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QUOTATION

Man's hand assaults the flinty rock; his eyes see all its
treasures. He searches the sources of the rivers and brings hidden
things to light. But where can wisdom be found? Where does
understanding dwell? Man does not comprehend the worth; it cannot be
found in the land of the living. (Holy Bible, New International

Version, Job 28:9-13.)

God understands the way to it and he alone knows where it

dwells, for he views the ends of the earth and sees everything under

the heavens. (Holy Bible, New International Version, Job 28:23-24.)
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ABSTRACT

FACTORS AFFECTING THE VALIDITY AND ACCURACY OF
INSTRUMENTED IMPACT TESTS WITH SPECIAL REFERENCE TO
THE PENDULUM AND DROP TOWER VERSIONS OF THE CHARPY TEST

Ward C. Stevens, Ph.D.
Oregon Graduate Center, 1987

Supervising Professor: William E. Wood

While it is theoretically true that useful information can be
calculated from recorded instrumented impact test data, such
calculations can be performed only if the correct calibration .
procedures and numerical methods are used. However, neither the
literature nor existing standards contain useful guidance with respect
to correct calibration procedures or adequate numerical methods.

Two different homogenous populations of alloy 4340 steel Charpy
bars were manufactured and tested by instrumented pendulum and drop
tower versions of the Charpy impact tests. The salient dimensions and
masses of the drop tower and pendulum machines were directly measured
and the initial velocities were calculated from initial drop heights.

Data were recorded using the COMPUTERSCOPE system manufactured by

RC Electronics. The two instrumented tups were calibrated by applying

xix




known loads statically, by matching energy results to known ASTM E-23
{Charpy impact test) results and by matching calculated general yield
loads to assumed values of general yield loads. Using the calibration
data, absorbed energies, general yield loads, and total system
compliance were calculated from the recorded tup output information
for both populations and test machines using ASTIR, a computer program
specifically designed and constructed for this work. The energy,
load, and compliance data were compared statistically to one another
and, in the case of absorbed energies, to standard ASTM E-23 values.

It was found that the response of instrumented tups varies from
almost totally strain rate insensitive to highly strain rate sensitive
and that dynamic tup calibrations using energy standards can be
dangerously misleading. It was shown that quite simple numerical
methods are adequate for load and energy calculation and that
approximately 80 data points are adequate for correct energy
calculations.

Methods for investigating the discrepancies uncovered in this
study and for obtaining first principles dynamic tup calibrations are

outlined.




1. INTRODUCTION

1.1 Significance

1.1.1 Use

There are two factors which should motivate materials scientists

to use instrumented impact testing.

First, instrumented impact testing permits accurate and precise

measurement of absorbed energies greater than those which can be

measured with current commercially available pendulum machine

designs. For example, very tough materials exist which exceed the

capacity of the largest Charpy pendulum impact machines. It is not




adequate simply to increase pendulum weight since then dial precision
would be coarsened unacceptably. A Charpy impact machine design
combining very high pendulum weight and an instrumented tup would
permit measurement of high absorbed energies with good precision and

would have the desirable feature of nearly constant strain rate.

Second, instrumented impact testing permits direct measurement

of dynamic material constants since loads and not energies are

measured. Dynamic material constants are important since few
engineering structures experience static conditions; hence, most
engineering structures are ultimately limited by worst case situations
involving medium or high strain rates. Fracture toughness values can
be used as design data and not merely relative ranking numbers.

It would be convenient if all impact tests could be performed on
machines permitting simple tup and anvil changes so that varying
specimen sizes and configurations could be used. Drop towers are more

likely to make this possible than pendulum machines.




1.1.2 Investigation

These two goals are attainable if three things are accomplished:

1. The factors controlling load, displacement, and energy

calculations must be accurately measured.

2. The correct numerical methods must be used.
3. The dynamics of impact testing machines must be
understood.

Load, displacement, and energy calculations depend on accurate
knowledge of effective tup mass, initial velocity, and tup calibration
under the conditions prevailing during testing. There is no standard
method for measuring tup effective mass. The standard methods given
for initial velocity measurement in, for example, the American Society
for Testing and Materials (ASTM) method E-23 (the Charpy pendulum
test) could possibly be questioned if applied to machine designs other
than those approved under ASTM E-23. There is no standard method for
3 point bend tup calibration.

If digital storage techniques are used, results calculated from
the digital data will depend on which differential equation solver or
numerical integration approach is used. There is no standard method
to perform the digital calculations. There is no evidence

demonstrating that any particular approach is correct.



compensate for windage and friction losses. Hence, by conservation of
energy and the fact that friction and windage as measured by
specification are negligible, the kinetic energy just prior to the
impact point must be very nearly equal to the initial potential energy
of the pendulum. In addition, the kinetic energy at the fiducial
point must, by the same logic, very nearly equal the potential energy
at the end of a swing after an impact. The difference between these
two kinetic energies is thus equal to the 'dial energy.'

Now suppose that the velocities at the impact point and the
fiducial point are measured by electro-optical means. Using the
velocities, both the initial and final energies can be calculated.
With this data, it is possible to calculate an amount of energy equal
to the 'dial energy.' Let this energy be called 'flag energy.'

The cause of the energy change measured by the ‘'dial' or 'flag'
method is the interaction of the tup and the specimen. In particular,
it is the load applied by the specimen to the tup (striker). By
noting both the initial velocity of the tup and the load applied to
the tup by the specimen, the change in kinetic energy of the pendulum
can later be calculated. For example, the load-time record could be
integrated to obtain the change in velocity. 1If that change were
subtracted from the initjial velocity, the result should equal the

velocity of the tup at the fiducial point from which, with



the initial velocity, it has already been shown that the energy change
can be calculated. Let the energy change calculated from the
load-time record be called the 'tup energy.' The law of conservation
of energy again demands that the 'tup energy' equal the 'flag' and
'‘dial energies.' Therefore, 'dial,' 'flag,' and 'tup energies' are

all equally valid means of measuring energy absorbed by the specimen.

1.3.3 Drop Tower Charpy Test

Next, consider a hypothetical [15];[16] drop tower Charpy test.
(See Figure 1-1). A rigid. heavy crosshead with a tup attached to the
center of its undersurface is used in the test. The tup's dimensions
are consistent with the requirements of ASTM E-23. The crosshead is
allowed to drop from a predetermined height, constrained only by
vertical low-friction guide bars. Just before striking the specimen,
the crosshead has developed a certain amount of energy and a vertical
velocity which falls within the range allowed for the tangential
velocity of the tup in the Pendulum Charpy test (E-23). The specimen
is surface-ground and notched with dimensions in accordance with
ASTM E-23. It is supported horizontally as a simple beam on an anvil
which is dimensioned in accordance with ASTM E-23. The notch on the

specimen faces away from the tup. The notch is centered between the
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sides of the anvil in the horizontal plane and is parallel to the
plane of the crosshead. When the tup strikes the specimen, it breaks
the specimen and in so doing the tup loses a portion of its energy.
The crosshead then falls another inch to the fiducial point. There,
its velocity is measured. After another inch of free fall, the
crosshead encounters an arresting device and is stopped.

Since the available kinetic energy is never reconverted into
potential energy (as it is in the pendulum Charpy machine), it is not
immediately obvious how to measure or calculate the final energy of
the crosshead accurately. Apparently the problem was considered
insoluble in the early 20th century when Izod devised his test, since
that was why he rejected the drop tower version of the Izod test.
[17]). Bluhm also did not try to measure energies for individual
tests; rather, he varied drop height and reported the break - no break
energy for a population. [18]. However at present, the velocity of
the crosshead can be measured electro-optically, and the load applied
to the tup can be measured electronically.

The energy change of the tup can be calculated as follows:
Allow the crosshead to drop freely through the fiducial plane with no
specimen in place. Record the velocity and calculate this free drop
energy. Repeat the test with a specimen in place, recording velocity

and calculating energy. The difference in the two energies should be
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equal to the 'flag energy' from an ASTM E-23 pendulum machine with an
identical specimen.

There is a second method whereby the 'flag energy' for the drop
tower test can be calculated: Allow the crosshead to fall freely
except for a specimen properly placed on the anvil. Measure the
velocity just before impact and at the fiducial plane. Despite the
loss of energy caused by the impact, the crosshead must have gained
energy in the fall from the plane where the impact began to the
fiducial plane. Calculate the energy thus gained by multiplying the
distance from the initiation plane to the fiducial plane by the weight
of the crosshead. Subtract that amount from the kinetic energy of the
crosshead at the fiducial plane calculated from the final velocity.
Finally, subtract the remainder from the kinetic energy calculated
from the initial velocity. Again, the 'flag energy' calculated in
this way should equal both the pendulum 'flag energy' and the
ASTM E-23 standard (or 'dial') energy for an identical specimen at an
identical temperature.

The crosshead energy loss due to the specimen can also be
calculated from a load-~time record as it can in the case of the
pendulum. Since the effect of gravity can be accounted for in the
case of tup energy calculated from a load-time record of a drop tower

impact test, the drop tower 'tup energy' must also be equivalent to




both the pendulum 'tup energy' and the ASTM E-23 'dial energy’' for
identical specimen at an identical temperature.

At this point it is important to consider the motions of the
pendulum and the crosshead and the 'tup energy' calculations in

greater detail.

1.3.4 Dynamics of Both Methodologies

13

an

Consider the motion of the tup in the Charpy pendulum machine.

It is nearly the end of a rigid pendulum which swings (1.e. rotates)

about a low friction bearing whose axis is horizontal. The pendulum

must obey Newton's laws of motion. Hence:

de

T= 15

where: T = torque applied to the pendulum
I s rotational inertia of the pendulum
@ = rotational velocity of the pendulum
t = time

Let: Vp = the tangential velocity of the tup

Ay = the tangential acceleration of the tup
Fr = the tangential force applied to the tup
rg = the radius from the center of the

bearing to the tup

(1-1)

(1-2)
(1-3)
(1-4)

(1-5)

(1-6)
(1-7)
(1-8)

(1-9)




It follows that: T =F*% rs {(by the definition of torque)
@ = VT/rs {by the definition of angular
velocity)
Substituting:
FT * reg = I(th/dt)(l/rs)
(since rg 1s constant)
Hence: Fp = (I/rg)(dvy/dt)
But: I/rg2 has units of mass.
- 2
So define: Metr = I/rs

(Merr is called 'effective mass.')

Therefore: Fp = Megg dVp/dt

But: dvVp/dt = Ag

Therefore: Fp = Meggf AT

14

{1-10)

{(1-11)

{1~12)

(1-13)

(1-14)

{1-15)

(1-16)

(1-17)

(1-18)
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Let: P(t) = the load applied to the tup by (1-19)

the specimen as a function of time

Now, the impact event in a Charpy machine begins (according to the
ASTM-23 requirements) with the pendulum very nearly vertical (i.e.,
with the motion of the tup nearly horizontal). It usually ends when
the horizontal component of the displacement of the tup is no more
than a few tenths of an inch and it could not possibly continue
horizontally for more than an inch. Hence the entire event occurs
while the pendulum moves through a small fraction of a radian from the
vertical, and the tangential force applied to the tup and the motion
of the tup are very nearly horizontal; force and motion and, more
importantly, the gravitational component of Fy are nil. Now
frictional and windage contributions are (due to E-23) also

negligible. Hence:

Fr = P(t) (1-20)

Substituting: P(t) = Megf AT (1-21)

AT = P(t)/Merr (1-22)




Let: X = horjizontal Displacement

16

{(1-23)

Since it has been seen that horizontal and tangential components of

motion are very nearly equal:

Ap = d2x/dt?
Substituting: d2x/dt2 = P(t)/Mess
Let: to = the time when impact starts

the time when impact ends

-
o]
n

Xo = the horizontal position when impact

starts
Set: Xg =0
and: to =0
v(t) = horizontal velocity of the tup at

time "t"

Vo = the initial horizontal velocity when

impact begins.

(1-24)

(1-25)

(1-26)

(1-27)

(1-28)

(1-29)

{1-30)

(1-31)

(1-32)
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Since P(t) is in the negative direction, integration of Equation 1-25

yvields:
dx b opn)
a - v(t) = v0 - f N dt
t eff
o
Hence:
top(t
dx = [v(t)] dt = [v_ - j BlY) 4¢7 at
o M
t° ef

f

Integrating Equation 1-34 from t, to t:

t t
—f I ﬁ-(udtdt
t t e

x(t) = xo + vot - v t
ff

c o
o o}

But since Equation 1-29 provides that:

Xg = 0

And Equation 1-30 provides that:

to = 0

(1-33)

(1-34)

(1-35)




18

Then it follows that:

t t
x(t) = vt - f f ﬁ—‘ﬂ dt at (1-36)
t t eff
o o
Let: E{t) = the energy dissipated by the tup due to P(t) {(1-37)
dE = P(t) dx (1-38)
Substituting:
v op(y)
dE = P(t) [v. - J d{t)] dt (1-39)
o} M
t eff
0
Integrating:
t t t
E(t) = v, IP(t) dt -f P(t) f HY ¢ at (1-40)
to to t eff

o

It follows from the above that an accurate value of Mgfr is

essential in correctly calculating energy, displacement, and velocity
as a function of time.
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Having obtained equations for A(t), V(t), X(t), and E(t) for the

pendulum, let the equations for the same guantities for the drop tower

be calculated.

The tup in the drop tower is rigidly attached to the crosshead

which is constrained by the guide bars so as to slide only in a

vertical direction.

second law is then described by:

Fy(t)

where:

"y
<
0

K 4
»
"

A (t)

Let:

My Ay(t)

total vertical force on the crosshead

mass of the crosshead

]

1]

gravitational acceleration

load applied by specimen to tup
vertical velocity of tup
vertical displacement of tup
energy dissipated from tup
velocity of impact event start
time of impact event start

0 = location of impact event start

The motion of the drop tower tup due to Newton's

{1-41)

(1-42)

{1-43)

(1-44)

(1-45)
(1-46)
(1-47)
(1-48)
(1-49)
(1-50)
(1-51)

(1-52)
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Since the windage and frictional drag are assumed negligible:

Fy = P(t) - Mg (1-53)
Substituting Equations 1-44 and 1-53 in Equation 1-41:
2
- (P(t)-Mg) = M 9 Z (1-54)
X X q tz

(Since P(t)=F; is in the negative direction)

Solving for acceleration:

2
P(t
2 - - Plt) _ 4 (1-55)
dt M
Integrating:
dz bRt
£ - vy -y, - jt (5 -el (1-56)
o

where Vy, = Vv(to)



dz - P(t) -
Vvo j dt + gt gt

But t, has previously been defined as 0 in Equation 1-30.

So:
t
az  _ - P(t)
ac =~ Vvo I M dat + gt
t X
o
Rearranging:
R 103}
dz = V_ dt - f dt dt + gt dt
Vo M
t X
o
Remember that t, = O and integrate:
t t
2(t) = V.t - J J PLY) geae + 1 g
Vo M 2
t t X

21

(1-57)

(1-58)

(1-59)
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The energy dissipation at the tup is:

dE = [P(t) - Myg| * dz (1-61)

But the energy dissipation by the tup due to the specimen.

dEs, is:

dEg = P(t) dz (1-62)
t bty
dE. = P(t) [V__ dt - f PLY) Gt at + gt dt]  (1-63)
S v M
t
(o]
Eg(t) = V__ f P(t) dt (1-64)
t t t
- f P(t) J EﬁEl dt dt + g f P(t) t dt
t . Mx t
(o} [¢] C

The equations of motion and of energy dissipation for the two
forms of the Charpy test are of similar form except for the term

containing the gravitational acceleration.
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Let: ty = the time at event termination (1-635)

Then, E (tg) for the drop tower will egual E(tg)} for the pendulum in
spite of the added term.

There are two arguments to support such a claim. First, the
gravitational term gfz P(t)tdt will be negligibly small both due to
the short duration of :he event and due to the small size of g as
compared to P(t)/M. Second, E,, i.e. the term V,,/P(t)dt, will
be slightly smaller in the drop tower test than in the pendulum test
since the event will take slightly less time in the drop tower test
than in the pendulum test due to gravitational acceleration.

In spite of the argument in the last paragraph, it might be
contended that the strain rate in the drop tower test will be higher
because of gravitational acceleration than the strain rate in the
pendulum test, and the greater strain rate will distort P(t). As a
result, P(t) would be significantly different in the drop tower and

penduium tests. Such a conclusion is not valid because:

1. The time for acceleration is too short for gravitation to
significantly affect strain rate;
2. The magnitude of gravitational force is not significant

compared to the impact load; and
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3. For larger scale tests (the DT and DWTT) which have longer
event times during which gravitation should be able to
exert a greater effect, it has already been shown that the
drop-weight and pendulum versions are equivalent.

[19];[20].

Energy is dissipated in the following ways: It is used to
accelerate the specimen to tup velocity (the initial inertial event
[21]), to plastically deform the specimen (crack initiation), and to
fracture the specimen (crack propagation}. It is stored elastically
in the apparatus and specimen (i.e., as "ringing"). [22]. Pinally,
it is dissipated by the apparatus' bearings. The first of these
quantities must be the same in both the test types since it consists
of the amount of energy required to accelerate a standard sized
specimen to a standardized velocity. The second and third must be the
same as they are related to material constants of the same material
made into standard sized specimens. It might be argued that the
fourth quantity might be different for pendulum and drop tower tests
since it depends on the stiffness of the machines. The crosshead of
the drop tower is clearly stiffer than the pendulum in the pendulum
machine since the crosshead has greater moment of inertia and is

shorter than the pendulum. Hence, if the tup and anvil used in the
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drop tower are of equal or greater stiffness than those used in the
pendulum test, there must be less stored elastic energy during the
drop tower test than during the pendulum test. However, as machines
are made stiffer, stored elastic energy must decrease until it is
inconsequential. Only at that point can many machine designs get the
same answer on impact tests of the same materials as noted by Bluhm
[23], but such is the case with modern pendulum Charpy machines.
Therefore, increasing the stiffness by using a drop tower instead of a
pendulum should not distort the Charpy test.

The fifth quantity has been carefully made negligible in the
pendulum apparatus by setting the radius of the strike equal to the
radius of percussion and by requiring extremely low friction
bearings. If the drop tower has linear bearings with low friction as
well as the ability to orient the crosshead accurately, it will be
negligible for the drop tower too.

Several details remain to be treated:

1. Measurement of load applied by the specimen to the tup;
2. Determination of tup velocity;
3. Numerical methods used to trace tup motion and calculate

absorbed energy.
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1.4 Instrumentation Analysis

The procedures used in this study to measure tup load are the
same as those described by earlier researchers. ([24];({25};{26];[27]);
{28]. 1In essence, the solution involves machining a reduced section
into the tup and attaching to it strain gauges connected together in
the form of a rosette. Various rosette designs have been used
successfully. The rosette, in turn, is included in a resistance
bridge circuit to which an input voltage is applied as shown in
Figure 1-2. [29]:;[30];[31];[32). 1If a load is applied to the tup,
the reduced section undergoes an elastic strain proportional to the
load. The bridge becomes unbalanced, and the output voltage of the
bridge increases. With an excellent tup design, the increase in
voltage is very nearly linearly proportional to the applied load and
is independent of strain rate. In this paper the power supply, the
portion of the bridge other than the strain gauges, and an amplifier
to boost the tup output to usable levels is called the amplifier
unit. The instrumented tup output can then be fed to an oscilloscope
and the oscilloscope trace photographed. Alternatively, the signal
can be digitized and recorded at discrete time intervals by any one of
a number of commercial systems. The recorded digitized signal can
become the argument of the load voltage calibration curve, thus

yvielding load information.
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1.4.1 Calibration

1.4.1.1 Tup Calibration

1.4.1.1.1 Static Tup Calibration

The response of the amplifier unit and tup can be

calibrated as follows:

1. Apply known loads to the tup and record the

corresponding outputs of the tup-amplifier unit

combination.

2. Use a least squares approach to fit a polynomial
to the data.

3. Back solve the resulting function and use the

result to calculate load from recorded signals.

1.4.1.1.2 Dynamic Tup Calibration

Since the calibration method described in the
preceding paragraph is performed under static conditions, Ireland [33]

has argued in favor of a dynamic calibration methodology as follows:
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1. Insert a very strong elastic object on the anvil;

2. Drop the pendulum or crosshead from a known
height on the object while recording the output
of the tup;

3. Find a linear tup calibration function which will
cause the impulse calculated from the tup output
record to equal the value required to reverse the

motion of the pendulum or crosshead.

The virtues and pitfalls of the static and dynamic

calibration methods will be considered in the Discussion section.

1.4.1.2 Initial Velocity

There are several methods by which initial velocity can be

found:

1. Calculation from drop height;
2. Electro-optical methods:
a. Timing the passage of flags;
b. Ronchi gratings or shaft encoders.

3. Stroboscopy
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1.4.1.2.1 Drop Height

ASTM E-23 suggests that the initial velocity (and
hence the free swing and free drop final velocities) could be
calculated by V, = (2gh)x which is satisfactory if, as E-23

requires, the windage and frictional losses are small.

1.4.1.2.2 Electro-Optical Methods

1.4.1.2.2.1 ‘'Flags'

ASTM E-604 suggests that both initial and final
velocities can be calculated by electro-optical measurement of the
passage of a rectangle of accurately known width, called a 'flag.'
There are two basic versions of this technique. 1In the first, a light
source shines on an electronic detector of light and an opaque
rectangle attached to the pendulum or crosshead passes between them.
Either the output of the detector as a function of time is recorded or
the time when the detector output drops and the time when it returns
to a high level are recorded. In any event, average velocity is just
the width of the flag divided by the time during which the flag

interrupted the light. In the second version, both the light and the
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detector aim toward the pendulum or crosshead. The flag is highly
reflective and it is surrounded by highly absorptive (i.e. black)
material. When the flag arrives, it causes the detector output to
Jjump; when it departs, it causes the detector output to drop. The
rest of the method is exactly the same as that used in the first

version of this method.

1.4.1.2.2.2 Ronchi Gratings and Shaft Encoders

There is another method for obtaining pendulum or
crosshead velocity which involves the use of Ronchi gratings. A
Ronchi grating is an equal-width, equally-spaced parallel series of
opaque bars on a plane transparent or reflective substance such that
its opaque width is equal to its transparent reflective width.
Consider two identical transparent background Ronchi gratings -- one
attached to the crosshead or pendulum and one attached to a fixed
support with the rulings parallel to one another and perpendicular to
the direction of tup motion. (See Figure 1-3. [34].) A well
collimated beam of light passes perpendicularly through the stationary
Ronchi grating to an electronic light detector. The light, its
associated lenses, and the detector are far enough away that the
moving Ronchi grating can pass easily between them, but they are close

enough to one another that the amplitude of the light gives a strong
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signal at the detector and the light is still well collimated as it
passes through the grating(s). Lens L1 of focal length L1 collimates
the light. Lens L2, actually a pair of achromatic doublets each of
focal length L2, focuses the image of the stationary grid, grid (1),
on the plane of the moving grid, grid (2), and lens L3 which has focal
length f5 focuses the light onto the detector, D. As the moving
grating passes through the light beam it will vary from being
perfectly aligned to the stationary grating, allowing maximum light to
pass through, to perfectly misaligned, allowing essentially no light
to pass through, and back again to perfect alignment. Hence the
output of the light detector is a triangle wave of variable
frequency. The reciprocal of the frequency of the signal is twice the
grating spacing divided by the velocity. Hence, the velocity is twice
the grating spacing divided by the output period. A similar method
could employ a Ronchi grating with reflective bars between the opaque
ones.

An exactly analogous method which can be used on
a pendulum involves the use of a device known as a shaft encoder. The
shaft encoder contains two transparent discs with a pattern of opaque
arcs printed on them. The arcs are concentric to the discs. The
output of the shaft encoder is a parallel digital signal representing
the angular position of the shaft. Shaft encoders exist which are
accurate to a small fraction of a degree. If a shaft encoder were

attached to the shaft of a pendulum machine, its output could be used
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to calculate the velocity of the pendulum. For example, the signal
corresponding to the least significant binary digit would be a square
wave with frequency proportional to shaft angular velocity and hence
to tup tangential velocity.

An advantage of both the Ronchi grating and flag
velocity measurements is that they measure actual and not theoretical
velocities. That is, they do not depend on the assumption that drag
sources are negligible.

An advantage of the Ronchi grating method over
the flag method is that several valid velocity measurements can be
made before the event and many can be made during and after it. Since
relatively few signal samples are usually recorded, and since
different materials require differing sampling rates, the flag system
often requires different flag size and spacing for different materials
if both initial and final velocities are desired. The Ronchi grating

system has inherently enough flexibility to avoid such a problem.

1.4.1.2.3 Stroboscopy

If a moving object, illuminated by a light flashing at

known time intervals, is photographed, the position of the object at
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each time interval can be obtained from the photographic image, and

the speed of the object can be calculated from the time-position data

thus obtained.

Stroboscopy is easier to set up, but is not as

accurate as Ronchi grating techniques.

1.4.1.3 Effective Mass

1.4.1.3.1 Effective Mass of the Pendulum

Let:

I = the angular momentum

Mact = pendulum assembly actual mass
Merr = pendulum assembly effective mass
Teg = center of gravity radius

rg = radius of gyration

ro = radius of oscillation

I'p = radius of percussion

rg = radius of strike

(1-66)
(1-67)
(1-68)
(1-69)
(1-70)
(1-71)
(1-72)

(1-73)
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The angular inertia of a compound pendulum is the
pendulum's total rotating mass multiplied by its radius of gyration

squared. [41].

1 = r M (1-74)

g act

Due to Equation 1-15:

"eff = I/ re (1-75)

Substituting Equation 1-79 into Equation 1-75:

(1-80)
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1.4.1.3.2 Effective Mass of the Crosshead

The effective mass of the crosshead is simply the

total mass of the crosshead and all attached accessories.

1.4.2 Calculations

The 'tup energy' can be calculated from the initial velocity and

the load-time curve in several ways. The most obvious are:

1. The Augland equation;

2. The double integral method.

1.4.2.1 The Augland Eguation

The Augland equation (actually devised by Grumbach)

[35];[86];137] is:

E = E_ - —=- (1-81)
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where:
Etot = the total energy absorbed by the (1-82)
specimen during the event
te
E = v J P dt (1-83)
a o]
t
o
Eq = % MV,2 (1-84)
where:
Vto = initial velocity (1-85)
to = time at event start (1-86)
tt = time at event end (1-87)
P = P(t) = load applied to the tup as a function (1-88)
of time
M = mass of crosshead or effective mass of (1-89)
pendulum

The Augland equation can be shown to be exact for the pendulum, but it
requires a small correction for the drop tower. (See derivations in

Appendix A.)
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1.4.2.2 The Double Integral Method

The double integral method, described in section 1.3.4, yields:

For the Pendulum:

t t t
E(t) = v, J f ety at - f fp(t) I £ 5151 dt dt (1-90)
tO tO tO eff

For the Drop Tower:

‘e
E(t) = Vv f P(t) dt (1-91)
(o]
t
(o]
t t t
- j P prty J EP) e at+g f i) tat
Mx
t t t
(o] (o} (o]

1.4.2.3 Relationship Between the 'Tup Energy' Methods

For the pendulum, the double integral method can be shown
to be equivalent to the original Augland equation. For the drop

tower, the double integral method can be shown to be equivalent to the
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corrected Augland equation. It is more straightforward to obtain

intermediate values of velocity and displacement using the double

integral method.

1.4.2.4 Practical Application of the Methods

1.4.2.4.1 Practical Application of the Augland

Equation

In the event that the load-time record is a
photograph, the most straightforward option is to carefully obtain the

scale of the photograph, graphically integrate the load-time curve and

apply the Augland equation.

1.4.2.4.2 Practical Application of the Double

Integral Method

If the load-time record is a digitized sampling of
load at discrete time intervals, it will be necessary to perform the
integration by a numerical method. Since the load samplings are at
equal intervals, only a Newton-Cotes method or spline integration

would be possible. The Zeroth order Newton-Cotes method (the



41

rectangle rule) is a desirable choice: it permits integration over an
arbitrary number of points and it is simple to program. Higher order
Newton-Cotes methods such as the trapezoid rule and Simpson's rule

could also be used.

1.4.2.5 Integration Methods

1.4.2.5.1 The Rectangle Rule

Acceleration during the ith interval is given by:

aj = Py/M (1-92)

where: P; = the load sample at the beginning of the {(1-93)
ith jnterval

and: A; = the acceleration during that interval (1-94)

M = the mass of the crosshead or effective mass (1-95)

of the pendulum
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If velocity at the end of the ith interval is given by:

where:

Let:

Therefore,

Hence,

where:

and:

the

Visy = Vi + Ay AT {1-96)

Vij+1 = velocity at the end of the ith interval (1-97)

Vj = velocity at the end of the i-1th interval (1-98)

AT = sampling interval (1-99)

Vavg = the average velocity during the (1-100)
ith jnterval

Van = (Vi + V1+1) / 2 (1-101)

the distance travelled during the ith jinterval is:

AX = [(V1+ \) ) / 2] AT (1-102)

i+1

distance travelled by the end of the ith jnterval is:

Xijs1 = X3 + [(Vy + Vi) / 2] AT (1-103)

Xi+1 distance travelled up to the end (1-104)
of the ith interval
Xj = distance travelled up to the end of (1-105)

the i-1th jnterval
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Now the energy absorbed by the tup during the ith jnterval is:

AEi = Pi AXi = Pi[(vi + Vi+1)/2] AT (1-106)

Call the above equation the zeroth order method. According to that

method, energy absorbed up to the ith jnterval is:

E = E, + AE = Ei + Pi [(Vi + Vi+1)/2] AT (1-107)

where: Ejy = energy absorbed up to the end of the (1-108)

ith jnterval

and: Ej_1 = energy absorbed up to the i-1th interval (1-109)
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A simplified version of a program to use this approach for the pendulum

would be (assuming the loads are stored in any P):

For i = 0 to last (whatever last might be!)

Begin

End; (somehow the program
initialized X;, Ej, Vi, M, Pj

and At correctly.)

Appendix A contains the ASTIR program which performs the necessary

calculations using data collected by the COMPUTERSCOPE program.

1.4.2.5.2 Higher Order Methods

1.4.2.5.2.1 The Trapezoid Rule

Assume instead that during each interval load

varies linearly with time and velocity quadratically with time.



We define:

and:

Also:

Allow AEi’ E
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P; = load at the beginning of the ith interval (1-110)

Pi+; = load at the end of the ith interval (1-111)

Vj,2 = velocity at the end of the i+1th (1-112)
interval

, Ai' Vi and Vi+ to be defined as before.

i+1 1

It follows that:

i+1

e T O (1-113)
24
L U SR GRLE L te 0
24
3At V., P, 7At P, V
o A i+l _____i_ 1 _ )
24 24

Call this the first order method. This method is derived in

section A.4.1.1 of Appendix A.
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1.4.2.5.2.2 Simpson's Rule

Further, load could vary parabolically during the

ith jnterval and velocity cubically with time.

load at the end of the i+1th interval (1-114)

Let: Pis2

Eij, Aj, M, Py, Pj41, Vi, Visy, Vieo be defined as before

and: Vi+3 = velocity at the end of the i+2th interval {1-115)
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It follows that:

] (38t P, . - 208t P, . - 13At P) V.
I - G (1-116)
720
L ATI%8t Pyyp t 1020 Puay T OS8R Vi
720

1 i+2
+ _____________________________

720
st £ M A LTS
720
Bt S ¥ SR WS O

720 720

Let us call this the second order method. This method is derived in
section A.4.2.1 of Appendix A. If still higher methods are

considered, the equations will rapidly become more complex.
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1.5 Summary

So far, it has been shown that there are three equivalent
methods of measuring energy absorption in the pendulum Charpy test and
two equivalent methods in the drop tower Charpy test. It has further
been shown that all of the Charpy pendulum and Charpy drop tower
energy measures should be theoretically equivalent. It would be
convenient if there were a third method for the drop tower as well. A
possible method for providing such an energy method is suggested by
ASTM E-604 in which it is suggested that the arresting mechanism be
aluminum blocks and the energy measure be the degree of plastic
deformation sustained by the blocks. ASTM E-604 suggests a method
which apparently provides an adequate calibration, allowing absorbed
energy to be obtained from the block deformation. [38].

Theoretically, all these energy measurements are equal. 1In
particular, the pendulum 'dial’' and 'tup energies' should be equal and
they should equal the drop tower 'tup energy' for equivalent systems.

It remains to test the hypothesis.



2. PROCEDURE

2.1 Specimens

Five plates of Alloy 4340 Aircraft quality steel which had been
blanchard ground to a thickness of approximately 0.400" and which came
from a single metal lot were obtained from a commercial source. A
sample was cut from each plate and submitted to spark spectrography.
The plates were band sawed to 2.160 * 0.005" lengths and each of
the resulting pieces was band saw cut into 0.400" £ 0.005" widths.
The resulting Charpy specimen blanks measured 0.400" + 0.005" x
0.400" * 0.005" x 2.180" * 0.005" with the long direction of each
blank parallel to the rolling direction. The width of each blank was
then abrasively machined to 0.394" * 0.001" and the thickness
was abrasively machined to 0.3%94" % 0.003". One hundred and
nine suitable specimens were thus prepared. Each specimen was then
notched by broaching so that the notches were perpendicular to the
rolling direction of the plate. The notches were imaged at low

magnification on a Carl Zeiss Standard Universal M microscope using
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transillumination. (In other words, the metallograph was used as a
shadow dimensional comparator.) The dimensions of the notches were
checked using a translucent template and found to be in dimensional
tolerance to ASTM E-23.

The 109 Charpy bars were then austenitized at 1550°F for one
hour, quenched in oil, and tempered at 400°F for one half hour. A
random sample had final hardness of 54 on the Rockwell "C" hardness
scale and dimensions still in accordance with ASTM E-23.

Forty-five of the Charpy bars were loaded into an evacuated
quartz tube and tempered at 1180°F for 12 hours (8 hours were required
to reach 1200°F.) A random sample examined after this treatment still
had dimensions in accordance with ASTM E-23, but their hardness was

now 28 on the Rockwell "C" hardness scale.

2.2 Calibration

2.2.1 Tup Calibration

2.2.1.1 Pendulum Tup Calibration

The Effects Technology Inc. tup used in the pendulum
experiments was calibrated as follows: An Ireland Associates
20,000 1b. drop tower tup was attached to a warmed-up amplifier unit

whose output was attached to an accurate and sensitive voltmeter.



51

Compressive load was applied to it using a Tinius-Olsen tensile
testing machine. The amplifier unit's output was recorded as a
function of load during several runs. The results were examined
statistically and a least squares best fit was made using a Fortran
statistical subroutine called PANOVA which is described in

section B.3.3.8 of Appendix B.

A special tip was installed on the Ireland Associates 20,000 1b.
tup and it was mounted on the pendulum machine using a specially
constructed frame so that the Ireland Associates 20,000 1lb. tup could
be pushed against the Effects Technology Charpy tup with an Enerpac
hydraulic device. Both the Ireland Associates 20,000 lb. tup and the
Effects Technology's pendulum Charpy tup were attached to warmed-up
amplifier units whose outputs were the X and Y inputs of an X-Y
plotter.

Several plots were made. In each, the load on the Effects
Technology's pendulum Charpy tup was raised to approximately
10,000 1b. and reduced to zero.

The data thus obtained was input to a fortran program using the
PANOVA subroutine, and thus a least squares curve fit was made.

Substitution of the first curve fit into the second curve fit
resulted in the calibration curve for the pendulum Charpy tup.
Furthermore, the standard errors of the calibration constants were
calculated from the standard errors of the constants in the first and

second curve fits.
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2.2.1.2 Drop Tower Tup Calibration

The Ireland Associates drop tower Charpy tup was calibrated
in a simpler, but essentially similar, way. First using calibration
data provided by Instron Corporation, a calibration curve was found
for an Instron universal testing machine by using the PANOVA
subroutine. Then the drop tower Charpy tup was attached to a
warmed-up amplifier unit whose output was, in turn, attached to an
accurate and sensitive voltmeter. It was compressed several times
using the Instron universal testing machine in load mode to slightly
less than 10,000 lbs. and then unloaded. The output of the amplifier
unit was recorded as a function of load and the data were submitted to
statistical analysis using PANOVA. The result was a least squares
curve fit. Pinally, the two curve fits and the associated standard
errors were combined, resulting in a calibration curve and associated

standard error.

2.2.1.3 Recalibration of the Drop Tower Tup

To confirm the calibration of the Ireland Associates drop
tower Charpy tup, it was recalibrated by Tech Science International,
Inc. in Seattle, Washington. The tup was connected to the usual power
supply amplifier and the amplifier output was connected to Fluke model

8800A voltmeter S/N S10017 N.B.S. Traceability 74689. The tup was
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placed on top of one of two proving rings and the tup proving ring
combination was compressed in a load frame using a hydraulic
cylinder. Tinius Olsen's 2000 lb. proving ring S/N 78856 N.B.S.
Traceability SJT.01/103371 was used for loads of 0 through 2000 lbs.
Tinius Olsen's 20,000 lb. proving ring S/N 68131 N.B.S. Traceability
S$JT.01/103173 was used for 0 lbs and 2000 through 10,000 lbs. Three
replicate tests were performed at each load level.

Since ASTIR subtracts the voltage corresponding to zero load
from each voltage in the data, in each replicate test the voltage at
zero load was subtracted from the voltages at the other loads. The
resulting data were submitted to analysis by a computer program using
the PANOVA subroutine.

It was assumed that the load rings' calibration was perfect
(i.e., it could be treated as a primary standard), so the calibration

curve in this case was calculated using PANOVA in a one-step process.

2.2.2 Determination of Effective Mass

2.2.2.1 Effective Mass of the Pendulum

The effective mass of the pendulum was obtained by the
following procedure. First the period of the pendulum was determined

as the pendulum swung through a series of swings of less than 15°.
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This process was repeated six times. The results from those seven
measurements were then averaged. The equation shown in

section 5.2.5.2 of ASTM E-23 [39] was used to obtain the radius of
percussion. The mass of the pendulum was obtained by demounting the
pendulum, weighing it on a shipping scale, and dividing the result by
the acceleration of gravity. The center of gravity's radius was found
by balancing the demounted pendulum on an angle iron, measuring the
distance between the center of gravity and the axis about which the
pendulum rotates, and mathematically allowing for the effect of the
shaft and bearings on center of gravity position. The radius of
strike was directly measured. Equation 1-8 was used to calculate the

pendulum’'s effective mass.

2.2.2.2 Effective Mass of the Drop Tower Crosshead

The effective mass of the drop tower crosshead was obtained
by attaching a scale between the release mechanism of the drop tower
and the crosshead and reading the weight of the crosshead. The result

was then divided by the acceleration of gravity.
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2.2.3 Determination of Initial Velocity

2.2.3.1 Velocity of the Pendulum

The velocity of the pendulum just prior to the impact, V.,
was obtained by carefully measuring the difference in height of the
tup just before release and the height of the tup just before impact
and applying:

Vo = (2gh)¥% (2-1)

2.2.3.2 Velocity of the Drop Tower Crosshead

Because a strobe light and camera were readily available
and the optics needed for Ronchi grating measurements were not, the
velocity of the drop tower crosshead just prior to impact was obtained
from strobe pictures taken in the vicinity of the impact for a drop
from the same height as used for the drop tower Charpy tests. The
front of the crosshead was covered with black tape and a thin, white,
horizontal tape line was applied to it. After the strobe photos had
been taken, a 6" steel scale was taped to the crosshead and

photographed to permit measurement of the position of the tape line.
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2.2.4 Rise Time of the Amplifier

Performance of the amplifier used to monitor tup output was
tested by inputting square waves and storing response using a

Tetronix-Sony model 336 recording oscilloscope.

2.3 Impact Tests

2.3.1 Pendulum Impact Tests

A Tinius Olsen model 74 universal impact testing machine
(maximum energy 240 ft-1b Mgrr 60 1b.) configured for instrumented
Charpy testing was used for the pendulum experiments. See
Figure 2-1. Instead of the usual dynatup instrumentation, a dedicated
amplifier unit designed and built by the OGC electronics shop was
connected to the tup. The amplifier unit output was received by a
COMPUTERSCOPE APL-D2 interface system and tup output data was
displayed and recorded by an Apple II1+ computer on a 5 1/4" floppy
disk.

Five specimens from each heat-treat condition of the 4340 Charpy
specimens prepared for this work were tested in the pendulum machine
at room temperature. 'Dial energies' were recorded manually and tup

output was recorded by instrumentation.
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Tinius Olsen Model 74 Univeral

Figure 2-1.

Impact Testing Machine
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2.3.2 Drop Tower Impact Tests

The apparatus used in the drop tower portion of the experiment
is shown in Figure 2-2. It has a 180 lb. crosshead and 10 ft. maximum
drop height. For this part of the experiment, an instrumented drop
tower Charpy tup designed and built by Ireland Associates (see
Figure 2-3) was used in conjunction with the same instrumentation used
in the pendulum portion of the experiment.

Arrestor blocks were prepared from Alloy 6061 aluminum and heat
treated to place them in the "0" temper. [40].

Five specimens from the softer heat-treat condition and six
specimens from the harder heat-treat condition were tested in the drop

tower at room temperature.

2.4 Impact Test Calculations

A program called ASTIR utilizing the approach to energy
calculation outlined in the Introduction was written and is described
in detail in Appendix A. ASTIR is capable of performing calculations
using linear or quadratic parabolic tup calibrations and versions of

ASTIR exist which perform energy calculations using the zeroth, first,



Figure 2-2.

Drop Tower



Figure 2-3.

Ireland Associates Drop Tower Charpy Tup

60
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and second order equations. All the 'tup energy' results for all four
sets of tests were analyzed by ASTIR, and hard copy was made for the
pendulum and drop tower test results. System compliance data were
calculated using ASTIR. Several combinations of calibration equations
and integration methods were used seeking the best technique.

Mean and standard deviations were calculated for all conditions

tested, and F-test and T-test comparisons were made between:

1. E-23 'dial energy' and pendulum 'tup energy;'
2. Pendulum 'tup energy' and drop tower 'tup energy;' and

3. E-23 'dial energy' and drop tower 'tup energy.'




3. RESULTS

3.1 Calibration Results

3.1.1 Tup Calibration

Both the Effects Technology and the Ireland Associates tups were
calibrated for this experiment. The results of these calibrations are

summarized below:

3.1.1.1 Pendulum Tup Calibration

Table 3-1 summarizes the data gathered during calibration
of the Ireland Associates 20,000 1b tup (attached to the 0GC-designed
amplifier unit) against the Tinius Olsen tensile machine. Tup output,
shown in the body of the table, is given in volts; tensile machine
output (column headings) is in pounds. The data in Table 3-1 are

plotted in Figure 3-1.



Table 3-1
Calibration of Ireland Associates 20,000 1lb Tup
Load [1lb]

Rep. # 0000 1000 2000 3000 4000 5000
1 0.0570 0.0835 0.1065 0.1285 0.1510 0.1735
2 0.0570 0.0840 0.1065 0.1300 0.1510 0.1735
3 0.0570 0.0810 0.1030 0.1280 0.1490 0.1730
4 0.0570 0.0845 0.1065 0.1280 0.1535 0.1750
5 0.0580 0.0775 0.1003 0.1225 0.1425 0.1693
6 0.0580 0.0830 0.1045 0.1285 0.1503 0.1750
7 0.0580 0.0810 0.1043 0.1268 0.1515 0.1740
8 0.0580 0.0850 0.1080 0.1305 0.1535 0.1763
9 0.0580 0.0805 0.1035 0.1250 0.1450 0.1703
10 0.0580 0.0835 0.1055 0.1285 0.1505 0.1738

Load [1b]

Rep. # 6000 7000 8000 9000 10000
1 0.1960 0.2180 0.2415 0.2670 0.2870
2 0.1970 0.2185 0.2450 0.2655 0.2890
3 0.1960 0.2190 0.2405 0.2640 0.2870
4 0.1985 0.2215 0.2430 0.2675 0.2915
5 0.1920 0.2150 0.2350 0.2590 0.2855
6 0.1950 0.2180 0.2403 0.2653 0.2875
7 0.1945 0.2168 0.2405 0.2638 0.2848
8 0.1990 0.2198 0.2433 0.2665 0.2895
9 0.1943 0.2163 0.2390 0.2620 0.2855
10 0.1948 0.2190 0.2405 0.2645 0.2895

Table 3-2 presents the data from the Effects Technology Inc.

pendulum Charpy tup which was calibrated against the Ireland

Associates 20,000 1b tup.

Associates 20,000 1lb tup-amplifier unit output.

63

The first line of the table is the Ireland

The body of the
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table shows the Effects Technology-amplifier unit output.

outputs are given in volts.

Figure 3-2.

