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Abstract 

Analysis of Variability in Speech 
with Applications 

to Speech and Speaker Recognition 

Sachin S. Kajarekar 

Supervising Professor: Hynek Hermansky 

The speech signal has variability due to language, speakers, and communication channels. 

In this work, variability due to language is referred to as variability due to different phones 

in the language. It is also referred to as (inter-phone or) phone variability. Variability due 

to speakers is referred to as speaker variability, and variability due to different communi- 

cation channels is referred as channel variability. The remaining variability in the signal 

is referred to as residual variability. 

The total variability in speech is decomposed using multivariate analysis of variance 

(MANOVA). Here variability in speech refers to variability in the set of features extracted 

from speech signal, and variability refers to covariance of features due to different phones, 

different speakers, and different channels. In this work, MANOVA is performed using 

three databases - HTIMIT, OGI Stories and OGI Numbers. Variability in the commonly 

used features is measured in spectral and temporal domains. The results are shown to 

be consistent across different databases and datasets. The results are also shown to be 

consistent with the previous studies. 

The results of MANOVA are applied in two ways. First, we show that contribu- 

tion of the variabilities in features is related to their performance on speech and speaker 



recognition tasks. Second, we show that results of MANOVA can be used for deriving 

discriminant features for a given task. 

Relationship between results of MANOVA and speech and speaker recognition results is 

illustrated using several examples. First, the speaker variability in different broad phonetic 

categories is computed using MANOVA. It is shown that the results of the analysis are 

related to the performance of speaker recognition system using these categories. Second, 

we compare contribution of phone variability in different types of feature-sets, for example, 

features with delta and double delta features, features after RelAtive SpecTRAl (RASTA) 

filtering, features after concatenation with TempoRAl Patterns (TRAPS) features and so 

on. We show that the change in the contribution of phone variability is related to change 

in the performance of the features on speech recognition task. 

Using MANOVA, we had observed that the variability due to phones spreads for ap- 

proximately 250 ms around the current frame. We include this variability in the design of 

features using Linear discriminant analysis (LDA). Two types of analysis are performed. 

First analysis, called joint analysis, uses all the correlations in a block of spectrogram. 

Second analysis, called combined analysis, assumes that time and frequency domains are 

independent. The discriminant features from both analysis are used in speech recognition 

experiments. The results show that features from joint analysis perform worse than com- 

bined analysis because joint analysis over-fits the training data and does not generalize 

on the test data. In general, we show that performance of the speech recognition system 

improves when information from a longer time-span is included in the features. This is 

constant with the result of MANOVA. Specifically, we show that combination of spectral 

and temporal discriminants yields to the best joint time-frequency discriminants. 

xvi 



Chapter 1 

Introduction 

Speech communication is a primary form of human-to-human communication. In this 

form, the speech signal is used to communicate linguistic messages. However, the signal 

also carries information about the characteristics of speaker and communication channel. 

Due to naturalness of the speech interface, researchers have investigated its use for human- 

computer interaction. This thesis deals with a part of the interface that recognizes the 

speech and the speaker. 

Speech recognition is a process of converting the speech signal to sequence of words. 

The words are chosen from a dictionary. The sequence of words is determined using a 

language model. Speech recognition systems are characterized by many parameters [45] 

such as size of vocabulary, language model, perplexity, speaking style, speaking mode. 

Commonly used speech recognition systems are dictation systems and digit recognition 

systems. Dictation systems have a large vocabulary ( 2 20000 words) and higher perplexity 

( > 100). Digit recognition systems have small vocabulary ( = 11 words) and lower 

perplexity ( 5 5). 

Speaker recognition is a process of recognizing the speaker from his or her voice [ l l ,  211. 

The process can be performed in two modes - close-set or open-set. In close-set mode, the 

test speaker is one of the speakers in the training set. In open-set mode, the test speaker 

may or may not be the one from the training set. There are two application of speaker 

recognition - speaker identification and speaker verification. Speaker identification refers 

to speaker recognition within a set of speakers, which is also referred to as a closed-set task. 

In this case, the utterance is tested against all the speakers in the set, and the speaker 

with the highest likelihood is declared as the hypothesized speaker. The applications of 



speaker identification are in forensic studies where a speech evidence is used to recognize 

the identity of a known criminal. Speaker verification needs the claimed identity of the 

speaker along-with the speech sample. The task is to verify the claimed identity of the 

speaker based on his voice. This is an open-set task because the test speaker may or may 

not belong to the closed-set. The applications of speaker verification are in the security 

area where the speaker characteristics are used as voice-signature. 

The most common cause of performance degradation of the speech and speaker recog- 

nition systems is a mismatch between training and testing conditions. For example, when 

a speech recognition system is trained under noise-free condition, and it is used inside 

a running car. In general, the mismatch can be compensated at  two levels: feature ex- 

traction and model estimation. In this work, we address the mismatch at the feature 

extraction level. We study the nature and the contribution of different types of variability 

in speech, and use the results of the study to improve the performance of the systems 

under mismatch conditions. 

The chapter is organized as follows. Section 1.1 gives a brief overview of automatic 

speech recognition (ASR) and speaker recognition systems. A common processing step 

in these systems is the estimation of a set of parameters from the speech signal. This is 

referred to as features extraction. This is described in detail in Section 1.2. The variability 

in the features can be attributed to different type of variabilities in speech. Section 1.3 

describes four types of variabilities used in this work, and their usefulness for the speech 

and speaker recognition task. The chapter concludes with contributions of the thesis in 

Section 1.4, and overview of the thesis in Section 1.5. 

1.1 Speech and Speaker Recognition Systems 

Speech and speaker recognition systems are based on a pattern recognition framework 

[12, 181. Figure 1.1 shows the block diagram of these systems. They have three main 

processing steps - feature extraction, likelihood computation, and search for the most 

likely output (decoder). Feature extraction step is implemented similarly in both speech 

and speaker recognition systems. The remaining two steps are implemented differently in 
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Figure 1.1: Block diagram of speech and speaker recognition systems

these systems.

In the feature extraction step, a set of parameters are estimated from speech signal.

This thesis is a study of different type of features, and their usefulness in speech and

speaker recognition. Therefore, this step is described in detail in the next section (Section

1.2).

In the likelihood computation step, the likelihood of the features is computed with

respect to the speech and speaker models. This is typically performed independently for

each feature vector using all the phone or speaker models. The models are trained using

the same set of features extracted from a large independent speech corpus.

The type of speech models depends on the task. For a small vocabulary task like digit

recognition, speech is modeled as a sequence of words (digits) [55]. For a larger vocabu-

lary tasks, speech is modeled as a sequence of context-dependent or context-independent

phones [35]. Each word or phone model is based on Markov model (MM) topology [37].

It has states which correspond to a particular part of the word or the phone, and a tran-

sition arcs that correspond to transitions between states. Each state is typically modeled

as mixture of Gaussian distributions or it is modeled using a neural network (NN) [22].

In speaker recognition, a speaker can be modeled as a collection of phone models

or a single model [19]. Each model can be based on different MM topologies, starting

from just one-state to multiple-state, and from left-to-right to fully connected (or ergodic)

Feature Likelihood
Extraction Computation

Decoding



models [31]. Each state distribution can be further modeled as a mixture of Gaussians or 

using a NN. In the speaker recognition research, one-state, multiple Gaussian component 

model is used most often and it is referred as a Gaussian mixture model (GMM) [12]. This 

model has been shown to be effective in text-independent speaker recognition. In practice, 

speaker recognition is performed in text-dependent mode, where the text is a short string 

of words, such as name, address, account number. This approach is dominated by models 

based on HMM. 

Typically, two different models are used in speaker recognition - speaker independent 

model or universal background model (UBM) and speaker dependent (SD) model. UBM 

is trained using large number of speakers, and it does not represent any particular speaker. 

SD model is trained ( or adapted ) using the speech from only one speaker. 

In the final step, the sequence of likelihoods is analyzed to get the most likely sequence 

of phones or the most likely speaker given the input speech. In speech recognition, viterbi 

algorithm is used to obtain this sequence [37]. The search for a sequence is constrained 

using language models. These models contain multiple pronunciations of words, and prob- 

abilities of words and word sequences based on the language. In text-independent speaker 

recognition, likelihood per speaker is averaged over the complete utterance. The likelihood 

using SD model is normalized with respect to likelihood using SI model. If the normalized 

likelihood is greater than a pre-calculated threshold then that speaker is declared as the 

hypothesized speaker of the utterance. In text-dependent speaker recognition, the most 

likely sequence of phones is used to obtain the likelihood of the utterance using SD and SI 

models. The normalized likelihood is used the same way as described before to validate 

the identity of the speaker. 

1.2 Feature Extraction 

1.2.1 Feature Characteristics 

In this subsection, we present four measures for characterizing a set of features - 1) com- 

pactness, 2) correlation, 3) behavior of distribution, 4) relevance for a given task. Com- 

pactness measures to number of features in a set. Correlation measures to the relationship 



between different features. If a feature is completely predicable by another feature then 

the correlation between them is 1. If a feature can not be predicted from another feature 

then the correlation between them is 0. If the features have Gaussian distribution then 

the uncorrelated features are also independent features. This means that each feature 

contributes completely new information to the task. Features need to have a well-behaved 

distribution so that it can be modeled using few training samples and parameters. Rele- 

vance refers to the requirement that features must carry information that is relevant for 

the task. 

First three requirements are important for modeling the distribution of features. Fea- 

tures satisfying these requirements need a smaller training dataset, and fewer parameters 

to model its distribution. These requirements can be measured without any additional in- 

formation such as class labels. Suitability of the features for a given task can be measured 

only when the class labels are available, that is, when the task is to classify features into 

n classes and the training data is labeled by these classes. 

1.2.2 Conventional Feature Extraction 

In this subsection, we describe the processing steps used to convert a speech signal into a 

set of commonly used features used for speech recognition. At each step, we analyze output 

features to measure 4 parameters - 1) dimension, 2) correlation matrix, 3) histogram of 

a feature element, and 4) F-ratio. Lets assume that X is the feature vector. Dimension 

of the feature vector shows the compactness. Correlation matrix shows the correlation 

across different features. Sample histogram of a feature element shows the nature of its 

distribution assuming that each element is independent. In this work, it is characterized 

by coefficient of kurtosis (.yz), and coefficient of skewness (yl) [47], 

71 = 3 
7 2  = 3 

where, p3 and p4 are the third and fourth central moments, and a is the standard deviation. 

Kurtosis measures the tails of the distribution and skewness measures the symmetry of 

the distribution. Values of 7 2  range from - inf to + inf where negative values correspond 

to shorter tails and positive values correspond to longer tails. Values of 71 also range from 



- inf to + inf where negative values indicate that distribution is skewed to the left and 

positive values indicate that distribution is skewed to the right. In general a smaller 3 

and 7 2  correspond to a well-behaved distribution. F-ratio compares across-class covariance 

(A,) with within-class covariance (W,), 

where i denotes classes, j denotes the sample index within each class, Ni denotes the num- 

ber of samples in each class, N  denotes the total samples, xi. is mean of each class, and 

X.. is the mean of the data. F-ratio is defined as trace(W;'A,). This is a measure of sepa- 

rability of the classes. Its significance is measured by degrees of freedom in the numerator 

(Ni - 1) and the denominator ( N  - 1). Higher F-ratio refers to better separability between 

the classes1. In this work, sample estimates of these parameters are obtained using a set 

of 41 phones2 and approximately 500000 feature vectors from OGI Stories database [46]. 

Therefore, the degrees of freedom in the numerator and denominator are 40 and inf, and 

they are same for all feature-sets. 

Speech signal, s(t), is recorded using a microphone, digitized using A/D converter 

at 8000 Hz, and stored on the disk. The digitized speech is divided into overlapping 

segments of approximately 20-35 ms (160-280 samples). The adjacent segments overlap 

approximately 10-15 ms (80-120 samples). This operation is referred to as " windowing" 

of speech signal. Mathematically, 

, where h(n) is a square window of length 160 - 280 samples and p defines the shift across 

adjacent segments, and n defines the length of the window. 

Figure 1.2 shows the result of our analysis using windowed-speech signal, s(p,n) as 

features. The feature set contains 200 samples. The correlation matrix shows significant 

correlations between different feature elements. Distribution of the center element of the 

 h his is described in detail in Chapter 5 
2 ~ h o n e  is smallest unit of speech sound. 



feature vector is similar to Laplace distribution with yz = 91.52 and yl = 0.25. It is a 

symmetrical distribution with very long tails. These features have the F-ratio of 0.018, 

which means that phone classes are highly overlapped in this space. 

The speech waveform in each segment is filtered using a high pass filter to remove 

the DC bias of the microphone and to emphasize the high frequency components. This 

operation is referred as "pre-emphasis of speech". The waveform is multiplied by Hamming 

window to minimize the discontinuities at the edges of the window. It  is converted to the 

frequency domain using short-time Fourier transform. Note that the Fourier transform 

of a real signal is a complex and symmetric signal. The complex signal is converted to a 

real signal by calculating the magnitude, and only half of it is retained. The sequence of 

operations results in approximately 129 parameters per segment where the corresponding 

frequencies are uniformly distributed between 0-4000Hz. The set of these parameters is 

referred as the "speech spectrum". Mathematically, 

S@, w) = C ( s@,  n) * hw,(n))e-jwn 
n 

, where hwin refers to hamming window, S() refers to speech spectrum, and w refers to 

the discrete frequency values from 0 to T. 

Figure 1.3 shows the result of our analysis using speech spectrum, S ( p ,  w), as features. 

The feature set now contains 129 measurements. The correlation matrix still shows sig- 

nificant correlations across different elements. The features have a one-sided distribution, 

similar to exponential distribution with y2 = 4.13 x lo5 and 71 = 50. It has become a 

right-skewed distribution with very long tail. The F-ratio using these features is 0.214. Im- 

proved F-ratio of the features is a result of non-linear process of calculating the magnitude 

spectrum. 

Human perceptual experiments have shown that human hearing has a non-uniform 

frequency resolution. To emulate the human processing, previous researchers have pro- 

posed warped frequency scales like MEL scale [57, 541 and Bark scale [16, 241. The speech 

spectrum is converted to the non-uniform frequency scale as follows. First, triangular 

or trapezoidal filters are designed on the non-uniform frequency scale. Then, they are 

mapped to the uniform frequency scale. The speech spectrum is multiplied by each of the 



filter coefficients and the resulting values are averaged over the span of the filter. This 

results in approximately 15-23 point MEL/Bark warped spectrum. Mathematically, 

, where m refers to the filter-bank index, and FB(w,  m) are mth filter coefficients. 

Figure 1.4 shows the result of our analysis using energies from 15 filters on Bark 

scale, 307, m), as features. Note that the features set is now reduced to 15 elements. 

The correlation matrix of the features is similar to the earlier step. The distribution has 

7 2  = 788 and 71 = 21. It  is a non-symmetrical, right-skewed distribution. F-ratio for 

these features is 0.18, which is similar to the one obtained using 129 spectral values. This 

means that these 15 dimensional feature space has almost the same separation between 

phones as the 129 dimensional speech spectrum. 

In the final processing steps, a non-linear transformation such as log or cube-root is 

applied on the features and the features are projected on discrete cosine bases. With 

MEL frequency warping, the resulting features are referred as Me1 Frequency Cepstral 

Coefficients (MFCCs). Mathematically, 

, where 1 represents the cepstral coefficient, and CEP( )  is matrix of cepstral transforma- 

t ions. 

The results of our analysis of the features after logarithmic transformation, S(p,m), 

and after projection on discrete cosines, C(p, l ) ,  are shown in Figures 1.5 and 1.6. Results 

show that distribution of the features has 72  = 2.33 and 71 = 0.098. It  is approximately 

symmetric and has balanced tails which is close to a Gaussian distribution. The F-ratio 

of these features increases from 0.18 to 4.223. However, there is still significant correlation 

among different elements of the feature set. The projection of features on discrete cosine 

3 ~ o t e  that F-ratio of the power spectral energies also improves from 0.18 to 3.6 after logarithmic 
compression. This shows that Bark frequency warping improves the F-ratio of the features. 

Another commonly used compression is cube-root compression. The F-ratio after this compression is 
1.38 which is higher than uncompressed spectral energies but lower then logarithmic compression. 
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10'

bases results in the best features so far. These features are only 15 dimensional versus 256

dimensional waveform. They have almost diagonal correlation matrix. The histogram of

the features shows a very well behaved distribution (,2 = 2.59 and 1'1 = -0.0849). Since

F-ratio is invariant to linear transformation, they have the same F-ratio as the logarithmic

energies.

1.3 Variability in Features

As mentioned before, the speech signal, s(t), has variations due to the nature of linguistic

message, different speaker characteristics, and different communication channel charac-

teristics. These variations are referred as variability in the speech signal due to different
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sources. In this thesis, variability in the speech signal is attributed to three sources - 1) 

language, 2) speaker, and 3) communication channel. Subsequently, total variability in 

the signal is divided into four types - 1) phone (or inter-phone) variability, 2) speaker 

variability, 3) channel variability, and 4) residual variability. These types are explained as 

follows. 

1.3.1 Phone (or inter-phone) Variability 

Speech signal has variability due to language. The language is used to form a commu- 

nication message. If the message assumed to a sequence of phones then the variability 

due to language can be interpreted as variability due to different phones. We refer to 

this variability as (inter-phone or) phone variability. It is a useful variability in speech 

recognit ion. 

1.3.2 Speaker Variability 

Speech signal has variability due to speakers. A speaker can be described in terms of 

different characteristics such as vocal tract length, pitch, speaking rate, speaking style, 

accent. The variability due to speakers is caused by differences in these characteristics. 

We refer to this variability as speaker variability. It is a useful variability for speaker 

recognition task. 

1.3.3 Channel Variability 

Speech has variability due to different communication channels. This is a harmful vari- 

ability for both speech and speaker recognition. 

