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Abstract

Contained within this work, I have investigated the function of predicted ATPase
motifs in S. cerevisiaze MutLa (Mlh1p-Pmslp). My results suggest that yeast MutLo has
structural and functional properties consistent with other members of a recently identified
family of ATPases. Specifically, my genetic results suggest that both the ATPase motifs
of Mlhlp and Pms1p are absolutely required for MMR in vivo. In addition, biochemical
and in vivo findings suggest that ATP-binding induces conformational changes in MutLo
that are associated with heterodimerization between the NH,-termini of Mihlp and
Pmslp. Surprisingly, results of my in vivo studies suggest differential requirements for
Mlhlp and Pmslp ATPase motifs during MMR. Furthermore, 1 report results showing
both physical and genetic interactions between EXQ! and the components of MutLa,
Mihlp and Pmslp. The genetic iriteraction results suggest that one function of the
MutLo ATPase domains is to direct Exolp and other exonucleases during mutation
avoidance. Finally, my results are consistent with Exolp having roles in both MMR-

dependent and MMR-independent mutation avoidance pathways.
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CHAPTER 1: Background and Significance

Replication of the genome in prokaryotes and eukaryotes is a high fidelity
process. Three conserved serial mechanisms act to decrease mismatches arising during
replication: (i) Watson-Crick base pairing; (ii) 3'-5' exonuclease proofreading and (iii)
DNA mismatch repair (MMR) (Schaaper, 1993). Phenotypes of MMR deficiency are
diverse, ranging from increased spontaneous mutation rates to cancer predisposition
(Buermeyer, et al., 1999; Harfe and Jinks-Robertson, 2000b). Mutations and epigenetic
modifications of the human MMR genes are associated with three types of cancer
predisposition syndromes, hereditary non-polyposis colorectal cancer (HNPCC), Muir-
Torre syndrome and Turcot syndrome, as well as some sporadic forms of colon cancer
(Buermeyer, et al., 1999; Kolodner and Marsischky, 1999). Functions of MMR can be
dissected using facile model systems such as Escherichia coli and Saccharomyces
cerevisiae (Jiricny, 1998; Kolodner and Marsischky, 1999). As MMR is highly
conserved, studies using yeast and bacteria have accelerated our understanding of MMR

in mice and human cells.

E. coli MMR: Mutation Avoidance

Genes involved in MMR were first isolated in screens for spontaneous mutators
or “mut” mutants in E. coli. (Siegel and Bryson, 1967; Liberfarb and Bryson, 1970;
Siegel and Kamel, 1974; Siegel and Ivers, 1975). All known genes involved in E. coli
MMR have since been identified and used to reconstitute a MMR reaction in vitro with

purified gene products (Modrich and Lahue, 1996). A primary role of MMR is to correct



base-base mismaiches and small single-strand loops or insertion/deletion loops (IDLs)
resulting from DNA replication, DNA damage, and recombination (Modrich and Lahue,
1996; Jiricny, 1998; Buermeyer, et al., 1999; Kolodner and Marsischky, 1999). There are
three central components of this pathway, MutS, MutL and MutH. MutS homodimers are
ATPases (Haber and Walker, 1991) which have an approximately 15-fold selectivity for
binding double—stranded DNAs (dsDNAs) containing a variety of different mismatches
over homoduplex substrates (Jiricny, et al., 1988). Recent crystal structural studies have
outlined important domains required for mismatch binding and demonstrate that only one
of the MutS protomers makes selective contacts with the mismatch (Lamers, et al., 2000;
Obmolova, et al., 2000). MutL homodimers are weak ATPases compared to MutS and
function to couple mismatch binding by MutS homodimers to downstream components
(Sancar and Hearst, 1993; Ban and Yang, 1998a; Ban and Yang, 1998b; Spampinato and
Modrich, 2000; Junop, et al., 2001). Recent studies suggest that the coordination of
multiple downstream events, such as nicking and excision of the nascent strand, are
facilitated by the intrinsic ATPase activities of the MutL dimer (Ban and Yang, 1998a;
Spampinato and Modrich, 2000; Junop, et al., 2001). MutH is a monomeric
endonuclease that is activated by the MutS/MutL complex and MutL ATP-hydrolysis to
cleave at hemi-methylated GATC sites (Ban and Yang, 1998a; Hall and Matson, 1999;
Spampinato and Modrich, 2000; Junop, et al., 2001). E.coli MMR is thought to proceed
by the following steps (Figure 1-1). MutS homodimer binds the mismatch, followed by
the formation of an ATP-binding dependent ternary complex with a homodimer of Mutl..
Next, MutH is stimulated by the ATP-dependent MutS/MutL ternary complex to nick the

un-methylated strand at the nearest hemi-methylated GATC site (Grilley, et al., 1990). In
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E. coli, DNA methylation of the newly synthesized strand lags behind replication on both
the leading and lagging strand, with the lagging strand taking twice as long to
remethylate (Lyons and Schendel, 1984; Stancheva, et al., 1999). Therefore, the transient
un-methylated state of the newly replicated strand provides the “strand discrimination
signal” allowing the MMR machinery to differentiate between parental and daughter
strands. After incision, UvrD helicase is loaded onto the nick in a MutS/MutL-dependent
manner and any one of four exonulceases excise the nascent strand some distance past the
mismatch. The in vitro system corrects mismatches with strand signals either 5' or 3' to
the mismatch, indicating that in vitro MMR is bi-directional (Grilley, et al., 1990; Dao
and Modrich, 1998; Hall, et al., 1998; Viswanathan and Lovett, 1998; Yamaguchi, et al.,
1998; Mechanic, et al., 2000). The resultant single strand gap [up to 1 kilobase (kb)] is

filled in by DNA polymerase III and the nick sealed by DNA ligase (Modrich and Lahue,

1996).

E. coli MMR: Suppression of Homeologous Recombination

In E. coli, certain MMR proteins prevent recombination between similar, but not
identical sequences, so called homeologous recombination. E. coli RecBCD dependent
recombination occurs 240-fold less between substrates that are 89% identical than
between substrates that are 100% identical, but is only 9-fold decreased in a muzS strain
(Shen and Huang, 1989). Furthermore, MMR mutS, L H and U mutants all result in an
increase in conjugation between E. coli and Salmonella typhimurium which differ by
16% at the sequence level (Rayssiguier, et al., 1989; Zahrt and Maloy, 1997). The

mechanism for this MMR-dependent barrier to homeologous recombination is



hypothesized to involve disruption of recombination intermediates near sites of
heteroduplex formation via two pathways, a MutH-independent early step and a MutH-

dependent late step (Zahrt and Maloy, 1997; Stambuk and Radman, 1998).

E. coli MMR: Transcription-coupled Repair

Recently, E. coli MMR proteins have been shown to be required for transcription-
coupled repair (TCR) of cyclobutane pyrimidine dimers arising from ultraviolet (UV)
light damage. UV damage to the transcribed DNA strand is repaired in a preferential
manner by TCR and appears to be dependent on MutL and MutS. The mechanistic basis

for MutL and MutS involvement in TCR is unknown (Mellon and Champe, 1996).

S. cerevisiae MMR: MutS and MutL. Homologues

In the yeast S. cerevisiae, six MutS homologues (MSH) and four MutL
homologues (MLH) have been identified (Table 1-1). The diverse functions of each of
these homologues in MMR-related processes will be discussed in detail below and are

summarized in Figure [-2.

S. cerevisiae MMR: Mutation Avoidance

The mutation avoidance functions of yeast MMR involves multiple MutS and
MutL homologues with partially overlapping duties. Nonetheless, eukaryotic MMR
appears to operate mechanistically in a similar fashion to their E. coli homologues as
described above (Jiricny, 1998; Kolodner and Marsischky, 1999). For example, a

heterodimer of Msh2p and Msh6p, MutSc, appears to be involved primarily in



Table 1-1. MutS and MutL. Homologues.

E. coli S. cerevisiae Eukaryotic Functions
MutS MSH] Mutation avoidance in mitochondria.
MSH?2 Forms heterodimer with Msh3p or Mshép to:

repair mismatches formed during replication and recombination:
remove non-homologous tails during single-strand annealing (only
Msh2p-Msh3p);

suppression of homeologous recombination; and required for
transcription-coupled repair.

MSH3 Forms MutSp heterodimer with Msh2p (see above).
MSH4 Forms heterodimer with Msh5p to promote crossing-over during
meiosis.
MSHS Forms heterodimer with Msh4p to promote crossing-over during
meiosis.
MSH6 Forms MutSa heterodimer with Msh2p (see above).
MutL PMS1 Forms MutLo heterodimer with Mlhlp to:

repair mismatches formed during replication and recombination:
suppression of homeologous recombination; and
required for transcription-coupled repair.

MLH] Forms heterodimer with Pms1p, Mlh2p or Mlh3p and is required
for all functions of PMSI, MLH?2 and MLH3 .

MLH2 Forms heterodimer with Mlhl1p to:
repair mismatches formed during recombination.

MLH3 Forms MutLp heterodimer with Mlh1p to:

repair a small fraction of mismatches formed during replication and
recombination; and promote crossing-over during meiosis.
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recognizing base-base mismatches and +1 IDL heterologies (Alani, et al., 1995;
Taccarino, et al., 1996, 1995 #1126; Johnson, et al., 1996b; Marsischky, et al., 1996:
Alani, et al., 1997; Studamire, et al., 1998; Bowers, et al., 1999; Marsischky and
Kolodner, 1999), whereas, a Msh2p-Msh3p heterodimer, MutSB, recognizes IDLs of 1-
14 bases (Johnson, et al., 1996b; Marsischky, et al., 1996) (Figure 1-2). Similar to £. coli
MutS both MutSo and MutSB complexes are also ATPases (Alani, et al., 1997;
Studamire, et al., 1998) and only one protomer of each heterodimer is involved in
mismatch recognition (Bowers, et al., 1999).

The major MMR MutL activity, MutLa, in yeast is a heterodimer of Mlh1 p and
PmsIp (Prolla, et al., 1994a; Prolla, et al., 1994b; Habraken, et al., 1997; Pang, et al.,
1997). An additional yeast MutL activity, MutLB, comprised of Mihlp and Mlh3p,
appears to act in conjunction with MutSB to correct a small fraction of IDLs (Flores-
Rozas and Kolodner, 1998) (Figure 1-2). By analogy to E. coli MutL, MutLo, and MutLp
arc most likely necessary to couple the mismatch binding activity of the MutSo/p
complexes to downstream effectors in the MMR pathway. Although clearly crucial for
MMR, little information has existed on the function of the major MutL activity in yeast,
MutLa. Previous studies with yeast have defined COOH-terminal domains as important
for Mlh1lp and Pms1p interaction (Pang, et al., 1997) and conserved NH,-terminal
residues as necessary for MMR activity (Pang, et al., 1997; Shcherbakova and Kunkel,
1999). However, detailed information on how MutLa couples mismatch binding to
downstream steps has not been available. Furthermore, strong sequence similarity

between the NH,-terminus of eukaryotic MLH genes and a novel ATPase fold have



recently been reported (Bergerat, et al., 1997), yet no studies have been conducted to
directly assess the function that these putative ATPase domains play in MMR.

As with other eukaryotes studied, yeast have no known sequence or structural
MutH homologue, partly exemplifying the lack of insight into the mechanism of strand
discrimination during eukaryotic MMR. However, one candidate for involvement in
strand discrimination is proliferating cell nuclear antigen (PCNA) protein. Physical and
genetic studies suggest several possible roles for PCNA protein during the early steps of
MMR and during resynthesis of the excision patch (Johnson, et al., 1996a; Umar, et al.,
1996; Chen, et al., 1999; Flores-Rozas, et al., 2000; Bowers, et al., 2001). PCNA protein
also serves as a processivity factor for polymerase § and ¢ and therefore may physically
direct MMR towards the nascent strand (Jiricny, 1998; Buermeyer, ct al., 1999).

One other likely MMR candidate protein is Exolp, a 5' -3' dsDNA exonuclease,
identified from two independent yeast two-hybrid screens using Msh2p or Mlhlp as baits
(TishkofT, et al., 1997a; Shelley, 1999). In addition, genetic studies suggest that Exolp
performs a catalytic role in MutSa-dependent mutation avoidance (Sokolsky and Alani,
2000). As E. coli MMR apparently can utilize any one of four exonucleases
(Viswanathan and Lovett, 1998), multiple eukaryotic "MMR" exonucleases are likely to
exist. Other potential MMR exonucleases are Rad27p and the proofreading functions of
polymerase & and ¢, although more studies are necessary to clarify the roles of these
proteins during the excision step of yeast MMR (Johnson, et al., 1995: Tran, et al., 1999).
Figure 1-3 incorporates all known and putative eukaryotic protein MMR components in a

framework based in part on bacterial MMR (Figure 1-1).
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S. cerevisiae MMR: Meiosis

MMR was first proposed by Robin Holliday to explain unexpected observations
from fungal meiotic recombination (Holliday, 1964). Some fungi, Ascobulus immersus
and Neurospora crassa, produce an ascus that contains all meiotic products in eight
(versus four for S. cerevisiae) separate spores allowing for simple tracking of
recombination events following ascus dissection. Given a heterozygous strain for marker
A, the expected Mendelian segregation is 4A:4a. However, in a fraction of dissected asci
there will be segregations that result in 6A:2a or 2A:6a patterns, also known as non-
reciprocal gene transfers or gene conversions. Oqcurring even less frequently than gene
conversions are SA:3a or 3A:5a patterns, called post-meiotic segregations (PMS). The
frequency of "non-Mendelian" segregations, e.g. 6:2 or 5:3, varies depending on the
organism and genetic background. S. cerevisiae tetrads are described using the eight-
spore nomenclature, for example, a tetrad with the pattern of 1A spore colony, 2a spore
colonies and 1 sectored A/a spore colony would be designated as a 3A:5a pattern or PMS.
Holliday suggested that gene conversion events (6A:2a or 2A:6a) were the result of
heteroduplexes formed during recombination and corrected by a MMR system.
Conversely, PMS events could be explained by lack of heteroduplex repair (Figure 1-4)
(Holliday, 1964; Paques and Haber, 1999). As predicted, loss of MMR, specifically loss
of MLHI, PMSI, or MSH2, results in increases in PMS events and a decrease in gene
conversion events (Williamson, et al., 1985; Reenan and Kolodner, 1992; Alani, et al.,
1994; Prolla, et al., 1994a). A more subtle role for MLH? during correction of meiotic

heteroduplexes involving parity or ratios of 5A:3a/6A:2a and 3A:5a/2A:6a has been

suggested (Wang, et al., 1999).

11
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A unique role for MutLp (Mlh1p/Mlh3p) and the Msh4p-Msh5p complex in
crossing-over events during meiosis has been established by several studies in yeast.
Epistasis analysis indicates that MLH/ and MSH4 operate within the same pathway for
crossovers (Ross-Macdonald and Roeder, 1994; Hollingsworth, et al., 1995; Pochart, et
al., 1997; Wang, et al., 1999). Three recent studies have also implicated EXO] in this
MLHI/MLH3/MSH4/MSHS pathway for crossing-over (Khazanehdari and Borts, 2000;
Kirkpatrick, et al., 2000; Tsubouchi and Ogawa, 2000). The role of MMR proteins in
crossing-over during meiosis are unkown.

Spore viability of dissected yeast tetrads is negatively affected by MMR
deficiency. Two processes appear to be at work: (i) increased mutation rates result in the
accumulation of recessive lethal mutations in diploid yeast (Prolla, et al., 1994a); and (ii)
increased non-disjunction at meiosis I as a result of a decrease in crossover events (Ross-
Macdonald and Roeder, 1994; Hollingsworth, et al., 1995; Pochart, et al., 1997; Wang, et
al., 1999). From Figure 1-2, it is apparent that MLHI and MLH3 mutation can affect both
these processes, while mutations in the other MLH and MSH genes should affect spore
viability to a lesser degree. In addition, recent reports suggest that EXO/ also has non-
overlapping roles with MSH4 as the double mutant has a more severe meiotic phenotype

than either single mutant (Khazanehdari and Borts, 2000; Tsubouchi and Ogawa, 2000).

