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ABSTRACT

Functional programming languages have been advanced as a mea.ns of

increasing progr.ammer productivity, enhancing program clarity and simplifying the

task of program verification. The slow execution of functiona.l programs on

conventional computer architectures has been their ma.jor drawback. Several

architectures have been proposed for executing functional programming languages

more efficiently. One such architecture, the G-machine, provides architectural

support for the evaluation of functional programming languages by graph reduction.

In this study, designs for the instruction processing pipeline of the G-machine

are examined and compared via simulation. A microcoded pipeline design, named

Design 1, is proposed and it's performance is evaluated using a range of

enhancements which are known to reduce delays associated with instruction

memory access and branches. While the enhancements increase performance, they

also increase the complexity to implement the pipeline. A RISe design, Design 2, is

then proposed for the instruction pipeline. Design 1 and Design 2 are compared, via

simulation, to determine whether Design 2 can provide the functionality and

throughput of Design 1. Reccommendations for the design of the instructon pipeline

of the G-machine are then made based on these simulations.
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1. INTRODUCTION

The G-machine, a research project at the Oregon Graduate Center (OGC),

provides architectural support for the evaluation of functional languages by

programmed graph reduction. In a programmed reduction system, computations

consist of transformations of an expression graph by application of reduction rules.

Control of the computation is derived from a static analysis (compilation) of the

original expression form. The result of the compilation is a sequence of instructions

similar to that generated for a conventional von Neumann computer. The efficiency

with which this instruction stream can be fed to the execution hardware has a

significant effect on overall system performance.

The role of an instruction pipeline is to form an efficient communication

interface between an instruction stream and the instruction execution hardware.

Different instruction pipeline organizations produce different performance results for

any given instruction stream. The design of an instructio.~ pipeline should maximize

the instruction stream throughput while minimizing implementation complexity. The

intent of this thesis is to examine and characterize the relative performance and

complexity of several possible design configurations for the instruction pipeline of the

G-machine. A set of high level simulation tools provides an environment to explore

the design configurations and their associated tradeoffs.

An overview of the function and organization of the G-machine is given 10

Section 2. A microprogrammed instruction pipeline for the G-machine is presented in

Section 3. A design based on an instruction pipeline proposed for the G-machine by

Kie burtz [Kie84! is presented in Section 3; this design will be referred to as Design 1.
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In Section 4, a simulation environment for examining the performance of Design 1 is

described. In Section 5, a series of simulations examines the relative performance of

design enhancements when incorporated into the instruction pipeline of Design 1.

By adding the architectural support for performance enhancements, it IS

possible to achieve better performance; however, as more support is added the

instruction pipeline becomes increasingly complex in terms of operation and

implementation issues. "Is there a less complex design than that of Design 1 which

can achieve similar performance?" is a question that needs to be asked. In answering

this question, a second instruction pipeline based on RISe 1 design principles [Pat85J

is presented in Section 6 and shall be referred to as Design 2. A simulation
..

environment to compare the relative performance of Design 1 and Design 2 18

described in Section 7; the results of the comparisons are given in Section 8.

Section 9 concludes the thesis with a review of t he results of the simulations

and suggestions are made for a design of the instruction pipeline of the G-machine.

1. Reduced InstructIOn Set Computer
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2. THE-G-MACHINE

The G-machine provides architectural support for the evaluation of functional

programming languages by programmed graph reduction. The abstract model for

the G-machine architecture is described in detail by Johnsson [Joh83]; Kieburtz

[Kie84] describes the G-machine implementation under study at the Oregon

Graduate Center (OGC). A brief description of graph reduction and the context and

components of the G-machine is presented in this section.

2.1 Graph Reduction

Expressions in the G-machine are represented directly in memory as graphs.

The evaluation of an expression consists of applying transformations (reduction rules)

to the graph data structure. Unlike combinator reduction, in which control is

inferred by inspecting the expression graph at each step in a computation, control of

the evaluation in graph reduction is directed by an instruction stream obtained from

static analysis (a compilation) of the original expression form. This method of

reduction can be viewed as an active agent (the instruction stream) that transforms

(reduces) the passive data (graph) into a normal form (its value). The G-machine is

distinct from conventional architectures in that it provides hardware support for

graph traversal and evaluation and a graph memory system specifically suited to

graph reduction [Ran86].

2.2 Architecture of the G-machine

The G-machine is implemented as a loosely coupled coprocessor attached to a

conventional host processor (Fig 2.1). The host processor treats the G-machine as an

asynchronous I/O device. The host handles the memory management functions as
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well as running the operating system and other utilities (editors, compilers. etc.).

Host
Processor

G-processor
Instruction
Memory

G.proceslOr Graph
Memory

Figure 2.1 The G-machine and its host processor

Graph Memory consists of a dual-ported memory which provides support for

efficient allocation of graph nodes and for concurrent garbage collection. Instruction

Memory contains the instructions, obtained from compilation, for controlling the

evaluation of an expression graph. The internal organization of the G-processor is

described next.

2.2.1 The G-processor

The G.processor consists of:

The instruction pipeline. The instruction pipeline carries out the fetching of

instructions and generation of the necessary control signals to the different

functional units for execution of the operation indicated by the fetched

instruction.
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- The functional units. The functional units make up the hardware execution

environment. Control signals generated by the instruction pipeline are

interpreted by the functional units as hardware operations. The functional

units consist of the Pointer-stack (P-stack) and the ALU along with its

associated Value-stack (the V-stack).

- The G-bus. An internal data bus which interconnects the operational units of

the G-processor and Graph Memory.

- State Registers. Several registers assist in maintaining the state of the G-

machine. The A-register holds a graph store address for a READ or WRITE

operation. The T-register holds current values of the relevant data tags

associated with the top of the P-stack.

Architectural support for graph reduction is provided by the P-stack. The P-

stack provides operations for graph traversal associated with the evaluation and

manipulation of an expression. Pointers (into Graph Memory) for the current

expression-evaluation environment are held on the stack. Typical push and pop

stack operations are possible as well as operations to copy, rotate and move

elements within the stack.

The ALU along with its associated V-stack, implements the arithmetic and

logical operations for the G-processor. The ALU also provides for shift operations,

byte insertion, and constant zero. The top two elements of the V-stack are dual-

ported so that the ALU can receive two operands simultaneously. Since the P-Stack

and the ALU are independent functional units, an ALU operation can be carried out

concurrently with a P-stack operation.



A design for the instruction pipeline is presented in the next section.
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3. A DESIGN FOR THE INSTRUCTION PIPELINE OF THE G-MACHINE

In programmed graph reduction systems, the steps of computations are

transformations of an expression form by application of reduction rules. Control is

derived from the original expression form by static analysis' -- compilation of a

program, resulting in a stream of instructions as in a conventional von Neumann

computer. The instruction pipeline of a computer forms the communication link

between the instruction stream and the hardware. The efficiency with which this

instruction stream can communicate with the execution hardware has a significant

effect on overall system performance.

This section introduces the benefits of instruction pipelining. A design for the
.'

instruction pipeline of the G-machine is then presented.

3.1 Pipe1ininS

Any instruction pipeline needs to perform the following tasks:

1) Instruction Fetch
2) Instruction Decode
3) Instruction Execution

In non-pipelined systems, each instruction sequentially follows the prevIous

instruction and all phases of an instruction (fetch, decode, execute) must complete

before any phase of the next instruction can start. By contrast, in a pipelined

system, each phase proceeds independently, so the fetch phase of the second

instruction can begin as soon as the fetch phase of the first instruction completes,

without having to wait for the first instruction to finish its decode or execute phases.

Figure 3.1 illustrates the performance benefits of a simple form of pipelining.
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Figure 3.1 Pipelining

Current instruction pipeline designs can be generalized into two basic types:

Microprogrammed Instruction Pipelines and Reduced Instruction Set Computer

(RISC) Pipelines.

3.1.1Mlcroprogrammed Instruction Pipelines.

