that may generate the desired pattern. 

Figure 10: Optimization tasks in Cascades 

The Cascades optimizer does not separate logical and physical transformations. The order in 

which an 0-EXPR or an E-EXPR task applies all the rules depends on a promise property 

assigned to each rule. The higher the promise, the earlier the rule is attempted. 
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The Columbia optimizer, a successor of the Cascades optimizer, enhances the optimization 

efficiency using various safe pruning techniques [SMBOl]. 



Pruning is a technique that avoids exploring or optimizing certain expressions or plans during 

optimization in order to save search effort. A cost-based pruning technique is safe if the 

estimated cost of the optimal plan obtained by the search with pruning is always as good as the 

optimal plan obtained by exhaustive search. Note that safety is based on the estimated costs, 

not on the real costs. Hence, the actual execution cost of a plan returned by safe pruning may be 

higher or lower than the plan returned by exhaustive search. 

The Columbia optimizer introduced the concept of group pruning: An expression group is 

pruned if it is never enumerated, i.e., if no multi-expressions in it are generated during the 

optimization process. A multi-expression is pruned if an optimizing task stops optimizing the 

expression's input groups, which may lead to pruning the input groups if there is no later task 

exploring or optimizing them. Upper-boundpruning obtains an upper bound of the plan costs 

from an entire plan and prunes multi-expressions whose minimal costs exceed the maximal 

costs allocated to them according to the upper-bound cost obtained. In Columbia, the minimal 

cost of a multi-expression is calculated as the minimal cost of the top operator and the data 

copying cost of the input groups. The effectiveness of upper-bound pruning depends on how 

early a good plan is encountered Lower-boundpruning requires that the user specifies an 

acceptable plan cost and stops optimizing the rest of multi-expressions in a group when a plan is 

found in the group that meets the maximal cost allocated to the group according to the 

acceptable cost. Epsilon upper bound pruning is the same as upper bound pruning except that 

the maximal cost for a multi-expression is computed from the obtained upper bound plus an 

epsilon proportion of the upper bound. Among the three group pruning methods, upper-bound 

pruning is safe. Lower-bound and epsilon upper-bound pruning are not safe, since they do not 

guarantee generating the actual optimal plan. 

In this dissertation research, we developed the COCOUN (Columbia with Collection and 

UNnesting) optimizer in the Columbia optimizer framework. COCOUN serves as a tool for 

investigating the effect of our proposed techniques on top-down optimization. 

1.8 The COCOUN Optimizer 

Figure 11 is an overview of the COCOUN optimizer we implemented to test the strategies and 

technique proposed in this dissertation. The parser accepts an OQL query and interprets it into 

an algebraic expression. The OQL query is selected from the benchmark query set we 

developed for use in our experiments. The Columbia search engine generates and examines 



evaluation plans equivalent to the original expression. We added transformation rules including 

unnesting and hybrid materialization rules. Both rules contribute to improving the plan space for 

OQL queries. In order to perform unnesting more efficiently, we added in some control 

mechanisms in the Columbia search engine. The catalog provides information for 

transformation and cost estimations. We extended the catalog structure in Columbia to capture 

data properties under object data models. The cost model is responsible for estimating the costs 

for evaluation plans generated by the search engine. The cost model estimates plan costs 

according to the data statistics obtained from the catalog and the query characteristics obtained 

from the search engine. According to the estimated costs for candidate evaluation plans, the 

search engine selects the optimal plan and submits it to the query evaluator. The query 

evaluator executes the optimal plan against a populated sample database, outputting the query 

results and actual execution costs for performance monitoring. Physical plans consist of 

physical operators, which are implemented using the Java enviroment in Gemstome/J, an 

object-oriented database management system system [G96]. The data generator populates the 

sample database used for evaluating query plans produced by the optimizer. Thepe$ormance 

monitor accepts the estimated costs and actual execution costs of a group of evaluated plans, 

returning quality metrics about the cost model and the optimizer. In Figure 1 1, the solid boxes 

enclose the existing components in the Columbia optimizer framework or the Gemstone 

OODBMS system, the dashed boxes enclose the components implemented In particular for 

COCOUN. 
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Chapter 2 Issues and Contrib utions 

Query optimization has been one of the major themes for database research for over two 

decades. For relational database management systems (DBMSs), research and industry 

communities have developed successfUl query optimization frameworks and techniques. For 

object-oriented and object-relational query optimization, although much progress has been 

made, there still remain issues arising from differences in relational and object data models. In 

this chapter, we examine the key issues and sketch our solutions. We base our discussion on the 

object data model and query language (OQL) proposed by ODMG [CB97]. 

2.1 The Issues 

All current commercial optimizers for relational DBMSs are cost-based. Observing the lack of 

an existing optimizer that supports full functionality of a standard object query language, we 

attempted to develop a cost-based and transformation-based query optimizer for OQL queries. 

Our attempt revealed several issues that have not been solved yet. 

The Logical Algebra Issue 

Among the existing object algebras [SZ90, V93, S951, some cannot express all OQL queries. 

For instance, the AQUA algebra [V93] does not provide constructors and operators for 

collection types other than set and bag. Some object algebras do not support transformations 

well. For instance, the EXCESS algebra provides a full range of array operations. However, 

most array operations are difficult to optimize, because they cannot be reordered with traditional 

set-oriented operators such as join, projection and selection. These limitations make existing 

object algebras less than ideal for optimizing object queries. 



The Unnesting Issue 

Most query unnesting work is based on source-to-source or calculus-to-calculus 

transformations. Algebraic unnesting is desirable for its easy integration into transformation- 

based optimizers, thus removing the need for a separate unnesting phase. Also, algebraic 

unnesting allows interleaving of unnesting rules and other transformation rules, which helps to 

generate good plans early, facilitating effective pruning. However, the existing algebraic 

unnesting methods [CM93, S95] are not complete: They cannot unnest certain queries with 

collection-valued attributes (CVAs) and those queries whose execution may result in duplicates 

in the intermediate result. More general unnesting techniques are desirable but not yet available. 

The Reference Materialization Issue 

To optimize object queries, Blakeley et al. [BMG93] introduced the materialize operator to 

explicitly indicate at the logical level the need to resolve reference attributes. Materialize can be 

implemented by pointer-based joins [SC90, KMG891 or value-based joins [BMG93]. The 

pointer-based approach applies to all materialization situations, but it is inefficient when 

attributes to be materialized are shared. The value-based approach is efficient for shared single- 

valued attributes, but ineff~cient for shared CVAs. Also the valued-based approach requires the 

presence of appropriate type extents. As sharing appears fr-equently in base collections and 

intermediate query results, alternative materialization techniques for shared attributes with 

fewer restriction and better performance are desired. 

The Physical Algebra Issue 

Relational query evaluation is based on relational physical operators: the nested-loops, hashing, 

indexing and sorting algorithms that implement the (logical) relational operators. A logical 

algebraic operator may have none, one or several physical counterparts. Besides relational 

algebraic operators, our algebra contains parameterized operators to accommodate features such 

as CVAs and sub-query correlation [V93]. A parameterized operator in our algebra has two 

operands, with the right-hand operand correlated with some attributes in the result of the left- 

hand operand. For instance, the map operator defined in some object algebras [V93] has this 

form. A parameterized operator is usually expensive to execute, due to its nested-loops nature 

and the tendency to make random disk accesses. The common strategy is to exclude 

parameterized operators at the physical level. The question is whether these parameterized 

operators should have physical counterparts. In fact, the choice is not so obvious. On one hand, 



excluding parameterized parameters requires that any non-relational features such as sub- 

queries be transformed into relational algebraic forms during optimization, which is not always 

feasible for an arbitrary OQL query with the current unnesting techniques. More importantly, 

excluding parameterized physical operators may result in sub-optimal plans, since there are 

cases when some evaluation plans with parameterized operators are the best for certain queries 

[DL92]. On the other hand, parameterized physical operators require more complicated plan 

generation and cost estimation. Also, due to their lack of algorithms more efficient than nested- 

loops evaluation, parameterized physical operators tend to generate many inefficient plans. 

Because these tradeoffs between including and excluding physical parameterized operators have 

not been evaluated, how to make an appropriate choice becomes an open question for the 

developers of object query optimizers. 

The Cost Model Issues 

The cost model is an important component in cost-based optimization. Several object cost 

models have been proposed [GGT96, BF971. These models give the formulas for deriving 

operator costs and data statistics. Several issues remain unaddressed. 

One issue is lack of appropriate quality metrics. Whether or not the optimizer can select the 

optimal plan is determined by the correct prediction of relative plan costs. A quality metric for 

cost models is an important step towards measuring the quality of a cost-based optimizer. Little 

work, if any, has addressed the performance of a cost model and its impact on optimization 

quality in a cost-based optimizer fi-amework. 

Another issue is data property representation and propagation for costing purposes. In the 

relational model, since data is flat, these properties are represented in flat data structures in the 

catalog. For object queries, objects are structured, and a relational catalog is no longer sufficient 

for representing their properties. The catalog structure has to be evolved to meet the need of 

costing object queries and ease the computation of data properties for intermediate results. 

2.2 Contributions 

To address the issues we observed, this dissertation presents an effective optimization 

framework, consisting of a logical algebra, unnesting transformation rules, a physical algebra 



and a cost model. Besides these major components, we propose an improvement for existing 

reference materialization techniques. 

Object Algebra 

We developed an object algebra that can fully express OQL queries. It includes the d-join 

operator [CM93] and several variations, the key operators that facilitate query unnesting. The 

algebra supports transformations for operators manipulating multiple collection types. 

Complete Algebraic Unnesting 

We developed a complete algebraic approach to unnest OQL queries. This approach can handle 

nested queries with CVAs and multiple collection types. The general idea is to represent a 

nested query using the d-join operator and its variants, then to reduce these operators into 

relational operators in a deterministic manner. We proved the soundness and completeness of 

this unnesting approach [WMS99]. 

Hybrid Reference Materialization 

We proposed a hybrid technique [WMS99] for reference materialization that combines the 

advantages of both the pointer-based and value-based approaches. This technique relaxes the 

limitations of the value-based techniques, while preserving much of its performance advantage 

over the pointer-based technique. The hybrid technique shows even stronger performance 

advantages when moving from single-valued to collection-valued attributes (CVAs). We also 

show how to enhance the performance of value-based techniques on collection-valued attributes 

when inverse relationships are available. Both the hybrid and enhanced value-based techniques 

can be easily incorporated into rule-based query optimizers, using the transformations we 

present. Analysis and experiments demonstrate that both techniques are complementary to 

current materialization approaches and achieve superior performance for shared attributes and 

CVAs. 

A Physical Algebra 

We argue both analytically and experimentally that including parameterized physical operators 

is a vital strategy to ensure that the query processor can produce, select, and execute good 

evaluation plans for object queries. Our physical algebra includes the default implementation of 

all the parameterized logical operators. The algebraic unnesting approach enables the optimizer 



to generate partially unnested query plans, which leads to a significant improvement in the plan 

space over traditional query processors that can only generate and evaluate fully unnested plans. 

Cost Model and Quality Metric 

We define a quality metric for cost models, the expected penalty, which measures the actual 

cost deviation of the estimated optimal plan from the actual optimal plan. An experimental 

method and analytical formulas are provided. 

We developed a parameter model that represents data properties as a data structure compatible 

with a relational catalog. The model allows for further extensions to accommodate more 

sophisticated statistics. Based on this model, we provide a mechanism of propagating the 

essential statistics throughout algebraic expressions. 

In our previous work m 9 7 ] ,  we initially validated our cost model for object queries 

involving path expressions. In this work, we performed more validation for the cost model using 

the expected penalty metric. 

2.3 Methodology 

We used the Columbia optimizer framework, a descendant of the Cascades optimizer 

framework [G95, SMB981, to implement a cost-based top-down OQL query optimizer called 

COCOUN (the Columbia Optimizer with Collection and UNesting). We also implemented a 

query processor to serve as the testbed for the techniques proposed in the dissertation. The 

query processor has three components: an OQL parser, the COCOUN optimizer, and a query 

evaluator. The parser translates user queries into algebraic expressions. The COCOUN 

optimizer consists of a search space that stores equivalent expressions and candidate plans, a 

search engine that controls various transformations including hybrid materialization rules and 

unnesting rules, and a cost model that estimates the relative costs of equivalent evaluation plans. 

The query evaluator, implemented on the GemstoneIJ object database system [G96], consists of 

both relational and non-relational physical operators. 

We employed both analytical and empirical methods to validate our approaches. The soundness 

and completeness of the unnesting algorithm was formally proved. The correctness of 

transformation rules was verified using set-theoretic reasoning. The effectiveness of hybrid 

materialization was validated using the execution time of alternative plans. For the cost model, 



both analytical and empirical approaches were employed for tuning and validation. We 

developed and ran a set of benchmark queries to tune and validate the cost model. The quality 

of the cost model is measured using the expected penalty metric on the experimental results of 

the benchmark queries. 

2.4 Dissertation Outline 

Chapter 1 describes the background knowledge and previous work related to this dissertation. 

Chapter 2 states the issues investigated by the dissertation research. Chapter 3 describes how to 

represent intermediate query results during query execution in the context of object query 

processing. Chapter 4 presents the logical algebra and the mapping fiom OQL to this algebra. 

Chapter 5 discusses the unnesting approach and its integration into an existing optimizer 

framework. Chapter 6 presents a hybrid technique for reference materialization. Chapter 7 

discusses the physical algebra. Chapter 8 deals with the cost model, including the quality 

metrics and the parameter model. Chapter 9 draws conclusions and discusses future directions. 



query processing as it lacks support for multiple collection types. This inadequacy was 

uncovered when we encountered some difficulties in designing a complete unnesting approach 

for object queries under traditional execution data models. To address this inadequacy, we 

propose a new execution data model that supports multiple collection types and complete query 

unnesting. We then discuss the impact of the new model on other aspects of query processing, 

namely, algebraic operators and transformations. 

In an algebra-based query processor, both the data model and the execution data model affect 

the semantics of the algebraic operators. This dependency is why this chapter precedes the 

chapter on logical algebra. Many discussions in this chapter involve the subjects of later 

chapters. The reader will be reminded to refer to those later chapters as the need arises. 

3.1 The Relational Execution Data Model 

We call the execution data model used in relational query processing the relational execution 

data model, and call the execution data model developed for our object query processor the 

object execution data model. In our discussion of both execution data models, we assume a 

pipelined query execution mechanism [G93], typical in commercial database systems. 

The relational execution data model uses a stream of records to represent an intermediate result. 

For instance, a get operator on a table will output a stream of records, with each record 

containing the column values of a row in that table. A join operator following the get operator 

will take such a stream for each of its inputs and output a stream of records that consist of the 

attributes from those input streams. We use Example 3.1 to show how intermediate query 

results are represented under the relational execution data model. 

Example 3.1 Find the students who also have jobs. 

SELECT S.sname 

FROM Students S, Emps E 

WHERE S.sssn = E.essn 

Assume queries are represented internally using relational algebraic expressions. Figure 12 

shows the algebraic expression for the query above. 
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Figure 12: The relational execution model illustrated for the query in Example 3.1 

In Figure 12, the get operators fetch two relational tables and provide input streams to the join 

operator. Figure 13 and Figure 14 show the contents of Students and Emps. For simplicity, we 

only show three columns in each table. Figure 15 shows the stream output by the get operator 

on Students. The type for this record in the stream is 

<S.sname: string, S.sage: string, S.ssn: int>. 

As shown in the type definition above, we precede each column name with the range variable 

name and the "." symbol ("S."). A range variable enumerates a stored collection. For instance, S 

ranges over Students, and E ranges over Emps. Column names are prefixed with range 

variables to make those names unique in result records. Note that the prefix does make the 

schema, specifically the column names, of the intermediate result depend on the range variable 

name. This dependency, however, does not cause undesired effects on optimization or query 

execution. 

The join operator in Figure 12 matches two input streams using the predicate S.sssn = E.essn 

and concatenates the satisfjmg records from both streams. Figure 16 shows the output stream of 

the join operator. The project operator retains the sname column and discards other columns. . 

The query evaluator is responsible for assembling the output stream of the top operator in the 



algebraic operator tree into a table holding all the records in that stream. Figure 17 shows the 

query result - a relational table containing two rows. 

Sname Sage S S S ~  

Figure 13: The Students table 

enarne Essn Salary 

111-11-1111 

222-22-2222 

333-33-3333 

444-44-4444 

Smith 
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Lee 

Land 

Figure 14: The Emps table 
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<S.sname: Smith, S.sage: 19, S.ssn: 1 1 1-1 1-1 1 1 1> 

<S.sname: Hugh, S.sage: 18, S.ssn: 222-22-2222> 

<S.snarne: Lee, S.sage: 21, S.ssn: 333-33-3333> 

<S.sname: Land, S.sage: 16, S.ssn: 444-44-4444> 

Figure 15: The output stream of the get operator on Students 
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< S.sname: Hugh, S.sage: 18, S.ssn: 222-22-2222, E.ename: Lee, E.ssn: 222-22-2222, E.salary: 51> 

< S.sname: Lee, S.sage: 21, S.ssn: 333-33-3333, E.ename: Lee, E.ssn: 333-33-3333, E.salary: 51> 

Figure 16: The output stream of the join operator 

Sname 

Figure 17: The query result 

It is a fairly simple mapping from tables to streams by get and streams to tables by the query 

evaluator's handling of the output stream of the top operator. But such mapping will be the 

basis for more complex mapping from the object data model, which will be discussed later. 

3.2 Problems with the Relational Execution Data Model 

We argue that the relational execution data model is inadequate for object query processing 

because the model does not support collections other than sets very well. The ODMG data 

model allows many kinds of collections. Besides set, there are such collection types as bag, list, 

array and dictionary. One distinguished feature of lists, arrays and dictionaries is access 

operations. These new types of collections support accesses based on order, indexes, or keys. 

For instance, an array element can be accessed by its index in the array. A list supportsjrst and 

last operation. A dictionary supports retrieval of values by their keys. 

Observation: Under the relational execution data model, collection accesses for lists, arrays, or 

dictionaries cannot be processed eflciently. 

Access to an element in a list, array or dictionary requires information about the ordinal 

number, the index, or the key of the element to be accessed. However, under the relational 

execution data model, the columns contained in the original tables are fetched and propagated 

bottom-up in the operator tree. Lack of ordering, indexing, or key information from new 

collection types forces the query processor to consider a collection access as a black box: Its 



only choice is to invoke the accessing procedures defined for the type of the collection accessed. 

The black-boxes approach may cause efficiency problems. We use Example 3.2 to illustrate. 

Example 3.2 Find student names and their ernail addresses. Assume ComputerAccounts is an 

array of ComputerAccount objects, which is indexed by student numbers. 

SELECT (snarne: S.sname, account: ComputerAccounts [S.sno]) 

FROM Students S. 

The naYve way of evaluating this query is to go through Students one by one, and, for each 

student, invoke the array accessing procedure to fetch the ComputerAccount object 

corresponding to the student's sno attribute. This algorithm is likely to cause random array 

accesses, and thus excessive 110s. 

Ideally, we would prefer to join Students and ComputerAccounts somehow to reduce I10 and 

computational complexity. Unfortunately under the relational execution data model, joining the 

two collections seems impossible, because ComputerAccounts does not contain a workable join 

attribute (the student number is implicit in the array position). 

3.3 The Object Execution Data Model 

The research and industry communities have developed many efficient algorithms for relational 

algebraic operators. In object query processing, relational algebraic operators still play an 

important role in forming efficient evaluation algorithms. For instance, implicit joins in object 

queries can often be evaluated more efficiently using explicit joins [BMG93]. Since object 

query processing still heavily employs relational algebraic operators, we choose to base the 

object execution data model on its relational counterpart - intermediate results will still be 

represented as streams of records. 

However, as observed in the previous section, the relational execution data model needs to be 

adjusted in order to fully support object query processing. 

The object execution data model extends the relational execution data model by adding a new 

kind of column, called an @ (pronounced "at") column, in streams of records representing 

intermediate results. An intermediate result has one or more @-columns (distinguished by the 

prefix). 



A @-column in a record indicates the order (for list elements), the index (for array elements), or 

the key (for dictionary element) of the collection element that produces some or all the columns 

in the record. A @-column represents certain semantics in the colleciton from which the record 

originates. For instance, for a record from an array, the @-column means the index. 

Consequently, the type and value of the @-column depends on the type of the collection 

containing the record: 

If the record is from a set, or a bag, the @-column is integer and assigned as 0, meaning 

that set or bag elements are not ordered. 

If the record is from a list or array, the @-column is integer and assigned with the order 

or the index of the record in that list or array. The domain of the @-column is positive 

integers, with 1 indicating that the record is the first element in the list or array. 

If the record is from a dictionary, the @-column has the type of the key in the 

dictionary. The values of the @-column are assigned as the values of the keys in the 

dictionary. 

The purpose of introducing the @-column is to record order, index, or key information used for 

processing queries involving lists, arrays or dictionaries in a way that facilitates unnesting and 

other beneficial transformations. 

We continue our discussion of the examples given in the last section to illustrate how the 

introduction of @-columns solves the problems with the relational execution data model. 

Example 3.3 (Example 3.2, continued) The query in Example 3.2 can be transformed into the 

following query, assuming the object execution data model: 

SELECT (sname: S.sname, account: C) 

FROM Students S, ComputerAccounts C 

WHERE S.sno = C.@. 

Figure 18 and Figure 20 show the simple versions of Students and ComputerAccounts. Figure 

21 shows the result of scanning ComputerAccounts. The C.@-column records the location of 

each ComputerAccount object in ComputerAccounts. Figure 22 shows the intermediate join 



result between Students and ComputerAccounts using the join predicate S.sno=C.@. Figure 23 

shows the final query result. 

( s 1 : csname: Smith, sno: 15>, 

s2: <sname: Lee, sno: 16>, 

s3: csnarne: Huge, sno: 1>) 

Figure 18: The Students set 

l5 I c2: <email: srnithk, quota: 10> 

116 I c3: <email: lee, quota: 40> 

Figure 19: The ComputerAccounts array 

<C.@: 1, email: hugh, quota: 100> 

<C.@: 15, email: smithk, quota: 50> 

<C.@: 16, email: lee. quota: 40> 

Figure 20: The result of scanning ComputerAccounts 



I <S.@: 0. S.snarne: Lee, S.sno: 16, C.@: 16, email: lee. quota: 40> I 

<S.@: 0, S.sname: Smith, S.sno: 15, C.@: 15, email: smithk, quota: 50> 

<S.@: 0, S.sname: Huge, S.sno: 0, C.@: 0, email: huge, quota: 100> 

- - - - - - -.  - - - 

Figure 21: The result of joining Students and ComputerAccounts 

sname email 

Figure 22: The query result 

Smith 

Huge 

Lee 

Example 3.3 demonstrates that the object execution data model enables the optimizer to convert 

individual collection accesses into bulk accesses using relational operators. Note the unnested 

query given in this example is not a valid OQL query, as the @-column is not visible at the user 

query level. We will be able to formally state the query using an algebraic expression after we 

have covered the object algebra in Chapter 4. 

smithk 

huge 

lee 

3.4 Mapping between the Object Data Model and The Object Execution 

Data Model 

We use the ODMG object model as the object data model for our query processor. Under the 

object data model, the database consists of atomic literals, atomic objects, collection literals and 

collection objects. Objects are mutable, while literals are not. Atomic literals are primitive 

values such as integer or structures that consist of a list of attributes and values. Atomic objects 

are single objects, not collections. A collection object or literal is of a collection type and 

consists of a group of literals or references to objects. We use the term collection to refer to 

either collection objects or literals. 



Since the object execution data model only supports streams, the disparity between the object 

data model and the object execution data model is obvious. To overcome this mismatch, we use 

five algebraic operators to map or help map between the object data model and the object 

execution data model. The five operators are get, materialize, unnest, nest and collection 

constructor. Those operators will be discussed in details in Chapter 4. Here, we use Figure 23 to 

illustrate their usage. The get operator converts a collection into a stream of single-column 

records. The objects referenced by the records in a stream can be resolved into records by the 

materialize operator. The unnest operator converts the collection objects (CVAs) referenced by 

the records in the input stream into a stream of records and merges the converted stream of 

records with the input stream into a new stream. The nest operator converts a stream into a new 

stream whose records contain a new CVA (collection-valued attribute). The collection 

constructor operator converts a stream of records into a collection. 

Unlike the relational case, where the mapping between the two data models is performed only at 

the beginning and the end of query evaluation, the mapping between the object data model and 

the object execution data model is also performed during query evaluation. 
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Figure 23: Mapping between the object storage and the object execution data models 



3.5 Effect on Algebraic Operators and Transformations 

Due to the introduction of @-columns in the object execution data model, the semantics for the 

relational algebraic operators must be adapted accordingly. The purpose of this adaptation is to 

ensure the correctness of the algebraic operations. In this section, we briefly discuss the impact 

of the new columns on the algebraic operators and transformations. A detailed discussion on 

algebraic operators and transformations, including how they handle @-columns, can be found in 

Chapter 4,5 and 6. 

A join, selection, or project operator will perform its operation as if the @-columns are normal 

columns and pass on any @-column it receives from the input stream (or streams). 

The set operators will ignore the @-columns when computing the result records, and output 

streams with no @-column. The reason is that, in the set or bag generated by set operations, 

order information for the elements can no longer be retained from the inputs. 

All remaining @-columns at the end of query evaluation will be discarded by the final 

collection constructor when forming a collection as the query result. 

Algebraic transformations treat @-columns like any non-@-columns, in terms of checking 

transformation conditions or performing transformations. For instance, a selection operator 

involving an @-column cannot be pulled up past a projection operator that leaves out that @- 

column. Some transformations that require key information can consider an @-column as a key 

or part of a key. 

3.6 Discussion 

We choose @ as the name for the newly added column in order to distinguish the new column 

from user-defined columns. In practice, the name @ may conflict with some DBMS reserved 

name or user-defined attributes, in which case an alternative and distinguished name has to 

substituted for @. This requirement does reflect a limitation of our treatment. 



Chapter 4 Logical Algebra 

Since we choose algebraic expressions to represent queries internally, we need to have an object 

algebra that can fully express OQL queries. Beside relational algebraic operators, the object 

algebra used in our optimizer should be rich enough to support representation and 

transformation of queries with object features such as collection-valued attributes (CVAs), sub- 

queries, and multiple collection types (collection constructors and accessing operations). 

Among the existing object algebras [SZ90, V93, S951, some cannot completely map OQL. For 

instance, some are incapable of expressing operations on multiple collection types. Others do 

not support transformations very well. For instance, dependent join operators, being presented 

later in this chapter, are required by our unnesting algorithm and are not included in most 

algebras. 

The AQUA algebra [V93] does not provide constructors and operators for collection types other 

than the set type and the bag type. 

The EXCESS algebra provides [V93] a 1 1 1  range of array operations. However, most of those 

array operations are difficult to optimize, because they do not commute or associate with 

traditional set-oriented operators such as join, projection and selection. As an example, the array 

extraction operator, ARKEXTRACT, given an array, returns a single element of it. 

ARR-EXTRACT is usually used in operator arguments. We observe that performing array 

extraction in set-oriented fashion rather than using the ARR-EXTRACT operator makes it 

possilble to unnest subqueries containing correlation variables in array subscripts. We will 

support this observation in later discussion. The EXCESS algebra, as well as several other 

algebras, uses the map operator to abstract parameterized execution. The map operator, 



however, does not commute with traditional set-oriented operators, which causes difficulties for 

query unnesting and optimization. 

Some algebras do not handle object identity appropriately. For instance, the algebra used by 

Steenhagen [S95] defines the result of a join as a collection of concatenated records without 

retaining the object identities, which virtually prevents succeeding operators from accessing the 

object identities of the join operands. Some algebras define a join operator that preserves object 

identity, but the definition makes the join reordering transformation a tedious task. For instance, 

the algebra Shaw and Zdonik [SZ90] propose defines Ojoin as generating pairs of records, 

which makes associativity invalid for Ojoin. Although the problem of lack of associativity can 

be worked around by adding projection into Ojoin, maintaining the projection within Ojoin 

during transformation could be a tedious task. 

To meet the need of representing OQL queries, we design a new object algebra, called the 

COAL algebra (the COCOUN Object ALgebra). COAL includes the relational operators as 

well as some operators from the existing object algebras. COAL also introduces some new 

operators to express operations for multiple collection types. 

In the rest of this chapter, we first define the kinds of OQL queries we intend to handle. Then, 

we present the algebraic operators in COAL. Finally, we demonstrate that COAL can fully 

express OQL queries. 

4.1 OQL Queries 

An OQL query can be one OQL expression. An OQL query can also be a list of expressions, in 

which case the result of the last expression is the result of that OQL query [CB97]. Example 4.1 

is a sample OQL query. 

Example 4.1: Find the student numbers for students named Jones. 

Define Jones as SELECT DISTINCT X FROM Students X WHERE X.sname="Jones"; 

SELECT DISTINCT J.sno FROM Jones AS J; 

The example defines a query expression Jones and uses Jones to define the final query 

expression. 

There are many kinds of OQL query expressions, namely, 



Elementary expressions: constructing atomic literals. 

Construction expressions: constructing objects, structures and collections. 

Atomic expressions: arithmetic and boolean operators. 

Object expressions: extracting or comparing mutable objects. 

Collection expressions: quantification and membership testing. 

Select expressions: select-from-where clauses, which may also include group-by, 

order-by and having sub-clauses. 

Set expressions: union, intersection, difference, inclusion. 

Conversion expressions: collection type conversions. 

Function call. 

We choose to optimize only select expressions and set expressions in COCOUN. However, 

within a select expression, any kind of expression can occur. For instance, the SELECT clause 

may contain a construction expression. The WHERE clause may contain membership testing. 

The reason we choose to accept only select expressions and set expressions as user queries is 

that usually other expressions do not have the need for optimization. For instance, for the 

following examples, query optimization unlikely provides more efficient evaluation algorithms 

than the default evaluation methods, because those queries are simple and tend to be procedural. 

Example 4.2: Return the student Doe's name: 

Example 4.3: Create a bag: 

bag(2,3,2,3,3)- 

Example 4.4: Create a list and then convert it to set: 

listtoset(list(l,2,3,2)). 



Example 4.5: Extracting a sublist: 

If an expression, say A, is not a select or set expression, but contains a select or set expression, 

then the expression A will be computed in two steps. First, the COCOUN optimizer and a query 

evaluator will optimize and execute the select or set expression contained in A. Then, 

Expression A is computed using the results returned by the query evaluator. 

Example 4.6: Create a bag. 

bag(2,3,2,3, element (SELECT F.age FROM Faculty F WHERE F.fname = "Turing")). 

To compute the expression above, we can first have the COCOUN optimizer and the query 

evaluator optimize and evalutate the query 

SELECT F.age FROM Faculty F WHERE F.fname = "Turing". 

Then we apply the element function to extract the only element in the query result. Finally we 

construct the bag as the final result of the query. 

We designed our query processor for OQL queries with three components: an expression 

evaluator, the COCOUN optimizer, and a query evaluator. The expression evaluator accepts 

and processes all user queries. The COCOUNoptimizer optimizes select and set expressions. 

The query evaluator executes the optimal plan outputted by the optimizer and evaluates the 

result of select or set expressions. 

The expression evaluator, upon receiving an input expression, checks whether the expression 

contains selection expressions. If so, the expression evaluator will invoke the COCOUN 

optimizer to optimize the contained select expressions and then invoke the query evaluator to 

compute the results of the select expressions. Eventually the expression evaluator will construct 

the final result of the input expressions using the results returned by the query evaluator. Figure 

24 illustrates the three components and indicates Steps 1 through 6 to show their workflow. 



Figure 24: The components in our OQL query processor 

1 t 6  
The expression evaluator 

I 

2 3 5 

4.2 Algebraic Operators 

The COCOUN optimizer 

The notion of list comprehensions has been used popularly in hctional language literature 

[P87]. Set comprehensions have been used in mathematics for decades. Wong [W94] and 

Fegaras [F98] are among the first who used comprehensions to represent database queries. 

The query evaluator 

The basic form of comprehensions [B93] is {t I q), where t is a function and q is a qualifier, 

having the form ql, ..., q,, where each qi is an atomic qualifier. (If n = 0, q is empty and 

interpreted as "true".) There are two kinds of qualifiers: A generator qualzj?er has the form 

r f R ,  meaning that r ranges over the contents of the expression R; we also say that this 

generator qualifier introduces the variable r and that r is a qualz3ed variable. The expression R 

may be either a source collection or a comprehension query. A generator can also have the form 

of I I i 5 n. A predicate .qualiJier is a predicate involving qualified variables and constants. For 

instance, in the comprehension {s.name I s f  Students, s.age<20], sfStudents is a generator 

qualifier, while s.age<20 is a predicate qualifier. 

We use comprehensions to denote the semantics of the algebraic operators in COAL. From the 

point of the view of the query optimizer and query evaluator, a comprehension is a stream that 

represents an intermediate result. We use two comprehension constructors - the bag constructor 

{ and), and the set constructor {and I,,,. The set constructor enforces the uniqueness of an 

intermediate result. For the comprehension {t I q),,, if the t 1 q part results in duplicates, the set 

constructor will remove those duplicates to form the result of the comprehension. 



In the rest of this section, we present various operators in COAL. Some of the operators are 

from the relational algebra. Some are from existing object algebras. The others are newly 

introduced by COAL. 

4.2.1 Get 

The get operator (G,) is a collection access operator. It scans a collection and outputs a stream 

of records. A get operator has two arguments - a collection and a binding variable name. Let R 

be the collection and r be the binding variable name. The get operator is written as 

The get operator outputs records with two columns: the r.@-column and the r column. Each 

record corresponds to an element in R. (If R is a dictionary, each record corresponds to a key- 

and-value pair in the dictionary.) The r column stores individual elements. The r.@-column can 

be considered an extra column introduced by the get operator. The type for the output records is 

of the form 

Symbols < and > represent a record constructor. Symbols r.@ and r are both column labels for 

the output records. Symbol T@ stands for the type of the r.@-column. Symbol Tr stands for the 

type of the R elements. Types T@ and T,, and the value of r.@, depend on the type of the 

collection R: 

If R is a set or a bag, T@ is integer. The r.@ values are set to be 0, indicating the 

ordering information is not relevant for sets or bags. The r.@-column is included 

here purely to conform to the signature of the get operator. The type T, is the type 

of the elements in the input set or bag. 

If R a dictionary, T@ is the type of the key in the dictionary. The r.@-column of an 

output record contains the key in a key-and-value pair in the dictionary. Tr is the 

type of the values in the dictionary. 

If R is a list, T@ is integer. The r.@ value of an output record is the order of the 

corresponding element in R. 



If R is an array, T@ is integer. The r.@ value of an output record is the index of the 

corresponding element in R. 

Example 4.7: Let StudentNames be a bag of strings, standing for the names of a group of 

students. Figure 25 shows the content of StudentNames. The get operator 

Gs StudentNames 

will output the result shown in Figure 26. 

("Smith" , "Jones", "Lee", "Smith", "Jones") 1 
Figure 25: The StudentNames bag 

Figure 26: The result of Gs StudentNames 

The StudentNames bag contains string literals. Thus, the type of the records output by the get 

operator in this example is 

<S.@: int, S: string>. 

The StudentNames bag contains duplicate strings - Smith and Jones both appear twice in the 

bag, thus the result of the get operator also contains duplicates (records). 

Example 4.8: Let DeptList be a list of department objects, shown in Figure 27. The get operator 

GD DeptList 

outputs a stream of records, shown in Figure 28. 



[ d l ,  d2, dl ,  d3] 

Figure 27: The DeptList list 

Figure 28: The result of GD DeptList 

DeptList is a list of department objects, more accurately a list of object identifiers that refer to 

department objects. The type of the records outputted by GD DeptList is 

<D.@: int, D: Department>. 

Each output record corresponds to an element in DeptList. The D.@-column of an output record 

is the position of an object identifier in DeptList, while the D column of the output record is the 

object identifier. For instance, the record 

in the output stream corresponds to the third element in DeptList. 

Example 4.9: Let DeptLiteralList be a list of department literals, shown in Figure 29. The get 

operator 

GD DeptLiteralList 

outputs the record stream shown in Figure 30. 



[ <dname: CS, head: p ly  Majors: {sl, s2)>, 

Cdnarne: EE, head: p2, Majors: {s3, s4}>, 

<dname: CS, head: pl, Majors: {sl, s2}>, 

<dnarne: PHY, head: p3, Majors: (s5, s6)> ] 

Figure 29: The DeptLiteralList list 

<D.@: 0, D: <dname: CS, head: pl,  Majors: {sl , s2)>> 

<D:@: 1, D: <dname: EE, head: p2, Majors: {s3, s4)>> 

<D.@: 2, D: cdname: CS, head: pl, Majors: {sl, s2)>> 

<D.@: 3, D: <dname: PHY, head: p3, Majors: {s5, s6}>> 

t 
Figure 30: The result of GD DeptLiteralList 

The difference between Examples 4.8 and 4.9 is that, in Example 4.9, the input collection 

DeptLiteralList is a list of department literals. Literals do not have object identifiers. Therefore 

the D column in the output records stores literal values. The type of the records output by the 

get operator in this example is 

<D.@: int, D: <dname: string, head: Professor, Majors: (Student),>>. 

Example 4.10: Let EDir be a dictionary that maps an email address to the student object who 

owns the email address. The content of EDir is shown in Figure 3 1. The get operator 

GE EDir 

will output the result shown in Figure 32. 



Key Value 

Jsmith 

Djordan 

Dwade 

Mlee 

Figure 31: The EDir dictionary 

SO 

s7 

s5 

s4 

<E.@: Jsmith, E: SO> 

<E:@: Djordan, E: s7> 

<E.@: Dwade, E: s5> 

<E.@: Mlee, E: s4> 

Figure 32: The result of GE Edir 

Since EDir is a dictionary that maps a string to a student object. The type ofthe records 

outputted by GE EDir is 

<E.@: string, E: Student>. 

From the discussion and examples given above, we see that the get operator is overloaded for 

the type of the input collection. Whether the input collection is a litera1 or an object, e.g., an 

array literal or an array object, does not affect the result of a get operator, while whether the 

input collection is a set or an array does matter. 



As discussed in Chapter 3, the get operator bridges the object data model and the object 

execution data model since it provides a way of extracting streams of records (an instance of the 

object execution data model) from collections (instances of the object data model). 

For brevity, we may shorten the get operation, G, R, as R, in our further discussion. Sometimes, 

when no ambiguity arises, we simply use the binding variable to represent a get operator, for 

instance, using S to stand for Gs Students. 

4.2.2 Materialize 

The materialize (Ma) operator accepts two arguments: an algebraic expression and a column 

name in the output records of the algebraic expression. The column is either an attribute that 

refers to a structured object or an attribute that stores a structured literal. Let R be the algebraic 

expression and a be the column. The materialize operator taking R and a as arguments is written 

as 

Ma R. 

Definition 4.1: The semantics of the materialize operator is denoted as 

Ma R = (r ++ append (r, r.a) I r t R). 

In the definition above, r.a stands for the a column in the records bound to r.  The ++ operator is 

record concatenation. The append function maps the value of an a column into a record in the 

following way: 

Create a record that contains all the attributes in the value of the a column: 

If the a column refers to a structured object, the record contains all the 

attributes in the structured object. 

