
Static Types for Dynamic Documents

Mark Brian Shields
B.Sc. (Hons), Melbourne University, 1996

B.Sc., Monash University, 1991

A dissertation submitted to the faculty of the
Oregon Graduate Institute of Science and Technology

in partial fulfilment of the
requirements for the degree

Doctor of Philosophy
in

Computer Science and Engineering

February 2001

Copyright 2001, Mark Brian Shields

The dissertation "Static Types for Dynamic Documents" by Mark Brian Shields has been
examined and approved by the following Examination Committee:

w ~ o h n bur^ C-

Professor
Thesis Advisor

D . Mark P. Jones f Associate Professor

Dr. David Maier
Professor

Acknowledgements

My sincere and heartfelt thanks to:

- John Launchbury, for his supervision, guidance, and, most of all, friendship.
John's mature approach to research has been a great inspiration for me, and
our conversations over the years have been consistently fun and stimulating.

- Simon Peyton Jones, also for his supervision, his uncanny knack of asking the
right questions, and for teaching me the value of a good example.

- Erik Meijer, for encouraging me to look in this direction for research ideas
when I was despondent over my other work.

- Tim Sheard, for explaining to me the subtleties of staged computation.
- Andrew Tolmach, for always keeping his head when all about him we were

losing ours
- Jeff Lewis, for succeeding in pushing through the write-up boundary on im-

plicit parameters when I failed.
- Mark Jones, for his insights on all things typed, for writing such a fine dis-

sertation upon which this work is built, and for taking the time to examine
this thesis.

- Philip Wadler, for showing that good computing science can make a difference
in the bewildering world of real systems, and for his insightful examination
of the thesis.

- David Maier, for thoroughly proof-reading a dissertation somewhat different
from what was promised to him, and for teaching me some basic English
grammar. All the remaining errors are because I didn't have time to follow
fully his advice.

- Zino Benaissa, for helpful discussions on staging.
- Alex Aiken, for helpful discussions on type-indexed rows.
- Daan Leijen, for his boundless enthusiasm for language implementation.
- Harald S~ndergaard, for encouraging me first to complete my honours degree,

and then to further my studies overseas.
- Andy Moran, for his seemingly endless optimism and sense of humour, for

always asking me whether I'd finished the thesis yet, and for his terrific friend-
ship. I don't think I would have finished without him.

- Ruth Rowland, for her companionship, love, and quiet support during both
good and miserable times.

- Magnus Carlsson, Koen Claessen, David Clarke, Byron Cook, Sigbjorn Finne,
Andy Gill, Bill Harrison, Jim Hook, Dick Kieburtz, John Mathews, Laszlo
Nemeth, Thomas Nordin, Johan Nordlander, Walid Taha and Keith Wans-
brough, for their conversations and friendship over the years.

- The Oregon Graduate Institute, the University of Glasgow, the University
of Utrecht, the British Board of Graduate Studies (Overseas Research Stu-
dent award #96017029), the United States Air Force Air Materiel Command
(contract #F19628-96-C-0161), and the National Science Foundation (grant
CCR-9970980), for their financial support.

- Finally, my father, Brian Shields, for his life-long example of moral and intel-
lectual integrity. I dedicate this thesis to him.

Contents

. Acknowledgements iv

Abstract . x

1 Introduction 1
. 1.1 Outline of Thesis 9

. 1.2 How to read this dissertation 10

I Type-Indexed Rows

2 Introduction 12

. 2.1 Review: Label-Indexed Rows 13
. 2.2 F'rom Label- to Type-Indexed Rows 16

. 2.3 Equality Constraints 17
. 2.4 Simplifying Constraints 19

. 2.5 Newtypes 20
. 2.6 Implementing Records 22

. 2.7 Implementing TIPS and TICS 24
. 2.8 Ambiguity 25

. 2.9 Satisfiability 26

3 Examples 30
. 3.1 Tuples 30

. 3.2 Records Revisited 31
. 3.3 Recursive Datatypes 31

. 3.4 XML 32
. 3.5 Overloading 37

4 Type Checking 41

. 4.1 Syntax 41

. 4.2 Well.typedTerms 45
. 4.3 Type Order 49

. 4.4 Constraint Entailment 53
. 4.4.1 Unification and Saturation 53

. 4.4.2 Entailment Judgement 56
. 4.4.3 Soundness of Entailment 56

. 4.4.4 (1n)Completeness of Entailment 59
. 4.4.5 Complexity of Entailment 60

. 4.5 Type Soundness 60

5 Type Inference 65
. 5.1 Inference Rules 65

. 5.2 Constraint Simplification 68
. 5.3 Correctness 72

. 5.4 Row Extension 78

6 Conclusions to Part I 8 1
. 6.1 Related Work 81

. 6.2 Conclusions and Future Work 84

I1 Dynamically-Typed Staged Computation 85

7 Introduction 86
. 7.1 Staged Computation 88

. 7.2 Monomorphically Typed Staged Computation 89

. 7.3 Polymorphically Typed Staged Computation 92
. 7.4 Constrained Polymorphism and Staging 93

. 7.5 Dynamically Typed Staged Computation 95

. 7.6 Constrained Polymorphism and Dynamic Typing 97

. 7.7 The rttype and liftable Constraints 97

8 Examples 99
. 8.1 Dynamic Typing 99

. 8.2 Partial Evaluation 102
. 8.3 Distributed Computing 109

9 Formal Development 114
. 9.1 Syntax 114

. 9.2 Well-kinded Types 115
. 9.3 Constraint Entailment 117

. 9.3.1 Soundness of Entailment 119
. 9.4 Well-typed Terms 121

. 9.5 Denotational Semantics 125
. 9.5.1 Monads 126

. 9.5.2 Semantic Sets and Predomains 132
. 9.5.3 Denotation of Types 133

. 9.5.4 Denotation of Run-Time Terms 135
. 9.5.5 Type Soundness 139

10 Conclusions to Part I1 142
. 10.1 Related Work 142

. 10.2 Conclusions and Future Work 143

A Recognising XML Elements 145

B Proofs for Chapter 4 154
. B.l Type Order 154

. B.2 Unification 157

. B.3 Entailment 160
. B.4 Type Soundness 176

C Proofs for Chapter 5 197

. C.1 Simplifier Correctness 197

. C.2 Soundness of Type Inference 208

D Proofs for Chapter 9 216

. D.l Entailment 216

. D.2 Type Soundness 217

. Biographical Sketch 261

vii

List of Figures

. 3.1 Some (type specialised) standard library functions 35

. 4.1 Syntax of XTIR kinds. types and terms

. 4.2 XTIR type and term constructors

. 4.3 Initial XTIR type var context Ainit

4.4 Well-kinded XTrR types, constraints. type schemes and type contexts
4.5 Definitions of functions named. names. anon. inheritable. norm. eqs. inss

andinhs .
. 4.6 Syntax of XTIR run-time terms

. 4.7 Initial XTIR type context Finit

. 4.8 Well-typed XTIR terms

. 4.9 Well-typed XTIR pattern abstractions

. 4.10 Total order on XTiR monotypes

4.11 Partial ordering on normalized XTiR types of kind Type and Row
. 4.12 Definition of fv. mgus. and saturate

. 4.13 XTrR constraint entailment

4.14 Definition of the set Z. the denotation of XTIR witnesses in Z. the denotation
. of XTrR primitive constrants as subsets of Z. and env

. 4.15 Evaluation monad E

4.16 Denotation of XTiR normalized monotypes and type schemes as ideals of E V

4.17 Denotation of XTIR run-time terms as members of E V (part 1 of 2)
4.18 Denotation of XTIR run-time terms as members of E V (part 2 of 2)

. 5.1 Type inference and translation for XTIR terms 66

. 5.2 Type inference and translation for XTIR patterns 67
. 5.3 Definition of notIn 68

. 5.4 Simplification of XTIR constraints (part 1 of 2) 69

. 5.5 Simplification of XTIR constraints (part 2 of 2) 70

viii

5.6 The logical relation = on E V x E V indexed by ATIR monotypes of kind Type 77

. 8.1 Signatures for operations on sets and relations 104

. 9.1 Syntax of ASC source types and terms 115

. 9.2 Syntax of ASC run-time terms 116

9.3 Well-kinded ASC types, type schemes and constraints 117

. 9.4 Entailment of AsC constraints 118

9.5 Denotation of XSC witnesses into 7. and the definition of env 119

9.6 Denotation of ASC ground primitive constraints as subsets of 7 119

. 9.7 Types for ASC constants in Finit 120

. 9.8 Well-typed ASC stage 0 terms 122

. 9.9 Well-typed ASC stage n + 1 terms (part 1 of 2) 123

. 9.10 Well-typed ASC stage n + 1 terms (part 2 of 2) 124

. 9.11 Evaluation monad E 127

. 9.12 Reader monad D E 128

. 9.13 Renaming monad R 128

. 9.14 Name supply monad M 129

. 9.15 Name supply and renaming monad N 129

. 9.16 I/O monad I 0 130

. 9.17 Name supply and I/O monad MI0 131

9.18 The semantic sets 2 and V, and the predomain V 132

9.19 Denotation of ASC types as ideals of E V . 134

. 9.20 Denotation of AS' stage n + 1 terms 136

. 9.21 Denotation of ASC stage 0 pure terms 137

9.22 Denotation of ASc stage 0 monadic terms . 138

. 9.23 Denotation of ASC stage 0 constants 139

A.l Extensions to ATIR types. terms and patterns for handling XML elements.
. and syntax for recogniser components 146

A.2 Executing a sequence of recogniser actions upon a stack of ATIR run-time terms 147

A.3 Building a recogniser from a XTXR type (part 1 of 3) 148

. A.4 Building a recogniser from a ATIR type (part 2 of 3) 149

. A.5 Building a recogniser from a ATIR type (part 3 of 3) 150

. A.6 Converting a recogniser to use start 151

A.7 Extensions to ATIR type inference rules to recognise and convert XML ele-
. ments to ATIR run-time terms 152

Abstract

Static Types for Dynamic Documents
Mark Brian Shields

Ph.D., Oregon Graduate Institute of Science and Technology
February 2001

Thesis Advisor: Dr. John Launchbury

Dynamic, active documents are particularly troublesome to program within con-
ventional languages. Documents are typically represented in XML or HTML,
which use regular-expression like types instead of the familiar sumsof-products
datatypes supported by conventional languages. Furthermore, documents tend to
include embedded programs in a variety of scripting languages, for which conven-
tional languages offer no support at all. It is thus very difficult to verify that these
programs generate even syntactically well-formed documents, let alone documents
which are valid for their document type definition, and contain only well-typed
scripts.

This thesis develops the core type system for a Haskell-like functional program-
ming language that directly supports dynamic, active documents. The first part
presents a system of type-indexed rows, that supports many aspects of XML's
regular-expression types without abandoning the type features which make func-
tional programming at tractive. In particular , t ype-indexed rows coexist cleanly
with higher-order types and parametric polymorphism. The second part presents
a system of staged computation, that allows server-side and client-side code to be
cleanly separated.

In both cases, the type system can guarantee that only well-formed and valid
documents are generated. Hence, not only are document-generating programs
easier to write using these systems, in addition they are much more likely to be
correct.

Any system that allows no criteria other than
those arbitrarily chosen as the basis of the
system itself can be called a terrorist system.

Georges Perec

Chapter 1

Introduction

The adoption of a standard document description language, HTML [91], was essential to
the early success of the world-wide-web. HTML provides a small, fixed, and reasonably
simple set of primitive datatypes for describing both the structure and typographic layout
of a document. Motivated by the popularity of on-line services, interest has since grown in
using the web's mechanism to distribute data of any type, independently of its typographic
representation. To this end, XML [12], an evolution of SGML [45], has been adopted as
a standard language for documents representing first-order data. Unlike HTML, XML
documents may define their own datatypes within the document itself. Hence XML is an
"extensible" markup language.

XML

Though syntactically baroque, XML is built upon a simple model of tree-structured data.
Documents may contain both a regular-tree grammar (termed a document type definition,
or DTD) and a labelled-tree (termed an element), such that the tree is recognised by the
grammar. For example, the following document, in slightly idealised syntax, describes a
grammar of e-mail messages and a single message:

element Msg = (((To l Bcc) * % From), Body)
element To = String
element Bcc = String
element From = String
element Body = P*
element P = String

<Msg>
<From>mbsOcse.ogi.edu</From>
<To>jlQcse.ogi.edu</To>
<Bcc>mbsOcse.ogi.edu</Bcc>
<Body>

<P>The thesis is almost finished.</P>
<P>A11 that's needed is an example for the introduction.</P>

</Body>
</Msg>

Each grammar production (termed an element type declaration) has a distinct left-hand
side non-terminal (termed a tag name), and implicitly generates a single tree labelled by the
non-terminal. Production right-hand sides are regular expressions built from the following

eight operators:

S t r ing
A
r *
r +
r ?
(TI, ... 9 ~ n)
(~ 1 I ... I ~ n)
(rl % . . . & G I

"parsed character data", or string
sub-tree
list of r's
non-empty list of r's
optional r
tuple: all of T I , r2, etc, in that order
"ch~ice,~' or union: one of rl , 7-2, etc
"unordered tuple": all of rl, r2, etc, in any order

(The % operator does not appear in XML, but is in SGML [45] and, abstractly, in XML
Schema [24] .)

A tree is a sequence of sub-trees and primitive strings delimited by matching tag names.
Deciding whether a tree is recognised by the regular tree grammar is called document
validataon. Its easy to check the above example tree is recognised by its grammar. By
comparison, the following tree is not valid:

<Msg>
<Body/>
<From>mbsOcse.ogi.edu~/Erom>

</Msg>

(Here <Body/> is sugar for <Body></Body>). A Body sub-tree cannot appear before a From
sub-tree within the children of a Msg tree.

Note that there are very few constraints on the form of regular expressions. In particu-
lar, choices and unordered tuples are anonymous, may appear deeply nested within other
expressions, and may reuse the same tag name.

From static to dynamic, active documents

Though XML captures the notion of a static document, most documents are in fact dy-
namic. On-line services typically generate documents on-the-fly in response to an ongoing
user dialogue, using a mixture of databases, live information feeds and user-supplied data.
Furthermore, because XML documents have no inherent typographic representation, they
must be further transformed, often by the client, before being rendered.

To further complicate matters, documents, particularly HTML documents, tend to contain
embedded scripts which are to be executed by the client rather than the server. We call
these active documents. Scripts are written in a variety of languages, and are represented
as uninterpreted strings.

How should a server program be implemented to generate dynamic, active documents?

XML and the next 700 programming languages

Of course almost any language can be used to manipulate XML. This manipulation can
be done at a concrete level by generating and concatenating strings containing XML and
scripting language fragments, for which Per1 [I101 is a popular choice. Less error-prone is

to use a library to manipulate XML in abstract form. For example, JavaServer Pages [82] is
a sophisticated library for Java [34] programs which implement on-line services. However,
these approaches tend to be syntactically awkward, and cannot guarantee that only valid
XML is generated.

Hence many custom domain-specific languages have been developed to generate, filter and
transform XML documents, including:

CSS [58] and XSL [3, 181 for applying typographic styling and other transformations.

XML Query [25, 261 for filtering and generating XML using tree-structured query
operators.

<Bigwig> [96] and Compaq's Web Language [60] for specifying all aspects of an
on-line service within a single typed program.

A plethora of untyped, ad-hoc scripting languages which extend XML with Uactive"
tags denoting common control structures. For example: XML Script [22], XEXPR
[74], XFA [I161 and XPL [15].

This situation is unfortunate. Other than their common use of XML, these languages
share little common syntax and have no unified semantics. There is much overlap in
functionality, and little or no support for abstraction and extensibility, suggesting that
even more languages will arise as XML finds new applications.

Similarly, a number of domain-specific scripting languages have been developed for use
within active documents, including Java [34] and JavaScript [29]. Again there is no agree-
ment on syntax, type system (if any) or semantics.

Functional programming and the next 700 programming languages

An old [53] and well-tested idea in functional programming is to embed domain-specific
languages (DSLs) as cornbanator libraries within a single functional programming language.
We refer the reader to the work of Hudak [41] and Swierstra et al. [I031 for an overview of
this methodology. Examples from the literature include:

Reactive animation [23] Hardware description [63]

Graphical user interfaces [27] CGI scripting [64]

Computer music [42] Robot control [83]

Pretty printing [44] Financial modelling [84]

Typesetting [52] Computer vision [92]

Database querying [55] Parsing [I021

This approach has many advantages over developing a DSL from scratch:

DSLs may be readily combined because they are simply libraries in a common lan-
guage.

Because the underlying functional programming language has a relatively simple
equational theory, it is often quite feasible to verify formally static properties of DSL
programs.

Furthermore, with a little cunning, the functional programming language's type sys-
tem may often be exploited to verify statically the well-typing of DSL programs.

The DSL designer may reuse the already extensive intellectual investment which has
gone into functional programming languages, and is thus less likely to make funda-
mentally poor design decisions. Indeed, the simplicity of the functional programming
language's semantics favours DSLs with a similarly clear, equational semantics.

The functional programming approach works because of its unique combination of higher-
order types, laziness, parametric polymorphis~n and monads. Together they allow type-
compatible DSL program fragments to be "glued" together regardless of their internal
structure [43], and may allow side-effects to be controlled by representing DSL computa-
tions as functional programming language values [log].

Note that not all functional languages support all these features. For example, languages in
the ML family [67] are eager with implicit effects, and hence laziness and monads must be
simulated when required. However, we think it is telling that all of the above combinator
libraries have been implemented in Haskell [85], a language which directly supports all four
features.

XML in Haskell?

Thus, the obvious question is whether the custom languages developed for XML may be
embedded as combinator libraries within a Haskell-like language. The most appealing
approach is to map XML concepts to functional-programming concepts as follows:

document type definition --+ type definitions
regular expression -+ type

element + term
document --+ program

document validation -+ type checking

Wallace and Runciman [I l l] have already tackled this question, and have developed two
approaches. Their first approach ignores DTDs, and represents all elements in the universal
datatype:

data Element = Atom String
I Node String (List Element)

Under this scheme, our example would be represented as:

Node "Msg" [
Node "From" [Atom llmbsQcse. ogi. eduuI ,
Node "To" [Atom jl6cse. ogi . edu1'1 ,
Node "Bcc" [Atom "mbsOcse.ogi.edu"1,
Node "Body" [

Node "P" [Atom "The. . . "1 ,
Node "P" [Atom " A l l . . . "1

I
I

Since every element now has type Element, it's easy to implement generic tree-manipulation
combinators. However, Haskell's type system cannot ensure that all generated elements
are valid with respect to any particular DTD.

To address this limitation, Wallace et al. also present a second approach which translates
a DTD into a set of Haskell newtype declarations. Under this second scheme, our example
would be represented as:

newtype Msg = Msg (List (Either To Bcc), From, Body)
newtype To = To String
newtype Bcc = Bcc String
newtype From = From String
newtype Body = L i s t P
neutype P = P String

Msg (
[Left (To * j lQcse .ogi . edu") ,
Right (Bcc "mbsOcse . ogi . edu")] ,

From "mbsQcse . ogi . edu" ,
Body C

P IIThe. . . ,
P " A l l . . . "

I
1

Here Either is the datatype of "anonymous" sums:

data Either a = Left a
I Right a

Notice how XML lists become Haskell Lists, XML tuples become Haskell tuples, choices
become sums, and an arbitrary ordering is imposed on XML unordered tuples to become
Haskell tuples.

This translation approach has the advantage of exploiting Haskell's type system to ensure
only valid elements are generated. However, it does not respect XML7s notion of type
equality. In particular, the XML choice types (To I Bcc) and (Bcc I To) are equal in
XML, but are translated into the distinct Haskell anonymous sum types Either To Bcc
and Either Bcc To. Similarly, XML unordered tuple types are equal up to permutation,
but are translated into Haskell tuples which, in general, are not equal up to permutation.

As a result, a programmer using the intended interpretation of elements as trees would be
surprised if a Haskell complier rejected their program because of a "spurious" type error

involving these sum or tuple types. More concisely: this model of XML in Haskell is sound
but not complete.

The underlying problem is that XML choice types are unions rather than sums, and any
attempt to convert a union into a sum is forced to introduce an arbitrary label for each
summand. The same problem arises if we attempt to convert an unordered tuple to an
ordered tuple: again we are forced to impose an arbitrary ordering amongst member types.
Thus there appears to be a fundamental mismatch between XML's regular expression types,
and Haskell's sums-of-products datatypes.

XDuce

A third approach is thus to abandon sums-of-products types-and Haskell-and instead
take regular expression types as fundamental. The language XDuce [38, 40, 391 has been
developed specifically to test this idea. I t is built upon subtype polymorphism using
regular-expression language containment to induce the subtype relation. This form of
subtype polymorphism allows an element to be viewed as belonging to more than one DTD
simultaneously, and hence supports both code reuse and "DTD migration." Subtyping also
meshes cleanly with a notion of regular-expression patterns.

Since XDuce models elements as trees and DTDs as a form of regular-tree grammar, it is
both sound and complete. Thus a programmer would never be surprised by a "spurious"
XDuce type error.

Our example would appear in XDuce as:

type msg = MsgC(tolbcc)* & from, body]
type to = ToCString]
type bcc = BccCStringl
type from = FromCStringl
type body = p*
type p = PCStringl

Msg C
To C" jlOcse . ogi . edu"1 ,
BCC CMmbs@cse . ogi . edu"3 ,
From["mbsOcse. ogi . edu1'1 ,
Body C

PCuThe. . . " I ,
P ["All. . . "I

I
I

Notice type names and tag names are distinct within XDuce type declarations. Indeed,
the e-mail DTD may be more concisely represented in XDuce by the single declaration:

type msg = Msg[(To [String] lBcc [String]) * & FromCStringl ,
Body [P [String] *I I

Unfortunately, it is not at all clear whether this approach is compatible with higher-order
functions and parametric polymorphism, which we have already seen to be essential to the
combinator library approach to language embedding.

Type-Indexed Sums and Products

Thankfully, a compromise between Haskell's sums-of-products datatypes and XDuce's
regular-expression types exists. Hidden within Appendix E of the XML standard [12]
is the statement:

"[Ilt is required that content models in element type declarations be determin-
istic."

Here "deterministic" means that an element type declaration's regular expression must be
1 -unambiguous.

Informally, a regular expression is l-unambiguous if, given a position within the regular
expression and the tag of the next input element, there is a unique follow position. Formally,
this condition holds if and only if the regular expression is recognisable by a deterministic
Glushkov automaton [13, Lemma 2.51.

For example, the choice type ((P, Q) I (Q, P)) is unambiguous, while ((P, Q) I P) is
ambiguous. Similarly, the unordered tuple type ((P, Q) & (Q, P) is unambiguous, but
((P, Q) & P) is ambiguous.

There are two consequences of this restriction. Firstly, each member of an XML choice
type or unordered tuple type must be distinct. In other words, XML choice types and
unordered tuple types are formed from sets of types. Thus we can think of a choice type
as a variant (sum) in which each member type serves as its own variant label. Dually, an
unordered tuple type is like a record (product) in which each member type serves as its
own record label. We call these type-indexed sums and type-indexed products.

The second consequence is that it is possible to transform any XML element into a term
which represents lists, tuples, type-indexed sums, and type-indexed products explicitly.
This transformation involves first (recursively) converting each sub-element to an appro-
priate sub-term, and then running an augmented Glushkov automaton corresponding to
the element's type definition on the sub-term sequence. The automaton makes a transition
based on the type of each sub-term, and incrementally constructs the result term using a
stack of intermediate sub-terms.

In this thesis, we develop the idea of type-indexed sums and type-indexed products within
a small calculus called XTIR. We show that the constructs are compatible with paramet-
ric polymorphism, higher-order functions and type inference. Furthermore, we show that
conventional sum-of-products datatypes and records may be easily encoded within XTIR.

Thus it is possible to retain all of the type features required for implementing combina-
tor libraries, while simultaneously supporting XML document type definitions, and XML
element syntax.

Under this approach, the XML types (P I Q) and (Q 1 P) are translated to the XTIR types
One (P # Q # Empty) and One (Q # P # Empty), which are equal. Note, however, that the
equal XML types (P I (Q I R) and ((P I Q) I R) are translated to the unequal XTIR types
One (P # (One (Q # R # Empty) # Empty) and One ((One (P # Q # Empty) # R # Empty).
This inequality is a consequence of the compromise we must make between full regular-
expression types and sums-of-products datatypes.

Note that 1-unambiguity is a stronger restriction on choice and unordered tuple types
than distinctness of their member types. For example, the choice type ((P, Q) I P) is

ambiguous, even though (P, Q) and P are distinct types. Thus, XTIR also allows sum and
product types which are not deterministic XML types. This mismatch may be easily
repaired.

Staging

Though the calculus XTIR goes much of the way towards supporting dynamic documents,
it does not address the problem of active documents. Here the problem is to allow XML
elements to contain scripts which are constructed on-the-fly just as any other data. Of
course we could follow current practice and simply embed such scripts as strings, but this
makes their syntactic and type correctness difficult to verify.

A better approach is to allow functions to appear within XML elements just as any other
value. However, this approach would require all such functions to be converted from
an intensional representation (e.g., compiled code) to an extensional representation (e.g.,
source or intermediate language code) whenever a document is moved between machines.

In this thesis, we tackle this problem by developing a system of dynamically typed staged-
computation within a small calculus called XSC. Staging allows a single program to have its
execution distributed over distinct run-time stages 1881. Furthermore, it is possible for dis-
tinct stages to be performed on distinct machines, since code values are easily transmitted
over a network.

Under this approach an active document would be generated by a two stage program. In
the first stage (run on the server), a piece of XML is generated which contains embedded
code. These pieces of code may then be run as required by the client in the second stage.

This approach to active documents ensures that all generated program fragments are syn-
tactically well-formed. Furthermore, it also guarantees such code is well-typed: either by
checking at compile-time (for statically typed code [106]), or at run-time (for dynamically
typed code [99]). This choice of static us. dynamic is up to the programmer: static code
gives a stronger guarantees of correctness, but can be overly restrictive.

From Calculi to a Language

Of course, XTIR and XSC are small and distinct cakuli, whereas what's really required is a
single language. Furthermore, we can hardly claim that XTIR and XSC alone subsume all the
custom XML-centric languages mentioned above.

For example, XML elements may include attn'butes, and CSS [58] has special support for
attribute inheritance. Much of this behaviour can be modelled using the implicit parameters
of Lewis, Shields et aI. [57] coupled with the first-class polymorphism of Jones [49].

Furthermore, query-like operations on documents, such as "collect all elements with tag
P," are directly supported by XML Query [26, 251, but must be redefined afresh for each
document type definition within XTIR. We think generic programming [37] is a viable
solution to this problem.

This thesis does not address the difficult problem of combining all these distinct calculi,
either theoretically or within an implementation. The problem is a topic for future research
and implementation. Some early steps towards an integrated language have been taken
in the design of XMX [65], an experimental Haskell-like functional programming language

with direct support for XML. XMX uses XTIR and XSC as its core, and also includes implicit
parameters, first-class polymorphism, and support for definitions given by induction over
(first-order) types.

1.1 Outline of Thesis

The thesis naturally divides into two parts.

Part I presents XTIR. Chapter 2 motivates the key ideas from the perspective of a poly-
morphic record calculus, which it most closely resembles. Chapter 3 presents some larger
examples, including our motivating example of encoding XML types. (The machinery nec-
essary to also support XML element syntax is outlined in Appendix A.) This chapter also
demonstrates how XTIR supports a simple form of type-based overloading, which was the
original motivation for its development.

Chapter 4 begins our formal development of XTIR by presenting its syntax, kind system,
type system and a notion of constraint entailment. The calculus XTIR builds upon a system
of qualified [47, 1091, or constrained [79], polymorphism, and much of its machinery is
devoted to the entailment and simplification of these constraints. This chapter also presents
a denotational semantics for XTIR, and demonstrates type soundness. All the proofs for this
chapter may be found in Appendix B.

Chapter 5 continues the formal development of XTIR by presenting a type inference and
constraint simplification system. We demonstrate inference is sound and, with one caveat,
complete. Some of the proofs for this chapter may be found in Appendix C. The proof of
completeness is somewhat involved, because we cannot assume that constraints are in any
particular normal form, and because we make no assumptions as to how often constraints
are simplified. We have decided to omit this proof from Appendix C .

Chapter 6 concludes Part I by reviewing related work and outlining future work. In partic-
ular, this dissertation does not study the complexity of constraint entailment, satisfaction
or simplification.

Part I1 presents XSC. Chapter 7 introduces the three constructs to defer, splice and run
code, and motivates their typing rules, which turn out to be quite subtle. Chapter 8
presents larger examples of staging, including partial evaluation, dynamic typing and a
small example of a server and client exchanging HTML-generating code. Some of these
examples mix statically and dynamically typed code, demonstrating the utility of including
both within a single calculus.

Chapter 9 presents a formal development of XSC, which includes type checking and a de-
notational semantics. We also demonstrate that the semantics is sound. The key problem
for any semantics of staged computation is correctly accounting for the dynamic genera-
tion of variable names required whenever code is spliced under a binding operator. Our
semantics is very pragmatic, and indeed is suitable for direct implementation. However
the cost of this choice of semantics is a rather complicated soundness proof, which appears
in Appendix D.

Chapter 10 concludes Part 11, and the thesis, with an overview of related work and an
outline of future work, which includes the problems of type inference, and correctness of
our semantics with respect to a semantics which collapses all stages.

1.2 How to read this dissertation

Readers coming to this thesis from the XML community will, unfortunately, have a rather
hard time. Of necessity, our work is at a very primitive level, and so the reader may find
it difficult to see any connection with documents at all! We recommend starting with the
introductory material of Chapters 2 and 7, then tackling the examples in Chapters 3 and 8.

To the reader coming from a functional programming background, we assume familiarity
with Haskell [85] and with the system of qualified types [47] from which its type-class
system is constructed. A passing familiarity with monadic semantics [ll, 1081 will aid
the understanding of our denotational semantics. Implicit parameters [57] are used as
an example constraint domain in Section 7.4. Otherwise, Parts I and I1 are mostly self-
contained, and may be read independently.

The proofs in Appendix B, C and D have been included for completeness. For the most
part they proceed by obvious induction on the relevant derivation. This is not to say that
the theorems themselves are always straightforward! As is typical in type-theoretic proofs,
the hard part is getting the induction hypothesis just right.

Part I

Type-Indexed Rows

Abstract
Record calculi use labels to distinguish between the elements of products and
sums. This part presents a novel variation, type-indexed rows, in which labels
are discarded and elements are indexed by their type alone. The calculus, XTIR,

can express tuples, recursive datatypes, monomorphic records, polymorphic ex-
tensible records, and closed-world style type-based overloading. Our motivating
application of XTIR, however, is to encode the "choice" types of XML, and the "un-
ordered tuple" types of SGML. Indeed, XTIR is the kernel of the language XMX, a
lazy functional language with direct support for XML types ("DTDs") and terms
(L ' d o ~ ~ m e n t ~ ").

The system is built from rows, equality constraints, insertion constraints and
constrained, or qualified, parametric polymorphism. The test for constraint sat-
isfaction is complete, and for constraint entailment is only mildly incomplete. We
present a type checking algorithm and show how XTIR may be implemented by a
type-directed translation which replaces type-indexing by conventional natural-
number indexing. We also present a constraint simplification algorithm and type
inference system.

Chapter 2

Introduction

Record calculi (and less often, variant calculi) appear in many contexts. Some functional
languages incorporate them in conjuction with more conventional tuples and recursive
sums-of-products datatypes [46]. They have been used as foundations for object-oriented
languages [112]: Objects can be modelled by records, and subclassing can be built upon
record subtyping. Database query languages often model relations as sets of records, and,
because database schema are dynamic, require a particularly flexible type system [14].

In this part we present a system very much like an extensible, polymorphic record calculus,
but with an essential twist: We discard labels. Instead of labels, elements of products and
sums are distinguished by their type alone. That is, a type-indexed row (TIR) is a list
of types (possibly with a type variable as tail), from which we form type-indexed products
(TIPS) and type indexed co-products (TICS). The r61e of labels is played by newtypes,
which introduce fresh type names.