A communication channel is defined as the path traveled by the speech signal from the 

speaker's mouth to the listener's ears. It includes communication medium, communication 

devices, and coders and decoders. Variation in the medium is an environmental noise which 

is typically modeled as additive distortion. Variation in the communication devices such 

as telephone handsets, is typically modeled as convolutive distortion. Effect of coders 

and decoders is modeled as a non-linear distortion in the signal. In this work, channel 



variability measures the effect of communication devices like handsets in the telephone. 

The remaining effects are measured by the residual variability. 

1.3.4 Residual Variability 

Residual variability measures the variability that is not accounted for the three variabili- 

ties described above. This includes variability due to phonetic context, coarticulation and 

others. Note that its contribution reduces when one of these effects are studied indepen- 

dently. 

1.4 Contributions of the Work 

The fundamental hypotheses of this work are 

1. variability in the feature-set is related to its performance of speech and speaker 

recognition tasks, and 

2. results of analysis of variability can be used to derive new feature-sets that are robust 

with respect to the mismatch in training and testing. 

The hypotheses are examined as follows. First, multivariate analysis of variance (MANOVA) 

is used to study variability in a feature-set. It is shown that results of MANOVA are re- 

lated to performance of the features on speech and speaker recognition tasks. Results of 

MANOVA are used with linear discriminant analysis (LDA) to derive discriminant fea- 

tures for speech recognition task. The discriminant features are shown to improve the 

performance of speech recognition systems. The contributions of this thesis are explained 

as follows. 

Robustness of MANOVA to deviations from normality - As explained in 

Chapter 2, MANOVA assumes that features have a Gaussian distribution. In prac- 

tical situations, the distribution of features deviates from this assumption. We com- 

pare the results of MANOVA with another study [30] that uses non-parametric 

techniques to model the feature distribution. We observe that the results from both 



studies are similar, which shows robustness of MANOVA to deviations from nor- 

mality. Other studies [20, 29, 101 have also observed robustness of this analysis to 

deviations from normality. 

Longer-term effects of the phone - Using MANOVA, we show that variability 

due to phones lasts for about 250 ms around it. This means that pronunciations of 

current phone affects the nature of at least the neighboring phones assuming that 

an average length of a phone is approximately 80 ms. 

Relative phone variability and speech recognition performance - Results of 

MANOVA can be used to compare different feature representations. In this work, we 

compare different types of features such as features with and without delta features; 

features with and without commonly used feature transformations like RASTA fil- 

tering, features with and without mean and variance normalization; features before 

and after concatenating TRAPS [25] features. In all these comparisons, we show 

that performances of the resulting features on speech recognition tasks is related to 

the relative contribution of phone variability. 

Relative speaker variability and speaker recognition performance - We 

compare speaker variability in the features for different broad phonetic categories. 

This is compared to the speaker recognition performance obtained using these cat- 

egories. Results show that relative speaker variability in the features is related to 

the speaker recognition performance. 

Relationship between MANOVA and LDA - MANOVA and LDA are com- 

pared. It is observed that both analysis make same assumption about the data. It 

is shown the results of MANOVA can be grouped into useful and harmful variabili- 

ties. These variabilities can be used as an estimates of across-class and within-class 

covariances. Thus, it is shown that covariances estimated from MANOVA can be 

used as an input to LDA. 

Application of results of MANOVA in speech recognition - Joint time- 

frequency discriminants are designed using a longer temporal span. It based on 



the result that variability due to phones lasts beyond their length. Discriminants 

are obtained using LDA. Phone variability is used as across-class covariance and 

remaining variability is used as within-class covariance. It is shown that the dis- 

criminant features using 1000 ms of temporal span give significant improvements in 

the speech recognition performance over the conventional features that use only 90 

ms of temporal span. 

1.5 Organization of Thesis 

Chapter 2 describes MANOVA and uses it to measure the variability in the features. 

The total variability is analyzed in spectral and temporal domains. In each domain, it 

is divided into four types as described in Section 1.3. The chapter proposes a method 

to quantify the contribution of sources in each domain. We compare the results of this 

analysis with results of two previous analysis. The results show that analysis of variance 

can be also viewed as analysis of information in speech. 

Chapter 3 shows that relative contributions of different variabilities is related to the 

performance of the features on speech and speaker recognition tasks. We calculate relative 

speaker variability in the features for broad phonetic categories. This is compared to the 

speaker recognition performance obtained using those categories. It is shown that the 

phone categories with the highest relative speaker variability perform the best on the 

speaker recognition task. 

Relative phone variabilities in different feature-sets are compared with their perfor- 

mance on speech recognition task. In first experiment, effect of delta and double-delta 

features is compared using relative phone variability and speech recognition performance. 

In second experiment, relative phone variability is measured after different feature trans- 

formations, such as RelAtive SpecTrAl (RASTA) [27] filtering, mean and variance nor- 

malization, and TempoRAl Patterns (TRAPS) [25] processing. We show that these trans- 

formation improve the relative phone variability and also improve the speech recognition 

performance. 

Chapter 4 relates MANOVA with LDA. Both analysis make similar assumptions about 



the data. For a given task, results of MANOVA can be grouped into two types of variabil- 

ities - useful and harmful variability. They can be used as estimates of across-class and 

within-class covariances required by LDA. Thus it is shown that results of MANOVA can 

be used with LDA to design a robust feature-set. 

Chapter 5 applies one of the important results from chapter 2 for designing a new 

set of features for speech recognition. The result shows that effect of current phone lasts 

beyond its boundaries, and well into the neighboring phones. It is used to derive joint 

time-frequency discriminants for speech recognition using a longer temporal span. The 

discriminants are obtained using two methods - joint analysis and combined analysis. It 

is shown that incorporation of longer time span improves speech recognition performance. 

It is also shown that combined analysis assumes that time and frequency domains are 

independent. It requires less training data and generalizes better than joint analysis. 

Chapter 6 summarizes the work and suggests future directions. 



Chapter 2 

Analysis of Variability in Speech 

In this chapter, we decompose the variability in speech into four types: linguistic variabil- 

ity, speaker variability, channel variability, and residual variability. Linguistic variability 

is due to variation across phones in the language, speaker variability is because of the 

variations in different speaker characteristics such as accent and speaking rate, and chan- 

nel variability is attributed to the variations in t he communication channels, i.e., handset 

and the telephone line. Residual variability is not associated with any particular source 

because it shows the effect of all the unaccounted sources such as phonetic context and 

coarticulation. Apart from the source variabilities, we also study the source dependencies, 

which are called interaction variabilities. 

The chapter is organized as follows. Section 2.1 describes analysis of variance in 

general. Section 2.2 describes how MANOVA is used to analyze variability in speech. 

It also describes how the source and interaction covariances are computed from the data. 

Section 2.3 validates our assumptions behind MANOVA. This is followed by the description 

of the databases and features in Section 2.4. Sections 2.5 and 2.6 describe variability in 

spectral and temporal domains. These results are quantified in Section 2.7. Section 2.8 

compares our results to the results from the previous studies. It is shown that the analysis 

of variance in speech is similar to analysis of information in speech. 

2.1 ANOVA 

Analysis of variance (ANOVA) is used to measure the variation in the data with respect to 

one factor, for example, the variation in the oil price, X, across different months of year. 



This is a general statistical analysis technique which is used in many different areas from 

psychology to marketing research for product testing. The main idea is to use following 

model to explain the variation in the data, 

, where p is the mean of the data, i is the class index within one factor (there are n 

classes), pi1 is the class mean, and Eij is the error in the approximation. This can be also 

seen as test of equality of means. Given different means, p1, pa, ..., pn7 with a common 

variance a2, we wish to test equality of these means, 1-11 = p2 = ... = pn = p. This is 

referred to as null-hypothesis H,. Using our example, we can say that pi is the mean price 

of oil in a month i, p is the mean of the oil price over an year, and u2 is the variation in 

the oil price within a month (which is assumed to be same for all the months). We wish to 

know if the model is good for predicting the variations in the oil prices or if the oil prices 

across different months are same or not. In other words, is there any significant variation 

among the average monthly oil prices? How much variation in the data can be explained 

by average oil price per month? 

In order to test the hypothesis, we take a random samples {Xij) Gom the distribution 

of oil prices per month, N ( p i ,  a2), where i denotes month and j denotes the sample 

number from that month. Let ni be the samples from each month and n = xi ni, be total 

number of samples. 

where the dot in the notation shows the index over which the variable is averaged. The 

total variance of the data is decomposed into two terms. 

'bold symbol is used for true estimate and normal symbols are used for sample estimates 



where a; is the estimate of total variance, a$ is the estimate of the variance across 

different months, and a& is the estimate of the variance within each month. Note that 

CEI C;:, (X, - x . ) ~  is a biased estimated of the total covariance. We assume that 

n -+ inf and the bias is not significant. 

If the null-hypothesis is true then, a; is approximately equal to o2 , or is very 
u~ 

close to 1. If the means, pi, are different then the ratio becomes greater then 1. The 

ratio is called as F-ratio, F = $. It has F distribution with m - 1 and n - m degrees 
"E 

of freedom. The tests of significance is performed by comparing the empirical F with 

Fa (m - 1, n - m) . Here a is called as significance value. If F > Fa (m - 1, n - m) , then 

Ho is rejected at  the significance a. 

ANOVA makes following assumptions about the data - 1) normality, 2) homogeneity 

of variances, and 3) additive model. Normality refers to the assumption that the complete 

data and data within each factor is Gaussian distributed. Homogeneity refers to the 

assumption that variances within each factor are same. Third assumption is related to 

the fact that the variances are assumed to be additive. 

2.2 MANOVA 

Multivariate analysis of variance (MANOVA) is used to measure the variation in the 

data, {X), with respect to more than two factors. In this work, we use three factors - 

phone, speaker and channel. They correspond to the sources of variability in speech. The 

underline model of MANOVA is 

Xijkl = .... + Xi... + Xij.. + Zjk.  + Eijkl (2.1) 

where, i = 1, . . - , p represents phones; j = 1, - - - s represents speakers; and k = 1, . . . , c 

represents channels. This equation shows that any feature vector, Xijkl, can be approxi- 

mated using a sum of X...., the mean of the data; xi.., mean of the data for the phone i; 

Xij.., mean of the data for speaker j and phone i; &k., mean of the data for speaker j, 

phone i and channel k; and ~ i j k l ,  an error in this approximation. Using this model, the 

total covariance can be decomposed as follows 

Ctotal = xphone + xspeaker + Cchannel + XI-esidual 
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where

L Ni - - t - -L; - - X. -X X.-X
phone - N (~... ) (~... )

i

L L Nij - - t - -L; - - X. -X. X.. -X.
speaker - N (~J" ~...) (~J" ~...)

i j

~ ~ '" Nijk - - t - -
L;channel = ~ ~ L.; N(Xijk. - Xij..) (Xijk. - Xij..)

i j k

L;residual = ~ L L L L(Xijkl- XijkY(Xijkl - XijkJ
i j k l

and, N is the data size and Nijk refers to the number of samples associated with the

particular combination of factors (indicated by the subscript).

Assuming that each feature vector is labeled using the phone, speaker and channel,

the covariance term are computed as follows. First, all the feature vectors (X) belonging

to each phone i are collected and their mean (Xi...) is computed. The covariance of

these phone means is called the phone variability (shown as the shaded oval in Figure 2.1



(I)), Cphme. Next, the data for each speaker j within each phone i is collected and the 

mean of the data (q..) is computed. The covariance of the means of different speakers 

(shown as the shaded oval in Figure 2.1 (11)) averaged over all phones is called the speaker 

variability (Cspeaker). Similarly data for each channel k within a phone i and a speaker k 

is used to compute the mean of the channel (x jk . ) ,  The covariance of the channel means 

(shown as the shaded oval in Figure 2.1 (111)) averaged over all phones and all speakers is 

termed as the channel variability (Cchannel). All the variability in the data is not explained 

using these sources. The unaccounted sources, such as context and coarticulation, cause 

variability in the data collected from one speaker speaking one phone through one channel 

(Figure 2.1 (IV)). The covariance within each phone, speaker, and channel is averaged 

over all phones, speakers, and channels, and the resulting covariance is called residual 

variability (CresiduaE). 

If we denote OP(y) = yty, then Cspeaker and Cchannel can be further expanded to 

Nijkop(&k. - xij..) = x N~OP(X..~.  - x ....I 
i j k  k 

i j k  

-x.ik. + xi.,. + x.j.. + x . . k .  - x .... ) (2.3) 

In equation 2.2, the first term is the covariance of the speaker means (xj...) . it is 

referred as the global speaker variability. The second term is the interaction between 

phone and speaker factors, which is called phone-specific speaker variability. Similarly, 

in equation 2.3, the first term is the covariance of the global channel mean (x..,.). It 

is referred as the global channel variability. The second term is the interaction between 

channel and phone factors and it is called phone-specific channel variability. The third 



term is the interaction between channel and speaker factors which is referred as speaker- 

specific channel variability. The last term in equation 2.3 is the interaction among all the 

three factors. It is referred as phone- and speaker-specific channel variability. 

The interaction terms are important for following reason. The most commonly used 

preprocessing technique in speech and speaker recognition is called utterance-based mean 

subtraction ( u ~ S ) ~ [ 3 8 ] .  It is used to remove the global speaker and channel variabilities. 

The effect of UMS can be modeled in MANOVA by setting the first terms from equations 

2.2 and 2.3 to zero. This shows that the remaining speaker and channel variabilities 

are only due to their interactions. In the remaining sections, we will present results of 

MANOVA with and without UMS to show the contribution of interaction variabilities in 

speech. 

2.3 Assumptions of MANOVA 

As mentioned in 2.1, MANOVA makes three assumptions about the features. First two 

assumptions are about the normality of the data and homogeneity of distributions within 

different factors. Although this may not be valid under practical conditions, it has been 

shown that results of MANOVA are robust to deviation from normality [20]. We have also 

shown the robustness of MANOVA by comparing its results with results of a study that 

did not make any assumptions about the distribution of features. 

Third, the variability in features can be decomposed using additive model. Use of this 

model is justified by assuming a source-filter model of speech production, and by assuming 

that channel can be modeled as time-varying filter as follows. Lets assume that r(n)  is 

the excitation, f (n) is the vocal tract filter, and c(n) is the channel filter. So, resulting 

speech signal s(n) can written as, 

where * is convolution operator. Further, we assume that vocal tract filter can be de- 

composed into two different filters, filter corresponding to the phone, p(n), and filter 

2 ~ t  is also known as cepstral mean subtraction (CMS) when the operation is done in "cepstral" domain 



corresponding to the speaker, sp(n). So, we can rewrite the above equation as, 

If we transform the signal using Fourier transform, the convolutive effect becomes multi- 

plicative, 

S(f = E ( f )  x P ( f )  x SP(f 1 x C(f  ). 

Further, if we compress S( f ) using logarithmic non-linearity then the multiplicative effect 

becomes additive, 

In this work, we used logarithmic filter-bank energies as features for MANOVA where the 

effect of different sources is approximately additive. 

The proposed nesting of the sources, phone + speaker + channel, is only one way of 

analyzing variability in speech. The analysis can be performed using a different hierarchy 

where speaker or channel is used as the first source. This will change the results of 

MANOVA. Note that any hierarchy of the sources will not change their global effects ( C p  

and first terms in Equations 2.2 and 2.3) and their interactions (second term in Equation 

2.2, and second, third and fourth terms in 2.3). The difference in the results will be 

due to difference in the combination of source and interaction effects. For example, in 

the proposed nesting of phone + speaker + channel, the interaction between phones and 

speakers in included in speaker variability. If the sources are nested as speaker + phone + 
channel, then the interaction between phones and speakers will be included in the phone 

variability, 

Another issue in deciding the hierarchy is the definition of speaker and channel vari- 

ability. As mentioned before, speaker variability can be defined as the sum of two terms - 

global speaker variability and phone-specific speaker variability. Global speaker variability 

is the covariance of means of the utterances from different speakers. In speech and speaker 

recognition, this variability is commonly removed using transformation like UMS. The re- 

maining speaker variability is due to interaction between phones and speakers. We are 

interested in these interactions, specifically, for their applications in speaker recognition. 



The same explanation applies to channel variability too. Since global channel variability is 

also commonly removed using UMS, we are interested in the remaining channel variability. 

This is due to interactions of channels with phones and speakers. To summarize the dis- 

cussion, we are interested in global phone variability and interaction variability between 

phones and other factors. Therefore the hierarchy, phone -+ speaker + channel, is used 

in this work. 

Finally, it is noted that MANOVA makes some assumption (as described above) about 

the data and, in this application, these assumptions are not completely satisfied. However, 

we will show that statistics estimated using results of MANOVA are related to the per- 

formance of features on speech and speaker recognition task. Further, we will also show 

that results of MANOVA can be used to derive robust features for speech and speaker 

recognition. 

2.4 Database and Features 

Three databases are used in this work: HTIMIT, OGI Stories and TIMIT. HTIMIT [13] 

database is labeled by all the three sources of variability: phone, speaker and channel and 

is used to obtain the primary results. OGI Stories database is labeled by two sources of 

variability: phone and speaker+channel. It is the largest database among the three and 

is used in the subsequent chapters to derive discriminants for speech recognition. TIMIT 

database is labeled by two sources of variability: phone and speaker. It is used to study 

the amount of speaker and phone variability in absence of channel variations. It is also a 

good reference for comparing the results from HTIMIT (it was created by passing a subset 

of TIMIT utterances through different handsets). 

As mentioned before, HTIMIT database is used for analyzing the nature of variability 

in spectral and temporal domains. Appendix A are thirty-five phones used in this analysis. 

There are 137 speakers and 8 handsets - 4 electret and 4 carbon-button - used in the 

following analysis. 

Figure 2.2 shows a time-frequency representation of parameters estimated from a 



speech signal. The y-axis represents frequency, x-axis represents time, and the dark- 

ness of each element shows the energy at a given frequency and time. A spectral vector is 

defined by the number of points on the y-axis, S(w , t,). In this work, this vector contains 

15 points on Bark spectrum[52]. The vector is estimated at every 10 ms using a 25 ms 

speech segment. Each vector is labeled by the phone, speaker, and channel label of the 

corresponding speech segment. A temporal vector is defined by a sequence of points along 

time at a given frequency, S(w,, t).  In this work, this vector consists of 50 points each in 

the past and the future with respect to the current observation and the observation itself. 