S. cerevisiae MIMR: Suppression of Homeologous Recombination
Similar to £. coli, yeast MMR proteins play a role in suppressing homeologous
recombination (Paques and Haber, 1999; Harfe and Jinks-Robertson, 2000c). Studies of

either a meiotic interspecific hybrid of S. cerevisiae and S. paradoxus or a normal S.

13



cerevisiae diploid containing homologous chromosomes with slight sequence divergence
have demonstrated that MMR exerts a negative effect on homeologous recombination
(Borts and Haber, 1987; Borts, et al., 1990; Chambers, et al., 1996; Hunter, et al., 1996).
Studies using an intrachromosomal inverted-repeat assay to analyze the anti-
recombinogenic effect of MMR suggest that MSH2, MSHS3, MSH6, MLHI, PMS] and
EXO1 all play roles in suppressing homeologous recombination (Datta, et al., 1996;
Datta, et al., 1997; Chen and Jinks-Robertson, 1998; Nicholson, et al., 2000).
Furthermore, using this defined system MSH3, MLHI and PMS] exhibited unexpected
phenotypes with respect to their roles during mutation avoidance (Datta, et al., 1996;

Nicholson, et al., 2000).

S. cerevisiae MMR: Involvement in Single-strand Annealing Recombination

An interesting role for MutSB (Msh2p-Msh3p) has been demonstrated in a
pathway for mitotic recombination termed single-strand annealing (SSA) (Paques and
Haber, 1997; Sugawara, et al., 1997; Paques and Haber, 1999). SSA is one means by
which to repair a double strand break (DSB) and can result in intrachromosomal deletion
products as large as 15 kb (kilobases) between regions of homology as small as 29 bp
(Sugawara and Haber, 1992; Sugawara, et al., 2000). MutSB in conjunction with the
Radlp-Rad10p endonuclease are necessary to cleave non-homologous tails that are
encountered during SSA so that DNA synthesis can be primed for completion of the

repair event. In contrast to most functions of MMR, MSH6, PMSI and MLEHI are not

necessary for SSA (Sugawara, et al., 1997).

14



S. cerevisine MMR: Transcription-coupled Repair

Yeast MMR proteins appear to have conserved their ability to participate in TCR,
as yeast deficient for msh2 or both mih/ and pms] are incapable of TCR of thymine
glycols, a product of oxidative damage. Remarkably, TCR of UV damage was not
affected by defects in MMR and PMS! appears to be acting independently of MLHI
(Leadon and Avrutskaya, 1998). Similar to E. coli MMR-dependent TCR, little is known

concerning the actions of yeast MMR proteins during TCR.

Mammalian MMR

Phenotypes of MMR deficiency studied thus far in mammalian systems have been
a testament to the conservation of MMR between simple and more complex eukaryotes.
The majority of overlapping studies conducted in yeast and mammalian systems have
produced a wealth of evidence confirming general functions of MMR in the two model
systems (Buermeyer, et al., 1999; Harfe and Jinks-Robertson, 2000b). One important
advantage of the mammalian system is the ability to examine the effect of MMR
deficiency on tumorigenesis. Despite this limitation, MMR studies in yeast continues to

stimulate and complement parallel studies performed in mammals.

Thesis Prospectus

Contained within this work, I have investigated the function of predicted ATPase
motifs in S. cerevisiae MutLe (Mlh1p-Pmstp). My results suggest that yeast MutLa has
structural and functional properties consistent with other members of a recently identified

family of ATPases. Specifically, my genetic results suggest that both the ATPase motifs

15



of Mlh1p and Pms1p are absolutely required for MMR in vivo. In addition, biochemical
and in vivo findings suggest that ATP-binding induces conformational changes in MutLo
that are associated with heterodimerization between the NH,-termini of Mihl1p and
Pmslp. Surprisingly, results of my in vivo studies suggest differential requirements for
Milhlp and Pmslp ATPase motifs during MMR. Furthermore, I report results showing
both physical and genetic interactions between EXO1 and the components of MutLo,
Mlhlp and Pmslp. The genetic interaction results suggest that one function of the
MutLo. ATPase domains is to direct Exolp and other exonucleases during mutation
avoidance. Finally, my results are consistent with Exolp having roles in both MMR-

dependent and MMR-independent mutation avoidance pathways.
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CHAPTER 2:Materials and Methods

Strains and media.

E. coli strains DH5¢ and DH-10B were used for plasmid construction and
amplification. E. coli MAX Efficiency® DH-10Bac™ (F- mcrA D(mrr-hsdRMS-mcrBC)
$80d/acZDM15 AlacX74 deoR recAl endAl araD139 A(ara, leu)7697 galU galK A-
rpsL nupG /bMON14272 /[pMON7124) was used to produce recombinant baculoviruses
as described below in subsection “Expression and purification of yeast MutLa”. S.
cerevisiae strains used in this thesis are described in APPENDIX A. Bacterial and yeast
strains were grown under conditions described previously (Pang, et al., 1997). Yeast
transformations were performed by the polyethylene glycol-lithium acetate method
(Gietz and Schiestl, 1991).

Deletions of mihiA and pmsI A in the GCY35 (New, et al., 1993) background
were created as described (Petes, et al., 1991; Pang, et al., 1997).

Genomic mlhl point mutant strains used in this thesis (see APPENDIX A) were
created with a two-step recombination procedure. Targeting constructs pYI-mlhl-31, and
—98 were digested with PstI and transformed into appropriate strains. Purified Ura+
transformants were replica plated onto yeast ¢Xtract-peptone-dextrose (YPD) plates and
grown overnight. YPD replica plates were replica plated to 5-fluoroorotic acid (5-FOA)
containing plates. Purified 5-FOAR isolates were screened for retention of the mih] point
mutant allele by mutator replica patch test for hom3-10 reversion and point mutation
confirmed by sequencing a PCR amplicon of the MLH] gene. Both alleles were screened

using the same PCR oligos: yMLH1.S (5’-
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CGGGATCCCTCGAGACACCATGTCTCTCAGAATAAAAGC-3’ ) and yMLHI1-F96A
anchor.R (5’-GGAGTAAACGCTGTTCAAAGCTCT-3"). Alleles mihl-E31A and mih]-
GY98A were sequenced using oligos: ymlh1-98.AS (5’-
GGCTAAAGCTTCAGCTCGGAATCCATACGTTTGAATCTG-3 ") and ymlh1-31.S
(5’-CCCGTAAATGCTCTCAAAGCTATGATGGAGAATTCC-3"), respectively. All
double point mutant strains, PTY400, 500, 501 and 600, were generated by mutation of
the MLH] gene last.

Genomic pms] point mutant strains were created in a similarly using targeting
constructs pYI-pms1-61 and —128 TV I digested with MIul or Xbal. PCR oligos
YPMS1-86.S (5’- GTATGTCCAGCAGTTTCCATCAG-3") and yPMS1-1281.AS (5- [
GCAAGCTTATCGGTGTATTTCCCAAGCATTC-3") were used to amplify a portion of
the PMSI gene and the resulting PCR product was sequenced with oligos ypms1-128.AS
(5’-GAAGATAGGGCCTCAGCTCTAAACCCTAACGTCTGTACTTTAGC-3’ ) and
ypms1-61.S (5-ACAACTGCAGTGAAAGCTCTCGTTGATAATAGTATAGATGCG-
3’) for pmsi-E61A and pmsI-G128A alleles, respectively.

Disruptions of mlh3A were generated by transforming with Xhol and Sacl
digested pAmlh3::hisG-URA3-hisG (Alani, et al., 1987) and selecting on —Ura dropout
media. Targeting of mlh3 was confirmed by southern analysis of EcoRV digested
genomic DNA with a PCR generated probe using oligos: 5’-
TGGTTCGCCGATCTTATC-3’ and 5’-AAATACACTCCCTCTCCATCAC-3’.

Disruptions of EXO! were generated as described previously (Tishkoft, et al.,
1997a). An exol::HIS3 disruption cassette was generated by PCR using strain EAY618

(Dr. E. Alani, Cornell University) as a template, transformed into yeast and targeting was
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confirmed by three-oligo PCR. Oligos exol-135.83, 5'-
AAGCTATGTTGGGTGGAACTGAGG-3’, and ex01-443.AS2, 5’-
TCATTATGTGATAATGCCAATCG-3’, were used to detect the targeted allele. Oligos
ex0l-135.83 and ex01-588.AS3, 5'-AGTGATACT GGATTCTGTATGGGCT-3’, were
used to detect the wildtype allele.

Disruptions of REV3 were created by transforming the pYPG101 construct (Dr.
D. Hinkle, Rochester University) after Kpnl digestion and selecting for Ura+ prototrophs.
The rev3A genotype was confirmed by SraBI Southern analysis and the phenotype by
sensitivity to a 1.5-hour exposure to 0.5 mM cisplatin. The REV3 Southern probe was
generated by PCR using oligos, REV3.F, 5’-ATTGAAGTAAAGAGAACC-3’, and
REV3.R, 5>-TGGAGCAGTATTGTATCG-3". The generation of the other strains used

in this thesis were described previously as referenced in APPENDIX A.

Plasmid construction.

All DNA manipulations were performed using standard molecular biology
procedures (Maniatis, et al., 1982). Automated DNA sequencing was done at the Vollum
Institute core sequencing facilities with an ABT automated sequencer.

(i) Targeting vectors. pYI-mlh1-31 was created as follows. The MLH! ORF and
approximately 800 bp of upstream sequence were cloned into pYI-lacZ. The E31A
mutation was generated in the resultant construct using Quikchange™ Site-Directed
Mutagenesis Kit (Stratagene) and the following oligos: ym!h1-31.S and ymlh1-31.AS
(5’-GGAATTCTCCATCATAGCTTTGAGAGCATTTACGGG-3’). Desired mutations

were detected by sequencing with oligo ymlh1-98.AS. An approximately 400 bp Kpnl
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fragment containing the E31A mutation was cloned back into the parental construct to
erase the potential for second site mutations elsewhere in the construct. pYI-mlh1-98
was created in a similar fashion except the following oligos were used instead: ymlh1-
98.S (5’-CAGATTCAAACGTATGGAT TCCGAGCTGAAGCTTTAGCC-3’) and
ymlh1-98.AS for mutagenesis; and ymlh1-31.s for identification of the point mutation.

pYI-pms1-61 TV II was constructed as follows. pYI-ypms1 TV II was generated
by PCR to contain 686 bp upstream of the ATG codon to position 2426 of the yPMS]
ORF in pYI-lacZ. A Psd-BspMI fragment from pFB-ypms1-61 (sce below) that
contained the E61A codon mutation was used to replace the wildtype PsfI-BspMI
fragment of pYI-ypms1 TV II to create pYI-pms1-61 TV IL pYI-pms1-128 TV II was
created similarly with a Psf-BspMI fragment from pFB-ypms1-128 (see below) that
contained the G128A codon mutation. pYI-ypms1-61 and —128 TV II were both shown
to be free of second site mutations in germane regions by sequencing.

pAmlh3::hisG-URA3-hisG was a kind gift from David Jacobson (Oregon Health
Sciences University, Department of Molecular and Medical Genetics).

(if) Two-hybrid vectors. All the following constructs were sequenced to confirm point
mutations were present in the desired plasmids. pNBTM116 was a generous gift of Dr.
Stanley Hollenberg (Oregon Health Sciences University, Department of Cell and
Developmental Biology) and allows construction of two-hybrid “bait” fusions with the
lexA DNA binding domain fused at the carboxy terminus of the “bait” protein. pNBTM-
mlhl N-354 was engineered using oligos ymlh1 N-anchor.S (5°-
CGGGATCCATGTCTCTCAGAATAAAAGCAC-3’) and ymlh1 N-354.AS (5°-

AGCCTCGAGCTCTGGCTTGTTTGTTGAAATTG-3’) to generate a PCR amplicon
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that was cloned into pNBTM116 at BamHI and Xhol sites. Plasmid PNBTM-mlh1-31 N-
354 was generated in an identical fashion but the PCR was performed on template DNA
that contained the E31A codon mutation.

pNBTM-pms1 N-401 and pNBTM-pms1-61 N-401 were generated using a
similar procedure to pNBTM-mlh1 N-354 but used oligos ypms1 N-anchor.S (5'-
CGGGATCCAAAATGTTTCACCACATCGAAAAC-3’) and ypmsl N-401.AS (5°-
AGCCTCGAGTTGTGAGCACATTCTTTTGGG-3"). The pNBTM-pms1-61, -128 N-
401 double point mutant was made by using Quikchange™ Site-Directed Mutagenesis
Kit (Stratagene) with plasmid pNBTM-pms1-61 N-401 and the ypms1-128.S and .AS
oligos.

PCAD3 analogous to pNBTM116 allows fusion of the GAL4 activation domain
to the carboxy terminus of the “prey” protein (Printen and Sprague, 1994). pCAD-mlhl
N-354 and alanine point mutation version (E3 LA) were constructed by cloning a PCR
product generated from oligos ymlh1 N-anchor.S and ymlhl N-354(BamHI).AS (5’-
AGCGGATCCCTCTGGCTTGTTTGTTGAAATTG-3) into pCAD3 at a BamHI site.
Plasmids with correct insert orientation were isolated for further study. The pCAD-mlhl-
31, -98 N-354 double point mutant was made by using Quikchange™ Site-Directed
Mutagenesis Kit (Stratagene) with construct pCAD-mlh1-31 N-354 and the ymlh1-98.S
and .AS oligos.

PCAD-pms1-61 N-401 was created in a likewise fashion except oligos ypms1
N-anchor.S and ypms1 N-401(BamHI).AS (5’-

AGCGGATCCTTGTGAGCACATTCTTTTGGG-3’) were used.
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pBTM-MSH?2 and pBTM-MSH6 were constructed by cloning the coding
sequences for yeast Msh2p and Msh6p into the two-hybrid “bait” vector pBTM116
(Vojtek, et al., 1993). The other constructs used in this thesis were described previously
(Pang, et al., 1997)
(iii) Baculoviral plasmids. The 6xHis-MLH1 recombinant baculovirus was constructed
as follows: a PCR product was generated that engineered a 6xHis affinity tag inframe
with the MLHI OREF after the initiator methionine. This 6xHis encoding PCR product
was cloned into the BamHI and Ndel restriction sites of pBTM-MLH]1, replacing
approximately 360 bp of the native gene. Automated sequencing of the construct
confirmed that the 6xHis tag was inframe with the MLH1 ORF and that no PCR
generated mutations arose. The 6xHis-MLHI ORF was then cloned into pFastBac
DUAL (pFBD) (Life Technologies) using polylinker sites BamHI and Sa/l. Based upon
mutator assays, the 6xHis epitope tagged Mlhlp functionally complemented a mih] A
strain (data not shown).

The PMS1 recombinant baculovirus was produced as follows: the PMS] ORF
was removed from genomic clone pJH480-PMS1 using Asel and Sall restriction enzymes
and ligated to a synthetic linker containing Asel and Ncol compatible overhangs. This
PMS1 ORF ligation product was then cloned into pEAES51 at sites Ncol and Sall
replacing the MSH6 ORF (Alani, et al., 1997). The PMS/ ORF was then excised using
Xhol and Sall restriction enzymes and ligated into the pFastBacl (pFB) (Life
Technologies) polylinker at a Xhol site. A pFB-PMS|1 construct in the desired orientation

was identified and sequenced to examine the site of the synthetic linker.
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Two-hybrid screening and mating and -galactosidase assays.

