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Thesis Advisor: Dr. Yonghong Yan 

In current large vocabulary continuous speech recognition systems, multivariate Gaus- 

sian mixture distributions and context-dependent phones, typically triphones, are used 

to achieve high accuracy acoustic models. It is crucial to address the problem of how to 

estimate an extremely large number of model parameters from a limited amount of train- 

ing data. The traditional approach uses phonetic decision tree based context clustering 

for reducing free parameters. However, this approach has several problems that might 

cause system performance degradation. All of these problems are due to the fact that 

the traditional approach does not efficiently use the limited training data and therefore 

fails to obtain effective acoustic models. Specifically, three problems are identified and ad- 

dressed. The first problem is that all states clustered in a leaf node must share the same 

set of Gaussian components and mixture weights; no distinction is provided among those 

states. The second problem is due to the fact that triphones that are rarely seen in the 

training data might be poorly estimated and this causes an adverse effect on decision-tree 

clustering. The traditional approach lacks an effective mechanism to handle this. The 

third problem is that only single-Gaussian distributions are used to build decision trees 

xiii 



whereas multiple-Gaussian mixture distributions are used in the final model set. 

In this thesis, we propose to improve the quality of acoustic models by making use of 

training data more efficiently. We present a number of ways to address the problems in the 

traditional approach, namely, a two-level decision tree approach for the first problem, a 

two-stage decision tree based approach and a MAP-based approach for the second problem, 

and an approach using a new criterion and an effective clustering algorithm for the third 

problem. Each of these approaches has successfully reduced the word error rate (WER) 

of the traditional approach with a statistical significance. Finally the system combining 

all new approaches has achieved the best performance, which reduced the WER of the 

baseline system by 14% to 17% relative, with the sizes of acoustic models smaller than 

those of the baseline models by 8% to 11%. 
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Chapter 1 

Introduction 

Research on automatic recognition of speech by machines originated in the early 1950's 

and has been a continuous effort for the past fifty years due to its widespread use in 

a variety of applications including information retrieval, data entry, and general man- 

machine communication. Over the years, a number of general approaches have been 

proposed for speech recognition, among which the statistical pattern recognition approach 

has become the dominant one due to its simplicity of use, robustness and capability to 

model the variation in speech, and its proven high performance. Basically the approach 

has two steps, namely, training of speech patterns, and recognition of patterns via pattern 

comparison. Speech knowledge is brought into the system via the training procedure on 

the training data. Generally speaking, the more data we have, the more useful information 

the system will learn and therefore the better performance. 

However, two factors prevent us from collecting "sufficient" training data. One is 

that collecting and transcribing data are expensive. The other is that although there are 

many existing different types of speech corpora available collected over the years, pooling 

data from these different sources may not help and sometimes may even hurt the system 

performance for a given task. This is because the variation in the pooled speech data will 

be dramatically increased and the mismatch between the training data and test data will 

be large. Current speech recognition algorithms are generally not able to effectively get 

rid of the irrelevant information and extract only the information useful for recognition. 

So usually for a specific task in a given domain and environment, we need to collect 

training data in the same or similar domain and environment as in the test environment. 

This limitation also prevents us from collecting enough training data. So, given limited 



training data, a critical issue is how to effectively use the data, that is, how can we improve 

the training algorithm to extract as much useful information as possible from the training 

data. This is the theme that we explore in this thesis. 

1.1 Speech Recognition System Overview 

Most current speech recognition systems are firmly based on the principles of statisti- 

cal pattern recognition. Figure 1.1 illustrates the main components of a typical speech 

recognition system. 

Front-End Signal Processor 

i 

1 Acoustic Models I 

Figure 1.1: Overview of statistical speech recognition (after [59]). 

Pronunciation 
Dictionary 

t 
-b This IS speech 



The front-end signal processor converts an unknown speech waveform into a sequence 

of acoustic vectors, 0 = ol,02, . . . , OT. Each of these vectors is a compact representation 

of the short-time speech spectrum covering a period of typically 10 milliseconds. Let W 

be a sequence of words wl, w2,. . . , w,. The speech recognition system will determine the 

most likely word sequence given the observed acoustic signal Y. According to Bayes' rule, 

we get 

w = argmaxP(WI0) = argmax 
W W P ( 0 )  W 

P(W)P(o'W) = arg max F(W)F(O~W) 

This equation indicates that the most likely word sequence w is the one that maximizes 

the product of P(W)  and P(O(W). The first term represents the a priori probability of 

observing W independent of the observed signal, and this probability is determined by 

a language model. The second term represents the probability of observing the vector 

sequence 0 given some specified word sequence W, and this probability is determined by 

an acoustic model. As shown in Figure 1.1, a word sequence W = "This is speech" is 

hypothesized and the language model computes its probability P(W);  each word is then 

converted into a sequence of phones using a pronunciation dictionary. For each phone 

there is a corresponding statistical model called a hidden Markov model (HMM). The 

HMMs corresponding to the phones in the utterance are concatenated to form a single 

composite model, and the probability of that model generating the observed sequence 0 

is calculated. This is the required probability P ( 0 ) W ) .  In principle, this process can 

be repeated for all possible word sequences, and the most likely sequence is selected a s  

the system output. Since computing all possible word sequences is too computationally 

expensive to be practical, much more efficient algorithms are used to find the optimal 

word sequence. 

1.2 Acoustic Modeling 

The purpose of the acoustic model is to calculate the likelihood of any vector sequence 0 

given a word w. In principle, the required probability distribution could be determined by 

finding many examples of each word w and collecting the statistics of the corresponding 



vector sequences. However, when the vocabulary size becomes large, it is impractical 

to collect sufficient training data. So words are chosen to be the basic model unit only 

in applications with very small vocabulary size, such as command-and-control or digit 

recognition. For systems with medium to large size vocabulary, sub-word units such as 

syllables, demi-syllables and phones are used. By concatenating models of sub-word units, 

word models can be constructed. Two criteria need to be considered in choosing model 

units: (1) consistency - different instances of a unit have similar characteristics, and 

(2) trainability - sufficient training samples exist to create a robust model. Ever since 

phone-based models were introduced, they have become the most popular choice of model 

units, especially in large vocabulary continuous speech recognition systems. Each phone 

is represented by a HMM with Gaussian mixture output distributions (see Chapter 2 for 

details). There are about 50 phones in English. 

Because speech is produced by physical articulators, which do not undergo drastic or 

sudden movement, the acoustic realization of a particular phone is heavily influenced by the 

preceding and following positions of the articulators. This effect is called coarticulation. 

Coarticulation means that the acoustic realization of a phone in a particular phonetic 

context is more consistent than the phone occurring in a variety of contexts. Hence, 

to achieve good phonetic discrimination, different HMMs have to be trained for each 

different context. This is called context-dependent phone modeling. The simplest and 

most commonly used context-dependent phone is triphone [49]. A triphone is a single 

phone but in the context of a unique pair of left and right neighboring phones. In contrast, 

the context-independent phone is called a monophone. For example, suppose that the 

notation x-y+z represents the phone /y/ occurring after an /x/ and before a /z/. The 

sentence, "this is speech", as shown in Figure 1.1, would be represented by the phone 

sequence "sil th ih s ih z s p iy ch sil". The corresponding triphonel sequence would be 

"sil sil-th+ih th-ih+s ih-s+ih s-ih+z ih-z+s z-s+p s-p+iy piy+ch iy-ch+sil sil". Note 

that the two instances of phone /ih/ are represented by different triphones and therefore 

different models. 

'Actually, cross-word triphone sequences are used since the triphone contexts span word boundaries. 
/sil/ is a context-independent model for silence. 



The use of triphones and Gaussian mixture output distributions greatly improves the 

accuracy of acoustic models. However, it results in an extremely large number of param- 

eters in a system. For a typical set of 50 phones, there are 50 * 50 * 50 possible triphones 

although some of them cannot occur due to phonological reasons. In the DARPA Wall 

Street Journal (WSJ) 20K vocabulary task, a standard continuous speech recognition task, 

the training data set SI284 has about 28,000 cross-word triphones (the other triphones, 

which are not seen in the training data, are called unseen triphones). Assuming that the 

feature vector has 39 elements and each HMM state has 10 Gaussian components, which 

are typical settings for a system to obtain reasonable good recognition accuracy, a typical 

3-state HMM phone model will have about 2370 parameters2. Hence, 28,000 triphones 

would have a total of 66 million parameters! Obviously large amounts of training data are 

needed to estimate so many parameters. 

It is crucial to address this problem of too many parameters and too little available 

training data in the design of a statistical speech recognition system. Over the years, many 

approaches have been proposed, such as tied-mixture [8] or semi-continuous HMM [23], 

generalized triphone [34], state-based tying [39] [61] and phone-based component tying [16]. 

Among these studies, the approach of statetying using phonetic decision trees [61], pro- 

posed by the HTK group in Cambridge University, is probably the most popular one, 

partially due to their success in a series of DARPA evaluations and partially due to the 

simplicity and efficiency in its implementation. 

1.3 HMM State Clustering 

State clustering is the practice of clustering states that are acoustically very similar. This 

allows all the data associated with similar states to be pooled, and thereby gives more 

robust estimates for the parameters of the clustered state. There are two major cate- 

gories of approaches to clustering: bottom-up approaches and top-down approaches. The 

top-down approach using phonetic decision trees has the advantage of predicting unseen 

' ~ v e r ~  Gaussian component has 39 means, 39 covariances (assuming that its covariance matrix is 
diagonal) plus 1 mixture weight. So a 3-state HMM model has 3 * 10 * (39 + 39 + 1) = 2370 parameters. 



triphones, and hence has become more popular than bottom-up approaches, especially in 

large vocabulary continuous speech recognition tasks where cross-word triphones are used 

and therefore a significant portion of triphones are unseen in the training data. 

I I 
I I 

b-iy +n 
I I 

Figure 1.2: Phonetic decision-tree based clustering. 

The decision-tree based clustering approach has been widely used in state-of-theart 

systems, such as HTK [54] from Cambridge University and IBM's system [45], which gave 

the best performance in several DARPA evaluations in the past few years. Figure 1.2 

illustrates an example of clustering the center states of all triphones that are derived from 

monophone /iy/, using a phonetic decision tree. 

Decision tree clustering involves building a binary tree for each state of each phone. 



Each node (except leaf node) of the tree has a yes-no phonetic question such as "R=Nasal?", 

which means "Is the right phone to the current phone a nasal?". Initially all states for a 

given phone state position are placed at the root node of a tree. Depending on the answer 

to the question, the pool of states is split into two subsets and this procedure repeats 

until the states trickle down to leaf nodes. All states in the same leaf node are then 

clustered. The question at each node is chosen to maximize the likelihood of the training 

data given the resultant sets of clustered states. To ensure that each state can be robustly 

estimated, each leaf node in a decision tree is required to have some minimum amount of 

training data. All the data in a leaf node are used to estimate a multiple-Gaussian mixture 

distribution, and all the states clustered in that leaf node share the same distribution. 

Note that with this approach, the unclustered models used for building decision trees 

are single-mixture models, and after the trees are built, the number of Gaussian com- 

ponents in each state cluster (leaf node) is increased until a desired number is reached. 

Section 2.3 gives more details on building acoustic models using phonetic decision trees. 

The decision trees give a clustering of the triphone states and this clustering will 

heavily influence all the subsequent training steps, and thereby the quality of the final 

acoustic model. During decoding, whether or not a particular triphone has appeared in 

the training data, a model for each state of the triphone can be found by traversing the 

corresponding decision tree to a leaf node by answering the questions along the path. 

1.4 Problems in Traditional Decision-Tree Based Acoustic 

Modeling 

Although the decision-tree based acoustic modeling is successful and widely used, it fail 

to take full advantage of the limited training data, and this might cause degradation of 

system performance. Some examples are as follows. 

First, in the traditional approach, all the data in each leaf node are used to estimate a 

Gaussian mixture distribution, and all the member states share the same set of Gaussian 

components and their mixture weights, that is, there is no distinction among those member 

states. To ensure that those Gaussian components can be robustly estimated, a relatively 



high threshold of data count must be used for each leaf node. This constraint might cause 

an accuracy problem, especially for those triphones that do not have much training data. 

They might be grouped together not because they are acoustically similar, but because 

they do not have enough training data. As a result, this constraint can be a cause of 

performance degradation. 

Second, the training data are usually distributed unevenly in terms of the occurrence of 

triphones. For example, in the SI284 training set, 10% of the number of distinct triphones 

only occur once. For triphones that are rarely seen in the training data, the estimated 

Gaussian distributions for them might not be robust. When they directly participate in the 

tree construction, the errors in estimating the statistics of these rarely seen triphones can 

cause a long-term adverse effect on the quality of the decision-tree based state clustering. 

How to better cluster these rarely seen triphones and how to minimize the negative effects 

of the non-robustly estimated statistics of these triphones for decision tree building is 

very important. The traditional approach uses a simple back-off mechanism to prevent 

the non-robustness in the estimation of rarely seen triphones. If the amount of training 

data in a triphone state is less than a certain threshold, it will be backed-off to the 

corresponding HMM state of the monophone model. This means that the data for the 

rarely seen triphones are wasted and the information is lost. This might not be an efficient 

way to use the limited training data. 

Third, in the traditional approach, the parametric form of the initial unclustered tri- 

phone states must be based on only single Gaussian distributions, although more accurate 

multiple-Gaussian mixture distributions are used in the final model set. This disparity is 

due in part to the computational complexity in the tree-building process. The multiple- 

Gaussian mixture distribution for each tree node would need to be re-estimated from the 

training data, whereas the statistics for the single-Gaussian case can be calculated effi- 

ciently from the cluster-member statistics without re-accessing the original training data. 

However, this constraint prevents the decision tree building from using the data effectively. 

Instead, it uses the data in a wasteful manner, throwing away a large amount of infor- 

mation in the data, particularly for the triphones that have many training samples. The 

single Gaussian distribution is a very crude representation of the acoustic space of triphone 



states, and decision trees based on such initial models might not give good clustering of 

triphone states. 

1.5 This Thesis in Perspective 

All these problems are due to the fact that the traditional approach does not make use of 

the limited training data in an efficient manner, and that this is one of the major causes 

of performance degradation. In this thesis, we propose a number of ways to improve the 

quality of acoustic models by making use of training data more efficiently, 

For the first problem of using the same set of data to estimate both Gaussians and 

their mixture weights, we propose an approach using what we called two-level decision 

trees [37]. The key idea is to de-couple the Gaussian components and their mixture 

weights. As estimating a large multivariate Gaussian distribution needs much more data 

than estimating a mixture weight (given the Gaussian set), we can use less data to estimate 

the mixture weights for a multiple-Gaussian mixture model. In other words, given the same 

amount of data (in a cluster of states), we might be able to distinguish those states by 

estimating different weights for them given the same set of Gaussian distribution. In this 

way, we can make more efficient use of the limited data and obtain more accurate acoustic 

models. To apply this idea, we change the structure of conventional trees into two levels, 

as shown in Figure 1.3. In every first-level leaf node, a Gaussian mixture distribution is 

estimated. In every second-level leaf node, only a set of mixture weights (corresponding to 

the set of Gaussian components estimated in its first-level ancestor nodes) are estimated. 

For the second problem of waste of data for the rarely seen triphones, we propose two 

approaches. They fall into two categories: parameter sharing and parameter smoothing, 

which are two common principles of parameter estimation to handle the problem of data 

sparseness in statistical speech recognition. 

1. Two-stage decision tree building approach. This approach involves building decision 

trees in two stages. In the first stage, we build very big decision trees to cluster the 

rarely seen triphone states with their most similar peers. In the second stage, the 

statistics for a rarely seen triphone state is smoothed with the statistics for other 



-_ first-level leaf nodes 

Figure 1.3: A two-level phonetic decision tree. Gaussian mixture distributions are esti- 
mated in the first-level leaf nodes; Mixture weights corresponding to the Gaussian com- 
ponents in their first-level ancestor nodes are estimated in the second-level leaf nodes. 

triphone states that are in the same cluster. Therefore, the new statistics for the 

rarely seen triphone state is more robust and the information in its limited training 

data is also used. But the statistics for the frequently-seen triphone states are 

kept unchanged because the amount of training data associated with them warrants 

robust estimates of their statistics. Then, final phonetic decision trees are built, using 

these statistics, to determine the final clustering of all triphone states. Compared to 

other approaches like the one in [47], our approach uses both phonetic knowledge and 

underlying data information in the initial clustering of rarely seen triphone states. 