As the spectral vectors are computed every 10 ms, the temporal vector represents 1 sec 

of temporal information. The temporal vectors are labeled by the phone, speaker, and 

channel label of the current speech segment. 

Figure 2.3 shows the difference in the computation of variability in spectral and tem- 

poral domain. In spectral analysis (a), 15 dimensional feature is used and it is labeled 

by the phone, speaker and channel label of the corresponding speech segment. All the 

vectors labeled as the same phone are collected and the covariance of the phone means is 

computed the estimate of phone variability in spectral domain. The phone variability in 

spectral domain refers to the variance of each spectral measurement due to difference in 

the phones. 

The temporal analysis (b) is performed independently for each band using 101 dimen- 

sional feature is used. The vector contains current observation, 50 observations in the 

past, and 50 observations in the future. Since the spectral vectors are estimated at 10 

ms, current observation refers to 0 ms, and 50 observations in the past and the future 

correspond to 500 ms of temporal context. Each vector is labeled by the phone, speaker 

and channel of the current observation. All the temporal vectors labeled as the same 

phone are collected and the covariance of the phone means is computed as an estimate of 

phone variability. The phone variability in temporal domain refers to the variance of each 

temporal element due to difference in the phones at the current observation. This shows 

the effect of variation in the phone at the current observation on the temporal observations 

in the past and the future. 



25

---11--- 10 ms

"

TemporalVector
(TemporalDomain)

>-

1

u
c: ~
<l)
::J
ry ,

~ lZ:
LL

'1<1

..

~I

u ..

Time

SpectralVector
(SpectralDomain)

Figure 2.2: Spectral and temporal feature vectors used for MAN OVA

2.5 Nature of Variability in Spectral Domain

Figure 2.4 shows the results of MANOVA in spectral domain. It is assumed that features in

spectral domain are independent. Results in spectral domain show variability in different

frequency bands because of different phones, speakers, and channels. We make following

observations from these results.

1. The region around 5-6 barks (500-600 Hz) contains the highest phone variability.

This variability is attributed to characteristics of voiced/unvoiced phones in this

region [26]where the voiced phones have high energy in this region and the unvoiced

phones have low energy.

2. Without UMS, the channel variability is higher than the speaker variability. This

shows that the long-term average of features in time is affected more by the channel

than by the speaker. After UMS, however, the speaker variability is higher than the

channel variability. Since the speaker and channel variabilities after UMS represent

interaction between phone and these sources, it is concluded that different phones

contain different amounts of speaker variability. After UMS, the channel variability
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Figure 2.4: MANOVA in spectral domain using HTIMIT database. Before utterance-based 
mean subtraction (MS) (a) and after UMS (b). Phone information (solid line) (I), speaker 
information (dotted line), channel information (dash-dot line), and error information (dash 
line). Note the reduction in speaker and channel information after UMS. 

is higher in lower bands whereas the speaker variability is higher in higher bands. 

3. Note the similarity between the structure of residual variability and the speaker 

variability. The similarity is due to the fact that different speakers within each phone 

also differ in the phonetic context in addition to speaker characteristics. This results 

in interaction between speaker and residual variability. This effect can be minimized 

by having more speech from different speakers so that the means of different speakers 

speaking a phone are less sensitive to the variations due to phonetic contexts. 

2.6 Nature of Variability in Temporal Domain 

In temporal domain, the variability in 15 frequency bands is analyzed independently. 

However the results from only the fifth band are presented here3 (figures 2.5a and 2.5b). 

Results from other bands are shown in Appendix C. It is assumed that features in temporal 

domain are independent. Results in temporal domain show the variability in features in 

3The other bands show a similar structure as the fifth band and the conclusions from analysis of the 
fifth band are applicable to the other bands. 
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Figure 2.5: MANOVA in temporal domain using HTIMIT database. Before utterance- 
based mean subtraction (MS) (a) and after UMS (b). Phone variability (solid line), 
speaker variability (dotted line), channel variability (dash-dot line), and error variability 
(dash line). Note the reduction in the speaker and channel variability after UMS. 

the past and the future due to the variation in phones, speakers, and channels at the 

current time instance. Following observations are made from these results: 

1. The phone variability is highest at the center (t = 0) and it drops to a small value 

250 ms away from the center. This shows that the variability introduced by phones 

at the current frame lasts for approximately 250 ms in the past and in the future. 

This conclusion forms the basis for designing long filters (-1 sec) in the temporal 

domain. 

2. The speaker and channel variability before and after UMS is approximately con- 

stant across time. After UMS the speaker variability is more dominant than the 

corresponding channel variability. 

3. The residual variability is minimum at t = 0. Note that it is computed using only the 

features within a phone. After accounting for speaker and channel variations, this 

point represents the position-within-phone variability4. Beyond the center residual 

4All the frames labeled by a phone are used for estimating the statistics for t = 0 



variability increases rapidly and asymptotes to a constant value due to the high 

variability in the phonetic context. 

4. Note the similarity in the structure of the speaker and residual variability around 

the current frame (t = 0). This is due to the fact the different speakers within a 

phone also differ in their phonetic contexts. This effect is also seen in the spectral 

domain. 

2.7 Contribution of Sources of Variability 

After describing the variabilities in HTIMIT, we quantify the contribution of the sources in 

spectral and temporal domains. Contribution of each source in spectral domain is defined 

as 

contribution of source = trace (Cso,,,,) /trace (Ctotal) . (2.4) 

This measure assumes that each source and the total variabilities have a joint Gaussian 

distribution in the feature space5. It is independent of scaling and rotation or linear 

transformation. This measure is also commutative. Therefore, contribution of all sources, 

their interactions and the residual variabilities sums to 1. Note that trace of the covariance 

is also sum of its eigen values. Therefore the measure shows the relative energy in each 

source distribution compared with the total energy in the features. 

Note that features used in spectral and temporal domain have different dimensionality. 

Features in spectral domain have 15 dimensions, and those in temporal domain have 101 

dimensions. To compare contribution of sources from both domains, we select 15 dimen- 

sions from temporal domain using principal component analysis. We compute eigenvectors 

of CtOtal, and select 15 eigenvectors that have the largest eigenvalues (E). The source and 

total covariance is projected on these dimensions. The resulting covariances are used in 

equation 2.4 to measure contribution of sources in temporal domain. This is shown as 

t~ace(E~C,,,,,E)/trace(E~C~,~,~ E). 

Table 2.1 (a) and (b) show the contribution of the sources in HTIMIT measured in 

51n general, it is accurate up to second-order statistics for any kind of distribution 



spectral and temporal domains. In each domain, the results are presented before and 

after UMS. The variance of the estimated source variance is computed using 7 different 

data-sets from HTIMIT and is indicated in the bracket besides the contribution. Results 

show that the results are independent of the variations in the data-sets. 

Comparison of results across spectral and temporal domains shows that there is less 

phone variability in temporal domain than spectral domain. This means that phone 

recognition performance using a time-trajectory from one band will be worse than using 

the vector of spectral energies. This can be verified using continuous numbers recognition 

experiments. We choose 8 features from both spectral domain and from temporal domains. 

In spectral domain, fifteen spectral energies are projected on 8 leading spectral linear 

discriminants. In temporal domain, 101-point temporal trajectories of spectral energies 

from fifth critical band are projected on 8 leading temporal linear discriminants. The 

rest of the setup is identical for both the feature-sets6. The recognition results show that 

spectral feature give 15% word-error-rate and temporal features give 79% word-error-rate. 

Note that the phone variability in temporal domain is small but it is significant because 

recognition accuracy using temporal features is better than chance (9%). 

Higher residual variability in temporal domain is due to the fact that it also includes 

the variation in the neighboring phones. It is shown in Appendix B that the contribution of 

residual variability decreases by modeling the variability due to phonetic context explicitly. 

The results indicate that using context-dependent phones as units, the residual variability 

reduces from 82.6% to 56.4%. This also shows that approximately 26% of the variability 

is due to the neighboring phones. The residual variability can be further reduced by 

modeling the longer phonetic context in the design of MANOVA. 

Table 2.2 and 2.3 compares the contribution of the sources across different databases: 

HTIMIT, TIMIT and OGI Stories. TIMIT and OGI Stories database are analyzed using 

different sources than HTIMIT. Variability in TIMIT is analyzed using phone and speaker; 

and variability in OGI Stories is analyzed using phone and speaker+channel. 

The comparison between results from TIMIT and HTIMIT in spectral domain before 

61t is described in detail in Chapter 5. 



UMS (Table 2.2 (a)) shows that adding channel variability reduces the contribution of 

the phone and the residual variability. Speaker variability is almost same across these 

databases. Similar results from OGI Stories show that the phone variability is reduced 

further by adding the telephone line variations along with the handset variations. After 

UMS (Table 2.2 (b)), the source contributions between OGI Stories and HTIMIT become 

comparable. The differences in the speaker and channel interaction variability and the 

residual variability can be because HTIMIT consists of read speech and it has artificial 

channel variations. 

Similar observations can be made in temporal domain before UMS (Table 2.3 (a)). 

After UMS (Table 2.3 (b)), t'he source interactions in HTIMIT and OGI Stories is almost 

similar. The difference in the phone and residual variabilities is due to lack of sufficient 

context in estimating the phone variability. This makes the phone variability sensitive to 

the unaccounted sources which increases its contribution and decreases the contribution 

of the residual variability. 

Note that the proposed measure is not the only way to quantify the contribution of 

different sources. Appendix E describes other measures that can be also used to describe 

source contributions. Some of these measures are also used in subsequent chapters to show 

correlation of results of MANOVA with speech recognition performance. 

2.8 Results in Perspective 

This section compares the results from this study to the results from two previous studies 

[15, 301. First study [15] uses hierarchical ANOVA to decompose the variability in TIMIT 

database. The total variability is decomposed using nine factors. We map these factors to 

the three factors from our study and show that results from the two studies are similar. 

This study measures variability as variance or using second-order statistics. Second study 

[30] showed that features do not have a Gaussian distribution. Therefore, variabilities 

should be computed using higher-order statistics. The study used mutual information 

(MI) to characterize the variability in speech and the information is computed using non- 

parametric density estimation techniques. We convert results of MANOVA to mutual 



Table 2.1: Contribution of sources in spectral domain (a) and temporal domain (b) in 
HTIMIT database. Numbers in the bracket indicate the variation in the results over 7 
different data-sets. 

(a) Spectral domain 
I % contribution 

I source I Before UMS I After UMS 1 
phone 

- speaker 

(b) Temporal domain 

' channel 
residual 

44.8 (f 0.35) 
12.8 ( f  0.16) 

Table 2.2: % contribution of sources in spectral domain without (a) and with UMS (b) 

58.1 (f 0.45) 
6.9 (f 0.19) 

18.5 (f0.58) 
24.7 (f0.60) 

source 

2.9 ( f  0.27) ' 

31.9 (f0.50) 

% contribution 
Before UMS I After UMS 

I 1 residual 1 31.9 1 
I I 

36.3 1 31.4 1 

(a) Without UMS 

source 

phone 
speaker 
channel 
residual 

% contribution 
HTIMIT 

44.8 
12.8 
18.5 
24.7 

(b) With UMS 

source 
 hone 

OGI Stories 
35.3 
41.1 

23.5 

TIMIT 

57.8 
13.1 
x 

28.9 

% contribution 
HTIMIT 

58.1 
OGI Stories 

56.3 
TIMIT 

62.7 



Table 2.3: % contribution of sources in temporal domain without (a) and with UMS (b) 

(a) Without UMS 

I I I 

residual 1 70.2 1 68.8 1 76.4 
(b) With UMS 

I % contribution 

source 

phone 
speaker 

I source I HTIMIT I OGI Stories I TIMIT I 

% contribution 
HTIMIT I OGI Stories I TIMIT 

I I I 

residual 1 82.6 1 87.6 1 81.3 

7.3 
16.2 

I 

phone 
speaker 
channel 

information. We observe that the nature of this information is similar to the information 

6.1 
11.9 

calculated in [30]. This shows that the results of MANOVA are robust to the deviation 

3.7 
27.4 

7.3 
9.2 
0.9 

from normality. 

2.8.1 Hierarchical ANOVA 

4.7 
7.5 

Sun et. al. [15] used hierarchical ANOVA to analyze variability in TIMIT using nine 

7.7 
10.8 
x 

factors: broad phone category, phone unit, phone-in-context, gender, dialect, speaker, 

token of one speech unit, sub-segment with a token and frame with each sub-segment of 

the token. The features are 8 Me1 frequency cepstral coefficients (MFCCs) after mean 

and variance normalization. The contribution of the factors is measured using equation 

2.4. The results are presented in terms four combined factors: 1) phone - phone broad 

class + phone unit, 2) context, 3) speaker - gender, dialect, speaker, 4) token - token of 

one speech unit + sub-segment with a token + frame with each sub-segment of the token. 

Results conclude that 34.1 % variation is due to different phones, 11.6 % variation is due 

to different speakers, 27.9 % variation is due to differences in the phonetic context, and 

remaining 26.5 % variation is among the sub-segments within each segment. 

These factors map to our three factors as follows. Channel does not map to anything 

as TIMIT was recorded through single channel. The phone factor maps to the phone 



factor from our study. Speaker factor maps to phone-specific speaker factor from our 

study. Combination of phonetic context and variation among the segments contribute to 

the residual variability. We perform MANOVA using similar features on TIMIT database 

and results show that the phone variability is 31 %, speaker variability is 12 % and residual 

variability is 57 %. Thus the results from the two analysis are similar. 

2.8.2 Mutual Information 

Yang et. al. [30] proposed an information-theoretic approach for analyzing variability in 

speech. They showed that sources in speech do not have a Gaussian distribution. They 

also noted that if variability is measured as mutual information then it is invariant to any 

( linear or nonlinear ) transformations of the feature space. 

The following sub-sections give a brief description of this approach. We describe the 

terms used in this approach and a kernel-based method used to model the feature distribu- 

tion. The results from MANOVA are converted to mutual information and are compared 

with the results obtained in [30]. 

Information, mutual information and joint mutual information 

If X = {x) is a random variable with the probability distribution p (x) then the informa- 

tion in x is given by entropy, 

Entropy is measured in bits. Let Y = {y) denote another random variable with the 

probability distribution p (y) . Mutual information between X and Y is a measure of 

reduction in the uncertainty of X after observing Y. It is defined as 

I (Y; X)  = H (X) + H (Y) - H (X, Y) = H (Y) - H (Y/X) = H (X) - H (X/Y) (2.5) 

If Z = { z )  is another random variable then the joint mutual information (JMI) between 

Y, Z and X is the reduction in the uncertainty of X after observing both Y and Z. I t  is 

defined as 

I (Y, Z; X) = H (Y, Z) - H(Y, Z / X )  (2.6) 



In the context of speech recognition, we refer to X as a set of classes. H (X) is based 

on the prior probability of these classes. Y and Z represent two measurements made from 

the speech signal. Subsequently, I (Y; X) and I (Y, Z; X )  represent the improvement in 

the separability of the classes after modeling classes using Y and 2. 

MI and JMI using kernel-based methods 

In this method [?I, the distribution of y is divided into K bins. The probability of samples 

in each bin is approximated by pi = ri/N where ri is the number of times y = i in N 

samples. The entropy is estimated as 

H (Y) = - Cpi logpi. 

The conditional entropy and the mutual information is calculated similarly. Note that 

this method does not make any assumption about the distribution of y. The drawback 

is that maximum value of H(Y) using this method is log(N) whereas the true value of 

H(Y) can only go up to log(K). Different techniques have been proposed to correct the 

estimates of the entropy. 

MI and JMI using MANOVA 

Computation of MI can be simplified by assuming a parametric distribution for Y. In our 

case, Y is assumed to have a Gaussian distribution with mean p and variance a2, i.e., 

p(y) N N (p,  a2). So the differential entropy can be written as 

1 
h (Y) = - 2 log (2rea2) . 

Similarly, if the distribution of Y within each class is assumed to have a Gaussian 

distribution with variance a: then h (Y/x = i) = i log (27rea:). Therefore, the mutual 

information can be written as, 

I (X; Y) = i log (27rea2) - CiEx p (i) log (27reu:) 

= $ (1% (a2) - c,, P (i) 1% (4) ) . 



Note that this formulation is accurate when the total and the within-class distributions 

of features are Gaussian distributions. In general, the results are accurate up to the second- 

order statistics for non-Gaussian distributions. 

This expression is similar to an expression obtained using analysis of variance (ANOVA) 

as follows. The total variance is decomposed using ANOVA as, 

where ui, is the across-class variance and ui, = CiEY p (i) a:, is the within-class 

variance. Therefore 

Comparing equations 2.5, 2.7 and 2.8, we can see that mutual information, I (X; Y), 

can be compared with a;,; and conditional entropy, h (Y/X), can be compared to a:,. 

Conditional entropy is the logarithm of geometric mean of the individual class variances 

and within-class variance is the arithmetic mean of the individual class variances. 

Similar derivation can be made for computing joint mutual information. Let C be the 

covariance matrix of {Y, 2)  and Ci be the within-class covariance.The expression for JMI 

and the corresponding equation for MANOVA becomes 

and 

This shows that information, mutual information and joint mutual information can be 

computed using the variance/covariance terms derived from MANOVA. 

Measurements in Time and Frequency 

To compare results, we have used the same database, features and classes used in [30]. 

Note that absolute MI values cannot be compared across these methods. It has been shown 

that entropy of a non-Gaussian distribution is overestimated using Gaussian assumption 

1581. The same conclusion cannot be applied to MI because MI has two entropy terms. If 



From AN OVA 
0.4 

0 
0 5 10 15 

Frequency 
(Critical Band Index) 

From Kernel-based method 
0.55 

0.15 
0 5 10 15 

Frequency 
(Critical Band Index) 

Figure 2.6: Mutual information between frequency band and the phone labels computed 
assuming Gaussian distribution 

the distribution is not Gaussian then the difference in the overestimation of the entropies 

will give estimate of MI that is greater than or less than the actual MI. Therefore, we 

compare only the nature of MI in time-frequency domain in the following comparisons. 