The two-hybrid screening was performed as described previously (Umar, et al.,
1996) with a yeast cDNA expression library (Dr. S. Elledge, Baylor College of
Medicine).

Direct “one-on-one” protein-protein interactions were assessed using the two-
hybrid technique and experiments repeated at least two times. “Bait” and “prey”
plasmids were transformed into L40 and AMR70 yeast, respectively. Transformants
were streak purified once on selective media. L40-“bait™ strains were mated with
AMR70-"prey” strains on YPD plates at 30°C for 5-12 hours, replica plated onto —Trp-
His-Ura-Leu-Lys (-THULL) and —Ura-Trp-Leu (-UTL) plates and incubated at 30°C for
2-3 days. Growth on ~UTL plates indicated efficiency of mating, while growth on
—THULL plates indicated *“bait”-“prey” interaction. Expression of a subset of constructs
were confirmed by western blotting of L40 strains with the indicated “bait” or “prey”.
Extracts were made from 10-ml saturated cultures by glass bead lysis for 30 minutes at 4
°Cin 25 mM Tris, pH 7.5, 1 mM EDTA, 10 mM mM B -mercaptoethanol (3 -ME),] mM
phenylmethylsulfonyl fluoride (PMSF) and Complete proteolysis inhibitor (Roche
Molecular Biochemicals); centrifuged at 14,000 xg for 5 minutes; and concentration of
soluble fractions determined by Bradford (BioRad). 10-15 g of each extract was
separated by SDS-PAGE on 10% gels, transferred to nylon membranes (Ambion), probed
with the either anti-GAL4-TA (1:200 dilution) or anti-lexA-DB (1:200 diltujon) (Santa
Cruz Bio. Inc.), followed by the appropriate secondary antibody and detected using

chemiluminescence.
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Diploid L40/AMR70 is homozygous for a second chromosomal lexA-GAL4A
reporter system , URA3::(lexAop) g-lacZ. [3-galactosidase assays were performed on

—THULL plates as described (Umar, et al., 1996) or p-galactosidase liquid assays were
performed as described previously (Pang, et al., 1997). B-galactosidase units =
[(OD,2/OD4y)60)/minutes, where OD,,, and ODy, are the optical densities at 420 and
600 nm, respectively.

Strains were streak purified, individual colonies grown to saturation in YPD, then
various dilutions plated onto complete synthetic media (CSM), -Thr and +canavanine
(+CAN) [@ 60 pg/ml] plates and colonies counted after 2-3 days growth at 30°C. Rates
were determined as previously described (Pang, et al., 1997). Statistical analyses were
performed for pairwise compairsons of rates using a two-tailed Mann-Whitney test with
Prism 2.0a software (GraphPad Software Inc.); P values < 0.05 were considered
statistically significant. We used the 95% confidence intervals of relative mutation rates
to determine if epistasis conclusions were statistically significant.

Canavanine resistant (Can®) mutations were identified from genomic preparations

using the glass bead lysis method, followed by PCR of the CANI gene as described
previously (Tran and Liskay, 2000), and direct sequencing of the QIAquick™ (Qiagen®)
purified PCR amplicon with an ABI automated sequencer. y*-analysis was used to
determine if changes in mutational spectrum were statistically significant (P < 0.05).
Rates of frameshifts (FS) and base substitutions (BS) at CAN/ were calculated using
absolute mutation rates determined at CANI multiplied by the frequency with which FS

or BS mutations occurred in the particular strain. As the calculated rates of FS and BS at
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CANI possess the product of two different forms of error, statistical analysis was not

performed on these values.

Expression and purification of yeast MutLo.

The Bac-to-Bac Baculovirus® (Life Technologies) expression system was used to
express MutL.o in Spodoptera frugiperda (Sf9) cells infected with recombinant
baculovirus. Recombinant baculoviruses that express 6xHis-Mlh1p and Pms1p were

created as described by the manufacturer's instructions (Bac-to-Bac Baculovirus

expression system, Life Technologies). A 200-ml culture of S/ cells, typically 1-2 x100
cells/ml, were co-infected with recombinant baculoviruses at multiplicities of infection of
2-2.5 and 11-15 for 6xHis-Mlh1p- and Pms1p-expressing baculoviruses, respectively.
Cells were harvested at 44-48 hours of co-infection, frozen as cell pellets using liquid
nitrogen and stored at -80 °C.

All subsequent steps were performed at 0-4 °C and purification monitored by
sodium dodecy! sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western
blot analysis. Western blots were probed with a (1:1000) dilution of anti-4xHis
monoclonal antibody (Qiagen) or a cross-reacting (1:100) dilution of anti-hPms2p
polyclonal antibody and then visualized using (1:2000) of anti-mIgG-HRP (Pierce) or
(1:1250) dilution of anti-rlgG-HRP (BioRad), respectively, and Enhanced Luminol
Reagent (NEN). All buffers included 0.5-1 mM PMSF (Sigma Chemicals), 4-10 Ug/ml
leupeptin (Sigma Chemicals), and 4-10 pLg/ml aprotinin (Sigma Chemicals). Cell pellets
were resuspended in 5-ml of S/9 lysis buffer per gram of wet cell pellet (Sf9 lysis buffer:

50 mM Tris-HCI (pH 7.6), 5 mM B-ME, 100 mM KCl, Complete-Mini EDTA
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Free® pills (1pill/ 5- or 10-ml) (Roche Molecular Biochemicals), and 1% Nonidet® P-40
(NP-40) (Sigma Chemicals)). The cell lysate was then spun at 10,000xg for 10 minutes.
The cleared lysate was incubated in batch with 1.0-ml of a 50% slurry of Ni-NTA®
agarose resin (Qiagen) in buffer H (400 mM NaCl, 25 mM Tris-HCl (pH 7.8), 20%
glycerol, and 5 mM B -ME) + 0.6 M (NH4)2S04 and 10-15 mM imidazole (pH 8) for 1-
hr.. The resin was washed in batch three times: once with 40-ml of buffer H + 0.6 M
(NH4)2S04, and 25 mM imidazole; and twice with 40-ml of buffer H + 0.6 M
(NH4)2504, and 50 mM imidazole. The resin was loaded onto an Econo-column®
(BioRad) and eluted with buffer H + 0.5 M imidazole. Peak fractions were pooled,
desalted into buffer T (50 mM Tris-HCI (pH 7.8) 10% glyercol, and 1 mM DTT) +
100mM NaCl and 0.01% NP-40 using PD- 10 desalting columns (Amersham Pharmacia
Biotechnologies), and further purified on a 1-ml HiTrap Heparin column using a 4.5%
NaCl/ml gradient. Peak fractions were concentrated using Vivaspin 500® (50,000
MWCO) (Vivascience Limited, Brinbrook Hill, UK) as described by the manufacturers.
Concentrated fractions were frozen in liquid nitrogen and stored at -80°C. Protein
concentration was determined by scanning densitometry with NIH mmage 1.61 software

using bovine serum albumin (BSA) standards (Pierce).

Limited Proteolysis Assays.

Limited proteolysis reactions (20 ul) consisted of 150 ng of MutLac, 30 mM Tris
(pH 7.6), 150 mM NaCl, 5 mM MgCl,, 0.5 mM DTE and +/- 5 mM ATP, AMP-PNP,
ATPYS or ADP. Reactions were incubated for 15 minutes at 30°C, followed by the

addition of 50 ng of modified trypsin (Promega Corp.), incubation at 30°C for a specified
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interval, addition of SDS-sample buffer and boiling for 7 minutes. Processed reactions
were separated on a 10% SDS-PAGE gel, transferred onto PVDF membranes (Ambion)
and western blotting performed with specified antibodies. Anti-4xHis westerns were
performed as described above. The anti-Mlh1p polyclonal antibody was a kind gift of
Dr. T. Kunkel (NIEHS) and was generated against a COOH-terminal peptide of yeast
Milhlp. The anti-Mlh1p polyclonal antibody was used to probe limited proteolysis blots

at a (1:10000) dilution and detected as described above.
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CHAPTER 3: Functional Studies on the Candidate ATPase Domains of

Saccharomyces cerevisiae MutLa

Introduction

An important clue to a possible biochemical activity of the MutL homologues was
the appreciation of sequence similarity between the highly conserved N H,-termini of the
MutLs and a new family of ATPases (Bergerat, et al., 1997; Mushegian, et al., 1997).
The so-called GHL ATPase family is comprised of E. coli gyrase b subunit, the Hsp90
homologues and the MutL homologues (Ban and Yang, 1998a; Dutta and Inouye, 2000).
The supercoiling activity of E. coli DNA gyrase is dependent on the ATPase activity of
the homodimeric gyrase b subunits (Sugino and Cozzarelli, 1980). Recently, the
homodimer Hsp90 has been demonstrated to have a weak intrinsic ATPase activity
required for Hsp90 function (Obermann, et al., 1998; Panaretou, et al., 1998). The crystal
structures of the NH,-termini of Hsp90 and gyrase b revealed strong structural similarity
within their ATPase motifs (Wigley, et al., 1991; Prodromou, et al., 1997a; Prodromou, et
al., 1997b). In addition, Hsp90 and gyrase b appear to have similar ATPase cycles which
include functionally important NH,-terminal conformational changes (Wigley, et al.,
19915 Ali, et al., 1993; Grenert, et al., 1997; Prodromou, et al., 1997a; Prodromou, et al.,
1997b; Grenert, et al., 1999). The NH,-terminal conformational changes for the other
GHL ATPases have been associated with dimerization of the NH,-terminal domains in
the ATP-bound form (Wigley, et al., 1991; Ali, et al., 1993; Prodromou, et al., 1997a;
Prodromou, et al., 1997b; Ban, et al., 1999; Grenert, et al., 1999: Prodromou, et al., 1999;

Chadli, et al., 2000; Prodromou, et al., 2000:; Spampinato and Modrich, 2000; Young and
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Hartl, 2000). Recently, the crystal structure of an NH,-terminal fragment of MutL was
solved and demonstrated that MutL possesses an ATP-binding pocket homologous to the
gyrase b and Hsp90 proteins (Ban and Yang, 1998a; Spampinato and Modrich, 2000). In
addition, MutL appears to have the ATPase-dependent NH,-terminal dimerization cycle
found in the other GHL family members. Interestingly, Ban et. al. reported that the NH,-
terminal dimerized, ATP-bound form of MutL could activate the MutH endonuclease in a
MutS-independent manner (Ban and Yang, 1998a; Ban, et al., 1999).

Previous work from this lab has shown the importance of the NH,-terminus of
yeast Mlhlp and Pms1p in MMR (Pang, et al., 1997). The above mentioned findings for
the GHL family of proteins presented a working paradigm for detailed studies of the
ATPase motifs found in the eukaryotic Mutl. homologues. In this chapter, I investigate
the function of predicted ATPase motifs in S. cerevisiae MutLa. (Mlh1p-Pmslp). My
results suggest that yeast MutLo has structural and functional properties consistent with
other members of the GHL family of ATPases. Specifically, my genetic results suggest
that both the ATPase motifs of Mlhlp and Pms1p are required for MMR ix vivo. In
addition, biochemical and in vivo findings suggest that ATP-binding induces
conformational changes in MutLo: that are important for MMR and are associated with
heterodimerization between the NH,-termini of Mlhlp and Pmslp. Surprisingly, my
genetic results suggest differential requirements for Mlh1p and Pms1p ATPase motifs

during MMR.
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Experimental rationale.

To examine the importance of putative ATPase domains of S. cerevisiae Milhlp
and Pmslp, I examined the effects of mutations introduced at two of the ATPase motifs, |
and III, conserved in the GHL family (Figure 3-1). I chose to examine residues E31and
E61 of Mlhlp and Pms1p, respectively, because mutations made at the homologous
glutamate of MutL, gyrase B and Hsp90 have been shown to eliminate ATP-hydrolysis
with little or no effect on ATP-binding (Jackson and Maxwell, 1993; Ban and Yang,
1998a; Obermann, et al., 1998; Panaretou, et al., 1998; Ban, et al., 1999). In motif 1, T
focused on residues G98 and G128 of Mlh1p and Pms1p, respectively, which are
modeled to affect ATP-binding and/or an associated conformational change induced upon
ATP-binding (Grenert, et al., 1997; Ban and Yang, 1998a; Obermann, et al., 1998;
Panaretou, et al., 1998; Ban, et al., 1999). For the sake of clarity I will refer to alanine
substitution mutations at E31and E61 as “ATP-hydrolysis” mutations and the mutations
GI98A and G128A as “ATP-binding” mutations.

The genetic analysis of these “ATPase” mutants included mutation rate
measurements at zom3-10 and CANI, and mutational spectrum analysis using the CANI
reporter. The hom3-10 allele is a reversion assay that reports a AT-A bp in a run of 7 T-A
bp and is considered diagnostic for defects in MMR (Chen, et al., 1999). In contrast,
forward mutation at CAN/ reports a wide variety of inactivating mutations, allowing

mutational spectrum determinations (Chen, et al., 1999).
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Figure 3-1. NH2-terminal ATPase domains of GHL ATPases. ATPase motifs I-IV
are designated with black boxes and sequences are shown above motit boxes. Numbers
correspond to the number of amino acids preceding or following sequence alignments.
Bold letters are the absolutely conserved residues that were substituted with alanine in
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Predicted ATPase residues of MutLo. are necessary for MMR in vivo.

To address whether the ATP-hydrolysis and —binding motifs of MutLe, are
necessary for mutation avoidance by MMR, double missense mutants, e. g. mlhl-E31A
pmsi-E61A, were generated and examined for spontaneous mutation rate (see CHAPTER
2: Materials and Methods). Relative to the wildtype strain, both the double ATP-
hydrolysis mutant (strain PTY400) and the double ATP-binding mutant (strain PTY600)
exhibited spontaneous mutation rates similar to that observed in m/h1A and pmsi A strains
(Table 3-1, compare strains PTY400 and PTY600 vs. PTY 100 and PTY101). The
mutator phenotype of a complex double mutant, mlh] hydrolysis mutant plus pmsi
binding mutant, or vice versa, was also similar to a MMR deficient (e. g. mlhlA) strain
(Table 3-1, compare strains PTY500 and PTY501 vs. PTY 100 and PTY101). These data
indicate that any combination of double ATP-hydrolysis and/or —binding mutations
affecting MutLo result in defects in the mutation avoidance functions of MMR

comparable to the defects seen in the single mlhlA and pmsi A strains.

Mutator effects of single alterations in the putative ATPase domains of S. cerevisiae
MutLc.

To examine the individual contributions of Mlh1p and Pms1p ATPase motifs to
MutLo: function, T examined the effect of single missense mutations on mutation
avoidance. As shown in Table 3-1, the single missense mutations affecting the ATPase
motifs had effects on mutation avoidance that were significantly less than the
corresponding mlhlA and pmsi A strains, with the exception of the mihl-G98A binding

mutant (PTY300) which was only slightly less than the mlhl A strain (PTY100).
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Interestingly, the homologous ATPase mutations made in MLH 1 and PMS] produced
different effects on mutation avoidance. The mlhl-E3]A hydrolysis mutant (PTY200)
displayed a 16-fold and 7-fold higher rate of mutation at hom3-10 and CANI,
respectively, than the corresponding pms/-E61A hydrolysis mutant strain PTY201 (P <
0.0286 for both loci). Likewise, the mlhI-G98A binding mutant (PTY300) showed a 9-
fold and 5.5-fold higher rate of mutation at hom3-10 and CAN1, respectively, than the
corresponding pmsI-G128A binding mutant strain PTY301 (P < 0.0286 for both loci).
One trivial explanation for the differential effects of homologous mlhl and pmsi
mutations on mutation avoidance was that MLH3, which is involved in a minor mutation
avoidance pathway (Flores-Rozas and Kolodner, 1998), compensates for the pms!
mutations. However, as shown in Table 3-1, pms/ missense mutant strains deleted for
MLH3, PTY202 (pmsi-E61A mlh3A) and PTY302 (pmsI-GI128A mlh3A4), still
demonstrated mutation rates that were significantly less than that observed for the
respective homologous mlhl ATPase point mutant strains PTY200 (mih-E31A) and
PTY300 (mlhi-G98A) (P < 0.0159 for PTY200 vs. PTY202 and P < 0.0286 for PTY300
vs. PTY302). These results suggested that the differences seen between homologous
mihl and pmsl ATPase mutations with respect to mutation rate were not due to the
redundant functions of MLH3, but rather inferred an intrinsic functional asymmetry
within the MutLo complex.