In a microprogrammed instruction pipeline, the fetched instruction associated

with the program counter may specify a complexoperation (for example a multiply
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operation). The rational behind microprogrammed instruction pipelines is based on

the observations that a complex operation is completely specified by a sequence of

primitive operations. Each primitive operation is associated with a microinstruction

which contains information to specify the primitive operation uniquely.

Microprograms, built up from microinstructions and stored in a microinstruction

control store between the instruction fetch and execute units, are executed by the

execution unit and carry out the sequence of primitive operations which make up the

function specified by the complex instruction. Microinstructions are fetched from the

microinstruction control store much as complex instructions are fetched from

instruction memory. Additional logic for a microsequencer is required to direct the

fetching and execution of the microprograms.

Several benefits can be ascribed to incorporating a microprogrammed control

unit into a design:

1. Regularity. Microprogramming permits an orderly approach to control design.

2. Flexibility. Implementation of alternative instruction sets is possible by simply

modifying the microinstructions. Additionally, new instructions can be added to

an existing set of microinstructions to increase functionality.

3. Reduced memory access delays. A fetched instruction expands into a sequence

of microinstructions fetched from the microinstruction control store thus

reducing the need to access instruction memory and incurring the associated

overhead.

4. Reduced software complexity. Microprogramming can implement complex

instruction sets which contain a high level of semantic content.
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Microprogramming does not come witbout it's disadvantages:

1. Longer Pipeline. A microsequencer and microinstruction store are required and

add cost overbead to tbe design.

2. Performance. A bardwir.ed design could be faster than a microprogrammed

design built from the same technology since the former does not have the

overhead of fetching and decoding microinstructions.

3. Microprogramming serves to minimize the effects of memory access delays

when most instructions expand into a sequence of microinstructions. However,

bursts of instructions which do not expand into sequences of microinstructions

will suffer the full effect of the instruction memory access delays.

An example of a microprogrammed instruction pipeline can be found in tbe

IBM 360 computer family [Fag64j. A microprogrammed instruction pipeline was used

since "it is the only method known by which an extensive instruction set may be

economically realized in a small system." [Ste64].

3.1.2 Reduced lnatruction Set Computer (RISC) Pipelines

When the instruction-usage patterns of assembly-language programs are

examined, the statistics reveal that compilers favor the simpler instructions and

make almost no use of the elaborate and complex instructions available in an

extensive instruction set [Hen85j. Given this perspective, computer designers have

begun creating instruction pipelines based on the small instruction set that dominate

computation. The instructions of a RISe are fetched from a high performance

memory hierarchy and executed on fast, hardwired execution units. By removing the

microinstruction control store and replacing the complex instruction set with a
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simplified instruction set, RISC machines have achieved surprising performance

[Hen8:>],[Kat83j, [Mah86], [Pat85], [Rad83j, [Tay86], [Ung84].

3.2 Instruction Pipeline Design 1

The first design examined for the instruction pipeline of the G-machine is

based on a design proposed by Kieburtz [Kie84],[Kie85j. This design will hereafter be

referr~d to as Design 1. Design 1 follows along the lines of a traditional

microprogrammed instruction pipeline. The microinstruction control store contains

microprograms for executing the G-machine's complex operations such as EVAL

(which evaluates a graph).

Design 1 (Figure 3.2) consists of the following pipeline units: the Instruction

Fetch Unit (IFU), the Literals Queue (LQ), the Instruction Translation Unit (ITU),

the Microinstruction Queue (MIQ) and the Processor Control Unit (PCU).

",1

Li&eral.
Queue

Co"t,,'
Lu,,,
r.,F.",tt,,,.1
Urnt.

T. G-S..

Figure 3.2. IP of Design 1

t..oi.../,'",

",1

IFU 18 ITU 1.1 MIQ 1.1 PCU
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3.2.1 The Instruction Fetc:h Unit (IFU)

The Instruction Fetch Unit is the first stage of the instruction pipeline. The

IFU directs the fetching of instructions and maintains the Program Counter (PC).

Instruction formats consist of: 2 bytes for simple instructions, 4 bytes for jump,

case-switch and branch instructions, and 6 bytes for long literals. An instruction

word returned from instruction memory is partially decoded by the IFU to determine

if additional fetches are required to assemble the instruction. If additional bytes are

required, they are fetched; the instruction is assembled and, depending on its type, is

sent to the ITU or if its a literal, to the LQ for subsequent access by the functional

units.

Two types of branches are possible: conditional and unconditional. In the case

of an unconditional branch, immediately after decoding and assembling the branch

instruction the IFU modifies the PC according to the instruction and begins fetching

from this branch target. For a conditional branch instruction, the IFU assembles
r

the conditional instruction and sends it on for evaluation by the PCU. The IFU then

continues to fetch instructions along the branch-not-taken path. Only one level of

pending conditional instruction is supported. If the IFU encounters a subsequent

conditional instruction (while awaiting the evaluation of a previously queued

conditional instruction), it suspends its fetching operation and blocks awaiting the

evaluation of the previous conditional (i.e., whether the branch is taken or not).

If the PCU signals (via the jmp control signal) that a pending conditional

branch is taken, instructions in the pipeline pending execution must be flushed and

instructions from the jump to address are fetched. If the PCU signals that the

pending conditional branch is not taken, there is no change in the instruction fetch
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stream.

Branches are implemented such that an instruction immediately following the

branch can be executed before the branch takes effect (a delayed branch[Pat85]). In

the case of a conditional branch instruction, the compiler may not be able to

schedule an instruction in this delay slot that can be executed in both the taken-

branch and not-taken-branch cases. For these cases, a NOP instruction must be

inserted.

3.2.2 The Instruc:tion Translation Unit (ITU)

Once the IFU has assembled an instruction, the instruction is sent to the ITU.

The ITU contains a control store of microinstructions. Each microinstruction is 48

bits wide and consists of a horizontal set of explicit control signals for the' functional

units. The ITU identifies an instruction as either a s£mple instruction or a complex

instruction. Simple instructions, such as the stack manipulation operations,

translate directly into single microinstructions. Complex instructions, such as EVAL

(the instruction to evaluate a graph), translate and expand into sequences of

microinstructions requiring the use of several functional units. The ITV serves to

reduce the instruction memory bandwidth requirements since complex instructions

which expand into a sequence of microinstructions, minimize the need to access

instruction memory.

Within a microinstruction sequence associated with a complex instruction there

may be conditional branches. These local branches are handled by the

microsequencer of the ITU as directed by the PCU. Once a local branch (local to

ITU /PCU) has been resolved, the ITU accesses its microinstruction control store
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with the new "jump to" address and continues to direct the sequencing of

microinstructions from this new control store address.

3.2.3 The Microinstruction Queue (MIQ)

Ideally, the simple microinstructions from the ITU should be executed one per

cycle, but this may not be possible in all cases. For example, the memory-bound

instructions such as a READ take more than one cycle to complete. If the pev

receives another READ operation immediately following a READ operation, the peu

must await completion of the first READ before beginning the second. The MIQ

serves to buffer the microinstructions between the ITU and peu when the pev

requires more than one cycle to complete a microinstruction operation. The MIQ

can shift-in and shift-out a value every clock cycle. The MIQ can also be flushed and

a new value shifted to the head of the queue in one cycle, hence reducing the latency

associated with a branch instruction.

3.2.4 The Processor Control Unit (PCU)

The pev receives microinstructions from the ITV via the MIq. Since the

microinstructions need little decoding or distribution logic, the main task of the pev

is to dispatch these microinstructions in the form of con trol signals to the respective

functional units.

Since the operations carried out by the functional units can be overlaped, the

PCU need not be completely synchronous. A semaphore associated with a functional

unit is set when a microinstruction, which requires that functional unit, is dispatched

by the PCU. When the microinstruction completes, the functional unit clears the
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semaphore. Each microinstruction carries a set of resource bits that indicate which

functional units are required for its execution. Instruction dispatch is controlled by

using the resource bits from the microinstruction as a mask over the semaphores of

the corresponding functional units. When the conjunction of the masked semaphores

functional units. This technique referred to as Scoreboarding of functional units has

been used successfully in other high performance computers (CDC 6600 [Tho64]).