Distribution of information in frequency 

Figure 2.6 shows that MI using kernel-based method [30] I (X; 5)=0.5 bits is different from 

MI using MANOVA-based method, I (X; 5)=0.36 bits. The relative MI across bands is 

similar using the two methods. Both these methods indicate that fourth or fifth critical 

band provides the highest information about different phones. 

Distribution of information in time 

Similar results are obtained using both the methods (Figure 2.7 and [30]), i.e., information 

about current frame lasts for approximately 200 ms around the frame. 

Additional feature at different frequency but the same time 

Both methods (Figure 2.8 and (301) indicate that the optimal second measurement after 

the first measurement at 5 Barks, is at  9 barks. However, the gain in the MI differs. Using 

kernel-based method, gain because of second measurement in spectrum is 0.35 bits. Using 
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Figure 2.7: Mutual information between feature at time t and the phone label at 5 Barks 
assuming Gaussian distribution 

MANOVA-based method, gain due to second measurement in spectrum is 0.21 bits if the 

first measurement is fifth critical band and it is 0.26 bits if first measurement is fourth 

critical band. 

Additional feature at different time but the same frequency 

1. Kernel-based method ([30])- The highest gain due to the second feature in time is 

0.18 bits. There is asymmetry about the information gain due to second measure- 

ment in time - measurement in past is more important than measurement in future. 

Best measurement in the past is 20 ms before the current measurement and best 

measurement in the future is 100 rns after the current measurement. 

2. MANOVA-based method (Figure 2.9) - Maximum gain due to second feature in 

the time is 0.07 bits. Second measurement in past gives slightly more information 

than the measurement in the future. The best second measurement in the past 

and the future is 50 ms away from the current measurement. No bias is observed 

the measurement beyond 200 ms on either side does not add significant additional 

information. 
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Figure 2.8: Joint mutual information between two features in frequency and the phone 
labels given that first measurement in frequency is at 4 or 5 Barks assuming Gaussian 
distribution 

Figure 2.9: Joint mutual information between two measurements in time and the phone 
labels given that first measurement in time is at t = 0. Results are frequency of 5 Barks 
assuming Gaussian distribution. 
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Note that a bias is observed using Kernel-based method for the measurements beyond 200 

ms. This was due to the fact that the analysis was performed per speaker and per channel. 

The results, therefore, show not only the mutual information between features and phones 

but also the mutual information between features and phones, speakers and channels. The 

higher MI beyond 250 ms in the past and in the future shows the MI between features and 

speakers and channels. In the MANOVA-based method, we perform the analysis over all 

the speakers and channels. Our results show minimum bias at 500 ms around the center. 

Also, note that our results are similar to the speech recognition experiments performed 

using the fifth band than those obtained using kernel-based method [30]. 

2.9 Conclusions 

This chapter described multivariate analysis of variance (MANOVA) as a technique to 

analyze variability in speech. It was assumed that variability in speech can be divided 

into four types - 1) phone variability, 2) speaker variability, 3) channel variability, and 4) 

residual variability. The sources of first three variabilities were named as phone, speaker 

and channel respectively, and the residual variability was attributed to the unaccounted 

sources. Variability in the most commonly used features was decomposed in spectral and 

temporal domains. Different formulations were proposed to quantify the variability in each 

domain because spectral domain is bounded by sampling frequency and temporal domain 

is not bounded. Results showed that phone variability is the highest variability in spectral 

domain and it spreads for 250 ms around the current time frame in temporal domain. 

Results also showed significant interactions between phones and speakers. Finally, these 

were observed to be consistent across different databases and different data-sets. 

Results from this study were compared with two other studies. First study [15] an- 

alyzed variability in TIMIT using nine factors. We mapped these factors to the three 

factors from our study, and obtained comparable results. Second study [30] estimated the 

two most significant measurements in time-frequency domain. It used mutual information 

to characterize the variability in speech because the distribution of features was observed 

to be non-Gaussian. We showed that results of MANOVA can also be interpreted as 



mutual information and obtained similar results for the most significant measurements 

in time and frequency domains. Thus MANOVA is robust to deviations from normality 

[20, 29, 101 and it can be also considered analysis of information. 

The main difference between [15, 301 and this study is that we use the analysis to 

compare different feature-sets. We show that variabilities feature-sets is related to their 

speech and speaker recognition performances. Further, we also relate MANOVA to LDA 

where it is shown that results of MANOVA can be used to obtain a robust set of features 

for speech and speaker recognition tasks. Some of the minor advantages of this method 

over the previous methods are: 1) this method is computationally less expensive, and 2) 

this method also measures the interaction between different factors. 

Note that analysis of variance in speech is analysis of features extracted from the speech 

signal. The percentage of variability due to each source is a measure of the sensitivity of 

the features to different types of variations. In the subsequent chapters, we will show that 

the performance of the features in speech and speaker recognition task depends on the 

sensitivity of the features to these sources. Therefore results of MANOVA can be used to 

study the suitability of the features for a give task. 



Chapter 3 

MANOVA as a Diagnostic Tool 

In the previous chapter, we decomposed total variability in the features into four types: 

variability due to phones, variability due to speakers, variability due to communication 

channels, and the residual variability due to the unaccounted factors. Note that these 

types are chosen because we intend to study the features for speech and speaker recognition 

tasks. In this chapter, we show that the relative contribution of the variabilities in the 

features correlates with their performance on the speech and speaker recognition tasks. 

The chapter is organized as follows. In Section 3.1, we measure the speaker variability 

in the features for broad phonetic categories. We show that the speaker variability is 

related to the speaker recognition performance using these categories. In Section 3.2, 

we use these results and show improvements in the speaker recognition system on NIST 

speaker recognition task. Section 3.3 compares relative phone variability with speech 

recognition performance across different feature-sets and shows that they are related. 

Section 3.4 gives summary and conclusions of this work. 

3.1 Speaker Variability and Speaker Recognition Perfor- 

mance 

In chapter 2, we showed that there is more interaction between phones and speakers 

than between phones and channels. This means that speaker characteristics have a larger 

variation across different phones than channel characteristics [53]. In this section, we 

compute relative speaker variability in the features for different phone categories, without 

explicit speaker recognition experiments. We show that the speaker variability is related 



to to the speaker recognition performance obtained using these categories. 

Several researchers have pursued a phone-based approach to speaker verificationjrecognition 

[3,50,1,36]. Eatock and Mason [3] have shown that nasals and vowels provide best speaker 

recognition performance, followed by fricatives, affricates, and approximants, with stops 

providing the worst performance. Gupta and Savic [50] used four broad phoneme cat- 

egories - voiced, fricative, nasal, and plosive - for the speaker recognition. They con- 

cluded that for the speaker recognition task, plosive are least effective whereas the voiced 

phonemes and fricatives are most effective broad classes. Paris and Carey [I] showed that 

the log likelihood ratio of different phonemes can be used to characterize their speaker 

discriminating ability. They concluded that a subset of phones - front vowels, voiced frica- 

tives and nasal - outperforms the complete set of phones on the text-independent speaker 

recognition task. Rodriguez-Lunares and Garcia-Mateo [36] used three broad phoneme 

classes - voiced, unvoiced and transitions - for speaker recognition. Their results showed 

that the class of voiced phonemes is the most effective class for speaker recognition. 

The main difference between the previous research and this work is that we are inves- 

tigating into the nature of speaker variability without running explicit speaker recognition 

experiments. We are using MANOVA to estimate the importance of broad categories and 

verifying the results using speaker recognition experiments. 

From HTIMIT database, we use data from 4 electret and 4 carbon-button handsets in 

the following experiments. Eighteen MFCCs (Cl-C18) are computed from logarithmic 

energies from 19 filters in 330-3300 Hz frequency range. The energies are computed using 

32 ms speech segment and the adjacent segments are overlapped by 22 ms. The features are 

appended by delta and double-delta features computed over 4 and 9 frames respectively. 

Each feature element is normalized using the global mean and variance computed over the 

feature set used for MANOVA. 



3.1.2 MANOVA 

A set of 1363 files from 137 speakers (93 females and 44 males) that are common across 

different handsets is used for MANOVA. Table 3.1 shows the phones used in these experi- 

ments. MANOVA is performed the same way as described in the previous chapter. Speaker 

and channel variability within a broad category is calculated as the average speaker and 

channel variability within the phones in that category, that is, 

speaker variability, C ,  = & CcEh X$ * Ni 

channel variability, Cc = & CeEbc C: * Ni, 

where, and C: are the phone-specific speaker and channel covariances, N' is the 

number of frames in each category. The relative speaker variability is computed as 

trace(C,)/trace(C,) . 
Figure 3.1 shows the results of MANOVA for individual phone categories. It shows 

that vowels, diphthongs, glides and nasals are more sensitive to speaker changes than the 

other categories. Features for silence and stops show the lowest sensitivity to speaker 

changes. Similar results are obtained by clustering phones into broad phonetic categories 

(Table 3.2). They show that features from vowels and diphthongs are the most sensitive 

categories to speaker changes. They are followed by features from glides and nasals, and 

fricatives. Features from silence and stops category show lowest sensitivity to speaker 

changes. 

Table 3.1: Phones and their mapping to broad phonetic categories 

Broad category 

vowels+dipht hongs 
(v+d) 

glides+nasals 
(gfn) 

fricatives (f) 
silencefstops 

(s+s) 

Phones 

ix ux ih iy eh ae uh uw aa ax axr ah er ao aw ay ow oy ey 

w y r 1 m n em en ng nx eng 

f t h s h h v s h v d h z d x z h c h j h  
sil epi pcl tcl kc1 qcl bcl dcl gcl b d g p t k 



Table 3.2: Relative speaker variability for features of different broad categories 

3.1.3 Speaker Recognit ion Experiments 

Category 

Relative speaker 
variability 

The experiments are performed in a universal background model (UBM) and Gaussian 

mixture model (GMM) framework [14]. Figure 3.2 shows this framework. There are 

two types of models: universal background model and speaker model. During training 

part, UBM is trained over many different speakers and different conditions. GMM have 

been the most popular modeling technique for UBM [14]. Speaker models are typically 

v+d 
10.1 

adapted from UBM using maximum a-posteriori (MAP) adaptation. During testing part, 

g+n 
9.7 

a hypothesized speaker identity is supplied with the input utterance. The log-likelihood 

of these features is calculated using UBM and hypothesized speaker model. The difference 

in the likelihoods is compared to a pre-computed threshold (A). If the likelihood of the 

speaker model is higher than the likelihood of UBM then the hypothesized speaker is 

accepted as a target speaker. 

The basic setup of the experiment is 1) train a set of speakers on one handset and 2) 

test them on all 8 handsets, which is repeated for all the 8 handsets. For each experiment, 

32 component UBM is trained using features from approximately 42 male and 42 female 

speakers. The features are first clustered into 32 bins using vector quantization. The 

means and variances of the bins are adjusted using expectation-maximization procedure. 

A different set of 88 speakers (44 females and 44 males) that are common across all the 

handsets is used as the target speakers. Their models are generated by adapting only the 

means of UBM using the adaptation factor as 16. 

HTIMIT has 10 utterances for each speaker where each utterance is approximately 3 

secs. Target models are trained using 8 utterances and 2 utterances are used for testing. 

During testing, the utterances are tested against all 88 speakers - 1 target speaker and 

87 impostor speakers. We use 4 carbon-button and 3 electret handsets for the speaker 

recognition experiments. The el3 handset is excluded from the testing because it does not 



Figure 3.1: Speaker and channel variability within each phone. 

have enough data for male speakers. 

Table 3.3 speaker recognition results using one category. The results show a similar 

trend as the results of MANOVA. Vowels and diphthongs give the best results among all 

categories. This is followed by glides and nasals, and fricatives. Category of silence and 

stops performs the worst. Note that this trend is same for both matched-handset testing 

and mismatched handset testing. In these experiments, speaker variability is computed 

using 1-component GMM and speaker recognition experiments were performed using 32- 

component GMM. But the speaker recognition results are consistent with the relative 

speaker variability in the features. 
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Figure 3.2: Universal background model- Gaussian mixture model (UBM-GMM) frame-
work

Table 3.3: % equal error rates (EERs) using different broad phonetic categories. Same
handset condition refers to trials where same handset was used for training and testing.
Different handset condition refers to trials where different handset was used for training
and testing.

3.2 Speaker Recognition using Broad Phonetic Categories

Using the results from the previous section, we propose speaker recognition system using

broad phonetic categories. It is evaluated on 2001 NIST speaker recognition evaluation

task. The broad phonetic category recognition system built using CTIMIT [4]. We present

results on this task using different broad categories and show that they agree with the

results on HTIMIT database. Further, we show that the performance of the system can be

improved using only two broad phone categories - vowels+diphthongs and glides+nasals.

3.2.1 Speaker Recognition Task

This is one-speaker detection task where the goal is to determine if the specified speaker

is present in the given speech segment. The evaluation data is drawn from Switchboard-

II phase-4 database. There are 174 target speakers - 100 females and 74 males. Each

Broad %EER

category Same Different
Handset Handset

v+d 11.6 18.3

.g+n 16.1 18.9
f 18.5 22.8

s+s 18.5 26.4



speaker has approximately two minutes of training data. The task is evaluated using 

22418 speaker trials - 2038 trials with target speaker and 20380 trials with impostor 

speaker. The duration of each trial segment varies between 0 sec and 60 sec. The trials 

include both "same number" and "different number" trials which refer to same handset 

and same handset type trials. The results are combined over both the conditions. 

The development data is also provided by NIST. It was also drawn from Switchboard- 

I1 phase-4 database and does not overlap with the evaluation data. The development data 

contains 22 female and 39 male speakers with two minutes of training data per speaker. 

The test data contains 78 segments - 34 female and 44 male. 

3.2.2 Recognition System 

The system is implemented in UBM-GMM framework as described earlier. A 256 compo- 

nent UBM is trained using the development data. There is one UBM for each gender. The 

target models are derived with MAP adaptation of UBM where only means are adapted 

using adaptation factor equal to 16. The features are 15 MFCCs (Cl-C15) appended with 

15 delta and 15 double-delta coefficients. The features are normalized with the mean com- 

puted per utterance and they are processed using a medium-term gaussianizer [32]. This is 

a state-of-the art speaker recognition system that has consistently performed comparable 

to the best systems submitted in the evaluation. 

The speech recognition system used for broad phonetic transcription is trained using 

272 speakers - 136 male and 136 female - from CTIMIT database. Features are 13 MFCCs 

(Cl-C13) appended with 13 delta and 13 double-delta coefficients. They are normalized 

with the mean computed over the utterance and variance computed over the development 

database. Each broad phone category is modeled using 3-state, 32-component HMM. 

~ u r i n ~  transcription, a simple grammar is used where any category can follow any other 

category. 

3.2.3 Results 

Table 3.4 shows the speaker recognition performance obtained using features from one 

broad phonetic category. The results again show that vowels and diphthongs perform the 



best and silence and stops perform the worst among the categories. This is consistent with 

the results of MANOVA. Note that this result is significant because: 1) unlike HTIMIT, 

broad phone category transcriptions are generated using ASR system, 2) each category 

was modeled using 256-component GMM. 

Table 3.4: Speaker recognition performance using broad phonetic categories on NIST 2001 
speaker recognition task 

I 

These results are used to select a smallest het of categories that give the best perfor- 
i 

Category 

%EER 

mance on the speaker recognition task. Table b.5 shows that the combination of vowels, 

diphthongs, glides and nasals gives the best pedformance (Figure 3.3). Note that it is also 

better than using speech-silence segmentation kvhere speech-silence segmentation is per- 

v+d 
8.9 

formed using artificial neural network (ANN). ANN was trained using same data that was 

used to train the transcription system. It used 113 PLP [24] cepstral coefficients appended 

g t n  
13.1 

with 13 delta and 13 double delta coefficients. ~ N N  had 9 frames as input (39 x 9 input 

nodes), 500 hidden nodes and 2 output nodes. ' This gave 8.5 % EER which is similar to 

the system that ignored the silence and stops cbtegory. 

f 

18.3 

Table 3.5: Speaker recognition performance using combination of broad phonetic cate- 
gories on NIST 2001 speaker recognition task 

s+s 
23.6 

Note that the results of MANOVA show thkt all the categories have non-zero relative 

speaker variability. Therefore, the performanc$ of the systems should not degrade when 

features for some categories are added to the &stem. In the worst scenario, the perfor- 

mance of the system should remain unchanged if the new data does not contribute to 

Categories 

v+d,g+n,f,s+s 
v+d,g+n,f ~ 

%EER 

9.8 
8.9 



Figure 3.3: Performance of speaker recognition system using all categories (dotted-line) 
and two broad phone categories (straight-line) on NIST 2001 speaker versification task 

speaker recognition. The performance of degradation of the system by adding certain cat- 

egories is related to modeling efficiency, that is, ratio of Gaussian components to the-useful 

categories. With fewer and most useful categories, these categories are modeled using all 

the Gaussian components. By adding categories like silence+stops, many components are 

used to model this category and the ratio of Gaussian components to the useful categories 

reduces. Note that this result is valid only with the constraint that the size of GMM is 

constant while adding more data. If the number of components are increased then the 

drop in the performance will not be significant. 

3.3 Phone Variability and Speech Recognition Performance 

This section compares the relative phone variability with the speech recognition per- 

formance over different feature-sets. The relative phone variability is calculated using 

MANOVA on HTIMIT database. The experimental setup is same as the one described in 

2. The relative phone variability is defined as 



This is also called as F-ratio obtained using phones as classes. The speech recognition ex- 

periments are performed on digit recognition tasks using OGI Numbers and noisy TIDIGIT 

databases. 

3.3.1 Effect of Delta and Double-delta Features 

In these experiments, we use three feature-sets with 24 dimensional features. The base 

features are 24 logarithmic filterbank energies projected on 24 discrete cosine transform 

(DCT) bases. They are compared to two features-sets- 1) 12 DCT coefficients appended 

with 12 delta features computed using a window of 4 features, and 2) 8 DCT coefficients 

appended with 8 delta features using a window of 4 features, and 8 double-delta coefficients 

computed using a window of 9 frames. 