Both

The data in Table 3-2 are plotted in

Table 3-2
Calibration of Effects Technology Pendulum Charpy Tup
Against the Ireland Associates 20,000 1b Tup

65

Tup-Amp Output
0.0560 0.0810 0.1060 0.1310 0.1560 0.1810 0.2060
Rep #

1 -0.0480 0.0260 0.1105 0.1845 0.2560 0.3375 0.4090
2 -0.0480 0.0260 0.1025 0.1805 0.2560 0.3340 0.4080
3 -0.0480 0.0280 0.1055 0.1830 0.2605 0.3355 0.4080
4 -0.0480 0.0280 0.1055 0.1835 0.2570 0.3305 0.4065
5 -0.0480 0.0260 0.1105 0.1855 0.2595 0.3320 0.4070
6 -0.0480 0.0280 0.1070 0.1850 0.2630 0.3370 0.4105
i -0.0480 0.0355 0.1120 0.1905 0.2655 0.3470 0.4150
8 -0.0480 0.0310 0.1105 0.1845 0.2625 0.3375 0.4110
9 -0.0480 0.0305 0.1100 0.1870 0.2655 0.3375 0.4090
10 -0.0480 0.0280 0.1090 0.1830 0.2605 0.3355 0.4080
11 -0.0480 0.0320 0.1090 0.1835 0.2620 0.3355 0.4065
12 -0.0480 0.0320 0.1105 0.1855 0.2595 0.3370 0.4145
13 -0.0480 0.0330 0.1110 0.1885 0.2670 0.3390 0.4105
14 ~-0.0480 0.0355 0.1155 0.1905 0.2655 0.3470 0.4150

The output of a statistical program using PANOVA analyzing the

data in Tables 3-1 and 3-2 is shown in Tables 3-3(A), 3-3(B), and

3-3(C).
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Table 3-3(A) (1)
Statistical Analysis of Data in Table 3-1
(Calibration of Ireland Associates Tup)

Calibration Curve:

~

Y = b0 + bl *X
where: Y = Output of amplifier attached to
Ireland Associates 20,000 1lb tup in volts
b0, bl = Calibration coefficients
X = Load in pounds

Specific Calibration Curve:

Y = + .58681e-01 + .22855e-04 X

Source Sum of Degrees Mean
Squares of Freedom Square

Due to Regression 0.5746 1 0.5746

Pure Error 0.0005 99 0.0000

Lack of Fit 0.0000 9 0.0000

About Regression 0.0006 108 0.0000

Total 0.5752 109 0.0053

Due to this Order 0.5746 1 0.5746

Degrees of Freedom 1 & 108

Coefficient b0 bl

Value 0.58681e-01 0.22855e-04

Standard Error 0.34540e-03 0.69080e-07

Two Sided T Ratio 0.16989e+03 0.33085e+03

Degrees of Freedom 108



Calibration Curve:

Y = b0 + bl *X
where: 9
b0, bi,
X

Specific Calibration Curve:
Y = + .58622e-01

Source

Due to Regression
Pure Error

Lack of Fit

About Regression
Total

Due to this Order

Table 3-3(A)(2)
Statistical Analysis of Data in Table 3-1
(Calibration of Ireland Associates Tup)

b2

+

{continued)

b2 * X2
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Output of amplifier attached to

Ireland Associates 20,000 1b tup in

F Ratio for Improvement Due to Order 2:

Degrees of Freedom

Coefficient

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom

volits

= Calibration coefficients

= Load in pounds

.22895e-04 X - .39510e-011 X2
Sum_of Degrees Mean
Squares of Freedom  Square
0.5746 2 0.2873
0.0005 99 0.0000
0.0000 8 0.0000
0.00086 107 0.0000
0.5752 109 0.0053
0.0000 1 0.0000

0.25286e-01

1 & 107
[+]¢] b1 b2
0.58622e-01 0.22895e-04 -.39510e-11
0.50921e-03 0.25798e-06 0.24847e-10

0.11512e+03
107

0.88748e+02

0.15902e+00



Calibration Curve:

Y = b0 + bl * X
where: ?
b0, hil,
X

Specific Calibration Curve:

Y = + .57982e-01 -

Due to Kegression
Pure Error

Lack of Fit

About Regression
Total

Due to this Order

F Ratio for Improvement Due to Order 3:

Degrees of Freedom

Coefficient

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom

Coefficient

Value

Standard Error

Two Sidea T Ratio
Degrees of Freedom

Table 3-3(A)(3)
Statistical Analysis of Data in Table 3-1
(Calibration of Ireland Associates Tup)

.23912e-04 X -

(co

b3

ntinued)

* v2 oL

b3 * X3
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Output of amplifier attached to

Ireiand Associates 20.000 lb tup

in volts
Calibration coefficients
Load in pounds

noom

Sum of
Squares

.5746
.0005
.0000
.0005
.5752
.0000

OO OO OoC

1 & 106

b0
0.57982e-01
0.60086e-03
0.96499e-02
106

b3
0.17782e-04
0.91418e-05
0.19451e+01
106

.27068e-09 X2 +

.17782e-13 X3

Degrees Mean
of Freedom Square
3 0.1915
99 0.0000
7 0.0000
106 0.0000
109 0.0053
1 0.0000
0.37834e+01
bl b2
0.23912e-04 -.27068e-00
0.58163e-06 0.13930e-09
0.41112e+02 0.19431e+01



Table 3-3(B)(1)

Statistical Analysis of Data in Table 3-2
(Calibration of Effects Technology Tup)

Calibration Curve:

Y = b0 + bl *X
where: Y
b0, b1l
X

Specific Calibration Curve:

Y = - .21700e+00

Source

Due to Regression
Pure Error

Lack of Fit

About Regression
Total

Due to this Order
Degrees of Freedom

Coefficient

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom

m o

Output of Effects Technology tup

in volts

Calibration coefficients

Qutput of Ireland Associates

20,000 lb tup in volts

.30580e+01 X

Sum of
Squares

.2911
.0010
.0003
.0013
.2924
.2911
& 96

= NMDDODOO N

bO
-.21700e+00
0.97873e-03
0.22172e+03
96

Degrees Mean
of Freedom Square
1 2.2911
91 0.0000
5 0.0001
96 0.0000
97 0.0236
1 2.2911

bl

0.30580e+01
0.74712e-02
0.40931e+03

70



Table 3-3(B)(2)

Statistical Analysis of Data in Table 3-2
(Calibration of Effects Technology Tup)

(continued)

Calibration Curve:

Y = b0 + bl *X + b2 * x2

where: Y

L}

tup in volts
Calibration coefficients
Output of Ireland Associates

b0, b1, b2
X

oo

20,000 1b tup in volts

Specific Calibration Curve:

Y = - .22926e+00 + .32771e+01 X -
Source Sum of
Squares
Due to Regression 2.2914
Pure Error 0.0010
Lack of Fit 0.0000
About Regression 0.0010
Total 2.2924
Due to this Order 0.0003

F Ratio for Improvement Due to Order 2:

Degrees of Freedom 1 & 95
Coefficient b0

Value -.22926e+00
Standard Error 0.23698e-02
Two Sided T Ratio 0.96742e+02

Degrees of Freedom 95

Output of Effects Technology

.83605e+00 X2

Degrees
of Freedom

Mean
Square

2
91
4
95
97
1
0.30758e+02

bl

0.32771e+01
0.40032e-01
0.81860e+02

. 1457
.0000
.00060
.0000
.0236
.0003

OO0 00O

b2

-.83605e+00
0.15075e+00
0.55460e+01



Calibration Curve:

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom

Coefficient

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom
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Table 3-3(B)(3)

Statistical Analysis of Data in Table 3-2
(Calibration of Effects Technology Tup)

{continued)

Y = b0 + bl *X + b2 * X2 + p3* x3
where: y = Dutput of Effects Technology tup
in volts
b0, bl. b2, b3 = Calibration coefficients
X = Load in pounds
Specific Calibration Curve:
Y = - .22426e+00 + .31365e+01 X + .33671e+00 X2 - .29841e+01 X3
Source Sum of Degrees Mean
Squares of Freedom Square

Due to Regression 2.2914 3 0.7638
Pure Error 0.0010 91 0.0000
Lack of Fit 0.0000 3 0.0000
About Regression 0.0010 94 0.0000
Total 2.2924 97 0.0236
Due to this Order 0.0000 1 0.0000
F Ratio for Improvement Due to Order 3: 0.62728e+00
Degrees of Freedom 1 & 94
Coefficient b0 bl b2

-.22426e+00 0.31365e+01 0.33671e+00
0.67428e-02 0.18197e+00 0.14884e+01
0.33259e+02 0.17236e+02 0.22622e+00
94

b3
-.29841e+01
0.37678e+01
0.79201e+00
94



Calibration Curve:

Y = b0 + bl *X
where: Q
b0, b1,
X

Specific Calibration Curve:

Y = - .22908e+00 +

- .24589e+02 x4

Source

Due to Regression
Pure Error

Lack of Fit

About Regression
Total

Due to this Order

F Ratio for Improvement Due to Order 4:

Degrees of Freedom

Coefficient

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom

Coefficient

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom

Table 3-3(B)(4)
Statistical Analysis of Data in Table 3-2
(Calibration of Effects Technology Tup)

+

b2,

.33191e+01 X -

(co

b2

b3,

b3 * X3 +

Output of Effects

73

b4 * X4

Technology tup in volts

ntinued)
* X2 4
b4

m H

Calibration coefficients
Output of Ireland

Assocliates 20,000 1lb tup
in volts

Sum of

Squares

.2914
.0010
.0000
.0010
.2924
.00600

onN O OO N

1 & 93

b0
-.22908e+00
0.21587e-01
0.10612e+02
93

b3
0.99004e+01
0.54965e+02
0.18012e+00
93

.20480e+01 X2 +

.99004e+01 X3

Degrees Mean
of Freedom Square
4 0.5729
91 0.0000
2 0.0000
93 0.0000
97 0.0236
1 0.0000
0.55212e-01
b1 b2
0.33191e+01 -.20480e+01

0.79823e+00
0.41580e+01

b4

-.24589e+02
0.10465e+03
0.23497e+00

0.10259e+02
0.19964e+00
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The linear curve fit from Table 3-3(A)(1) was substituted into the
quadratic curve fit from Table 3-3(B)(2). The resulting equation was
solved and is presented in Table 3-3(C). Statistical data for the
equation in Table 3-3(C) were derived from the statistical data in
Tables 3-3(A)(1) and 3-3(B)(2). These derived data are included in

Table 3-3(C).

Table 3-3(C)
Calibration Curve for Effects Technology Pendulum Charpy Tup

Calibration Curve:

Y = Zerovolts + Loadfacl * X + Loadfac2 * X2

b
=
o
-
o2
<
H

Qutput of Effects

Technology Pendulum Charpy
tup in volts
Zerovolts, Loadfaci
Loadfac?
X

Calibration coefficients
Load in pounds

oo

Specific Calibration Curve:

Y = Zerovolts + .72656e-04 X - .43673e-09 X2

Coefficient Zerovolts Loadfacl Loadfac2
Value -.39837e-01 0.72656e-04 -.43673e-09
Standard Error 0.63361e-02 0.15257e~-05 0.76107e-10
Two Sided T Ratio 0.62873e+01 0.47621e+02 0.57383e+01

Degrees of Freedom 202



3.1.1.2 Drop Tower Tup Calibration

The Instron calibration data supplied by Instron Corp. are
shown in Table 3-4. Unfortunately, the manufacturer did not provide
replicate data sc an estimate of pure error and hence goodness of fit

is not possible. The data in Table 3-4 are plotted in Figure 3-3.

Table 3-4
Calibration of Voltage Output of
Instron Universal Tensile Testing Machine

Qutput Voltage Applied Load

[Volts] [1b]
1.000 1261.0
2.000 2517.0
3.000 3717.0
4.000 5020.0
5.000 6267.0
6.000 7512.0
7.000 8762.0
8.000 10015.0
9.000 11257.0

10.000 12502.0

The data gathered during calibration of the Ireland
Associates drop tower Charpy tup against the Instron tensile testing
machine output is displayed in Table 3-5 in volts. The data in

Table 3-5 are plotted in Figure 3-4.
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Table 3-5

Calibration of Ireland Associates Drop Tower Charpy Tup

Against the Instron Universal Tensile Testing Machine

Drop Tower

Charpy Tup Test Repetitions

~1

-1

Instron

Output
-0.0 -0
-0.5 -0
-1.0 -0
-1.5 -0
-2.0 -0
2. D -0
-3.0 -0
-3.5 -0
-4.0 +0
-4.5 +0
-5.0 +0
-5.5 +0
-6.0 +0
-6.5 +0
=T 0 +0
-7.3 +0

.2704
.2344
.1963
.1598
.1234
.0872
.0514
.0154
.0198
.0539
.0915
.1275
.1625
.1978
.2333
.2689

.2708
.2362
1991
.1620
.1256
.0895
.0536
.0175
.0180
.0539
.0890
.1251
.1605
. 1966
.2320
. 2686

L2706
L2344
. 1966
.1601
.1238
.0873
L0508
.0154
.0198
L0557
.0912
.1268
.1622
.1976
.2332
.2686

. 2699
L2353
.1986
.1612
.1255
.0891
.05635
.0178
.0181
.0538
.0895
.1250
.1598
. 1957
.2332
.2673

.2694
.2346
L1977
. 1605
.1244
.0886
.05831
L0171
.0187
.0543
. 0897
.1253
.1606
.1964
.2320
.2677

.2698
.2343
.1964
.1596
.1230
.0869
.0511
.0149
.0202
.0565
.0915
.1272
.1628
.1976
.2332
. 2685

The output of a statistics program using PANOVA to analyze

the data in Tables 3-4 and 2-5 is shown

and 3-6(C).

in Tables 3-6(A),

3-6(B)
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Table 3-6(A)(1)
Statistical Analysis of Data in Table 3-4
(Calibration of Instron Universal Tensile Testing Machine)

Calibration Curve:

Y = b0 + bl * X
where: Y = Qutput of Instron Universal
Tensile Testing Machine in volts
b0, bl = Calibration coefficients
X = Load in pounds

Specific Calibration Curve:

Y = - .47088e-02 -+ .79975e-03 X

Source Sum_of Degrees Mean
Squares of Freedom Square

Due to Regression 82.4987 i 82.4987

About Regression 0.0013 8 0.0002

Total 82.5000 9 9.1667

Due to this Order 82,4987 1 82.4987

Degrees of Freedom 1 &8

Coefticient b0 b1

Value .47088e-02 0.79975e-03

Standard Error
Two Sided T Ratio
Degrees of Freedom

.78588e-02 0.11418e-05
.59918e-00 0.70045e+03

x o o |
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Table 3-6(A)(2)
Statistical Analysis of Data in Table 3-4
(Calibration of Instron Universal Tensile Testing Machine)
(continueaq)

Calibration Curve:

b2 * X2

=
o
o
-
)
<
1]

Output of Instron Universal
Tensile Testing Machine in volts
Calibration coefficients

Load in pounds

=2
o
o
—
=2
1%
(3]

Specific Calibration Curve:

.91250e-04 + .79784e-03 X + .13937e-09 X2

Source Sum of Degrees Mean
Squares of Freedom Square

Due to Regression 82.4987 2 41,2493
About Regression 0.0013 7 0.0002
Total 82 .5000 9 9.1667
Due to this Oraer 0.0000 1 0.0000
F Ratio for Improvement Due to Order 2: 0.13213e+00
Degrees ¢of Freedom 1 &7
Coefficient b0 b1 b2
Value 0.91250e-04 0.79784e-03 0.13937e-09
Standard Error 0.15609e-01 0.54127e-05 0.38340e-09
Two Sided T Ratio 0.58458e-02 0.14740e+03 0.36350e+00
Degrees of Freedom 7
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Table 3-6(A)(3)
Statistical Analysis of Data in Table 3-4
(Calibration of Instron Universal Tensile Testing Machine)

(continued)
Calibration Curve:
Y = b0 + bl *X + b2 *xX2 + b3 *x3
where: Y = QOutput of Instron Universal
Tensile Testing Machine in volts
b0, bl, b2z. b3 = Calibration coefficients
X = Load in pounds
Specitic Calibration Curve:
Y = - .21525e-01 + .81311e-03 X - .25030e-08 X2 ~ .12793e-12 X3
Source Sum of Degrees Mean
squares of Freedom Square
Due to Regression 82.4989 3 27.4996
About Regression 0.0011 6 0.0002
Totali 82.5000 9 9.1667
Due to this Order 0.0002 1 0.0002
F Ratio for Improvement Due to Order 3: 0.10172e+01
Degrees of Freedom 1 &6
Coefficient b0 b1l b2
Value -.21525e-01 0.81311e-03 -.25030e-08
Standard Error 0.26503e-01 0.16076e-04 0.26478e-08
Two Sided T Ratio 0.81217e+00 0.50578e+02 0.94533e+00
Degrees of Freedom 6
Coefficient b3
Value 0.12793e-12
Standard Error 0.12684e-12
Two Sided T Ratio 0.10086e+01

Degrees of Freedom 6



Tabie 3-6(B)(1)

Statistical Analysis of Data in Table 3-5
(Calibration of Ireland Associates Drop Tower Charpy Tup)

Calibration Curve:

Y = b0 + bl * X
where: ?
bo, bl
X

Specific Calibration Curve;
Y = - ,26868e-00

Sourc

Due to Regression
Pure Error

Lack of Fit

About Regression

Total

Due to this Order

F Ratio for Improvement Due to Order 1i:

Degrees of Freedom

Coefficient

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom

h

no

Qutput of Ireland Associates

drop tower Charpy tup in volts
Calibration coefficients

Output of Instron Universal
Tensile Testing Machine 1n volts

.71749e-01 X

sum of
Squares

2.6255
0.0001
.0001
.0002
.6256
.6255

o oo

-

1 & 94

b0

-.26868e+00

0.22994e-03

0.11684e+04
94

Degrees
of Freedom

1
80
14
94
95
1
0.13692e+07

bl

0.71749e-01
0.61318e-04
0.11701e+04

Mean
Square

.6255
. 0000
.0000
.0000
.027¢6
.6255

MO C o O

82
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Table 3-6(B)(2)
Statistica! Analysis of Data in Table 3-5
(Calibration of Ireland Associates Drop Tower Charpy Tup)

(continued}
Calibration Curve:
Y = b0 + bl *X + b2 * X2
where: Y = Qutput of Ireland Associates
drop tower Charpv tup in volts
b0, bl, b2 = Calibration coefficients

X = Qutput of Instron Universal
Tensile Testing Machine in volts

Specific Calibration Curve-

Y = - .27037e+00 + .73198e-01 X - .19324e-03 X2

Source Sum of Degrees Mean
Squares of Freedom  Square

Due to Regression 2.6255 2 1.3128

Pure Error 0.0001 80 0.0000

Lack of Fit 0.0000 13 0.0000

About Regression 0.0001 a3 0.0000

Total 2.6256 95 0.0276

Due to this Order 0.0001 1 0.0001

F Ratio for Improvement Due to Order 2: 0.74193e+02

Degrees of Freedom 1 & 93

Coetficient b0 bl b2

Value -.27037e+00 0.73198e-01 -.19324e-03

Standard Error 0.26127e-03 0.17443e-03 0.22435e-04

Two Sided T Ratio 0.10348e+04 0.41965e+03 0.86135e+01

Degrees of Freedom 93



Table 3-6(B){(3)
Statistical Analysis of Data in Table 3-3
{Calibration of Ireland Associates Drop Tower Charpy Tup)
{continued)

Calibration Curve:

Y = bC + bi * X + b2 * X2 + b3 * x3

b3
o
]
3.
D
~<
n

Output of Ireland Associates
drop tower Charpy tup in volts
Calibration coefficients

Output of Instron Universal
Tensile Testing Machine in volts

ey
<
o
[
<
[a}
o
w

noin

Specific Calibration Curve-

Y = - .27085e+00 + .74120e-01 X - .51068e-03 X2 + .28217e-04 X3

Source Sum of Degrees Mean
Squares of Freedom  Square

Due to Regression 2.6255 3 0.8752

Pure Error 0.0001 80 0.0000

Lack of Fit 0.0000 12 0.0000

About Regression 0.0001 92 0.0000

Total 2.6256 95 0.0276

Due to this Order 0.0000 1 0.0000

F Ratio for Improvement Due to Order 3: 0.66619e+01

Degrees of Freedom 1 & 92

Coefticient b0 bi b2

Value ~.27083e+00 0.74120e-01 -.51068e-03

Standard Error 0.31486e-03 0.39532e-03 0.12490e-03

Two Sided T Ratio 0.86021e+03 0.18749e+03 0.40887e+01

Degrees of Freedom 92

Coefficient b3

Value 0.28217e-04

Standard Error 0.10932e-04

Two Sided T Ratio 0.25811e+01

Degrees of Freedom g2
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The linear curve fit from Table 3-6(A)(1) was substituted into the
linear curve fit from Table 3-6(B)(1). The resulting equation was
solved and is presented in Table 3-6(C)(1). The linear curve fit from
Table 3-6(A})(1) was substituted into the quadratic curve fit from
Table 3-6(B)(2). The resulting equation was solved and is presented
in Table 3-6(C)(2). Statistical data for the equations in

Tables 3-6(C) were derived from the appropriate data in

Table 3-6(A)(1) and Tables 3-6(B). These derived data are included in

Tables 3-6(C).

Table 3-6(C)(1)
Calibration Curve for Ireland Associates Drop Tower Charpy Tup
Due to Instron Calibration

Calibration Curve:

y = Zerovolts + Loadfacl * X

where: Y Output of Ireland Associates

drop tower Charpy tup

in volts

Calibration coefficients
Load in pounds

Zerovolts, Loadfacl
X

Hom

Specific Calibration Curve:

Y = Zerovolts + ,57382e-04 X
Coefficient bl

Value 0.57382e-04
Standard Error 0.44005e-05
Two Sided T Ratio 0.13040e+02

Degrees of Freedom 101



86

Table 3-6(C)(2)
Calibration Curve for Ireland Associates Drop Tower Charpy Tup
Due to Instron Calibration

Calibration Curve:

Y = Zerovolts + Loadfacl * X + Loadfac2 * X2

where: Y = Output of Ireland Associates

drop tower Charpy tup in volts
Zerovolts, Loadfacl
Loadfac?2
X

Calibration coefficients
Load in pounds

0o

Specific Calibration Curve:

Y = Zerovolts + .58542e-04 X - 0.12360e-09 X2

Coefficient b1l b2

Value 0.58542e-04 -.12360e-09
Standard Error 0.22048e-06 0.13997e-10
Two Sided T Ratio 0.26552e+03 0.88307e+01
Degrees of Freedom 100

3.1.1.3 Drop Tower Tup Recalibration

The load ring calibration data for the Ireland Associates
drop tower Charpy tup is shown in Table 3-7. The data in Table 3-7

are plotted in Figure 3-5.



w
~1

Table 3-7
Load Ring Calibration Data for
Ireland Associates Drop Tower Charpy Tup

Load fup OQutput  Tup Output  Tup Output
[1b] {volts] {volts] [volts]
0 0.0000 0.0000 0.0000
2000 0.1065 0.1025 0.1058
2500 0.1339 0.1287 0.1327
3000 0.1615 0.1550 0.1599
3500 0.1888 0.1818 0.1870
4000 G.2169 0.2083 0.2140
4500 0.2447 0.2854 0.2412
5000 0.2722 0.2621 0.2683
3500 0.3003 0.2899 0.2958
6000 0.3280 0.3168 0.3227
6500 0.3557 0.3551 0 3499
7000 0.3834 0.3722 0.3771
7500 0.4128 0.4005 0.4051
8000 0.4411 0.4289 0.4324
8500 0.4692 0.4568 0.4592
9000 0.4971 0.4852 0.4869
9500 0.5259 0.5131 0.5141
10000 0.5531 0.5402 0.5412
0 0.0000 0.0000 0.0000
300 0.0212 0.0223 0.0218
1000 0.0463 0.0475 0.0468
1500 0.0717 0.0732 0.0725
2000 0.0977 0.0993 0.0989

The output of a statistical program using PANOVA to analyze the

data in Table 3-7 is shown in Table 3-8(A}.
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Table 3-8(A) (1}

Statistical Analysis of Data in Table 3-7
(Recalibration of Ireland Associates Drop Tower Charpy Tup

Calibration Curve:

Y = b0 <+ bl * X
where: Y
b0. bl
bt

Specific Calibration Curve:

Y = -  .57962e-02

Source

Due to Regression
Pure Error

Lack of Fit

About Regression
Total

Due to this Order

Against Load Rings)

Qutput of Ireland Associates

drop tower Charpy tup in volts
Calibration coefficients

Load in pounds

.54942e-04 X

Sum_of
Squares

.0260
. 0009
.0004
. 0014
.0273
.0260

YO Com

F Ratic for Improvement Due to Order 1:

Degrees of Freedom

Coefficient

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom

1 & 107

bo
~.57962e-02
0.80771e-C3
0.71761e+01
67

Degrees
of Freedom

1
46
21
67
68
1
0.10014e+08

b1l

0.54942e-04
0.17362e-06
0.31645e+03

Mean
Square

Mo CcCo o

.0260
.0000
.0000
.000¢C
.0298
.0260

89
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Table 3-8(A)(2)
Statistical Analysis of Data in Table 3-7
(Recalibration of Ireland Associates Drop Tower Charpy Tup
Against Load Rings)

Calibration Curve:

Y = b0 + bl *X =+ b2 * X2

where: ¢ Dutput of Ireland Associates

drop tower Charpy tup in volts
Calibration coefficients
Load in pounds

b0, bl., b2

m m

Specific Calibration Curve:

Vo= - .37143e-02 + .53465e-04 X + .15275e-09 X2

Source Sum _of Degrees Mean
Squares of Freedom Square

Due to Regression 2.0261 2 1.0130

Pure Error 0.0009 46 0.0000

Lack of Fit 0.0003 20 0.0000

About Regression . 0.0012 66 0.0000

Total 2.0273 68 0.0298

Due to this Order 0.0001 1 0.0001

F Ratio for Improvement Due to Order 2: 0.60176e+01

Degrees of Freedom 1 & 66

Coefficient fold) b1 b2

Value ~.37143e-02 0.53465e-04 0.15275e-09

Standard Error 0.11520e-02 0.62514e~-06 0.62267e-10

Two Sided T Ratio 0.32241e+01 0.85524e+02 0.24531e+01

Degrees of Freedom 66
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Table 3-8(A}(3)
Statistical Analysis of Data in Table 3-7
(Recalibration of Ireland Associates Drop Tower Charpy Tup
Against Load Rings)

Calibration Curve:

ia)

Y = b0 + bl *X + b2* X2 + b3 * x3
where: y = Qutput of Ireland Associates
drop tower Charpy tup in volts
bO, bl, b2, b3 = Calibration coefficients
X = Load in pounds

y o= -

Source

Due to Regression
Pure Error

Lack of Fit

About Regression
Total

Due to this Order

F Ratio for Improvement Due to Order 3:

Degrees of Freedom

Coefficient

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom

Coefficient

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom

.21935e-02 +

Specific Calibration Curve:

.51020e-04 X +

Sum of
Squares

. 0261
. 0009
.0002
.0012
.0273
.0001

oMM O C o

1 & 65

b0
-.21935e-02
0.13612e-02
0.16114e+01
65

b3
-.45088e-13
0.22636e-13
0.19919e+01
65

.81176e-09 X2

of Freedom

3
46
19
65
68
1
0.39676e+01

b1

0.51020e-04
0.13711e-05
0.37211e+02

- .45088e-13 X°

Mean
Square

.6754
.0000
.0000
.0000
. 0298
.0001

oCc oo oo

b2

0.81176e-09
0.33641e-09
0.24130e+01
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The linear curve fit from Table 3-8(A}(1) is recapitulated in

Table 3-8(B).

Table 3-8(B)
Calibration Curve for the Ireland Associates Drop Tower Charpy Tup
Due to Load Ring Calibration

Calibration Curve:

Y = Zerovoits + Loadfacl * X

where: Y = Qutput of Irelana Associates
drop tower Charpy tup in volts
Calibration coefficients

Load in pounas

Hi

Zerovolts, Loadfaci
X

m

Specific Calibration Curve;

Y = - .57962e-02 -+ .54942e¢-04 X

Coefficient b0 b1

Value -.37962¢-02 0.54942e-04
Standard Error 0.80771e-03 0.17362e-06
Two Sided T Ratio 0.71761e+01 0.31645e+03
Degrees of Freedom 67

3.1.2 Effective Mass

3.1.2.1 Effective Mass of the Pendulum

For seven runs of 100 pendulum swings each (maximum angle

less than 15°} the total time is shown in Table 3-9:
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Table 3-9
Summary of Pendulum Swing Results

190.07 sec
190.09 sec
189.84 sec
190.10 sec
190.00 sec
190.09 sec
189.97 sec
Mean: 190.02 sec

Standard
Deviation: 0.094763 sec

Therefore, each individual swing had a period of 1.9002 sec with a
standard deviation of 0.0009 sec.

Tinius Olsen indicates that the time required for 50 swings
each less than 15° of the pendulum is 95 sec or, in other words,
100 swings can be accomplished in 190.0 sec. The OGC figure was used
in the calculations for this paper since it is in nearly exact
agreement with the Tinius Olsen figure.

The measured strike radius of the pendulum was 35.295".
Tinius Olsen indicates that the strike radius is 35.437". The OGC
figure was presumed to be accurate as the tup had been replaced since

manufacture.
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The measured pendulum weight was 67.531 lb. The estimated
weight of the pendulum shaft (which rotates with the pendulum) was
3.18 lb. Summing the two components of the rotating mass gives
70.71 1b. This figure is in fairly good agreement with Tinius Olsen's
estimate of 73.0 lb. Since the OGC pendulum weight is a direct
measurement, the 0GC total weight is considered more accurate than the
Tinius Olsen estimate. However, because of the type of scale used,
the OGC figure is accurate only to * % 1lb.

The pendulum, cap, and screws without the shaft were balanced on
an angle iron. The measured center of gravity radius was 2.625 feet
or 31.50 inches. It follows that the calculated total pendulum
assembly center of gravity was 2.507 feet or 30.08 inches. The

calculated Mgpy was 60.34 1b.

3.1.2.2 Effective Mass of the Drop Tower Crosshead

The measured weight of the drop tower crosshead was

179.62 1b * 0.5 1b.



3.1.3 Initial Velocities

3.1.3.1 Initial Velocity of the Pendulum

The drop height of the pendulum was measured as 52.63".

Tinius Olsen provided drop height dimensions of 53.16". Because of

the difficulty of obtaining an accurate empirically derived figure,

the Tinius Olsen data was used in calculating the initial velocity of

the pendulum.

3.1.3.2 Initial Velocity of the Drop Tower Crosshead

3.1.3.2.1 Strobe Photos

Figures 3-6 and 3-7 are the stroboscopic photographs

of the drop tower crosshead. The light horizontal lines are the

strobe images of the tape line on the crosshead. The data taken from

the stroboscopic photographs are shown in Tables 3-10{A) and 3-10(B).

95
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Strobe Photo #5

Figure 3-6.
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Strobe Photo #6

Figure 3-7.



TABLE 3-10(A)
Coordinates of Crosshead in Strobe Photo #5

Time [sec Position [ft]
0.0000 0.492
0.0049 0.414
0.0099 0.336
0.0148 0.254
0.0198 0.174
0.02417 0.093

- 0.0296 0.009

TABLE 3-10(B)
Coordinates of Crosshead in Strobe Photo #6

Time [sec Position [ft]
0.0000 0.417
0.0049 0.338
0.0099 0.258
0.0148 0.179
0.0198 0.099
0.0247 0.018

Statistical analysis of Tables 3-10(A) and 3-10(B) by use

of the PANOVA subroutine is shown in Tables 3-11(A) and 3-11(B).



Table 3-11(A)(1)

Statistical Analysis of Data in Table 3-10A
(Coordinates of Crosshead in Strobe Photo #5)

Calibration Curve:

Y = b0 + bl *X
where: ?
b0, bl
X

Specific Calibration Curve:

Y = + .49437e+00

Source

Due to Regression
About Regression
Total

Due to this Order
Degrees of Freedom

Coefficient

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom

Crosshead position in feet

Calibration coefficients

Time in seconds

.16272e+02 X

Sum of
Squares

0.1809
0.0000
0.1810
0.1809
1 &5

b0
0.49437e+00
0.12468e-02
0.39651e+03
5

Degrees Mean

of Freedom Square
1 0.1809
5 0.0000
6 0.0302
1 0.1809

b1

~.16272e+02

0.84125e-01

0.19342e+03

99
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Table 3-11(A)(2)
Statistical Analysis of Data in Table 3-10A
(Coordinates of Crosshead in Strobe Photo #5)

{(continued)
Calibration Curve:
Y = bo + bl *X + b2 *x2
where: Y = (Crosshead position in feet
b0, bl, b2 = Calibration coefficients
X = Time in Seconds

Specific Calibration Curve:

Q = + .49185e+00 - .15657e+02 X - .20730e+02 X2

Source Sum of Degrees Mean
Squares of Freedom Square

Due to Regression 0.1810 2 0.0905

About Regression 0.0000 4 0.0000

Total 0.1810 6 0.0302

Due to this Order 0.0000 1 0.0000

F Ratio for Improvement Due to Order 2: 0.32111e+02

Degrees of Freedom 1 &4

Coefficient b0 b1 b2

Value 0.49185e+00 -.15657e+02 -.20730e+02

Standard Error 0.64385e-03 0.11287e+00 0.36583e+01

Two Sided T Ratio 0.76391e+03 0.13872e+03 0.56667e+01

Degrees of Freedom 4



Table 3-11(A)(3)

Statistical Analysis of Data in Table 3-10A
(Coordinates of Crosshead in Strobe Photo #5)

Calibration Curve:

Y = b0 + bl *X
where: ?
b0, bl,
X

Specific Calibration Curve:

Yy = +

Source

Due to Regression
About Regression
Total

Coefficient

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom

Coefficient

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom

.49185e+00 -

(continued)

+ b2 * X2 +

b2, b3

oot

b3 * X3

.15657e+02 X - .20730e+02 X2 +

Sum of
Squares

0.1810
0.0000
0.1810

bO
0.49185e+00
0.83757e-03
0.58723e+03
3

b3
0.39501e-11
0.53322e+03
0.74080e-14
3
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Crosshead position in feet

Calibration coefficients
Time in seconds

.39501e-11 X3

Degrees Mean
of Freedom Square
3 0.0603
3 0.0000
6 0.0302
b1 b2
-.15657e+02 -.20730e+02

0.29108e+00
0.5378%e+02

0.24082e+02
0.86083e+00



Calibration Curve:

Y = b0 + bl *¥X
where: Y
bo, b1
X

Specific Calibration Curve:

Y = + .41714e+00

Source

Due to Regression
About Regression
Total

Due to this Order
Degrees of Freedom

Coefficient

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom

Table 3-11(B)(1)
Statistical Analysis of Data in Table 3-10B
{Coordinates of Crosshead in Strobe Photo #6)

Crosshead Position in feet

Calibration coefficients

Time in seconds

.16131e+02 X

Sum of
Squares

0.1111
0.0000
0.1111
0.1111
1 &4

b0
0.41714e+00
0.56155e-03
0.74285e+03
4

Degrees Mean

of Freedom Square
1 0.1111
4 0.0000
5 0.0222
1 0.1111

b1

-.16131e+02

0.45467e-01

0.35478e+03
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Table 3-11(B)(2)
Statistical Analysis of Data in Table 3-10B
(Coordinates of Crosshead in Strobe Photo #6)

{continued)
Calibration Curve:
Y = b0 + bl *X + b2 * X2
where: Y = C(Crosshead position in feet
b0, bil, b2 = Calibration coefficients
X = Time in seconds

Specific Calibration Curve:

Y = + .41640e+00 - .15905e+02 X - .91456e+01 X2

Source Sum of Degrees Mean
Squares of Freedom Square

Due to Regression . 0.1111 2 0.0556

About Regression 0.0000 3 0.0000

Total 0.1111 5 0.0222

Due to this Order 0.0000 1 0.0000

F Ratio for Improvement Due to Order 2: 0.33383e+01

Degrees of Freedom 1 &3

Coefficient bO b1l b2

Value 0.41640e+00 -.15905e+02 -.91456e+01

Standard Error 0.60402e-03 0.12881e+00 0.50056e+01

Two Sided T Ratio 0.68938e+03 0.12347e+03 0.18271e+01

Degrees of Freedom 3



Table 3-11(B)(3)

Statistical Analysis of Data in Table 3-10B
{Coordinates of Crosshead in Strobe Photo #6)

Calibration Curve:

Y = b0 + bl *X
where: ?
b0, b1,
X

Specific Calibration Curve:

Y = + .41679e+00 -

Source

Due to Regression
About Regression
Total

Due to this Order

F Ratio for Improvement Due to Order 3:

Degrees of Freedom

Coefficient

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom

Coefficient

Value

Standard Error

Two Sided T Ratio
Degrees of Freedom

+

b2, b3

b2 * X2 +

(continued)

"

oo

b3 * X3

104

Crosshead position in feet

Calibration coefficients
Time in seconds

.16269e+02 X + .31163e+02 X2 - .10879e+04 X3

Sum of

Squares

0.1111
0.0000
0.1111
0.0000

1 &2

bo
0.41679e+00
0.47000e-03
0.88680e+03
2

b3
-.10879e+04
0.54354e+03
0.20015e+01
2

Degrees Mean
of Freedom Square

3 0.0370

2 0.0000

5 0.0222

1 0.0000
0.40059e+01
b1 b2
-.16269e+02 0.31163e+02

0.20327e+00
0.80034e+02

0.20448e+02
0.15240e+01



A different procedure using linear algebra to analyze the
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data in Tables 3-10(A) and 3-10(B) was used to generate Tables 3-12(A)

and 3-12(B).

Estimate of Crosshead Velocity and Acceleration
Based on Data in Table 3-10(A)

Table 3-12(A)

(Coordinates of Crosshead in Strobe Photo #5)

Vavg=

Vo [ft/sec]

-15.
-15.
-15.
-15.
-16.
-16.
-16.
-16.
-15.
-15.

-15.

51861111
68729167
72946181
72102778
19333333
15116319
05838889
06682292
88970833
59451736

86103264

Aavg:

Ao [ft/sec/sec]

-136.
68.
.21563368
54.

0.

8.
27.
17.
40.
.87313600

t

t

- 46.

51

64

57502315
28751157

63000926
00000000
53593895
31500463
07187789
97250694

94766235
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Table 3-12(B)
Estimate of Crosshead Velocity and Acceleration
Based on Data in Table 3-10(B)
(Coordinates of Crosshead in Strobe Photo #6)

Vo [ft/sec] Ao [ft/sec/sec]
-15.94031250 -~ 34.143755179
-16.02465278 - 0.00000000
-16.01059606 - 5.69062596
-15.99091667 - 13.65750231
-16.02465276 - 0.00000611
-16.27767361 34.14375579
-16.15116319 8.53593895
~-16.07525694 - 6.82875116
-16.10899299 - 0.00001381
-15.89814236 - 17.07187789
-15.82223611 - 27.31500463
-16.02465268 - 0.00001373
-15.695725 - 37. 3137
R e
-16.15960695 0.00078757
Vavg: -16.01461295 Aavg: - 7.11322860

***x*x%¥* Calculation was impossible for this data set.

3.1.3.2.2 Drop Tower Crosshead Drop Height

The drop height of the drop tower crosshead was

measured and found to be 52.125".
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3.1.4 Amplifier Rise Time

Figure 3-8 shows how the amplifier used to monitor tup output

responded to a square wave. Amplifier rise time can be calculated

from this graph.

3.1.5 Summary of Calibration Information

A summary of the calibration data is shown in Table 3-13. Since
these calibration data are intermediate results used in further
calculations, they are expressed with up to 8 significant figures to

avoid round-off errors.
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Table 3-13
Summary of Calibration Data

For the Drop Tower

Calibration Curve:

-~

Y = Zerovolts + Loadfacl * X

Output of Ireland Associates
drop tower Charpy tup in volts

3
=2
o
]
o®
.
i

Zerovolts = Tup output corresponding to zero
load (determined separately from
stored data for each test)

Loadfacl = Calibration coefficient

X = Load in pounds

Vo = 16.717562 ft/sec

Merfs = 179.62 1b/1 gravity

Y = Zerovolts + (0.54942e-04) * (Load in pounds)

For the Pendulum

Calibration Curve:

Y = Zerovolts + Loadfacl * X

-~

where: Y

W

Output of Effects Technology
pendulum Charpy tup in volts

Zerovolts = Tup output corresponding to zero
load (determined separately from
stored data for each test)

Loadfacl = Calibration coefficient

X = Load in pounds

Vo = 16.882123 ft/sec

Merr = 60.34 1b/1 gravity

Y = Zerovolts + (0.72656e~04) * (Load in pounds)

- (0.43673e-09) * (Load in pounds)?
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3.2 Specimens

3.2.1 Specimen Chemistry

The results of spark spectrography of the plates from which the
Charpy bars were cut are shown in Table 3-14. The designation, plate
of origin, hardness, testing type, and dimensions of the Charpy
specimens actually considered in this study are displaved in the

following table (Table 3-15).

Table 3-14
Chemical Composition of Specimens
(in percentages)

Element Plate B Plate C Plate D Plate F Plate G
Carbon 0.380 0.383 0.385 0.382 0.380
Manganese 0.74 0.73 0.74 0.73 0.74
Silicon 0.34 0.34 0.34 0.34 0.34
Chromium 0.84 0.83 0.83 0.83 0.84
Nickel 1.83 1.82 1.84 1.82 1.83
Molybdenum 0.22 0.22 0.21 0.21 0.22
Copper 0.21 0.21 0.21 0.21 0.21
Sulfur 0.018 0.014 0.013 0.016 0.018
Phosphorous 0.005 0.005 0.005 0.004 0.005
Aluminum 0.020 0.020 0.021 0.021 0.020
Lead 0.005 0.004 0.004 0.005 0.005
Titanium - - - - -
Vanadium 0.049 0.048 0.048 0.047 0.05
Boron 0.0009 0.0009 0.0010 0.0009 0.0009
Cobalt 0.03 0.025 0.03 0.03 0.03
Tungsten 0.01 0.013 0.01 0.01 0.01
Zirconium 0.001 - - 0.001 0.001
Tin 0.007 0.006 0.006 0.005 0.007
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3.2.2 Physical Description of Specimens

Table 3-15
Specimen Descriptions

ID Width Depth Length Rockwell Plate 'Dial Test Drop

{inch] [inch] linch] Hardness Energy' Temp Pend
C Scale [ft-1b] [°C]

H1 0.3943 0.3940 2.195 27, 27, 27 C 19.5 Drop
H3 0.3941 0.3940 2.175 28, 28, 28 C 19.0 Drop
H4 0.3940 0.3940 2.174 26, 26, 26 D 19.0 Drop
HS 0.3938 0.3930 2.186 28, 28, 27 D 19.0 Drop
H6 0.3945 0.3935 2.177 28, 28, 28 C 55.5 19.0 Pend
H7 0.3944 0.3942 2.178 27, 27, 26 C 53.0 19.0 Pend
H8 0.3926 0.3937 2.172 29, 30, 29 D 49.5 19.0 Pend
H10 0.3946 0.3948 2.189 29, 29, 29 C 52.0 19.0 Pend
Hi11 0.393% 0.3944 2.165 27, 27, 27 D 54.2 19.0 Pend
S2 0.3943 0.3940 2.183 24, 23, 24 C 19.5 Drop
L2 0.3924 0.3943 2.212 54, 54, 53 C 12.5 19.0 Pend
L3 0.3945 0.3946 2.192 54, 54, 54 C 12.0 19.0 Pend
L4 0.3954 0.3926 2.196 54, 54, 54 D 12.5 19.0 Pend
L5 0.3929 0.3940 2.156 53, 53, 54 D 12.0 19.0 Pend
L6 0.3953 0.3942 2.181 54, 54, 54 D 12.5 19.0 Pend
L7 0.3953 0.3940 2.154 53, 53, 53 D 18.5 Drop
L8 0.3953 0.3943 2.179 54, 54, 54 D 18.5 Drop
L9 0.3939 0.3943 2.179 55, 54, 54 Cc 18.5 Drop
L10 0.3947 0.3946 2.204 54, 54, 54 C 18.5 Drop
Li1 0.3948 0.3939 2.165 54, 54, 54 D 18.5 Drop
L12 0.3943 0.3938 2.181 54, 54, 54 C 18.5 Drop
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3.3 Impact Tests

3.3.1 'Tup Energies' for All Specimens

Figures 3-9(A) through 3-9(U) are the ASTIR reports for all the
specimens used in this study. Table 3-16 contains 'tup energy'
results for all the specimens used in this study. For those specimens
tested in the pendulum machine, pendulum 'dial energies’' are listed as
well. In this case, Astir was configured to perform second order
integration, to use a second order tup calibration, to use the
measured value of Magg and to use an initial velocity V, consistent
with V0=(2gho)¥ where g is the local acceleration of gravity and h,

is the drop height.



DESIGNATION: L2
TEST METHOD: INSTRUMENTED FENDULUM IMPACT

N
fN S "
{o !
1
USEFUL. POIMTS: 4
DAaTA AVERAGED OVER 1 POINT
FEATURE LOAD TIME DEFLECTION ENERGY
tibl {mSecl (Inl [Ft-Lb]
1 GENERAL YIELD 7446 0.148 0.0299 ®.7
4 END OF EVENT = =  ==—=—- 0.182 0.0367 12.5
TOTAL ENERGY
DIAL: ______ (Ft-Lbl
FLAG: [Ft-Lbl

TUF3 12.5 (Ft-Lb]

Figure 3-9(A). L2 ASTIR Report
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DESIGNATION:
TEST METHOD:

L3
INSTRUMENTED PENDULUM IMPACT

o
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-, o
| .'-., J
] LY ;
.)I "I' 'l'.
e bSO UVSUUPYOUTUUUPIUTPUP ORI
1
USEFUL POINTS: €1
DATA AVERARGED OVER 1 FPOINT
FEATURE LOAD TIME DEFLECTION ENERGY
[Lbl ImSec] £Inl [Ft-Lbl
1 GENERAL YIELD 7111, 0.146 0.0294 8.8
4 END OF EVENT m———— 0.182 0.0367 12.1
TOTAL ENERGY
DIAL: ______ (Ft-Lb)
FLAG: ______ [Ft-Lb3]
TUP: 12.1 LFt-Lb1

Figure 3-9(B). L3 ASTIR Report
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DESIGNATION: L4
TEST METHOD: INSTRUMENTED PENDULUM IMPACT

— = -."n

Pate *

i

USEFUL POIMTS: =4
DARTa AVERAGED OVER 1 FOIMNT

FEATURE LOAD TIME DEFLECTION ENERGY

{Lb] [mSec] £inl [Ft-L.b]
1 GENERAL YIELD 7224, 0.145 ¢, 0294 8.7
4 END OF EVENT = ~—=—- 0.189 Q.0380 12.9

TOTAL ENERGY

DIAL s [Ft-Lbl

FLAG: (Ft-Lbl

TUP: 12.9 (Ft-Lbl

Figure 3-9(C). L4 ASTIR Report



DESIGNATION: LS
TEST METHDD: INSTRUMENTED PENDULLM IMPACT

USEFUL POINMTS: 86
DAaTA AVERAGED OVER 1 FOINT

FEATURE L.O0AD TIME DEFLECTION ENERGY

fLb] [mSec) {Inl [Ft-Lbl
1 BENERAL YIELD 7248. 0.143 0.0289 9.3
4 END OF EVENT = -——=-—— 0.180 0,.03462 12.3

TOTAL ENERBY

DIAL: (Ft-Lb)

FLAB: [(Ft-Lb1]

TUP: 12.3 (Ft-Lb)

Figure 3-9(D). L5 ASTIR Report
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DESIBNATIDN: Lé
TEST METHOD: INSTRUMENTED PENDULUM IMPACT

USEFUL POINTS: 98 :
DATA AVERAGED OVER 1 POINT

FEATURE LOAD TIME DEFLECTION ENERGY

{Lbl {mSec] LInl [Ft~Lbl
1 GENERAL YIELD T425. 0.155 0.0313 8.1
4 END OF EVENY = =  ===— 0.203 0.0408 12.6

TOTAL ENERGY

DIAL: ______ LFt-LbJ

FLAaG: _____. [Ft-Lbl
TUuP: 12.6 [Ft-Lbl

Figure 3-9(E). L6 ASTIR Report



DESIGNATION: Hé
TEST METHOD: INSTRUMENTED PENDULUM IMPACT

b
1
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1

SEFUL FPOIMNTES: 126
DATA AVERAGED OVER 41 FOINT

FEATURE LOAD TIME DEFLECTION ENERGY

{Lbl [mSec) {inl [Ft-Lb)
1 GENERAL YIELD 5032. 0.18S 0.0373 10.7
4 END OF EVENT @ = ===—- 1.7685 0.333S 53.3

TOTAL ENERGY

DIAL: {(Ft-Lb)

FLAB: [Ft-Lb3

TUP: 353.3 [Ft-Lb)

Figure 3-9(F). H6 ASTIR Report
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DESIGNATION: H7
TEST METHOD: INSTRUMENTED PENDLAL UM IMPACT

s
wﬁ lﬂ

Y
|

|
| M,
N e A

SEFUL POIMTS: 146
DA_Ta AVERAGED OVER 1 POINT

FEATURE LOAD TIME DEFLECTION ENERGY

(Lbl {mSec) CInl (Ft-Lbl
1 GENERAL YIELD JI796. 0.142 0. 0288 S.3
4 END OF EVENT = —-——= 2.071 0.3873 S1.6

TOTAL ENERGY

DIAL: (Ft-Lbl

FLAG: (Ft-Lbl

TUF: S1.6 [Ft-Lb]

Figure 3-9(G). H7 ASTIR Report



DESIGNATION: H8
TEST METHOD: INSTRUMENTED FENDULUM IMPACT
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s

USEFLIL FOINTS: 121
DaTha AVERAGED OVER 1 POINT

FEATURE LOARD TIME DEFLECTION ENERGY

[Lbl [mSec] rInl [Ft-tbl
1 BGENERAL YIELD 4728. 0.157 0.0316 8.7
4 END OF EVENT = ————- 1.714 0.3229 47.6

TOTAL ENERGY

DlAL: (Ft-Lbl

FLAG: [Ft-Lb]

TUP: 47.6 (Ft-Lb]

Figure 3-9(H). H8 ASTIR Report



DESIGNATION: H10
TEST METHOD: INSTRUMENTED PENDULUM IMFACT

AL

- .
J ................................................................................. O e e e o
1
USEFUL POINTS: 134
DATAa AVERAGED OVER 1 POIMNT
FEATURE LOAD TIME DEFLECTION ENERGY
Lb] LmSec] [In] (Ft-Lb1
1 GEMERAL YIELD 4831, 0.142 0.0288 6.4
4 END OF EVENT = —-=—w= 1.899 0.3564 49.7

TOTAL ENERGY

DIAL: ______ [Ft-ib]
FLAG: [Ft-Lb]

TUP: 49.7 [Ft-Lb)

Figure 3-9(1). H10 ASTIR Report
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DESIGNATION: H11l
TEST METHOD: INSTRUMENTED PENDULUM IMFACT
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i
B e enean j‘f' ............ B B I T [

1
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USEFUL POINTS: 148
DT AVYERAGED OVER 1 POIMNT

FEATURE LOAD TIME DEFLECTION ENERGY

(Lbl ImSec] €In] [Ft-Lbl
1 GENERAL YIELD 4448. 0.114 0.0220 S.0
4 END OF EVENT = —v=m-- 1.985 0.2705 53.2

TOTAL ENERGY

DIAL: CFt-Lbl

FLAG: [Ft-Lbl

TUF: 53.2 Ft-Lbl

Figure 3-9(J). H11 ASTIR Report



DESIGNATION: L7

TEST METHOD: INSTRUMENTED DROF TOWER IMPACT

...................... Hi

USEFUL POIMTS:
DATA AVERAGED

1

sS4
OVER 14 FPOINT

FEATURE LOAD TIME DEFLECTION ENERGY
tLbl tmSec) CInl tFt-Lbl
1 GENERAL YIELD 9336 0.137 0.0274 10.2
4 END OF EVENT =———m 0.189 0.0379 16.6
TOTAL ENERGY
FLAG: ______ tFt-Lb1
TUP 16.6 [Ft-Lb)

Figure 3-9(K).