Score boarding allows the scheduling of available functional units with subsequent

instructions if an instruction has an associated delay due, for example, to a READ

from Graph Memory (which may take up to 3 cycles to complete) or an ALU

operation (which may take up to 3 cycles to complete). The units scoreboarded are

the P-stack, G-memory, the ALU, and the literals queue.

In the next section, a simulation environment for examining the performance of

Design 1 is described.

IS zero, the instruction can be dispatched. Using an a:3\'nchronous PCU

accommodates alternative hardware implementation strategies (faster graph

memory, etc.) and allows overlap in the dispatching of control signals to the
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4. A SIMULATION ENVIRONMENT FOR EXAMINING DESIGN 1

In this section, the simulation environment and the simulation assumptions for

examining the performance of Design 1 are described.

4.1 PerformanceMeuW'e8

The performance metrics used in this study to examine pipeline performance

are throughput and latency. Throughput is the rate at which items are processed to

completion. In these simulations throughput is measured as:

Number of inatructiona erecuted

Simulated time

Latency is the time for one item to traverse the entire pipeline when it is

otherwise empty. The average latency of the pipeline, due to a branch instruction, is

measured as:

Total time pipeline ia idle due to a branch

Total number of brancheataken

Idle time for the instruction pipeline is used in the average latency measure instead

of idle time for the execution unit, because instructions with literals may follow a

branch and these are never seen by the execution unit.

4.2 The Simulation Environment

A simulator which models the instruction pipeline of Design 1 has been

developed to examine performance under a range of assumptions and configurations.

The simulation models of the pipeline units (i.e. the IFU, the ITU, etc.) are

implemented as communicating concurrent tasks executing independently of each
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other. The models are written in C and use the Interwork [Int86] Concurrent

Programming Toolkit to manage task scheduling and communication. The models

provide a "black-box" description of a pipeline unit; the input/output structures of

each unit and the associated control lines are global variables to which other units

(tasks) have access. The body of the C program makes up the functional description

of what the unit does with its input/output structures and control lines.

The notion of concurrent tasks provides the necessary timing information

relative to overall pipeline performance since a delay in one unit is reflected in the

throughput of the overall pipeline simulation. By using a tool such as Interwork, it

is possible to keep the simulations at a high level of abstraction. The alternative

was to use a low level register transfer level language such as N.2.1 The higher level

of abstraction allows for smaller simulation programs and a fast turnaround time for

simulation runs. A modification to the simulation can be made at the functional

level by simply changing a few lines of code within the program description of a unit;

as a result, the effect of the modification can be quickly determined. While the

overall simulation is at a high level, the timing and signals between the various units

is accurately modeled to obtain performance information.

Since the units execute as cooperating concurrent tasks, it becomes difficult to

verify that the simulation is accurately modeling the design, since the available tools

provide little support for debugging concurrent tasks. Thus, it became necessary to

develop a tool to examine the state of one task relative to other tasks. This tool

1. N2 is a trademark of Endot, Inc.
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took the form of a windowing system developed using the curses library [Am). The

windowing system divides the terminal screen into equal sized sub-windows with one

sub-window per pipeline unit. Each unit has the ability to communicate with its

particular sub-window through special window function calls developed specifically

for these simulations (the calls are placed in the C program which describes the

unit). When a task makes a call to a window function, the window manger (through

which all calls are managed) concatenates the simulation time onto the task

message. The message is then displayed in the appropriate sub-window. This

windowing system not only provides a tool for debugging a.nd verifying the

performance of the simulator, but also provides insights into bottlenecks and

resource contention issues. Figure 4.1 shows an example of the windowed display

with a few messages from the different pipeline tasks.

IFAtasJ.;
9 PC: 12 OPCODE: 19 y-IHST: 2
lC PC 114OPCOOE 211 IJ-IHST: 1
13 FC 18 OFCODE 9 y-IHsr: 1
17' PC 39 Of'CODE 149 OJ-IHST: 1
11 PC 32 OPCODE 112 y-IHsr: 1
21 FC 3~ OFCOOE IS2.y-IHsr:1
2~ FC 3~ OFCODE 141y-IHsr: 1~
21:; f'C I4C OPCODE 132 IJ-IHST: 1

-------------------------------------- --------------------------------------

--------------------------------------

IEUhsk
11 u-c~de execution 1 c~cle
12 oJ-codeexecution 1 c~cIe
B IJ-codeexecoJtion 1 c~cIe
N oJ-codeexecIJtien 1 c~cIe
IS u-code execytien 1 c~cle
20 u-code executien 1 c~cle
2:3 IJ-ce.:le exec'Jt ien 1 c',c Ie
25 y-code execution 1 c~cle
21:; 'J-co.:leexecoJt ien 1 c~c Ie---------------

ITUhsk
16 instr'Jct iorl f IIJshe.:I

17 u-code instructions 1
11 IJ-codeinstructiClns1
22 u-code instructiens 1
2~ u-code irostr.oJctioros 10
26 u-code inst~Jctiens 1

26
*

Figure 4.1 Windows for Debugging and Verification of Simulation,

The name of the task is in the upper left hand corner of the window (MUtask ~

memory task, IFAtask = Instruction Fetch Unit task. TUtask = Instruction

Translation Unit task, IEUtask = Instruction Execution Task (PCU)). The
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numbers along the left edge of the sub-windows are the simulation times associated

with messages from the tasks. Thus, it is possible to determine what state each of

the pipeline tasks is in at simulation time 13. The asterisk in the lower left hand

corner indicates the number of instructions queued on the MIQ at the time indicated

above the asterisk. For every instruction added to the MIQ, an asterisk is added to

the display, conversely for every instruction removed from the front of the MIQ by

the PCU, an asterisk is removed from the display. The asterisk display provides an

insight into the dynamic behavior of the MIQ activity. The windowing tool has

proven to be very valuable for debugging and verifying the simulation.

4.3 Global Simulation Assumptions

When the simulations to examine the performance of Design 1 were conducted,

limited data was available to characterize the execution of large programs on the

G-machine. In order to model the execution environment of the instruction pipelines

the following assumptions have been made. These assumptions apply to all the

configurations simulated. Assumptions specific to only one configuration are included

in the section describing that configuradon.

1. A synthetic workload is used to drive the Design 1 simulations. The workload,

which is the arrival of the different instruction types fetched from Instruction

Memory, is a sequence based on a mapping from a random vector (a sequence

of random numbers) to a distribution that represents an instruction type mix.

The references to the different instruction types are distributed as follows:
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Instruction TVDeDistribution

short 40%
single operand 10%
short literal 10%
long literal 10%
unconditional jump 10%
conditional jump 10%
m-way case-switch 10%

Table 4.1 Instruction Type Distribution.

The instruction reference pattern is intended to give the simulation a

reasonable approximation of a typical L~fL program execution environment

and provide a basis for comparing the performance of the different hardware

configurations. This distribution is based on the observed distribution or

instruction types by Sarangi [Sar84]. Other instruction workloads which

contained a higher percentage of short instructions and case-switch instructions

were also used. (The relative performance of the different configurations

remained constant across different instruction mixes used.)

2. An assumption is made concerning the instruction execution rate of the POU.

Not every instruction dispatched by the PCU to a functional unit executes to

completion in 1 cycle. Certain ALU and READ operations require up to 3

cycles to complete. Simulations on the G-machine for small test programs

[Sar84] show that 15-25% of the instructions dispatched by the PCD require a

full 3 cycles to complete. These simulations assume that 20% of the

instructions execute in 3 cycles while the balance of the instructions execute in

1 cycle.

3. The expansion of a fetched instruction into a sequence of microinstructions, for

subsequent dispatch to the functional units by the PCU, occurs in the ITU.
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Since information concerning the number of microinstructions executed per

fetched instruction was not available when these simulations were conducted,

some assumptions needed to be made. For these simulations, the number of

microinstructio"ns generated by the ITV is based on a uniform probability

distribution of between 1 and 25 instructions. This approximation was arrived

at by a static count of the average number of microinstructions generated by a

fetched instruction as referenced in The G-machine Programmers Guide

[Kie84].