It may be more accurate and flexible. 

2. Maximum A Posteriori (MAP) based parameter smoothing. MAP [19] is a widely 

known and deployed technique to estimate HMM parameters. In contrast to the com- 

monly used Maximum Likelihood (ML) estimate, MAP incorporates prior knowledge 

of parameter values in estimating them. We propose to use MAP to obtain robust 

statistics of context-dependent models. It can be interpreted as a weighted average 



of context-independent model parameters, which is more robust and less accurate, 

and unsmoothed context-dependent model parameters, which is more accurate and 

less robust. 

Both approaches yield a small, but consistent and statistically significant improvement 

over the traditional approach. 

For the third problem of using only single Gaussian models to build decision trees 

and therefore wasting information in the data for those frequently-seen triphones, we 

propose a new criterion to approximate the total likelihood of training data given a set of 

multiple-Gaussian mixture models. When applied to the decision tree building process, an 

effective algorithm is needed to estimate a multiple-Gaussian mixture distribution from its 

member states, each of which is represented by a multiple-Gaussian mixture distribution. 

Theoretically, original training data need to be re-accessed because sufficient statistics 

are not available. However, we circumvent this difficulty by using an efficient clustering 

algorithm to directly approximate the true distribution of each node, when an appropriate 

assumption is made. Experimental results confirm the effectiveness of this approach. 

Finally, we combine all our approaches into one system and obtain the best perfor- 

mance, which reduces the word error rate (WER) of the baseline system by 14% to 17% 

relative3, on a variety of test sets. It shows that each of these methods targets a different 

aspect of the traditional decision tree based acoustic model. Although their contributions 

overlap to some degree, in general, the combined system is better than each separate one. 

This thesis will be organized as follows. 

Chapter 2 will give some background knowledge in speech recognition. These include 

HMM technology, definition of phonetic decision trees and some details in using 

phonetic decision trees to build acoustic models. 

Chapter 3 will give the experimental environment including speech databases and 

evaluation tasks, in which all our proposed approaches will be evaluated. We will 

also briefly explain our large vocabulary continuous speech recognition system. A 

3 ~ h e n  we say we have reduced the WER by N%, we mean N% relative, unless stated otherwise. 



new training strategy will be introduced and its impact to our system performance 

will be demonstrated. The improved system will serve as our baseline to compare 

with other systems that built using our new approaches in the following chapters. 

In Chapter 4, 5 and 6, we will present in depths our new approaches to address each 

of the three problems in the traditional approach. Specifically, Chapter 4 will present 

the two-level phonetic decision tree approach to address the first problem. Chapter 5 

will cover the two-stage decision tree building approach and MAP-based smoothing 

approach to address the second problem in the traditional approach. Chapter 6 will 

give the details of building phonetic decision trees using multiple-Gaussian mixture 

models. Experimental results will also be given in each chapter. Readers can directly 

jump to a particular chapter that is of interest to them. At the end of Chapter 6, 

systems combining two or more approaches are built and the best results are given. 

Chapter 7 will summarize this thesis work and point out our future research direc- 

tions. 



Chapter 2 

Background Technology and Related 

Work 

This chapter gives the background technology used in this thesis. Section 2.1 and 2.2 

introduces the concept of hidden Markov model and its mathematical solutions for ap- 

plication in speech recognition. Section 2.3 describes the phonetic decision trees and the 

traditional acoustic modeling approach using phonetic decision tree based state cluster- 

ing. The goodness-of-split criterion used in the traditional approach is given. Some related 

work is also briefly explained. 

2.1 Hidden Markov Models (HMM) 

Hidden Markov models are probably the most widely used and successful statistical 

method in speech recognition. The underlying assumption of HMM based speech recogni- 

tion is that the speech signal can be well characterized as a parametric random process, and 

the parameters of the stochastic process can be determined in a precise and well-defined 

manner. The success of HMM for speech recognition is mostly due to the existence of 

computationally efficient algorithms for estimating the model parameters given example 

observation sequences of known class, which is called training, and for choosing which 

model best matches an observation sequence of unknown class, which is called decoding. 

The basic theory of hidden Markov models was proposed by Baum and his colleagues [7] [6] 

in late 1960s and early 1970s. It was applied to speech processing by Baker [5] at CMU, 

and by Jelinek and his colleagues [25] [4] at IBM in the 1970s. 



An HMM is a stochastic process model that has a number of states connected by arcs. 

It can be viewed as a finite state machine, which changes state once every time unit. 

At each time t that a state j is entered, an acoustic speech vector ot is generated with 

probability density bj(ot). The transition from state i to state j is also probabilistic and 

is governed by the discrete probability aij. The joint probability of an acoustic vector 

sequence 0 = 01,02,. . . , oy and some state sequence S = sl, sq, . . . , ST, given some model 

A, is 

T 

P(O, SIX) = as,sl n b,, (ot)a,t,,+l 
t=l 

(2.1) 

where so is constrained to be the entry state and s ~ + 1  is constrained to be the exit state 

and a,,,,+, = 1. In practice, only the observation sequence 0 and model X are known 

and the underlying state sequence S is unknown, or "hidden". This is why it is called a 

hidden Markov model. 

Figure 2.1 illustrates an HMM-based phone model. Typically, a phone model has 

three emitting states and a simple left-to-right topology. The entry and exit states, which 

are non-emitting states, are provided to make it easy to join models together. The self- 

transition probabilities model the duration variability in real speech and the output prob- 

ability models the spectral variability. 

The choice of the parametric form for the output probability distribution is crucial 

since it must model all of the intrinsic spectral variability in speech, both within and 

across speakers. Early systems used discrete HMM models, in which each state has a 

discrete output probability function, in conjunction with a vector quantizer. Each input 

acoustic vector was replaced by the index of the closest vector in a pre-computed codebook, 

and the output probability functions were just look-up tables containing the probabilities 

of each possible vector quantization (VQ) index. This approach is computationally very 

efficient, but the VQ introduces distortion, which limits the precision of acoustic models. 

Hence, modern systems use continuous density HMMs (CDHMM), which have a para- 

metric continuous density output distribution for each state to model the acoustic vectors 

directly. The most common choice of distribution is the multivariate Gaussian mixture: 
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Figure 2.1: An HMM-based phone model. 

where cjm is the weight of mixture component m in state j and N denotes a multivariate 

Gaussian of mean p and covariance C. 

2.2 Three Problems with HMM 

To make HMM useful for speech recognition, there are three problems to be solved (461: 

1. Given an observation sequence 0 = (oloz.. . q )  and a model A, how to efficiently 

compute the probability of the observation sequence, P(OI A), given the model? 

2. Given an observation sequence 0(0102.. . q )  and a model A, how to determine a 

corresponding state sequence that can best explain the observation? 

3. Given an observation sequence O(oloz. . . w), how to estimate the parameters of a 

HMM model A to maximize P(0IA) ? 



2.2.1 Evaluation: the forward or backward algorithm 

The first problem is an evaluation problem. Given an HMM represented by X and an 

observation sequence 0 = (oloz.. . Q), the occurrence probability of the observation 

P(0IX) can be theoretically calculated by summing Equation 2.1 over all possible state 

sequences. Let x,, = a,,,, be the initial probability of state sl .  

The computational complexity of this calculation is O ( T N ~ ) ,  based on NT possible 

state sequences with 2T terms in each product. To make this computation tractable, 

either a forward algorithm or backward algorithm can be used. 

The forward variable ai(t) is defined as 

which is the joint conditional probability of the partial observation sequence, 0102. . . ot 

and state i at time t, given the model A. Initializing at time t = 1, the forward variable 

can be computed inductively using the following steps: 

1. Initialization 

( 1  = T O )  1 5 i 5 N 

2. Recursion 

3. Termination 

The backward variable &(t) is defined as 



which is the conditional probability of the partial observation sequence from time t + 1 on, 

given both the model and known state occupancy in state i at time t .  In the same way, 

we can initialize the backward variable at time t = T and compute it inductively using 

the following steps: 

1. Initialization 

2. Recursion 

3. Termination 

2.2.2 Alignment: the Viterbi algorithm 

The second problem is referred to as an alignment problem. To find the best state sequence 

for a given observation sequence, the Viterbi algorithm [52], a dynamic programming 

method, is used. If we define the quantity 4i(t) as the partial state sequence probability 

4i(t)  = max P(sl . . . st-1, st = i, ol . . . otlX) 
S1 ... S t - ]  

then the Viterbi algorithm can be simply stated as 

1. Initialization 



2. Recursion 

4j(t) = [4i(t - l)aij]bj(ot) 1 < j < N , t = 2,. . . , T 

3. Termination 

The final result of the algorithm is P,,,, the probability of the most likely state 

sequence. The identity of the individual states within the sequence can be obtained by 

recording the arg max(i) at each step of the Viterbi recursion and backtracking after the 

final result is found. This algorithm will be used in the bootstrapping stage of the whole 

training process (see Chapter 3), in which we iteratively align the training utterances and 

update the model parameters using data aligned to each specific HMM state. 

2.2.3 Training: the Baum-Welch re-estimation algorithm 

The third problem given in Section 2.2 is referred to as a training problem, in which we 

need to estimate the parameter set X = ( A ,  B, n) in such a way that the probability of the 

observation set P(0IX) is maximized over all training data and models. There is no known 

way to analytically solve this problem. However, we can choose X = (A ,  B, n) such that its 

likelihood, P(OIX), is locally maximized using an iterative procedure such as the Baum- 

Welch algorithm [6]. The Baum-Welch algorithm is an efficient algorithm to provide 

the Maximum Likelihood (ML) estimation of HMM parameters based on Expectation 

Maximization (EM) algorithm [15]. For the case of discrete HMM, the re-estimation 

formula are straightforward and can be summarized as follows: 

- a - .  = 
expected number of transitions from state i to state j 

2) expected number of transitions out of state i 

expected number of times observing ot f rorn state j 6j (ot) = 
expected number of times in state j 

where the expectations on the right are determined using the current values of aij and 

bj(ot). To compute these, we first need to define a variable, ~ i j ( t ) ,  the probability of being 



in state i at time t and state j at time t+ 1, given the model and the observation sequence, 

that is, 

Using the forward and backward variables, we can rewrite it in the form 

We refer to it as two-state occupancy probability. We also need to define the one-state 

occupancy probability, 

Similarly, we can rewrite it as 

Put together, the Baum-Welch re-estimation formula is 

In the case of continuous HMM, where the state output distribution takes the form of 

Gaussian mixture model (GMM), 

the estimation formula for parameters of the GMM become [27] 



where the modified state occupancy probability is the joint probability of being in state j 

at time t with the mixture m accounting for observation ot. It is given as 

where we have simplified P = P(0JX) since it is constant for a given training utterance. 

Here we only give the formula for the case of a single training utterance. It is straightfor- 

ward to extend them to the case of multiple training utterances. 

2.3 Phonetic Decision Trees 

A phonetic decision tree is a type of classification and regression tree (CART). Breiman 

et al. [lo] provided the theoretical framework for developing decision trees. Decision trees 

are widely used in speech research, such as statistical modeling for natural language [2], 

speech unit selection in speech synthesis and acoustic modeling in speech recognition. The 

phonetic decision-tree used in acoustic modeling is a binary tree in which a yes-no question 

about phonetic context is attached to each node. According to the answer to the question, 

the data associated with a node are split into two subsets. This procedure repeats until 

certain stopping criteria are satisfied. Figure 2.2 illustrates a phonetic decision tree for 

clustering all triphone models that are derived from monophone /iy/. Each node (except 

leaf nodes) is associated with a phonetic question concerning the identity of left or right 

phone. A model for each triphone that is derived from monophone /iy/ can be found by 

traversing the tree to a leaf node by answering the questions along the path and using the 

model in the leaf node to represent it. 

2.3.1 Definition 

There are three basic elements of a phonetic decision tree: 



Right = 

Yes Nasal ? 

Figure 2.2: A phonetic decision tree to cluster triphones that are derived from monophone 
/ i ~ / .  

a A set of yes/no phonetic questions 

a A goodness-of-split criterion 

a A stop-splitting criterion 

The set of questions represents possible partitions of the data. Let Po denote the current 

phone. Define context as the identities of the K previous phones and K following phones 

in the phone sequence, denoted as P-k,. . . , P-1, PI , .  . . , Pk. The questions ask about the 

characteristics of the phones in the context, Pi, for i = f 1, . . . , f k. Particularly, for the 

triphone case, the questions are only concerned about the previous phone and the following 

phone, i = f 1. Let P denote the alphabet of phones, and Np the size of this alphabet. Let 



Q denote the question set that consists of questions of the form [Is Pi E S ?] where S 

is a set of phones that are elements of P. S might contain one or more phones belonging 

to a given category. Typically, these categories are manually pre-defined and correspond 

to phonologically meaningful classes of phones commonly used in the analysis of speech.2 

For example, S = {p, t ,  k) is the set of all unvoiced stops, and S = {p, t ,  I c ,  b, d,  g) is the 

set of all stops. Each question is applied to each element Pi, for i = f 1,. . . , f k, in the 

context .3 

The goodness-of-split criterion is used to determine which of the available questions 

can best divide the data associated with a node. The best split maximizes the decrease in 

data impurity. In other words, the data within the child nodes after the split should be 

more similar than the data in the parent node before the split. 

The stop-splitting criterion determines when to stop the splitting procedure and thus 

the size of the tree. Typically, two stopping criteria are utilized. One is that each leaf 

node should have at least some minimum amount of data. The other one is that the gain 

(according to the goodness-of-split criterion) resulting from the best split of a node should 

be greater than a threshold. If either of these criteria is not satisfied at a node, it is no 

longer split and becomes a leaf node.4 

Let n denote a node in the tree, and m(q, n) denote the goodness of the split induced 

by question q E Q at node n. We define a tested node as one on which we have evaluated 

m(q, n) for all questions q E Q and either split the node or designated it as a terminal 

node. Since the construction of an optimal binary decision tree is an NP-hard problem, 

in practice a sub-optimal greedy algorithm is used to construct the tree, selecting a best 

question from the question set Q at each node.5 In summary, a general decision-tree 

'It is a simple question. More complex questions, formed by conjunction, disjunction and/or negation of 
simple questions, were investigated in [2] [24]. In [31][33][48], the question set was expanded to incorporate 
more information, such as stress, tone, and gender. Some improvement was obtained at the cost of increased 
computation. 

'Automatic approaches of generating the question set from training data were investigated in [9][50]. 
3A different partition algorithm was investigated in [42]. It used the "CPA" [12] algorithm, which did 

not use any phonetic questions. However, it did not perform well, especially in larger tasks, due to the 
lack of capability to predict unseen triphones. 

4A more complicated stopping criterion, using cross-validation, was investigated in [42]. However, the 
performance was worse. 

5A look-ahead search was studied in [30]. However, surprisingly, no improvement was obtained. 



construction algorithm [3] works as shown in Figure 2.3. 

- 
1. Start with all data at the rmt node. 

2. While there are untested nodes do 

2.1 Select some untested node n. 

2.2 Evaluate m(g, nn) for all possible gustions q E Q at this node. 

2.3 Ifa stopping criterion is met, declare t h s  node as a terminal node, else 

2.4 Associate the question with the highest value of m(q, n) with this node. Make two 

new successor nodes. All data that answer positively to the question. are transferred to 

the le$ successor and d l  other data are transferred to the right successor. 

Figure 2.3: An algorithm to build decision trees. 

2.3.2 Goodness-of-Split Criteria 

There are two typical goodness-of-split criteria. Bahl et al. [3] developed a criterion 

based on the discrete HMM framework. Since the VQ process in discrete HMM systems 

introduces distortion that limits the model precision, most modern systems use continuous 

HMMs. Young et al. [60] presented a criterion based on continuous HMMs that have a 

single-mixture Gaussian as the state output distribution. This criterion has proved very 

successful and is widely employed. It is based on the maximum likelihood (ML) of the 

training data, which is consistent with the criterion used for estimating HMM models. 

Several assumptions are made [44]: 

1. The assignment of data to each HMM state is not altered during the clustering 

procedure. 