L7 ASTIR Report
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DESCIGMATION: LB
TEST METHOD: INSTRUMENTED DROP TOWER IMFACT

W
L |
I r L‘llll Y
‘f!' ﬂ“'o_,.-""-,ﬂ_/", 'I.l'
~ \
s )
!f k ri ﬁH
-—l.-’: ............ . :‘:".’:‘ .............................................................................................. !
1
USEFUL POINTS: g2
DaTe AaVERAGED OVER 1 POIMNT
FEATURE LOAD TIME DEFLECTION ENERGY
____________________ [Lb] {mSec] {In) [Ft—LEE
1 GENERAL YIELD 93I51 0.148 0.0297 12.0
4 END OF EVENT = ——w—a 0.198 00,0397 18.2

TOTAL ENERGY

______ (Ft-Lb1l
18.2 [Ft-Lbl

Figure 3-9(L). L8 ASTIR Report
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DESIGNATION: L9
TEST METHOD: INSTRUMENTED DROF TOWER IMFACT

e NPy fﬂ\

USEFUL POINTS: 8&
DAaTAa AVERAGED OVER 1 POINT

FEATURE LOAD TIME DEFLECTION ENERGY

[Lb] [mSec] [In] [Ft-~Lbl
1 GENERAL YIELD 9362, 0.141 0.0283 1i.1
4 END OF EVENT = ——-ee 0.198 0.03%97 18.4

TOTAL ENERGY

FLAG: (Ft-tbl

TUP: 18.4 [Ft-Lb]

Figure 3-9(M). L9 ASTIR Report



DESIGNATION: L10O

TEST METHOD: INSTRUMENTED DROF TOWER IMPACT

USEFUL FOINTS: 89
DARTA AVERAGED OVER 1 FOIRNT

FEATURE

1 GENERAL YIELD

4 END OF EVENT

LOAD TIME DEFLECTION ENERGY
[Lbl (mSec] LInl [Ft-Lb1
9493, 0.150 G.0301 11.4
———— 0.201 0.0401 16.9

TOTAL ENERGY

FLAG: (Ft-Lbl

TUP: 16.9 {Ft-Lbl

Figure 3-9(N). L10 ASTIR Report
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DESIGNATION: L1i1
TEST METHDOD: INSTRUMENTED DROF TOWER IMPACT

USEFUL POINTS: 82
DATA AVERAGED OVER 1 POINT

FEATURE LOAD TIME DEFLECTION ENERGY

[(Lb] [mSec] C(Iinl [(Ft~-Lb]
1 GENERAL YIELD 9227. 0.143 0.0288 11.4
4 END OF EVENT — 0.185 ©.0369 15.9

TOTAL ENERGY

FLAG: ______ LFt-Lb2

TUP: 15.9 [Ft-Lbl

Figure 3-9(0). L11 ASTIR Report



DESIGNATION: 12
TEST METHOD: INSTRUMENTED DROF TOWER IMFPACT

USEFUL POINTS: S4
DAETA AVERAGED OVER 1 POINT

FEATURE LOAD TIME DEFLECTION
(Lb] (mSec] CInl
1 GENERAL YIELD 9480. 0.143 0.0288
4 END OF EVENT = =————- 0.189 0.0379

TOTAL ENERGY

FLAG: (Ft-Lbl

TUP: 16.6 [Ft-Lb]

Figure 3-9(P). L12 ASTIR Report
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DCSIGNATION: H1
TEST METHOD: INSTRUMENTED DROF TOWER IMFACT

129

H«N\_VL
'| \%\

by

USEFUL POINTS: 141
DATA AVERAGED OVER 1 FPOINT

FEATURE LDAD TIME DEFLECTION ENERGY
[Lb1 {mSec) Lin) Ft-Lb)
1 GENERAL YIELD 4922, 0.085 0.0171 4.0
4 END OF EVENT = —=-—m 1.999 0.36898 60.3
TOTAL ENERGY
FLAG: ______ CFt-Lb)
TUP: ~ 80.3 [Ft-Lb]

Figure 3-9(Q). H1 ASTIR Report




DESIGNATION: H3

TEST METHOD: INSTRUMENTED DROF TOWER IMPACT

USEFUL FPOINTS:
DT AVERAGED

185
OVER 14 FPOINT

FEATURE LOAD TIME DEFLECTION ENERGY
ILbl {mSec]l CInl [Ft-LbJ
1 GENERAL YIELD 5196 0.114 0.0228 6.0
4 END OF EVENT  =——=—— 1.48% 0.2900 61.4
TOTAL ENERGY
FLAG: ______ LFt-Lb2
TUP: 61.4 (Ft~-Lb]
Figure 3-9(R). H3 ASTIR Report
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DESIGNATION: HA
TEST METHOD: INSTRUMENTED DROF TOWER IMPACT

AL

, JL! '\..,\

P
Wiy,
Ly
......... OO Ak o . ¥ O T PO

1

USEFUL POIMTS: 148
DRdTa AVERAGED OVER 1 POINT

FEATURE L0AD TIME DEFLECTION ENERGY

Lol [mSec] {Inl [Ft-Lbl
1 BGENERAL YIELD 5569. 0.185 0.0371 12.7
4 END OF EVENT ———— 2.099 0.4080 66.7

TOTAL ENERGY

FLAG: (Ft-Lbl

TUPs 66.7 [Ft-Lb]

Figure 3-9(S). H4 ASTIR Report
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DESIGNATION: HS
TEST METHOD: INSTRUMENTED DROF YOWER IMFACT

[ TN

l ll\'-..-,.'.

W,

S ORRH——— . ¥ Fw',ql,.,.w

USEFUL POINTS: 144
DATA AVERAGED OVER 1 POINT

FEATURE L0AD TIimE DEFLECTION ENERGY

Lb] {mSec] In] fFt-Lbl
1 GENERAL YIELD 5050. 0.114 0.0228 6.4
4 END OF EVENT = «———— 2.042 0.3978 &1.4

TOTAL ENERGY

FLAG: [Ft=-Lb]

TUP: 61.4 [Ft-Lb]

Figure 3-9(T). H5 ASTIR Report



DESIGNATION: S2

133

TEST METHDD: INSTRUMENTED DROP TOWER IMFACT

My

LUSEFUL FOINTS:

141
DATA AVERAGED OVER 1 POINT

FEATURE LOAD TIimE DEFLECTION ENERGY
[Lb] [mSec] (In] CFt-Lbl
1 BENERAL YIELD 4939. 0.157 0.0314 8.7
4 END OF EVENT ———— 1.999 0.3881 72.9
TATAL ENERGY
FLAG: (Ft-Lb)

Figure

3-9(u).

TUP: 72.9 LFt-Lb]

S2 ASTIR Report
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Table 3-16
Impact Energy Results for All Specimens in This Study

Specimen Drop Tower 'Dial 'Tup
ID Pendulum Energy' Energy'
[ft-1Db] [ft-1Db]
He Pend 55.5 §63.3
H7 Pend 53.0 51.6
H8 Pend 49.5 47.6
H10 Pend 52.0 49.7
H11 Pend 54.0 53.2
L2 Pend 12.5 12.5
L3 Pend 12.0 12.1
L4 Pend 12.5 12.9
L5 Pend 12.0 12.3
L6 Pend 12.5 12.6
H1 Drop -~ 60.3
H3 Drop - 61.4
H4 Drop ~ 66.7
H5 Drop ~ 61.4
S2 Drop - 72.9
L7 Drop ~ 16.6
L8 Drop ~ 18.2
L9 Drop - 18.4
Lio0 Drop ~ 16.9
L11 Drop ~ 15.9
Li12 Drop ~ 16.6
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3.3.2 Effects of Integration Order

In Table 3-17 the results of performing the ASTIR calculations
using zeroeth order, first order, and second order integration (all

other factors being the same) are compared for the pendulum.

Table 3-17
Effect of Integration Order on 'Tup Energy'

Specimen ID Oth Order 1st Order 2nd Order

[ft-1b] {ft-1b] [ft-1b]
H6 53.3 53.3 53.3
H7 51.6 51.6 51.6
H8 47.6 47.6 47.6
H10 49.6 49.6 49.7
Hil 53.1 §3.1 53.2
L2 12.5 12.5 12.5
L3 12.1 12.1 12.1
L4 13.0 12.9 12.9
L5 12.3 12.3 12.3
L6 12.6 12.5 12.6

3.3.3 Effects of Mass

In Tables 3-18(A) and 3-18(B), the results of using several
different numbers for Mgrs are compared with the results for Mggr as
measured. Figures 3-10(A) and 3-10(B) show this comparison

graphically.
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38.3.3.1 Pendulum Mass

Table 3-18(A)
Assumed Effects of Mgry on Pendulum Test 'Tup Energy’

2000 12.
10000 12.

56.
56.

Assumed Weight Specimen Specimen
of Pendulum L2 H6

i1b] [ft-1b] [ft-1b]
i0 11.7 38.4
20 12.2 47.3
30 12.3 50.3
40 12.4 51.8
50 12.5 52.7
60 12.5 63.3
60.34 12.5 53.3
70 12.5 53.7
80 12.5 54.0
90 12.5 54.3
100 12.5 54.5
200 12.6 55.4
300 12.6 55.7
400 12.6 55.8
500 12.6 55.9
600 12.6 56.0
700 12.6 56.0
800 12.6 56.0
900 12.6 56.1
1000 12.6 56.1

6 2

6 2
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3.3.3.2 Drop Tower Crosshead Mass

Table 3-18(B)
Assumed Effects of Mgrr on Drop Tower Test 'Tup Energy'

Assumed Weight Specimen Specimen
of Cross Head Li1o H5
[1b] [ft-1b] [ft-1b]
2 8.6 -50.1
3 11.4 -12.5
4 12.8 6.2
5 18.7 17.5
6 14.2 25.0
7 14.6 30.4
8 14.9 34.4
9 15.2 37.6
10 15.4 40.1
20 16.2 51.3
30 16.5 55.1
40 16.6 57.0
50 16.7 58.1
60 16.7 58.9
70 16.8 59.4
80 16.8 59.8
90 16.8 60.1
100 16.9 60.4
110 16.9 60.6
120 16.9 60.8
130 16.9 60.9
140 16.9 61.0
150 16.9 61.1
160 16.9 61.2
170 16.9 61.3
179.62 16.9 61.4
180 16.9 61.4
190 16.9 61.4
200 16.9 61.5
300 17.0 61.9
400 17.0 62.1
500 17.0 62.2
1000 17.0 62.4
2000 17.0 62.5
10000 17.0 62.6
100000 17.0 62.6
1000000 17.0 62.6
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3.3.4 Effects of Initial Velocity

In Table 3-19, the results of using several initial velocities
are compared with the initial velocity obtained from the measured
value of hy. Figures 3-11(A) and 3-11(B}) show the result in graphic

form.

3.3.4.1 Pendulum Velocity

Table 3-19(A)
Effects of Assumed Initial Velocity on Pendulum Test 'Tup Energy'

Assumed Initial Specimen Specimen
Velocity of Identification Identification
Pendulum L2 Hé
[ft/sec] [ft-1b]) [ft-1b]
10 7.3 30.4
11 8.1 33.7
12 8.8 37.0
13 9.6 40.4
14 10.3 43.7
15 11.1 47.0
16 11.9 50.4
16.4 12.2 51.7
16.5 12.2 52.0
16.6 12.3 52.4
16.7 12.4 52.7
16.8 12.5 53.1
16.882123 12.5 53.3
16.9 12.5 53.4
17.0 12.6 53.7
17.1 12.7 54.1
17.2 12.8 54.4
18 13.4 57.1
19 14.1 60.4
20 14.9 63.7
21 15.6 67.1
22 16.4 70.4
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3.3.4.2 Drop Tower Crosshead Velocity

Table 3-19(B}
Effects of Assumed Initial Velocity on Drop Tower Test 'Tup Energy’

Assumed Initijal Specimen Specimen
Velocity of Identification Identification
Drop Tower L10 H5

[ft/sec] [ft-1b] [ft-1b]
10 10.1 36.2
11 11,1 40.0
i2 12.1 43.7
13 13.1 47.4
14 14.2 51.2
15 15.2 54.9
16 16.2 58.7
16.4 16.6 60.2
16.5 16.7 60.6
16.6 16.8 60.9
16.7 16.9 61.3
16.71176 16.9 61.4
16.8 17.0 61.7
16.9 17.1 62.1
17.0 17.2 62.4
17.1 17.3 62.8
18 18.2 66.2
19 19.3 69.9
20 20.3 73.7
21 21.3 77.4
22 22.3 81.2

3.3.5 Effects of Calibration Order

In Table 3-20, the results of using first and second order tup

calibrations in conjunction with second order integration are compared.
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Table 3-20(A)
Effects of Tup Calibration Order on 'Tup Energy'

Specimen_ ID 1st Order 2nd Order
[ft-1b] [ft-1b]
H6 54.2 53.3
H7 52.5 51.6
H8 48 .4 47.6
H10 50.5 49.7
H11 54.1 53.2
L2 12.6 12.58
L3 12.2 12.1
L4 13.0 iz.9
L5 12.4 12.3
L6 12.6 12.6

Table 3-20(B)
Best 1St and 2nd Order Calibration Curves
for the Effects Technology Pendulum Charpy Tup

Y = Zerovolts + .69892e-04 X
Y = Zerovolts + .72656e-04 X - .43673e-09 X2
where: Y = QOutput of the Effects Technology Pendulum
Charpy Tup in volts
X = Load in pounds
Zerovolts = Tup output corresponding to zero load

{determined separately from stored data for
each test)
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3.3.6 Effects of Calibration Constants

Table 3-21 compares the results of using various guadratic
calibration curve fits with the result of using the best curve fit
according to the statistical analysis shown above. Table 3-21{A)
gives the results for the pendulum test; Table 3-21(B) presents the

comparable data for the drop tower. The data are given in ft-1b.

3.3.6.1 Pendulum Tup Static Calibration

Table 3-21(A)
Effects of Varying Calibration Constants
on Pendulum Test 'Tup Energy'

(in ft-1b)
Calibration Curve:
Y = Zerovolts + Loadfacl * X + Loadfac2 * X2
where: Y = QOutput of Effects Technology
Pendulum Charpy tup in volts
Zerovolts = Tup output corresponding

to zero load (determined
separately for each test)

Loadfacl, Loadfac2 Calibration coefficients

M om

X Load in pounds
Load Fac 1 6.2656e-05 7.2656e-05 8.2656e-05

Load Fac 2

-3.3677e-10 L2: 14.5 L2: 12.4 L2: 10.8
-3.3677e-10 H6: 61.3 H6: 53.1 H6: 46.8
-4.3677e-10 L2: 14.6 L2: 12.5 L2: 10.9
-4.3677e-10 H6: 61.8 H6: 53.3 H6: 47.0
-5.3677e-10 Lz2: 14.8 L2: 12.6 L2: 11.0

~5.3677e-10 H6: 62.2 H6: ©53.6 H6: 47.1
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3.3.6.2 Drop Tower Tup Static Calibration

Calibration Curve:
? = Zerovol

where:

Load Fac 1
Load Fac 2

+1.5000e-10
+1.5000e-10

+0.0000e-10
+0.0000e-10

-1.5000e-10
-1.5000e-10

Table 3-21(B)
Effects of Varying Calibration Constants
on Drop Tower Test 'Tup Energy'

(in ft-1b

ts + Loadfacl * X

Y

Zerovolts

Loadfac1,
X

1]

Loadfac2 =
4.4942e-05
Li10: 20.2
HS: 73.5
Li10o: 20.7
H5: T4.7
Lio: 21.3
H5: 76.0

)

+ Loadfac2 * X2

Output of Ireland Associates

drop tower Charpy tup in volts
Tup output corresponding

to zero load (determined
separately for each test)
Calibration coefficients

Load in pounds

5.4942e~-05 6.4942e-05
L10: 16.6 Lio: 14.1
H5: 60.7 HS: 51.7
L10: 16.9 L10: 14.3
H5: 61.4 HS: 52.1
L10o: 17.3 Li10: 14.5
H5: 62.1 H5: 52.5
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3.3.6.3 Artificial Calibrations

As described in section 4.2.2.2.4.1, it is possible to find
calibration constants resulting in 'tup energies' whose averages
closely approximate the averages of the pendulum 'dial energies' for
the two populations. The results of such a calibration are shown in
Tables 3-22(A) and 3-22(B). The term "artificial calibration" is used
at this point pending the discussion in section 4.2.2.2.4.1 concerning

the validity of such an approach.
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3.83.6.3.1 Artificial Calibration for the Pendulum Tup

Table 3-22(A)
Calibration Curve which Closely Matches
Pendulum 'Tup Energy' to Pendulum 'Dial Energy'
with Associated Calculated 'Tup Energies’

Calibration Curve:

Y = Zerovolts + Loadfacl * X + Loadfac2 * X2

where: Y

Output of Effects Technology

pendulum Charpy tup in volts
Tup output corresponding

to zero load (determined
separately for each test)
Calibration coefficients
Load in pounds

Zerovolts

Loadfacl, Loadfac2
X

Specific Calibration Curve:

~

Y = Zerovolts + 6.5811e-05 X + 9.5040e-10 X2
Specimen ID 'Tup Energy’
[ft-1b]
H6 54.7
H7 53.1
H8 49.0
H10 51.0
H11 54.7
High Energy
Specimens' Average 52.50
L2 12.4
L3 12.0
L4 12.9
L5 12.2
L6 12.5
Low Energy

Specimens' Average 12.40
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3.3.6.3.2 Artificial Calibration for the Drop Tower

Tup

Table 3-22(B)
Calibration Curve which Closely Matches
Drop Tower 'Tup Energy' to Pendulum 'Dial Energy'
with Associated Calculated 'Tup Energies'

Calibration Curve:

Y = Zerovolts + Loadfacl * X + Loadfacz * X2

where: Y

Output of Ireland Associates

drop tower Charpy tup in volts
Tup output corresponding

to zero load (determined
separately for each test)
Calibration coefficients

Load in pounds

1]

Zerovolts

Loadfacl, Loadfac2
X

Specific Calibration Curve:

Y = Zerovolts + 4.70850e-05 X + 6.5032e-09 X2
Specimen ID 'Tup Energy'
[ft-1Db]
S2 60.2
H1 47.8
H3 51.5
H4 55.2
H5 50.7
High Energy
Specimens' Average 53.08
L7 11.9
L8 12.9
L9 13.0
L10 12.2
L11 11.5
L12 11.8
Low Energy

Specimens' Average 12.22
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3.3.7 Compliance Calculations

System compliance data were obtained for the pendulum machine by
obtaining the general yield load and general yield deflection, then
determining the quotient of general yield deflection divided by
general yield load. The results are reported in Table 3-23(A). Only
"L" series specimens are used because the results have good yield load
consistency due to the high sampling rate while the H series specimens

had poorer consistency due to a lower sampling rate.

3.3.7.1 Compliance Calculation for the Pendulum (Static

Tup Calibration)

Table 3-23(A)
Compliance Data for the Pendulum Test System
Calculated Using Static Tup Calibration

Calibration Curve:

Y = 0.72656e-04 X - 0.43677e-09 X2
where: Y = tup-amplifier combination output in volts
X = load in pounds
Specimen Yield Yield Compliance ' Tup
14 Deflection Load [#in/1b] Energy'
{in] [1b] [ft-1b]
L2 0.0299 7446 4.02 12.5
L3 0.0294 7111 4.13 12.1
L4 0.0294 7224 4.07 12.9
L5 0.0289 7248 3.99 12.3
L6 0.0313 T424 4.22 12.6



3.3.7.2 Compliance Calculation for the Drop Tower Tup

3.3.7.2.1

Static Calibration for the Drop Tower Tup

System compliance data were obtained for the drop

tower in the same way.

Compliance Data for the Drop Tower Test System

The results are reported in Table 3-23(B).

Table 3-23(B)

Calculated Using Static Tup Calibration

~Calibration Curve:
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Y = 0.54942e-04 X
where: Y = tup-ampiifier combination output in volts
X = load in poungs
Specimen Yield Yield Compliance ' Tup
Id Deflection Load {uin/1b] Energy'
[in] [1b] [ft-1b]}
L7 0.0274 9336 2.93 16.6
L8 0.0297 9351 3.18 18.2
L9 0.0279 9233 3.02 18.4
Li1o 0.0301 9493 3.17 16.9
L11 0.0288 9227 3.12 15.9
L13 0.0288 9480 3.04 16.6
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3.3.7.2.2 Dynamic Calibration for the Drop Tower Tup

3.3.7.2.2.1 Energy Matching

System compliance data were also calculated using
the calibration curve in Table 3-22(B). This curve causes the drop
tower 'tup energy' to match the pendulum 'dial energy.' The results

are reported in Table 3-23(C).

Table 3-23(C)
Drop Tower Compliance Calculations
Using Calibration Curve from Table 3-22(B)

Calibration Curve:

Y = 0.39586e-04 X + 0.83032e-09 X2
where: Y = tup-amplifier combination output in volts
X = load in pounds
Specimen Yield Yield Compliance 'Tup
Id Deflection Load [xin/1b] Energy’
[in] [1b] [ft-1b]
L7 0.0274 5829 4.70 11.9
L8 0.0297 5835 5.09 12.9
L9 0.0283 5840 4.85 13.0
L10 0.0302 5892 5.12 12.2
L11 0.0288 5785 4.98 11.6
L13 0.0274 5891 4.65 11.9
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3.3.7.2.2.2 Load Matching

Finally, system compliance for the drop tower was
recalculated using a linear calibration curve which forces the average
of the drop tower general yield load to equal the average of the

pendulum general yield load. The results are shown in Table 3-23(D).

Table 3-23(D)
Drop Tower Compliance Calculations Using Linear Calibration Curve
Which Closely Matches Drop Tower General Yield Load
With Pendulum General Yield Load

Calibration Curve:

Y = 0.7048039e-04 X
where: Y = tup-amplifier combination output in volts
X = 1load in pounds
Specimen Yield Yield Compliance 'Tup
Id Deflection Load (#in/1b] Energy’
[in] [1b] {ft-1bj
L7 0.0274 7278 3.76 12.9
L8 0.0297 7289 4.07 14.2
L9 0.0283 7298 3.88 14.4
L10 0.0302 7400 4.08 13.2
L11 0.0288 7192 4.00 12.4
L13 0.0288 7390 3.90 12.9
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Using the calibration curve shown in
Table 3-23(D), 'tup energies' were calculated for the specimens tested

in the drop tower. The result is shown in Table 3-24.

Table 3-24
Calibration Curve Which Closely Matches
Drop Tower General Yield Load With Pendulum General Yield Load
With Associated Calculated 'Tup Energies'

Calibration Curve:

Y = 0.7048039e-04 X

L]

where: Y tup-amplifier combination output in volts

X = 1load in pounds
Specimen ID '"Tup Energy'
[ft-1b]
s2 57.2
H1 47.2
H3 48 .1
Ha 52.3
HS 48.0
High Energy
Specimens' Average 50.56
L7 12.9
L8 14.2
L9 14.4
L10 13.2
L11 12.4
L12 12.9
Low Energy
Specimens' Average 13.33

The importance of the compliance calculations is

made clear in the Discussion.



4, DISCUSSION

4.1 Calibration

4.1.1 Calibration of the Tups - Finding the Best Calibration

Curve

4.1.1.1 Pendulum Tup Calibration

4.1.1.1.1 1Ireland Associates 20,000 lb Tup Calibration

Table 3-3(A) (1) shows that a linear curve fit for the
voltage output of the Ireland Associates 20,000 lb tup is highly
significant and explains the voltage output in terms of load quite
well. Several facts support such a claim. First, the curve fit plus
the pure error explain all but less than 0.02% of the sum of squares.
Second, the t ratios for the intercept and coefficient of the linear

term must be about two orders of magnitude larger than the minimum
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value, 2.62, for the likelihood of their being insignificant to be no
more than 1%. Hence these coefficients are highly significant.

Table 3-3(A)(2) proves that a quadratic curve fit need
not be considered. The improvement in explaining the sum of squares
is quite small, as reflected by the F ratio which is an order of
magnitude lower than the value (2.75) which it would have to be to
ensure that the probability of the gquadratic curve fit being
insignificant is no more than 10%. The t ratio of the quadratic term
is 0.15902 which is about an order of magnitude smaller than the value
{(1.29) which it would have to have to ensure that the probability of
insignificance of the quadratic term is only 20%. Finally, while the
intercept and the coefficient of the linear term have t ratios which
ensure that they are highly significant, their values are nearly the
same as the corresponding values in the linear model. Realistically,
there is no difference between a linear model and a gquadratic model
whose first two terms are equal to those of the linear model and whose
quadratic term is insignificant.

Table 3-3(A)(3) shows a third case. The F ratio
reflecting improvement due to the third order is 3.7834 which is
approximately equal to the F ratio, 3.84, necessary to make the

probability of insignificance no more than 5%. Furthermore, while the
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intercept and coefficient of the linear term are approximately equal
to the corresponding coefficients of the linear model, the t ratios of
the quadratic and third order terms, 1.9431 and 1.9451, are almost
large enough (1.98) to indicate that they have a likelihood of
insignificance of no more than 5%, and they are large enough to show
that the probability thaf they are not significant is smaller than
10%. It can be affirmed that the third order model, while not highly
significant, is nonetheless significant. Even so, that model has been
rejected for two reasons. First, it is not highly significant.
Second, and more importantly, the third order method explains only a
small fraction of the unexplained variance and can, therefore, be
ignored for the purposes of calibration.

Similar arguments can be used to reject all higher level curve

fits.

4.1.1.1.2 Calibration of the Effects Technology Tup

Against the Ireland Associates 20,000 1lb Tup

Note that while Table 3-3(B)(1) shows that the linear
curve fit and both of its coefficients are highly significant in the
calibration of the Effects Technology Tup, Table 3-3(B)(2) shows that

the quadratic curve fit is also highly significant. Furthermore, the
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linear model has much more lack of fit than the quadratic curve fit.
Clearly then, at least a quadratic curve fit is necessary.

Next consider the data in Tables 3-3(B)(3) and
3-3(B)(4), the analysis of variance tables for the third and fourth
order curve fits. These tables show that the the third and fourth
order curve fits are insignificant. Consequently, it is reasonable to
assume that all higher curve fits are also likely to be
insignificant.

Thus, it appears that the quadratic curve fit is both
necessary and sufficient. Substituting the linear curve fit in
Tables 3-3(A)(1) into the guadratic curve fit in Table 3-3(B)(2)
yields the quadratic curve fit in Table 3-3(C) which shows the
calibration curve for the Effects Technology Pendulum Charpy tup in

terms of potential (in volts) and load (in pounds).

4.1.1.2 Drop Tower Tup Calibration

4.1.1.2.1 Instron Universal Tensile Testing Machine

Calibration

The Ireland Associates drop tower Charpy tup was

calibrated against the voltage output of an Instron tensile testing
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machine, but before that could be done, the Instron voltage output had
to be calibrated against load. The analysis of variance of the
Instron voltage output was somewhat hindered because of lack of
replication, but is still reasonably useful.

Table 3-6(A)(1) shows that the linear curve fit is
highly significant. By contrast, Table 3-6(A}{2) shows that the
quadratic curve fit is insignificant. Also, the F ratio for
improvement due to the third order is 1.0172 in Table 3-6(A)(3), but
with degrees of freedom equal to 1 and 6, an F ratio equal to 5.78
would have been necessary to ensure that the likelihood of error in
affirming significance is no more than 10%. In other words, the cause
of the low number of degrees of freedom and an F ratio of 1.0172 is a

curve fit which is not significant.

4.1.1.2.2 Ireland Associates Drop Tower Charpy Tup

Calibration

Next consider the calibration of the Ireland
Associates drop tower Charpy tup. Tables 3-6(B)(1} through 3-6(B)(3)
show that both the first and second order curve fits are highly
significant and that the third order curve fit is significant, but not
highly sa. Note that the first order curve fit explains nearly all of
the variance and that even though the F test shows it to be

significant, the third order curve fit is necessary to explain only a
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very small amount of the variance. It would seem that the linear
curve fit or possibly the quadratic curve fit should be adopted.

Substituting the linear curve fit in Table 3-6(A)(1) into the
linear curve fit in Table 3-6(B)(1) yields the linear tup calibration
shown in Table 3-6(C)(1). Similarly substituting the linear curve fit
in Table 3-6(A)(1) into the quadratic curve fit in Table 3-6(B)(2)

yields the quadratic tup calibration shown in Table 3-6(C)(2).

4.1.1.3 Recalibration of the Ireland Associates Drop Tower

Charpy Tup

The calibration approach described in section 4.1.1.2 leads
to fairly large standard errors in the estimated calibration
coefficients. Furthermore, when compliance calculations were
performed using the calibration curve reported in Table 3-6(C)(1) a
contradiction resulted: the population drop tower "tup energy"”
averages were significantly higher than the corresponding population
pendulum "dial energy" averages, but the calculated drop tower
compliance was lower than the corresponding pendulum value. The drop
tower Charpy tup was recalibrated against load rings to confirm the
results.

The logic upon which the correct calibration curve was

chosen from those reported in Tables 3-8(A)(1), 3-8(A)(2) and
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3-8(A)(3) is essentially the same as described above. The calibration
curve reported in Table 3-8(A)(1) was selected. Note that given the
size of the errors reported in 3-6(C)(1), the two curves are not
significantly different in value. This fact increases confidence in
both.

The calibration curve in Table 3-8(A)(1) was adopted since

it has a more precise coefficient,

4.1.2 Effective Mass

4.1.2.1 Effective Mass of the Pendulum

If the period of the pendulum, which is 1.9002 with a high
degree of confidence (see Table 3-9), is substituted into the equation
in section 5.2.5.2 of ASTM E-23 [44], the result is the radius of
percussion (rp): 2.9452 feet, i.e., 35.342 in.

Substituting rp, reg, Maet. and rg from section 3.1.2.1

into Equation 1-80 yields the following calculated value of Mgf¢:

Morr = 60.34 1b / 1 gravity (4-1)
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4.1.2.2 Effective Mass of the Drop Tower Crosshead

As has been seen in section 3.1.2.2, the effective mass was

determined to be 179.62 1lb divided by the acceleration of gravity.

4.1.3 Initial Velocities

4.1.3.1 Initial Velocity of the Pendulum

Efforts to obtain initial and/or final velocities for the
pendulum by the flag system were complicated by the fact that the
infra-red detector registered the presence of the flag before it
arrived directly in front of the detector and continued to register
its presence some distance after it was gone. It was decided that the
uncertainties involved in the peripheral vision problem were worse
than the assumption that there was no drag in the pendulum bearing.

Consequently, it was decided to use the well-known equation:

Vo = (2gh)% (4-2)

Using the initial height obtained from Tinius Olsen (see

section 3.1.3.1), Eqguation 4-2 yields:

Vo = 16.882123 ft/sec (4-3)
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4.1.3.2 1Initial Velocity of the Drop Tower Crosshead

If the crosshead were falling freely with negligible
friction, it should be possible to fit a quadratic model to the data

in Tables 3-10(A) and 3-10(B) as follows:

V(t) = Xg + Vot + Xgt2 (4-4)
where:

V(t) = the velocity at time t (4-5)

Xo = the position at time t=0 (4-6)

Vo = the velocity at time t=0, and (4-7)

g = the local acceleration of gravity. (4-8)

However, when the curve fit was attempted (Tables 3-11(A)
and 3-11(B)), the linear coefficient was consistent with V, as
calculated for frictionless free fall, but the quadratic coefficient
was not consistent with (%)(32.17 ft/sec2). Hence, it was decided to
try another approach to the problem. -

Assume Equation 4-4 and assume that the data in
Table 3-10(A) or 3-10(B) are highly accurate. If X{t=0) is

substituted for X; and the X(t) and t values from each row of
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Tables 3-10(A) and 3-10(B) were substituted into Equation 4-4, the
result would be six equations (for Table 3-10(A)) and five (for

Table 3-10(B)) in two unknowns. Linear algebra could be applied to
each combination of two equations to obtain the value of X%g and V,,
thus producing a large number of estimates for V, and g. These
estimates could be averaged to obtain an extremely good estimate of
the values for V, and g. Tables 3-12(A) and 3-12(B) provide the
results of that approach, once again given drop tower height and the
position of the image when t=0. 1In each case, the estimated value for
Vo is consistent with frictionless free fall, but the estimated value
of g is not!

Consider the interval between two flashes (0.0049"). The

contribution to distance due to acceleration during the interval is
(%g)(A@) which is about 0.0005". However, distance traveled in

the picture was measured by comparing the distance between images
recorded at adjacent flash marks to a steel scale calibrated in units
of 1/100", photographed immediately after the event. In other words,
successful estimation of g from adjacent images of the tape mark would
have required accuracy just a little finer than last count.

Estimation of V, is easier and hence more accurate. The
contribution to distance travelled during an interval due to the

initial velocity at the start of that interval is V,t which amounts to
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about an inch or about 100 times last count. Therefore, Vg4 can be
estimated to a precision of about 1% which, as will be seen, is
accurate enough for estimation of impact energies to three significant
figures. Note that this is in line with the precision of the V,
estimates in Tables 3-12(A) and 3-12(B).

The reason for the difficulty was that the experiment was
well designed for its intended purpose -- i.e., estimation of the
important variable V,, but it was poorly designed for the unimportant
variable, g.

Since V, is consistent with frictionless free fall. the
accepted value of local gravitational acceleration, 32.17 ft/sec?, and
the remaining distances to fall until the level of impact was reached
could be used to calculate the initial velocity used in the impact
energy calculations. It was decided to use the equivalent approach of
using Equation 4-2 and the data from section 3.1.3.2.2. The result
was initial velocity of 16.717562 ft/sec. Since this is an
intermediate result, it is not rounded to four significant figures as

dictated by the accuracy of the gravitational acceleration.

4.1.4 Amplifier Rise Time

It is crucial that amplifier rise time be smaller than tup
output rise time during instrumented impact testing. If this is not

so, the impact event signal can be distorted. {46]. 1In fact, the
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amplifier used in this study is fast enough to produce an undistorted
gignal.

The amplifier used for this analysis has several gain settings,
but the lowest gain level was used for all data collected in this
study. Figure 3-8 shows the output (in red) of the amplifier set to
its lowest gain setting resulting when a square wave (in blue) is
input whose amplitude is equivalent to instrumented pendulum Charpy
tup output corresponding to about 7700 1b.

On the vertical scale 13 small divisions are equivalent to
0.5 volts. On the horizontal scale, 13 small divisions are equivalent
to 0.5 usec.

Note that rise time from 10% to 90% of the sqguare wave amplitude
takes 3 small divisions which is equivalent to 0.12 gsec. Consider
Figure 3-9(A), the ASTIR output for instrumented pendulum Charpy
impact test L2. The general yield load (7446 1b from Table 3-23(A))
was not reached until 0.148 milliseconds after event start. In other
words, the amplifier response is more than three orders of magnitude
faster than the event it is monitoring.

In spite of the fact that only the first gain setting was used,
other studies of rise time were performed for higher gain settings.
It was not surprising that the higher gain settings produced a slower
response, but the highest gain setting (which had the slowest
response) had a rise time of approximately 0.75 pusec -- some two
orders of magnitude faster than the event.

Thus the amplifier rise time of the first gain setting was
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easily fast enough to ensure that the amplifier could not possibly

have distorted the signal from the tup.

4.1.5 Summary of the Calibration Discussion

The calibration data used for the experimental results section

are summarized in Table 3-13. Since these are intermediate results

used for other calculations, they have not been rounded in order to

avoid round-off error.

4.2 Impact Tests

In the Introduction, a theory of measurement of impact energy
was developed. If it is correct, the 'tup energy' and ‘dial energy’
can be used interchangeably and so can the pendulum and drop tower
Charpy tests. Furthermore, there would then be reason for confidence
in using the intermediate results (for example load and displacement)
in making gquantitative dynamic fracture toughness and stress-strain
calculations as well as reason to believe that subdivisions of the
impact energy (such as crack initiation and crack propagation) have
validity. The similarities or differences among the impact energy
measurements will be considered in the light of statistics, the

requirements of ASTM specification E-23, and intuition.
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4.2.1 Statistical Comparisons of Energy Results

Consider the four groups shown in Table 3-16:

1. the low energy specimens which were tested in the
pendulum machine;

2. the low energy specimens which were tested in the drop
tower machine;

3. the high energy specimens which were tested in the
pendulum machine;

4. the high energy specimens which were tested in the

drop tower machine.

Now also consider Tables 3-14 and 3-15. In terms of chemistry
and dimensions, there is no bias among any of the groups. Recall from
Chapter 2, "Procedure," that groups 1 and 2 were heat treated in one
way and groups 3 and 4 were heat treated differently. There was,
however, no heat-treat bias between group 1 and 2 or between groups 3
and 4. Thus, groups 1 and 2 form one population and groups 3 and 4
form another.

It follows that any differences which might be observed in the

impact energies absorbed by the two populations do not reflect
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differences between the populations, but rather differences in test
methods. Conversely, if impact energies ascribed by two different
methods to either population agree, then the two methods are in
agreement.

To examine the similarity or differences among the groups, the
F ratio [47] and the t ratio (for the case that the variances cannot
be assumed equal [48]) were used. It will be seen that the variances
of some of the groups could be assumed equal. but if the methodology
for unequal variance is applied to two sets of data with equal
variances, the t ratio and the degrees of freedom calculated will be
nearly the same as those calculated if the t methodology for equal
variances were used. The converse is not true. The t methodology for
equal variances, if applied to two sets of data with different
variances, will give results which are clearly different from the
correct ones. It seems intuitively obvious that the methodology for
unequal variances should be used.

The impact energies as measured in the three different ways are
summarized in Table 3-16.

When the pendulum 'dial energies' were compared with the

pendulum 'tup energies,' the following results were found:
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1. For the high energy specimens:
F: 1.17 with 4 & 4 degrees of freedom;

t: 1.16 with 8 degrees of freedom.

2. For the low energy specimens:
F: 1.23 with 4 & 4 degrees of freedom;

t: 0.985 with 8 degrees of freedom.

The F tests and t tests do not indicate significant differences
between the precision or accuracy of the 'dial' and 'tup energies’' in
the pendulum Charpy test.

A comparison of the pendulum 'tup energies' and the drop tower

'tup energies' shows a different outcome:

1. For the high energy specimens:
F: 4.73 with 4 & 4 degrees of freedom;

t: 5.16 with approximately 5 degrees of freedom.

The F test shows that the drop tower 'tup energy' has less
precision than the pendulum 'tup energy' with between 5 and 10%
likelihood of being wrong. The t test shows that the drop tower 'tup
energy’' and the pendulum 'tup energies' are significantly different

with less than 1% chance of being in error.



2. For the low energy specimens:
F: 10.61 with 5 & 4 degrees of freedom;
t:

10.85 with approximately 4 degrees of

freedom;

The F test shows that the drop tower 'tup energy' has less

precision than the pendulum 'tup energy' with between 2.5 and 5%

likelihood of being in error. The t test shows that the drop tower

"tup energies' and the pendulum 'tup energies’' are significantly

different with less than 1% chance of being wrong.

An examination of the outcome of the statistical results of the

pendulum 'dial energy' in comparison with the drop tower 'tup energy'’

shows similar lack of agreement:

1. For the high energy specimens:

F: 5.53 with 4 & 4 degrees of freedom;

t: 4.56 with approximately 5 degrees of freedom

The F test shows that the drop tower 'tup energy' is less

precise than the pendulum 'dial energy' with between 5 and 10%
likelihood of being in error.

The t test shows that the drop tower

'tup energy' is significantly different from the pendulum 'dial

energy' with less than 1% chance of being wrong.

171
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2. For the low energy specimens:
F: 13.01 with 5 & 4 degrees of freedom;
t: 11.39 with approximately 4 degrees of

freedom.

The F test shows that the drop tower 'tup energy' is less
precise than the pendulum 'dial energy' with between 1 and 2.5% chance
of being in error. The t test shows that the two impact energy
measurements are different, with much less than 0.5% likelihood of
being wrong.

ASTM method E-23 requires that any qualified Charpy testing
machine should match, on average, the AMMRC standards to within
1.0 ft-1b or 5.0% of the nominal value, whichever is larger. ([49].
The Tinius Olsen model 74 Charpy testing machine used in this study
has been calibrated to the ASTM E-23 requirements, and thus the
pendulum ‘dial energies' reported in column 3 of Table 3-16 can be
assumed to be correct (i.e., they are secondary standards) to within

those requirements, but no closer. Therefore, if a measurement were

within 1.0 ft-1b or 5% of the pendulum 'dial energy,' one would have
to conclude that it would have an excellent likelihood of meeting the
E-23 accuracy requirement.

The averages of the pendulum 'dial energies' for the low energy
and high energy specimens are, respectively: 12.3 ft-1b and
52.8 ft-1b. The averages of the pendulum 'tup energies' for the low

energy and high energy specimens are, respectively: 12.48 ft-1b and
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51.08 ft-1b. If the pendulum 'dial energy' were actually the AMMRC
standard, the pendulum 'tup energy' would have easily passed the E-23
requirement.

The averages of the drop tower 'tup energies' for the low energy
and high energy specimens are respectively: 17.10 ft-1b and
64.54 ft-1b. These results would not have met the requirements of
ASTM E-23 if compared to either the pendulum 'dial' or 'tup energies.'

As explained earlier, 'tup energies' are calculated from
electric potential vs. time records and, as Figures 3-9(A) - 3-9(U)
show, such records are not free of electrical noise. One would have
to conclude that the pendulum 'tup energy' data must contain more
variance than the pendulum 'dial energy.' Indeed, such would seem to
be the case if the data in Table 3-16 are considered. The variances
of the pendulum 'dial energy' for the low energy and high energy
specimens are respectively: 0.075 and 5.075. The variances of the
pendulum ’'tup energies' for the low energy and high energy specimens,
respectively, are: 0.092 and 5.927. The difference between these
pairs of variances can be identified as the variance due to electronic
noise. Clearly, it is a fraction of the variance due to the pendulum
test itself. Intuition shows that the electronic noise causes a
reduction in precision, but as the statistical results show, the

reduction in precision due to the noise is insignificant.
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The variances of drop tower 'tup energy' for the low energy and
high energy specimens are: 0.976 and 28.063 respectively. Since the
same amplifier with the same amount of electronic noise was used for
the pendulum 'tup energy' and the drop tower 'tup energy' results, it
can immediately be seen by applying the results of the last paragraph
that the loss in precision caused by going to the drop tower test
could not have been due solely to electronic noise. Indeed, the
variance contribution from the electronic noise was an insignificant
amount of the total increase in variance.

Intuition leads to one final insight. From the impact energy
data in Table 3-16, note that the pendulum 'dial energy' is always
lower than, or equal to, the pendulum 'tup energy' for the low energy
specimens and always higher than the pendulum 'tup energy' for the
high energy specimens. These observations suggest that, in spite of
the conclusions from the t test above, there may be a systematic

difference between the pendulum 'dial’' and 'tup energy’' measurements.

4.2.2 Possible Causes of Discrepancies

As shown in section 4.2.1, pendulum 'tup energy' would be an
acceptable measure of Charpy impact energy even though some residual
differences between pendulum 'tup energy' and pendulum 'dial energy'

remain. There is clearly a major problem with the drop tower 'tup
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energy' as a measure of Charpy impact energy. There are several
possibilities for the source of the problem(s), but they all fit

within three classifications:

1. Something is wrong with the numerical method.
2. Something is wrong with the calibration. Within this
classification lie the following possibilities:

a. The order of tup calibration is too low.

b. The physical constants of the testing
machine have been incorrectly or
inaccurately measured.

c. The calibration constants of the tups were
incorrectly, inaccurately, or
inappropriately measured.

3. Something is basically wrong with the theory, and

hence, the method.