Of course, in a monomorphic setting such a system is straightforward. In the presence of
polymorphism, however, we must somehow resolve the paradox of rows indexed by types
which are partially or fully unknown (i.e., contain free type variables).

We developed XTIR to treat the regular expression types of XML [12] and SGML [45] as
types in a functional language we are developing called XMX [65]. XML includes "choice"
types of the form (rl 1 . . . IT,,) and SGML includes "unordered tuple" types of the form
(q%. . . & T ~ 1. Neither of these types include any syntactic information, such as labels, to
guide a type checker in deciding which summand of a sum, or which permutation of a
product, a given term belongs to. Instead, a 1-unambiguity condition is imposed, which
implies membership of a term in a regular-expression type may be decided by a determin-
istic Glushkov automaton [13]. In XTxR, we abstract from this formulation by requiring only
that each type in a sum or product be distinct. Such types may then be encoded within
XTIR, which allows XML elements to be manipulated within a polymorphic functional pro-
gramming language.

Serendipitously, we also found XTxR could naturally encode:

conventional tuples and recursive sums-of-products datatypes;

many existing record calculi, both monomorphic and polymorphic, extensible and
non-extensible;

types resembling Algol 68's union types; and,

the closed-world style of type-based overloading (modulo subtyping) popular in
object-oriented languages [34].

XMX has many of the types mentioned above. The XMX complier simply translates each
into XTIR, resulting in a compact and uniform compiler. Hence XTIR's expressiveness is not
merely of theoretical interest, but can also be exploited in practice.

Many of the ingredients of XTIR are well known:

We use a kind system to distinguish rows from types.

As in record calculi, we require znsertion constraints to ensure the well-formedness
of rows, only now they state that a type may be inserted into a row.

Unlike in record calculi, we also require equality constraants, as sometimes the unifi-
cation of two rows must be delayed if there is any ambiguity as to the matching of
their element types.

Constrained polymorphism [47, 791 is used to propagate constraint information
throughout the program, thus ensuring soundness.

We eagerly test for the unsatisfiability of constraints so as to reject programs as early
as possible.

As in Gaster and Jones' record calculus [31], XTm is implemented by a type-directed
translation which replaces type-indexing by natural-number indexing. These indices
propagate via implicit parameters at run-time to parallel the propagation of insertion
constraints at compile- time.

We first review record calculi (Section 2.1), then motivate the introduction of each of the
components above by small examples (Sections 2.2-2.9). More extensive worked examples
are also presented in Chapter 3. We then develop a type-checking system for XTIR which
simultaneously performs a type-directed translation into an untyped run-time language
(Chapter 4). This system requires the notion of constraint entailment (Section 4.4). We
also demonstrate our system is sound (Section 4.5).

In Chapter 5 we consider type inference for XTIR programs. This is built upon a constraint
simplification system (Section 5.2), which we show correct with respect to constraint entail-
ment. We then show soundness and completeness of inference with respect to type-checking
(Section 5.3).

A very much shorter version of this part appeared in POPL701 [98].

2.1 Review: Label-Indexed Rows

To aid the transition to XTIR, we f i s t quickly review existing calculi of labelled records and
variants. We use a somewhat unorthodox syntax, though none is particularly standard
anyway. We assume an ambient type system and a set of label names.

Rows

We first introduce rows [112], which are lists of labelled types. For example:

(xCoord: Int) # (yCoord: 1nt) #Empty

is a row with label names xCoord and yCoord, both labelling type In t . Here we use the #

operator to denote row extension, and Empty to denote the empty row. (Note that in this
dissertation we shall assume labels are formed from label names by appending a ' : '.)
Sometimes row concatenation replaces or augments row extension [35], though we do not
consider this here.

Rows are equal up to a permutation of their labelled types. That is, the elements of a row
are distinguished by their label name rather than by their position.

A record calculus is extensible if a row may end with a type variable instead of just Empty.
For example:

(xCoord: I n t) # (yCoord: I n t) # a

is an open row, with tail variable a. Binding a to col: Colour # Empty yields the extended
closed row:

(xCoord: In t) # (yCoord: I n t) # (col: Colour) #Empty

In this manner, when coupled with parametric polymorphism, extensible rows may simulate
record subtyping [16].

A record calculus is label polymorphic if the same label name may label different types in
different rows. For example, the rows:

(xCoord: In t) # Empty
(xCoord: Real) # (depth: Real) #Empty
(xCoord: a) # b

may all coexist within one program. As we shall see, the type system must work a little
harder to ensure type correctness in the presence of polymorphic labels.

Rows are distinct from types, but may be used to form both record and variant types.

Records

A record type interprets a row as a product of label-indexed types. For example:

A l l ((xCoord: In t) # (yCoord: I n t) # ~mpty)

is a record type with two labels. We write A l l to denote the record type constructor
because records contain all elements of a row.

At the term level, we have the empty record Triv (of type A l l Empty), and a record
extension operator (1 : , && ,) for each label name 1. (Throughout this dissertation we
assume a distfix syntax for operators in which argument positions are written as -.) For
example:

((xcoord: 1) %& (yCoord: 2) && Triv)

is a record with the record type given above.

Calculi typically also include a label selection operator (-. 1) for each label name 1. For
our purposes we prefer to use pattern matching. For example:

l e t getYCoord = \((yCoord: z) && -1 . z
i n getYCoord ((xCoord: 1) && (yCoord: 2) && Triv)

evaluates to 2.

Variants

Dually to records, a variant type interprets a row as a sum of label-indexed types. For
example:

One ((i s I n t : I n t) # (isBool: Bool) # Empty)

is a variant type with two labels. We write One to denote the variant type constructor
because sums contain one element of a row.

At the term level, we have an injector (In j 1: -1 for each label name 1. For example:

(I n j isBool: True)

injects True with the label isBool into the above variant type.

We also need a way to test a variant against a label. Again, we prefer to allow an injector
to be used as a pattern, and shall allow a set of A-abstractions to be grouped together to
mimic case-analysis. For example, consider:

{ \ (I n j i s I n t : x) . 1 - x;
\ (In j isBool: y) . i f y then 0 e l s e 1 3
(I n j isBool: True)

The two A-abstraction patterns will be tried in left-bright sequence. In this case, the
second pattern will match, and the term reduces to 0.

Notice that the type One h p t y contains only the undefined term.

Soundness

Though liberal, record and variant calculi are not anarchic: Somehow they must prevent a
row from ever containing duplicate label names. For extensible record calculi this constraint
requires some form of global analysis. For example, to reject (as surely we must) the
program:

l e t f = \x y . ((xCoord: x) && y)
i n (f 2 ((xCoord: 1) && Triv)

involves looking both at the definition and call sites for f .

A particularly elegant solution is to introduce qualified (constrained) polymorphism [47]
and insertion constraints (called "lacks" constraints in the system of Harper et al. [35].) We
refer the reader to the work of Gaster and Jones [31] for a cogent exposition of this approach.
Briefly, let-bound terms are assigned a type scheme which includes any constraints on the
possible instantiations of quantified type variables. In the example above, f would be
assigned the scheme:

f o r a l l a b . xCoordinsb=>
a -> A l l b -> A l l ((xCoord: a) # b)

which can be read as:

"for all types a and rows b such that the label name xCoord may be inserted
into b, the function from a and A l l b to A l l ((xcoord: a) # b) ."

Now each use of f is free to instantiate a and b, but subject t o the constraint xCoord insb.
Since our example program attempts to instantiate b to ((xcoord: I n t) # Empty), which
already contains the label name xCoord, it is rejected.

2.2 From Label- to Type-Indexed Rows

As a first step towards XTIR, consider naYvely erasing labels from the record and variant
operators above.

We let the kind system keep rows, of kind Row, separate from types, of kind Type. Our
presentation will be greatly simplified if we also allow higher-kinds, so that we may present
our type operators as constants. We use : to denote "has kind" (and later, "has type").

A type indexed row (TIR) is either the empty row or an extension of another row. Row
extension is now free of label names:

For example:
(In t # Bool # Empty)

is a closed row containing the element types I n t and Bool. Rows are considered equal up
to a permutation of their element types.

We also have two dual interpretations for a row: as a type-indexed product (TIP) or type-
indexed coprodvct (TIC) type:

A TIR is useful if its element types are all distinct. Because we allow open rows, this cannot
be verified locally, and so will be propagated using constraints. The insertion constraints
of XTIR resemble those of record calculi, but with a type instead of a label. For example:

a ins (I n t # Bool # Empty)

constrains a to be any type other than I n t or Bool. Hence:

(L i s t b) ins (In t # Bool # Empty)

is t rue: for every type b, L i s t b cannot be equal to I n t or Bool, and hence may be inserted
into the row.

With the types and constraints in place, we now consider terms. A TIP is either the trivial

product, or an extension of another:

Triv : A l l Empty
(- && -1 : f o r a l l (a : Type) (b : Row) .

a ins b => a -> A l l b -> A l l (a # b)

A TIC is an injection of a term:

(In j -) : f o r a l l (a : Type) (b : Row) .
a i n s b = > a - > O n e (a # b)

Notice the use of insertion constraints to ensure the type a to insert does not already
appear within the row b of the TIP or TIC.

For example:

(1 %% True %% Triv) : A l l (In t # Bool # Empty)
(In j True) : f o r a l l (a : Row) . Bool ins a => One (Bool # a)

We also allow any of the above three constants to appear within patterns. For example:

l e t f l i p = \(x && y && Triv) . ((1 - x) && (not y) && Triv)
i n f l i p (True && 1 && Triv)

evaluates to (0 && False %% Triv). Notice the pattern (x && y %% Triv) contains no ex-
plicit type information, and certainly no labels! It was the type of x within the body of
f l i p which determined it was bound to 1 rather than True.

Case analysis of TIPS and TICS is also possible. For example, consider:

l e t f lop = { \ (I n j x) . 1 - x;
\ (I n j y) . i f y then 0 e l s e 1 3

i n f lop (In j True)

Since x is of type In t , and y of type Bool, the second pattern will match, and the term
reduces to 0. Since all functions grouped by C. . . I must have the same type, we find:

f lop : f ora l1 (a : Row) .
In t ins a , Bool ins a =>

One (Int # Bool # a) -> In t

2.3 Equality Constraints

Consider a more challenging variation of the f l i p example:

l e t tuple = \(x && y && Triv) . (x, y)
i n tuple (True && 1 %& Triv)

(Here we assume XTIR to be enriched by conventional tuples, though they are easily encoded:
See Section 3.1.) Unlike f l i p , the body of tuple is fully polymorphic in the types of x

and y. Hence:
tuple : forall (a : Type) (b : ~ype) .

a i n s (b # Empty) =>
All (a # b # Empty) -> (a, b)

Now consider how to type-check the application of tuple. Assume its scheme has been
specialised to fresh type variables c and d. Then we must unify rows All (c # d # Empty)
and All (Int # Bool # Empty) subject to the constraint c i n s (d # Empty). Depending on
which of Int or Bool we bind to c, the overall term has type (Int , Bool) or (Bool, Int).
Choosing one solution above another would destroy completeness of type inference. Re-
jecting such terms would prevent many useful examples (in particular, overloading: See
Section 3.5).

Our solution is to introduce equality constraints to record which types and rows must be
equal for a term to be well-typed. For example:

represents the constraint that tuple and its argument (True && 1 && Triv) agree in type.
As with insertion constraints, equality constraints propagate until sufficient type informa-
tion is available to simplify them.

For convenience, we allow equality constraints on both rows and types. (Type equality
constraints may always be simplified down to row equality constraints as soon as they are
introduced, hence they add no expressiveness to the system.)

Now consider:

let oneTrue =
let tuple = \(x && y && Triv) . (x, y)
in tuple (True && 1 && Triv)

in (1 - fst oneTrue, not (fst oneTrue))
Using equality constraints, we may assign oneTrue a principal type scheme:

forall(c : Type) (d : Type) .
(c # d # Empty) eq (Int # Bool # Empty) ,
c i n s (d#Empty) =>
(c, d)

Notice that the first element of oneTrue has been used in both an Int context and Bool
context, and the term reduces to (0, False). To see how this works, consider each use of
oneTrue. For the left use, oneTrue is specialised to a tuple with an Int first component.
Hence its constraint is specialised to:

(Int # e # Empty) eq (Int # Bool # Empty),
Int i n s (e # Empty)

where e is a fresh variable. This constraint may be simplified by binding e to Bool, and is
thus true.

Similarly, for the right use the specialised constraint is:

(Bool # f # Empty) eq (In t # Bool # Empty),
Bool ins (f # Empty)

Again, the constraint is simplified to t r u e with f bound to Int .

Membership and equality constraints interact in interesting ways. Indeed, much of the
machinery of XTlR is devoted to the entailment and simplification of such mixed constraints.
For example, the constraint:

In t ins (a # Empty),
(In t # Bool # Empty) eq (a It b # Empty)

may be simplified to t r u e by binding a to Bool and b to In t , because the membership
constraint prevents the binding of a to Int .

2.4 Simplifying Constraints

We say a substitution is a satisfying substitution for constraint C if it makes C ground
and true. For example, the substitution [a t-, In t] satisfies the constraint

a i n s (Bool # Char # Empty)

We say a constraint C entails a constraint D if every satisfying substitution for C also
satisfies D. Two constraints are logically equivalent if each entails the other.

Constraint simplification attempts to reduce a constraint to a smaller but logically equiv-
alent constraint, and a residual substitution. The substitution can be thought of simply as
a particularly efficient representation for equality constraints between type variables and
types. We have already seen some examples of constraint simplification. In this section we
outline the simplification rules which guide this process.

Firstly, we require rules for simple unification of types. For example

(a -> I n t) eq (Bool -> b)

is simplified to
a eq Bool, I n t eq b

using a rule which "unwraps" the common type constructor (- -> -1.
We also require rules for the unification of rows. Because rows are only equal up to
permutation, row unification is a little more subtle than simple unification. The row
matching rule allows a type from each row to be removed and unified when this choice is
unambiguous. For example

(In t # a # Empty) eq (Bool # b # Empty)

is simplified to
(In t eq b), (a # Empty) eq (Boo1 # Empty)

by matching I n t with b.

The row extension rule allows a type from one row to extend the tail of another row, again
provided the choice of type is unambiguous. For example

(In t # a) eq (Bool # b)

is simplified to
aeq(Boo1 # b ')

with residual substitution [b t, I n t # b']. Here b' is a fresh type variable of kind Row.

Another set of rules allow insertion constraints to be simplified when types are guaranteed
to be distinct. For example

(a, b) ins (Bool # c # Empty)

is simplified to
(a, b) ins (c # Empty)

since (a, b) can never be unified with Bool.

The simplifier also has rules for constraint projection, however a discussion of these rules
is best deferred to Chapter 5.

2.5 Newtypes

So far XTlR can only distinguish types stmrcturally. In order to distinguish types by name
we allow the programmer to introduce fresh type names, called newtypes (as in Haskell

1.
A newtype declaration takes the form:

newtype A = \A . T

where A is the newtype name, A a sequence of kinded type variables, and T a type (of
kind Type).

At the type level, newtype names behave as uninterpreted types (or, in general, type
constructo~s). For example, assuming the declarations:

newtype A = \ (a : Type) . a
newtype B = I n t
newtype C = I n t

then A In t , A Bool, B, C and I n t are all distinct types.

At the term level, newtype names behave as single-argument data constructors. These
names may be used both to construct terms:

((A 1) &% (A True) && (B 2) BtBt (C 3) 8t% 4) :
A l l ((A In t) # (A Bool) # B # C # I n t # ~mpty)

and to pattern match against terms in A-abstractions:

\A x . x + 1 : A I n t -> I n t
\Ax . notx :ABool->Boo1
\ B x . x + l : B - > I n t

In effect, every newtype declaration introduces a polymorphic constant:

Using newtypes, we can encode conventional monomorphic records by declaring a newtype
for each label. For example, with declarations:

newtype xCoord = I n t
neutype yCoord = I n t

we have:
((xCoord1) 8% (yCoord2) &&Triv) :

A l l (xCoord#yCoord#Empty)

What about polymorphic record calculi? A obvious approach would be to declare each
label to be the type-identity function:

neutype xCoord = \ (a : Type) . a
newtype yCoord = \ (a : Type) . a

With these declarations, xCoord and yCoord may "label" terms of any type in any "record:"

((xCoord 1) && (yCoord 2) 8% Triv) :
A l l ((xCoord I n t) # (yCoord I n t) # Empty)

((xCoord '1 ') && (yCoord"two") &&Triv) :
A l l ((xCoord Char) # (yCoord St r ing) # Empty)

Unfortunately, it also allows the same newtype to appear within the same record, provided
it labels terms of different types:

((xCoord I) && (xCoord ' 1 ') && Triv) :
A l l ((xCoord I n t) # (xCoord Char) I f Empty)

Though at first glance this may seem a useful generalisation of labels, we quickly run
into problems when unifying rows containing them. For example, if xCoord really was a
polymorphic label, then the following constraint should be simplified by binding a to In t :

((xCoord a) # b) eq ((xCoord I n t) # c) ,
(xCoord a) i n s b,
(xCoord I n t) i n s c

However, as things stand, the simplifier would be incorrect if it were to do so.

To see why, consider the possible substitution which binds b to (xCoord I n t) # Ehpty,

and c to (xCoord Bool) # Empty. The constraint becomes:

((xCoord a) # (xCoord Int) # Empty) eq
((xCoordInt) # (xCoordBoo1) #Empty),

(xCoord a) ins ((xCoord Int) # Empty),
(xCoord Int) in s ((xCoord Bool) # W t y)

which implies a must be Bool, not Int. Hence, our simplifier is stymied by an excess of
polymorphism.

Our solution is to introduce opaque newtypes, a variation of newtypes in which the type
arguments are ignored when considering the simplification of insertion constraints.

Returning to our example, consider redeclaring the labels as:

newtype opaque xCoord = \ (a : Type) . a
newtype opaque yCoord = \ (a : Type) . a

Now the simplifier is free to bind a to Int in our constraint:

((xCoord a) # b) eq ((xCoord Int) # c) ,
(xCoord a) i n s b,
(xCoordInt) i n s c

This is because the membership constraint (xCoord a) insb implies that b cannot contain
any type of the form xCoord T, hence b cannot be extended to include xCoord Int, and
hence xCoord Int must match xCoord a.

Furthermore, with xCoord declared as an opaque newtype, the term:

is ill-typed, because the constraint

(xCoord Int) in s ((xCoord Char) # Empty)

is unsatisfiable.

Though at first glance they appear somewhat ad-hoc, opaque newtypes require very little
special support within the machinery of XTIR.

Why not make all newtypes opaque? Though this would simplify the presentation and
machinery of XTIR, it would prevent type-based overloading on the arguments to type con-
structors. This will be covered in Section 3.5.

2.6 Implementing Records

For the moment we put type-indexed rows aside and consider how to implement conven-
tional label-indexed records. A naive approach is as a map from labels to values, but then
each access requires a dynamic lookup. A better approach, first suggested by Ohori [go],
and independently, by Jones [47], is to use the type information we already have to replace
label names with natural number indices, and records with vectors. When a closed record
is manipulated, these indices can be easily generated by finding a canonical ordering of

label names. When an open record is manipulated within a polymorphic function, these
indices must be passed as implicit arguments because their actual values will depend on
how the function has been instantiated.

This situation seems rather complicated until it is noticed that indices propagate at run-
time in parallel with insertion constraints at compile-time, except in the opposite direction.

Consider:

l e t f = \x . ((yCoord: 20) && x)
i n f ((xcoord: 10) && Triv)

To ensure its body is well-formed, f is assigned the type scheme:

f o r a l 1 (b : Row) . yCoord ins b =>
A l l b -> A l l ((yCoord: I n t) # b)

At the application of f , b is specialised to (xCoord: I n t) # Empty, and thus f's constraint
is specialised to yCoord ins ((xcoord: I n t) # Empty). This constraint is then introduced
into the application's constraint context, where it may be simplified to t rue . Notice how
f's constraint propagated (at compile-time) from the site of its definition to the site of its
use.

Now associate a run-time index variable, w, with f's constraint yCoord ins b, with the
understanding that w will be bound at run-time to the insertion index of yCoord within
whatever row b is specialised to. Or, to use OML7s terminology [47], w will be bound to a
witness of the satisfaction of the constraint that yCoord may be inserted into row b.

The function f is now compiled to a function accepting w as an additional implicit param-
eter:

let f = Xw . Ax . insert 20 at w into x

Here we use sans-serif font to denote run-time terms, and insert U at W into T inserts the
term U at index W into the vector T.

In the application of f , again associate an index variable w' with the specialised constraint
yCoord ins ((xCoord: I n t) # Empty). This variable is passed to f, along with its argument:

Here (. . .) denotes a base-1 vector of run-time terms. (We shall use a special syntax for
indices to prevent their semantic confusion with ordinary integers: One is the base index,
and Inc W, Dec W the obvious offsets.)

Now when the simplifier rewrites yCoord ins ((xCoord : I n t) # Empty) to t rue , it is also
obliged to supply a binding for w'. Assuming a lexicographic ordering on label names,
yCoord should be inserted at index Inc One into the row (xCoord: I n t) # Empty, hence w'
is bound to the absolvte index Inc One.

Thus the overall term is compiled as:

let f = Xw . Ax. insert 20 at w into x
in let w' = Inc One
in f w' (10)

which reduces to the vector (10, 20).

Notice how the insertion index for yCoord within b was passed at run-time from the use site
to the definition site, exactly in reverse of the propagation of the constraint yCoord ins b
at compile-time.

This type-directed translation is an instance of the dictionary translation [log]. We call
a set of constraints with associated index variables a constraint context, by analogy with
type contexts.

An index may sometimes depend on another. For example, the constraint context:

(w : yCoord i n s ((xCoord: I n t) # b)), (w' : yCoord i n s b)

can be simplified to w : yCoord i n s ((xcoord: I n t) # b) by binding w' to the relative
index Dec w. This simplification is possible because yCoord will always be after xCoord in
any row.

The same technique works for variants, which are represented as a pair of a natural number
and value.

2.7 Implementing TIPS and TICS

Can
only
then

we implement XTIR also using only natural number indices, vectors and pairs? The trick
works if we have an ordering on types. Clearly a total order on all types won't do, as
the relative ordering of non-ground types may change under substitution-disaster!

An obvious approach is to choose some ordering on monotypes, and only consider simpli-
fying an insertion constraint v i n s (rl # . . . # T , # Empty) when v and each T, are ground.
Then finding the index for v is simply a matter of sorting these types. Unfortunately,
because programs are often polymorphic all the way up to their top level, this approach
would result in many insertion constraints propagating to the top level, leading to very
large constraint contexts.

Thankfully, a less conservative ordering is possible. Assume we have a total order, sF, on
all built-in type constants (such as In t , (All -) and (- -> -)), and all newtype names.
Let sFa be sF extended to type variables, on which it is always false. So, for example:

I n t sFa Boo1 sFa St r ing sFa (, -> ,) sFa . . .

but a gFa I n t and I n t gFa a.

Every type T has a pre-order flattening, denoted by preorder(r). For example,
preorder(A I n t -> B Bool a) = [(- -> -1, A, In t , B, Bool, a]. We then (roughly) define the
partial order, <, on all types as follows:

where is the lexicographic ordering induced by sFa. Notice that 5 enjoys invariance
under substitution, viz:

~ s ~ ~ v e . e ~ ~ e ~
This property allows many insertion constraints to be discharged even when they contain

type variables.

For example, consider the constraint:

w : (Bool -> a) ins ((Int -> b) # Int # Empty)

All of these types may be totally ordered:

In t < (Int -> b) < (Boo1 -> a)

Thus we eliminate the constraint and bind w to Inc Inc One.

However, since the types in:

w : (Bool -> a) ins ((b -> c) # Int # Empty)

cannot be totally ordered, this constraint cannot be further simplified.

The alert reader will notice we ignored the possible permutation of row elements in the
description above. To account for this, we must first find the canonical order of every
row within types before flattening them. We defer the full definition of type order to
Section 4.3.

2.8 Ambiguity

XTxR type schemes sometimes quantify over type variables which appear only in the scheme's
constraint. For example, in

fora l l (a : Type) (b : Row) . (a # b) eq (Int # ~ o o l #Empty) => a -> a

the variable b is not free in a -> a. However, since a binding for a uniquely determines a
binding for b, this scheme is still sensible.

However, the scheme

fora l l (a : Type) (b : Type) . b ins (Int # Bool # Empty) => a -> a

is inherently ambiguous. Since the insertion constraint may never be eliminated, it will
float to the toplevel of the program and cause an error. Furthermore, a binding for b
cannot be chosen arbitrarily, since different bindings may lead to different indices, and
hence change the behaviour of the program.

Somewhat more subtle is the scheme:

fora l l (a : Type) (b : Type) . a i n s (b # Empty) => One (a # b # Empty)

Even though all quantified type variables appear within its type, this scheme is still am-
biguous. For example, though both of the instantiations

[a I+ Int, b I+ Char]
[a I+ Char, b H ~ n t]

yield the same result type One (Int # Char # Empty), the index determined for the insertion

constraint differs.

These examples demonstrate that a simple syntactic test for ambiguity of XTIR type schemes
is probably impossible. In particular, checking that each quantified variable appears within
a scheme's type is neither a sound nor complete test for ambiguity. As a result, a compiler
for XTJR should treat ambiguity as a warning rather than an error.

2.9 Satisfiability

When a let-bound term is generalised, any residual constraints accumulated while inferring
its type which mention quantified type variables are shifted into its type scheme. However,
we would also like to be sure such constraints are satisfiable, for two reasons. Practically, it
helps improve the locality of type error messages if unsatisfiable constraints are caught at
the point of definition rather than at some remote point of use. Theoretically, it simplifies
our proof of type soundness if every type scheme is known to have at least one satisfying
instance.

Often, the simplifier will detect unsatisfiability in the course of examining each primitive
constraint. For example, in:

newtype opaque xCoord = \ (a : Type) . a
l e t f = \x . ((xCoord 2) && (xCoord 1) && x)
i n 1

assuming x : A l l a, then f has the constraint:

(xCoord Int) ins a,
(xCoord Int) ins ((xCoord Int) # a)

This constraint will be simplified to fa lse , which is easily detected when generalising.

However, sometimes the simplifier will fail to detect unsatisfiability, because it never spec-
ulatively unifies rows. For example, in:

l e t g : A l l (Int # Bool # Empty) -> Int = . . .
h : A l l (Char # String # Empty) -> Int = . . .
f = \x y z . g (X && y && Triv) +

h (x && z && Triv)
i n 1

assuming x : a, y : b, z : c, then f has the unsatisfiable constraint:

a ins (b # Empty), a ins (c # Empty),
(a # b # Empty) eq (Int # Bool # Ehpty),
(a # c # Empty) eq (Char # String # Empty)

Since this constraint will not be further simplified to fa lse , the system must explicitly
test for satisfiability when generalising.

Unfortunately, relying on the simplifier to show unsatisfiability is not quite enough. Con-
sider the example:

newtype opaque xCoord = \(a : Type) . a
let f = \x . let g = \y . ((xCoord y) && x) in 1
in f ((xCoord 1) && Triv)

Assume x : All a and y : b. Then g has the satisfiable constraint:

(xCoord b) ins a

Thus f is assigned the type:

forall (a : Row) . All a -> Int

and the entire program has type Int.

However, under a nsve operational semantics for XTIR, P-reducing the application of f
yields the program:

let g = \y . ((xCoord y) && (xCoord 1) && Triv) in 1

Now g's constraint becomes

(xcoordb) ins ((xCoord Int) #Empty)

which is unsatisfiable. Hence, subject-reduction fails for this semantics. (Our semantics
will actually be denotational rather than operational, but the problem remains the same.)

This problem occurs only when a let-bound term is both unused and has a constraint
mentioning type variables bound at an outer scope. In the above example, g was unused in
the body of f , and g's constraint contained the type variable a bound by f 's type scheme.
This observation suggests four approaches to a solution.

The first approach attempts to constrain outer-scope variables in order to ensure the sat-
isfiability of inner-scope constraints. One way of doing this is to use a new primitive
constraint of the form:

exists A . C
with intended interpretation "C is satisfiable for some binding of the type variables of
A." Existential constraints may be simplified "lazily," just as for equality and insertion
constraints. This approach is advocated by HM(X) [79].

Using an existential constraint, f may be assigned the more precise type scheme:

forall (a : Row) . (exists (b : Type) . (xCoord b) ins a) =>
All a -> Int

Now the application of f is ill-typed:

error: constraint
exists (b : Type) . (xCoord b) ins ((xCoord Int) # Empty)

arising from application of ' f ' is unsatisfiable.

Though elegant, existential constraints have a very subtle entailment theory. Indeed, an
early version of XTIR included them, but the implementation was complicated and difficult
to prove correct.

A variation on this first approach is to carry over generalised constraints into the current

constraint context unchanged. This method is termed duplication by Odersky et al. [79].
Now f would be assigned the type scheme:

f o r a l l (a : Row) (b : Type) . (xcoordb) i n s a = > A l l a - > I n t

However, since b does not appear within the right hand side of f's type, such a scheme is
inherently ambiguous. Furthermore, this approach may result in many redundant insertion
constraints. For example, the constraint:

a ins (b # Empty),
a ins (c # Empty),
a ins (b # c # Empty)

cannot be simplified, even though it is satisfiable exactly when the constraint:

a ins (b # c # Empty)

is satisfiable. Both these problems arise because insertion constraints imply the need for
indices, whereas no such indices are required if our only interest is satisfiability.

A solution is, again, to introduce a new primitive constraint, but this time of the form:

T n inp

T nin p ("T is not in row p") resembles T ins p, but does not require the simplifier to
calculate any index witnessing its satisfaction. During duplication, ins constraints are
replaced by nin constraints.

Now f is assigned the type scheme:

f o r a l l (a : Row) (b : Type) . (xcoordb) n i n a = >
A l l a -> I n t

This is no longer ambiguous since b may be chosen arbitrarily so as to satisfy the constraint.
Again, the application of f is ill-typed.

Though quite workable, we feel this variation is ugly. In particular, the difference between
"ins" and "nin7' is a likely source of confusion.

The third approach is very simple: simply reject programs containing redundant let-
bindings. Of course, an actual implementation would remove such bindings rather than
reject the program. (Indeed, compilers tend to do this anyway as an optimisation.) This
approach is adopted in OML [47, 481, and we adopt it for XTIR.

This approach works because if x is a let-bound variable with constraint C, and x is free
in t , then the satisfiability of t's constraint implies the satisfiability of C.

Now a constraint may be tested for satisfiability regardless of the scope of its free type
variables. If the test fails, the constraint is unsatisfiable for any instantiation of outer-
scope variables, and an error may be reported. If the test succeeds, no further processing
is required, because the satisfiability test for any let-bound terms in an outer scope shall
entail the satisfiability of the current constraint.

In a sense, however, we have put the horse before the cart in all of this. Rather than change

the system to simplify the model, the fourth approach is to refine the model to correctly
explain redundant, unsatisfiable let-bindings. Since such bindings cannot be observed, the
problem is caused by incompleteness of semantic equality with respect to observational
equality. However, such issues are notoriously subtle, hence our preference for the second
(simple!) approach.

Chapter 3

Examples

In this section we show that XTIR may encode many conventional types, such as tuples
and recursive sums-of-products datatypes. We also demonstrate an encoding of XML
document-type definitions and a simple form of type-based overloading.

We write 78.. .]1 to denote the encoding function at the type level, and S[. . .] at the term
level. Later examples assume the encoding provided by earlier examples.

Our XMX compiler supports all of the types covered in this section by expanding each into
XTIR. In order that error messages may use whatever syntax was used by the programmer
rather than its translation, the compiler is careful to annotate translated types and terms
with additional L'hints" describing how they arose. Though not foolproof, this method
seems preferable to extending the XTIR type system to deal with all of these types as
primitives.

3.1 Tuples

We can simulate the positional notation of tuples by introducing an opaque newtype for
each position:

newtype opaque fst = \ (a : Type) . a
newtype opaque snd = \(a : Type) . a

Now f st T is distinct from snd T for any type 7.

A little sugar provides the familiar notation:

7[0] = All Empty
T[(T, v)] = All ((f s t 7[r]) # (snd T[v]) #Empty)

(...etc...)