2. The contribution of the HMM transition probabilities to the total likelihood can be 



ignored. 

3. The total likelihood of the training data can be approximated by a simple summation 

of the log-likelihood weighted by the probability of state occupancy. 

Given these assumptions, 

is the approximate log-likelihood of a set of models comprising the set of distributions S 

generating the training data 0 that consist of E examples. Here yz(t) is the probability 

of state s generating the data point at time t of example e. The value can be probabilistic 

(obtained from the forward-backward algorithm) or deterministic (obtained from labeled 

data either by manual labeling or by the forced alignment process using a well-trained 

model set). Building a decision tree is a procedure to find the optimal set of distribution 

S to maximize L. 

For single-Gaussian distributions 

According to the ML parameter re-estimation formula in Section 2.2.3, 

We can get 



The value of Cs can be calculated from the statistics for each unique context without 

reference to the original training data. 

where C(s) is the set of triphones that are to be represented by the distribution of the 

tied states. 

Because splitting a given distribution is assumed to have no effect on the remaining 

distributions, only the local improvement in the total likelihood needs to be calculated. 

Splitting a node changes the set of distributions S by replacing the parent p distribution 

with its left child node I and right child node r. So the changes in overall log-likelihood, 

which is the quantity that needs to be maximized, is just the difference between the 

likelihood of the parent and its children. 

So at each node, the evaluation function m(q, n) in Figure 2.3 is 6L for question q at node 

n. 

2.3.3 Phonetic Decision Tree Based Acoustical Modeling 

Usually, one tree is built for each HMM state of each base phone to cluster all the cor- 

responding states of all of the associated triphones. Figure 1.2 illustrates the idea. It is 

called a state-based decision tree. In contrast, in a model-based approach (see Figure 2.2), 

the unit to be clustered is an HMM model (as opposed to a state of an HMM model in 

the state-based approach), and thereby only a single tree is needed to cluster all triphones 

that are derived from the same base phone. Since the state-based approach provides a 

finer level of sharing and thereby achieves more accurate and robust acoustic models than 

the model-based approach, it is widely used. 



In state-based clustering, it is also possible to build a single tree to cluster all HMM 

states of all triphones that are derived from a base phone. The motivation is that we might 

achieve some sharing among different HMM state positions. However, the computation 

cost is higher and studies [31] showed that the first few questions chosen in the tree were 

always the state-position questions, that is, "is it the first state?" and "is it the second 

state". Essentially, it was equivalent to a simple combination of separate state-based 

decision trees, therefore no advantage was obtained. 

A typical procedure to build a phonetic decision tree based acoustic model is given 

below. There are four main steps [60]: 

1. An initial set of monophone models with single-Gaussian output probability density 

functions is created and trained. 

2. The state output distributions of the monophones are cloned to a set of unclustered 

context-dependent triphone models, which are then trained by using the forward- 

backward algorithm. 

3. For each set of triphones derived from the same monophone, corresponding states 

are clustered using a phonetic decision tree. 

4. After the clustering is finished, the number of mixture components in each clustered 

state is increased and the models are re-estimated until performance on a develop- 

ment set peaks, or the desired number of mixture components is reached. 

You may notice that the models for decision tree building are single-Gaussian distributions 

while the final models have multiple-Gaussian distributions. This disparity is partially due 

to the fact that there exists an efficient algorithm to construct decision trees using single- 

Gaussian models while it is difficult to do so with multiple-Gaussian models. This problem 

will be explained in details in Chapter 6 and an approach will be proposed to address it. 

The step 4 in the above procedure is realized by a mixture-splitting process in a step- 

by-step fashion to smoothly increase the model complexity. Figure 2.5 illustrates the 

mixture splitting procedure. First the largest (either has the biggest mixture weight or 



Figure 2.4: Procedure to build acoustic models using phonetic decision tree based context 
clustering(after [60]). 

variance) Gaussian component is selected. Then the Gaussian component is duplicated. 

The resulting identical components have their means perturbed from their original values 

by a fraction (e.g., 0.2) of their standard deviations, their mixture weights halved and their 

variances left unchanged. The resulting model is then retrained using the Baum-Welch 

algorithm. This mixture splitting is then repeated as necessary to smoothly increase the 

model complexity, until its performance on a development set peaks or the desired number 

of mixture components is reached. 
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Figure 2.5: Procedure to split mixtures and increase model complexity. 



Chapter 3 

Tasks and Baseline System 

This chapter describes the speech recognition tasks that are used throughout this thesis 

and the baseline system, which uses the traditional decision tree based acoustic modeling 

approach. Two standard training corpora, TIMIT and Wall Street Journal (WSJ), are 

used to build acoustic models. The test data include the DARPA standard CSR evaluation 

sets for November 1992, for both 5,000 word closed vocabulary and 20,000 word open 

vocabulary tasks. Section 3.1 presents a brief overview of the training and test corpus. 

Section 3.2 explains how to build an acoustic model from scatch using phonetic decision 

tree based clustering. In Section 3.3, we propose a new training strategy to improve the 

original baseline system. Experimental results confirm that the new training approach is 

superior to the original one in terms of both accuracy and speed. 

3.1 Databases and Tasks 

Two databases are used in our experiments: TIMIT corpus and Wall Street Journal (WSJ) 

corpus. TIMIT is used only for initial training of acoustic models. WSJ corpus is a 

standard database for DARPA sponsored large-vocabulary continuous speech recognition 

evaluation initiated in 1992. 

'Closed vocabulary means that all the words in the test sets are included in the lexicon. In contrast, 
open vocabulary means that not all words in the test sets are included in the lexicon. The out-of-vocabulary 
(OOV) words in the test data bring a great challenge to speech recognition systems. 



3.1.1 TIMIT 

The TIMIT corpus of read speech was designed to provide speech data for acoustic- 

phonetic studies and for the development and evaluation of automatic speech recognition 

systems. It contains broadband recordings of 630 speakers of 8 major dialects of American 

English, each reading 10 phonetically rich sentences. The TIMIT corpus includes time- 

aligned orthographic, phonetic and word transcriptions as well as a 16-bit, l6kHz speech 

waveform files for each utterance. 

Example transcriptions for an utterance in the corpus are as follows. 

Orthography: 

0 61748 She had your dark suit in greasy wash water all year. 

Word label: 

7470 11362 she 
11362 15420 had 
15420 17503 your 
17503 23360 dark 
23360 28360 suit 
28360 30960 in 
30960 36971 greasy 
36971 43120 wash 
43120 49021 water 
49021 52184 all 
52184 58840 year 

Phonetic label: 

0 7470 h# 
7470 9840 sh 
9840 11362 iy 
11362 12908 hv 
12908 14760 ae 
14760 15420 dcl 
15420 16000 jh 
16000 17503 axr 
17503 18540 dcl 

.... 
56654 58840 axr 
58840 61680 h# 

The phonetic transcription is very important for initial training (bootstrapping) of 

each individual HMM phone model, as we will see in Section 3.2. 

3.1.2 Wall Street Journal 

The Wall Street Journal corpus is a large database of spoken American English. The 

prompting texts were drawn from articles appearing in the Wall Street Journal. The 

articles used for both the training and testing portions of the database were filtered to limit 

the vocabulary to the 64,000 most frequently occurring words in the whole database, which 



consists of approximately 37 million words of text. The data was collected simultaneously 

through two channels. One used a close-talking head-mounted Sennheiser microphone; the 

other used a variety of desktop microphone. In our experiments, only the close-talking 

data are used. The WSJ training corpus consists of two parts: 

WSJO 

WSJO consists of three sections of almost equal size. 

- Longitudinal Speaker Dependent, LSD 

- Long term speaker independent, S112 

- Short term speaker independent, S184 

Among these, only the S184 section was used for training. It consists of 7193 sen- 

tences from 84 different speakers (42 males and 42 females) for a total of approxi- 

mately 12.2 hours of speech. 

WSJl 

WSJl consists of two sections of almost equal size. 

- Long term speaker independent, S125 

- Short term speaker independent, SI200 

Again, only the short term speaker independent data set SI200 was used for training. 

It contains 29320 sentences from 200 new speakers (100 males and 100 females) for 

a total of 45.1 hours of speech. 

Some examples of the sentences in the WSJ corpus are given in Figure 3.1. Note that 

the prompts have two conditions, verbalized punctuations (vp) or non-verbalized punc- 

tuations (nvp). In the verbalized-punctuation condition, punctuations are pronounced 

verbally. 

For the 20,000 word tasks explained below, both the short term speaker independent 

portions of the database, S184 and SI200, were used for training and these were collectively 

referred to as SI284. 



2 

&spite the decline in stock prices trading volume warn 't me rwhelming. 
And the total allowance for credit losses remained unchanged at one point three 
billion dollars. 
Clearly ,comma something is changing in Europe .period 
A white house game of "double-quote chicken "double-quote with Germany and 
Japan , c o r n  played by talkzng down the dollar ,comma hasn't helped either .pried 
But what exactly is its threat to lij2 or health ?quest ion-mark 

Figure 3.1: Sample utterances in the WSJ training corpus. The first two utterances are 
nvp sentences; the last three are vp. 

Table 3.1: Summary of Wall Street Journal database test sets 

3.1.3 Tasks 

Test Set 
eval set nov92 

dev set si-dt-05 
eval set nov92 

Official ARPA Continuous Speech Recognition evaluations were conducted in Nov'92, 

Nov'93 and Nov'94. There are two tracks: one for the 5,000 word task (WSJ 5K) and one 

for the 20,000 word task (WSJ 20K). The recommended training data sets for WSJ 5K 

and WSJ 20K are S184 and SI284, respectively. Table 3.1 gives some statistics for the test 

sets used in this thesis. 

3.2 Original Baseline System 

Vocabulary 
5K close 
5K close 
20K open 

During the past few years, our research group has been actively focused on research and 

development of large vocabulary continuous speech recognition systems (LVCSR) and 

participated in government sponsored annual evaluations (Broadcast News Transcription 

Sentences 
330 
442 
332 

Speakers 
8 
10 
8 

Words ' 
5353 
7114 
5643 



(HUB4) 1997 [57] and 1998 [55], Speech In Noise Environment (SPINE) [56]). Our re- 

search software platform is a continuous HMM-based speech recognition system, which 

uses a statistical n-gram language model. The platform has a complete package for sig- 

nal processing and feature extraction (the commonly used features such as MFCC, PLP, 

LPC; and noise/channel variation reduction techniques such as Cepstral MeanIVariance 

Normalization), speaker and channel segmentation (using Bayesian Information Criterion 

(BIC) [ll]),  acoustic model training, speaker adaptation (such as commonly used Max- 

imum A Posteriori (MAP) [32], Maximum Likelihood Linear Regression (MLLR) [36], 

Speaker Adaptive Training [I], Vocal Tract Length Normalization (VTLN) [35]) and de- 

coders (both single-pass decoder and two-pass decoder). 

For a very large vocabulary task, such as transcribing broadcast news where the vo- 

cabulary size is over 60K, usually the multiple-pass decoding strategy is utilized to make 

the computation tractable and memory size manageable. In the first pass decoding, crude 

acoustic models (such as a within-word triphone model) and simple statistical language 

models (such as a bi-gram) are used to generate a graph of the most likely word sequences. 

The second pass searches this graph to find the single best hypothesis, using more sophis- 

ticated acoustic models (such as a cross-word triphone or even quinphone model) and 

language models (such as a tri-gram or even four-gram). 

For this thesis, however, we chose the WSJ 5K and 20K tasks as the test environments 

because they are difficult enough to represent some applications, but have a tractable 

computational cost to speed up the experiment turn-around time. For WSJ tasks, we can 

afford to use just a one pass decoding strategy, where a cross-word triphone model and 

a statistical tri-gram are used in a single pass to generate the best hypothesis. It avoids 

training two sets of acoustic models (within-word and cross-word) for every experiment. In 

the following subsections, we will briefly explain every component of the acoustic modeling 

part of our LVCSR system and the procedure to build an acoustic model from training 

data. 



3.2.1 Signal Processing and Feature Extraction 

The speech signal is highly redundant because of the strong correlation between adjacent 

segments. Therefore, speech recognition systems always use a parametric representation 

rather than the speech waveform itself. Not only is useful information compactly extracted 

from the waveform, but also computation is saved for both training and decoding. It is 

crucial to extract a maximum of related information for a specific task and discard unre- 

lated information. For speech recognition, information about speech contents (linguistic 

and phonetic information) must be preserved, while information about speaker identity 

is irrelevant. Over the years, various types of parametric representation for speech recog- 

nition have been proposed. Most of them are based on short-time spectrum analysis of 

the speech signal. A fundamental assumption underlying the short-time analysis is that 

over a long-time interval speech is non-stationary, but that over a sufficiently short-time 

interval it can be regarded as stationary. Thus, the Fourier transform of a short segment 

of speech (called a frame) should give a good representation of the speech during that 

time interval. 

Probably the most successful and commonly used representations (or acoustic fea- 

tures) of the speech signal for recognition purposes are Mel-Frequency Cepstral Coeffi- 

cients (MFCC) [14] and Perceptual Linear Prediction (PLP) [22]. We will illustrate the 

procedure of extracting MFCC features below as it was used in all the experiments in this 

thesis. 

1. The input speech signal is sampled at 16 kHz (this step is usually skipped as the 

speech corpus has already been digitalized and stored on CDs). 

2. The sampled waveform is blocked into frames. Each frame spans 25 msec. 

3. A pre-emphasis filter H ( z )  = 1 - 0.972-I is applied to get rid of the lip effect [40]. 

4. Fast Fourier Transform (FFT) is applied to obtain the spectral representation, fol- 

lowed by a logarithm conversion. 

5. Use Mel-spaced filterbanks to map the spectrum of linear scale to me1 scale based 

on perceptual studies of human's hearing. 



6. Discrete Cosine Transform (DCT) is applied to the filterbank output to convert the , 

spectral domain coefficients to cepstral domain. The major advantage of doing this 

is that in cepstral domain it is much easier to get rid of some channel distortions, 

using techniques like Cepstral Mean Subtraction/Normalization. The first 12 coef- 

ficients are preserved, which become our target MFCC feature vectors. The MFCC 

coefficients are generally uncorrelated, which enables the covariance matrices in the 

multivariate Gaussian distributions to be diagonal. This dramatically reduces the 

computation cost of HMM training and decoding. 

Figure 3.2 gives a diagram of the acoustic feature processing in our system. Note that 

energy information is also extracted for every frame and appended to the MFCC feature 

vector. 

13 dimension 
feature vector 

Figure 3.2: Diagram of extracting MFCC acoustic feature vectors from speech data. 

As the spectral pattern of a frame only contains local and static information of a sound, 

it is necessary to use some dynamic feature to capture the change of spectral patterns over 

time. The most common method of doing this is to estimate the delta and acceleration 

of the spectral coefficients over a series of consecutive frames, and then append these 

measurements to the basic static feature vectors. Usually, a linear regression equation is 

used: 

di (t)  = 
~ ; = l ( ~ i ( t  + k) - ~ i ( t  - k)) 

k2 2 Ck=1 



where ci denotes the i-th cepstral coefficient, di denotes its delta coefficient and ( 2 N + 1 )  

gives the size of the regression window. 

So the final feature vector for our system has 39 elements, consisting of 12 MFCCs 

and normalized energy plus their first and second order time derivatives. 

3.2.2 Acoustic Model Training 

All phone models have three emitting states and a left-to-right topology without state 

skip. Figure 2.1 illustrated a typical HMM phone model. To capture the possible short 

pauses between words, a special model, called tee model, is used (Figure 3 .3 ) .  It has 

only one emitting state. The entry and exit states have no output distribution functions. 

They are provided for concatenating with other models. Note that the entry state has a 

non-zero transition to the exit state so that the tee model may generate no feature vectors, 

which makes it an optional model. 

Figure 3.3: Optional short-pause model or tee model. The entry state has a non-zero 
transition to the exit state. 

The complete training procedure involves a few steps: 

1. monophone training 

2 .  unclustered cross-word triphone training 

3. building phonetic decision trees to cluster triphone states 



4. training of clustered triphone models 

A. Monophone Training (Bootstrapping) 

The whole procedure of building the acoustic model starts with monophone training, 

then gradually increases the model complexity and accuracy step by step. A good seed 

monophone model is important to the quality of the final complex model. Usually a 

phonetically labeled database, such as TIMIT, is necessary for bootstrapping. We collect 

the segments of speech data corresponding to a particular monophone and use the Viterbi 

training algorithm and the Baum-Welch algorithm (or forward-backward algorithm) to 

train the monophone models. 