The recognition experiments are performed using OGI Numbers database. It is a 

continuous digit recognition task. The digits are modeled as sequence of monophones and 

each monophone is modeled using 5-state, 3-component HMM. A simple grammar is used 

where any digit can follow any other digit. The performance is measured as percentage 

word-error-rate (%WER) . 
Table 3.6 shows the relative phone variability and speech recognition performance. 

Results show that speech recognition performance improves when the relative phone vari- 

ability improves. 

Table 3.6: Phone variability and speech recognition performance using delta and double- 
delta features 

%WER Features 

24 DCT coefficients 
12 DCT + 12 delta 

coefficients 
8 DCT + 8 delta 

+ 8 double-delta coefficients 

Relative phone 
variability 
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3.3.2 Effect of Feature Transformations

This section analyzes different processing blocks used in our submission for the AURORA

task. Figure 3.4 shows the block diagram of the system. We analyze features at different

stages (marked by roman numerals) and measure relative phone variability in the features.

This is related to the performance of those features obtained on the AURORA task.
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, ~
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Figure 3.4: Modified QUALCOMM-OGI-ICSI front-end used for AURORA task

A brief description of the task is presented here. Please refer to [5] for a detailed

discussion. The task is distributed speech recognition in different languages under different

additive noise and convolutive noise conditions, Speech recognition refers to connected

digit recognition. In this work, we consider only English digit recognition task. The task

was designed using TIDIGIT database where different noises were artificially added to

it. The recognizer was fixed by the standards committee where each digit was modeled

using whole-word model. The word models were 16-state, 3-component HMMs. The

participants were allowed to only change the features under the constraints of minimum

bit-rate and minimum latency of 250 ms.

Different feature-sets are extracted using the system as follows:

1. Logarithmic energies from 23 filters on MEL frequency axis (I). They are projected

on 15 DCT bases and are appended with 15 delta and 15 double-delta coefficients;



2. Logarithmic energies after noise compensation (11). They are projected on 15 DCT 

bases and are appended with 15 delta and 15 double-delta coefficients; 

3. Cleaned logarithmic energies after RASTA filtering (111). They are projected on 15 

DCT bases and are appended with 15 delta and 15 double-delta coefficients; 

4. RASTA filtered energies after online mean and variance normalization (IV). They 

are projected on 15 DCT bases and are appended with 15 delta and 15 double-delta 

coefficients; and 

5. Normalized 45 features appended with 6 TRAPS features and reduced to 45 features 

using whitening transformation (V) . 

Note that all the feature sets have 45 features. 

For all the features, the training data consists of clean TIDIGIT database and four 

different additive noises added to TIDIGIT database. The testing data consists of three 

parts. Test A has same noises used in training set, Test B has different additive noise, and 

Test C has two different additive noises with two different convolutive noises. The recog- 

nition performance is the average WER improvement over previous AURORA standard 

in these testing conditions. 

Table 3.7 shows the relative phone variability computed using 5 feature-sets and their 

recognition performance on English part of AURORA task. Results show that improve- 

ment in the relative phone variability is related to improvement in performance of features. 

Note that the small improvement in relative phone variability after noise compensation 

and online normalization is due to the fact that HTIMIT database is less noisy than the 

noisy TIDIGIT database used in AURORA. 

3.4 Conclusions 

In this chapter, we related variabilities in different features to their performance on speech 

and speaker recognition tasks. We measured speaker and channel variabilities in the 

features for different broad phonetic categories. It was observed that the category of 

vowels and diphthongs is the most sensitive category for speaker variations. Thus, it 



Table 3.7: Phone variability and recognition performance at different stages of proposed 
AURORA front-end 

was hypothesized that it must be the most useful category for speaker recognition. The 

hypothesis was verified using speaker recognition experiments. 

We showed that relative phone variability in the features is related to their perfor- 

mance on speech recognition tasks. This was shown using two experiments. In the first 

experiment, we compared features with and without dynamic features. It was shown 

that adding delta and double-delta features improve the relative phone variability in the 

features. They were also shown to improve the speech recognition performance. 

In the second experiment, we analyzed the system submitted for AURORA task. The 

system had different processing stages where each stage was shown to improve the per- 

formance of the features. We computed relative phone variability using features at the 

output of different processing stages. The relative phone variability was shown to improve 

after these processing stages. Thus, it was shown that relative phone variability in the 

features is related to their speech recognition performance. 

In conclusion, we showed that results of MANOVA can be used to compare different 

feature-sets for speech and speaker recognition tasks. In the following chapters, we will 

show that the factor covariances, which were used to compute the relative contributions, 

can also be used to compute new features which are suitable for speech recognition task. 

% improvement 

1.3 
16.3 
23.4 
30.1 
38.6 

System 

1 
2 
3 
4 
5 

Relative phone 
variability 

4.8 
4.9 
5.1 
5.2 
6.3 



Chapter 4 

MANOVA and LDA 

In previous chapters, it was shown that given a set of features, MANOVA can be used 

to decompose the total variability in the features into four types - phone (inter-phone), 

speaker, channel and residual. The percentage contribution of these variabilities was shown 

to be proportional to the performance of the features on the speech and speaker recognition 

tasks. In this chapter, we will show that the variabilities computed using MANOVA can 

be used to derive robust features for a given task using a statistical technique, linear 

discriminant analysis (LDA) . 

We begin the chapter with an overview of MANOVA in Section 4.1. Section 4.2 

describes LDA in general, and Section 4.3 gives an overview of the previous work in 

speech recognition using LDA. In Section 4.5, we modify MANOVA assuming t hree-state 

phone models. Resulting variabilities are used to derive linear discriminants in Section 

4.6. It is shown that the new discriminants improve the performance of continuous digit 

recognition system over those derived using one-state phone models. 

4.1 MANOVA 

In this thesis, MANOVA is used to decompose the total variability in the features into vari- 

abilities due to phones, speakers and channels, and a residual variability. The variability 

is measured using covariances. The decomposition is performed as 

For a given task, all the sources of variability are not important. For example, for 

speaker independent speech recognition task, zphoTae is useful variability and (Ctotal - 



zphone) is the harmful variability. For speaker recognition task, (Cphone + Cspeaker) is the 

useful variability and (Cchannel + zresidual) is the harmful variability. The reason for not 

using only CspeakeT as the useful variability is as follows. Cspeaker represents two types of 

variabilities - global speaker variability and phone-specific speaker variability. Convention- 

ally, the first type is eliminated using UMS, and Cspeaker represents only phone-specific 

speaker interactions. Maximizing phone-specific speaker variability implies maximizing 

both phone and speaker variabilities. 

4.2 Linear Discriminant Analysis 

LDA is a statistical technique used for feature selection [33], that is, for finding a sub- 

space in the original feature space that contains maximum useful variability and minimum 

harmful variability for a given task. If the transformation is a linear combination of the 

input variables then the analysis is also referred as "Fisher's discriminant analysis". The 

analysis is performed as follows. Let (Xij, Y,j; 0 5 i 5 N ,  0 5 j 5 Mi} be M (=Ci Mi), 

tuples of feature vectors Xij and class labels Xj. There are N classes present in the data, 

and there are Mi vectors per class. the task is find a subspace that maximizes separa- 

tion between the classes while minimizing the variability within classes. Note that the 

estimate of separation between classes is a useful variability and the average variability 

within classes is a harmful variability. The optimization criterion is defined as 

where e is a set of vectors that maximize J(),  and A, and Wc is defined as, 

xi. is a an estimate of class mean, x.. is an estimate of global mean, and the equation in 

{) is an estimate of covariance of each class. The solution to this optimization is similar 

to the generalized eigenvector equation [33], 



where E is a matrix whose columns are ei and A is a diagonal matrix of eigenvalues. If 

W;' exists then this can be also written as 

The leading eigenvectors of E define the new feature space that maximizes Ac while 

minimizing W,. We refer to these eigenvectors as linear discriminants (LDs). The new set 

of features are obtained by projecting original features on LDs, 

We refer to the new features as discriminant features. 

Note that LDA makes the same assumptions about the data as MANOVA. It assumes 

that the total distribution of features is Gaussian, and the distribution of the class means 

is also Gaussian. Further, it assumes that the distribution within-each class is the same, 

and it is also Gaussian. Thus results of MANOVA can be used as input to LDA to derive 

discriminant features. In the next section, we will review the previous research that have 

used LDA in speech recognition. 

4.3 LDA in Speech Recognition 

Many researchers have used LDA in speech recognition [41, 39, 38, 35, 34, 44, 26, 8, 561. 

This work can be divided into three groups - LDA in spectral domain, LDA in temporal 

domain, and LDA in joint time-frequency domain. The first two groups are described in 

this chapter. The third group is reviewed in the next chapter. 

4.3.1 Spectral Domain 

LDA in spectral domain refers to the analysis using short-term spectral energies or its 

linear transformations (for example, DCTs) as features. Hermansky et. al. [26] used log- 

arithmic energies from 15 Bark filters as features. Hunt et. al. [40] used DCT coefficients 

from spectral energies as features. The classes used in the analysis have varied from a set 

of context-independent phones [26] to a set of states of HMM [40]. Apart from improving 

the performance of ASR system, LDs have also been studied for nature of discriminability 



in spectral domain. Malayath [42] has shown that linear discriminants from logarithmic 

FFT spectrum analyze low frequency part with higher resolution than high frequency 

part. This is similar to the MEL/BARK frequency scale that has more samples in low 

frequency part than higher frequency part. This work is an extension of [42]. We refer to 

LDs in spectral domain as spectral LDs (SLDs). 

4.3.2 Temporal Domain 

LDA in temporal domain refers to the analysis performed using temporal trajectories of 

spectral energies at a particular frequency as features. Avendano et. al. [9] and van 

Vuuren et. al. [56] have derived discriminant base functions from TIMIT, Switchboard, 

and NTIMIT databases. Avendano et. al. [9] used 10 broad phonetic categories as classes 

and van Vuuren et. al. [56] used context-independent monophones as classes. The bases 

are interpreted as filters. The filters were similar across different frequency bands. The 

frequency response of the first filter was similar to original RASTA [28] filter, and the 

frequency response of second and third filters were similar to the RASTA filter convolved 

with a delta and double-delta filters respectively. This work is an extension of [56]. We 

refer to LDs from temporal domain as temporal LDs (TLDs). 

4.4 Effect of Phone Classes on LDA 

In this section, we show an interesting effect of phone classes on the resulting TLDs. We 

show that when two classes, that always follow each other, are used in LDA, the resulting 

discriminants have a delta-like filter. 

A commonly occurring case of two classes that follow each other, is closures and bursts 

within stops. We use two sets of classes where one set has closures and bursts modeled 

together as stops and another set has closures and bursts modeled separate as two different 

classes. Figure 4.1 shows first three TLDs for the two cases. First and second discriminants 

are similar in these two cases. They are approximately symmetric band pass filters. The 

third filter, however, is a symmetric filter when closure and burst are modeled together 

and an antisymmetric filter when they are modeled separately. 
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Figure 4.1: Effect of separation of closure and burst on the design of TLDs. 



Figure 4.2: Block diagram of HMM where states follow each other in a sequence. 

This result is important because delta filter has been used in speech recognition for 

a more than a decade [48, 491. It has been proposed based on results of perceptual 

experiments where the transitions were shown to be important in speech perception. Using 

these experiments, we show that this filter can be derived from the data when one class 

follows the other. In general, speech recognition systems model phones as multiple-state 

HMMs where the states within a phone always follow each other (Figure 4.2). Therefore 

we expect that discriminants derived using the states as classes will give delta-like filter 

as one of the discriminants. 

4.5 Three-state MANOVA 

MANOVA assumes that the distribution of means of different phones is a Gaussian dis- 

tribution. It also assumes that distribution of features within each phone is a Gaussian 

distribution, that is, one-state one-component HMM. Linear discriminants derived using 

results of MANOVA are optimal when phones are modeled as one-state one-component 

HMMs in recognition experiments. In recognition experiments, however, the phones are 

typically modeled using multiple-state HMMs, that is, each phone segment is divided into 

multiple sub-phone segments along time and the segments are modeled independently. To 

make MANOVA similar to the speech recognition experiment setup, we propose MANOVA 

using sub-phones instead of phones. In our work, the sub-phones are obtained by dividing 

the phone segment uniformly into three parts which are analogous to three states of HMM. 

We also refer to each sub-phone as a state. Each state is used as a class for MANOVA. 
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We refer to this analysis as three-state MANOVA and, with the same analogy, refer to the

previous analysis as one-state MANOVA.

The original one-state model for MAN OVA was

L;total = L;phone + L;speaker + L;channel + L;residual'

The new model is

L;total = L;statephone+ 'tspeaker + 'tchannel + 'tresidual,

where L;statephone is the variability across different states of phones; and 'tspeaker" 'tchannel

and 'tresidual are the new speaker, channel and residual variabilities. Note that total

variability L;total is same in both cases.

The variabilities are computed using the same experimental setup described in Chapter

2. The features are preprocessed using UMS. L;statephoneis the covariance of the means

of states of different phones. Since the results are presented after UMS, the new speaker

and channel variabilities represent the interaction between speakers and channels, and

different states within a phone.

Tables 4.1 and 4.2 show the contribution of variabilities computer using one- and

three-state phone models in spectral and temporal domains. The results are interpreted

as follows. L;subphone- L;phoneis the average within-state variability in each phone. Results

show that within-state variability in temporal domain is comparable to L;phone' In spectral

domain, within-state variability is only a small percentage of L;phone' L;speaker- L;speaker

is the interaction between speakers and different states within a phone, and L;channel -

L;channelis the interaction between channels and different states within a phone. Results

show that in both domains, the interaction between speakers and states within phones

is higher than the interaction between channels and states within phones. L;residual-

L;residual is the part of residual variability explained by different states within a phone.

The difference in the contribution of residual variability shows that 3.3% variability in

spectral domain and 6.4% variability in temporal domain is explained by modeling states

within a phone.
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Table 4.1: Contribution of variabilities in spectral domain using 1-state and 3-state phone
models

Table 4.2: Contribution of variabilities in temporal domain using 1-state and 3-state phone
models

Figure 4.3 shows "L,phoneand "L,statephone- "L,phonein spectral and temporal domains.

It shows that within-state variability in spectral domain is small compared to one-state

phone variability. In temporal domain, within-state variability is comparable to 1-state

phone variability. It has two peaks around 50 ms from the current state. Assuming that

length of a phone is approximately 80 frames, these peaks represent variation at the center

of the neighboring phones. This shows the effect of the current phone lasts beyond its

boundaries.

4.6 Three-state LDA

Linear discriminants are derived from the results of MANOVA as follows. The across-class

and within-class covariances are defined in terms of "L,statephoneand "L,totalas,

Ae = "L,statephone

We = "L,total- "L,statephone

The linear discriminants are obtained using equation 4.1. Note that SLDs from 3-state

phone models are almost the same as SLDs from 1-state phone models, but TLDs are

% contribution
source one-state three-state

phone 58.1 59.8

speaker 6.9 9.1
channel 2.9 2.5
residual 31.9 28.6

% contribution
source one-state three-state

phone 7.3 9.9

speaker 9.2 13.0
channel 0.9 0.9
residual 82.6 76.2
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Figure 4.3: Phone variance (thin line) and average within-state variance (thick line) in
spectral and temporal domain
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different for these two models. Figure 4.4 compares TLDs obtained using phones as classes

(case 1) with TLDs obtained using states within phones as classes (case 2). As shown

before, first TLD is approximately symmetric band-pass filter, which is similar in both

cases. Further, it can be shown that the same discriminant is obtained by using sonorants

obstruants.

and obstruants as two classes. Therefore this basis discriminates between sonorants and

The second TLD from case 1 is similar to third TLD from case 2. This is also a symmet-

ric band-pass filter. It can be shown that same filter is obtained when vowels, diphthongs,

glides, and nasals are used as one class; and schwas as the other class. Therefore, this

basis discriminates within sonorants.

The third TLD from case 1 is different from second TLD from case 2. Third TLD from

case 1 is a combination of symmetric and anti-symmetric filter, where the symmetric filter

is dominant. Second TLD frorn case 2 is an anti-symmetric filter. The comparison shows

that when LDA is performed using phones as classes, third TLD has an antisymmetric

component. When LDA is performed using states within phones, the anti-symmetric basis

is the second most dominant basis. This shows that the delta-like filter discriminates

between states within phones and it becomes dominant when the states are modeled

explicitly.

The LDs are evaluated on continuous numbers recognition task. The experiment setup
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Table 4.3: % WER using one-state and three-state spectral discriminants (SLDs) and 
temporal discriminants (TLDs) 

System Features %WER 

three-state SLDs+A + AA 
DCT + one-state TLDs 

DCT + three-state TLDs 5.7 

is same as described in chapter 3. Table 4.3 shows the word error rates (WERs) using 

four systems, each using 24 features. Systems 1 and 2 use spectral discriminants appended 

with 8 delta and 8 double-delta coefficients computed using 4 and 9 frames. Systems 3 and 

4 use 8 DCT coefficients filtered using temporal discriminants. Results show that three- 

state SLDs perform similar to one-state SLDs. The three-state TLDs, however, perform 

significantly better than one-state TLDs. 

4.7 Conclusions 

In this chapter, we showed that results of MANOVA can be used for feature extraction 

using LDA. It was noted that both MANOVA and LDA make same assumption about the 

data, and results of MANOVA can be used as input to LDA. For speech recognition task, 

we used the estimate of phone variability as across-class covariance and the estimate of 

remaining variability as the within-class covariance. 

It was observed that when the classes follow one another, one of the resulting LDs is 

a delta-like filter. This was shown by estimating LDs from two cases: 1) when burst and 

closure within a stop is modeled separately; 2) when burst and closure within a stop is 

modeled together. First case showed third TLD as an anti-symmetric - delta-like - filter. 

Second case shows that all the three TLDs are approximately symmetric filters. 

Note that the case, where classes follow one another, is related to HMMs used in speech 

recognition. In typical speech recognition systems, phones or sub-phone units are modeled 

as multiple state HMMs. The states in HMMs are in a sequence so they also follow one 

another. To make our analysis similar to the recognition setup, we modified MANOVA 

and LDA by dividing phones uniformly into three parts and using each part (referred to 



as a state) as a class. 