S[O] = Triv
S [(t , u)] = ((f st S[t]) && (snd S[er]) && Triv)

(...etc...)

Tuple projection is polymorphic on both the element type and tuple length:

f s t : f o r a l l (a : Type) (b : Row) .
(f s t a) i n s b => A l l (f s t a # b) -> a

= \ (f s t X && -1 . x

f s t (1, "two") : In t
f s t ("one", 2 , '3') : String

3.2 Records Revisited

Section 2.5 has already sketched how newtypes may simulate labels. A little syntactic
sugar can make this encoding more convenient. Firstly, we allow any type or term to be
"labelled" :

TI(1: TI] = 1 T[T]
S[<l: t)] = 1 Sit]

(In a practical implementation, one could imagine the first occurrence of such a labelled
type or term automatically adding the declaration:

newtype opaque 1 = \ (a : Type) . a

to the compiler's internal tables.)

Secondly, some more sugar makes closed products and sums more convenient (where n > 1):

T [(T ~ & . . . & T,)] = A l l (T[T~] # .. # T[rn] # Empty)

T [(T ~ 1 . . . 1 ~ n)] = One (T[T~] # . . . T[Tn] # Empty)
S[(tl & . . . & tn)] = (S[tl] && . . . && $Itn] && Triv)

With these, non-extensible records and variants are straightforward:

type Point = ((xCoord: In t) & (yCoord: I n t))
l e t movex : Point -> Point

= \((xCoord: x) && r e s t) . ((xcoord: x + 1) && r e s t)
i n movex ((xCoord: 1) & (yCoord: 2))

type Num = ((i s I n t : In t) I (isRea1: Real))
l e t asInt : Num -> I n t

= { \ (I n j i s I n t : i) . i ;
\ (I n j isReal: r) . f loor r 1

i n asInt (In j isReal: 3.1415)

(Here type introduces a type synonym.)

Extensible records and variants are similar.

3.3 Recursive Datatypes

Recursive datatypes may be simulated by recursive newtypes. Consider the datatype of
binary trees (in an idealized ML notation):

data Tree = \(a : Type) . Node (Tree a, a, Tree a)
I Leaf

We may take this to be shorthand for the declarations:

newtype Tree = \(a : Type) . One ((Node a) # (Leaf a) # Empty)
newtype Node = \(a : Type) . (Tree a, a, Tree a)
newtype Leaf = \(a : Type) . ()

Each data constuctor wraps a newtype around its argument, and injects the result into the
overall datatype. A little sugar can simulate the familar data constructor notation of ML:

S[Node t] = Tree (Inj (Node S[t]))
S[Leaf] = Tree (Inj (Leaf 0 1)

For example:

let flatten : forall (a : Type) . Tree a -> List a
= (\Leaf . [I ;

\Node (1, x, r) . (flatten 1) ++ Cxl ++ (flatten r) 3
in flatten (Node (Leaf, 1, Node (Leaf, 2, Leaf)))

Note that if XTiR is given a lazy semantics, as is the case in this dissertation, this encoding
suffers the "double lifting" problem for multi-argument data constructors. That is, XTiR
programs may now distinguish an undefined datatype and a data constructor applied to
an undefined tuple. For example, with the declarations:

undefined = undefined
test = \Node - . True

we have:

test undefined h
test (Node undefined) 4 True

3.4 XML

Chapter 1 introduced XML, and discussed the problem with na'ively encoding XML
LL~hoi~e" and "unordered tuple" regular expressions as ordinary Haskell-style sum and
product types. In particular, equal XML regular expressions may become unequal Haskell
types under the na'ive encoding.

In this section we shall encode choice regular expressions as type-indexed sums, and un-
ordered tuple regular expressions as type-indexed products. This encoding is total since
XML7s determinism constraint implies the components of a choice or unordered tuple must
be distinct types. Furthermore, this encoding respects the commutativity of these XML
operators. However, it does not respect any of the other regular expression equalities.
Though the encoding is not perfect, it does allow XML elements to co-exist with all the
other datatypes familiar to functional programmers: in particular higher-order functions
and parametric polymorphism. We think this is a good compromise.

By design, our sugared syntax for tuples introduced in Section 3.1 coincides with XML7s
syntax for tuples. Similarly, our syntax for (closed) sums and products introduced in
Section 3.2 also coincides with XML7s syntax for choice and unordered tuple regular ex-

pressions. For the remaining regular expressions, we first introduce the datatypes of lists
and optional terms (using the syntax of Section 3.3):

data List = \ (a : Type) . Cons (a, List a) I N i l
data Option = \ (a : Type) . Some a I None

We then introduce the following sugar:

T[r *I = L i s t T[r]
T[r ?] = Option T[r]
T[r +B = T[(r , T *)I

There are two possible encodings of a document-type definition within XTIR. The first,
which we shall term DTD-style, maps each XML element definition to a XTIR newtype
definition. For example, the XML e-mail document-type definition of Chapter 1 may be
trivially encoded as:

newtype Msg = (((To l Bcc) * & From), Body)
newtype To = String
newtype Bcc = String
newtype From = String
newtype Body = P*
newtype P = String

Just like XML DTDs, each newtype is given a fixed body type.

The second encoding, which we term Scheme-style, declares each tag name as a label-like
newtype:

newtype Msg = \(a : Type) . a
newtype To = \ (a : Type) . a
. . .

Then the specific structure of the e-mail DTD may be given by a single type declaration:

type MsgType = Msg (((To String I Bcc String)* & From String),
Body ((P String)*))

This second encoding is very similar to that used for XDuce, as shown in Chapter 1. It has
the advantage of allowing the same tag name to be reused with differing body types. For
example, From and To could be used elsewhere to tag dates instead of strings. This second
encoding would thus be appropriate for the more general form of document type definitions
allowed under XML Schema [24]. The disadvantage of this second encoding is that more
type annotations must be supplied by the programmer when using XML element syntax.
This shall be explained shortly.

XML documents are easy to manipulate in XTIR. For example, here is a program to imple-
ment a spam filter:

killSpam : Msg* -> Msg*
= filter (not . isSpam)

isSpam : Msg -> Boo1
= \msg .

getReceiver msg == "rnbsQcse.ogi.edu" &&

(contains suspiciousWords (getwords msg) I I
mem (getsender msg) suspiciousSenders)

getReceiver : Msg -> String
= \(Msg ((rcvrs && -1, -1 .

(\[To to] . to)
(filter' C \(Inj (To -1) . True; \- . False) rcvrs)

suspiciousWords : String*
= ["money", "rich", "won", . . .]

getwords : Msg -> String*
= (words
o toLowerCase
o concat
o map (\(P s) -> s)
o (\(Msg (-, Body body)) . body)
1

getsender : Msg -> String
= \(~sg ((From from && -1 , -1) . from

suspiciousSenders : String*
= [1'quickcash9aol. com" , " j lQcse . ogi . edu" , . . . I

We assume a libary of standard functions whose types are given in Figure 3.1. (Some of
these types have been specialised so that we may ignore the overloading of the equality oper-
ator within type schemes.) The filter discards all messages sent to mbs9cse. ogi . edu which
are either from one of the suspiciousSenders, or contains one of the suspiciousWords.

Though XTIR newtype declarations resemble XML element type definitions, the same cannot
be said for XTIR terms and XML elements. The example e-mail message of Chapter 1 (of
type Msg) appears in native XTIR syntax as:

Msg (
(From "mbs9cse . ogi . edul'
& [Inj (To "jlQcse.ogi.edu"),

Inj (Bcc "mbsQcse . ogi . edu") 1) ,
Body C
P IIThe. . . I' ,
P "All. . . "

1
1

filter : (Msg->Bool) ->Msg* ->Msg*
filter' : ((To I Bcc) -> Bool) -> (To I Bcc) * -> (To l Bcc) *

not: Bool-> Bool
(I I) : Bool->Bool-> Bool

contains : String*-> String*->Boo1
mem: String-> String* -> Bool

words : String-> String*
toLowerCase : String-> String

concat :foralla. a*->a
map : forall a b . (a -> b) -> a* -> b*
o : forall a b c . (b -> c) -> (a -> b) -> (a -> c)

I

Figure 3.1: Some (type specialised) standard library functions

Notice the explicit use of Inj to inject the To and Bcc terms into the correct sum, and the
explicit type-indexed product, tuple, and list syntax.

We would prefer to be able to write this term in familiar XML syntax:

<Msg>
<From>mbs@cse.ogi.edu</From>
<To>jlOcse.ogi.edu</To>
<Bcc>mbsQcse.ogi.edu</Bcc>
<Body>
<P>The ... </P>
<P>A11 ... </P>

</Body>
</Msg>

Notice that, as usual for XML, there is no need to explicitly inject the To and Bcc elements.
Furthermore, the list of paragraphs is implicit, as is the tupling of the sender, reciever and
Body elements. This additional syntax is unnecessary because, as far as XML is concerned,
this term is simply a tree.

Thankfully, it is possible to further exploit the determinism of XML regular expressions
and convert the XML element above to the coresponding XTIR term. In order to avoid
cluttering this chapter, the precise technical development is deferred to Appendix A, and
we present only an outline here.

We shall assume the e-mail DTD has been encoded in DTD-style. Roughly, the type
checker first constructs an augmented Glushkov automaton for the body type of Msg, viz:

(((To I Bcc) * & From) , Body)

This automaton is then run on the sequence of types From, To, Bcc, Body. Since this
sequence is in the language of the type above when viewed as a regular expression, the
automaton reaches an accepting state.

Furthermore, the automaton is augmented so as to maintain an internal stack of XTIR terms.
As each element is seen, this stack will be updated to contain its XTIR representation. For

example, after seeing the From type, the automaton will have on it's stack the XTIR term:

From "mbsOcse.ogi.edu"

After seeing the Bcc type, the stack will be (from bottom to top):

From "mbsOcse. ogi . edu",
Inj (To "jl@cse.ogi.edu"),
Inj (Bcc "mbsOcse . ogi . edu")

Notice how the Inj constructors have been automatically inserted. When the Body type
is seen, the two Inj terms are popped from the stack and replaced with a single list:

Fr~m"mb~Qc~e.~gi.edu",
[Inj (To " jlOcse . ogi . edu") , Inj (Bcc "mbsOcse . ogi . edu")I

These two terms are then replaced with a single type-indexed product:

(From "mbsQcse . ogi . edu" &
[Inj (To " jlOcse . ogi . edu") , Inj (Bcc "mbsQcse . ogi . edu") 1

This process continues until the stack contains the single XTIR message term given above.
(For clarity the above explanation used XTIR source terms, whereas the automaton actually
manipulates XTIR run-time terms.)

XMX includes this support for XML element syntax. hrthermore, XMX allows XML and
XTIR syntax to be intermixed. For example, another way of writing the example e-mail
message is:

let name = (\"Marku . "mbsOcse . ogi . edu" ;
\"John" . "jl@cse.ogi.edu" 3;

body = [<P>The . . . </P>, <P>A11 ... </P>]
in <Msg>

<From><<name "MarkU>></From>
<To><<name "JohnM>></To>
<Bcc><<name "MarkU>></Bcc>
<Body><<body>></Body>

</Msg>

The <<. . .>> brackets escape from XML syntax back into XTIR syntax.

XML syntax is also supported within XMX patterns. For example:

getwords : Msg -> String*
= (words
o toLowerCase
o concat
o map (\<P><<s>></P> -> s)
o (\<Msg><<(- & -)>><Body><<body>></Body></Msg> . body)
1

Notice the use of the pattern (- & -1 within the body of Msg. This pattern is required
so that the type checker can unambiguously determine that the address component of the

Msg should be ignored.

What happens if our e-mail DTD were encoded in Scheme-style? Implicit in the discussion
above is the assumption that every newtype has a monotype body. Without this assump-
tion, the technique of using a Glushkov automaton to convert from XML to XTIR syntax
breaks down. To see why, consider the XML fragment:

CBody><P>The ... </P><P>A11 ... </P></Body>

Clearly we intend this to denote the XTIR term:

Body [P "The.. .I1, P " A l l . . . "1

However, all the type checker knows about Body and P is that:

newtype Body = \ (a : Type) . a
newtype P = \ (a : Type) . a

Thus, the above XML term could also denote the XTIR term

Body (P "The. . . 'I, P "Al l . . . 'I)

or
Body (P ["The.. . "1, P CtlA1l.. ."I)

or indeed any one of a countably infinite set of XTIR terms.

To avoid this ambiguity as simply as possible, XMX requires the above XML term to be
written as:

Notice how the newtypes Body and P were explicitly instantiated with type arguments.
These arguments tell the type checker exactly which monotype each element should belong
to.

Of course this is far from convenient. Hence in practice the programmer should use the
DTD-style of encoding as much as is feasible, and introduce type abbreviations where
required:

newtype Body = \ (a : Type) . a
newtype P = \ (a : Type) . a

type BodyT = Body (P*)
type PT = P String

3.5 Overloading

As our final example, we show how equality constraints may be exploited to allow identifiers
to be overloaded with multiple definitions.

There are two approaches to overloading an identifier x. The open-world view, as adopted
in Haskell's class system [log], assumes the multiple definitions for x are all instances

of a common type scheme a, but otherwise makes no assumptions about any particular
definition. Hence, a new definition for x may be added without the need to recompile
programs using x. This approach is most conveniently implemented by passing definitions
as implicit parameters at run- t ime [47].

In contrast, the closed-world view, as adopted for method-overloading in Java [34] and
many other object-oriented languages, assumes all definitions for x are known at each
point of use, but otherwise only requires each definition to be a t a distinct type. (Of course
Java has a notion of subtyping which has no counterpart in ATIR, hence our examples are
simpler.) Closed-world overloading is typically implemented by selecting the appropriate
definition at compile-time. Hence, adding a new definition for x requires recompiling all
programs using x, but there is no associated run-time cost.

We now show that ATIR is able to express closed-world-style overloading. In conjunction
with implicit parameters [57], an open-world style of overloading is also possible, though
unfortunately outside the scope of this thesis.

For a classic example, assume we have two addition functions:

intPlus : Int -> Int -> Int
realplus : Real -> Real -> Real

To overload + on both these definitions, we first build a TIP containing them:

l e t al lplus
: A l l ((Int -> Int -> Int) #

(Real -> Real -> Real) # Empty)
= (intPlus && realplus && Triv)

We then define + to project one element from allplus:

l e t (+I
: foral l (a : Type) (b : Row) .

a i n s b,
(a # b) eq

((Int -> Int -> Int) #
(Real -> Real -> Real) # Empty) => a

= (\(x %& -) . x) allplus

(This type scheme is actually inferred and need not be supplied by the programmer.)

Because x is used polymorphically in the A-abstraction \(x &% -1 . x, the type inferencer
cannot determine which of Int -> Int -> Int and Real -> Real -> Real should unify with
its type a. Hence this equality constraint, and the membership constraint arising from the
pattern (x %% -1, must be deferred.

When typing the term
\y . (1 + 1, l . O + y)

we find it has type
e -> (c, f)

subject to the constraints introduced by each use of +:

(Int -> Int -> c) ins d,
((Int -> Int -> c) # d) eq

((In t -> Int -> Int) # (Real -> Real -> ~ e a l) # Empty),
(Real -> e -> f) ins g,
((Real -> e -> f) # g) eq

((Int -> Int -> Int) # (Real -> Real -> Real) # Empty)

The simplifier reduces this constraint to true, with the bindings:

Hence, the final inferred type is

However, for the term:

Real -> (In t , Real)

1.0+ 1

we find:

error : the constraint
(Real -> Int -> a # b) eq

((Int -> Int -> Int) #
(Real -> Real -> Real) # Empty)

i s unsat is f iable

In conventional closed-world overloading, each use of an overloaded identifier must be at a
type sufficiently monomorphic to resolve the overloading statically. XTIR lifts this restriction.
For example, consider defining nList to form a list of between 1 and 3 arguments:

l e t allNList
: f o r a l l (a : Type) .

A l l ((a -> List a) #

(a -> a -> L i s t a) #
(a -> a -> a -> L i s t a) # Empty)

= ((\x . Cxl) 85%
(\x y . Cx, yl) &&
(\ x y z . [x, y, 21) &&Triv)

l e t nList
: fo ra l l (a : Type) (b : Type) (c : Row) .

b ins c,
(b # c) eq

((a -> L i s t a) #
(a -> a -> L i s t a) #
(a -> a -> a -> List a) # Empty) => b

= (\(x && -1 . x) allNList

We may now specialze nList to onelist , which will append at most one more integer to

l e t oneList
: f o r a l l (a : Type) (d : Type) (e : Row) .

(I n t -> I n t -> d) ins ((a -> L i s t a) # e l ,
((I n t -> I n t -> d) # e) eq

((a -> a -> L i s t a) # (a -> a -> a -> L i s t a) # Empty) => d
= nList 1 2

Notice how oneList is still overloaded, but "less so" than nlist.

The overloading of oneList is finally fully resolved in the program:

oneList ++ oneList 3 : L i s t I n t

which reduces to [I, 2, 1, 2, 31.

This last example highlights the limitations of the simplifier. One may expect oneList to
have the simpler type:

f o r a l l (d : Type) (f : Row) .
d insf,
(d # f eq ((L i s t In t) # (In t -> Lis t In t) # Empty) => d

Unfortunately, the simplifier is not powerful enough to determine that a must be In t ,
and cannot "project" away the common type I n t -> I n t -> - in order to reduce the first
constraint to the second. Perhaps worse, if the programmer were to supply the above
scheme as an annotation, the system would be unable to show that the second constraint
entails the first, because the row variables e and f do not appear within the result type
d of the two schemes and so cannot be related. Hence, this more sophisticated style of
type-based overloading may surprise the novice programmer.

An aggressive XTIR compiler could inline a l l p l u s and allNList, and perform P-reduction
of the projection functions where indices are constant. Hence, XTtR couples some of the
flexibility of open-world overloading with the efficiency of closed-world overloading.

Chapter 4

Type Checking

This section begins our formal development of XTrR. We'll introduce its syntax and kind
system, and present the well-typing judgement. Well-typing requires the notions of con-
straint entailment, which in turn is built from a notion of type order. We conclude by
demonstrating the soundness of our type system w.r.t. a simple denotational semantics.

4.1 Syntax

Figure 4.1 presents the kinds, types and terms of the source language, most of which
should be familiar from examples. Our presentation is made more uniform if we allow
higher-kinds, type abstraction and type application, though care will be taken to avoid the
need for higher-order unification. For simplicity the only base type is Int .

The empty constraint will be written as t rue, and a generic unsatisfiable constraint as
f a l se , though neither may appear explicitly within programs. We write C St D to denote
concatenation of the primitive constraints of C and D. Equality constraints are only
allowed at kind Type or Row; we'll usually elide their annotation. As is customary, we
identify the type scheme f o r a l l - . t r u e => T with the type T.

We allow A-abstractions to contain patterns, which may be nested arbitrarily. We assume
all pattern variables to be distinct, and will also assume no type or term variable binding
ever shadows another. We identify the unitary discriminator C abs 3 with abs.

In much of what follows we assume types and terms are represented in applicative form.
For example, T -> v is represented by the application (- -> -1 T v. Furthermore, we
assume the binary operator (- # -1 to be generalised to a family of (n + 1)-ary row-
consing operators (#), for n > 0, so that TI # . . . # Tn # 1 may be represented by the single
application (#) , 71 . . . Tn 1 . We also identify (#) 1 with I . Figure 4.2 defines F and G to
range over all type constructors, and f and g to range over all term constructors.

We shall write 7 to denote TI . . . Tn, and ?\i to denote TI . . .r,-l r,+l. . . 7,; 7a will typically
be clear from context. Many other constructs shall be similarly overlined. For example,
we write A I- 7 as shorthand for:

The ATIR type language forms a strongly normalising simply-typed A-calculus with con-
stants. We let A range over kind-contexts (mapping type variables to kinds), and let Ainit
denote the initial kind context given in Figure 4.3. Figure 4.4 defines the well-kinding

Kinds K ::= Type I Row I ~1 -> n2
Type variables a ,b ::= a,b, ...
Newtype names A, B ::= A, B, . . .
Types T, v, p ::= I n t I v -> T

I Empty 1 7 # P l One P l A l l P
I A l a l \ (a : ~) . T ~ T V

Row tails I ::= Empty I a
Type var context A ..- ..- a1 : ~ 1 , . . . , a, : K, n 2 0
Primitive constraints c, d ::= T i n s p) T eq, v)G E { ~ y p e , ROW)

Constraints C, D, E ::= cl,. . . , cn n 2 0
Type schemes a ::= f o r a l l A . C => T

Integers
Variables
Abstractions
Terms

Patterns

I
x,y ,z ::= x,y,z ,...

abs ::= \p . t
t, u ::= a I A I I n j I t && u I Triv

1 t u 1 x 1 Cabsr; ...; abs,) n>O
I l e t x = u i n t

p , q : : = i I A p I ~ n j p I p & & q l ~ r i v l x

Newtype decls tdecl ::= newtype { ~ ~ a q u e) ~ P ~ A = T

Programs prog ::= tdecll . . . tdecl, t n 2 O
I

Figure 4.1: Syntax of XTIR kinds, types and terms

F , G ::= I n t I (,->,I)Empty[(-# , I I (One-) I (Al l -) I A
f , g ::= (I n j -1 I Triv I (, && -1 I A

1 I
Figure 4.2: ATIR type and term constructors

Aconst = I n t : Type,
Empty : Row,

(- # -1 : Type -> Row -> Row,
(One -1 : Row -> Type,
(All ,) : Row -> Type,

(- ->- I :Type ->Type ->Type

Ainit = AcOnst St {A, : IE; I (newtype {opaque)'Pt A, = 7,) E tdecls)
such that Va . Awt t- 7; : IE;

A K, = 6'1 -> . . . -> KL -> Type
A V j , IE; E { ~ y p e , ROW)

A every cycle involving A passes through at least one All/One constructor

1 I

Figure 4.3: Initial XTlR type var context Ainit

[A I- T constraint]

A I - ~ : n A I - V : K ~ E { ~ y p e , ~ o w) A k ~ : T y p e AI-p:Row

A I- T eq, v constraint A I- T i n s p constraint

A I- c constraint

A I- iZ constraint

I A I- a scheme I

n E {Type, Row) A +t a I- C constraint A i+ I- T : Type

A I- f o r a l l a . C => T scheme

A I- a scheme

A I- W context I
I

Figure 4.4: Well-kinded XTIR types, constraints, type schemes and type contexts

judgement A I- T : n, and its extension to constraints, schemes and type contexts. Both
sides of an equality constraint must have the same kind; insertion constraints must be with
a Type and a Row. Type schemes must have a body type of kind Type, and each universally
quantified type variable must have kind Row or Type.

We let 0 ranges over substitutions, which are idempotent maps from type variables to types
or rows, and which are the identity on all but a finite set of type variables. We also write
Id to denote the identity substitution.

Define the judgement A I- 0 subst to be true iff dom(O) dom(A) and V(a : n) E A . A I-
O U : ~ .

Similarly, define I- .9 : A + A' to be true iff dom(0) = dom(A) and V(a : n) E A . A' I- O a :
n. Notice the strict equality on domains. Clearly, because substitutions are idempotent,
A and A' must be disjoint.

We shall write Ols to denote the restriction of 8 to the domain S. Similarly, O\, denotes 0
restricted to all type variables except a. We shall use the same notation for restricting the
domains of other maps, such as environments.

Every recursive newtype must be well-founded; viz every cycle passing through a new-

named(?) =
names(=) = (a)

anon(=) = 3

where fresh

eqs(C) = {T equ / (T equ) E C)
inss(C) = {w : T i n s v / (w : T insu) E C)
inhs(C) = {(w : c) E C / inheritable(c))

1 I

Figure 4.5: Definitions of functions named, names, anon, inheritable, norm, eqs, inss
and inhs

type must also pass through at least one A l l or One type constructor. This restriction is
necessary because newtype declarations such as:

newtype A = B
newtype B = A

cannot be given a semantics in the model to be presented in Section 4.5.

Figure 4.5 collects some ancillary definitions. Some judgements require constraint contexts
in which every primitive constraint is associated with a unique index variable. The function
names(C) associates fresh witness names with each primitive constraint in C. The function
named(C) is the tuple of witness names of C, and shall be used when constructing run-time
terms; anon(C) is C with all witness names removed.

We write norm(r) to denote the /3-normal form for a type T of kind Type. Newtype names
are considered as free variables for the purpose of normalisation.

We let eqs(C) be the primitive equality constraints of C, and znss(C) be the primitive
insertion constraints. We let anhs(C) be only the inheritable primitive constraints of C.
In this dissertation, inheritable(C) is defined to be the constant tt (true) function. If XTIR

were extended with implicit parameters [57], inheritable(C) would be redefined to be ff
(false) if C contains implicit-parameter constraints. However, much of the remainder of
the system, and its proofs of correctness, would remain unchanged.

We let rm and vm range over all normalised monotypes of kind Type or Row.

Figure 4.6 presents the syntax of the untyped run-time languagethe target of our type-
directed translation. Parts of this syntax have already been introduced in Section 2.6.

TIP'S are represented as ordered tuples (TI, . . . , T,). TIC'S are a pair Inj W T of an
index and a run-time term. Each declared newtype A is represented by an injector A,
and corresponding extractor A-l. Though both these terms would be the identity in
any operational semantics, they shall be important when we consider a model for XTIR in
Section 4.5.

Indexvars w::=w, . . .
Indices W ::= w 1 One 1 lnc W) Dec W 1 True
Bindings B ::= wl = W1,. . . ,wn = Wn n > O
Variables x, y, z ::= x, y , z, . . .
Terms T, U ::= i I (TI,. . . , Tn) I Inj W T n > O

) Ax . T I A(wl,. . . , w,) . T n > O
I T U I T (Wl ,..., Wn) (X I A I A-I n 1 0
I insert U at W into T I let () = U in T
(let x y = remove W from U in T
I case U of { In j W x -+ TI;

otherwise + T2)
I case U of {i + TI ;otherwise + T2)
I let x = U in T I letw B in T

I

Figure 4.6: Syntax of XTIR run-time terms

rconst = (Inj -) : f o r a l l (a : Type), (b : Row) . a i n s b => a -> One (a # b),
(- %% -) : f o r a l l (a : Type), (b : Row) . a i n s b => a -> A l l b -> A l l (a # b),

T r i v : A l l Empty

A : f o r a l 1 a1 : nl, . . . , a, : K, . norm(r a1 . . . a,) -> A a1 . . . a,
Finit = rconst +I- { I A : ~1 -> . . . -> fin -> Type E A,,,

(newtype { ~ ~ a ~ u e) ~ p ' A = T) E tdecls

I I

Figure 4.7: Initial ATIR type context rinit

We keep indices separate from run-time terms to simplify our soundness proof. One is
the first index, and Inc W and Dec W offset index W by one position to the right or left.
Indices are abstracted and passed in tuples, and may be let-bound by letw B in T. The
"index" True witnesses the satisfaction of an equality constraint. It plays no part in an
implementation, but makes the proofs of correctness more uniform.

The term let () = U in T forces evaluation of U. In the term
let x y = remove W from U in T, x is bound to the term at index W in U, and y
to the remaining product. The first case-form checks if U evaluates to a TIC with index
W. The second simply checks for matching integers.

4.2 Well-typed Terms

We let F range over type-contexts (mapping variables to type schemes) and let rinit denote
the initial type context defined in Figure 4.7.

Figure 4.8 presents the rules for deciding the well-typing judgement A I C (I' k t : T L, T,
with intended interpretation:

"Term t has type T, and translates to the run-time term T, assuming the free
term variables typed in I?, the free type variables kinded in A, the satisfiability

INT
A \ C I I ' I - 2 : I n t v i

A1 C I I ' k t : v + T
A I C I I? t u : v' - U C Fe v eqTpa (v' -> T) v True

APP
A1 C I r l - t u : r v T U

(x l f : f o r a l l V . D => T) E I?
D' = named(D) A I-

C te Dl[=] v B
VAR

A (C (~ I - X / ~ : T [= J
v letw B in x / f names(D1)

A I C I r t1 abs : T v T[e]
ABS

A I C I I? I- (abs) : T v TIundefined]

A I C I I? absl : T v T[.]
A 1 C 1 F I- (cabs2,. . . , absn+1) : T' v U

CFe T e q T y p e r l ~ T r u e zfresh
DISC

A (C (I ' F Cabsl, ..., ~ b s , + ~) : T

v let z = U in T [z]

x E f v (t) A k Dl constraint A -ti- A' k D2 constraint
Dl = inhs(C) saturate(D1 -t+ D2) # 0 a = f o r a l l A' . anon(Dz) => v

A + t A ' (D l + t - D 2 1 r f - u : v ~ U
A1 C I r , x : a I - t : r v T

LET
A1 C I I ' I - l e t x = u i n t : ~
v let x = Xnames(Dz) . U in T

I I

Figure 4.8: Well-typed XTIR terms

of the constraint context C, and the free index variables of C."

We intend the VAR rule to apply to variables (ranged over by x) , and constants and
newtypes (ranged over by f).

Note that, as discussed in Section 2.9, the LET rule must check not only that the constraint
for a let-bound term is well-kinded, but also that it is satisfiable, and that the let-bound
variable appears free in the let body. The test for satisfiability uses the saturate function,
which will be defined in Section 4.4.

The LET rule contains an additional subtlety. Typically, all the constraints of C would be
available when type checking u. However, in a system with implicit parameter constraints
[57], any implicit parameters within C must be removed when checking u. This restriction
is necessary to force any implicit parameters within u to appear within D2, and thus ensure

A I C I rt-, t : T LS T[.] x fresh
p2

A I C I I' I-,+, \i . t : I n t -> T

L) Ax . case x o f { i + T[. x] ; otherwise + x }

(newtype {opaque)OPt A = v') E tdecls
(A : nl -> . . . -> n, -> Type) E A,,t

A t- 2,: C Ce nom(v' v1. . . v,) eqType T' v True
A I C I r t-,+, \p . t : (T' -> T) v T [e] x , y fresh

p3
A I c l r t - , + , \ (~ p) . t : ~ v ~ . . . v , - > ~
L-) Ax . let y = A-l x in T [A y . (A y)] y

A I C 1 I? \p . t : (v -> T) v T[.]
Al-p:Row C t - e v i n s p ~ W x , y f r esh

p4
A I C I I' \(Inj p) . t : One (v # p) -> r

+ A x . case x o f { Inj W y + T [A y . (Inj W y)] y ;
otherwise -+ x }

A I C I r \p . \q . t : (vl -> v2 -> T) v T[.]
C Fe (All p) eqType v2 v True A I- p : Row C Fe vl i n s p v W x , y , z fresh

p5
A 1 c I r I-,+~ \(p && q) . t : ~ i i (vl # p) -> 7

v Xx . let y z = remove W from x
in T [A y . Xz . (insert y a t W into z)] y z

A I C I rl-, t : T v T[.] x f r esh
p6

A I C I I? \Triv . t : A l l Empty -> r
- A x . let () = x in T [. x]

Figure 4.9: Well-typed ATIR pattern abstractions

they are dynamically rather than lexically scoped. For ATIR, we abstract from this by using
the predicate inheritable (defined in Figure 4.5). We intend inheritable(c) to be ff if c
should be removed from C when checking u. Thus if ATIR were extended with implicit
parameters, we would define inhertable(?x : T -ti- C) = ff.

Notice the symmetry of index abstraction in the LET rule and index application in the VAR

rule.

The ABS and DISC rules both make use of the mutually recursively defined pattern compiler
of Figure 4.9. The subscript n is the number of A-abstractions of t to be compiled as
patterns, and T[.] is the compiled run-time term with a "hole," 0, which should be filled
by a term (of the same type) to evaluate should the pattern fail. The ABS rule fills the hole
with undefined, since there is no other alternative to try. The DISC rule chains together
each discriminant such that failure of abs; will cause ~ b s ~ + ~ to be tried. Notice the use
of a let binding within the run-time code generated by the DISC rule to prevent code size
explosion.

Note than a "vanillan A-abstraction \x . t is typed by treating it as a singleton discrimi-
nator C\x . t) in the ABs rule. This discriminator in turn invokes the pattern rule p 7 to
remove the argument x, and then the rule PI for the body t, which then continues in the
well-typing judgement.