Figure 3.4 illustrates the procedure of the Viterbi training algorithm. First, we define 

the prototype of every HMM phone model, which includes the HMM topology and initial 

values of transition probabilities. At this time, we do not need to initialize the output 

distribution functions of HMM states. Instead, a simple uniform segmentation is applied 

to every utterance, that is, the utterance is chopped into three (for a 3-state HMM model) 

segments of equal size. All corresponding data for a state are pooled together and used 

to estimate a Gaussian mixture distribution. Here the K-means algorithm [46] is used 

to cluster the vectors within each state. In our case, we only need to estimate a single 

Gaussian distribution for every HMM state. 

Next, we use the Viterbi algorithm (see Section 2.2.2) to find the best HMM state 

sequence for every utterance, given the initialized HMM model. We use this new alignment 

to calculate new HMM parameters. At the same time, we can obtain the joint probability 

of the observations and the best state sequence, given the current HMM model. This 

probability (averaged over all utterances for one phone) can be used to determine whether 

the training procedure should stop or not. If the change of the probabilities between 

successive iterations is below a pre-defined threshold, or the number of iterations reaches 

a pre-defined limit, the procedure stops and we obtain a new HMM model. 

The Viterbi training algorithm imposes a hard alignment of speech data against HMM 

states. In contrast, the forward-backward training algorithm provides a probabilistic (soft) 

alignment, which is generally more accurate than the hard alignment, of the speech data 



against HMM states. So usually after the Viterbi training, a forward-backward training 

is applied to improve the quality of the monophone models. 

Prototype HMM 

Uniform Segmentation ++ 
Initialize HMM Parameters 

Vi terbi Segmentation 0 
I Update HMM Parameters I 

( New Updated HMM ) 

Figure 3.4: Viterbi training of HMM models. 

The procedure of the forward-backward training algorithm is similar to the Viterbi 

training. The difference is that instead of using Viterbi segmentation, it uses the forward- 

backward algorithm to calculate the required statistics and accumulate them across all 

training utterances. Then HMM parameters are derived from the statistics according to 

those mathematical equations in Sectioxi 2.2.3. 

B. Un-clustered Triphone Training 



In this stage, the monophone models with single-Gaussian output distributions, ob- 

tained through previous training stages, are first cloned to triphone models. All triphones 

that are derived from the same monophone have identical HMM models. A few iterations 

of embedded HMM training using WSJ corpus are then applied to estimate the statistics 

for every unique triphone model. The embedded HMM training differs from the regular 

or single-form HMM training in that speech data for complete sentences are directly used, 

without the word or phone level boundary information available. Phone HMM models 

are concatenated together to form a big sentence HMM model, according to the word 

sequence in the sentence and the pronunciation dictionary. Each phone HMM model is 

embedded in the sentence HMM model. The forward-backward algorithm is used to map 

a complete speech sentence against the corresponding sentence HMM model. 

While in the single HMM training only a single monophone HMM model is trained in 

each run, in embedded training the whole set of triphone models is loaded into memory 

and updated when all training utterances are iterated through (see Figure 3.5). Due to 

the large size of the training corpus like WSJ, it is necessary to distribute the training 

data to multiple CPUs in one or more machines, so that they can run in parallel and speed 

up the training process. In this case, a parallel and synchronized mechanism is necessary. 

We proposed a mechanism in Section 3.2.3 to effectively do this. 

C. Building Phonetic Decision Trees to Cluster Triphone States 

Given the updated triphone models and their occupancy statistics, a phonetic decision 

tree is constructed for every HMM state position of every phone. A general algorithm 

for building a decision tree was given in Figure 2.3. In practice, however, there is some 

variation. After the splitting procedure stops, it is found useful to do a further step 

to merge similar leaf nodes, using the same goodness-of-splitting criterion and the same 

likelihood threshold. Figure 3.6 illustrates the procedure. Not only is the number of 

parameters reduced, but also the greediness of the tree-building algorithm becomes less. 

The resulting tree is not, strictly speaking, a tree, but rather a graph due to the merging 

step. 



Load in current complete 

( Load in next training utterance 

Forward- backward 
calculation & accumulate 

statistics 

I Update HMM Parameters I 

( New Updated HMM Set ) 

Figure 3.5: One iteration of embedded forward-backward training. 

D. Training of Clustered Triphone Models 

At the end of step C, a typical HMM state with a single-Gaussian distribution, which 

has the largest variance among all the states in a leaf node, is selected to represent the 

distribution of that node. At this training stage, a series of alternate embedded training 

and mixture splitting processes is used to gradually increases the complexity and accuracy 

of the clustered triphone models. First, the single-Gaussian model is re-estimated through 

several iterations of forward-backward training. Then the model is split into a Zmixture 

model using the mixture-splitting technique (see Section 2.3.3), followed by several itera- 

tions of forward-backward training to obtain new HMM parameters. This process repeats 
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Figure 3.6: Flowchart to build a phonetic decision tree. 

until the desired number of components is reached or the performance of the model on a 

development set peaks. 

3.2.3 Some Practical Issues 

Usually there are thousands of training utterances for a task that has a medium to large 

size of vocabulary. For testing, there are also hundreds of utterances. If only one machine 

or CPU is used to do a full round of training and decoding, it may take a few days or 

even weeks. To speed up the process, it is necessary to use multiple machines/CPUs. A 

straightforward way to do this is to partition the training and testing data in advance 



according to the number of available CPUs, as is used in HTK [58]. However, it may be 

difficult to fairly partition the data because (a) the speed of every machine may vary; (b) 

the length of every utterance is different. One solution is to distribute the data according 

the total time of data rather than the number of utterances. However, the computation 

cost for utterances of the same length may be dramatically different, especially for decoding 

where the computation cost also depends on the difficulty of the utterance. In practice, we 

found that this method is not very effective even after careful partitioning of data. Another 

problem with this method is that it has no effective way to recover from exceptions like 

machine crashes or program failures. 

We devised a more complicated but much more effective parallel mechanism to dis- 

tribute data and synchronize multiple CPUs. It is based on a serverlclient mechanism, as 

illustrated in Figure 3.7. 

First, we run a server program on one host machine (usually not one of those that 

are participating in training). It keeps running at the background on the host machine, 

listening for requests from client processes at a particular communication port. The server 

program never terminates, unless the machine crashes or the program is killed by the user. 

It maintains a record for every session (such as a monophone training session, or a WSJ 

5K decoding session using a particular acoustic model set), which is defined by the client 

process using a session name, a port (or channel) number and the user's ID. The record 

contains the information of every utterance in the session including (a) to which process 

it is distributed, and (b) its processing status (not assigned, assigned but not processed, 

processed). This record enables an effective way to recover from exceptions and make it 

easy to satisfy users' particular requirements. Upon the request for an utterance from 

a client process, the server program will check from the top of the record list and send 

back the ID of an unassigned utterance. As only the ID rather than the utterance itself 

is transferred through the network, the overhead of this communication is negligible. 

Every client training process (running on one CPU) has its own copy of the complete 

HMM model set and the corresponding accumulators to store the intermediate statistics. It 

requests an utterance ID from the server and fetches the data from the shared database. 

When the utterance ID is out of the valid range for the database, this client process 
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Figure 3.7: Parallel processing mechanism in our system. 

terminates, and dumps out the accumulated statistics (for training sessions only). So in 

parallel processing, one iteration of forward-backward training involves two steps: 

1. Every training process computes accumulated statistics for all the utterances as- 

signed to it, and dumps them out; 

2. Once all training processes finish, a re-estimation process is started to collect all the 

statistics from different training processes and use the Baum-Welch re-estimation 

equations to update the whole set of HMM parameters. 

In the second step, a synchronization program is used to ensure that (1) all training 

processes are finished before it starts the re-estimation process, and (2) the new set of 

HMM models are dumped out and accessible to all machines before it starts a new iteration 



of parallel training. When exceptions occur, for example, a training process aborted before 

it dumped out the accumulated statistics for those utterances it has calculated, we can 

send a command to the server to change the status of those utterances to unprocessed so 

that they can be assigned to other live processes again. 

Another practical issue about the training process is related to pruning unlikely paths 

that have very low likelihood in the forward-backward embedded training. For a sentence 

that has N phones, there are 3N HMM states (excluding optional tee model states) in 

the sentence HMM model. Theoretically, excluding 3N frames in the beginning and 3N 

frames in the end of the utterance, every frame could be in any one of the 3N states. The 

width of the forward/backward lattice is therefore 3N states. However, among all the 

possible paths in the lattice, many have very low likelihood and their contributions are 

negligibile and can be pruned out to reduce computation cost. Figure 3.8 illustrates the 

idea of pruning in the embeded training. Only those states within the range [sL (t), sH (t)] 

will be considered in the computation at time frame t. To effectively estimate the upper 

and lower boundaries of the HMM state range, we adopt the method used in HTK [58]. 

It has two mechanisms to prune unlikely paths. First, the embedded training program 

calculates the backward probabilties pj(t) first and then the forward probabilites aj(t). It 

is unnecessary to calculate these probabilites for all values of state j at time t since many 

of these combinations will be highly improbable. On the forward pass, we only keep those 

states for time frame t whose total likelihood as determined by the product aj(t)pj(t) is 

within a fixed distance from the total likelihood P(0IX). This pruning mechanism is safe 

and causes no loss of modeling accuracy. 

Second, it is also possible to prune in the backward pass, using the same principle 

as in the first mechanism. However, in this case, the likelihood crj(t)pj(t) is unavailable 

as q ( t )  has not been calculated yet. So a much broader beam is used to avoid pruning 

errors. If the Pj(t) value for a state j is too small, compared against the maximum value 

of P(t) at time t, it is pruned out. The beam is controlled by users. 



Figure 3.8: Pruning of HMM states in the embedded forward-backward calculation. Only 
states within the range [sL ( t )  , sH (t)] are considered at time frame t. 

3.2.4 Experimental Results 

To evaluate our new approaches in this thesis, we need to first build the best baseline sys- 

tem that uses the conventional approach, and then compare the results of new approaches 

against the baseline system under the same conditions. As the performances of the acous- 

tic models are somewhat sensitive to the particular combination of thresholds used in the 

tree construction and the training procedure, we did a grid search to find the best settings. 

Two major factors that impact the model quality are the total number of clustered states 

in the system and the number of mixture components in every state. Selected results are 

listed in Table 3.2 and Table 3.3 and plotted in Figure 3.9 and Figure 3.10 for the WSJ 

5K and 20K tasks, respectively. A bigram language model is used for the WSJ 5K task 

and a trigram language model for the WSJ 20K task. 

We can see that the best acoustic model for the WSJ 5K task has about 3700 clustered 

triphone states, and 12 Gaussian components per state. The word error rates on the nov92 

evaluation set and si-dt-05 development set are 8.1% and 10.2%, respectively. For the 

WSJ 20K task, the best acoustic model has about 7500 clustered triphone states, and 12 

Gaussian components per state. The word error rate on the nov92 evaluation set is 12.9%. 

These systems will serve as our baseline systems for further improvement. 



Table 3.2: Word error rates (%) of acoustic models with different sizes on the WSJ 5K 
task (nov92 set/si-dt-05 set). 

1 states I 2-mixture I $-mixture 

Table 3.3: Word error rates (%) of acoustic models with different sizes on the WSJ 20K 
nov92 evaluation set. 

3.3 Improvement on the Baseline System 

states 
5532 
6542 
7509 
8562 

The original training strategy in Section 3.2.2 generally yields a reasonably good acoustic 

model in a variety of tasks, such as Resource Management, WSJ 5K and 20K. When 

the task becomes larger, such as transcribing broadcast news, the variation of speech 

phenomena in the training corpus, which is much larger, is dramatically increased. In 

order to capture the variation of speech patterns, a large number of Gaussian components 

(e.g. 24 or 32) is used to represent each clustered state. However, we found that the original 

training strategy did not give us the expected gain from the increased model complexity. 

One possible reason might be due to the fact that the mixture splitting procedure is not 

an optimal solution to increase the model complexity. Its limitation may become more 

severe when the amount of training data is small. 

We proposed a new training strategy to improve the original one. The construction of 

phonetic decision trees and clustering of triphone states is kept the same. But the initial 

HMM state for a leaf node comes from the corresponding multiple-mixture monophone 

2-mixture 

19.9 
19.7 
19.2 
19.0 

4-mixture 

16.5 
16.4 
16.1 
15.7 

8-mixture 
14.2 
13.8 
13.7 
13.7 

12-mixture 
13.7 
13.3 
12.9 
13.1 

16-mixture 

13.6 
13.4 
13.0 
13.0 

- 



-+ 2682 states 
-+ 3749 states 

number of Gaussians per state 

Figure 3.9: Word error rates of acoustic models with different sizes on the WSJ 5K nov92 
evaluation set. 

model, that is, all leaf nodes for one decision tree will use the same initial HMM model 

distribution. The multiple-mixture monophone model is obtained through a series of train- 

ing steps, similar to those in the training of clustered triphone models in Section 3.2.2. 

It can be trained in parallel to the training of unclustered triphone models and decision 

tree building. Figure 3.12 shows the parallel paths in the new training diagram. The 

multiple-mixture monophone model is a crude but robust representation of each mono- 

phone's spectral space. A few successive iterations of forward-backward training will adapt 

(update) the HMM parameters for every clustered triphone state to its specific spectral 

space. Figure 3.11 and 3.12 illustrate both training strategies for comparison. 

Another advantage of the new strategy is that when the phonetic decision tree changes, 

we do not need to retrain the multiple mixture monophone model, and only need to train 

the clustered model (that already has the desired number of Gaussian components per 

HMM state) for several (5 or 6) iterations. While in the original training strategy, we 

have to start from the initial clustered model that has only a single Gaussian component 

per state, and go through the complete mixture splitting and re-estimation procedure. 



-+ 6542 states 
+ 7509 states 

number of Gaussians per state 

Figure 3.10: Word error rates of acoustic models with different sizes on the WSJ 20K 
nov92 evaluation set. 

Apparently, the new training strategy significantly reduces the experiment turn-around 

time. In addition, the number of parameters and thresholds during the training procedure 

are reduced (as fewer steps are involved); therefore the results tend to be more stable and 

reliable. 

The experimental results are listed in Table 3.4 and Table 3.5. Figure 3.13 and Fig- 

ure 3.14 give the performance comparison on the WSJ 5K and 20K evaluation sets. We 

can see clearly that the new training strategy consistently outperformed the original train- 

ing strategy. Not only was the word error rate (WER) reduced, the training time was also 

reduced by 30% to 40%. For the WS J 5K task, the best system obtained has about 3700 

states and 12 mixtures per state. Its word error rate was 7.5% on the nov92 evaluation 

set and 9.5% on the si-dt-05 development set. These correspond to a 7% reduction of 

word error rates compared with the original baseline system, whose word error rates were 

8.1% and 10.2% on these two sets. For the WSJ 20K task, the best system has about 

7500 states and 12 mixtures per state. Its word error rate on the nov92 evaluation set was 

11.8%, which is 8.4% less than the word error rate (12.9%) of the original baseline system. 
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(single Gaussian) '. 
Clone to triphones 

Train unclustered 
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(single Gaussian) 

Mixture splitting 1 
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Figure 3.11: Original training strategy. 

We did a further fine tuning of the so far best systems on the number of clustered 

triphone states and the number of mixtures per state. However, no noticeable perfor- 

mance gain was obtained. So we will use these sytems as our new baseline systems.2 All 

experiments in the following chapters will use this new training strategy, and their results 

will compare against the results of these new baseline sysytems. 

'The results of our baseline systems on these test sets are close to the best published results for 
comparable systems. The baseline for Bell-Lab's system had a 6.7% WER on WSJ 5K nov92 set and 
12.8% on WSJ 20K nov92 set. The HTK group in Cambridge University achieved the best results on those 
evaluations. Their baseline system had a 6.9% WER on WSJ 5K nov92 set and 9.5% on WSJ 20K nod:! 
set. However, their system on WSJ 20K task is not comparable to our system due to different system 
features. 