Results of MANOVA showed that contribution of within-state variability in spectral 

domain is lower than contribution of phone variability, In temporal domain, contribution 

of within-state variability is similar to the contribution of phone variability. Results of 

LDA showed that, using states within phones as classes, the second most important LD 

is an anti-symmetric filter. Thus we conclude that this filter, which is similar to the delta 

filter, discriminates between different states within phones. 

LDs, using these state-phone models, were evaluated on the continuous numbers recog- 

nition task. SLDs did not show any improvement, but TLDs showed significant improve- 

ment in the performance over one-state design. We have also used similar procedure for 

deriving TLDs on AURORA phase-I task. The task and the system are described in [55]. 

We observed that one-state TLDs gave 15% improvement over baseline and one-state 

TLDs gave 30% improvement over the baseline features. 

In this chapter, we discussed LDA in spectral and temporal domain. In the next 

chapter, we will perform LDA in joint time-frequency domain. LDs in joint domain are 

also obtained using three-state phone models because discriminants from three-state phone 

models have consistently performed better than the discriminants derived using one-state 

phone models. 



Chapter 

Two-Dimensional Discriminants for ASR 

We showed in Chapter 2 that information about current phone lasts beyond its boundaries, 

into the neighboring phones. The goal of this work is to incorporate a longer time span 

into the design of features for speech recognition. A trivial way of using the longer time 

span is to use a wider block of spectrogram - 101x15 points - as features. However, there 

are a few problems with these features. First, these features are highly correlated. This 

can be seen by computing condition number - ratio of largest eigen value to the smallest 

eigen value. The condition number using OGI Stories database - 500,000 frames - is of 

the order of lo7. Approximately 50 principal components capture 90% of the total energy, 

and approximately 350 principal components capture 99% of the total energy. This clearly 

shows that the features are not independent, and most of the information in the feature 

resides in a lower dimensional subspace. Second, if we assume that all the dimensions 

are important for recognition then we will have to estimate 1515 dimensional covariance 

matrices to model the distribution of features. By curse of dimensionality [47], we will need 

very large number of samples - at least 0 ( 2 n ) 1  - to estimate them which is not feasible. 

We need to estimate a smaller set of features from this block that captures most of the 

useful information for speech recognition. In this work, the reduced set of features are 

obtained using LDA in joint tim+fiequency domain. The resulting linear discriminants 

are called two-dimensional2 linear discriminants (2DLDs). 

This work extends the previous work [34,44,59, 351 on 2DLDs where the discriminants 

'Assuming that minimum of two samples are needed for estimating mean and variance of each dimension 

"Two-dimensionaln refers to spectral and temporal dimensions. 



are derived using a smaller temporal context of around 9 frames. In [34], a block of 9 frames 

of 20 dimensional spectral features was used as input to LDA. Discriminant features after 

projecting these features on 50 LDs were used in the recognition experiments. In [35], 

the process of deriving LDs was divided into two parts. First, LDs were derived using 

24 cepstral coefficients. Spectral discriminant features were obtained by projecting 24 

cepstral coefficients on 24 LDs. In second part, temporal discriminants were derived 

independently for each cepstral component. The 60 most LDs were chosen in temporal 

domain and spectral discriminant features were filtered using them. It was reported that 

this method showed improvements over the previously proposed method [34]. In [44], 

multi-resolution features in time-frequency domain were proposed. The temporal span of 

the original features was limited to block of 9-17 frames. In [59], a block of 3 x 3 elements 

from time-frequency domain was used as in input to LDA. This work is an extension 

of [34, 351, where we show that the performance of the recognition system improves by 

incorporating longer time-span. 

Section 5.1 describes two methods used to derive 2DLDs: 1) joint analysis, which is the 

commonly used method for deriving 2DLDs, and 2) combined analysis, which combines 

spectral linear discriminants (SLDs) and temporal linear discriminants (TLDs). Section 

5.2 shows that this condition implies a certain structure of the across-class and within- 

class covariances. In Section 5.3, we use discriminants from both analyses on speech 

recognition task and show that discriminants from combined analysis perform better than 

those obtained from joint analysis. The sub-optimal performance of joint analysis is 

attributed to insufficient training data for joint analysis in Section 5.4. Finally, Section 

5.5, compares results from this study to results from the previous studies and presents 

conclusions. 

5.1 Two-dimensional Linear Discriminants 

In this section, we derive discriminants in joint time-feature space. The input features are 

blocks of spectral vectors. Figure 5.1 shows one such block. It contains 101 frames, each 

of 15 dimensional spectral energies. The block is labeled by the phone label of the center 
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Figure 5.1: Procedure for obtaining JLDs.

frame. The center frame is also referred as current frame and the block contains 500 ms

temporal information from the past and the future.

5.1.1 J oint Analysis

Joint analysis refers to LDA performed using the complete block of spectral energies. The

features are the same as described in Chapter 2, and the development database is OCI

Stories database. The process is described in Figure 5.1. First, the block of features is

converted to a vector of 101 x 15 = 1515 dimensions. Each vector is labeled by the phone

label of center frame. LDA is performed in 1515 dimensional feature space. Resulting

LDs are 1515 dimensional vectors. Each vector is converted to 101 x 15 dimensional

block and is interpreted as a two-dimensional pattern. This pattern is called a joint linear

discriminant (JLD). Discriminant features are estimated by projecting blocks of spectral

vectors on these patterns. We have used 24 joint discriminants in this work.

5.1.2 Combined Analysis

Combined analysis refers to a combination of spectral linear discriminants (SLDs) and

temporal linear discriminants (TLDs). The resulting discriminants are called combined

linear discriminants (CLDs). The analysis assumes that time and frequency domains are



independent. It means that only one set of SLDs and TLDs are estimated from the block 

of spectral vectors. All 101 spectral frames are projected on the same SLDs and all 15 

temporal trajectories are projected on the same TLDs. In this work, SLDs are estimated 

using the center frame (or current frame) because it has the highest phone variability. We 

have investigated into different ways of combining statistics from 15 temporal trajectories: 

1) using statistics from 5th band, 2) using statistics from 0th DCT coefficient trajectories, 

3) using statistics from 0th SLD coefficient trajectories, and 4) estimating TLDs for each 

band separately and averaging them. We have observed that different TLDs do not change 

the recognition performance significantly but estimation of TLDs from 0th SLD coefficient 

trajectories gives the best performance (see Section 5.3). Further, it was observed that 

if the block of spectral energies is first filtered using any of the TLDs then the resulting 

SLDs from the center frame are same as those used in the estimation of TLDs. 

In this work, CLDs are also derived using OGI Stories database. The features are 

the same as described in Chapter 2. The process of deriving CLDs is described in Figure 

5.2. LDA in spectral domain is performed using 15 spectral energies as features. Each 

feature vector is labeled by the phone label of the corresponding speech segment. Spectral 

discriminant features are obtained by projecting spectral features on the SLDs. LDA in 

temporal domain is performed using a 101 dimensional temporal vector. Each vector is 

obtained by projecting a block of spectrogram on the first SLD, and it is labeled by the 

phone label of the center frame. Outer product of the resulting TLDs and SLDs gives 

CLDs. Note that CLDs can be interpreted as two-dimensional bases. If {etllxm) are 

TLDs and {es 1 l x n )  are SLDs then CLDs, {eSt (,,,), are 

i = 1, ... n, - 1 

~t~ = (ei,)t*4, j = 1 ,... n, - 1 , (5-1) 

k = 1, ... n, - 1 

where n, is the number of classes. Subsequently, the process of applying the CLDs can 

also be considered as projecting the m x n block of spectrogram on these discriminants. 

The optimal combination of SLDs and TLDs is decided by the criterion that is de- 

scribed in the next section. The results show that combination of first 8 SLDs and first 

3 TLDs gives the optimal 24 CLDs. They are shown in Figures 5.3 and 5.4 respectively. 
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Figure 5.5 shows four patterns obtained by combining the first two SLDs and TLDs. SLDs

are same as the ones used in [26]. TLDs are same as the ones used in [51]. They attenuate

the DC component and frequency components higher than 20 Hz. First and third TLDs

are approximately symmetric filters and second TLD is approximately anti-symmetric fil-

ter. Note that second and third TLDs can also be approximated by the derivative and

the double-derivative of first TLD.

Combined analysis breaks the joint analysis in two parts. It assumes that time and

frequency domains can be optimized separately for the optimal discriminants in joint

time-frequency domain. It ignores time-frequency correlations which may be important

for speech recognition task. However, each stage of estimation uses fewer features than the

joint analysis, and needs order of magnitude less data for estimating the discriminants.

5.2 Optimality of Combined Discriminants

The derivation of combined discriminants makes an assumption that spectral and temporal

domains are independent. In the joint time-frequency domains, this assumption means

that the variance of a feature element at time t and at frequency s is

2 2 2
O"st = O"S * O"t. (5.2)



Figure 5.3: The First 8 LDs from spectral domain 

Figure 5.4: The 3 LDs from temporal trajectory of first spectral discriminant feature 
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Therefore the covariance matrix estimated from different bands (si) over the complete 

time window T = { t )  is 
2 C s i ~  = oSi * CT, 

and the cross-covariance matrix between two bands (sl, sz) over T is, 

Thus the total covariance matrix has a special structure, 

In this case, the across-class and within-class covariances too have the same structure. 

Let WT and Ws be the within-class covariances in time and spectrum. Let AT and As 

be the across-class covariances in time and frequency. The across-class and within-class 

covariances in joint time-frequency domains will be, 

Under these conditions, the joint linear discriminants have a special form. Let {et) 
and {E,} be the set of eigenvectors in time and frequency domains. It can be shown that 

the optimal joint linear discriminants, {eSt), are, 



where n, is the number of classes. The proof is given in appendix. It uses the fact that 

eft must simultaneously diagonalize AST and WST, that is, 

where, dtt is a scalar. 

The number of combined LDs generated using the equation 5.6 are m x n, if m x n < 
(n, - I ) ~ ;  and (n, - I ) ~ ,  if (n, - 1)2 5 m x n. However, the optimal number of joint 

discriminants can only be n, - 1 (assuming n, - 1 5 m x n). The dimensionality of the 

feature space is m x n, and there can be only m x n linearly independent vectors. So, 

there are two cases: 1) m x n < (n, - I ) ~ ,  and 2) (n, - 1)2 5 m x n. In case 1, m x n 

vectors can be divided into 2 sets: I)n, - 1 linearly independent joint discriminants; and 

11) m x n - n, + 1 linearly independent vectors which are orthogonal to the subspace 

spanned by joint discriminants. In case 2, (n, - 1)2 vectors can be divided into 2 sets: I) 

n, - 1 linearly independent joint discriminants; and 11) ng - n, + 2 linearly independent 

vectors which are orthogonal to the space spanned by joint discriminants. 

The choice of n, - 1 leading discriminant vectors is based on the following criterion, 

For each discriminant vector, F R ~  is computed and they are ordered using F R ~ .  First 

(n, - 1) vectors are chosen as the optimal discriminants. 

5.3 2D Discriminants in Speech 

LDs are evaluated on a continuous digit recognition task using an independent database - 
OGI NUMBERS Database. The vocabulary is 11 words (0-9 and "oh"). In these experi- 

ments, each word is modeled as a sequence of context-independent monophones and each 

monophone is modeled using five-state, three-component hidden Markov model (HMM). 

Baseline system contains 8 coefficients obtained by projecting the spectral features onto 

discrete cosine transform (DCT) bases. The resulting features are appended with 8 delta 



Table 5.1: Connected digit recognition performance using 24 discriminant features. 

( Temporal Context ( JLDs ( CLDs 1 

and 8 double-delta coefficients computed using 4 and 9 frames respectively. The 24 features 

are finally processed using UMS. Their performance is 6.3 % word error rate (WER). 

Table 5.1 shows the results of the speech recognition experiments. It shows that the 

longer temporal context improves recognition performance. Both CLDs and JLDs from 

a block of 100 frames perform significantly better than those obtained from a block of 9 

frames. Results also show that CLDs always outperform JLDs. With temporal context 

of 9 frames, CLDs perform same as baseline features. With wider context, they perform 

significantly better than both JLDs and baseline features. 

Table 5.2 shows the results for different types of CLDs. In all the cases, SLDs are 

estimated from the center frame or current frame. TLDs are estimated using four different 

methods: 1) using temporal trajectories from 5th critical band, 2) averaging filters from 

15 bands, 3) using temporal trajectories of 0th cepstral coefficient, and 4) using temporal 

trajectories of first SLD coefficient. Cases 1, 3 and 4 estimate only one set of TLDs and 

use it on all the trajectories. The choice of 5th band, 0th cepstral coefficient, or first SLD 

coefficient is based on the fact that they have the highest phone variability among the 

other streams. Case 2 estimates filters from all the bands. These filters are averaged over 

different bands to obtain one set of filter that are used on all the bands. The difference 

between cases 2 and 3 is that the TLDs are averaged over different bands in the former 

case, and trajectories are averaged over different bands in the later case. The result 

shows that there is not significant difference in the performance but TLDs from first SLD 

coefficient stream performs slightly better than others. 

5.4 Data Insufficiency for Joint Discriminants 

6.3 
5.3 

I 

In the previous section, we showed that CLDs outperform JLDs on continuous digit recog- 

nition task. This result is interesting because CLDs are a special case of JLDs, and given 

w=9 frames 
w=101 frames 

7.5 
6.9 



Table 5.2: Effect of different types of TLDs on CLDs 

1 Averaged filter over all bands 1 5.6 1 

TLDs derived from 

5th ciritcal band 

sufficient amount of data CLDs cannot outperform JLDs. Our hypothesis is that JLDs 

perform worse than CLDs because of insufficient data to estimate them. We prove this 

%WER 
5.5 

hypothesis using two experiments. First we reduce the data used for estimating the LDs 

while keeping the input feature dimensionality same. Second we compare F-ratio on the 

training database with recognition performance on the evaluation database. 

Figure shows the results of the first experiment. We have used LDs estimated from 

l/lOth, 1/4th, 1/2 and complete database. In each case, across-class and within-class 

covariances were estimated by averaging the same statistics from 10 subsets of the original 

database. Results show that performance of JLDs degrades much faster than CLDs. Using 

1/4th of the data size, WER for JLDs is almost twice that of using the complete database. 

With the same difference, difference in WER for CLDs is only about 1%. This shows that 

JLDs need more training data than CLDs and JLDs will perform similar to CLDs with 

larger training data. 

Figure 5.6 shows the results of the second experiment. In this case, we compare two 

results - cumulative F-ratio for discriminants on the training database, and recognition 

performance using them on evaluation database. F-ratio is obtained by adding the eigen- 

values corresponding to the eigen vectors. Since it is a measure of discriminability, higher 

F-ratio implies better phone separability. Results show that JLDs always have higher 

F-ratio than CLDs on the training database. On evaluation database, first few JLDs 

perform better than CLDs. However, higher JLDs do not give significant advantage over 

the corresponding CLDs. This shows that the higher JLDs are not generalizing on an 

unseen task. In other words, JLDs over-fit the training data when sufficient training data 

is not available. 
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Figure 5.6: Insufficient training data for JLDs. (a) shows that JLDs need more training 
data than CLDs. (b) shows that in absence of sufficient training data JLDs over-fit the 
training data. 



5.5 Conclusions 

In this chapter, we derived joint time-frequency discriminants using a longer time span 

than 9 frames. This was based on an earlier observation that information about current 

phone lasts beyond its boundaries. A block of 101 frames of spectral vectors was used as 

features. LDA was used to derive a small set of features that contains the most useful 

variability in this block. Two methods of applying LDA were studied. First method, also 

the most commonly used method, used the complete block as a feature vector. It was 

called joint analysis. A new method was proposed, that combined SLDs and TLDs to 

obtain two-dimensional discriminants. It was called combined analysis. The discriminant 

features from both analysis were used in continuous digit recognition task. The results 

showed that discriminant features from combined analysis perform better than those from 

joint analysis. 

Worse performance of the joint analysis was attributed to insufficient training data. 

This hypothesis was proved using two experiments. Results of first experiment showed 

that performance of discriminants from joint analysis degrades faster than those from 

combined analysis when the amount of training data is reduced. Results of second ex- 

periment showed that joint analysis over-fits the training data when sufficient data is not 

available. Therefore, the discriminant features from it give consistent improvement on the 

development database but not on the evaluation database. 

Bahl, et. al. [35] have obtained a similar result on a large vocabulary continuous speech 

recognition task. Our study extended their result in many ways. First, we observed that 

TLDs need not be derived from different spectral discriminant streams. Better perfor- 

mance was obtained using the TLDs from the first spectral discriminant stream on all the 

other streams. This was attributed to the fact that higher spectral discriminant streams 

have higher signal-to-noise ratio and the TLDs derived from them are noisier. Second, we 

observed that longer temporal discriminants ( = 1000 ms ) outperform the discriminants 

derived from the shorter time span of 90 ms. 



Chapter 6 

Summary and Conclusions 

The thesis proposed analysis of variability of the features. The results of the analysis 

were used in to prove two hypotheses: 1) variability in the feature-set is related to its 

performance on speech and speaker recognition tasks, and 2) results of the analysis can 

be used to derive new feature set that is robust to the mismatch in training and testing 

conditions. 

6.1 Summary 

The thesis was organized in three parts. Chapter 2 is the first part which described 

the statistical analysis technique MANOVA. Using this technique, variability in the most 

commonly used features was decomposed in spectral and temporal domains. It was shown 

that, in spectrd domain, phone variability is highest in 4-6 Barks. In temporal domain, 

phone variability is 250 ms around the current frame. This showed that effect of variation 

at current phone lasts beyond its boundaries and into the neighboring phones. 

The features were also analyzed with and without UMS - a commonly used prepro- 

cessing technique in speech and speaker recognition systems. In both domains, it was 

also observed that channel variability is higher than speaker variability before UMS. This 

showed that mean of the utterance is more sensitive to channel variations than speaker 

variations. After UMS, features had more speaker variability than channel variability. 