Each of these possibilities is discussed in turn.

4.2.2.1 Effect of Integration Method on Using Pendulum

'Tup Energy' as a Measure of Charpy Impact Energy

The numerical method used in the ASTIR program can be seen

either as a double integration by a low order Newton-Cotes method or
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as a low order Euler solution to the simultaneous differential

equations:

dv/dt

-P(t)/M (4-9)

dx/dt

v (4-10)

As has been stated earlier, it can be shown that such
methods asymptotically approach the exact solution as the order of the
numerical method is raised. Applying this fact to Table 3-17, it can
be stated that the remaining error due to the numerical method at
order two is less than 0.1 ft~lb. Intuitively, it appears that if
there is an error in pendulum 'tup energy,' increasing the order
reduces the error for the low energy specimens but makes it worse for
the high energy specimens.

The results in Table 3-17 show that the error due to the
numerical method is about 0.1 ft-1b. Therefore, further increases in
the order of the method will probably not have a significant effect on
the outcome. In fact, these results show that the Oth order
(rectangle rule) integration scheme is completely satisfactory and

more sophisticated integration schemes are unnecessary.
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4.2.2.2 Effect of Calibration on Using 'Tup Energy' as a

Measure of Charpy Impact Energy

4.2.2.2.1 Effective Mass

The effects of errors in the effective mass of the
pendulum or crosshead can be appreciated by examining Tables 3-18(A)
and 3-18(B). Note that as the effective mass is raised, the
calculated 'tup energy' first rises rapidly and then asymptotically
approaches some upper limit. Note also that the mass at which the
upper limit is reached increases as toughness of the sample increases.

The explanation for these two effects is as follows.
The impulse applied by the specimen to the tup decelerates the
pendulum or crosshead; hence the latter parts of the integration of
(P)(ds} are reduced. If the effective mass is small, the deceleration
is large, and the calculated 'tup energy' is small. However, if the
effective mass is large, the deceleration is small, and the calculated
energy is large. If the deceleration were negligible, any increase in
pendulum or crosshead mass would have a negligible further effect,
Obviously, the effective mass necessary to make deceleration
negligible will depend upon the magnitude of the impulse. Therefore,
increasing the effective mass will increase the calculated 'tup

energy' until an asymptotic limit is reached. The effective mass



178

necessary to reach that 1limit will increase with the toughness of the
specimen. A simpler but less lucid way of restating this would be: as
assumed effective mass rises, the second term of the Augland equation
approaches zero.

There is an important consideration here for the
design of impact machines. ASTM E-23 states that it would be ideal
for the Charpy test to be performed with constant velocity. Constant
velocity could be achieved by using a large effective mass. The
difficulty of getting precise values for absorbed energy could be

overcome by using an instrumented tup and calculating 'tup energy.'

4.2.2.2.1.1 Effective Mass of the Pendulum

As will be seen, for the average of the penduium
'tup energies' to match exactly the average of the pendulum 'dial
energies,' specimen L2 would have to have had a 'tup energy' of
12.4 ft-1b. That would require an effective mass of 40 to 50 1lb mass,
but the difference between even 50 1lb mass and the measured effective
mass of the pendulum is more than an order of magnitude larger than
the experimental uncertainty. Similarly, for the two averages to be
identical, H6 would have to have a 'tup energy' of 54.7 ft-1b which is

inconsistent with the measurements. Not only are the required
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changes in the effective mass incompatible with actual measurements,
but they are in the opposite directions, and hence are incompatible

with one another!

4.2.2.2.1.2 Effective Mass of the Drop Tower

Crosshead

The rejection of effective mass as a cause of the
lack of agreement is even more obvious in the case of the drop tower.
For the averages of the drop tower 'tup energies' to match the
averages of the pendulum 'dial energies,' specimen S2 would have to
have a 'tup energy' of 60.2 ft-1b and specimen L8 would have to have a
'tup energy' of 12.9 ft-lb. Table 3-18(B) does not even contain such
values. The effective mass required would hence have to be less than
the lowest effective mass on the table (namely 100 1lb mass), but it is
completely impossible that the scale used to measure the effective
mass of the crosshead could be so much in error, since it was

calibrated against a triple beam balance prior to use.

4.2.2.2.2 Initial Velocity of the Tup

As can be appreciated from the results in
Tables 3-19(A) and 3-19{B), the effect of initial velocity on

calculated 'tup energy' is less complicated than the effect of mass on
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calculated 'tup energy;' as the initial velocity rises, the 'tup
energy' rises and the increase is very nearly proportional to the
increase in velocity. Suppose that the effective mass were high
enough that the deceleration was insignificant. Then the velocity
would be a constant and the increment in absorbed energy, (P)(ds)
would be equivalent to (P)(Vy)(dt), i.e.. (Vyo)(P)(dt). Since V, is a
constant, the absorbed energy would be just V, multiplied by the
impulse. Consequently, the absorbed energy would be proportional to
Vo. If V were varying with time, as normally happens, its value at
any given moment would still be a monotonically increasing function of
Vo, and, hence, absorbed energy is still a monotonically increasing
function of V, as seen in Tables 3-19(A) and 3-19(B).

The discussion in the last paragraph suggests that it
might be possible to multiply the impulse by V,; and apply some sort of
correction factor which would be a function only of impulse, effective
mass, and initial velocity. This is exactly true and can be
mathematically proven: the resulting equation is the Augland-Grumbach

equation mentioned in the Introduction to this paper.

4.2.2.2.2.1 1Initial Velocity of the Pendulum

As noted earlier, a perfect match between the
pendulum 'dial' and 'tup energies' requires that specimen L2 have a

‘tup energy' of 12.4 ft-1lb. From Table 3-19(A) such a 'tup energy'
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would require an initial velocity of about 16.8 ft/sec. It is not
implausible to assume that the initial velocity could be lower than
the expected 16.8+ ft/sec by only 0.08 ft/sec. Windage losses or
errors in measuring initial height might be large enough. However,
the initial velocity also affects the 'tup energy' of the high energy
specimens. For a perfect match between average pendulum 'dial' and
average pendulum 'tup energies,’' specimen H6 would have to have a 'tup
energy' of 54.7. However, at an initial velocity of 16.8 ft/sec,
specimen H6 has a 'tup energy' of 53.1. H6 has the desired 'tup
energy' only if the initial velocity is between 17.2 ft/sec and

17.3 ft/sec. At that initial velocity, L2 has a 'tup energy' of

12.8 ft/sec -- which is unacceptable. More significantly, the
pendulum may have some way (such as windage) to lose energy and move
more slowly at the impact point than expected, but it has no way to
get extra energy and move more rapidly than expected at the impact
point. Due to conservation of energy, it is not possible for the

pendulum to have a tangential velocity of 17.1 ft/sec or above.

4.2.2.2.2.2 1Initial Velocity of the Drop Tower

Crosshead

Once again, the case of the drop tower is more
obvious than that of the pendulum. For the average of the drop tower

'tup energies' to match the average of the pendulum 'dial energies'
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would require specimen S2 to have a 'tup energy' of 60.2 ft-1lb which,
according to Table 3-19(B), would require an initial velocity of
approximately 14.5 ft/sec. For the match required, specimen L8 would
have to have a 'tup energy' of 12.9 ft-1b which would require an
initial velocity of about 12.5 ft/sec. The required initial
velocities are impossible for two reasons: First, they do not match
each other. Second, the initial velocity measurements by strobe
velocity treated in section 3.1.3.2.1 are completely incompatible with

such low velocities.

4.2.2.2.3 Order of the Calibration Curve

It might be thought that the apparent lack of
agreement between the pendulum 'dial energy' and the pendulum 'tup
energy' is due to inadequate calibration curve order and that a
comparison of the results from using the best linear calibration curve
with the results from using the best quadratic calibration curve to
calculate the absorbed energies of the pendulum Charpy tests should be
done. Table 3-20(A), which contains such a comparison using the
calibration curves shown in Table 3-20(B), shows that even in this
case, in which quadratic calibration behavior was shown by statistics
to be highly significant, the effects of using the lower order

calibration curve resulted in an error of no more than 1.0 ft-1b for
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the high energy specimens and no more than 0.1 ft-1b for the low
energy specimens. One would expect that the higher order calibration
curves would help much less than the quadratic curve since their
statistics show them to be one or more orders of magnitude less
significant in terms of F ratio than the quadratic calibration curve.
As a rough estimate, one would expect that the error eliminated in
that way would be about an order of magnitude smaller than the error
eliminated by changing from a linear to a quadratic calibration curve.
By the same logic, it can be argued that the ninth
order curve which would resuit from using the two third order
calibration curves found when calibrating the drop tower Charpy tup in
two steps would be unlikely to change the results from the drop tower
'"tup energy' calculations by even as much as 1.0 ft-1lb. Hence it
would be unable to explain the discrepancy between the drop tower and

pendulum results.

4.2.2.2.4 Tup Calibration Constants

4.2.2.2.4.1 Static Calibrations

Small changes in the static calibration constants
such as those shown in Tables 3-21(A) and 3-21(B) cannot make the

average pendulum 'tup energy' exactly coincide with the pendulum 'dial
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energy' or make the average drop tower 'tup energy' even close.
Nonetheless, Tables 3-21(A) and 3-21(B) can serve as starting points
for a modified secant search for calibration curves which can do so,
Table 3-22(A) contains a calibration curve which makes the average
pendulum 'tup energies' virtually coincide with the average pendulum
‘dial energies.' Table 3-22(B) contains a calibration curve which
does the same for the drop tower 'tup energies.' The real objective
is not to force 'tup energies' to fit the 'dial energies' by the use
of some arbitrary calibration curve, but to determine whether such a
curve is justifiable on the basis of sound physics.

A comparison of Table 3-3(C) with Table 3-22(A),
and 3-8(A)(1) and 3-8{A)(2) with Table 3-22(B) suggests that it is
statistically unlikely that the artificially modified calibration
curves in Tables 3-22(A) and 3-22(B) could have any physical
significance. This conclusion is based on the fairly small size of
the standard errors in Table 3-3(C) which are calculated from the
results in the two stages of the calibration. It must be borne in
mind, however, that the calibration of the pendulum Charpy tup

involved not two, but four, steps.

1. Weights (primary standard) were used to calibrate load

rings (secondary standard).
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2. Load rings (secondary standard) were used to calibrate a
Tinius Olsen universal testing machine (certified testing
device).

3. The Tinius Olsen universal testing machine was used to
calibrate an Ireland Associates 20,000 1b tup (uncertified
testing device).

4. The Ireland Associates tup was used to calibrate the

pendulum Charpy tup.

It seems likely that the calibration curve in

Table 3-22(A) is incorrect, but without more data the curve cannot be

refuted.

4.2.2.2.4.2 Dynamic Calibration

Nonetheless, it could be argued that the static
calibrations performed in this work are irrelevant to the experiment
here. It has been argued [50] that tups for instrumented impact
testing machines must be dynamically and not statically calibrated as
done herein. Apart from the difficulty of obtaining and using a
dynamic tup calibration, it is possible to argue against the physical

validity of the results.
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For the static tup calibration to be different
from the dynamic calibration, at least one of three considerations

must be true:

1. The elastic constants of the material from which the tup
was manufactured would have to be strain rate dependent.
Below the elastic limit this is just not true for common
engineering materials [51] including low alloy steels like
the material from which the tups used in this study were
made. Furthermore, it is well known that the speed of
sound in steel is independent of frequency, a fact which
immediately implies that the elastic constants of steel

must be independent of strain rate. [52];([53].

2. The amplifier used in the load measurement might respond
differently at dynamic rates than it did at static rates.
Such a contention requires that the amplifier rise time is
slower than the event rise time, which is refuted in

section 3.1.4.

3. The strain gauges or materials used to attach them might be
strain rate dependent. It is more difficult to refute this

possibility immediately, but in The Strain Gauge Primer,

Perry and Lissner imply that strain gauges are strain rate

insensitive. [54].
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4.2.2.3 Basic Theoretical Considerations

The pendulum 'dial energy' results are different from the
pendulum ‘tup energy' for the two populations tested and the drop
tower 'tup energy' results for the same two populations differ from
both the pendulum 'dial energy' and pendulum 'tup energy' results. In
the case of pendulum 'tup energies,' the difference when compared to
pendulum 'dial energies' was shown to be insignificant. Therefore,
the associated intermediate results can be used to calculate dynamic
material constants. The drop tower 'tup energies' differ
significantly from the pendulum 'dial energies.' Therefore the
intermediate results calculated from the drop tower tup output have no
fundamental significance.

If there is any problem with the static calibration, it has
to do with strain gauge response. If this is rejected, one is forced
to accept the final possibility: there is something basically wrong
with the theory. In the case of the pendulum 'tup energy,' the
problem is insignificant and hence unimportant in regard to the use of
intermediate results in calculating material constants. In the case
of the drop tower system used in this study, the problem is
significant and the intermediate results have no fundamental
significance.

There are two possible sources of error to be considered:

friction and compliance.
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4.2.2.3.1 PFriction

ASTIR does not account for the amount of friction
which occurs in the pendulum before, during, or after the impact
event. On the other hand, the pendulum dial is adjusted so that after
one swing with no specimen in place the dial shows zero absorbed
energy even though it is obvious that some energy was absorbed and, at
the same time, the non-zero energies are distributed along the scale
between zero energy and maximum energy in some plausible manner.
Remember, however, that this calibration would be acceptable if it
were within 5 % of standard energy or 1 ft-1lb, whichever were closer.
Thus it is unreasonable to reject the 'tup energies' if they were
within such a range of the 'dial energies' -- as in fact they were.
Further statistics show that the pendulum 'tup' and 'dial energies’
have no significant difference.

The linear bearings used in the drop tower testing
machine are quite loose and it is entirely possible that a significant
amount of friction could exist in the drop tower machine during the
impact event if the event causes the crosshead to be torqued. ASTIR
cannot take this into account and so would calculate a high energy

value.
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4.2.2.3.2 Compliance

When an impact event occurs, some of the energy and,
hence, some of the load is used to begin elastic ringing in the
machine and the specimen. Neither of these has to do with material
constants of the specimen, but the ringing of the specimen should be
the same in the pendulum and drop tower versions of the Charpy test.
The ringing of the instrument is more serious. Not only does it have
nothing to do with material constants, but it will vary from machine
to machine according to the compliances of the machines.

Over the years, the pendulum version of the Charpy
test has been purged of compliance problems. Izod obviously
recognized the problem. Note that his original machine had guy wires
attached to the pendulum in a configuration commonly used in naval
rigging to add stiffness to masts. [55]. Bluhm [56] showed that a
pendulum machine which produced excessively high absorbed energy
results did so because of unacceptably high compliance in the
pendulum. The requirement in ASTM E-23 that all Charpy pendulum
machines adhere to standards based on results obtained from the very
stiff machines at Watertown arsenal (later AMMRC) guaranteed that only
very stiff pendulum Charpy machines would be used for serious studies

of the impact properties of materials.
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Since the drop tower Charpy test is not even
permissible under ASTM E-23, it has not felt such pressures. In fact,
in spite of the inherent stiffness of the crosshead, the drop tower
machines can be MORE compliant than modern pendulum machines. For
example, such could be the case if the tup and/or anvil used in the
drop tower were more compliant than those used in the pendulum machine.

Note that Bluhm's model is more applicable to drop
towers than it is to pendulum machines. [57]. It predicts that the
compliance effect will be worse for tests in which high loads are
reached than for those in which loads are not great. The low energy
specimens had higher peak loads, and they had the larger absolute
discrepancies between average drop tower 'tup energies' and average
pendulum 'dial energies' when compared to the high energy

specimens —- just as predicted by Bluhm years ago.

4.2.3 Test of the Theory

It is tempting to explain the discrepancy between the drop tower
and pendulum Charpy tests in terms of tup and anvil compliance, but
since it is just possible that crosshead friction during the event
rises in a random manner and since tup response may vary with strain
rate, it is more correct to put such an explanation to a direct

experimental test.
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The total system compliance in either test must equal the
displacement at general yield divided by the general yield load.
These quantities can be readily calculated from the data collected
during the experimental part of the work, but since the sampling rate
used for the low energy specimens was about six times higher than that
used for the high energy specimens, vielding a higher horizontal
resolution for the load-time plots, the most accurate determinations
of general yield come from the data collected from the former rather
than the latter. Therefore, the test of the theory will consist of a
comparison of the compliance and general yield load information for
the pendulum and drop tower machines, but only results for low energy
specimens will be considered.

Tables 3-23(A) and 3-23(B) contain the necessary information.
Note that the total system compliance of the drop tower is lower than
that of the pendulum. Low system compliance could not possibly
explain high absorbed energy. Hence, system compliance does not
explain the discrepancy. Note also that the general yield load in the
pendulum averages 7290 lb while the general yield load in the drop

tower averages 9353 lb. From beam theory we can derive:

Dynamic Yield Stress = (33.3 in~2) * (4-11)

General Yield Load [568]
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Hence, the general yield load is directly proportional to the
vield stress which must be the same in both tests. The only way to
resolve the conflict is to conclude that the drop tower tup
calibration is wrong. Because of the high degree of confidence in the
static calibration of the drop tower tup, the only possible conclusion
is that the drop tower tup responds differently at dynamic strain
rates than it does at static rates. In other words, even though the
same is not true of the pendulum Charpy tup, the drop tower Charpy tup
does require dynamic calibration.

Ireland has suggested that the correct way to perform dynamic
tup calibration is to apply a known impulse or energy to a tup and to
adjust the calibration curve until the calculated energy or impulse
matches the standard energy or impulse. [59]. The Augland equation
shows that total absorbed energy is a function of impulse. Hence,
dynamic tup calibration by energy matching is equivalent to dynamic
tup calibration by impulse matching. 1In essence, that is what was
done in Table 22(B). The calibration curve from Table 3-22(B) was
used to recompute the compliance information, and Table 3-23(C) is the
result. The average compliance in Table 3-23(C) is higher than the
average compliance in Table 3-23(A) which should have made the 'tup
energy' higher, but did not. Furthermore, the average general yield
load in Table 3-23(C) is 5845 which does not agree with 7290, the

general yield load from Table 3-23(A).
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The energy {or impulse) matching dynamic tup calibration
approach implicitly assumes that the only causes of tup acceleration
are the acceleration of gravity and the load applied to the tup. If
such is not the case, the method must fail. To be specific, consider
the ASTIR reports in Figures 3-9(A) - 3-9(U). Note that the event
length of low energy specimens tested in the pendulum machine was
187.2 usec while for the drop tower the event length was 193.3 usec.
For the areas under the drop tower load time curves to match
corresponding pendulum areas, the curve had to be adjusted to produce
erroneously low load values.

Hence excessive elastic energy storeage or bearings which are
not practically frictionless or do not accurately control tup motion
can cause an energy or impulse matching dynamic tup calibration
approach to fail.

An alternate procedure for dynamic tup calibration is as
follows. Generate several homogeneous population impact specimens and
test them dynamically using a tup whose dynamic behavior is well
calibrated. From the results, assign a general yield load and
standard error to each population. Test a statistically significant
quantity of each population dynamically using a tup of unknown dynamic
response. Apply the usual curve fitting procedures to establish a

calibration curve for the unknown tup.
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A linear calibration function which nearly matches the general
yield load in the drop tower test to that in the pendulum test was
calculated. (In essence, this is a simplified version of the
procedures described in the last paragraph.) The results are shown in
Table 3-23{(D). Student's t ratio for the difference between the
average of the general yield load in Tables 3-23(A) and 3-23(D) is
0.243 with 6 degrees of freedom which clearly shows that the
difference is insignificant. The F ratio for the same comparison is
3.35 with 4 and 5 degrees of freedom, suggesting that the drop tower
Charpy test is a less precise means of measuring dynamic yield
strength than the pendulum Charpy test. (The likelihood of being
wrong, however, is a little greater than 10 %.)

Table 3-24 shows the drop tower 'tup energies' calculated with
the calibration curve from Table 3-23(D). The t ratios for the
comparison of the pendulum 'dial energy' with the 'tup energies' in
Table 3-24 are 1.05 with 6 degrees of freedom for the high energy
specimens and 2.98 with 4 degrees of freedom for the low energy
specimens. These results are not significant for the high energy
specimens and they are significant, but not highly so (likelihood of
being wrong between 2 and 5 percent), for the low energy specimens.

If several general yield loads had been used for the calibration
reported in Table 3-23(D), the drop tower 'tup energy' results might

have been in still better agreement to the pendulum 'tup energies.'



5. CONCLUSIONS

The drop tower Charpy test as used in this study is

significantly different from the ASTM E-23 approved pendulum

Charpy test.

The discrepancy between the loads and energies calculated in the

pendulum and drop tower tests were significant.

a.

In this study, a static calibration of the drop tower
tup resulted in a discrepancy of +28% in load compared
to the results obtained from the pendulum tests.

A dynamic calibration of the drop tower tup based on
energy standards produced a load discrepancy of -25%
compared to the results obtained from the pendulum
tests.

A dynamic calibration of the drop tower based upon the
assumption of linear tup response and the use of one
dynamic load standard produced good agreement in load
compared to the results obtained from the pendulum
test, but energy results which could be rejected by
use of Student's t test or the requirements of

ASTM E-23.
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The cause of the energy and load discrepancies between the
pendulum and drop tower versions of the Charpy test is the

dynamic response of the drop tower Charpy tup.

The results of this study do not eliminate the possibility that
dynamic load standards could be used to calibrate a drop tower
Charpy test so that it could be used to obtain impact energies
equivalent to ASTM E-23 energies and accurate quantitative load

information.

The results of this study show that the drop tower Charpy test
gives energy results which have higher variance (i.e., less

precision) than the pendulum Charpy test absorbed energy.

The following causes for high drop tower energy variance have

been eliminated:

a. Numerical method;
b. System dimensions and physical constants;
c. Tup calibration; and

d. System compliance.
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The Oth order integration method or rectangle rule is adequate;

more sophisticated techniques are unnecessary.

Depending on tup design, nonlinear or piecewise linear tup
calibration curves may be required to yield acceptably accurate

load and energy calculations.

There is no significant problem with the 'tup energy' calculated
in the instrumented pendulum Charpy test. It can be used
interchangeably with the pendulum Charpy test 'dial energy' and
the intermediate results can be used to calculate material
properties, providing: care has been taken to ensure proper
calibration and adequately small granularity in the recorded

results and the correct algorithms are used in the calculations.



6. FUTURE WORK

6.1 Dynamic Calibration of Tups

While this work shows statistically that it is highly likely
that instrumented tups respond differently dynamically and statically,

the following remains to be done:

1. A first principles method of dynamic calibration;
2. Investigation of the cause(s) of dynamic response;
3. Investigation of the cause(s) leading to failure of energy

matching dynamic calibration in this study.

6.1.1 First Principles Dynamic Tup Calibration

Static calibration of tups and other load cells is based on
Newton's law of gravitation, F=mg. In other words, the primary

standard for force is an unaccelerated weight in a known local
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gravitational field. Such an approach in a dynamic, and hence
inherently accelerated situation, is, of course, impossible.

An alternative would be to use the equation: F=ma. If a tup
attached to a rigid pendulum or crosshead of known effective mass is
accelerated by an impact force varying from zero to the rated load of
the tup, the force can be calculated as effective mass multiplied by
acceleration. Repeated tests could be used to provide replication for

statistical analysis.

6.1.1.1 Ronchi Gratings and Shaft Encoders

The discussion in section 4.1.3 shows that measurements of
position must be very accurate if useful acceleration measurements are
to be made. OGC's stroboscopic equipment is not adequate. However,
it seems highly likely that velocity measurement by the Ronchi grating
system described in section 1.4.1.2.2.2 or by shaft encoders could
provide sufficiently accurate velocity measurements to make accurate
acceleration determinations. If such velocity determinations could be
synchronized with corresponding tup output determinations, a first

principles tup calibration could be done.
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6.1.1.2 The Need for Dependable Bearings

Section 6.1.3 below suggests that during impact the drop
tower crosshead experiences a frictional force with the linear
bearings which hold it in place. Such frictional forces would
decelerate the crosshead and, in a dynamic tup calibration based on
F=ma, make the force applied by the specimen to the tup appear to be
erroneously high, thus distorting the tup calibration. The problem

couid be avoided in one of two ways:

1. using a pendulum with removable tups; or
2. using a drop tower with superior linear
bearings.

6.1.1.2.1 Pendulum with Removable Tups

There is every reason to suppose that there is no
significant frictional component to the forces decelerating the
pendulum in E-23 type Charpy machines. Therefore, first principles
tup calibration could be done if a pendulum impact machine with the
following attributes were used for the calibration. The machine's
bearings would be of equal or better gquality than those used in E-23
impact machines. Its pendulum would be as stiff or stiffer than those

currently on E-23 pendulum impact machines. The machine would be
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equipped with a shaft encoder or Ronchi grating velocity measurement
apparatus, and would have provisions whereby it would be easy both to
replace anvils and mount a variety of tup designs. The design would
also provide for attachment of weights on the pendulum to allow
adjustment of the center of percussion so that it could always
correspond to the center of strike. The tup mount on the pendulum and
the anvils would have to be designed to prevent impact between the

anvils and the pendulum-tup combination.

6.1.1.2.2 Drop Tower with Superior Linear Bearings

A drop tower could be constructed similar to the
current OGC drop tower apparatus but with square instead of circular
guide bars. On one end, the crosshead would have a rectangular hole
whose longer sides would be perpendicular to the line between the
guide bars. Along each of these sides would be two roller bearings at
the top and bottom of the hole in the crosshead, spaced so as to
contact the guide bars with low friction, thus accurately controlling
the position of the crosshead in the direction parallel to a line

between the guide bars. The short ends of the rectangular hole would
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not touch the guide bars. At the opposite end of the crosshead wouid
be a second rectangular hole of the same geometry as the first, but
with its long sides perpendicular to those on the opposite end. The
roller bearings in the second hole would thus control crosshead
position in the direction perpendicular to the line between the guide
bars. The crosshead would be weighted or have balancing holes so as
to very accurately position its center of gravity on the vertical line
midway between guide bars and halfway between the front and back of
the crosshead.

This arrangement should accurately control the
position of the crosshead while imposing very little friction on it

during impact loading.

6.1.2 Causes of Dynamic Tup Response

Several causes of dynamic tup response have been demonstrated to
be inoperative in this study. (See section 4.2.2.2.4.2.) The only
remaining cause would be dynamic strain gauge response differing from
static strain gauge response. (This could possibly be due to mounting
technique rather than inherent strain gauge response.) It would be

useful to explore dynamic strain gauge response experimentally.
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6.1.2.1 Direct Methods of Strain Measurement

Such an experiment would not be impossible: a Ronchi
grating could be ruled onto the surface of a metal plate. The strain
gauge would be attached to the same surface and the Ronchi grating
would be observed through a transparent Ronchi grating with the same
spacing as the first Ronchi grating using a photocell. The metal
would be held rigidly at one end and loaded dynamically at the other.
Both the spacing and position of the Ronchi grating on the steel plate
would change with strain so that photocell output would be a
complicated function of plate strain, but in principle the photocell
output would measure strain while the strain gauge resistance was
simultaneously measured.

Direct optical measurement of plate strain could also be
done through the use of a diffraction grating. A diffraction grating
would be ruled on the steel with its lines perpendicular to the
direction of the load. A well collimated beam of monochromatic light
(a laser beam, for example,) would be reflected at an oblique angle
from the diffraction grating. The angle between the plate and the
reflected beam is a function of the grating spacing and can be
measured electro-optically. This procedure leads to a direct
measurement of plate strain which could be carried out simultaneously

with strain gauge resistance measurements.
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From simultaneous strain and strain gauge resistance
curves, calibration curves for the strain gauge could be made for a

variety of strain rates and compared.

6.1.2.2 Comparison of Strain Gauges and Gluing Technigques

It is probable that some strain gauges are strain-rate
insensitive while others are highly strain-rate sensitive. It is also
likely that some glues and curing techniques produce bonds which might
transmit strain to strain gauges in a strain-rate sensitive way. The
above technique could be used to compare strain gauges, glues and
curing techniques; several strain gauges could be glued to the same

ruled plate and the results compared with a variety of strain rates.

6.1.3 Failure of Dynamic Tup Calibration by Energy Matching

The discrepancies between Tables 3-23(A) and 3-23(D) might be
explained as follows: the linear bearings used in this study were
simply loose brass bushings in the crosshead. As the crosshead falls,
it is quite possible for it to wander. Hence it is not unreasonable
for the tup to strike the specimen in such a way that the load might

be concentrated one eighth inch from a line, passing vertically
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through the crosshead's center of gravity. Since load generated by
specimens in this study was up to 8000 1lb, such a strike would produce
about 1000 in-1lb of torque. The torque could rotate the crosshead so
that it would apply a horizontal load to the guide bars and hence
would experience a frictional load. This load might account for the
6 usec slowing in drop tower events as compared to the pendulum events.
Such an explanation is consistent with the results in
Table 3-23(D). If the torque friction model is correct, the following
logic would explain the data shown in Table 3-23(D): in some drops,
the tup would strike the specimen so that the impact load was centered
with respect to the crosshead. No torque would occur and hence no
friction. The event would absorb the same amount of energy as an E-23
Charpy test of the same material. Specimen L11 may be an example of
such a drop. In some drops, the tup would be quite far from center.
Presumably, the torque and friction would be maximized. ASTIR, not
calculating the frictional effect on displacement, would calculate an
erroneously high energy. Specimen L9 might be an example of such a

drop.
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There are several possible approaches to an experimental

investigation of the above speculation:

1. metrological examination of low hardness
specimens;
2. physical examination of the apparatus;

3. high speed photos;

4. superior linear bearings.

6.1.3.1 Metrological Examination of Low Hardness Specimens

The brinneling on low hardness specimens might be examined
to determine just how far off-center the impact can be. This approach
would be complicated by the fact that the brinelling marks on the bars
are not simple rectangles initially and become distorted by plasticity
and by the anvils as the tup pushes the specimen through them.
Nonetheless, if the specimen ends were carefully ground flat, smooth,
parallel to one another and perpendicular to the specimen sides so
that they could be used as datum planes for metrological analysis,
some headway might be made in this way -- especially if a large number
of specimens were tested and statistically compared to pendulum test

results.
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6.1.3.2 Physical Examination of the Apparatus

The crosshead would be lowered to the level at which the
tup encounters the specimen. The distances that the tup can move
horizontally both parallel and perpendicular to the line between the
centers of the guide bars would be carefully measured.

The crosshead would be demounted from the guide bars and
the bearings would be examined using mirrors or a borescope in an
effort to find the wear and impact damage that would have to accompany
the hypothesized friction. The exact center of gravity of the
crosshead would be carefully determined by balancing the crosshead on
knife edges. This would be compared with the position of the center

of the tup when mounted in the bottom of the crosshead.

6.1.3.3 High Speed Photos

A darkened background with light colored grid lines could
be placed behind the drop tower, and the crosshead could be
photographed by high speed photography as the tup impacts a specimen.
The motion of the tup during an impact event could thus be quantified,
but since a low energy event takes about 200 usec during which time
the supposed tup motion must occur, the photographic system would have
to be able to make several photographs in this very small amount of

time.
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6.1.3.4 Superior Linear Bearings

If the system described in section 6.1.1.2.2 were
constructed and the experiment in this dissertation were repeated, the
new results should have much smaller variance if, indeed, friction
caused by the looseness of the present bearings is the cause of high

load and energy variance in drop tower testing.

6.2 Amount of Data Required for Accurate Absorbed Energy Measurement

The pendulum part of this work shows that if 80 data points are
collected, an accurate absorbed energy can be calculated. However,
the minimum number of points required for such a calibration is
unknown. Repeating the pendulum part of this work with slower and
slower sampling rates should make it possible to determine the minimum

number of data points necessary for an accurate determination.
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6.3 Rewrite of ASTIR in Turbopascal

RC Electronics now offers a version of COMPUTERSCOPE which runs
under MS-DOS in IBM-PC Compatible computers. ASTIR could be rewritten
in Turbopascal. The problems of file access and fast graphics would
resurface, but once they were overcome the advantages of faster
sampling rates and more data gathered would more than compensate for

the difficulty.
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APPENDIX A

THE ASTIR PROGRAM

A.1 INTRODUCTION

ASTIR -- Apple Scope to Impact Report -- is a computer program
which enables a user familiar with the basic concepts of instrumented
impact testing but not necessarily experienced in using computers to
calculate results and generate an impact report from data he has
already collected using the COMPUTERSCOPE Program {(Formerly APPLE
SCOPE written by Richard E. Renck at R. C. Electronics in Santa
Barbara, California). The input data is 1024 bytes, each of which
represents a voltage and 256 bytes which encode information about the
status of the COMPUTERSCOPE program at the time of data storage. Each
voltage, in turn, represents a force.

ASTIR runs on most versions of the Apple II computer, but it
requires that there be two 5.25 inch floppy disk drives controlled by
a single controller card in slot 6. Furthermore, one of those drives
must be used to boot or reboot the system.

A.2 A WALK-THROUGH OF ASTIR

To start the ASTIR program, the user inserts the ASTIR turnkey
disk in the boot disk drive and a data disk in drive 2 and turns the
computer on or reboots it.

A.2.1 The Startup Menu

When the computer is turned on or rebooted, the appearance of
the screen is as shown in Figure A-1. The first two lines are the
title of this menu: ASTIR Method Choices. The next three lines are
the body of the menu and represent the items that the user can change
at this time. The final line is the prompt line which consists of the
commands which ASTIR will accept at this time. To enter a command,
the user types the letter associated with the desired command (for
example A); the effect of the command is briefly described in
parenthesis.
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In the prompt line of the Start-up Menu, there are five commands:
A, C, N, L and Q. Q causes the ASTIR program to terminate and leaves
the user in the Apple version of the UCSD p-machine operating system.
N causes the arrow next to the choices to move down until it reaches
the last choice, at which point the arrow will appear at the top of
the screen. L does the reverse of N, moving the arrow up until it
reaches the first choice. It will then move back to the last choice.
C changes the choice next to the arrow. The program always shows a
choice (see the next paragraph for a list of the choices). A accepts
the current choices and moves the user to the Data Selection Menu.

Here are the possible choices which can be made during the first
menu by using the command C:

Test Type: Pendulum, Drop Tower or Slow Bend
Velocity: Keyboard or Curve
User Type: Normal, Pro or Super

The first choice describes the basic type of test apparatus, and
the user can be assumed to be familiar with the possibilities shown.
The second choice allows the user to specify if he plans to input the
initial velocity by hand or rather obtain the velocity from existing
input data that is already recorded on the data disc. The third
choice describes the user privileges. Pro or Super users can
customize the state transitional diagram from inside the program. In
other words, they can change the order in which the program performs
its operations. 1In addition, the Super user sees diagnostics which
have to do with debugging the current version of the program. Normal
users must use the normal order of operation and do not see any
debugging diagnostics. An intelligent choice of Pro options would be
the fastest way to process data. The use of the Normal user choice
would be the easiest way to use ASTIR. (Pro customization of the
state transitional diagram is not yet implemented.)

There are no diagnostics associated with the Startup Menu, but
when the user types any command, it appears in inverse next to the
prompt line. If the command does not exist in that prompt line,
nothing happens. These precautions are implemented in each of the
prompt lines.
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A.2.2 Choosing the Recorded Curve - the Data Selection Menu

After the user has accepted the Startup Menu by pressing the A
key, the Data Selection Menu, shown in Figure A-2, appears. There is
no title; the body consists of up to a screenful of available file
names from the DOS 3.3 data disc. The prompt line shows that there
are only two commands: S and C.

If the user types C, the program does one of three things
depending on the number of files on the data disc. If there is more
than one more screenful of files in the catalog, ASTIR shows another
screenful. If there are files in the catalog that have not been
shown, but less than a screenful, ASTIR shows all of the remaining
files. 1If ASTIR has already shown all the file names, ASTIR goes back
to the beginning of the catalog and tries to show a screenful. In
each case, the new body is shown with the original prompt line. 1If
the user types S, the prompt line changes and ASTIR asks the user to
select a curve by typing the number which appears in brackets next to
the desired curve. The number which is typed will appear in the
brackets next to the prompt line. (See Figure A-2). After the user
selects a curve by typing a number and pressing return, ASTIR shows
the name of the file selected and asks if it is acceptable. If the
user types anything starting with N or n, ASTIR starts the Data
Selection Menu over. If the user types anything beginning with Y or
y, ASTIR loads the curve from the COMPUTERSCOPE data disc, goes on to
the Feature Identification Menu, and the user is committed to
completing the ASTIR program, rebooting or turning off the computer.

The only diagnostic at this stage is that if the user tries to
accept a file which does not share certain salient features with
COMPUTERSCOPE files, ASTIR warns the user that he has not selected a
data file and returns the user to the beginning of the Data Selection
Menu.

A.2.3 The Feature Identification Menu

During an impact event, several things may or may not happen.
Among them are that the event starts; general yielding may occur; a
maximum load will occur; fast fracture may commence; and the event
will end. The Feature Identification Menu (Figure A-3) enabies the
user to select the times when these things happened. The user must
select these features since otherwise ASTIR would have to perform
sophisticated pattern recognition and hence it would be larger siower
and less reliable than it is.



221

A ENE AT

14 sl K G T 0 Lo ] e,

T LS DAL LYN TET

e 124

s AT T
g% ]

a
e
4
q
H
4
¢
i
4
4
::‘
:5’
i
3
]
3
4
)

P T T L Ty L e B T |

B SZELECT CURVED, COONTINUEY

Figure A-2. The Data Selection Menu



CURSOR: START
POINTS DISFLAYED: 128
DATA AVERAGED OYER 1 POINT
SCALE: 1
A(CCEPT) ,DCELETE) ,F({ ILTER)Y ,E(XPANDX, <,
CONTRACTY ,S(CALE) ,R{IGHT) ,L(EF T, <—,—>

Figure A-3. The Feature Identification Menu

S



223

The Feature Selection Menu has no title. Its body consists of a
graph of the data, below which is the name of the feature (cursor)
currently under consideration, the number of points currently
displayed, point averaging data, and a number called the scaling
factor which has to do with the degree to which the vertical scale is
adjusted. The prompt line contains twelve commands: A, D, F, E, <,
>, C, S, R, L, right arrow (->), and left arrow (<-). The name of the
feature (cursor) under consideration is either one of the above-named
features or the beginning or end of the range over which the
background voltage level is to be averaged. The number of points
displayed is an integer between 8 and 1024.

If the right or left arrow are pressed, the current cursor
(indicated by a vertical line) will move one data point in the
corresponding direction. If < or > are pressed the cursor will move
sixteen data points to the right or left. If R or L is pressed the
screen is redrawn with the cursor one half a current screen width in
the appropriate direction if possible.

In previous menus, A accepted the whole menu. In the Feature
Selection Menu, A accepts only the current cursor. ASTIR does not go
on to the next section until all the cursors are either accepted of
deleted (by pressing D). Accepting a cursor means that the appropriate
feature has occurred at the current cursor location. Deleting the
cursor means that the feature did not occur.

Commands E, C and S change the way the data is graphed. If E is
pressed, ASTIR asks for an integer between 0 and 9 and ASTIR changes
the number of points to be displayed to the current number of points
displayed divided by two raised to the number chosen by the user.

Then ASTIR redraws the screen centered about the current cursor
position with the new number of points displaved. If C is pressed the
opposite occurs. The number of points is increased by setting it
equal to the old number of points times two raised to the input
number. If S is pressed, ASTIR asks for a number between 0 and 9.

The screen is redrawn centered about the current cursor position with
the height of the curve equal to the byte at each location multiplied
by two raised to the scale number minus 1. Note that the effects of E
and C are cumulative but the effects of S are not. It is useful to
input zero with one of the above options since that will enable fine
tuning of the position of the center of the graph.
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Pressing F allows the user to do filtering by point averaging.
When F is pressed, ASTIR asks for an integer between 0 and 9. Each
byte of the data is then replaced by the truncated average of the
points from the input number before the current byte to the input
number after the current byte. Then the newly computed curve is
replotted centered about the current cursor with the current number of
points and the current scale number displayed. If the data are
filtered and then refiltered with the filtering number equal to zero,
the original data is restored.

The only diagnostics at this point are that ASTIR will not allow
the user to reject the start or end of event cursors and warns the
user that such an event is impossible. (Clearly, there can never be
an impact event which has no start or no end, folk songs and western
music notwithstanding). ASTIR will also not allow the user to move
any cursor beyond the beginning or end of the data or try to display
more than 1024 points or less than 8 points. Furthermore, it will not
let the scaling factor exceed 9 or be less than 0, but in these events
no message is displayed.

A.2.4 The Calibration Data Menu

After the event start and finish cursors have been selected and
the rest of the cursors either accepted or rejected, the Calibration
Data Menu appears. (See Figure A-4). 1Its title is "Calibration
Constants". Its body consists of the names of the calibration
constants with their current values next to them to the right. The
prompt line shows five commands: A, C, L, N and F.

The names and meanings of the calibration constants are:

Flagl: The width in inches of the first timing
flag.

Flag2: The width in inches of the second timing
flag.

Velterm: A number which, when added to the Flag

widths, accounts for the peripheral
vision effect in the infra- red detector.

Gee: The local acceleration of gravity in feet
per second squared.
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Weight: The effective weight in pounds of the
pendulum or cross head.

Gain: A pure number which, when multiplied by
the load calculated from the gain one
calibration curve, yields the correct
load when some gain factor other than
"one" was set on the amplifier. (In
point of fact, no such number exists or
is even possible, although fairly good
approximations can be made. In
subsequent versions of ASTIR, Gain will
be eliminated in favor of the use of
various calibration curves.)

Loadfacl: The coefficient of the linear term in in
the calibration curve. 1Its unit is volts
per pound.

Loadfac2: The coefficient of the quadratic term in

the calibration curve. Its unit is volts
per pound squared.

Zerovolts: The Y intercept of the calibration
curve. Its unit is volts.

Commands L and N work exactly as they do in the Startup Menu.
When C is pressed, the current value of the constant is erased and an
input cursor appears at the extreme left end of its old field.
Whatever is typed into that field becomes the new value of the
constant after return is pressed.

If F is pressed, the value of Zerovolts is changed to the average
of the voltage encoded into the points from the start cursor to the
finish cursor. F is useful if a freeswing (impact test with no
specimen) has been performed to measure Zerovolts. Zerovolts will be
calculated from the current curve if both the Zero Range cursors have
been accepted and that calculated Zerovolts value will then be used in
the calculation of load, displacement and tup energy. (There is
currently a program bug here: The value of Zerovolts calculated from
the curve IS used in the load, displacement and tup energy
calculation, but it does not replace the value of Zerovolts in the
Calibration Constants Menu, and the value from the menu is used to
plot the zero line in the report graph).

When A is pressed, the Calibration Constants Menu is accepted and
ASTIR proceeds to the Test Conditions Menu, shown in Figure A-5.
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Figure A-3. The Test Conditions Menu
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A.2.5 The Test Conditions Menu

The Test Conditions Menu is similar to the Calibration Constants
Menu except for the fact that it has no Z command and it has different
items:

Specimen Type: The general geometry of the
specimen. When C is pressed,
Specimen Type changes between beam
and cantilever.

Initial Velocity: The initial velocity in feet per
second. It is used only if the
keyboard velocity option i1s used.

Final Velocity: It may be that the user has some way
of knowing the final velocity
without using the recorded curve.
(Such possibilities are discussed in
the Introduction.) If so and if the
user has taken the keyboard velocity
option, it may be recorded here. If
both velocities are known, ASTIR
will calculate the flag energy as
the difference between the initial
and final kinetic energies. ASTIR
expects the user to input the final
velocity in feet per second.

Test Temperature: The specimen temperature in degrees
Fahrenheit at the time of the
impact. It must be added here since
there is no other way for ASTIR to
obtain it and it is necessary for a
complete impact report.

Dial Energy: It will, no doubt, be desired to
compare the dial, flag, and tup
energies. ASTIR cannot obtain the
dial energy even if a valid dial
energy is available unless the user
records it. ASTIR expects the user
to input the Dial Energy in
foot-pounds.
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The specimen These are necessary for calculation
dimensions: of the dynamic mechanical properties
of the material from which the
specimen was made. They are
expected in inches.

A.2.6 The Report Menu

After the Test Conditions Menu has been accepted, ASTIR proceeds
with its central task: calculation of fracture information from the
input data. The calculations take a minute or two and then an
auto-scaled graph of the load-time record is drawn on the high
resolution graphics screen and a text report is printed on the eighty
column text screen.

There is a prompt line at the bottom of both the graphics and text
screens and they are different in only one command. The graphics
screen has T in its prompt line and the text screen has G in its
prompt line. In effect, the graphics and text screens are a single
menu with the following commands in its prompt line: H, T, G, C, F, Q
and no title. (See Figure A-6).

The body of the Report Menu consists of the following:

1. the load-time graph;

2. the number of data points from event start to event
end;
3. the number of points over which the data was

averaged to do digital filtering by the method of
running averages;

4. the name of the file in which the data was found;

5. the test method (pendulwm, drop tower or slow bend);
6. the test temperature;

7. the load at each of the features except event start;
8 the time from event start to each of the other

features;
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9. the total deflection at each of the features except
event start;

10. the energy dissipated at each of the features
except event start;

11. the total energy absorbed as obtained by:

a. reading the pendulum dial (if the test
type is pendulum});
b. subtracting the final kinetic energy from

the initial kinetic energy (if the option
to calculate velocities from the curve
was taken and if all four flag cursors
were accepted or if initial and final
velocities were input in the Test
Conditions Menu);

c. calculating the energy from the load-time
data as explained in the body of this
report.

If H is pressed, a hard copy of both the graphics and text report
is made. (Currently only the printer combination Grappler+ interface
card and Epson printer are supported. It is planned to support the
combination Apple IIgs printer port image writer in the future).

If G is pressed, the text display is replaced with the graphics
display. If T is pressed, the graphics display is replaced with the
text display. Thus, T and G can be used to toggle between text and
graphics.

If C is pressed, ASTIR starts over from the beginning, allowing
the user to continue by choosing a new curve. (In this case all input
from the user and the data disk is discarded. The body of the program
alone is kept in memory.)

If F is pressed, ASTIR goes back to the Calibration Data Menu and
proceeds from that point. (In this case the original curve, the
filtered curve and the information about the features are retained.
Improper use of the F command could cause difficulties and ASTIR may
be modified to solve the problem in the near future.)

Q causes the ASTIR program to terminate and leaves the user in the
Apple version of the UCSD p-machine operating system.
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A.3 ISSUES IN THE THE DEVELOPMENT OF ASTIR

A.3.1 Choice of Language

The only options available on the Apple II series computers at the
time that ASTIR was started were 6502 Assembly language, Basic,
Fortran, and Pascal. Basic, an interpreted language, would have been
unacceptably slow in operation. Pascal was chosen because it was
apparent that the task would be quite complicated and it was expected
that it would not be possible to complete it without the use of a
strongly typed language with substantial structure built into it.