Table 3.4: Results (WER %) of the new training strategy with acoustic models of different 
sizes on two WSJ 5K test sets (nov92 set/si-dt-05 set). 

Table 3.5: Results (WER %) of the new training strategy with acoustic models of different 
sizes on the WSJ 20K nov92 evaluation set. 

states I 2-mixture I 4-mixture I &mixture I 12-mixture 1 16-mixture 11 

' 
12-mixture 

8.5110.2 
7.919.9 
7.5/9.5 
7.519.8 

states 

1738 
2682 
3749 
4656 

16-mixture 

8.3110.1 
7.819.6 
7.619.5 
7.819.9 

2-mixture 

12.0/18.1 
11.3116.9 
10.9116.6 
10.7116.2 

4-mixture 

10.2114.0 
9.0112.5 
8.7112.5 
8.4111.7 

8-mixture 

9.0111.8 
8.3110.8 
8.1/10.7 
8.0110.5 
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Figure 3.12: New training strategy. 
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Figure 3.13: Comparison of results from the original training strategy and the new one 
on the WSJ 5K nov92 evaluation set. 

- 7509s org 

number of Gaussians per state 

Figure 3.14: Comparison of results from the original training strategy and the new one 
on the WSJ 20K nov92 evaluation set. 



Chapter 4 

Two-level Phonetic Decision Trees 

Starting from this chapter, we will present how we approach the three problems in the tra- 

ditional phonetic decision-tree based acoustic modeling approach, rooted in its inefficient 

use of the limited training data. We propose a number of ways to address these problems. 

In this chapter, we begin by illustrating the first problem, caused by an implicit under- 

lying assumption that Gaussian components and their mixture weights must be coupled 

together and estimated from the same set of data. Secondly, we present a new structure, 

called two level phonetic decision trees [37], to address this problem. Experimental results 

are given in Section 4.6 to demonstrate the advantages of the new approach. 

4.1 Problem: Using Same Set of Data to Estimate both 

Gaussians and Mixture Weights 

During the traditional decision tree construction, if the amount of training data (i.e. the 

state occupancy in Section 2.3.2) associated with all the states in a node is less than a 

threshold, the node is no longer split and becomes a leaf node. This is one of the stop- 

splitting criteria used in building phonetic decision trees. The purpose is to ensure that 

there will be sufficient training data in every leaf node, so that the Gaussian mixture dis- 

tribution' for each leaf node can be robustly estimated. Otherwise, the estimated models 

might over-fit the training data and generalize poorly, and therefore cause performance 

'At the time of building trees, it is only a single-Gaussian distribution. But it will be expanded to a 
multiple-Gaussian distribution for the final acoustic model. 



loss, because too few data will not be statistically representative for a cluster of triphone 

states. In practice, the threshold is usually determined experimentally. In each leaf node, 

a Gaussian mixture model is estimated, and all the Gaussian components and the corre- 

sponding weights are shared across all the member states in the node, and no distinctions 

are provided among these member states. 

This assumption can be viewed as one cause of inefficiently using the limited training 

data, and it restricts the improvement of model quality. To ensure that the Gaussian 

components can be robustly estimated, a relatively high threshold for the data counts (e.g. 

100 or 120) is required. However, some states, particularly those states of the triphones 

that do not have much training data, are clustered together or with other states, not 

because they are acoustically very similar, but because they do not have enough training 

data to sustain a further split. This can be a cause of performance degradation. 

To see this problem more clearly, let us look at Figure 4.1. The node a is one of the 

leaf nodes in one traditional decision tree. It contains a few triphone states that may be 

acoustically very different, and these states are forced to cluster together due to insufficient 

training data. A two-Gaussian mixture distribution is estimated to represent it. Assuming 

that the dimension of the feature vectors is 39 (a typical value for MFCC-based features) 

and the covariance matrix is diagonal, so each Gaussian component has 79 parameters 

(39 mean variables and 39 variance variables plus 1 mixture weight). Each two-Gaussian 

mixture distribution has 2 * 79 = 158 parameters. 

If we would like to distinguish those dissimilar triphone states in the node by further 

splitting node a into two child nodes b and c (using smaller minimum data count thresh- 

old), we will have to estimate a separate two-Gaussian mixture distribution for each of 

the child nodes. So the number of parameters will increase by 158. However, as node 

a became a leaf node because of insufficient data to support any further splitting in the 

original decision tree, its child nodes b and c will have even fewer training data. So, 

the estimated Gaussian-mixture distributions for node b and c will not be robust. As a 

result, contrary to the intention, the increased resolution for the training data will hurt 

the recognition accuracy over the test data. 

However, we may overcome this difficulty by dropping an underlying assumption in 



the original decision trees that all elements of a Gaussian mixture distribution must be 

estimated from the same set of data. Figure 4.2 illustrates our idea for doing this. We 

still split the original leaf node a into node b and c, as done in Figure 4.1. However, node 

b and c will share the same set of Gaussian components estimated in node a. A different 

set of mixture weights, corresponding to the given set of Gaussian components, will be 

estimated from the training data in node b and c, respectively. In this way, the node b 

and c will be represented by a different Gaussian-mixture distribution, and therefore the 

resolution is increased. As estimating mixture weights (given the Gaussian components 

in node a) requires much fewer training data, the new sets of mixture weights in node b 

and c can still be robustly estimated. 

The two new nodes b and c only add 2 parameters to the original system, rather than 

158 as shown in the Figure 4.1. Usually the number of Gaussian components in a node is 

more than 2 (our baseline system has 12 Gaussian components per state). If we have 10 

Gaussian components in a node, the increased number of parameters by this new approach 

is 10, while by the traditional approach it will be 790! 

leaf node 

further split to 
c3 =4 new nodes zs zt5 

Figure 4.1: Traditional approach: Gaussian components and mixture weights are coupled 
together. A different Gaussian mixture distribution needs to be estimated for node b and 
for node c, using their own data. 



further split to 
new nodes 

Figure 4.2: New approach: Gaussian components and mixture weights are decoupled. 
Node b and c share the same set of Gaussian components in node a. Only the mixture 
weights are estimated in node b and c. 

4.2 Two-level Phonetic Decision Trees 

To apply this idea, we proposed a new structure called a two-level decision tree. Figure 4.3 

illustrates the two-level decision tree structure. It looks like a regular phonetic decision 

tree. However, the difference is that it has two levels (here "level" means the type of 

leaf nodes resulting from different tree-building processes). First, a decision tree (called 

a first-level tree) is built using the traditional approach; all the states in the same first- 

level leaf node share the same Gaussian pool. We call the first level the Gaussian-sharing 

level. Then, the second-level nodes are obtained by further splitting the first-level leaf 

nodes. Smaller thresholds (both minimum data count threshold and likelihood increment 

threshold) than those used in the first-level nodes are used in order to grow the second-level 

nodes. 

All the second-level leaf nodes that come from the same first-level leaf node will share 

the same Gaussian pool, but they have their own set of weights for the Gaussians. All 



the states in the same second-level leaf node will share their mixture weights. We call 

the second level the weight-sharing level. Of course, they also share the corresponding 

Gaussian set in their ancestor node that is a first-level leaf node. So all states in the 

second-level leaf node are identical. 

first-level leafnodes 
- - - -***  (Gaussian-sharing level) 

second-level leafnodes 
(weight-s haring level) 

Figure 4.3: A two-level decision tree. Node 2 and 3 are first-level leaf nodes. Node 4, 5, 
8, 9 and 7 are second-level leaf nodes. 

If we do not expand the first-level leaf nodes, the tree is the same as a traditional 

decision tree (for contrast, we refer to it as a one-level tree), in which all states in the 

same leaf node share not only Gaussians but also corresponding mixture weights. By using 

the second-level nodes, better resolution can be achieved among those states in the same 

first-level leaf node by distinguishing their mixture weights, especially for those rarely seen 

triphone states that have to be clustered together due to the relatively high data count 

threshold in the first-level tree. 

By controlling the number of second-level nodes, the increased number of mixture 

weights is only a very small percentage of total parameters. For example, if each first-level 

leaf node is split into only two second-level nodes, the two-level tree only adds about 1/79 

of the total number of parameters. The increased number of mixture weights still can be 

robustly estimated, since estimating mixture weights requires very few training data given 



a robustly estimated Gaussian pool in the first-level leaf node (actually they are jointly 

estimated in order to obtain optimal values). But in contrast, if we continue to use the 

traditional approach in the second-level leaf nodes in order to get higher resolution for 

those states in the first-level leaf nodes, the number of parameters will double, as a set 

of Gaussians and corresponding mixture weights (assuming the same number as in the 

parent node) are added for each extra second-level leaf node. This will obviously result in 

too many parameters and over-fitting. As a result, the performance of such a system will 

degrade. 

By de-coupling the Gaussians and the corresponding mixture weights in the traditional 

decision tree and creating a two-level tree structure, we can make better use of the limited 

training data, especially for those rarely seen triphones. 

4.3 Algorithm to Construct Two-Level Phonetic Decision 

Trees 

The algorithm to build two-level decision trees is based on the algorithm for building one- 

level trees, as shown in Figure 3.6. After the first level tree building procedure stops, every 

leaf node is labeled as a first-level leaf node. And then it continues splitting using smaller 

thresholds and the same goodness-of-split criterion and the same steps (i.e., splitting first 

and then merging similar nodes) in building the first level trees. Due to the merging steps 

in both levels, the final structure is not a real tree, but rather a complicated graph or 

network. 

The Baum-Welch re-estimation formula (in Section 2.2.3) can directly apply to esti- 

mating HMM parameters of two-level tying without any change. With different clustering 

of Gaussian components and mixture weights, the sets of speech observation vectors, con- 

tributing to the Gaussian components and to the mixture weights, will be different. 

4.4 Tuning of Two-Level Phonetic Decision Trees 

So far, there has been an implicit assumption that two-level trees are built by expanding 

the optimal-sized one-level trees and thereby the two-level tree based acoustic models 



have more parameters than the one-level tree based models. However, it is not necessary 

to construct the tree in this way. In practice, we found that by tuning the balance of 

the first-level and second-level leaf nodes, we can get better performance with even fewer 

parameters than an optimal-sized one-level tree system. 

Figure 4.4: Tuning of a two-level phonetic decision tree. By pruning back the one-level 
tree leaf nodes to the first level, better robustness for Gaussian sets can be obtained. By 
further splitting one-level tree leaf nodes to the second level, high accuracy for mixture 
weights can be otained. Overall, both robustness and accuracy may be improved. 

Normally, a global threshold of data count is used for building all the trees, and the 

value is tuned until the final model set based on the decision tree clustering achieves best 

performance on a development set. Even with this global optimal value, it is still possible 

that some leaf nodes are under-trained and should be further split to get higher resolution, 

and some leaf nodes are over-trained and should be pruned back (although this problem is 

lessened by allowing a variable number of Gaussian components in each clustered state in 

the final model set). This problem can be addressed in the two-level decision tree structure 

because it provides more flexibility to control the total number of parameters. By using a 

relatively conservative value of the data count threshold (e.g. 150 frames) in the first-level 



(Gaussian-sharing level) tree, we can ensure that the Gaussian pools in all of the leaf nodes 

can be robustly estimated. And by using the second-level (weight-sharing level) nodes, 

we can obtain high resolution. Although a global data count threshold (smaller than the 

one used in the first-level tree, e.g., 30 frames) is still used, the impact of this problem is 

smaller since it only affects the mixture weights. 

4.5 Significance Test 

Before we present the experimental results of the two-stage decision tree based systems, 

it is necessary to introduce the concept of a statistical significance test. It can be used 

to perform comparisons on speech recognition algorithms (or systems) by comparing the 

recognition results on the test data set and by measuring whether the difference in per- 

formance is statistically significant. The statistical significance tests we use in this thesis 

determine the probability that a certain given result will occur entirely by chance, even 

when error rates for two systems are identical. It was orginally developed for DARPA 

speech recognition benchmark tests, and now it is widely accepted in the general speech 

recognition research community. The NIST~ standard scoring package provides four sig- 

nificance tests, two of which are most often used (also used in this thesis) and will be 

briefly explained below. 

Matched Pairs Sentence-Segment Word Error (MAPSSWE) Test 

MAPSSWE test [20] [21], sometimes simply called matched-pairs test, is a parametric 

test that looks at the numbers of errors occuring in units that are larger than single words 

and smaller than entire utterances. The units, called sentence segments, are chosen in a 

way to approximately validate the independence assumption. The segments are bounded 

on both sides by words correctly recognized by both systems under test, or the beginning 

and end of utterances. Because the number of units is large, the central limit theorem 

permits the approximate assumption that the average number of errors per segment are 

normally distributed. The sentence segments are detected using a state machine illustrated 

2stands for National Institute of Standards and Technology 



in Figure 4.5. 

correct 1 

error 

I error I 

store the segment 

A 

state b: Have not found any error yet. 
state e: If both systems are correct, then check to see if number of correct 
words (# correct) equals to the minimum (min-good). If it is, then mark the 
segment and go to state b. 
state g If next word is correct, increase # correct and loop back to do the 
check. Otherwise, go to state e. 

Figure 4.5: State machine for locating sentence segments. 

The term "correct" means that both of the two systems correctly recognize the current 

word. The term "error" means that at least one system incorrectly recognizes the current 

word. A sentence segment is thus a sequence of words that ends with a given number 

(min-good) of correctly recognized words for both systems. The value min-good is set to 

one in this thesis. Here is an example of detected sentence segments: 

I I1 I11 IV 

REF: it was the best of times it was the worst of times it was 

SYS A: ITS the best of times it IS the worst of times OR it was 

SYS B: it was the best - times it WON the TEST of times it was 



There are four segments detected by the state machine. For segments I and IV, A is 

incorrect and B correct (a substitution and a deletion in I, and an insertion in IV). For 

segment 11, A is correct and B incorrect (a deletion). For segment 111, both are incorrect 

(one substitution in A, two in B). 

For each segment i, define di as the difference of the number of misrecognized words 

from the two systems. The hypotheses of the matched pairs test are as follows. 

The null hypothesis Ho : d = 0 

The alternative hypothesis Ha : d # 0 

where d is the mean of the differences, d = Cyz1 di/n. n is the total number of 

segments. 

The test statistic is defined as z = ,/&/a, where a is the estimated standard deviation, 

a2 = Cy=l (di - d)2. The decision rule of the matched pairs test is therefore: reject Ho 

if I z I  > z,, where z, is a critical value [41] from a standard normal table corresponding to 

the confidence level 100(1- a)%. When the confidence level is 95% (a  = 0.05), 1z,1=1.96. 

A matched-pairs test is generally more powerful than other tests like Wilcoxon test, 

due to its inherent large number of units (as it uses smaller units, sentence segments rather 

than whole utterances). It is not usual that other tests reject the null hypothesis while a 

matched-pairs test does not. 

Wilcoxon Signed Rank Test 

The Wilcoxon signed rank test [53] is a non-parametric test that utilizes information 

on both the signs and the magnitudes of the performance differences in two systems. The 

NIST implementation is one variant of the standard Wilconxon signed rank test. It uses 

word accuracy as the measurement of performance. The hypotheses of the test are as 

follows. 

The null hypothesis: 

The two populations represented by the respective matched pairs are identical. 

The alternative hypothesis: 



The two populations are not identical and there is a diflerence between them. 

The procedure to calculate the test statistic for the Wilcoxon test is: 

1. Calculate the differences of the word accuracy rates of speaker i of the two systems 

and denote it as dim 

2. Rank the absolute values of the differences, Idil, by assigning 1 to the smallest, 2 to 

the second smallest, and so on. Tied observations are assigned the average of the 

ranks that would have been assigned with no ties. 

3. Calculate the rank sum for the positive differences and label this value as T+. Sim- 

ilarly, calculate T-, the rank sum for the negative differences. 

For large enough n (2 8), T+ has an approximately normal distribution. Its mean and 

variance are 

Then the z statistic 

can be used as a test statistic. The decision rule for the Wilcoxon test is that, based 

on a 95% (a = 0.05) confidence interval, the null hypothesis is rejected when 121 > 1.96. 

4.6 Experimental Results 

To build acoutic models using two-level decision tree based clustering, we used the same 

procedure as in building the baseline systems. All the parameters and thresholds in the 

training procedure (except those used in building two-level decision trees) are kept the 

same to ensure fair comparison. The thresholds for building two-level decision trees are 

optimized on the development set. 