If the a column is a structured literal, the record contains all the attributes in the 

structured literal. 

Rename all the column names in the created records by appending the prefix "r." to 

each name. 



Example 4.11: (Example 4.8, continued) Suppose the department objects referenced in 

Example 4.8 are as shown in Figure 33 with dl, d2, d3 as their object identifiers. The 

expression 

MD GD DeptList 

outputs a stream of records, shown in Figure 34. 

d l :  <dname: CS, head: pl, Majors: (sl, s2)> 

d2: <dnamei EE, head: p2, Majors: (s3, s4)> 

d3: <dname: PHY, head: p3, Majors: (s5, s6)> 

Figure 33: Some department objects 

<D.@: 0, D: dl,  D.dname: CS, D.head: p ly  D.Majors: (sly s2)> 

<D:@: 1, D: d2, D.dname: EE, D.head: p2, D.Majors: (s3, s4}> 

<D.@: 2, D: dl,  D.dname: CS, D.head: pl, D.Majors: (sl, s2)> 

<D.@: 3, D: d3, D.dname: PHY, D.head: p3, D.Majors: (s5, s6)> 

Figure 34: The result of MD GD DeptList 

Figure 34 shows the result of MD GD DeptList, assuming the output of GD DeptList is Figure 

28. The symbol "*" is the separator between algebraic operators in the algebraic expression. In 

Figure 34, the repeated occurrences of the same values of the attributes such as D.Majors are 

caused by the duplicate appearances of dl in Figure 28. 



Example 4.12 (Example 4.9, continued) The expression 

MD GD DeptLiteralList 

outputs the stream of records shown in Figure 35. 

? 

<D.@: 0, D: cdname: CS, head: pl, Majors: {sl, s2)>, D.dname: CS, D.head: pl ,  

D.Majors: {sl, s2)> 

<D:@: 1, D: <dname: EE, head: p2, Majors: (s3, s4)>, D.dname: EE, D.head: p2, 

D.Majors: (s3, s4)> 

<D.@: 2, D: Cdname: CS, head: pl,  Majors: {sl, s2)>, D.dname: CS, D.head: pl,  

D.Majors: {sl, s2)> 

<D.@: 3, D: Cdname: PHY, head: p3, Majors: (s5, s6)>, D.dname: PHY, D.head: 

p3, D.Majors: (s5, s6)> 

Figure 35: The result of MD GD DeptLiteralList 

The materialize operator was first introduced to explicitly indicate the resolution of inter-object 

references in algebraic expressions [BMG93]. The physical intention of the materialize operator 

is to bring the referenced object into memory. However, at logical algebraic level, we consider 

the materialize operator a restructuring operator that collapses object references or flattens 

object composition structures. For instance, in Figure 28, the records contain the D column 

refering to department objects. Materializing the D column brings the attributes in the 

referenced objects into the records. 

The physical intention of the materialize operator will be realized by the physical counterparts 

of the materialize operator (the algorithms that implement the materialize operator). 

4.2.3 Unnest 

Like get, unnest is another collection accessor overloaded for various collection types. An 

m e s t  operator has three arguments: an algebraic expression, a CVA, and a binding variable. 

The algebraic expression provides the input stream. The CVA is a column in the records of that 

stream. The binding variable determines the new column name in the output of the unnest 

operator. 



A unnest operator is written as p,,,~~] R, where R is the input algebraic expression, A is the CVA 

and a is the binding variable. The unnest operator, ~ A [ ~ I  R, accepts a record stream outputted by 

R, accesses the CVA A in each record, concatenates the record with each element in the CVA A 

in turn, and returns the concatenation results. 

Let TR be the type of the output records of R. Let tt. stand for the record concatenation 

operation. The type of the output records of the unnest operator, ~ A [ ~ I  R, is 

Similarly to the case of the get operator, the type T@ and the value of the a.@-column depend on 

the type of CVA A: 

If A instances are sets or bags, then T@ is integer. The value of the a.@-column is 

assigned to 0 in each output record, which means ordering is not a relevant property 

for set and bags. 

If A instances are lists or arrays, then T@ is integer. The value of the a.@-column in 

an output record is the position where the element corresponding to the record is 

located in the list or array that contains that record. 

If A instances are dictionaries that map a type (the key type) to another type (the 

value type), then T@ is the key type. The value of the a.@-column in an output 

record is the key in the value-and-key pair corresponding to that record. 

The type (T,) and value of the a column also depend on the type of the CVA A: 

If A instances are sets, bags, lists or arrays, then Ta is the type of the elements in the 

CVA A. The a value of an output record is an element in an A instance. If the 

elements in A are literals, the a values are literals. If the elements in A are objects, 

the a values are references to the elements in R. 

If A instances are dictionaries, then Ta is the value type of the dictionary. The a 

value of an output record is the value part of a key and value pair in the dictionary. 

Again, if the value parts of the key-and-value pairs are literals, the a values in the 

output stream are literals. Otherwise, the a values are references to the objects in A 

instances. 



Definition 4.2: The semantics of the unnest can be defined using the get operator as follows: 

In this definition, r.A stands for the CVA A in the records bound to r. The expression (G, r.A) is 

a get operation on r.A with the binding variable a. 

According to this definition, unnest inherits two interesting behaviors of get -being overloaded 

for collection types and the introduction of the @-column. Specifically, unnest is overloaded for 

the collection type of the CVA specified. 

When concatenating the record in the input stream with the element in the CVA, unnest does 

not drop the CVA A itself from the result. This treatment - retaining CVA A in the output - is 

different from some other definitions of the unnest operator [RKS88, S951. We feel that our 

treatment is useful because it allows multiple unnest or other operations on the same CVA. 

Example 4.13: (Example 4.1 1, continued) The expression 

outputs the stream of records shown in Figure 36. 



<D.@: 0, D: dl ,  D.dname: CS, D.head: pl,  D.Majors: (sl, s2), M.@: 0, M: sl> 

<D.@: 0, D: dl,  D.dname: CS, D.head: pl,  D.Majors: {sl, s2), M.@: 0, M: s2> 

<D:@: 1, D: d2, D.dname: EE, D.head: p2, D.Majors: (s3, s4), M.@: 0, M: s3> 

<D:@: 1, D: d2, D.dname: EE, D.head: p2, D.Majors: {s3, s4}, M.@: 0, M: s4> 

<D.@: 2, D: dl ,  D.dname: CS, D.head: pl, D.Majors: {sl, s2), M.@: 0, M: sl> 

<D.@: 2, D: d l ,  D.dname: CS, D.head: pl,  D.Majors: {sl, s2), M.@: 0, M: s2> 

<D.@: 3, D: d3, D.dname: PHY, D.head: p3, D.Majors: {s5, s6}, M.@: 0, M: s5, 

<D.@: 3, D: d3, D.dname: PHY, D.head: p3, D.Majors: (s5, s6), M.@: 0, M: s6> 

Figure 36: The result of ~ D . M ~ ~ ~ ~ ~ [ M ]  MD GD DeptList 

Unnest is a restructuring operator. In some sense, there are similarities between materialize and 

unnest - while materialize collapses inter-object references, unnest collapses nested structures. 

4.2.4 Relational Operators 

Our algebra includes most of the operators used in traditional algebraic query optimizers, 

namely selection (op), projection (rL), join (W,) and nest ( v ~ F ) .  The selection operator, g, 

filters the input stream using the predicatep. 

Definition 4.3: The semantics of the selection operator is denoted as 

The selection operator treats @-columns the same as other columns, which are passed on to the 

succeeding operator. 

The projection operator, n ~ ,  takes a record stream and produces a new record stream that 

contains the columns specified in the column list L. 

Definition 4.4: The semantics of the projection operator is denoted as 



n L R =  {r[L] ( r  t R). 

where the expression r[Ll constructs a recod consists of those columns of r elements specified 

by the column list L. 

Example 4.14: (Example 4.1 3, continued) Let R be the output of Example 4.14. The expression 

returns the result shown in Figure 37. 

<D.dname: CS, D.head: pl> 

<D.dname: CS, D.head: pl> 

<D.dname: EE, D.head: p2> 

<D.dname: EE, D.head: p2> 

<D.dname: CS, D.head: pl> 

<D.dname: CS, D.head: pl> 

<D.dname: PHY, D.head: p3> 

<D.dname: PHY, D.head: p3> 

Figure 37: The result of ~D. , , , ,~ , , ,~ ,  ~ . h ~ , , d  R 

The join operator (w,) examines each pair of records fiom the two operands: The pairs that 

satisfy the predicatep are concatenated and outputted. 

Definition 4.5: The join operator is defined as follows: 

The semi-join (K,) and anti-join (D,) operators are variations of the join operator. A semi-join 

(K,) or anti-join (D,) operator returns the left input records that do or do not match a right input 

for the predicatep, respectively. 



Definition 4.6: The semi-join and anti-join operators are defined as follows: 

R K, S = {rl r t R, {s t S ,  p(r, s)) ;t 01, where 0 stands for the empty set, 

The outer-join operator (w=,) has the same characteristic as join, except that left input records 

that do not match any right input records are also included in the result, with the columns from 

the right input assigned as null. 

Definition 4.7: The outer-join operator is defined as follows: 

where the expression null(S) returns a record with all the columns in S assigned as null. The 

operator us  stands for the set-theoretic union operation, where symbol s comes from 

"standard". 

4.2.5 Union, Intersection and Difference 

In set theory, union, intersection, and difference (u, n, -) are basic set expression operations. 

They accept and return sets. In OQL, due to polymorphism, the UNION, INTERSECT and 

EXCEPT operations are overloaded for sets and bags. 

If both operands of a UNION, INTERSECT, or EXCEPT operation are sets, the operator 

perfoms the standard set-theoretic union, intersection, or difference. 

Otherwise, if one or both operands of a UNION, INTERSECT, or EXCEPT operation are bags, 

the operation outputs bags and may contain multiple occurrences of same elements. Let us first 

look at UNION. Suppose that a given record t appears exactly m times in the first operand and 

exactly n times in the second. Then t will appear exactly m+n times in the result of UNION 

[DD93]. INTERSECT and EXCEPT work similarly. For INTERSECT, again suppose that a 

given record t, appears exactly m times in the first stream and exactly n times in the second. 

Then t will appear min(m, n) in the result of INTERSECT. For EXCEPT, t will appear exactlyp 

times in the result, wherep is the greater of m-n and zero. 



To accommodate the polymorphism of the set expression operations in OQL, the COAL algebra 

includes six set expression operators: set-union (v), set-intersection (n),  set-dzfference (-), bag 

union (u,), bag intersection (n,), and bag diference (-+). 

For distinction, we use the terms standard union (us), standard intersection (n,) and standard 

diference (-,) to refer to the original union, intersection and difference operations defined in the 

set theory. Symbol s stands for "standard". 

The set-union (u), set-intersection ( n )  and set-difference (-) operators are designed to serve the 

same purpose as standard union, intersection and difference. However, under our execution data 

model, the inputs to set operators in COAL contain @-columns. Thus the set expression 

operators in COAL need to be adjusted from their standard counterparts to handle @-columns 

correctly. 

Definitions 4.8: The set-union (u),  set-intersection ( n )  and set-difference (-) operators are 

defined as follows: 

The comparison returns true if all the columns in the input records except the @-columns 

are equal. The comparison returns false if any of the non-@-columns in the two input records 

differs. The expression r/@ returns a record consisting all the columns in r except the @- 

columns. The set-union (u), set-intersection (n) and set-difference (-) operators remove @- 

columns from the input streams, because, in the output of these operations, position or ordering 

information is no longer meaningful. 

An OQL operator UNION, INTERSECT, or EXCEPT is translated into set-union, set- 

intersection, or set-difference only if the operands of that OQL operator are both sets, i.e., each 

input stream has a key that does not contains any @-column. This condition ensures that each 

comprehension in Definitions 4.8 outputs a stream that contains no duplicates. 



Example 4.15: Suppose R and S expressions originate from a set and a dictionary of department 

object. Let R be ( T C ~ . ~ ~ , , ~ , ~  MD.dllan,e GD DeptSet), where DeptSet is a set. Let S be ( T C D . ~ , ~ ~ , , ~ ~  

MD~dl,al,e GD DeptDictionary), where DeptDictionary is a dictionary that maps a number to a 

department object. The results of R and S are depicted in Figure 38 and Figure 39. The results 

of the set-union (v), set-intersection (n), and set-difference (-) operations on two input streams 

shown in Figure 38 and Figure 39 are shown in Figure 40, Figure 41, and Figure 42. 

Figure 38: The input stream R 

Figure 39: The input stream S 

Figure 40: R u S 

Figure 41: R n S 



Figure 42: R - S 

When defining bag operators, i.e., bag-union (u,), bag-intersection (n,) and bag-difference 

(-+), we associate a count (#) attribute with each element, and retain the number of occurrence 

for elements in the result by manipulating the count attributes. 

Definitions 4.9: The bag-union (u,), bag-intersection (n,) and bag-difference (-+) operators 

are defined as follows: 

Let A = {<#: count({l 1 x t R, x = r))> * r 1 r t R),,, 

us {b I b t B ,  {a la +A, a z,# b)= 0) 

us {<#: a.# + b.#> r/# ( a t A, b t B , a z,# b), 

I = {<#: min (a.#, b.#)> tt- a/# I a +A, b t B , a z,# b ), 

us{<#: a.# - b.#)>++r/#(a +A, b + B , a ~ / # b ,  a.#>b.#),  

Then, 

R u+ S = {u /# 1 u t U, j t ( 1  .. u.#)) 

The comparison returns true if all the columns in the input records except the # column are 

equal. The comparison returns false otherwise. In A, B, U, I, D, the value of the # field is 

always greater than zero. Expressions A and B removes the @-columns from R and S, and 

record the number of occurrence of each record using the # column. The set constructor f and 

) ,  enforces uniqueness by removing duplicates. Expression U is used to define bag-union (u+). 



In U, the first term returns those left input records that have no match in the right input stream. 

The second term returns those right input records that have no match in the left input stream. 

The third term returns the common elements in both input streams. Expression I is used to 

define bag-intersection (n,). In I, the function min compares two inputs and returns the smaller 

one. If a record is missing from one input, then there is no corresponding record in the output. 

Thus, the min function is calculated between positive integers. Expression D drops records 

whose frequency is zero. Like their set counterparts, bag-union (u+), bag-intersection (n,) and 

bag-difference (-+) operations exclude @-columns in outputs. Although we define the bag 

operators with count (#) attributes, an implementation of those bag operators need not mimic 

the definition and actually construct the count. In particular, bag union can just strip off @ and 

combine inputs. 

The computation of U, I, and D results in the "count" form of the bag-union, bag-intersection, 

and bag-difference, i.e., each record attached the #-column. The last three expressions in 

Definition 4.9 shows that we then go back to "replicate" form from the "count" form. 

Example 4.16: The steps in the definition of the bag-union (u,), bag-intersection (n,) and bag- 

difference (-+) operations are shown in Figure 43 through Figure 52. 

Figure 43: The input stream R 



- 

Figure 44: The input stream S 

<#: 1, D.dname: PHY> 

Figure 45: A 

Figure 46: B 

Figure 47: U 



I I 

Figure 48: I , 

<#: 2, D.dname: CS> 

Figure 49: D 

Figure 50: R u+ S 

Figure 51 : R n+ S 



Figure 52: R -+ S 

4.2.6 Nest 

The nest operator (vK, L, E, F) generalizes the relational group-by operator, allowing CVA creation 

and operations on new collection types. Here, the parameter K is a list of grouping columns. 

The parameter L is the label for the new column generated fiom the groups. The parameter E is 

a hnction accepting a group and returning a value or object. The parameter F is a column name, 

a record constructor, or an object constructor that generates the elements in the groups. The nest 

operator VK, L, E, partitions the operand into groups of records by the columns K. For grouping 

purposes, two null values are considered equal. The function F is applied element-wise in each 

group. Then the function E is applied to those results for each group, returning the value for the 

column L in the result of the nest operator. 

Definition 4.10: The nest operator is denoted as follows: 

VK,L,E ,FR= {r.K++< L: E ({F (s) I s t R, s .Kr  r.K))> I r t RIzt. 

Function E is chosen fiom sum, count, max, min, avg, nth (a, i), element, exact-one, unique, 

$rst(a), last (a), set, bag, and list (a). When E is sum, count, max, min, avg, nth (a, i),$rst (a), 

last (a) or element, it returns a value or an object. The function nth (a, i )  first sorts the partition 

on a, then returns the ith element. When E is unique, it returns true if the input contains no 

duplicates, and returns false otherwise. When E is set, bag, or list (a), it generates a CVA for 

each partition. The attribute a in list(a) indicates the order in which the CVA is sorted. When E 

isJrst(a) or last(a), it returns the first or the last element in the partition as the partition is sorted 

by a. A special case for function E or F is I, the identity function. Note that L can be a CVA - 

which is one of the main distinctions with relational group-by, which always reduces a group to 

a single scalar value. 

Example 4.17: Let R be the stream shown in Figure 53. The expression 

V ( ~ . @ ,  Ddname), C, bag, M R 



returns, for each department, the department name and the courses offered by that department. 

The result is shown in Figure 54. 

<D.@: 1, D.dname: CS, M.@: 0, M: s l> 

<D.@: 1, D.dname: CS, M.@: I ,  M: s2> 

<D:@: 2, D.dname: EE, M.@: 0, M: s3> 

<D:@: 2, D.dname: EE, M.@: 1, M: s4> 

<D.@: 3, D.dname: PHY, M.@: 0, M: s5> 

<D.@: 3, D.dname: PHY, M.@: 1, M: s6> 

t 
Figure 53: R 

<D.@: 1, D.dname: CS, C: {sl, s2)> 

< D.@: 1, D.dnarne: EE, C: (s3, s4)> 

< D.@: 1, D.dname: PHY, C: (s5, s6)> 

Figure 54: The result of VD.~,,~,,,~, C, hg, M R 

When the input is the empty set, the nest operator returns the empty set, i.e., VK, L, E, F (0) = 0. 

When the grouping key is empty, the nest va L, F evaluates the aggregate functions on the 

entire input collection, outputting either zero or one row. Note the difference between VKLE 

and the collection-to-scalar conversion operator (xF), which will be introduced later in this 

section. When applied to the empty set 0, VK, L, E, returns 0, while the collection-to-scalar 

conversion operator XF returns a value, possibly the null value. 

4.2.7 Duplicate Removal 

The duplicate removal operator, p, removes duplicate objects or records in its input. 

Definition 4.11: The duplicate removal operator, p, is defined using the set constructor as 

follows: 



p R =  { r / @  1 r t R),,,. 

The p operator removes all @-columns and returns a unique stream - a stream that has a key. 

The p operator can also be considered a special case of the nest operator where p uses all the 

columns in the input except the @-columns as the grouping columns and then leaves out the 

columns formed by the partitions. The expression 

can be written using the projection operator and the nest operator as following: 

where R/@ is the list of columns in R except the @-columns, and I is the identity function. 

Example 4.18: Example 4.7 continued. Figure 26 shows the result of Gs StudentNames. The 

expression 

p Gs StudentNames 

returns the stream shown in Figure 55. 

Figure 55: The result of p Gs StudentNarnes 

4.2.8 Parameterized Operators: Map and D-Join 

The map operator (aL) abstracts sub-query execution. The map operator has two operands. The 

left operand produces a collection. The right operand produces either scalars or collections. The 

right operand can be correlated with the left operand. I.e., the right operand may refer to certain 

variables defined in the left operand. For each left input record, aL evaluates the right operand, 

and returns the left input record together with a new column L holding the result of the right 

operand. The cardinality of the result of map (aL) is the same as that of the left operand. 



Definition 4.12: The map operator, aL, is defined as follows: 

The d-join operator (1 w )  abstracts parameterized execution. It performs functional application 

over a collection similarly to the APPLY and MAPCAR operators of LISP. The intuitive idea of 

d-join has been used often in the past. Relational database practitioners view it as nested loops 

over correlated sub-queries, and sometimes include an implementation of it in their query 

evaluators [RR98]. Object-oriented researchers sometimes employ lambda-calculus concepts 

and notation directly [SZ89, CM93, CD951. Cluet and Moerkotte [CM93] first proposed the d- 

join operator used here, for use in object query unnesting. 

The d-join (I w )  operator is the same as join, except that the right operand depends on the left 

one. It takes a relational input R and a parameterized expression E(x) that produces a set of 

rows, and evaluates the expression E(r) for each row r in R. Row r is then appended to each row 

in E(r) and added to the result. 

Definition 4.13: The d-join operator, 1 w ,  is defined as follows: 

Here, p is a predicate. D-join does not preserve the cardinality of R. A row r will appear in the 

result from zero to as many times as there are rows in E(r) (there may be lots of rows in E(r) but 

none of them satisfy the predicatep). The following example shows a query that can be 

expressed using d-join. 

Example 4.19 The following query returns the majors of the departments who are older than 20 

years. 

SELECT M.snarne 

FROM Depts AS D, D.Majors AS M 

WHERE M.age>20 

The query can be expressed as 



Figure 56 and Figure 57 illustrate respectively the content of Depts and the query result. 

<dname: CS, Majors: (csname: Smith, age: 15>, csname: White, age: 3 I>)> 

cdname: MATH, Majors: {<sname: Campbell, age: 23>, <sname: Cooper, age: 17>)> 

Figure 56: The collection Depts 

Figure 57: The query result of Example 4.17 

Note that d-join can be reduced to regular join if the right-hand operand does depend on the left- 

hand one. Also it can be reduced to unnest if the right-hand operand is a get operator on a CVA. 

For instance, the expression 

can be reduced to 

P~.Majors[M] Depts~. 

Besides d-join (Iw),  our algebra also includes semi-djoin ( I  !x), anti-djoin (ID) and outer-djoin 

( I  W=). 

Definition 4.14: The outer-djoin operator, I w=, is defined as follows: 

R I w =, E = (R Iw, E) us (r ++ null(E) I r t R, {e I e t E(r), p(r, e)) = 0). 

In Definition 4.14, the expression null(E) returns a record with all columns in E assigned null. 

Alternatively, outer-djoin can be defined using d-join: 

where attrib(R) stands for a predicate that compares the two join operands for every column in 

the result of R. 



The following example shows a query that can be expressed using outer-djoin. 

Example 4.20 The following query returns, for each department the courses it offers, the 

instructor and the textbooks for each course. 

SELECT STRUCT (n: D.dname, A: (SELECT STRUCT (i: C.instructor, t: B.btitle) 

FROM D.Courses AS C, Books AS B 

WHERE C.text = B.isbn) 

FROM Depts AS D. 

The query can be expressed as 

Alternatively, the query can be represented as 

Xbag, I nn:~.dname, A:L ' VD, L, bag, ci:C.instructor, t:B.btitle> R, where 

The operator )bag, I is a conversion operator that produces bags. Conversion operators will be 

explained later in this chapter. Figure 58 and Figure 59 show the contents of Depts and Books. 

Figure 61 shows the corresponding result R, an intermediate result that contains the department 

name, the courses offered in the department, the instructor and textbook for each course. Due to 

lack of matching element in the Books collection, the record for the MATH department in 

Figure 61 contains NULL columns. In Figure 61, we use ". . ." to indicate some other columns 

contained in the result of R. The final result of the query is shown in Figure 61. 

<dname: CS, Courses: (<instructor: Smith, text: 11>, <instructor: White, text: 12>) 

<dname: MATH, Courses: {<instructor: Campbell, text: 13>, <instructor: Cooper, text: 14>) 

Figure 58: Depts 



<isbn: 12, btitle: Database> 

<isbn: 15, btitle: Algebra> 

<isbn: 1 1, btitle: Compiler> 

<isbn: 16, btitle: Calculus> 

Figure 59: Books 

<dname: CS, instructor: White, btitle: Database, . . .> 

<dname: MATH, instructor: NULL, btitle: NULL, . . .> 

cdname: CS, instructor: Smith, btitle: Compiler, . . .> 

Figure 60: The output of R 

<n: CS, A: ( 4 :  White, t: Database>, <i: Smith, t: Compiler>)> 

<n: MATH, A: {)> 

Figure 61: The resuIt of the query in Example 4.20 

We use d-join and its variations because they provide a straightforward way of representing 

nested queries. More importantly, d-join can be re-ordered with other operators via algebraic 

transformations, such that in our framework we can always push d-join down to the bottom of 

an algebraic expression tree, and then reduce it into relational operators. 

4.2.9 The Conversion Operators 

A conversion operator, XK F , converts a record stream into a literal or an object, depending on 

the function E. The literal or object generated could be single-valued or a collection. The 

function F is a column name, a literal constructor or an object constructor. 

Definition 4.15: The conversion operator, XEF, is defined as follows: 

XE, F R = E({F(r) I r R)), 



where E is choosen from conversion functions, the set of functions that include set, bag, list(a), 

Set, Bag, List(a), exists, not-exists, unique, count, avg, sum, min, max, nth (a, i),first(a), last(a), 

element, and exact-one. 

Conversion to Collections 

The conversion operator XE,F converts a record stream into a collection, if E is chosen from set, 

bag, list (a), Set, Bag, and List (a). For instance, if E is list (a), XE, returns a list literal sorted on 

a. If E is List (a), XE, F returns a list object in which the elements are sorted on a.  

The functions set, Set, bag, Bag, list(a), List(a), array(a) and Array(a) are all collection 

constructors. The functions set and bag construct set and bag literals. The hnctions Set and Bag 

construct set and bag objects. The functions list(a) and array(a) construct list and array literals 

sorted on attribute a. The functions List(a) and Array(a) construct list and array objects sorted 

on attribute a. 

Conversion to Single Values or Objects 

The conversion operator XE, F produces a single value or object, if E is chosen from exists, 

not-exists, unique, count, avg, sum, min, max, nth(a, i),jirst(a), last(a), where a is an attribute 

name or a path expression. 

The hnction exists returns true if the input is not empty. Otherwise it returns false. The function 

not-exists behaves oppositely to exists. 

The function unique returns true if the input does not contain duplicates, otherwise it returns 

false. 

The aggregation functions count, avg, sum, min and max computes respectively the cardinality 

of the input collection, the average value, the sum, the minimum value or the maximum value 

for the elements in the input collection. 

The function nth(a, i) finds the ith element in terms of ordering the a attribute. One obvious 

algorithm for computing nth(a, i )  is to sort the input by attribute a and return the ith element. 

The functions$rst(a) and last(a) are special cases of nth(a, i): Instead of returning the ith 

element,first(a) returns the first one, while last(a) returns the last one. 



The following are the values of the E functions when the input is the empty set 0: 

exists(@) = false 

not - exists(0) = true 

count(0) = 0 

unique(@) = true 

sum(@) = avg(0) = max(0) = min(0) = null 

nth(a, i, 0 )  = null. 

Example 4.21 The following are two example expressions using scalar operators: 

Xavs, S.age GS Students: Returns the average student age. 

Xuni,,,  s GS Students: Returns a boolean for whether the Students collection is 

duplicate free. 

Exception Handling 

When E is element, or exact-one, the conversion operator XE, requires special treatment. 

The function exact-one is an identity fhction. It passes the original input as output. Its only 

purpose is to raise an exception if the input does not contain exactly one element. 

The function element returns null if the input is empty. It returns an element if the input contains 

only this element and raises an exception if the input contains more than one element. 

Both element and exact-one fimctions can raise exceptions during evaluation. Raising 

exceptions is not a behavior that can be modeled using algebraic terms. Therefore, special 

treatment is needed to ensure the correctness of transformations involving the x,,,,, one, and 

4.2.10 Summary 

We categorize the algebraic operators in COAL into five kinds, namely, collection accessors, 

conversion operators, bulk operators, union, intersection, and parameterized operators. Figure 

62 summarizes these six kinds of operators. 



Figure 62: The algebraic operators 

Categories 

Collection Accessors 

Conversion operators 

Bulk operators 

Union, intersection and difference 

Parameterized operators 

A collection accessor scans a collection and outputs a stream. Collection accessors include the 

get (G,) and unnest (pAca1) operators. The get operator (G,) or the unnest operator (PA[,]) is 

responsible for converting instances (collection objects) in the object data model into instances 

(streams of records) in the execution data model. 

Operators 

Ga, p~[a] 

XE. F 

Ma op, wp, Kp, DP, W=p, VK, L, 6 F, f' 

-, n, u,-+, n+, u+ 

aL, IW,, IW=,, IK,, IDp 

A conversion operator (xE, F) accepts a stream and outputs a single value, a single object, or a 

collection. 

Bulk operators accept and output streams of records, including materialize (Ma), relational 

operators, and duplicate-removal (p). 

Union, intersection, and diflerence operators include set union (u), set intersect (A) and set 

difference (-), as well as bag union (u+), bag intersection (n+)  and bag difference (-+). 

A parameterized operator accepts two operands with one operand depending on the other. 

Examples of parameterized operators are map (aL) and d-join (I  w). 

The COAL algebra is not mininal: Some operators can be represented using other operators. For 

instance, the outer-djoin operator can be expressed using outer-join and d-join operators. The 

redundancy in the COAL algebra is to ease query representation and optimization. 



Definition 4.15 The COAL algebra consists of the operators {G,, p ~ [ ~ ] ,  XE, F, Ma, up, ~ C C ,  W,, 

4.3 Representing OQL Queries 

Lemma 4.16, below, states that the COAL algebra can represent arbitrary OQL queries. Our 

proof describes an algorithm for constructing a COAL expression from an OQL query. While 

we do not spell out all the details here, the algorithm has been implemented in the query 

translator component of our OQL query optimizer. 

Lemma 4.16 All ODMG OQL queries can be expressed with the COAL algebra. Specifically, 

any query consisting of SELECT or SELECT DISTINCT, FROM and optionally WHERE, 

GROUP BY, HAVING and ORDER BY clauses can be translated into a COAL expression with 

a conversion operator, XE, F, as the top operator, where E is among list(x), set, bag, Set and Bag. 

Proof. We prove the theorem by induction based on the syntax of OQL [CB97]. The 

translations given are not the least expensive ones. Efficiency will be handled later in the 

optimization phase. 

(1) Base Case: Single-Collection Queries. A query with a single collection or CVA R is 

mapped into the expression R. 

(2) Base Case: Simple Queries. A simple query is one with no sub-queries. A simple query 

may consist of the SELECT or SELECT DISTINCT, FROM, and optionally WHERE, GROUP 

BY, HAVING and ORDER BY clauses. An example form of a simple query is shown below. 

SELECT DISTINCT STRUCT (X: r.x, Y: s.y, C: COUNT (PARTITION)) 

FROM R AS r, r.A AS a, q.S AS s, LIST(s.u, s.v) AS b 

WHERE P(r, a, b) 

GROUP BY r.x, s.y 

HAVING COUNT(PARTITI0N) > 10 

ORDER BY r.x. 

In the query above, PARTITION ranges over the groups formed by the GROUP BY operation. 

There can be "unbound" variables in the query - such as q, in the case that the simple query is 

nested inside another query. 



Figure 63 illustrates the algebraic expression that is the translation of the query above. The 

translation starts with the FROM clause. The FROM clause is a list of items specifying 

collections. There are three kinds of items: base collections, collection-valued attributes (CVAs) 

and collection constructors. 

A base collection, say R, is translated into get followed by materialize operators that retrieve 

from R the attributes mentioned by the query. 

A CVA is translated into unnest followed by materialize operators, if the base collection 

originating the CVA appears in the FROM clause. For instance, in the query above, r.A 

originates fiom the base collection R, therefore r.A is translated into a unnest operator followed 

by a materialize operator. 

X i i s t ( ~ ) ,  < X: r.x, Y: r.y, C:  C > 
- 

I 
pl 
Gc> 10 

I 
V(r.x, .y), C. (r.', a.', s.*, b:), COUNT 

I 
G ~ ( s a , b )  

I 
PB[~I 

n*, &LIST 1 s.u, s.v) 

I 
I W  
/ \  

M a  

I 
M s  

I 
& . ~ [ a l  

I G s  q.s 

M r  
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Figure 63: Translating a simple query 



A CVA is translated into a get operator on the CVA followed by some materialize operators, if 

the CVA does originates from an item in the FROM clause. For instance, in the query above, 

the CVA q.S is translated into a get operator followed by a materialize, because q is not bound 

by the FROM clause of the present query. 

A collection constructor is translated into unnest following a collection conversion operator. 

D-join operators are used to connect the expressions generated by the items in the FROM 

clause, no matter whether the items are base collections, CVAs or collection constructors. 

'In Figure 63, the sub-expression with Pqb] as the top node translates the FROM clause in the 

query above. 

The WHERE clause is translated into one or more selection operators over the expression 

obtained from the FROM clause. We consider the condition in the WHERE clause a 

conjunctive clause. Each term in the conjunctive clause forms the predicate of a selection 

operator. In Figure 63, the operator ( ~ p ( , , ~ ,  is the translation of the WHERE clause, assuming the 

predicate P{r,a,b) has only one conjunctive term. 

The GROUP BY clause is translated into the nest operator VK, F F, where K is the list of 

grouping attributes; L is an attribute label; and E and F denote the aggregates specified in the 

SELECT and HAVING clauses. In Figure 63, the operator v ( , ,  ,,), C, (r.*, a.*, s.*, b.*), COUNT is the 

translation of the GROUP BY clause and the aggregation part of the SELECT and HAVING 

clauses. 

The HAVING clause is translated into selection with a predicate on the attribute generated by 

the translation of the GROUP BY clause. In Figure 63, the operator (TC,,~ is the translation of 

the HAVING clause, where C is a new attribute produced by the GROUP BY clause. 

The SELECT clause and the ORDER clause are translated into a conversion operator (xE L). 

The projection attributes, L, are from the list of attributes in the SELECT clause. The 

conversion operator constructs a set if the SELECT clause contains DISTINCT, constructs a list 

if the query contains ORDER BY, or constructs a bag otherwise. In Figure 63, the operator 

Xlist(x), X: r.x, Y: r,y, C: c > is the translation of the SELECT and ORDER clauses. 



The translation given above shows that the lemma holds for simple queries. In particular, a 

simple query is translated into a COAL expression with a conversion operators, XE, F, as the top 

operators, where E is among list(x), set, bag, Set and Bag. 

(3) Inductive Case: Queries Containing Sub-queries In OQL, sub-queries can appear in any 

clause, and can produce both single values and CVAs. We use map operators (aF) to translate a 

query and its sub-queries. For induction purposes, we suppose the lemma holds for those sub- 

queries. 

Figure 64 illustrates the general translation method using the following query as example 

SELECT STRUCT (a: r.a, b: ARRAY(Q6 (r, s), r.c)) 

FROM R AS r, Ql(r) AS s 

WHERE (Q2(r, s) > Q3(r, s)) AND Q4(r, s) AND EXISTS (Q5(r, s)) 

where Q l  through Q6 are sub-queries with El through E6 as their corresponding algebraic 

representations. The arguments in Qi denote the free variables in it. For instance, Q2(r, s) is a 

sub-query with free variables r and s. A sub-query with free variables is considered correlated 

with the outer query block through the free variables. 

Note that in the query given above, Qi could return collections or scalar values. For instance, if 

the outermost operation in Qi is a built-in scalar function, Qi returns a scalar value. Otherwise, 

Qi returns an object or a collection. 

Sub-queries can be categorized into three disjoint classes: 

Class A sub-queries appear in the FROM clause, for instance, QI. 

Class B sub-queries appear in clauses other than FROM and have no modifier 

EXISTS or NOT EXISTS, for instance, Q2, Q3, Q4 and Q6. 

Class C sub-queries appear in clauses other than FROM and have modifier EXISTS 

or NOT EXISTS, for instance, Q5. Note that it is impossible for a sub-query with 

modifier EXISTS or NOT EXISTS to appear in the FROM clause unless the sub- 

query is within another sub-query. 

A Class A sub-query is translated in two steps. Let the sub-query be Q and the range variable 

for Q be q. First, the sub-query Q is translated into the algebraic expression, EQ. Since the 



lemma holds for that sub-query, Ep is of form x ~ ~ ~ ~ ( ~ , , -  e, kel !f e, or xbng. ,- e, where e is the 

algebraic expression translated from the FROM, WHERE, GROUP-BY, and HAVING clauses 

of Q. Second, if EQ is of form kel ,.[ e , the translation result of the tenn Q AS q is 7c,f p e; 

otherwise, the translation result is zq,. e. In Figure 64(a), this translation schema is illustrated 

using el ,  an expression obtained by removing the top operator from the algebraic representation 

of Ql.  

Figure 64: Translating a query with sub-queries 

A query with Class B sub-queries is translated in two steps. First, the query is parsed into an 

algebraic expression in a manner like a simple query such that the argument of certain operators 

(e.g., selection or projection) contains expression for sub-queries. Figure 64(a) illustrates the 

parsing result of the query given above. The structure in Figure 64(a) is not a "proper" algebra 

expression, because it contains expressions where simple arguments are expected. The second 

step in translating a query with Class B sub-queries is thus to remove sub-queries fiom the 

corresponding operator arguments using map operators. A sub-query in an operator argument is 

removed by inserting a map right below the operator that contains the argument. The map 

operator takes the input of the operator as the left operand and the sub-query as the right 



operand. The sub-query within the operator argument is replaced by the attribute generated by 

the map operator. Figure 64(b) shows that each sub-query is translated into a map operator that 

generates a new attribute to be used in the operator argument as a substitute for the sub-query. 

The arguments E2, E3, E4 in Figure 64(a) are respectively substituted by L2, L3 and L4. 

A query with Class C sub-queries is translated using semi-djoin or anti-djoin operators. For 

instance, Q5 is translated into a semi-djoin operator (ID<), as shown in Figure 64(a). 

The translation given above shows that the lemma holds for queries with sub-queries. 

Specifically, a query with sub-queries is translated into a COAL expression with a conversion 

operators, XE. F, as the top operators, where E is among list(x), set, bag, Set and Bag. 

(4) Inductive Case: Built-in Functions. When applied to a query or a sub-query, an OQL 

built-in h c t i o n  is directly translated into xg F. For instance, a sub-query Q with built-in 

function UNIQUE is translated into x,,,~,,,, F A where A is the algebraic expression for the input 

of UNIQUE. 

The built-in kc t ions  for OQL are EXISTS, EXISTS IN, IN, NOT EXISTS, FORALL, SOME, 

ANY, ALL, UNIQUE, ELEMENT, COUNT, AVG, SUM, MIN, MAX, FIRST, LAST and 

NTH. 

The semi-djoin operator ( I  K) is used to translate OQL built-in functions EXISTS, EXISTS IN, 

SOME and IN. In OQL, EXISTS is of form EXISTS(Q). EXISTS IN is of form EXISTS ID IN 

Q: PRED, which is equivalent to an EXISTS expression with PRED moved into the sub-query 

Q. SOME is of form XREL SOME (Q), where X is a scalar and REL is chosen fiom (<, >, <=, 

>= , I= . , = ) . The expression X REL SOME (Q) is equivalent to EXISTS Y IN Q : XREL Y. IN is 

used in expressions such as X IN Q, which is equivalent to EXISTS Y IN Q: X= Y. Since both 

EXISTS IN, SOME and IN are all equivalent to certain EXISTS expressions, we only discuss 

sub-queries with the EXISTS modifier. Figure 64(a) uses the sub-query Q5 to demonstrate the 

translation of sub-queries with EXISTS modifiers. 