As a term is deconstructed, the pattern compiler must insert re-construction code so that
failure will be handled correctly. A real compiler will attempt to @-reduce pattern code
once the hole has been filled.

At the heart of all these rules is the entailment judgement, Fe, to be presented in Section 4.4.
It is used in three ways:

(i) When two types must be equivalent (e.g., in the APP and DISC rules) the type checker
asks if the current constraint context entails their equality.

(ii) Whenever a row is constructed or pattern-matched (e.g., in the p4 and p5 rules),
the row must be well-formed (the insertion constraint satisfied), and an index must
be known at run-time. The type checker thus asks if the current constraint context
entails the membership constraint. If so, the entailment judgement yields the index
W.

(iii) Each variable occurrence propagates any constraints from the variable's definition-site
to the use-site. In the VAR rule, the type checker thus asks if the current constraint
context entails the variable's constraints, suitably specialised.

We assume the following definitions for the source-language constants in the run-time
language:

(Inj -1 = X(w) . Ax. Inj w x
(Triv) = ()

(- && -) = X(w) . Ax . Ay . insert x at w into y
A=Ax.Ax

Notice these definitions match the types for these constructors given in Figure 4.7.

lexleqm([, 0) = tt
 if^<^ G

lexleqm(F :: r , G :: r') = if G < F F
lexleqm (r, r'), otherwise

preorder; (F F) =
i f F € O

F :: preorderz (rlm) +t . . . -kt preorderz (r;), otherwise {["I,
preorderz ((#In 7m Empty) = (#I, :: preorder? (rF1) +t . . . +t preorderg (~?,m,)

where .rr is a permutation on n s.t.
Vi, j . i 5 j + leq;(r,mi, 7 2)

leq5(rm, vm) = lexleqm (preorderz (rm), preorder; (urn))

I I

Figure 4.10: Total order on XTIR monotypes

4.3 Type Order

This section formalises the notions of type order and equality introduced in Section 2.7.
We shall first construct a total order on monotypes, and then show how this order may be
extended to a partial order on all types that is stable under substitution.

Let < F be an arbitrary total order on all type constructors and newtype names. For
concreteness, our examples will assume the ordering (where the A, are the newtypes of the
program) :

I n t < F Boo1 <F Str ing <* (- -> -I <F Empty < F
(One -I < F (All -I < F A. < F . . . <F A, < F

(# lo < P (#I1 <F . - -
Notice that we have included the type constants Boo1 and String, even though these are
not included in the formal syntax of Figure 4.1.

Figure 4.10 defines the binary monotype relation, leqz, which is parameterised over a set
of type constructors 0. This relation is well-defined for any pair of normalised monotypes
of kind Type or Row. Note that because only similarly kinded types need be compared, we
could replace leq; with a pair of relations. However, this precision comes at the cost of
additional notational complexity.

This relation defines the monotype rm to be less-than or equal to urn, written leq;(rm, urn),
when their pre-order flattenings are lexicographically ordered under lexleqm. The latter
uses < F to order each type constructor. For convenience the definition uses a list-like
syntax, where is nil and :: cons. Notice that, because each type constructor is both of
a fixed arity and saturated, there is no need for lexleqm to consider the case of unequal
length argument lists.

Since the ordering of types should be stable under permutation of row elements, preorderz

first sorts a row's elements using leq$ before flattening them. In this way we have:

leq$(~ool# I n t # Empty, I n t # Str ing # Empty) = tt

This recursion is well-defined because the row elements are strictly smaller than the row
containing them.

In the sequel, we shall instantiate 0 with either 0 or opaque, the set of all newtype names
declared as opaque. In this way leq$ may be used to decide both transparent and opaque
(in)equality. For example, assuming

we have
leqGaq,, (A S t r ing # Bool # Empty, Bool # A I n t # Empty)

but
lleqc(A Str ing # Bool # Empty, Bool # A I n t # Empty)

The relation eqc, for type equality, is defined in the obvious way.

Fact 4.1 Let n E {Type,Row) and Awt I- T ~ / V ' ~ / V ~ : K. Then

(i) leqc(rm,vrn) is well-defined.

(ii) leg; is a partial order, viz leqc (T ~ , T ~) ; leg; (T ~ , vim) and leq$ (d m , urn) imply
leqc(rrn, urn); leq$(rm, urn) and leq$(vm, T ~) iff rm and urn are equal up to permu-
tation of row elements and ignoring the arguments of type constructors in 0.

(iii) leqc is a total order, viz leq$ (T ~ , urn) or leqc (urn, T ~) .

We now consider how to lift leqc to all types. The lifted relation is most conveniently
expressed as a binary function, cmpo, into the four-valued set of It (less-than), gt (greater-
than), eq (equal) and unk (unknown).

Before plunging into the definition, it is worthwhile to consider what is required. Clearly,
cmpo should agree with leg$ on monotypes:

~ m p ~ (~ ~ , urn) E {lt, eq) leq$(rm, urn)

However, to ensure soundness of entailment, cmpo must also be stable under substitution:

cmpo(r,v) = x A x # unk ==. cmpo(8 T,O U) = x

An obvious definition is for cmpo to yield unk whenever its arguments are not monotypes,
but definition this is needlessly conservative. Figure 4.11 presents the actual definition,
which will yield unk only when the possible instantiation of a type variable is significant
in deciding the (in)equality of two types. For example, again assuming

newtype opaque A = \a . a

lexcmpt([l, 0) = eq

{
It, if a <" b

lexcmpt(a :: r , b :: r') = gt, if b <" a
eq, otherwise

lexcmpt(a :: r, G :: r') = lt
l excmpt (~ :: r , a :: r') = gt

i f F < F G
lexcmpt(F :: r, G :: r') = gt, if G <F F

lexcmpt (r , r'), otherwise r7
eq, if a = b

lexcmpP(a :: r , b :: r') =
unk, otherwise

lexcmpP(a :: r , G :: r') = u n k
lexcmpP(F :: r, a :: r') = u n k

i f ~ < ~ G
lexcmpP(F :: r, G :: r') = if G < F F

lexcmpP(r, r') , otherwise

preorderg (a) = [a]

preorderb (F 7) = { [FIT i f F ~ 0
F :: preorderb (rl) -I+ . . . +t preorderg (T,), otherwise

preorderb ((#In ? 1) = I :: (#In :: preorderg (7,l) +t . . . +t preorderg (7, ,)
where T is a permutation on n s.t.

cmpb (7, v) = Eexcmpt (preorderg (7) , preorderb (v))

cmpo (7, v) = lexcmpP(preorder~ (T) , preorderb (v))

F igure 4.11: Partial ordering on normalized XTIR types of kind Type and Row

we have

cmp,,,, (In t , a -> b) = I t

cmpoWque (Boo1 -> a, I n t -> b) = g t

The relation cmpo is defined analogously to leg5 using a lexicographic ordering, Eexcmpp,
on a pre-order flattening, preorderg. The function lexcmpp will yield u n k whenever it
encounters a type variable (though the comparison of a type variable against itself may
safely yield eq).

The treatment of row comparisons involves some subtlety. Firstly, consider how to order
the rows a # d and b # c # d. Since these rows share the same tail d, the first will always
be smaller than the second, suggesting:

Furthermore, consider how to compare I n t # Bool # Empty and (a -> b) # (c -> dl #

Empty. Even though (a -> b) and (c -> d) cannot be ordered with respect to each other,
each of I n t and Bool may be ordered with respect to (a -> b) and (c -> d l , suggesting:

cmp,,,,, (In t # Bool # Empty,
(a -> b) # (c -> d) # Empty) = It

Hence, one row may be less than another even though the elements of one or both rows
cannot be ordered amongst themselves. However, any rows with differing tails cannot be
ordered, since one or both tails may be instantiated to a row of arbitrary length.

To implement this requires two tricks within preorderg. Firstly, a row's tail is placed before
both its (#), type constructor and its flattened element types. In this way, unequal row
tails cause lexcmpp to yield unk. Secondly, the elements of a row are sorted not by crnpo,
but by a total order, cmpb, which places type variables before all other type constructors.

We assume <a is an arbitrary total order on all type variables, which for concreteness we
shall take to be lexicographic on the variable's name. The relation cmpb is defined as for
cmpo, but using lexcmpt to lexicographically order the flattened types instead of lexcmpp.
Of course, cmpb is not stable under substitution, or even a-conversion! The stability of
cmpo is thus a little subtle.

The following lemma summarises the properties of cmpo.

Lemma 4.2 Given K E {Type,Row) and A I- r /vt /v : K, then:

(i) cmpo (r , v) is well-defined.

(ii) If I- 8 : A + A;,;, then cmpo (8 r , 8 v) E {It, eq) iff leqz (8 r , 8 v).

(iii) If A I- 8 subst and cmpo (7, v) = x for x # unk, then cmpo (8 7,8 v) = x.

(iv) cmpo (r, v) = eq iff r is equal to v up to permutation of row elements and ignoring
the arguments of type constructors in 0.

(v) cmpo(r, V) = eq iff cmpo(v, r) = eq.

(vi) cmpo (7, v') = eq and cmpo (v', v) = eq implies cmpo (7, v) = eq.

(vii) cmpo (7, v) = It iff cmpo (v, r) = gt .

(viii) cmpo (7, v') = It and cmpo (v', v) = It implies cmpo (7, v) = It.

(ix) cmpo (7, 7') = eq and cmpo (r', v') = It and cmpo (v', v) = eq implies cmpo (7, v) =
It.

(x) cmpo(r,r') = eq and cmpo(r',v') = unk and cmpo(vf, v) = eq implies
cmpo (r, v) = unk.

(xi) cmpo(r, v) = unk iff cmpo(v, T) = unk.

(xii) cmpo(r, 'u) = I t then crnp0(r, v) = I t .

(xiii) cpnp~(~ , v) = eq then cmpo(r, v) = eq.

Proof Most are by definition of cmp. Property (iii), however, is a little subtle: see
Lemma B.3.

4.4 Constraint Entailment

Roughly speaking, a constraint C entails a constraint D, written C ke D, if every satisfying
substitution for C satisfies every primitive constraint in D. However, we also ask that the
satisfaction of each primitive constraint be witnessed. Hence the full judgement form is
C ke D L) B, where B is a set of bindings of witness names of D to witnesses, which may
contain witness names from C. Thus B resembles a coercion from C to Dl and our ke
judgement decides implication in an intuitionistic logic of constraints.

4.4.1 Unification and Saturation

Our strategy for deciding entailment is to first saturate the equality constraints of C by
reducing them to a set of unifying substitutions. We then discard those unifiers which
violate any insertion constraints in C, and then check each primitive constraint in D is
satisfied for each remaining unifier.

Figure 4.12 presents the definition for saturate. Much of the work is performed by mguso,
which, given a set of equality constraints, collects the set of their most-general unifiers (if
any). Here, "most-general" refers to the unifier for a fixed permutation of all rows, and
does not imply the set itself is "most-general7' in any sense. An empty unifier set implies
a pair of types are non-unifiable. A non-singleton, non-empty set implies at least one pair
of rows are unifiable under more than one permutation of row elements.

As in Section 4.3, 0 is a set of type constructors, and will be instantiated to either 0 or (in
Chapter 5) opaque. For the latter, the resulting "unifiers" need not unify the arguments
of opaque newtypes.

Notice that the case for row unification collects the unifiers for each possible matching of
the first left-hand side element type to each right-hand side element type or the right-hand
side tail. Unifying a type with a row tail requires the introduction of a fresh type variable
of kind Row, hence some care shall be required when stating properties involving mguso.
Furthermore, no attempt is made to eliminate unifiers which lead to obviously ill-formed
rows. For example

mgusO(Id k (In t # Bool # a) eq (String # I n t # b)) =
[a + String # dl b I+ Bool # dl,
[a e String # I n t # e, b I+ I n t # Bool # e]

Here the second unifier (an instance of the first) duplicates the I n t element types in both
rows. This definition is in keeping with the definition of cmpo. In the sequel we shall see
how such unifiers are rejected when it comes to deciding entailment.

fvo(a) = { a)
fvo(F 7) = if F E 0 t h e n 0

else U, fvo (7i)

f vo((#)n 7 1) = Ul<i<nf7-lo(~i) ' J ~ v o (~) - -

mguso(8 t- t r u e) = (8)
mguso(8 t- b eq b, C) = mguso(8 I- C)
mguso (8 t- b eq 7, C) = if b E fvo (7) t hen 0

else naguso([b t, T] 0 0 I- C [b 6 T])

mguso(8 t- T eq b, C) = mguso(8 t- b eq 7, C)
mguso(8 t- F 7 eq F D, C) = if F E 0 t h e n (8)

else mguso (8 I- 7, C)
mguso(8 I- F 7 eq GV, C) = 0 when F # G

S. u S' rnguso(O I- (#I, 7 1 eq (#In V I', C) = Ul<j<n J

where Sj = {mguso(f3 t- 7 1 eqvj, (#I m-1 T\i 1 eq (#I n-1 Cb l', C))
and S' = if I' = a a n d a @ fvO(rl) t h e n

mguso([a I+ TI # b] 0 8 I- ((#),-I T\l 1 eq (# I n b, C)[a I+ 71 # b])
else 8

and b : Rou fresh

i s I n (~ , (#) D 1) = 3i . cmpopague (7, vi) = eq
satisfied(C) = B(T ins p) E C . isIn(r, p)

8 E mguq (Id t- eps(C)) ,
satisfied (8 inss (C))

I I

Figure 4.12: Definition of fv, rngus, and saturate

Furthermore, mguso may also include "junk" unifiers which, though sound, are not most
general. For example:

mugs@(Id I- (a # b # Empty) eq (a # b # Empty)) = {Id, a * b)
Here the second unifier is redundant, but to prevent its inclusion, or to detect and discard
it, seems to be much more trouble than simply accounting for such unifiers in a few points
within the correctness proofs.

Though we shall speak of sets of unifiers, multi-sets are also appropriate. Hence mguso
need not attempt to collapse duplicate unifiers.

Of course an actual implementation of mguso needn't use such a brute-force collection of
all unifiers. By using cmpt to first sort each row, many obviously failing combinations may
be rejected.

Much of the rest of the technical development will depend on substitutions being equal
only up to the equality on types induced by cmpo. To this end, let 8 r o 8' iff Va .
cmpo(8 a , 8' a) = eq.

Lemma 4.3 (Correctness of Unification)

(i) If Vi . 8 ri = T, A 8 V , = v , then 8' E mguso(8 t- 7) implies 38'' .8' = 8" o 8 and

MEMPTY
C I-" T i n s Empty v One C I - " ~ i n s p ~) w

CmPopaque (7, vi) = lt CmPopaque (7, vi) = gt
C k r n ~ i n ~ (#) n E Z V W C k m T i n ~ (#) ~ E Z v W

MCONT MDEC
C km T ins (#),-I E\, I v W C t-" T ins (#),-I E\, 1 Dec W

CmPopaque (7 7 vi) = lt CmPopaque (7 7 vi) = gt
C I-" T ins E\, I L) W C km T ins E\, 1 L) W

MEXP MINC
C k m 7 ins(#) ,EZ v W C km T ins (8) . E 1 V Inc W

V8 E saturate(C) . V8 E saturate(C) .
cmpo (8 T, 8 v) = eq 8inss(C) km 8 7 i n s 8 p v W

EQUALS INSERT
C ke T eq v v True C ke r i n s p v W

C k e d v W
CONJ

C k e w : d v w = W
L I

Figure 4.13: XTIR constraint entailment

Vi . cmpo (8" T,, 8'' vi) = eq.

(ii) If Vi . cmpo(8 T,, 8 v,) = eq then 38' E mguso(Id I- C F j T) and 8" s.t.
elt 8'ldom(8) EO e.

Proof See Lemma B.6 and Lemma B.7.

Notice the use of domain restriction in the statement of equivalence of substitutions in (ii)
above. This restriction is necessary because both 8' and 8" may contain spurious bindings
for row variables introduced by mguso. It is exceedingly tedious to include these restrictions
in the (very many) places we must show the equivalence of substitutions. Hence, in the
sequel we shall assume, unless noted otherwise, that -0 is equivalence up to restriction to
the relevant variables. Here, "relevant" will be clear from context. (Jones' = relation [47]
is defined similarly, though its motivation is very different.)

4.4.2 Entailment Judgement

Figure 4.13 presents the constraint entailment judgements.

The rules of the ancillary judgement C Fm T i n s p v W attempt to find a suitable index,
W, for type T within row p. Notice these rules are non-deterministic: There may be many
possible derivations, and hence many possible witnesses. Furthermore, infinite derivations
are possible. Both these properties are an artifact of our presentation, which is pleasantly
concise compared to a fully deterministic and finite system.

Rule MEMPTY is the obvious base case (recall indices are base 1). Rule MREF allows
an index to be drawn from the environment, provided all types agree opaquely up to
permutation. Notice that all comparisons in these rules use cmpopaque rather than cmpo,
since the type arguments of opaque newtypes should not be significant in determining the
insertion position of a type in a row.

The remaining rules all attempt to build a relative index by adding or removing a type
from a row for which the index is known. These rules are only applicable when the type
being added or removed can be strictly ordered with respect to the type being inserted.

Sometimes W will be an absolute index. For example:

t r u e Fm Bool i n s (In t # St r ing # Empty) v Inc One

Otherwise, W will be relative to an index in C. For example:

w : Bool i n s (a # Empty) Fm Bool i n s (a # I n t # Empty) L) Inc w

The rules for the C Fe Q v W judgement first saturate C, then check d is satisfied
under each unifier. Notice that rule INSERT requires the index W witnessing T i n s p to be
(syntactically) the same under each unifier. Doing so prevents a membership constraint
from being incorrectly discharged. For example, the following judgement is not true:

(a # b # Empty) eq (In t # Str ing # Empty) Fe a i n s (Bool # Empty) L) W

Depending on whether a is bound to I n t or String, W can be One or Inc One. When
there are multiple ways to bind an index, we assume the entailment fails if there is no single
derivation which yields the same index under all unifiers. An actual implementation can
avoid having to try many possible derivations of the Fm judgement by preferring relative
to absolute indices.

Finally, the C Fe D L) B judgement extends the C Fe d v W judgement from primitive
constraints to full constraints. Notice this definition implies saturate(C) is performed for
each d E D: Of course an implementation need not do so!

4.4.3 Soundness of Entailment

Figure 4.14 presents a simple denotational semantics for XTlR witnesses and primitive con-
straints over ground types. The semantics uses the set Z of witness values. We write 1 to
denote the singleton set {*I, and we let 7 range over all mappings from witness names to
witnesses. (In the sequel these maps shall be extended to include ordinary variables.)

Z = (iwrong : 1 + iind : NS + itrue : 1)

[wl, = 77 w
[One], = iind : 1

[lnc W], = case [W l q of {
iind : i + iind : i + 1;
otherwise -+ iwrong : *)

[Dec W], = case [W] , of {
iind : i + if i > 1 then iind : i - 1 else iwrong : *;
otherwise + iwrong : *)

[True], = itrue : *

?r is a permutation on n,
s o r t i n g P e m s (~ ~ ~ , . . . , Vi , j . i 5 j + leq&,,(~,mi,~,mj)

[T ~ ins (#), F Empty] = if VT n. S . 1 = i then {iind : i) else 0
where S = sortingPems(rm, v r , . . . , v:)

[T- eq urn] = if eqQm(Tm, urn) then {itrue : *) else 0

I I

Figure 4.14: Definition of the set Z, the denotation of XTIR witnesses in Z, the denotation
of XTIR primitive constrants as subsets of Z, and env

Notice that the denotation of a primitive constraint will be either the empty set (if un-
satisfied) or a singleton (if satisfied). The only subtlety is the denotation for insertion
constraints. We allow sortingPems to yield more that one sorting permutation, provided
they all agree on the index for T. For example

[Boo1 ins I n t # I n t # Empty] = {iind : 3)

but
[Boo1 ins I n t # Boo1 # Empty] = 0

Using this model we may show our entailment judgement is sound. Notice that, for clarity,
we have suppressed the trivial True witnesses for equality constraints in the proof-theoretic
development, even though the following model-theoretic development requires them. They
may always be reinserted where required.

We say 7 satisfies C, written 7 + C, if (w : c) E C d 7 w E [c]. If A I- C constraint, we
define satisfiable(C) to be true if there exists a A I- 8 subst and 7 s.t. 77 + 8 C.

Let A I- C I D constraint. Then we say C model-theoretically entails D with coercion B,
written C IFe D L, B, iffor every I- 8 : A + Aait and 7 s.t. 77 + 8 C, we have
env(B,q) + 8 D.

We say (r eq v) is equivalent to (7' eq v'), written (7 eq V) - (7' eq v'), if cmpO(r, 7') =
eq and cmpO(v, v') = eq or cmpO(r, v') = eq and cmpO(v, 7') = eq. Similarly, define
(7 ins p) EE (7' eq p') to be true if cmpO(r, rl) = eq and cmpO(p, pl) = eq. We extend -
pointwise to all constraints.

Lemma 4.4 (Soundness of Entailment) If C ke D v B then C IFe D L) B.

Proof See Lemma B.13 for the full theorem statement and proof.

As an immediate consequence of soundness we have:

Lemma 4.5

(i) Types are tautologically equal if they are equivalent: true Fe r eq v implies
c m ~ (7, v) = eq.

(ii) A type may be tautologically inserted into a row if it has a unique insertion index:
true w : v ins (rl # . . . # rn # Empty) v B implies S # 0 and there exists an i
s.t. VT E S . n-' 1 = i, where S = sortingPems(v,r1,. . . , rn) .

Proof See Lemma B.14.

We can also show that entailment is well-behaved:

Lemma 4.6

(i) ke is reflexive: C Fe C v .

(ii) ke is transitive: C Fe D' v B and D' Fe D v B' and q + 0 C implies C ke D v
B" and env (B * B'l 7) lnames(D) = B"l 7) [names(D)

(iii) ke is closed under substitution: C ke D v B implies 0 C ke 0 D v B.

Proof

(i) See Lemma B.28.

(ii) See Lemma B.31 for the full statement and proof.

(iii) See Lemma B.27 for the full statement and proof.

Finally, we can show saturate(C) is non-empty if and only if C is satisfiable:

Lemma 4.7 saturate(C) # 0 iff satisfiable(C).

Proof See Lemma B.16.

4.4.4 (1n)Completeness of Entailment

The rules of entailment in Figure 4.13 are not complete with respect to the model of
constraints given above. That is to say, C IFe D v B does not imply C Fe D L, B. This
incompleteness arises because the F m judgement does not exploit the way in which types
are ordered.

For example, notice that for any q and 8 such that

we have
[w] ~ E [O ((b, C) ins (Bool, Int) # Empty)]

However

w : b ins (Boo1 # Empty) ,Fm ((b, c) ins (Bool, Int) # Empty) 9 w

Some progress can be made by including the projection rules:

(w : (T v) ins (T 21; # . . . T vk # FSlpty)) E C
MPROJL

C F m w l : v ins (#), v'Emptyv w l = w

(w : v ans (#I, 7 Empty) E C
MPROJR

C F m w' : (T v) ins (T vi # . . . # T vk # Empty) v w1 = w

Here T is any type functor of kind Type +- Type which does not discard its type argument
(though it may be duplicated). Since such rules seem potentially very expensive to imple-
ment, we would like to first gain some experience with an implementation before deciding
if such an expense is justified.

A variation of these rules for functors of kind Row -+ Type is also possible, but potentially
even more expensive, since it must work with rows in canonical order.

However, even with the rules above the example entailment above still fails, and hence
ke remains incomplete. The problem is that these rules do not exploit the lexicographic
ordering of types. Though variations of the rules above to exploit this information seem
plausible, we feel this problem is one of the model being too rich rather than the entailment
relation being too poor. A better approach would be to parameterise the definitions of
Figure 4.14 by the definition of leqm. We would then write C IFe D v B iff q 0 C
implies env(B, q) + 8 D for all definitions of leqm. which satisfy the properties of Fact 4.1.

It is unknown whether Fe remains incomplete even with all of the refinements mentioned
above.

Incompleteness of entailment has two consequences. Firstly, may properties, such as closure
under substitution and transitivity, are trivial to show for IFe. Without completeness, we
are forced to prove these properties for k e also, which is substantially more complicated.
Secondly, when we come to showing XTlR enjoys completeness of type inference in Chapter 5,
we must base the theorem upon IFe rather than F e .

E A = {l) u {[a] 1 a E A)

unitE : A + E A
= Aa. [a]

bindE : E A + (A - + E B) - + E B
=Aeaf . c a s e e a o f { I + I ; [a] + f a)

s trengthE : A x E B + E (A x B)
= Aa eb . case eb of {I -+ I ; [b] + [(a, b)])

I I

Figure 4.15: Evaluation monad E

4.4.5 Complexity of Entailment

We do not have any complexity results for entailment, or even satisfaction. Of course,
entailment is mostly a theoretical stepping stone towards simplification, for which care has
been taken to avoid explosive time complexity. An implenaentation of entailment is used
by the compiler in only two situations:

(i) The simplifier uses (a variation of) entailment to eliminate constraints containing
only type variables known not to appear outside the constraint. These constraints
tend to be small.

(ii) The compiler must check the constraint in a programmer-supplied type annotation
entails the inferred constraint. However, programmers tend not to write very large
constraints when annotating a term, usually because they are only interested in
an instance of (one of) the term's principal type(s) in which most of the constraints
become tautological. Furthermore, if experience with Haskell is any guide, they would
prefer to be able to supply a type annotation without also supplying a constraint.
(A ". . ." notation, denoting "any constraint," has been proposed for Haskell, and
would likewise be suitable for ATIR.) In such cases the type checker only needs to
check that the inferred constraint is satisfiable when instantiated by the annotated

type.

In both cases, the left-hand side constraint is small when deciding entailment. Furthermore,
rows tend not to be highly polymorphic and not deeply nested, in which case saturate yields
only a modest number of substitutions.

4.5 Type Soundness

This section presents a denotational call-by-name semantics for ATIR. The model is inspired
by that for HM(X) [79], which in turn is a mild generalisation of Milner's original model
for let-bound polymorphism [66]. Types are denoted by ideals [59] of the domain E V, and
terms by members of E V.

V is the pre-domain of values, defined by:

V = ((wrong : 1) + (int : 2) + (func : E V -+ E V)
+ prod. : n,,,,, E V) + (inj : N+ x E V)
+ (E.>O - ifunc. : (IT ; , i , . I) -+ E V) 1

[~ n t] = E {int : i I i E 2)
[vm -> rm] = E {func : f I f E E V + E V, v E [vm] * f v E [rm]) -

[A l l ((#In rm Empty)] = E {prod, : (~ 1 , . . . , v,) (vi E [r,ml], . . . , v, E [TA])
[One ((#)nPEmpty)] = E {inj: (i ,v) 11 5 i 5 n,v E [r,mi])

where .rr E sor tangPerms(~~~, . . . , r r)
[A v y . . . v r] = E J. (lfp Ad . [(nomn(r v? . . . vr))[A v y . . . v r I-) d l])

where (newtype {opaque)OPt A = T) E tdecls
[dB = d

[f o r a l l A . C => TI = n
where D = named(C)
and names(D) = (q, . . . , w,)

and S(e,B) = E f E (nIs,,~) -+ E v,
env(B), ... 7 [wnIenv(~))E 86 71

I I

Figure 4.16: Denotation of ATIR normalized monotypes and type schemes as ideals of E V

Here + is categorical sum, + continuous (not necessarily strict) function space, 2 the set
of integers, Jd+ the set of non-zero naturals, Z the set of indices defined in Figure 4.14, and
E is the evaluation (lifting) monad defined in Figure 4.15. Each summand is tagged by a
mnemonic for its injector. We use the summand wrong : * to denote all ill-typed programs.

(This somewhat unorthodox presentation of V as a pre-domain rather than a domain has
been chosen so as to make the monad E explicit, which in turn simplifies the proof of type
soundness.)

Figure 4.16 presents the denotation of XTIR monotypes and (closed) type schemes. The de-
notation for an A l l type is a product of types ordered by a sorting permutation. Similarly,
a One type is a pair of an index and type, where the index must match the type under
a sorting permutation. (Recall sortingPemns was defined in Figure 4.14.) Notice that we
say "a" rather than "the" sorting permutation here so that we may assign a meaning to
all well-kinded types, including TIP'S and TIC'S containing duplicate types. Notice that
the choice of permutation does not change the denotation of these types, because we shall
show equal types have equal denotations. Furthermore, since all types are ground, there
will always be at least one permutation.

Newtypes are possibly recursive: We assume they are never mutually recursive and all
the recursion is regular. (A model for all XTIR recursive types is possible but would take
us too far afield.) We write lfp to denote the usual least-fixed-point solution (up to
isomorphism) of mixed-variance recursive types using e-p pairs and strict function spaces.
This solution is always well defined (and thus the result pointed) since the denotation of all
other types are pointed, and every recursive cycle for a newtype passes through a One or
A l l constructor. We write unfoldA and foldA for the usual mediating morphisms. That
is, if (newtype A = v) E tdecls and (A : ~1 -> . . . -> K , -> Type) E Aha, then

for any Acit t 7: we have

(For clarity we suppress the parameterisation on A, which is always clear from context.)
The operation 4 removes the bottom element from a domain. We use it so that the
denotation of every type has I as its least element.

The most important aspect of our model is the denotation of type schemes. If a scheme
contains insertion constraints, its denotation is the ideal of all index abstractions which
are well-behaved for all possible solutions to the constraints. This is defined by taking
the intersection over all grounding substitutions 8 for which env(B) k 8 D. Then each
index abstraction must yield a well-typed result given the (meaning of the) bindings in B.
(Again, recall env was defined in Figure 4.14.)

It is easy to see wrong : * never appears within the denotation of a monotype:

Fact 4.8 If Ainit I- r : Type then [wrong : *] $Z [T] .

Furthermore, the denotation of monotypes respects equality:

Fact 4.9 eqQm (rm, urn) implies [rm] = [urn].

The situation is not so simple for type schemes. If C is unsatisfiable,
[forall A' . C => r] = E V, which clearly does contain [wrong : *]. However, provided
the toplevel constraint of a term is satisfiable, all of the constraints arising within it are
also satisfiable. This reasoning is built into the soundness proof, to follow shortly.

Figure 4.18 presents the denotation of ATIR terms. For convenience, we allow q to bind both
term values (members of E V) and index values (members of 1). We write letE x t u in t
as shorthand for bindE or (Ax . 2s).

We now show the translation of every well-typed ATIR term has a denotation within the
denotation of its type. Since no ATIR type contains [wrong : *], this property implies a
well-typed program, when translated, will not encounter a run-time type error.

We say q models I?, written 77 + I?, if dom(q) = dom(I') and for every (x : a) E r,
77 x E BOD.

Theorem 4.10 (Type Soundness) If A I C I r I- t : r t, T, and 8 is grounding and
well-kinded under A, and env(B) k 8 C, and q 8 I? then [T]q++env(B) E 80 r].

Proof See Theorem B.39 for the full theorem statement and proof.

[a], = unitE (int : i)
[(TI,. . - 7 Tn)], = unit^ (prod, : ([T1]77 - . ., UTnBq))

[lnj W TIa = case [W], of {
. 11nd . : a + unit^ (inj : (i, [TI,));
otherwise + unitE (wrong : *))

[Ax . TI, = unit^ (func : Xy . [T],,,,,)
[A(w1,.. . , wn) . T], = unit^ (ifunc, : X(y1,. . . , y,) .