In addition to the differential effects of homolgous mlhl vs. pmsi missense
mutants noted above, I also observed that ATP-binding mutations produced more severe
effects on mutation avoidance than did ATP-hydrolysis mutations. Both ATP-binding

mutant strains, PTY300 (mlh{-G98A) and PTY301 (pmsI-G128A), exhibited a 2-4 fold
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higher rate of spontaneous mutation at hom3-10 and CAN/ relative to the hydrolysis
mutants, PTY200 (mlhl-E31A) and PTY201 (pmsI-E61A), respectively (all comparisons
had a P value < 0.0286).

To define further the effects of Mlhlp and Pms1p ATPase mutations on MMR, 1
examined the mutational spectra at the CAN/ reporter (for a comprehensive list of CAN/
mutations see APPENDIX B). CAN/ reports forward mutations including base
substitutions, frameshifts, deletions, insertions and large chromosomal rearrangements
(Chen, et al., 1999). As seen in Table 3-2, the spectra of deletion strains PTY 100
(mlhi1A), PTY101 (pmsiA) and PTY 104 (pmslA mlh34), and missense mutant strains
PTY200 (mlhi-E31A) and PTY300 (mlh1-G98A) showed a preponderance of frameshift
mutations (FS) relative to base substitutions (BS), similar to previously published reports
for an msh2A strain (Tishkoff, et al., 1997b). In contrast, strain PTY301 (pmsI-GI28A)
showed a different spectrum, namely, a majority of base substitutions, represented in
Table 3-2 by a FS:BS ratio of 0.8. Because the mutation rate of PTY301 (pms1-G128A)

for CAN® is only 4-fold greater than wildtype (Table 3-1), one-quarter of the mutations

seen with PTY301 represent the wildtype spectrum. Correcting for wildtype
contribution, I still observed a majority of base substitutions [10/18 (56%) vs. 7.5/13.5
(56%)]. Next, because MLH3 is partially redundant with PMS/ in correcting frameshift
mutations, I examined the CAN! spectrum in a pmsI-GI128A mih3A strain (PTY302). As
shown in Table 3-2, the pmsI-G128A mlh3A strain (PTY302) showed a spectrum at
CANI that was indistinguishable from a MMR null strain (FS:BS ratio of 3.3). In
contrast to the asymmetry observed with the mutation rates, the spectra results indicate

that the mlhl and pmsl “ATPase” mutations result in the same mutational spectra.
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MutLo undergoes an ATP-dependent conformational change.

To investigate further the role of candidate ATP-binding/hydrolysis motifs in
MutLo function, I used limited proteolysis to examine the effects of adenine nucleotides
on the conformation of recombinant wildtype and mutant forms of MutLo purified from
insect cells (data not shown). I used an antibody directed against the 6xHis tag at the
NH,-terminus of MlhIp to detect NH,-terminal fragments following limited proteolysis.
As depicted in Figure 3-2a, the presence of ATP led to the perection of distinct NH,-
terminal fragments of Mlhip from trypsin proteolysis. The protected NH,-terminal
fragments of approximately 42 and 38 kDa coincide with the E. coli MutL LN40
thrombin proteolytic fragment that possessed the core ATPase domain (Ban and Yang,
1998a; Ban, et al., 1999). I did not observe any differences between MutLa in the
presence or absence of ATP using a polyclonal antibody directed against the COOH-
terminus of Mlh1p (data not shown), suggesting that the COOH-terminal epitope of
Mihlp detected by this polyclonal antibody is not a region of Mlh1p that undergoes an
ATP-dependent conformational change. However, I did detect an approximately 30 kDa
band that was resistant to proteolysis in the presence or absence of ATP even after a 30
minute incubation with 750 ng of trypsin (data not shown). This highly trypsin resistant
Mihlp COOH-terminal fragment may represent the COOH-terminal heterodimerization
domain of Mlhlp. As shown in Figure 3-2b, lanes 3-5 demonstrate that non-
hydrolyzable ATP analogs, AMP-PNP and ATPYS, and ADP also protect the NH,-
terminus of MlhIp from trypsin proteolysis. Qualitatively, the relative levels of

protection from proteolysis in the presence of nucleotide is as follows: ATP ~ AMP-

PMP > ATPYS > ADP. As demonstrated for ATP, I saw no differential protection
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of the COOH-terminus of Mlhlp in the presence of ADP, AMP-PNP or ATPYS by
reprobing with the antibody directed against the COOH-terminus of Mlh1p (data not
shown).

I'next examined the ATP-dependent effects of limited proteolysis on the double
ATP-binding (mlh1-G98Ap/ pms1-G128Ap) and ATP-hydrolysis (mlh1-E3 1Ap/ pms1-
E61Ap) mutant forms of MutLa. In constrast to wildtype MutLa, the double ATP-
binding mutant (mlh1-G98Ap/ pms1-G128Ap) MutLa did not demonstrate ATP-
dependent protection of NH,-terminal fragments of Mlh1p from trypsin proteolysis
(compare Figure 3-2a versus Figure 3-3). The lack of ATP-dependent protection
observed in the double ATP-binding mutant (mlh1-G98Ap/ pms1-G128 Ap) MutLa is
consistent with this mutation affecting ATP-binding by Mlhlp. The effect of limited
proteolysis on the double ATP-hydrolysis mutant (mlh1-E31Ap/ pmsl-E61Ap)

MutLa was interesting. As shown in Figure 3-4, the double ATP-hydrolysis (mlh1-
E31Ap/ pms1-E61Ap) mutant form of MutLo, showed protection of NI,-terminal
fragments of Mlh1p from trypsin proteolysis even in the absence of ATP. Furthermore,
this ATP-independent protection of the double ATP-hydrolysis (mlh1-E31Ap/ pmsl-
E61Ap) mutant was resistant to increasing amounts of trypsin. This unique trypsin-
resistant conformation of MutLo observed in the double ATP-hydrolysis (mlh1-E3 LAp/
pms1-E61Ap) mutant is consistent with a model for a MutLo. ATPase cycle discussed
below.

These limited proteolysis results with wildtype and mutant forms of
MutLo: indicate that at least the Mlh1p NH,-terminus of MutLo, undergoes an ATP-

binding dependent conformational change. Moreover, the mlh1-G98A mutation appears
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to atfect Mlhlp ATP-binding dependent conformationl changes. I was unable to address
whether the NH,-terminus of Pms1p undergoes a similar ATP-binding dependent
conformational change because an antibody specific for the NH,-terminus of Pms| p
antibody was not available. However, as described below, yeast two-hybrid results

suggest that Pms1p also undergoes an ATP-dependent conformational change.

ATP-binding promotes heterodimerization of the NH,-termini of MutLo in vivo.
ATP-binding dependent conformational changes in other GHL family members
are associated with dimerization of their NH,-terminal ATP-binding domains (Wigley, et
al., 1991; Ban, et al., 1999). To inquire into the functional significance of the ATP-
dependent conformational change data described above, I used the yeast two-hybrid
system to assay interactions between wildtype and mutant NH,-terminal fragments of
Milhlp and Pmslp. Based upon sequence alignments with GHL family members, the
fragments 1-354 and 1-401 of Mlhlp and Pms1p, respectively, should each contain the
structural elements necessary for ATP-binding and hydrolysis (Ban, et al., 1999). These
NH,-terminal fragments of Mlhlp and Pms1p were fused at their COOH-termini to either
the lexA DNA binding domain or the GAL4 activation domain (Figure 3-5). Consistent
with previous studies (Pang, et al., 1997), no interaction was seen between wildtype
Mihlp and Pms1p NH,-terminal fragments (Figure 3-5, group I). As stated before,
homologous ATP-hydrolysis mutations in other GHL ATPases have been shown to
abolish ATP-hydrolysis activity with little or no effect on ATP binding (Jackson and
Maxwell, 1993; Ban and Yang, 1998a; Obermann, et al., 1998; Panaretou, et al., 1998;

Ban, et al., 1999). Interestingly, for an NH,-terminal fragment of gyrase b, ATP-binding

44



gy
utewoq Buipuig yxea7 - FZZ7] ulewoq 10y y1vH - ]

v08 ! 69. I
D JEZ 1N x i i FZZZ] N A

(wbusi-ing) 1spg (WBusi-ling) 14

. —] ZZZA NN X CI—11
V193-Lswd V869-‘viIg3-Lyjw

Al
. e ZZ74 I X 23—
ALY vecLY-V193-1swd vVieg-Lyjw
i qswm = 1 N X PZ7A 0
— v193-Lswd ViEF-Lyjw
i Vi — X Cr—
Vi93-1swd Vie3-Lyjw
— 1 || x CZ7A =

V193-Lswd (edAippim) Lyjw -
= ZZZ7] o X = —
(edfipyim) fswd Viea-Lyjw
L0V L pGe L

= 0 EZZA N X o 1N I
(edfipyim) [swd (edfappm) Lyjuw

[e6-¢ YIMoIn giH - “og



9v

‘d1ypn pue dysurg QSus-[ng yim uonoeal [onuod aanisod A dnos3 pue ‘suone)nw punoduros patedtpur a3

SeY JUSWSEL UOISN| [RUTWLIN-CN dUo ‘A dnoid -suonenur yurod _ S1sAJ0IpAY,, urejuoo syuowsely uorsny [BUTWIN-HYN yloq ‘[ dnois
-uoneinur jutod  s1sAjo1pAy,, v suiejuod juswey uorsny [eutudl-“HN auo ‘If dnoid ‘syuswdely uoisng [eutuiId)-cH N odA1ppim ‘] dnoun
SPOUIRIN PUE S[PLIBIN 17 YALIVHD Ul PaqLIdsap se [eS-y areaisqns oyl Y jusuidojaaap 10[0d anfq pue vIpaw STH— U0 [IMOIS Sv
PaI00S ST UOTIORIAIUL "$9X0Q JONISUOD S UIYIIA STeq Yor[q Aq PRIEIIPUL 9k JoNISUOI YIB3 9A0QE PIRUFISIP SUOTININSANS PIOR OUTUTY
"A[oAnN22dsar ‘s10n15U00 A pue | dnorn oy MOT2q PIEDIPUT 2T SUOTSNY 3Y) UT PIPN[OUT SINPISAI Y], "UOTIRINUI I0] PIISI) SIONISUOD
Aaid,, pue greq,, 01 puodsarios soxoq uonpraul dyswyg pue dyjA [eurwaay-gN §19919p sIsA[eue pLIQAY-0M ], "S-¢ aan31]



was only observed in vitro for a hydrolysis deficient form (Jackson and Maxwell, 1993).
Furthermore, my limited proteolysis result with the double ATP-hydrolysis (mlh1-
E31Ap/ pms1-E61Ap) mutant form of MutLa (see above and Figure 3-4) led me to
reason that ATP-hydrolysis mutations in the NH,-termini of both Mlh1p and Pms1p
might prolong a “double” ATP-bound state in vivo and allow interaction to be detected by
the yeast two-hybrid. Indeed, as shown in Figure 3-5 (group III) a robust interaction was
seen when both Mlh1p and Pms1p NH,-terminal fragments possessed ATP-hydrolysis
<mutations. However, interaction was not observed when only Mlh1p or Pms1p fragment
possessed the ATP-hydrolysis mutation E31A or E61A, respectively (Figure 3-5, group
II). To demonstrate that this novel interaction was dependent on the putative ATP-
binding activities of Mlh1p and Pms1p, I superimposed either the mih1-G98A or pmsI-
G128A ATP-binding mutation onto the hydrolysis defective NH,-terminal fragments of
mlhlp-E31A or pms1p-E61A, respectively. Supporting my hypothesis, I observed that
superimposing a mutation designed to prevent the putative ATP-binding/conformational
change in one fragment ablated the two-hybrid interaction (Figure 3-5, compare group III
and IV).

Interestingly, the two-hybrid interaction seen in Figure 3-5, group III, was specific
only for the mlh1p-E31A and pms1p-E61A NH,-terminal fusion pairs, as the NH,-
terminus of mlhlp-E31A did not interact with itself (data not shown). The same
observation was seen with the NH,-terminus of pms1p-E61A (data not shown),
suggesting that, similar to their respective COOH-terminal domains (Pang, et al., 1997),
the NH,-termini of Mlh1p and Pms1p do not homodimerize. The two-hybrid results of

Figure 3-5 are not due to ATP-hydrolysis or —binding mutations grossly affecting
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expression or stability of the fusion proteins, as western analysis demonstrates that all
fusion proteins are expressed at similar levels (Figure 3-6). Taken together, the two-
hybrid results suggest that ATP-binding, but not hydrolysis, by both Mlhlp and Pms1p

are necessary for MutLo NH,-terminal heterodimerization.