Note that, when translating an EXISTS or NOT EXISTS modifier, the constructor or conversion 

operator in the sub-query can be ignored without changing the semantics of the original query. 

The computation of an EXIST or NOT EXISTS modifier is only affected by whether or not the 

sub-query returns an object or a record. The type of the sub-query result has no affect on the 

result of the EXIST or NOT EXISTS modifier. 



Similarly to the case of EXISTS, which is translated into semi-djoin (I  K), an anti-djoin (ID) is 

used to translate OQL built-in functions NOT EXISTS, FORALL and ALL. NOT EXISTS can 

be translated into anti-djoin (ID) according to the semantics of anti-djoin. FOR ALL and ALL 

can both be expressed using NOT EXISTS. For instance, the predicate FORALL a in A: p is 

equivalent to NOT EXISTS a in A: NOTp. 

FIRST, LAST and collection extraction operators are list and array operations. When a 

collection extraction is applied to a base table or a CVA R, e.g., Rfi], it is translated into 

When a collection-extraction is applied to a SELECT statement with an ORDER BY clause, 

e.g., Q[q (Q is the translation result of the SELECT statement) is translated into xnth(~, i,, I A, 

where A is the algebraic expression for the SELECT statement without the ORDER BY clause, 

and K is the argument of the ORDER BY clause. The OQL FIRST and LAST functions are 

translated into the arSt(,,, 1 E and I E. 

Other OQL built-in functions are translated into xs F where E is a built-in function. We use the 

pseudo query below to illustrate how built-in functions are translated. 

SELECT STRUCT (r.b, N: (10 < ANY (44))) 

FROM R AS r 

WHERE (r.a = AVG (41) + ELEMENT (42)) AND UNIQUE (43). 



Figure 65: Mapping a nested OQL query into an algebraic expression 

Figure 65 illustrates the translation result of this pseudo query. All the sub-queries are modified 

by built-in functions. The expresions El through E4 are the translation of the subqueries QI 

through Q4 in the query above. In Figure 65, the map operators compute the scalar values from 

these sub-queries and attach these values as attributes in the intermediate results, which are later 

used in the selection or projection operations. 

(5) Inductive Case: Conversions. OQL supports three conversions, LISTTOSET, DISTINCT 

and FLATTEN. These conversions are translated differently for base collection inputs and sub- 

query inputs. Figure 66 and Figure 67 illustrate the translation method for these two cases 

respectively, where ER stands for the algebraic expression for OQL query R. 



Figure 66: Translating OQL conversions with base collection inputs (R is a base collection) 

When the input is a base collection, the translation needs to include the get operator to access 

the input before applying algebraic operations, such as duplicate elimination, unnest and 

collection constructors, to achieve conversions. Figure 66 lists the translation of the three OQL 

conversions when the input is base collection. The LIS'ITOSET conversion accepts a list literal 

or object, removes the duplicates and returns a set literal. The FLATTEN conversion returns a 

list literal when both the input collection and its elements are lists, and returns a set or bag when 

the element type of the input collection is set or bag. The FLATTEN conversion is not allowed 

on a collection whose element type is not a collection. The DISTINCT conversion converts a 

bag into a set, or removes the duplicates in a list. Specifically, the translation of a DISTINCT 

conversion first fetches the input collection, then removes the duplicates, and finally constructs 

a set or a list, depending on the input collection type. 
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Figure 67: Translating OQL conversions with sub-query inputs (R's) 

C O W  

LISTTOSET 

FLATTEN 

DISTINCT 

In Figure 67, the third column gives the translation result of OQL conversions, with R 

representing the OQL operations that are inputs to those OQL conversions. In the COAL 

algebra, only conversion operators output collections, other operators output streams. Since the 

OQL operation that is input to an OQL conversion must output a collection; the translation of 

such an operation must have a COAL conversion as the top operator. When applied to a sub- 

query, an OQL conversion is translated according to the conversion operator at the top of the 

algebraic expression tree for that sub-query. Figure 67 lists the translation methods for OQL 

conversion operations when applied to sub-queries. The OQL LISTTOSET conversion will be 

translated into the conversion operator. The input to the LISTTOSET conversion should have 

the list conversion as the top operator for its algebraic expression, because the input to that 

conversion has to be a list and the COAL algebra contains no other operator that outputs lists. 

The FLATTEN conversion is translated into unnest. The DISTINCT conversion is discarded if 

the input sub-query returns a set. Otherwise, DISTINCT is translated into duplicate removal (p). 

(6) Inductive Case: Binary Set Expressions. UNION, INTERSECTION and EXCEPT are 

translated into set-union (v), set-intersection (n), set-difference (-), bag-union (u,), bag- 

ER 

Xlist(a),F X 

X s e t , ~  X 

Xbag,F 

Xlist(a),F X 

X b a g , ~  

XselF X 

intersection (n,), bag-difference (-+), depending on whether the operands are sets or bags. 

When both operands are sets or sub-queries with the SELECT DISTINCT clause, the binary set 

The translation of 

CONV(R) 

X s e t , ~  X. 

X s e t , ~  P[a] X 

X b a g , ~  P[al 

Xlist(a),F P X 

X b a g . ~  P X 

X s e t , ~  X 



expressions are translated into set-union (u), set-intersection (n )  and set-difference (-), 

followed by the conversion operator. When both operands are bags or sub-queries with no 

DISTINCT in the SELECT clause, the binary set expressions are translated into bag-union all 

(u,), bag-intersection (n+) and bag-difference (-+), followed by a conversion operator. 

We use UNION as example to illustrate how to translate binary set expressions. Consider an 

OQL UNION operation R UNIONS. Suppose R and S are translated into XT,F X and XT,G X 

where T is chosen fiom (set, bag, Set, Bag). Then Ji UNION S is translated into x T , ~  (xF X u 

x~ Y), if T is set or Set, or XT,I (nF X u+ n~ Y), if T is bag or Bag, where a is a column 

name that appear neither in X nor in Y. 

Using the induction bases (I), (21, and the inductive cases (3) through (6), we show that all 

OQL queries can be represented with the COAL algebra. Also we show that a SELECT-FROM- 

WHERE query is translated into a COAL expression with a coversion operator as the top 

operator. W 

Lemma 4.16 and the constructive proof not only serve as the basis for the parser in our 

optimizer, but also contribute to the completeness of our query unnesting scheme, which will be 

discussed later in this dissertation. 

The lemmas below follow the translation schema laid out in the proof of Lemma 4.16. Later, 

these lemmas will help demonstrating the completeness of our unnesting approach. 

Lemma 4.17: In a COAL algebraic expression translated from an OQL query, the right-hand 

side operand of a map operator always has a conversion operator, XE, F, as the root operator. 

Proof: According to the transformation scheme described in the proof of Lemma 4.16, the map 

operator is used in translating sub-queries. The right-hand operand of a map operator is always 

translated from a sub-query. Since a sub-query is always translated into an expression with a 

conversion operator (xE, F) as the top operator, the lemma holds. 

Lemma 4.18: In a COAL algebraic expression translated from an OQL query, any conversion 

operator (xE, F) appears either as the top operator of the entire expression, or appears as the top 

operator of the right-hand operand of a map operator. 



Proof: According to the transformation scheme described in the proof of Lemma 4.16, except 

for the conversion operator that is the top operator for an entire expression, any conversion 

operator results from a sub-query. In OQL, a sub-query appears either in a SELECT-FROM- 

WHERE statement, or in a set or bag operator (union, intersection, difference). In the former 

case, the conversion operator will appear as the top operator of the right-hand operand of a map 

operator. In the later case, the conversion operator will be consumed during the translation of 

the set or bag operator, according to Part (6) of the proof for Lemma 4.16. Thus, the lemma 

holds. 

4.3.1 Examples 

We use some example queries to illustrate the translation approach described in the previous 

section. To make the presentation succinct, in COAL expressions, we use a range variable to 

stand for the get operator on the base collection bound by the range variable. For instance, the 

get operator (Gs STUDENTS) is represented as S. Also, for all the queries, we omit the 

materialize operators that should follow the get operators. 

Example 4.22: The following query returns the faculty members who advise more than three 

students. It contains a sub-query with aggregation. 

SELECT * 
FROM Faculty AS F 

WHERE 3 < COUNT (SELECT * 
FROM Students AS S 

WHERE F = S.advisor ) 

The algebraic expression for the aggregation sub-query is 

Referring to Figure 64(a) and (b), the query above is initially parsed into 

This expression is further transformed using the translation scheme for scalar-valued sub- 

queries into: 



Example 4.23: The following query returns professors who advise some students. 

SELECT * 
FROM Faculty AS F 

WHERE F = SOME (SELECT S.advisor FROM Students AS S) 

This query is mapped into the expression 

Example 4.24: The following query contains a scalar-valued sub-query; it returns the courses 

that use the text book titled "Database Systems". 

SELECT * 
FROM Courses AS C 

WHERE "Database Systems" = ELEMENT ( SELECT B.btitle 

FROM Books AS B 

WHERE C.text = B.isbn). 

According to Figure 64, the query is mapped into the algebraic expression 

Example 4.25: The following query returns the faculty members who advise some young 

students. It contains a list operation on a sub-query that generates a list. 

SELECT U.pname 

FROM Faculty AS U 

WHERE 15 > FIRST ( SELECT S.age 

FROM Students AS S 

WHERE S.advisor = U 

ORDER BY S.age). 

The sub-query is translated into 

The modifier FIRST absorbs the top operator Xlist(~,age), S,age to form Xf i rn t (~ .~g~) ,  s . ~ ~ ~ ,  yielding the 

translation result: 



Other list and array operations are the LAST and NTH operators. LAST is translated similarly 

to FIRST. An example of the NTH element operation is D.Majors[i], which returns the ith 

student in department D. These operations can be applied to a CVA or a sub-query that 

generates lists or arrays. The following example illustrates the translation of the NTH operation. 

Example 4.26: Let AVGGPAS be an array attribute in the Department object, indexed by the 

age of the student. The array records the average GPA for each age group of students. The 

following query returns any student whose GPA exceeds the average GPA of his or her age 

group at any departments. 

SELECT S 

FROM Students AS S 

WHERE EXISTS (SELECT * 
FROM Depts AS D 

WHERE S.GPA > D.AVGGPAS [S.age]). 

When translating a query or sub-query that contains an array extraction, we consider the array 

extraction operation a sub-query. For instance, the query above is translated into the following 

expression, with the sub-query and EXISTS translated into serni-djoin (Up<) and the array 

extraction D.A VGGPAS [S.age] translated into map, selection and ~ e x a C , d n e , ~  operators. The 

query is translated into 

This example shows that a correlation via the index of the ordered collection can be represented 

by our algebra. 

The lookup operation over a dictionary maps a key to a value. It is implemented algebraically 

using get, selection and map operators. Suppose that, in Example 4.26, D.A VGGPAS is a 

dictionary. Then the algebraic expression for this query would be 

Note that ELEMENT is used to translate dictionary lookup, because a dictionary lookup returns 

a NULL value for a non-existent key, which is the same behavior as ELEMENT for the empty 



set. On the other hand, EXACT-ONE, used for translating array indexes, will report boundary 

overflow errors as should be reported for array extraction. 

Example 4.27: The following query returns, for each department, a sorted list of young 

students. 

SELECT STRUCT @.name, T: (SELECT * 
FROM D.Majors AS S 

WHERE S.age-45 

ORDER BY Sage)) 

FROM Depts AS D. 

The query is first parsed into 

where E represents the algebraic expression of the sub-query. According to Figure 65, the 

expression is further translated into 

Replacing E yields the following expression: 

Example 4.28: Return student and program pairs; in each pair, the student must have 

successfully taken more than five core courses required by the program. 

SELECT S, P 

FROM Students AS S, Programs AS P 

WHERE 5 < COUNT (SELECT C 

FROM S.Transcript AS T, P.Core AS C 

WHERE (t.ctit1e = c.ctitle) and (T.grade c4F')) 

The query is parsed into 

Xbag, <s:s,P:P> G ~ < L  ((S w P) a~ (~coun'~ (((3 T, grade <'F' S.Transcript~ ) W~.ctitle=~.etitle 

P .Cor~) ) ) .  



4.4 Discussion 

In this chapter, we defined the COAL algebra to represent and optimize OQL queries. We 

provided a constructive proof for the claim that the algebra can fully express OQL queries. 

When we designed the algebra and the OQL translation mechanism, we paid special attention to 

properly handling ordered collections such as arrays and lists, as well as collections with 

duplicates such as bags, arrays and lists. Proper handing of ordered collections is the key factor 

in realizing complete query unnesting, which will be presented in Chapter 5. 

Here, we discuss our treatment of OQL collection types using the execution data model, 

discussed in Chapter 3, and the COAL algebra. We consider various OQL collection types 

having different expressive power. To order the collection types according to their expressive 

power, we use three criteria: 

Considering information on element occurences, sets and dictionaries are less 

expressive than bags, list and arrays, because sets do not allow duplicate elements and 

dictionaries do not allow duplicate key and value pairs. 

Considering ordering information, sets, bags, and dictionaries are less expressive than 

lists and arrays, which contain element ordering information. 

Considering indexing information, sets and bags are less expressive than lists, whose 

elements can be retrieved using fust and last, and dictionaries, which support a key-to- 

value mapping. Lists are less expressive than arrays, which support an index-to-element 

mapping. 

The majority of the algebraic operators in COAL handle streams rather than OQL collections. 

During query execution, OQL collections are mapped into streams, in which intermediate 

results are represented. Let us compare the expressive power of streams against OQL collection 

types: 

Considering information on element occurrences, streams are more expressive than 

sets and dictionaries, and equal to lists and arrays. 

Considering ordering information, streams are more expressive than sets, bags and 

dictionaries, and are equal to lists and arrays. 



Considering indexing information, streams are equal to sets and bags, which are 

less expressive than dictionaries, lists and arrays. 

Overall, streams are less expressive than list, dictionaries, and arrays on indexing information. 

To preserve the semantics of OQL collections during the mapping from OQL collections into 

streams, we encode indexing information with extra @-columns. 

To some extent, by using @-columns, COAL avoids introducing new algberaic operators or 

duplicating the same operator for different collection types. For instance, COAL does not have 

an array extraction operation. Instead, array extraction is performed using the relational 

selection operator. COAL does not have one duplicate elimination operator for each collection 

type. Instead, it has only one duplication elimination operator, which is generalized to work for 

streams originating from any type of collection. 

However, type information is lost during the mapping from OQL collection types into streams, 

even with the help of @-column encoding. In case that the presence of @-columns does not 

eliminates the need for type information, COAL needs to introduce different versions of 

operators to handle different input types. The specific example is the set-union and bag-union 

operators in COAL, which are used to translate the UNION operation in OQL. The OQL parser 

determines which union operator according to the types of the inputs to the OQL UNION 

operation. 

Some type information lost during the mapping from OQL collections into streams is justified 

by the semantics of OQL. Consider the query below. 

SELECT S 

FROM StudentList as S 

WHERE S.sage = 15. 

This query is translated into 

xbag, OL MS GS StudentList. 

During this translation, the type information is lost for any operator following the get operator 

Gs. However, such loss of type information during this translation is consistent with the 

semantics of OQL, where lists are implicitly coerced into bags when used as a term in the 

FROM clause. 



We argue that the translation and optimization of OQL queries using the COAL algebra is 

deterministic in that the alternative expressions obtained via transformation during optimization 

give the same collections as query results. By "same collections", we mean that the collection 

returns the same elements, and in the same order that is specified by the original OQL query if 

that query generates lists or arrays. We use list as an example to illustrate that a translated 

expression returns the same result specified by the OQL query. The claim that optimization 

generates alternative expressions returning the same results can be supported by the correctness 

of the algbraic transformation rules introduced later in this thesis. 

In the following, using our treatment of arrays and lists, we illustrate that the COAL algebra and 

our translation method perserves the equivalence between the result of the query and the result 

of the algebraic expression translated from that query. 

In OQL the only way to produce a new array is through array literal construct, i.e., 

array(Query 1, Query 2, ...., Query N), 

in which case the order of array elements is well-defined. The query processor will evaluate 

Query1 through Query N individually and then assembly the N elements into the array. The 

transformation process will not affect the order of the array elements. 

Now consider lists. There are three cases where a list can be constructed. 

Case 1: A list can be created through list literal, i.e., 

list(Query 1, Query 2, ..., Query N), 

in which case the order of list elements is well-defined, as in the case of array. 

Case 2: An OQL query with the ORDER-BY clause generates a list that is sorted by the 

attributes specified in the ORDER-BY clause. A simplified form of such a query would be 

SELECT * 
FROM R AS r 

WHERE p 

GROUP BY g 

ORDER BY a. 



This query is translated into 

where ~ ~ i ~ ~ ( ~ ) , *  is the conversion operator that constructs a list sorted on attribute a. The 

expression E is the expression translated from the original query minus the ORDER-BY clause. 

First, we know that this initial expression preserves the semantics of the original query in terms 

of the order of list elements. Second, for this query, all optimizetion transformations happen 

within E. In other workds, all'the equivalent expressions will have the same top operator, 

namely, ~ ~ i ~ ~ ( ~ ) , * ,  which ensures that all the equivalent expressions preserve the list element order 

intended by the original OQL query. 

Case 3: A subquery containing an ORDER-BY clause will generate lists as attributes. A 

subquery 

SELECT * 
FROM S AS s 

WHERE q 

GROUP BY h 

ORDER BY b. 

is translated into 

where F is the expression translated from the original query minus the ORDER-BY clause. 

There are three cases (Case 3.1 through Case 3.3 below) where such a subquery may appear. 

Case 3.1: The subquery appears in the SELECT clause to form a collection-valued attributes. In 

this case, the only transformation can be performed on this subquery is the following: 

where A is the expression translated from the main query that contains that subquery. The third 

argument in the nest operator specifies the constructor for the newly constructed collection- 

valued attribute. In this case, the element order is materialized by the list@) operation in the nest 

operator. The order is the same before and afer the transformation - both sorted on the attribute 

b. 



Case 3.2: The subquery appears somewhere in the main query and is followed by a list element 

access operation [i]. In this case, the element access operation, e.g., 

SELECT N: (SELECT * 
FROM S AS s 

ORDER BY a) [i] 

FROM R AS r. 

is translated into 

The translated expression above is consistent with the array access operation in the OQL query. 

However, in this case, the translated expression does not preserve the exception handling 

behaviour of the OQL query, which may raise OutOfBound exception for invalid i value. One 

way to preserve this behavior is to add an EXACTLY-ONE operator on top of the filter operator 

to raise exception if zero or more than one element is returned by the filter operator. 

Case 3.3: The subquery appears in the FROM clause as a source collection, in which case, the 

ORDER-BY clause can be simply discarded, without losing the semantics defined in the 

original OQL query. 

These three cases, Case 3.1 through Case 3.3, cover all the situations where subqueries 

containing ORDER-BY can appear in the main query. In all the three cases, the ordering 

information in the list is preserved through paring and transformation. 



Algebraic unnesting also facilitates more integrated unnesting, transformation, costing and 

pruning during optimization. However, the existing algebraic approaches [CM93, S95] apply to 

a limited subset of nested queries. In particular, they cannot unnest arbitrary sub-queries that 

contain collection-valued attributes (CVAs). 

We propose a sound and complete algebraic approach to unnest a significantly larger range of 

nested queries than the existing algebraic approaches do. Our approach consists of a 

transformation rule set and a deterministic unnesting algorithm using these rules. This approach 

subsumes many other relational unnesting techniques, such as Magic Decorrelation [SPL98], in 

an algebraic setting. 

The remainder of this chapter is organized as follows. Section 5.1 introduces previous work. 

Section 5.2 highlights our technique of overcoming the problem caused for query unnesting by 

the presence of duplicates in the base collection and in intermediate query results. Sections 5.3 

through 5.7 present our unnesting approach in detail. Section 5.8 demonstrates that the 

correctness of the transformation rules used in unnesting can be verified through set-theoretic 

reasoning. Section 5.9 contrasts our unnesting approach with the existing approaches. Section 

5.1 0 discusses the effect of unnesting on the plan space of an existing algebra-based optimizer. 

Section 5.1 1 discusses the work in implementing wes t ing  in the COCOUN optimizer. Section 

5.12 evaluates the unnesting functionality in COCOUN using experimental data. 

One abbreviation often used in this chapter is attrib(R), which stands for the list of attributes in 

the output of the expression R. When used as a join predicate, for instance, in t x ~ , ~ ~ ~ ,  attrib(R) 

is an abbreviation for the predicate that checks the equality for all the attrib(R) attributes in both 

operands. Let attrib(R) be {a,, ..., a,), then W,mib(~) means W,I=,~ ,.,.,,,,, where the attribute to 

the left of each comparison comes from the left operand, the attribute to the right from the right 

operand. 

5.1 Previous Work and Motivation 

We observe that the current query unnesting techniques fail to address some important issues in 

their application in practical query optimizers. Before proceeding to examine the previous work 

and describe our approach, we consider here what are the attributes of a practical approach to 

query unnesting. We see six necessary attributes: 



Demonstrably correct: Anyone considering adopting an umesting approach should be able to 

convince himself or herself that the method preserves the semantics of queries, preferably 

via an easy-to-verify proof of correctness. 

Handles real query languages: Many features in OQL are not considered by the current work 

on query unnesting. A practical query approach must address such features as duplicates, 

nulls, and multiple collection types. 

Reasonably complete: An approach that does not deal with all varieties of sub-queries and 

language features means that database developers are faced with implementing multiple 

approaches: the given one, and one or more special cases for queries that the given 

approach does not handle. Thus, we would like an approach that deals uniformly with 

nearly all kinds of sub-queries, minimizing the number of special cases. (We stop short of 

requiring a practical approach to deal with absolutely all queries for a language such as SQL 

because of the diversity of vendor-specific extensions makes it problematic to consider all 

variants of the language. However, in the case of SQL, a reasonable goal is to at least cover 

all the features common to the main implementations of the language.) 

Improves the search space: Adding query unnesting into a query optimizer should improve the 

search space such that the search engine generates more or better evaluation plans. An ideal 

search space includes all the equivalent expressions, either nested or flat expressions. It is 

known that query unnesting is not always beneficial. But a good query unnesting technique 

should benefit a query optimizer no matter whether a nested query is optimally evaluated in 

its original, partially unnested, or completely unnested forms. 

Minimally extends the existing framework: Adopting an unnesting approach should not 

require re-implementing large segments of the query processor, or even making extensive 

additions to it, such as many new operators in the query evaluator. We do note that this 

requirement makes our notion of "practical" relative to a particular processing fi-amework. 

Succinct specification: Ultimately, to include an unnesting approach in a query processor, 

someone has to code and maintain the method (very likely several people over time). 

Having a compact and readily understood description of the method means the 

implementation can proceed more quickly and with less likelihood of logical errors being 

introduced. Having a representation of the method apart from the code itself also means that 

improvements and extensions can be more easily discussed and communicated. 



Existing research on query unnesting is mostly conducted in the context of SQL query 

processing. Several relational query languages, in particular SQL, allow nested queries (queries 

containing sub-queries). Evaluating nested queries using naive nested iteration can be very 

inefficient [AC75, K821. Many unnesting techniques have been proposed to transform nested 

queries into more efficient forms that can use relational algebra or set-oriented operators [D87, 

GW87, K82, L96, M92, SPL961. Kim [K82] transformed nested queries into flat queries that 

use joins. Ganski and Wong [GW87] discovered two problems in Kim's algorithm when 

handling aggregation on sub-queries. When non-equality predicates appear in sub-queries or the 

aggregation is COUNT, Kim's algorithm can yield incorrect results. Ganski and Wong provided 

a more general algorithm that uses outer-joins (instead ofjoins) to overcome the bugs in Kim's 

algorithm. Dayal [D87] unified Kim's, and Ganski and Wong's algorithms based on query- 

graph transformations. Also using query-graphs, Muralikrishina [M92] provided an alternative 

approach to fix the COUNT bug, which can be considered an extension to Ganski and Wong's 

algorithm. Magic Decorrelation [SPL96] removes the decorrelation between sub-queries and the 

outer queries using rewriting rules based on the QGM (Query Graph Model) of Starburst 

[PHH92]. Magic sets [BR91] are employed to minimize the evaluation cost of decorrelated sub- 

queries. Kim's, Ganski and Wong's, and Dayal's algorithms are all special cases of Magic 

Decorrelation [SPL98]. 

Compared to relational queries, object queries (queries that appear in object-relational and 

object-oriented databases) have several new features that affect the unnesting process, namely, 

the occurrence of sub-queries in the SELECT clause, correlation via CVAs, and multiple 

collection types. Consider Example 5.1. It contains a sub-query in the SELECT clause, and the 

sub-query is correlated with the outer block via the CVA D. Courses. Example 5.1 and other 

examples in this chapter are based our examples on the university database schema provided in 

Figure 1, Chapter 1. 

Example 5.1: Return the instructors and the textbooks of the courses offered in each 

department. 

SELECT (D.name, A: (SELECT C.instructor, B.title 

FROM D.Courses AS C, Books AS B 

WHERE C.text = B.isbn)) 

FROM Depts AS D. 



To unnest object queries, Lin and Ozsoyoglu [L096, L97] proposed a source-to-source 

approach that reduces sub-queries into joins between the type extents of the correlated attributes 

and the collections mentioned in the outer block. Wong [W94] and Fegaras [F98] employed 

monoid-comprehension calculus to transform nested queries into flat algebraic expressions. 

The techniques mentioned above, for both relational and object queries, can be categorized into 

source-to-source [GW87, K82, L971, query-graph [D87, M92, SPL961, or calculus [F98, W94] 

approaches. 

Source-to-source approaches are limited by the expressive power of query languages. Because 

of this limitation, they cannot unnest certain queries, for instance, those involving nested 

quantifiers. Although an algebra can represent all queries in a query language, not all algebraic 

expressions necessarily have corresponding queries. Thus some equivalent algebraic 

formulations of a query have no corresponding source language expression. 

Source-to-source and calculus approaches cannot be readily interleaved with other 

transformations in algebraic optimization. One historical reason that most existing techniques 

are not algebraic is that they were developed before the emergence of rule-based optimization. 

Another reason is that unnesting transformations cannot be easily expressed in the relational 

algebra or existing object algebras. For algebraic optimizers, non-algebraic unnesting has two 

shortcomings. First, adding unnesting functionality into an existing optimizer involves 

significant work, such as implementing calculus transformations. Second, an algebraic 

optimizer needs a separate unnesting phase in order to process nested queries. However, 

interleaving unnesting and other transformation can often yield promising plans more quickly, 

especially for queries involving CVAs. Example 5.13 will show that an optimizer that performs 

unnesting between other transformations can achieve efficient expressions earlier than one that 

performs unnesting as a preparatory step. 

We remark here on the importance of finding good plans early in a cost-based algebraic 

optimizer framework such as Cascades (the basis for the current Microsoft SQL Server 

optimizer) [G95]. Unlike bottom-up optimizers, a top-down optimizer such as Cascades can use 

the cost of plans found so far to safely prune partial plans and sub-plans during the search 

process [SMBOI]. The sooner a relatively low-cost plan is discovered, the more effective the 

pruning. 



Cluet and Moerkotte [CM93] provided an algebraic unnesting technique for object queries. This 

technique, however, requires the existence of the type extents for the CVA elements to handle 

sub-queries that contain CVAs. Also the unnested results introduce predicates that contain set 

membership tests, which typically are expensive to perform. 

Steenhagen [S95] provided a set of algebraic rewriting rules for unnesting object queries, based 

on an object algebra enhanced with some new operators, such as nestjoin and marljoin. 

Unnesting queries with complex quantifiers is investigated thoroughly. In many cases, nested 

queries with CVAs cannot be unnested. For instance, the query in Example 5.1 cannot be 

unnested using the rewriting rules provided by Steenhagen, because no transformation is 

available to reduce map-like operators in the presence of CVAs. In order for Steenhagen's 

framework to handle nested queries with CVAs, some significant transformation rules, such as 

those proposed in this dissertation, need to be introduced. 

One common weakness among the existing unnesting approaches is the incapability of dealing 

with queries involving ordered, indexed collections, or collections containing duplicates. For 

object query processing, dealing with multiple collection types is an essential functionality. 

5.2 Handling Duplicates 

One advantage of the COCOUN optimizer is being able to unnest queries involving collections 

with duplicate elements. In this section, we first describe the problem in unnesting such queries, 

then present the solution. 

5.2.1 The Problem 

The classic unnesting approach is to transform a nested query into a join followed by 

aggregation [K82]. We use Example 5.2 to illustrate how the classic approach works. 

Example 5.2: Find the number of graduate courses each department offers. There are two 

collections in the database. The Depts collection stores all the departments. The 

GraduateCourses contains the graduate courses. 



SELECT ( d: D, 

cNurn: ( SELECT COUNT(*) 

FROM GraduateCourses C 

WHERE C.dept = D)) 

FROM Depts D. 

Unnesting the nested query gives the following query: 

SELECT (D, cNum: COUNT(*)) 

FROM Depts D, LEFT OUTER JOIN GraduateCourses C 

WHERE C.dept = D 

GROUP BY D 

Instead of nested-loop evaluation, the unnested query performs a join between the two tables, 

then performs the group-by operation on the join result using the department object as the 

grouping key. The number of graduate courses for each department is computed as the number 

of elements in the grouped partition for this department. Let n be the number of elements in 

Depts and GraduateCourses collections. The algorithm complexity is 0 (n * logn), in contrast to 

0 (n2), the complexity of the original nested query. Apparently, the unnested query is more 

efficient than the original query. 

' If we represent both queries in Example 5.2 in the algebraic form, we have 

- -> Xbag. <D, cNum> VD, cNum, count, I ((MD Depts~) W=c.dept=~ WG GraduateCourses~)). (5.3) 

Expression (5.1) represents the original query. Expression (5.3) represents the unnested query. 

The transformation from (5.1) to (5.2) can be captured by the map-to-join transformation rule: 

Map-to-join: R aL (xE, F S) = Vatt,ib(~), L, E, F (R I W = S). 

Here, attrib(R) represents the list of all attributes in the output of R. This transformation 

converts a map operator into a join followed by a nest operator. A map operator takes two 



operands and applies the right operand expression to each element in the left operand. The nest 

operator will use a key of the left map operand as the grouping key. 

The transformation from Expression (5.2) to (5.3) is to reduce outer-djoin into outer-join, since 

there is no correlation between the operands of outer-djoin. 

We can see that map-to-join transformation is the basic idea behind the classic unnesting 

approach [K82]. Unfortunately, map-to-join transformation does not work for some OQL 

queries. OQL supports multiple collection types. Besides sets, other types of collections such as 

bags, arrays and lists can also appear in OQL queries. An element or value can appear multiple 

times in a bag, an array, a list, or a dictionary. Note that in order for the map-to-join 

transformation to be valid, the collection R cannot contain duplicates, or the outputs of the two 

sides of the transformation will not return the same result. 

In other words, the classic unnesting approach [K82] cannot handle nested queries involving the 

new types of collections, because the presence of duplicates in such collections invalidates the 

map-to-join transformation rule. We use Example 5.3 to illustrate this problem. 

Example 5.3: Find the number of graduate courses each department offers. In contrast to 

Example 5.2, assume the collection of departments is a list, DeptList, which may contain 

duplicates - a department may appear multiple times in the list. 

SELECT (D: D, 

cNum: ( SELECT COUNT(*) 

FROM Graduatecourses C 

WHERE c.dept = d)) 

FROM DeptList D. 

The query is represented internally as 

With duplicates in DeptList, the unnesting conducted in Example 5.2 cannot be carried out, or 

the unnested query may give wrong results. If we ignore the duplicates and insist on unnesting 

the query using the map-to-join transformation, we would get the following unnested expression 

and query: 

)!,bag, <D, cNum> VD, cNum, count, I ((MD DeptList~) WZc.dept=~ @'f~ GraduateCourses~)), 



and 

SELECT (D: D, cNum: COUNT(*)) 

FROM DeptList D, GraduateCourses C 

WHERE C.dept = D 

GROUP BY D. 

The problem for this unnested query is that, when a department appears twice in DeptList, the 

query result will show twice as many graduate courses as this department actually offers. Figure 

68 and Figure 69 show the content of the DeptList and GraduateCourses collections. Figure 70 

shows the result of MD DeptListD, with the first and third rows exactly the same. Figure 71 is 

the join result between DeptList and Coureses. Figure 72 shows the final query result, which 

counts four courses for the CS department, while the actual count should be two. 

d l  : (dname: CS, head: pl)  

d2: (dname: EE, head: p2) 

d l  : (dname: CS, head: pl) 

d3: (dname: PHY, head: p3) 

Figure 68: The DeptList list 

c l  : (ctitle: DB, dept: d l )  

c2: (ctitle: VLSI, dept: d2) 

c3: (ctitle: OS, dept: dl)  

Figure 69: The Courses set 



(D: d l ,  D.dname: CS, D.head: pl) 

(D: d2, D.dname: EE, D.head: p2) 

(D: d l ,  D.dname: CS, D.head: pl)  

(D: d3, D.dname: PHY, D.head: p3) 

t 
Figure 70: The result of MD DeptListD 

( D: d l ,  D.dname: CS, D.head: pl,  C.ctitle: DB, C.dept: dl)  

(D: dl ,  D.dname: CS, D.head: pl,  C.ctitle: OS, C.dept: dl)  

(D: d2, D.dname: EE, d head: p2, C.ctitle: VLSI, C.dept: d2) 

(D: d l ,  D.dname: CS, D.head: ply C.ctitle: DB, C.dept: dl)  

@: dl ,  D.dname: CS, .D.head: pl,  C.ctitle: OS, C.dept: dl)  

Figure 71: The result of joining DeptList and Courses 

D cNum 

Figure 72: The problematic query result 

The "duplicates" problem also exists for the relational model. For instance, the project operator 

can output a stream that contains duplicates, which prevents unnesting involving that project 

operator. In fact, the problem raised in Example 5.3 is the notorious COUNT bug discovered 

first in relational query unnesting work [GW87]. However, the presence of duplicates seems to 

occur more often in the object context, where the collections that the query starts with may 

contain duplicates. 



5.2.2 The Solution 

One idea we considered for resolving the problem caused by duplicates was to add artificial 

keys in intermediate query results. We failed to end up with a clean treatment with this idea: We 

either get unpredictable schemas for intermediate results, or we lose track of the artificial keys 

right after those keys are generated. Neither case works for our optimizer framework. 

We decided to attack the "duplicates" problem by generalizing the map-to-join transformation 

to handle the presence of duplicates. The generalization is carried on as follows: 

- 
- xattri~~), L (R W a m i b ( ~ )  ((P R) a~ (XE, F S))) (5.6) 

- 
- naltrib(~), L (R watt rib(^) (~amib(p R), L, E, F . ((P R) mW= hue S))). (5.7) 

Suppose the collection R contains duplicates. We start with Expression (5.4), which is the left- 

hand expression in the map-to-join transformation rule. Expression (5.4) can be transformed 

into (5.5) by the transformation rule 

The transformation rule above holds because joining a collection Xwith the unique tuples in X 

gives X. 

Then, Expression (5.5) can be transformed into (5.6) by the transformation rule 

(X W~ Y )  a~ Z = X wp (Y a= Z), where Y binds all the fiee variables in Z. 

In Expression (5.6), the left operand of the map operator (aL) does not contain duplicates. Thus, 

we can use the original map-to-join transformation to convert (5.6) to (5.7). As a result, we have 

the following generalized map-to-join transformation, which is valid even when the collection R 

contains duplicates: 



Generalized map-to-join: 

Example 5.4: (Example 5.3 continued) Using the generalized map-to-join transformation, the 

original query can be unnested into the following expression 

(VD, cNum, count, I ((P MD DeptListD) W=c.dept-D MG GraduateCourses~))). 

Figure 73 shows the result of the unnested expression, which is computed by joining the stream 

in Figure 68 with that in Figure 71. The query result is correct. 

Figure 73: The correct query result for Example 5.3 

The idea of generalized map-to-join transformation applies to several other transformation rules 

related to query unnesting and reference materialization. We will present the generalization for 

other rules later in this chapter and in Chapter 6 .  

5.3 The Unnesting Algorithm 

Our unnesting algorithm, also summarized in Figure 74, employs three basic steps to unnest a 

nested expression: 

First, we normalize the nested expression such that the only parameterized operators in the 

normalized expression are d-join operators. In Figure 74, NormalizeRules is the set of 

transformation rules that rewrite parameterized operators into d-join and its variants. The rules 

in NormalizeRules set will be discussed shortly. The function Apply will figure out which rule 



among NormalizeRules to use for rewriting x, and then applies that rule to x and returns the 

resulting expression. 

Second, continuing from the first step, for each d-join operator that contains no other d-join in 

its operands, we apply push-down rules to push the d-join operator down through its right 

operand. In Figure 74, the function called PushDownRules is the set of transformation rules that 

implements this rewrite. The function Apply will figure out which rule to use for pushing down 

x, depending on the top operator of the right-hand operand of x. The rules in the 

PushDownRules set will be discussed shortly. 

Third, two kinds of d-join operators are reduced into non-parameterized operators. First are 

those that contain no correlation between their operands. Second are those have get operators as 

their right-hand operands. The RemovalRules set contains rules reducing those two kinds of d- 

joins. 

Repeating the second and the third steps successively will eventually yield an unnested 

expression. 



Expr Unnest(Expr aExpr): 

aExpr = Normalize(aExpr); 

WHILE aExpr contains d-join operators 

aExpr = PushDown(aExpr); 

aExpr = Removal(aExpr); 

END WHILE 

RETURN aExpr; 

Expr Normalize(Expr aExpr): 

LOOP x E {operators in aExpr} 

IF x is parameterized but not a d-join 

THEN aExpr = aExpr.Apply(NormalizeRules, x); 

END LOOP; 

RETURN aExpr; 

Expr PushDown (Expr aExpr): 

LOOP x E (d-join operators in aExpr) 

IF x contains no other d-joins in its operands 

THEN WHILE x.IsCorrelated () AND (x's right-hand operand is not a get operator) 

aExpr = aExpr.Apply (PushDownRules, x); 

END WHILE; 

END LOOP; 

RETURN aExpr; 

Expr Removal (Expr aExpr): 

LOOP x E (d-join operators in aExpr ) 

IF x.notConelated () OR (x's right-hand operand is a get operator) 

THEN aExpr = aExpr.Apply (RemovalRules, x); 

END LOOP; 

RETURN aExpr; 

Figure 74: The unnesting algorithm 



In next few sections, we will describe in detail the three steps of the unnesting algorithm, then 

show that the algorithm is complete and sound. 

5.4 Normalization 

As the first step of unnesting, normalization transforms a nested expression such that the only 

parameterized operators left in the transformed expression are d-joins. For every parameterized 

operator other than d-join, we provide at least one transformation rule to rewrite that 

parameterized operator into d-join. 