Table 4.1: Results (WER %) of acoustic models built with different sizes of two-level 
decision trees on two WSJ 5K test sets (nov92lsi-dt-05). The first row of each block has 
the same number of leaf nodes in the first level and second level. They correspond to the 
baseline system in Section 3.3. 

The best performances for the standard one-level tree system were given in Section 3.3. 

For the purpose of comparison, they are listed again here. Results for two-level tree 

systems on the WSJ 5K test sets are given in Table 4.1. Some selected results are plotted 

in Figure 4.6. Both thresholds for the minimum data count and log-likelihood increase in 

building the second-level tree are smaller than those used in building the first-level tree. 

We can see from the experimental results that 

When further splitting one-level trees to become two-level trees, the two-level tree 

systems always outperform the corresponding one-level tree systems. But the two- 

level tree systems have more parameters than the one-level tree systems. 

16-mixture 

7.819.6 
7.719.4 
7.419.4 

7.719.2 
6.518.2 
6.418.3 

7.619.5 
7.319.0 
7.118.9 
7.819.9 
7.219.2 
7.419.1 

When pruning back the first-level leaf nodes to have fewer number of Gaussians than 

the corresponding one-level tree systems, we can generally get better or equivalent 

results by using more second-level leaf nodes (than the one-level tree leaf nodes). And 

the two-level tree systems have fewer parameters than the one-level tree systems. 

12-mixture 

7.919.9 
7.719.7 
7.519.6 

7.719.7 
6.818.5 
6.418.4 
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7.118.9 
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8-mixture 

8.3/10.8 
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8.3110.8 
7.5110.2 
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7.4110.0 
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7.519.9 

4-mixture 

9.0112.5 
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8.7112.5 
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8.1111.3 
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2-mixture 
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10.8/16.6 
10.5116.5 
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3749 
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4656 

# of 2nd- 
level leaf 

nodes 

2682 
11264 
21111 

3364 
11457 
21268 

3749 
11607 
21367 
4656 
11682 
21528 



Table 4.2: Comparison of the best results of the baseline system (one-level tree) and the 
two-level tree based system on two WSJ 5K test sets. MP means the matched-pairs test. 

6 
2 4 8 12 16 

number of Gaussians per state 

test set 
nov92 

si-dt-05 

.-.-+... 3364+21268 
-x- 3749s one-level 

Figure 4.6: Results of the baseline and the two-level tree systems with different model 
sizes on the WSJ 5K nov92 test set. 

one-level 
WER 

7.5% 
9.5% 

The best two-level tree system gives lower word error rates than the best one-level 

tree system. And furthermore, the two-level tree system has fewer number of pa- 

rameters. Table 4.2 gives a comparison of the best one-level tree and two-level tree 

systems. 

The best one-level tree system has 3749 states (or leaf nodes) and 12 Gaussian com- 

ponents per state. The minimum data count is 120. The best two-level tree system has a 

total of 3364 first-level leaf nodes and 21268 second-level leaf nodes. Each first-level node 

has 12 Gaussian components. The minimum data counts for building the first-level and 
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second-level trees are 180 and 40, respectively. There are a total of 3.6 million parameters 

in the one-level tree system and 3.4 million parameters in the two-level tree system. With 

a 5% reduction in the number of parameters, 15% and 12% word error rate reductions 

are obtained for the two test sets. The significance tests show that this is a statistically 

significant improvement. 

Table 4.3: Word error rates (%) and number of parameters (in brackets, in unit of million) 
of different acoustic models on the WSJ 5K combined test set (nov92 +si-dt-05). 

To help compare the one-level and two-level tree systems in terms of both performance 

and model size, we convert the Table 4.1 to Table 4.3, which gives results on the combined 

test set (nov92+si-dt-05) of the WSJ 5K task, together with the number of parameters 

for every acoustic model. Two comparisons are conducted: 

1. Given a certain performance level of the one-level tree system, how much model size 

reduction can be obtained by two-level tree systems? 

16-mix 

8.83(3.39) 
8.67(3.53) 
8.54(3.68) 

8.56(4.25) 
7.47(4.38) 
7.48(4.54) 

8.68(4.74) 
8.27(4.86) 
8.13(5.02) 
8.99(5.89) 
8.34(6.00) 
8.37(6.16) 

2. Given a certain level of model size, how much performance improvement can be 

achieved by the two-level tree system over the one-level tree system? 

The result of the first comparison is given in Table 4.4. We can see that at  the same 

4-mix 

ll.OO(0.85) 
10.74(0.88) 
10.65(0.92) 

ll.O(l.06) 
10.57(1.10) 
10.33(1.13) 
10.87(1.18) 
10.67(1.22) 
10.45(1.26) 
10.28(1.47) 
9.93(1.50) 
9.67(1.54) 

2-mix 

14.50(0.42) 
14.31(0.44) 
14.21(0.46) 

14.31(0.53) 
14.11 (0.55) 
13.92(0.57) 

14.15(0.59) 
14.07(0.61) 
13.87(0.63) 
13.84(0.74) 
13.60(0.75) 
13.34(0.77) 

# of 1st 
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nodes 

2682 
2682 
2682 

3364 
3364 
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4656 
4656 
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nodes 
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21111 

3364 
11457 
21268 

3749 
11607 
21367 

4656 
11682 
21528 

8-mix 

9.73(1.70) 
9.47(1.76) 
9.21(1.84) 

9.73(2.13) 
9.04(2.19) 
8.64(2.27) 

9.58(2.37) 
9.17(2.43) 
8.88(2.51) 

9.43(2.94) 
8.97(3.00) 
8.87(3.08) 

12-mix 

9.04(2.54) 
8.84(2.65) 
8.70(2.76) 

8.84(3.19) 
7.77(3.29) 

7.54(3.40) 

8.64(3.56) 
8.38(3.65) 
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8.39(4.50) 
8.23(4.62) 



performance level of the one-level tree system, the two-level tree system can reduce the 

model size by as much as 36%. 

Table 4.4: Comparison of model sizes for one-level tree systems and two-level tree systems 
with fixed word error rates on the WSJ 5K combined test set (nov92+si-dt-05). 

For the second comparison, there are very few pairs of results available due to the 

limited experimental results. But we can see that when the number of parameters is fixed 

to be the same as the best two-level tree system, that is, 3.4 million, the best available 

result for one-level tree systems is 8.83% (2682 states, with 16 mixture per state), slightly 

worse than the best baseline system (8.64%). With this model size, the two-level tree 

system reduces the word error rate of the one-level tree system by 14.6% on the combined 

test set. 

For the WSJ 20K task, experimental results are given in Table 4.5 and Table 4.6. For 

comparison convenience, two pairs of models are selected from the table and plotted in 

Figure 4.7. Similar conclusisons as those for the WSJ 5K task can also be drawn from the 

analysis of the results. 

The one-level tree system has 7509 states and 12 Gaussian components per state. 

The minimum data count is 120. The two-level tree system has a total of 6542 first- 

level leaf nodes and 22234 second-level leaf nodes. Each first-level leaf node has up to 

12 Gaussian components. The minimum data counts used in the construction of the first 

level and second level are 180 and 40, respectively. There are a total of 7.1 and 6.4 million 

parameters in the one-level tree system and two-level tree system, respectively. With a 

10% reduction in the number of parameters, we obtained a 12% word error rate reduction, 

which is a statistically significant improvement over the baseline system. 

Table 4.7 gives the comparison of model sizes between one-level and two-level tree 

WER 

8.64% 
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9.04% 

one-leve tree 
system size(mil1ion) 

3.55 (3749s, 12mix) 
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Table 4.5: Word error rates (%) and number of parameters (in brackets, in unit of million) 
of different acoustic models on the WSJ 20K nov92 test set. The first row of each block 
has the same number of leaf nodes in the first level and second level. They correspond to 
the baseline system in Section 3.3. 

Table 4.6: Comparison of the best results of the baseline system (one-level tree) and the 
two-level tree based system on the WSJ 20K task. MP means the matched-pairs test. 

n I one-level I two-level I reduction I reduction of I significance 1 
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systems. We can see that at  the same performance level of the one-level tree system, the 

two-level tree system can reduce the model size by up to 40%. 

The experimental results confirm that using the proposed two-level decision tree based 

acoustic modeling is advantageous over the traditional decision-tree based acoustic mod- 

eling. It not only reduces word error rates but also yields a smaller acoustic model than 

the traditional approach, as a result of better use of training data. 
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Figure 4.7: Results of the baseline and the two-level tree systems with different model 
sizes on the WSJ 20K nov92 test set. 

Table 4.7: Comparison of one-level tree systems and two-level tree systems with fixed 
word error rates on the WSJ 20K nov92 set. 

reduction of 
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40% 

two-level tree 
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Chapter 5 

Two-Stage Decision Tree Building 

In this chapter, we will address a different problem with the conventional phonetic decision 

tree based acoustic modeling, also rooted in its inefficient use of data for triphones that 

have very few training data (called rarely-seen triphones). It is related to the parame- 

ter estimation of unclustered rarely-seen triphones. First, we will explain the problem in 

the conventional approach in Section 5.1. Some related work will be presented in Sec- 

tion 5.2. Next, we will present our approaches based on a two-stage decision tree building 

strategy [38] and on a MAP-based smoothing technique in Section 5.3 and Section 5.4, 

respectively. Experimental results are given in Section 5.5, which clearly demonstrate the 

advantages of our approaches over the conventional approach. 

5.1 Problem: Waste of Data for Rarely-Seen Triphones 

In practice, no matter how large a corpus is, the training data are usually distributed 

unevenly in terms of occurrence of triphones. Table 5.1 lists the distribution of training 

data in the WSJ 5K task in percentages. We can see that as many as 12.8% of all 18,532 

distinct seen triphones only occur once, and 33% of all distinct seen triphones occur no 

more than 3 times in the training data. 

For those triphones that have very few training exsamples, the Gaussian distributions 

associated with them can be poorly estimated. When they directly participate in the tree 

construction, the errors in estimating the statistics of the rarely seen triphones can have 

a long-term adverse effect on the quality of the decision-tree based state clustering. It is 



very important to obtain a better estimate for the rarely seen triphones given very limited 

training data in order to minimize the negative effects of the non-robustly estimated 

statistics of the triphones to decision tree building. 

One might think that we could use statistics for those frequently-seen triphones to 

build decision trees to minimize the negative effect caused by those rarely seen triphones. 

However, in this way, we also throw away the information contained in the training data 

for the rarely seen triphones. The traditional approach uses a simple back-off mechanism 

to prevent unreliable statistics of rarely seen triphone models from causing bad effects in 

the decision tree building. If the amount of training data for a triphone model is less than 

a given threshold, the model is simply backed-off to the corresponding monophone model1. 

This is not a good solution, because the data (although very limited, they still contain 

useful information) for those backed-off triphones are wasted. Their contribution to the 

tree construction is minimized. Even though each individual rarely seen triphone occurs 

so infrequently that, by itself, it doesn't make much difference in the tree construction, 

there are enough rarely seen triphones that together they make a significant difference. 

Therefore, it is necessary to find a better solution to address this problem associated with 

rarely seen triphones. 

Table 5.1: Distribution of triphone occurrences in the WSJ 5K training data. 

5.2 Related Work 

Reichl and Chou [47] proposed an approach to address this, in which the rarely seen 

lo+ 
40% 

triphones were clustered into various types of generalized triphones [34] before building 

decision trees. The rarely seen triphones are clustered by relaxing the triphone contexts. 

number of occurences 
percentage of triphones 

'For triphones that are never seen in the training data, no models will be built for them during training. 
Instead, they will be predicted by using the decision trees during decoding. The statistics of rarely seen 
triphones as well as other seen triphones will help predict the never seen triphones. 
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Figure 5.1: Distribution of triphone occurrence in the WSJ5K training data. 

First, the left contexts of all rarely seen triphones that are derived from a base phone are 

relaxed, that is, the rarely seen triphones that share the same right context are grouped 

together, if the amount of training data is above the threshold. Each of these groups 

is a generalized triphone. For all remaining unclustered triphones, if there are any, the 

right contexts of them are relaxed. If there are still remaining unclustered triphones, then 

both left and right contexts are relaxed, that is, they are reduced to the corresponding 

monophone models. When these generalized triphones participate in the subsequent build- 

ing process of the regular phonetic decision trees, the phonetic identity for each of them 

is the intersection of the phonetic properties of all rarely seen triphones in each cluster 

(generalized triphone). Figure 5.2 gives an example of clustering rarely seen triphones to 

generalized triphones. 

This approach is simple and easy to implement. However, we believe it is inadequate for 

clustering rarely seen triphones, as it does not take into account any similarity among the 

underlying data for those triphones (although there are not enough data, they still provide 

some information about each unique triphone) nor any similarity among the phonetic 

identities of those triphones. Furthermore, an assumption was made in the approach that 

a rarely seen triphone can only be clustered with other rarely seen triphones, even if it is 

more similar to a triphone that has sufficient training data. Obviously this assumption is 

not appropriate. 



Figure 5.2: Clustering rarely seen triphones into different generalized triphones. The 
numbers in the parentheses are times of occurrences in the training data. The threshold 
for clustering is 5 occurrences. 

-b 

5.3 Two-Stage Phonetic Decision Tree Building 

Back-off to monophone b 

In contrast to Reichl's approach, we drop his assumptions and cluster rarely seen triphones 

based on both distance measurements and phonetic knowledge. We build the phonetic 

decision trees in two stages as shown in Figure 5.3. 

In the first stage, we try to cluster rarely seen triphones by using phonetic decision 

trees. Initial statistics of all unclustered triphones are obtained after several iterations 

of training. Very big decision trees are built using these statistics, in which the rarely 

seen triphones are clustered with their most similar peers, which may or may not be 

rarely seen triphones, so that the resulting clusters have sufficient data to estimate robust 

representative Gaussian distributions. But any frequently-seen triphone is kept as unique, 

even if some rarely seen triphones are clustered with it. In other words, the clustered 

rarely seen triphones use pooled data to estimate their statistics (so they are smoothed), 

while the frequently-seen triphones still use their own data to estimate their statistics. 

In the second stage, we first update the statistics for the resulting triphones from the 

first stage clustering, using the Baum-Welch algorithm. These statistics are then used 
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Figure 5.3: Two-stage phonetic decision tree building. 

to build the final decision trees. Compared to the back-off mechanism in the traditional 

approach, the limited training data for the rarely seen triphones are fully exploited to es- 

timate their statistics, so the rarely seen triphones may be better estimated, and therefore 

better final decision trees may be constructed in this stage. 

Because both distance similarity and phonetic similarity are considered in clustering 

the rarely seen triphones using phonetic decision trees in the first stage, better clustering 

might be obtained, compared to using generalized triphone method. In Reichl's approach, 

if there are many rarely seen triphones (derived from the same monophone) that share 

the same, say right, context, they will be simply grouped all together. This might cause 

unnecessary over-clustering, and reduce model accuracy. In our approach, we can easily 

control the clustering degree by specifying the data count threshold in building decision 

trees in the first stage. So it has more flexibility, and the limited training data are used 



more efficiently. As the decision tree based clustering in the first and second stage use the 

same criterion, it might also be more consistent. 

The conventional back-off approach is still used when estimating the statistics of un- 

clustered triphone models for building decision trees in the first stage. So the trees built 

in the first stage may not be optimal. However, the estimation of rarely seen triphones 

still benefits from the clustering and predicting capability reflected in the tree structure, 

which is learned from the knowledge available contained in the data of those frequently- 

seen triphones. With the improved clustering of the rarely seen triphones and therefore 

better estimated statistics, we can expect the trees built in the second stage will also be 

better constructed. 

5.4 Maximum A Posteriori Smoothing of Context-Dependent 

Models 

The approach in the previous section can be regarded as a parameter sharing technique. 