Discussion

Although clearly crucial for MMR, little information exists on the function of the
major MutL activity in yeast, MutLec, composed of Mihlp and Pmslp. Previous studies
with yeast have defined COOH-terminal domains as important for Mih1 p and Pmslp
interaction (Pang, et al., 1997) and conserved NH,-terminal residues as necessary for
MMR activity (Pang, et al., 1997; Shcherbakova and Kunkel, 1999). Recent
investigations on MutL and other members of the GHL family of ATPases have
suggested guidelines for more detailed studies of MutLo: function. Here, I present
evidence suggesting that yeast MutLa is a functional member of the GHL ATPase
superfamily. First, residues critical for the ATPase function of GHL family members,
when substituted for alanine in both Mlh1p and PmsIp, disrupt MMR. Second, the
presence of adenine nucleotide protects the NH,-terminus of wildtype Mlhlp from
trypsin proteolysis, but fails to protect the mlh1-G98Ap ATP-binding mutant, suggesting
that MutLo undergoes ATP-binding dependent conformational changes. Third, results
from the two-hybrid system suggest that one consequence of the ATP-induced
conformational changes is an interaction between the NH,-termini of Mlh Ip and Pmslp.
Finally, analysis of single mlh/ and pms! ATPase motif matants indicate a functional

asymmetry within yeast MutLc.
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GHL family members appear to share an ATPase cycle that is highlighted by an
NH,-terminal dimerized intermediate in the ATP-bound form (Wigley, et al., 1991; Ali,
et al., 1993; Prodromou, et al., 1997a; Prodromou, et al., 1997b; Ban, et al., 1999:
Grenert, et al., 1999; Prodromou, et al., 1999; Chadli, et al., 2000: Prodromou, et al.,
2000; Spampinato and Modrich, 2000; Young and Hartl, 2000). In the case of MutL, this
ATP-binding induced NH,-terminal dimerization activated MutH endonuclease in vitro
(Ban and Yang, 1998a). The limited proteolysis and two-hybrid analyses presented here
support an ATPase cycle for MutLo, composed of at least four intermediates, that is
similar to other GHL family members (Figure 3-7). Limited proteolysis suggests that
wildtype MutLo undergoes a conformational change in vitro that is dependent on ATP-
binding, because AMP-PNP (and to a lesser extent ATPYS) produced the same effect as
ATP and because this same effect was not observed for the the double ATP-binding
(mlh1-G98Ap/ pms1-G128Ap) mutant MutLo (Figure 3-7, intermediate 2). Furthermore,
I observed a specific two-hybrid interaction between Mlhlp and Pmslp NH,-terminal
fragments each containing ATP-hydrolysis mutations (Figure 3-7, intermediate 3).
Interaction was not detected by yeast two-hybrid with wildtype NH,-terminal fragments
of Mlhlp and PmsIp presumably because ATP-hydrolysis renders the interaction
transient. In further support of the existence of intermediate 3, the double ATP-
hydrolysis (mth1-E31Ap/ pms1-E61Ap) mutant form of MutLo. is highly resistant to
trypsin limited proteolysis even without added ATP suggesting that this intermediate may
be stable even after multiple chromatographic steps. Also, that ADP provided some
protection from limited proteolysis suggests the existence of an ADP-bound intermediate

(Figure 3-7, intermediate 4). Double mutant mlhl pms strains with alanine substitutions
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2 ADP 4

7 /7
ADP | ADP - /fF

Figure 3-7. A model for the yeast MutLoa ATPase cycle. Briefly, intermediate 1 is the
nucleotide free state. ATP-binding induces conformational changes in the NH2-terminus of
MihIp and Pms1p represented by a change in shape from rectangular to oval that occurs in
the step(s) between intermediates 2 and 3. Intermediate 3 is heterodimerization of the NH2-
termini of Mlh1p and Pmslp in the ATP-bound state. Intermediate 4 is the ADP-bound form
following ATP-hydrolysis. The mlhI-G98A and pms1-G128A ATP-"binding" mutations were
constructed to affect the transition(s) from intermediate 1 to 2 and/or intermediate 2 to 3. In
contrast the ATP-"hydrolysis" mutations, mlhi-E31A and pmsI-E61A, were modeled to
prevent the transition from intermediate 3 to intermediate 4. M, represents the NH2-terminus
of Mlhlp; P, the NH2-terminus of Pms1p; and C, COOH-termini of Mlh1 p and Pmslp. Each
arrow may represent multiple distinct steps. This model, which is consistent with the studies
reported here, was adapted from a model for MutL proposed by Ban and Yang, 1999,
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at ATP-hydrolysis or ATP-binding residues showed increased spontaneous mutation rates
indistinguishable from completely MMR-defective cells. This double mutant analysis
suggests that the candidate ATPase domains of both Mlhlp and Pm1 p and the ATPase
cycle described above are required for MutLo: function in yeast MMR for mutation
avoidance. It is intriguing to speculate on the function of the NH,-terminal ATP-bound
MutLo intermediate, because similar findings from other GHL ATPases (Prodromou, et
al., 1997a; Prodromou, et al., 1997b; Grenert, et al., 1999; Prodromou, et al., 1999:
Chadli, et al., 2000; Young and Hartl, 2000), namely MutL (Ban and Yang, 1998a),
suggest that this MutLo intermediate may play a significant role in coordinating
downstream steps with known and perhaps unidentified MMR proteins. Although my
data are consistent with the ATPase cycle represented in Figure 3-7, further biochemical
work with MutLa is required to confirm and characterize the contribution of Milhlp and
Pmslp ATP-binding and hydrolysis activities to MutLe: function. Similar to earlier work
from the Hsp90 field (Jakob, et al., 1996; Scheibel, et al., 1997), T have not been able to
specifically assign an intrinsic ATPase activity to MutLa with my current protein
preparations (P. T. Tran and R. M. Liskay, unpublished observations). However, similar
to what is currently known for GHL ATPases (Jackson and Maxwell, 1993; Ban and
Yang, 1998a; Obermann, et al., 1998; Panaretou, et al., 1998; Ban, et al., 1999), my
double mlh! pmsI hydrolysis mutant phenotype, limited proteolysis results with the
double ATP-hydrolysis (mlh1-E31Ap/ pms1-E6 1Ap) mutant MutLo: and two-hybrid
results suggest a crucial role for ATP-hydrolysis during mutation avoidance in yeast

MMR (refer to Table 3-1, and Figures 3-4 and 3-5).
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Interestingly, genetic analysis revealed a functional asymmetry with respect to the
two ATPase domains of the MutLo heterodimer. Specifically, alanine substitution
mutations affecting the predicted ATPase motifs of Mlh1p had a greater impact on
mutation avoidance than the corresponding mutations in Pms1p. Formally, my genetic
results argue that Mlh1p can compensate better for ATPase mutations in Pms| p for
mutation avoidance, than can Pms1p for the corresponding ATPase mutations in Mlh 1 o3
The apparent genetic asymmetry detected for MutLo may reflect at the mechanistic level
a kinetic asymmetry similar to that observed in the homodimeric ATPases, topoisomerase
II from S. cerevisiae and the y complex from E. coli (Harkins, et al., 1998: Baird, et al.,
1999; Hingorani, et al., 1999). Biologically, the genetic asymmetry observed with
MutLa may represent distinct but overlapping roles of Mlhlp and Pms1p during
mutation avoidance, e.g. excision tracts originating 5° vs. 3’ from the mismatch/IDL
(Drummond, et al., 1996; Nicolaides, et al., 1998) or differential roles during strand
discrimination.

MutL has been referred to as a “molecular matchmaker”, coupling the mismatch
binding activity of MutS to the latent endonuclease MutH (Sancar and Hearst, 1993).
One criterion of a molecular matchmaker that MutL has always appeared to lack was an
intrinsic ATPase activity. Recent work has now identified this “missing” activity, and as
suggested previously (Sancar and Hearst, 1993) it appears to be critical for MutL activity
in MMR (Aronshtam and Marinus, 1996; Ban and Yang, 1998a: Ban, et al., 1995,
Moreover, the MutL, ATPase activity was responsible for coordinated interaction and
activation of MutH in vitro (Ban and Yang, 1998a). In this chapter I have shown that the

conserved ATPase motifs of MutLo are necessary for mutation avoidance by MMR in
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yeast. Finally, as for MutL (Ban and Yang, 1998a; Ban, et al., 1999), the ATP-dependent
conformational changes in yeast MutLo. are likely to facilitate interaction with

downstream proteins in MMR.
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CHAPTER 4: Interactions of EXOI with components of MutL¢, in Saccharomyces

cerevisiae

Introduction

In the previous chapter I reported studies suggesting that S. cerevisiae MutLo, is a
member of the gyrase b/Hsp90/MutL (GHL) dimeric ATPase superfamily characterized
by highly conserved ATPase motifs (Tran and Liskay, 2000). Although direct
demonstration of ATP-binding and hydrolysis was not forthcoming, my genetic and
biochemical results suggest that, similar to other GHL ATPases, yeast MutLa appears to
undergo ATPase-dependent conformational changes highlighted by NH,-terminal
dimerization of the ATPase domains. These ATP-dependent conformational changes in
MutLo and resultant NH,-terminal dimerization between Mlhlp and Pms|p protomers
appear to be crucial for MMR because mutations affecting these activities compromise
yeast MMR in vivo. Analogous to other GHL ATPases (Prodromou, et al., 1997a;
Prodromou, et al., 1997b; Ban, et al., 1999: Grenert, et al., 1999; Prodromou, et al., 1999:;
Chadli, et al., 2000; PI'OdI‘OHlOl:l, et al., 2000; Spampinato and Modrich, 2000; Young and
Hartl, 2000), these MutLo. ATP-dependent conformational changes and the NH,-terminal
dimerization may recruit and/or activate downstream effectors. One downstream
candidate that may be directed by the MutLa. ATPase domains is the 5°-3° exonuclease,
Exolp, identified as a yeast two-hybrid interactor with Mih1p (Shelley, 1999) and Msh2p
(Tishkoff, et al., 1997a). In addition, recent genetic studies suggest that Exolp performs
a catalytic role during MutSa-dependent MMR (Sokolsky and Alani, 2000).

In this chapter I report results showing both physical and genetic interactions

between £XO! and the components of MutLa, Mlhlp and Pmslp. Specifically, I
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characterized further this initial two-hybrid interaction between Mlhlp and Exolp. More
importantly, my genetic interaction results suggest that one function of the MutLo,
ATPase domains may be to direct Exolp and other exonucleases during mutation
avoidance. Finally, my results suggest that Exolp is also involved in one or more MMR-

independent mutation avoidance pathways.

Exolp interacts with Mlhlp by yeast two-hybrid.

Using full-length Mlh1p as a bait I recovered a COOH-terminal fragment of
Exolp (residues 400-702) from a two-hybrid screen. This Exolp fragment was re-tested
directly and shown to interact with LexAp-Mlhlp as depicted in Figure 4-1a. Using
deletion constructs I mapped the minimal region of Mlh1 p required to interact with this
COOH-terminal fragment of Exolp to residues 501-761 (Figure 4-1a). To test whether
ATP-binding or ATP-binding dependent conformational changes by Mlhlp were
necessary for interaction with Exolp, I examined LexAp-mlh1-G98A for interaction. As
shown in Figure 4-1a, this Mlh1p mutant was still capable of interacting with Gal4p-
Exolp (400-702).

I also tested the Exolp clone against a panel of other MMR proteins. This
COOH-terminal fragment of Exolp interacted with full-length Lex Ap-Msh2p (data not
shown) similar to a previous report (Tishkoff, et al., 1997a), but not with full-length

LexAp-Msh6p (data not shown) or LexAp-Pms1p fusions (Figure 4-1b). However, this
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Figure 4-1. Exolp and mismatch repair proteins interact by yeast two-hybrid. (a)
Boxes correspond to Mlh1p “bait” constructs tested for interaction. The residues of
Mlhlp included in the fusions are indicated above each respective construct. The amino
acid substitution G98A made in Mlhlp is designated above the construct by a black bar
within the construct box. Interaction is scored as growth on ~HIS media and > 0.5 B-
galactosidase units with the substrate o-nitro-phenyl-B-D-galactosidase (ONPG) as
described in CHAPTER 2: Materials and Methods. (b) Full-length lexAp-Pms1p fusion
alone or with native Mlh1p co-expressed was tested for interaction with the Gal4p-
Exol1p-(400-702) fusion using similar analysis to panel a.
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COOH-terminal fragment of Exolp did interact with LexAp-Pmslyp in a three-hybrid

assay when native Mlhlp was co-expressed (Figure 4-1b).

Epistasis analysis for mlh1 and pmsI mutations and exolA.

To detect genetic interactions between components of MutLa and EXOI, [
examined mutation rates in various single and double mutants (Table 4-1). The most
striking result was that both pmsI-E61A and pmsl-G128A mutations seemed to synergize
with exolA for mutation rates using rom3-10 (Table 4-1, PTY204 > PTY 105 + PT Y201;
and PTY304 > PTY105 + PTY301). Likewise mihI-E3]A mutation also appeared to
synergize with exolAusing hom3-10 (Table 4-1, PTY207 > PTY 105 + PTY200). In
contrast, the small effect of exo/A at hom3-10 relative to the large effect produced by the
mihlA, pmsIA, and mlh1-G98A mutations prevented epistasis conclusions from being
made with the corresponding double mutants. Using 95% CI I did not see any consistent
differences in the mutation rates for the single and double mutant combinations using
CAN1 , however, examination of the CAN! spectra below suggested that exo/A mutation
also synergized with mlhl-E31A, pmsl-E61A and pmsi-G128A mutations for hom3-10-

like events at CANI (see below).

Analysis of CANI mutation spectra.

To better understand the genetic interactions between MLHI, PMS1 and EXOJ 1
examined the CAN/ mutational spectra of a subset of single and double mutant strains.
As shown in Table 4-2, all single mih{ and pmsl mutant strains examined showed a

CANI spectrum characterized by a frameshift (FS) to base substitution (BS) mutation
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Table 4-1. Mutation rates of exolA strains in yeast MutL mutant backgrounds.

STRAIN RELEVANT GENOTYPE FOLD MUTATOR RATE (95% CI)?
hom3-10° Can®™*©
GCy3sd Wildrype 1 {0-2.3) 1 (0.1-2)
PTY 1004 mlhIA 1253 (0-3953) 29  (0-86)
PTY101¢ pmslA 1212 (1017-1408) 28  (15-41)
PTY105 exolA 8 (0-24) S (5-14)
PTY106 mlhlAexolA 1227 (134-2320) 37 (30-43)
PTY 107 pmslA exolA 1097 (253-1940) 35 (11-60)
PTY200 mlhl-E31A 315 (170-461) 9 {(3-14)
PTY207 mlhl-E31A exolA 1387 (813-1961) 54  (0-108)
PTY201% ¢© pmsl-E61A 19 (B=32% i (0.5-2)
PTY204¢ pmsl-E6IA exolA 517 {163-872) 15 (9-20)
PTY3004 mlhl-G98A 725 (524-926) 22 (10-34)
PTY307 mlhl-G98A exolA 1207 (0-2884) 43  (22-63)
PTY301% ¢ pmsI-GI28A 78 (33-122) 4 {3-5)
PTY304¢ pmsl-GI28A exolA 611 (361-862) 24 (20-27)

® — Experiments repeated two to four times with 5-11 cultures per experiment.
b _Relative to wildtype GCY35 rate of 9.90x10"".

© — Relative to wildtype GCY35 rate of 3.01x10"°".

4 _ These rates are taken from Tran and Liskay, 2000.

¢ — Codeletion of MLH3 did not change the rates significantly (two-tailed Mann-
Whitney test, P > 0.05).
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ratio (FS/BS) of two or greater. The preponderance of FS over BS mutations has been
shown previously for msh2A strains (Marsischky, et al., 1996). Operationally, T will
consider such an excess of FS over BS mutations as reflective of a “MMR-defective”
spectrum. In contrast, the exol A strain exhibited a spectrum that was different from a
MMR-defective strain, e.g. mihlA (P < 0.001), but not different from the wildtype strain
(P> 0.1) (Table 4-2). Although no single pairwise comparison was statistically
significant (P > 0.1), deletion of EXO! combined with any of the mihl or pms/ single
mutations as a general trend seemed to result in a shift in spectrum as represented by a
change in FS/BS ratio (Table 4-2). This initial CAN/ spectrufn analysis suggested that
exol deficiency alone did not produce a MMR-defective spectrum and that combining
exolA with many of the pms! or mihl mutations examined in this study appeared to
cause a shift in the ratio of FS to BS mutations.

Another means to analyze mutation spectrum data is to estimate rates of specific
types of mutations arising at the mutation reporter locus (Flores-Rozas and Kolodner,
1998; Harfe and Jinks-Robertson, 1999; Yang, et al., 1999). Using the CAN/ mutation
rates (from Table 4-1) and the frequency of FS and BS mutations arising at CAN/ (from
Table 4-2), I estimated the rates of FS and BS mutations at CAN/ of my single and
double mutant combinations and presented these rates relative to the wildtype rates for
FS and BS mutations at CAN/ (Table 4-3). The limited sample size of can/ mutants
analyzed for each strain and inability to perform statistical analysis on the values in Table
4-3 (see MATERIALS AND METHODS) precluded me from making arguments of
synergy, additivity or epistasis of statistical significance. Despite this limitation, I

observed two interesting trends. One, the exol A mutation synergized with the mih/-
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Table 4-3. Relative estimated rates of frameshift and base subsitution mutations at
CAN1I?,

STRAIN RELEVANT GENOTYPE CLASS OF MUTATION
Frameshifts Base substitutions
Fold Mutator Fold Mutator

(Rate)® (Rate)®

GCY35 Wildtvpe 1 1

PTY 100 mihla 66 11

PTY200 mihl-E31A 15 6

PTY300 mlhl-G98A 53 5)

PTY101] pmslA 64 10

PTY 104 pmslA mlh3A 63 10

PTY202 pms{-E61AC i 14

PTY302 pmsl-Gl28A° 2 2

PTY 105 exolA il 2 9

PTY 106 mlhiAexolA 72 22

PTY207 mlhl-E31A exolA 122 21

PTY307 mlhl-G98A exolA 55 42

PTY 107 pmslA exolA 68 21

PTY205 pmsl-E6IA exolA° 31 6

PTY305 pmsl-GI28A exol AS 38 13

® — Rates were calculated from data used to generate Table 4-1 and frequency of
framshift and base subsitution mutations from Table 4-2 as described in CHAPTER

2: Materials and Methods.
b _ Relative to the calculated wildtype rate of 1.05x107 for frameshifts at CAN/.