Unnesting Rule 1 (Map Normalization Rule 1): If R contains no duplicates, the following rule 

holds: 

Map Normalization Rule 1 is in fact the map-to-join rule discussed in Section 5.2. For this 

normalization rule, the lefi-hand-side and right-hand-side expressions realize the same 

semantics. The right-hand side expression performs the E operation over the expression S for 

each R element, and outputs the concatenation of R elements and the results of E operation. The 

left-hand side expression evaluates the expression S for each R element, and concatenates the R 

element with each element in the evaluation result of S. The left-hand side expression then 

performs a nesting operation using the attributes of R as the nesting key, generating the new 

attribute L. 

Function E is a conversion function. The set of conversion functions is given in Section 4.2.9 in 

Chapter 4. The following are some concrete forms for Map Normalization Rule 1 : 

a~ ( ~ u n i ~ u e , ~  S) = Vamib(R), L, unique, F (R I W= hue S) 

R a L  (xexact-one, F S) = Vattrib(R), L, exact-one, F (R I W= hue S) 

R a~ (xnth(a, i), F S) = Vamib(R), L, nth(a, i), F (R I W =  hue S) 

R CCL (~first(a). F S) = Vattrib(R). L. first(a), F (R I W= hue S) 

R a L  (xbas, F S) = Vathib(R), L, bag, F (R I W= true S) 

R a~ (xlist(a) S) = Vattrib(R), L, list(a), I (R W= hue S) 



Unnesting Rule 2 (Map Normalization Rule 2): The following rule can be used to normalize 

the map operator, even if R contains duplicates: 

a~ (XE, F S) = R watt rib(^) (vattriqp R), L. E, F ((P R) I W= true S)). 

Map Normalization Rule 2 is the generalized map-to-join rule described in Section 5.2. 

Compared to Map Normalization Rule 1, this rule uses an extra join operator and an extra 

duplicate-removal operator. Therefore, Map Normalization Rule 1 will be used whenever 

possible. 

Further, the Iw=,, I K ,  and IDp operators can be transformed into w=,, K,, D, and I w  

operators using the normalization rules given below. 

Unnesting Rule 3 (Semi-Djoin Normalization Rule): The serni-djoin operator can be 

normalized using the following rule: 

Unnesting Rule 4 (Anti-Djoin normalization): The anti-djoin operator can be normalized 

using the following rule: 

Unnesting Rule 5 (Outer-Djoin Normalization Rule 1): If R contains no duplicates, the 

following rule holds: 

Unnesting Rule 6 (Outer-Djoin Normalization Rule 2): The following rule can be used to 

normalize outer-djoin, even of R contains duplicates: 

R Iw=, S = R W=aMib(R) ((P R) I Wp S). 

Unnesting Rules 1 through 6 are also called normalization rules. In Figure 74, the 

NormaIizeRuIes set consists of these six normalization rules. 

Given Unnesting Rules 1 through 6, we can normalize any nested expression such that the only 

parameterized operators in the normalized expression are d-joins. 



Lemma 5.1: Any algebraic expression translated from an OQL statement using the scheme 

described in the proof of Lemma 4.16 can be normalized into an expression, called a 

normalized expression, where the only parameterized operators are d-join (I w,). 

Proof: In COAL, the parameterized operators beside I W, are a ~ ,  I w=,, I K,, and I b,. 

According to Lemma 4.17, Unnesting Rules 1 and 2 can rewrite all the occurrences of map 

operators (aL) into outer-djoin ( I  W=,) and some other, non-parameterized, operators. 

Unnesting Rules 5 and 6 rewrites outer-djoin (r w=,) into d-join (I w,) and outer-join. 

Normalization Rule 3 rewrites I K, into d-join and semi-join. Unnesting Rule 4 rewrites I D, 

into d-join and anti-join. Therefore a nested expression can be rewritten repeatedly using 

Unnesting Rules 1 through 6 until the only parameterized operators left are d-join ( I  W,) 

operators. w 

Lemma 5.2: A normalized expression contains at most one conversion operator, which is the 

top operator of the entire expression, if it exists. 

Proof: By Lemma 4.1 8, in an expression translated from an OQL statement using the 

translation scheme described in the proof of Lemma 4.16, a conversion operator appears either 

as the top operator for the entire expression, or appears as the top operator of the right-hand 

operand of a map operator. According to the map normalization rules, the conversion operator 

under a map operator is consumed during normalization. Thus, the lemma holds. ¤ 

In the following, we use some examples to illustrate the normalization process. 

Example 5.5: Example 4.22 continued. The expression 

has one parameterized operator, a ~ .  Using Map Normalization Rule 2, that expression can be 

rewritten into: 

Xbag. F 0 3 < ~  Vamib(F), L, count I (F I W= hue (OF = S.advisor MS S)). 

Using Outer-djoin Normalization Rule, the expression above is fbrther transformed into 



Xbag. F 0 3 < L  Vattri~F), L. count, I (F W=attrib(~) (F I W true (OF = S.advisor MS S))). 

The purpose of using outer-join (w=) instead of join (w)  is to handle the case when the sub- 

query returns zero rows. However, because of the NULL-rejecting predicate 3<L, outer-join can 

be simplified into join: 

Xbag, F 0 3 < ~  Vattrib(F), L, count, I (F watt rib(^) (F I w true (OF = S.advisor MS S))). 

Example 5.6: Example 4.23 continued. The expression 

)!,bag, F (F 1 K true (OF = %advisor MS S)). 

is transformed using Semi-Djoin Normalization Rule into 

)!,bag, F (F K a m i ~ ~ )  @ I N  hue (OF = S.advisor MS S))). 

Example 5.7: Example 4.24 continued. The expression 

)!,bag, C 0 " ~ a t a b a s e  Systemsn=L ((Mc C) CLL   element nB.btitle 0c.text = B.isbn MB B)). 

is transformed using Map Normalization Rule into 

Xbag, C 0" Database Systemsn=L vat bib(^), (L, element, I) 

Using Outer-djoin Normalization Rule, the expression above is further transformed into 

)!,bag, C Database Systemsn=L Vathib(C), L, element, I 

( ( M ~  ' C) W ' a ~ b ( ~ )  ((Mc C) I W  true (nB.btitle ' 0C.text = B.isbn MB B))). 

With the ELEMENT function, the purpose of the nest operator is to raise an exception when the 

sub-query returns more than one row. In practice, it is possible to eliminate ELEMENT by static 

analysis of declared keys. Since the predicate C.text = B.isbn is a foreign key comparison, the 

sub-query will return exactly one element. Therefore the original expression 

Xbag, C 0"~a tabase  Systemsn=L ((Mc C) CLL  element nB.btitle 0c.text = B.isbn MB B)) 



can be rewritten into 

Xbag, C (JnDatabase Systemsn=L ((Mc C) I W true (%.btitle 0c.text = B.isbn Me B)). 

We expect most ELEMENT functions in OQL queries can be eliminated by static analysis. In 

fact, the occurance of a run-time check using the nest operator suggests that there might be 

undeclared uniqueness constraints in the database, or a misunderstanding of the database's 

semantics by whoever formulated the query. 

Example 5.8: Example 4.25 continued. The expression 

Xbag, U.pname (JIS>L ((MU U) a L  (~first(S.age) 0~.advisor=U MS S))) 

can be transformed using the map normalization rule into 

Xbag, U.pname 015>L  VattriqU), L, first(S.age). I ((MU U) I W= true (us.advisoI=U MS S)). 

Using the outer-djoin normalization rule, the expression above is further transformed into 

Xbag. U.pname 015>L  Vattrib(~), L, first(S.age), I 

((MU U) W=att r ib(~)  ((MU U) I W ( ~ ~ . a c i v i s o r = ~  MS S))). 

Example 5.9: Example 4.26 continued. Using the map normalization rule, the expression 

Xbag, S 

((Ms S) I m e  (~S .GPA>L ((MD D) a~ (~exact-one o ~ . ~ ~ . a g e  MP D.AVCJGPASp)))) 

is transformed into 

Xba& S ((MS S, IK true ( O ~ . ~ ~ ~ > ~  VathiqD), L, exact-one, I 

Using the semi-djoin and outer-djoin normalization rules, the expression above is hrther 

transformed into 



Xbag. S ((Ms S) Kattrib(D) ((Ms S) I true (~S.GPA>L Vamib(D), L, exact-one, 1 

((MD D) W=att"b(~) ((MD D) I W  true (0p.@=s.age MP D.AVGGPASp))))). (5 .9)  

5.5 D-Join Push-Down 

A normalized expression consists of non-parameterized algebraic operators and possibly d-join 

operators (IM,). To unnest a normalized expression is to rewrite d-join operators using non- 

parameterized operators. 

A d-join can be reduced to join if its operands are not correlated, or if the operands are 

correlated only through a get operator in the left-hand operand. Our approach of removing a d- 

join operator is to keep pushing down that operator through its right operand until that d-join 

operator can be reduced into join. We designed a complete set of push-down transformation 

rules, to ensure that a d-join operator can always be pushed down until1 it can be reduced. In the 

following, we give the transformation rules that push down d-joins. Rules named with numbers, 

e.g., "Selection-into-D-join Rule 1" suggest the existence of other rules with the same name but 

numbered differently, e.g., "Selection-into-D-join Rule 2" (both rules are introduced below). 

Unnesting Rule 7 (Selection-into-D-Join Rule 1): The following transformation pushes down 

d-join through a selection operator. 

R IMP (o, E) = R I W,,, E. 

Unnesting Rule 7 merges a selection into a d-join. The new d-join operator contains both the 

predicate of the original d-join and that of the selection. 

Unnesting Rule 8 @-Join-through-Projection Rule 1): The following transformation pushes 

down d-join through a projection operator: 

Unnesting Rule 8 pushes a d-join down through a projection. The new projection operator 

returns both the attributes from R and the columns returned by the original projection. 



Unnesting Rule 9 @-Join-through-Materialize Rule I): Consider the expression R I w, (Ma 

S). We split the predicatep into two terms, x and y, such that p = x A y. Predicate x mentions 

certain attributes in the objects referenced by a,  but y does not mention any such attribute. In 

case that p cannot be split, one of x and y will be Boolean value true, and the other will be p 

itself. The following transformation holds: 

In particular, when x is true, the transformation becomes 

R I W,(Ma S) = Ma (R Bw, S). 

Unnesting Rule 9 pushes d-join down through materialize in two cases. In the fmt case, where 

the d-join mentions some attributes resolved by the materialize operator, the predicatep is split 

into x that mentions those attributes and y that does not. The d-join operator is split into a 

selection with predicate x and a d-join with predicate y. The selection operator remains applied 

after the materialize operator while the d-join is pushed down. In the second case, where the d- 

join does not mention attributes resolved by the materialize operator, the d-join operator can be 

pushed down without modification. 

Unnesting Rule 9 involves predicate manipulation, which rewrites the conjunction of one or 

several predicates (p) into the conjunction of another set of predicates (x and y). Suppose the 

predicate p is 

b.name = "Lee" OR @.name = "Hall" AND a.name='Zee'y. 

In the predicatep, a.name is an attribute mentioned by Ma. In the spliting result, the predicate x 

can mention a.name but y cannot. The following are predicates x and y: 

Predicate x: b.name = 'Zee" OR a.name = "Lee", 

Predicate y: b.name = "Lee" OR b.name= "Hall" 

The rewriting above is achieved by distributing the OR operation to each operand of the AND 

operation. One can verify that the conjunction of x and y, i.e., 

(b.name = "Lee" OR a.name = "Lee" ) AND ( b.name = "Lee" OR b.name= "Hall'?, 



is equivalent to the predicate p. 

Many unnesting transformation rules require predicate manipulation similar to that used in 

Unnesting Rule 9. Predicate manipulation is not a focus of this dissertation. In the discussion of 

the unnesting rules, we do not elaborate on how predicate manipulation is conducted. Rather, 

we assume a predicate manipulation mechanism is available to be used by the optimizer. 

Unnesting Rule 10 (D-Join-through-Nest Rule 1): Consider the expression R I Wp ( v K , ~ ~ ,  F 

S). We split the predicatep into two terms, x and y, as in Unnesting Rule 9. The following 

transformation holds: 

R I Wp (VK,L,E, F . S) = OX ~ a t t r i b ( ~ ) v ~ ,  L, E, F (R I My S). 

In particular, when x is true, the transformation becomes 

R I Wp (VK,L,E, F . S) = ~ a t t r i q ~ ) v ~ ,  L, E, F (R I w true S). 

Unnesting Rule 10 splits a d-join into a selection and a new d-join such that the selection 

mentions the attribute L generated by the nest operator and the new d-join does not. Thus, the 

new d-join can be pushed down through the nest operator while the selection remains to be 

applied after nest. In case that the original d-join does not mention L, that d-join operator does 

not have to be split but is directly pushed down through the nest operator. 

Unnesting Rule 11 (D-Join-through-Unnest Rule 1): Consider the expression R I W ,  

S). We split the predicatep into two terms, x and y, as in Unnesting Rule 9. The following 

transformation holds: 

In particular, when x is true, the transformation becomes 

Unnesting Rule 1 1 splits the d-join operator into a selection that does not mention the attribute a 

and a new d-join operator that mentions a. Thus the d-join can be safely pushed down through 

the unnnest operator while the selection stays in the place of the original d-join. 



Unnesting Rule 12 (D-Join-through-Duplicate-Removal Rule 1): If R contains no duplicates, 

the following transformation holds: 

RIw,(p.S)  = p * ( R I W p S ) .  

Otherwise, the following rule holds: 

IMP (P S) = R wa,,q,) (p (R I W, S)). 

When R contains no duplicates, the expresion 

(R S) 

yields the same set of records as 

R lw, (p S). 

However, the former expression may contain several occurrences of the same record. Thus, 

applying the duplication elimination operator (p) to the former expression will give unique 

output, which is the same as the latter expression. 

When R contains duplicates, the expression 

RIwp(p .S)  

and 

(P . (R IMP S)) 

yield the same set of records. However, the former expression may contain duplicates while the 

later one is duplicate-free. Joining R with the latter expression will retain duplicates, and yield 

the same result as the former expression. 

Unnesting Rule 13 @Join-through-Set-Operators Rule 1): If R contains no duplicates, the 

following transformations hold: 

Otherwise, the following transformations hold: 

R I M P  (El v E2)=R Wamiqw ((R I M P  El) V (R I W ,  E2)), 

R Imp (El n E2) = R Wamiq~) ((R I Wp El) n (R I W, E2)), 



Unnesting Rule 13 distribute d-join to the operands of set operators. Those set operators remove 

duplicate records in the output. When R contains duplicates, joining R with the result of the set 

operations restores the duplicate occurrences of R records. 

Unnesting Rule 14 (D-Join-through-Bag-Operators Rule 1): The following transformations 

push down d-join through bag operators: 

Unnesting Rule 14 distribute d-join to the operands of bag operators. Bag operators perserve 

duplicates, thus those rules hold whether or not R contains duplicates. 

Unnesting Rule 15 @-Join-through-Join Rule 1): Consider the expression R I W ,  (El wp E2). 

We rewrite the predicate p A q into two terms, x and y, such that p A q = x A y. Predicate x 

mentions only the attributes in the outputs of R and El. Predicate y may mention attributes from 

R, El and E2. In case that p A q cannot be rewriten into two terms, x or y will be Boolean value 

true, while the other will bepn q. The following transformation holds: 

The common nature of d-join push-down rules (Unnesting Rules 7 through 19) is that each rule 

reduces the size of the right-hand operand of the d-join operator. Unnesting Rule 15 has the 

same feature, even thought it generates two d-jon operators: Each generated operator has 

smaller right-hand operand than the original d-join. 

Unnesting Rule 16 (D-Join-through-Join Rule 2): Consider the expression R I W ,  (El W, E2). 

We rewrite the predicatep A q into three terms, x, y and z, such that p A q = x A y A z. Predicate 

x mentions only the attributes in the outputs of R and El. Predicate y mentions only the 

attributes from R and E2. Predicate z may mention attributes from R, El and E2. In case that p A 

q cannot be rewriten into three terms, x, y or z will be Boolean value true. The following 

transformations push down the d-join operator through the join operator: 



If R has no duplicates and neither x nor z is true, 

If R has duplicates and neither x nor z is true, 

If x is true, 

If z is true, 

Unnesting Rule 16 distribute d-join to the operands of join. Whether El, E2, or both depends on 

R determines the transformation result. For instance, when both El and E2 depend on R, the 

original d-join operator is split into two d-join operators, which join R with EI and E2 

respectively. Whether or not R contains duplicates also determine the transformation result. 

When R contains duplicates, the expression 

(R i w x  El) W y A a t t t i q ~ )  @ I Wz E2). 

will produce more records than the original expression. For instance, if r appears twice in R and 

r has corresponding records in the output, then the records correpsonding to r will appear four 

times in the output of the expresion above. Thus, we apply the duplicate elimination operator to 

one join operand of the expression above, to perserve correct numbers of occurances for those 

duplicate records. 

Note that Unnesting Rule 15 and 16 can be applicable for the same expression. In Section 5.12, 

we will address the choice of the two rules during optimization. 

Unnesting Rules 17 through 19, which distribute d-join to the operands of the variants of the 

join operator such as semi-join, are defined similarly to Unnesting Rule 16. The reason for that 

similarity is that join and its variants share some common features such as the arity (for all the 

variants) and the result schema (for outer-join). 



Unnesting Rule 17 (D-Join-through-Semi-Join Rule 1): Let x, y and z be defined from p and 

q as in Unnesting Rule 16. The following transformations hold: 

a If neither x nor z is true, 

R IWq (El K p  E2) = (R IWx El) KyAamiq~) (R E2). 

If x is true, 

R IW, (El K, E2) = El K y  (R I W ,  E2). 

I fz  is true, 

R IW, (El K p  E2)=(R IWxE1) K y  E2. 

Unnesting Rule 18 (D-Join-through-Anti-Join Rule 1): Let x, y and z be defined fkomp and q 

as in Unnesting Rule 16. The following transformations hold: 

a If neither x nor z is true, 

R I Wq (El Dp E2) = (R IWx El) D y h a m i ~ ~ )  (R 1W.z E2). 

I fx is true, 

R Iwq (El Dp E2) = El by (R I W Z  E2). 

If z is true, 

R Iwq (El D, E2) =(R I W x  El) by E2. 

Unnesting Rule 18 is defined very similarly as Unnesing Rules 17, due to the similarity between 

anti-join and semi-join. 

Unnesting Rule 19 @-Join-through-Outer-Join Rule 1): Let x, y and z be defined fromp and 

q as in Unnesting Rule 16. The following transformations hold: 

a If R has no duplicates and neither x nor z is true, 

R I Wq (El w=p E2) = (R I Wx El) W=yhattrib(R) (R IWz E2)- 

If R has duplicates and neither x nor z is true, 



Ifx is true, 

R I W ,  (El W=, E2) =El  W=y (R IW, E2). 

Ifz is true, 

Unnesting Rule 19 is defined very similarly to Unnesting Rule 16, because the difference 

between join and outer-join is transparnt to the transformations defined in Unnesting Rule 19. 

Unnesting Rule 7 through 19 are called d-joinpush-down rules. In Figure 74, the 

PushDownRules set consists of all the d-join push-down rules. 

Lemma 5.3: In a normalized expression, repeatedly apply the d-join push-down rules to a d- 

join operator that has no d-join operators in its operand expressions. Eventually, either the right- 

hand operand of that d-join operator contains no fiee variables bound to the left-hand operand, 

or the right-hand operand of that d-join operator becomes a get operator. 

Proof: The operators appearing in a normalized expression are among L = (G,, Ma, op, 

only as the top operator for the entire expression. For every operator in L except F, I Wp7 and 

G,, the unnesting rules 7 through 19 can push down d-join through that operator. For a d-join 

operator that does not contain other d-join operators in its operands, repeatedly applying the 

unnesting rules 7 through 19 will eventually makes the right-hand operand of that d-join 

become a get operator. The repeated application of the unnesting rules 7 through 19 may also 

stop when the operands of that d-join operator are no longer correlated, i.e., the right-hand 

operand has no Gee variables bound to the left-hand operand. 

5.6 D-Join Removal 

When there is no correlation between the operands of a d-join, or the right-hand operand of that 

d-join is a get operator, the d-join is ready to be reduced into non-parameterized operators, by 

the unnesting rules 20 and 2 1 below. 



Unnesting Rule 20 (D-Join-to-Join): If E contains no fiee variable bound to R, the following 

transformation holds: 

Unnesting Rule 21 (D-Join-to-Unnest): Let E be a CVA in the output of the expression R. 

According to the semantics of the COAL algebra, E can only appear as the operand of a get 

operator, in the form of G, E. The following transformation holds: 

Unnesting Rule 21 shows that a d-join operator with a CVA accessing operation (the get 

operator) as the right-hand-side operand is equivalent to an unnesting operator, which flattern 

the CVA, followed by a selection operator. According to the definitions in Section 4.2, the get 

operator and the unnesting operator has the similar semantics in handling multiple collection 

types. In particular, both operators introduce @-columns to encode ordering or indexing 

information in the collection. 

Unnesting Rule 20 and 21 are also called djoin removal rules. In Figure 74, the RemovalRules 

set consists of both d-join removal rules. 

Theorem 5.4: Any nested OQL query can be unnested into a COAL expression that contains no 

parameterized operators. 

Proof: By Lemma 5.1, the OQL query can be represented as a normalized expression. By 

Lemma 5.3, in that normalized expression, a d-join operator that does not contains other d-join 

operator can be transformed such that the operands of the d-join are not correlated or the right- 

hand operand is a get operator. Using Unnesting Rule 20 and 21, that d-join operator can be 

reduced into join or unnest. Using the same method, every d-join in that normalized expression 

can be reduced. This process should start with the lowest d-join operators and work upwards. . 
The following example illustrates d-join push-down and d-join removal processes. 



Example 5.10: Example 5.9 continued. Start with the expression 

Xbag, S ((Ms S) Kattrib(D) ((Ms S) I W  true ( ~ S . G P A > L  Vattrib(D), 1 exact-one, I 

We start with unnesting the right-most d-join operator, since it does not have any d-join 

operator in its sub-expressions. Apply Selection-into-D-Join Rule 1 to that d-join operator, 

yielding 

Xbag, S ( ( M ~  S) Kattrib(D) ( ( M ~  S) I hue ( ~ S . G P A > L  Vamib(D), L, exact-one, I 

Apply D-Join-to-Join Rule to reduce the right-most d-join into unnest, yielding 

Xbag, S ((Ms S) Kattrib(D) ((Ms S) I hue ( ~ S . G P A > L  Vatbib(D), L, exact-one, I 

Now, we start to unnest the remaining d-join. Apply Selection-into-D-Join Rule 1 to that d-join 

operator, yielding 

Xbag, S ((Ms S) Kattrib(D) ((Ms S) I S.GPA>L (vamib(D), L. exact-one, I 

((MD D) W  =attrib(D) (op.@=s.age ~D.AVGGPAS[P] (MD D)))))). 

Apply D-Join-through-Nest Rule 1 to push the d-join through the nest operator, yielding 

b a g ,  S ((Ms S) Kattrib(~) ( ~ S . G P A > L  Vamjb(S)wamib(D), L, exact-one, I ((MS S) I W 

((MD D) W = a t t r i b ( ~ )   age PD.AVGGPAS[P] MD Dl)))). 

Apply D-Join-through-Anti-DJoin Rule to push the d-join through the outer-join, yielding 



Apply Selection-into-D-Join Rule 1 to merge the d-join with the selection, yielding 

Xbag, S ( ( M ~  S) Kattrib(D) (CTS.GPA>L VatCrib(S)vattrib(D), L, exact-one, I 

which is no longer correlated. Apply D-Join-through-Outer-Join Rule 1 to reduce the d-join into 

join, yielding the unnested expression 

Xbag, S ( ( M ~  S, Kattrib(D) (~S.GPA>L Vattrib(s)vattrib(D), L, exact-one, I 

5.7 Beyond Completeness 

Theorem 5.4 states that Unnesting Rules 1 through 21 are sufficient to unnest any OQL query. 

In this section, we present some more transformation rules, which, though not essential for 

query unnesting, help generate more efficient unnesting results. Unlike Unnesting Rules 1 

through 21, the rules given below push down d-join operators past their left operands. Since 

several rules in Unnesting Rule 1 through 21 duplicate the left d-join operands during d-join 

push-down, reducing left-hand d-join operands helps mitigate the increase in expression size 

during unnesting. 

Unnesting Rule 22 (Selection-into-D-Join Rule 2): 

(o,R) I W , E  = R IW,,E. 

Unnesting Rule 22 is called "Selection-into-D-Join Rule 2", because this rule and Unnesting 

Rule 7 (called "Selection-into-D-Join Rule 1") both merge selection into d-join. The difference 

is that one rule merges the selection in the right-hand operand into the d-join, while the other 

merges the selection in the left-hand operand into the d-join. Other transformation rules 

presented in this section are named using the same logic. 



Unnesting Rule 23 (D-Join through projection 2): 

Unnesting Rule 24 @-Join through-Materialize Rule 2): Let x and y be defined fiomp as in 

Unnesting Rule 9. The following transformation holds: 

(Ma R) iw, S = ox Ma (R aw, S). 

In particular, when x is true, the transformation becomes 

Unnesting Rule 25 @-Join-through-Nest Rule 2): Let x andy be defined ffomp as in 

Unnesting Rule 10. The following transformation holds: 

In particular, when x is true, the transformation becomes 

Unnesting Rule 26 @-Join-through-Unnest Rule 2): Let x and y be defined fiomp as in 

Unnesting Rule 9. The following transformation holds: 

(pA[a] R) I Wp S = o x  PA[a] (R I My S). 

Especially, when x is true, the transformation becomes 

Unnesting Rule 27 @-Join-through-Duplicate-Removal Rule 2): If S contains no duplicates, 

the following transformation holds: 

( P ~ R )  IW,S = p e ( ~ a w , s ) .  

Otherwise, the following rule holds: 



Unnesting Rule 28 (D-Join-through-Set-Operators Rule 2): If R contains no duplicates, the 

following transformations hold: 

(El uE2) l w p R =  (El IWpR)u(E2 IwpR) ,  

(El n E2) mwpR= (El I W ~ R ) ~ ( E ~  I W ~ R ) ,  

(El - E2) IMP R = (El IMP R) - (E2 IWp R). 

Otherwise, the following transformations hold: 

(El u E2) IMP R =  ((El IMP R) u (E2 IMP R)) WamiqR) R, 

(El n E2) I W p  R = ((El IMP R) A (E2 I W p  R)) WamiqR) R, 

(El -E2) I W p R =  ((El IWpR)-(E2 IWpR)) WatbiqR)R. 

Unnesting Rule 29 @-Join-through-Bag-Operators Rule 2): The following transformations 

push down d-join through bag operators: 

(El u+E2) I W p R =  (El IWpR)u+(E2 iwpR) ,  

(El n+ E2) I Wp R = (El I wp R) n+ (E2 I wp R), 

(El -+ E2) IMP R =  (El I W p  R) -+ (E2 I wp R). 

Unnesting Rule 30 @-Join-through-Join Rule 3): Let x, y and z be defined fi-omp and q as in 

Unnesting Rule 16. The following transformations push down the d-join operator through the 

join operator: 

If R has no duplicates and neither x nor z is tme, the following transformation holds: 

(El wp E2) IWqR=(ElIWxR) ~yAa t t r i b (R)  (E2 IwzR). 

If R has duplicates and neither x nor z is true, the following transformation holds: 

(El wp E2) IWq R = (EIIW, R) Wyhattrib(~) (b I W z  (P R)). 

If x is tme, the following transformation holds: 

(El Wp EZ) I Wq R =  El My (EL I W z  R). 



If z is true, the following transformation holds: 

(El WpEZ)  I W q R = ( E I I W , R )  W y  E2. 

Unnesting Rule 31 (D-Join-through-Semi-Join Rule 2): Let x and y be defined fi-omp and q 

as in Unnesting Rule 15. 

Unnesting Rule 32 (D-Join-through-Anti-Join Rule 2): Let x and y be defined ftomp and q 

as in Unnesting Rule 15. 

Unnesting Rule 33 @-Join-through-Outer-Join Rule 2): Let x, y and z be defined fromp and 

q as in Unnesting Rule 16. The following transformations push down the d-join operator 

through the join operator: 

If R has no duplicates and neither x nor z is true, the following transformation holds: 

(El w=p E2) I Wq R = (El I Wx R) W=yAattrib(~) (E2 I Wz R). 

If R has duplicates and neither x nor z is true, the following transformation holds: 

(El W=, E2) I W s  R = (ElIWx R) M=yAattrib(~) (E2 IWz (9 R)). 

If x is true, the following transformation holds: 

(El W=, E2) I Wq R = El W=yMMiqR) (E2 I Wz R). 

If z is true, the following transformation holds: 

(El W=, E2) I Wq R = (El I W x  R) W=yAattrib(~) E2. 

Unnesting Rules 22 through 33 push down d-join operators through their left operands. The rule 

given below shuffles the two operands of a d-join operator. 

Unnesting Rule 34 @-Join Switch): Consider the expression (R Wp S) I W q  (U W, V). If U 

contains no free variable bound to S, and V contains no free variable bound to R, then the 

expression (R wp S) I w, (U wt V) is transformed as follows: 



Rewrite the predicatep A q A t into x A y A z. Predicate x is either the Boolean value 

true or a predicate that mentions only the variables bound in R and U. Predicate z is 

either the Boolean value true or a predicate that mentions only the variables bound in S 

and V. Predicate y is either Boolean value true, or a predicate that mentions any 

variables in R, S U and V. The following transformation holds: 

The d-join switch rule, if applicable, makes unnesting more efficient - unesting will take fewer 

transformation steps than using only Unnesting Rules 1 through 33. 

With Unnesting Rules 1 through 21, the unnesting algorithm is complete and deterministic. 

With additional transformation rules, Unnesting Rules 22 through 34, the unnesting algorithm is 

potentially exponential. We propose unnesting strategies that prevent the umesting process 

from growing exponentially as those additional rules are introduced. Those strategies will be 

discussed in Section 5.1 I .  

5.8 Soundness 

One advantage of algebraic unnesting is that the correctness of the unnesting algorithm can be 

formally verified. We proved the soundness of the Unnesting Rules 1 through 34 using set- 

theoretic reasoning. Below, we present a sample proof conducted for Unnesting Rule 6. 

Unnesting Rule 6 (Outer-DJoin Normalization): 

Proof: We prove this transformation rule by reducing the expression 

into 

R rw=, s 

using set-theoretic reasoning: 



=> (By Definition 4.7) 

{r ++ null (S) I r t R, {XI x t ((p R) t W, S) , r.attrib(R) = x.attrib(R)) = 0 ) .  

=> (Definitions 4.5 and 4.1 3) 

{r ++ s I r t R, w t p R, s t  S, p(w, s), r.attrib(R) = w.attrib(R)) us 

{r ++ null (S) I r t R ,  {x I x t {  Y ++ s I Y t p R, s t S ,  p(y, s)), 

r.attrib(R) = x.attrib(R)) = 0 ) .  

=> (Remove x) 

{r ++ s I r t R, w t p R, s t  S, p(w, s), r.attrib(R) = w.attrib(R)) u s  

{r ++ null (S) I r t R, { y ++ s I y t p R, s t S ,  p(y, s), r.attrib(R) = y.attrib(R)) = 0). 

=> (By Definition 4.1 1) 

{r ++ s I r t R, w t p R, s t  S, p(w, s), r.attrib(R) = w.attrib(R)) u s  

{r ++ null (S) I r t R ,  (y ++ s I y t {z/@ I z t R),t, s t S, p(y, s), 

r.attrib(R) = y.attrib(R)} = 0 )  

=> (Substitute for y) 

{r ++ s I r t R, w t p R, s t  S, p(w, s), r.attrib(R) = w.attrib(R)) us 

(r ++ null (S) I r t R ,  {z / @ ++ s I z t R, s t S ,  p(z, s), r.attrib(R) = z.attrib(R)),, = 0) 

=> (By Definition 4.13) 

R 1 w P S u s  

(r ++ null (S) ( r t R ,  {z / @ ++ s 1 z t R, s t S ,  p(z, s), r.attrib(R) = ~.attrib(R)),,~= 0 ) 



=> (Remove y) 

{r ++ null (S) I z t  R, {s ( s t S, p(z, s)) = 0) 

=> (By Definition 4.14) 

5.9 Transformation Advantages 

In this section, we compare our unnesting approach with the existing approaches in terms of 

transformation efficiency and the quality of unnested expressions. First, we use magic 

decorrelation [SPL96] as example to show that many existing unnesting techniques can be 

expressed using our algebraic unnesting framework. Then we contrast our unnesting approach 

and the existing ones in terms of completeness and efficiency. Finally, we show that adding our 

unnesting transformations improves the plan space of an existing algebra-based optimizer. 

5.9.1 Magic Decorrelation as an Application 

Magic Decorrelation [SPL96] considers correlated sub-queries as parametric queries and 

decorrelates them by joining them with a magic set (a set of possible values for a parameter). 

Decorrelation rewriting is conducted using the query graph model (QGM). Other unnesting 

techniques such as Kim's, Ganski and Wong's, and Dayal's are special cases of Magic 

Decorrelation [SPL98]. Magic Decorrelation is implemented in the optimizer of IBM's DB2 

Universal Database system. Due to incompatibility with the DB2 optimizer framework, Magic 

Decorrelation has to be implemented as a rewriting component separate from the optimizer. 

Below, we illustrate Magic Decorrelation using Example 5.1 1, an example drawn from the 

original Magic Decorrelation paper [SPL96]. 



Example 5.1 1: Find young employees who earn above average salaries among employees with 

the same manager. 

SELECT E 

FROM Emps AS E 

WHERE (E.age < 30) AND (E.sal > ( SELECT AVG (S.sal) 

FROM Emps AS S 

WHERE E.manager = S .manager))). 

For the query above, the correlation parameter in the sub-query is E.rnanager. The magic set for 

that sub-query is the set of possible values of E.manager. 

Using Kim's or Cluet and Moerkotte's approach, the query above will be unnested into 

Realizing that the sub-expression (vs.manager,a,avg,~.sal MS S) may compute average salary for 

groups that do not even have young employees, the Magic Decorrelation approach will unnest 

the query into a more efficient form: 

The result of the sub-expression (p nE.rnanager D ~ . ~ ~ ~ c 3 0  ME E) is the magic set [BR91], the 

set of managers that have some young employees. The advantage of Expression (5.11.2) is that 

it computes the average salary for a department only when necessary. The fewer departments 

with young employees, the more performance advantage Expression (5.1 1.2) has over (5.1 1.1). 

Magic Decorrelation can be implemented in our unnesting framework. Implementing Magic 

Decorrelation in an algebraic fashion, rather than as a separate module, will allow for easier 

implementation and for its participation in extensive costing and search space exploration for 

cost-based optimization. To realize Magic Decorrelation, we introduce a new transformation 

rule called the magic rule: 



The Magic Rule: R Iw,  S = Xattr ib(~)u  attib(S) (R w ~ = ~  ((p na R) I wp S)). 

In the magic rule, a is the attribute via which S depends on R. This rule generates the magic set 

(p na R). Further transformations, which typically are part of query optimization, will 

relocate the magic set to the most beneficial place. Applying the magic rule to Expression 

( 5 . 1  1.1) yields 

xbag, E ((0E.age<30 E) WE.manager=E.manager ((P nE.manager (J!2.age<30 ME E) I wE.sal>a 

 manager, a, avg, S.sal o~.rnanager=S.mana~er MS S))). 

Pulling up the nest operator past the d-join operator yields 

Xbag, E ( u ~ . a g e < 3 0  ' ME E) WE.manager=~.manager (v(E.rnanager, S.rnanager), a, avg, S.sal 

((P ' xE.rnanager 0 E.age<30 ME E) I W~.sal>ahE.mana~er=~.rnanager ' MS S)). 

Reducing the d-join operator in the expression above into the join operator essentially gives 

Expression (5.1 1.2). 

5.9.2 Completeness and Efficiency 

In this section, we show that our unnesting approach outperforms the existing unnesting 

approaches in completeness, and often in efficiency as well. 
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Figure 75: Contrasting the algebraic unnesting techniques 

Figure 75 compares the range of queries that our approach and the other two algebraic 

approaches handle. Figure 76 and Figure 77 indicate the number of transformation steps that our 
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approach and other approaches take to derive the same unnested expressions. In those figures, 

WMS stands for our approach, CM for Cluet and Moerkotte's, Steen for Steenhagen's. 

Four types of queries are considered: Types J, JA, J-CVA, and JA-CVA. Types J and JA 

[CM93] are nested queries that have an inner block depending on the outer block. In Type J, the 

inner block returns a set. In Type JA, the inner block returns a single element. Type J-CVA 

(Type JA-CVA) is the same as Type J (Type JA) except that the inner block mentions some 

CVAs of the collections that belong to the outer block. For Types J-CVA and JA-CVA, as 

mentioned in Section 5.1, Cluet and Moerkotte's approach cannot unnest queries of either type, 

when appropriate type extents are not available. Steenhagen's approach cannot handle these 

types either, for lack of appropriate transformation rules. 

WMS Magic 

Example 5.1 1 

Query ( 1 ) 

Query (2) 

Query (3) 

Figure 76: WMS vs. Magic Decorrelation 
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Figure 77: WMS vs. Fegaras 

Figure 76 indicates the number of transformation steps that our approach and Magic 

Decorrelation take to unnest a query. Example 5.1 1 is from this dissertation. Queries (I), (2) 

and (3) are drawn from the original paper on Magic Decorrelation [SPL96]. In general, Magic 



Decorrelation takes more transformation steps than our approach, especially when the inner 

blocks have aggregations. Each aggregation block in a QGM graph requires at least three 

transformation steps to decorrelate, while in algebraic unnesting, a nest operator can be 

decorrelated with one transformation (pushing down d-join through nest). 

Figure 77 contrasts the number of transformation steps that our approach and Fegaras's 

approach [F98] take to derive the same umested expressions. All four queries are from this 

dissertation. Example 5.12 is shown below. The two approaches yield the same unnested results 

between some queries, for instance, Example 5.1 and 5.1 1. However, the unnested results can 

be different, for instance, between queries in Examples 5.1 and 5.12. We notice that our 

approach often yields more efficient expressions, especially, for queries that contain multiple 

CVAs in the sub-queries. Therefore, to derive the same efficient unnested expressions for such 

queries, Fegaras's approach requires more steps, as illustrated by Example 5.12. 

Example 5.12: For each department, find the professors who advise no old students. 

SELECT (D, F: (SELECT F 

FROM D.Faculty AS F 

WHERE NOT EXISTS S IN d.Majors: 

(S.advisor=F.name) AND (S.age>30))) 

FROM Depts AS D. 

Fegaras's algorithm takes five steps to unnest this query into 

where the operator r, defined in Fegaras's original paper [F98], is a generalized relational 

grouping operator that allows comprehension accumulators such as disjunction (A), and set 

union (u) to be applied to grouped elements. Our unnesting algorithm takes five steps to umest 

the query into a different expression 

b a g ,  <D,F> Vd, F, Id, F (WF PD.~acully[F] MD D) DD=D A F.name=S.advisor 



Expression (5.12.2) is likely more efficient than (5.12. l), due to smaller intermediate results. It 

would take Fegaras's approach four steps to rewrite (5.12.2) into (5.1 2.1): Transforming DeptsD 

into (DeptsD W DeptsD,), pushing down the two unnest operators respectively, and finally 

combining r and w into D . 