4. The LML compiler uses delayed branching for scheduling instructions

associated with a conditional branch. A delayed branch instruction follows a

conditional branch instruction such that an instruction from before the

conditional branch instruction is moved to fill one of the delay slots following

the conditional branch instruction.

5. The length. of the Microinstruction Queue is fixed at length 8. Queues of

different length have been simulated. In the simulations in which the length of

the queue was varied, it was observed that little if any performance gain was

realized from a queue of length greater than just 1 or 2 words. The

simulations showed that the length of the queue is not as important as simply

having a mechanism (e.g even a one word wide shift register) to act as a buffer

between units.

6. The delay associated with an instruction memory access is assumed to be 5

cycles. For the simulations which incorporate an instruction cache, a 1 cycle

penalty is assumed for an instruction cache access [Hua84].
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The next section describes the particular configurations simulated and the simulation

results.
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5. THE PERFORMANCE OF DESIGN 1 AND ITS VARIATIONS

The performance of Design 1 is examined using the simulation environment

described in the previous section. Selected design enhancements are incorporated into

the design and the relative performances are compared.

The primary reason for pipelined instruction execution is increased

performance over a non-pipelined design. An N-fold speedup promised by an N-stage

pipeline is seldom realized due to the irregular flow of instructions through the

pipeline. To maintain a steady flow of instructions in a pipeline two problems have

to be resolved. First, instruction memory access time may be so long that a request

by the first stage of the pipeline (the instruction fetch unit) may not be satisfied soon

enough by the instruction memory hierarchy to maintain the flow. Second, a change

in expected instruction sequence, caused by a branch instruction, invalidates the

contents of the pipeline; the pipeline must be flushed and refilled with instructions

from the branch target address. The problem of delays due to branches is related to

the problem of memory access time since the penalty for a branch instruction will

depend on the time to fetch the target instruction from memory. This section

examines a range of techniques for Design 1 which reduce these delays and

consequently increase performance.

5.1 Reducing Delays Associated With Instruction Memory Access

The delays associated with instruction memory access are due to the difference

between the rate that instructions can be delivered to the instruction fetch unit from

the instruction memory, and the rate that the delivered instructions are executed.

The following techniques have proven to be effective in reducing instruction memory
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access delays.

5.1.1 InstruetiOD Caehes

Instruction caches make up one part of the overall concept of storage

hierarchies, where faster, but less dense memories are placed closer to the fetch stage

of the instruction pipeline, and the slower, but more dense (and larger) memories

back them up. An instruction cache is a small, fast buffer with an access cycle time

that is intermediate between that of the execution cycle time and the access cycle

time of the low speed, inexpensive dynamic RAMS that are used to build the main

instruction store.

Most programs exhibit locality of reference, which means that instruction

references over a short period tend to access either a previously requested instruction

or an instruction nearby. If the caching hardware buffe rs the most recently accessed

instructions in the instruction cache then the property of locality of reference implies

that subsequent instruction requests will be available in the cache, i.e., a cache hit. A

cache hit reduces the delay associated with an instruction memory access since the

effective delay will be the access cycle time of the cache rather than the longer

access cycle time of the main instruction store. Actual cache hit rates depend on the

design and organization of the instruction cache as well as the actual instruction

mix. Hit rates greater than 90% have been shown to be possible uSing instruction

caches as small as 4096 words [Smi82] [Smi83].

The performance of Design 1 has been simulated with an instruction cache

added between the Instruction Store and the Instruction Fetch Unit. The instruction

cache is organized as a byte addressable fully associative cache using a modified



25

FIFO replacement strategy. Other cache replacement strategies were examined, but

the simulations showed little difference when comparing relative performance of the

pipeline configurations as a function of the cache replacement strategies. An

assumption is made for the cache hit and miss costs: in the case of a cache hit, a one

cycle cost is incurred; in the case of a cache miss, a 5 cycle cost is incurred [Hua84]. .

The relative throughput and latency of Design 1 with a 1024 word cache using

the synthetic instruction workload is given in Tables 5.1 and 5.2. As can be expected,

an instruction cache has a large effect on overall pipeline performance. Cache size

has a significant effect on both the throughput and latency. Several cache sizes (124

words, 256 words, 512 words, and 1024 words) were simulated [Tha86]; only the

results for the 1024 word cache are given here for comparing the performance of

Design 1 with and without an instruction cache.

No instruction cache

\Vith 1024 word cache

Relative
ThroulthDut

1.00

1.24

Table 5.1 Throughput Comparison With An Instruction Cache

No instruction cache
With 1024 word cache

Average Latency

~
6.5
4.5

Table 5.2 Latency Comparison \Vith An Instruction Cache

The results show that a 1024 word cache yields a 24% increase in throughput and a

30% decreasein latency. Even a simple instruction cache can significantly reduce
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memory access times and the instruction memory bandwidth requirements. In

addition to reducing the delays associated with instruction memory access, the

latency results show that the instruction cache also serves for reducing the delays

associated with branches. The instruction cache buffers the most recently accessed

iastructions and the locality of reference implies that subsequent instruction requests

will be available in the cache. For the case of a loop, the instruction cache often

contains the instructions associated with the loop hence eliminating the need to

access main instruction memory. The low cost of CMOS static RAMS makes an

instruction cache an easily justified addition for the performance gains demonstrated

here.

J.E. Smith [Smi87j ha.s noted tha.t an instruction ca.che ca.n provide the

functionality associated with additional hardware enhancements. For example,

Smith asserts that the need for Branch Target Buffers (BTBs) [Lee84j is eliminated

with a sufficiently large cache, since the chances of a cache hit on the branch target

are high enough to not warrant BTBs.

These simulations assumed only a very simple cache organization and

replacement policy. Improved performance over that observed in these simulations

could be possible by tailoring an instruction cache to the specific referencing patterns

associated with LML programs.

5.1.2 Implicit Instruction Preretching

The delay associated with instruction memory access can be reduced by taking

advantage of the fact that most instructions are fetched sequentially. By fetching

more than 1 instruction from instruction memory at a time it is possible to implicitly
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fetch an instruction in advance of the instruction being required. These implicitly

fetched instructions are held in an instruction buffer until required. On subsequent

instruction requests, the instruction buffer is accessed before making a request to the

lower levels of the instruction memory hierarchy. For sequential instruction

execution, the delays due to memory accesses are reduced since the next instruction

will be available in the instruction buffer. Prefetching multiple instructions into an

buffer allows a continuous sequence of instructions to be supplied to the instruction

pipeline at a rate roughly approximating the instruction execution rate. The

Fairchild Clipper [Far86] uses implicit prefetching into an instruction buffer to

obtain its 33 ns. cycle time.

To simulate the performance of Design 1 using implicit prefetching, the

organization of the instruction cache is modified such that each line in the cache is 4

bytes wide. The instruction data path is expanded to 32 bits wide such that 4 bytes

are returned to the IFU per instruction memory request. A 4 byte instruction buffer

is added to the IFU to hold the additional fetched instructions. The assumption is

made that an instruction can be fetched from the instruction buffer and decoded in

one cycle.'

The performance of Design 1 using implicit prefetching is shown in Tables 5.3

& 5.4.
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No instruction cache
With 1024 word cache

With 1024 word cache,
and implicit prefetchinll;

Relative
Throulthput

1.00
1.24

1.53

Table 5.3 Throughput Comparison With An Instruction Ca.che And
Implicit Prefetching.

No instruction cache

With 1024 word cache

With 1024 word cache
and implicit prefetchinll;

Average Latency

~
6.5

4.5

4.5

Table 5.4 Latency Comparison With An Instruction Cache And
Implicit Prefetching

Implicit prefetching improves the overall throughput, since for a consecutive

sequence of instructions, it is likely that the next instruction will be found in the

instruction buffer and a fetch to the lower levels of the instruction memory

hierarchy will be unnecessary. No improvement is realized in pipeline latency, since

implicit prefetching does nothing to reduce the delays associated with branches.