A.3.2 Transfer of Data Files Between Two Operating Systems

While it is true that both the Apple version of the UCSD P-machine
operating system, under which Apple Pascal runs and Apple DOS 3.3,
under which COMPUTERSCOPE runs use five and one quarter inch floppy
diskettes for storage and the same number of tracks and sectors, the
exact organization by which the two do so is very different. This
difference represents one of the thorniest problems in the development
of ASTIR though a probiem which is not directly related to metallurgy.

The way Apple DOS 3.3 does storage and recovery of information is
illustrated in Figures A-7(A) and A-7(B). ([60]. The Volume Table of
Contents is read from track 17 sector 0 to find the address (track and
sector) of the first catalog sector. The catalog sectors each contain
the names, types, and locations of track sector lists of several files
and the address of the next catalog sector. The last catalog sector
contains a null catalog sector address.

Once a file is chosen, its track sector list is read to find its
data sectors which are then read in order.

ASTIR takes advantage of a built in procedure in Apple Pascal
called blockread which reads the information on two consecutive
sectors into an array. A special subroutine called ASTIRREAD
essentially emulates the action of DOS 3.3 in retrieving the stored
data.

A.3.3 Memory Management

It was obvious from the start that ASTIR would be far too large to
fit in memory on an Apple II+ or Apple IIe. The solution was to take
advantage of a feature of Apple Pascal knhown as segment procedures to
load and unload certain parts of the program from memory as needed.
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A.3.4 Compilation

Compilation on any Apple II series computer is excruciating slow.
Apple Pascal, however allows precompiled library units to be linked to
separately compiled host programs. Use of this feature allowed ASTIR
to be developed much more rapidly than might otherwise have been the
case.

A.3.5 Graphics

Apple Pascal includes a very powerful graphics library providing
for reversed colors, drawing of text on a high resolution graphics
screen and point to point plotting but very slow speed. 1t was
decided to use the Apple Pascal graphics library where speed was not
of the essence and to provide a simple 6502 micro processor assembly
language routine for point to point plotting so that drawing the curve
which would otherwise take a great deal of time could be done
reasonably quickly.

The Apple high resolution graphics screen is illustrated in
Figure A-8. (61]. Note the extremely complicated way in which pixels
are encoded. Each byte in the graphics area of memory represents
seven pixels. The high bit of the byte is not displayed, the next
highest bit represents the leftmost pixel, etc. In Figure A-8, the
column row and box numbers are summed to find the memory location of
each graphics byte.

Any point-to-point line drawing routine must find the address of
the start and end point and turn on pixels between the start and end
point so as to produce an image of a line or curve connecting them.

As stated in the first paragraph, it was desired to have an
extremely fast point to point plotting routine but one which produced
a graph which would be easy for the user to comprehend. The routine
which was finally used for point-to-point plotting produces a
compromise between these ideals.
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A.4 DERIVATION OF NUMERICAL METHODS USED IN ASTIR FOR VELOCITY,
DISPLACEMENT, AND ABSORBED ENERGY CALCULATIONS

The simplest method for determining velocity, displacement, and
absorbed energy assumes that load is constant during each sampling
interval. This is the procedure that was described in the body of the
text. However, it is obvious that such is not actually the case. It
is possible to use the load data from subsequent time intervals to
improve the accuracy of the calculations.

Clearly load must be a continuous function of time. However,
COMPUTER SCOPE, like all digital measurement methods, can measure load
only at discrete intervals. By using a polynomial equation that is
derived using "n" data points (discrete load measurements), it is
possible to approximate the continuous nature of the load, expressing
load as an (n-1)th function of time. The greater the number of data
points used for determining this polynomial, the more accurate the
overall shape of the load-time curve and, more importantly, the more
accurate the resulting calculations. However, in this analysis, no
more than 3 data points have been used due to the complexity of higher
order methods.

The impulse is the integral of the load as a function of time.
Dividing the impulse by mass yields the change in velocity. Since, in
impact tests, the force and the initial velocity are in opposite
directions, subtracting impulse divided by effective tup mass from the
velocity at the beginning of the first interval yields velocity as a
function of time. In this case, load is an n-1th function of time, so
velocity is an nth order function of time. The initial velocity is
known. Subsequent velocities are calculated as described above.

By integrating velocity, vj, it is possible to determine
displacement. If as in this analysis, velocity is an nth order
function of time, then displacement is an (n + 1)th order function of
time. Power is determined by multiplying load and velocity. Since
load is an n-1th order function of time and velocity is an nth order
function of time, the result is power expressed in this analysis as a
(2n - l)th order function of time. Integrating the power result
yields energy. expressed as a (2n)th order function of time.
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To determine the velocity, displacement, power, and energy
measurements at subsequent sampling intervals during the event, the
first load data is removed from the data set of n elements, and the
first load data point following the set is added. Thus, what had been
P; + ; now becomes P; and what was v; , ; is now vj. The same process
as used with the first sampling interval is then applied to the new
data set to derive velocity, displacement, power, and energy
measurements for that new interval. This process is repeated until
all the intervals in the event have been dealt with.

Since the method of obtaining the impulse is, in effect, an
(n-1)th order Newton-Cotes integration scheme, it is to be expected
that the accuracy of these calculations will asymptotically approach
the correct values as n increases. Furthermore, when the results from
any odd order method are subtracted from the next lower order method,
the result will be a good estimate of the remaining error attributable
to the numerical method. {62j.

The specific method which assumes load to be a first order
function of time and the method which assumes load to be a second
order function of time were derived using MACSYMA, a symbolic algebra
program. The edited outputs and the associated MACSYMA inputs are
shown in the sections below. Following the MACSYMA information is a
proof demonstrating the equivalence of the equations derived in the
first and second order methods and the Augland-Grumbach equation.

Note that the derivations shown are strictly true only for the

pendulum method and that a correction must be added for drop tower
calculations. How this is done is explained on page 262.

A.4.1 Load as a First Order Function of Time

A.4.1,1 Derivation

Let P(t) be defined as the load as a function of time. Assume that
this is a linear function:

P{t) = PO + P1 t (A-1)

where P, and P, are arbitrary constants.

Let:

At = the sampling interval (A-2)
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Pj is defined as the load at the beginning of the interval. Hence:

Py = P(0O)

Pij+1 is defined as the load at the end of the interval. Hence:

Pi.y = P(At)

Substituting Equation A-3 into Equation A-1 yields:

Py = PO

Substituting Equation A-4 into Equation A-1 yields:

Pj,q = At P1 + PO

Solving Equation A-5 and Equation A-6 simultaneously and
substituting in Equation A-1:

Let V(t) be defined as the velocity as a function of time.

V; is defined as the velocity at the beginning of the interval.

Hence:

Vi = vV(0)
Vis+1 is defined as the velocity at the end of the
interval. Hence:

Visr = v{At)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)

(A-8)

(A-9)

Vj+p is defined as the velocity at the end of the following interval.

Hence:

Visz = V(2Aat)

{A-10)



Impulse is the integral of load with respect to time. The
change in velocity as a function of time is the impulse as a
function of time divided by the effective mass of the tup (M).

Hence:
2
(P - P.) t P. t
i
v{t) - Vi = - | M st S S + e )
2At M M
It follows that:
At (P1+1 - Pi) At P1
V1+1 = V1 e - e
2M M
and:
2 At Pj+1
VH2 = V1 ettt =T
M

The assumption that load varies as a linear function of time
leads to the conclusion that velocity varies as a quadratic

function of time. Hence:
V(t) = V0O + Vi t + --- V2t
where VO, V1 and V2 are arbitrary constants.

Substituting Equation A-8 into Equation A-14 yields:

Vi = VO
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(A-11)

(A-12)

(A-13)

(A-14)

(A-15)




Substituting Equation A-9 into Equation A-14 yields:
V. = mee—memes + At Vil + VO

Substituting Equation A-10 into Equation A-14 yields:
\Y = ZAtz V2 + 2At V1 + VO

i+2

Simultaneously solving Equations A-15 - A-17 and substituting
the result into Equation A-14 yields the following result:

2

(v 2V, + V) t

V(t) = v+ __ire %fl____l__,_
2At

C Wi T Wy TV
2At

Let X(t) be defined as the displacement as a function of time.
X; is the displacement at the beginning of the interval. Ie.:

Xi = X(0)

Xj+1 is the displacement at the end of the interval. Hence:
Xis1 = X(At)
The change in displacement is the integral of velocity with

respect to time. Hence by integrating Equation A-18 and using
Equation A~19 it follows that:

3
X(t) = X, + intE__intlf_Yzf*f_
1 6at2
(-V,,, *+ 4V, - 8V) t2
. iie2 077 iea” %7 20
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(A-18)

(A-17)

(A-18)

(A-19)

(A-20)

(A-21)




Substituting Equation A-20 into Equation A-21;

Power is the product of load and velocity. Hence power is
represented by:

Py - Pyt
P(t) VI(t) = (-—- e + P
At
2
(V= 2V, + V)t
(- -=- A
24t
(V. .- 4V, .+ 3V ) t
N B L R
2At

Let E(t) be defined as the energy absorbed up to a given time.

Ei is defined as the energy absorbed by the end of the intervail.

Hence:

Ei = E(0)
and

Ei+l = E(At)

The energy absorbed up to a given time is the integral of power
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(A-22)

(A-23)

(A-24)

(A-25)

absorbed with respect to time. Hence integrating Equation A-23 and

using Equation A-24:
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4
(3P. . - 3P.) V. 2 ¢
1 -
__.__..i’__.___..l_é_.l_.__z._.__ (A..26)
24At
(6P 6P, )V 4
R S ivl” i+l
sv. p. _ t? 3p. v.) t?
T S 5.2 S - o r
244t° 244t°
(8At P. - 4At P, ) V. . t°
IR S iv1” ir2
24at°
(16At P - 288t P V. .t
L iyl i7 isx
248t3
3 3
128t V. P, . t 16At P, V.) t
e i__i+1 b el 1 1 __
24at° 24t
_eat® p. v, _ t2 24At° P, V. . t°
e S i+2 PR i+1
24at> 24a¢°
1282 v, p, . 2 s0at? p. v, t?
I S i+l T S 1
24at> 24At>
240t P, V. t
SR i i _
3



Substituting Equation
result:
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A-25 into Equation A-26 yields the following

{A-27)
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A.4.1.2 Recapitulation of the First Order Method

Pj and Pj,; are calculated from the input data as described in the
text in section 1.4. The initial value of V; is obtained from the
input data as described in the text in section 1.4.1.2. Subsequent
values of V; are the value of V;,; in the previous interval

(Equation A-12). The initial value of X; is zero. Subsequent values
of X; are the values of X;;q1 in the previous interval

(Equation A-22). The initial value of Ej is zero. Subsequent values
of E; are the values of Ej,y in the previous interval

(Equation A-27).

iv1 ~ Py) at P
Vigg =V, - mmmmmeiTEeeeotes + e io (A-12)
1 ! 2M M
2 At P,
Vi = V; - ~mmmmemiiioeoe- (A-13)
M
At V., -8BtV . -54tV
Xi,f = X, = (=mmmmiifeme 22 ) (A-22)
12
(At P + At P)V
B, - B - (- 52 I 1] Tivz_ (A-27)
1 24
. (- 108t Piyy 7 B8P Vi
24
3At V. P, 7t P,V
i+l



A.4.1.3 MACSYMA program Used to Derive the Equations Used for the

First Order Method

P(t) := PO + P1 * t;

P[i] = P(0);
P{i+1] = P(At);
d3-d2;

solve(d4,P1);
solve(d2,P0};

P[t]) = PO + P1 * t;
d7,d5;

d8,d6;
integrate(rhs(d9),t);
(d10/M);

vVit] - v{i] = di1;

t = At;

d11,d13;

Vii+1] = V{i] - di4;
ratsimp(d15);

t = 2 ¥ At;

d11,d17;

Vii+2] = V[i] - di8;
ratsimp(di19);

V(t) := VO + V1 * t + (1/2) * V2 * t**2;
V[ii] = V(0);

V[i+1] = v(at);
V[i+2] = V(2 * At);
solve(d22,V0);
d23-d22;

d24-d22;

da27/2;

d26-d428;
solve(d29,V2);
d27,d30;
solve(d31,V1};

V[it] = V(t);
d33,d25;

d34,d32;

d35,d30;
ratsimp(d36);
integrate(rhs(d37},t);
X(t) := X{i] + d38;
X[t] = X(t);
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ratsimp(d40);

t = At

d38,d42;

X(i+1) = X[i] + d43;
ratsimp(da4);

dg * d36;
integrate(rhs(d46),t};
E(t) := Efi} + d47;
E(t] = E(t);

t = At;

d47,d50;

E{i+1] = Efi) + d51;
ratsimp(d52);

"o,

246
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A.4.2 Load as a Second Order Function of Time

A.4.2.1 Derivation

Let P(t) be defined as the load as a function of time. Assume
that this is a quadratic function:

P(t) = PO + P1 t + —%— p2 t2 (A-28)

where P, and P; are arbitrary constants.

Let:

At = the sampling interval (A-29)

P; is defined as the load at the beginning of the interval.
Hence:

Pi = P(0) (A-30)

Pj+1 is defined as the load at the end of the interval. Hence:

Piv1 = P(AY) (A-31)

Pj+o is defined as the load at the end of the next interval.
Hence:

Pjs2 = P(2At) (A-32)

Substituting Equation A-30 into Equation A-28 yields:

Pi = PO (A-33)
Substituting Equation A-31 into Equation A-28 yields:

p = --SsotEe + At P1 + PO (A-34)
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Substituting Egquation A-32 into Egquation A-28 yields:

Pi+2 = 2At2 P2 + 2At P1 + PO {A-35)

Solving Equations A-33, A-34, and A-35 simultaneously and
substituting into Equation A-28:

2
(P - 2P, +P,) t
Pt = ___ltg _____ %il____l___ (A—36)
2At
(P1+2 - 4Pi 1 + 3P,) t
- e e - + P.
24t !

Let V(t) be defined as the velocity as a function of time.
Vi is defined as the velocity at the beginning of the interval.
Hence:

Vi = V{(0) {(A-37)
Vjs+1 is defined as the velocity at the end of the interval.
Hence:

Visp = V(At) (A-38)
Vijs+2 is defined as the velocity at the end of the following
interval. Hence:

Visz = V(2At) (A-39)
Vij+3 is defined as the velocity at the end of the second interval
after the one over which calculations are being made. Hence:

Visg = V(3At) (A-40)
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Impulse is the integral of load with respect to time. The
change in velocity as a function of time is the impulse as a
function of time divided by the effective mass of the tup (M).
Hence:

3
(P 2P + P.) t
+
vie) - v, o= (-tE il L (A-41)
6At M
2
A £ Tt 0= S L
4At M
P. t
N S
M
It follows that:
At P, - 8At P - BAt P
Vj+1 = Vi + ____lig____-_~__l_1________~_§ (A-42)
12M
and:
-At P - 4At P - At P,
vi+2 = Vi P 5. S 5. S S (A-43)
3M
and:
-9At Pi+2 -  3At P1
Vi+3 = Vi + mmmm oo (A-44)
4M
The assumption that load varies as a quadratic function of time
leads to the conclusion that velocity varies as a cubic function
of time. Hence:
V(t) = VO + VIt + —2-v2 2+ 2- v 3 (A-45)

where VO, V1, V2, and V3 are arbitrary constants.



Substituting Equation A-37

Simultaneously solving Equations A-46, A-47, A-48, and A-49 and
substituting the result into Equation A-45 yields the following

result:
(V.
vit) = v, + ---218
1
_ (Vi+3
L P

into Equation A-45 yields:

into Equation A-45 yields:

———————— + At VI + VO

into Equation A-45 yields:

2At2 vz + 2At V1 + VO

into Equation A-45 yields:

2 ..
94t V2 ., aatvi + Vo

3
Wi Py TV
6At3
Vivg = Wiva & Vi - W)Y
2At2
9V1+2 + 18Vi 1 - 11Vi) t
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(A-46)

(A-47)

(A-48)

(A-49)

(A-50)
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Let X(t) be defined as the displacement as a function of time.
Xj is the displacement at the beginning of the interval. Ie.:

X;j = X(0) (A-51)

Xj+1 is the displacement at the end of the interval. Hence:
Xiy1 = X(At) (A-52)
The change in displacement is the integral of velocity with

respect to time. Hence by integrating Equation A-50 and using
Equation A-51 it follows that:

4
(V. .- 38_ .+ 3v, - V. ) ¢t
X(t) = X o+ e lfg——g——lfl—-——i—~—- (A-53)
24At
(V. . -4V, .+ 5V,  -2v.) t5
S 5. S ire  ____ vl 1 .
6At2
{2V - 9V + 18V - 11V,) t z
PN 5. SR ire 1t 1 il .
12At
+ V., t
i
Substituting Equation A-52 into Equation A-53:
At V. - BAt V., + 19At V + At V.
X = X 4 o___. i3 TT7 dx2 7 xl T i (alsqy
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Power is the product of load and velocity. Hence power is
represented by:

2
(P, . - 2P. _ +P,) t
i+2 i+l i A-55
P(t) V(t) = (—--=2%-———2It_ __ 57 ( )
2At
(Pi,, = 4P, +3P)t
e + Pi)
2At
(v - 3y + 3V - v
(oo A8 T 77 vz~ 77 CS NS S
eats
(v L + BV, - av.) t2
_o__ i3 i+2 " 50 S
2at2
L BViig T Wiep * 184y, - 1Vt
6At
+ Vi)

Let E(t) be defined as the energy absorbed up to a given time.
E; is defined as the energy absorbed by the end of the interval.

Hence:

Ej = E(0) (A-56)

and

Ej+.1 = E(At) (A-57)
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The energy absorbed up to a given time is the integral of power
absorbed with respect to time. Hence integrating Equation A-55 and
using Equation A-56:

(10p, - 20p, .+ 10P) V, . t°
E(t) = E + -—--—tfo_ 2L e (A-58)
7204t
(-30p, _+ 60P, - 30P,) v, t®  (sov, - 10v.) P, t5
PR | e . il _____ i _dte i1 i7__ire_
720At° 7204t°
(30, - 60P, ) v, t° 20v, P, t%  10p, v,) ¢°
e LI 5.0 SRR 5.0 SN P S 5t R S S
7208t° 720at° 720At°
5
AR Pyap t 1EOMT Pya T TRAT R Vias
720At°
5
T € S U U LA
720at°
(848t V, - 216At V, ) P t°
b e i ix1  _1+2
7208t°
5
(504at P, - 288At P ) V.t
i+1 i i+l
+ e 5 ——————————
720At
1924t V., P, t° 108at P, V) t°
R S 5.2 SO i1 ___



2 2 2 a
(TS AT Py,p n 24087 Py, v 198AtT Py Vigt
720At°

2 2 2 4
(T80 Pyip T 990At Py T TOMAL P Vit
7208t°
(495 At v, - 255t v.) P, . t?
IR 5.2 T SN .-
7208t°
(103580t2 P, - 14408t P, ) v, . t?
IR SR .2 S 5.2 SR
7204t°
690 at° v, p. _t? 465 at2 p. v, t?
. T 5.2 2 - . S S
720At 720At
(-a08t> P, _+ 160 At P. . - z2a0at3P) W,
o __i%2 o o oivy AT 1¥3
720At°
(180at3 P, - 7208t P, + 10208t P.) Vv,  t3
R . I 5.2 TR TR 5.5
720At°
3 3 3
(B0 At v, - 860At Vi) Piea
7204t>
3 3 3
(12g08t° P - 1680at° P ) V.t

254



11208t° v, Pt
1 1+

255

1020At3 P, V) 1t
i i

1
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Substituting Equation A-57 in Equation A-58:

(3At P, - 20At P. - 13At P,) V.
i+2 i+l i i+3
B,y = By- t-—-m—-—-itfe 22l 2213 (A-59)
720
, IS0t Pyyp v T0AL Py O3 AR Vi
720
R Ut S e
720
. (adadr Py,ym TTTAC PG Vi



A.4.2.2 Recapitulation of the Second Order Method

Pj, Pij,+1, and Pj,o are calculated from the input data as
described in the text in section 1.4. The initial value of V;
is obtained from the input data as described in the text in
section 1.4.1.2. Subsequent values of V; are the value of V.4
in the previous interval (Equation A-52). The initial value of
Xj is zero. Subsequent values of X; are the values of Xj,; in
the previous interval (Equation A-53). The initial value of Ej
is zero. Subsequent values of E;j are the values of Ej,y in the
previous interval (Equation A-54}.

At P - 8At P - BAt P
i+2 i+l
Vi+1 = Vi 4 e e e e e
i2M
and:
-At P - 4At P - At P
i+2 i+l
Vi+2 = Vi I T atata e LT
Ki, |
and:
-9At Pi+2 - 3At P
Vi+3 = Vi + e T
4M

At V. - S5At V, + 19At V. + 9At V,
i i+ i+ i

1
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(A-42)

(A-43)

(A-44)

(A-54)
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(3At P, - 20At P. - 13At P.) V
Lot ivg 208t ivg " 130T P LT T
720
((TI0At Py,p t 1028L Py, v 88 AL R Viep
720

1



A.4.2.3 MACSYMA program Used to Derive the Equations Used for the

Second Order Method

P(t) := PO + P1 * t + (1/2) * P2 * t¥*2;

P[(i} = P(0);

P[i+1] = P(At);
P[i+2] = P(2 * At);
d3-dz;

d4-d2;

d6/2;

d7-d5;

solve(d2,P0):
solve(d8,P2);
d5,d10;
solve(dl1,P1);

P[t] = P(t);

d13,d9;

di4,diz;

al15,d10;
ratsimp(di6);
integrate(rhs(di17).t);
(d18/M);

V[t} - V[i] = d19;

t = At;

d19,d21;

VIi+1) = V[i] - d22:
ratsimp(d23};

T o= 2 ¥ At

d19,d25;

Vii+2] = V{i] - d26;
ratsimp(d27);

t = 3 ¥ At;

d19,d29;

Vii+3] = Vv[i] - d30;
ratsimp(d31);

V(t) := VO + VI ¥ t + (1/2) * V2 * t**¥2 + (1/3) * V3 * t**3;

VIi] = V(0);
V[{i+1] = V(At);
V[i+2] V(2*%At);
V[i+3] = V(3*At);
d35-d34;

d36-d34;

d37-d34;

"
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(d39/2);

(d40/3);

d38-d41;

d38-d42;
ratsimp(d43);
ratsimp(d44);
(2*d45);

d46-d47;
solve(d48,V3);
d46,d49;
solve(d50,V2};
a40,d49;

d52,d51;
solve(d53,V1);
solve(d34,V0);

V[it}] = V(t);
d56,d55;

d57,d54;

d58,d51;

d59,d49;
integrate{rhs(d60),t);
X(t) := X[1] + d61;
X[t} = X(t);
ratsimp(de63);

t = At;

d61,d65;

X[i+1] = X|i] + d66;
ratsimp(d67);

d16 * d60;
integrate(rhs(d69),t);
E(t) := E[i] + d70;
E{t] = E(t);

t = At;

d70,d73;

E(i+1] = E[i] + d74;
ratsimp(d75});
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A.5 EQUIVALENCE PROOF: MACSYMA DERIVED EQUATIONS AND THE AUGLAND-
GRUMBACH EQUATION

It can be shown that the equations in the first and second order
versions of the double integral method are specific cases of the
Augland-Grumbach Equation. That equation is:

Ea2
AE = E e (A-60)
tot a 4F
o
where: E; = V; [ P(t)dt (A-61)
and Eg = 1/2 Meff Viz (A-62)
SO:
vl.2 (f P(t) dt)?
4E, ., = V. JP(t)dt - R S S (A-63)
2 eff i
2
(/ P(t) dt)
BE, ., = V4 SP(t)dt - ---oooeo A (A-64)

The derivations of the first and second order methods described
earlier in this appendix have the following form:

viey = v, - [ -RLtLdr (A-65)

Power = —m———— = P(t) V(t) (A-66)



Hence:
(V. - f P(t) dt)
e S )
M
and:
P(t) S P(t) dt
—g%— = v P(t) - -
1 M
Integrating:
J P(t) dt
AE = J V. P(t) dt - I P(t) [ —mmmmmmmmme | dt
M
but:
P(t) dt = d (4 P(t) dt)
Therefore:
(P(t) dt)2
AE = Vi S P(t) dt - ‘-2 fSoso
2M

The Augland-Grumbach equation in the form shown above

(Equation A-64) and the double integral energy equation (A-71)
are identical. Because of the simplicity of the form of the
Augland-Grumbach equation it, not the double integral energy
equation, was used in ASTIR (see ASTIRCALC text). In the event

that a drop tower test has been conducted, the following
correction must be made to be strictly correct.

(P(t) dt)?

AE = Vi S P(t) dt - -----i——-o- + g fP(t) t dt

where g = the local acceleration of gravity.
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(A-67)

(A-68)

(A-69)

(A-70)

(A-T1)

(A-72)
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A.6 SOURCE CODE

A.6.1 Overview of the Astir Source Code

Conceptually, ASTIR is composed of six subroutines, five of
which use so much memory that only one of the five can be loaded into
memory at a time. In UCSD Pascal, such memory overlays are possible
and are called segment procedures. Actually, tow of the five segment
procedures, ASTIRGRAF and ASTIRREPT, were so large that each had to be
split into two segment procedures, the first performing initialization
and display setup and the second carrying out the actual work.

ASTIRMETH is the smallest of the subroutines in ASTIR. It
obtains the test type, velocity input method, and user type.

ASTIRREAD obtains the Apple DOS 3.3 catalog from the data disk,
displays it to the user, obtains the user's data file choice and reads
the data file into memory. This is done by emulating the file
retrieval subroutines in the Apple DOS 3.3 operating system.

ASTIRGRAF displays the load time data to the user graphically
and obtains from him cursor positions marking salient features of the
record. Machine language graphics were necessary to plot the data
sufficiently rapidly.

ASTIRDISP obtains the calibration and test data from the user
and records the data in two files on the program disk. Input consists
of strings which are then converted to real numbers, thus preventing
the program from crashing due to inappropriate input.

ASTIRCALC is the heart of the ASTIR program. It performs
numerical calculations on the load time data using the calibration and
test condition data supplied by the user obtaining load, displacement,
and energy data.

ASTIRREPT displays the input data graphically and the calculated
results in tabular form and, if requested, makes hard copy.

The ASTIR program depends on several libraries which contain
subroutines called by its six main subroutines. The libraries are
ASTIRSEGS, TYPESTUFF, and PLOTSTUFF.
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ASTIRSEGS contains STARTGRAF, the start-up routine for
ASTIRGRAF, STARTREPT, the start-up routine for ASTIRREPT and high
level graphics subroutines for both ASTIRGRAF and ASTIRREPT.

TYPESTUFF contains constant and type declarations for ASTIR and
several low level input-output subroutines.

PLOTSTUFF contains mid-level subroutines upon which ASTIRGRAF,
ASTIRREPT, and ASTIRSEGS depend.

Both TYPESTUFF and PLOTSTUFF contain subroutines which are
defined as external (i.e., they are 6502 machine language

subroutines}. These machine language subroutines are found in
ASTIRSTUFF.

A.6.2 The ASTIR Program

(*$S+,N+¥)
program astir(input,output);

uses turtlegraphics, transcend, typestuff,plotstuff;

var
curve apfiletype;
cursors cursorstype;
abdec,
vell,vel2 real;
channel char;
nrg nrgtype;
heading ident;
totals duo;
next boolean;
disposables factortype:
test testtype;
run runtype;
filternum,
scale byte;
cmd cmds ;
labels labelstype;
n integer;



(*s1
(*$1
(*$1
(*$1
(*$I
{*$1I
{The
{The
(*$1

astirread. text *)

astirsegs.text *)

astirgraf.text ¥)

astirdisp.text *)

astircalc.text ¥*)

astirrept.text ¥*)

above inclusions are segment procedures.}
following inclusion is an ordinary procedure. }
astirmeth. text *)

begin{astir}

(*3R

typestuff*)

while true do
begin

astirmeth(run);

astirread(curve,heading);

startgraf(cmd, labels,filternum,scale, curve,cursors, channel);

astirgraf{curve,cursors,channel,fiiternum,scale);

next := false;

while not(next) do

begin
astirdisp(disposables,test);
astircalc(curve,cursors,disposables,abdec,vell,vel2,

channel ,nrg, totals);

startrept(cmd, scale);
astirrept(curve,cursors,nrg,heading, totals, next,
vell,vel2,filternum,scale);

end;

end;
end.{astir}
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A.6.3 ASTIRMETH

procedure astirmeth{var run:runtype);
var

ch : char;

runbook : file of runtype:

procedure loadr(var run:runtype);

begin
with run do
begin
kind := DROP;
velocity := KEYB;
user := SUPER:
end;
end;
(*$1-%)

procedure disci(var run:runtype};

begin
reset(runbook, ' INSTRUCT');
if ioresult = 0 then
begin
get (runbook);
close(runbook};

run := runbook”;
end else begin
close(runbook) ;
loadr(run);
end;
end;
(*$I+%*)

procedure disco{run:runtype);

begin
rewrite{runbook, ' INSTRUCT');
runbook”™ := run;
put (runbook};
close{runbook, lock);

end;
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procedure printkind(run:runtype);

begin
case run.kind of
PEND : write('PENDULUM'};
DROP : write('DROP TOWER');
SLOW : write('SLOW BEND');
end;
end;

procedure printvel(run:runtype);

begin
case run.velocity of
KEYB : write('KEYBOARD');
CURV : write{('CURVE');
end;
end;

procedure printuser(run:runtype);

begin
case run.user of
NORMAL : write('NORMAL');
SUPER : write('SUPER');
PRO : write('PRO');
end;

end;



procedure screen;

begi

end;

n
cleartext;

textmode;

gotoxy(37,5);
write('ASTIR');
gotoxy(33,7);

write{( 'METHOD CHOICES');
gotoxy(33,8);
write('-—--—~~--———--~~ ')
gotoxy(29,11);
write('TEST TYPE: ');
printkind{run);
gotoxy(29,13);
write('VELOCITY: ')
printvel (run);
gotoxy(29,15);
write('USER TYPE: '};
printuser{run):
gotoxy(25,11};
write('-->');
gotoxy(20,18);

write(' A{CCEPT),C(HANGE),N{EXT),L{AST),Q(UIT)’);

gotoxy(20,18);

procedure controls{var run:runtype};

var

l,0 H integer;
ch : char;

procedure change(var run:runtype);
procedure prepscreen;

begin
gotoxy(41,(2 * 1 + 9));
write(' ')
gotoxy(41,(2 * 1 + 9));
end;
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procedure getkind(var run:runtype};

begin
with run do
begin
case kind of
PEND : kind := DROP;
DROP : kind := SLOW;
SLOW : kind := PEND;
end;
end;
end;

procedure getvel(var run:runtype);

begin
with run do
begin
case velocity of
KEYB : wvelocity := CURV;
CURV : wvelocity := KEVYB;
end;
end;
end;

procedure getuser(var run:runtype);

begin
with run do
begin
case user of
NORMAL : user := PRO;
PRO : user := SUPER;
SUPER : user := NORMAL;
end:
end;

end;
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begin{change}
case 1 of
1
2
3
end;
prepscreen;
case 1 of
1
2
3
end;
end{change};

270

getkind(run);
getvel(run);
getuser(runj;

printkind(run);
printvel(run);
printuser(run);

procedure movearrow(o,l:integer);

begin

gotoxy(25,.(2 * o + 9));

write(' ")

gotoxy(25,(2 * 1 + 9)};

write('-->');
end;
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begin{controls}
1 := 1;
while ch <> 'A' do
begin
ch := chr(0):
while not(ch in ['A','C','L','N','Q']}) do
begin
o := 1;
gotoxy(20,18);
getc(chj;
if {ord(ch) >= 32) and
{(ord(ch) <= 126) then write(ch});

end;
case ch of

A : begin

end;

'Cc’ : change(run});

‘L' : begin
1 :=1-1;
if 1 < 1 then

1 := 3;
end;

'N' : begin
1 =1+ 1;
if 1 > 3 then

1 :=1;
end;

Q' : begin
cleartext;
exit{astir);

end;
end;
movearrow(o,1};
end;
cleartext;

end; {controls}

begin{astirmeth}
disci(run});
screen;
controls(run);
disco(run);

end;{astirmeth}



A.6.4 ASTIRREAD

segment procedure astirread(var curve:apfiletype;var heading:ident);

var

catalog :

cattype;

segment procedure getcatalog(var catalog :

var

offset,
trk,sct
n,m
sect
choice

procedure getsector(var
var

blck integer;

offset byte;

buf block;
begin

sect := 15 - sect;

if sect = 0 then sect := 15

else if sect = 15 then sect

byte;
integer;
sector;
byte;

out : sector;disc,trk,sect

0;

cattype);

blck := (trk * 8) + trunc(sect / 2);

unitread(disc,buf,512,bick);

offset := (trk * 16 + sect) - (blck * 2);

out := buf(offset];
end;

:byte);
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begin
catalog.length := 0;
getsector(sect,datadisc,17.0);
trk sect{1];
sct sect|2];
while (trk + sct) > 0 do
begin
getsector ( sect,datadisc,trk,sct);
trk := sect|l1}];
sct sect{2];
for n := 0 to 6 do
begin
offset := (11 + n * 35);
if (sect|offset]<>0) and
(sect[offset] <> 255) then
begin
with catalog.entries[catalog.length] do
begin
trk := sect[offset + 0];
sct:= sect|offset + 1];
filetype := sect{offset + 2];
for m := 0 to 29 do
name{m] :=
chr(sect{offset+3+m]};
length:= sect{offset + 33j;
end;
catalog.length := catalog.length + 1;
end;
end;
end;
end;

fl

It

segment procedure getcurve(catalog:cattype;var curve:apfiletype;
var heading:ident};

var
choice : byte;
fail : boolean;



procedure getsector(var out : sector;disc,trk.sect:byte);

var
blck : integer;
offset byte;
buf : block;
begin
sect := 15 - sect;
if sect = 0 then sect := 15
else if sect = 15 then sect := 0;
blck := (trk * 8) + trunc(sect / 2);
unitread(disc,buf,512,blck);
offset := {(trk * 16 + sect) - (blck * 2);
out := buffoffset];
end;

procedure choosecurve({catalog:cattype;var choice:byte}:
{Because of the depth of indentation in choose curve, half)

{tabs are used for this procedure }
var

counter : integer;

exponent,

chosen : boolean;

ch : char;

diag,

line : string;

XX : real;

procedure badchoice;

begin

gotoxy(0,22);

write('INVALID CHOICE PLEASE PRESS RETURN ")
readin;

end;

begin
cleartext;
counter := 0;
chosen := false;
while not{chosen) do
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begin
with catalog.entries{counter] do
begin
gotoxy(0,23);
write('[',counter,'}]');
gotoxy(13,23);
write{filetype);
gotoxy(17,23);
write(length);
gotoxy(21,23});
write{name);
end;
writeln;
counter := counter + 1;
if (counter mod 20 = 0) or (counter = catalog.length)
then begin
writeln;
writeln;
ch := chr(0);
while (ch <> 'S') and (ch <> 'C') do
begin
gotoxy(0,22);
write(' S(ELECT CURVE), C(ONTINUE)');
gotoxy(0.22);
getc(ch);
end;
if ch = 'C!
then begin
writeln;
writeln;
if counter = catalog.length
then counter := 0;
end
else begin
diag := 'NG';
while (diag = 'NG') or
({choice < 0) or (choice > catalog.length)) do



end;

end;
end;

begin

end;
end;

diag := 'NG';
gotoxy(0,22);
write('[ J TYPE NUMBER IN');
write(' [BRACKETS] OF');
writeln(' CURVE.');
gotoxy(1,22);
getlipe(line,' ',1,22,2);
exponent := false;
sttofp(xx,diag, line,exponent};
if (diag='NG') or

((xx<0) or (xx>catalog.length)) then
badchoice
else begin
choice := trunc(xx};
chosen := true;
end;

if chosen
then begin
writeln;

ch

;= ¢chr(0);

while not(ch IN ['N','Y']) do
begin

gotoxy(0,21);

writeln{'YOU HAVE CHOSEN: ‘',
catalog.entries{choice]}.name);
write('IS THAT SATISFACTORY? (Y/N}: '):
write(' ')

gotoxy(29,22);

getc{ch);
writeln;

end;

if ch = 'N'

then begin
writeln;
writeln;
counter := 0;
chosen := false;

end else
cleartext;

end;
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procedure fetchcurve(catalog:cattype;choice:byte;

var

var fail:boolean;var curve:apfiletype;

var heading:ident};

trk,sct,offset,
length,filetype,

n,counter : byte:
sect,tslist : sector;

begin

fail := false;
filetype := catalog.entries[choice].filetype;
length := catalog.entries|choice].length - 1;
if ((filetype <> 4) and (filetype <> 132))
or (length - 2 > maxpage)
then begin
if (length - 2 > maxpage)
then begin
writeln('FILE IS TOO LONG.');
writeln('PLEASE PRESS RETURN.');
readin;
end else begin
writeln('FILE IS NOT BYTE TYPE.'};
writeln('PLEASE PRESS RETURN.');
readin;
end;
fail := true;
end
else begin
with catalog.entries|[choice] do

begin
heading := name;
getsector(tslist,datadisc, trk,sct);
end;
counter := 0;
while counter < length do
begin

offset := 12 + 2 ¥ counter;

trk := tslist|offset];

sct := tslist[offset + 1];
getsector({sect,datadisc,trk,sct);
with curve do
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begin
if counter < length - 1
then For n := 4 to 255 do
page|counter.n - 4] := sectin};
if counter >= 1
then for n := 0 to 3 do
page| (counter-1),(n+252)] :=

sect[n];
end;
counter := counter + 1;
end;
curve.zeropage := counter - 2;
end;
end;
begin{getcurve}
fail := true;
while fail do
begin
choosecurve(catatog,choice);
fetchcurve(catalog,choice, fail,curve,heading};
end;

end; {getcurve}

begin{astirread}
getcatalog(catalog);
getcurvelcatalog,curve, heading};
if run.user = SUPER then
begin
write('FINISHED ASTIRREAD');
readin;
end;
end{astirread};
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A.6.5 ASTIRGRAF

(oo )
{ NOTE: astirgraf is in danger of overwriting the Hi Res graphics }
{ screen because of its size. It should be rewritten for }
{ example by breaking it into 2-3 segments. }

segment procedure astirgraf(var curve:apfiletype;var cursors:cursorstype;
var channel:char;var filternum,scale:byte);

function xp{x,start:loc;nopoints:fract):integer;

var

temp : integer;
begin

temp := diff(x,start);

temp := temp div nopoints.num;

Xp := trunc(temp * nopoints.den + 1ft);
end;

procedure setpoints(start,finish:loc;var nopoints:fract});

var
temp : integer:
begin
temp := diff(finish,start) + 1;
nopoints.den := 1;
nopoints.num := 1;
if temp >= 256 then nopoints.num := temp div 256
else nopoints.den := 256 div temp:

end;



procedure titles(start,finish:loc;l:integer;filternum:byte);

var

mumble string;

begin

end;

pencolor(none);

moveto(52,50);

wstring('CURSOR: '):

moveto(115,50});

wstring{cmd|[O]);

moveto(115,50);

wstring(labels[1]);

str({(diff(finish,start) + 1),mumble);

mumble := concat('POINTS DISPLAYED: ',mumble,' ')
moveto(10,40);

wstring(mumble);

str((2 * filternum + 1),mumble);

mumble := concat('DATA AVERAGED OVER ',mumble,' POINT');
if filternum > O then mumble := concat(mumble,'S '});
moveto(10,30);

wstring(mumble);

str(scale,mumble);

mumble := concat('SCALE: ',mumble);

moveto(10,20);

wstring{mumble};

moveto(0,10);

wstring(cmd{1i]):

moveto(0,0);

wstring({cmd{2]);
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procedure redraw(curve:apfiletype;cursors:cursorstype;
start,finish,place:loc;1l,n:integer;
filternum,scale:byte;nopoints:fract);

var
m, Xpp : integer;

begin{redraw}
viewport(1,258,61,190);
fillscreen(black);
plotcurve(curve,start,finish,scale);
viewport(0,279,0,191);

grafmode;
m:= 1;
while (m < n) and (1 <> 5) do
begin
Xpp := xp(cursorsimj,start,nopoints);
if (xpp>=1ft) and (xpp<=rgt)
then begin
pencolor{none};

moveto(xpp,bot);
pencolor(white);
moveto(xpp,top);
pencolor(none);
end;
m:=m+ 1;
end;
titles{start,finish,n,filternum);
end; {redraw}
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procedure plus(var result:loc;place:loc;expnse

var
m

begin
m
m:=
if m

integer;

256 ¥ place.page + place.point;
m + expnse;
< 0 thenm := 0;

result.page := m div 256;

m := m - result.page * 256;
result.point := m;
end;
procedure changelimits(var start,finish:loc;
expanse:integer;place:loc;
curveexpanse: integer;
curvestart,curvefinish:loc);
var
front,rear,ctr : integer;
begin
if expanse >= curveexpanse
then begin
start := curvestart;
finish := curvefinish;
end else begin
front := diff(place,curvestart) + 1;
rear := diff(curvefinish,place) + 1;
ctr := expanse div 2;
if front < ctr
then begin

end;
end;

start := curvestart;
plus(finish,curvestart, (expanse - 1));
end else begin
if rear <= ctr
then begin
finish := curvefinish;
plus(start,curvefinish, (1 - expanse}};
end else begin
plus(start,place, (1 - ctr));
plus{finish,place, (ctr));
end;
end;

:integer);
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procedure getfac(var exfac:byte;name:string);

var

ch : char;

begin

end;

cleartext;
textmode;
ch := chr(0);

while not(ch in {'0','1','2"','3"',

begin
gotoxy(0,12);

V4"|5|'|6|,|7|"8l,|9|]) do

write('PLEASE TYPE THE ', name,' FACTOR: ');

getc(ch);
end;
exfac := ord(ch) - ord('1') + 1;
grafmode;

procedure movecursors(l,n:byte;var filternum:byte:
var cursors:cursorstype;var lastcursor,start,finish:loc;
curveexpanse: integer;curvestart,curvefinish:loc):

var

procedure refuse(n:byte;var ch:char);

place : loc;

ch : char;
Xpp : integer;
nopoints : fract;

i : integer;

begin

end;

if n in [6,10] then
begin
ch := chr{0};
cleartext;
textmode;
gotoxy(0,23);

writeln('YOU MAY NOT REJECT THE ',

labels[n],' CURSOR.');
writeln;

writeln{'PLEASE PRESS RETURN.');

readln;
grafmode;
end;
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procedure nozero(var ch:char);

begin
if (n = 2) and (cursors{1] = place) then
begin
cleartext;
textmode;
gotoxy(0,23);
write('YOU ARE ABOUT TO SET THE END OF THE FIRST FLAG ');
writeln('EQUAL TO THE START OF THE FIRST');
write('FLAG. THE RESULT WILL BE THAT THE PROGRAM WILL');
writeln('NOT BE ABLE TO CALCULATE INITIAL');
write('VELOCITY. INSTEAD THE PROGRAM WILL USE');
writeln{'THE KEYBOARD INPUT. DO YOU STILL'};
while not(ch in ['Y','N']|) do
begin
gotoxy(0,23);
write( 'WANT TO ACCEPT?(Y/N) ');
getc(ch);
end;
if ch = 'Y' then
ch := 'A'
else
ch
grafmode;
end;
end;

It

chr(0);



procedure arrow(var place:loc;lastcursor,finish:loc;dist:byte;
dir:boolean});

var
m : byte;
begin
if dir then
begin
m := 0;
while (less(place,finish)) and (m<dist) do
begin
m:=m+ 1;
ink(place):
end;
end else begin
m := 0;
while (less(lastcursor,place)) and (m<dist)} do
begin
m:=m-+ 1;
dek{place);
end;
end;
end;

procedure setscale(var start,finish:loc;place:loc;
l,n:integer;var nopoints:fract;var scale:byte);

var
rear, front,
expanse : integer;
exfac : byte;
begin

getfac(scale, 'SCALE'};
expanse := diff(finish,start) + 1;
setpoints{start,finish,nopoints);
redraw(curve, cursors,start,finish,place,l,n,
filternum,scale,nopoints};
end;
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procedure contract(var start,finish:loc;place:loc;
l,n:integer;var nopoints:fract);

var
rear,front,
expanse : integer;
exfac : byte;
begin
if (start <> curvestart) or (finish <> curvefinish)
then begin
getfac(exfac, 'CONTRACTION');
expanse := diff(finish,start) + 1;
while (expanse < curveexpanse) and (exfac > 0) do
begin
expanse := expanse ¥ 2;
exfac := exfac - 1;
end;
changelimits(start,finish,expanse,place,
curveexpanse,curvestart,curvefinish);
setpoints(start,finish,nopoints});
redraw(curve, cursors,start,finish,place,l,n,
filternum,scale,nopoints});
end;

end:



procedure expand(var start,finish:loc;place:loc;

l,n:integer;var nopoints:fract);

var
rear, front,
expanse : integer;
exfac : byte;
begin

if expanse > 8 then
begin

end;
end;

getfac(exfac, 'EXPANSION');
expanse := diff(finish,start) + 1;
while (expanse > 8) and (exfac > 0) do
begin

expanse := expanse div 2;

exfac := exfac - 1;
end;
changelimits(start,finish,expanse,place,

curveexpanse,curvestart,curvefinishj;
setpoints(start,finish,nopoints);
redraw(curve,cursors,start,finish,place,1,n,
filternum,scale,nopoints);
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procedure digfil(var curve:apfiletype;var filternum:byte;
start,finish,place:loc;l,n:integer);

var
newpt,current : loc;
data,
sum,pts, j, jnew : integer;
temp : packed array[0..18] of byte;
begin

getfac(filternum, 'AVERAGING');
curvi(curve);

pencolor(none};

moveto(55,118);

wstring('Filtering. Please wait.');
if filternum >= 1 then

begin

newpt.page := 0;

newpt.point := 0;

pts := 2 ¥ filternum + 1;

sum := 0;

for j := 0 to (pts - 1) do

begin
temp[j] := curve.page[newpt.page,newpt.point];
sum := sum + temp[j];
ink (newpt);

end;

J := filternum;

current.page := O;

current.point := j;

newpt.page := 0;

newpt.point := 2 ¥ filternum + 1;

repeat
curve.page[current.page,current.point] :=

round(sum / pts);