There is another class of techniques called parameter smoothing, to address the problem 

of data sparseness in parameter estimation, Examples of this technique are Maximum A 

Posteriori (MAP) [19], a well-known parameter estimation criterion, and deleted interpo- 

lation [26]. The deleted interpolation is generally only applicable to discrete HMMs or 

semi-continuous HMMs, and the procedure is more complicated. In this thesis, we pro- 

pose to use MAP-based smoothing technique to obtain robust estimation of unclustered 

triphone models for decision tree building. It will be compared against the traditional 

approach and the two-stage decision-tree based approach. An introduction to MAP tech- 

nique will first be given in Section 5.4.1. In Section 5.4.2, we will derive a simplified 

MAP estimation formula for Gaussian mixtures, which will be more easily understood 

and implemented. 

5.4.1 Maximum A Posteriori 

The MAP framework provides a way of incorporating prior information in the estimating 

process, which is particularly useful in dealing with problems posed by sparse training data, 



for which Maximum Likelihood (ML) gives inaccurate estimates. The difference between 

MAP and ML estimation lies in the assumption of an appropriate prior distribution of 

the parameters to be estimated. If A, which is assumed to be a random vector, is the 

parameter vector to be estimated from the observation 0 with the probability density 

funtion (pdf) f (OlX), given a prior pdf of A, g(X), then the MAP estimate is defined as 

the maximum of the posterior pdf of A, that is, 

If X is assumed to be fixed but unkown, then there is no knowledge about A. This 

is equivalent to assuming a non-informative prior, i.e., g(X) is constant. Under such 

assumptions, MAP reduces to ML. 

Given the MAP formulation, there are three key issues to be addressed: the choice of 

a parametric form for the prior, the estimation of the prior parameters and the evaluation 

of the MAP. In fact, these issues are closely related, since the choice of an appropriate 

prior distribution can greatly simplify the estimation of the maximum a posteriori. If 

there exists a sufficient statistic of a fixed dimension, there must exist a standard family 

of distributions of the parameter A, which has the following property: 

a If the prior distribution of g(X) belongs to that family, then for any sample size and 

any values of the observation in the sample, the posterior distribution of X must also 

belong to the same family. 

A family of distributions with this property is said to be closed under sampling and is 

called a conjugate family of distributions. 

The main distribution in an HMM is the state output function, which is a multivariate 

Gaussian mixture. However, to simplify the presentation, we assume here a univariate 

Gaussian mixture distribution, and adopt the same notation in [17]. 

where 0 = (wl, . . . , W K ,  ml, . . . , m ~ ,  r l ,  . . . , r K ) ,  wk is the mixture weight, mk the mean 



and r k  = 1/02 the precision of the k-th Gaussian component. K is the number of Gaussian 

components in a state. 

For such a probability density function, there exists no sufficient statistic of fixed 

dimension for 8 and therefore no conjugate distribution. Gauvain [17] proposed to use a 

prior joint probability density, which is the product of a Dirichlet density and a gamma- 

normal density: 

The choice of this prior density can be justified by the fact that 

The Dirichlet density is the conjugate distribution of the multinomial distribution 

(for the mixture weights). 

a The gamma-normal density is the conjugate density of the normal distribution (for 

the mean and precision parameters). 

a The parameters of the individual mixture components and the mixture weights are 

assumed to be independent. 

If we assume two regularity conditions, (1) Xk = r k ;  and (2) a k  = (rk + 1)/2, then 

the MAP estimates of HMM parameters for the state output distribution can be derived, 

using the EM algorithm, as following [18]: 

wkN(~ilmk, rk) 
def ine  cik = 

C k = l  wkN(xilmk, rk) 

1 Xk + CY=, cik 
wk = 

1 TkPk + CE1 Cikxi mk = 
Tk + C?=l cik 



It is straightforward to generalize them to a multivariate Gaussian mixture distri- 

bution. Since the covariance matrix in each Gaussian is assumed to be diagonal, each 

dimension of the parameter vectors can be estimated separately by using the above for- 

mula. 

The parameters for the prior density were estimated as follows: 

5.4.2 Interpretation of MAP Formula 

To better understand the MAP estimation formula, we make a further derivation as follows: 

K Note that ~ f = ~  Cy=l Cik = Cr=l CkZl Cik = 12. 

where 

and 

m k  is the ML estimate of the mean variable (see Section 2.2.3). It is apparent that the 

new MAP-estimated mean is an interpolation of the prior mean and the ML-estimated 

mean. The interpolation coefficient depends on the amount of training data Cr=l q k  for 



the Ic-th Gaussian component. If the amount of training data is very little, then q k  is close 

to 1, the contribution of the prior is big, and the MAP estimate relies more on the prior. 

As the amount of training data increases, 1 - q k  approaches 1 and the MAP solution relies 

more and more on the training data, and converges to the ML solution. 

For the variance estimate, we can derive 

where 

is the ML estimate of the variance. 

Combining Equations 5.8 and 5.9, the MAP estimates of the output distribution can be 

readily interpreted as the interpolation of two sets of Gaussian mixture distributions. One 

is the prior distribution, with mean m k  and variance a: for the k-th Gaussian component. 

The other is the ML estimate, with mean ~ % k  and variance 5: for the k-th Gaussian 

component. The interpolation coefficient is a function of the training data assigned for this 

Gaussian mixture distribution, which is obtained during the forward-backward training. 

We can use the parameters of the monophone model for the prior distribution param- 

eters. We will call these prior monophone models as "seed models". When there are no 

training data available, these would be the best guess we can have about the triphone 

model that we are going to estimate. As the monophone model is more robust but less 

accurate, and the ML estimate of triphone model is more accurate but less robust, the 

MAP estimate gives a good tradeoff in combining them naturally. 



5.5 Experimental Results 

To evaluate our new approaches proposed in Section 5.3 and Section 5.4, we compare 

their performance with the baseline system's performance (in Section 3.3), where the 

simple back-off mechanism was used to estimate the statistics of the rarely seen triphones. 

Table 5.2 shows how the baseline system performance changes with different back-off 

thresholds in estimating the unclustered rarely-seen triphone models. The final clustered 

triphone model has 3749 states and 12 Gaussians per state. 

Table 5.2: Word error rates of the baseline systems with different back-off thresholds on 
the WSJ 5K task. 

In the unclustered triphone model set for the WSJ 5K task, there are 55594 unique 

states in total. We can see that the best result was obtained when the back-off threshold 

was set to 5 frames, which means if a particular state had less than 5 frames of data, it was 

simply backed-off to the monophone model. Of the total states, 17.8% were backed-off to 

their corresponding monophone models. 

Similar results were obtained for the WSJ 20K task as given in Table 5.3. There 

are 69187 unique HMM states in the unclustered triphone model set. When the back-off 

threshold was set to 5 frames, the best baseline acoustic model was obtained, which gives 

11.8% word error rates on the nov92 set. 7.5% states were backed-off to the correspond- 

ing monophone model. The final clustered triphone model set has 7509 states and 12 

Gaussians per state. 

5.5.1 Two-Stage Decision Tree Approach 

nov92 set 

7.9% 
7.5% 
7.8% 

back-off threshold 
(frames) 

2 
5 
10 

In our two-stage tree building approach, we use the statistics of unclustered initial models 

to build very big decision trees in the first stage. By using a relatively bigger threshold 

percentage(%) of 
back-off states 

5.3 
17.8 
34.0 

si-dt-05 set 

10.0% 
9.5% 
9.9% 



Table 5.3: Word error rates of the baseline systems with different back-off thresholds on 
the WSJ 20K task 

(than that used in training the unclustered model, e.g., 20 frames) of data count, we 

can guarantee that all rarely-seen triphones are clustered with their closest peers. The 

threshold for likelihood gain is set to zero to ensure that triphones that have enough 

training samples will not be clustered together. Then we train these loosely clustered 

models for several iterations and obtain their updated statistics. In the second stage, we 

use these models and their statistics to build the final trees. The trees in the second stage 

have the same number of leaf nodes as the baseline model, that is, 3749 states. Also, the 

number of Gaussian components per state is the same as in the baseline system. To find 

the best data count threshold in building decision trees in the first stage, a simple grid 

search is conducted and the results are listed in Table 5.4. 

Table 5.4: Results of systems built by using different phonetic decision trees in the first 
stage on the WSJ 5K task. 

nov92 set 
12.2% 
11.8% 
12.1% 

back-off threshold 
(frames) 

2 
5 
10 

percentage(%) of 
back-off states 

2.2 
7.5 
15.0 

We can see that when the threshold of data count is set to 30 frames, we obtained 

the best performance, 8.9% and 7.0% word error rates on the si-dt-05 set and nov92 set, 

respectively. It is 5% better than the performance of the baseline system. 

The results of statistical significance tests are given in Table 5.5. The details of 

Wilcoxon test on the combined set nov92+si-dt-05 is also given in Table 5.6. According 

40 
25098 
9.0% 
7.2% 

threshold of data count(frames) 
# of leaves in 1st-stage tree 

WER on si-dt-05 set 
WER on nov92 set 

50 
22612 
9.2% 
7.6% 

20 
33060 
9.1% 
7.2% 

10 
40705 
9.9% 
7.3% 

30 
28362 
8.9% 
7.0% 



to these significance tests, the two-stage tree based system has a statistically significant 

difference from the baseline system, and the two-stage tree based system is better. Note 

that due to the relatively small number of sentences (330) and low word error rates (about 

7%), the number of detected sentence segments is small and therefore it is difficult even 

for the matched-pairs test to find significant differences between the two systems. 

Table 5.5: Significance tests between the baseline system and two-stage decision tree based 
system on the WSJ 5K task. 

On the WSJ 20K tasks, similar results and conclusions were obtained and are given in 

Table 5.7. When the data count threshold is set to 30 frames in building decision trees in 

the first stage, the best acoustic model is obtained, and it reduces the word error rate of the 

baseline system by 6%. The model has the same number of clustered states and number 

of Gaussian components per state as the baseline model. According to significance tests, 

both Wilcoxon test and matched-pair test reject the Null hypothesis. Therefore, the two- 

stage tree based system is a significant improvement over the baseline system. Table 5.8 

gives some details of the matched-pair test. Note that the number of reference words in 

the table is the number of reference words only in the detected errorful segments. Since 

it is much smaller than the number of all reference words, the error rates in the table are 

much higher. 

test set 
nov92 

si-dt-05 
nov92 + si-dt-05 

5.5.2 MAP-based Approach 

It can be seen from Section 5.4.1 that when the values of 71, are known, all the other prior 

parameters can be directly estimated from the seed HMM parameters. In this case, 71, 

can be regarded as a weight associated with the k-th Gaussian component. When this 

weight is large, the prior density is sharply peaked around the values of the seed HMM 

baseline 

7.5% 
9.5% 
8.6% 

2-stage 

7.0% 
8.9% 
8.1% 

significance 
Wilcoxon 

no 
no 

Yes 

matched-pairs 

no 

Yes 
Yes 



Table 5.6: Wilcoxon test between the baseline system and two-stage decision tree based 
system on the WSJ 5K nov92+si-dt-05 set. T+ = 141, T- = 30, z = 2.42. As z is above 
the rejection threshold 1.96, the null hypothesis is rejected. 

n speaker [ 2-stage I baseline I difference I rank I signed-rank 11 

parameters, which will be only slightly modified by the training process. Conversely, if 

rk  is small, the MAP estimate will mainly depend on the training data. To increase the 

robustness, the r k  values can be constraint to be identical for all Gaussians of a given 

state, or for all states of an HMM, or even for all the HMMs. 

In this thesis, we only investigate the case that r k  is tied for all HMMs in the model set. 

We did some experiments to search for the best value of this globally tied 7, as shown in 

Table 5.9 and Table 5.10 for the WSJ 5K and 20K task, respectively. The baseline results 

are from Section 3.3. We used the MAP estimation to obtain the statistics of unclustered 

triphone models for decision tree building. The size of the final clustered triphone model 

set is about the same as the baseline system. 



Table 5.7: Results of systems built by using different phonetic decision trees i n the first 
stage on the WSJ 20K task. 

Table 5.8: Matched-Pairs test between the baseline system and two-stage tree based system 
on the WSJ 20K nov92 set. # of detected segments: 401, # of sentences: 330, mean: 
0.092, std dev: 0.984, Z statistic: 2.067 (above the rejection threshold 1.96) 

Threshold of data count(frames) 
# of leaves in 1st-stage tree 

WER on nov92 test set 

1 Percentage error 1 49.4% 1 46.6% 1 

10 
60878 
11.7% 

] 

It can be seen that the MAP-based systems consistently outperform the baseline sys- 

tems, and when the prior parameter r k  is set to 2, the MAP-based systems give the best 

performance, which reduce the word error rates of the baseline systems by about 5% on 

both WSJ 5K and WSJ 20K tasks. We also compared the MAP-based system against 

the two-stage decision tree based system as well as the baseline system in Table 5.11 and 

Table 5.12. The results of the two-stage decision tree based system are from Section 5.5.1. 

we can see that the two-stage decision tree based systems give only slightly better results 

than the MAP-based systems, which are not statistically significant on these test sets. 

The results of statistical significance tests are listed in Table 5.13. It shows that the 

MAP-based systems are significantly different from (and better than) the baseline systems. 

20 
54690 
11.4% 

- 
Reference words 

Total of 1329 

30 
50254 
1 1 . 1  

baseline 

656 

two-stage 

619 

40 
46738 
11.2% 

50 
43862 
11.3% 



Table 5.9: Word error rates of MAP-based systems, on the WSJ 5K nov92 set, with 
different T values in MAP estimation. 

1 states I mixtures I baseline 1 r = 1 I r = 2 1 r = 3 1 r = 5 [ 

Table 5.10: Word error rates of MAP-based systems, on the WSJ 20K nov92 set, with 
different r values in MAP estimation. 

[I states I mixtures I baseline 1 r = 1 1 T = 2 1 T = 3 1 T = 5 1 

Table 5.11: WER comparison of the MAP-based system with the baseline system and 
two-stage tree based system on the WSJ 5K task. 

Table 5.12: WER Comparison of the MAP-based system with the baseline system and 
two-stage tree based system on the WSJ 20K task. 

test sets 

nov92 
si-dt-05 

baseline 

7.5% 
9.5% 

I 

MAP(r = 2) 

7.1% 
9.0% 

test sets 
nov92 

two-stage 

7.0% 
8.9% 

baseline 
11.8% 

] 

MAP(T = 2) 
11.2% 

two-stage 
11.1% 



Table 5.13: Results of significance tests between baseline systems and MAP-based systems. 

MAP (7 = 2) 

7.1% 
9.0% 
8.2% 
11.1% 

significance 
baseline 

7.5% 
9.5% 
8.6% 
11.8% 

1 Wilcoxon 

no 
no 

Yes 
Yes 

test sets 
5K nov92 
5k si-dt-05 

5K nov92 + si-dt-05 
20K nov92 

matched-pairs 
no 

Yes 
Yes 
Yes 



Chapter 6 

Decision trees with multiple-Gaussian 

mixture models 

In this chapter, we will address the third problem that the traditional decision tree based 

approach does not take full advantage of the training data, particularly, the training data 

for the frequently-seen triphones. It is related to one assumption that the representation 

of every unclustered triphone state for decision tree building must be a single-Gaussian 

mixture distribution. We propose a new approach to relax this assumption and build 

phonetic decision trees using multiple-Gaussian mixture models. In Section 6.1, we will 

explain the problem in details. Some literature review about this problem is given in 

Section 6.2. Then, we present our new approach in Section 6.3. Experimental results and 

discussions are given in Section 6.4. 

6.1 Problem: Waste of Information in Frequently-Seen Tri- 

phone Data 

As mentioned before, the traditional approach uses a single-mixture model for each unclus- 

tered triphone state to build the decision trees, rather than the target multiple-mixture 

model. Obviously a multiple mixture distribution gives a more accurate representation 

of the acoustic space of a triphone state than a single mixture distribution does. If we 

could use multiple mixture models for the unclustered triphone states, we might be able to 

construct better trees and hence better clustering of triphone states, as more information 



in the data is exploited to represent every unique triphone state. Note that 40% of total 

seen triphones in the WSJ 5K training data occur more than 10 times (see Table 5.1). The 

amount of training data for these triphones should be able to warrant robust estimates of 

multiple mixture distributions for them. For example, each state should be better mod- 

eled by a mixture model with two Gaussian components, corresponding to the male and 

female speakers' data. 

Figure 6.1: Building a decision tree using single-Gaussian state models. The statistics 
for each node can be directly calculated from the statistics of its member states. The 
likelihood for a node is a function of the node's distribution (covariance matrix). 