- Relative to the calculated wildtype rate of 1.66x107 for base substitutions at

CAN/.
&_ Assuming that PTY204 genocopies the wildtype.

€~ Inan mlh 34 background as described in the text.
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E31A mutation and the pmsi-E61A and -G128A mutations for FS mutation rates at
CAN/, similar to the hom3-10 reporter described above. And two, as a general trend BS

mutation rates at CANJ suggested an additive relationship between mihA and exol A,

mihl-E31A and exolA; and pmsiA and exol A.

The CANI mutator phenotype of exol4 is REV3-dependent.

The “non-MMR-like” mutational spectrum of the exo/A single mutant and the
general trend of additive interaction between most MutLa mutations and exo/A for BS
rates at CAN/ suggested that EXO/ may be involved in MMR-independent pathways for
mutation avoidance. Because rev3A can suppress the mutator phenotype of strains in
which certain mutation avoidance pathways are defective (Datta, et al., 2000; Harfe and
Jinks-Robertson, 2000a; Scheller, et al., 2000), T examined the role of REV3 on the
exo]A mutator phenotype. Interestingly, whereas the CANI mutation rate of exolA
(PTY105) was approximately 9-fold that of the wildtype (GCY35) rate, the double rev3A
exolA (PTY111) rate was indistinguishable from the wildtype rate (Table 4-4). These
results suggested that the exo/A mutator phenotype at CAN/ was largely REV3-
dependent.

As described previously, I observed synergism between the pms/-E61A and -

G 128A mutations and exo/A for FS mutation rates (Table 4-1 and 4-3). To determine
whether the FS synergy observed between pmsi-E61A and -G128A mutations and exolA
was dependent on REV3 , I analyzed the effect of rev3A mutation on the pmsi-E61A
exolA and pms1-G128A exol A double mutant strains (Table 4-4). I observed that the

mutation rates of the double mutants was not affected by co-deletion of REV3 (Table 4-
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Table 4-4. Mutation rates of rev3ia strains in yeast MMR mutant backgrounds.

STRAIN RELEVANT GENOTYPE FOLD MUTATOR RATE (95% ch @

hom3-10° CanR<€
GCy3sd Wildtype 1 (0-2.3) i (0.1-2)
PTY 1004 mlhiA 1253 (0-3953) 2% (0-86)
PTY110 revia 0.3 (0.1-0.5) 0.7 (0-2)
PTY105¢ exolA 8 (0-24) S (5-14)
PTYI11 rev3a exol A 2 (0-4) i (0.6-3)
PTY112 reviA mihla 911 (156-1668) 28  {3-53)
PTY2014 pmsi-E61A 149 (6-32) 1 (0.5-2)
PTY2044 pmsl-E6IA exolA 517  (163-872) 15 (3-20)
PTY210 pmsl-E6IA exolA revia 197  (121-273) 13 (10-15)
PTY301¢ pmsi-GI28A 78 (33-122) 4 (3-5)
PTY304¢  pmsl-GI28A exola 611 (361-862) 24 (20-27)
PTY310 pmsl-GI28A exolA rev3A 281 (1%2-370) 19 (12-25)

® — Experiments repeated two to four times with 5-11 cultures per

experiment.
b _ Relative to wildtype GCY35 rate of 9.90x10°°,

¢ — Relative to wildtype GCY35 rate of 3.01x10""".

d _ These rates are taken from Table 4-1.
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4, strains PTY210 and PTY310). Consistent with this finding, I found that mihiA rev3ia
and msh2A rev3A strains had similar mutation rates to mii] A and msh2A strains,
respectively, suggesting that the majority of MMR-dependent mutations are not REV3-
dependent (compare strain PTY 100 versus PTY112 in Table 4-4 and data not shown).
Taken together my results suggest that EXOJ can be involved in at least two mutation
avoidance pathways, a MMR-dependent pathway and MMR-independent, REV3-

dependent pathway.

Discussion

In this study I report results showing that Exolp can interact physically with
MutLa via the Mlh1p subunit. Using the yeast two-hybrid assay I found that a COOH-
terminal fragment (400-702) of Exolp interacts with the COOH-terminus (501-761) of
Mihlp. Epistasis analyses indicate a synergistic increase in the rate of spontaneous FS
mutations when the mlhi-E31A, pms1-E61A or pmsI-G128A mutation was combined
with exolA. In addition, the mutator effect of exolA did not appear to be reflective of a
MMR-defect based upon mutation spectrum analysis at CAN/. Finally, my results
demonstrate that in contrast to the mlh/A and msh2A mutator phenotypes much of the
exolA mutator phenotype at CANI is REV3-dependent.

Previous reports demonstrating physical interactions between EXQJ and MMR
involved the MutS homologue MSH2 (Tishkoff, et al., 1998). Here T show that the
domain ot Mlh1p required for interaction with Pms1p (Pang, et al., 1997), Mlh2p and
Mlh3p (Wang, et al., 1999) can also interact with a COOH-terminal fragment of Exolp
(Figure 4-1a). Furthermore, using a three-hybrid scheme I demonstrated that Exolp

could interact with MutLa: in an Mlh1p-dependent fashion (Figure 4-1b). Whether
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Mlhlp interacts with Exolp via this COOH-terminal domain to the exclusion of the other
MutL homologues or can interact simultaneously with Exolp and the other MutL
homologues will require further study. Similar to other reports for yeast and human
Exolp interacting with Msh2p (Tishkoff, et al., 1997; Rasmussen, et al.. 2000) I
identified a COOH-terminal fragment of Exolp as interacting with Mlh1 p. suggesting
that eukaryotic Exolp interacts with MMR proteins via a conserved COOH-terminal
interaction domain. I also demonstrated by yeast two-hybrid that an Mihlp ATP-binding
mutant (LexA-mlh1-G98Ap) was still able to interact with Exolp, suggesting that Mlh1 p
ATP-dependent conformational changes may not be necessary for interaction with
Exolp. Similar findings with E. coli MutL suggest that the Mutl. ATPase activity is not
necessary for interaction with MutH and UvrD, but is required to activate these
downstream components for incision and excision, respectively, in vitro (Spampinato and
Modrich, 2000). By using genetic analysis as described below, I attempted to address
whether the ATPase domains of MutLa are required for activation of Exolp.

I performed epistasis analysis using MutLoa ATPase and exolA mutations
because my previous studies suggested that MutLo undergoes NH,-terminal ATP-
dependent conformational changes that in turn may be important for coordinating
downstream events. In view of the two-hybrid results presented here and the work of
others (Tishkoff, et al., 1997; Sokolsky and Alani, 2000), EXO! was an obvious
candidate. I detected genetic interactions for mutation avoidance between milhl or pmsl
mutations and exo/A. Of most interest, the mihi-E3/A or "ATP-hydrolysis" mutation
and both the pms! ATPase mutations synergized with exo/A for FS mutation rates.

Similar synergistic interactions for mutation avoidance between MLHI/PMS] and EXO]
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were also identified by the Kolodner group during a genetic screen used to identify
factors redundant to Exolp (N. S. Amin, M.-N. Nguyen, S. Oh and R.D. Kolodner, in
press). One explanation for the synergy is that the Mlh1p ATP-hydrolysis motif is
necessary to coordinate a factor (e.g. another exonuclease) that is functionally redundant
with Exolp. Similarly, as synergy was also observed between pms] ATPase mutations
and exol A, this suggests the Pms1p ATPase motifs may also be necessary to coordinate a
factor redundant to Exolp. Specifically, I hypothesize that these MutLo ATPase motif
mutations genocopy defects in factors redundant to Exolp, such that the combination of
these mutations (e.g. pms/-E61A and exolA) is similar to deletion of exo/A and these
"redundant” factors. This explanation is consistent with recent findings that E. coli MutL
utilizes its ATPase activity to coordinate both incision (Ban and Yang, 1998; Spampinato
and Modrich, 2000; Junop, et al., 2001) and excision in vitro (Spampinato and Modrich,
2000). The existence of redundant factors for Exolp agrees with the lack of a strong
mutator phenotype for the exolA strain (Tishkoff, et al., 1997; Tran, et al., 1999) and bi-
directional excision seen for eukaryotic in vitro MMR (Fang and Modrich, 1993).
Alternatively, as MMR and the replication machinery may interact directly (Umar, et al.,
1996; Gu, et al., 1998; Flores-Rozas, et al., 2000), these MutLo. ATPase motif mutations
may affect replication fidelity and result in synergistic increases in mutation rate similar
to a polymerase proofreading defect combined with exolA (Tran, et al., 1999). Another
explanation for the synergism I observed for FS mutation rates is that deletion of EXOQ!
in combination with specific MutlLo, ATPase mutations results in the “structural collapse™
of a complex required for MMR. I do not favor exclusively this structural argument

because studies using an exonuclease deficient allele of EXO! predicted to be structurally
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intact (Sokolsky and Alani, 2000) also results in synergistic effects when combined with
pmsl ATPase mutants (P.T. Tran and R.M. Liskay, manuscript in preparation).

Investigation of CAN/ mutations demonstrated that exolA exhibited a mutational
spectrum different from known MMR-defective strains. In addition, estimated rates of
FS and BS mutations at CAN! in the single and double mutants seemed to show two
general trends. 1) Similar to the hom3-10 results, the mlhl ATP-hydrolysis mutation and
both the pms/ ATPase mutations appeared to synergize with exolA for rates of FS
mutations at CAN/. 2) Using the limited number of BS events at CAN/, the single and
double mutant calculated rates of BS mutations suggested an additive effect when exo/A
was combined with several different MutLo mutations. Together these CAN/ results
suggested involvement of EXO/ in a MMR-dependent pathway for avoidance of FS
mutations and a MMR-independent pathway for avoidance of BS mutations.

What is the nature of this EXO1 MMR-independent pathway for mutation
avoidance? As REV3 is required for the mutator phenotype observed when certain
mutation avoidance pathways are defective (Broomfield, et al., 1998; Brusky, et al.,
2000; Datta, et al., 2000; Harfe and Jinks-Robertson, 2000; Scheller, et al., 2000); I
characterized the effect of rev3A on the exolA mutator phenotype. Interestingly, I found
that mutations at CAN/ in the exol A rev3A strain were reduced to near wildtype levels,
suggesting that most of the CANI mutator phenotype of exolA is dependent on REV3.
Presumably the exo/A mutator phenotype is caused by the action of the REV3 gene
product, whose function as a component of the error-prone polymerase { (Rev3p-Rev7p)
is to bypass DNA lesions that stall the replicative polymerases (Lawrence and Hinkle,

1996). My data would therefore suggest that Exolp assists in an error-free process past
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spontaneous DNA lesions. As Exolp has been implicated in several DNA metabolic
pathways such as repair of UV-damage, recombination and replication (Fiorentini, et al.,
1997, Qiu, et al., 1998; Holbeck and Strathern, 1999; Lee and Wilson 3rd, 1999; Qiu, et
al., 1999; Kirkpatrick, et al., 2000; Nicholson, et al., 2000), further studies are required to
clarity the relationship between REV3 and EXOI. In contrast, the synergism between
exolAand pmsi ATPase mutations was not REV3-dependent, nor were the mlhlA or
msh2A mutator phenotypes. These results compliment my CAN data suggesting that
EXO1 can be involved in MMR-dependent and MMR-independent mutation avoidance
pathways.

Until recently, mechanistic details of how the eukaryotic MutL homologues
couple the mismatch binding activities of MutS homologues to downstream effectors in
eukaryotes have been scarce. Studies identifying MutL homologues as members of an
emerging ATPase superfamily have provided a framework with which to examine MutL
homologue function during MMR-dependent mutation avoidance (Ban and Yang, 1998;
Ban, et al., 1999; Dutta and Inouye, 2000; Tran and Liskay, 2000). Based upon the
results presénted here, I suggest that one function for MutLo ATPase domains is to
coordinate Exolp and possibly redundant activities during mutation avoidance. Because

MMR proteins have also been shown to function in other pathways, such as meiotic
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(Baker, et al., 1995; Baker, et al., 1996; Hunter and Borts, 1997; Wang, et al., 1999) and
homeologous recombination (Selva, et al., 1995; Hunter, et al., 1996; Datta, et al., 1997
Chen and Jinks-Robertson, 1999), the use of MutLo. ATPase mutations may be important

reagents for a more complete understanding of the role of MMR in these other pathways.
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CHAPTER 5: Concluding Discussion

I have examined the function of predicted ATPase motifs in Mlhlp and Pms]1 p of
S. cerevisiae MutLo. My results support the notion that yeast MutLo is a functional
member of the GHL ATPase family in that both the ATPase motifs of Mlh1p and Pms Ip
are absolutely required for MMR in vivo. Furthermore, in vitro and genetic findings
suggest that ATP-binding induced conformational changes in MutLa: are associated with
heterodimerization between the NH,-termini of Mlh1p and Pms1p. Surprisingly, my in
vivo results suggest an intrinsic functional asymmetry with respect to the Mlh1 p and
Pmsip ATPase domains. In addition, I have presented evidence for both physical and
genetic interactions between EXOJ and the components of MutLe, Mlhlp and Pmslp.
Furthermore, results of my genetic analysis can be interpreted to signify that one function
of the MutLa ATPase domains is to facilitate Exolp and other exonuclease action during
mutation avoidance. Finally, my results also suggest that Exolp is also involved in one
or more MMR-independent mutation avoidance pathways.

In this chapter I will speculate further on specific aspects of my findings in the

context of understanding how MMR operates and discuss relevant future studies.

The MutLo ATPase cycle

Work in this thesis has provided initial support for the MutLo ATPase cycle
depicted in Figure 3-4. The limited proteolysis results with double ATP-hydrolysis and
ATP-binding mutant forms of MutLa are in agreement with the MutLa: ATPase cycle.

Further in vitro analysis of ATPase mutant forms of MutLo: will be necessary to confirm
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and extend the findings presented here. Future biochemical work with the single ATPase
MutLo mutants will be necessary to correlate any in vitro asymmetry to that already
observed in vivo. Moreover, the identification and characterization of an intrinsic MutLa
ATPase activity is important, but may require additional, as yet unidentified co-factors.
As all GHL ATPases possess a similar ATPase cycle (Wigley, et al., 1991; Ali, et al.,
1993; Prodromou, et al., 1997a; Prodromou, et al., 1997b; Ban and Yang, 1998; Ban, et
al., 1999; Chadli, et al., 2000; Prodromou, et al., 2000; Tran and Liskay, 2000; Young
and Hartl, 2000); further refinements of the MutLoc ATPase cycle may also hold true for
other GHL ATPase cycles.

Recent collaborative work with the Alani laboratory has produced an i vitro
assay that involves MutSc., MutLa and PCNA protein interacting on a heteroduplex
substrate (Bowers, et al., 2001). This assay demonstrates that PCNA protein specifically
displaces a MutSo/MutLo complex from a mismatch. One interpretation of this
phenomenon is that MutSe, MutLa, and PCNA protein forms a mobile higher-order
complex that is competent for recruiting further downstream MMR factors. Examination
of single and double ATPase MutLo mutant combinations in this new assay will be
helpful in determining if the MutLo ATPase domains are necessary for these very early
steps or are restricted to subsequent steps.