Since this variability is the interaction between phones and speakers and channels, we 

concluded that features within different phones are more sensitive to speaker variations 

than channel variations. 



The results of the analysis were shown to be invariant to different data-sets and different 

databases. The results of the analysis were compared with the results of two previously 

proposed methods [15, 231. In the first case, similar features, as used in [15], were analyzed 

on TIMIT database. The results from the proposed analysis were similar to the results 

obtained in [15]. In the second case, the results of MANOVA were converted to mutual 

information and they were compared to the results of [23]. Again, it was observed that 

the results from both analysis were similar. 

In the second part of the thesis, which includes Chapter 3, variability in the features was 

related to the performance of features on speech and speaker recognition tasks. Speaker 

and channel variability within four broad phonetic categories - vowels+diphthongs, glides+nasals, 

fricatives, and silence+stops - was measured using the proposed analysis. This was com- 

pared to the speaker recognition performance obtained using the features corresponding 

to the phone categories. It was shown that features from vowels+diphthongs are the most 

sensitive features to speaker variations and they also perform the best on the speaker 

recognition task. This is followed by features from glides+nasals and fricatives. The fea- 

tures for silence+stops were the least sensitive features for speaker variations and they 

performed worst on the speaker recognition task. 

The relationship between phone variability and speech recognition system was shown 

in two experiments. First, the effect of appending delta and double-delta features was 

measured using MANOVA and continuous digit recognition experiments. The results 

showed that phone variability improves by appending delta and double-delta features. 

The word accuracy also showed improvement by appending them. Second, the effect 

of different feature transformations was analyzed using MANOVA. These features were 

evaluated on AURORA task. The comparison showed that the transformations improved 

phone variability in the features and also improved word accuracies on AURORA task. 

In the third part, which includes chapters 4 and 5, described how results of MANOVA 

can be used to derive robust features for speech recognition task. In Chapter 4, we grouped 

the results of MANOVA into two types: useful variability and harmful variability for speech 

recognition task. It was assumed that phone variability is the useful variability and the 

remaining variability is the harmful variability. For LDA, the useful variability was used 



as across-class covariance and harmful variability was used as within-class covariance. The 

resulting bases were called as linear discriminants (LDs). The new feature-set was obtained 

by projecting original features on linear discriminants and they were called discriminant 

features. 

In temporal domain, we investigated two ways of modeling stops as classes: 1) burst 

and closure modeled as one class and 2) burst and closure modeled as two classes. Since 

closure is followed by burst, modeling them separately implied modeling two classes that 

will mostly follow each other. It was observed that when they are modeled as two classes, 

one of the LDs is a delta-like filter. This result is significant because the delta filter was 

derived from the data, and it is shown to discriminate between the classes that follow one 

another. 

This experiment was extended by modeling all the phones as a sequence of sub-phones. 

Each subphone was analogous to modeling each phone using multi-state HMM and consid- 

ering each state as a subphone. This was motivated by the fact that there was difference 

in phone models used in MANOVA, and the ones used in speech recognition experiments. 

MANOVA had assumed that phone is modeled as a one-state one-component HMM, but 

phones are usually modeled as multi-state multi-component HMMs. To make the analysis 

similar to the recognition setup, LDA was performed using sub-phones as classes. 

Resulting LDs also showed a delta-like filter. It was due to the fact that some of the 

sub-phones always followed one another. We compared the performance of these LDs 

with those obtained using phones as classes on digit recognition task. The LDs using 

sub-phones as classes outperformed the LDs using phones as classes. 

In Chapter 5, we used results of MANOVA to derive LDs in joint time-fiequency 

domain. This was based on an earlier conclusion that variability due to current phone 

lasts for about 250 ms around it. Therefore, the goal was to incorporate longer time- 

span in the feature extraction. A trivial approach is to use a wider block of spectral 

vectors directly as features. This results in high dimensional features that are not suitable 

for statistical modeling due to high correlation between the feature elements and due to 

curse of dimensionality. In this work, LDA was used to derive a smaller feature-set that 

contains most of the useful variability for speech recognition. The resulting discriminants 



were called two-dimensional discriminants. 

LDA was performed using two methods. First all the correlations in the block of 

spectral vectors were retained. This was referred to as joint analysis. Second, time 

and frequency domains were assumed to be independent. LDA was performed indepen- 

dently in time and frequency domains, and the discriminants were combined to form two- 

dimensional discriminants. This method ignored time-frequency correlations but used a 

smaller set of features for the analysis. The analysis is referred to as combined analysis. 

Note that this was a special case of joint analysis. 

Discriminants using the two methods were evaluated on speech recognition task. Re- 

sults showed that features from the combined analysis outperform those from the joint 

analysis. Further analysis showed that joint analysis needs more training data than com- 

bined analysis. In absence of that, discriminants from joint analysis over-fit training data, 

and have poor generalization on the evaluation data. 

6.2 Future Directions 

This work presented analysis of variability in features assuming that distribution of feature 

is multivariate Gaussian distribution. This work can be extended in many ways. First the 

analysis can be modified to model the data using a mixture of Gaussians. This will lead 

to an accurate estimates of the probability density functions and an accurate estimate of 

different variabilities in speech. 

The conventional feature processing steps such as short-time Fourier transform, critical- 

band warping, non-linear compression can be re-evaluated using the proposed technique 

for speech and speaker recognition. Conventionally, Bark or Me1 warping, and logarithmic 

nonlinearity are used in the features. Their importance has been shown in Chapter 1. The 

re-evaluation refers to modification of the procedure and its evaluation using MANOVA. 

MANOVA can be also used to investigate the residual features that are ignored in the 

conventional feature extraction methods. These include phase of the signal and the error 

in approximating 128 dimensional features using 15 dimensional Bark spectrum. 

In Chapter 3, it was shown that vowels and diphthongs are more important than others. 



The nature of speaker variability in those classes needs to be investigated. In phone-based 

speaker recognition, the speaker recognition accuracy depends on both phone recognition 

accuracy and speaker recognition accuracy within each phone. This relationship needs to 

be explored when deriving new features for speaker recognition. 

Finally, it is shown in appendix E, the variability in speech can be quantified using 

different formulas. The requirement for a good formulation is that 

it should increase with increase in the number of features, 

a the variability in the sources should add up to the total variability, and 

a it should have meaningful interpretation. 

There is only one measure that satisfies these requirements and it is mutual information 

(MI). It increases by adding more features. The information in the sources adds up to 

the total information in the features. It also has more meaningful interpretations than % 

contribution of variabilities. Usability of this measure needs to be investigated further. 

6.3 Final Comments 

MANOVA proposed for analyzing variability in features has some limitations. Since it 

assume that testing data are the same as training data, it can not be used to study the 

effects of generalization. For example, Chapter 5 showed that joint analysis always gives 

higher F-ratio than combined analysis. This was due to over-fitting of the training data. 

Joint analysis performed worse than combined analysis on recognition tasks. Therefore, 

MANOVA must be performed on an independent and large database. 

Through some examples in Chapter 3 it was shown that increase in phone variability 

leads to increase in the speech recognition performance. In general, speech recognition 

performance depends on many factors including the effects of language model. MANOVA 

ignores the effect of language model, it assumes that any phone can follow any other 

phone. Our results on digit recognition tasks, which have a simple language model, have 

shown correlation between phone variability and recognition accuracy. This correlations 

needs to verified on large vocabulary tasks. 



Finally, it is shown in the thesis that variability in the features is related to the per- 

formance of features on speech and speaker recognition tasks. It was also shown that 

MANOVA can be used to derive discriminants features for speech recognition tasks. The 

proposed MANOVA is computationally inexpensive and it has a faster execution than 

running speech and speaker recognition experiments. We hope that it will be used in 

future research both for deriving better features and for increasing our understanding of 

variabilities in speech signal. 



Appendix A 

Phone Set for MANOVA 

Table A.l:  Phone set common between OGI Stories, HTIMIT and TIMIT databases. 
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Appendix B 

Effect of Phonetic Context on Results of 

MANOVA 

MANOVA is performed in spectral and temporal domains using context-dependent mono- 

phones as classes. The phonetic context is specified in terms of 4 broad phonetic categories 

- vowels+diphthongs, glides+nasals, fricatives, silence+stops. Figures B.l and B.2 shows 

the nature of variability in the same features used in chapter 2 with and without explicit 

context modeling. Table B.l shows contribution of variabilities for the two cases. 

The results show that context variability is a significant part of residual variabiIity. 

Therefore the contribution of residual variability reduces when context-dependent phones 

are used as classes for MANOVA. The new phone variability is higher than the phone 

variability computed using phones. The results also show increased interaction between 

speakers and the context-dependent phones and speakers. 

In spectral domain, using phones as classes, the phone variability was dominant be- 

tween 3-6 Barks and residual variability was dominant between 10-15 Barks. The results 

with context-dependent phones show that the new phone variability is dominant over all 

frequency components. In temporal domain, using phones as classes, effect of the phone 

variability was shown to spread for approximately 250 ms around the current frame. Us- 

ing context-dependent phones as classes, the effect spreads for longer than 500 ms around 

the current frames. This is due to the increase in the length of the phone unit, with 

context-dependent phones we are modeling three phones as one unit. 
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Figure B.l: Results of MANOVA using context-independent phones and context- 
dependent phones as classes in spectral domain 
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Figure B.2: Results of MANOVA using context-independent and context-dependent 
phones as classes in temporal domain 

Table B.l: Contribution of variabilities using context-independent (CI) phones and 



Appendix C 

Temporal Variability in Different Bands 

In chapter 2, we presented results in temporal domain from energies from fifth filter on 

Bark scale. In this appendix, we present results for energies from all the filters on Bark 

scale (figures C.l and C.2). Note that, for each band, all the feature elements are analyzed 

independently. The results show that the nature of variability across different bands is 

similar. That is in all bands, the phone variability is highest at the current frame, residual 

variability is lowest at the current frame, and speaker and channel variabilities are almost 

constant. The results also show that phone variability in all bands, except first two bands, 

spreads for approximately 250 ms around the current phone. Note that the variance at the 

current frame (0 ms) in each band is the same as the variance of that frequency component 

in spectral domain. 

Time (ms) 

Figure C.l: Temporal variability in bands 1-3: phone variability (thick solid line), speaker 
variability (thin solid line), channel variability (thick dot-dash line), residual variability 
(thick dotted line). Number in each plot is the critical band index. 
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Figure C.2: Temporal variability in bands 4-15:phone variability (thick solid line), speaker 
variability (thin solid line), channel variability (thick dot-dash line), residual variability 
(thick dotted line). Number in each plot is the critical band index. 



Appendix D 

Temporal Filter for Speaker Verification 

In this appendix, we design a temporal filter for speaker verification using results of % 

MANOVA. For speaker recognition, we assume that phone+speaker variability is the 

useful variability and channel-tresidual variability is the harmful variability. The useful 

variability is phone+speaker variability instead of speaker variability because the features 

used for deriving the filter are preprocessed using UMS. Resulting speaker variability is 

the variability due to interaction between speakers and phones. If speaker variability is a 

useful variability then that also implies that phone variability is a useful variability too. 

The features are same as the ones used in Chapter 2. Phone, speaker+channel, and 

residual variabilities are estimated using stories database as described in Chapter 2. Chan- 

nel variability is estimated using HTIMIT database using the procedure illustrated in [43]. 

All the statistics are estimated from fifth critical band. LDA is used to  derive the filter. 

The across-class covariance (Ac) is an estimate of phone+speaker variability and within- 

class covariance (We) is an estimate of channel+residual variability. The filter is the 

leading eigen vector obtained using W;lAC. The discriminant features are obtained by 

filtering the time trajectories of spectral energies horn all critical bands using this filter. 

Figure D.l shows the impulse and frequency response of the resulting filter. The 

resulting filter is an approximately symmetric band-pass filter which attenuates frequency 

components below 1 Hz and above 15 Hz. This is filter is similar to the data-driven 

RASTA filter (see Chapter 4 and [56]) used in speech recognition. It is also similar to the 

symmetric RASTA [27]. 

The filter is evaluated on 2001 NIST cellular speaker verification task. The system 

is implemented in UBM-GMM framework. It has 256 component GMM that is modeled 
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Figure D.l: Impulse and frequency response of the filter used in speaker recognition system 

using 39 component features. The features are 13 MFCCs filtered using the proposed 

filter and are appended with 13 delta and 13 double delta features. Each feature stream 

is processed using UMS. High energy frames are detected using adaptive energy-based 

speech-sil segmenter, and are used in these experiments. 

Performance of this filter is compared to the baseline system that uses only UMS and 

to the system that uses a previously proposed data-driven filter [43]. Difference between 

the two filters is that the former filter is estimated using phone+speaker variability as 

useful variability and channel+residual variability as harmful variability, and the later 

filter was estimated using phone variability as useful variability and channel variability as 

harmful variability. 

Figure D.2 shows the results obtained using the three configurations. System with 

UMS has 10.2% EER. System with the filter proposed in [43] has 10.4% EER. System 

with the proposed filter has 9.2% EER. Results show that the new filter improves the 

performance of the system over the system that uses only UMS. The improvement in the 

performance compared to the previously proposed filter shows the importance of using 

speaker and residual variability in the design of the filter 
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Figure D.2: Performance of old and new filter on speaker verification 



Appendix E 

Different Measures for Source 

Contributions 

In Chapter 3, the relative phone variability is estimated using F-ratio assuming phones 

as classes. In this appendix, we compare different measures that can be used to estimate 

relative phone variability. These measures are computed using results of MANOVA for 

four different feature sets. The measures are correlated with the speech recognition per- 

formance obtained using these feature-sets. The feature-sets are (1) logarithmic filterbank 

energies (or same number of DCT coefficients from them), (2) 12 DCT coefficients + 12 
I 

A coefficients, (3) 8 DCT + 8 A + 8 AA coefficients, and (4) 8 DCT + 8 A + 8 AA 

coefficients with cepstral mean subtraction (CMS). Note that all the feature-sets contain 

24 features. 

The relative phone variability in the feature-sets is computed using HTIMIT database 

as follows. First, total variability is decomposed as, 

,where CtOw is the total covariance or a measure of total variability, xphone is the intra- 

phone covariance or a measure of phone variability, Cspeaker is the intra-speaker covariance 

or a measure of speaker variability, and Cchannel is the intra-channel covariance or a 

measure of channel variability. CresidUal is the covariance due to unaccounted sources or 

a measure of residual variability. Then, the relative phone variability is measured using 5 

different measures - 

%PHNl(phone) = t r a ~ e ( I = , ~ , ~ ) / t r a c e ( C ~ ~ ~ ~ ~ ) .  This is what I have been using in 



the thesis. This is invariant to orthonormal linear transformation. For example, 

%PHNl is same before and after discrete cosine transformation (DCT). But it is not 

same after whitening. After whitening it becomes %PHN2. This measure may not 

increase by adding more features in the feature-set. 

FRl(phone) = trace((Ctotal - ~phone)-~~~hone) .  Ctotal - Cphone is the within-phone 

covariance and Cphone is the across-phone variance. This measure is also referred 

as F-ratio. This is invariant to any linear transformation. This measure increases 

when the number of features in the set are increased. But, it does not satisfy the 

condition 

%PHN2(phone) = t r a c e ( ~ ~ ~ , ~ ~ ~ ~ ~ ) / 2 4 .  This a combination of %PHNl and %FR1. 

The similarity between %PHN1 and %PHN2 is that all the source variabilities and 

the residual variability adds to 100 %. They are identical when CtotaE = 124x24, iden- 

tity matrix. Difference between them is that %PHN1 does not consider orientation 

of the covariances in the feature space whereas %PHN2 does. Similarity between 

FR1 and %PHN2 is that they are correlated, that is, if one changes then the other 

changes in the same way. The difference is that FR1 over all source variabilities and 

residual variabilities does not add up to 100 %, but %PHN2 does. Finally, %PHN2 

may not increase by adding more features in the feature-set. 

FR2(phone) = t r a c e ( ~ y A ~ ~ ~ ~ ~ , h , , ) .  This is similar to FR1 except that phone 

variability is measured with respect to the residual variability. This is called as 

Hotelling's Trace criterion and it is used in MANOVA literature to measure an effect 

of source. This is also invariant to linear transformation. This measure increases 

when the number of features in the set are increased. However, this measure does 

not satisfy this condition 

So, we modify FR2 to %FR3 = FR2(source)/FR2(total). Now it satisfies the above 

criterion. 



M l ( p h m e )  = log(#$$), where i denotes different phones and Ci is the covariance 

within each phone. This is an information-theoretic method for measuring the effect 

of a source. MI is measured in nats. This is invariant to linear transformations. It 

increases when the number of features in the set are increased. 

The recognition experiments are performed using OGI Numbers database. We use 23 

context-independent phones, where each phone is modeled as 5-state, 3-component HMM. 

The language model is built assuming that any digit can follow any other digit. 

I Feature Set )I %PHNl I FR1 I %PHN2 I MI 1 FR2 I %FR3 )I %WER 

Table E.l: Different measurements using MANOVA and corresponding recognition per- 
formance 

Table E. 1 shows the results using different measures of contribution of phone variability 

and the performance of feature-sets on recognition task. Here are some conclusions from 

these results 

Change in %PHNl correlates with %WER before and after CMS. However, it does 

not increase by adding A and AA coefficients. The reason is explained below in the 

discussion of %PHN2. 

a Change in FR1 correlates with %WER. It is also guaranteed to improve when the 

number features are increased. The drawback of this measure is that the relative 

contribution all the sources does not add up to 1. In addition, it is difficult to 

interpret the measure, for example, it does not answer the question how much FR1 

is needed for the error-free phone recognition. 

Change in %PHN2 also correlates with %WER. This measure is shows less phone 

variability than %PHNl. Comparison of %PHNl and %PHN2 shows that changes in 

the orientation of the phone covariance, which are ignored by %PHNl, play impor- 

tant role in their performance on speech recognition task. This is explained in figure 
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Figure E.l: Difference between %PHNl and %PHN2. For Case (I) and Case (11), %PHNl 
will be same because the marginal distributions are same. %PHN2 for these cases will be 
different because, in the joint space, classes have less overlap in Case (11) than Case (I). 