5.1.3 Explicit Instruction Preletehing

Like implicit prefetching, explicit prefetching takes advantage of the

assumption that instruction references will typically be sequential. Explicit

prefetching refers to initiating the fetch of successive instructions into an instruction

cache during the execution of a previous instruction. Prefetching results in the next

instruction being available in the cache before it is accessed. The Fairchild Clipper

[Far86] U5e5 in5truction prefetching to achieve a 95% cache hit ra.te from its
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instruction cache.

In order to do explicit prefetching of instructions, a Remote Program Counter

(RPC) [Pat83] is required to direct the prefetching operation. The RPC addresses the

instruction cache for instruction i while instruction ..1 is being executed. If

instruction i is not in the instruction cache, it is requested from the instruction

memory and brought into the cache ready for access when instruction ..1 completes

execution.

Prefetching does ha.ve its drawbacks. A conditional branch instruction i will

always initiate a prefetch of word i+1. If the branch is taken, then the prefetch was

not needed, and the proper instruction must be fetched. If the prefetch is still in

progress when the branch address is known, then the prefetching can increase the

time for the branch to be taken. In addition, this unused prefetch represents an

additional request to the memory system and thus increases the instruction/memory

bandwidth requirements.

In the following simulations, the pipeline of Design 1 is modified to include

explicit instruction prefetching. 4 bytes are brought into the instruction cache per

prefetch operation. A remote PC is added to the cache controller to direct the

fetching of instructions into the cache independent of the IFU. The relative

performance of incorporating explicit prefetching into Design 1 is given in Tables 5.5

and 5.6.
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No instruction cache

With 1024 word cache

With 1024 word cache,
and implicit prefetchin~

\Vith '1024 word cache,
implicit prefetching
and explicit prefetchin~

Relative
Throul!:hDut

1.00

1.24

1.53

1.57

Table 5.5 Throughput Comparison With An Instruction Cache,
Implicit Prefetching And Explicit Prefetching.

No instruction cache
With 1024 word cache
With 1024 word cache
and implicit prefetchin~
With 1024 word cache,
implicit prefetching
and explicit preretchin~

Average Latency

~
6.5

4.5

4.5

4..5

Table 5.6 Latency Comparison With An Instruction Cache ,Implicit
Prefetching And Explicit Prefetching.

Explicit prefetching improves throughput in the same way as implicit prefetching i.e.

for a consecutive sequence of instructions it is likely that the next instruction will be

found in the instruction cache (due to prefetching) and a fetch to the lower levels of

the instruction memory hierarchy will be unnecessary. No improvement is realized

in pipeline latency since explicit prefetching does nothing to reduce the delays

associated with branches. While the performance improvements for explicit

prefetching are not as dramatic as those for an instruction cache and implicit

instruction prefetch, the little extra hardware required (remote PC) would justify its

incorporation into a design, especially where the instruction cache hit rate is a
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critical performance parameter.

5.2 Reducing Delays Associated With Branches

A fundamental disadvantage of pipelining is the delay incurred due to branches

which stall or require flushing ?f the pipeline. Since branches constitute anywhere

from 15-30% of the instructions executed on typical machines [Lee84], these delays

can have a significant effect on overall performance. Both hardware solutions and

architectural changes have been proposed to overcome these delays [Lee84] [McF86].

This section examines branch target prefetching for reducing branch delays.

For a conditional branch instruction, the instruction fetch unit must fetch

either the next sequential instruction or the branch to instruction. If the next

sequential instruction is fetched and the conditional branch is taken then a delay

occurs while the branch to instruction is fetched and the pipeline is restarted.

5.2.1 Multiple Instruction Streams

A brute force solution to this problem is to replicate the initial stages of the

pipeline (i.e., multiple instruction streams) so that both the succeeding instruction

and the potential branch target can be fetched during the evaluation of the

conditional instruction. This approach gives rise to the following problems:

1. Successive or additional conditional branch instructions may enter the initial

stage of the pipeline before the target for the first branch instruction has been

resolved.

2. The cost of replicating significant parts of the pipeline can be substantial.

3. The con.trollogic of such a scheme can be rather complex.
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Multiple instruction streams have been evaluated for use with Design 1 [Far8S].

It was envisioned that the LML compiler could generate up to 4-way case switch

instructions [Kie8S] (current versions only generate 2-way conditionals). Up to four

different instruction streams could be prefetched. Fetches were handled in round-

robin seq\ience for each instruction stream; only one instruction stream was decoded.

Simulation results for the multiple instruction streams showed poor performance.

5.2.2 Branch Target PreCetch

As an alternative to multiple instruction streams, it is possible to provide a

minimum amount of logic to prefetch just the branch target of a conditional branch

instruction. The extra logic computes and directs the fetch of the branch target. If

the conditional branch is taken, the branch target can be immediately accessed with

a minimum amount of pipeline delay. The IBM 360/91 uses branch target

prefetching to prefetch a double word target[And67].

Branch target prefetching has one shortcoming. If the branch target prefetch

IS still in progress when the branch address is known, then the prefetching of the

branch target actually increases the time for the branch to be taken. For example,

in a 2-way conditional branch, a branch target prefetch to branch target 1 begins

while the conditional branch instruction is being evaluated. After fetching branch

target 1, a fetch is initiated for branch target 2. If the conditional instruction is

resolved and the branch is taken to branch target 1, then the prefetch of branch

target 2 is unnecessary overhead which increases pipeline latency. Branch target

prefetching is useless for a short instruction pipeline since a branch will necessarily

be resolved before the branch target prefetching is complete.
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The pipeline of Design 1 has been simulated with branch target prefetching

,i.e., prefetching into the instruction cache the branch target of a conditional branch

instruction during the evaluation of the conditional branch instruction.

Four Branch Target Address Registers (TARs) are added to the IFU of Design

1 to hold the addresses of the potential branch targets, indicated by the conditional

branch instruction, as well as some additional logic to direct the fetching of the

instructions associated with the TARs into the instruction cache. Upon resolution of

the conditional branch by the PCU, the PC takes on the address of the indicated

TAR and makes a request for the associated instruction. An instruction cache hit is

assured since the instructions associated with the TARS have been fetched into the

instruction cache during the branch evaluation.

The performance of Design 1, when branch target prefetching is combined with

the techniques for reducing the delays associated with instruction memory access, is

given in Tables 5.7 and 5.8.

No instruction cache

With 1024 word cache

With 1024 word cache,
and implicit prefetchinll;

With 1024 word cache,
implicit prefetching
and explicit prefetchinll;

Relative
Throull;hput

Without Branch \Vith Branch
Tarll:et Prefetch Tarll:et Prefetch

1.00 N.A.
1.24 1.26

1.53 1.54

1.56 1.45

Table 5.7 Throughput Comparison With An Instruction Cache, Implicit
Prefetching, Explicit Prefetching and Branch Target Prefetching.
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No instruction cache

\Vith 1024 word cache
With 1024 word cache
and implicit prefetchinl/;

With 1024 word cache,
implicit prefetching
and explicit prefetchinl/;

Average Latency
ICycles

\Vithout Branch With Branch
Tau:et Pre fetch Tar£et Pre fetch

6.5 N.A.
4.5 2.5

4.5 2.5

4.5 4.0

Table 5.8 Latency Comparison With An Instruction Cache ,Implicit
Prefetching, Explicit Prefetching and Branch Target Prefetching.

The simulations with an instruction cache and implicit prefetching realized a

significant latency reduction (44%) with branch target prefetching. However,

throughput improves only slightly for the corresponding configurations. It can be

observed from the above results that a significant reduction in pipeline latency has

only a slight effect on overall throughput for the pipeline of Design 1. This can be

attributed to the small percentage of conditional branch instructions which are

taken, causing pipeline latency.