In CHAPTER 4, I presented results suggesting that one function of the MutLo.
ATPase domains may be to direct Exolp and potentially other redundant factors during
MMR. However, another interpretation of these results is that Exo Ip serves a
predominantly structural role as part of a higher order complex during MMR mutation

avoidance. Studies to distinguish between these possibilities will require future work
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with purified components. A more ambitious goal is the reconstitution of a mismatch-
directed in vitro excision assay using MutSo, MutLa, PCNA protein, Exolp and the

appropriate substrate, all of which are now available.

EXO1 MMR-independent pathway(s)

My studies have suggested that £XO/ is minimally involved in at least two
mutation avoidance pathways, a MMR-dependent pathway and a MMR-independent
pathway. Interestingly, the phenotypes of exolA, REV3-dependent CANI mutator and
methyl methanesulfonate (MMS) sensitivity, are identical to those of MMS2 and UBC13
which have been placed in the post-replication repair pathway (PRR) (Broomfield, et al.,
1998; Brusky, et al., 2000; Xiao, et al., 2000). PRR functions to bypass spontaneous and
induced DNA damaged replication templates using both error-free and €rror-prone
processes (Xiao, et al., 2000). Epistasis studies aimed at assigning EXQJ to the PRR

pathway are underway.

Identifying novel MMR components

As discussed in CHAPTER 3, the proposed ATP-bound NH,-terminal dimerized
form of MutLa is predicted to be an important intermediate based on studies with MutL
and Hsp90 showing that these dimer intermediates facilitate novel interactions with
downstream components (Ban and Yang, 1998; Grenert, et al., 1999; Chadli, et al., 2000;
Prodromou, et al., 2000; Young and Hartl, 2000). I have performed tWo-hybrid screens
with a bait intended to mimic the dimerized ATP-bound MutLo NH,-termini. Many of

the interactors from these screens have been characterized in a preliminary fashion using
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mutator assays (see APPENDIX C for a list of interactors). Although, none of these
interactors have thus far demonstrated a "mutator” phenotype when deleted, several of
these interactors deserve closer scrutiny. Recently, two reports have suggested that
Hsp90 ATPase activity and ATP-dependent conformational changes may also require
COOH-terminal domains (Marcu, et al., 2000; Weikl, et al., 2000). Experiments to
address this possibility for MutLa should be initiated and then a corresponding full-
length double-hydrolysis MutLa mutant bait should be used to screen a yeast two-hybrid
library.

Alternatively, I have generated mutator strains that may be deficient for specific
downstream steps of MMR, e.g. PTY204 (pmsI-E61A exolA). Conducting high-copy
suppression screens with such a strain may help identify novel downstream components,

1.e. helicases and/or exonucleases.

Asymmetry in MMR

During the course of my studies I obtained results suggesting an intrinsic
asymmetry within MutLo: with respect to Mlh1p and Pmslp ATPase domains.
Specifically, I found that the Mlhlp ATPase ‘domain appeared to be more necessary for
the prevention of spontaneous mutations than did the Pmslp ATPase domain. The
MutLa asymmetry could be relevant to understanding the GHL ATPase family in a more
general context, as the phenomenon of dimer asymmetry, even for "structural
homodimers”, appears to be a recurring theme in biology (Sixma, 2001). Recent crystal
structures of E. coli and Thermus aquaticus MutS homodimers complexed with

mismatched DNA clearly show that similar to eukaryotic MutSo. heterodimer, only one
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protomer of the dimer makes contacts with the mismatch (Lamers, et al., 2000:
Obmolova, et al., 2000). These structural studies confirm earlier suggestions that
although prokaryotic MutS homodimer is structurally symmetrical; it functions during
MMR in an asymmetrical fashion (Malkov, et al., 1997). Work with MutSa. has
demonstrated that the Msh2p and Msh6p ATPase domains appear to contribute
differentially to the total ATPase activity of the heterodimer (Iaccarino, et al., 1998;
Studamire, et al., 1998). Furthermore, studies suggest that Msh6p is more important for
substrate recognition (Bowers, et al., 1999; Dufner, et al., 2000) and signaling for
complex formation with MutLa (Bowers, et al., 2000) (J. Bowers, P.T. Tran, R.M.
Liskay and E. Alani, unpublished results). As mentioned in CHAPTER 3, a kinetic
asymmetry has been detected in the homodimeric ATPases, topoisomerase II from S.
cerevisiae and the y complex from E. coli (Harkins, et al., 1998; Baird, et al., 1999:
Hingorani, et al., 1999). Does this same paradigm hold true for MutL and the other GHL
ATPases? Currently no studies have demonstrated that the protomers of a MutL
homodimer or any of the other GHL homodimers operate in an asymmetrical manner.
However, T suggest that similar to MutLo, MutL homodimer and perhaps all GHL
homodimers behave in an asymmetrical manner at some stage during their action.

The phenomenon of MutLa ATPase domain asymmetry observed for mutation
avoidance may imply a mechanism by which the three separate yeast MutL heterodimers
(Mlhlp-Pms1p, Mlhlp-Mlh2p and Mlh1p-MIh3p) execute their separate functions (see
Figure 1-2) (Wang, et al., 1999). Specifically, each MLH ATPase domain may function
separately to direct components for their respective pathways. For example, the most

impressive mlh3A phenotype is reduction in the number of crossovers during meiosis
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(Wang, et al., 1999). My hypothesis would predict that the Mlh3p ATPase domain is
required to promote crossovers. One potential caveat is that the Mlh1p ATPase domain
may be required for only some or all of the MLH functions. Collaborative studies with
the Jinks-Robertson group have shown that in the presence of wildtype Mlhlp, the Pmslp
ATPase domain appears dispensable for mutation avoidance, ‘but is required for
suppression of homeologous recombination. In contrast, the Mlhlp ATPase domain
appears to be required for both functions (C. Welz-Voegele, J. E. Stone, P. T. Tran, H. M.
Kearney, R. M. Liskay, T. D. Petes and S. Jinks-Robertson, unpublished data). Tt would
be interesting to test this model further by examining ATPase mutants of mik3 and mih2

in conjunction with mlhl and pms! ATPase mutants using assays for the assorted MMR

functions.
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APPENDIX B: CAN! Spectrum Summary

List of canl mutations recovered from independent canl forward mutants from
the designated strains with relevant genotypes in parantheses. Numbers represent clone
numbers, followed by mutations denoted for the coding strand, with sequence coordinates
for database entry gbIM11724/YSCCANI, in paranthesis is the primer used to identify
the mutation and lastly, the consequence of the mutation. Numbers without assocaited
mutations indicate that no mutation could be found after sequencing of the CANI gene.
Clones with two mutations occurred at a frequency of 5/322 (or 1.6%) and may represent
Tag polymerase generated errors. In the clones with two mutations the non-conservative

changes were assumed to be the inactivating can/ mutations.

GCY35 (wildtype)

#1:  G->A @ 671 (primer E)l . GGC->GAC (G->D)

#2:  G->C @ 1514 (primer B)! . CGT->CCT (R->P)

#3: C->T @ 770 (primer C) .. TCC->TTC (S->F)

#4. ATC @ 1269-1270 (primer A & C)

#5: 2C->C @ 1270-1271 (primer A & C)

#6:  Direct duplication of sequences 1898-1935

#7:  T->C @ 1051 (primer C) .. TGT->CGT (C->R)

#8:  Direct duplication of sequences 594-620

#9:  G->T @ 1291 (primer A & C)1 . GTT->TTT (V->F)
#10: 4T->3T @ 1517-1520 (primer A & B)

#11: 4A->3A @ 330-333 (primer E)

#12: G->T @ 370 (primer E) .. GAG->TAG (E->amber)
#13: G->T @ 848 (primer CO)1 -, TGG->TTG (W->L)
#14: A>T @ 870 (primer C) .. GAA->GAT (E->D)

#15: 6T->7T @ 938-943 (primer C)

#16: G->A @ 1213 (primer A & C) .. GGT->AGT (G->S)
#17. AC @ 409 (primer E)1 results in a (A) run of n=4
#18: 3G->2G @ 1175-1177 (primer A & C)

#19: C->T @ 1484 (primer A & B) .. GCC->GTC (A->V)
#20: G->A @ 1514 (primer A & B)l -. CGT->GAT (R->D)

Lpase substitution occurs adjacent to or within a repeat n>2.
2_confirmed with independent PCR product.
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MLHI

PTY100 (mmlhiA)

#1: 6T->5T @ 938-943 (primer C)

#2: 6T->5T @ 938-943 (primer C)

#3: 4T->3T @ 858-861 (primer C)

#4.  4T->3T @1292-1295 (primer C)

#5: G->T @ 1597 (primer B)l .. GTT->TTT (V->F)
#6:  G->A @ 632 (primer E) .. GGT->GAT (G->D)
#7: 4T->3T @ 858-861 (primer C)

#8:  4T->3T @ 1869-1872 (primer B)

#9:  S5T->4T @ 1053-1057 (primer C)

#10:  6A->5A @ 1282-1287 (primer C)

PTY112 (mlhiArev3A)

#1:  G->A @1036 (primer A & C)! .. GGG->AGG (G->R)
#2: 6A->5A @ 1282 (primer A & C)

#3: 4T->3T @ 1340 (primer A & C)

#4: 6T->5T @ 1699 (primer A & B)

#5: 6A->5A @ 1282 (primer A & C)

#6: G->A @ 670 (primer E) .. GGC->AGC (G->S)
#7: G->A @ 988 (primer C) .. GGT->AGT (G->S)
#8:  6T->5T @ 1699 (primer A & B)

#9: 6T->5T @ 938 (primer C)

#10:

#11:

#12: 6T->5T @ 1699 (primer A & B)

PTY200 (mlhi1-E31A)

#1: 6T->7T @ 938-943 (primer C)

#2: 6T->5T @ 938-943 (primer C)

#3: 6A->5A @ 1282-1287 (primer A)

#4: 6T->5T @ 1699-1704 (primer B)

#5. S5T->6T @1053-1057 (primer C)

#6:  6T->7T @ 1699-1704 (primer B)

#7: C->A @ 1255 (primer A & ol . cce->Acc (P->T)
#8: 3C->2C @ 1804-1806 (primer B)

#9:  3A->2A @ 1795-1997 (primer B)

#10. T->C @ 1105 (primer C) ... TGG->CGG (W->R)
#11: 4T->3T @ 782-785 (primer C)

#12: 6T->5T @ 1699-1704 (primer B)

#13: G->A @ 815 (primer C) .. GGT->GAT (G->D)
#14: T->C @ 1708 (primer B).. TGG->CGG (W->R)

Lpase substitution occurs adjacent to or within a repeat n>2.
2_confirmed with independent PCR product.
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#15:
#16:
#17:
#18:
#19:

#20:

T->C
4T->3T
G->T
G->A
4T->3T
C>A

@ 1105 (primer C).. TGG->CGG (W->R)

@ 782-785 (primer C)

@ 631 (primer E) .. GGT->TGT (G->C)

@ 1298 (primer A & C) .. CGT->CAT (R->H)
@ 1292-1295 (primer A & C)

@ 909 (primer Ol - TAC->TAA (Y->ochre)

PTY207 (mlhl-E31A exolA)

#1:
#2:
#3:
#4:
#5:
#06:
#7:
#8:
#9:
#10:
#11:
#12:
#13:
#14.
#15:
#16:
#17:
#18:
#19:
#20:

6T->5T
6T->5T
G->T
G->A

6T->7T
AC
6T->5T
G->A
G->A
5T->4T
6A->5A
5T->4T
6T->5T
4T->3T
6T->5T
6A->5A
4G->3G
4G->3G
6T->7T
G->T

@ 938-943 (primer C)

@ 1699-1704 (primer B)

@ 1514 (primer A & B) .. CGT->CTT (R->L)
@ 815 (primer C) .. GGT->GAT (G->D)

@ 938-943 (primer C)

@ 752 (primer C)

@ 938-943 (primer C)

@ 1176 (primer A & C) .. TGG->TGA (W->opal)
@ 1107 (primer A & C) .. TGG->TGA (W->opal)
@ 1053-1057 (primer A & C)

@ 1282-1287 (primer A & C)

@ 1053-1057 (primer A & C)

@ 1699-1704 (primer B)

@ 858-861 (primer C)

@ 938-943 (primer C)

@ 1282-1287 (primer A & C)

@ 1075-1078 (primerA & C)

@ 1124-1127 (primerA & C)

@ 938-943 (primer C)

@ 944 (primer C) .. complex

PTY300 (mlh1-G98A)

#1:
#2:
#3:
#4.
#5:
#6:
#7:
#8:
#9:
#10:
#11:
#12:

6T->7T
G->A

5T->4T
6T->5T
3T->2T
6T->5T
G->A

4T->3T

ST->4T
- 5T->4T

6A->5A
G->A

@ 1699-1704 (primer B)

@ 671 (primer E)l -. GGC->GAC (G->D)
@ 1053-1057 (primer A & C)

@ 938-943 (primer C)

@ 645-647 (primer E)

@ 938-943 (primer C)

@ 617 (primer E) .. GGT->GAT (G->D)
@ 1919-1922 (primer B)

@ 1053-1057 (primer A & C)

@ 1053-1057 (primer A & C)

@ 1282-1287 (primer A & C)

@ 827 (primer C) .. GGT->GAT (G->D)

Lpase substitution occurs adjacent to or within a repeat n>2.
2_confirmed with independent PCR product.
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#13:
#14.
#15:
#16:
#17:
#18:
#19:
#20:

3T->4T
6T->5T
4T->3T
4T->3T
4T->3T
6T->5T
3C->2C
6T->5T

@1292-1295 (primer A & C)
@ 938-943 (primer C)

@ 858-861 (primer C)

@ 858-861 (primer C)

@ 858-861 (primer C)

@ 938-943 (primer C)

@ 1113-1115 (Primer C)

@ 1699-1704 (primer B)

PTY307 (mlh1-G98A exol1D)

#1: G->T @ 334 (primer E)1 - GAA->TAA (E-> ochre)

#2: 6A->5A @ 1282-1287 (primer A)

#3: A>T @ 574 (primer E)1 . AGA->TGA (R->opal)
G->T @ 930 (primer C) .. TGG->TGT (W->(C)

#4- 6A->5A @ 1282-1287 (primer A & C)

#5:  G->A @ 1106 (primer A & C) .. TGG->TAG (W->amber)

#6: 6T->5T @ 938-943 (primer C)

#7: G->A @ 815 (primer C) .. GGT->GAT (G->D)

#8: C->T @ 1210 (primer A & C)1 .. CAA->TAA (Q-> ochre)

#9: G->T @ 632 (primer E) .. GGT->GTT (G->V)

#10: G->A @ 840 (primer C)1 .-, TGG->TGA (W->opal)

#11: G->C @ 631 (primer E) .. GGT->CGT (G->R)

#12: G->T @ 671 (primer E)! . GGC->GTC (G->V)

#13: 6T->5T @ 938-943 (primer C)

#14: S5T->6T @ 1053-1057 (primer C)

#15: C—>A @ 1511 (primer B)! . TCC->TAC (S->Y)

#16: S5T->4T @ 1053-1057 (primer C)

#17: 4T->3T @ 1292-1295 (primer A & C)

#18: 6A->5A @ 1699-1704 (primer B)

#19: 3C->2C @ 672-674 (primer E)

#20: G->A @ 1298 (primer A & C) .. CGT->CAT (R->H)

PTY106 (mmihl1A exolA)

#1: 6A->5A @ 1282-1287 (primer A & C)

#2: 6T->5T @ 938-943 (primer C)

#3: AT->3T @ 858-861 (primer C)