{It is critical that the quotient be rounded}
{NOT truncated. }
jnew := (j + filternum + 1) mod pts;
sum := sum - temp|jnew];
temp[jnew] := curve.page[newpt.page,newpt.point];
sum := sum + temp[jnew];
Ji=J3+1
ink(current);
ink(newpt);

until newpt.page >= curve.zeropage;

end;

redraw({curve,cursors,start,finish,place,l,n,
filternum,scale,nopoints);
end;



procedure lleft(var start.finish:loc:var place:loc;
1,n:integer);

var
expanse : integer;
temp : loc;

begin
expanse := diff(finish,start) + 1;

plus(temp, curvestart, (expanse div 2)});
if less(place,temp) then
begin
place := curvestart
end else begin
plus{place,place, (-1 ¥ (expanse div 2)}));
end;
changelimits(start,finish,expanse,place,
curveexpanse,curvestart,curvefinish);
redraw(curve,cursors,start,finish,pliace,1l,n,
filternum,scale,nopoints);
end;

procedure rright(var start,finish:loc;var place:loc;
l.n:integer);

var
expanse : integer;
temp : loc;

begin
expanse := diff(finish,start) + 1:

plus(temp,curvefinish, (-1 * (expanse div 2))):
if less(temp,place) then
begin
place := curvefinish;
end else begin
plus(place,place, (expanse div 2));
end;
changelimits(start,finish,expanse,place,
curveexpanse,curvestart,curvefinish);
redraw(curve,cursors,start,finish,place,1,n,
filternum,scale,nopoints);
end;
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begin{movecursors}
titles(start,finish,n,filternum);
setpoints(start,finish,nopoints);

piace := lastcursor;
if (n=1) or (n=6)then
begin
for i := 1 to nopoints.num do
begin
ink(place);
end:
Xpp := xp(place,start,nopoints);

end:
ch

pencolor{none);
moveto(xpp,bot});
pencolor(reverse);
moveto(xpp.top);

:= chr(0);

while not(ch in ['A','D']

end;

8 : arrow(place,lastcursor,finish,1,false);
21 : arrow{place,lastcursor,finish,1,truej;
60 : arrow(place, lastcursor,finish, jump,false);
62 : arrow(place,lastcursor,finish, jump, true);
65 : nozero(ch);
67 : contract(start,finish,place,l,n,nopoints);
68 : refuse(n,ch);
69 : expand(start,finish,place,]l,n,nopoints);
70 : digfil{curve,filternum,start,
finish,place,1,n);
76 : lleft(start,finish,place,l,n);
82 : rright(start,finish,place,1,n);
83 : setscale(start,finish,place,1,n,nopoints,
scale);

end;

Xpp := Xp(place,start,nopoints);

pencolor(none);

moveto(Xxpp,bot});

pencolor(reverse);

if xpp > xp(lastcursor,start,nopoints)

then moveto(xpp.top);
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case ch of

‘A’ : begin
cursors[n] := place;
lastcursor := place;

end;

‘D’ : begin
cursorsin].page := 255;
if place <> lastcursor
then begin

pencolor(reverse);
moveto(xpp,bot);

end
end;
end;
end;

procedure setlimits(var start,finish:loc;channel:char};

begin
if ord(channel) >= 97 then channel := chr(ord(channel) - 32);
case channel of
‘A’ : begin
start.page := 0;
finish.page := (curve.zeropage
div 2) - 1;
end;
‘B’ : begin
start.page := curve.zeropage
div 2;
finish.page := curve.zeropage
- 1;
end;
'c! : begin
start.page := 0;

finish.page
- 1;
end;
end;
start.point := 0;
finish.point := 255;
end;

1= curve.zeropage
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procedure timing(var cursors:cursorstype;channel:char;
var filternum,scale:byte);

var
min,max,
n,l : byte;
curveexpanse : integer;
lastcursor : loc;
start,finish,
curvestart,curvefinish loc;
nopoints : fract;
begin{timing}

setlimits(start,finish,channel});
setpoints(start,finish,nopoints);

curvestart := start;
curvefinish := finish;
curveexpanse := diff(curvefinish,curvestart) + 1;

plotcurve({curve,curvestart,curvefinish,scale);

moveto(52,50);

wstring('CURSOR: ')

lastcursor := curvestart;

1 :=1;

for n := 1 to 4 do
movecursors(l,n,filternum,
cursors, lastcursor,start,finish,
curveexpanse,curvestart,curvetinish);

initturtile;

end; {timing}
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procedure impact(var cursors:cursorstype;channei:char;
var filternum,scale:byte);

var
min.max,
n,l : byte;
curveexpanse : integer;
lastcursor : loc;
start,finish,
curvestart,curvefinish : loc;
nopoints : fract;
begin{impact}
case channel of
‘A : channel := 'B’';
‘B! : channel := 'A';
c! : channel := 'C';
end;
setiimits(start,finish,channel);
setpoints(start,finish,nopoints);
curvestart := start;
curvefinish := finish;
curveexpanse := diff(curvefinish,curvestart) + 1;

plotcurve{curve, curvestart,curvefinish,scaile);
moveto (52,50} ;
wstring({'CURSOR: ');
lastcursor := curvestart;
1 := 6;
for n := 6 to 10 do
movecursors{l,n,filternum,cursors, lastcursor,start,
finish,curveexpanse,curvestart,
curvefinish);
lastcursor := curvestart;
1 := 11;
for n := 11 to 12 do
movecursors(l,n,filternum, cursors, lastcursor,start,
finish,curveexpanse,curvestart,
curvefinish);
end; {impact)
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begin{astirgraf}

(*$R turtlegraphics¥*)
if (run.kind <> SLOW) and (channel <> 'C')
then

timing(cursors,channel,filternum,scale);

impact(cursors,channel,filternum,scaie);
cleartext;
textmode;

end; {astirgrat})

{7 e }
{ NOTE: astirgraf is in danger of overwriting the Hi Res graphics )
{ screen because of its size. It should be rewritten for }

{ example by breaking it intoc 2-3 segments. }
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A.6.6 ASTIRDISP

segment procedure astirdisp(var disposables:factortype;var test:testtype};
procedure displ(var disposables:factortype):

var
dispbook : file of factortype;

procedure loadd(var disposables:factortype);

begin
with disposables do
begin
tlagl := 0O;
flag2 := 0;
velterm := 0;
gee := 32.170;
weight := 180.00;
gain := 1.000;
loadfacl := +6.0000E-5;
loadfac2 := -1.1000E-9;
zerovolts := -1.1000E-1;
end;
end;
(*$1-*)
procedure disci{var disposables:factortypes);
begin
reset(dispbook, 'HANDBOOK' ) ;
if ioresult = 0 then
begin
get{dispbook);
close(dispbook);
disposables := dispbook™;
end else begin
close(dispbook);
loadd(disposables);
end;
end;

(*$1+¥)
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procedure disco(disposables:factortypes);

begin
rewrite(dispbook, 'HANDBOOK');
dispbook”™ := disposables;
put(dispbook);

close(dispbook, lock):
end:

procedure screeni;

begin{screeni}
cleartext;
gotoxy(10,2);
write('Disposable Constants’);
gotoxy(10,3);

writeln{'~-----~——=-—=-—-ocmno~ ");

writeln;

with disposables do begin
writeln(' FLAG1:
writeln;
writeln(' FLAG2:
writeln;
writeln(’ VELTERM:
writeln;
writelin(' GEE:
writeln;
writeln(' WEIGHT:
writeln:
writeln(’ GAIN:
writeln;
writeln(' LOADFAC1:
writelin;
writeln(' LOADFAC2:
writeln;
writeln(' ZEROVOLTS:
writeln;

end;

gotoxy(4,23);

', flagl);

', flag2);
't,velterm);
'.gee);
',weight);
',gain);
',loadfacl);
', loadfac2);

',zerovolts);

write{('A{(CCEPT),C(HANGE),L(AST) ,N(EXT)"');
if run.kind = PEND then write(',F{REESWING)'};

if run.kind
if run.kind
gotoxy(4,5);
write('-->"');
gotoxy(2,23);
end; {screenl}

DROP then write(',F{REEDROP)');
SLOW then write(',F(REESTROKE)');
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procedure controll(var disposables:factortypes);
{Because fo the depth of indentation, half tabs are used}

{in procedure controll }
var

1,0 : integer;

ch : char;

procedure change(var disposables:factortypes);

procedure getfac(var xx:real);

var
diag,
line : string;
exponent: boolean:
temp : real;
begin
getline(line,"’ ',21,
(2 * (1 +1) + 1),19);
exponent := false;

sttofp(temp,diag,line,exponent);
if diag = 'NG' then
begin
gotoxy(21,(2 * (1 + 1) + 1));
write('INVALID: PRESS RTN.'});
readln;
end else
XX := temp;

end;

begin{change}
with disposables do case 1 of
: getfac(flagl);
getfac(flag2);
getfac(velterm);
getfac(gee);
getfac(weight};
getfac(gain);
getfac(loadfacl);
getfac{loadfac2);
getfac(zerovolts);

©C 00 <A & WN

end;




gotoxy(21,(2 ¥ (1 + 1) + 1))

write(' ")

gotoxy(21,(2 * (1 + 1) + 1));

with disposables do case 1 of

: writeln(flagl);

: writeln(flag2);
writeln(velterm);
writeln(gee);
writeln(weight);
writeln(gain);
writeln(loadfacl);
writeln(loadfac2);
writeln(zerovolts});

W0 I O WIN -

end;
end; {change}

procedure free{var disposables:factortypes);
{Because of the depth of indentation, half}
{tabs are used in this procedure }

var

channel:char;

abdec:real;

{perhaps char and abdec should be passed to }
{astircalc which needs them too and hence has}
{to calculate them... }

procedure getchannel(var channel:char};
{ ie find channe! of impact data }

var
abflag : byte;
afinish : loc;
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begin
afinish.page := (curve.zeropage div 2) - 1;
afinish.point := 255;
abflag := curve.page[curve.zeropage,170};
case abflag of
4 : channel := 'A';
8 : channel := 'B‘;
12 : begin
if less(afinish,cursors{10])
then
channel := 'B’
else
channel := 'A';
end:
end;
end;

procedure getabdec(var abdec:real);

var
adec, bdec : byte;
begin
adec := curve.page[curve.zeropage,135];
bdec := curve.page|curve.zeropage,136];
if channel = 'A' then
begin
it adec = 0 then abdec := 1.0000:;
if adec = 1 then abdec := 0.10000;
end;
if channel = 'B' then
begin
if bdec = 0 then abdec := 1.0000;
if bdec = 1 then abdec := 0.10000:
end;
end;

procedure setfree(var freeval:real):

var

n : integer;
place : loc;
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begin
place := cursors[6];
n :=1;
freeval := (curve.page[place.page,place.point]
- 128) / 128;
while less(place,cursors{10]) do
begin
ink(place);
freeval := freeval +
(curve.page|place.page,place.point]
- 128) / 128;
n:=n+ 1;
end;
treeval
freeval
end;

#

freeval / n;
freeval * abdec ¥ voltfac:

it

begin{free}

getchannel (channel);
getabdec(abdec};
setfree(disposables.zerovolits});
gotoxy(21,21});

write(' ')
gotoxy(21,21);
writeln(disposables.zerovolts);
end; {free}

procedure movearrow(o,l:integer);

begin
gotoxy(4,(2 * (o + 1) + 1));
write(' ')
gotoxy(4,(2 * (1 + 1) + 1));
write('-->');

end;
begin{controll}

1 := 1;

while ch <> 'A' do
begin

ch := chr(0);
while not(ch in ['A','C','F','L','N'}) do



301

begin
o := 1;
gotoxy(2,23);
getc(ch};
if (ord(ch) >= 32) and (ord(ch) <= 126} then
write(ch);
end:
case ch of
'A' begin
end;
c o begin
change(disposables);
end;
'F' o begin
free(disposables};
end;
‘L' o begin
1 :=1-1;
if 1 < 1 then
1 := 9;

end;
movearrow(o,1);
end;
cleartext;
end; {controll}

begin{displ}
disci(disposables);
screenl;
controll(disposables);
disco(disposables);
end; {displ}



procedure disp2{var test:testtype);

var

testbook : file of testtype;

procedure screen2;

begin{screen2}
gotoxy(17,2);
writeln('Test Conditions');
gotoxy(17,3);
write('-———=-~—-——mo ')
with test do begin
gotoxy(7,5):

write(' SPECIMEN TYPE: ")

if kind
if kind
gotoxy(7.7);

writeln(' INITIAL VELOCITY:
gotoxy{7,9);

writeln(’ FINAL VELOCITY:
gotoxy(7,11);

writeln(' TEST TEMPERATURE:
gotoxy(7,13};

writeln(' DIAL ENERGY:
gotoxy(7,15);

writeln(’ SPECIMEN LENGTH:
gotoxy(7,17);

writeln(’ SPECIMEN WIDTH:
gotoxy(7.19)};

writeln{' SPECIMEN THICKNESS:
gotoxy(7,21);

writeln(’ NOTCH+CRACK DEPTH:
writeln;

gotoxy(9,23):

U}

1

t

BEAM then write(' BEAM');
CANTILEVER then write(' CANTILEVER');

,initvel);
,finalvel};
,testtemp);
,dialnrg);
,length);
,width);
,thickness});

,hotchdepth);

write('A(CCEPT),C(HANGE),L(AST) ,N(EXT)');

gotoxy(6,5);
write('-->"');
gotoxy(7,23);
end;

end; {screen2}
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procedure disci(var test:testtype);

procedure loadt(var test:testtypej};

begin
with test do
begin
kind := CANTILEVER;
initvel := 2;
finalvel := -1;
testtemp := -500;
dialnrg := -1;
length := 0.63;
width := 0.70;
thickness := 0.30;
notchdepth := 0;
end;
end;
(*$1-%)
begin{disci}

reset(testbook, 'RESULTS');
if ioresult = 0 then
begin
get(testbook);
close(testbook);
test := testbook”;
end else begin
close(testbook);
loadt(test};
end;
end{disciy};
(¥$I+%)

procedure control2{var test:testtype);
{Because fo the depth of indentation, half tabs are used}
{in procedure controi2 )

var
1,0 : integer;
ch : char;



procedure change(var test:testtype);

procedure getfac(var xx:real);

var
diag,
line : string;
exponent: boolean;
temp : real;
begin

getline(iine,’

29,(2 * (1 + 1) +1),19);

exponent := false;

sttofp(temp,diag.line, exponent);

if diag = 'NG' then
begin

gotoxy(29,(2 * (1 + 1) + 1));
write('INVALID: PRESS RTN.'):

readin;
end else
XX := temp;
end;
begin{change}
with test do case 1 of
1 : case kind of
CANTILEVER : kind :=
BEAM : kind :=
end:
2 : getfac(initvel);
3 getfac(finalvel);
4 getfac(testtemp);
5 getfac(dialnrg);
6 getfac(length);
7 getfac(width};
8 getfac(thickness);
9 getfac(notchdepth);

end;

BEAM;
CANTILEVER;
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gotoxy(29,(2 * (1 + 1) + 1));
write(' '),
gotoxy(29,(2 * (1 + 1) + 1));
with test do case 1 of
1 : case kind of

CANTILEVER write(' CANTILEVER');

BEAM : write(' BEAM');

end;

: writeln(initvel);
writeln(finalvel);
writeln(testtemp):
writeln(diainrg};
writeln(length);
writeln(width);
writeln{thickness);
writeln{notchdepth);

© o1 U W

end;
end; {change}

procedure movearrow(o,l:integer);

begin

gotoxy(6,(2 * (o + 1) + 1));
write(' "3
gotoxy(6,(2 * (1 + 1) + 1)};
write('-->"');

end;

begin{control2}
l :=1;
while ch <> 'A' do
begin
ch := chr(0};
while not(ch in ['A','C','L','N"'}) do
begin
o := 1;
gotoxy(7,23);
getc(ch);
if (ord(ch) >= 32) and (ord(ch) <= 126) then
write(ch):
end;
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case ch of

Al begin
end;

'C' o begin
change(test);
end;

‘LYo begin
1 :=1-1;
if 1 < 1 then

1 := 9;
end;

'N' begin
1 :=1+ 1;
if 1 > 9 then

1 :=1;
end;
end;
movearrow{o,1);
end;
cleartext;

end; {control2}
procedure disco(var test:testtype);

begin
rewrite(testbook, 'RESULTS');
testbook™ := test;
put{testbook);
close(testbook, lock);

end;

begin{disp2}
disci(test);
screenz;
control2(test};
disco{test);
end; {disp2}

begin{astirdisp}
displ(disposables);
disp2(test);

end; {astirdisp}
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A.6.7 ASTIRCALC

segment procedure astircalc(curve:apfiletype;cursors:cursorstype;
disposables:factortype;var abdec,vell,vel2:real;
var channel:char;var nrg:nrgtype;var totals:duo);

var
deltatee,
mass,
veomp,
zero : real;

procedure getdelta(var deltatee:real);

var
ptsdiv,
timptr,msec : byte;
avenum : loc;
methode, ch : char;
division : real;

procedure abort;

begin
cleartext;
writeln('NO DIVISION SCALE DEFINED.');
exit(astir):

end;

procedure microrange(var deltatee,division:real);

begin

case timptr of
80 : division := 0.000500;
86 : division := 0.000250;
92 : division := 0.000200;
98 : division := 0.000032;
104 : division := 0.000016;
110 : division := 0.000008;

end;

if curve.page[curve.zeropage,170] = 12

then begin
division := division * 2;

end;

deltatee := division / ptsdiv;

end;



procedure millirange(var deltatee.division:real):
begin
division := msec * 0.001;
deltatee := division / ptsdiv:
end;
procedure secrange (var deltatee,division:real);
begin
division := 0.1 * ((256 * avenum.page) + avenum.polnt):
deltatee := division / ptsdiv;
eng;
begin{getdelta}
ptsdiv := 28:
timptr := curve.pagejcurve.zeropage.128]:
msec := curve.page|curve.zeropage,128];

avenum.poi
avenum.pag
methode : =
if timptr
then
method
else
if tim
then
me
else
1f
th

case metho
N
ISI
|L]
IMI
end;
end; {getdelta}

nt := curve.pagelcurve.zeropage,191];:
e := curve.page|{curve.zeropage,192];
'N'; {none;
>= 80
e = 'M'{micro}
ptr < 4
thode := 'S'{sec}
(timptr=4} or (timptr=5)
en
methode := ‘L':{milli}
de of
abort:

secrange(deltatee.division);
millirange(deltatee.division);
microrange(deltatee.division);



procedure getchannel(var channel:char};
{ ie Find channel of impact data }

var
abflag byte;
afinish loc;

begin{getchannel}

afinish.page
afinish.point

(curve.zeropage div 2) - 1;
255;

abflag := curve.page|curve.zeropage,170];
case abflag of
4 channel := 'A';
8 channel := 'B';
12 begin
if less(afinish,cursors[i0})
then
channel := 'B'
else
channel := 'A';
end;
end;

end; {getchannel }

procedure getabdec(var abdec:real);

var
adec, bdec byte;
begin{getabdec}
adec := curve.page[curve.zeropage,135];

bdec := curve.page[curve.zeropage,136];
if channel = 'A' then
begin
if adec = 0 then abdec := 1.0000;
if adec = 1 then abdec := 0.10000;
end;
if channel = 'B' then
begin
if bdec = 0 then abdec := 1.0000;
if bdec = 1 then abdec := 0.10000;
end;

end; {getabdec}
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procedure fetchvels(var veil,vel2.vcomp:real:cursors:cursorstype):

var

a,cflag?, cflagz.

cfispc : real :

procedure corflgs({var cflagl,cflag2,.cflspc:real):
{ corflapgs takes care of corrections to flag width. }

begin

with disposables do

begin
cflagl :=
cflag2
endg:
{ The divisor

I

(flagl -~ velterm} / 12;
(flag2 + velterm) / 12;

of 12 accounts for the fact that the }

{ flags are given in inches but are needed 1n feet.}

end:

procedure calcvels(var timel,tditt,timed,vell.vel2, vcomp:real):

if (cursors(1j.page <> 255) and (cursorsi2].page<>255)

if (cursors(1j<>cursors(2])

begin
velJl := -1,
vel2 := -1;
vcomp = -1:
timel := -1:
tdift = -1;
time3d := -1;
then begin
then
timel

:= deltatee

* diff(cursors(2].cursors{i});
if (cursors{2)<>cursors[3]) and
({cursors{3).page<>253)
and (cursors[4].page<>255))

then
tdiff

;= deltatee

* diff(cursors(4]).cursorsi3));
if (cursors{l)<>cursars{4})
and (cursors(4].page<>253)

then
timed

;= deltatee

* diff{cursors{4],cursors{1j);

end;



if timel <> -1

then

vell := cflagl / timel + (a * timel) / 2;
if tdiff <> -1
then

vel2 := cflag2 / tdiff + (a * tdiff) / 2;
if (vell<> -1) and ((timel<> -1) and (time3<> -1)}
then
vecomp := vell + a * (timed - timel):
cleartext.
end:

proceaure getvels{var vell,vel2,vcomp:real;
cursors:cursorstype):

var
timel,tdiff,time3 : real;

begin
calcvels(timel . tdiff,time3.vell.vel2.vcomp);
if timel < C then
{ CALCVELS DIDN’'T EVEN CALCULATE TIME1l }

{ USE KEYBOARD INPUT. 4
begin

vell := test.initvel;

vel2 := test.finalvel:

{ IT MAY STIi1.L BE POSSIBLE TO RECOVER. }
if run.kind = PEND

then

vcomp := vell
else

if (timel <> -1) and (time3d <> -1)

then

vcomp := vell
+ a * (time3 - timel);
end;

end;
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begin{fetchvels}
vell := -1;
vel2 := ~-1;
vecomp := -1;

corflgs(cflagl,cflag2,cflspc);
case run.kind of
DRCOP : begin
a := disposables.gee;
getvels(vell,vel2,vcomp,
cursors);
end;
PEND : begin
a := 0;
getvels(vell,vel2,vcomp.
cursors});
end:
SLOW : begin
end;
end;
end; {fetchvels}

procedure calcmass(var mass:real);
begin
mass := disposables.weight / disposables.gee;

end;

procedure getzero(var zero:real);

var
place : laoc;
volts : real;
count : integer;
begin{getzero}
if (cursors(11].page = 255) or (cursors{l2].page = 255)
then begin
zero := disposables.zerovolts;
writeln('zero from disposables: ', 6 zero);
end else begin
place := cursors[11];
count := 1;
zero := (curve.page[place.page,place.point] - 128)
/ 128;

while less(place,cursors[12]) do



end;

begin
ink(place};
zero := zero + (curve.page[place.page,place.point]
- 128) / 128;
count := count + 1;
end;
zero zero / count;
zero := zero * abdec * voltfac;
writeln('zero from curve: ',k zero);
writeln('count: ', count);
end;
{getzero}

procedure calcnrg(var nrg:nrgtype);

var

1 : byte;
vo,vl,

xold,

p0,pl,

time,

defl,

energy,

k1,k2,

k3 ,k4 : real;
xplace,

place : loc;

procedure getload(var load:real);

var
volts : real;

begin{getload}
with disposables do
begin
volts := voltfac * abdec *
(curve.page[place.page,place.point} - 128)
/ 128;
if loadfac2 <> 0 then
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begin
load := ki
+ k4 * sqrt(k2 + k3 ¥ volts);
{quadratic calibration curve}
end else begin
load := (volts - zero)
/ (loadfacl * gain);
{linear calibration curve}
end;
end;
end; {getload}

procedure startslow(var pO,pl,v0,vl:.real;var place:loc);

var
volts : real;

begin{startslow}
if channel = 'A’
then
xplace.page :
else
xplace.page place.page -~ 2;
if xplace.point > 0 then dek(xplace);
IF XPLACE IS THE FIRST POINT IN THE CURVE,
THEN THE PROGRAM WOULD CRASH WITHOUT THE IF.
WITH THE IF THERE IS A POSSIBILITY OF A
SMALL ERROR BUT ONLY IF XPLACE IS THE FIRST
POINT IN THE CURVE
volts := voltfac ¥ abdec *
(curve.page[xplace.page,xplace.point]
- 128) / 128;
Xo0ld := volts ¥ disposables.velternm;
end; {startslow}

(]

place.page + 2

P -
A e ad

procedure slownrg(var p0O,pl,v0,vl:real;var place:loc;
var time,defl,energy:real;var nrg:nrgtype);

var
Xnew,
deltax,
volts,
deltanrg : real;



begin

while less(place,cursors|L]} do
with disposables do

begin

ink(place}:
ink(xplace};

volts :=

voltfac * abdec *

(curve.page|place.page place.point]
- 128} /7 126:
pt := (volts - zerovolts) ¥ loadfacl / gain

volts =

voltfac * abdec *

(curve.page | xplace . page . Xplace.point |

Xnew ;=
geltax

defl :=

energy

time :=

xold =
ena:
nrg|i1,L] :=
nrgl2,Lj =
nrg|3.L] :=
nrgid4.Lj :=

end:

12873 ¢ 1:288:
volts * veliterm:

f= Xnew - xold:
deltanrg

= pd * deltax;
det] + deltax;:

:= energy + deltanrg;

time + deltatee;
XNEew:

pO:
Lime ;
def |
energy:

procedure startdrop(var p0.pl,v0:real:var vi:real;

begin{startaropt

ink{place):
getioadipl}:
end; {startdrop)

var place:loc).

procedure dropnrg(var p0,pl,v0.vl:real;var place:loc:

var

ea.el,
11.12,
pz.,v2,

halt

var time.defl.energy:real;:
val’ nrg:nrgtypel:

1.3,
v3 : real ;
loc:
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et }
{ea and e0 are as defined in the derivation of the}
{Augland-Grumbach equation. il is the impulse }
{after the first interval. i2 is the impulse }
{after the second interval. i3 is the impulse }
{after the third interval. }
(e s )
begin{dropnrg}
halt := cursor[1];
ink(halt);
e )

{If this is not done, one interval at the end of }
{the calculation will not be calculated (trivial) }
{and the proper load at the cursors will not be }
{reported (possibly very important). }

while less(place,halt) do
begin
ink(placej;
getload(p2);
il := (~-p2 + 8*pl + 5%p0) * deltatee / 12;
i2 := (p2 + 4*pl + p0) * deltatee / 3;
i3 (9¥p2 + 3*p0) * deltatee / 4;
with disposables do

[}

begin
vl := v0 - i1 / mass
+ gee * deltatee;
vZ2 := v0 - i2 / mass
+ 2 ¥ gee ¥ deltatee;
v3 := v0 - i3 / mass
+ 3 ¥ gee * deltatee;
end;
{ o= e )

{The third term of each velocity calculation takes}
{into account the effect of gravity but only on }
{velocity and deflection. The energy correction }
{is handled below. }

defl := defl +
(v3-5¥v2+19*v1+9*v0) * deltatee / 24;
ea := v0 ¥ i1;
eD := mass ¥ v0 * v0 / 2;
energy := energy + ea ~ ((ea * ea)/(4 * e0)});
with disposables do
energy := energy +
{(-p2 + 10*pl + 3*p0) * gee ¥
deltatee * deltatee / 24;
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{mmm oo }
{Thus the energy correction. }
{mmm oo }
time := time + deltatee;
p0 := pl;
pl := p2;
v := v1;
end;

end; {dropnrg}
procedure startpend{(var pO,pl,v0,vl:real;var place:loc);

begin{startpend}
ink(place);
getload(pl};

end; {startpend}

procedure pendnrg(var pO,pl1,v0,vl:real;var place:loc;
var time,defl,energy:real;
var nrg:nrgtype);

var
ea,e0,
i1,i2,i3,
p2,v2,v3 : real;
halt : loc;
oo )
{ea and e0 are as defined in the derivation of the)}
{Augland-Grumbach equation. il is the impulse }
{after the first interval. i2 is the impulse }
{after the second interval. i3 is the impulse }
{after the third interval. }
= }
begin{pendnrg}
halt := cursor{1];
ink(halt);
{ _________________________________________________

}
{If this is not done, one interval at the end of }
{the calculation will not be calculated (trivial) }
{and the proper load at the cursors will not be }
{reported {possibly very important). }

}



while less(place,halt) do
while less(place,cursors{l1]) do

begi

end;

n
ink(place);
getload(p2);
il := (-p2 + 8*pl + 5*p0) * deltatee / 12;
i2 := (p2 + 4*pl1 + p0) * deltatee / 3;
i3 := (9%p2 + 3*p0) * deltatee / 4;
vl := v0 - i1 / mass;
v2 := v0 - i2 / mass;
v3 :=v0 - i3 / mass;
defl := defl +
(v3-5*v2+19*y1+9*v0) * deltatee / 24;
ea := v0 * i1l;
e0 := mass * v0O * vO / 2;
energy := energy + ea - ((ea * ea)/(4 * e0)});
time := time + deltatee;
p0 := pl;
pl := p2;
vl := vi;

end; {pendnrg}

procedure startcalc{var p0,pl,v0,vl:real;var place:loc;
var time,defl,energy,kl,k2,k3,kd4:real;

var 1:integer);
begin{startcalc}
place := cursors{6}];
with disposables do
begin
if loadfac2 <> 0 then
begin
k1 := -loadfacl / (2 ¥ loadfac2);
k2 := (loadfacl / loadfac2)
¥ (loadfacl / loadfac2);
k2 := (k2 / 4) - (zero / loadfac2);
k3 := 1 / loadfac2;
k4 := 1.0000;
if k3 < 0 then
k4 := - k4;
end;

end;
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1l := 6;
vOo := vell;
getload(p0);

case run.kind of
DROP : startdrop(pO,pl,v0,vi,place};
PEND : startpend(p0O,pl,v0,vl,place);
SLOW : startslow(pO,pl1,v0,vl,place);

end;

energy := 0;

time := O;

defl := 0;
end; {startcalc}

procedure getnextcursor{var 1l:byte);

begin
1l :=1+1;
while (1 < 10) and (cursors{l].page = 255) do
begin

1 :=1+1;

end;

end;

begin{calcnrg}

startcalc(p0O,pl,v0,vi,place,time,defl,energy,kl,k2,k3,k4,1);
while 1 < 10 do
begin
getnextcursor(l);
if cursors[l].page <> 255
then begin
case run.kind of
DROP : dropnrg(p0,pl1,v0,vl,place,
time,defl,energy,nrgj;
PEND : pendnrg(p0O,pl,v0,vl,place,
time,defl,energy,nrgj;
SLOW : slownrg(p0O,pl,v0,vl,place,time,
defl,energy,nrg);
end;
end;
end;
end; {calcnrg}



procedure calctotals(var totals:duo);

begin
totals[1]
totals(2]

test.dialnrg;
_.1;

if (vcomp>0) and (vel2>0)

then begin

totals[2}

end;
end;

begin{astircalc}
(*$R transcend¥*)

:= (1 / 2) * mass * ((vcomp * vcomp) -
(vel2 * vel2))

getdelta(deltatee);
getchannel (channel);
getabdec(abdec);
fetchvels(vell,vel2,vcomp, cursors):

calcmass(mass);
getzero(zero);
calcnrg(nrg);

calctotal(totals);

end; {astircalc}
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A.6.8 ASTIRREPT

segment procedure

astirrept(curve:apfiletype;cursors:cursorstype;nrg:nrgtype;
heading:ident;totals:duo;var next:boolean;
vell,vel2:real;filternum,scale:byte);

var
ch : char;
outprint : text;

procedure bill(x:real;noplaces,len:byte;var result:string);

var
i,id : integer;
dec : real;
si,sid : string;
begin
if abs(x) <= 32767 then
begin
if noplaces > 4 then noplaces := 4;
i := trunc(x);
dec := (x -~ i + 1) * pwroften(noplaces);
id = trunc(dec);
str(i,si);
str(id,sid};
delete(sid,1,1);
result := concat(si,'.',sid);
end else begin
result := 'QOVERFLOW';
end;
if length(result) > len then
result := 'TO0 LONG';

if {((result = 'TO0 LONG') or (result = 'OVERFLOW')) and
{length(result) > len} then
result := copy(result.1l,len);
while length(result) < len do
begin
result := concat{(' ',result);
end;
end;



procedure table;

var
1 byte;
number string;
begin
{headings}
write(outprint,’ FEATURE LOAD ')
writeln(outprint,' TIME DEFLECTION ENERGY' ) ;
write(outprint,' [Lb] ')
writeln{(outprint, ' [mSec] [In] |Ft-Lb}');
write(outprint,' = - ")
writeln(outprint,'-————-———-mmmmr e ')
writeln{outprint);
{data}
for 1 := 7 to 10 do
begin
if cursors(l].page <> 255
then begin
str({1 - 6),number);
write(outprint,’ ', number,
' ',labels[1]," t);
if 1 = 10
then begin
write(outprint,' ----- ')
end else begin
bill(nrgy1.1],0,6,number);
write(outprint, number, ' ')
end;
bill{ (1000 * nrg[2,1]),3,6,number});
write(outprint, number, '}
bill((nrg[3,1] * 12).4,6,number);
{mmmmmmmm oo }
{ VEL IS IN FT/SEC SO DEFL IS IN FEET }
{ BUT IT IS WANTED IN INCHES }
{mmmmm oo }
write(outprint, number,' ')
bill(nrg|(4,1],1,6,number);
writeln(outprint, number);
writeln(outprint);
end;
end;

end;
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procedure printtotals;

var
number string;

begin
if run.kind in [DROP, PEND| then
begin
write(outprint,' ')
writeln(outprint, 'TOTAL ENERGY');
writeln{outprint);
if run.kind = PEND then
begin
write(outprint,' "y
write{outprint,' DIAL: '}
it totals[1] >= ©
then begin
bill(totals{1],1,6,number);
writeln(outprint,number,' [Ft-Lb]');
end else begin

writeln(outprint,’' [Ft-Lb]');
end;
end;
write(outprint,’ FLAG: '});
if totals{2] >= 0O
then begin

bili(totals([2],1,6,number);
writeln(outprint,number,' [Ft-Lbj]'});
end else begin
writeln(outprint,' [Ft-Lb]');
end;
write(outprint,® TUP: ');
it nrg(4,10] < O then
begin
write('-');
bill{-nrg[4,10],1,6,number)
end else begin
bill(nrg(4,10],1,6,number);
end;
writeln(outprint,number,' [Ft-Lb]');
writeln(outprint);
end;
end;
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procedure printest;

var
mumble : string;
begin
writeln(outprint, 'DESIGNATION: ', heading);
write(outprint, 'TEST METHOD: ');
case run.kind of
DROP : writeln(outprint,
' INSTRUMENTED DROP TOWER IMPACT'});
PEND : writeln(outprint,
"INSTRUMENTED PENDULUM IMPACT');
SLOW : writeln(outprint,
'SLOW BEND');
end;
if test.testtemp >= -459.69
then begin
bill(test.testtemp,0,5,mumble};
writeln{(outprint, 'TEMPERATURE: ',mumble,' [F]');
end;
end;

procedure printall;

begin
writeln(outprint);
table;
writeln(outprint);
printtotals;

end;



procedure makecopy;

procedure hardcopy(var outprint:text);

begin

rewrite(outprint, 'PRINTER:');

printest;

writeln(outprint,chr(25),'GLD"');

writeln(outprint};
printall;
close(outprint);

end;

begin

moveto(0,10);
wstring(cmd(O0]):
hardcopy(outprint);
moveto(0,10);
wstring(cmd[2});

end;

begin{astirrept}

{(*$R turtlegraphics¥*)

rewrite(outprint, 'CONSOLE:");

printest;
printall;

close(outprint);

gotoxy(2,23);
write(cmd|1]));

ftextmode;

ch := chr{(0);
while not{(ch in ['C','F']) do

begin

ch := chr(0);
while not(ch in ['C','F','G','H','Q','T']) do

begin

gotoxy(0,23);
getc(ch);

end;
case ch

end;
end;
end; {astirrept}

of

'HI
IG!
ITI
ICI
IFI
IQI

makecopy;
grafmode;
textmode;
next := true;
textmode;
exit(astir);
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A.6.9 The ASTIR Libraries

A.6.9.1 ASTIRSEGS

segment procedure drawcurve(curve:apfiletype;start,finish:loc;
nopoints:fraction);

var
zeroypp.,
Xpp,ypp : integer;
place : loc;
mag : fract;
temp : integer([6];
zerofloat : real;
min,max : byte;

procedure setmag(curve:apfiletype;start,finish:loc;
var mag:fract;var min,max:byte;
var zerofloat:real);

var
strt,expanse : integer;
zZerobyte : byte;
begin

expanse := diff(finish,start) + 1;

strt := 256*start.page + start.point;

minimax(curve,strt,expanse,min,max);

zerofloat := (128 * disposables.zerovolts)/
(voltfac * abdec) + 128;

if zerofloat >= 255 then zerofloat := 255

else if zerofloat <= 0 then zerofloat:= O0;

zerobyte := trunc(zerofloat);

if run.user = SUPER then

begin
textmode;
writeln('ZEROFLOAT = ', zerofloat};
writeln('ZEROBYTE = ', zerobyte);
writeln('MIN = ',min);
writeln('MAX = ', max);
writeln('ABDEC = ', abdec);
readln;
grafmode;

end;
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zerobyte;
zerobyte;

if max < zerobyte then max

if min > zerobyte then min

if run.user = SUPER then

begin
textmode;
writeln('ZEROFLOAT = ',6zerofloat};
writeln('ZEROBYTE = ',k zerobyte);
writeln('MIN = ',min);
writeln('MAX = ', max);
readln;
grafmode;

end;

mag.num := 126;

mag.den max - min;

if mag.den = 0 then mag.den := 1;

end;

H

(*$R-*)
begin{drawcurve}
(*$R turtlegraphics¥*)
initturtle;
moveto{(0,128);
pencolor(whitel);
moveto (0, top+2);
moveto (237, top+2);
moveto(237,bot-2);
moveto{0,bot-2);
moveto(0,128);
viewport(1ift,rgt,bot,top);
setmag(curve,start,finish,mag,min,max,zerofloat);
zeroypp := round((mag.num * (zerofloat - min) / mag.den) + bot});
pencolor(none);
moveto(0, zeroypp};
pencolor(green);
moveto(237,zeroypp);
place := start;
temp := ((diff(place,start))*nopoints.den)
div nopoints.num + 1ft;
trunc(temp);
(mag.num * (curve.page[place.page,place.point]
min) div (mag.den)) + bot ;
pencolor(none);
moveto(Xpp,ypp);
pencolor(white);
while less(place,finish) do

i}

Xpp
ypb :



begin
ink(place};
temp := ((diff(place,start))*nopoints.den)

end;

div nopoints.num + 1ft;
xpp := trunc(temp);
ypp := (mag.num * (curve.page|place.page,place.point]
- min) div (mag.den)} + bot;
moveto (Xpp,ypp);

pencolor(none);
viewport(0,279,0,191);
end; {drawcurve}

(*$R+¥*)

segment procedure startgraf(var cmd:cmds;var labels:labelstype;

var filternum,scale:byte;curve:apfiletype;
var cursors:cursorstype;var channel:char};

procedure curvof{curve:apfiletype);

var
curcurve : file of sector;
1 : byte;

begin

end;

rewrite(curcurve, 'CURRENT' };
for 1 := 0 to 3 do
begin
curcurve” := curve.page[l];
put(curcurve};
end;
close(curcurve, lock);
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procedure setlabels(var cmd:cmds;var labels:labelstype);

begin

labels{1) := 'START FIRST FLAG';

labels|2] := 'END FIRST FLAG';

labels{3] := 'START SECOND FLAG';

labels(4] := 'END SECOND FLAG';

labels(5] := 'ZERO LEVEL';

labels|{6] := 'START';

labels[7] := 'GENERAL YIELD';

labels{8] := 'MAXIMUM LOAD ';

labels[9] := 'FAST FRACTURE';

labels{10] := 'END OF EVENT ';

labels[11] := 'START ZERORANGE';

labels{12] := 'END ZERORANGE';

cmdf0} := ' "

cmd{1] := 'A(CCEPT),D(ELETE),F(ILTER),E(XPAND),<,>,";

cmdf{2] := 'C(ONTRACT),S{CALE),R{IGHT),L(EFT).<~-,-> ';
end;

procedure starttiming(var cursors:cursorstype;var channel:char);

var

min,max,
n

start,fi
nopoints

procedur

begi

: byte;
nish : loc;
: fraction;
e setlimits(var start,finish:loc;channel:char);
n
if ord(channel) >= 97
then
channel := chr(ord(channel)-32};
case channel of
'A' begin

start.page := 0;
finish.page :=
(curve.zeropage
div 2) - 1;
end;



'B' begin
start.page :=
{curve.zeropage
div 2);
finish.page :=
(curve.zeropage)

_1;
end;
'C' begin
start.page := O
finish.page :=
(curve. zeropage)
- 1;
end;

end;

start.point := 0;

finish.point := 255;
end;

procedure setpoints(start,finish:loc;

var nopoints:fraction);

begin
nopoints.num
nopoints.den :
end;

236;

begin{starttiming}

(*$R turtlegraphics¥*)

initturtle;

pencolor{none});

textmode;
channel :=
if curve.pagefcurve.zeropage,170] <> 12
then begin

|C';

for n :=1 to 4 do
begin

cursors|nj.page := 255;

{ SINCE VELOCITY WILL BE BY
{ KEYBOARD, REGARDLESS OF RUN,
{ CURSORS ARE REJECTED

end;
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end;

end

end;

331

else begin
cleartexti;
textmode;
if run.velocity = curv then
begin
setlimits(start,finish,'C');
setpoints(start,finish,nopoints);
plotcurve(curve,start,finish,scale);
moveto(36,175);
wstring( 'CHANNEL A');
moveto(163,175):
wstring('CHANNEL B');
while not(channel in {'A','B']) do
begin
moveto(0,8);
wstring('PLEASE TYPE THE');
moveto(16.8);
wstring(' CHANNEL WHERE TIMING'});
moveto(0,0);
wstring('INFORMATION CAN BE FOUND: '};
grafmode;
getc(channel);
end;
end else begin
for n := 1 to 4 do

begin
cursors[n}.page := 255;
{ SINCE VELOCITY WILL BE BY }

{ KEYBOARD, CURSORS ARE REJECTED }
end;
end;



begin{startgraf}

(*$R turtlegraphics¥*)
if run.user = SUPER then
begin

end;

writeln('STARTED STARTGRAF');
readln;

setlabels(cmd, labels);
filternum := 0;

scale := 0;

curvo(curve);
starttiming(cursors, channel};

initturtle;
if run.user = SUPER then
begin
textmode;
writeln( 'FINISHED STARTGRAF');
readln;
grafmode;
end;

end; {startgraf}

segment procedure curvi(var curve:apfiletype);

var
curcurve : file of sector;
1 byte;
begin
(*$1-*)
reset (curcurve, 'CURRENT' ) ;
if ioresult = 0 then
begin
for 1 := 0 to 3 do
begin
curve.page[l) := curcurve”;
get(curcurve);
end;

end

end;
(*$1
end;

close(curcurve);

else begin

close{curcurve);

cleartext;

textmode;

writeln('CURVE LOST. PRESS RETURN TO ABORT.');
readln;

exit(astir);

+¥)
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segment procedure startrept{(var cmd:cmds;scale:byte);

procedure resetcmd(var cmd:cmds);

begin
cmdf[0] := ' ',
cmd{1] := 'H(ARD COPY),G(RAPHICS),C(ONT),F(ACTORS),Q(UIT)";
cmd{2] := 'H(ARD COPY),T(EXT),C(ONT),F(ACTS),Q(UIT)';

end;

procedure drawpic;

var

1 : byte;
nopoints : fraction;
start,finish : loc;

Xpp : integer;
mumble : string;

procedure setpoints(start,finish:loc;var nopoints:fraction);

begin
nopoints.num :
nopoints.den
end;

[

diff(finish,start);
236;

[}

function Xp(x,start:loc:nopoints:fraction):integer;

var
temp : integer(6];
tmp : integer;
begin

temp:=((diff(X,start)) * nopoints.den)
div nopoints.num
+ 1ft;
Xp := trunc(temp);
end;
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begin{drawpic*)
initturtle;
start := cursors|6];
finish := cursors{10};
dek(start);
ink(finish});
setpoints(start,finish,nopoints});
drawcurve(curve,start,finish,nopoints});

pencolor{none);
chartype(14);
for 1 := 7 to 9 do
begin
Xpp := xp(cursors{l],start,nopointsj;
if (xpp>=0) and (xpp<=236)
then begin
pencolor (none);
moveto(xpp,bot);
pencolor(white);
moveto(xpp, top):
pencolor(none);

str({1-6) ,mumble);

moveto(xpp-3.50);

wstring(mumble);

end;
end;
chartype(10);
pencolor(none);
moveto(0,10);
wstring(cmd{2j);
str{{(2*filternum+1),mumble);
mumble := concat('DATA AVERAGED OVER ',mumble,' POINT');
if filternum > 0 then mumble := concat{mumble,'S ');.
moveto(0,20);
wstring(mumble);
str((diff(cursors(10],cursors{6}) + 1),mumble);
mumble := concat{'USEFUL POINTS: ', mumble,' '),
moveto(0,30);
wstring(mumble);
end; {drawpic}



begin{startrept}

(*$R turtlegraphics¥*)
resetcmd{cmd) ;
drawpic;
cleartext;
gotoxy(0,23);

end; {startrept}
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A.6.9.2 TYPESTUFF

(*$S+%)
unit typestuff;

interface

const
maxpage
maxent
datadisc
bs
fs
jump
voltfac
rgt
1ft
top
bot

type
byte
charimage
charset
charfile
loc

sector
block
ident
catent

entrytype
cattype
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intrinsic code 25;

end;

end;

end;

page
point

trk,sct,

name

entries
length

4;{room for 4 pages of curve & zero page}
75;

5;

8;
21;
16;

9.08;

257;
2;
189;
62;

0..255;
packed array(0..7] of byte;
packed array[0..127] of charimage;
file of charset;
packed recordi
byte;
byte;

packed array[0..255] of byte;
packed array[0..1) of sector;
packed array[0..29] of char;
packed record
filetype,length : Dbyte;:
ident;

packed array[0..maxent] of catent;
packed record

entrytype;

byte;




Pg
apfiletype

end;
labelstype
cursorstype
fract

fraction

end;
nrgtype
duo

cmds

methodtype
specimentype
usertype
veltype
printype
factortype

end;
testtype

end;

= packed array{0..maxpage] of sector;

= packed record
page : pg;
zeropage: byte;

= packed array(1..12] of string;

packed array{1..12] of loc;
= packed record

num,den integer;
end;

= packed record

num : integer(6]:
den : integer({6];

= packed array{1..4.,6..10] of real;

= packed array|1..2] of real;
= packed array[0..2] of string;

= (PEND, DROP, SLOW):
= (BEAM, CANTILEVER} ;
= (NORMAL, PRO,SUPER) ;
= (KEYB, CURV) ;

= (EPSON, IMAGE ) ;

= packed record
flagl,

flag2,

velterm,

gee,

weight,

gain,

loadfacl,

loadfac2,

zerovolts : real;

= packed record

kind : specimentype;
initvel,

finalvel,

testtemp,

dialnrg,

length,

width,

thickness,

notchdepth : real;
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runtype = packed record
kind : methodtype;
velocity: veltype;
user : usertype;
end;

procedure cleartext;
procedure getc(var ch:char);
procedure getline{var line:string;inn:string;x.y,limit:integer});
procedure sttofp(var xx:real;var diag:string:s:string;
var exponent:boolean);
function less(opl,op2:loc):boolean;
function diff(larger,smaller:loc):integer;
procedure ink(var point:loc);
procedure dek(var point:loc);

implementation
procedure cleartext;
begin
write(chr(12)});

end;

procedure getc;
external;

procedure getline;

var
0 : integer;
ch : char;
cha : string[1];

procedure rgt(var line,inn:string;var Xx:integer);

begin
if length(inn) >= 1 then
begin
line := concat(line,copy(inn,1,1));
delete(inn,1,1);
X := X + 1;
end else begin
write(chr(7));
end;
end;
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procedure 1ft(var line,inn:string;var x:integer);

begin
if length{line) >= 1 then
begin
inn := concat(copy(line,length(line),1),inn);
delete(line,length(line),1);
X =X - 1;

end else begin
write({chr(7));

end;
end;
begin{getline}
while (length(inn) < limit) and (length(inn) <= 79) do
begin
inn := concat(inn,' ');
end;
inn := copy(inn,1,limit);

gotoxy(x,y);
write{(inn);
ch := chr(0);
o := ord(ch);
line := '';
cha := '
while o <> 13 do
begin
gotoxy(x,y);
getc(ch};
if eoln then ch := chr(13);
o := ord(ch);
if {(0<32) or (0>126) then
begin
if not(o in [8,13,21]) then
begin
write(chr(7});
end else begin
case o of
21 : rgt(line,inn,x);
8 : 1ft(line,inn,x);
end;
end;
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end else begin
if length(inn) > 0 then
begin
X 1= X + 1;
write(ch);
cha[1] := ch;
line := concat{line,cha):
delete(inn,1,1);
end else begin
write(chr(7));
end;
end
end;
end; {getline}

procedure sttofp:

var
valid,digits,
decimel,negetive : boolean;
nodigits,
digit,d : integer;
exp : real;

procedure makestart(var valid,decimel,negetive:boolean;
var nodigits,digit.d:integer;
var xx,exp:real);

begin
digits := false;
valid := true;
decimel := false;
negetive := false;
exp := 0;
digit := 1;
nodigits := 0;
d := 0;
Xx := 0;

end;

procedure hndldig(var digits,valid:boolean;var xx:real;
var nodigits:integer);
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begin
if (d + nodigits) >= 38 then
valid := false
else begin
XX := Xx ¥ 10 + (ord(s{digit]) - ord('0'));
digits := true;
if not(decimel) then nodigits := nodigits + 1;
end;
end;

procedure hndidec(var decimel,valid:boolean;var d:integer);

begin
if decimel then
begin
valid := false;
end else begin
decimel := true;
d:=d - 1;
end;
end;

procedure hndlneg(var negetive,valid:boolean);

begin
if (not(negetive)) and (digit = 1) then
negetive := true
else
valid := false;
end;

procedure hndlpls{var valid:boolean);

begin
if digit <> 1 then valid := false;
end;

procedure hndlspc(var decimel:boolean;var d:integer);
begin

if decimel then d := d - 1;
end;



procedure hndlexp(var exponent,valid:boolean;var
var digit:integer;var s:string);

var
diagx : string;
begin
if exponent then
valid := faise
else begin
exponent := true;

delete(s,1,digit);
sttofp(exp,diagx,s,exponent};
if trunc(exp) <> exp then

valid := false;
if diagx = 'ng' then
valid := false;
if not(digits) then
begin
XX := 1;
digits := true;
end;
if abs(exp + nodigits - 1) > 37 then
valid := false;

digit := length(s) + 1;
if (decimel) then
d :=d - 1;
end;
end;

XX,exp:real;
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begin{sttofp}
makestart(valid,decimel,negetive,nodigits,digit,d,xx,exp);
while (valid) and (digit <= length(s)) do

begin
if s{digit] in ['0'..'Q!, ', ', =t 4 TE e, ]
then begin
if s{digit} in ['0'..'9'} then
hndldig(digits,valid,xx,nodigits)
else begin
case s|digit] of

'.'" : hndldec(decimel,valid,d);

'-' : hndlneg(negetive,validj;

'+' : hndlpls(valid);

'e' : hndlexp(exponent,
valid, xx,exp,
digit,s):

*E' : hndlexp(exponent,
valid,xx,exp,
digit,s);

',' : hndlspc(decimel,d);

' ' : hndlspc(decimel,d};

end;
end;
end else begin
valid := false;
end;

digit := digit + 1;

if decimel then d :=d + 1;
end;
if d > 37 then valid := false;
if not(digits) then valid := false;
if valid then

begin
diag := 'ok';
XX := Xx / pwroften(d);
if negetive then xXx := -XX;
if exponent then
begin
if exp >= 0 then
XX := XX * pwroften(trunc(exp))
else
XX := XX / pwroften(-trunc(exp));
end;
end else
diag := 'ng';

end; {sttofp}
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function less;

begin
less := false;
if opl.page < op2.page
then
less := true
else
if (opl.page = op2.page) and (opl.point < op2.point)
then
less := true;
end;

function diff;

begin
diff := (larger.page - smaller.page) * 256
+ (larger.point - smaller.point});
end;

procedure ink;
external ;

procedure dek;
external ;

begin{initialization}
end; {typestuff)}



A.6.9.3 PLOTSTUFF

unit plotstuff; intrinsic code 26;

interface
uses typestuff;

procedure minimax(curve:apfiletype;start,expanse:integer;

var min,max:byte);

procedure plotc(curve:apfiletype;strt,expanse,scale,min:integer);
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procedure plotcurve({curve:apfiletype;start,finish:loc;scale:byte);

implementation
procedure minimax:
external;

procedure plotc;
external;

procedure plotcurve;

var
min,max : byte;
expanse : integer;
strt : integer;
begin{plotcurve)
expanse := diff{(finish,start) + 1;

strt := 256 * start.page + start.point;

minimax(curve,strt,expanse,.min,max);
plotc(curve,strt,expanse,scale,min);
end; {plotcurve}

begin{initialization}
end. {plotstuff}



A.6.9.4 ASTIRSTUFF, the Machine Language Subroutines

b

.MACRO POP
PLA

STA %1

PLA

STA %1+1
.ENDM

.MACRO DPP
LDA %1+1
PHA

LDA %1

PHA

.ENDM

.PROC DEK,1

; ONE WORD OF PARAMETERS

; PROCEDURE DEK{VAR POINT:LOC):

; DECREMENTS POINT.