An explicit prefetch and a branch target prefetch both require access to

instruction memory, one prefetch must block awaiting the completion of the other.

The simulations with explicit prefetching show reduced throughput (of 7%) when

branch target prefetching is added. Likewise, latency is reduced by only 11% when

branch target.prefetching is added to the configurations with explicit prefetching as

compared to a 44% reduction without explicit prefetching. Hence, the combination of

branch target prefetching with explicit prefetching causes instruction memory access
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delays associated with memory contention with a resulting reduction in performance.

Additional simulations were conducted to examine the effect of aborting the

branch target prefetch upon completion of the conditional branch evaluation

[Tha86]. While the results were similar to those obtained for not aborting the

branch target prefetch, some increase in pipeline latency was realized and a slight

increase in throughput was seen.

It becomes evident from the above results that the additional logic required to

do branch target prefetching is not justified since the performance gains are slight

even though the latency is significantly reduced. Additionally, branch target

prefetching should not be combined with explicit instruction prefetching, since the

instruction memory contention actually causes reduced performance.

5.3 Summary or Results

Design 1 and variations thereof have been simulated to examine which

configurations reduce the delays associated with instruction memory access and

branches. The simulations show that an instruction cache along with implicit

instruction prefetching with an instruction buffer provide the most significant

performance improvement. Additional incremental performance gains can be realized

by incorporating explicit instruction prefetching. Branch target prefetching decreases

the latency of the pipeline but does little to improve the overall pipeline

performance. . Branch target prefetching, when combined with explicit instruction

prefetching, actually degrades pipeline performance due to instruction memory

access contention by the two prefetching schemes.
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Incorporating design enhancements into the pipeline of Design 1 increases the

overall operational and implementation complexity of the pipeline. In the following

sections, an alternate, simplified design for the instruction pipeline of the G-machine

will be examined.
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8. AN ALTERNATE DESIGN FOR THE PIPELINE OF THE G-MACHINE

The previous sections have examined, via simulation, variations on a design for

the instruction pipeline of the G-machine. The simulations show that improved

performance is possible by adding architectural support for reducing the delays

associated with instruction memory access and branches. The cost of the additional

support is increased design complexity in terms of design, implementation and

operation. The following sections set out to establish if a pipeline design that is less

complex than that of Design 1 can provide similar performance and functionality.

8.1 A RISe Instruction Pipeline

Design 2 proposed in this section for the instruction pipeline of the G-machine

does not use a microprogrammed control unit. The design is motivated by the

recent successes demonstrated by RISe designs as well as the results from the

previous sections that show that the delays associated with instruction memory

access can be sufficiently reduced to the point that instruction memory bandwidth

need not be a performance bottleneck. The decision to use a microprogrammed

versus a RISe pipeline depends on whether or not similar performance can be

achieved by a RISe pipeline compared to that of a microprogrammed pipeline.

Additional motivation to examine a simplified pipeline comes from the work

done on the D~agon processor at the Xerox Palo Alto Research Center (XP ARC)

[Mon85j. The origins of the Dragon are in the XPARC Dorado processor [Pei83]

which uses a highly pipelined microprogrammed instruction pipeline. The Dorado's

IFU alone contains six pipeline stages and requires a full printed circuit board to

implement. The designers of the IFU admit that the design is too complex and that
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it has ended up being implemented as "logical steel wool". The full instruction

pipeline of the Dorado is spread across six printed circuit boards! In contrast, the

DTagon is implemented as a RISC-like processor and requires only four custom VLSI

chips!

In a RISe design, the instruction fetched is the instruction executed; there is no

microinstruction store which translates the instruction into a sequence of

microinstructions as in Design 1. A RISC instruction pipeline for the G-machine

should be the simpler of the two pipeline designs in terms of design execution and

implementation, however, instruction memory bandwidth limitations may require

that a microinstruction store (as in Design 1) is required. For convenience the RISC

design discussed in the following sections will be referred to as Design 2.

The instruction set for the G-machine is well matched for execution on a RISC

style instruction pipeline since: a) only load and store instructions access memory, b)

only simple addressing modes are necessary, c) it is possible to design an instruction

format which does not cross word boundaries, making it possible to reduce

decode/assembly time and, d) the functions currently executed by a sequence of

microinstructions can be migrated to compile time implementations; the

microinstru~tions are packaged into subroutines fetched from the memory hierarchy.

The notion of migrating what would normally be a sequence of microinstructions to

compile time implementations called millicode has been successfully carried out on

the Hewlett-Packard series of Spectrum Processors [Cou86).

Design 2 consists of a simple 2-unit instruction pipeline. A block diagram of

Design 2 along with the control and data lines which connect the different units of
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this pipeline design are shown in Figure 6.1.

jmp

Control
Line,
For
Function/JI
Unit,

I I----
Liter/JI, for

Function/JI unit,

lIi/J G.8u,

Figure 6.1 Instruction Pipeline of Design 2

The Literals Queue (LQ), the Microinstruction Queue (MIQ) and the

Instruction Translation Unit (ITV) of Design 1 are not required in Design 2. Since

all the instructions are executed in hardware, the instruction word must be wide

enough to simplify the state machine which generates the control signals to all of the

functional units. For Design 2, an instr~ction size of 32 bits (-t bytes) is assumed for

all instructions. A wider instruction size could be used, it is only a matter of

instruction path width between memory and the Instruction Fetch Unit. The

assumed instruction format is simple and does not cross word. boundries, in

conformity with the definition of a RISe [Pat85].

6.1.1 Functional Description or Pipeline Stages

The Instruction Fetch Unit (IFU): The Instruction Fetch Unit for Design ~

performs the same basic functions as the Instruction fetch Unit for Design1. The

,
y
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32 '> 32 "-Memory IFU / PCU
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" ctrl
y



40

primary difference lies in the decode/assembly of the instructions. Design 2 requires

that the instructions are all of one format (4 bytes wide) and that no assembly is

required. The instruction is decoded in one cycle, then executed by the PCV. There

is no need for the Literals Queue in this design, since literals associated with an

instruction will be accessed immediately by the functional units. A single 32 bit wide

shift register serves as a 1 word wide FIFO buffer between the IFU and PCV.

The Processor Control Unit (PCU): Each clock cycle, the PCV generates a

set of control signals directly from the fetched instruction. Like the PCV of Design

1, the different functional units are scoreboarded. Unlike the PCU of Design 2, the

additional logic associated with a microsequencer is not required, nor are the

additional control signals to the ITU for local jumps (jumps which occur within a

microsequence ).

A microcoded pipeline achieves its performance by providing a method whereby

an instruction, which is fetched from the instruction .memory hierarchy, is expanded

into an instruction sequence by a translation unit. A simplified instruction pipeline

such as Design 2 may not be able to provide the instruction memory bandwidth

required by the Processor Control Unit. The simulations described in the following

sections compares Design 1 and Design 2 to examine whether Design 2 can provide

the performance and functionality equal to that of Design 1.



. _. _., _u _. _ < .-- ---_...

41

7. THE SIMULATION ENVIRONMENT FOR COMPARING DESIGNS 1 AND 2

The performance of the instruction pipeline of Design 1 is compared with the

performance of the instruction pipeline of Design 2. Like the previous simulations for

Design 1, these simulations are conducted using the Interwork tool. The

simulations are set up to investigate whether the simplified instruction pipeline of

Design 2 can provide similar performance to that of the microcoded pipeline of

Design 1.

Since the time that the initial set of simulations on Design 1 were conducted,

instruction traces of executing LML programs have become available. \Vhile the

simulations examining the performance of Design 1 were conducted with statistical

workloads, the simulations for comparing Design 1 and Design 2 are conducted using

these instruction traces. Hence a different simulation environment and set of

assumptions is required.

7.1 Simulation Workloads

The simulations of the performance enhancements for Design 1 used a

workload of an instruction reference pattern based on a mapping of random numbers

to an assumed instruction type distribution. A synthetic workload was used since

instruction traces for large LML programs did not yet exist. The simulations for the

comparison of Design 1 and Design 2 are based on instruction traces of executed

LML programs.