E.1. Figure shows two cases where the marginal distribution of the classes is same 

but the joint distribution is different. Note that in both cases, %PHNl will be same 

because trace(Cphme) and trace(CtOtal) are same. %PHN2 will, however, be higher 

in Case(I1) then Case(1) because, in the joint space, the classes have less overlap in 

Case (11) than Case (I). Note that because of the normalization, this measure is not 

guaranteed to improve by increasing the number of features. 

Change in FR2 correlates with %WER in all cases except after CMS. Feature-set 

with CMS has a lower FR2 than the one without CMS. The reason is that CMS 

reduces Cspeaker and CchanneI. FR2 does not account for changes in sources other 

than phone. This shows that the performance of feature-set also depends on the 

contribution of other source covariances apart from intra-phone covariance. %FR3 

considers changes in all the sources and it correlates with %WERs for different 

features. However, it is not guaranteed to improve when the number of features are 

increased. 

Change in %MI also correlates with %WER. This is the best measure among all 

the others. It satisfies all the requirements. This measures is guaranteed to improve 

when the feature size improves. It satisfies the condition that MI over all sources 

adds up to the joint entropy of the phones, speakers, and channels. It also give 



the highest bound for the phone information that can be computed from the phone 

priors. For HTIMIT, this bound is 4.53 nats. 



Appendix F 

Line Spectral Pair and MFC Coefficients 

Recently, it was shown that line spectral pair (LSP) coefficients are suitable for the speaker 

segmentation task [6]. In this appendix, we investigate into the nature of variability in 

LSPs, and compare the results with similar results from Me1 frequency cepstral coefficients 

(MFCCs). 

Both features are computed from 32 ms speech segment and adjacent segments are 

shifted by 10 ms. LSPs are obtained by estimating 24 linear prediction coefficients and 

solving the roots of the polynomial [17]. MFCC coefficients are derived by projecting 

logarithmic energies from 24 filters on Me1 scale onto 24 discrete cosine bases (Cl-C24). 

Note that in both cases, the frame energy - CO for MFCC and logE for LSPs - is not used. 

Note also that delta and doubledelta features are not used in the following experiments. 

The choice of the features was based on their performance on the speaker segmentation 

task [6]. 

Table F.1 shows results of MANOVA for both features. We conclude that LSPs have 

higher phone and channel variability than MFCCs features whereas MFCCs have higher 

speaker variability. Therefore, we conclude that LSPs will perform better than MFCCs on 

speech recognition task and MFCCs will perform better than LSPs on speaker verification 

task. We verify these conclusions using speech and speaker recognition experiments. 

Speech recognition experiments are performed on OGI Numbers database. It is con- 

tinuous digit recognition with the vocabulary of 11 words (0-9 and "ohn). Each word is 

modeled as a sequence of context-independent monophones and each monophone is mod- 

eled as 5 state, 3 component HMM. Recognition results show that MFCCs give 26.3% 

WER and LSPs give 19.1% WER. This is in agreement with the results of MANOVA that 



Table F.l: Comparison of source contributions using MANOVA using LSP and MFCC 
features. 

source I LSPs / MFCCs I 

channel 
Residual 36.4 59.7 

LSPs have the higher phone variability than MFCCs. 

Speaker verification experiments are performed on 2001 NIST cellular speaker evalua- 

tion database. Verification was performed in GMM-UBM framework using 32 component 

GMM. The results show that MFCCs give 19.4 % EER and LSPs have 21.6 % EER. The 

higher EER for LSP coefficients is in agreement with the higher speaker variability in 

MFCCs. 

The higher channel variability in LSPs is helpful in the speaker segmentation task as 

follows. Speaker segmentation is a task of identifying segments of individual speakers in a 

conversation. Typically speakers in a conversation also use different handsets. Therefore, 

speaker segmentation can be improved using features which are sensitive to handset vari- 

ations. This is shown using LSPs and MFCCs on NIST 2001 two-speaker segmentation 

task. Refer to [6] for a detailed description of this task. It is observed that speaker seg- 

mentation error using LSPs is 6.0 % and the error using MFCCs is 10.0%. These results 

also codirm the results of MANOVA. 

In this work, MFCCs were shown to comply with the assumptions of MANOVA, that 

is, additivity of the sources and normality of the distribution. LSPs, however, have not 

been examined for these conditions. LSPs loosely represent the locations of poles in the 

frequency plane. If the sources are modeled as a filter, then their effect in frequency 

plane can also be modeled as addition of poles in frequency domain. Therefore, the 

assumption behind the additivity holds for LSPs. However, LSP coefficients are highly 

correlated and the distribution of LSP coefficients is highly non-Gaussian. In this work, 

the uncorrelated features are obtained by projecting LSPs on the whitening transform [33]. 

However, the distribution of the resulting features is still highly non-Gaussian. Therefore, 



more investigation needs to be done with these results to improve the estimates of different 

types of variabilities. However, the correspondence of the results of MANOVA with speech 

and speaker recognition results is very encouraging. 



Appendix G 

Analysis of Variability using Mutual 

Informat ion 

In Appendix E, we described different measures that can be used to quantify the variability 

due to sources. We showed that only one measure that is based on information-theoretic 

approach satisfies all the requirements for a good measure. Therefore, in this appendix, we 

propose an information-theoretic analysis of variability in speech. Similar to MANOVA, 

we assume that speech carries information from three main sources- language, speaker, 

and channel. We measure information fi-om a source as mutual information (MI) [58] 

between the corresponding cIass labels and features. For example, linguistic information 

is measured as MI between phone labels and features. The effect of sources is measured 

in nats (or bits). In this work, we show it is easier to interpret the results of this analysis 

than the analysis of variability. 

In general, MI between two random variables X and Y can be measured using three 

different methods [2]. First, assuming that X and Y have a joint Gaussian distribution. 

However, we cannot use this method because one of the variables - a set of class labels - 
is discrete. Second, modeling distribution of X or Y using parametric form, for example, 

mixture of Gaussians [2]. Third, using non-parametric techniques to estimate distributions 

of X and Y [30]. The proposed analysis is based on the second method, where distribution 

of features is modeled as a Gaussian distribution. Although it is a strong assumption, we 

show that results of this analysis are similar to the results obtained using the third method 

P O I  

The paper is organized as follows. Section G.l describes the experimental setup. 



Section G.2 describes MANOVA and presents results of MANOVA. Section G.3 proposes 

information theoretic approach for analysis of information in speech and presents the 

results. Section G.4 compares these results with results from the previous study. Section 

G.5 describes the summary and conclusions firom this work. 

G.1 Experimental Setup 

In the previous work [52, 531, we have analyzed variability in the features using three 

databases - HTIMIT, OGI Stories and TIMIT. In this work, we present results of MANOVA 

using OGI Stories database; mainly for the comparison with Yang's results [30, 231. En- 

glish part of OGI Stories database consists of 207 speakers, speaking for approximately 1 

minute each. Each utterance is transcribed at phone level. Therefore, phone is considered 

as a source of variability or source of information. The utterances are not labeled sepa- 

rately by speakers and channels, so we cannot measure speaker and channel as separate 

sources. Instead, we assume that different speakers have used different channels and con- 

sider speaker+channel as a single source of variability or a single source of information. 

Features are described in Chapter 2. 

G.2 MANOVA 

Multivariate analysis of variance (MANOVA) [47] is used to measure the variation in the 

data, {X E Rn), with respect to two or more factors. In this work, we use two factors - 
phone and speaker+channel. The underline model of MANOVA is 

where, i = 1, - .  . , p ,  represents phones, j = 1, .. . sc, represents speakers and channels. 

This equation shows that any feature vector, Xijk, can be approximated using a sum of 

x.., the mean of the data; x., mean of the phone i; &., mean of the speaker and channel 

j ,  and phone i; and ~ i j k ,  an error in this approximation. Using this model, the total 

covariance can be decomposed as follows 



where 

and, N is the data size and Nijk refers to the number of samples associated with the 

particular combination of factors (indicated by the subscript). The computation of the 

covariance terms is described in Chapter 2 

Results of MANOVA are interpreted at two levels - feature element and feature vector. 

Results for each feature element are shown in Figure G.1. Table G.l shows the results 

using the complete feature vector. The contribution of different sources is calculated as 

trace(CsouTce)/trace(CtOtaI). Note that this measure cannot be used to compare variabil- 

ities across feature-sets with different number of features. Therefore, we cannot directly 

compare contribution of variabilities in time and frequency domains. For comparison, con- 

tribution of sources in temporal domain is calculated as trace(EtC,,,,,E)/trace(Et ztotal E), 

where ElOlxl5 is a matrix of 15 leading eigenvectors of CtotaE. 

In spectral domain, the highest phone variability is between 4-6 Barks. The highest 

speaker and channel variability is between 1-2 Barks where phone variability is the lowest. 

In temporal domain, phone variability spreads for approximately 250 ms around the cur- 

rent phone. Speaker and channel variability is almost constant except around the current 

frame. This deviation is explained by the difference in the phonetic context among the 

phone instances across different speakers. Thus, features for speakers within a phone differ 

not only because of different speaker characteristics but also different phonetic contexts. 

This deviation is also seen in the speaker and channel information in the proposed anal- 

ysis. In the overall results for each domain, spectral domain has higher variability due to 

different phones than temporal domain. It also has higher speaker and channel variability 

than temporal domain. 

The disadvantage of this analysis is that it is difficult to interpret the results. For 

example, how much phone variability is needed for perfect phone recognition? and is 4% 



of phone variability in temporal domain significant? In order to answer these questions, 

Table G.l: Contribution of sources in spectral and temporal domains 

we propose an information theoretic analysis. 

source 

phone 

Frequency 
(Critical Band Index) 

Time (ms) 

% contribution 

Figure G.l: Results of analysis of variability 

Spectral Domain 

35.3 

G .3 Informat ion-t heoret ic Analysis 

Temporal Domain 

4.0 

Results of MANOVA can not be directly converted to MI because the determinant of source 

and residual covariances do not add to the determinant of total covariance. Therefore, 

we, propose a different formulation for the information theoretic analysis as follows. Let 

{X E Rn) be a set of feature vectors, with probability distribution p(X). Let h(X) be 

the entropy of X. Let Y = {Yl , .  ... Y,) be a set of different factors and each be a 

set of classes within each factor. For example, we can assume that & = {y:) represents 

phone factor and each yf represent a phone class. Lets assume that X has two parts; one 



completely characterized by Y and another part, 2, characterized by N(X) - N(0, I,,,), 

where I is the identity matrix. Let I (X;  Y) be the MI between X and Y. Assuming that 

we consider all the possible factors for our analysis, 

where ~ ( j  is the kullback-liebler distance [58] between distributions P and N. Using the 

chain-rule, the left hand side can be expanded as follows, 
rn 

I(X;Yl,. . . , Yn) = I (X;  Yl) + I(X; Y2IYl) + C I(X; Y,/Y,-1, - . . , f i ,  Yl). (G.2) 
i=3 

If we assume that there are only two factors Yl and Yz used for the analysis, then this 

equation is similar to the decomposition performed using MANOVA (Equation G.l). The 

term on the left hand side is entropy of X which is the total information in X that can be 

explained using Y. This is similar to the left-hand side term in MANOVA that describes 

the total variability. On the right hand side, first term is similar to the phone variability, 

second term is similar to the speaker variability, and the last term which calculates the 

effect of unaccounted factors (Y3,. . . , Ym) is similar to the residual variability. 

First and second terms on the right hand side of Equation G.2 are computed as follows. 

h () terms are estimated using parametric approximation to the total and conditional 

distribution It is assumed that the total distribution of features is a Gaussian distribution 

with covariance C. Therefore, h (X) = ;log ( 2 ~ e ) ~  1x1. Similarly, we assume that the 

distribution of features of different phones (i) is a Gaussian distribution with covariances 

Xi .  Therefore, 
1 

h(X/K) = - C P (Y:) log ( 2 4 "  IZil 
2 .  (G.5) 
?I; CK 

Finally, we assume that the distribution of features of different phones spoken by different 

speakers is also a Gaussian distribution with covariances Cij. Therefore, 



Table G.2: Mutual information between features and phone and speaker and channel 

Substituting equations G.5 and G.6 in equations G.3 and G.4, we get 

labels in spectral and temporal domains 

1 
I ( X ;  Yl) = - log 

1x1 
l-ly;cK p i 1 p ( y : )  

source 

  hone 

I n YZ, . CY. , I C ~ ~ P ( Y : )  
I ( X ;  Y,/Y,) = - log 

2 n?,; cy, ,d, cy2 
~ x ~ l p ( y : > Y l i )  

I - Phone 1 

MI (nats) 

w 
5 10 15 
Frequency 

(Critical Band Index) 

Spectral Domain 

1.6 

Time (ms) 

Temporal Domain 

1.2 

Figure G.2: Results of information-theoretic analysis 

Figure G.2 shows the results of information-theoretic analysis in spectral and temporal 

domain. These results are computed independently for each feature element. In spectral 

domain, phone information is highest between 3-6 Barks. Speaker and channel information 

is lowest in that range and highest between 1-2 Barks. Since OGI Stories database was 

collected over different telephones, speaker+channel information below 2 Barks ( = 200 Hz 

) is due to different telephone channels. In temporal domain, the highest phone information 



is at the center (0 ms). It spreads for approximately 200 ms around the center. Speaker 

and channel information is almost constant across time except near the center. 

Note that the nature of speaker and channel variability also deviates from the constant 

around the current frame. But, at the current frame, phone variability is higher than 

speaker and channel variability. The results of analysis of information show that, at the 

current frame, phone information is lower than speaker and channel information. This 

difference is explained by comparing our MI results with results from Yang et. al. [23] in 

the next section. 

Table G.2 shows the results for the complete feature vector. Note that there are 

some practical issues in computing determinants in Equation G.3 and G.4. They are 

related to data insufficiency, specifically, in temporal domain where the feature vector 

is 101 points and there are approximately 60 vectors per speaker per phone. We ob- 

serve that without proper conditioning of covariances, the analysis overestimates MI 

( I ( X ;  Yl,Y2) > H(Yl,Y2)). This is addressed using the condition number to limit the 

number of eigenvalues used in the calculation of determinants. Our hypothesis is that in 

presence of insufficient data, only few leading eigen vectors are properly estimated. We 

have use condition number of 1000 to estimate determinant of C and Xi, and condition 

number of 100 to estimate the determinant of Cij. The results show that phone infor- 

mation in spectral domain is 1.6 nats. Speaker and channel information is 0.5 nats. In 

temporal domain, phone information is about 1.2 nats. Speaker and channel information 

is 5.9 nats. Comparison of results from spectral and temporal domains shows that spec- 

tral domain has higher phone information than temporal domain. Temporal domain has 

higher speaker and channel information than spectral domain. 

Using these results, we can answer the questions raised in Section G.2. First question 

was how much phone variability is needed for perfect phone recognition? The answer to 

the question is H(Yl), because the maximum value of I ( X ;  Yl) is H(Yl). We compute 

H(Yl) using phone priors. For this database, we get H(Yl) = 3.42 nats, that means we 

need 3.42 nats of information for perfect phone recognition. Question about significance of 

phone information in temporal domain is addressed by comparing it with information-less 

MI level. The information-less MI is computed as MI between the current phone label 



and features at 500 ms in the past or in the future. From our results, we get information- 

less MI equal to 0.0013 nats considering feature at 500 ms in the past, and 0.0010 nats 

considering features at 500 ms in the future1. The phone information in temporal domain 

is 1.2 bits that is greater than both the levels. Therefore it is significant. 

G.4 Results in Perspective 

In the proposed analysis, we estimated MI assuming Gaussian distribution for the features. 

This assumption is validated by comparing our results with the results from a study by 

Yang, et. a1.,[23], where MI was computed without assuming any parametric model for the 

distribution of features. Note that only entropies can be directly compared for difference 

in the estimation technique [58]. However, MI using Gaussian assumption can be equal to, 

less or more than the actual MI. In the comparison of our results with Yang's results, we 

consider only the nature of information observed in both studies. The difference in actual 

MI levels across the two studies is related to the difference in the estimation techniques. 

In spectral domain, Yang's study showed higher phone information between 3-8 Barks. 

The highest phone information was observed at 4 Barks. Higher speaker and channel 

information was observed around 1-2 Barks. In temporal domain, their study showed 

that phone information spreads for approximately 200 ms around the current time frame. 

Comparison of results from this analysis and our analysis shows that nature of phone 

information is similar in both studies. Nature of speaker and channel information in 

spectral domain is also similar. We could not compare the speaker and channel information 

in temporal domain because Yang's study did not present these results. 

In Section G.3, we observed difference in the nature of speaker and channel variability, 

and speaker and channel information at f i  =5 Barks. Comparing MI levels from our 

study to those from Yang's study, we observe that Yang's results show that speaker and 

channel information at 5 Barks is less that the corresponding phone information. This 

is consistent with results of analysis of variability, but not with the proposed analysis 

of information. As mentioned before, this difference is due to difference in the density 

lInformation-less MI calculated using Yang et. al. is 0.019 bits 



estimation techniques used for computing MI. In the future work, we plan to model the 

densities using more sophisticated techniques, and improve the estimation of speaker and 

channel information. 

G.5 Conclusions 

We proposed analysis of information in speech using three sources of information - lan- 

guage (phone), speaker and channel. Information in speech was measured as MI between 

the class labels and the set of features extracted from speech signal. For example, linguistic 

information was measured using phone labels and the features. We modeled distribution 

of features using Gaussian distribution. Thus we related the analysis to previous pro- 

posed analysis of variability in speech. We observed similar results for phone variability 

and phone information. The speaker and channel variability and speaker and channel 

information around the current frame was different. This was shown to be related to the 

over-estimation of speaker and channel information using unimodal Gaussian model. Note 

that the analysis of information was proposed because its results have more meaningful 

interpretations than results of analysis of variability. For addressing the over-estimation, 

we plan to use more complex models ,such as mixture of Gaussians, for computing MI in 

the future work. 
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