5.9.3 Integration Advantages 

Algebraic unnesting can be perfonned together with other transformations in an algebraic 

optimizer. In certain cases, such as Example 5.13, interleaving unnesting and other 

transformations yields efficient expressions earlier than performing them separately. 

Example 5.13: The following query returns triples of a high school, a college, and a university, 

where there are some graduates of the high school who entered the college, and some graduates 

of the college who went to the university. 

SELECT S, C, U 

FROM Schools AS S, Colleges AS C, Universities AS U 

WHERE EXISTS ( SELECT * 
FROM S.Graduates AS GI, C.Majors AS Sl 

WHERE G l  .ssn = S 1 .ssn ) 

AND EXISTS ( SELECT * 
FROM C.Graduates AS G2, U.Majors AS S2 

WHERE G2.ssn = S2.ssn) 

Using the COAL algebra, this query is initially represented as the expression below. For 

brevity, we use P to stand for predicate GI.ssn=Sl.ssn and Q to represent G2.ssn=S2.ssn. 

Before our unnesting transformation is applied, the two semi-djoin operators could be reordered 

using the communitivity rule (R B K S) I K T = (R I P< T) I P< S: 



Xbag. <S.C, U> ((((Ms S) W (Mc C) W (MU U)) 1 D( 

The purpose of this transformation is to produce evaluation algorithms that perform the more 

restrictive semi-djoin first, to give smaller intermediate results, leading to better performance. 

The query can then be unnested using our unnesting algorithm into: 

Expression (5.13.3) is optimal, assuming that, in the original expression, the second semi-djoin 

is more restrictive than the first one. Without interleaving unnesting with other transformations, 

a traditional optimizer [F98] will probably first unnest the query into Expression (5.13.4) below, 

then perform further transfonnations and planning. 

Xbag, 4 , C .  U s  (JQ MG2 k.G[G2]  Ms2 Pu.s[s~] OP MSI ~ . s [ s I ]  MGI ~ ~ . G [ G I ]  

The preferred expression (5.13.3) can be derived eventually from (5.13.4), but with many more 

steps of transformation. Here is a possible transformation process: All the unnest operators are 

pushed down to the bottom of the expression tree; both selections are pushed down and merged 

into joins; joins are reordered; the unnest operator, p~.s[sl], is pulled up. 

Example 5.13 shows that integrating unnesting with other transformations can potentially 

improve the search process by generating good expressions earlier. 

5.10 Plan Space Improvement 

As we observed at the beginning of this chapter, adding unnesting functionality into a query 

optimizer should improve the search space. An unnesting technique should allow an optimizer 

to find the best evaluation algorithm, no matter whether a nested query is optimally evaluated in 

its original form, a partially unnested form or fully unnested form. Unnesting approaches that 

are not based on algebra perform unnesting before the traditional optimization process is 



invoked, because queries are represented differently during unnesting and optimization. Our 

approach is unique in that, when used in an algebra-based optimizer, unnesting transformations 

can be interwoven with other transformations. The close interaction between unnesting and 

other transfo'mations of an algebra-based optimizer may bring significant improvement over 

the original plan space of the optimizer. Such improvement cannot be achieved by non-algebra- 

based unnesting techniques. We support our observation with two arguments: 

Initial Expressions: Most existing unnesting approaches assume that unnesting is 

performed before optimization. The optimizer accepts the unnested result as the 

initial expression. Our approach provides the optimizer (with unnesting capability) 

with the original user query, avoiding losing the information that is present in the 

original query and may be useful for optimization. 

Hybrid execution plans: Our unnesting approach allows the optimizer to generate 

execution plans that are partially unnested, which may prove to be optimal. 

The remaining discussion in this section further elaborates the two arguments above. 

5.1 0.1 Initial Expressions 

In many cases, unnesting achieves evaluation plans better than the original nested query in 

terms of evaluation performance [K82]. However, as will be illustrated in Example 5.14, 

unnesting may yield less efficient plans than the original nested query, which means that an 

optimizer with unnesting as a separate pre-processing step will be provided an inefficient initial 

expression as input. Ideally, an optimizer would be able to produce the same optimal plan 

regardless of the initial expression. However, in practice, due to lack of complete 

transformation, some inefficiencies in the expression may remain. The reason is that a nested 

query may contain semantic information that is difficult for an optimizer to regain from the 

unnested form of that query. Example 5.14 illustrates that unnesting may produce common sub- 

expressions in its output. Suppose the input query does have a best plan that does not contain 

common sub-expressions. An optimizer that cannot eliminate common sub-expressions will not 

be able to come up with that best plan. 



Example 5.14: The following query returns the departments with professors advising some 

older students. 

SELECT D 

FROM DEPTS AS D 

WHERE EXISTS ( SELECT * 
FROM D.Faculty AS F, D.Majors AS S 

WHERE F.name = S .advisor AND S.age>30). 

Assume that an unnesting algorithm unnests the query above into the following expression: 

Expression (5.14.1) contains the common sub-expression (~D,Majors[Sl MD D). Accepting 

Expression (5.14.1) as input, an optimizer may apply selection push-down to restrict the right- 

hand anti-join operand, which yields the best plan that can be found for that input expression. 

Let us examine the following expression that also represents the query above. 

There are circumstances when Expression (5.14.2) outperforms Expression (5.14.1). For 

instance, when os.Age>30 is very restrictive, fewer faculty member objects will be fetched by 

Expression (5.14.2). However, for an optimizer that is not capable of recognizing common sub- 

expressions, or transforming common sub-expressions, join and unnest operators into 

successive unnest operators, it is impossible to derive Expression (5.14.2), a potentially optimal 

plan, from Expression (5.14.1), the initial expression produced by unnesting. 

One way to mitigate the problem of an inefficient initial unnested expression is for the 

unnesting phase to provide several initial expressions to the optimizer, for instance, both 

Expressions (5.14.1) and (5.14.2). This approach, however, requires that the unnesting phase 

generate and keep track of alternative unnested expressions, a capability calling for nontrivial 

modification of the unnesting algorithm. The approach may also cause duplicated search in the 

optimizer, if it can transform one initial expressin to another. 



5.10.2 Hybrid Execution Plans 

Traditional query processors search among candidate plans that consist of relational operators 

such as nested-loops join, indexed nested-loops join and hash projection. We call such a plan 

space the relationalplan space. Traditional query processors unnest a nested query into a 

relational algebraic expression and search for the best plan within the relational plan space. 

Note that the best plan may not be optimal in a larger sense, because unnesting is not always 

beneficial. Some nested queries are more efficient when evaluated in their original forms or 

certain partially unnested forms. Therefore, an optimizer that processes nested queries should 

generate plans consisting of both relational and parameterized operators such as map and d-join, 

which gives the hybridplan space that includes both nested and relational plans. A nestedplan 

is an evaluation plan that contains parameterized physical operators. 

However, the source-source and calculus-based unnesting techniques cannot take advantage of 

an enlarged plan space that incorporates nested plans. When used in algebraic optimization, 

these unnesting approaches require that unnesting be separated from algebraic transformation: 

The unnesting step flattens a nested query into a relational expression and feeds the expression 

into the optimizer as input. Since, currently, there is no technology for an optimizer to generate 

nested expressions from relational ones, the optimization step will only consider relational 

candidate plans, thus may yield a sub-optimal plan. 

The COCOUN optimizer supports the hybrid plan space by incorporating unnesting into the 

optimization process. We have added all the unnesting transformation rules in the COCOUN 

optimizer. These rules are applied in the COCOUN optimizer just like other transformation 

rules such as join reordering and group-by migration. Unnesting is part of the search effort. We 

provide comprehensive unnesting rules to cover all the favorable unnested expressions that may 

lead to an optimal plan. For Example 5.14, we can generate both Expression (5.14.1) and 

(5.14.2) as alternative expressions using semi-djoin normalization and d-join removal rules. In 

case that there are unnested expressions not covered by the current unnesting rules, adding new 

rules to generate such expressions is usually a straightforward task. Section 5.9 uses a particular 

unnesting algorithm, Magic Decorrelation, to demonstrate that our unnesting approach 

subsumes most existing unnesting algorithms and is capable of incorporating these algorithms 

into algebraic optimization. 

The candidate plans we considered include the plans derived from the original expression, 

partially unnested expressions and fully unnested expressions, for the reasons argued 



previously. The following example shows that the optimal plan for a nested query, depending 

on different database statistics, could be either a relational plan or a nested one, both of which 

the COCOUN optimizer can generate. Our analysis in this example uses a cost model that will 

be discussed in detail later in this dissertation. 

Example 5.15: Return the departments that have neither Spanish students nor Spanish 

professors. We will look at the query under different physical organization of the data. 

SELECT D 

FROM Depts AS D 

WHERE NOT EXISTS (SELECT * 
FROM D.Majors AS S 

WHERE S.nationality="SpainW) AND 

NOT EXISTS (SELECT * 
FROM D.Faculty AS F 

WHERE F.nationality="Spain"). 

The original expression for this query is 
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Figure 78: Some plan space statistics for Example 5.15 

Figure 78(a) shows the estimated costs of all the candidate plans when the CVA elements are 

clustered with the parents. The Depts collection has 100 objects. Each department has 80 

students and 20 faculty members. The 200 plans are depicted in the order of increasing 

estimated costs. The plans are generated using the COCOUN optimizer that applies the 

unnesting transformation rules during optimization. The costs are computed using the cost 

model described in Chapter 8. Figure 78(b) indicates the type of the each candidate plan in 

Figure 78(a), with the top points standing for fully nested plans, the middle points standing for 



partially unnested plans, and the bottom points standing for unnested plans. The optimal plan is, 

as shown, a nested plan. The logical counterpart of the optimal plan is 

Xbag, D (DD I D true ( ~ ~ . n a t i o n a l i t y = s ~ a i n  MF D.Faculty~)) I D  

Expression (5.1 5.2) is derived from the original expression by reordering the two anti-djoin 

operators. 

Figure 79: D.Majors cIustered with department objects. D.Faculty randomly distributed 
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Figure 79 shows the estimated costs of the candidate plans when the elements of CVA 

D.Majors, are in parent clustering, and the elements of CVA D.Faculty are randomly distributed 

on disk. The optimal plan is the following partially u ~ e s t e d  plan. 

Xbag. D (D ID true (o~.nationality=~pain MD D.MajOrs~)) D ~ = ~  

Figure 80: Both CVAs D.Majors and D.Faculty randomly distributed 
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Figure 80 shows the estimated costs of the candidate plans when the elements of both CVAs 

D.Majors and D.Faculty are randomly distributed on disk. The logical counterpart of the 

optimal plan is the fully unnested plan: 

In this series of examples, the clustering property is what determines the optimal plan. We see 

that, depending on the clustering property, the estimated optimal plan can be nested, partially 

nested or fully unnested. Thus there is value in considering all three kinds of plans and choosing 

one based on cost model estimates, which take into account clustering, as well as other data 

properties, such as cardinalities. 

Even though unnesting does not necessarily lead to good plans, it does in many cases. 

Nevertheless, in the relational context, unnesting is usually a good practice. Is it the same case 

for CVA queries? What are the chances that a CVA is best evaluated in its unnested form? We 

believe that unnesting is still an important technique for CVA query processing. However, 

compared to SQL queries, there is higher possibility that a nested CVA query is best evaluated 

in some nested form. For SQL queries, unnesting queries has two potential advantages: 

reducing random disk accesses and reducing algorithm complexity, because various join 

algorithms, substituting for sub-queries during unnesting, can access data on disk efficiently and 

ofien be computed in linear time. For CVA queries, both advantages of unnesting seem to be 

compromised. First, disk access reordering is not as flexible as in the relational context. CVA 

elements have to be fetched after their parent objects. Second, the computational complexity of 

a CVA sub-query is linear in the number of all the CVA elements participating in the sub-query. 

Unnesting a sub-query that contains CVAs in its FROM clause may not gain any advantage in 

terms of CPU time. In addition, unnesting a sub-query into a join may incur some overhead. For 

instance, a map operator can be unnested into an outer-djoin operator and a nest operator. Both 

outer-djoin and nest operators can be more expensive to execute than the original map operators 

in certain circumstances. 



Example 5.16: We use the following generic query to compare the computational advantage of 

unnesting versus not unnesting: 

SELECT (r, C: COUNT ( SELECT * 
FROM r.A AS a, B AS b 

P(a,b))) 

FROM R AS r. 

The sub-query contains a CVA A and base collection B in the FROM clause. Let M and N be the 

cardinalities of R and B. Let m be the cardinality of CVA A instances (assume they are 

uniform). Let e be the selectivity of the predicate of the sub-query. Let T be the ratio between 

the CPU time of computing the query above in the nested form and that of computing it using 

an unnested form. The value of T can be computed as follows, assuming join and nest are 

evaluated using hash algorithms: 

Special Cases T 

Figure 81: Performance comparison between unested and nested query form 

T - the ratio of CPU time, unnested vs. nested, 

M - the cardinality of R, 

N - the cardinality of B, 

m - the cardinality of CVA A, 

e - the selectivity. 

Figure 81 lists four special cases for T, with m as 1, and N equal to 1, m and M. In Case 1, the 

sub-query contains only the base collection in the FROM clause. Therefore, unnesting is 

favorable as long as the selectivity is higher than 1. In Case 2, the sub-query contains only one 

CVA in the FROM clause. In this case, T is approximated as (I +el, which means unnesting is 



not beneficial. In Case 3, T is (1 +m*e)/2, which means that unnesting starts to pay off only 

when the sub-query is as restrictive as l/m. In Case 4, T is approximated as (I+M*e)/(I +M/m), 

which implies the same conclusion as Case 3. This analysis applies to deeply nested sub-queries 

as well. 

To some extent, Example 5.16 shows that unnesting is not beneficial in many cases. Note that 

we take into account only CPU costs when computing 7'. Thus the analysis reflects the overall 

advantage of unnesting over not unnesting only to a limited extent. 

Our treatment of unnesting in CVA query optimization is motivated by the observation that the 

optimal plan for a nested query is not necessarily an unnested one. Our unnesting technique 

allows an optimizer to consider both the unnested forms of a nested query and its nested forms 

including the original query and its partially unnested forms. A related observation is that a flat 

query may be also best evaluated in a nested form [GOO]. Therefore an ideal search space for 

flat queries should also cover nested plans. This issue remains an interesting topic for future 

work. 

5.11 Unnesting in COCOUN 

A nested expression usually has many different equivalent unnested forms. Various unnesting 

approaches differ in unnesting processes and result expressions. Therefore, the criteria for good 

unnesting algorithms includes both the efficiency of the unnesting process and the quality of the 

unnested expression. In this section, we focus on the efficiency of the unnesting process. 

The COCOUN optimizer implements the unnesting transformation rules and the unnesting 

algorithm presented in the previous sections. COCOUN generates both unnested and partially 

unnested plans such that the optimizer can also output a partially unnested plan as the optimal if 

that plan turn out to be more efficient than the others. The implementation of unnesting involves 

five major tasks: 

Implement classes to represent the operators in the COAL algebra. 

Implement a parser to parse OQL queries into COAL algebraic expressions. 

Add the transformation rules used in our unnesting algorithm, i.e., the rules 

mentioned in Sections 5.4, 5.5. 5.6 and 5.9. 



Implement the physical algebra, i.e., the algorithms for COAL operators, and the 

cost model for the physical algebra. 

Modify the search algorithm of Cascades and Columbia (the ancestors of 

COCOUN) to include unnesting in the search process. 

It is possible to avoid modifying the search algorithm of Cascades and Columbia and just let the 

search engine apply the unnesting transformation rules as it does the existing transformation 

rules. However, due to the large number of the unnesting rules relative to the existing rules, the 

search engine takes much more time to process a query with unnesting rules added than without 

unnesting rules added. 

Consider one of our initial experiments as an example. We attempted to add the unnesting 

feature into the Columbia optimizer framework by adding a set of transformation rules that 

perform unnesting. After adding those transformation rules, the optimization process of 

Columbia became unacceptably slow. The reason is that the new transformation rules generate 

too many alternative expressions. Therefore, adding the unnesting transformation rules and 

letting the search engine apply those rules along with the existing rules is not a feasible strategy. 

Careful engineering is required for smooth integration of unnesting into our framework. This 

section presents the search strategies of the COCOUN optimizer, which performs both 

traditional optimization tasks, such as join reordering, as well as unnesting tasks. We first 

review the search strategies of Cascades and Columbia. Then, we discuss how we adapt those 

strategies to accomplish efficient unnesting and optimization. 

5.1 1.1 Search Strategies in Cascades 

We use the COCOUN optimizer as a test-bed for our unnesting approach. Since COCOUN is a 

descendant of the Cascades and Columbia optimizer frameworks, the following discussion 

assumes some knowledge on Cascades' memo structures and search algorithms, presented in 

Chapter 1. We reproduce Figure 9 and Figure 10 in Figure 82 and Figure 83. Cascades 

represents its search space as a memo structure and employs a dynamic programming technique 

to explore the search space. The search space is a recursive structure consisting of groups and 

multi-expressions. 



Group 0: o(l), FILTER(l), INDEX-FILTER(1) 

Grow 1: w (2. 31. cu (3.21. HASH JOIN(2.31. HASH JOIN(3.2) 

Group 2: Get ("Depts"), FILE-SCAN("Depts") 

Group 3: Get ("Students"), FILE-SCAN("Students") 

Figure 82: A sample memo structure 

Groups and multi-expressions are transformed via tasks called E-GROUP (Exploring Group), 

0-GROUP (Optimizing Group), E-EXPR (Exploring Multi-expression), 0-EXPR (Optimizing 

Multi-expression), 0-INPUTS (Optimizing Input Groups) and APPLY-RULE (applying a rule 

to a multi-expression). There are three kinds of tasks: exploring tasks (E-GROUP and 

E-EXPR), optimizing tasks (0-GROUP, 0-EXPR, and 0-INPUTS), and applying tasks 

(APPLY - RULE). An exploring or optimizing task consists of one or several APPLY-RULE 

tasks. Exploring is transforming a group or multi-expression in an attempt to generate some 

specific pattern used for certain target transformations. Optimizing is finding the best plans for 

groups or multi-expressions. 



Figure 83: Optimization tasks in Cascades 

Applying a rule to a multi-expression will result in one or more new multi-expressions. These 

newly generated multi-expressions as well as their input groups may be further transformed. 

Cascades realizes this end by issuing 0-EXPR tasks on the newly generated multi-expressions. 

The 0-EXPR tasks in turn initiate APPLY-RULE tasks for the same multi-expressions. A sub- 

expression of these multi-expressions will be explored or optimized in two cases: when some 

rules on the top node need to match a operator at the sub-expression level (via E-GROUP 

tasks), and when the top node is transformed into a physical operator (via an 0-INPUTS task). 
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The advantage of the Cascades search strategy is that a group is explored only when it 

participates in logical transformation [G95]. Also, a group is optimized only when its parent 

operator has an implementation. The feature of not optimizing input groups of pure logical 

operators (that is, logical operators with no corresponding physical counterparts yet), favors an 

optimizer that permits pure logical operators. In fact, our CVA query optimizer allows a user to 

specify operators such as map and d-join as pure logical if desired, to exclude nested plans from 

the search space. In this case, not optimizing the input groups of those pure logical operators 

can save much search effort. As another application of that feature, if an optimizer does not 

implement Cartesian products (joins with no predicates), then an input group of a Cartesian 

Product might not be optimized. 
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5.1 1.2 Unnesting in COCOUN 

As we mentioned before, one problem we encountered during COCOUN implementation is 

that, when we tried to add the unnesting rules into the Columbia search engine without changing 

the search algorithms, the search space exploded. One factor contributing to that problem is the 

large number of unnesting rules. Another factor is that, for unnesting purpose, join reordering 

has to accommodate Cartesian products. Join reordering with Cartesian products has high 

complexity. Traditional optimizers usually avoid Cartesian products during optimization 

[OLSS]. However, in our approach, unnesting tends to produce d-joins with no predicates as a 

result of d-join push-down. Such d-joins become Cartesian products when reduced to joins. 

The other factor contributing to search space explosion is proliferation of common sub- 

expressions introduced by many of the unnesting rules. For instance, pushing down a d-join 

through a join may result in duplicating the left d-join operand. The unnesting rules that push 

down d-join through semi-join, anti-join and outer-join also tend to produce common sub- 

expressions. Generating common sub-expressions during optimization increases expression 

size, thus causing a dramatic increase in optimization effort. We use the following example to 

illustrate the common sub-expression problem. 

Example 5.17: The following query returns tuples of schools and departments, such that the 

department in a tuple has at least a professor and a student who both graduated from the school 

in that same tuple. 

SELECT STRUCT (D: D, C: C) 

FROM UNIVERSITIES AS U, DEPTS AS D 

WHERE EXISTS ( SELECT * 
FROM D.Faculty AS F, D.Majors AS S 

WHERE ( F.name=S.advisor AND 

F.alma-mater=U.name AND 

S .aha-mate~U.name)) 

The query can be represented as the following expression. For simplicity, the attributes F.name, 

S.advisor, F.aEma-muter, Uname, and S.alma-muter are abbreviated as F.n, S.d, F.a, U.n, and 

S.a. 



After semi-djoin normalization, we have 

Xbag, D (((MU U) (MD* D)) Kattrib(LJ)~atl&(D) 

(((MU U) w (MD* D)) I W  ((MF D.F) W ~ . n = S . d ~ F . a = U . n A s . a = ~ . n  (Ms D-S)))). (5.17-1) 

Using Unnesting Rule 15, Expression (5.17.1) will be eventually unnested into 

Expression (5.17.2) is derived with no common sub-expression introduced during d-join push- 

down. 

Unnesting Rules 30 and 16, if applied to Expression (5.17.1) successively, will eventually give 

the unnesting expression . 

Unnesting Rule 16 introduces a common sub-expression, MD D, in Expression (5.17.3). 

However, Expression (5.17.3) is likely more efficient than (5.1 7.2), due to smaller intermediate 

result. 

However, applying Unnesting Rule 16 also produces the unnested expression: 

Unnesting Rule 16 introduces the common sub-expression (MU U) W  (MD D) into 

Expression (5.1 7.4), which contains more join operator than (5.17.3). The subsequent 

transformation following Expression (5.17.4) has to deal with more equivalent expressions than 

the transformations following Expression (5.17.2) and (5.17.3). 

Using the statistics on the optimization process for Example 5.17, the first and second rows of 

Figure 84 show the tradeoff between enabling and disabling unnesting rules that produce 



common sub-expressions. On one hand, allowing such rules increases the search effort 

dramatically. On the other hand, it also increases the chance of finding better plans. (The third 

row in Figure 84 is used for later discussion.) 

Figure 84: The impact of unnesting rules that generate common sub-expressions 

The reason why one has to deal with the rules that introduce common sub-expressions is two 

fold. First, some rules introducing common sub-expressions are essential for unnesting OQL 

queries, for instance, those unnesting rules dealing with anti-join and semi-djoin. Second, some 

rules help in generating efficient plans. For instance, either Unnesting Rule 15 or 16 is sufficient 

for unnesting purposes. Both are included because they generate better candidate expressions 

under different circumstances. Another example rule that helps in generating efficient plans is 

Unnesting Rule 30, which reduces the left operand of a d-join operator. 
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We use the example above to illustrate how the rules introducing common sub-expressions 

affect the search space. In Cascades, an 0-EXPR or E-EXPR task successively applies the 

feasible rules to a multi-expression. For each newly generated multi-expression, a new E-EXPR 

or 0-EXPR task is pushed into the task stack for later invocation. The E-EXPR or 0-EXPR 

task in turn will try to match and fire all the possible rules on the new multi-expression. Figure 

85 illustrates the pseudo-code for an E-EXPR task. 
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E-EXPR (MEXPR mExpr): 

1 Find all the rules that match the top operator of mExpr. Let T-RULES be the 

list of matched rules. 

2 Sort T-RULES in the ascending order of the promise of the rules 

3 For each rule aRule in T-RULES 

4 Push APPLY-RULE(aRule, mExpr) onto the task stack 

(a) The E-EXPR task 

APPLY-RULE(Ru1e aRule, Mexpr rnExpr): 

1 Among the expressions represented by mExpr, find those that match the 

pattern of aRule. 

2 For each matched expression aExpr 

3 Perform aRule, adding the newly generated expression, newExpr, into 

the memo structure. 

4 Push E-EXPR(newExpr) into the task stack 

5 Push APPLY-RULE(aRule, mexpr, true) onto the task stack 

(b) The APPLY-RULE task 

Figure 85: The working mechanism of the E-EXPR task 

Figure 86 through Figure 88 illustrate how Expression (5.17.1) is transformed in Cascades' 

group structure. Figure 86 shows the group that contains the multi-expression for the right 

operand of the semi-djoin in Expression (5.17.1). The top box in Figure 86 is the group for that 

multi-expression. The sub-expressions of the multi-expression are actually other groups in the 

figure. The E-EXPR task successively applies appropriate rules to the top multi-expression. We 

examine two rules here, Unnesting Rules 30 and 16. When Unnesting Rule 30 is fired, the 

group in Figure 86 becomes that in Figure 87. Subsequently, unnesting the multi-expression in 

Figure 87 gives Expression (5.17.3), which is likely the most efficient expression. 

Suppose Unnesting Rule 16 is also fired on the multi-expression in Figure 86, generating the 

additional multi-expression in Figure 88. The new multi-expression leads to the unnested 



expression (5.1 7.4), which is less efficient than (5.17.3). Even worse, When the subsequent 

0-EXPR or E-EXPR task applies various rules to Expression (5.17.4), many inefficient 

alternative expressions will also be produced. 

Figure 86: The top group with the multi-expression for the right-hand semi-join operand 

Figure 87: The group in Figure 86 after Unnesting Rule 30 is applied 



Figure 88: The group in Figure 86 after both Unnesting RuIes 30 and 16 are applied 

In fact, after Unnest Rule 30 is fired on a multi-expression, e.g., the multi-expression in Figure 

86, Unnesting Rule 16 should not be fired on that same multi-expression subsequently. The fact 

that Unnesting Rule 30 is applicable to a d-join means that the left-hand operand of the d-join 

operator can be reduced. Thus, applying Unnesting Rule 16 to that d-join, e.g., the d-join 

operator in Figure 86, will duplicate larger common sub-expression than applying the same 

Unnesting Rule 16 to the new d-join operator generated by Unnest Rule 30, e.g., the new d-join 

operator in Figure 87. 

Our strategy is based on the observation that the rules that generate common sub-expressions 

are fired only when the sizes of the common sub-expressions being generated have been 

minimized. Implementing this strategy involves two aspects. 

First, in an 0-EXPR or E-EXPR task, the rules that generate common sub-expressions should 

be fired aRer other rules. This strategy can be realized by using promise property that Cascades 

assigns to all the rules. The 0-EXPR or E-EXPR task, at Line 2 in Figure 85(a), will attempt 



the rules in the order of their promise. We assign those unnesting rules that reduce the left-hand 

d-join operands higher promise than other unnesting rules. Another guideline is to assign lower 

promise for the rules generating common sub-expressions. 

Second, some rules that generate common sub-expressions should not be fired once a fired rule 

produces a multi-expression that may lead to a d-join push-down transformation. For instance, 

once Unnesting Rule 30 is fired on a multi-expression, Unnesting Rule 16 should not be fired 

on that same multi-expression. To realize this strategy, we use rule mask and multi-expression 

mask. For a transformation rule, the rule mask is a bit vector specifying which rules should not 

be applied to a multi-expression once the rule is fired on that multi-expression. For a multi- 

expression, the multi-expression mask is a bit vector specifying which rules should not be fired 

on that multi-expression. A rule mask is not changed during optimization, while a multi- 

expression mask can be changed during optimization. The length of both masks is the number 

of rules in the rule set. The initial mask for a multi-expression is set to be zero on all the bits, 

i.e., no rules are forbidden. The optimizer developer specifies the rule masks for all the 

transformation rules. For instance, the mask for Unnesting Rule 16 will be set as 1 on the bit for 

Unnesting Rule 30. After a rule is fired on a multi-expression, we add the rule mask to the mask 

of the multi-expression using a bit-wise OR operation. Also, before a rule is attempted on a 

multi-expression, the search engine checks the multi-expression mask and applies the rule only 

when the corresponding bit is zero in that mask. Figure 89 shows a new version of the 0-EXPR 

task that uses rule masks and operator masks. 

E-EXPR ( MEXPR mExpr) 

1 Find all the rules that match the top operator of mExpr. Let T-RULES be the list 

of matched rules. 

2 Sort T-RULES in ascending order of the promise of the rules 

3 Let Op-Mask be the mask of the top operator of mExpr 

4 For each rule aRule in T-RILES { 

5 If (the bit corresponding to aRule in rnExpr.Op.Mask is zero) { 

6 Push APPLY-RULE(aRule, mExpr) into the task stack 

7 mExpr.Op-Mask = mExpr.Op.Mask I I aRule.Mask 

8 1 

9 > 
Figure 89: The modified E-EXPR task 



The new algorithm for E-EXPR (as well as 0-EXPR) improves the search efficiency to a large 

extent. The fourth row in Figure 84 use the search space statistics for Example 5.17 to show the 

improvement with the promise and masks. 

Our approach of reducing common sub-expressions during unnesting and optimizing bears 

much similarity to the unique rule set mechanism in Columbia [SMBOl], where the mask bit 

vector is employed to prevent certain rules from being fired on a multi-expression generated by 

particular other rules. Note that the difference between our approach and unique rule set is that, 

in our case, the mask bit vector prevents certain transformations on the multi-expression that 

fires a rule, while, in the unique rule set case, the mask forbids certain transformations on the 

result of a transformation. The purpose of our approach is to avoid common sub-expressions 

within an individual expression, while the purpose of the unique rule set is to avoid generating 

duplicate expressions in a group during search. 

To summarize the discussion in Section 5.1 1, we present some practical strategies that enable 

Columbia, a relational optimizer framework, to perform complete unnesting without 

significantly increasing the search effort. Those strategies are applicable to other 

transformation-based optimizers. 

5.12 Performance Results 

In this section, we experimentally evaluate our implementation of unnesting hctionality in 

COCOUN. The implementation includes all the unnesting rules and the modified Cascades 

search algorithms as discussed in the previous section. The evaluation illustrates in general the 

tradeoff between the optimization effort and the improvement of plan quality when 

incorporating our wes t ing  approach into an algebraic optimizer. We examine three kinds of 

queries: relational nested queries, CVA nested queries and nested queries with multiple 

collection types. Note that the existing unnesting techniques can unnest non-CVA queries, but 

not all the CVA queries. Also they cannot w e s t  queries involving multiple collection types. 

The database for this experiment is configured as follows. The Students collection contains 

8000 objects, the Depts collection contains 100 objects. The department objects are randomly 

distributed on disk. The student objects and professor objects are clustered together with 

department objects. The memory buffer size is 40 pages. 



5.12.1 Nested Non-CVA Queries 

Examples 5.18 and 5.19 are nested non-CVA queries. Example 5.18 contains one sub-query. 

Example 5.1 9 is slightly more complex, containing two sub-queries: One nested in another. 

Example 5.18: Return the departments with more than three students that are older than 18. 

SELECT * 
FROM Depts AS D 

WHERE 3 < ( SELECT COUNT(*) 

FROM Students AS S 

WHERE D = S.dept AND S.age>l8). 

Example 5.19: Return, for each department, the set of the students with no advisor. 

SELECT STRUCT (D: D, N: (SELECT * 
FROM Students AS S 

WHERE NOT EXISTS (SELECT * 
FROM Faculty AS F 

WHERE S.advisor = F AND 

F.dept = D))) 

FROM Depts AS D. 

Without unnesting, both queries will be evaluated in nested-loops fashion. Unnesting makes it 

possible to evaluate them using various join algorithms. The first two columns in Figure 90 

illustrate the overhead of incorporating unnesting. The third and forth columns illustrate the 

plan quality improvement via unnesting. It is shown that the overhead introduced by unnesting 

can be justified by the improvement over the plan quality: with about 50% more optimization 

effort, the optimal plan costs are cut to about one third. 



Optimization Time (ms) Lowest Plan Costs (seconds) 

Example 5.1 8 

Example 5.19 

Figure 90: Comparing optimization effort and the plan quality using non-CVA queries 

5.12.2 Nested CVA Queries 

Unnesting 

69 

285 

Now we examine the overhead and improvement brought about by our unnesting approach for 

nested CVA queries. 

No unnesting 

178 

1043 

No unnesting 

71 

8 8 

Example 5.20: Return the companies and departments such that the departments have more 

than ten students working in the companies: 

Unnesting 

110 

111 

SELECT STRUCT (D, C) 

FROM Depts AS D, Companies AS C 

WHERE 10 < ELEMENT ( SELECT * 
FROM D.Majors AS S, C.Emps AS E 

WHERE S.ssn=E.ssn). 

Example 5.20 involves two collections and their CVAs. Without unnesting, the query will be 

evaluated by performing a Cartesian product between the two base collections and then 

evaluating the sub-query in nested-loops fashion. Afier unnesting, the query can be evaluated by 

flattening the two CVAs, joining them and performing nest and selection operations. In many 

cases, the unnested form is more efficient. The first row in Figure 91 shows the optimization 

overhead for unnesting and the respective optimal plan costs. Obviously, the improvement over 

the plan quality is more significant than the optimization overhead. 



Example 5.21: Return, for each department, all the professors who are older than all the 
&..AA..ts: 

SELECT STRUCT (D: D, 

F: (SELECT F 

FROM D.Faculty AS D 

WHERE NOT EXISTS (SELECT * 
FROM D.Majors AS S 

WHERE S .age > F.age)) 

FROM DEPTS AS D. 

Example 5.21 involves a collection, its two CVAs and two sub-queries, one nested in another. 

Without unnesting, the query processor will evaluate the sub-queries for each department 

object. The unnested form of the query will flatten the base collection on both CVAs, then 

perform anti-join and some other operations. The experimental results show that unnesing 

introduces extra search effort. But the optimal plans generated are the same, with or without 

unnesting. The cheapest unnested form obtained for this query is 

In this particular experiment, none of the unnested plans outperforms the original nested plan, 

due to high CPU costs of the unnested plans. 

Optimization Time (ms) Lowest Plan Costs (seconds) 

Example 5.20 

Example 5.2 1 

Figure 91: Comparing optimization effort and the plan quality using CVA queries 

5.12.3 Nested Queries Involving Multiple Collection Types 

Unnesting 

44 

55 

Previous techniques cannot unnest queries involving multiple collection types, due to the 

presence of duplicates and ordering. Being able to unnest such queries is an important feature of 

our unnesting framework. The optimization effort for unnesting such queries is reasonably low, 

No unnesting 

134 

5 5 

No unnesting 

80 

60 

Unnesting 

131 

90 



similar to the cases shown previously. The question is whether unnesting leads to better 

evaluation algorithms for such queries. We use the following example to show that at least for 

some queries, the answer is positive. 

Example 5.22: (Example 5.9 in Section 5.4, continued) The query for Examples 5.9 contains a 

CVA of the list type - D.A VGGPAS. We repeat the query here: 

SELECT S 

FROM Students AS S 

WHERE EXISTS (SELECT * 
FROM Depts AS D 

WHERE S.GPA > D.AVGGPAS [S.age]). 

Our approach can transform the OQL term, D.AVGGPAS[s.ageJ, thus yielding the unnested 

expression (5.9). Without transforming the OQL term D.A VGGPAS[s.age], a typical expression 

for this query, among other plans, would be 

Figure 92 contrasts four best plans in the plan spaces for this example query when unnesting is 

and is not performed. In Figure 92, the curve on the top depicts the real costs of the four best 

plans generated by not transfonning the OQL term D.AVGGPAS[s.age]. The curve on the 

bottom depicts the real costs of the four best plans generated with unnesting. Apparently, the 

plan space with unnesting is superior to that without unnesting. 

In Figure 92, Expression (5.22) appears as a high cost plan in the curve on top, while 

Expression (5.9) appear as a low cost plan in the curve on bottom. Expression (5.22) tends to 

access the same CVA elements multiple times. Because the department objects cannot all fit in 

memory, multiple accesses to CVA elements result in excessive VOs. Meanwhile, Expression 

(5.9) can manage to access each CVA element only once by using a sort-merge algorithm for 

the semi-join operator, resulting in less 110 cost than Expression (5.22). 
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Figure 92: Real costs of four best plans with and without handling list type CVAs 

5.13 Discussion 

To summarize, our unnesting approach possesses the following advantages compared to the 

existing approaches: 

It unnests queries involving indexed or ordered collection types such as arrays, lists 

and even dictionaries. Inappropriate processing of collection accesses such as array 

operations leads to inefficient evaluation algorithms. We rewrite a collection access 

operation as a sub-query, and then use the unnesting approach to derive unnested, 

efficient evaluation algorithms. The design of the execution data model and the 

COAL algebra facilitates representing collection accesses as sub-queries. 

It unnests queries in the presence of duplicates in base collections and intermediate 

results. The presence of duplicates in the intermediate results or in the base 

collections often prevents the existing unnesting approaches. We overcome this 

problem cleanly with a new transformation rule. 

It unnests all OQL queries. We present the COAL algebra that can fully express the 

OQL query language, and then present an unnesting algorithm that can unnest any 

COAL algebraic expression translated from an OQL query. 



It can be implemented in an existing algebra-based optimizer efficiently. We 

equiped the COCOUN optimizer with unnesting functionality. The mask bit vector 

technique helps the existing search engine handle unnesting tasks efficiently. 

As an open issue, it seems that OQL is under-specified. As an example, for method invocations, 

two aspects are not specified in OQL: in what order methods are invoked, and whether every 

method has to be invoked. These two aspects are relevant for query processing. On one hand, 

the optimizer may want to reorder operators. On the other hand, the query evaluator may want 

to skip operators. For instance, once a component formula in a conjunctive normal form (CNF) 

expression is evaluated to be false, the latter component formulas do not have to be evaluated. 

Allowing re-ordering and skipping method invocations means that different execution plans 

chosen by the query processor produce different database states due to different method 

invocation order, for methods with side-effects. In this research project, we assume that all the 

execution plans produce valid database states as long as those plans are generated using the 

transformation rules provided in our optimizer. In other words, we handle the under- 

specification issue in OQL by ignoring the difference of various execution plans in terms of 

database states. 



join or hash join. The goal of optimization is to pick the most efficient physical algorithms 

among those implementing logical expressions equivalent to the original query for the current 

database. 

Most object and object-relational models include the notion of reference attributes, also called 

object-valued attributes. Thus, resolving referenced objects, or reference materialization, 

becomes an essential operation in object query evaluation. A reference to an object is also called 

an object identi$er or OID. In reference materialization, one object, containing an OID to a 

second object, is brought together in memory with that referenced object. In the remainder of 

this dissertation, we will generally shorten "reference materialization" to simply 

"materialization". 

Example 6.1: Referring to Figure 1, a professor object can be represented as 

pl: @name: "Smith", dept: dl, specialty: "database", salary: 60000, Teaches: TI), 

wherepl is the OID of that Professor object. Item dl is the OID of a Department object. Item T, 

is the OID of a collection of Course objects. The collection object referenced by the Teaches 

attribute can be 

where cl, c2, and c3 are OIDs for Course objects.. The Course object referenced by cl can be of 

the form 

cl: (ctitle: "CS", dept: dl, instructor: pl, Participants: PI, text: 1556154844), 

where PI is the OID of a collection of Student objects. 