Subsequent to the Design 1 simulations, a macrosimulator for the G-processor

was developed [Kie87j. The macrosimulator does not simulate the execution of each

microinstruction but it does provide timing information for performance evaluation
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of the overall instruction pipeline. It is possible to collect instruction traces of

executing LML programs from the macrosimulator. The macrosimulator is based on

the instruction pipeline of Design 1, i.e., a microprogrammmed pipeline.

Instruction traces collected from a series of LML programs executed on the

macrosimulator are used to drive the following simulations. Six LML source

programs have been used to generate the instruction traces. The LML programs

[Appendix A] Ackermann, Tak (the Takeuchi function) and Fibonacci are used since

they generate a large number of recursive function calls. Towers of Hanoi is a list-

processing example that performs little arithmetic but generates many function calls.

In addition the LML programs Primes, and Factorial, have been used. While these

programs are not exhaustive, they do tend to represent a possible mix of instruction

reference patterns that the G-machine might encounter in actual programs.

The macrosimulator provides (in the form of a t race file) instruction reference

patterns by maintaining a record of the program counter associated with each

executed instruction. Associated with each program counter location is the

instruction opcode and the number of microinstructions executed in carrying out the

instruc tion function.

The IFU of Design 1 accesses lines in the instruction trace file sequentially,

using the PC of the trace file as the location from which the next instruction is to be

requested from the memory hierarchy. The ITU stage of the simulation uses the

information in the trace file to determine the number of microinstructions that are

to be executed by the PCU.

Since the macrosimulator which provides the instruction traces is based on the
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microprogrammed pipeline of Design 1, the instruction traces need to be modified for

execution on Design 2. In Design 2, the "microinstructions" are assumed to be part

of the compiler instruction set. The instruction trace files are modified to reflect the

effective movement of microinstructions back into the instruction memory hierarchy.

The microinstruction are packaged into instruction sequences fetched' from the

instruction memory hierarchy, rather than a microinstruction store. Hence the

workload for Design 2 is based on an in line expansion of instructions which would be

functionally equivalent to microinstructions.

7.2 Simulation Assumptions For Input Parameters

The following assumptions have been made in the process of simulating the

throughput of Design 1 and Design 2:

1. The previous simulations of Design 1 show t hat significant performance

improvement can be expected by incorporating an instruction cache into the

instruction memory hierarchy. For these simulations, the IFU fetches

instructions from a 2-level instruction memory hierarchy. The first level is an

instruction cache, the second is the main instruction memory. This

organization is used since it is the easiest form of memory hierarchy to

implement and it is well understood. Several manufacturers of memory

components have inexpensive parts and controller chips for such systems. By

changing the state machine (in the simulation) which does the cache

management, it is possible to abstract several different memory organizations

onto the cache to support instruction fetching.

2. There is little information available on cache hit rates for LML instruction
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streams. As a result, several cache hit rates are used (input parameters) for

the simulation runs. The cache hit rates used in the simulations range from

90% up to 100%. These assumptions are based' on work done on other

instruction caches [Smi83], [Pat83], [Fai85].

3. Analysis of test programs, run on the macrosimulator, show that the PCU can

execute an instruction (on the average) every 1.3 to 1.5 cycles [Kie87]. For

example: 80% of instructions take 1 cycle to execute and 20% of instructions

take 3 cycles to execute for an average execution rate of 1.4 cycles. The

occurrence of a 3 cycle instruction is based on a random variable calculated

using the random() function. While this does not model the actual sequence of

instruction dispatches exactly, it does give an approximation of performance.

For these simulations the input parameter for the average execution rate of

the peu ranges from 1.3 to 1.5 cycles.

7.3 Performance Measure

The primary motivation for the simulations is to establish whether or not

Design 2 can provide equivalent instruction throughput to that of Design 1 without

using a microinstruction store. Throughput for these simulations is defined in the

same way as for the previous simulations.
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8. COMPARING THE THROUGHPUT OF DESIGNS 1 AND 2

The throughput of Design 1 and Design 2 executing 6 different L~IL programs

is compared using the simulation assumptions and input parameters described in the

previous section. The inputs "to the simulations are:

1. Instruction cache hit rate. Range: 90 to 100%.

2. Average cycles per instruction. Range: 1.3 to 1.5 cycles. This is the average

time which the PCU consumes in executing an instruction (for either design).

Results from the simulations are shown in Figure 8.1. The results represent the

composite throughput of the designs executing the trace files described in the

previous section. The x-axis is the cache hit rate. The y-axis is the normalized

throughput. The results for each set of input conditions are normalized to the

lowest throughput configuration, in this case: Design 1 with a 90% cache hit rate

a.nd a. 1.5 cycle average PCU instruction execution rate. There are three groups of

curves: one group for each of the assumed PCU instruction execution rates (1.3,1.4 &

1.5 cycles).
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Two observations can be made from examining these results. First, the

throughput of Design 2 (no microinstruction store) is quite sensitive to the cache hit

rate while that of Design 1 remains fairly constant across a range of rates. As the

average peu instruction execution rate goes up (i.e. it consumes instructions faster),

the demands on the memory hierarchy goes up. However, even for the worst case

(cache hit rate: 90%, pev instruction execution rate: 1.3 cycles/instruction) the

performance difference between the two designs is only 10%. Increasing the cache

hit rate to 95% brings the worst case difference between the designs to about 2..5%.
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The other observation concerns the crossover point of the curves for Design 1

and Design 2. As the cache hit rate increases, so does the throughput of Design 2, to

the point that for certain cache hit rates ( >97% )the performance of Design 2

actually exceeds the performance of Design 1. This can be attributed to three causes:

1. If an instruction in Design 1 expands into a large number of microinstructions,

the IFU stalls once the interstage buffer between the IFU and ITU is filled. No

further instructions are fetched/pre-fetched pending the completion of the

instruction with the large expansion ratio.

Even when the length of the inter-stage buffer between the IFU and ITU was

extended to an 8 word queue, similar results were achieved since the time to

move an instruction through the ITU and PCU to execution is usually greater

than the time it takes to fetch a subsequent instruction (assuming a cache hit).

Hence it is sufficient to buffer a least one instruction beyond that which is

being executed by the ITU /PCU.

2. If the instruction, which expands into a large number of microinstructions, is a

branch instruction, then the IQ and the IFU must be flushed and the pipeline

must be restarted (a 3 cycle penalty), even with the compiler providing delayed

branch instructions.

3. The instruction pipeline of Design 1 has an extra pipeline stage: the ITU. Each

instruction fetched incurs an extra cycle delay during the translation of the

instruction into a microinstruction sequence.
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9. CONCLUSION

Enhancements for one design (Design 1) of the instruction pipeline for the G-

machine have been simulated to evaluate the effect each enhancement has on the

overall performance of the pipeline. The enhancements result in increased

performance, however, the pipeline implementation becomes significantly more

complex.

Design 2, a RISe design for the instruction pipeline, is proposed to decrease the

complexity of the pipeline. The main drawback to a RISe style pipeline is that it

does not enjoy the benefits of having a microprogram store feeding the PCU, hence

the instruction memory bandwidth requirements of the RISe pipeline may limit it's

performance. The results of Section 8 show that the Design 2 can provide similar

throughput to that of Design 1. It should therefore be possible to design a RISe

instruction pipeline for the G-machine patterned after the pipeline of Design 2. Such

a pipeline would provide similar throughput to that of Design 1 while while being less

complex to implement. Design 2 is less complex than Design 1 since:

1. There is no need for the ITU of Design 1.

2. The additional logic associated with a microsequencer as well as the additional

control lines such as those for local and non-local branches are not required.

3. The Microinstruction Queue and the literals Queue can be eliminated since the

pipeline units will operate in lock-step.