B T I ~ , ~ ~ ~ Y I ~ . . - ~ W ~ + + Y ~
[T U], = let^ v t [T]7

in case v of {
func : f + f [U],;
otherwise + unit^ (wrong : *))

[T (W l , - Wn)], = let^ v + [TI,
in case v of {

ifunc, : f + f ([Wi],, - . - , [WnIa);
otherwise + unitE (wrong : *))

[XI, = 77 x
[A] , = fold^

[A-'1, = unfoldA

Figure 4.17: Denotation of XTIR run-time terms as members of E V (part 1 of 2)

[insert U at W into TI, = letE v t IT],
in case (v, [W],) of {

(prod, : (v;, . . . , v;), iind : i) +
unitE (if 1 5 i 5 n + 1 then v" else wrong : *);

otherwise + unitE (wrong : *))
where v" = : (vi, . . . , v:-~, [U],, vi, . . . , v;)

[let () = U in T], = let^ v t [U],
in case v of {

prodo : 0 + [TI,;
otherwise + unit^ (wrong : *))

[let x y = remove W from U in T], =
letE v 4- [U],
in case (v, [W],) of {

(prod, : (vi, . . . , v;), iind : i) +
if 1 5 i 5 n then [TI ,,,,, I v,,~~ else unit^ (wrong : *);

I 9

otherwise -+ unitE (wrong : *))
where v" = unitE : (vi, . . . , v,!-~, vftl, . . . , v;))

[case U of { Inj W x + TI; otherwise + T2)I, =
letE v t [UIq
in case (v, I[W],) of {

(inj : (j , v'), iind : i) + if i = j then [T1],,,,,t else [T2B,;
otherwise -+ unitE (wrong : *))

[case U of { i + T I ; otherwise + T2)I, =
letE v t [U],
in case v of {

i n t : j + if i = j then else [T2],;
otherwise + unitE (wrong : *))

[let x = U in TI, = UTI,,,*[up,
[letw B in TI, = [TI env(J3,q)

Figure 4.18: Denotation of XTIR run-time terms as members of E V (part 2 of 2)

Chapter 5

Type Inference

This chapter develops a type inference system for XTlR, which we show sound and (with
one caveat) complete with respect to the type checking system given in Chapter 4.

5.1 Inference Rules

The type anference judgement 8 1 C I I' I- t : T v T is defined by the rules of Figure 5.1.
This relation may be read as a type inference algorithm with t and I' as inputs, and 8, C
and T as outputs. Its intended interpretation is:

"Given term t in type context I?, t has the most general type T and constraint
C, assuming the free-variables of I' are bound by 8. Furthermore, t may be
implemented by the run-time term T."

An ancillary judgement for inferring the types of patterns is defined in Figure 5.2.

These rules are, for the most part, mechanically derived from those for type checking given
in Figures 4.8 and 4.9:

Types arbitrarily introduced by a type-checking rule must be replaced by a fresh type
variable (of the same kind) in the corresponding type-inference rule. For example,
the well-kinded types E in rule VAR become the fresh type variables in rule IVAR.

Similarly, types which appear only in the conclusion of a type-checking rule must be
replaced by a fresh type variable in the type-inference rule. For example, T in rule
APP becomes variable b in rule IAPP.

Each primitive constraint tested for entailment by a type-checking rule must instead
be accumulated by the corresponding type-inference rule. For example, the constraint
v eq(vl -> T) in rule APP becomes the constraint (02 T) eq(v -> b) in rule IAPP, which
is included in the result constraint.

The substitution 8 must be threaded linearly throughout the derivation, and applied
to I' in any intermediate derivations. (The proof of completeness will turn out to be
a little easier if the domain of 8 is restricted to fvo(I'), hence the explicit restrictions
in rules ISIMP and 1 ~ 7 .)

There are two exceptions to this transliteration. Firstly, and as usual [19,47], the ILET rule
must generalise the type and constraint for u when inferring the type of l e t x = u in t .

IINT
Id I t r u e I I' I- 2 : I n t v a

b : Type fresh C = (02 D) Sf D' +t (82 T) eqTwB (v -> b)
IAPP

820811 C I I ' I - t u : b v T U

(x / f : f o r a l l a . D => T) E I' . . -

b: fresh C = named (D) [a t, b]
IVAR

Id I C I I? I- x l f : ~ [a I-+ b] v x/ f names(C)

8 1 C I I? t-1 abs : T v T[e]
IABS

0 1 C I I- (abs) : T v T[undefined]

1 D I I' I-1 absl : T cs T[e]
82 I D' I O1 r I- (a b ~ ~ , . . . , a b s ~ + ~) : T I v U

C = (02 D) +t D' +I- (82 T) eqType T'
IDISC

O 2 0 Q 1 I C I I? I- i a b ~ ~ , . . . , a b s , + ~ 3 : r ' v let z = U in T [z]

z ~ f v (t) e l l D ~ ~ ~ F ~ : V C S u
gen(D1 101 I' 1 v) = (0 2 1 A 1 0 3)

o = f o r a l l A . anon(D3) => v
021 D ~ ~ (~ ~ ~) , x : u I - ~ : T v T

saturate((82 Dl) +t D4) # 0 C = (82 0 2) i+ 0 4
ILET

1 9 ~ 0 8 ~ I C I r I - l e t x = u i n t : r
c, let x = Xnames(D3) . U in T

Vv0(91 I') U fvQ(7) I C') D* (92 I C I B)
ISIMP

(O2 o @I rfve (r) I C I r k t : O 2 r v I e t w B i n T

Figure 5.1: Type inference and translation for XTIR terms

81 C I r k , t : r ~) T [.]
1 ~ 2

8 I C I I' \i . t : Int -> T

c__) Ax . case x of {i + T[. x] ; otherwise + x)

(newtype A = v') E tdecls
(A : I E ~ -> . . . -> K , -> Type) E Ajnjt -

b : K. fresh 8 (D I I' \p . t : (7' -> T) v T[.]
C = D +t no~m(v' bl . . . bn) eqTna T'

I P ~
6 I c I r I-,+~ \ (A P) . t: A bl . . . b, -> 7

- A x . let y = A-I x in T[Ay . (A y)] y

8 I D 1 l7 kn+l \p . t : (v -> T) L) T[.]
b : Row fresh w fresh
C = D $ + w : v i n s b

1P4

6 1 C 1 I? \(Inj p) . t : One (v # b) -> T

v Ax . case x of {Inj W y + T[Xy . (Inj W y)] y ;
otherwise + x)

8 1 D I I? \p . \q . t : (vl -> v2 -> T) L) Ti.]
b : Row fresh w fresh

C = D -I+ All b eqTn, v2 # w : vl ins b
1 ~ 5

8 1 C I r \ (p && q) . t : All (v l # b) -> T

c, Ax . let y z = remove W from x
in T[Ay . Az . (insert y a t W into z)] y z

8) C I r l - , t : r ~) T[.]
I P ~

8 1 C I I? k,+l \Triv . t : All Empty -> T

v Ax . let () = x in T[. x]

b :Type fresh 8 1 C I r , x : b k, t : T v T[.]
IP7

8\b I C I I? kn+1 \X . t : ((6 b) -> 7) v AX . T[. X]

Figure 5.2: Type inference and translation for X T I R patterns

notEqual(C I- T,V) = V8 E mgusoPq,,(Id I- T eqv) .
 satisfied (8 inss (C))

notIn(C I- T, (#)n D 1) = Vi . notEqual(C T1'Ui)
l = Empty

V ~ (T ' Z ~ Z S (#) ~ ~ ~ ') E i n s s (c) .
Cmpopaque (T, T') = eq A 1 = 1'

I I

Figure 5.3: Definition of notIn

To this end we define the generalisation function, gen, as:

gen(C l r 17) =(Dl 1 A 1 0 2)

where A = (fv0(C) Ufv0(7)) \ ~ z I Q (~)
and Dl = { (w : c) E C I &(c) fl dom(A) = 0 A inheritable(c))
and Dz = {(w : c) E C I fvfl(c) n dom(A) # 0 v -.inheritable(c))

Here we intend the resulting generalised type scheme to be f o r a l l A . D2 => T, and the
constraint Dl to be "held over" into the current constraint context. Notice that only non-
inheritable constraints with free variables contained in h (r) may be lifted outside the
scope of the universal quantification over A. If XTIR were to be extended with implicit
parameters [57], this restriction would ensure any implicit parameters in u are captured
by u's generalised type scheme.

The second exception is the inclusion of the simplification rule ISIMP. This rule may be
used to simplify the current constraint context at arbitrary points of the derivation. Hence
the type inference rules are not fully syntax directed. In a practical implementation type
inference should be syntax directed, and so the ISIMP rule should either be applied after each
derivation step, or just before generalisation. However, unlike in the HM(X) framework
[79], our development shall not assume simplification occurs at any particular point in the
derivation-not even before generalisation! Our approach to simplification is instead based
on Jones' refinement of OML to handle context improvement and simplification [48].

5.2 Constraint Simplification

The constraint simplifier is presented in Figures 5.4 and 5.5. Rules s l - ~ 1 8 , of the form
(Z 1 C) D (~ I C' I B), allow a constraint C to be simplified by a single step into constraint C'
and a residual substitution 8. One may think of 8 as a particularly efficient representation
for a set of equality constraints of the form a eq T. The bindings B describe how the
witnesses of C may be constructed from those of C'. (We shall explain the purpose of a,
a set of type variables, shortly.) If C is unsatisfiable it may be rewritten to the canonical
unsatisfiable constraint f a l se , thus signalling a type error.

Rules sl-s4 implement conventional unification over finite Herbrand terms.

Rules s5-s8 extend unification to rows. Rules s5 and s6 reject rows of obviously incom-
patible arities. The remaining rules are guided by an ancillary function, notIn, defined in
Figure 5.3.

Simple Unification

(El c , ~ e q , v) ~ (I d l C , v e q K ~ 1 -)

(5 I C, b eq, 7) D ([b I-+ 71 1 C[b I+ 71 1 -) when b 4 f% (7)

' -> Type (51 C , F T;ieqTyp, F E) D (Id I C , r eq,,v I a) when F : K; -> ... -> K ,

(a I C, F ? eqTyp, G U) D (Id I f a l s e I a) when F # G

Row Unification

(h I C, (#Irn 7 b eq,,, (#In E Empty) D (Id I f a l s e I .) when m > n

(Z 1 C, (#Irn '5 Empty eq,,, (#In U Empty) D (Id I f a l s e I .) when m # n

(a 1 C, (#Irn T;i 1 eqRov (#In 1') D (Id I f a l s e 1 a)

when notIn(C t- r;, (#In 0 1')

(z I C, (#Irn T;i 1 eq,,, (#In E 1')
-

D (Id I C,T; eqTyp, Vj, (#),-I r \ ; 1 eaoW (#)n-l G\j 1' I .)
when notIn(C t- r;, (#I ,-I 5b 1') and cmp~,,,, (T;, Vj) = eq/unk

I
Figure 5.4: Simplification of XTlR constraints (part 1 of 2)

We intend notIn(C I- r, p) to be true if C entails that type r cannot appear within row p.
For example, if T is not unifiable with any member of p, and p is closed, notIn yields true:

notIn(true I- In t , Bool # Char # Empty) = tt

notIn(true I- (a , b), Bool # Char # Empty) = tt

If T is unifiable with members of p, and p is closed, notIn yields true if each unification
would contradict a constraint in C:

notIn(true I- In t , Bool # I n t # Empty) = ff

notIn(a i n s I n t # Empty I- (a , b) , (In t , Boo11 # I n t Empty) = tt

Finally, when p is open, notIn is true only when the conditions above hold and C contains
a constraint preventing r from appearing in p's tail:

notIn(true I- In t , Bool # Char # a) = ff

notIn(1nt i n s a I- In t , Bool # Char # a) = tt

The notIn function is exploited by rules s7 and ~ 8 . Rule s7 signals failure if a type within
p cannot appear anywhere within p'. Rule s8 allows a type within p to be matched against
a type within p', provided there are no other possible matchings involving one of this pair
of types.

Membership

(ZI C , w : r i n ~ p , w ' : r ' i n s ~) ~ (I d ~ C , w : r i n s p I w ' = w) S10
when C V o p q u e (7 7 7 ') = eq and cm~opque (~ 7 P') = eq

(X I C , w : r i n s ~ m p t y) D (I d I C I w =One) S l l

(E l C , w : r i n s (#) n B I) D (I d I C , w l : T i n s Bji I w = w') s12
when w' fresh and c ~ p o p q u e (7, v;) = It

(Z I C , w : r i n s (#) , B 1) D (I d I C , w' : r i n s (#In-1 B\, I I w = Inc w') ~ 1 3
when w' fresh and cmpOpque(r, v,) = gt

(E I C , w : r i n s (#In-1 B\, I) D (I d I C , w' : r i n s (# I n B I I w = w') s14
when W' fresh and cmpopque (7, vi) = It

(E (C , w : 7 i n s (#I,-1 B\i I) D (I d I C , w' : T i n s (# I , B I I w = Dec w') ~ 1 5
when w' fresh and cmpOpque (7, u;) = gt

(E l C , w : r i n s p) ~ (I d I f a l s e I -) whenis In(r ,p) s16

Projection

(ZI C + t D) ~ (e 1 C I B) s17
when fvO(D) n fvO(C) = 0, fvO(D) r l Zi = 0, 8 E saturate(D)

and W' E saturate(D) . t r u e be 8' D L) B
(ii 1 C+t D) D (I d 1 f a l s e 1 .) S18

when fvQ(C) n fvO(D) = 0, h (D) n ii = 0 , and saturate(D) = 0

SDONE
(E I C) D* (Id I C I .)

(z I c) D (8 1 CN I B) (ii u UaEEf .o (e a) 1 C") D* (8' I C' I B ')
SSTEP

(hi C)D* (8 ' 08 I C' I B ' i - k B)

Figure 5.5: Simplification of XTIR constraints (part 2 of 2)

The reader will notice rule s9 is missing from Figures 5.4 and 5.5. We shall have more to
say on this in Section 5.4.

Rules s10-s15 simplify insertion constraints, which may involve binding a witness variable
of C. They are an immediate consequence of the entailment rules MREF, MEMPTY, MEXP,
MINC, MCONT and MDEC respectively. Rule s16 signals failure when a type obviously
cannot be inserted into a row.

Finally, rules s17 and s18 implement a weak form of constraint projection [79]. Projection
is a more aggressive form of simplification for constraints which are known to be self
contained. These rules are the only ones to make use of Zi, a set of type variables, given
as input to the simplifier. We intend a to contain all those free variables of C which are

"visible" outside of C; that is, which may be further constrained as type inference proceeds.
Indeed, the ISIMP rule takes E to be fvO(O1 I?) U fvO(.r).

These two rules apply only when the current constraint may be partitioned into two con-
straints, C and D, such that no type variable is shared between them, and D contains no
"visible" type variables. In this case, the simplifier is free to choose an arbatrary substitu-
tion, 8, s.t. D is satisfied, provided that any witnesses for D do not depend on 8. In other
words, the simplifier may do what it wishes with D provided any choices it makes cannot
be observed. In practice, we cannot enumerate all possible substitutions, so instead try
only those in satz~mte (D).

Rule s18 signals failure if D is unsatisfiable. Notice that this rule could be applied for
arbitrary D, regardless of its free variables, but attempting to do so would be prohibitively
expensive. Instead, this rule catches the case that satz~rate(D) in rule ~ 1 7 yields the empty
set.

For example, if c and d are not visible, then the constraint

(w : a ins b), (c # d # Empty) eq (In t # Boo1 # Empty)

may be simplified by eliminating the equality constraint. Without rule ~ 1 7 , this equality '

constraint would propagate all the way to the top level of the program and cause an error.
By contrast, the constraint

(w : a i n s b), (w' : c ins (d # I n t # Empty))

cannot be further simplified, since there is no single binding for w' which is consistent with
all bindings for c and d. In this case, the program is inherently ambiguous, and an error
may be reported.

Roughly speaking, the judgement ('7i; (C) D* (8 1 C' I B') takes the transitive closure of
(E i; I) D (8 (C' 1 B), modulo the need to recalculate 7 i as type variables become bound by
unification steps.

There is a considerable gap between the rules as presented here and a simplification algo-
hthrn:

(i) This formulation of the simplifier is non-deterministic. More than one rule may
be appropriate for a given constraint, and there is no guarantee of confluence since
different choices may yield different final constraints.

However, this non-determinism affords the implementor the greatest flexibility in
adopting heuristics to guide the simplification process, and avoids much extraneous
detail inessential to the correctness of type inference.

(ii) There is no metric m on constraints such that (. . . I C) D* (. . . I C' I . . .) implies
m(C1) < m(C). To see why, notice rules s12 and ~ 1 4 (or s13 and s15) allow a
member of a row to be removed and then reinserted, thus making no progress in
simplifying C.

However, this possible non-termination is easily avoided by merging rules ~ 1 0 - ~ 1 5
into a single composite rule which considers all members of an insertion constraint
simultaneously. But again, this composite approach is more difficult to reason with.

(iii) The simplifier does not necessarily yield constraints in a szmplijied form. As in
HM(X) [79], we say C is in simplified form if C te T eq v implies t rue te 7 eq v
for all T and v. Unfortunately, requiring the simplifier to yield only constraints in
simplified form would be prohibitively expensive, since it would require a brute-force
enumeration of all most-general unifiers.

For example, the constraint

(a # b) eq (1nt # Bool # Fhpty), (a # c) eq (1nt # Char # Fhpty)

has simplified form t r u e with residual substitution

[a t, In t , b t, Bool # Empty, c t, Char # Empty]

but this can be determined only by looking at both equality constraints simultane-
ously. However, for simplicity and practicality, none of the simplifier rules look at
more than one equality constraint at a time.

Not being able to assume all constraints are in simplified form shall complicate the
proof of completeness in the sequel, but not intractably so.

The following lemma shows that the simplifier preserves the satisfiability of constraints,
binds witnesses consistently with entailment, and never over-commits to a solution by
binding a type variable which should remain free.

Lemma 5.1 If (E I Cl) D* (81 1 C2 I B1) then

(ii) 81 Cl Fe C2 L) B3; and

(iii) if % + 63 Cl then there exists a O4 set.

(iii'l) '3 rmfvB(c2) -0 ('4 o '1) lafvB(&)

(iii.2) 72 i= 04 o Ol Cl

(iii.3) env(B3, m) + 84 C2 (where B3 is from (ii) above)

Proof See Lemma C.5 for the precise theorem statement and its proof. Notice the
restriction of the domain of 8' in (iii.1) is essential lest rule ~ 1 7 break the theorem. 0

5.3 Correctness

It is straightforward to show soundness of type inference with respect to type checking.

Theorem 5.2 (Soundness of Inference) If 6 1 C) I? t- t : T and saturate(C) # 8 then
there exists a A s.t. A I C 1 6 I? F t : T .

Proof See Theorem C.10 for the full theorem statement and proof. 0

We now consider completeness of inference with respect to type checking. In the previous
section we saw the difficulty of implementing a simplifier guaranteed to yield constraints in
simplified form. Furthermore, in Section 4.4.4, we saw that the proof-theoretic entailment
relation F e is incomplete with respect to the model-theoretic relation IFe. Both of these
aspects shall complicate both the notion of completeness, and its proof.

The first step is to define an instantiation ordering, 5 , on type schemes in context of the
form (D I a) . Here D is a global constraint which does not contain any of the quantified
variables of a. We call the constraint within a a local constraint. The pair (D I a) is
typically the result of generalisation; indeed we define

genscheme(C I r 1 T) = (Dl I f o r a l l A . anon(D2) => T)
where (Dl I A I D2) = gen(C I I' 1 T)

Roughly, we intend (Dl I al) 3 (D2 I a2) when a1 is an instance of 02, subject to the global
constraints Dl and D2. (Note that our orientation of 5 follows that of OML [48], but is
the transpose of the ordering in HM(X) [79].)

Jones' approach [48] is to relate schemes by their ground instances:

(D ~ I f o r a l l Al . Cl => 71) d J (D2 I f o r a l l A2 . C2 => 72)
V k el : Al + A,nit .

t r u e Fe Dl -I+ (81 Cl) =+
3 F 8 2 : A2 + Ainu.

(true Fe D2 +t (82 C2)
A cmp0(81 ~ 1 ~ 8 2 72) = eq)

(Actually, Jones generalises this definition slightly by replacing t r u e with an arbitrary but
fixed ground constraint.)

Though conceptually simple, and pleasingly easy to reason with, this instantiation ordering
is too coarse for XTIR constraints. For example

(a eq In t I f o ra l1 b . b eq a => b) d J (a eq Boo1 I f o r a l l b . b eq a => b)

holds vacuously. Hence a proof of completeness built upon 5J would be too weak.

The approach in HM(X) [79] is more promising, as it takes account of type variables shared
between global and local constraints. It is defined as:

(This definition assumes, without loss of generality, that A' contains the free variable of
Dl and D2, and that A', Al, and A2 are distinct.)

Now we find

(a eq I n t I f o r a l l b . b eqa => b) $ H (a eqBool I f o r a l l b . b eqa => b)

Unfortunately, even though

(a eq I n t I f o ra l1 . . t r u e => a) sH (a eq I n t I f o r a l l c . I n t eq c => c)

we find

(t rue I f o r a l l b . (a , b) eq (I n t , Char) => a) jH (a eq I n t I f o r a l l c . I n t eq c => C)

Thus , + H - is sensitive to whether constraints, in this case (a , b) eq (I n t , Char), are
simplified before generalisation. Since we have already stated we cannot make any such
assumptions, we conclude jH is too fine a relation for XTIR.

Thankfully, there is a simple way out of this dilemma. Roughly speaking (the precise
definition must also take account of constraint witnesses and inheritable constraints), our
ordering is

(Dl I f o r a l l A1 . Cl => 71) 5 (D2 I f o r a l l A2 . C2 => 72)
satisfiable(D1 i-t Cl)

~ 3 k t l : A ~ + A ' * A l .
ol i-t cl I-" D~ + (6 C2) +I- 71 eqe 72

Now we find

(t rue I f o r a l l b . (a , b) eq (I n t , Char) => a) 5 (a eq I n t) f o r a l l c . I n t eqc => c)

By inspection, j is not sensitive to how a constraint is split into a global and local com-
ponent by gen. Thus, in XTIR, constraint splitting is merely an opt~misation, and is not
required for completeness.

With the notion of instantiation ordering fixed, we now turn to formalising the statement
of completeness. Roughly speaking, we require every valid typing for a term t to be an
instance of every valid inferred type of t. More formally, and as a first approximation, we
require that if

A / c l l e l r k t : ~ l

is derivable in the type-checking system, then there exists (at least one) derivation

in the type-inference system, and there exists a 83, such that

and
el =g e3 0 e2

(Furthermore, these properties must hold for every such type-inference derivation.) How-
ever this statement is too strong for XTIR.

To see the problem, consider the type checking derivation:

. . . k f : I n t - > I n t ... k x : a a e q l n t k e I n t - > I n t e q a - > a
APP

a : T y p e) a e q I n t I f : I n t - > I n t , x : a k f x : a

One matching type inference derivation is:

. . . I- f : In t -> In t . . . I- x : a b : Type fresh
IAPP

I d I I n t - > I n t e q a - > b I f : I n t - > I n t , x : a l - f x : b

To connect these derivations, we need only show that

genscheme(a eq In t I f : In t -> In t , x : a I a) =
(a eq I n t I f o ra l1 . . t rue => a)

and
genscheme(1nt -> I n t eq a -> b I f : In t -> In t , x : a 1 b) =

(true I f o r a l l b . In t -> In t eq a -> b => b)

are related under 5. So far all is well.

However, another possible type inference derivation applies rule ISIMP to the above con-
clusion to yield:

... I - f x : b ({a,b)IInt->Inteqa->b)~*([ac,Int,b~)Int]ItrueI.)
ISIMP

[a* Int] I t rue 1 f : In t -> I n t , x : a l - f x : I n t

Again, we must show that

(a eq In t I f o r a l l - . t rue => a)

and
genscheme(true I f : I n t -> Int , x : a I 1nt) =

(true I f o r a l l . . t rue => In t)

are related under 5. But we must also show (taking = Id) that there exists a O3 such
that

Id 83 o [a t, Int]

which is clearly impossible.

The problem is that the simplifier may bind free type variables within r. Thankfully, we
may show this happens only when such type variables are similarly constrained within the
type-checking derivation. In the example above, even though In t was substituted for a,
this substitution was entailed by the constraint a eq Int .

Thus, the refined (but still only approximatesee below) statement of completeness weak-
ens the requirement

e, =, e3 e2

One final subtlety is that because Fe is incomplete, we must show completeness using its
model-theoretic counterpart

The remainder of this section develops these ideas formally. Unlike the other theorems in
this dissertation, we shall elide the actual proof of completeness. This is partly because of

time constraints, and partly because we plan to redo the proofs using a variation on the
definitions they are built upon (see Section 5.4).

We first define
Env(C) = {q 1 V(w : c) E C . q w E Z)

and similarly
Env(I') = {q lV(x: a) E r . q x E E V)

Let A' I- D1/D2 constraint, A' +I- A1 I- Cl constraint, A' i-t- A2 I- C2 constraint, A' ft Al I-
71 : Type, and A' i-t- A2 t- 7-2 : Type. Furthermore, let dom(Al) n dom(A2) = 0. Then we
define the expanded instantiation ordering as

We may extend the relation above to type contexts as follows. We let 4 range over -
finite maps from variables to triples (B I E I w'). Let A' I- rl/r2 context and
A' I- D1/D2 constraint. Then we define the type context ordem'ng as

I- (Dl I I'l) 5 (D2 I r2) - 4 -
dom(rl) = dona(?? 2)

A ((s : f o r a l l Al . Cl => 71) E I'l A (x : f o r a l l A2 . C2 => 72) E I'2) =j

(q ! ~ x = (~ l T i i l ?)
A I- (Dl 1 A1 1 ci 1 71) 5 (02 1 A2 1 Ci I 72) B
A Ci = named(Cl) s.t. names(Ci) = Tii
A Ci = named(C2) s.t. names(Ci) = 7)

Let A' I- a scheme, where a = f o r a l l A . C => 7. Let A' I- D constraint. Then we say
(D I a) is unambiguous if

VA' I- D' constraint, I- 61 : A + A', I- 02 : A + A', I- 0' : A' -+ Ainit .
(D' IFe D -I+ (61 C) v Bl

A D'IFe D +t (62 C) B2
A D' IFe 61 T eq02 T

A q 6' Dl) *
env(Bl,q) = env(B2,q)

1 =7 1

[int : i] =Int [int : j] i = j
[func: f] = 7 - > v [func: g] v =T v ' e f v ="g V'

[prod, : (v,, . . . , vn)1 = 811 (O)= [prod,, : (vi, . . . , TJ;,)] n = n' A V i . V - I -+" - 4
[inj : (i, v)] = One ((*)" Empty) [inj : (j , vt)] - a = j v zT1. i vt

where r E sortingPerms (TI, . . . , 7,)

[ifunc, : f] = forall A . C = > T [ifuncn, : g] ej

n = n ' A (I - 8 : A + A h i t A q + e C + f (77~1, . . . , q ~ n) = ~ ~ g (7 7 ~ 1 , . - - , 7 7 ~ n))

1 I

Figure 5.6: The logical relation = on E V x E V indexed by XTXR monotypes of kind Type

Let (Dl I A, I fi 1 71) 5 (t rue I A2 I Cz 1 72) v B, and let q E Env(D,), names(C1) =
-
w , and names(C2) = 2. Then we define

coerce(B I T I 2) q = Xu . let^ v' t v
in case v' of {

ifunc,~ : f + unitE (ifunc : g);
where

= ~ (Y I , . . - , ~ n) - f ([wilr~, . - . , I[w;IBq>
7' = env(B, 'Vrnornes(~l) * [WI Y I , . - Wn * ~n])

otherwise + unitE (wrong : *))

Notice that if q E Env(D) then coerce(B) q E E V + E V.

Let I- (Dl (r l) 5 (true I r 2) L) 4. Then we extend coerce to 4 as follows:

Notice that if 7 E Env(D) then coerce(4) q E Env(r2) + Env(I'1).

Finally, Figure 5.6 defines a logical relation on E V x E V indexed by types T such that
Ahn I- T : Type.

Theorem 5.3 (Completeness of Inference) Let Al, A2, rl, r2, Cl, t, TI, TI and 4
be s.t.

(a) A1 I- Cl constraint and Al I- rl context

(b) satisfiable(Cl)

(d) Az t- rz context

(e) A1 LJ A2 I-- 01 subst, dom(e1) E fv0(r2), W I (~ I) C dom(A1)

(f) t- (inhs(C1) 1 r l) 5 (true 1 61 r2) v 4

Then there exists e2, C2, 72 and T2 s.t.

(i) $2 1 C2 1 r2 t- t : 72 L) T2

and for every 02, C2, 72 and T2, s.t. (i) holds, there exists a A3, 83, and B1 s.t.

(ii) (Al U A,) +t- A3 t- O3 subst, dom(03) C fv0(02 rz), mg(03) E dom(Al)

(iii) If gen(Cl I I'l 1 TI) = (Dl 1 A4 1 02) and gen(C2 1 02 r2 1 72) = (D3 1 A5 1 0 4) then

(iv) Va E fi@(r2) . inhs(C1) IFe O3 0 02 a eqO1 a

(v) Furthermore, let 84, q, and B2 be s.t.

(g) A1 I- O4 S U ~ S ~

(h) A;,,, t- 040 O3 o O2 r2 context

(i) hinit I- O4 Cl constraint

(j) qk040O30O2r2

(k) env(B2) I= 04 Cl

Then
-(e4 71)

I[Tll(coerce(4) env(Bz) 7)-ltenv(Bz) - [T~Bq-ttenv(~1 , e n v (~ z))

Proof By laborious induction on (c), and by showing rule ISIMP preserves properties
(ii)-(v) of its hypothesis inference judgement. The theorem could be slightly simplified
by separating completeness (properties (i)-(iv)) and coherence (property (v)). However,
this separation would duplicate the exceedingly tedious setup of (a)-(f). Hence it seems
simpler to merge completeness and coherence into a single Gbersatz.

As a corollary to Theorem 5.3 we may show that if t has an unambiguous principal type,
then all possible type-checking derivations of t yield run-time terms which are related by
the logical relation of Figure 5.6.

Furthermore, by Theorem 5.2 and Theorem 5.3 we may show all the principal types of a
term are equivalent under the instantiation ordering.

5.4 Row Extension

Recall from Section 2.4 that another way of simplifying a row equality constraint p eqp' is
to allow a type in p' to extend the (open) tail of p. This simplification is valid only when
the chosen type within p' cannot be matched with any type within p. Formally, we may
define the rule:

(E 1 C, (#I, 7 b eq,,, (#In TJ I)
D ([b I+ vj # b'] I (C, (#Im 7 b' eq,,, ;iT\j I) [b I-+ ~ v j # b'] I .) ~9
when b 6 fvO(vj), b' : Row fresh and notIn(C I- vj, (#) , ? I2mpty)

Notice that the result constraint contains a fresh type variable, b'.

For example, this rule would rewrite (in two steps)

(In t # a) eq (Bool # b)

to t rue , with the residual substitution

[a I+ Bool # c, b I-+ I n t # c]

where c is fresh.

Unfortunately, though rule s9 seems both desirable (it reduces the size of constraints) and
reasonable (it preserves the ground instances of constraints), it is not compatible with our
instantiation ordering.

For example, consider the term:

C \ (I n j x) . 1 - x;
\ (I n j y) . i f y then 0 e l s e 1 3

This term may be assigned the type scheme:

a1 = f o r a l l (a : Row) (b : Row) .
I n t ins a, Bool ins b, (In t # a) eq (Bool # b) =>

One (In t # a) -> In t

Were the simplifier to be augmented by rule s9, this term could also be assigned the more
intuitive scheme:

a2 = f o r a l l (c : Row) .
I n t ins c, Bool ins c =>

One (In t # Bool # c) -> I n t

However, though we have a2 5 al, we find that a1 $ 02. In particular, there is no T such
that:

I n t ins a, Bool ins b, (In t # a) eq (Bool # b) ke
[c I+ T] (In t ins c, Bool ins c) +I-
(One (In t # a) -> I n t) eq [c t+ ~] (0 n e (I n t # Bool # c) -> I n t)

Hence, rule s9 does not preserve the invariant necessary for the proof of completeness in
Theorem 5.3. For this reason we have removed rule s9 from Figure 5.4. However, the real
problem is that our invariant is too strong.

The solution appears to be to generalise the instantiation ordering of Section 5.1 by re-
placing the existentially quantified substitution, 8, on the left-hand side of IFe, with an
existentially quantified constraint, C3, on the right-hand side of IFe. Of course, C3 cannot
be any constraint: We require that C3 does not LLdisturb" (change the satisfying substitu-
tions of) the constraint Dl +t Cl.