Relational algebra, being value-based, does not have an operator for resolving OIDs. To 

explicitly indicate the resolution of inter-object references in logical expressions, the Open 

OODB query optimizer [BMG93] introduced the materialize operator into its algebra. One way 

to view the materialize operator is that it brings referenced objects into scope, so that 

succeeding operators can access them. Figure 6.l(a) is an expression that consists of a 

materialize (Ma) operator for attribute r.a, where r ranges over the output of expression R. The 

result of the expression M,, can be regarded as pairs of objects <r, a>, where a is the object 

whose OID is r.a. 



Existing reference materialization techniques are either pointer-based or value-based. The 

pointer-based technique retrieves referenced objects by converting OIDs (if necessary) to disk 

addresses (PIDs) and retrieving the appropriate pages. Pointer-based techniques directly 

implement the materialize operator using pointer-based physical algorithms such as assembly 

[KMG91], pointer-based hash, pointer-based nested-loops, pointer-based sort-merge [SC90], 

and partition-merge [BCK98]. Among these algorithms, sort-merge and hybrid-hash are popular 

and competitive [SC90]. The hybrid-hash algorithm would perform the logical materialize 

operator in Figure 6.l(a) as follows. First, r objects fiom R are partitioned using the OIDs of 

their r.a instances. Then, it iterates over the objects in each partition, while the PIDs of r.a 

instances are looked up in the object table. The purpose of the first partitioning is to avoid 

random accesses to the object table, thereby reducing I/O cost if the entire object table does not 

fit in memory. Third, the objects from R are re-partitioned by disk location using the PIDs of r.a 

instances. Finally, the objects in each of these partitions are iterated. PIDs are used to locate and 

fetch r.a instances. Notice that the first partitioning can be dispensed with if the OIDs are 

physical to begin with, or can be used to directly compute physical addresses without access to 

an object table. By default, a logical materialize operator is implemented using a pointer-based 

algorithm; thus we use the term pointer-based expression to refer to an expression that contains 

materialize operators, for instance, Figure 6.1 (a). 



Figure 93: Alternative materialization techniques and rules to derive them 

R Ma (b) Value-based expression 

The value-based technique attempts to avoid "pointer chasing" on disk by instead performing 

joins between objects with references and the objects being referenced (using an OID as an 

implicit attribute) [BMG93]. Thus, whereas pointer-based techniques treat OIDs as physical 

pointers, valued-based techniques regard OIDs as just another kind of logical value, allowing 

the application of conventional join-processing technology to object query evaluation. We use 

the term value-based expression to refer to an expression that uses the value-based technique. 

Figure 93(b) is a value-based expression that resolves r.a using the value-based technique. Here, 

A is the extent for the type of r.a. The extent of a type is the collection that contains all the 

instances of the type. In Figure 93(a), Ma brings A elements into memory in a pointer-based 

fashion by following each OID to the object it references; then the fetched A elements are joined 

with R on the OIDs of A elements. While pointer-based materialization uses a single physical 

operator, value-based expressions require the combination of several operators. Nevertheless, 
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we will sometimes loosely refer to part of an evaluation plan that performs materialization as a 

value-based algorithm, even when it comprises several operators. 

In a transformation-based optimizer, the join materialization rule [BMG93] transforms a logical 

materialize, Figure 93(a), into a value-based expression, Figure 93(b). 

The value-based technique has many advantages. First, if the extent collection is appropriately 

ordered, this technique sequentially fetches referenced objects, thus avoiding the effort in 

reordering object accesses that a pointer-based algorithm usually has to perform. Second, 

restrictive operations on referenced objects, such as selections, can be evaluated earlier in a 

value-based expression than in a pointer-based expression. Third, if the attribute to be 

materialized is shared (duplicate OIDs in R), then operations on referenced objects are 

performed once for each shared object in a value-based expression, but multiple times in a 

pointer-based expression. Fourth, the value-based technique converts materialization into join, 

enabling the application of the conventional join re-ordering techniques and join algorithms to 

object query optimization. Fifth, the join predicate in a value-based algorithm only compares 

OIDs, thus the object table may be visited less frequently than in with a pointer-based 

algorithm. (Note that object table access is not totally avoided, as we assume the extent is a 

collection of OIDs that must be converted to PIDs. However, each OID is converted just once.) 

However, value-based techniques have their shortcomings. First, they require the presence of 

appropriate extents. Most object-oriented database systems do not automatically maintain 

extents, and even in some object-relational systems, they are optional. (While the SQL: 1999 

standard requires REF columns to be scoped to a single table, object-relational products are not 

as restrictive.) Second, if an extent is sparse, i.e., few objects in the extent actually participate in 

the query, a value-based algorithm may be inefficient because of all the inapplicable objects in 

that join operand. In contrast, pointer-based techniques are not constrained by extents, and apply 

in any circumstance, plus they only fetch those objects actually referenced from objects in R. 

Also they carry out materialization with a single operator, thus simplifying query optimization. 

Besides these limitations, the behavior of the above two techniques for collection-valued 

attributes (CVAs) has not been studied thoroughly. Since the presence of CVAs is an important 

feature in object-oriented and object-relational data models, it will be useful to evaluate the 

existing techniques for CVAs. 



In this chapter, we address limitations of the existing materialization techniques by proposing a 

hybrid approach. We organize this chapter as follows. Section 6.2 presents the hybrid technique, 

which relaxes the drawbacks of the value-based technique, while preserving much of their 

performance advantage over the pointer-based techniques. We present algebraic transformations 

to enable the hybrid technique to be used in a rule-based query optimizer. Section 6.3 extends 

the hybrid technique to CVAs. In Section 6.4, initial experimental results using a commercial 

object-oriented database management system show that the hybrid approach achieves 

sigmficant speedup over current algorithms in many cases when no existing algorithm is 

applicable or efficient. It shows even stronger performance advantages when moving from 

single-valued to collection-valued attributes. Section 6.5 draws conclusions. 

6.2 The Hybrid Technique 

Figure 93(c) shows an expression equivalent to Figure 93(a). This expression performs a join 

between R and the objects referenced by r.a. Within the right join operand, projection 

(including duplicate elimination) gathers all the OIDs of r.a instances, then materialize resolves 

them in a pointer-based fashion. This step produces a collection tighter than the type extent A, in 

the sense that the collection contains exactly the objects referenced by the r.a instances. We call 

such a collection a tight extent. The materialization is accomplished by performing a value- 

based join between the original expression, R, with the tight extent. We use the term hybrid 

materialization to refer to the method that fetches the tight extent in a pointer-based fashion, 

then joins the tight extent with the original expression in a value-based fashion. We use the term 

hybrid expression to refer to an expression using this technique. Figure 93(c) can be considered 

an extension of Figure 93(b), but with an extent computed "on-the-fly". 

The projection in a hybrid expression, p n,, in Figure 93(c), serves two purposes. First, it 

separates the object referencing and those being referenced, so that the succeeding materialize 

(and possibly other operators) processes only the objects being referenced, reducing the amount 

of data handled by those operators. (Note that this aspect mainly affects any copying an operator 

may have to do between its inputs and outputs.) Second, more importantly, the duplicate 

removal eliminates duplicate OIDs for the attribute a, thus minimizing the input cardinality to 

subsequent operators. Figure 94(c) illustrates the data flow for the hybrid expression, Figure 

93 (c). 



It might seem that the hybrid technique does all the work of both the pointer- and value-based 

techniques, as it is both dereferencing pointers and performing a join. However, in general, it is 

chasing fewer pointers than pointer-based methods and computing a smaller join than value- 

based methods. The hybrid technique is not always superior to the others, but our experimental 

results will show that in some instances it is much better than the other two. However, the 

hybrid technique does introduce a repeated sub-expression, which will be discussed later. 

Both hybrid and value-based techniques perform a join, however, they differ in their join 

operands. Hybrid algorithms access referenced objects not through their extent, but through a 

tight extent, a collection of OIDs gathered on the fly. Therefore, the hybrid technique is not 

limited by availability of type extents. Also it is more efficient if an existing extent is sparse for 

the query. Figure 94(b) and (c) illustrate the data flows for the value-based and hybrid 

expressions in Figure 93. Since extent A contains objects, such as a3, that are not referenced by 

any object in R, the value-based expression will have a larger right join operand, thus a higher 

join cost than the hybrid expression. 

The hybrid technique inherits some advantages fiom the pointer-based technique from the 

value-based technique. First, it allows restrictive operations on referenced objects to be 

performed earlier. For instance, if a query has the predicate a.x=4, a selection can be pushed 

down to restrict the right join operand. Second, when the attribute to be materialized is shared, 

any operation on the referenced objects is performed once for each instance in a hybrid 

algorithm, but multiple times in a pointer-based algorithm. In Figure 94(a), a, is mentioned by 

two r objects. As a result, a, has to be resolved twice. In contrast, in Figure 94(c), duplicate 

OIDs are eliminated, thus no redundant data is delivered to materialize. Third, in a pointer- 

based expression, for instance, Figure 93(a), a materialize operator accepts parent attributes as 

input, while only the OIDs of attribute instances are actually needed. In a hybrid expression, for 

instance, Figure 93(c), materialize only accepts the OIDs, thus substantially shrinking the width 

of input data. As some physical algorithms for materialize move the input data between disk and 

memory, reducing the amount of input data size may lower VO costs. The VO costs for the 

evaluations in Figure 94 include reading both the R collection and the objects referenced by the 

a attribute. The advantage of Figure 94(c) over Figure 94(a) and Figure 94@) is less I/O for the 

objects referenced by a. Figure 94@) and Figure 94(c) illustrate the difference in input sizes of 

the two materialize operators. Note that the difference in width is equal to the number of 

attributes in the objects of R. We will see further benefits of the hybrid approach when we 

consider materialization of CVAs in Section 6.3. 



Figure 94: The data flows of the three expressions in Figure 93 

While hybrid expressions often have good costs, they are of little use unless they can be 

produced during query optimization. Therefore, we developed the hybrid materialization rule, 

which transforms Figure 93(a) to Figure 93(c), to generate hybrid expressions from logical 

materialize operators during optimization. Like the join materialization rule, the hybrid rule 

transforms a logical materialize into a join, but using a tight extent. We illustrate this rule with 

an example. 

Example 6.2: The following query finds all the faculty members who specialize in Mathematics 

and earn more than their department heads. Here, collection Facutly consists of objects of type 

Professor, with attributes specialty, salary and a reference attribute dept referencing 

Department objects. Department contains a reference attribute, head, of type Professor. 

SELECT F 

FROM Faculty AS F 

WHERE (F.speciaIty = 'math') AND (F.salary > F.dept.head.salary) . 

Three expressions for this example query appear in Figure 95. In Figure 95(a), the two 

materialize operators, MF.depl and M F , ~ ~ ~ ~ . ~ ~ ~ ~ ,  each resolves some objects multiple times, due to 



the sharing ofJdept. Transforming the pointer-based expression using the join materialization 

rule yields the value-based expression, Figure 95(b). The hybrid expression, Figure 95(c), can 

be generated from Figure 95(a) by applying the hybrid rule to MF,depr then pushing down the 

subsequent select and materialize. The value-based and hybrid expressions do not waste 

resources by resolving one object multiple times. However, the value-based expression is less 

efficient than the hybrid one when only a few departments have professors specializing in 

Mathematics, in which case, the effort of fetching most department objects by the value-based 

expression is useless work. 
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Figure 95: The expressions for Example 6.2 

The presence of object sharing is an important factor motivating the hybrid approach. Object 

sharing occurs both directly, because of shared reference attributes, and indirectly, as the result 

of flattening a CVA with overlapping instances, as demonstrated by the example query below. 

The following query returns all CS courses and their participants: 

SELECT STRUCT (C: C, P: P.name) 

FROM Courses AS C, C.Participants AS P 

WHERE C.dept = 'CS'. 

To evaluate this query, a pointer-based expression could first filter Courses, then flatten 

C.Participants, giving <C, OID(P)> pairs, and finally materialize individual participating 

students. Note that C.Participants is a CVA with overlapping instances, i.e., several courses 



may enroll the same student. Therefore the result of flattening c.Participants will contain 

multiple references to the same students. 

Hybrid expressions do incur certain overheads in evaluation, from the need for projection and 

join, and the introduction of common sub-expressions, e.g., the dashed boxes in Figure 95(c). In 

general, the hybrid rule needs to be used in a cost-based framework, so that a hybrid algorithm 

is chosen only if its benefit dominates its overheads. 

Common sub-expressions are introduced by the hybrid rule, which duplicates expressions (R in 

Figure 93) rather than storing one to a temp and reusing the result. The reason is that other 

transformations may convert different occurrences of a common sub-expression to be distinct 

by modifying one or both of them. For instance, in the hybrid rule of Figure 93, the projection 

operator might be pushed down into the underlying expression R, so that it outputs only the 

needed attributes. Alternatively, operators above the join might be pushed down towards the left 

occurrence of R. Note that such transformations can make the original common sub-expressions 

distinct, but may in the process generate new common sub-expressions. Based on the cost of a 

common sub-expression, an optimizer can choose to store and reuse its result, or evaluate it 

twice. For simplicity, the remaining paper assumes a hybrid expression represents both possible 

plans. 

The introduction of a repeated sub-expression could potentially increase the cost of the query 

optimization process, due to increasing number of operators, and more importantly, possible 

duplicated effort from optimizing the same sub-expression twice. However, previous work 

successfully avoided duplicate optimization of common sub-expressions using directed acyclic 

graphs (DAGs) representation of expressions with a memo structure [CG94, GM931. 

6.3 Materializing Collection-Valued Attributes 

The presence of CVAs [SS86] is an important feature in both object-oriented and object- 

relational models. Query optimization techniques developed for single-valued attributes should 

be re-evaluated for CVAs. In this section, we explore the ramifications of the three 

materialization techniques in the context of CVAs. It turns out that, when applied to CVAs, the 

value-based technique is typically inefficient, while the hybrid technique becomes more 

competitive. 



Materializing a CVA means bringing the elements of the CVA into memory. Some algorithms 

can assemble the elements of a CVA in its nested form [BCK98]. Most algorithms handle only 

flat data, in which case references to CVA elements are accepted and resolved [SC90]. The first 

kind of algorithm is useful when the algebra of an optimizer [SS86] can directly manipulate 

CVAs without flattening them. More often, the algebra used in an optimizer mainly supports 

relational operators, in which case the second kind of algorithm is more desirable. Therefore, 

we assume materialize accepts and outputs flat data (records of scalar values and OIDs). The 

example query below illustrates how CVAs are materialized using different techniques. 
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Figure 96: Expressions for Example 6.3 

Example 6.3: The following query returns pairs of student and course title where the course is 

among the core requirements for the student. Here, Students is a collection of Student objects. 

CVA s. Core is an attribute of the Student object, containing the Course objects required for the 

student's major. 

SELECT STRUCT (S: S, C: C.title) 

FROM Students AS S, S.Core AS C. 

Figure 96(a) is a pointer-based expression for the query. In this expression, fetches the 

S. Core attribute, the collections of OIDs for Course objects, then flattens the S.Core attribute 



using unnest (ps.core) [FT83], which outputs pairs of Student object and Course OID. The OIDs 

are resolved by the succeeding materialize. Figure 96(b) is the value-based expression, obtained 

from Figure 96(a) by applying the join materialization rule to the upper materialize (Mc). In 

this expression, the left join operand provides a stream of Student object-Course OID pairs. The 

right operand provides a stream of Course objects. The streams are then joined. 

Note that it is usually impractical to apply the join materialization rule to materialize the CVA 

instances themselves, for example, because the CVA instances (that is, the collections 

themselves) generally have no appropriate extent (even if their elements come fiom a common 

extent). The hybrid rule, however, does make sense for such operators. One can get Figure 96(c) 

from Figure 96(a) by applying the hybrid rule to Mscore, and hrther get Figure 96(d) from 

Figure 96(c) by pushing down unnest and materialize. Note that, in the hybrid expressions, the 

join predicate is an identity check on CVA instances, rather than on CVA elements as in the 

value-based expression. 

In the context of CVAs, the hybrid technique has two advantages over the value-based 

approach. First, it applies to any CVA query, while the value-based technique is subject to the 

availability of appropriate type extents. Second, a hybrid expression in general has a smaller left 

join operand, because it does not flatten the CVA attributes in the left join operand (Figure 

96(d)), while a value-based expression does (Figure 96(b)). This difference makes the hybrid 

technique often superior to the value-based technique in the context of CVAs. 

The hybrid technique is superior to the pointer-based technique when the CVA being 

materialized is shared, because a hybrid expression eliminates duplicate references to CVA 

instances, thus reducing input cardinalities to materialize and possibly subsequent operators. 

(We are assuming here that each collection has its own identifier that can be compared. We are 

not proposing to detect the case where two distinct collection instances happen to contain the 

same set of elements.) A pointer-based expression, however, has no such mechanism. 

Shared CVAs may occur in a database, for instance, S.Core in Example 6.3 (since many 

students have the same set of core courses). They may also be present in views or intermediate 

query results, especially for queries involving several CVAs, as illustrated by the example query 

below. 



Example 6.4: The following query returns all professors who advise PhD students. Depts 

contains Department objects. A Department object has a CVA Majors, which is a set of Student 

objects, and a CVA Faculty, which is a set of Professor objects. 

SELECT DISTINCT F 

FROM Depts AS D, D.Majors AS S, D.Faculty AS F 

WHERE S.status = 'PhD' AND f.narne = S.advisor 
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Figure 97: The expressions for Example 6.4 

Figure 97(a) is a pointer-based expression, where two CVAs, D.Majors and D.Faculty, are 

successively flattened and materialized. Figure 97(b) materializes the elements in D.Faculty 

using the value-based approach. Figure 97(c) is hybrid, derived from Figure 97(a) by applying 

the hybrid rule to MD,MDjOrs, and then pushing down the subsequent operators past join. Figure 

97(a) performs an operation similar to Cartesian product between D.Majors and D.Faculty 

(creating a record for every combination of student and professor in the same department), thus 

producing large intermediate results. Also, Figure 97(b) has a larger left join operand than 

Figure 97(c). Therefore, Figure 97(c) will be superior in general to both Figure 97(a) and Figure 

97(b). 



6.4 Enhancing Value-based Algorithms 

It has been noted that a value-based expression may be less efficient for CVAs than its hybrid 

counterparts, due to a larger join input. In Figure 97, the value-based expression, Figure 97(b), 

has a large left join input, because CVA instances in the left join operand are flattened to allow 

evaluation of the join predicate. A hybrid expression avoids this problem by checking the 

identities of CVA instances rather than those of CVA elements in the join predicate. We attempt 

to overcome the problem in the value-based case by using the identities of parent objects in the 

join predicate. This modification is possible if there is a relationship with the appropriate 

inverse attribute. Notice that, in the example schema, Professor and Department have a 1:n 

relationship via dept and Faculty. This connection implies that the predicate F = F in Figure 

97(b) can be replaced by D = F.dept, which makes ~ D . F ~ ~ ~ [ ~  and MDfi , , ,  redundant. Figure 

98(b) can be regarded as an alternative of Figure 98(a), obtained by replacing the join predicate 

and removing the unnesting operator. Apparently, Figure 98(b) overcomes the problem of a 

large join input, and performs competitively among the alternatives. 
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Figure 98: Another transformation for Example 6.5 



Figure 99: Enhancement Rules 

Figure 99 illustrates an enhancement rule, Rule 1, which utilizes a I:n relationship to generate a 

value-based expression from a pointer-based expression. Assuming that R and extent A have a 

1:n relationship via attributes a and a.r, Rule 1 transforms an unnest operator and two 

materialize operators into a materialize and a join, using the parent identity as a join condition. 

Rule 1 transforms Figure 98(a) into Figure 98(b). 

Rule 1 improves value-based algorithms using I:n relationships. Extending this idea to m:n 

relationships gives rise to Rule 2, the second enhancement rule, depicted in Figure 99. 

Assuming an m:n relationship between R and A, Rule 2 transforms an unnest operator and two 

materialize operators into an unnest, a materialize, and a join, using the parent identity as a join 

condition. As with Rule 1, the motivation for Rule 2 is to reduce join costs by shrinking join 

operands. This approach is especially beneficial when the left join operand is much larger than 

the right one so that the effort of partitioning and iterating it dominates the overall join cost, as 

illustrated by the example query below. 

Example 6.6: This query returns student-course pairs where the student is an MBA candidate, 

and takes a course that is taught by his or her advisor: 



SELECT STRUCT(C: C, P: P) 

FROM Courses AS C, C.Instructors AS I, C.Participants AS P 

WHERE P.advisor = I.name AND P.status='MBA' 

For this query, Figure 100(a) and Figure 100(b) both generate large intermediate results, by 

successively flattening two CVAs. Consequently, the top materialize in Figure 100(a) and the 

join in Figure 100(b) become very expensive. Consider the join in Figure 100(b). Assume 

neither operand fits in memory. Then the effort in partitioning and iterating the left operand 

dominates the join cost, because the left operand is much larger than the right one. Apparently, 

reducing the left operand helps lower join cost. In OQL, one can specify a m:n relationship 

between two types of objects using two CVAs in both types. For this example, suppose the 

CVA Participants in Course and the CVA Takes in Student form an m:n relationship between 

Course and Student. Utilizing that relationship, Rule 2 transforms Figure 100(a) into Figure 

100(c), which has much lower join cost in general. 
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Figure 100: Expressions for Example 6.6 

Following the same idea, one can improve hybrid algorithms using m:n relationships. Note that 

the hybrid technique is efficient when applied to a CVA that has 1:n relationship with its 



children; but is not as efficient when applied to a CVA that has m:n relationship with its 

children. Consider Figure 100(a). Applying the hybrid rule to MC,PaNicipa,lls in Figure 100(a) will 

result in inefficient expression due to the presence of duplicates in the right-hand join operand. 

Applying the hybrid rule to MI will also result in inefficient expression, due to a large left-hand 

join operand. To solve both problems, one can apply an enhanced rule similar to Rule 2 on Mp, 

and thus achieve an enhanced hybrid expression that performs comparably to the enhanced 

value-based expression. 

6.5 Experimental Results 

In this section, we present experimental results to compare various materialization techniques. 

The experiments were conducted on Intel Pentium I1 with 256M memory, running Windows NT 

4.0 and GemStoneIJ 3.1, a commercial object-oriented database system [G99]. For experimental 

purposes, we developed a query evaluator on Gemstone. The evaluator implements such 

operators as unnest, materialize, join, projection and select. Except for unnest and select, all the 

operators are implemented using hashing algorithms. The operators are implemented in Java 

1.2, the DML of GernStone/J. If not stated otherwise, common sub-expressions are evaluated as 

many times as they occur in a hybrid expression. 

We present the experimental data for some of the queries mentioned in this paper. Our 

experiments on other queries showed patterns similar to these queries. For each query 

examined, expressions representing different approaches were executed with varying 

parameters for sharing situations, extent densities and, if applicable, CVA cardinality. 

We measured CPU time, I/O amount and total elapsed time. In most experiments, 110 and CPU 

costs as elapsed time were affected in a similar fashion. Therefore, we use elapsed time as our 

performance criterion in this presentation. The disk page and buffer page sizes in Gemstone are 

8K. Each OID occupies 8 bytes. We allocate 25 pages for each block operator (projection, join 

and materialize). Typically, the sample data occupied 250 data pages. Most tests cover the cases 

when the temporary data structures such as hash tables are much larger than the buffers 

available to the block operators. All the sample data are generated automatically conforming to 

a normal distribution. Objects of the same type are clustered together on disk, but not sorted in 

any order. 
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Figure 101: Exampe 6.2, elapsed time for the expressions in Figure 95

We begin by demonstrating the perfonnance of the three techniques in the setting of single-

valued attributes using Example 6.2. The expressions in Figure 95 are executed when the fan-in

or the density of Department objects varies. The fan-in denotes the average number of

professors in each department; the density denotes the ratio between the number of departments

that have faculty members specializing in Mathematics and the total number of departments.

Collection Faculty has cardinality 10240 and occupies 250 disk pages. The type extent of

Department contains 1024 to 10240 elements, occupying 25 to 250 disk pages, as the fan-in and

density change.

In the perfonnance figures shown below, "PB" stands for the results of pointer-based

expressions; "VB" stands for the results of value-based expressions; "HB" stands for the results

for hybrid expressions.

Figure IOI(a) illustrates the elapsed time of three expressions as the fan-in of Fdept changes

from 1 to 10. When the fan-in equals 1, the pointer-based expression is the cheapest, while the

other two expressions suffer from large join operands. However, once sharing occurs, the curves

for the hybrid and value-based expressions drop steadily, while the one for the pointer-based

expression remains high. From fan-in 7 to 8, the curves for both value-based and hybrid

expressions drop abruptly, because the hash tables for both join operators start to fit in memory

as the fan-in reaches 8. Note that in general, the value-based expression is better than the hybrid
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one, due to the overheads of the projection operator and the duplicate common sub-expressions

in the latter.

Figure 101(b) contrasts the three expressions as the density of the type extent of Department

increases from 0.1 to 1.0, with the fan-in fixed at 4. The value-based expression is cheapest

when the density is one, but degrades as the density goes down, and finally becomes the most

costly.
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Figure 102: Example 6.3, elapsed time for the expressions in Figure 96

Figure 102 evaluates the three techniques in the context of CV As using the expressions for

Example 6.3. The test data consists of a total of 1024 Student objects, with 10 to 30 courses in

each S Core attribute. The total sample data occupies 300 disk pages. Figure 102( a) shows the

elapsed time for the expressions in Figure 97(a), (b), and (d), as the cardinality of SCore

increases from 3 to 30. The value-based expression degrades rapidly as the CVA cardinality

increases, due to the growing join input. In fact, the large join input is the inherent disadvantage

of the value-based technique when applied to CVAs. The pointer-based and hybrid expressions,

on the other hand, both perfonn well and have very similar run times. The reason is that the Me

operator in Figure 96(a) and that in Figure 96(d) have similar I/O costs, while the join in Figure

96(d) is more efficient with a smaller right join operand.

Figure 102(b) contrasts the three expression as the fan-in of SCore increases from I to 10 (the

size of S.Core varies from 10 to 30). Thefan-in denotes the average number of students with the

same core course requirement. When the fan-in of SCore instances is one, the hybrid and value-

based expressions are more expensive than the pointer-based one. As the fan-in grows, the costs

of the two expressions drop quickly. Note that the hybrid expression always outperfonns the
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value-based expression, again because of different join input sizes. Figure 101(a) and Figure

102(b) suggest that the value-based technique generally has lower overheads than the hybrid

technique when applied to single-valued attributes, but higher when applied to CV As.

To evaluate the three techniques for a slightly more complex CVA query, we present test results

for Example 6.4. The value-based expression, Figure 97(b), uses the right branch as the inner

join operand; the hybrid expression, Figure 97(c), uses the left branch as the innerjoin operand.

The purpose is to have both expressions build hash tables using the Professor objects, so that

memory is used in a similar way in both expressions. The test data includes 1000departments.

The average cardinalities for CV A Faculty and CV A Students ranges from 2 to 12. Figure

103(a) shows the performance ofthe three expressions in Figure 97 as the average CV A

cardinality increases from 2 to 12, with the selectivity of the CV A Faculty fIxed at 1.0. The

value-based expression degrades quickly as the CV A cardinality increases, the same tendency

as the value-based expression in Figure 102(a). Both the value-based and hybrid expressions

need to swap data between memory and disk, because neither hash join table fIts in memory.

However, the outer operand ofthe join in the value-based expression grows much faster than

that of the hybrid expression, which explains why the value-based expression degrades much

more signifIcantly than the hybrid expression as the cardinality increases. Also note that, unlike

in Figure 102(a), where the pointer-based expression performs similarly to the hybrid

expression, here, the pointer-based expression suffers severely from the large input to its Mf

operator.
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Figure 103: Example 6.4, elapsed time for the expressions in Figure 97



Figure 103(b) contrasts the three expressions as the student selectivity increases from 0.1 to 1, 

with the CVA cardinality fixed at 10. Student selectivity is the ratio between the number of PhD 

students and the total number of students. As the selectivity increases, the costs of both the 

pointer-based and value-based expressions grows rapidly, while the hybrid expression is very 

stable with the same explanation as that for Figure 103(a). Figure 103(a) and (b) demonstrate 

the superior performance of the hybrid technique when applied to complex CVA queries. 

6.6 Conclusions 

Observing the limitation of existing materialization techniques, we developed a hybrid 

technique that performs well in many cases when no existing algorithm is applicable or 

efficient. When applied to collection-valued attributes (CVAs), this technique generally 

outperforms the value-based technique, especially for queries that involve several CVAs. Initial 

experiments with an evaluator written on a commercial object-oriented database confm our 

informal analyses and the promising potential of the hybrid technique. 

More techniques for materialization mean a larger search space for the query optimizer. 

Exhaustive search of this space might not always be desirable. Therefore we plan more 

analytical and experimental evaluation to develop guidance for optimizers to generate 

promising expressions quickly. For instance, among many materialize operators in an original 

expression, an optimizer should seek the most effective places to fire the hybrid rule and 

enhancement rules. One strategy is to apply the hybrid rule where attributes are highly shared, 

or where the materialization input has not had the hybrid rule applied already. Of course, we 

also need to develop appropriate cost functions and statistics so that we can reliably choose a 

relatively inexpensive plan among the alternatives. 



Chapter 7 Physical Algebra 

The physical algebra used in the COCOUN optimizer is straightfornard implementation of the 

logical algebra defmed in Chapter 4. In this chapter, we first contrast our execution model and 

the relational execution model. Then, we discuss the index structures used by the physical 

operators. Finally, we present the major physical operators and their implementation rules. 

7.1 The Execution Model 

In this section, we discuss the execution model in the COCOUN query processor. Note that the 

execution data model, presented in Chapter 3, is related to but different &om the execution 

model. The execution data model deals with data representation during query eval&tion. The 

execution model deals with the physical algebraic operators and their run-time relationship. 

Relational physical operators have two features that contribute to the high performance of 

relational query execution engines: input-locality and non-parameterization. 

Relational operators take input records, producing output records. Input-locality means that the 

input records provide all the attributes needed for evaluating an operator. For instance, the input 

records of a join operator contain all the attributes mentioned by the join predicate. In other 

words, a relational operator can be evaluated completely locally without the need of fetching 

data outside its input buffers. 

While input-locality is realized naturally in the relational context, it is not an inherent feature for 

object data models and operators. Imagine a selection with a predicate that mentions a path 



expression. The nake way of evaluating the selection computes the path expression for each 

input record. As the objects along the path expressions are not provided as the input attributes, 

computing the path expressions may incur random YO and thus enormous 110 costs. 

To achieve input-locality in the object model, Chapter 3 introduced the materialize operator. A 

materialize operator, preceding an operator that mentions certain attributes outside the scope of 

its input, will fetch those attributes and append them to the input records. 

Non-parameterization means that relational operators do not allow parameterization. An 

operator computes the output solely from the inputs provided by the operators beneath it in an 

algebraic tree. Non-parameterization avoids random VOs and nested-loops evaluation algorithm 

incurred by parameterization. 

As shown in Chapter 5, any OQL query can be unnested into a flat algebraic expression, which 

consists of only non-parameterized operators. Since flat algebraic expressions observe the non- 

parameterization property, it is possible to build a non-parameterized execution system for OQL 

queries. However, we choose not to do so. We include parameterized physical operators such as 

physical map and d-join operators, because, as shown in Chapter 5, parameterized execution is 

sometimes more efficient. The choice of good plans, either parameterized or not, is left to the 

cost-based selection component in the COCOUN optimizer. 

An evaluation plan in the physical algebra can be performed in a pipelined fashion. In pipelined 

execution, records flow among the operators in an algebraic tree. Each operator repeats three 

steps until all input records are processed. The three steps are accepting one or several input 

records, producing one output record, and then sending the output record to the next operator. In 

pipelined execution, a parameterized operation is a special case of a non-parameterized 

operation. An operator with its right operand parameterized is evaluated in the same manner as 

a relational operator that performs the nested-loops algorithm, except informations may have to 

be propagated downward, outside the operator. 

7.2 Indexing 

The path index [MS86] is a typical index mechanism available for the object model. A path 

index provides inverse traversal of a path expression. A path index for path expression P=pGpl. 

... .p, consists of a set of n index components X(pi). Let Z denote the type of the objects at the 

end of ape. ... .pi path. The index component X (p,J associates each occurring value of attribute 



p,, with a set of objects of type T,,J whose attributep,, carries this value, while X(pi) (I 5 i  In-1)  

maps the OID of a object to a set of Ti objects that contains that object. A single-valued 

path expression consists solely of single-valued attributes. A collection-valued path expression 

includes one or more CVAs. The path index was originally developed for single-valued path 

expressions. However, it can be readily adapted for collection-valued path expressions. Many 

operators involving CVA elements can be implemented using path indices on collection-valued 

path expressions, for instance, index selection and index join, demonstrated later in this chapter. 

In addition, path indices can be used as inverse pointers for transforming materialization into 

valued-based join, as illustrated in Chapter 6. 

7.3 Physical Operators and Implementation Rules 

An optimizer can elect to have none, one, or several physical counterparts for a logical operator. 

For instance, the optimizer may support only relational operations at the physical level and 

choose not to implement parameterized operations such as map. 

The relationship between logical and physical operators is not always one-to-one. A physical 

operator itself may have no logical counterpart, for instance, the index selection operator. The 

index selection operator does not implement exactly the logical selection operator, because it 

does not require the attributes participating in the selection predicate to be materialized. An 

index selection operator looks up an index to determine qualified records, rather than fetching 

and comparing the attributes mentioned in the selection predicate. In COCOUN, the mismatch 

between index selection and logical selection will be addressed through implementation rules, a 

type of transformation rules that convert logical operators into physical ones, by rearranging 

materialize operators related to the selection operation. The mismatch between logical and 

physical operators also exists for index projection and logical selection, which will be addressed 

similarly. 

In the next sections, we describe the physical operators in three categories: non-parameterized 

physical operators, parameterized physical operators and the sort operator. 

7.3.1 Non-parameterized Physical Operators and Their Implementation Rules 

In this section, we present non-parameterized physical operators and the corresponding 

implementation rules. 



Implementation Rule 1 (Selection Implementation Rule 1): 

o, R + Sel, R. 

The physical operators implementing selection (ap) are Sel, (nayve selection) and IdxSel,, 

(index selection). A Sel, operator enumerates the input records one by one and returns the ones 

that meet the predicate p. 

Implementation Rule 2 (Selection Implementation Rule 2): Let x be a path index of R on a 

path expression mentioned by the predicate p. Then, we have the following implementation 

rule: 

Implementation Rule 3 (Selection Implementation Rule 3): Let x be a path index of R on 

CVA Y. Predicatep uses the elements in Y. Then, we have the following implementation rule: 

The Imp operator looks up a path index on a path expression mentioned by the selection 

predicate, and returns the qualified elements stored in the index. 

Implementation Rule 4 (Projection Implementation Rule 1): 

The projection operator, n ~ ,  is implemented by the physical operators Pr/'L and IdxPr/',&. The 

P t j ~  operator enumerates input records one by one and returns the attributes specified in L. 

Implementation Rule 5 (Projection Implementation Rule 2): Let x be a path index on the 

path expression L. We have the following implementation rule: 

The IdxPrjXL operator assumes the input collection has a path index on path expression L, and 

retrieves the value of the path expression L by collecting the key values in the path index. 

Implementation Rules 6 through 8 (Materialize Implementation Rules): 



As discussed in Chapter 6, materialize is an operation that resolves reference attributes. The 

physical operators for materialize utilize various pointer-based algorithms [SC90]. The naive 

materialize operator, Mat,, enumerates the input records and resolves the reference attributes in 

the access order of those records. When the objects to be materialized are located in the same 

order as their parents, or when those objects fit in memory, Mat, yields good performance, 

causing no random 110. Two other physical materialize operators, HashMat, and SortMat,, 

employ hashing and sorting algorithms respectively, to access adjacent objects sequentially and 

thus avoid random YO. 

Implementation Rule 9 (Unnest Implementation Rule): 

The logical unnest operator (pAlal) has one physical counterpart - Unne~t~[~]. The U n n e s t ~ ~ ~ ~  

operator uses a nested-loops algorithm to concatenate each input record with each element in 

the collection referenced by the A attribute of that record. 

Implementation Rules 10 through 12 (Nest Implementation Rules): 

Nest is implemented using sorting, hashing or stream-based algorithms. HashNest or SortNest 

first groups or sorts an input collection using the nesting key K, then partitions the input into 

groups. StreamNest accepts a collection that is already sorted by or grouped by the nesting key 

K, producing the result with only one scan of the input collection. 

Implementation Rules 13 through 15 (Duplicate Removal Implementation Rules): 

p R 3 SortDup R. 

p R +' HashDup R. 

p R 3 StreamDup R. 



Duplicate removal is implemented as three physical operators HashDup, SortDup, and 

StreamDup. The first two operators eliminate duplicate using hashing and sorting algorithms 

respectively. The third operator, StreamDup, assumes that the input is sorted, thus duplicate 

elements are adjacent in the input. Therefore, StreamDup only needs to check an element 

against its neighbors to determine whether that element repeats another element. Since 

StreamDup does not involve hashing or sorting, it is more efficient than HashDup and SortDup. 

However, StreamDup has extra requirement on the order property of the input 

Join is implemented as NiJoin, (nested-loops join), HashJoin, (hash join) GraceHashJoin, 

(grace hash join), Mergdoin,, (sort-merge join) and IdxNWoin, (index nested-loops join). 

Below are the implementation rules for join. 

Implementation Rule 16 (Join Implementation Rule 1): 

Implementation Rules 17 and 18 (Join Implementation Rules 2 and 3): Predicatep is an 

equality comparison 

R w , S 3 R GraceHashJoin, S. 

A HashJoin, operator builds a hash table for the right-hand input using the join attribute and 

probes the hash table using the left-hand input. A GraceHashJoin, operator frst partitions the 

two inputs such that the elements in one left-hand partition match the elements from only one 

right-hand partition, and vice versa. Then, the GraceHashJoin, operator performs hash join 

between each pair of partitions. GraceHashJoin, is especially useful for joining large inputs. 

Implementation Rule 19 (Join Implementation Rule 4): If Predicatep is an equality 

comparison, also R and S are sorted on the join attribute, then we have 

R W, S + R MergeJoin, S. 

A Mergdoin, operator assumes that the inputs are sorted on the join attributes, and goes 

through both inputs simultaneously as follows: First, set the cursors pointing to the first records 

for both inputs. Second, compare the first left-hand input record and the first right-hand record 

using the join attributes. If the left-hand record is smaller, then advance the left-hand cursor to 



the next record. If the right-hand record is smaller, then advance the right-hand cursor to the 

next record. If the two records are equal, then output the concatenation of the two records and 

advance the right-hand cursor to the next record. Third, continue with the first and second steps 

until both cursors reach the ends of both inputs. (The actual algorithm is slightly more complex 

than this description, to handle repeated values in input.) 