RETURN .EQU 0

POP RETURN

PLA

STA PAGE+1

STA POINT+1
STA OUTPG+1
PLA

STA PAGE+2

STA POINT+2
STA OUTPG+2
CLC

LDA POINT+1
ADC #01

STA POINT+1

; TEMP VAR FOR RETURN ADDR
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POINT

QUTPT
PAGE

OUTPG

STA
LDA
ADC
STA
STA
SEC
LDA
SBC
STA
LDA
SBC
STA
DPP
RTS

OUTPT+1
POINT+2
#00

POINT+2
OUTPT+2

01111
#01
01111
01111
#00
01111
RETURN

.PROC INK.,1

; PROCEDURE INK{VAR
; INCREMENTS POINT.

; ONE WORD OF PARAMETERS

e e e e i e e ————— — — ———

.EQU 0

RETURN

POINT

POP
PLA
STA
STA
STA
PLA
STA
STA
STA
CLC
LDA
ADC
STA
STA
LDA
ADC
STA
STA
CLC
LDA
ADC

RETURN

PAGE+1
POINT+1
OUTPG+1

PAGE+2
POINT+2
OUTPG+2

POINT+1
#01

POINT+1
OUTPT+1
POINT+2
#00

POINT+2
OUTPT+2

01111
#01

; TEMP VAR FOR RETURN ADDR
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OUTPT
PAGE

OUTPG

STA
LDA
ADC
STA
DPP
RTS

01111
01111
#00
01111
RETURN

.PROC GETC,1
; PROCEDURE GETC(VAR CH:CHAR);
; (WAITS UNTIL KEYPRESS THEN RETURNS
;  THE CHARACTER ON KEYBOARD)

’

ONE WORD OF PARAMETERS

RETURN

START

couT

COUTP1

.EQU

POP
PLA
STA
STA
PLA
STA
STA
CLC
LDA
ADC
STA
LDA
ADC
STA
LDA
CMP
BCC
SBC
CMP
BCC
SEC
SBC
STA
LDA
STA
LDA
DPP
RTS

.PROC MINIMAX,5

RETURN

COoUT+1
COUTP1+1

CoUT+2
COUTP1+2

COUTP1+1
#01
COUTP1+1
COUTP1+2
#00
COUTP1+2
0C000
#80
START
#80

#61

couT

#20
01111
#00
01111
0Co10
RETURN

; TEMP VAR FOR RETURN ADDR
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; PROCEDURE MINIMAX(A:CURVETYPE;START, EXPANSE : INTEGER;

; OBTAINS THE MINIMUM AND MAXIMUM OF A CURVE IN THE RANGE EXPANSE

VAR MIN, MAX:INTEGER});

; STARTING WITH START.

RETURN .EQU
MINN .EQU
MAXX .EQU
START .EQU
EXPANSE .EQU

POP
PLA
STA
STA
PLA
STA
STA
PLA
STA
STA
PLA
STA
STA
POP
popP
PLA
STA
PLA
STA
CLC
LDA
ADC
STA
LDA
ADC
STA
CLC
LDA
ADC
STA
LDA

RETURN

MAX+1
MAXP1+1

MAX+2
MAXP1+2

MIN+1
MINP1+1

MIN+2
MINP1+2
EXPANSE
START

ARRAY+1

ARRAY+2

MINP1+1
#01
MINP1+1
MINP1+2
#00
MINP1+2

MAXP1+1
#01

MAXP1+1
MAXP1+2



MINP1
MAXP1

ARRAY

MAXIMUM

NEXT1

NEXT2

END

*¥00
MAXP1+2

#0OFF
MINN
#00
MAXX
01111
01111

START+1
ARRAY+2
ARRAY+2
START

EXPANSE+1
#00
ARRAY
EXPANSE
*00

END
01111.,X
MINN
MAXIMUM
MINN
MAXX
NEXT1
MAXX
#OFF
NEXT2
ARRAY+2

EXPANSE
#01
EXPANSE
EXPANSE+1
%00
EXPANSE+1
BEGIN
MINN
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MIN STA 01111
LDA MAXX

MAX STA 01111
DPP RETURN
RTS

.PROC PLOTC,5 ; FIVE WORDS OF PARAMETERS
; PROCEDURE PLOTC (A:CURVE ; START, EXPANSE, SCALE ,MIN: INTEGER) ;
. PLOTS EXPANSE POINTS OF CURVE A ON HIRES
: SCREEN STARTING WITH POINT START
RETURN .EQU 00 ;TEMP VAR FOR RETURN ADDR
QUOTNT .EQU 02
DIVISOR .EQU 04
DIVDND .EQU 06
XX .EQU 08
YY .EQU 09
YYOLD .EQU D0A
YYINT .EQU OB
YYTMP  .EQU OC

CcoL .EQU 0D
BITT .EQU  OE
DISP .EQU  OF
BAND JEQU 10
BANDA  .EQU 12
ROW CEQU 14
ROWA .EQU 16
BOX JEQU 18
BOXA .EQU 1A
ADDR JEQU  1C

CATCHAL .EQU 1E
EXPANSE .EQU 20
NOPTS .EQU 22
PTS JEQU 24
START .EQU 26
SCALE .EQU 28

MIN .EQU 2A
COUNTER .EQU 2C
MM .EQU 2E

MSG .EQU 30
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FIRE1

FIRE2

MAINZ2

MAIN3

pPOP
POP
PGP
POP
POP
PLA
STA
PLA
STA

JSR
JSR
JSR
JSR
JSR

JSR
JSR
JSR
LDA
STA
LDA
CMP
BCC
JSR
JSR
JSR
JMP
JMP

LDA
STA
LDA
CMP
BCS
JSR
JSR
LDA
STA
LDA
CMP
BNE
LDA

RETURN
MIN
SCALE
EXPANSE
START

ARRAY+1

ARRAY+2

SETNOPT
INIT
ARRAY
INY16
DECCTR

GETROW
GETADDR
PLOTYY
YY
YYOLD
#01
NOPTS
FIREZ2
ARRAY
INY16
DECCTR
MAINS
MAINZ

#00

PTS

PTS
NOPTS
MAINS
ADRYY
PLOTYY
YY
YYOLD
COUNTER+1
#00
MAIN4
COUNTER

;GET FIRST POINT

; INITIALIZE ADDRESS

;TOP LOOP OF MAIN PROGRAM STARTS HERE
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MAIN4

MAINS

MAINS75

MAINGE

MAINT7
MAINS

MAIN825

CMP
BNE
JMP
JSR
JSR
JSR
INC
JMP
LDA
STA
JSR
LDA
CMP
BEQ
JSR
JSR
LDA
STA
LDA
CMP
BCS
LDA
ADC
STA
LDA
CMP
BEQ
DEC
LDA
CMP
BCC
DEC
JMP
INC
LDA
CMP
BCC
BNE
JSR
JSR
JSR
LDA
STA
JMP

#00
MAIN4
ENDMAIN
ARRAY
INY16
DECCTR
PTS
MAIN3
YYOLD
YYINT
CALCMM
MSG

#01
MAINS75
INCBITT
PLOTYY
#¥01
PTS+1
PTS+1
NOPTS+1
MAIN9
YYINT
MM
YYINT
MM+1

#0
MAINS
MM+1
YYOLD
YY
MAIN7
YYINT
MAINS
YYINT
YYOLD
YY
MAINS85
MAIN825
PLOTINT
INCBITT
PLOTINT
#01

MSG
MAIN875
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MAIN8S5 JSR
JSR
LDA
STA
MAIN875 INC
JMP
MAINS LDA
CMP
BNE
JSR
MAIN100O JMP

ENDMAIN JSR
JSR
LDA
CMP
BEQ
JSR
JSR
END2 LDA
PHA
LDA
PHA
RTS

CALCMM SEC
LDA
SBC
BPL
STA
LDA
SEC
SBC
PLUS STA
LDA
STA
JSR
LDA
STA
LDA
STA
LDA
CMP

PLOTINT
INCBITT
#00

MSG
PTS+1
MAIN6
MSG

#01
MAIN100
INCBITT
MAINZ

ADRYY
PLOTYY
MSG

#01

END2
INCBITT
PLOTYY
RETURN+1

RETURN

YYOLD
PLUS
MM

#0

MM
DIVDND
NOPTS+1
DIVISOR
DIVIDEZ
QUOTNT
MM
DIVDND
MM+1

YY
YYOLD
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MMEND

SETNOPT

REVERSE

ENDPTS

INIT

BPL
SEC
LDA
SBC
STA
RTS

LDA
CMP
BCC
STA
LDA
STA
JMP
LDA
STA
LDA
STA
STA
LbA
STA
JSR
LDA
STA
LDA
STA
RTS

JSR
LDA
STA
LDA
STA
LDA
STA
STA
STA
CLC
LDA
ADC
STA
LDY
LDA

MMEND

*0

EXPANSE+1
*#01
REVERSE
NOPTS

#01
NOPTS+1
ENDPTS
EXPANSE
DIVISOR
#0
DIVISOR+1
DIVDND
#01
DIVDND+1
DIVIDEZ2
QUOTNT
NOPTS+1
#01

NOPTS

FRAME
#02
BITT
#01
MSG
*0

XX
PTS+1
COL

ARRAY+2
START+1
ARRAY+2
START

EXPANSE

;REST OF THE VARIABLES ARE INITIALIZED HERE
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FRAME

TOP
BOT

LFT

ENDFRM

DECCTR

STA
LDA
STA
RTS

LDX
LDA
STA
STA
INX
CPX
BCC
LDA
STA
STA
LDA
STA
STA
JSR
JSR
LDA
STA
JSR
JSR
LDA
STA
INC
JSR
LDA
STA
LDA
STA
STA
JSR
JSR
RTS

SEC
LDA
SBC
STA
LDA
SBC

COUNTER
EXPANSE+1
COUNTER+1

#00
#OFF
02000 ,X
02C50,X

#025
TOP
#00
cOoL
BITT
#01

YY
YYOLD
GETROW
GETADDR
#082
Yy
ADRYY
PLOTYY
YY
YYOLD
YYOLD
INCADR
#025
COL
#00
BITT
YY
ADRYY
PLOTYY

COUNTER
#01
COUNTER
COUNTER+1
#00
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INY16

INY16B

PLOTINT

PLOTYY

ADRYY

DECYY

INCYY

ENDYY

STA
RTS

CPY
BCC
INC
INY
RTS

LDA
STA
LDA
STA
JSR
JSR
JSR
JSR
LDA
STA
RTS

JSR
JSR
JSR
RTS

JSR
LDA
CMP
BEQ
BCS
DEC
JSR
JMP
INC
JSR
JMP
RTS

COUNTER+1

#OFF
INY16B
ARRAY+2

YY
YYTMP
YYINT
YY
ADRYY
SUMADDR
GETDISP
SCREEN
YYTMP
YY

SUMADDR
GETDISP
SCREEN

PLOTYY
YY
YYOLD
ENDYY
INCYY
YYOLD
DECADR
ADRYY
YYOLD
INCADR
ADRYY

;NOW, FIND NEW ADDRESS
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INCBITT INC
INC
LbA
CMP
BCC
LDA
STA
INC
LDA
CMP
BCC
LDA
STA
ENDBITT RTS

INCADR CLC
LDA
ADC
STA
CMP
BEQ
BCC
LDA
STA
CLC
LDA
ADC
STA
LDA
ADC
STA
CMP
BCC
LDA
STA
STA
CLC
LDA
ADC
STA
CMP
BEQ
BCC
LDA
STA

ENDINC RTS

XX

BITT
BITT
*07
ENDBITT
#0

BITT
COoL

COL

#28
ENDBITT
#0

CoL

BOXA
#04
BOXA
#01C
ENDINC
ENDINC
#0
BOXA

ROWA
#080
ROWA
*0
ROWA+1
ROWA+1
#04
ENDINC
#0
ROWA
ROWA+1

BANDA
#028
BANDA
#050
ENDINC
ENDINC
#0
BANDA
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DECADR

ENDDEC

ARRAY

SCALE1

SKIPO

SEC
LDA
SBC
STA
BPL
LDA
STA
SEC
LDA
SBC
STA
LDA
SBC
STA
BPL
LDA
STA
LDA
STA
SEC
LDA
SBC
STA
BPL
LDA
STA
RTS

LDA
SEC
SBC
LDX
CLC
ROR
CPX
BEQ
CMP
BMI
ASL
DEX
JMP
CMP
BCC
LDA

BOXA
#04
BOXA
ENDDEC
#01C
BOXA

ROWA
#080
ROWA
ROWA+1
*0
ROWA+1
ENDDEC
#080
ROWA
#03
ROWA+1

BANDA
#028
BANDA
ENDDEC
*050
BANDA

01111,Y

MIN
SCALE

A

#0
SKIPO
#0
SKIPO
A

SCALE1
*#080
SKIP1
#07F
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SKIP1

GETOLD

GETROW

STA
SEC
LDA
SBC
CLC
ADC
STA
RTS

LDA
STA
LDA

STA
LDA
STA
LDA
STA
JSR
LDA
STA
LDA
STA
LDA
STA
JSR
LDA
STA
LDA
STA
RTS

LDA
STA
LDA

STA
LDA
STA
LDA
STA
JSR

#¥0TF

#02

YYOLD

DIVDND
#0

; YY MUST LIE IN [0..255].

DIVDND+1
#040
DIVISOR
#0
DIVISOR+1
DIVIDE
QUOTNT
BAND

*#08
DIVISOR
#0
DIVISOR+1
DIVIDE
DIVDND
BOX
QUOTNT
ROW

YY
DIVDND
#0

; YY MUST LIE IN [0..255].

DIVDND+1
#040
DIVISOR
#0
DIVISOR+1
DIVIDE
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GETADDR

SUMADDR

GTBANDA

ADDR1

LDA
STA
LDA
STA
LDA
STA
JSR
LDA
STA
LDA
STA
RTS

JSR
JSR
JSR
JSR
RTS

CLC
LDA
ADC
ADC
ADC
STA
LDA
ADC
ADC
STA
RTS

LDX
LDA
STA
CPX
BEQ
CLC
LDA
ADC
STA
DEX
JMP
STA

QUOTNT
BAND
#08
DIVISOR
#0
DIVISOR+1
DIVIDE
DIVDND
BOX
QUOTNT
ROW

;NOW CALCULATE THE ADDRESS
GTBANDA
GETROWA
GETBOXA
SUMADDR

#0 ; SET BASE LOW BYTE
COL

BANDA

ROWA

ADDR

#020 ;SET BASE HIGH BYTE
BOXA

ROWA+1

ADDR+1

BAND
#0
BANDA
#00
NEXT1

#028
BANDA
BANDA

ADD STA ROWA
ROWA+1
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ADDR3

NEXT3

GETBOXA

ADDR4

NEXT4

GETDISP

SETBIT

NEXT5

SCREEN

CPX
BEQ
CLC
LDA
ADC
STA
LDA
ADC
STA
DEX
JMP
RTS

LDX
LDA
STA
CPX
BEQ
CLC
LDA
ADC
STA
DEX
JMP
RTS

LDX
LDA
CPX
BEQ
CLC
ROL
DEX
JMP
STA
RTS

LDA
STA
STA
LDA
STA
STA
LDA

#00
NEXT3

#080
ROWA
ROWA
*¥00
ROWA+1
ROWA+1

ADDRS3

BOX
#0
BOXA
#00
NEXT4

#04
BOXA
BOXA

ADDR4

BITT
#1

#0
NEXTS

A

SETBIT
DISp

ADDR
STORE+1
INSERT+1
ADDR+1
STORE+2
INSERT+2
DISP

;NOW FIND NEW DISPLAY BYTE

;NOW CHANGE SCREEN
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INSERT
STORE

DIVIDE

DIV

FINDIV

DIVIDE2

REPDIV

FINDIV2

FINDIV3

ORA
STA
RTS

LDA
STA
JSR
BCC
INC
SEC
LDA
SBC
STA
LDA
SBC
STA
JMP
RTS

LDA
TAX
STA
LDA
CMP
BCC
INX
CLC
ROR
ROR
ROR
CLC
ROR
JMP
LDA
STA
LDA
STA
LDA
STA
STA
CPX
BEQ
CLC
ROL
ROL
DEX
JMP

01111
01111

20
QUOTNT
CMP16

FINDIV
QUOTNT

DIVDND
DIVISOR
DIVDND
DIVDND+1
DIVISOR+1
DIVDND+1
DIV

#0

CATCHAL
DIVISOR
#02

FINDIV2

DIVDND+1
DIVDND
CATCHAL

DIVISOR
REPDIV
DIVDND
QUOTNT
DIVDND+1
QUOTNT+1
0
DIVDND
DIVDND+1
#0
FINDIV4

CATCHAL
DIVDND

FINDIV3

363



FINDIV4 RTS

CMP16 LDA
CMP
BEQ
JMP
REST LDA
CMP
OUTPUT RTS

GETCOL LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR
LDA
STA
LDA
STA
RTS

DIVDND+1
DIVISOR+1
REST
OUTPUT
DIVDND
DIVISOR

XX
DIVDND
XX+1
DI1VDND+1
#7
DIVISOR
*0
DIVISOR+1
DIVIDE
DIVDND
BITT
QUOTNT
COL

.END
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APPENDIX B

STATS

B.1 INTRODUCTION

STATS is a family of statistical subroutines written by Ward C.
Stevens in fortran 77. The original thrust of stats was to provide a
simple method of calculating calibration curves which could NOT be
assumed to be linear. The objective, therefore was to perform a
univariant polynomial curve fit and test the goodness of each fit
through analysis of variance. Subsequently, simple F and Student's t
tests have been added.

A user must write a short fortran program, compile it with the
unix fortran 77 compiler, f77 so that it will be linked to the stats
library during compilation and run the object program. The user must
be familiar with analysis of variance for the output of the polynomial
analysis of variance routines to be meaningful. The user must
understand the F and Student's t tests and their limitations to make
meaningful use of the F and t test subroutines.

The analysis of variance subroutines contained in stats and the
F and t tests are based on Statistical Methods in Research and
Production by Owen L. Davies and Peter L. Goldsmith (eds.). {63].

The matrix manipulation subroutines come from Computer Solution
of Linear Algebraic Systems by George E. Forsythe and Cleve B. Moler,
from Computer Methods for Mathematical Computations by George E.
Forsythe, Michael A. Malcolm and Cleve B. Moler, and from the fmm
library collected by Cleve B. Moler and moditfied by him for use on
ogcvax, a DEC VAX-11/780.
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B.2 EXAMPLES

Two program examples follow. The first program calculates F and
t ratios among six groups of data. The second program calculates
first through fifth order calibration curves for calibration data
which must be entered through the standard input (for example by
redirecting a text file).

B.2.1 Example of F and Student's t tests

PROGRAM COMPARE

C
INTEGER I,NHPD,NHPT,NHDT,NLPD,NLPT,NLDT
DOUBLE PRECISION HPD(5),HPT(5),HDT(5)
DOUBLE PRECISION LPD(5),LPT(5),LDT(6)
DATA (HPD(I),I=1,5) /55.5,53.0,49.5,52.0,54.0/
DATA (HPT(I),I=1,5) /55.1,53.6,49.3,53.1,55.1/
DATA (HDT(I),I=1,5) /57.7,59.3,66.1,60.9,71.6/
DATA (LPD(I),I=1,5) /12.5,12.0,12.5,12.0,12.5/
DATA (LPT(I).I=1,5) /12.7,12.2,13.0,12.4,12.7/
DATA (LDT(I),I1=1,6) /16.1,17.6,17.8,16.5,15.4,16.1/
DATA NHPD,NHPT,NHDT.NLPD,NLPT,NLDT /5,5,5,5,5,6/
C
WRITE(6,100)
WRITE(6,200) “PENDULUM DIAL NRG"
WRITE(6,300) "PENDULUM TUP NRG"
CALL TWOSID(HPD,HPT,NHPD,NHPT)
c
WRITE(6,100)
WRITE(6,200) "PENDULUM TUP NRG"
WRITE(6,300) "DROP TOWER TUP NRG"
CALL TWOSID(HPT,HDT.NHPT,NHDT)
C
WRITE(6,100)
WRITE(6,200) "PENDULUM DIAL NRG"
WRITE(6,300) "DROP TOWER TUP NRG"
CALL TWOSID(HPD,HDT, NHPD,NHDT)
C

WRITE(6,100)

WRITE(6,200) "PENDULUM DIAL NRG"
WRITE(6,300) "PENDULUM TUP NRG”
CALL TWOSID(LPD,LPT,NLPD,NLPT)
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C
WRITE(6,100)
WRITE(6,200) "PENDULUM TUP NRG"
WRITE(6,300) "DROP TOWER TUP NRG"
CALL TWOSID(LPT,LDT,NLPT,NLDT}
C
WRITE(6,100)
WRITE(6,200) “PENDULUM DIAL NRG"
WRITE(6,300) "DROP TOWER TUP NRG"
CALL TwWOSID(LPD,LDT ,NLPD,NLDT)
C
STOP
C
100 FORMAT(" ")
200 FORMAT("MU1: ",16A)
300 FORMAT("MUO: " ,616A)
END
B.2.2 Example of Calibration Curve Calculation
PROGRAM CALIBRATE
C
INTEGER N,I,IPVT(9),MAXORD,ORDER,REPS,DF(6),NREPS
DOUBLE PRECISION X1REPS(9),Y1REPS(9,3),POLY1({27,9)
DOUBLE PRECISION X(27),Y(27),MUP(9),MUY MUU(9),MUZ
DOUBLE PRECISION INFO(9,9),COPY(9,9),CORR(9,9),SYY,SYP{9),SZU{9)
DOUBLE PRECISION WORK(9),COND,BEEO,BEE(9),B10,B1(9),BS0,BS{9)
DOUBLE PRECISION VAR(6),MS(6), INFOLU(9,9),INFINV{(9,9),BB(9),XX(9)
DOUBLE PRECISION BTO,BT(9).F
C
C INITIALIZE:
C
VAR(1) = -1.0DO
N=29
REPS = 3
NREPS = N * REPS
MAXORD = 9
ORDER = 1
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C LOAD THE DATA AND DISPLAY IT:

c
CALL GETXY(N,REPS,XREPS, YREPS)
CALL PUTXY(N,REPS,XREPS,YREPS)
c
c

DO 20 ORDER = 1,5
CALL PANOVA(MAXORD,ORDER,N,REPS,X1REPS,Y1REPS,X,Y,POLY1, MUP,

& MUY ,MUU,MUZ, INFO, COPY,CORR, SYY, SYP,SZU, IPVT,WORK, COND, BEEO,
& BEE,B10,B1,BS0,BS,VAR,DF ,MS ,NREPS, INFOLU, INFINV,BB,XX,BTO,
& BT,F)

CALL DISPLA(MAXORD,ORDER,B10,B1,BS0,BS,VAR,DF,MS,BTO,BT F)
20 CONTINUE
STOP
200 FORMAT()
END
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B.3 DESCRIPTIONS OF THE SUBROUTINES IN STATS

Each description below consists of three parts:

Part 1 is an example call.
Part 2 is a brief description of what the subroutine does.
Part 3 is a description of inputs and outputs.

If a more detailed explanation of the statistical procedures is
required, the reader is referred to Davis and Goldsmith, Chapters 4,
7, & 8. If a more detailed discussion of the matrix routines is
needed, the reader is referred to Forsythe and Moler, especially
Chapters 16-18 (pp. 58-79).
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B.3.1 MATRIX MANTPULATION SUBROUTINES

B.3.1.1 SUBROUTINES DECOMP AND SOLVE

Decomp and solve are NOT described here since they are used
exactly as found in the fmm library and are thoroughly described
elsewhere. |[64};(65].

B.3.1.2 SUBROUTINE INVERT

1. CALL INVERT(MAXORD,N,A,LU,AINV,WORK,BB, XX, IPVT)

2. INVERT is described here since this implementation is a
translation by the current author and it contains an
important exception to the algol 60 routine on p. 78 of
Forsythe and Moler [66] which was the source for the
translation. Unlike the original algol 60 routine, this
implementation DOES NOT USE ITERATIVE IMPROVEMENT. Note that
the matrix invert is useful in and of itself. Consequently,
the invert is calculated, rather than using another
approach.

INVERT finds the matrix invert, AINV of a square matrix, A.

3. Inputs:
A(N,N}: the original matrix
N: the dimension of the square matrix
MAXORD: the dimension of the square array in
which the the matrix is stored
Outputs:
AINV(N,N): the matrix invert of A

Side effects:
LU(N,N): Upper diagonal decomposition product
of A(N,N)
WORK(N) & IPVT(N): Data flows used for communication
between decomp and solve
BB(N) & XX(N): work space for invert
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B.3.2 GENERAL PURPOSE STATISTICAL SUBROUTINES

B.3.2.1 DOUBLE PRECISION FUNCTION MEAN

1. X = MEAN(A, N)

2. MEAN calculates the mean of

3. Inputs:
A: the
N: the

Output:
MEAN: the

B.3.2.2 SUBROUTINE MU

1. CALL MU(MAXORD,X,N,M,MUX)

a column array

column array
dimension of the column array

mean of the column array

2. MU calculates a row array which contains the means of the
coiumns of a two dimensional array.

3. Inputs:
X: the two dimensional array whose means
are to be calculated
N: the first dimension of X
MAXORD: the second dimension of X
M: the number of columns which will be
averaged
Output:
MUX: the row array containing the means
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SUBROUTINE TWOSID

B.3.3

CALL TWOSID(X1,X0,Ni,NO)

TWOSID calculates the averages and variances of two column

arrays, and calculates the F ratio between their variances

and the t ratio between their means. The number of degrees
of freedom for the F and t ratios are also calculated.

Inputs:
N1 & NO: the number of elements in each array
X1(N1) & XO(NO): the two column arrays

Outputs:
The only output is a text dispiay sent to the standard
output displaying the means and variances of the two
column arrays, the F ratio between their variances the t
ratio between their means and the degrees of freedom
associated with the F and t ratios.

SUBROUTINES DIRECTLY USED IN POLYNOMIAL ANALYSIS OF VARIANCE

B.3.3.1 SUBRQUTINE VARIANCE
1. CALL VARIANCE(MAXORD,X,N,M,Y MUX MUY, INFO,SYX,SYY)
2. VARIANCE calculates covariances.
3. Inputs:
X: an N by MAXORD array of N

observations each of M independent
variables. MAXORD adds flexibility.

MAXORD: a second dimension added to X to
allow for higher powers of X also the
Jdimension of the array used to store
info, MUX and SYX

Y: an array of N observations of a
dependent variable

N & M: as described in MU
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Outputs:
MUX:

MUY :
INFO:

SYX:

SYY:

SUBROUTINE GETB
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an array of the M averages of the columns of
X

the average of the Y observations

an M by M array containing the covariances,
i.e., SXX, of the X columns, the information
matrix

an array containing the M covariances
between each of the N columns of X and Y

the variance of Y

CALL GETB(MAXORD, INFO,COPY, IPVT,WORK,M, SYX,MUX,MUY,COND,BO,B)

Subroutine GETB calculates the regression coefficients from
the information matrix, the covariances of the dependent
variable with the dependent variables, and the averages of
the dependent and independent variables.

Inputs:
M:

MAXORD:

INFO:

SYX:

MUX:
MUY :

Outputs:
COND:

BO:
B:

conceptually, the dimension of the
square and column matricies used in
GETB actually a limit on the do loops
conceptually the maximum order of

the curve fit which the calling
program will attempt actually the
dimension of the arrays

the covariances of the independent
variables

the covariance of the dependent
variable with the independent
variable

the averages of the independent
variabies

the average of the dependent variable

the condition of the information
matrix

the regression constant

the regression coefficients
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Side effects:

COPY: a copy of INFO(M,M) which gets
sci ambled
IPVT: a data flow which lets decomp

comunicate with solve - generally
useless otherwise
WORK: a data flow used only by decomp

B.3.3.3 SUBROUTINE SCALE

1. CALL SCALE(MAXORD, INFO,SYX,SYY ,M,CORR,SZU,MUU . MUZ)

2. SCALE scales the information matrix creating the correlation
matrix and similarly scales the SYX vector. The
transformations used are equivalent to:

Ujj = Xjj - Xjgy / dsqrt(S;j/n-1) and
zj Vi - Vay / dsqrt(Syy/n-1)

"

NOTE THAT THIS IS A LINEAR TRANSFORMATION

The importance of scaling is that it permits multivariate
regression analysis when the independent variables are of
different magnitude as, for example, when polynomial! fits are
being attempted.

3. Inputs:

MAXORD & M: as defined in GETB
INFO: the information matrix
SYX: the covariance vector for the

dependent variable with the
independent variables

SYY: the variance of the dependent
variable
Outputs:
CORR: the correlation matrix, i.e., the

scaled information matrix
SZU: the scaled covariance vector
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Side effects:
MUU:

MUZ:

SUBROUTINE DESCALE
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the averages of the transformed
independent variables - always
identically zero but GETB needs this
as a double precision vector

the average of the transformed
dependent variable - always
identically zero, but again GETB
needs a double precision value

CALL DESCALE(MAXORD,BEEO,BEE,M,SYY, INFO,MUY,MUX,BO,B)

DESCALE produces the uscaled regression constant and
coefficients from the scaled regression constant and

coefficients.

Inputs:

MAXORD & M:
BEEO:

BEE:

SYY:

INFO:

MUY:

MUX:

Outputs:
BO:
B:

as defined in GETB

the scaled regression constant

the scaled regression coefficients
the variance of Y

{or SXX) the information matrix

the average of the dependent variable
the averages of the independent
variables

the unscaled regression constant
the unscaled regression coefficients
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B.3.3.5 SUBROUTINE MAKREP

1. CALL MAKREP(REPS,N,NREPS,XREPS,YREPS,X,Y)

2. MAKREP transforms a one dimensional array of N independent
variable values and a two dimensional array of REPS replicate
measurements of N corresponding values of a dependent
variable (each column contains REPS replications of the test
and thus corresponds to a single value of the independent
variable) into a one dimensional array containing each of the
independent variable values reps times and a one dimensional
array containing all the values of the dependent variable in
such an order that every dependent variable value with
index I corresponds to the depdendent variable value with
index I.

3. Inputs:

REPS: the number of repetitions of each
determination.

N: the number of determinations.

NREPS: N * REPS. 1t is passed instead of
calculated to simplify array
dimensioning.

XREPS(N): the N values of the independent
variable.

YREPS(N,REPS) : the REPS replications of the N
dependent variable determinations.

Outputs:

X{NREPS): REPS copies of each of the N values
of the independent variable.

Y(NREPS): all the dependent variable data in a

one dimensional array.



B.3.3.6

377

DOUBLE PRECISION FUNCTION PURERR

B.3.3.7

X = PURERR(REPS,N, YREPS)

PURERR calculates the pure error in a set of replicated
dependent variable data, i.e., it calculates an estimate of
the variance due to the test method itself and not due to
goodness of fit.

PURERR calculates the variances of the replicated dependent
variable data at each value of the independent variable, sums
them and returns the result.

It is not possible to calculate lack of fit if there is no
replication. The host program must recognise that -1.0
indicates failure to do so.

Inputs:
N: the number of values of the
independent variable.
REPS: the number of replications at each
value of the independent variable.
YREPS(N,REPS): the dependent variable data.

Output:
The only output is the double precision number returned
by PURERR. If there was no replication, it is
impossible to calculate pure error, but PURERR returns
the value -1 in that case rather than crashing the
program or complaining.

SUBROUTINE POLYNO

CALL POLYNO(MAXORD,X,N,ORDER,Y,POLY,MUP,MUY,MUU,MUZ, INFO, COPY,
CORR, SYY,SYP,SZU, IPVT,WORK, COND,BEEO, BEE, B0, B)

POLYNO performs a polynomial curve fit. POLYND does NOT
perform multivariate polynomial regression.



3. Inputs:

ORDER:
MAXORD:

Outputs:
POLY:

INFO:

CORR:
BO:
BEEO:
BEE:
MUP:
MUY:
MUU:
MUZ:

SYY:

SYP:
SZU:

COND:
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the observations of the dependent
variabie

the observations of ONE independent
variable

the number of observations also as
described under GETB

the order of the polynomial fit

the maximum order expected by the
calling program also as described
under GETB

the 1st through the Mth powers of
the independent variable in an N by
MAXORD array. MAXORD allows
flexibility.

the variances of the powers of the
independent variable - i.e., the
information matrix.

the scaled information mayrix i.e.,
the correlation matrix.

the regression constant.

the regression coefficients.

the scaled regression constant

the scaled regression coefficients
the averages of the powers of the
independent variables.

the average of the dependent
variable.

the averages of the scaled powers of
the independent variable.

the average of the scaled dependent
variable.

the variance of the dependent
variable

the covariance between the dependent
variable and the powers of the
independent variable.

the covariances between the scaled
dependent variable and the scaled
powers of the independent variabie.
the condition of matrix

CORR(ORDER, ORDER)
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Side effects:

COPY: a copy of INFO(ORDER,ORDER)
scrambled by decomp.
IPVT & WORK: two arrays needed by decomp and

solve for work space. Usually, they
are otherwise useless.

SUBROUTINE PANOVA

CALL PANOVA(MAXORD,ORDER,N,REPS,XREPS,YREPS,X,Y,POLY,MUP,
MUY ,MUU,MUZ, INFO, COPY,CORR, SYY, SYP,SZU, IPVT,
WORK, COND, BEEO, BEE,BO,B,BS0,BS,VAR,DF ,MS,NREPS,
INFOLU, INFINV,BB, XX,BT0,BT,F)

PANOVA is the heart and purpose of the stats package. It
performs polynomial analysis of variance for one independent
and one dependent variable. IT DOES NOT PERFORM MULTIVARIATE
ANALYSIS OF VARIANCE.

If the calling program has used PANOVA before, VAR(1)
contains the last value of the variance explained by
regression. It is assumed in that case that the last case
was for degree 1 less than this call. Hence, the improvement
in variance explained will have degree of freedom of 1. If
the calling program has stored -1 in VAR(1), the calculations
based on improvement in variance explained will be supressed.

It is not possible to calculate lack of fit if there is no
replication. Nonetheless, the rest of PANOVA may be possible.

Inputs:

MAXORD: the largest order the calling
program will call

ORDER: the current order

N: the number of determinations

REPS: the number of replications of each
determination

NREPS: the product of N and REPS because of
array dimensioning problems it must
be pased instead of calculated in
PANOVA

Y: the observations of the dependent
variable



X:
XREPS(N):

YREPS(N,REPS) :

Outputs:

BO,B(MAXORD) :
BEEQ:

BEE:
BSO,BS (MAXORD) :

BTO, BT (MAXORD) :

VAR(1):
VAR(2):

VAR(3):

VAR(4):
VAR(5) :
VAR(6) :
DF(1..6):

MS(1..6):
F:

POLY:

INFO:
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the observations of ONE independent
variable

the values of the independent
variable

the REPS replications of the N
determinations of the dependent
variable

the regression constant and the
regression coefficients

the scaled regression constant

the scaled regression coefficients
the standard errors of the
regression constant and the
regression coefficients

the t significance ratios of the
regression constant and the
regression coefficients

variance explained by the regression.
the pure error in determination of
the independent variable. It is set
to -1 if it was impossible to
calculate it and is then not
displayed.

variance caused by lack of fit. It
is set to -1 if it is impossible to
calculate it and is then not
displayed.

variance about regression.

total variance.

improvement in variance explained
due to this order.

degrees of freedom in variances
above.

mean squares of variances above.
the F ratio for the improvement due
to the current order

the 1st through the mth powers of
the independent variable in an N by
MAXORD array. MAXORD allows
flexibility.

the variances of the powers of the
independent variable - i.e., the
information matrix.



CORR:

MUP:

MUY :

MUU:

MUZ:

SYY:

SYP:

SZU:

COND:
Side effects:
COPY:
IPVT and WORK:

INFOLU:

INFINV:
BB and XX:
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the scaled information matrix, i.e.,
the correlation matrix.

the averages of the powers of the
independent variables.

the average of the dependent
variable.

the averages of the scaled powers of
the independent variable.

the average of the scaled dependent
variable.

the variance of the dependent
variable

the covariance between the dependent
variable and the powers of the
independent variable.

the covariances between the scaled
dependent variable and the scaled
powers of the independent variable.
the condition of matrix CORR

a copy of INFO scrambled by decomp.
two arrays needed by DECOMP and
SOLVE for work space. Usually, they
are otherwise useless.

the upper diagonal decomposition
product of INFO

the inverse of INFO

workspace for INVERT

B.3.4 SUBROUTINES USED TO DISPLAY RESULTS OR RETRIEVE DATA

B.3.4.1

SUBROUTINE DISPLA

CALL DISPLA(MAXORD,ORDER,BO,B,BS0,BS,VAR,DF,MS,BT0O,BT,F)

DISPLA produces a display of the results of polynomial

analysis of variance.



3. Inputs:
MAXORD:

ORDER:

BO:
B(MAXORD) :
BSO:

BS(MAXORD) :

BTO:

BT (MAXORD) :

VAR(1):
VAR(2):

VAR(3):

VAR(4):
VAR(5):
VAR(6):

DF(1..6):

MS(1..6}):
F:

B.3.4.2 SUBROUTINE ANVTBL
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the maximum order fit the calling
program attempted to find the
dimension of the arrays actually
stored

the order polynomial which was found.
the regression constants.

the regression coefficients.

the standard error of the regression
constant.

the standard errors of the
regression coefficients.

the two sided t ratio for the
significance of BO.

the two sided t ratios for the
significance of B.

variance explained by the regression.
the pure error in determination of
the independent variable. It is set
to -1 if it was impossible to
calculate it and is then not
displaved.

variance caused by lack of fit. It
is set to -1 if it is impossible to
calculate it and is then not
displayed.

variance about regression.

total variance.

improvement in variance explained
due to this order.

degrees of freedom in variances
above.

mean squares of variances above.

F ratio: MS{(6) / MS(4). Obviously
the degrees of freedom are: DF(6)
and DF{4).

1. CALL ANBTBL (VAR,DF,MS,F,ORDER)

2. ANVTBL forms an analysis of variance table
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3. Inputs:
The meaning of the inputs has been explained under
SUBROUTINE DISPLA above.
Outputs:
The only output is a text display sent to the standard
output.
B.3.4.3 SUBROUTINE EQN
1. CALL EQN(MAXORD,ORDER,BO,B)
2. EQN displays the regression equation.
3. Inputs:
The meaning of the inputs has been explained under
SUBROUTINE DISPLA above.
Outputs:
The only output is a text display sent to the standard
output.
B.3.4.4 SUBROUTINE BSETBL
1. CALL BSETBL (MAXORD, ORDER,BO,B,BS0,BS,BTO,BT,DF)
2. BSETBL displays the regression constant, the regression
coefficients, their standard errors and t ratios.
3. Inputs:

The meaning of the inputs has been explained under
SUBROUTINE DISPLA above.

Outputs:
The only output is a text display sent to the standard
output.



B.3.4.5 SUBROQUTINE PUTXY

B.3.

CALL PUTXY(N,REPS,XREPS, YREPS)

PUTXY writes the input data to the standard output in x, y
pairs

Inputs:
REPS: the number of repetitions of each
determination.
N: the number of determinations.
NREPS: N * REPS. It is passed instead of
calculated to simplify array
dimensioning.
XREPS (N} : the N values of the independent
variable.
YREPS(N,REPS): the REPS replications of the N
dependent variable determinations.
Outputs:

The only output is a text dispiay which is sent to the
standard output.

SUBROUTINE GETXY

CALL GETXY(N,REPS,XREPS,YREPS)

GETXY reads the input data from the standard input. Of
course the data could be redirected from a file.

Inputs:
REPS: the number of repetitions of each
determination.
N: the number of determinations.
NREPS : N * REPS. It is passed instead of
calculated to simplify array
dimensioning.
Outputs:
XREPS(N) : the N values of the independent
variable.
YREPS (N ,REPS) : the REPS replications of the N

dependent variable determinations.
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B.3.4.7 SUBROUTINE CALC

1. CALL CALC{(MAXORD,ORDER,N,REPS . XREPS,YREPS,BO,B)

2. CALC displays the values of the independent variable, the
corresponding values of the averages of the dependent
variable and the corresponding predictions for the values of
the dependent variable based on the polynomial curve fit.