The reason that the traditional approach uses only single mixture models to represent 

unclustered triphone states is mainly due to the computational complexity in the tree- 

building process. Theoretically, the multiple-Gaussian mixture distribution for a tree node 

needs to be re-estimated from the training data, whereas the single-Gaussian statistics for 

the node can be calculated efficiently from the sufficient statistics of the member states, 

which are modeled by single-mixture Gaussian distributions, without re-accessing the 

original training data. So at every node, for every hypothesized split, we would have to 

iterate through every piece of original training data to estimate the distribution of every 

child node, and thereby calculate the likelihood gain resulting from the split. This is 



Figure 6.2: Building a decision tree using multiple-Gaussian state models. No efficient 
algorithm is available to estimate a multiple-Gaussian distribution for a node from its 
member state models. No established realtionship is available between the likelihood for 
a node and its multiple-Gaussian distribution. 

computationally too expensive to be feasible. Figure 6.1 and Figure 6.2 illustrate the 

computational advantage of the traditional approach, and the difficulty in using multiple- 

Gaussian mixture models to build decision trees. 

In Figure 6.1, the distribution (a pooled single Gaussian) of every node can be ac- 

curately calculated from its member states' Gaussian parameters and their associated 

state occupancy, as they (mean, variance, and state occupancy of a Gaussian distribu- 

tion) consist of the sufficient statistics for every state. The likelihood is a function of the 

parameters of this distribution (see Section 2.3.2). However, in Figure 6.2, there is no 

way to directly calculate a multiple-Gaussian mixture distribution for every node from its 

member states' multiple-Gaussian mixture distributions, because in this case, there are 

no sufficient statistics for the member states. 

However, the single Gaussian distribution is a very crude representation of the acoustic 

space of triphone states and might be inadequate to model the acoustic variation in the 



training data. Decision trees based on such crude models might not give good clustering 

of triphone states. This constraint limits the decision tree building from making effective 

use of data (Instead, it uses the data in a wasteful manner, throwing away a large amount 

of information in the training data). 

6.2 Related Work 

To address this problem, Chou et al. [13] incorporated a so-called "m-level optimal sub- 

tree" into the traditional tree construction to approximate a multiple-Gaussian mixture 

distribution of each node, although each member state still has only single-Gaussian mix- 

ture distribution as in the traditional approach. It is somewhat similar to the look-ahead 

search [30]. They proposed a scheme to reduce the dramatically increased computation. 

Modest improvement was obtained through their approach. However, as their approach 

still uses single-mixture Gaussian distributions for the unclustered triphone states, the 

training data were not efficiently used. 

Nock et al. [42] estimated the multiple-Gaussian mixture distributions of unclustered 

triphone states by using the fixed state alignment provided by a previously trained and 

accurate model set. However, the method of using the multiple-Gaussian mixture models 

was not mentioned in their paper, and their approach failed to achieve any improvement 

in terms of recognition accuracy. 

Kim et al. [29] proposed a goodness-of-split criterion to use multiple-Gaussian mixture 

models in building decision trees. However, to estimate a multiple-Gaussian mixture 

distribution for a node from its member states, an assumption was made that all the 

Gaussians in a triphone state model corresponded to the Gaussians in another triphone 

state model just in an arbitrary order. In practice, all first (here first just means that it is 

stored as the first element of the array that holds a Gaussian mixture model) Gaussians 

of all triphone states in a node were merged into one Gaussian, and it became the first 

Gaussian component for the node. And so was for the second Gaussians, and so on. 

Obviously this assumption was too strong. Also their test set (a subset of the WSJ 5K 

si-dt-05 set) was so small (60 sentences) that the improvement obtained might not be 



significant. 

6.3 Our Approach 

In our view, this problem can be directly approached if some appropriate assumptions are 

made. We divide this problem into two related sub-problems: 

How to estimate the likelihood for a node, given a multiple-Gaussian mixture distri- 

bution 

How to estimate a multiple-Gaussian mixture distribution of a node from its member 

state, each having a multiple-Gaussian mixture distribution 

For the first sub-problem, we need to create a new goodness-of-split criterion as the 

original one in Section 2.3.2 is only applicable to the single-Gaussian mixture case. For 

the second problem, an efficient algorithm is necessary to approximate the distribution, 

without re-accessing the original training data. 

We modify the third assumption in Section 2.3.2 to be that 

the total log likelihood can be approximated by a simple summation of the log- 

likelihood for each Gaussian component weighted by the probability of the Gaussian 

component's occupancy. 

Here &(t) is the probability of the Gaussian component k in state s generating the 

data point at time t of example e. Following the same derivation in Section 2.3.2, we can 

obtain 



Because it is a binary tree, for each split, there are two child nodes, the likelihood 

difference is 

Elk, Crk, Cpk are covariance matrices of the k-th Gaussian component in the left child 

node, right child node and parent node, respectively. Given the above likelihood for- 

mula, the remaining question is how to estimate the distribution (or more specifically, the 

covariance matrix of each Gaussian component) of a node from its member states. 

Consistent with our assumption made to derive the new goodness-of-split criterion, 

we treat each Gaussian component in the mixture distribution of each member state as 

independent, that is, disassemble the mixture structure. Each Gaussian component has 

associated data count (occupancy). All Gaussian components in the node are pooled 

together, from which a new multiple-Gaussian mixture distribution is to be estimated. 

The K-means algorithm [46] was adapted to do this, which is given in Figure 6.3. 

7 

I .  Find m seed Gaussians as the centers of m clusters 

2. For each Gaussian component, classrh it into the closest cluster 

according to the distance metric 

3. For each cluster, estimate a single Gaussian as the new center from 

its member Gaussian components 

4 .  If not converge, go to step 2.  

Figure 6.3: An algorithm to estimate a multiple-Gaussian mixture distribution from a 
group of Gaussian mixture distributions 



To find the seed Gaussians in the first step, we first estimate a global Gaussain from a 

node's all member Gaussians; then split to two using the same approach as in the mixture- 

splitting. Then these two new Gaussains are seed Gaussians. For more than 2 mixture 

case (e.g. 4), we base on the 2-mixture distribution and split each component to 2 new 

ones and the resulting 4 Gaussians are seed Gaussians, and so on. The distance metric 

is defined as the loss of likelihood due to merging two Gaussians. It is consistent with 

the distance metric used in the decision tree building. Figure 6.4 illustrates the idea of 

estimating the likelihood for a node using our approach. 

k-means 
clustering 

Gaussian mixture 
distributions L P OC C p ~ 7 C p ,  

Figure 6.4: Using the new approach to estimate the likelihood for a node whose member 
states have multiple-Gaussian mixture distributions. 

One issue in the new approach is how to handle the triphones that do not have enough 

data to estimate multiple-Gaussian mixture models. We may use either our two-stage 

decision tree based approach or MAP-based approach. As MAP based approach is more 

straightforward and easy to implement, it is used in our experiments. 

6.4 Experimental results 

The experimental results of the new approach on the WSJ 5K tasks are given in Table 6.1. 

The Zmixture system has about 3700 clustered states and 12 Gaussian components per 

state, that is, about the same number of total parameters as in the baseline system. 



It reduced the word error rates of the baseline systems by 7%. Again, the statistical 

significance tests were conducted and are given in Table 6.2. It showed that the new 

system was significantly better than the baseline systems. 

When we increased the number of Gaussian components from 2 to 4 for every unclus- 

tered triphone state model to build phonetic decision trees, however, we did not obtain 

any significant gain over the baseline system. This may be due to the fact that (1) many 

triphone states do not have enough data to sustain robust estimation of 4-mixture models, 

and (2) the approximation error in estimating the multiple-Gaussian distributions for tree 

nodes (directly from their member states, rather than using the accurate way to estimate 

from the original training data) becomes bigger, and therefore it offsets the gain. 

Table 6.1: WSJ 5K results (word error rates) of the system built using multiple-Gaussian 
mixture models. 

Table 6.2: Significance tests between the 2-mixture system and the baseline system on 
WSJ 5K test sets. 

methods 
Baseline (l-mixture) 

2-mixture 

Similar conclusions could be drawn from the results on the WSJ 20K task and are 

given in Table 6.3. The 2-mixture system had about the same number of total parameters 

as in the baseline system. The detailed analysis of Wilcoxon test on the WS J 20K nov92 

test set was given in Table 6.4. It confirmed that the new approach is superior to the 

traditional approach. 

nov92 set 

7.5% 
6.9% 

test sets 

nov92 
si-dt-05 

nov92 + si-dt-05 

si-dt-05 set 

9.5% 
8.8% 

baseline 
WER 

7.5% 
9.5% 
8.6% 

] 

2-mixture 
WER 

6.9% 
8.8% 
8.0% 

significance 
Wilcoxon 

no 
no 

Yes 

matched-pairs 

Yes 
Yes 
Yes 



Table 6.3: WSJ 20K result (word error rate) of the system built using multiple-Gaussian 
mixture models. 

Table 6.4: Significance test (Wilcoxon) on the WSJ 20K nov92 set. T+ = 34.0, T- = 2.0, 
z = 2.24, z is above the rejection threshold -1.96, so the null hypothesis is rejected. 

speaker I Zmixture I baseline I difference I rank I signed rank u 

methods 

Baseline (1 mixture) 

6.5 Put All Together 

nov92 set 

11.8% 

Wilcoxon test 
- 

All of our approaches described in previous sections and chapters improve the traditional 

acoustic modeling approach by making better use of limited training data. However, each 

of them targets a different aspect of the traditional approach in a different way. The 

two-level decision tree approach neither tries to improve the unclustered triphone model 

for building decision trees nor builds better decision trees (i.e., chooses a better question 

for every split). Instead, it improves the way to use training data to estimate the clustered 

triphone model set. In contrast, all the other new approaches try to build better decision 

trees and therefore better clustering by estimating a better unclustered triphone model set. 

Specifically, the two-stage decision tree approach and the MAP-based approach improve 

the estimation of unclustered rarely-seen triphone models by using the limited training 

data for the rarely seen triphones more efficiently; the decision tree building approach 

matched-pairs test 
- 



using multiple-mixture models improves the accuracy of the unclustered triphone model 

set, particularly the models for those frequently-seen triphones, and therefore builds better 

decision trees. So, the advantages of these approaches may be complementary, and a 

system combining multiple approaches may be even better than any individual one. 

In this section, we present the experimental results on combining two or more of our 

new approaches. The best results of all combinations of different approaches are listed in 

Table 6.5 for the WSJ 5K task and Table 6.6 for the WSJ 20K task. As we did not observe 

any significant differences between using the MAP-based smoothing approach and using 

the two-stage decision tree based approach, we only consider the MAP-based approach in 

the following experiments due to its simplicity. Note that the system (iLmulti-mix" in the 

table) that used multiple-Gaussian mixture models to build decision trees also used MAP 

to obtain robust estimation of unclustered triphone models before building decision trees. 

So it is actually a combination of two approaches. For ease to comparing, all previous 

results using a single approach are also included. 

From the table, We can see that systems combining multiple approaches always yield 

better results than systems using any single approach. The best performance is given by 

the system that combines all of the three approaches. It shows that to some extend the 

contributions of different approaches are complementary to each other. The best results 

on the WSJ 5K nov92 and si-dt-05 set are 6.2% and 8.2%, respectively. These correspond 

to 17% and 14% word error rate reductions, compared with the baseline system. The 

final model set has about 3300 first-level leaf nodes and 21000 second-level leaf nodes. 

Each clustered state has 12 Gaussian components. The total number of parameters is 3.3 

million, a 8% reduction over the baseline system. 

For the WSJ 20K task, the best system has a 10.0% word error rate on the nov92 set, 

which is 15% better than the baseline system. The system has about 6500 first-level leaf 

nodes and 22000 second-level leaf nodes, with 12 Gaussians per state. The total number 

of parameters is 6.3 million, which is 11% less than the baseline system. 



Table 6.5: Results (WERs) of systems combining one or more approaches on the WSJ 5K 
task. Note that the significance tests are conducted on the combined test set, nov92+si- 
dt-05 set. MP means the matched-pairs test. 

approach(es) 

baseline 

Table 6.6: Results (WERs) of systems combining one or more approaches on the WSJ 
20K task. 
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MAP 

multi-mix (+ MAP) 
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Chapter 7 

Conclusions and Future Work 

In this thesis, we propose to address several problems in the traditional approach of 

phonetic decision-tree clustering for acoustic modeling. These problems are due to the 

fact that the traditional approach does not make use of the limited training data in an 

efficient and effective way. We proposed a number of ways to address these problems. 

Specifically, our contributions include: 

A two level phonetic decision tree approach. It uses a new structure of two level nodes 

to enable different level of sharing among the Gaussian components and mixture 

weights. By decoupling Gaussian and mixture weights, it can 

- make use of the limited training data more efficiently; 

- generate acoustic models with higher accuracy and better robustness; 

- provide more flexibility to control the total number of parameters. 

A two-stage decision-tree building process, which involves two stages to build dif- 

ferent decision trees. By using decision trees in the first stage to make an initial 

clustering of rarely-seen triphones, it can obtain more robust statistics for them, 

and therefore better decision trees can be constructed in the second stage. 

Use of MAP to better estimate the unclustered triphone models for decision tree clus- 

tering. Like the two-stage decision tree approach, it explicitly addresses the problem 

associated with parameter estimation of rarely-seen triphones due to data sparsity. 

It uses the well-known MAP technique to smooth the unclustered triphone models 



with the more robust context-independent models (monophone models). Compared 

to the traditional approach, the information contained in the limited training data 

for those rarely-seen triphones are better exploited. Therefore, the decision trees are 

better constructed, and better system performance are obtained. 

An approach to building phonetic decision trees using multiple-Gaussian mixture 

models for the unclustered triphones. By making an appropriate assumption, we 

proposed a new goodness-of-split criterion to directly build decision trees using 

multiple-Gaussian mixture models. An efficient algorithm is used to approximate 

a multiple Gaussian mixture distribution for a tree node from its member states, 

each having a multiple Gaussian mixture distribution. As the unclustered triphones 

are more accurately represented by multiple-Gaussian mixture models and the in- 

formation in the training data is efficiently used, better phonetic decision trees and 

therefore more effective acoustic models are constructed. 

Through our extensive study in this thesis, we demonstrate that by more efficient use 

of data in phonetic decision tree based acoustic modeling, more effective acoustic models 

can be obtained, and therefore resulting in a better system performance. 

We should mention that although our approaches are proposed and evaluated in the 

context of phonetic decision tree based clustering, they are not limited to it. It is straight- 

forward to apply them to other clustering approaches, such as the bottom-up data-driven 

approach. 

Our future research directions will be: 

a Discriminative training. As it is well known that the Maximum Likelihood (ML) 

criterion is not an optimal criterion for speech recognition, whose ultimate goal is 

to discriminate different speech patterns. Some alternative criteria based on dis- 

crimination have been proposed, such as Minimum Classification Error (MCE) [28] 

and Maximum Mutual Information (MMI) [43]. Usually the training based on these 

new criteria has more computation costs than that of ML-based training. Recently, 

the MMIE algorithm has been successfully applied to large vocabulary tasks [51]. 

It is used to estimate the model parameters, replacing the conventional ML-based 



Baum-Welch algorithm. However, triphone states are still clustered by the tradi- 

tional phonetic decision trees, which are based on the ML criterion. No discrimi- 

native criterion consistent with the MMIE or MCE criterion has been proposed for 

decision tree based clustering. It would be an interesting research topic to incorpo- 

rate the discriminative principles into phonetic decision tree building. The optimal 

tree structure might be the one that maximizes the discrimination (distances) among 

different tree leaf nodes (states) (i.e., the inter-state distances), and also minimize 

the variation of each leaf node (i.e., the intra-state distances), rather than the one 

that maximizes the likelihood of the training data given the clustering. 

Use of prosodic information in acoustic modeling. For a long time, prosodic infor- 

mation has been recognized critical for human speech perception. However, it is not 

used in most of today's English LVCSR systems. Although much research has been 

conducted to incorporate a variety of information in the training data into the pho- 

netic decision tree building process, there is no systematic approach being proposed 

to incorporate prosodic information (such as stress, pitch, etc.) into decision tree 

based acoustic modeling. We believe this is an interesting research topic that needs 

to be explored. 
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