Implementation Rule 20 (Join Implementation Rule 5): If Predicate p is an equality 

comparison, and S has an index x on the join attribute, then we have 

Implementation Rule 21 (Join Implementation Rule 6): Let S be a collection with a path 

index x on the CVA A. Let p be an equality comparison involving the element of A. Then, we 

have 

IdxNL,Join utilizes a path index to perform a join between input collections. Similar to the index 

selection case, index join does not implement exactly the logical join operator. Again the 

mismatch between logical and physical operators is addressed by rearranging materialize 

operators in the implementation rules (Implementation Rules 20 and 21). Implementation Rule 

21 seems to have limited applicability, because the pattern 

(Ma1 *. . - M a n  PA[a] Mbl *-.. M b m  Gs S) 

is complex. However, this pattern is commonly used in translating CVA queries. Typically, a 

CVA mentioned in a query is translated as follows: First, a get operator scans a base collection. 

Second, the attributes in the scanned elements are materialized. Third, the CVA is flattened (by 

P ~ [ ~ ] ) .  Finally, the attributes in the CVA elements are materialized. The translation result will 

give an expression that matches the pattern above. 

Anti-join, semi-join and outer-join have physical operators similar to those of joins. For 

instance, anti-join has five physical operators, NLAntiJoin, HashAntiJoin, GraceHashAntiJoin, 



MergeAntiJoin and IdxNLAntiJoin. The implementation rules for anti-join, semi-join, and 

outer-join are similar to Implementation Rules 16 through 21. 

Implementation Rule 22 (Conversion Implementation Rule): 

Item XE, F represents a family of conversion operators where F stands for a function applied to 

each input element, and E stands for specific operations such as set, bag, list (a), Set, Bag, 

List(a), element, exact-one, exists, not - exists, unique, count, avg, sum, min, ma., nth(a, i), 

Jirst(a), and last(a). We use the similar representation at physical level. The generic physical 

operator, implements the conversion operator, F ,  where E and F have the same 

semantics in both operators. 

Implementation Rule 23 (Get Implementation Rule): 

G, R 3 Get, R. 

The physical get operator, Get,, fetches the elements in the input collection based on disk order 

or the order in which the references of the elements appear in the input collection. 

7.3.2 Parameterized Physical Operators and Their Implementation Rules 

We implement physical operators for parameterized operators map, outer-djoin, d-join, semi- 

djoin and anti-djoin. The corresponding physical operators are M m ,  OUTERDJOINp, DJOINp, 

SEMIDJOINp and ANTIDJOIN,. These physical operators use nested-loops algorithms. For 

instance, the DJOIN, operator is implemented as follows: 

For each record from the left input, ti, 

Evaluate the right input expression with the attributes in ti substituted for the 

free variables in the right input expression, yielding a stream of records 

For each record in the evaluation result of the right input, t, 

If ti and t, satisfyp, include their concatenation in the result. 

The implementation rules below map parameterized logical operators to their physical 

counterparts. 

Implementation Rule 24 (Map Implementation Rule): 



Implementation Rule 25 (Outer-djoin Implementation Rule): 

R l w  =, S 3 R OUTERDJOIN, S. 

Implementation Rule 26 (D-Join Implementation Rule): 

R Iw, S 3 RDJOIN, S. 

Implementation Rule 27 (Semi-djoin Implementation Rule): 

Implementation Rule 28 (Anti-djoin Implementation Rule): 

R I D ,  S 3 R ANTIDJOIN, S. 

7.3.3 The Sort Operator 

A physical operator may require that its input be sorted on certain attributes to ensure correct 

execution of that physical operator. For instance, MergeJoin requires that both operands be 

sorted on the join attributes. If an operand of such a physical operator does not meet the 

requirement on sort order, a physical operator - the sort operator - will be inserted between that 

physical operator and that operand. The sort operator accepts the input, re-orders the result, and 

outputs the re-ordered result to that physical operator. 

Implementation Rules 29 and 30 (Sort Implementation Rules): Let R be a collection that is 

not already sorted on L, where L stands for an attribute or an attribute list. Then, each rule 

below adds a sort operator on R such that the result expression outputs a stream or table sorted 

on L: 



We give two sort operators. QuicksortL implements the quick sort algorithm. MergeSortL 

implements the merge sort algorithm. Unlike other physical operators, QuicksortL and 

MergeSortL have no logical counterparts. 

7.4 Discussion 

Parameterized operators bring in the issue of invariant sub-plans. An invariant sub-plan is 

located within a parameterized branch but actually contains no free variables. Efficient 

evaluation of invariant sub-plans requires modification to all the operators possibly involved in 

sub-plans, or requires temporary materialized views [RR98]. Suppose a hash join is located in 

the right-hand branch of a map operator. Also suppose that the inner operand of the hash join is 

invariant. Naively, the hash table of the hash join will be built for each invocation of the right 

branch of the map operator, even though, the hash table is constant over all the invocations. An 

obvious way to speed up the evaluation is to avoid rebuilding and keep the hash table in the 

hash join between invocations of the right-hand map branch. However, it is not clear how the 

usage of invariant sub-plans affects the overall plan space. We do not further investigate this 

idea in the present research. Rather, we consider it a topic for future work. 

To summarize, in this chapter, we present the physical algebra used in the COCOUN optimizer. 

One distinguishing feature of the physical algebra is the parameterized physical operators 

included. The parameterized physical operators contribute to a larger plan space that includes 

both flat plans, which consists of non-parameterized operators, and nested plans, which may 

also contain parameterized operators. In many cases, nested plans outperform flat plans. 

Therefore, adding parameterized operators in the physical algebra provides not only a larger 

plan space, but also a bettter plan space than the plan space that a physical algebra consisting of 

only non-parameterized operators can provide. 



index access. The authors adapted Yao's formula [Yao77] to estimate 110 costs in different 

cases of physical clustering. 

In this chapter, we first present an appropriate model of representing and propagating the 

parameters for the cost formulas used in costing object queries. Then we discuss the cost model 

implementation in COCOUN, and quality measure issues for cost models. 

8.1 The Parameter Model and the Propagation Model 

A cost model computes the costs of an evaluation plan according to the operators in the plan 

and the properties of the inputs to the operators. In other words, costing an evaluation plan 

requires a parameter model and a propagation model in parallel with a cost model for every 

operator in that plan. Theparameter model consists of a set of parameters used for costing 

physical operators. The propagation model consists of the representation and calculation 

mechanisms of those parameters. The parameters covered in a parameter model include those 

maintained by the DBMS to characterize system configuration and the properties of data stored 

in the DBMS and involved in a query, and also include the properties for the data outputted by 

the operators in the evaluation plan. Figure 104 illustrates how the parameter model and the 

propagation model help compute the cost of an evaluation plan. Suppose the evaluation plan is 

an operator UP,, with two input sub-plans SQl and SQ2 (Figure 104(a)). The cost of that plan 

is the sum of the costs for SQI, SQ2, and the UP,, operation, the last computed as local (UP, 

args, P(SQl), P(SQ2)). As shown in Figure 1040>), the data properties for each operator in the 

evaluation plan are computed from the data properties of the inputs of that operator via the Prop 

function. In case that an operator is a leaf operator, the output data properties of that operator 

are computed from the properties for the stored data involved in that operator. Properties for 

stored data are not computed on the fly, but are pre-computed (or collected) and kept in the 

database catalog. 



A 

Q 

Local (OP, args, Prop (OP, args, 

P(SQl), P(SQ2)) P(SQl), P(SQ2)) 

P(SQ1) P(SQ2) 

(a) An evaluation plan Q: (b) Costing Q: C maps an evaluation plan to its cost. P maps an 

Op,, is the top operator. evaluation plan to the properties of its output. Local computes the 

SQl and SQ2 are sub-plans operator cost of an operator according to the data properties of its 

operands. Symbol + represents arithmetic addition. 

Figure 104: Plan costing with the parameter model and the propagation model 

Compared to relational databases, object databases demand more cost parameters to capture the 

impact of object relationships and object clustering on various operation costs. The parameters 

used in relational cost models include table cardinalities, key constraints and the number of 

unique values for a column. Object cost models may include properties in addition to the 

properties used in relational cost models. In particular, an object cost model may include 

properties describing how objects in the same collection are distributed on the disk and 

cardinalities of collection-valued attributes. For instance, the evaluation cost of a path 

expression can be estimated more confidently with the knowledge of how the associated objects 

are distributed across the disk or network. 



On the other hand, the operator cost formulas for object databases can be derived similarly to 

relational ones. Traditional algorithms based on hashing, sorting, and indexing are still used in 

object query evaluation. Many new features in object queries are processed using traditional 

algorithms. For instance, path expressions are typically implemented using value-based or 

pointer-based algorithms [SC90, BMG931. Indexes in object databases [MS86, BK891 also bear 

much similarity to those in relational databases in terms of data structures and retrieval 

algorithms. 

A major task in developing a cost model for object queries is to design an effective parameter 

model. The design tradeoff is that a very detailed parameter model could give better costs, but 

will be more difficult to calculate on the database instance and more difficult, or impossible, to 

construct a propagation model for. 

In COCOUN, we use the parameter model to specify the appropriate set of parameters and use 

the propagation model to address the mechanism of representing and propagating those 

parameters during optimization. 

Existing work provides a set of possible parameters for costing object queries, including 

parameters that characterize object clustering patterns, reference relationships and object 

inheritance [GGT95, BF971. 

A typical relational DBMSs stores its statistics for database instances in several catalog tables 

[R97]. The collection catalog table, or simply collection table, stores meta-information for 

collections (that is, database relations), such as names, cardinalities and index names. The 

attribute catalog table, or simply attribute table, stores meta information for columns, such as 

types, histograms, and unique cardinalities. The unique cardinality of a column is the number of 

distinct column values. The relational catalog structure is a simple and effective structure to 

store the cost model parameters for relational databases. The relational catalog structure is not 

sufficient for object databases. For each collection, the relational catalog structure only records 

the properties of its immediate attributes, not the objects referred to by its reference attributes. 

Since object queries often involve reference attributes, the relational catalog structure needs to 

be extended in order to capture the properties of reference attributes. 

Example 8.1 demonstrates that, based solely on information provided in relational catalog 

tables, the selectivity estimated for an object query can deviate significantly from the actual 

value. 



Example 8.1 The following query returns the departments where the department heads earn no 

more than 60K annually. 

SELECT D 

FROM Depts AS D 

WHERE D.head.salary < 60,000 

Let Depts be a collection of departments. Its statistics are described in the collection catalog 

table below: 

The attribute catalog table (below) stores the statistics for the attributes in Depts: 

Collection table 

The statistics stored in the catalog tables are not sufficient for estimating the selectivity of the 

query, because the properties of the attribute specified by path expression headsalary are not 

available. 

Index 

None 

To overcome this limitation of the relational catalog structure, some object cost models 

[GGT95, BF971 extended the structure to include data properties for types, as well as the 

references between types. We call such a parameter model a type-based parameter model, in 

contrast to the collection-based model used in the relational context. A type-based parameter 
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model stores, for each type T, the properties for the set of all instances of T, independent of the 

collections they are in. For example, to retrieve the properties of an attribute specified by a path 

expression, a type-based parameter model traverses all the types in the path expression to 

determine the properties for the objects referred to by the path expression. Figure 8.2 shows the 

parameters for the Department and Professor types in our sample database. The Department 

type has 50 instances. The Professor type has 300 instances. The head attribute references 

Professor instances, while the dept attribute references Department instances. The salaries of 

the professors range from 30,000 to 90,000 per year. Given the parameter model in Figure 8.2, 

the selectivity of the predicate D.head.salary < 60,000 in Example 8.1 is estimated as 0.5, 

according to the properties of the salary attribute in Professor instances (since 60,000 is the 

mean of 30,000 and 90,000). 

The object cost models mentioned above also use some collection-based parameters such as 

cardinality and key constraints [GGT95, BF971. However, those collection-based parameters 

are not sufficient for costing object queries. For instance, those parameters do not include the 

properties for the objects referenced by a path expression originating from a collection. 

Figure 105: The parameters for the Department and Professor types 

Type Department 
Card: 50 
Primitive Attributes: 

name: 50, String, -, - 
building: 10, String, -, - 

Reference Attributes: 
head: 50, Professor, -,- 

The advantage for type-based parameter models is that only instance creation, modification and 

removal affect the statistics, while, for collection-based parameter models, collection operations 

A 
dept head 

v 
Type Professor 
Card: 300 
Primitive Attributes: 

name: 250, String, -, - 
salary: 200, Integer, 30000,90000 

Reference Attributes: 
dept: 50, Department, -, - 



such as insertion and removal also require adjustment to statistics. The disadvantage, however, 

is that there is no way to obtain the properties for a collection of objects. When some, instead of 

all, of the instances of a type participate in a query, selectivity and cost estimation with a type- 

based parameter model could deviate from the actual. 

Recall that the selectivity of predicate d.head.sa1ar-y < 60,000 is estimated as 0.5, based on the 

salary statistics for all professors. Note that the actual selectivity could be much lower since the 

department heads tend to earn more than their fellow professors. Suppose that the department 

heads' earnings range from 50,000 to 90,000. Then, the selectivity of the predicate can be 

computed as 0.25, assuming a uniform distribution. The selectivity of 0.25 is a better estimate 

than 0.5 in this case. The error of the previous selectivity estimation results from the fact that 

the statistics on the salary attribute for the specific kind of professors - the department heads - 

cannot be accurately captured in a type-based parameter model. 

In this dissertation, we propose a collection-based parameter model for costing object queries. 

The focus of our work is not to achieve the best set of parameters, as most parameters in our 

cost model have been motivated and defined in the literature [GGT95, BF971. Our focus is to 

present a representation fi-amework that is easy to implement and is extensible to support more 

elaborate cost and selectivity estimation, and also supports easy derivation of the parameters for 

intermediate results. We organize the rest of Section 8.1 as follows. First, we motivate the 

collection-based parameter model and provide an intuitive representation method. Then, we 

present an improved representation method. Third, we show that the standard relational catalog 

structure can be extended to implement the proposed parameter model. It is shown that the 

proposed model is fiiendly to object-relational environments. Finally, we discuss the 

extensibility of the parameter model. 

8.1.1 The Collection-based Parameter Model 

Our parameter model stores the properties of all the collections that may participate in user 

queries. Among the properties for a collection are the element type and cardinality of that 

collection, the properties of all the attributes that may appear in user queries, including 

attributes specified by path expressions. User queries always start with one or more base 

collections and refer to objects reachable from the base collections. Therefore, it is necessary to 

store the properties for both base collections and the objects that they may lead to through path 

expressions. Figure 106(a) shows the properties for the collection Depts, which include the type 



and cardinality information for that collection, as well as the properties for some of its 

attributes. Based on the statistics for attribute head.salary, the selectivity of the query in 

Example 8.1 will be estimated as 0.25, which is closer to reality than previous estimation. 

Figure 106(b) shows the properties of the result of the query in Example 8.1. Comparing Figure 

106(a) and Figure 106(b), the properties of all the attributes in 8.3(b) are adjusted according to 

the estimated selectivity. In addition, the maximum value of attribute head.salary is modified to 

be 60,000, according to the predicate d. head.safary < 60,000. 

Collection: Depts 
Type: Department 
Card: 50 

Collection: the result of the query in Example 8.1 
Type: Department 
Card: 12 

(a> (b) 

Figure 106: (a) Collection Depts parameters (b) The parameters for the query result 

A typical way to store the parameters is to use an array to map a collection name or an 

intermediate result to the properties for that collection or the result. Each collection property 

will include the properties of all interesting attributes, including those expressed as path 

expressions. In COCOUN, an intermediate result is uniquely identified with the ID of the group 

that produces that intermediate result. Thus, the group ID is used in look up the hash table to 

retrieve the property for the intermediate result. 

An alternative method to store the parameters is to use an extension of a relational catalog 

structure. In the extended catalog structure, the collection catalog table maps a collection name 

or an intermediate result to the properties of the collection or the result such as the cardinality 

and the unique cardinality. The attribute catalog table maps a collection name and an attribute 

name (or path expression) to attribute properties such as the unique cardinality, min and max 

value. 

Example 8.2: The attribute catalog table shown in Figure 107 supports selectivity estimation for 

the previous example query. The statistics for the path expression head.salary is provided for 

collection Depts. 



Figure 107: An attribute catalog table 

Attribute catalog 

table 

One advantage of storing parameters in the catalog table is that it increases locality for property 

manipulation such as copying and modifying. Also, the technique of storing parameters in the 

catalog table easily applies to object-relational databases, which use relational catalog 

structures. 

The rest of Section 8.1.1 details the properties for collections, attributes and indexes. Besides 

type and cardinality information, we also consider such properties as keys, fknctional 

dependencies and object clustering. 
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8.1.1.1 Collection Properties 

Four kinds of data - base collections, type extents, virtual type extents and intermediate results 

- can be characterized by same set of parameters in cost functions. We use the term collection 

properties to refer to the properties for these four kinds of data. A base collection is a collection 

stored in a database instance. A type extent is the collection of all the instances of a type. Type 

extents are maintained by DBMSs. When participating in queries, they behave the same as base 

collections. A virtual type extent is all the instances of a type, but without a primary access 

method, therefore it cannot participate directly in queries. However, keeping the statistics for 

virtual type extents is useful for cost estimation, especially when the instances of the types 

appear in the queries in question. An intermediate result is a stream of records generated by an 

operator in a query evaluation plan. The properties for an intermediate result are derived during 

query processing from the characteristics of that operator and the properties of the inputs to that 

operator. 
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The collection table stores in each row the properties for a collection. Figure 106 shows two 

instances of the collection catalog table. Figure 108 shows the schema of the collection catalog 

table and defines the attributes in that schema. The table in Figure 106 is simlified compared to 

Figure 108. The attributes of the collection catalog table represent data properties for base 

collections, type extents, virtual type extents and intermediate results. Each intermediate result 

is assigned a distinct name. 

Figure 108: The schema of the collection catalog table 

For base collections, fimctional dependencies mostly can be determined by key constraints, 

since base collections are usually normalized. Intermediate results, however, are often de- 

Name: the name of the collection, type extent or intermediate result 

Kind: base collection, type extent, virtual type extent or intermediate result 

Card: the cardinality of the collection 

Ucard: the number of distinct elements in the collection 

EleType: the type of the elements in the collection. This type needs to subsume the types of 

the elements. 

Type: the type of the collection such as a stream, a set, a bag or a list 

Keys: the attributes that identify the elements in the collection. A key can be a list of 

attributes or path expressions. A null value indicates no key. 

FDs: functional dependencies in the collection. A FD consists of a list of dominating attributes 

and a dependent attribute 

Cluster: The clustering pattern of the elements in the collection, such as 

"attribute a clustering" 

Den: the density of the elements in the collection, i.e., the number of the elements 

from that collection per disk page 

Type Collection 
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normalized. Thus, hnctional dependencies are included in the parameters mainly for 

intermediate results and for the purpose of cardinality estimation. 

Many parameters derived from collection and attribute properties are also critical for cost 

estimation. For instance, the physical size of each element of collection R (the width of R) is 

computed from the properties of all the immediate attributes of R. 

8.1.1.2 Attribute Properties 

For each base collection, type extent, virtual type extent and intermediate result, the attribute 

catalog table stores the properties of all the immediate attributes as well as the properties of any 

path expressions that are likely to appear in user queries. There are two attribute catalog tables - 

the single-valued attribute (SVA) catalog table (Figure 109) and the CVA catalog table (Figure 

110). 

Name: the name of the single-valued attribute 

Coll: the base collection where the elements contain or refer to the attribute 

Ucard: the unique cardinality of the attribute 

Type: the type of the attribute 

Min: the minimal value of the attribute, if applicable 

Max: the maximal value of the attribute, if applicable 

SVA table 

Figure 109: The schema of the single-valued attribute (SVA) catalog table 

Name Coll UCard Width Type Min Man 



Figure 110: The schema of the CVA catalog table 

For a CVA, the Ucard property characterizes sharing of the CVA instances, i.e., in average, 

how many elements in the collection refer to the same CVA instance. Note that, here, "same" 

means collection identity, not equality of element sets. The Gcard property characterizes 

overlapping of the CVA instances, i.e., in average, how many elements are shared by two CVA 

instances. 

CVA table 

Example 8.3: Below are the collection and attribute catalog tables for Example 8.1. 

Name: the name of the CVA 

Coll: the base collection that owns or refers to the CVA 

Ucard: the number of unique CVA instances across the collection Coll 

Card: the average cardinality of the CVA instances 

Gcard: the number of unique CVA elements across the collection CON 

Type: the type of the CVA (set, bag, list, etc) 

EleType: the type of the CVA elements 

Cluster: The clustering pattern of the CVA elements in the collection, 

such as "clustered by parent" 

Den: the density of the CVA elements on disk pages they occupy 
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The clustering property in the CVA catalog table is necessary for estimating the costs of plans 

containing parameterized operators such as map and d-join. Unlike relational operators, which 

order disk accesses using classic hashing and sorting algorithms, parameterized operators 

inherently involve random disk access. I/O estimation under the random cases requires 

clustering properties of the CVA elements. Suppose we have a map operation, which takes a 

scan operator as the left input and a filter operator as the right input: 

MAP (SCAN, Depts, FILTER SCAN, d.Majors). 

Attribute table 

When the CVA elements (the Student objects) are not clustered with their parents (the 

Department objects), the MAP operator will cause random I/O accesses in getting the Majors 

attribute of a Department object. In order to estimate the amount of I/O for the map operation, it 

is necessary to know the clustering properties for the Student collections, such as the number of 

disk pages that are occupied by the Student objects, and the number of Student objects stored in 

each disk page. 

Name 

head 

headsalary 

Coll 

Depts 

Depts 

8.1.1.3 Type Properties 

Besides the collection and attribute catalog tables, we use a table called the type catalog table to 

store the relevant information for various types that appear in database instances and user 

queries. Figure 11 1 shows the schema of the table and the rows of the table for Example 8.3. 
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Figure 111: The schema of the type catalog table 

In Figure 1 1 1, CompCost indicates the comparison cost for instances of a particular type. The 

cost is computed according to the equality comparison function for a given type. The type 

catalog table does not include other type properties such as the types of the attributes in Schema, 

since those properties can be derived from the type, collection and attribute catalog tables. 

CompCost 

TBasic~orn~ 

TBasic~orn~ 

8.1.1.4 Index Properties 

Name: the type name 

Extent: the name of the extent or virtual extent 

Schema: the attribute names 

CompCost: comparison cost for type instances 

Type table 

The properties for indexes provide key statistics that support cost estimation for indexing 

algorithms such as indexed selection and indexed nested-loops join. Figure 112 illustrates the 

index properties provided by the DBMS. The properties Card, Ucard, Max and Min are used to 

estimate the selectivity and the result cardinality of indexing operators. The Breadth property is 

used to estimating the costs of index lookups. 

Extent 

Depts 

Faculty 

Name 

Department 

Professor 

Schema 

[name, head, Faculty] 

[name, dept, salary] 



Figure 112: The schema of the index catalog table 

Figure 1 12 also shows an entry in the index catalog table, which records the properties for an 

index on the Depts collection. The path index Idxl on the path expression head.name has 500 

entries and 350 unique names as the key values. Each node in the index holds 200 keys. 

8.1.1.5 System Properties 

Name: the name of the path index 

Coll: the collection for which the index is built 

Path: the path expression for the index 

Breadth: the number of keys in each index tree node 

Card: the number of entities in the index 

Ucard: the number of distinct keys in the index 

Min: the minimal key value 

Max: the maximal key value 

Index table 

The cost model in COCOUN considers the following parameters that characterize the system in 

which the query evaluator runs. The OID size (Soid) helps compute the physical sues of objects. 

The buffer and page sizes (Sb,@and S,,,) help compute I/O costs, as will be illustrated by the 

cost fkctions for various operators. 

Card 

500 

Path 

head.name 

soid the number of bytes an OID occupies 

S b r 6  buffer size, the number of buffer pages available 

sw page size, the number of bytes per buffer page. 

UCard 

350 

Min 

- 

Name 

Idxl 

Breadth 

200 

8.1.1.6 The Extensibility of the Parameter Model 

Max Coll 

Depts 

We provide a parameter model for object queries. The model is extensible in that more 

advanced statistics can be readily added for more sophisticated costing. For instance, one may 

add histograms into the attribute catalog table to improve the accuracy of selectivity estimation. 



Also, information on object relationships such as many-to-many relationships between types 

can be captured in the type catalog table, to meet the need of cardinality estimation for queries 

involving collection-valued path expressions. 

8.1.2 Cardinality Estimation 

We assume DBMSs provide properties for base collections. The properties of intermediate 

results have to be computed and propagated during optimization. An important collection 

property is cardinality. In this dissertation, we discuss our approach for estimated cardinalities 

of intermediate results. We assume that attribute values are independent, and mostly in uniform 

or standard normal distribution [SAC79, MUW991. However, we found that our parameter 

model and estimation methods can be extended to accommodate more sophisticated estimation 

approaches [PI97]. 

For an operator such as selection, join, anti-join or semi-join, the selectivity of the predicate 

determines the cardinality of the output. The selectivity of a predicate is the probability that an 

input object (for unary operators) or a pair of input objects (for joins) satisfies the predicate. For 

. an operator such as projection or nest, the output cardinality is estimated through its shrinking 

factor, the ratio of the output cardinality over the input cardinality. 

In the following, we discuss cardinality estimation for typical operators in COCOUN. 

8.1.2.1 Selection 

The selectivity for a selection operator is the probability that an input object satisfies the 

selection predicate. Selectivity estimation in COCOUN is based on that in the System R 

optimizer, which assumes a uniform data distribution [SAC79]. When data is not uniformly 

distributed, System R uses crude selectivity estimation formulas, for instance, 0.1 for an 

equality predicate. 

A uniform distribution is a poor assumption for an aggregation on a uniform distribution. 

Suppose the attribute age is uniformly distributed across 10 to 30, the distribution of the average 

of age is no longer in a uniform distribution, but in a normal distribution with mean 20. Thus, 

we extend the System R approach to consider normal distributions, for the case of attributes 

computed fiom aggregations. When an aggregation result is used in a predicate, the selectivity 

for the predicate is computed with this assumption. Suppose the aggregation operation, AGG 



(Q), is computed to be m, according to the statistics for the intermediate result of Q. We assume 

the value of AGG(Q) is from a standard normal distribution with mean m. Using the probability 

formula for normal distribution the selectivity of predicate AGG (e) = b is estimated as 

Here, b denotes the value of b if b is a constant, or the average value of attribute b, if b is an 

attribute. Under the same assumption, the selectivity of the predicate AGG(Q) > b is estimated 

as 

0.5 - T (b - m). 

Here, T (b - m) denotes the probability that AGG(e) returns a value greater than b. The 

probability can be looked up in a table for the normal distribution curve area [H52]. The 

following example demonstrates the usage of the normal distribution assumption. 

Example 8.4: The following query returns the students who have taken more than six courses. 

SELECT S 

FROM STUDENTS AS S 

WHERE COUNT (S.Taken) > 6 

Suppose the average cardinality of the CVA Taken is 5 according to the statistics stored in the 

catalog. Then the selectivity of the selection predicate is estimated as 

which is a good estimation of the actual selectivity. In contrast, assuming the expression 

COUNT(S. Taken) 

is in a uniform distribution and the number of course each student takes ranges fi-om 1 to 15, 

System R will estimate the selectivity as 0.7, which deviates greatly from the actual selectivity. 

8.1.2.2 Join Operators 

The selectivity of a join predicate is the probability that a pair of input objects satisfies the 

predicate. 



For the join predicate a = b, where a and b are not foreign keys, the formula 

estimates the number of records in the join result that contain the same a or b values. Here, IRI 

and IS1 means the cardinality of the join operands. The expression Max (I I a1 1, I I b I V stands for 

the maximum number of distinct values of a or b. The expression ]/Max f l )  a ) 1, 1 I b 1 V denotes 

the probability that a and b are equal. 

For the join predicate a 2 b, the selectivity is computed according to the statistics about 

attributes a and b. When a and b both follow uniform distributions and the range of a covers 

that of b, i.e., Max(a) 1 M a x 0  and Min(a) I Min(b), the selectivity is estimated as 

follows: 

Although the first formula above does not apply to non-integer numbers such as float, the 

second one does. However, neither formular applies to non-numeric attributes. Also, in the case 

that the second forrnular is not applicable, the selectivity of the join predicate will be loosely 

estimated as 0.1. The selectivity under other cases when the ranges of a and b are overlapping 

or disconnected can be estimated similarly. We do not consider normal distributions for join 

predicate attributes. 

The cardinality for semi-join and anti-join is estimated according to the formula given by 

Mannino et al. [MCS88]. Let a and b be the join attributes of R and S respectively. The 

cardinality of semi-join R S is estimated as 

The selectivity For anti-join R D , = ~  S is estimated as 



8.1.2.3 Unnest and Nest Operators 

For an unnest operator, the cardinality of the result is the cardinality of the input times the 

average cardinality of the CVA being unnested. 

A nest operator shrinks the input into the output by a reduction factor. The output cardinality is 

estimated under the assumption that participating attributes are independently distributed. For 

the nest operation VK, L, A, R, the output cardinality is Min (IRI, I Jalj 1 x ... x (Ia,I V ,  where a,, ..., a,, 

are independent attributes in K. 

Functional dependencies in R can help in determining the independent attributes a,, ...,a,,, by 

eliminating the attributes among K that depend on other attributes in K. Let the complete set of 

attributes in K be kl, ..., k,,. The following rules derive the independent attributes: 

Rule 1 : If ki determines 4,  remove 4. 

Rule 2: If x is not in K, x determines ki and x determines 4,  remove ki and 4 and add x. 

To simplify implementation, we only examine the FDs implied fiom key constraints for 

deriving independent attributes. Also, we assume that keys are single attributes. 

The average cardinality of CVA instances generated by a nest operator is estimated as the input 

cardinality divided by the output cardinality. 

Example 8.5: Consider the nest operation 

V{s.dept,s.major), L, A, F Students. 

It can be determined that the independent attribute for this operation is s.rnajor, since s.major 

determine s. dept. 

8.1.3 Property Derivation 

The properties of an intermediate result are computed using the properties of the operands and 

the characteristics of the operator that outputs the result. The properties of intermediate results 



are propagated through an algebraic tree in a bottom-up fashion. As the result of property 

propagation, each operator keeps a list of properties for all the attributes in the result that are 

useful for computing the result of the succeeding operators. The properties of a final result are 

also interesting since the final result may be a base collection for other queries. 

In order to derive the properties for intermediate results, we assign a propagation b c t i o n  to 

each operator. This function accepts the properties for the input(s), and returns those for the 

output. 

For the selection operator, the propagation function first estimates the selectivity of the 

predicate, and then the properties of the output, including the cardinality and unique cardinality 

statistics. 

Example 8.6: We continue with Example 8.3. According to the min and max values of the 

salary attribute, the selectivity of the query in Example 8.1 is 0.6. Consequently, the cardinality 

of the output data is 30. The properties for the output data and two of its attributes are given in 

Figure 1 13, assuming that output is named Tmpl. The properties of other attributes are inherited 

from the Depts collection. 

Figure 113: The collection catalog table and the attribute catalog table for Example 8.6 

For a materialize operator, the propagation function derives properties that include the attributes 

and their properties inherited from the input operand, plus some newly materialized attributes 

and their properties that are stored in the catalog. We assume the properties for any attribute 

involved in a user query can be found in the catalog. 
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For a projection operator, the output properties consist of a list of attributes and their properties 

chosen from the input properties according to the projection argument. 

For a join operator, the output properties are determined from the input properties. For instance, 

the output cardinality will be computed based on the cardinalities of both inputs and the 

selectivity of the join predicate. 

Nest may generate new attributes, either SVAs (single-valued attributes) or CVAs (collection- 

valued attributes). The output properties of a nest operation include the newly generated 

attributes and their properties. The properties of the newly generated attributes are computed 

using the properties of the input to the nest operator, such as the cardinality of the input and 

unique cardinalities of the grouping key attributes. 

Unnest derives its output properties by adding the properties for a new attribute to its input 

properties, without changing the properties of the existing attributes. The instances of the new 

attribute are the elements in the CVA attribute being unnested. The properties of that attribute 

are computed according to the properties of that CVA attribute and the properties of the input to 

the unnest operator. 

8.2 Modeling and Propagating Properties in Cascades 

Columbia and Cascades store cost model properties in a flat data structure and propagate these 

parameters in a bottom-up fashion. Figure 114(a) shows the structure of LOG-PROP, the 

logical properties for a collection or the result of a logical operator. The logical properties of a 

multi-expression are represented by the logical properties of the top operator. Since a group 

consists of logically equivalent multi-expressions, the logical properties of a group can be 

determined by any multi-expression in that group. The FindLogProp method is called to derive 

the logical properties of a multi-expression. It has the operator available as an instance variable 

of MExpr and takes as arguments the logical properties of the input groups for the multi- 

expression. Thus, logical properties are propagated in the bottom-up fashion across the memo 

structure. For relational queries, bottom-up derivation works because the logical properties of a 

relational operator do not depend on its siblings or its parents in an algebraic tree. 



// The logical property of a collection or the result of an operator 
public class LOG-PROP 
{ 

float Card; /I The cardinality 
float Ucard; /I The unique cardinality 
SCHEMA *schema; // A SCHEMA instance contains a list of attributes 

/I and their statistics such as max, min and column unique 
/I cardinality 

1 

(a) The structure of LOG-PROP 

MExpr: :FindLogProp() 
i 
1 Let input-logqrops be a list of logical properties of the input groups 
2 Let Op be the top operator of this multi-expression 
3 Return Op.FindLogProp(input-logqrops); 
1 

(b) Determine the logical property of an multi-expression 

Figure 114: Model and propagation of parameters in Cascades 

Our logical algebra allows parameterized operators such as map and d-join. The right-hand 

operand of such an operator depends on the left-hand operand. The logical properties of an 

expression that depends on a sibling cannot be derived strictly bottom-up from the properties of 

its input groups. For instance, the properties for the get expression, Get, D.Majors, are 

determined by the properties of the correlated variable D, which is bound outside the scope of 

the get operator. 

The original bottom-up propagation mechanism in Columbia and Cascades no longer works in 

all cases. With parameterized operators such as map and d-join, it is necessary to add some top- 

down propagation for the properties of correlating variables and the relevant path expressions 

originating from those variables. Suppose we have the following multi-expression 

Grp 1 I W Grp2, 



where Grpl contains an expression with the expression GetD Depts and Grp2 contains an 

expression with Get,, D.Majors. For simplicity, the arguments for the d-join operator (I W )  is 

omitted. The properties of D and D.Majors have to be propagated from the multi-expression 

down to Grp2, in order to compute the logical properties of Grp2. 

We therefore add an attribute env-logqrops into the GROUP class to enable a multi-expression 

or a group to look up the properties of its correlated variables. The prefix env stands for 

environment. The attribute envlogqrops is a list of logical properties for the groups that the 

current group depends on. The list is sorted such that the more recent groups that the current 

group depends on appear earlier, in case there are attributes with the same name in these logical 

properties. Figure 110 shows that it is possible that two groups bind variables with the same 

name. 

Example 8.7: Consider the logical expression 

For simplicity, we omit the arguments for selection (o), map (a) and join ( W )  operators. Figure 

11  5 shows the multi-expression containing the expression above. Grp3, Grp4, and Grp5 inherit 

the properties for the variable D bound in Grp2 from their ancestor groups. Grp7 inherits both 

the properties for the variable D bound in Grpl and the properties for the variable D bound in 

Grp8. Since in the list of properties, the variable D bound in Grp8 appears earlier than that 

bound in Grpl, Grp7 can choose the correct properties for the variable D. Note that it is not 

sufficient to perform an initial renaming to make variables distinct. Even if variables are distinct 

initially, they can be duplicated in common sub-expressions. 



Grpl: a 

Grp2: DeptsD 

Grp4: a GrpS: D.Faculty 

Grp6: o Grp7: D.Majors 

Grp8: DeptsD 

Figure 115: The groups for the expression in Example 8.6 

The properties of the groups in Columbia and Cascades are populated in two situations. In the 

first case, each group is initialized with an algebraic expression. This happens when initially 

inserting the original query expression. Before initialization, the logical properties and 

env - logqrops of the operators in the expression are propagated in post-order, i.e., in the order 

of the leR operand, the right operand, and the top node. Propagating from left to right 

guarantees that the properties for correlated attributes are computed before they are used. 

Propagating children before parents makes sure that the logical properties for the inputs are 

computed before they are used in computing those of the parent operator. Once properties have 

been propagated across the initial expression, they can be assigned to the groups in which the 

operators of the expression will eventually reside. 

Example 8.8: The groups in Figure 1 15 are populated in the following order: 

Grp.2, Grp8, Grp6, Grp7, Grp4, Grp5, Grp3, Grpl. 

The second case for property propagation occurs when groups are created during 

transformation. Newly created groups are inputs to the transformed multi-expression. The 



env-logqrops attributes of those groups are inherited from the group in which the multi- 

expression resides. If the top operator of a multi-expression is a parameterized operator such as 

map or d-join, the logical properties of the left-hand operand of the multi-expression will be 

copied into the env-logqrops attribute of the right-hand input group. 

Example 8.9: Suppose Figure 1 15 is transformed in to Figure 1 16 by normalizing the map 

operator (a) in Grp4 into nest (v) and outer-djoin(lpa=). Grp9 is the newly created group. The 

env-loggrops properties in Grp9 are copied from Grp4. Specifically, the env-logqrops of 

Grp9 consists of the properties for two variables: one is the variable D bound in Grp2, another 

is the variable D bound in Grp8. 

Grpl: a 

Grp2: Depts~  

Grp4: a, v Grp5: D.Faculty 
n 

Grp6: o 1 Grp7: D.Majors 1 

Figure 116: The groups derived from Figure 115 



Figure 1 17 shows the changes made in COCOUN to the parameter model and property 

propagation in Columbia and Cascades. Figure 1 17(a) is the structure of the new LOG-PROP 

class. The new attribute attrqrop-map maps path expressions to the logical properties of the 

attributes to which those path expressions refer. Figure 11 7(b) shows how to derive the logical 

properties of a multi-expression. Beside the input logical properties, the env-logqrops of the 

group that multi-expression resides are also required. 

/I The logical property of a collection or the result of an operator 
public class LOG-PROP 

float Card; I/ The cardinality 
float Ucard; /I The unique cardinality 
SCHEMA schema; /I Variable schema containing mainly a list of attribute 

I/ names and their types 
Map<String, ATTR-PROP> attrqrop-map; 

I/ Map path expressions to the properties of the 
/I attributes specified by these path expressions. For a 
I/ single-valued attribute, ATTR-PROP records its unique 
// cardinality, max and min. For a CVA, the ATTR-PROP 
/I records the average, max and min cardinality. 

Array<String> free-vars; I/ names of correlated variables 
1 

(a) The structure of LOG-PROP 

MExpr: :FindLogProp() 

1 Let env-logqrops be a list of logical properties for all the groups this rnulti- 
expression depends on, ordered from inner to outer 

2 Let Op be the top operator of this multi-expression 
3 Let input-logqrops be a list of logical properties of the input groups 
4 Return Op. FindLogProp(env-logpps, input-logqrops); 
1 

(b) Deriving the logical property for a multi-expression. 