4. The IFU is simpler since it has simple instructions types which do not require

assembly.
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While Design 2 is less complex than Design 1, it does place heavy demands on

the instruction memory hierarchy. Since the pipeline units operate in lock-step, the

delays associated with instruction memory access become critical. The simulations

have shown that a cache hit rate of at least 90% is required. Instruction cache hit

rate is directly related to the size.of the cache; hence a fairly large instruction cache

is required. Recent advances in the cost, density and speed of static RAMs have

contributed to the ability to design high-performance instruction caches to support

the speed of a RISe processor. The design enhancements studied for Design 1 for

reducing the delays associated with instruction memory access should also be

applicable to Design 2. A large high speed cache along with instruction prefetching

and an instruction buffer can provide the needed instruction memory bandwidth of

Design 2.

The RISe instruction pipeline of Design 2 can provide the functionality of

Design 1 and should be easier to implement. Equivalent throughput can be achieved

by providing an efficient instruction caching mechanism which is attractive to

implement when compared to having to implement the additional custom logic

required for Design 1.

9.1 AreasFor Further Researeh

Several areas should be explored further. An instruction cache obviously

provides a significant performance improvement. In the simulations comparIng

Design 1 and Design 2, the cache hit rate was an input parameter. Studies should be

conducted on what cache organization provides the best performance for the

instruction reference pattern of LML programs. Two way and four way set-
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associative caches have been proposed. The four way set-associative cache may

provide the best performance for LML programs since UvIL programs typically are

made up of calls to small functions.

In the simulations comparing Design 1 and Design 2, the microinstruction

routines of the Instruction Translation Unit were simply expanded in line with the

instructions generated by the compiler (much like macro expansion). In line

expansion of the microinstruction routines increases the size of the program

significantly. The larger the program size, the larger the instruction cache will have

to be to support hit rates in the 90 to 95% rate. One alternative to in line

expansion is to "lock-down" these routines in the instruction cache and call them as

subroutines as is done in the Hewlett-Packard Spectrum processor [Cou86]. Since the

routines are not recursive and require no parameters. the Instruction Fetch Unit

could perform such simple subroutine calls with no significant overhead. With a

cache hit guaranteed by locking down these subroutines in the instruction cache, the

performance of Design 2 will easily approximate that of Design 1. Treating these

routines as subroutines should also keep the program sizes of Design 2 in line with

the program sizes of Design 1 with the associated savings in cache sizing.

9.2 Final Thoughts

The design of an instruction pipeline is a multi-dimensional problem. Design

enhancements which individually increase performance may provide poor results

when combined together as in the case of using explicit instruction prefetching and

branch target fetching with the instruction pipeline of Design 1.

The design of an efficient instruction pipeline requires an in-depth knowledge of
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both the dynamic behavior of the programs to be executed (which mayor may not

be available) as well as the implementation issues. Experimentation via simulation

seems to be the best available way to narrow in on a design which provides the best

possible performance for the least amount of complexity.
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APPENDIX A: LML PROGRAMS

----------------

Ackermann
----------------
Ietree

A x z = if x=O then z+1
else if z=O then A (x-I) I
else A (x-I) (A x (z-I))

in A 2 2

-----------------
Tak
-----------------
letrec

tak x y z=
if -(y < x) then z
else tak (tak (x-I) y z)

(tak (y-l) z x)
(tak (z-l) x y)

in tak 10 7 5

----------------
Towers
----------------

let move x y = 10 * x + y
and

hanoi f 5 t n =
if n = I then [move f 51
else

(hanoi r t 5 ( n - 1 )) @ (move f 5 . hanoi t s f ( n - I ))
in hanoi 1 2 3 5
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Prim.
--------
letrec

from x = x. from (x+l)
and

filter p seq =
case seq In

(a.rest) :
if a%p -=0 then a.filter prest

else filter prest
end

and
sieve seq =

case seq In
(p.rest) :

p.sieve (filter prest)
end

and

cnthd n (h.l) = if n <= 0 then [] else h. cnthd (n-l) I
in cnthd 10 (sieve (from 2))
----------------
Fibonacci
----------------
letrec

fib n = if n < 2 then n else fib (n-l) + fib (n-2)
in fib 10

----------------
Factorial
----------------
Ietree

fact n = if n=O then 1 else (n * fact (n-1))
in fact 10
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APPENDIX B: CONVERTING THE INSTRUCTION TRACES

FOR DESIGN 2

The first group of simulations examined the performance of Design 1 when a

range of enhancements are incorporated into the design for decreasing the delays

associated with instruction memory access and branches. When these simulations

were conducted, the LML compiler was not yet complete and only limited

information existed about the instruction referencing patterns of an LML program

executing on the G-machine. Since limited information was available, assumptions

had to be made and a statistical workload was developed based on these

assumptions. The statistical workload was then used for driving the simulations (as

described in Section 4).

Prior to the second set of .simulations comparing the throughput of Design 1

and Design 2, a macrosimulator was developed by Boris Agapiev for executing

compiled LML programs. The macrosimulator uses a model of the instruction

pipeline similar to that of Design 1 i.e. a microcoded instruction pipeline. The

macrosimulator has been instrumented to output (to a trace file) the following

information during the execution of a program.

1. The value of the PC associated with each memory reference.

2. The opcode associated with each instruction executed.

3. The number of microinstruction executed in carrying out the fetched

instruction.
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The LML programs listed in Appendix B have been executed on the macrosimulator

to obtain their instruction traces. These instruction traces have been used to as the

workload for the simulations comparing the throughput of Design 1 and Design 2.

The first 15 entries of the trace file for the factorial program are listed below.

The first column is the PC, the second column is the opcode and the third column is

the number of microinstructions executed.

6944
8583
10 132 1.

12 102
14 211 1

1801
30401
32 112 1

34 182 1

38 41 10

40 132 1

42 229 10

6 9449
56944
58583

Since Design 2 is not a microcoded pipeline, for equivalent functionality the

operations performed by the microinstructions must be directed by instructions

fetched from the instruction memory. For the purpose of comparing the the

throughput of the two designs, the microinstructions were expaned in line with the

instructions fetched from the instruction memory.

In Line Expansion of Microinstructions
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In order to preserve the instruction referencing pattern of the programs, the

value of the PC in the instruction trace files had to be modified to represent the in

line expansion of microinstructions. In the following disc'ussion the trace files from

the macrosimulator will be refered to as Trace 1 files while the modified traces

containing the in line expansion of the microsequences will be refered to as Trace 2

files. Trace 2 files contains:

1. The PC for the first instruction for a. block of instructions. A block of

instructions is defined by a sequence of instructions from Trace 1 with the last

instruction of the block being a branch instruction.

2. The number of instructions executed sequentially from the starting PC. This

number is arrived at by summing the number of microinstructions associated

with a block of instructions in Trace 1.

3. The branch type of the instruction terminating the block. Three branch types

are defined: Conditional, Unconditional, and EVAL.

4. The address of the location of the next block to be executed.

5. The number of instructions executed for an EVAL.

As an example, the first few lines of the modification of the Trace 1 file for Factorial

is given below.
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Trace 2 Co
6944 } -------> 6 4 3 81 4 (94 = EV AL, a conditional branch)

10 132 1 }

12 102 } --------> 81 8 1 123 0

14 211 1 } (211 = JMP ..NOT-ZERO)

1801 } (NOP for delayed branch)

30401 }
32 112 1 }
34 182 1 } --------> 123 24 2 6 0

38 41 10 }

40 132 1 }

42 229 10 } (229 =CALL_GLOBJ'UNC)

69449 } -------> 6 49 3 171 49 (94 = EV AL)

56944 } --------> 171 4 3 246 4 (94 = EVAL)

58583 }

60 132 1 }

62102 } --------> 24623 2 81 0

64481 }

66 105 16 } (105 = RETURNJNT)

8583 }
10 132 1 }
12102 } --------> 81 8 1 123 0

14 211 1 } (211= JMP..NOT-ZERO)
1801 } (NOP for delayed branch)

30401 }

32 112 1 }

34 182 1 } --------> 123 24 2 6 0

38 41 10 }

40 132 1 }

42 229 10 } (229 = CALL_GLOBJ'UNC)