Returning to the example we find that a1 5 a:! under this generalised instantiation order-
ing, because:

I n t ins a, Bool ins b, (In t # a) eq (Bool # b),
a eq (Bool # c) ke

I n t ins c, Bool ins c,
(One (I n t # a) -> In t) eq (One (In t # Bool # c) -> I n t)

Notice how the introduced constraint, a eq (Boo1 # c) , allows the type variables a and c
to be related without disturbing the constraint:

I n t ins a, Bool ins b, (I n t # a) eq (Bool # b)

Rule s9 is just one of a number of desirable simplification rules not included in Figures 5.4
and 5.5. For example, the entailment rules MPROJL and MPROJR, sketched in Section 4.4.4,
induce two corresponding simplification rules. It is open whether the revised instantiation
ordering is also compatible with rules.

At the time of writing we are re-running the proofs of this Chapter under the revised
instantiation ordering, and we expect to include these revisions in a journal version of this
part of the dissertation. The programme to replace a substitution by a constraint may be
applied profitably in a number of other places within the development of XTIR, including
the properties of entailment, and the correctness of the simplifier. A similar programme
has been carried out by Sulzmann [loll in the context of HM(X) [79] (though, curiously,
the instantiation ordering remains unchanged in his revision).

Chapter 6

Conclusions to Part I

6.1 Related Work

Record Calculi

Wand [I121 first introduced rows to encode record subtyping (and, in turn, inheritance)
using parametric polymorphism, though the system did not enjoy completeness of type in-
ference. Rkmy [94] introduced label presence and absence flags in types, and demonstrated
completeness of inference. Variations allowing record concatenation 135, 1131 rather than
just record extension were also proposed. R4my [93] has demonstrated that concatenation
may often be encoded using just extension.

Ohori [80] and, independently, Jones [47] developed polymorphic record and variant calculi,
and a compilation method which represented records as natural-number indexed vectors.
Ohori's system dealt only with closed rows; Jones' system allowed extensible rows. Our
system is a strict generalisation of Gaster and Jones' system of polymorphic extensible
records [31]. The latter exploits qualified types and the dictionary translation [47] as a
compilation method.

Parallel to the parametric polymorphism approach followed in this work are record calculi
based on subtyping [16].

Constrained Polymorphism

Odersky et al. have developed HM(X) 1791 as a framework for constraint-based type infer-
ence. It adds to Jones' qualified types the notion of constraint projection, and guarantees
any constraint domain X enjoying a principal constraint property can be lifted to a type-
inference system enjoying completeness of type inference. Principle constraints are defined
relative to a set S of constraints in solved form.

Since both Ohori's and Gaster and Jones' record calculi are instances of HM(X), we initially
hoped XTIR would be likewise. Unfortunately, the definition of S for XTIR constraints appears
to be as complicated as the definition of the simplifier itself, and hence not particularly
theoretically pleasing. Furthermore, the statement of completeness for HM(X) when S is
smaller than all satisfiable constraints (as it would have to be for XTIR) further requires
that S contain only those constraints in simplified form. As mentioned in Section 5.2, our
simplifier is designed not to always yield constraints in this form as to do so would require a
brute-force enumeration of all most-general unifiers, with concomitant exponential growth
in both time and space.

Sulzmann [loll has since generalised the HM(X) framework to address some of these
limitations. (The work of this thesis has been done independently of his work on the
revised system.) However, there are four aspects of Sulzmann7s revised HM(X) which
prevent its use for XTIR. Firstly, his development still depends critically on existential
constraints, which, as mentioned in Section 2.9, we find quite technically challenging for
XTIR constraints. Secondly, though his system does not require constraints to be normalised
at each step of type inference, his constraint simplification rule still builds upon the notion
of solved form, which for XTIR is as problematic as in the original HM(X). Thirdly, his
presentation is in "term-free" form, meaning the inferred type of a term is represented
implicitly within the current constraint context rather than explicitly as a type. This
notion is unnecessarily complicated for XTIR. Finally, and in common with the original
HM(X), no support is provided for constraint witnesses, which we have seen to be essential
to the semantics and implementation of XTIR.
Our technical development is instead based upon Jones' more general framework for sim-
plifying and improving qualified types 1481. In Jones' system, constraints may be simplified
arbitrarily, and his proofs do not rely on constraints being in any solved form. Unfortu-
nately, Jones' instantiation ordering is too coarse for XTIR constraints which contain "global"
type variables (type variables bound at an outer scope). Hence, we have been forced to
reprove most of the correctness of our system from scratch.

Set Constraints

Set constraints are popular in program analysis [5, 41 and in constraint logic programming
[loo]. The constraint domain of XTXR resembles that of simple set-constraints with primitive
subset constraints and set union. However, set-constraints have an implicit idempotency
law:

a U {b, b) = a U { b)

whereas in XTIR this property is enforced by an explicit insertion constraint:

b ins a

Using this explicit form leads directly to our implementation method.

Despite this difference, it may still be possible to exploit some of the implementation
techniques developed for set constraints if necessary.

Intersection Types

Type-indexed products bear a superficial resemblance to intersection types [89, 951. (And
coproducts to union types [7].) However, they differ fundamentally in their meaning, as XTIR
products are not subject to any coherency condition with respect to a notion of subtyping.

For example, the intersection type

Int -> Int -> Int & R e a l -> R e a l -> R e a l

contains only those binary functions which behave coherently on integer or real arguments

with respect to the subtyping relation

Int < Real

Thus it includes the addition function, but excludes the function which adds integer argu-
ments, but subtracts real arguments.

A first approximation to this type is the XTtR scheme

fora l l a b .
a#beqInt#Real#Empty=>

a -> a -> a

Though it indeed has the two required instances, this type is too small since it contains
only those functions which do not depend on whether its arguments are integers or reals.
That is, the scheme above is simply an instance of

The closest XTtR comes to the intersection type above is the scheme

f oral l a b .
a ins b,
a # b eqInt #Real #Empty =>

a -> a -> a

However, this scheme is now too large. In addition to the desired addition function

(\(x && -) . x) (intPlus && realplus && Triv)

(see Section 3.5), it also includes the mixed addition and subtraction function

(\(x && -) . x) (intPlus && realMinus %& Triv)

This should come as no surprise: The function above is implemented by a three-argument
function, the first of which effectively serves to distinguish between the integer and real
functions. Hence, XTIR type-indexed-products are just that: type-indexed, and hence not
necessarily coherent.

XML

As mentioned in Chapter 1, XDuce [40] is another functional language with similar goals
to XMX, but built upon subtyping polymorphism instead of parametric polymorphism,
and using regular expressions as types instead of type-indexed rows. Regular-expression
language containment is used to induce the subtyping relation, and regular expressions
are not required to be 1-unambiguous. At the time of writing XDuce does not support
parametric polymorphism or higher-order functions.

Other proposals for XMX-like languages build on regular-tree transducers [68] or Haskell
[I l l] .

6.2 Conclusions and Future Work

Thanks to its notion of type-indexed rows, and its expressive constraint domain of insertion
and equality constraints, XTIR can naturally encode many programming idioms, including
record calculi, anonymous sums and products, and closed-world style overloading. It can
be straightforwardly compiled into an untyped run-time language in which type-indexing is
reduced to conventional natural-number indexing. These indices are generated and passed
at run-time as implicit arguments to let-bound expressions, exactly as occurs in some
existing record calculi [31, 801.

For the programs we considered, the constraints were compact and reasonably intuitive.
We are working on an implementation of XTIR within the larger language XMX [65]. At
the time of writing, our XMX compiler can simplify constraints but not yet infer them.
We hope to demonstrate the feasibility of XTIR on larger programs once this compiler is
complete.

In common with most constraint-based type systems, XTIR constraints could conceivably
grow to a size beyond the understanding of a programmer, and beyond the capability of
the type inference system to solve. In Section 4.4 we discussed why we do not expect this
to be a problem, however our hypothesis remains unverified until we can test it within
XMX. One possibility for aiding the programmer in understand large constraint sets is to
use "backwards" ,&reduction to replace constraints by programmer-declared abbreviations
wherever possible.

Since entailment is incomplete, it is possible that a programmer-supplied type scheme may
be an instance of an inferred scheme, but the system is unable to prove it. As discussed
in Section 4.4.4, this may be partially redressed by adding projection rules to the brn
judgement to exploit the lexicographic ordering of types. However, we would like to gain
some experience with the system before deciding if these potentially more expensive rules
are justified.

On the theoretical side, we are currently reworking the development of simplifier correctness
and completeness of type inference to use the revised instantiation ordering sketched in
Section 5.4. We hope this revised development will not only be flexible enough to support
the introduction of new constraint simplification rules, but also simplify the statement of
these theorems and their proofs. It should come as no surprise to the reader that the
ugliness in the statement of Theorem 5.3 also extends to its proof!

We also hope to complete a complexity analysis of constraint satisfiability, entailment and
type inference as a whole. The last is likely to be above EXP. However, as complexity
class seems to be a poor indicator of the typical performance of type inference systems,
our priority rests with completing the implementation.

Part I1

Dynamically-Typed Staged
Computation

Abstract
This part explores a weak form of program reflection called staged computation.
It is weak in the sense that code may be constructed at run-time, but not decon-
structed (e.g., by pattern matching). However, in exchange for this weakness the
system is quite simple, requiring only three additional primitives to defer, splice
and run code.

Two distinct forms of code are supported. Statically typed code is guaranteed at
compile-time to be well typed at run-time, and hence is the most reliable method
of generating code at run-time. However, since the type of generated code may
sometimes depend on run-time values in a way that is difficult to express statically,
the system also allows dynamically typed code to be generated. In contrast to
statically typed code, dynamically typed code is checked for well-typing as late as
possible at run-time; that is, just before it is executed.

We introduce the system using some small examples, and then illustrate its great
flexibility by some larger worked examples. We present the formal type checking
system, which translates well-typed source terms to an untyped run-time lan-
guage. The system is greatly complicated by the desire to support constrained
polymorphism within generated code: We will spend some time explaining the
problems which arise and their solutions. Finally, we present a denotational se-
mantics for the run-time language, and demonstrate a type soundness result. We
leave type inference for this system to future work.

Chapter 7

Introduction

Programs must often manipulate intensional representations of other programs. This is
called reflective programming when the manipulating program (the meta-program) and the
program being manipulated (the object-program) are expressed in the same language. Ex-
amples of reflection abound in compilers, interpreters, partial evaluators and programming
environments.

This part of the dissertation develops a weak form of reflection in which intensional r e p
resentations, which we shall call code, may be constructed and executed, but never de-
constructed (e.g., by pattern-matching). The result of this restriction is called staged
computation, since programs which merely construct other programs can be seen as having
their evaluation staged over two or more phases of execution. Staged computation is much
simpler than full reflective programming because it does not require any language-level
support for manipulating variable names.

Of course it is possible to effect a staging of program evaluation using ordinary higher-
order functions. However, separating execution stages by time (generate in one session
and execute in another) or space (generate on one machine and execute on another) re-
quires an intensional representation of generated code to be stored or transmitted over a
network. Recovering such a representation from run-time closures is very difficult. Staged
computation, on the other hand, makes this operation trivial.

The principal benefit of staged computation over more ad-hoc approaches using strings or
datatypes of abstract syntax is the ability to statically verify that all code generated at
run-time is not only syntactically valid, but also type-correct. However, sometimes code
must be generated whose type, in addition to its contents, depends on run-time values.
To support this requires a notion of dynamically typed code to complement statically typed
code. Dynamically typed code must have its type checking deferred till run-time in addition
to its evaluation.

Examples of staged computation abound, though they are often hidden within the noise
of larger systems:

Run-time partial evaluation generates code at run-time to exploit invariants un-
known at compile-time. It has found applications in operating systems [62] and
advanced compilers [54]. Run-time partial evaluation may be viewed as a form of
staged-computation in which only closed-code (code which does not contain free vari-
ables) may be generated.

Dynamic typing introduces dynamic values which contain both a value and a run-
time representation of the value's type. Because all dynamic values have the same

compile-time type, they may be treated uniformly by programs such as interpreters,
persistent stores, generic programs, and distributed programs which pass code be-
tween machines. A dynamic value may be viewed as dynamically typed code whose
body happens to be evaluated.

Document generation requires a data structure to be created on-demand by one
machine (the server), and then transmitted to another (the client). If documents
are simply strings, the server need only concatenate each document fragment and
transmit the result. However, we have seen in Chapter 1 that documents are often
structured as XML, and often contain embedded scripts. We call these dynamic,
active documents.

Part I of the dissertation showed how XML documents may be represented as typed
terms. It is a simple matter to transmit such a term from one machine to another
if it contains no functions. Thus dynamic documents are already well supported
by the material of Part I. However, it seems natural to express embedded scripts
simply as functions or monadic commands within the same functional language as
the document itself. Unfortunately, terms containing scripts encoded in this way
cannot be easily transmitted. Hence dynamic, active documents are problematic.

Staged computation solves this problem by allowing the server program to distinguish
server-side code (executed on the server in response to a request) from client-side
code (executed on the client after a reply is received). That is, a dynamic, active
document is simply a residual program, and residual programs are easily transmitted
from server to client.

Online services interact with a user via a dialogue of successive dynamic documents.
A single server may be interacting with many thousands of users simultaneously,
any of whom may decide to stop responding or backtrack to an earlier point in
their dialogue. Hence, the crux in implementing these systems is managing each
user's dialogue state. A particularly simple solution is to embed within each dynamic
document an intensional representation of its continuation code. When the user
wishes to continue the dialogue, the client passes this continuation along with any
form data back to the server. Staged computation provides some support for this
style of programming.

We shall develop a small calculus, AS', which adds to higher-order functions and constrained
polymorphism the ability to construct and execute code at run-time. Both statically and
dynamically typed code may be intermixed within a single program. Though ASC has all of
the type-theoretic framework necessary to support type-indexed rows, implicit parameters,
and indeed any other system of constrained types, for simplicity we put these features aside.
However, we shall sometimes assume their inclusion in the extended examples of Chapter 8.

ASC is most closely related to MetaML [97], which also supports both statically and dy-
namically typed code. The statically typed component of MetaML grew out of the work
of Nielson and Nielson on two-level functional languages [77], Davies and Pfenning [20, 211
on multi-level languages, and Taha and Sheard [1104, 1071. The dynamically typed compo-
nent comes from work of Shields, Sheard and Peyton Jones [99]. However, this is the first
formal presentation of a system including both kinds of code, and supporting constrained
polymorphism. Indeed, we shall see that constrained polymorphism is the key to effi-

ciently implementing dynamically typed code. Furthermore, we shall show type soundness
model-theoretically, rather than proof-theoretically as in earlier work.

The remainder of this chapter introduces the three operators to defer, splice and run
code, and demonstrates their statically and dynamically typed variants. We then illustrate
the generality of staging by extended examples of partial evaluation, dynamic typing and
distributed computing (Chapter 8). The later develops a small document server, and
exploits both dynamically and statically typed code within a single program. We then
present the formal system and demonstrate type soundness (Chapter 9).

7.1 Staged Computation

Staged computation introduces three operators to construct, evaluate and combine pieces
of programs. These can be used to explicitly distribute the evaluation of a program over
many run-time stages:

The defer operator, ((t 33, defers evaluation of an expression t by one stage. Writing
4 to denote evaluation:

1 + 1 4 . 2 evaluated at stage 0
(I 1 + 1 3) 4. C{ 1 + 1 33 deferred till stage 1

We call t the body of C(t 33, and dually, we call (C t 33 the code of t . (Note that
((t 33 is written as < t > in many other staged languages-unfortunately this more
concise notation clashes with the syntax for XML used in Part I.)

The run operator, run t , evaluates t to some code (C u 33, and then evaluates u.
Continuing the example:

((1 + 1 1) .I) ({ 1 + 1 33 deferred till stage 1
run I(1 + 1 3) 4. 2 evaluation brought forward to stage 0

The splice operator, - t , also evaluates t to some code {C u 33, but then splices u
into the body of the surrounding code. The term - t is thus legal only within lexically
enclosing (C 33 brackets. For example:

l e t c o d e = { { 1 + 1 3 3 i n ~ ~ - c o d e + 2) ~ ~ ~ ((1 + 1) + 2 3 3
-code replaced with 1 + 1 at stage 0

(Note that - binds tighter than all other operators.)

A splice expression may appear deep within the body of a deferred expression, even
under a A-abstraction:

Also, t may be any expression yielding some code:

l e t f = \ c o d e . ((I + - c o d e)) i n ((- (f ((2))) + 3 3) & (((1 + 2) + 3 3)
f {{ 2 11 evaluated at stage 0

Splice can be used to construct and manipulate code with free variables, though these
variables must always be bound within a lexically enclosing scope. This feature is
most convenient when constructing code representing a function:

l e t f = \code . (C -code + -code 33 i n <(\x . - (f ((x 33) 33
.u-CC\x. x + x 3 3
x is free i n argument to f, but bound an overall result

We say a subterm u of t is at stage n if u is lexically nested within n more ((33 brackets
than - operators within t . For example:

t + u u is at stage 0
CC t + u 3) u is at stage 1
CC t + -u 3) u is at stage 0

It is even possible for a sub-term to have a negative stage:

((t + --u 33 u is at stage -1

We say a term is splice free if each of its sub-terms is at a non-negative stage.

Very roughly, these operators have two rewrite rules. The first allows a splice to cancel a
defer, provided t is splice free and the reduct is at stage 1:

The second allows run to cancel a defer, again provided t is splice free, and the reduct is
at stage 0:

n u r ((t 3 3 - - + t

How should these operators be typed? One approach is to perform all type checking at
stage 0, and eliminate any programs which may generate ill-typed code at run-time. We
call this statically typed staging, and is the method used by existing staged languages such
as MetaML [97].

7.2 Monomorphically Typed Staged Computation

For the moment, ignore polymorphism (and in particular, constrained polymorphism), and
consider how to ensure that only well-typed code may be constructed.

The first source of errors are binding-time errors. For example

€< \x - -x 33

attempts to use x at stage 0 when it is not bound until stage 1. This error is easily detected

by maintaining a separate type context for each stage during type checking:

Here we intend n to be the stage of the sub-term under consideration. We write ?i to
denote an infinite length vector of type contexts, indexed by stage number, only a finite
number of which are non-empty. (Of course in practice it is easier to associate a stage
number with each variable. This vector notation will prove to be convenient in the sequel.)
We write to denote the the nth context of ?i, and F +tn I" for the extension of the n7th
context of T by I".
A refinement of the VARMONO~ rule is to allow variables bound at an earlier stage to be
used at a later stage:

-n-m
m > O (x : T) E ~ laftable (7)

- VARMONO r t - n x : ~
Here laftable(~) is true when values of type T can, at rmn-time, be converted from their
representation in the run-time system to their representation as code. Defining liftable
to be the constant true function may be excessively onerous on an implementation. For
example, lifting a function could require it's body to be decompiled back into code. Defining
liftable (T -> v) as false prevents this situation.

Using the revised rule, the term

\x . C(x + 1 33
is well-typed assuming liftable(1nt) is true.

Of course a closure is no easier to lift than a function, regardless of it's type. Hence lifting
would typically force evaluation. Consider:

let x = primes ! ! 1024
in CC x + 1 3)

This term evaluates to the code CC 8161 + 1 13 rather than C((primes ! ! 1024) + 1 3).
The second source of error arises when code is spliced into an incompatible context. For
example

let code = C(True 33 in CC -code + 1 3)
attempts to splice a Boo1 into an I n t context, leading to the ill-typed code ((True + 1 3).
This too is easily detected by associating a type (C T)I of code of body type T with each

defer expression:

-
r k n ~ : C C T I I
- RUN MONO^

Fn r u n t : T

Notice how these rules keep track of the current stage, and prevent a splice from appearing
at stage 0.

One more source of error remains, which is somewhat more subtle than the others. For
example

is type-correct by the rules above (assume x has type CC T)I for some type T), but evaluates
to

which is binding-time incorrect.

In the literature this problem is known as the open code problem, because CC x 33 is "open"
on the variable x. A number of refinements to the type rules above have been considered,
such as keeping track of the nesting depth of runs [105], or introducing a separate code
constructor and code type for closed code [106]. Both these approaches introduce consider-
able additional complexity to the system (and indeed, to the best of our knowledge neither
have been implemented).

A third and somewhat surprising solution to the open code problem is to give run a type
in the I 0 monad [87]. Hence the RUN MONO^ rule becomes:

- r kn t : cc 1)
- RUNMONO
I' I-" run t : I 0 T

Such computations may also be sequenced and completed:
- - r t - n ~ : ~ ~ ~ F - + t n x : v t - n t : ~ ~ ~ r b n t : ~

- LETMMONO - UNITMMONO
Fn l e t x t u i n t : I0 T r Fn un i t t : I0 T

Under these rules the example above is ill-typed, since run CC x 3) has type I 0 I(T 3) and
so cannot be spliced. To see that all such examples will be rejected, we reason informally
as follows. The argument to run will only be evaluated if run is at stage 0 and is being
performed. Since only the external environment may perform I 0 computations, run must
therefore be connected by a chain of monadic let-bindings to the top level of the program.
Because rule SPLICEMONO prevents the splicing of monadic expressions, it is impossible
for this chain of let-bindings to cross under a splice. Hence, run cannot be in the context
of any bound variables, and its argument must be closed.

Note that the typing rule for run does not guarantee that each occurrence of run in a
well-typed program is applied only to closed code. For example, in

run is applied to code which is patently open. However, the type system prevents
run CC x 33 from being performed.

Also notice run's I0 type has nothing to do with any side-effects of run, or of the code it
executes, but is rather just a "type trick" to prevent open code. In Section 7.5, however,
run will be enhanced so that it does have a side-effect, and hence its I0 type is better
justified.

Encouraged by the ease of typing monomorphic code, we now consider reintroducing para-
metric polymorphism.

7.3 Polymorphically Typed St aged Computation

Consider let-binding code which is polymorphic:

let i d = CC \X . x 31
i n ({ (- i d 1, - i d True) 31

How should this term be typed?

The most straightforward approach, which we term let-generalisation style, is to generalise
and specialise types exactly as in the polymorphic A-calculus. Under this approach, i d
would be assigned the type scheme f o r a l 1 a . (C a -> a 11, and the instances of i d would
be specialised to Int and Bool respectively. To aid our understanding of the situation,
consider rewriting the example using type-passing in the style of System F [32]:

let id = Aa . {{ Ax : a . x))
in {{ (-(id Int) 1, -(id Bool) True)))

This translation clearly shows that all type abstraction and application is performed at
stage 0, even though the code itself is at stage 1. Notice that the type parameter has been
lifted implicitly from stage 0 to stage 1.

Another possibility, which we call defer-generalisation style, is to generalise defer expres-
sions separately from let-bindings, and specialise at each splice point. (Note that let-bound
terms are still generalised as per usual under this scheme.) Under this approach, i d would
be assigned the rank-2 polymorphic type CC f o r a l l a . a -> a 33. If we again rewrite the
term to use explicit type passing, the difference between this approach and the previous is
obvious:

let id = {{ h a . Ax : a . x))
in {{ (-id Int 1, -id Bool True)))

Notice all type abstraction and application is now at stage 1. In effect, this approach defers
type abstraction and application in parallel with evaluation.

Of course, the first approach is to be preferred to the second, since type inference for rank-2
types is very awkward, and for higher ranks is undecidable [114]. Furthermore, for pure
parametric polymorphism, type generalisation and specialisation may always be shifted to
the stage of the let-binding. Indeed, the example above in defer-generalised form may have

all type abstraction and application moved to stage 0:

let id = Aa' . {{ (Aa . Xx : a . x) a'))
in {{ (-(id Int) 1, -(id Bool) True)))

This translation is valid because types may be freely lifted across stages.

For the reasons above, MetaML [97] uses let-generalisation style. Unfortunately, the situ-
ation is not so simple when constraaned parametric polymorphism is introduced.

7.4 Constrained Polymorphism and Staging

In a system of constrained polymorphism, it is possible for let-generalised and defer-
generalised terms to have a different semantics. To see why, consider an example using
implicit parameters [57] :

(l e t plus1 = ((1 + ?z 3)
i n CC -plus1 with ?z = 1 33) with ?z = 0

Notice the implicit parameter ?z is bound both at stage 0 (to 0) and stage 1 (to 1). Thus
the constraint ?z : Int will appear both at stage 0 and stage 1. How shall these two
occurrences be handled?

In let-generalisation style, let-bound variables capture all the constraints of the let-bound
term, regardless of their stage. Thus plusl would be assigned the constrained type scheme
?z : Int => (C Int 31, and the term would be implemented (using the translation of [57])
as:

(Xz . let plusl = Xz' . {{ 1 + z'))
in {{ (XZ" . -(plus1 z)) 1))) 0

Note the implicit lift of the parameter z' from stage 0 to stage I. Hence the instance of
plusl would be specialised with the binding of ?z = 0 at stage 0, and the program would
reduce to (in source form):

CC (1 + 0) with ?z = 1 33
Alternatively, using defer-generalisation style, plusl would be assigned the rank-2 type
(1 ?z : Int => Int 33. The implementation would then be:

(Xz . let plusl = {{Xz' . 1 + z'))
in {{(Xz'' . -plus1 z") 1))) 0

Now the code (C 1 + ?z 13 would be specialised with the binding of ?z = 1 at stage 1, and
the program would reduce to:

((1 + ?z with ?z = 1))

Since the choice of method effects the semantics, one must be prescribed. Unfortunately,
neither is pleasing. Let-generalisation style would only work for implicit parameters of
EzftabEe type, since implicit parameters which cross stages must be lifted. In most imple-
mentations, this would rule out defer expressions with implicit parameters of functional
type-a severe restriction. Furthermore, the capturing of a stage 1 implicit variable by a
stage 0 binding is unlikely to correspond with the programmer's intended interpretation.

Defer-generalisation style, on the other hand, is incompatible with tractable type inference.

One way out of this impasse is to both give up defer-generalisation, and also ignore any
constraints from higher stages when let-generalising. The programmer may then use first-
class polymorphism [49] to explicitly generalise polymorphic deferred expressions where
desired.

Under this approach, the example could be written as:

newtype WithZ = ?z : Int => Int
unWithZ = \(WithZ x) . x

(l e t plus1 = (C WithZ (1 + ?z) 33
i n CC (unWithZ -plusl) with ?z = 1 13 with ?z = 0

Here (1 + ?z) is generalised when typing the application WithZ (1 + ?z), and plus1 is as-
signed the monomorphic type C(WithZ)). Dually, the implicit parameter ?z is reexposed
by (unWithZ -plusl), whence it is bound to 1.

Unfortunately, this approach is not quite sufficient to avoid problems. Consider a variation
of the example, this time with two bindings of ?z at stage 1:

CC - (l e t plus1 = CC 1 + ?z 33
i n ((-plus1 with ?z = 1 33) with ?z = 2 33

Since the programmer has not explicitly generalised the code bound by plusl, the con-
straint ?z : Int (at stage 1) escapes, and is bound to 2 by the outer with. Hence, this
example reduces to:

CC (1 + ?z with ?z = 2) with ?z = 1 3)
Again, this result does not corespond to the programmer's intended interpretation of:

(C 1 + ?z with ?z = 1 33
F'urthermore, and more seriously, terms such as these would greatly complicate the seman-
tics.

To avoid these problems, ASC requires that every staticaIly typed polymorphic deferred ex-
pression must be explicitly fully generalised. Indeed, the type system will require that in
CC t 33, t must be well-typed assuming only true, the trivial constraint, at t7s stage.

Thus the example above must be written as:

newtype WithZ = ?z : In t => Int
unWithZ = \(WithZ x) . x

(C -(l e t plusl = (C WithZ (1 + ?z))I
i n CC (unWithZ -plusl) with ?z = 1)) with ?z = 2 3)

To formalise this approach, the well-typing judgement must now include a vector of type
variable contexts, h, tracking which type variables are free at which stages. Similarly,
it must also include a vector of constraint contexts, E , tracking the current constraint
context for each stage.

It is important to distinguish and T, which may contain variables bound at any stage (and
hence resemble temporal logic contexts [20]) from T, which contains constraint contexts
only for the current and previous stages (and hence resembles a modal logic context [21]).

In other words, though and r are persistent across stages, is a stack which must be
popped when moving to an earlier stage.

The type rules for defer and splice are now:

To recap: XSC may generate well-typed code which uses constrained polymorphism, pro-
vided that no constraint crosses outside of any defer expression. Furthermore, this obvious
lack of expressibility may be circumvented using first-class polymorphism.

Alas, this approach may quickly become excessively burdensome on the programmer.

7.5 Dynamically Typed Staged Computation

The previous section showed how programming with constrained polymorphic code can
become tedious because the programmer must explicitly wrap and unwrap polymorphic
code fragments. Furthermore, in many programming situations the type of generated code
depends on a run-time value and is difficult to express statically.

Both these problems can be avoided if type inference is staged in parallel wi th evaluation.
In this way, type inference may be deferred until sufficient type context is known a t run-
t ime. This approach neatly extends the staging operators we have already introduced, and
also subsumes many proposals for dynamic typing [I, 56, 21.

A new type, (?I, is introduced for dynamically typed code. Values of this type are code
fragments for which type inference has been deferred. Indeed, such code fragments may
even be ill-typed.

The three statically typed operators of Section 7.1 also have dynamically typed versions.
For simplicity, XSC overloads the splice and run operators to work on both code types, and
only introduces a new form for deferring evaluation:

(? t ?3 is like ((t 11, but defers both the type inference and evaluation of t by one
stage:

1 + 1 : In t inferred a t compile-t ime
l + l u 2 evaiuated at stage 0

C ? 1 + 1 ?) : (? 1 inference deferred
(? 1 + 1 ?3 4) (? 1 + 1 ? I evaluation deferred

As before, run t first evaluates t to a piece of code. If the result is a dynamically
typed code fragment of the form (? u ?I, it then infers the type of u. Evaluation
continues with u if this type is compatible with run's context. For example (writing

410 for evaluation in a monadic context):

l e t i < - r u n (? l + l ?) i n u n i t (i+2)
+ l + l : I n t inference brought forward to stage 0

In t = In t types are compatible
UIo l e t i = 1 + 1 i n uni t (i + 2) evaluation brought forward to stage 0

U-10 4 evaluation continues

Two things can go wrong here: The type of u may be incompatible with that of
run's context, or u may be ill-typed to begin with. If either of these occur then run
discards u and raises an exception. For example:

l e t b < - (t r y run (? l + 1 ?)
catch uni t False)

i n uni t (not b)
+ 1 + l : I n t inference brought forward to stage 0
+ In t # Boo1 types not compatible, exception raised
410 l e t b <- uni t False i n uni t (not b) exception caught
$10 True evaluation continues

Here the operator (t r y , catch -), of type I0 a -> I0 a -> I0 a, performs its first
argument, passing control to its second argument only upon an exception.

Also as before, -t evaluates t to a piece of code. If it is dynamically typed code of
the form C? u ?), u is spliced into the body of the surrounding code, which clearly
must also be dynamically typed. Unlike for statically typed splices, the type of a
code fragment with dynamically typed splices may now depend on the code being
spliced. For example, in:

l e t code = (? \x . (x, x) ?) i n (? -code 1 ?) & (? (\x . (x, x)) 1 ?)

the resulting body has type (Int , Int) . However, in

l e t code=(? \x . True ?) i n (? -code 1 ?)a(? (\x . True) 1 ?)

the resulting body now has type Bool.

It is quite possible for an expression to be incompatible with the context it is spliced
into, yielding ill-typed code. For example:

l e t c o d e = € ? \ x . x + 1 ?) in(?-codeTrue?)$(? (\x . x + 1) True?)

Ill-typed code is detected by run:

t r y r u n (? (\x . x + l) True ?)
catch uni t False

(\x . x + 1) True : ? type inference brought forward, ill-typed
JjIo False exception caught

One choice remains to be made. Should a term (? t ?) be assigned type (?I regardless of

t, or should it be rejected if t is ill-typed regardless of code spliced into it? For example:

l e t code = (? 1 ?) i n C? -code + not 1 ?)

would be accepted under the former, and rejected under the latter. Since this choice has
little effect on the semantics and expressibility of the language, ASC adopts the later as a
small aid to program correctness.