#4:  AT->3T @ 1292-1295 (primer A & C)

57 «C2A @ 761 (primer C)1 -, CCT->CAT (P->H)

#6: 6T->5T @ 1699-1704 (primer A & B)

#7: 4G->3G @ 1124-1127 (primer A & C)

#8:  3T->2T @ 645-647 (primer E)

#9: C->A @ 845 (primer C)1 .-, TCT->TAT (S->Y)

L_base substitution occurs adjacent to or within a repeat n>2.
2_confirmed with independent PCR product.
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#10: 6T->5T
#11: 5T->4T
#12:
#13: 6A->5A
#14: G->A
G->T
#15: C->A
#16: C->A
#17: S5T->4T
#18: G->A
#19: 3C->2C
#20. 6T->5T
PMS1
PTY101 (pmsiA)
#1: 6A->5A
#2: 6T->7T
#3: C->A
#4: C->A
#5: 5T->4T
#6: 6T->7T
#7: 5T->6T
#8: 6T->5T
#9: 4T->3T
#10: 6A->5A

@ 938-943 (primer C)
@ 1053-1057 (primer A & C)

@ 1282-1287 (primer A & C)

@ 1337 (primer A & C) .. GGA->GAA (G->E)

@ 1345 (primer A & C) .. GTT->TTT (V->F)

@ 1210 (primer A & O)1 - CAA->AAA (Q->K)

@ 966 (primer C) .. AAC->AAA (N->K) !
@ 1053-1057 (primer A & C)

@ 840 (primer C)1 . TGG->TGA (W->opal)

@ 1113-1115 (primer A & C)

@ 1699-1704 (primer B)

@ 1282-1287 (primer A & C)

@ 938-943 (primer C)

@ 845 (primer C)1 .- TCT->TAT (S->Y)
@ 845 (primer C)1 -, TCT->TAT (S->Y)
@ 1053-1057 (primer C)

@ 938-943 (primer C)

@ 1053-1057 (primer C)

@ 938-943 (primer C)

@ 782-785 (primer C)

@ 1282-1287 (primer A & C)

PTY104 (pmsl1A mih3A)

#1:
#2:
#3:
#4.:
#5:
#6:
#7:
#8:
#9:
#10:

3T->2T
6T->7T
6T->7T
6T->7T
G->T

3T->2T
G->A

6T->5T
2T->1T
6T->5T

@ 1178-1180 (primer A & C)

@ 938-943 (primer C)

@ 938-943 (primer C)

@ 938-943 (primer C)

@ 631 (primer E) .. GGT->TGT (G->C)
@ 800-802 (primer C)

@ 827 (primer C) .. GGT->GAT (G->D)
@ 938-943 (primer C)

@ 708-709 (primer E)

@ 1699-1704 (primer B)

PTY107 (pmslA exolA)

#1:
#2:
#3:

2G->G
6T->5T
6A->5A

@ 1062-1063 (primer A)
@ 1699-1704 (primer B)
@ 1282-1287 (primer A)

L base substitution occurs adjacent to or within a repeat n>2.
2_confirmed with independent PCR product.
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#4. G->T @ 460 (primer E)1 . GAA->TAA (E-> ochre)
#5:

#6: 4T->3T @ 858-861 (primer C)
#7: G->A @ 632 (primer E) .. GGT->GAT (G-> D)
#8: 3T->4T @ 324-326 (primer E)
#9:
#10:
#11: 5T->4T @ 1053-1057 (primer C)
#12: G->A @ 989 (primer C) .. GGT->GAT (G->D)
#13:. G->C @ 988 (primer C) .. GGT->CGT (G-> R)
#14. 3T->2T @ 1786 (primer B)
#15: G->A @ 840 (primer ol - TGG->TGA (W-> opal)
#16: 4T->3T @ 1292-1295 (primer A & C)
#17: C->T @ 1744 (primer B) .. CAA->TAA (Q-> ochre)
#18: 6T->5T @ 938-943 (primer C)
#19: 6T->5T @ 938-943 (primer C)
#20: 4T->3T @ 1292-1295 (primer A & C)
#21:  AAC @ 1369-1370 (primer A)
T->A @ 1375 (primer A) .. TCT->ACT (8-> T)
PTY301 (pmsI-GI128A)
#1: G->T @ 599 (primer E) ... GGT->GTT (G->V)
#2: C>A @ 1503 (primer A, B & C) .. TAC->TAA (Y->ochre)
#3: C->T @ 1210 (primer A & Ol - CAA>TAA (Q->ochre)
#4: SA->4A @ 1150-1154 (primer A & C)
#5: 6T->5T @ 938-943 (primer C)
#6:  2A->3A @ 335-336 (primer E)
#7: G->T @ 1243 (primer A & C) .. GAA->TAA (E->ochre)
#8: G->T @ 1229(primer A & C) .. GGT->TGT (G->C)
#9: 6A->5A @ 1282-1287 (primer A & C)
#10: T->G @ 635 (primer E)! .. CIT->CGT (L->R)
#11: 6T->5T @ 938-943 (primer C)
#12: G->A @ 944 (primer C)l - TGG->TAG (W->amber)
#13: C->A @ 431 (primer E) .. TCA->TAA (S->ochre)
#14. 5T-4T @ 1053-1057 (primer C)
#15: AT @ 1733 (primer B) results in a (CA) run of n=3
#16: G->C @ 814 (primer ol - GGT->CGT (G->R)
#17: C->A @ 629 (primer E) .. ACA->AAA (T->K)
#18: 6T->5T @ 938-943 (primer C)
#19:
#20:

L base substitution occurs adjacent to or within a repeat n>2.
2_confirmed with independent PCR product.
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PTY301 (pmsI-G128A mlh3A)

#1: A->G

#2: AAT(or TA)
#3: T->C

#4: AAT(or TA)
#5: 4T->3T

#6: ins AG

#7: O0T->5T

#8: AAT(or TA)
#9: 5T-4T

#10: 6A->SA
#11: 6T->5T

#12: 6A->5A
#13:

#14: 5T-4T

#15: C->A

#16: G->A

#17: 4T->3T

#18: G->C

#19: 6A->5A
#20: 6T->5T

#21: 6T->5T

#22: G->T

#23: AT

#24: 6T->5T

#25: C->T

#26: 4T->3T

@ 856 (primer C)2 .. ACT->GCT (T->A)

@ 717-719 (primer E)2 in a dinucleotide run n=2
@ 1223 (primer A & C)2 .. CTA->CCA (L->P)
@ 593-595 (primer E)2 in a dinucleotide run n=2
@ 782-785 (primer C)

@ 572-579 (primer E) in a dinucleotide run n=4
@ [699-1704 (primer B)

@ 693-692 (primer E)2 in a dinucleotide run n=2
@ 1053-1057 (primer C)

@ 1282-1287 (primer A & C)

@ 938-943 (primer C)

@ 1282-1287 (primer A & C)2

@ 1053-1057 (primer A & C)2

@ 407 (primer E)2 . TCA->TAA (S->ochre)
@ 1106 (primer C)2 .. TGG->TAG (W->amber)
@ 1439-1442 (primer A & B)

@ 814 (primer CO)1,2 . GGT->CGT (G->R)

@ 1282-1287 (primer C)2

@ 938-943 (primer C)2

@ 938-943 (primer C)

@ 1214 (primer A & C) .. GGT->GTT (G->V)
@ 758 (primer C)1

@ 938-943 (primer C)

@ 790 (primer C) .. CAA->TAA (Q-> ochre)
@ 1598-1601 (primer B)

PTY205 (pms1-E61A mlh3A exolA)

#1: 5T-4T
#2: 6A->5A
#3: T->C
#4: G->T
#5: 4T-3T
#6: 6A->5A
#7: 5T-4T
#8: 4T-3T
#9:  T->G
#10: 4T-3T
#11: T->G
#12: T->C

@ 1053-1057 (primer A & C)

@ 1282-1287 (primer A & C)

@ 1492 (primer A & B) .. TCA->CCA (S->P)
@ 999 (primer C) .. GAG->GAT (E->D)
@ 635-638 (primer E)

@ 1282-1287 (primer A & C)

@ 1053-1057 (primer A & C)

@ 782-785 (primer C)

@ 999 (primer E) ... CTT->CGT (L->R)

@ 841-844 (primer C)

@ 999 (primer E) .. CTT->CGT (L->R)

@ 1708 (primer B) .. TGG->CGG (W->R)

Lpase substitution occurs adjacent to or within a repeat n>2.
2_confirmed with independent PCR product.
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#13:
#14:
#15:
#16:
#17:
#18:
#19:
#20:

6A->5A
6A->5A
6T->5T
2C->C
4T-3T
3G-2G
AC
SA->4A

@ 1282-1287 (primer A & C)
@ 1282-1287 (primer A & C)
@ 938-943 (primer C)

@ 1585-1586 (primer B)

@ 858-861 (primer C)

@ 1004-1006 (primer C)

@ 1809 (primer B)

@ 1150-1154 (primer A & C)

PTY305 (pmsI-GI28A mlh3A exol A)

#1:
#2:

#3:
#4:
#5:
#6:
#7:
#8:
#9:

#10:
#11:
#12:
#13:

#14:
#15:
#16:
#17:
#18:
#19:
#20:

C>A
T->G
C->G
6A->5A
3T->2T
6A->5A
5T-4T
4T-3T
3T-2T
3C->2C
C->T
C->A
2A->A
C->T
C->A
6T->5T
4T->3T
5T-4T
T->G
6A->5A
5T-4T

@ 761 (primer C)1 -, CCT->CAT (P->H)

@ 1340 (primer A & C)1 . CTT->CGT (L->R)
@ 1493 (primer A)1 . TCA-> TGA (S->opal)
@ 1282-1287 (primer A)

@ 1207-1209 (primer A)

@ 1282-1287 (primer A & C)

@ 1053-1057 (primer A & C)

@ 635-638 (primer E)

@ 1064-1066 (primer C)

@ 1804-1806 (primer B)

@ 1256 (primer A & C)1 .. CCC-> CTC (P->L)
@ 1511 (primer B)L . TCC-> TAC (S->Y)

@ 664-665 (primer E)

@ 666 (primer E) .. AAC-> AAT (N->N)

@ 966 (primer C) .. AAC-> AAA (N->K)

@ 938-943 (primer C)

@ 858-861 (primer C)

@ 1053-1057 (primer C)

@ 686 (primer E) .. CTT-> CGT (L->R)

@ 1282-1287 (primer A & C)

@ 1053-1057 (primer C)

Lpase substitution occurs adjacent to or within a repeat n>2.
2_confirmed with independent PCR product.
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PTY310 (pmsI-G128A exol A rev3A)

#1: C->A @ 1238 (primer A & C) .. GCT->GAT (A->D)

#:  T->G @ 581 (primer E) .. CIT->CGT (L->R)

#3: 6T->7T @ 938 (primer C)

#4:  4T->5T @ 1022 (primer C)

#5:

#6: 4T->3T @ 1022 (primer C)

#7:  6T->5T @ 1699 (primer A & B )

#3:  2C->1C @ 1129 (primer A & C)

#9: 6A->5A @ 1282 (primer A & C)

#10: T->C @ 1223 (primer A & C) . CTA->CCA (L->P)

#11:

#12: 6T->5T @ 938 (primer C)

EXO1

PTY105 (exolA)

#1:  AC @ 1793 (primer B)

#2:  3C->2C @ 1113-1115 (primer A & C)

#3: C->T @ 629 (primer E) .. ACA->ATA (T->I)

#4:  G->T @ 989 (primer C) . GGT->GTT (G->V)

#5:  C->T @ 1855 (primer B)1 . CAA->TAA (Q->ochre)

#6:  3A->4A @ 1251-1253 (primer A & C)

#7:  C->A @ 845 (primer C)1 -, TCT->TAT (S->Y)

#3:  2C->C @ 1826-1827 (primer B)

#:  G->T @ 976 (primer C) .. GTC->TTT (V->F)

#10:

#11:. G->T @ 520 (primer E) .. GAG->TAG (E->amber)

#12: T->A @ 847 (primer C)1 -, TGG->AGG (W->R)
C->T @ 865 (primer C)1 .. CTG->TTG (L->L)

#13:  G->A @ 1036 (primer A & O)1 .-, GGG->AGG (G->R)

#14:  3A->4A @ 1251-1253 (primer A & C)

#15: AC @ 777 (primer C)1

#16: C->G @ 580 (primer E)L . CTT->GTT (L->V)

#17:  6A->5A @ 1282-1287 (primer A & C)

#18:  3T->2T @ 700-702 (primer E)

#19: G->A @ 1298 (primer A & C) .. CGT->CAT (R->H)

#20: C->G @ 1532 (primer A & B)! . TCA->TGA (S->opal)

#21  6T->7T @ 938-943 (primer C)

L pase substitution occurs adjacent to or within a repeat n>2.
2_confirmed with independent PCR product.
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PTY111 (exolA rev3A)

#1:

#2:
#3:
#4:
#5:
#6:
#7:
#8:
#0:

#10:

#11:
#12:
#13:

#14:
#15:

G->T
C->A
G->T
C->A
G->A

6A->5A
C->A
2T->3T
C->A
C->T
T->C
C->A
C->T
C->T

@ 1291 (primer A & Ol - GTT->TTT (G->F)
@ 608 (primer E)1 . GCC->GAC (A->D)

@ 617 (primer E) .. GGT->GTT (G->V)

@ 831 (primer C) .. TAC->TAA (Y-> ochre)
@ 815 (primer C) .. GGT->GAT (G-> D)

@ 1282-1287 (primer A & C)
@ 1493 (primer B)1 . TCA->TAA (S-> ochre)

@ 881-882 (primer C)

@ 857 (primer C)1 -, ACT->AAT (T-> N)

@ 1210 (primer A & C)1 . CAA->TAA (Q-> ochre)
@ 1492 (primer A & B) .. TCA->CCA (S-> P)

@ 1503 (primer A & B) .. TAC->TAA (Y-> ochre)
@ 1513 (primer A & B)L . CGT->TGT (R-> C)

@ 1372 (primer A & C) .. CAA->TAA (Q-> ochre)

PTY700 (exol-D173A)

#1:

#2:
#3:
#4:
#5:
#6:
#7:
#8:
#9:

#10:
#11:
#12:
#13:
#14:
#15:
#16:

#17:

#18:
#19:
#20:

T->G
C->G
G->T
C>A
T->G
C->G
AC

C->T
G->A

G->A
AA

G->T
G->A
G->A
AA

G->T
G->C
G->A
A->T

@ 659 (primer E) .. CTG->CGG (L->R)

@ 580 (primer E)1 . CTT->GTT (L->V)

@ 999 (primer C) ... GAG->GAT (E->D)

@ 1314 (primer A & C) .. TAC->TAA (Y->ochre)
@ 833 (primer C) .. ATG->ACG (M->T)

@ 909 (primer C)1 -, TAC->TAG (Y->amber)

@ 1628 (primer A & B)

@ 409 (primer E)1 . CAA->TAA (Q-> ochre)

@ 902 (primer C)1 . TGG->TAG (W->amber)

@ 632 (primer E) ... GGT->GAT (G->D)

@ 1775 (primer B)

@ 626 (primer E) .. GGT->GTT (G->V)

@ 1697 (primer B) .. GGC->GAC (G->D)
@ 930 (primer C) .. TGG->TGA (W->opal)
@ 1628 (primer B)

@ 1597 (primer B)1 . GTT->TTT (V->F)
@ 613 (primer E)2 .. GGT->CGT (G->R)
@ 903 (primer C) .. TGG->TGA (W->opal)
@ 964 (primer C) .. AAC->TAC (Q->Y)

Lpase substitution occurs adjacent to or within a repeat n>2.
2_confirmed with independent PCR product.
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