3. Inputs:
The meaning of the inputs is described under GETXY and
DISPLA above.

OQutputs:
The only output is a text display sent to the standard
output.
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B.4 SOURCE CODE

What follows is the source code for the stats library. Since the
special features of f77 are NOT used, stats should be portable to any
system with a fortran 77 compiler:

SUBROUTINE INVERT(MAXORD,N,A,LU,AINV,WORK,BB,XX, IPVT)
C INVER?T FINDS THE MATRIX INVERT, AINV OF A SQUARE MATRIX, A.
C THIS IMPLEMENTATION IS A TRANSLATION OF THE ALGOL 60 ROUTINE ON P
C OF THE BOOK BY FORSYTHE AND MOLER. AN IMPORTANT EXCEPTION IS:
C IT DOES NOT USE ITERATIVE IMPROVEMENT.

c
C INPUTS:
Cc A(N,N): THE ORIGINAL MATRIX
C  OUTPUTS:
C AINV(N,N): THE MATRIX INVERT OF A
C SIDE EFFECTS:
C LU(N,N): UPPER DIAGONAL DECOMPOSITION PRODUCT OF
c A(N,N)
c WORK(N) & IPVT(N): DATA FLOWS USED FOR COMUNICATION BETWEEN
c DECOMP AND SOLVE
C BB(N) & XX(N): WORK SPACE FOR INVERT
INTEGER N, I,J,MAXORD, IPVT(MAXORD)
DOUBLE PRECISION A(MAXORD,MAXORD),LU(MAXORD,MAXORD)
DOUBLE PRECISION AINV(MAXORD,MAXORD),WORK(MAXORD),BB(MAXORD)
DOUBLE PRECISION XX{(MAXORD),COND
C
DO 20 J=1,N
DO 10 I=1,N

LU(1,J) = A(1.,J)
10 CONTINUE
20 CONTINUE
C SINCE DECOMP WILL LEAVE THE INPUT MATRIX IN UPPER DIAGONAL FORM
C AND A(N,N) WILL BE NEEDED LATER. IT IS NECESSARY TO MAKE A COPY OF
C A(N,N). IT IS CONVENIENT TO DO SO ON LU(N,N).
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CALL DECOMP (MAXORD,N,LU,COND, IPVT,WORK)
b0 50 J=1,N
DO 30 I=1,N
IF (I.EQ.J) THEN
BB(I) = 1.0DO
ELSE
IF (I.NE.J) BB{I) = 0.0DO
ENDIF
XX(1) = BB(1)
30 CONTINUE
CALL SOLVE(MAXORD,N,LU,XX,IPVT)
C THE LATEST VERSION OF SOLVE USES DOUBLE PRECISION ARITHMETIC. MAYBE
C ITERATIVE IMPROVEMENT IS UNNECESSARY.
DO 40 I=1.N
AINV(I,J) = XX(I)
40 CONT INUE
50 CONTINUE

RETURN

END
C
C
C
B.4.2 General Purpose Statistical Subroutines
B.4.2.1 MEAN

DOUBLE PRECISION FUNCTION MEAN({A, N)
C
C TH1S FUNCTION CALCULATES THE MEAN OF A COLUMN ARRAY
C

INTEGER N, 1

DOUBLE PRECISION A(N}, SUM
C

SUM = 0.0DO

DO 10 I =1, N

SUM = SUM + A(I)
10 CONTINUE

MEAN = SUM / N

RETURN

END
C
C
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SUBROUTINE MU(MAXORD,X,N,M,MUX)

THIS SUBROUTINE CALCULATES A ROW ARRAY WHICH CONTAINS THE MEANS
OF THE COLUMNS OF A TWO DIMENSIONAL ARRAY.

INTEGER M,MAXORD,N.I,J
DOUBLE PRECISION X(N,MAXORD), MUX(MAXORD), SUM

c
DO 201 =1, M
SUM = 0.0DO
DO 10 J =1, N
SUM = SUM + X(J,I)
10 CONTINUE
MUX(I) = SUM / N
20 CONTINUE
RETURN
END
c
C
c
B.4.2.3 TWOSID
SUBROUTINE TWOSID(X1,X0,N1,NO}
€

EXTERNAL MEAN

INTEGER N1,NO

INTEGER DFF(2),DFT

INTEGER 1

DOUBLE PRECISION X1(Ni),X0(NO),MEAN

DOUBLE PRECISION F,T

DOUBLE PRECISION MU1,MUO,SIGMA1l,SIGMAO,S15Q,S0SQ
DOUBLE PRECISION RPHI,TERM1,TERMO



C COMPUTING AND REPORTING THE MEANS:

c
MUl = MEAN(X1,N1)
MUO = MEAN(XO0,NO)
WRITE(6,100) MU1,MUO
C
C COMPUTING THE SUMS OF SQUARES AND VARIANCES
C SIGMAS ARE SUMS OF SQUARES.
c SNSQS ARE VARIANCES (IE S SQUARED VALUES OR THE SQUARES OF STANDARD
c DEVIATION)
C
c

SIGMAl = 0.0DO
SIGMAO = 0.0DO
DO 10 1 = 1,N1
SIGMA1l = SIGMA1 + (X1(I)-MU1)*{(X1(I)-MU1)
10 CONTINUE
DO 201 = 1,NO
SIGMAO = SIGMAO + (XO(I)-MUO)*(X0(1)-MUO)
20 CONTINUE
S$18Q SIGMA1 / (N1-1)
$0SQ SIGMAO / (NO-1)

CALCULATING THE F RATIO AND THE DEGREES OF FREEDOM OF THE VARIANCES:
DFF(1) = N1-1
DFF(2) = NO-1
F = S18Q / S0SQ

oo

IF (F.LT.1.0D0) F = 1/F
g NOW, F CONTAINS THE F RATIO AND DFF CONTAINS THE DEGREES OF FREEDOM.
‘ IF (S1SQ.GT.S0SQ) WRITE(6,200) F,DFF(1),DFF(2)
IF (S1SQ.LE.S0SQ) WRITE(6,200) F,DFF(2)}.DFF(1)
g COMPUTING THE T RATIO:
c

T = (MU1 - MUO) / DSQRT((S1SQ/N1) + (SO0SQ/NO0))
IF (T.LT.0.0D0) T = -T



C
c
c
c
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DO NOT ASSUME THAT THE TWO VARIANCES ARE EQUAL SO CALCULATE THE
INVERSE OF THE NUMBER OF DEGREES OF FREEDOM, RPHI

OF THE T RATIO AS FOLLOWS:
TERM1 = (S1SQ/N1) / ((S1SQ / N1) + (S0SQ/NO))
TERM1 = TERM1 * TERM1
TERM1 = TERM1 / (N1 - 1)
TERMG = (SOSQ/N1) / ((S1SQ / Ni) + (SOSQ/NO))
TERMO = TERMO * TERMO
TERMO = TERMO / (NO - 1)

RPH1 = TERM1 + TERMO

THE INVERSE OF RPHI WILL BE A FLOATING POINT NUMBER, SO ROUND TO GET
THE NUMBER OF DEGREES OF FREEDOM OF THE T RATIO:

DFT = {(1.0D0 / RPHI) + 1.0D0 / 2.0DO

THE DOUBLE PRECISION NUMBERS ON THE RIGHT HAND SIDE FORCE THE RIGHT
HAND SIDE TO BE DOUBLE PRECISION. ADDING ONE HALF CHANGES TRUNCATION
TO ROUNDING UP.
NOW, T CONTAINS THE TWQ STDED T RATIO AND DFT CONTAINS THE
CORRESPONDING NUMBER OF DEGREES OF FREEDOM. ALL THAT REMAINS IS TO
REPORT THEM:

WRITE(6,300) T,DFT

RETURN
100 FORMAT("MU1: ",Fi2.8," MUO: " ,F12.8)
200 FORMAT("F RATIO: ",F12.8," DEGREES OF FREEDOM: ",I4." & ",I4)
300 FORMAT("T RATIO: " ,F12.8.," DEGREES OF FREEDOM: ", I4)

END
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.4.3 Subroutines Directly Used in Polynomial Analysis of Variance
4.3.1 VARIANCE

SUBROUTINE VARIANCE (MAXORD,X,N,M,Y,MUX, K MUY, INFO,SYX,SYY)

C
C THIS SUBROUTINE CALCULATES COVARIANCES.
C INPUTS:
c X : AN N BY MAXORD ARRAY OF N OBSERVATIONS EACH OF M
C INDEPENDENT VARIABLES. MAXORD ADDS FLEXIBILITY.
c Y : AN ARRAY OF N OBSERVATIONS OF A DEPENDENT VARIABLE
C N AND M: AS DESCRIBED ABOVE
C OUTPUTS:
c MUX: AN ARRAY OF THE M AVERAGES OF THE COLUMNS OF X
C MUY: THE AVERAGE OF THE Y OBSERVATIONS
C INFO: AN M BY M ARRAY CONTAINING THE COVARIANCES,
C IE SXX, OF THE X COLUMNS, THE INFORMATION MATRIX
C SYX: AN ARRAY CONTAINING THE M COVARIANCES BETWEEN EACH OF
c THE X COLUMNS AND Y
c SYY: THE VARIANCE OF Y
C
INTEGER N,M,MAXORD,I.J,K
DOUBLE PRECISION X(N,MAXORD), INFO(MAXORD,MAXORD)
DOUBLE PRECISION Y(N), MUX(MAXORD), SYX(MAXORD)
DOUBLE PRECISION MEAN, MUY, SYY
C
c
c
C FIRST, CALCULATE MEANS:
c

MUY = MEAN(Y,N)
CALL MU(MAXORD,X,N,M 6 MUX)

C
C NOW CALCULATE INFO:

C
DO 30 I =1, M
DO 20J =1, M
INFO(I,J) = 0.0DO
DO 10 K =1, N
INFO(1,J) = INFO(I,J) + (X(K,I)-MUX(I)) * (X(K,J)-MUX(J))
10 CONTINUE

INFO(J,1) = INFO(I1,J)
20 CONTINUE
30 CONTINUE



C NOW

c

a0

o

40
50

NOW

60

CALCULATE SYX:

DOSOTI =1, M
SYX(I) = 0.0DO
DO 40 J =1, N
SYX(I) = SYX(I) + ({X(J.I) - MUX(I)) * (Y(J) - MUY))
CONTINUE
CONTINUE

CALCULATE SYY:

SYY = 0.0DO
DO 60 I =1, N

SYY = SYY + (Y(I)-MUY) * (Y(I)-MUY)
CONTINUE

RETURN
END

392
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SUBROUTINE GETB(MAXORD, INFO,COPY, IPVT,WORK, M, SYX,MUX, MUY, COND,BO,
& B)
C
C SUBROUTINE GETB CALCULATES THE REGRESSION COEFFICIENTS FROM THE
C INFORMATION MATRIX, THE COVARIANCES OF THE DEPENDENT VARIABLE WITH
C THE DEPENDENT VARIABLES, AND THE AVERAGES OF THE DEPENDENT AND
C INDEPENDENT VARIABLES.

C INPUT:

C INFO(M,M): THE COVARIANCES OF THE INDEPENDENT VARIABLES
c COPY(M,M): A COPY OF INFO(M,M) WHICH GETS SCRAMBLED

C IPVT(M): A DATA FLOW WHICH LETS DECOMP COMUNICATE

c WITH SOLVE - GENERALLY USELESS OTHERWISE

C SYX(M): THE COVARIANCE OF THE DEPENDENT VARIABLE WITH
C THE INDEPENDENT VARIABLE

C MUX (M) : THE AVERAGES OF THE INDEPENDENT VARIABLES

C MUY: THE AVERAGE OF THE DEPENDENT VRIABLE

C WORK : A DATA FLOW USED ONLY BY DECOMP

C OUTPUT:

C COND: THE CONDITION OF THE INFORMATION MATRIX

C BO: THE REGRESSION CONSTANT

(of B(M): THE REGRESSION COEFFICIENTS

C

INTEGER M,MAXORD,I,J,IPVT(MAXORD)

DOUBLE PRECISION INFO(MAXORD,MAXORD),SYX(MAXORD) ,MUX(MAXORD)
DOUBLE PRECISION COPY{MAXORD,MAXORD),WORK(MAXORD) , MUY
DOUBLE PRECISION COND,BO,B(MAXORD)

DOUBLE PRECISION CONDP1

DO 20 I = 1,M
B(I) = SYX(I)
DO 10 J = 1,M
COPY(J,I) = INFO(J,I)
10  CONTINUE
20 CONTINUE
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CALL DECOMP(MAXORD,M,COPY,COND, IPVT,WORK)
CONDP1 = COND + 1.0DO
IF (COND .EQ. CONDP1) GOTO 50
CALL SOLVE (MAXORD,M,COPY,B,IPVT)
BO = MUY
DO SO I =1,M
BO = BO - B{I) * MUX(I)
CONTINUE
RETURN
END

394
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SUBROUTINE SCALE{MAXORD, INFO,SYX,SYY,M,CORR,SZU,MUU,MUZ)

SCALE SCALES THE INFORMATION MATRIX CREATING THE CORRELATION
MATRIX AND SIMILARLY SCALES THE SYX VECTOR. THE TRANSFORMATIONS
USED ARE EQUIVALENT TO:

UIJ = XJI - XJAV / DSQRT(SJJ/N-1) AND

Z1 = YI - YAV / DSQRT{SYY/N-1)

NOTE THAT THIS IS A LINEAR TRANSFORMATION

INPUT:
INFO(M,M): THE INFORMATION MATRIX
SYX(M): THE COVARIANCE VECTOR FOR THE DEPENDENT
VARIABLE W1TH THE INDEPENDENT VARIABLES
SYY: THE VARIANCE OF THE DEPENDENT VARIABLE
OUTPUT:

CORR(M,M): THE CORRELATION MATRIX, IE THE SCALED
INFORMATION MATRIX
SZU(M): THE SCALED COVARIANCE VECTOR
MUU(M): THE AVERAGES OF THE TRANSFORMED INDEPENDENT
VARIABLES - ALWAYS IDENTICALLY ZERO BUT
GETB NEEDS THIS AS A DOUBLE PRECISION
VECTOR
MUZ: THE AVERAGE OF THE TRANSFORMED DEPENDENT
VARIABLE - ALWAYS IDENTICALLY ZERO BUT
AGAIN GETB NEEDS A DOUBLE PRECISION VALUE
THE IMPORTANCE OF SCALING IS THAT IT PERMITS MULTIVARIATE
REGRESSION ANALYSIS WHEN THE INDEPENDENT VARIABLES ARE OF
DIFFERENT MAGNITUDE AS. FOR EXAMPLE, WHEN POLYNOMIAL FITS
ARE BEING ATTEMPTED.
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INTEGER M,MAXORD,I,J
DOUBLE PRECISION INFO(MAXORD,MAXORD),SYX(MAXORD),SYY

DOUBLE PRECISION CORR(MAXORD,MAXORD),SZU(MAXORD),MUU(MAXORD)

DOUBLE PRECISION MUZ

DO 201 = 1.,M

SZU(I) = SYX(I) / DSQRT(SYY * INFO(I.I)})

MUU(I) = 0.0DO
Do 10 J = 1,M

CORR(J,1)
CONTINUE
CONTINUE
MUZ = 0.0DO
RETURN
END

INFO(J,I1) / DSQRT(INFO(J,J) * INFO(I,I))

396
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SUBROUTINE DESCALE(MAXORD,BEEO,BEE,M,SYY, INFO, MUY ,MUX,BO,B)

C
C DESCALE PRODUCES THE USCALED REGRESSION CONSTANT AND COEFFICIENTS
C FROM THE SCALED REGRESSION CONSTANT AND COEFFICIENTS.
C INPUTS:
C BEEO: THE SCALED REGRESSION CONSTANT
C BEE(M): THE SCALED REGRESSION COEFFICIENTS
C SYY: THE VARIANCE OF Y
C INFO: (OR SXX) THE INFORMATION MATRIX
c MUY : THE AVERAGE OF THE DEPENDENT VARIABLE
C MUX(M): THE AVERAGES OF THE INDEPENDENT VARIABLES
C OUTPUTS:
c BO: THE UNSCALED REGRESSI1ON CONSTANT
C B(M): THE UNSCALED REGRESSION COEFFICIENTS

INTEGER M,MAXORD, 1

DOUBLE PRECISION BEEO,BEE(MAXORD]),SYY, INFO(MAXORD,MAXORD) , MUY

DOUBLE PRECISION MUX(MAXORD),BO,B{(MAXORD)
C

DO 10 I=1i,M

B(I) = BEE(I) * DSQRT(SYY/INFO(I,I))
10 CONTINUE
BO = MUY
DO 20 I=1,M
BO = BO - B(I) * MUX(1)
20 CONTINUE

RETURN

END
C
c
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SUBROUTINE MAKREP(REPS,N,NREPS,XREPS,YREPS,X,Y)
MAKREP TRANSFORMS A ONE DIMENSIONAL ARRAY OF N INDEPENDENT VARIABLE
VALUES AND A TWO DIMENSIONAL ARRAY OF REPS REPLICATE MEASUREMENTS N
CORRESPONDING VALUES OF A DEPENDENT VARIABLE (EACH COLUMN CONTAINS
REPS REPLICATIONS OF THE TEST AND THUS CORRESPONDS TO A SINGLE VALUE
OF THE INDEPENDENT VARIABLE.) INTO A ONE DIMENSIONAL ARRAY CONTAINING
EACH OF THE INDEPENDENT VARIABLE VALUES REPS TIMES AND A ONE
DIMENSIONAL ARRAY CONTAINING ALL THE VALUES OF THE DEPENDENT VARIABLE
IN SUCH AN ORDER THAT EVERY DEPENDENT VARIABLE VALUE WITH INDEX 1
CORRESPONDS TO THE DEPDENDENT VARIABLE VALUE WITH INDEX I.
INPUTS:
REPS: THE NUMBER OF REPETITIONS OF EACH DETERMINATION.
N: THE NUMBER OF DETERMINATIONS.
NREPS: N * REPS. IT IS PASSED INSTEAD OF CALCULATED
TO SIMPLIFY ARRAY DIMENSIONING.
XREPS(N): THE N VALUES OF THE INDEPENDENT VARIABLE.
YREPS(N,REPS): THE REPS REPLICATIONS OF THE N DEPENDENT VARIABLE
DETERMINATIONS.
OUTPUTS:
X(NREPS): REPS COPIES OF EACH OF THE N VALUES OF
THE INDEPENDENT VARIABLE.
Y(NREPS): ALL THE DEPENDENT VARIABLE DATA IN A ONE
DIMENSIONAL ARRAY.
INTEGER N,REPS,NREPS,1,J, INDEX
DOUBLE PRECISION XREPS(N),YREPS(N,REPS),X(NREPS),Y(NREPS)

INDEX = 1
DO 20 J=1,N
DO 10 I=1,REPS
X{INDEX) = XREPS(J)
Y(INDEX) = YREPS(J,I)
INDEX = INDEX + 1
10 CONTINUE
20 CONTINUE
RETURN
END
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DOUBLE PRECISION FUNCTION PURERR(REPS,N,YREPS)
PURERR CALCULATES THE PURE ERROR IN A SET OF REPLICATED
DEPENDENT VARIABLE DATA.

INPUTS:
N: THE NUMBER OF VALUES OF THE INDEPENDENT VARIABLE.
REPS: THE NUMBER OF REPLICATIONS AT EACH VALUE OF THE
INDEPENDENT VARIABLE.
YREPS(N,REPS): THE DEPENDENT VARIABLE DATA.

OUTPUT:
PURERR CALCULATES THE VARIANCES OF THE REPLICATED
DEPENDENT VARIABLE DATA AT EACH VALUE OF THE
INDEPENDENT VARIABLE, SUMS THEM AND RETURNS THE RESULT.

INTEGER N,REPS,1,J
DOUBLE PRECISION YREPS(N,REPS),ERR,MUY

IF (REPS.LT.2) THEN

IT IS NOT POSSIBLE TO CALCULATE LACK OF FIT IF THERE IS NO
REPLICATION. THE HOST PROGRAM MUST RECOGNISE THAT -1.0 INDICATES
FAILURE TO DO SO.

ERR = -1.0D0

ELSE
ERR = 0.0D0O
DO 30 J=1,N
MUY = 0.0DO

DO 10 I=1,REPS
MUY = MUY + YREPS(J,I)
10 CONTINUE
MUY = MUY/REPS
DO 20 I=1,REPS
ERR = ERR + (YREPS(J,I) - MUY) * (YREPS(J,I) - MUY)
20 CONTINUE
30 CONTINUE
ENDIF
PURERR = ERR
RETURN
END
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SUBROUTINE POLYNO(MAXORD,X,N,ORDER,Y,POLY,MUP, 6 MUY ,MUU ,MUZ, INFO,
& COPY,CORR,SYY,SYP,SZU, IPVT,WORK, COND,BEEO, BEE,B0O,B)

POLYNO PERFORMS A POLYNOMIAL CURVE FIT

INPUTS:

Y(N): THE OBSERVATIONS OF THE DEPENDENT VARIABLE
X(N): THE OBSERVATIONS OF ONE INDEPENDENT VARIABLE
POLYNOC DOES NOT PERFORM MULTIVARIATE POLYNOMIAL
REGRESSION.
N: THE NUMBER OF OBSERVATIONS
ORDER: THE ORDER OF THE POLYNOMIAL FIT
MAXORD: THE MAXIMUM ORDER EXPECTED BY THE CALLING PROGRAM.

OUTPUTS:
POLY (N,MAXORD) :

INFO(ORDER, ORDER) :

COPY (ORDER,ORDER ) :
CORR (ORDER, ORDER) :
BO:

B(ORDER) :

MUP (ORDER) :

MUY:
MUU(ORDER) :

MUZ:

SYY:
SYP(ORDER) :

SZU{(ORDER) :

COND:

IPVT(ORDER) & WORK{(ORDER):

THE 1ST THROUGH THE MTH POWERS OF THE
INDEPENDENT VARIABLE IN AN N X MAXORD
ARRAY. MAXORD ALLOWS FLEXIBILITY.

THE VARIANCES OF THE POWERS OF THE
INDEPENDENT VARIABLE - IE THE INFORMATION
MATRIX.

A COPY OF INFO(ORDER,ORDER)} SCRAMBLED BY
DECOMP.

THE SCALED INFORMATION MATRIX IE THE
CORRELATION MATRIX.

THE REGRESSION CONSTANT.

THE REGRESSION COEFFICIENTS.

THE AVERAGES OF THE POWERS OF THE
INDEPENDENT VARIABLES.

THE AVERAGE OF THE DEPENDENT VARIABLE.
THE AVERAGES OF THE SCALED POWERS OF THE
INDEPENDENT VARIABLE.

THE AVERAGE OF THE SCALED DEPENDENT
VARIABLE.

THE VARIANCE OF THE DEPENDENT VARIABLE
THE COVARIANCE BETWEEN THE DEPENDENT
VARIABLE AND THE POWERS OF THE
INDEPENDENT VARTIABLE.

THE COVARIANCES BETWEEN THE SCALED
DEPENDENT VARIABLE AND THE SCALED

POWERS OF THE INDEPENDENT VARIABLE.

THE CONDITION OF CORR(ORDER,ORDER)
ARRAYS NEEDED BY DECOMP AND SOLVE.
USUALLY, THEY ARE USELESS.
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INTEGER MAXORD,ORDER,N,1,J,IPVT(MAXORD)

DOUBLE PRECISION X(N),Y(N),POLY(N,MAXORD), K MUP(MAXORD) , MUY
DOUBLE PRECISION MUU(MAXORD),MUZ, INFO(MAXORD,MAXORD)

DOUBLE PRECISION COPY(MAXORD,MAXORD),CORR(MAXORD,MAXORD),SYY
DOUBLE PRECISION SYP(MAXORD),SZU{MAXORD) ,WORK (MAXORD),L COND, BEEO
DOUBLE PRECISION BEE (MAXORD),BO,B(MAXORD)

FIRST, FILL IN POLY:

OO0

DO 30 I=1,N
POLY(I,1) = X(I)
DO 20 J=2,0RDER
POLY(I,J) = POLY(I,1) * POLY{(I, (J-1))
20 CONTINUE
30 CONTINUE
CALL VARIANCE (MAXORD,POLY,N,ORDER,Y,MUP,MUY, INFO,SYP,SYY)
CALL SCALE (MAXORD, INFO,SYP,SYY,ORDER,CORR,SZU,MUU,MUZ)
CALL GETB(MAXORD,CORR,COPY, IPVT,WORK, ORDER, SZU,MUU,MUZ, COND, BEEO,

& BEE)
CALL DESCALE (MAXORD,BEEO, BEE, ORDER, SYY, INFO,MUY,MUP,BO,B)
RETURN
END
c
C
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SUBROUTINE PANOVA(MAXORD,ORDER,N,REPS,XREPS,YREPS,X,Y,POLY,MUP,
&MUY ,MUU,MUZ, INFO, COPY, CORR, SYY,SYP,SZU, IPVT,WORK, COND, BEEO, BEE,
&B0,B,BS0,BS,VAR,DF,MS,NREPS, INFOLU, INFINV,BB,XX,BTO.BT,F)
C
C PANOVA PERFOURMS POLYNOMIAL ANALYSIS OF VARIANCE FOR ONE INDEPENDENT
C AND ONE DEPENDENT VARIABLE. IT DOES NOT PERFORM MULTIVARIATE
C ANALYSIS OF VARIANCE.

c

C INPUTS:

c MAXORD: THE LARGEST ORDER THE CALLING PROGRAM WILL CALL

C ORDER: THE CURRENT ORDER

C N: THE NUMBER OF DETERMINATIONS

c REPS: THE NUMBER OF REPLICATIONS OF EACH DETERMINATION

C XREPS(N): THE VALUES OF THE INDEPENDENT VARIABLE

C YREPS(N,REPS}: THE REPS REPLICATIONS OF THE N DETERMINATIONS OF

c THE DEPENDENT VARIABLE

C OUTPUTS:

c BO,B(MAXORD): THE REGRESSION COEFFICIENTS

C BSO,BS(MAXORD): THE STANDARD ERRORS OF THE REGRESSION COEFFICIENTS
C BTO,BT(MAXORD): THE T SIGNIFICANCE RATIOS OF THE REGRESSION

C COEFFICIENTS

C F: THE F RATIO FOR THE IMPROVEMENT DUE TO THE CURRENT
c ORDER

C

C

INTEGER N,1,J,MAXORD, IPVT(MAXORD),ORDER,REPS,DF(6) ,NREPS M
DOUBLE PRECISION XREPS(N),YREPS(N,REPS)

DOUBLE PRECISION X(NREPS),Y(NREPS),POLY(NREPS,MAXORD),MUP (MAXORD)
DOUBLE PRECISION MUY,MUU(MAXORD),MUZ, INFO(MAXORD,MAXORD)

DOUBLE PRECISION COPY(MAXORD,MAXORD),CORR(MAXORD,MAXORD),SYY
DOUBLE PRECISION SYP{MAXORD),SZU{(MAXORD)

DOUBLE PRECISION WORK(MAXORD),COND,BEEO, BEE(MAXORD),B0O,B(MAXORD)
DOUBLE PRECISION BSO,BS(MAXORD),VAR(6)

DOUBLE PRECISION MS(6),PURERR, INFOLU(MAXORD,MAXORD)

DOUBLE PRECISION INFINV(MAXORD,MAXORD),BB(MAXORD),XX(MAXORD)
DOUBLE PRECISION BTO,F,OLD,BT(MAXORD)
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IF (VAR(1).LT.0.0D0) THEN
OLD = -1.0D0
ELSE
OLD = VAR(1)
END IF
IF THE CALLING PROGRAM HAS USED PANOVA BEFORE, VAR(1) CONTAINS THE
LAST VALUE OF THE VARIANCE EXPLAINED BY REGRESSION. IT IS ASSUMED
IN THAT CASE THAT THE LAST CASE WAS FOR DEGREE 1 LESS THAN THIS CALL.
HENCE, THE IMPROVEMENT IN VARIANCE EXPLAINED WILL HAVE DEGREE OF
FREEDOM OF 1.
IF THE CALLING PROGRAM HAS STORED -1 IN VAR(1), THE CALCULATIONS
BASED ON IMPROVEMENT IN VARIANCE EXPLAINED WILL BE SUPRESSED.
CALL MAKREP(REPS,N,NREPS,XREPS, YREPS,X,Y)
IF (ORDER.GT.(N-1)) THEN

M = N-1
ELSE

M = ORDER
END IF

N POINTS ARE NECESSARY TO FIT AN (N-1)TH ORDER POLYNOMIAL.
USING M IN THE POLYNO CALL IS IMPORTANT BECAUSE IT ALLOWS
PRESERVATION OF THE VALUE OF ORDER IN THE MAIN PROGRAM.

CALL POLYNO(MAXORD,X,NREPS,M,Y,POLY,MUP,KMUY,MUU,MUZ, INFO,COPY,

&CORR, SYY,SYP,SZU, IPVT,WORK, COND, BEEO, BEE,BO,B)

CALL INVERT(MAXORD,M, INFO, INFOLU, INFINV,WORK, BB, XX.IPVT)
NOW, PANOVA HAS EVERYTHING IT NEEDS FOR THE CALCULATIONS.

VAR(2) = PURERR(REPS,N,YREPS)

IF (VAR(2).LT.0.0D0) VAR(3) = -1.0DO
IT IS NOT POSSIBLE TO CALCULATE LACK OF FIT IF THERE IS NO
REPLICATION. PURERR WILL RETURN -1.0D0 IF REPS <= 1. NONE-THE-
LESS, THE REST OF PANOVA MAY BE POSSIBLE.
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VAR(1) = 0.0DO
DO 30 I = 1.,M
VAR(1) = VAR(1) + B(I) * SYP(I1)
30 CONTINUE

VAR(4) = SYY - VAR(1)
VAR(3) = VAR(4) - VAR(2)
VAR(5) = 8YY
DF(1) = M
DF(2) = (REPS-1) * N
DF(4) = REPS * N - M - 1
DF(3) = DF(4) - DF(2)
DF(5) = REPS * N - 1
IF (OLD.LT.0.0D0O) THEN
VAR(6) = -1.0D0
DF(6) = -1
ELSE
VAR(6) = VAR(1) - OLD
DF(6) = 1
END IF
po 35 I=1,5

IF (DF(I).EQ.0.0D0) DF(I) = -1.0D0
35 CONTINUE
C ASSUMING OF COURSE THAT THE LAST CALCULATION WAS FOR ORDER = M - 1.
DO 40 I=1,6
IF (DF(I).LE.G.OR.VAR(I).LT.0.0DO) THEN
MS(I) = -1.0D0
ELSE
MS(1)
END IF
40 CONTINUE
F = MS(6)/MS(4)
DO 50 I=1,M
BS(I) = DSQRT(MS(4) * INFINV(I,I))

VAR(I) / DF(I)
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c
C MS(4) 1S AN ESTIMATE OF THE RESIDUAL VARIANCE SQUARED. IT IS ALSO
C USED IN THE ESTIMATION OF BSO.
50 CONTINUE
BSO = 1 / NREPS
DO 70 J=1.M
DO 60 I=1 .M
BSO = BSO + INFINV(I,J) * MUP(I) * MUP(J)
60 CONTINUE
70 CONTINUE
BSO = BSO * MS(4)

BS0 = DSQRT(BSO)
BTO = DABS(BO/BS0)
DO 80 1=1,M

BT(I) = DABS(B(I)/BS(I})
80 CONTINUE
RETURN
END

C
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B.4.4 Subroutines Used to Display Results or Retrieve Data
B.4.4

.1 DISPLA

B e e e

SUBROUTINE DISPLA(MAXORD,ORDER, BO,B,BS0O,BS,VAR,DF,MS,BTO,BT,F)
C DISPLA PRODUCES A DISPLAY OF THE RESULTS OF POLYNOMIAL ANALYSIS

C OF VARIANCE.

F:

C INPUTS:

C ORDER:
C

C BO:
C B(MAXORD) :
C BSO:
C BS (MAXORD } :
C BTO:
C BT (MAXORD) :
C VAR(1):
C VAR(2):
C

C

C VAR(3}:
C

Cc

C VAR(4):
C VAR(5):
C VAR(6):
Cc

C DF(1..6):
C MS{1..6):
C

C

THE ORDER POLYNOMIAL WHICH WAS FOUND.

DEPENDENT VARIABLE.

THE REGRESSION CONSTANTS.

THE REGRESSION COEFFICIENTS.

THE STANDARD ERROR OF THE REGRESSION CONSTANT.

THE STANDARD ERRORS OF THE REGRESSION COEFFICIENTS.
THE TWO SIDED T RATIO FOR THE S1GNIFICANCE OF BO.
THE TWO SIDED T RATIOS FOR THE SIGNIFICANCE OF B,
VARIANCE EXPLAINED BY THE REGRESSION,

THE PURE ERROR IN DETERMINATION OF THE INDEPENDENT
VARIABLE. IT IS SET TO -1 IF IT WAS IMPOSSIBLE TO
CALCULATE IT AND IS THEN NOT DISPLAYED.

VARIANCE CAUSED BY LACK OF F1T. 1IT IS SET TO -1 IF
IT IS IMPOSSIBLE TO CALCULATE IT AND IS THEN NOT
DISPLAYED.

VARIANCE ABOUT REGRESSION.

TOTAL VARIANCE.

IMPROVEMENT IN VARIANCE EXPLAINED DUE TO THIS
ORDER.

DEGREES OF FREEDOM IN VARIANCES ABOVE.

MEAN SQUARES OF VARIANCES ABOVE.

F RAITIO: MS(6) / MS(4). OBVIOUSLY THE DEGREES OF
FREEDOM ARE: DF(6) AND DF(4)
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C
INTEGER MAXORD,ORDER,DF(6)
DOUBLE PRECISION BO,B(MAXORD),BSO,BS(MAXORD),VAR(6),MS(6)
DOUBLE PRECISION BTO,BT(MAXORD},F

c

WRITE(6,100)
CALL EQN(MAXORD,ORDER,BO,B)
CALL ANVTBL{VAR,DF.MS,F,ORDER)
CALL BSETBL (MAXORD,ORDER,BO,B,BS0,BS,BT0,BT,DF)
WRITE(6,100)
C ANVTBL FORMS AN ANALYSIS OF VARIANCE TABLE

RETURN
100 FORMAT(""}
END
C
c
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SUBROUTINE ANVTBL(VAR,DF,MS,F,ORDER)

C ANVTBL FORMS AN ANALYSIS OF VARIANCE TABLE
INTEGER I,DF{(6),0RDER
DOUBLE PRECISION VAR(6),MS{6).F

CHARACTER TITLES(6)*24,FRAMES(5)*67

FRAMES (1)

FRAMES (4)

& MEAN
FRAMES(5)

& SQUARE
TITLES(1)
TITLES(2)
TITLES(3)
TITLES(4)
TITLES(5)
TITLES(6)

|
{
|
!
I
!

DUE TO REGRESSION
PURE ERROR
LACK OF FIT
ABOUT REGRESSION
TOTAL
DUE TO THIS ORDER

|
|
|
|
|
|

[

SQUARES

!

!

DEGREES

OF FREEDOM
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100
110
120
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WRITE(6,110) FRAMES(1)
WRITE(6,110) FRAMES(4)
WRITE(6,110) FRAMES(5)
WRITE(6,110) FRAMES(2)
DO 10 I=1,6
IF ((VAR(2).LT.0.0DO).AND.(I.EQ.2)) I=I+2
IF (VAR(I).LT.0.0D0) GOTO 10
WRITE(6,100) TITLES(1),VAR(I),DF(I),MS(I)
IF (I1.EQ.6.0R.(I.EQ.5.AND.VAR(6).LT.0.0D0)) GOTO 10
WRITE(6,110) FRAMES(2)
CONTINUE
WRITE(6,110) FRAMES(1)
IF (VAR(6).GE.0.0D0) THEN
WRITE(6,120) ORDER,F
WRITE(6,110) FRAMES(1)
WRITE(6,130) DF(6),DF(4)
WRITE(6,110) FRAMES(1)
END 1F
RETURN
FORMAT(A24,F12.4," | ",18," | ",F12.4," | ")
FORMAT (A67)
FORMAT(" | F RATIO FOR IMPROVEMENT DUE TO ORDER “,12.,":

",E11.5,

(@]

130

&8X,"|")
FORMAT(" | DEGREES OF FREEDOM: ",I4," & ",14,29X,"|")
END
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SUBROUTINE EQN(MAXORD,ORDER,BO0,B)
C EQN D1SPLAYS THE REGRESSION EQUATION.

INTEGER MAXORD,ORD,ORDER,I,LAST

DOUBLE PRECISION BO,B{MAXORD)

ORD = ORDER
C THE LAST LINE ALLOWS PRESERVATION OF THE VALUE OF ORDER.
IF (ORD.LE.O) GOTO 90
IF (ORD.GT.4) THEN
LAST = 4
ORD = ORD - 4
WRITE(6,100) (I,I=2,4)
WRITE(6,110) BO,(B(I),I=1,4)
ELSE
WRITE(6,100) (I,I=2,0RD)
WRITE(6,110) BO,(B(I),I=1,0RD)
ORD = ORD - 4
END IF
10 IF (ORD.LE.O) GOTO 90
IF (ORD.GT.4) THEN
WRITE(6,120) (I,I=(LAST+1), (LAST+4)})
WRITE(6,130) (B{(I),I=(LAST+1),(LAST+4))
ORD = ORD - 4
LAST = LAST + 4
ELSE
WRITE(6,120) (I,I=(LAST+1),(LAST+ORD)})
WRITE(6,130) (B{I),I=(LAST+1),(LAST+ORD))
ORD = -1
END IF
GOTO 10
90 RETURN
100 FORMAT(2X,""",29X,4(14X,11))
110 FORMAT(SP,2X,"Y = ",E11.5,X,4(E11.5," X "))
120 FORMAT(5X,4(14X,11))
130 FORMAT(SP,6X,4(E11.5," X "))
END
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B.4.4.4 BSETBL

SUBROUTINE BSETBL (MAXORD,ORDER,BO,B,BSO,BS,BTO,BT,DF)
C BSETBL DISPLAYS THE REGRESSION CONSTANT, THE REGRESSION COEFFICIENTS,
C THEIR STANDARD ERRORS AND T RATIOS.
INTEGER MAXORD,ORD,ORDER, I,LAST,DF(6)
DOUBLE PRECISION BO,B(MAXORD),BSO,BS(MAXORD),BTO,BT(MAXORD)
CHARACTER TITLES(7)*24,FRAMES(2)*14

c
FRAMES(1) = "———c—mm—mmemm "
FRAMES (2) = "-—-——-m—mc-mo |
TITLES(1) = " —m-mmmmmmmmmmmmmme e "
TITLES(2) = " | COEFFICIENT E
TITLES(3) = " | VALUE "
TITLES(4) = " | STANDARD ERROR |"
TITLES(5) = " | TWO SIDED T RATIO |"
TITLES(6) = " | DEGREES OF FREEDOM: "
TITLES(7) = " |--——————mmmmmmmmo B
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ORD = ORDER
C THE LAST LINE ALLOWS PRESERVATION OF THE VALUE OF ORDER.

IF (ORD.LE.O) GOTO 90

IF (ORD.GT.2) THEN
LAST = 2
ORD = ORD - 2
WRITE(6,100)
WRITE(6,110) TITLES(1), (FRAMES(1),I=1,3)
WRITE(6,120) TITLES(2),(I.I=0,2)
WRITE(6,110) TITLES(7),(FRAMES(2),I=1,3)
WRITE(6,130) TITLES(3),B0, (B(I),I=1,2)
WRITE(6,110) TITLES(7), (FRAMES(2),1=1,3)
WRIVE(6,130) TITLES(4),BSO, (BS(I),I=1,2)
WRITE(6,110) TITLES(7),(FRAMES(2),1=1,3)
WRITE(6,130) TITLES(5),BTO, (BT(I),I=1,2)
WRITE(6,110) TITLES(1), (FRAMES(1),1=1,3)
WRITE(6,140) TITLES(6),DF(4)
WRITE(6,150) TITLES(1),FRAMES(1)

ELSE
WRITE(6,100)
WRITE(6,110) TITLES(1), (FRAMES(1),1=1, (ORD+1))
WRITE(6,120) TITLES(2),(I,I=0,0RD)
WRITE(6,110) TITLES(7), (FRAMES(2),I=1, (ORD+1))
WRITE(6,130) TITLES(3),BO, (B(I),I=1,0RD)
WRITE(6,110) TITLES(7),(FRAMES(2),I=1, (ORD+1))
WRITE(6,130) TITLES(4),BS0, (BS(I),I=1,0RD)
WRITE(6,110) TITLES(7),(FRAMES(2),I=1, (ORD+1))
WRITE(6,130) TITLES(5),BTO, (BT(I),I=1,0RD)
WRITE(6,110) TITLES(1),(FRAMES{1),1=1, (ORD+1))
WRITE(6,140) TITLES(6),DF(4)
WRITE(6,150) TITLES(1),FRAMES(1)
ORD = -1

END IF
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10 IF (ORD.LE.Q) GOTO 90
IF (ORD.GT.3} THEN

90

100
110
120
130
140
150

WRITE(6,100)
WRITE(6,110)
WRITE(6,120)
WRITE(6,110)
WRITE(6,130)
WRITE(6,110)
WRITE(6,130)
WRITE(6,110)
WRITE(6,130)
WRITE{(6,110)
WRITE(6,140)
WRITE(6,150)

OrD = ORD - 3

TITLES(1), (FRAMES(1),1I=1,3)
TITLES(2),(I,I=(LAST+1),(LAST+3))
TITLES(7), (FRAMES(2),I=1,3)
TITLES(3),(B(I),I=(LAST+1),(LAST+3))
TITLES(7}.,(FRAMES(2),1=1,3)
TITLES(4),(BS(I),I=(LAST+1),(LAST+3)) .,
TITLES(7), (FRAMES(2),1=1,3)
TITLES(S5),(BT(I1),I=(LAST+1), (LAST+3))
TITLES(1), (FRAMES(1),1I=1,3)
TITLES(6),DF(4)

TITLES(1),FRAMES(1)

LAST = LAST + 3

ELSE
WRITE(6,100)
WRITE(6,110)
WRITE(6,120)
WRITE(6,110)
WRITE(6,130)
WRITE(6,110)
WRITE(6,130)
WRITE(6,110)
WRITE(6,130)
WRITE(6,110)
WRITE(6,140)
WRITE(6,150)
ORD = -1

END IF

GOTO 10

RETURN

FORMAT ()

TITLES(1), (FRAMES(1),I=1,0RD)
TITLES(2),(I,I=(LAST+1), (LAST+ORD))
TITLES(7), (FRAMES(2),I=1,0RD)
TITLES(3),(B(1),I=(LAST+1), (LAST+ORD))
TITLES(7), (FRAMES(2),1=1,0RD)
TITLES(4),(BS(I),I=(LAST+1), (LAST+ORD))
TITLES(7),(FRAMES(2),1=1,0RD)
TITLES(5), (BT(I),I=(LAST+1},{LAST+ORD))
TITLES(1), (FRAMES(1),I=1,0RD)
TITLES(6),DF(4)

TITLES(1),FRAMES(1)

FORMAT (A24,3A14)
FORMAT (A24,3(6X,"B",11,5X,"1"))

FORMAT (A24,3("

",Ell.s," ,n))

FORMAT (A24,4X,15,4X"|")

FORMAT (A24,A14)

END

413



414

SUBROUTINE PUTXY(N,REPS,XREPS,YREPS)

c
C PUTXY WRITES THE OUTPUT DATA TO THE STANDARD OUTPUT OR A FILE
C IF A REDIRECT HAS BEEN USED.
C
INTEGER 1,J,N,REPS
DOUBLE PRECISION XREPS(N),YREPS(N,REPS)
C
DO 10 I=1,N
WRITE(6,100) XREPS(1), (YREPS(I,J),J=1,REPS)
10 CONTINUE
RETURN
100 FORMAT(” ",15(F11.4,", "})
END
C
C
c

SUBROUTINE GETXY(N,REPS,XREPS, YREPS}

C
C GETXY READS THE INPUT DATA FROM THE STANDARD INPUT OR A F1LE
C IF A REDIRECT HAS BEEN USED.
c
INTEGER I,J,N,REPS
DOUBLE PRECISION XREPS(N),YREPS{N,REPS)
C
DO 10 I=1,N
READ(5,100) XREPS(I),{YREPS(I,J),J=1,REPS)
10 CONTINUE
RETURN
100 KFORMAT(15F13.4)
END
C
c
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cRoNeoNeNoNeNe]

(o}

SUBROUTINE CALC(MAXORD,ORDER,N,REPS,XREPS,YREPS,B0O,B)

CALC DISPLAYS THE VALUES OF THE INDEPENDENT VARIABLE,

THE CORRESPONDING VALUES OF THE AVERAGES OF THE DEPENDENT VARIABLE
AND THE CORRESPONDING PREDICTIONS FOR THE VALUES OF THE DEPENDENT
VARIABLE BASED ON THE POLYNOMIAL CURVE FIT.

70

80

INTEGER MAXORD,ORDER,N,REPS,I,J
DOUBLE PRECISION XREPS(N),YREPS(N,REPS),B0,B(MAXORD),AVG, CALCY

DO 90 1I=1,N

AVG = 0.0D0
DO 70 J=1,REPS
AVG = AVG + YREPS(I,J)
CONTINUE
AVG = AVG / REPS
CALCY = 0.0D0
DO 80 J=0, (ORDER-1)
CALCY = XREPS(I) * (CALCY + B(ORDER-J))
CONTINUE
CALCY = CALCY + BO
WRITE(6,100) XREPS{(1),CALCY.AVG

90 CONTINUE

RETURN
100 FORMAT("X: ",F12.4," YHAT: ",F12.4," YAVG:
END

",F12.4)



APPENDIX C

THE AMPLIFIER-POWER SUPPLY

C.1 Design of the Amplifier

The amplifier-power supply used for the experiment in this

dissertation was designed and built by the 0OGC electronics shop.

response is reported and discussed in section 3.1.4 herein.
Figure C-1 is a schematic of the amplifier-power supply design.
Figure C-2 is a photograph of the amplifier-power supply.
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Figure C-1. Schematic of the Amplifier-Power Supply
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C-2.

Photograph of the Amplifier-Power Supply

418



419

BIOGRAPHICAL NOTE

The author was born and reared in White Plains, New York, where
he attended White Plains High School. He graduated with an academic
diploma in 1965. He then entered Case Institute of Technology in
Cleveland, Ohio, where he received a B.S. in Metallurgy in January
1969. After graduating from college, the author enlisted in the
United States Army. From January 1970 to November 1971 he served in
the 11 Corps region of South Vietnam as a combat construction
apprentice, combat demolitions apprentice, combat demolitions
specialist, and soils analyst. He received the Bronze Star for
distinguished service while serving with deita company of the Fourth
Engineer Batallion. I[n January 1972, the author accepted a position
with Titech International Inc. in Pomona, California where he served
as a chemist and later as a project metallurgist until April 1975. He
left Titech to take a position as a parts engineer with Precision
Castparts Corp. in Milwaukie, Oregon. In June 1981, the author
accepted a research fellowship in Materials Science at the (Oregon
Graduate Center. He received his M.S. in Materials Science in October
1987. He completed all course work and examinations for the degree of
Ph.D. and also this dissertation, thus satisfying all the requirements
for a Ph.D. in Materials Science.




	198710.stevens.ward to p. 68.pdf
	198710.stevens.ward to p. 95.pdf
	198710.stevens.ward to p. 156.pdf
	198710.stevens.ward to p. 227.pdf
	198710.stevens.ward to p. 244.pdf
	198710.stevens.ward to p. 333.pdf
	198710.stevens.ward to p. 419.pdf