7.6 Constrained Polymorphism and Dynamic Typing

Since dynamically typed code is always assigned the monotype (?I, it may be type checked
using the defer-generalisation method sketched in Section 7.3 without any complications.
Very roughly, the type rules are:

Notice At and D may be arbitrarily chosen so that t has some type T . All three properties
are then forgotten, and C? t ?) is assigned type (?I. Similarly, in the second rule T may
be chosen arbitrarily so that the context of -t is well-typed.

Consider the example from Section 7.3, rewritten to use (? ?I brackets:

(l e t plus1 = (? 1 + ?z ?I
i n C? -plus1 with ?z = 1 ?I 1 with ?z = 0

Now the type of 1 + ?z is generalised to give ?z : I n t => In t , and this type is discarded.
Hence there is no confusion as to which binding of ?z applies, and the term reduces to:

(? 1 + ?z with ?z = 1 ?)

Dynamically typed polymorphic code is thus much easier to program with, but in return
cannot be statically verified as type-correct.

Unfortunately, the rules DEFERUSIMP and SPLICEUSIMP fail to differentiate between terms
whose type is definitely known, versus those for which the type has been "guessed" by a
splice of C?) code. Hence, the actual type system requires two judgement forms at stages
1 and higher.

7.7 The r t type and l i f t a b l e Constraints

Recall from Section 7.5 that run must perform a run-time type check of any code of compile-
time type (?) to ensure its actual type is compatible with run's context. Furthermore,
because run may be used in a polymorphic context, this type may not be known locally.

For example, in:

l e t f = \code . run code
i n l e t b <- f (? True ?);

i <- f (? True ?3
i n un i t (not b, i + 1)

the first application of f 7 and hence the run within f , is at type Bool (and thus succeeds),
while the second is at type I n t (and thus fails). Somehow a run-time representation of the
type of f 's context must be conveyed to the occurrence of run.

One approach is to use a System F style of type-passing semantics [99]. However, since
types are passed into every polymorphic term regardless of whether it actually invokes
run, this approach is needlessly expensive. F'urthermore, it diverges from most existing
implementations of functional programming languages which are type-free at run-time.

Instead, XSC uses the constraint r t type r to indicate that a representation of type r is
required at run-time. This constraint is another example of a "type trickn (analogous to
the trick in typing run discussed in Section 7.2). Since r t type r is satisfied for any ground
type r7 it does not really impose a 'Lconstraint" on r at all. Instead, it allows the type
system to track which type specialisations require an actual run-time type to be passed as
an additional parameter.

Giving run (in effect) the constrained polymorphic type

run : f o r a l l a . r t type a => (?) -> I0 a
signals that it takes as an additional argument a witness of r t type a; that is, a represen-
tation of whatever monotype a is instantiated to. This passing of witnesses parallels the
propagation of r t type constraints. A type-directed dictionary translation rewrites source
terms to run-time terms in which this witness passing is explicit.

Returning to the example, f is assigned the same type scheme as run, and the whole term
is translated to:

let f = X w . X code . run code at w
in let b t f Bool (True)

i t f l n t (True)
in unit (not b, i + 1)

Notice the witness abstraction in the binding of f, and the witness applications at each
occurrence of f.

One more constraint is necessary. Recall from Section 7.2 the side condition liftable(r)
in rule VARMONO. Again, in the presence of polymorphism, this condition cannot be
checked locally if r is not ground. Instead the side condition is implemented as a constraint
l i f t a b l e r. Just as for r t type T , this constraint is witnessed by a run-time representation
of 7, which may be used at run-time to determine how a value should be lifted. (In XSC7
only I n t is liftable, so this machinery is somewhat of an overkill.)

Chapter 8

Examples

The system sketched in Chapter 7 is very versatile. This chapter presents examples of
dynamic typing, partial evaluation, and distributed computing. The examples are some-
what voluminous, and will assume features beyond those of Asc-in particular the pattern
matching syntax of XTIR, and the native XML syntax introduced in Section 3.4. However
by doing so we demonstrate how staging interacts gracefully with other language features.

These examples have not been formally type checked or tested on a running interpreter.
However, key fragments have been tested by transliterating into Haskell.

8.1 Dynamic Typing

Consider replicating C7s printf procedure in a functional setting. Programmers might like
to write:

printf "%i = %b" (1, True)

where %i and %b are placeholders for the elements of the argument tuple. Unfortunately,
giving printf a type such as

printf : String -> T -> I0 0
is problematic, as the type T depends on the value of printf's first argument. This could
be expressed using a dependent type [9]:

printf : n s : String . (formatType s) -> I0 0
where formatType converts the format string to a type. However the complexity of
dependently-typed programs can quickly become overwhelming.

One solution is to allow printf to accept arguments of any type:

printf : String -> List Dyn -> I0 0
As printf parses its format string, it checks each argument is of the appropriate dynamic
type before outputting its representation.

Examples such as the above are common in:

Persistent programming, where values of any type may be stored and retrieved from
stable storage.

Distributed programming, where data and code are exchanged between remote pro-
grams.

a Interpretive programming, where object language terms of arbitrary type must be
represented by meta language constructs of known type.

a Generic programs, such as p r in t f , which work non-parametrically over values of
arbitrary type.

Existing approaches to dynamic typing [I, 56, 21 introduce a universal datatype of type
Dyn, and two operations:

a dynamic t : T, which constructs a dynamic value containing both term t and a rep-
resentation of its type 7;

a typecase d of (x l : 7 1 -> tl ; . . . , x , : 7, -> t , 1, which attempts to match the
type stored within dynamic value d against one of Ti, binding the term in d to the
appropriate xi, or failing gracefully if no match is found.

The semantics of these two operators is straightforward when all types involved are
monomorphic. However, when typecase patterns may contain free type variables, or
worse, when dynamic values may contain polymorphic terms, the situation becomes much
more subtle.

These approaches suffer two main drawbacks:

a Types live in two quite different worlds. Static types are generally inferred, and
may be implicitly polymorphic with little added complexity for the programmer.
Dynamic types must be mentioned explicitly within the branches of a typecase, and
dynamic polymorphism is either forbidden [I], restricted [56], or requires the complex
machinery of functors and higher order unification [2].

a Combining dynamic values together to construct a new dynamic value is tedious and
verbose to write, since each constituent value requires a separate typecase, and the
result must be wrapped by dynamic.

In AS', dynamically typed terms are simply terms for which both evaluation and type-
inference has been deferred. This approach avoids the problems above:

a The same type system as used at compile-time is used at run-time to decide the well-
typing of dynamic values. There is no need for explicit type annotations, and dynamic
values enjoy type inference just as static values do. As a result, dynamically typed
polymorphism is implicit and as convenient to use as statically typed polymorphism.

a The splice operator makes combining dynamically typed values convenient and con-
cise. Even though the type Dyn resembles {?), the term dynamic t resembles (? t ?),
and typecase may be simulated by a chain of run commands, dynamic-typing sys-
tems have no counterpart to the splice operator.

The implementation of p r in t f in ASC is much the same as in dynamic typing systems:
p r in t f has type St r ing -> L i s t {?I -> I0 0, and the programmer must wrap each ar-
gument in (? ?) brackets:

printf : String -> List (?) -> I0 0
= l e t r ec format : String -> List (?I -> (?I

= (\ [I [I . C? "" 7 -3 ;
\('%' :: 'i' :: cs) (d :: ds) .

(? i t o s t r -d ++ -(format cs ds) ?);
\('%' :: 'b' :: cs) (d :: ds) .

(? btos t r -d ++ -(format cs ds) ?3;
\ (c :: CS) ds .

C? c :: -(format cs ds) ?);
\- - . (? 0 ? I (* non-string t o force e r ror *))

i n \cs ds . l e t s <- t r y run (format cs ds)
catch unit "error : bad format I'

i n putStr s

The helper function, format, traverses the format string, splicing together code to construct
the result string. The pr int f function attempts to run this code and print the result. An
error string is printed if the format string and arguments mismatch in number or type. For
example:

printf "%i = %b" I(? 1 ?), C? True ?)I
4 run((? i t o s t r 1 ++ I' = I' ++ btos t r True ++ "" ?)

UIO i t o s t r 1 ++ " = I' ++ btos t r True ++ I t "

d,l I' 1 = True"

which is written to output.

Unlike in dynamic typing systems, another implementation is possible which exploits ASC's
ability to manipulate code containing free variables. This implementation constructs, at
run-time, a printing function matching the given format string:

makeprintf : f o r a l l a . r t type a => String -> I0 a
= l e t r ec makeFun : String -> (?I -> (?I

= C \ C l d - d;
\('%' :: '1' : : cs) d .

(? \x . -(makeFun cs (? l e t 0 <- -d
i n putStr (i t o s t r x) ?3) ?);

\ (>%' : : 'b' : : cs) d .
c? \x . -(makeFun cs (? l e t 0 <- -d

i n putStr (b tos t r x) ?3) ?3;
\ (c :: cs) d . makeFun cs (? l e t 0 <- -d

i n putchar c ?3 3
i n \cs . run (makeFun cs (? unit 0 ?))

Here, the constraint r t type a signals that a run-time representation of type a is required,
but does not actually restrict how a may be instantiated.

The helper function, makeFun, traverses the format string, building a A-abstraction for
each argument. Argument d to makeFun accumulates the code to convert and print the
arguments seen so far. Notice that x is free in the code passed to the recursive call to
makeFun. Without this ability it would be impossible to construct the function at run-
time.

Although makePrintf may be instantiated to any type, it will raise an exception unless the

type is compatible with the format string. In this respect, makeprintf is not parametric
polymorphic, but rather ad-hoc polymorphic. Such terms can always be distinguished by
their use of the constraint rttype T.

The function makeprintf has two advantages over printf: It avoids the need to wrap
arguments with (? ?I brackets, and it allows a printing function to be generated once and
reused many times without the overhead of staging.

For example, in:

l e t f <- makePrintf "%i = %b";
0 <- f 1 True

i n f 0 False

type inference discovers f must have type Int -> Boo1 -> I0 0 . Hence the application
makeprintf "%i = %bl' returns the function:

\ x i . \x2 . l e t 0 <- (l e t 0 <- (l e t 0 <- unit 0
i n putStr (i t o s t r X I))

i n putStr I' = "1
i n putStr (btostr x2)

8.2 Partial Evaluation

Partial evaluation seeks to specialise code to exploit run-time invariants [50]. For conven-
tional programs, partial evaluation requires a form of binding-time analysis [78]. In ASC,
(and MetaML [97]), partial evaluation is under programmer control through the use of
explicit staging anotations. Furthermore, ASC programs are free to use dynamically typed
code whenever it is inconvenient or impossible to express the types of generated programs
statically.

Consider implerneting a regular expression compiler which, given a 1-unambiguous regular
expression (as introduced in Section 3.4), produces the corresponding Glushkov automaton
[17]. Staging can be exploited to encode the automaton directly as a ASC program, rather
than as an interpreter for the automaton's transition function.

The language of regular expressions is represented abstractly:

data RegExp = \a .
Atom a

I Sum (List (RegExp a))
I Prod (List (RegExp a))
I Star RegExp

The states of a Glushkov automaton correspond with the positions of atoms in the regular
expression it is built from. Hence the first task is to assign a unique position to each atom
of the regular expression, and construct a map from positions back to atoms. We shall use
natural numbers to represent positions, and assign naturals to atoms from right to left so
that the last atom has position 0. The map is then easily represented as a list indexed by
position. For example, the regular expression a*b is represented as:

Prod [Star (Atom 'a ') , Atom 'b'l

This term is annotated with positions to become:

Prod [Star (Atom (1, ' a ')) , Atom (0, ' by)]

The corresponding map is thus:
C ' b y , 'a ' I

The following function performs this annotation (to avoid complications with overloading
the == function, all types in the following program fragements have been specialised to
regular expressions over characters, even though most are polymorphic on the atom type):

annotate : RegExp Char -> (List Char, RegExp (In t , Char))
= l e t r e c annList = \cs r e s . fo ld r (\ re (cs ' , res ') .

l e t (cs", r e ') = ann cs' r e
i n (cs", r e J :: r e s '))

(CS, CI r e s ;
a n n = \ c s . (\ (Atomc) . (c : cs , Atom (l eng thc s , c)) ;

\(Sum res) . l e t (cs ' , r e s ') = annList cs r e s
i n (cs' Sum r e s ') ;

\(Prod res) . l e t (cs ' , r e s ') = annList cs r e s
i n (cs ' , Prod r e s ') ;

\ (Star r e) . l e t (cs ' re ') = ann cs r e
i n (cs ' , S t a r re ') 3

i n \ re . l e t (c s y , r e y) = a n . r e [I i n (reverse cs ' , r e ')

This and the following functions make use of some standard library functions:

length : f o r a l l a . L i s t a -> In t
reverse : f o r a l l a . L i s t a -> List a
fo ld r : f o r a l l a b . (a -> b -> b) -> b -> Cal -> b

map : f o r a l l a b . (a -> b) -> Cal -> Cbl
(! !) : f o r a l l a . L i s t a -> In t -> a
and, o r : CBooll -> Bool

Some operations on sets of positions, position pairs, and (character, position) pairs are also
needed. (In practice these operations would all be instances of more generic operations on
sets and relations). Signatures for these operations are given in Figure 8.1. We use 'P" to
denote "position", and "C" for "character."

The function hasEmpty is True if its argument regular expression recognises the empty
string:

hasFmpty : RegExp (In t , Char) -> Bool
= C \(Atom ,) . False;

\(Sum res) . or (map hasEmpty res) ;
\(Prod res) . and (map hasEmpty res) ;
\ (Star r e) . True 1

The function f i rs tPos is the set of positions of its argument reachable without transition:

newtype Set = \a

emptyP : Set In t
emptyPP : Set (In t , In t)
singleto* : I n t -> Set In t
unionP : Set In t -> Set In t -> Set I n t
unionPP : Set (I n t , In t) -> Set (In t , In t) -> Set (In t , In t)
unionAllP : Set (Set In t) -> Set I n t
unionAllPP : Set (Set (In t , In t)) -> Set (In t , In t)
memberP : Set In t -> In t -> Bool
crossProdP : Set In t -> Set In t -> Set (I n t , In t)
isFunctR : Set (In t , In t) -> Bool
applyRelPP : Set (I n t , In t) -> I n t -> Set In t
mapsetPCP : (In t -> (Char, In t) -> Set In t -> Set (Char, In t)
foldSetCP : f o r a l l a . ((Char, In t) -> a -> a) ->

a -> Set (Char, In t) -> a

Figure 8.1: Signatures for operations on sets and relations

f i r s tPos : RegExp (In t , Char) -> Set In t
= C \(Atom (p, -1) . singleto* p;

\(Sum res) . unionAllP (map f i r s tPos r e s) ;
\(Prod [I . emptyP;
\(Prod (re :: r e s)) .

unio* (f i rs tPos re)
(i f hasEmpty r e then f i r s tPos (Prod res) e l se emptyP)

\(Star re) . f i r s tPos r e 1
Similarly, lastPos is the set of positions of its argument which are valid stopping states.
These are simply the first-positions of the reversed regular-expression:

lastPos : RegExp (In t , Char) -> Set In t
= \ re . f i r s tPos (rev re)

rev : f o r a l l a . RegExp a -> RegExp a
= { \(Atom a) . Atom a ;

\(Sum res) . Sum (map rev r e s) ;
\(Prod res) . Prod (reverse (map rev res)) ;
\ (Star r e) . Star (rev re) 3

The function followPos yields the set of all pairs of position and successor position. A
successor position must be reached by exactly one transition:

followPos : RegExp (In t , Char) -> Set (I n t , In t)
= (\(Atom -1 . emptyPP;

\(Sum res) . unionAllPP (map followPos r e s) ;
\(Prod [I) . emptyPP;
\(Prod (re :: res)) .

unionPP (f ollouPos re)
(unionPP (followPos (Prod res))

(crossProdP (lastPos re)
(f i rs tPos (Prod res)))) ;

\ (Star re) . unionPP (followPos re)
(crossProdP (lastPos re)

(f i rs tPos re)) 3
All the definitons above are now tied together by makeFollowMaps, which builds a list of
transition relations, one for each position. For simplicity, the starting state is encoded
as the "position" one before the leftmost position. Each transition relation maps legal
input characters to their following position. The function makeFollowMaps also returns
the number of positions, and the set of valid final positions for the regular expression:

makeFollowMaps : RegExp Char -> (In t , Set I n t , L i s t (Set (Char, In t)))
= \ re . l e t (cs , r e ') = annoate r e ;

nPos = length cs;
l a s t = unionP (lastPos re ')

(i f hasEmpty r e ' then
s i n g l e t o e nPos

e l se
emptyP) ;

follow = unionPP (followPos r e ')
(crossProdP (singleto* nPos) (f i rs tPos r e ')) ;

maps = map (\p -> mapsetPCP (\p' -> (cs ! ! p ' , p '))
(applyRelPP follow p))

CO . . nposl
i n (nPos, l a s t , maps)

This leaves the problem of generating the recogniser itself, which should be code for a
function of type String -> Bool. Without staging, the only posibility would be to simulate
the Glushkov automaton on the given input, requiring two probes per input character:
one to map the current position to its transition relation, and another to map the current
character to its successor position (or test for final position if the input has been exhausted).

With staging, more efficient solutions are possible. An obvious improvement is to encode
the automaton as a single recursive function, and unfold the two probes as a series of i f
expressions. However, this represents the automaton state explicitly as an integer. The
following implementation goes one step better by embedding the automaton's state directly
in the implicit state of ASC, thus eliminating all interpretive overhead. This embedding is
achieved by generating a set of mutually recursive functions, one for each position (and
the starting state), each of which tests the current input and makes a recursive tail-call as
required.

The only subtlety is how to generate an arbitrary number of mutually recursive functions.
Remember, ASC does not allow variable names to be generated under programmer control,

and does not allow terms to be built from term-fragments (such as a single letrec-binding),
only other terms.

The first step is to generate a transition function for each position, which is abstracted
over all transition functions (including itself):

makeFunN : In t -> Boo1 -> Set (Char, In t) -> (?)
= \nPos isLast followMap .

l e t makeTests : L i s t (?) -> (?)
= \ f s .

l e t testcode = \c , cs . foldSetCP
(\ (c ' , p ') r e s t .

(? i f -c = c ' then - (f s ! ! p') -cs e l s e - res t ?I)
(? False ?)
f ollowMap

i n C? C \[I . i s l a s t ;
\ (c :: CS) . -(testcode (? c ?) (? cs ?))) ?)

i n l e t r e c makeAbs : In t -> L i s t (?) -> (?)
= \pos f s .

i f pos < 0 then
makeTests f s

e l s e
(? \f . - (makeAbs (pos - 1) (C? f ?) : : f s)) ?)

i n makeAbs nPos [I
The function makeAbs builds a series of function abstractions, one for each position (and
the starting state). Notice how though each abstraction argument is statically named
"f", the run-time system will actually generate fresh argument names for each generated
abstraction. These names are accumulated and passed to makeTests. This function uses
testcode to create a nested i f expression testing the current character against each legal
character, and calling the appropriate next-position function. It also tests for valid final
positions. Since the type of each transition function depends on the total number of
positions, all of this code must be dynamically typed.

The function makeFuns generates a nested tuple of transition functions, one for each posi-
tion (and the starting state). This tuple resembles a list, with (- , -) for (: :) and 0 for
[I :

makeFuns : In t -> Set In t -> L i s t (Set (Char, In t)) -> (?)
= \nPos l a s t follovMaps .

l e t r e c genFuns = \p .
i f p < 0 then

C? 0 '3
e l se

(? (-(makeFunN nPos (memberP l a s t p) (followMaps ! ! p))) ,
- (genFuns (p - 1) ?)

i n genFuns nPos

All that remains is to tie the recursive knot. To do so, we define a family of functions, f ixn.
Given a nested tuple of n n-ary functions, f i xn returns a nested tuple of n fixed-points.
When n = 1, the situation is simple:

f i x l : f o r a l l a . (a -> a , 0) -> (a , 0)
= \ (f , ()) . l e t r e c x = f x i n (x, 0)

For n = 2, first define two helper functions:

appl : f o r a l l a b . (a -> b, 0) -> a -> (by 0)
= \ (f , 0) x . (f x , 0)

uncurryl : f o r a l l a b . (a -> b) -> (a, 0) -> b
= \ f (x, 0) . f X

Then:

f i x 2 : f o r a l l a . ((a -> a -> a) , ((a -> a -> a) , 0)) -> (a, (a , 0))
= \ (f , g) . l e t r e c x = uncurryl (f x) y;

y = f i x l (appi g x)
i n (x, y)

which is equivalent to

f ix2 ' = \ (f , (g, 0)) . l e t r e c x = f x y
Y = g x Y

i n (x, (y, 0))
by BekiC's Lemma.

For n = 3, again define two helpers:

app2 : f o r a l l a b . (a -> b, (a -> b, 0)) -> a -> (b, (by 0))
= \ (f , g) x . (f x , appl g x)

uncurry2 : f o r a l l a b c . (a -> b -> c) -> (a , (b, 0)) -> c
= \f (x, y) . uncurryl (f x) y

And again:

f ix3 : f o ra l1 a . ((a -> a -> a -> a) ,
((a -> a -> a -> a) ,
((a -> a -> a -> a) ,
0))) -> (a , (a , (a, 0)))

= \ (f , g) . l e t r e c x = uncurry2 (f x) y;
y = f ix2 (app2 g x)

i n (x, y)

The list f i x e s is defined to consist of all such fixed-point combinators (and their helpers),
beginning with n = 1. Again, the type of each component depends on n, and hence must
be dynamically typed:

fixes : List (C?), (?I, C?3)
= letrec next = \(fix, app, uncurry) .

let curr =

(C? \(f, g) . letrec x = -uncurry (f x) y;
y = -fix (-app g x)

in (x, y) ?3,
C? \(f, g) x . (f x, -app g x) ?3,
C? \f (x, y) . -uncurry (f x) y ?3

in curr :: next curr
in let first = (C? \(f, 0) . letrec x = f x in (x, 0) ?3,

C? \(f, 0) x . (f x, 0) ?I,
C? \f (x, 0) . f X ?3

in first :: next first

The required fixed-point combinator is simply drawn from this list:

makeFixN : Int -> I?)
makeFixN = \n . f st (fixes ! ! (n - 1))

Finally, everything is tied together by makeRecogniser. This function will return None
if its argument regular expression is not l-nonabiguous; that is, at least one transition
relation is not functional. Otherwise, it returns Some of the recogniser code:

makeRecogniser : RegExp Char -> Option C?)
= \re . let (last, followMaps, nPos) = makeFollowMaps re

in if and (map isFunctR followMaps) then
Some CC f st (-(makeFixN (nPos + 1))

- (makeFuns nPos last f ollowMaps)) 33
else
None

Notice that even though makeRecogniser only builds code of type String -> Boo1 (and
hence a run of this code could safely elide the type check), this invariant can unfortunately
neither be proven by type inference nor indicated by any form of user annotation. Once
the programmer steps outside of statically typed code, there is no way to get back in.

The following program constructs a recogniser for the regular expression a* b , then repeat-
edly tests it against input strings:

let re = Prod [Star (Atom ' a ') , Atom 'b'l
in let r <- run (makeRecogniser re)
in C \None . putStrLn "error: r. e . is l-ambiguous" ;

\(Some f) . letrec loop =
let s <- getline;

() <- putStrLn (if f s then
"accepted"

else
"rejected")

in loop
3 r

For this program, f would be the term:

f s t (3x4 (f2, (fl, (fo, 0))))
where fix4 is as defined by the induction above, and:

f2 = \f2 f l fO .
(\[I . False;

\ (c : : CS) . i f c == 'a) then f1 cs
else i f c == 'b' then f O cs
e lse False)

fl = \textCsame body as f2)
f, = \ f 2 f1 fO .

.C \ C1 . True;
\ (C : : CS) . False 3

8.3 Distributed Computing

A distributed system involves the co-operation of more than one machine. A contemporary
example is the client-server model for separating an information provider (e.g., database
server or web server) from an information user (e.g., online search program or web browser).
Client-server systems are typically implemented as two seperate programs which exchange
data in a common format (e.g., SQL or HTML).

This section considers how to implement a distributed system with programs as its common
exchange format. Staging allows such programs to be generated conveniently, and with
static guarantees of well-formedness and (if desired) well-typedness.

These ideas are illustated by implementing a "T-server." Given a request of a natural
number n, the server generates a program of type H t m l describing the first n digits of n.
Of course, the obvious approach is for the server to calculate T to the required precision
itself. However, to demonstrate the flexibility of staging, this calculation will be included
within the result program, and hence deferred to the client.

The following will assume some 1/0 operations to read and write dynamically typed code:

readcode : Handle -> I0 (?)
writecode : Handle -> (?) -> I0 0

For simplicity, the example also assumes a two-way "pipe," possibly involving a network,
has been previously established between the server and client, and the appropriate handles
have been supplied to both. Notice this glosses over the problem of ensuring the global
envrionment of the sending and receiving programs are compatible. For example, if code
contains an application of a newtype A, the sender and receiver must agree on A's definition,
and similarly for common library functions.

Because writecode has an I0 type, it's argument is guaranteed to be closed by the same
reasoning as used for run in Section 7.2. Hence, the code will be ready to be packaged up in
form suitable for writing. Furthermore, since readcode has the result type of I0 C?), the
reading system is forced to type-check any code containing imported code before running
it. This prevents accidentally or malicioulsy ill-typed code from entering the system.

Statically typed code may also be coerced to dynamically typed code:

forget : forall a . CC a 33 -> C?3

The calculation of .rr exploits an identity established by Bailey, Borwein and Plouffe [6]:

This formula may
preceeding digits.
demand by just a

be used to calculate arbitrary base-16 digits of n independently of all
However, it also allows each successive base-16 digit to be calculated on
few integer operations.

The implementation requires arbitrarily sized Integer's and Rational's. The following
assumes the standard binary operators have been overloaded on both types using the
techniques of Section 3.5. Furthermore, some additional operators are needed:

(%I : Integer -> Integer -> Rational
numerator : Rational -> Integer
denominator : Rational -> Integer
div : Integer -> Integer -> Integer
gcd : Integer -> Integer -> Integer

Each term of the sum is given by term:

term : ((Integer -> Rational 3)
= C C \ i . l e t f = i * 8

i n (4 % (f + 1)) - (2 % (f + 4)) -
(1 % (f + 5)) - (1 % (f + 6)) 13

Recall from Section 7.2 that functions are not necessarily liftable. Hence this definition,
and those following, must be deferred by one stage so that it may be included in the code
of the result document.

The base-16 digits are computed as a lazy list. The calculation is careful to expand enough
(and only enough) terms ahead of the current digit to guarantee it cannot be changed by
a carry-propagation from deeper within the expansion:

next-digit : CC Rational -> Integer 1)
= CC \r . numerator r 'div' denominator r))

hex-digits-of-pi : {C L i s t Integer 33
= CC l e t r e c next

= \i scale remainder .
l e t d i g i t = -next-digit remainder;

e r ro r = 1 % scale
d i g i t ' = -next-digit (remainder + error)

i n i f scale > 1 && d i g i t == d i g i t ' then
d i g i t : : next i (scale 'div' 16)

((remainder - (d ig i t % 1)) * (16 % 1))
e l s e

next (i + 1) (scale * 16)
(remainder + (-term i * (1 % sca le)))

i n next 0 1 0 1)
The stream of fractional base-16 digits must then be converted to base-10. Again, the cal-
culation looks-ahead just enough base-16 digits to ensure the current base-10 digit cannot

change:

dec-digits-of : (C L i s t Integer -> L i s t Integer 3)
= (C \hs .

l e t r e c next = \(h : hs) dec-scale hex-scale remainder .
l e t d ig i t = -next,digit

(remainder * (dec-scale % 1)) ;
er ror = 16 % hex-scale
d ig i t ' = -next-digit ((remainder + error) *

(dec-scale % 1))
i n i f d ig i t == d ig i t ' then

d i g i t : : next' (h : hs) (dec-scale * 10)
hex-scale
(remainder - (d ig i t % dec-scale))

e l s e
next3 hs dec-scale (hex-scale * 16)

(remainder + (h % hex-scale));

next' = \hs dec-scale hex-scale remainder .
l e t f ac to r = gcd dec-scale hex-scale
i n next hs (dec-scale 'divc factor)

(hex-scale 'd ivC factor)
(remainder * (factor % 1))

i n next hs 10 16 0 33
Calculating n as a string in base-10 is straightforward:

p i : ((String 33
= CC l e t hex-pi = -hex-digits-of-pi

i n charOfDigit (head hex-pi) :: '.' . .
map charOfDigit (-dec-digits-of (t a i l hex-pi)) 3)

Here charOfDigit : Integer -> Char maps a digit to the character code representing it.

The server can now be presented:

server : Handle -> I0 0
= \h . let errorDoc = <Html><Body>

Server Error: ill-typed request
</Body></Html>

in try
let req <- readcode h;

n <- run req
in let title = itostr n ++ " digits of pi";

heading = ((<Head><Title><<title>></Title></Head> 1);
body = \digits .

((<Body><Hl><<title>></Hl><<-digits>></Body> 11;
html = ((let pi = -pi

in <Html>
<<-heading>>
<<-(body ((take (n + 1) pi I))>>

</Html> 13
in writecode h (forget html)

catch
writecode h (forget errorDoc)

Given the appropriate handle, server attempts to read a piece of code, and then runs it
to check it is an integer. 111-typed requests are sent an error message as a reply. Otherwise,
the code to calculate T is spliced into a let-binding in the result program, which is sent
as reply.

Notice that all generated code is statically typed throughout this example program, and this
type information is forgotten only at the point that code must be written by writecode.
Hence. the programmer can be sure only well-typed programs will be constructed at run-
time. Also note that the argument to body in server:

((take (n + 1) pi 11
contains three different ways of using variables within defer expressions:

take is a standard library function, and hence assumed to be available at all stages
and in all run-time environments.

n is a stage 0 variable, but since Int's are liftable, may be used at stage 1 without
explicit lifting.

pi is a stage 1 let-bound variable, which is bound to the code produced by the stage
0 variable of the same name.

To complete the example, consider a client program to request the first 30 digits of T, and
displays the result:

renderHtml : Html -> I0 0
- - . . .

client : Handle -> I0 0
= \h . let errorDoc = <Html><Body>

Client Error: ill-typed reply
</Body></Html>

in let () <- writecode h (forget (C 30)I) ;
code <- readcode h

in try
let html <- run code
in renderHtml html

catch
renderHtml errorDoc

Notice how the client fails gracefully with an error message should the server return an
ill-typed document.

If all goes to plan, the client will render the HTML page:

<Html>
<Head>
<Title>30 digits of pi</Title>

</Head>
<Body>
<H1>30 digits of pi</Hl>
3.14159265358979323846264338327

</Body>
</Html>

Chapter 9

Formal Development

The aim of this chapter is to formalise ASC to the point where we may prove that any
program of type T either diverges or evaluates to a value of type T . We shall develop a
type-checking system, a denotational semantics, and show soundness. We will not, however,
show type inference or correctness of the semantics with respect to an unstaged language,
both of which are quite subtle problems worthy of future research.

9.1 Syntax

Figure 9.1 presents the syntax of AS', most of which should be familiar from examples.
The only novelty is the e x i s t s primitive constraint. The discussion of satisfiability of ATIR

constraints in Section 2.9 is also applicable to AS'. Partly for historical reasons, and partly
for variety, we have chosen within ASC to ensure the satisfiability of type-scheme constraints
by using existential constraints instead of preventing redundant let-bindings as was done
for ATIR. Existential constraints play no part at run-time.

We often write t r u e for the trivial (empty) constraint ., and will assume constraints are
equal up to permutation of their primitive constraints. We use K, to range over all kinds,
which in ASC includes only Type.

Run-time terms, shown in Figure 9.2, make witness binding (letw B in T), witness ab-
straction (A(wl,. . . , w,) . T) and witness application (T (Wl, . . . , W,)) explicit. They
also associate a witness with run (run T a t W), and l i f t (lift T using W). In practice,
the witnesses themselves are simply representations of monotypes.

Both typed and untyped code is represented in the run-time language using the (tl) con-
struct, in which tl is (almost) a source language term rather than a run-time term. We
must use a source term because dynamically typed code cannot be translated to run-time
code until run-time, and hence must remain in source language form. However, tl is not
quite a source language term, as any splice at stage 1 within it must drop back into run-
time syntax. This stage dependency is captured by defining the family t, of terms for
each stage n > 0. To avoid unnecessary clutter, we shall drop these subscripts wherever
possible.