Figure 117: Modified parameter model and propagation 



In Line 4 of Figure 1 17(b), FindLogProp estimates the output logical properties of a multi- 

expression, using the env-logqrops and the input logical properties of that multi-expression. 

When the top operator is not parameterized, FindLogProp ignores the first argument. For a 

parameterized operator, FindLogProp looks up env-logqrops to determine the properties for 

the relevant variables. For instance, FindLogProp for the multi-expression in Grp9 of Figure 

1 17 will retrieve the average cardinality of CVA D.Maj0r.s and estimates the output cardinality 

of Grp9 by multiplying that average cardinality with the output cardinality of Grp6, provided in 

the second argument for the FindLogProp method call. 

8.3 Cost Functions 

We consider CPU and I/O costs in estimating the costs of evaluation plans. The overall cost of a 

plan is the sum of the costs of all the operators contained in the plan. Let n be the number of 

operators in an evaluation plan. Let CPU, be the cost function computing the CPU cost of the ith 

operator. Let IOi be the cost function computing IJO amount of the ith operator, i.e., the number 

of disk pages the ith operator reads or writes. Also, let Tlo be the amount of time spent for each 

110 read or write in milliseconds (ms). The generic formula for estimating the elapsed time to 

execute the evaluation plan is 

Cost = (CPUi + Tl0 * IOi). 
i=l 

The unit of the cost computation is milliseconds (ms). 

In the rest of this section, we give the CPU and I/O cost functions for major physical operators. 

We assume the iterator execution mechanism [G93], where physical operators communicate 

with each other through open, next and close methods. Intermediate data is transferred through 

pipelines instead of being stored in temporary files whenever possible. 

8.3.1 Cost Functions 

Basic operations such as disk accessing, comparison, hashing, attribute extraction and object 

construction are used in many operations. The costs of these basic operations often depend on 

the system where the query evaluator runs. Figure 1 18 lists the symbols for these basic 

operation costs, including TIo, Tamp, THarh, T E ~ ~ ~ ,  and Tc,,. Those basic operation costs are 

specific to DBMSs. 



Some other operations such as index lookup and hash table creation are also used in many 

operators. The costs of these operations can be computed from the basic operation costs. For 

convenience, Figure 1 18 gives the symbols and the cost formulas for the costs of these 

operations, including T ~ ~ , i , d ~ n s ~ , ,  T~robe~ash, T~~~kt~ ,dr  and T L ~ ~ ~ ~ ~ ~ o T .  

In the rest of Section 8.3, we present the cost hc t ions  for the major physical operators in 

COCOUN. Many cost functions use the basic operation costs given in Figure 11 8. 



Figure 118: The basic costs and cost formulas 

Reading or writing a disk page 

Extracting an attribute 

Constructing a record or an object 

Comparing two values of type t, such 

as integer, float, boolean or string. 

Computing a hash function 

Building a hash table, where N is the 

number of elements in the hash table 

Probing a hash table, where N is the 

number of elements in the hash table 

and n is the number of buckets in the 

hash table. 

Looking up a single key, where E 

denotes the number of entries per 

index tree node; N denotes the 

number of keys in the index. 

Looking up a single OID in the 

object table, where E denotes the 

number of entries per object table 

node; N denotes the number of 

objects in the database. 
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TIO 
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Tcon 
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T L ~ ~ ~ I I ~ I ~ X  (N) = 

TCO, * log2N 

TLOO~U~OT = 

Tamp * log2N 



8.3.2 Selection (op) 

There are two physical selection operators: Selp and IdxSel x,p. The operator Selp enumerates 

each input element and checks whether it satisfies the predicate p. Let R be an intermediate 

result. The cost functions for Selp R are 

CPU = IRJ * Tcomp<t>, 

Here, t denotes the type of the attributes that participate in the selection predicate. The index 

selection operator I d ~ S e l , ~  filters the qualified input records using an index on the selection 

attributes. Let x = al...a, be a path index that specifies the attribute on which an index selection 

is performed. The CPU and 110 costs are mainly the costs of reading in and looking up the 

relevant nodes in the index tree. The cost hc t ions  for I d ~ S e l , ~  R are 

CPU = Sel (p) * la,.. .anl * TLookupldx (la1 . . .a,]) , 

1 0  = lal. - -an( * (SOID + Skey) Spag=. 

Skey denotes the physical size (in bytes) of the index key. As a reminder, Sm and Sw denote 

the physical sizes (in bytes) of an OID and a memory page respectively. 

8.3.3 Projection 

The projection operator has two physical counterparts, Prjcand Ia!xPrjc. The operator Prjc 

enumerates each input element and computes the projection function. The cost functions for 

Prjc R are 

The index-only projection operator IdwPrjc computes the projection -function from the keys 

stored in an index. Let x = al...a,, be a path index that specifies the attribute on which an index 

enumeration is performed. The cost functions for IdxPrjxXc R are 

CPU = lal.. .anl * Tcon, 

10  = lal.. .an\ * (SOID + Skey) 1 Spage. 



8.3.4 Materialize 

The materialize operator has three implementations, NLMat,, HashMat, and SortMat,. The 

NLMat, operator performs a na'ive algorithm: Fetching the objects to be materialized one by one 

as the input records come in. The cost of NLMat, depends on memory contention and object 

clustering. Let R be the input collection. When R fits in memory, the 110 cost is the cost of 

fetching the objects to be materialized. The CPU cost is the cost of looking up the OIDs in the 

object table and extracting the attributes from the fetched objects. The cost functions for 

NLMat, R are: 

where Sa denotes the physical size (in bytes) of an a object. Fanin, indicates how many 

instances of the attribute a being materialized reference to the same object. Den~ityD,,,(~, 

specifies the number of a objects held by each disk page. 

When R does not fit in the buffer and a is not clustered by the R elements, the VO cost of 

NLMat, R is computed as follows: 

Where ML stands for the formula defined in Mackert and Lohman's paper [ML89]. It takes 

three parameters x, y and z, and computes the 110 amount for randomly accessing x objects 

using a buffer of size y. The number of disk pages occupied by the x objects is z. 

The HashMat, operator first sorts the OIDs of the input records, then looks up their PIDs in the 

object table, and then hashes those records on PIDs, and finally fetches those records according 

to the PIDs. The CPU cost is mainly the cost of sorting and hashing. The VO cost depends on 

whether the input fits in memory. Let R be the input. When R fits in memory, the cost functions 

for HashMat, R are 

When R does not fit in the buffer, the input records have to be swapped between the memory 

and the disk. Both 110 and CPU costs increase as a result. Below are the cost functions for 

HashMat, R: 



The cost functions for SortMat, can be derived similarly to those for HashMat,. 

8.3.5 Unnest and Nest 

The unnest operator has only one implementation, UnnestArd, which performs a naive 

algorithm: Generate a record for each CVA element in each parent record. Assuming that the 

collection contents have be materialized, the cost functions for UnnestAral R are 

There are three physical nest operators: HashNest, SortNest and StreamNest. The HashNest 

operator groups the input records by hashing them using the nesting key, and then applying the 

aggregation function on each group. The hashing cost varies with different memory conditions. 

When R fits in the buffer, the cost functions for HashNest R are 

When R does not fit in memory, the cost functions for HashNest R are 

where SRReIemen, stands for the physical size of an element in R. 

The SortNest operator has the same algorithm as HashNest, except that sorting is used instead of 

hashing. The cost functions for SortNest can be derived similarly. 

The StreamNest operator takes advantage of the case when the input records are already sorted 

or grouped by the nesting key, such that nesting can be performed within one scan of the input 

records. The cost functions for StreamNest are straightforward: 

CPU = IRI * Tcomp<t>, 

I 0  = 0. 

Since duplication removal (Dup) has algorithms similar to nest, the physical counterparts of 

Dup have the cost functions similar to the physical nest operators. 



8.3.6 Join 

Physical join operators include NWoin, HashJoin, GRACEHashJoin, Mergdoin and 

IdxNWoin. The costs of various join algorithms have been studied extensively by previous work 

[HCLS97]. We only give the cost functions for GraceHasWoin for illustration. Grace hash join 

has two phases. First, each collection is read and hashed into partitions. The buckets are written 

to the disk. Then, corresponding partitions are read from disk and joined. Let A and B be the 

operands of a Grace hash join. When R fits in the buffer, the cost hnctions for the join 

operation are 

When R does not fit in the buffer, the cost functions for R GraceHashJoin S are 

where SA-eleme,,t and SB_ele,,lerl, stand for the physical sizes of an element in A and B respectively. 

Many join algorithms apply to semi-join and anti-join. Thus, the cost functions for semi-join 

and anti-join can be determined similarly. 

8.3.7 Parameterized Operators 

Parameterized physical operators include MAP, DJOIN, OUTER-DJOIN, ANTI-DJOIN and 

SEMI-DJOIN. (We name parameterized physical operators with all capitalized letters.) These 

operators implement naive nested-loops algorithms. The cost of a parameterized operator is 

estimated by multiplying the cost of the right-hand operands by the cardinality of the left-hand 

operand. 

8.3.8 Sort 

Sort operators include MergeSort and QuickSort. The sorting cost varies with different memory 

conditions. When R fits in the buffer, the cost functions for MergeSort R are 

CPU = TcOmp<t> * IRI * log21RJ, 

I 0  = 0. 

When R does not fit in memory, the cost functions for MergeSort R are 



The cost formulas for the Quicksort operator are derived similarly. 

8.3.9 Get 

The get operator has one implementation Get,, which simply enumerates the input collection 

and generates a record for each element. The cost functions for Get, R are: 

CPU = 0, 

10 = IRI * SOID Spage 

8.4 Performance 

A cost model can be measured using different quality criteria. We are concerned with 

measuring a cost model for its impact on optimization results. In this section, we present a 

quality criterion for cost models, discuss our tuning method, and finally present performance 

results on a set of benchmark queries. 

8.4.1 Criteria 

Even with extensive tuning effort, a cost model may still predict the relative costs of evaluation 

plans incorrectly. If one depicts the actual costs of all the candidate plans sorted on their 

estimated cost, often the curve is rough and contains disordered points, as shown in Figure 119. 

In order to characterize quantitatively the effect of the cost model on the performance of the 

query optimizer, we need some metrics for how often the cost model helps choose the real 

optimal plan, and how much more expensive the chosen plans are compared to the actual 

optimal ones in other cases. 

The quality of cost models has been overlooked by existing work on query optimization. Most 

work on cost-based optimization assumes the presence of perfect cost models. In practice, 

anyone who wants to build a cost-based optimizer needs to know how often the cost model 

picks good plans as the estimated optimal ones. No cost model is perfect, in terms of correctly 

predicting the relative costs for evaluation plans. It is desirable to have a quantitative measure of 

cost model quality. Unfortunately, no such measure has been documented so far. 



In this section, we first propose a simple criterion and use it to evaluate our cost model. Then, 

we discuss the interaction between the cost model and other components of the optimizer. We 

conclude that the simple criterion do not characterize how effective a cost model is for cost- 

based optimization. As a solution, we present an improved quantitative measure. 

8.4.1.1 The Penalty 

The basic criterion for a good cost model is that the estimated optimal plans are indeed good. A 

good cost model does not have to predict the relative costs correctly for every evaluation plan. 

What matters is whether it can distinguish the most efficient plans, and in case it fails to pick 

the most efficient plan, how expensive the estimated optimal plan is relative to the real optimal 

plan. 

Poor plan selection potentially causes the optimizer to choose plans with tremendously higher 

costs than the optimal plan. Figure 1 19 depicts the actual costs of the evaluation plans for a 

query in the order of their estimated costs under our cost functions. In Figure 119, the cost ratio 

between the best and the worst plan is 2000. While choosing a plan that is twice more expensive 

than the optimal plan may seem like a bad outcome, it is not the catastrophe choosing a plan 

that is 2000 times worse would be. 

We define the penalty @) of a cost model for a query q as the ratio between the actual costs of 

the optimal plan (C,) and the estimated optimal plan (C,) for that query, and denote it p(@: 

The penalty indicates the relative costs of the estimated optimal plans over the actual optimal 

plans. The penalty is always greater than or equal to one. The smaller it is, the better the cost 

model is. For instance, suppose for a query, the cost model predicts Plan Xas the optimal, while 

in fact Plan Y is the best. If Plan X runs for 32 seconds and Plan Y for 16 seconds, then the 

penalty of the cost model for this query is two. 

The penalty function above looks at the behavior of the cost model on a single query. A more 

general evaluation of the cost model is to look at p(q) over a range of benchmark queries. 

One may wonder what is an acceptable penalty value. The answer largely depends on optimizer 

users. For a query whose alternative plans vary dramatically in execution time, one may accept 

a plan that is within an order of magnitude more expensive than the actual optimal plan. In such 



cases, a penalty of two is acceptable. On the other hand, for queries whose alternative plans do 

not vary much, a penalty of two may imply that the optimization is a wasted effort. 

It is important that the penalty be measured against a good coverage of queries, because of its 

experimental nature. The weight for each query and database configuration can be set to 

indicate their relative importance. 

It is also necessary to measure the penalty values for small queries, even if the optimizer using 

the cost model is not used with small queries. For optimizers that employ pruning techniques 

[SBM98] or iterative dynamic programming [KS99] to limit the search effort, parts of the 

search space will be pruned based on the estimated costs of the entire or partial plans. Therefore 

good performance of the cost model for small plans is critical for effective pruning. 

8.4.1.2 Safe Pruning and Cost Model Quality 

The penalty measure only gives information about the cost model at a particular point in the 

plan space. Thus, it is not a good characterization of how the cost function will perform in an 

optimizer that has a search space smaller than the whole plan space. Suppose the test is run on a 

set of benchmark queries. The penalty measure is computed using the actual costs of the 

evaluation plans including the estimated optimal ones. If an optimizer using the cost model does 

not generate those estimated optimal plans examined by the test, the penalty measure will not 

reflect the actual penalty. 

One could parameterize the penalty measure by the optimizer in use. But this approach is 

problematic, as it is not easy to determine the search space for a given query without running 

the optimizer. Also, the search space may vary for different, but logically equivalent, starting 

plans under some heuristics. Independence relative to search strategies is desirable for a cost 

model quality measure. 

To overcome the problem that the penalty measure does not accurately characterize an 

optimizer that searches a smaller search space than the one that is used for computing the 

penalty measure, we measure the penalty of a cost model for particular optimizers and for 

particular search strategies used by these optimizers. Figure 1 19 is an example that illustrates 

our strategy. That figure depicts the actual costs of the evaluation plans for a query in the order 

of their estimated costs under our cost functions. The penalty for this query is close to 1, which 

means almost no penalty. Suppose, an optimizer uses certain heuristics that exclude Plans 1 



through 17. The actual penalty for this query for that particular optimizer will be much higher 

than 1. 

Actual Costs 
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Figure 119: The actual costs of the evaluation plans in increasing estimated costs 

Not only is independence relative to search strategies a nice property that avoids repeated 

measures when heuristics are used, it also provides a realistic expectation for the effect of safe 

pruning. A safe pruning technique is one that guarantees optimality or near optimality, even 

though not all plans are enumerated. Here, we only consider the pruning method in the 

Columbia optimizer framework, a cost-based safe pruning technique detailed by Shapiro et al. 

[SMBO 11. In Columbia, the optimizer avoids fhrther optimizing an expression during search 

when the minimum cost of the evaluation plans that an expression may generate exceeds an 

upper bound, usually the cost of a known plan. Pruning in Columbia guarantees that the search 

will generate the estimated optimal plan. 

All the cost-based safe pruning techniques assume the cost model correctly orders the 

evaluation plans according to their actual costs. The pruning technique in Columbia even 

requires the cost model correctly predict the additive costs of evaluation plans, although a cost 

model could give the correct relative order but not be additive. Let E(x) and A(x) be the 

estimated and actual costs for the plan x. A cost model gives additive estimates if it satisfies the 

following condition: 

E(x) = K * E(y), if and only if A(x) = K *A&), for arbitrary K. 

However, no cost model is perfect. It is important that people using safe pruning techniques are 

aware of the risks due to an inaccurate cost model. Unfortunately without an appropriate quality 



criterion, safe pruning techniques cannot be guaranteed correct. For instance, the penalty 

measure proposed previously is not an appropriate criterion in this respect. 

In lower-bound pruning, the search engine will give up searching when a plan costing less than 

the lower bound is found. Figure 120 depicts the estimated costs of the same plans as depicted 

by Figure 1 19. Suppose that the estimated cost of Plan 45 is within a lower bound 100 seconds, 

such that the search engine stops in the middle of the search and returns. The estimated optimal 

plan, Plan 45, is much worse than what the penalty measure (close to 1 for this query) indicates 

and what the lower bound pruning would expect. 

The problem is not that the cost model is inaccurate. Neither is the pruning technique the 

problem. Both can guarantee bounded errors. Rather, the pruning technique's blind faith in the 

estimation of an inaccurate cost model makes the errors unbounded and unpredictable. 

E s t i m a t e d  c o s t s  
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Figure 120: The estimated costs of the evaluation plans depicted in Figure 119 

8.4.1.3 The Expected Penalty 

The expectedpenalty extends the concept of the penalty measure, such that plan quality can be 

measured even when the plan space is not exhaustively explored. The idea is to compute the 

probability that each plan is selected. The probability multiplied by the penalty when that plan is 

selected gives the contribution of this plan to the expected penalty. 

Consider the curve of the actual costs of the evaluation plans for each the benchmark query, 

sorted in the order of their estimated costs. Let m be the number of benchmark queries. Let n be 

the number of evaluation plans, wh the weight for the hth benchmark query, ph the penalty for the 



hth benchmark query. The weight of a benchmark query is a percentage that indicates how 

frequently the kind of queries represented by the benchmark query occurs in applications. 

m-l 

n-k 

P h  .k' C ~ h . k . i  
i=O 

p h  : the average penalty when plans are randomly generated for the hth query. 

ph ,k : the expected penalty when k plans are randomly generated. 

p h  ,I ,  i :  the penalty contributed by the ith plan. 

In the formulas above, ph -4 specifies the expected penalty caused by the ith plan. The first term 

inph ,k computes the probability that none of Plans 0 through i-I will be examined by the 

optimizer. The second term is the probability that Plan i will be examined. The first term 

multiplied by the second is the probability that the ith plan for the query h will be chosen as the 

optimal plan, if k out of n plans are generated by the search engine randomly. The last term in 

Ph ,k is the penalty when Plan i is selected, i.e., the ratio between the actual cost of Plan i, Ci, 

and the actual optimal cost. 

The t e m p h  computes the expected penalty by adding the individual expected penalties for all 

the plans in the plan space. The t e m p h  computes the mean of the expected penalty of the hth 

query over varied numbers of plans examined by the optimizer. The term p is the expected 

penalty over various queries in the benchmark used for the measure. 

The tennph ,k satisfies the following assertion: 



max(Ci) 
1 SPh,k 2 , where 0 I i 2 n-1 

0 

This assertion agrees with intuition. First, the minimum penalty is one, when the selected plan is 

indeed the optimal. Second, the maximum penalty is the ratio between the costs of the worst 

plan and the optimal plan. 

To prove the assertion above, we first give the following equation: 

n-k k  

k  n - k  k  n - 1 - k  -+- - ( 
k  ( n - k - 1 ) - k ,  + + k  

n  n  n -1  n -1  (.-a( n - ( n - k - 1 )  n - ( n - k - 1 )  n - ( n - k )  )-a*) 

The equation above implies the previous assertion: 

max(Ci) 
s P h , k  --< , where 0 2 i I n-l 

0 

Although it is possible to reduce the cost model criteria into a single number such asp, a series 

of numbers that characterized the expected penalty at query or plan levels, i.e., Ph ,k or Ph are 

often helpful. In the following discussion, we focus on Ph ,k,  in order to look into the quality of 

our cost model in more detail. 

The expected penalty criterion is independent of the search strategy chosen. Besides the 

capability of capturing the abnormalities of a cost model, the criteria helps the designer of a 

search strategy to figure out the risk of using an inaccurate cost model. In general, if a search 



process generates and examines k out of a total of n evaluation plans in the plan space for query 

h, the penalty is expected to be pa k .  The measurep,, does not totally characterize what a search 

strategy will obtain, since the plans it explores might be correlated. 

8.4.1.4 Typical Scenarios and Expected Penalties 

The expected penalty is an effective measure for the quality of a cost model. It reflects many 

intuitive observations on the abnormal behaviors of a cost model. We visualize the behavior of a 

cost model with the curve that depicts the actual costs of the evaluation plans in the order of 

their estimated costs. Figure 121 shows a group of cost estimations and their expected penalties 

computed using the formula given in the previous section. Within each row, the frst column 

gives the actual costs of a group of plans. The set of plans for each row are the same. The 

second column in each row shows the corresponding expected penalties, PL,~'S, as a function of 

the number of plans generated and examined by the optimizer. We are presenting these graphs 

to give a sense of how different cost model inaccuracies influence the estimated penalty. Later, 

we will look at real cost-model results. Now we discuss Figure 121 using some possible cost 

model behaviors and their effect on the expected penalties: 

Best case: The best case is that the relative costs are all predicted correctly, for instance, Figure 

121 (a). The corresponding expected penalties drop steadily as the number of plans generated 

and examined grows. 

Worst case: The worst case is that all the relative costs are predicted incorrectly, for instance, 

Figure 121 (b). The penalty curve shows that the more plans that are generated and examined by 

the optimizer, the larger the penalty that will be incurred. 

Hill: A hiIl is one (spike) or several points (peak) in the curve that are higher than the neighbors 

on either side, for instance, Figure 121 (c) and Figure 121 (d) with spikes, Figure 121(e) and 

Figure 12 1 ( f )  with peaks. Intuitively, the earlier a hill appears, the more harm it does. 

(Appearing early means a plan appearing closer to the left end of the curve.) A plan in an earlier 

hill has more chance of being picked. Figure 12 1 (c) and Figure 12 1 (d) reflect this intuition: 

Their second columns suggest that the expected penalty when the number of plans examined is 

2 through 8 is higher for Figure 1 2 1 (c) than for Figure (d). Figure 1 2 1 (c) and Figure 12 1 (e) 

suggest that the more points a hill contains, the more penalty it will cause. 



Valley: A valley is one (trap) or more points (ditch) in the curve that are lower than the 

neighbors on either side, for instance, Figure 12 1 (g) through Figure 12 1 (n). In general, a valley 

containing the optimal plan causes high penalties: Figure 121 (g) through Figure 12 1 (j) have 

higher penalties than the corresponding scenarios in Figure 121(k) through Figure 121(n). 

Interestingly, as in Case (2), a valley containing several plans that cost less than the estimated 

optimal plan, e.g., Figure 12 1 (i) and Figure 1 2 1 (j), means exploring more plans does not 

necessarily improve plan quality. In fact, as shown in the second column of Figure 121(i), 

exploring nine plans yields higher penalties than exploring three. The reason is that, for Figure 

12 l(i), exploring nine plans means that the optimizer will either pick the first or the second plan 

to be the estimated optimal plan and will not possibly choose any plan in the valley, which 

contains low cost plans. (Suppose nine plans are generated. If the first and the second are both 

generated, the first plan will be selected. If one of the first and the second plans is generated, it 

will be selected.) As illustrated by Figure 1 2 1 (k) and Figure 12 1 (m), the more points in valleys, 

the more penalty they will bring about. The points located in vallys are often good plans. 

However, these good plans are less likely to be selected than they should since their estimated 

costs are predicted higher than their actual costs. 
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Figure 121: Different scenarios and their expected penalties

8.4.1.5 Expected Penalty Vector

The previous section discussed example cases of inaccurate cost estimation and their affects on

the expected penalty. This section further discusses a real world example. Figure 122 depicts the

actual costs of all the candidate plans for a query (Benchmark Query 3 given in Appendix A).

The x-axis lists for the candidate plans, sorted on their estimated costs. The y-axis gives the

actual costs of those plans.
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Figure 122: The actual costs of the evaluation plans in increasing estimated costs

Figure 123 shows the expected penalty, computed for Figure 122, as a function of the number of

plans generated and examined by the optimizer using our cost model. The maximal expected

penalty is around 60, occurring when only one plan is generated and examined. The curve

decreases dramatically until after Plan 85. The reason is that when 85 or more plans are

examined, those plans located in the top right area have essentially no chance to be selected as

the optimal. Excluding those plans helps lower the expected penalty as more and more plans are

examined.
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Figure 123: The expected penalties derived from Figure 122



In order to capture the expected penalties for a query concisely, we generate and examine five 

different numbers of plans and use the expectedpenalty vector, [Eo, El, E2, E3, E4], to record the 

expected penalties. Eo through E4 are defined as follows: 

Eo: the expected penalty when one plan is generated and examined. 

El: the expected penalty when 25% of all the candidate plans are generated and examined. 

E2: the expected penalty when 50% of all the candidate plans are generated and examined. 

E3: the expected penalty when 75% of all the candidate plans are generated and examined. 

E4: the expected penalty when all the candidate plans are generated and examined. 

The vector indicates the expected penalty for randomly picking a plan, exhaustive search and 

heuristics search that examine various percentage of the plan space. Quantity Eo is in fact the 

mean penalty over the plan space. It indicates the difference between the worst and the best 

plans. For instance, if the worst plan costs three times as much as the optimal plan, the penalty 

of randomly picking a plan will range from one to three, for instance, two. Quantity Eq denotes 

the expected penalty when plans are exhaustively generated and examined, so it is equal to the 

penalty measure previously defined. The vector concisely reflects the overall performance of a 

cost model and the optimizer using the cost model. 

As an example, the expected vector for Figure 122 and Figure 123 is 

The vector value above indicates, for example, when 50% of the total plans are explored, one 

should expect the penalty of 2.0. Note that Eo being 60 suggests the radically different costs 

across the plan space. Thus a plan with penalty 2.0 is usually good enough. 

8.4.2 Tuning the Cost Model 

Cost formulas contain statistics and parameters, which can be made inaccurate by statistical 

skew and parameter skew. Statistical skew refers to difference between actual data properties 

and the database statistics that abstract those data properties. For instance, the actual data 

distribution could deviate from the statistics provided to the cost model. Statistical skew can be 

overcome or reduced by using more detailed database statistics, for instance, using histograms 

rather than assuming a uniform data distribution. Parameter skew means that the constants used 

in cost formulas do not have appropriate values, for instance, an incorrect value of CPU cost for 

hash table insertion. We focus our tuning effort on adjusting the constant values to minimize the 



penalty caused by parameter skew. As for statistical skew, generally, the more detailed the 

statistic model, the fewer estimation errors a cost model will make. 

One constant that significantly affects cost estimation is hash table insertion cost. This cost 

varies for different systems. The variations mainly come from difference in memory allocation 

for holding the new hash entries. 

Figure 124 illustrates the necessity of adjusting the hash-table insertion cost. Figure 124(a) 

depicts the actual costs of the evaluation plans for Query 7 in the benchmark given in Appendix 

A. Figure 124(b) depict the estimated costs of those plans using different hash-table insertion 

costs, 0.02ms and 0.2 ms. The problem for the estimated result before the adjustment is that 

Plans 5 through 10 are estimated to have nearly the same costs as the optimal. But they are in 

fact much more expensive than the optimal. Further investigation revealed that an 

underestimated hash-table insertion cost led to this problem. Although Plans 5 through 10 had 

larger join inputs compared to Plans 1 through 4, the effect of the large join inputs are 

underestimated as a consequence of underestimated insertion cost. Using the adjusted hash 

insertion cost, the after-adjustment curve in Figure 124(b) succeeds in distinguishing Plans 5 

through 9 from Plans 1 through 4. 



- '"''
1/1

.§.
CD
E
:;:;
"C
CD
1/1
C. "'"III
W

III

1ii 250
0
(,)
-0200
.!

E150
:;:;
JJ100

50

245

~ ~- -~ ~ - - - - -
Plans

(a) Actual plan costs

350

300

-+- Beforeadjustment
-- Afteradjustment

0
~ ~ m M ~ ~ ~ m M ~

~~C\lC\lC\lMM

Plans

(b) Estimated costs before and after the adjustment

Figure 124: Adjusting T Hash



Figure 125 summarizes our method for tuning constant values used in cost formulas. 

FOR each possible constant values 
BEGIN 

FOR each database configuration 
BEGIN 

FOR each benchmark query 
BEGIN 

Compute estimated costs for the candidate plans of that query; 
Run the query for actual costs; 
Compute the penalty; 

END; 
Compute the weighed penalty for the benchmark; 

END; 
Compute the average penalty acorss various database configurations; 

END; 
Choose the constant value with the lowest average penalty; 

- 

Figure 125: The constant tuning procedure 

Our tuning effort for the cost model is limited and illustrative, in terms of the number of 

constants and their choice of values. In practice, it is possible to develop a tool to automate the 

tuning process. 

8.4.3 Performance Results 

We validated our cost model by measuring its expected penalties on a set of benchmark queries 

(Appendix A). A query evaluator built on the GemStoneJJ system [G96] was used for executing 

evaluation plans and recording the actual plan costs. The query evaluator runs on Windows NT 

4.0 and an Intel Pentium Model 7 with 5 12 megabytes memory. Each physical operator is 

allocated at most 200K bytes of memory. To avoid disk access being performed by buffer 

accesses, a disk flush is forced whenever the state of an operator needs to be swapped between 

the operator buffer and the disk. 

The COCOUN optimizer is used to generate evaluation plans for the benchmark queries. We 

modified the optimizer such that it generates all the evaluation plans rather than only the 

optimal ones. The benchmark includes both flat and nested queries for good coverage. 

The benchmark queries are based on the university database schema given in Chapter 1. The 

database is populated using synthesized data with all the attributes uniformly distributed. The 



cardinality of the collections ranges from 100 to 10000. The average cardinality of the CVAs 

ranges fi-om 10 to 100. 

Figure 126 illustrates the expected penalties measured for various kinds of queries in the 

benchmark (Appendix A), including relational chain join queries, relational star join queries, 

relational nested queries, path expression queries, CVA queries and CVA nested queries. In the 

tests that give the measures in Figure 126, the base collection size is 2000. The CVA cardinality 

ranges from 50 to 100. The values shown in Figure 126 appear acceptable. However, for 

relational nested queries with small search space, the penalty is much higher than for other 

queries. The higher penalty is due to server statistics skew on several attributes involved in the 

relational nested query being tested. 

Figure 126: The expected penalties for typical benchmark queries 

8.4.4 Sensitivity 

Query type 

Relational chain join queries 

Relational star join queries 

Relational nested queries 

Path expression queries 

CVA queries 

Nested CVA queries 

By analysis and experiments, we observe that the accuracy of selectivity estimation has 

significant effect on the quality of cost-based optimization. Figure 127 uses an example query to 

illustrate this observation. 
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Figure 127: The expected penalties for a nested CVA query 

The second row in Figure 127 indicates the expected penalty vector measured for the same 

nested CVA query as the one in Figure 124. The database statistics are accurate. The third row 

in Figure 127 indicates the expected penalty for the same query, but with inaccurate database 

statistics. The most significant selectivity in the query is inaccurately estimated as 0.5, while the 

actual selectivity is 0.1. The expected penalty vector appears to be unacceptable. 
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The main factors that affect selectivity estimation are statistics on attribute distribution. Besides 

statistics that pertain to selectivity estimation, other statistics also have an affect on the expected 

penalties, for instance, cardinality, CVA cardinality and object-clustering statistics. An 

appropriate cost model criterion that measure the robustness of the cost model against various 

statistics errors requires further investigation. 

8.5 Discussion 

A good cost model helps the optimizer pick an efficient plan as the estimated optimal. However, 

different criteria can be used for measuring the quality of cost models. For instance, one can use 

a single value such as the penalty, or a vector such as a series of expected penalties. The 

expected penalty vector is effective in that it characterizes the behavior of a cost-based 

optimizer that employs non-exhaustive search. 
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are generated randomly, Thus, the criterion is independent of particular search strategies. An 

area for future work is to see how well the estimated penalty reflects the results that different 

search strategies actually obtain. 
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Although not investigated in this dissertation, the cost model criterion tuned for particular 

search strategies could be usehl. For instance, the expected penalty criterion does not consider 

the effect of the relative estimated costs among the evaluation plans. The epsilon-pruning 

technique [SMBOI] prunes plans that exceed a certain threshold of plan cost. In this case, the 

relative differences of the estimated costs of the plans have an impact on the expected penalty, 

while our formula for computing expected penalty only take into account the order of the 

estimated costs. 

The relative cost issue also affects other pruning techniques. For example, one pruning strategy 

is to stop searching when the estimated best plan fails to improve to a specified degree within a 

certain number of transformations. Since the estimated costs do not necessarily reflect the actual 

improvement of the plan costs, the search strategy may fail to behave as expected. 

A potential solution would be to find some measures for how well the cost model reflects the 

actual or relative costs of the evaluation plans. These measures are potentially useful in 

evaluating error bounds for some pruning techniques. 

Getting the relative costs completing correct is non-trivial, if not impossible, especially for an 

optimizer that uses parameterized operators such as map and d-join operators. In a plan 

containing parameterized operators, even if all the non-parameterized operators are estimated 

correctly for their relative costs, any errors in the cardinality estimation of the left-hand 

operands of the parameterized operators can lead to failure to yield correct relative costs. 

We demonstrated that selectivity estimation has a significant affect on the performance of the 

cost model. One reason for inaccurate selectivity estimation is data skew, i.e., the data 

distribution does not conform to the database statistics. We did not investigate a cost model 

criterion that considers the selectivity estimation errors. Rather, we suggest that the issue be 

handled by extending the cost model criteria developed here or by adjusting the search process. 

The expected penalty vector is motivated to capture the cases where the optimizer generates 

partial plan spaces. However, the vector can be extended to cover other concerns. For instance, 

if skew in database statistics can occur, one may extend the vector to capture the optimizer 

behavior under various scales of data skew. 



Our unnesting technique subsumes existing unnesting techniques. It can completely unnest 

OQL queries, in particular those involving CVAs and multiple collection types, which ofien 

cannot be unnested by other approaches. Analytical and experimental study shows that our 

unnesting approach outperforms others in terms of unnesting overhead and the quality of 

unnesting results. 

The reference materialization techniques we propose improve the current set of materialization 

techniques by processing CVAs and shared attributes more efficiently. The performance of the 

techniques proposed is evaluated both analytically and experimentally. 

We present a parameter model for cost estimation for object queries and an optimizer quality 

metric - the expected penalty. The parameter model employs a simple catalog structure to store 

object database statistics. The catalog structure can express data properties across an arbitrary 

object hierarchy, and yet is compatible with relational catalog structures. Based on the 

parameter model, we implement the cost model in COCOUN, and we tune and initially validate 

the cost model using the expected penalty metric against the query optimizer and evaluator built 

in COCOUN. 

We implement all the proposed components in COCOUN. Our experience has shown that those 

techniques are appropriate for OQL query optimization and can be implemented in an 

extensible relational optimizer framework. 

There are two interesting directions following this dissertation work. One is in the relational 

realm, including applying the unnesting techniques in relational query processing and exploring 

the possibility of using the COAL algebra and a nested evaluation model for relational queries. 

During our investigation, we have seen the cases where a flat query can be evaluated more 

efficiently using parameterized plans. It would be interesting to study "nesting" techniques for 

flat queries. Another direction is to investigate XML query processing techniques, hoping that 

the experience and techniques accumulated in this dissertation research may be helpful in 

supporting efficient processing of XML queries. 



sub-queries may contain CVAs associated with range variables from the outer queries. All the 

object queries are used for tuning and evaluating the cost model. In addition, the path 

expression queries and CVA queries are used for evaluating hybrid materialization techniques. 

The nested object queries are used for testing the unnesting approach. We verified that our 

unnesting approach can express and unnest various kinds of nested queries. However, we 

observe that unnesting is not always beneficial. Therefore, one usage of the nested queries is to 

verify this observation through experiments, and hopellly to draw some conclusions on what 

kinds of queries are better executed in their nested form. 

In the reminder of this appendix, we list the benchmark queries and briefly explain their 

characteristics and the motivation for including each one. 

Query 1 (Relational chain query): The following query finds tuples, each composed of a course, 

its TA, the TAYs advisor, the advisor's department, the department's building: 

SELECT C, S, F, D, B 

FROM Courses AS C, Students AS S, Faculty AS F, Depts AS D, Buildings AS B 

WHERE C.TA = S AND S.advsor = F AND F.dept = D AND D.building = B. 

Query 1 is a relational chain query involving five collections. The purpose is to test the 

optimizer for typical relational queries. 

Query 2 (Relational star query): The following query returns tuples, each composed of a 

student, his or her department, advisor, the city and school he or she came from: 

SELECT S, D, F, C, S 

FROM Students AS S, Depts AS D, Faculty AS F, Cities AS C, Schools AS S 

WHERE S.dept = D AND S.advisor = F AND S.city = C AND S.graduateFrom = S. 

Query 2 is a relational star query involving five collections, with Students as the center of the 

star. Like Query 1, its purpose is to test the performance of the optimizer on typical relational 

queries. 



Query 7 (Nested object query): Returns pairs of departments and companies such that the 

department and company in each pair has more than 10 persons as both students and employees. 

SELECT STRUCT(D: D, C: C) 

FROM DEPTS AS D, COMPANIES AS C 

WHERE 10 < (SELECT COUNT(*) 

FROM D.STUDENTS AS S, C.EMPS AS E 

WHERE S.ssn=E.ssn). 

Query 7 examines the behavior of a query optimizer on nested queries involving aggregations. 

Query 8 (Nested object query): The following query returns for each department young 

students, sorted by age. 

SELECT STRUCT (D.name, T: (SELECT * 
FROM D.Students AS S 

WHERE S.age-45 

ORDER BY S.age)) 

FROM DEPTS AS D. 

Query 8 differs from the previous queries in that it generates a new CVA, which is a feature that 

distinguishes OQL queries from SQL queries. 

Query 9 (Object nested query): For each department, return the GPA's for all the students who 

are 18 or older. 

SELECT STRUCTW: D, 

S: (SELECT STRUCT (S: S, C: (SELECT AVG (T.grade) 

FROM S.Taken AS T)) 

FROM D.Students AS S 

WHERE S .age> 1 8) 

FROM DEPTS AS D. 

Query 9 is an extension of Query 8 in that Query 9 generates two CVAs, one nested in another. 



Query 10 (Object nested query): Find the departments where every faculty member advises 

some students. 

SELECT * 
FROM DEPTS AS D 

WHERE NOT EXISTS F IN D.Faculty: 

NOT EXISTS S IN D. Students: S.advisor=F.name. 

Query 10 features nested quantifier queries, aiming at revealing the ability of an optimizer in 

handling consecutive quantifiers. 

Query 11 (Object nested query): Find the departments and the faculty members who are not 

younger than any student in the department. 

SELECT STRUCT( D:D, 

F: (SELECT F 

FROM D.Faculty AS D 

WHERE NOT EXISTS ( SELECT * 
FROM D.Students AS S 

WHERE S.age > F.age)) 

FROM DEPTS AS D. 

Query 1 1 possesses three features: nesting, quantification and CVA creation. It helps examining 

the ability of an optimizer in handling complex queries. 
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