In the following we shall assume all terms are hygienic [a]; that is, no bound variable ever
shadows another. This restriction applies even across stages, so than \x . ((\x . 1)) is
not hygienic. Of course in a practical application this condition is too restrictive, and type
inference and type checking must deal with shadowed variables. The safest approach would
be to shadow independently of stage, so that the second x shadows the first in the above

Kinds n ::= Type
Type variables a ,b ::= a l b l c l ...
Types T,V ::= Int 17 - > v 1 (€ T 33 I C?3 1107 1 a
Prim constraints c ::= rttype T 1 l i f t a b l e T 1 e x i s t s A . C
Constraints C ::= c1,. . . , C, where n 2 0
Type var contexts A ::= a1 : nl, ..., a, : K, where n 2 0
Type schemes a ::= f o r a l l A . C => T

Variables x ,y ,z ::= X I y I z I ...
Integers a
Constants k ::= i I throw I (try , catch -1 I putint I getint
Source terms t ,u ::= x l k) \ x . t l t u

I l e t x = u i n t 1 l e t rec x = u i n t
I € (t)) I (? t ?) I - t l l i f t t
I unit t I l e t x <- u in t I run t

I Type contexts I' ::= xl 01, .. . , xn : an where n > 0 I
I I

Figure 9.1: Syntax of ASC source types and terms

term. An implementation would thus have to replace a type context vector with a single
map taking a variable name to a pair of a type scheme and a stage number.

In Section 9.5 we shall see that the hygienic invariant can only be maintained by renaming
bound variables within code at run-time.

9.2 Well- kinded Types

We write +t to denote the concatenation of two type variable contexts. This operation
is undefined if any variable occurs in both contexts. We write Ainit for the type variable
context defining the kinds of any type constants. In AS', hinit may simply be the empty
context. We write to denote the w-vector A. ; Al ; All but a finite number of A's are

-< n
A,,. We write xn to denote A,, and A- for Ao;. . .;An;Ainit;Akit;. . .. We write x+knA'
forthevectorAo; ...;(A , S ~ A ') ; A , + ~ ; - ... a n d h i - k z f o r (A o u A ~) ; (A l + t A l ,) ;
By a slight abuse of notation, we write Ainit to denote Ainit ; Ainit ;

Figure 9.3 presents rules for deciding the judgement I-" T : n, with intended interpreta-
tion:

"Type T has kind n at stage n assuming (for every i 2 0) the free stage i type
variables are kinded according to x'."

Since every type, and every type variable, has kind Type, the real purpose of this judgement
is to enforce a form of binding-time correctness on type variables. Assume for the sake of
the following examples that A-bound variables may be type annotated. Then in the term

Witness vars w ::= w
Witnesses W ::= w 1 True 1 lnt 1 Wl + W2 I {{ W)) I {?) 1 10 W
Witnessbindings B ::= w l = W l , . . . , w n = W n where n 2 0
Constants K ::= i 1 throw I (try -catch -) I putint 1 getint
Stage-n terms tn,un ::= x I k 1 \X . tn 1 tn U,

I let x = u, in tn I letrec x = u, in tn
I CC tn+l 33 I C? tn+l '3 I lift tn
I - T i f n = l
1 - tn -~ i f n > 1
I unit tn I let x <- un in tn I run tn

Runtime Terms T , U ::= x 1 K 1 Ax. T I T U
I letw B in T I A(wl,. . . , wn) . T I T (Wl,. . . , Wn)
I let x = U in T I letrec x = U in T
I (tl) I lift T using W
(unit T I let x t U in T 1 run T at W

Figure 9.2: Syntax of ASC run-time terms

the type ((a 3) assigned to y is well-kinded since a is introduced at stage 1. However, in
the term

the type a assigned to y is binding-time incorrect. This term will be rejected by the VAR

rule.

Notice that type variables may be implicitly lifted across stages. For example, in

the type variable a is introduced at stage 1 and used at stage 2.

Figure 9.3 also extends the well-kinding judgement to type schemes, and constraints. Care
must be taken to prevent constraints from containing any type variables from a stage

-< n
later than the constraint itself: hence the projection A- in rules RTTYPE and LIFTABLE.

Without this restriction, it is possible for a type variable to leak from a later stage to an
earlier stage via the constraint simplification system. For example, in

((\x : a . -(fst (((x 33, run (C x 33)) 33
the run (at stage 0) would introduce the constraint rttype C(a 33 (also at stage 0).
Though we shall not present constraint simplification rules for ASC, any reasonable imple-
mentation would simplify this constraint to rttype a, which would be ill-kinded at stage
0. Hence the term above should be rejected.

We extend well-kinding of type schemes to type contexts pointwise.

We let 8 range over substitutions, which are idempotent maps from type variables to types -
such that only a finite number of variables are mapped away from themselves. In the
following, let A 1- 8 gsubst (read "6' is a ground substitution for A") if dom(8) C dom(A)
and V (a : K) E A . O,,it Fo 8 a : K.

- -
A I-" T : Type A I-" v : Type

- INT - FUN
A I-" Int : Type A P T - > v : T y p e

-
A tn+' T : Type

- CODET - CODEU
A Fn {{ T 33 : Type A Fn (?I :Type

-
A t n r : T y p e (u : ~ y p e) € z ~ m s n

I 0 - VAR
A k n I 0 ~ : T y p e A bn u : Type

- I A t-" a scheme I
-
A +tn A' I-. C constraint +kn A' Fn T : Type

- SCHEME
A tn foral l A' . C => T scheme

- 1 A Fn C constraint I
-<n A- I-" T : Type -< n

A- I -"~ :Type
RTTYPE - LIFTABLE

A I-" rttype T constraint A I-" l i f tab le T constraint

-
A *" A' I-, C constraint V i . (z Fn c, constraint)

- EXISTS - CONSTRAINTS
A I-" ex i s t s A' . C constraint A I-" C I , . . . , C , constraint

Figure 9.3: Well-kinded ASC types, type schemes and constraints

9.3 Constraint Entailment

The well-typing rules require a notion of constraint entailment. For example, l i f t t will be
well typed if t has type T and the current constraint context entails l i f tab le T. Roughly,
C entails D when every satisfying substitution for C also satisfies D. However, as explained
in Section 7.7, entailment must also construct a witness for each primitive constraint in D.

In the following, we will associate witness variables with primitive constraints. Constraints
containing such names are termed constraint contexts by analogy with ordinary contexts:
w : c means "w is bound to a witness of c at run-time" just as x : a means "x is bound to a
value of type a at run-time." To avoid unnecessary syntactic clutter, we shall use C and D
to range over both constraints (as defined in Figure 9.1) and constraint contexts. We write
named(C) for the constraint context formed by associating fresh witness names with each
primitive constraint in constraint C . We write names(C) for the tuple of witness names in
constraint context C. We write unon(C) for the constraint formed from constraint context
C by erasing all witness names.

Figure 9.4 presents rules for deciding the judgement C Fe d v W, with intended interpre-
tation: "C entails primitive constraint d, with witness W." Notice that W may mention

d = r t type T V d = l i f t a b l e T

LIFTINT
C ke l i f t a b l e I n t L) In t

RTTY PEINT/RTTY PECODEU
C Fe r t type ~ n t / (?) v Int/{?)

C ke r t type T v W
RTTYPECODET

C ke r t type (C T 3) v {{ W))

C F e r t type v c, W C Fe r t type T v W'
RTTYPEFUN

C ke r t type (v -> T) v (W + W')

C te r t type T v W
RTTYPEIO

C ke r t type (I0 T) v 10 W

EXISTSTRIV
C F e ex is t s A . t rue v True

C ke r t type anyground(A,r) v - C F e ex i s t s A . D v True
EXISTSRTTYPE

C ke ex i s t s A . (r t type T , D) v True

a E dom(A) C Fe ex i s t s A . D v True
EXISTSLIFTA

C Fe ex i s t s A . (l i f t a b l e a , D) c, True

fv(d) n dom(A) = 0 C F e d v - C ke ex i s t s A . D v True
EXISTSLIFT

C F e ex is t s A . (d, D) v True

Vi. (C ke w; : d, v W;)
CONJ

C k e w : d v z u = W

Figure 9.4: Entailment of ASC constraints

[w] , = 7 W [True], = ttrue : *
[lnt], = tint : * [W -+ W'], = tfun : ([W],, [W'],)

I[{{ W))], = tcodet : [W] , [{?)], = tcodeu : *
[I0 W] , = tio : [W] ,

Figure 9.5: Denotation of ASC witnesses into 7, and the definition of env

[rttype ~ n t] = {tint : *)
[rttype (v -> r)] = {tfun : (t , t ') I t E [rttype v] , t' E [[rttype r])
[rttype (C r I)] = {tcodet : t I t E [rttype r])

[rttype (?I] = {tcodeu : *)
[rttype (I0 r)] = {tio : t I t E [rttype r])

[l i f t ab le 1nt1 = {tint : *)
I[liftable -] = 0

[exists Q . K j = {ttrue : * I k0 n7 K , i [c , [a] j # 0) I
Figure 9.6: Denotation of ASC ground primitive constraints as subsets of 7

the witness variables of C . This judgement is extended pointwise to general constraint
contexts by the CONJ rule.

In rule EXISTSRTTYPE we write anyground(A, r) to denote the type rl-1, where A =
a1 : ~ 1 , . . . , a, : K , and v, is a dummy type such that ai,,t I-' v , : K i . (Since our only
kind is Type, each v , may simply be Int) . The function anyground is a degenerate form
of skolemisation.

9.3.1 Soundness of Entailment

Witnesses may be given a trivial denotation in the set 7 defined by:

7 = (ttrue : 1 + tint : 1 + tfun : 7 x 7 + tcodet : 7 + tcodeu : 1 + tio : 7)

Notice there is an injector for each monotype form, in addition to an injector representing
the trivial witness True.

The semantics is given by Figure 9.5. We let q range over valuation environments mapping
witness names to witnesses in 7 (and in the sequel, variable names to values in E V).
Figure 9.5 also defines the ancillary function env to convert a witness binding B to an
environment.

Given t E 7 , let typeof (t) be the unique ground type T such that [rttype r] = t. This
function is undefined if t is or contains ttrue : *.
We now wish to check that witnesses built by the entailment relation do indeed "witness"

i : I n t
throw: f o r a l l a : Type . IOa

(t r y - ca t ch -) : f o r a l l a : Type . I0 a - > I0 a - > I0 a
putint : In t -> I0 In t
ge t in t : I0 In t

I I

Figure 9.7: Types for XSC constants in

their corresponding constraints. Figure 9.6 defines the meaning of a ground constraint as
either the empty set (the constraint is unsatisfiable) or a singleton set containing the sole
witness.

We say q + w : c if q w E [c]. This definition is extended pointwise to q C .

Lemma 9.1 (Soundness of Entailment) Let A ; F0 C constraint and A ; I-O

d constraint and A I- 8 gsubst and q 0 C . Then

(i) C F e d v W implies [WBll E [8 d]

(ii) C Fe w : d v w = W implies V i . [W;], E 88 d;]

Proof See Lemma D.1.

Lemma 9.2 (Transitivity) Let 8 be a well-kinded grounding substitution. If t rue F e
8 C v B and C F e D L, B' then t rue F e 8 D cs B" and env(B") =

Iname.q(D).

Proof See Lemma D.2.

Lemma 9.3 (Closure of Entailment) If A ; n' I-" C I D constraint and A I- 8 gsubst
and C F e D then 8 C Fe 8 D

Proof See Lemma D.3. •

Lemma 9.4 Let c be a primitive constraint such that Ainit ;a' I -O c constraint and t rue F e
c v W.

(i) If c = w : r t type 7 then typeof ([W].) = T

(ii) If c = w : l i f t a b l e 7 then typeOf([W].) = T and 7 E { ~ n t) .

(iii) If c = ex is t s A . C and A = a1 : n 1 , . . . , an : nn then there exists E s.t. V i .
& F0 v; : IE; and t rue F e C [m] .

Proof Immediate from Lemma D.1.

9.4 Well-typed Terms

We write to denote the w-vector ro ; ; . . ., which enjoys the same conventions as for -
A. rina contains type schemes for the constants, as defined in Figure 9.7.

We write to denote the n-vector Co ; Cl ; . . . ; C,, where each C, is a constraint context.
Here n is typically the "current" stage number and hence implied by context.

It is important to notice that is vector-like, whereas 3 is stack-like. This difference is
because free variables persist across stages, whereas constraints must not.

Figure 9.8 presents rules for deciding the judgement I C I I-' t : 7 v T with intended
interpretation:

"Term t is a stage 0 term of type r, and is translated to the run-time term
T, assuming (for every i 2 0) variables in F' are bound at stage i to values of
their assigned type, and assuming the satisfiability of the constraint C, both
of which assume the type variables in X' are substituted at stage i with types
of their assigned kind. Furthermore, T assumes the witness names in C to be
bound at stage 0 to witnesses."

Two more judgements are required to extend the notion of well-typing to all stages. The
rules for these judgements are shown in Figures 9.9 and 9.10.

The judgement I ?? I F I-2' t : 7 v t;+' is true when t is code at stage n + 1 of type
7. This term is rewritten to the same term, except with any stage 0 sub-terms within it
rewritten according to the stage-0 judgement given above.

- - -
The judgement A I C I I' t-2' t : T c, t;+' is similar, except that the type r assigned to
t is "advisory." That is, it is possible for t to evaluate, at stage n + 1, to code of any type,
or even be ill-typed. However, it is also possible that t may be well-typed with type 7.
The purpose of this judgement is to attempt to reject at compile-time dynamically typed
code which can never yield well-typed code at run-time. As mentioned in Section 7.5, this
checking is unnecessary, and is included only as an additional aid to program correctness.

Since these two judgements differ in only 6 places we present most of the rules as a rule
schema, using b to range over {tt, ff).

Rules ABSO, APPO and LETREC are those of a conventional polymorphic A-calculus, except
with contexts extended to all stages. Similarly, rules UNITMO and LETMO type the two
monadic constructs.

Rules LETO and VARO respectively introduce and eliminate constrained type schemes. The
hypotheses for rule LETO are somewhat daunting! We explain the situation as follows. The
let-bound term u may inherit the constraints in Dl from its context C. These constraints
must be entailed by C, and must not mention any type variables which u's type will
universally quantify. However, u may also require an arbitrary additional constraint D2,
and both D2 and u's type v may require an arbitrary additional type variable context A'.
However, for semantic reasons which will become clear in the sequel, we must ensure that
D2 is satisfiable. Hence we also ask that C entails the constraint e x i s t s A' . D2.
One more subtlety with rule LETO remains. Some constraints should never be inherited
from C. For example, implicit parameters [57] cannot be inherited, otherwise they would
become lexically rather than dynamically bound. We let inhert(D1) be true if all the

-0 - (z l k : fora l l - . D = > r) 7) I' A n o m
D' = named(D) C be Dl[-] v B

- VARO
A I C I TI-' xlk : r [m] v letw B in xlk names(Dr)

- -
- A I-' v : Type A] - C I F I - O ~ : (~ - > T) V T
A I C ~ ~ + ~ ~ X : V F ~ ~ : T V T A I C I ~ F ~ U : ~ V u

- ABSO - APPO
A / c I T ' k O \ x . t : (~ - > T) V A X . T A I c I F I - O ~ U : ~ V T u

-
A I-' Dl constraint 3 +to A' I-' D2 constraint inherzt(D1)

C I-" Dl v B C e x i s t s A' . D2 v True -
A + ~ ' A ' I D ~ + ~ D ~ I ~ ~ ' u : v v U -

A I C I ?; it0 x : (f o r a l l A' . anon(D2) => v) F0 t : T v T
- LETO
A1 ~ ~ ~ F ~ 1 e t x = u i n t : r v l e t x = (l e t w ~ i n ~ n a m e s (~ ~) . U) i n T

-
AI-'v:Type - 51 C I ~ + t O x : v I - O u : v v U

A1 C ~ ~ + ~ - ~ x : v l - ~ t : ~ v T
- LETRECO
A1 ~ ~ ~ I - ' 1 e t r e c x = u i n t : r ~ l e t r e c x = Uin T

- A I C I F F O U : I O V V u ~ I c I F + ~ O X : V ~ - O ~ : I O T V T
- LETMO
A1 C I ~ I - O l e t x < - u i n t : ~ ~ r v l e t x t Uin T

- -0 0 A1 c (? ; F 0 t : r V T A I- r :Type C k e l i f t a b l e r v W
- LIFTO
A I C I r!-O l i f t t : ((7 33 C) lift T using W

-
A1 c l r I - 0 t : r r r 3 3 v ~ P I - ' r : T y p e C F e r t t y p e r v W

- RUNTO
A1 ~ ~ F I - ' r u n t : ~ o r v r u n T a t W

-
A] C I r k 0 t :{?I- T 2 k ' ~ : T y p e C F e r t t y p e r v W

- RUNUO
A1 ~ (f ; I - ' r u n t : 1 0 r v r u n T a t W

Figure 9.8: Well-typed ASC stage 0 terms

-
A I-.+' v : Type -

A I E ; ~ I F + ~ + ~ x : v I - ; + ~ ~ : T V ~ ~
ABS 1

h I C ; C ' I F k ; + l \ x . t : (v - > T) V \ Z . t'

- -
A kn+l Dl constraint A ft-n+l A' In+' D2 constraint inherit(D1)

- C' Fe Dl C' ke ex i s t s A' . D2

- A + ~ - ~ + ' A ' ~ ~ ; D ~ - H D ~ IFI-;+~ u : v + u l
A I ; C' I F +tn+' x : (f o r a l l A' . anon(D2) => v) I-;" t : T + t'

- - LET^ A I ~ ; ~ ' ~ F ~ ~ + ~ 1 e t x = u i n t : r + 1 e t x = u ' i n t '

Figure 9.9: Well-typed XSC stage n + 1 terms (part 1 of 2)

-
A A' Fn+2 D constraint i+n+2 At I ; C' ; D I i? t : r v t'

- DEFERU~
A I c ; C ' I r F ~ + ' C ? t ? > : (? 3 v { ? t 1 ? >

- -
A I C ; c' I F k;+l t : {?I v t' A T : Type

- SPLICEU~
~ l G ; ~ ' ; ~ l f F ~ ~ - t : r v - t '

- -<n+l
A I c ; C ' I ~ F ; ' ~ t : r v t' A- Fn+'r:Type C 'Fe l i f t a b l e r

- LIFT^
~Ic;~'IfiF;+~lift t : { t r 3) v l i f t t t

- -<n+l
A IT; e I rl-;" t : cc r 33 v t' A- r : Type C 'Fe r t t y p e r - RUNT^

A I E ; ~ ' I F t - ; + ~ r u n t : ~ o ~ v r m t '

I I
Figure 9.10: Well-typed ASC stage n + 1 terms (part 2 of 2)

constraints in Dl may be satisfied by the context of the let-binding rather than the context
of each occurrence of the let-bound variable. We assume inherit (D l) implies inherit(8 Dl)
for any 8. It is because of inherit that we require only that C entail Dl, rather than
the stronger C = Dl. Otherwise, for example, any implicit parameters in C would cause
inherit(C) to fail, regardless of whether u mentioned these parameters. Of course, in ASC
inherit(D) may be true for every D.

The rules DEFERTO and DEFERUO are responsible for all of the additional complexity of
AS'. In DEFERTO, an expression CC t >> at stage 0 is well-typed if t is (definitely) well-
typed at stage 1 with no residual constraint context. Similarly, in DEFERUO, an expression
C? t ?I at stage 0 is well-typed if t can be assigned some type under an arbitrary constraint
context. Notice there is no requirement that D even be satisfiable.

Rule LIFTO allows a term to be lifted by one stage if it is of a suitable type. Note that a
term may be lifted to an arbitrary stage by nesting splice and lift expressions. The check

that T be well-kinded using only free type variables from stage 0 prevents the type variable
leakage problem mentioned above.

Rules RUNTO and RUNUO are identical, save for the type of code being run. Notice the
inclusion of the constraint rttype T . As with rule LIFTO, these rules must also check for
possible type variable leakage.

The typing rules for terms at stages above zero are for the most part a direct lift of those
at stage zero. We shall consider only the exceptions.

Rule FORGET^ allows a definitely well-typed term to be coerced to a possibly well-typed
term, and is included only to avoid duplicating rules V A R ~ , DEFERT~ and SPLICETI. (This
rule saves quite some effort later.)

The reader may wonder why the conclusion in rule DEFERU~ uses the I-:+' judgement
rather than since once code t is wrapped as (? t ?) its type is no longer visible.
Unfortunately, such a variation would complicate the proof of soundness, since it is possible
for t to evaluate to an untypable piece of code at run-time.

Rule SPLICET~ is the dual to DEFERTO. Notice that the current constraint context is
dropped when moving down a stage. This rule must also be replicated over all higher
stages, hence SPLICET2.

Rules SPLICEU~ and SPLICEU~ are similar, but allow the type of spliced code to be chosen
arbitrarily. In this way, terms such as

l e t f = \code : C?3 . ((-code + 1 3)
may be type checked by assuming code will yield an expression of type Int at run-time.

9.5 Denotational Semantics

We now turn our attention to the precise semantics of XSC programs. There are three
aspects which make it somewhat complicated.

Firstly, because generated code may contain free variables, care must be taken to avoid
name capture. For example in:

l e t f = \code . CC \x . -code + x 3)
i n ((\x . -(f CC x 33) 33

applying f to CC x 33 should yield

and not

Furthermore, there is no way to bound the amount of renaming at compile-time. Consider:

l e t rec f : Int -> L i s t C(Int 33 -> <(Int -> Int 33
= \n vs . i f n = 0 then

((\x . - (fo ldr (\v c . i(-v + -c 33) ((x 33 vs) 33
e l s e

({ \x . - (f (n - 1) ((C x 33 :: vs)) 1 33

Then f 2 C1 should evaluate to

and, in general, f n [I requires n + 1 fresh names.

Thus, any implementation of ASc must carry around a fresh name supply while rebuilding
code, and any honest semantics should model this behaviour.

Secondly, in an implementation, eagerly renaming bound variables as they are encountered
while generating code would be of quadratic complexity. Instead, renaming should be per-
formed incrementally as code is generated by carrying around a renaming environment.
Notice that since variables are lexically rather than dynamically scoped, incremental re-
naming requires the construction of "renaming closures," analogous to the value closures
already required for partial applications. In order to show the correctness of this optimi-
sation, the semantics should do likewise.

The final source of complexity stems from our desire to apply laziness to all
aspects of execution of ASC programs. For example, since programmers are
accustomed to let x = undefined in 1 evaluating to 1, they most likely expect
let x = (C -undefined 33 in 1 and let x <- unit undefined in unit 1 to do likewise.
The former implies code rebuilding must be done lazily, and the second implies monadic
commands require a two-level semantics. Modelling lazy rebuilding, whilst also capturing
the renaming behaviour above, involves some subtlety.

Moggi [73] has developed a functor-category semantics for two-level languages, which in
turn follows the pioneering work of Oles [81] on the semantics of block-structured variables
in Algol. This style of semantics is also suitable for ASC, since we way regard all stages
greater than zero to be a single "dynamic stage." However, it suffers two drawbacks.
Firstly, because ASC types and type contexts are indexed by a kind context, a functor-
category presentation would require an indexed base category, and hence the calculations
could become fairly involved. Secondly, and more importantly, we would like to be able to
extend ASC with the constructs of ATIR developed in Part I. Since the types of values passed
at run-time often depend on indices generated at run-time, ATIR is most conveniently given
an untyped semantics. Thus we would like ASC's semantics to be similarly untyped.

Our semantics of terms will be pleasingly close to that of a practical implementation, and
will make explicit the name generation and renaming mentioned above. Many aspects of
the functor-category semantics reappear within the semantics of types. For example, the
semantics will be indexed by a kind and type context vector, and great care will be taken to
exclude terms which do not behave uniformly upon renaming. However, we should stress
that this connection is, at present, purely informal.

9.5.1 Monads

The denotational semantics will be given in a monadic meta-language [72] over five com-
putational monads [70]. Though each monad is very simple, and thus a direct semantics
would also be quite feasible, this approach has three advantages:

It helps clarify the overall structure of the semantics, and makes, for example, the
difference between values, computations, and closures explicit;

E A = { I) u {[a] 1 a E A)
unitE : A + E A

= Aa . [a]

bindE : E A + (A + E B) + E B
=Aeaf . c a s e e a o f { I + I ; [a] + f a)

strengthE : A x E B + E (A x B)
= Aa eb . case eb of {I + I ; [b] + [(a, b)])

fixE : (E A + E A) + E A
=Af . p e a . f ea

Figure 9.11: Evaluation monad E

It factors the semantics so that extensions such as imprecise exceptions [86] or mu-
table references may be added without the need to restructure the semantics as a
whole; and

It may be possible to replace the definitions of these monads with ones which &nerate
code to perform a command, rather than perform the command directly, thus yielding
a simple compiler [36].

In the following, we shall work both in P D o m (pre-domains and continuous functions)
and D o m (domains and continuous functions).

Figure 9.11 presents the monad E of possibly-diverging computations. In this and all
subsequent monad definitions we use A and B to, informally, range over all (pre)domains.
We assume the usual order-theoretic structure on the result. We write px . F[x] to denote
UjE,(Ax . F[x])' I D) , where (Ax . F[x]) : D + D for some domain D with least-element
ID. In the definition of fixE, clearly IE=I.

Figure 9.12 defines a family of reader monads, which is instantiated in Figures 9.13, 9.14,
and 9.15 for reader monads over a renaming environment (R), a fresh-name supply (M),
and both of the above (N). We assume S, the set of all variable names, is countably
infinite. The empty renaming is denoted by 0, and Names is all infinite lists of distinct
variable names. We write name^,^ to denote only those lists which do not contain any

variable in Ui dom(ri).

We write letM x t u in t as shorthand for bindM u (Ax . t), and assume strengthM is
used to distribute variables over multiple let-bindings as required (see Moggi [72] for the
precise construction.)

Figure 9.16 defines the monad I 0 of integer Input/Output with a single exception using a
resumptions-style semantics [go]. The local domain equation for ZO is solved in Dom, but
I 0 itself is a functor in both D o m and PDom. Notice we have elided all applications of the
in and out functions mediating the isomorphism between ZO and its one-step unfolding.

The operator bindIO performs a fold over its first argument looking for the final (unit : a)
to pass to its second argument. Notice the body of the p binding of I is a function from
I 0 A + I 0 B, and thus

D E A = E + E A

unitDE : A + D E A
= X u . Xe. unitE a

bindDE : D E A + (A + D E B) + D E B
=Xraf . X e . l e t E a t r a e i n f a e

strengthDE : A x D E B + D E (A x B)
= Xa rb . Xe . strengthE (a, rb e)

closure; : D E A + D E (E A)
= X r a . Xe . unitE (m e)

closure fun^ : (A + D E B) + D E (A + E B)
= Xfrb . Xe . unitE (Xa . f rb a e)

closurefix; : (E A + D E A) + D E (E A)
= Xfra . Xe . fixE (Xea . fra ea e)

liftgE : E A + D E A
= Xea. Xe. ea

prodDE : D E A + D E B + D E (A x B)
= Xra rb . Xe . letE a t ra e

in letE b t rb e
in unitE (a, b)

Figure 9.12: Reader monad D E

S = all variable names
RenEnv = S +fin S

R A = D RenEnv A

strengthR = strengthD RenEnv

E closure: = closureD RenEnv

E closurefun: = closurefunD RenEnv
E closurefix: = closurefixD RenEnv

lift2 = lift:

getR : S + R (name : S + undef : 1)
= Xnm . Xenv . unitE (if nrra E dom(env) then (name : env nm)

else (undef : *))
runR : R A + E A

= Xra . ra 0

Figure 9.13: Renaming monad R

I Names = List S I
M A = D Names A

unitM = unitD Names

bindM = bindD Names

strengthM = strengthD Names

lift2 = lift:

I
Figure 9.14: Name supply monad M

N A = D (Names x RenEnv) A

 unit^ = unit^ (Names x RenEnv)

 bind^ = bind^ (Names x RenEnv)

strengthN = strength^ (Names x RenEnv)

 prod^ = prod^ (Namesx RenEnv)

renameN : S + N A -+ N (S x A)
= Anna na . X((nmr : nms), env) . letE a t na (nms, (env[nm e nm']))

in unitE (nm', a)

closure$: N A + R (M A)
= Xna . Xenv . unitE (Xnms . na (nms, env))

lift: : R A + N A
= Xra . X(nms, env) . ra env

lifts : M A + N A
= Xma . X(nnas, env) . ma nms

Figure 9.15: Name supply and renaming monad N

The operator trycatchlo is similar to bindIo, except that if the first argument yields an
(exception : *), the second argument is spliced into the resumption. In effect, this runs
the first command till completion, unless an exception is raised, in which case execution
switches to the second command.

We say ea evaluates to a (in the E monad), written ea UE a, if ea = [a]. Similarly, we say
ioa evaluates to a (in the I 0 monad), written ioa $10 a , if

ioa $E (unit : a)
V 32, ioa' . ioa UE (putint : (z, ioa')) A ioa' qIo a
V ioa UE (getint : f) A 32 E 2 . (f z) UIo a

Notice that

and

I 0 A = Z O
where ZO = E (unit : A + exception : 1 + putint : 2 x ZO + getint : 2 + TO)

unitIo : A + I 0 A
= Xa . unitE (unit : a)

bindIo : I 0 A + (A + I 0 B) -+ I 0 B
= Xioal f . (pi . Xioa2 . letE v t ioa2

in case v of {
unit : a + f a;
exception : * -+ unitE (exception : *);
putint : (z , ioa3) -+ unit^ (putint : (z, I ioa3));
getint : g -+ unitE (getint : Xz . I (g z))

1) goal
strengthIo : A x I 0 B + I 0 (A x B)

= Xu iobl . (p1. Xiobz . letE v t i o b
in case v of {

unit : b -+ unitE (a , b) ;
exception : * -+ unitE (exception : *);
putint : (z , 20b3) + unitE (putint : (2, E aob3));
getint : g + unitE (getint : Xz . 1 (g z))

1) 20bl
putintIo : 2 + I 0 1

= Xz . unitE (putint : (z,unitE (unit : *)))
getintIo : I 0 2

= unitE (getint : Xz . unitE (unit : z))

throwIo : I 0 A
= unitE (exception : *)

trycatchIo : I 0 A -+ I 0 A -+ I 0 A
= Xioal ioa2 . (pi . Xioa3 . letE v t ioa3

in case v of {
unit : a + unitIo (unit : a) ;
exception : * -+ ioa2;
putint : (2 , ioa4) + unit^ (putint : (z , l ioa4));

1) ioal
liftko : E A + I 0 A

= Xea . letE a t ea in unitE (unit : a)

Figure 9.16: 1 / 0 monad I 0

M I 0 A = Names + I 0 A

unitMIo : A + M I 0 A
= Xa . Xnms . unitIo a

bindMIo : MI0 A + (A + M I 0 B) + MI0 B
= Xmioa f . Xnms . bindIo (mioa nms) (Xa . f a nms)

strengthMIo : A x MI0 B + M I 0 (A x B)
= Xa miob . Xnms . strengthIo (a, miob nms)

putintMIo : 2 + M I 0 1
= Xz . Xnms . putintIo z

getintMIo : MI0 2
= Xnms . getintIo

thrOwMIo : MI0 A
= Xnms . throw10

trycatchMIo : MI0 A + M I 0 A + M I 0 A
= Xmaoal mioaz . Xnms . trycatchIo (mioal nms) (mioa2 nms)

liftY1O : E A + M I 0 A
= Xea . Xnms . l i f t 2 ea

lift%Io : M A + M I 0 A
= Xma . Xnms . liftLO (ma nms)

Figure 9.17: Name supply and 110 monad M I 0

Finally, Figure 9.17 defines the monad M I 0 of Inp~t/Output with a fresh name supply.

All of these monads obey the laws:

u n i t M t = u n i t M u =$ t = u
letM x t unitM u in t = t[x I+ U]

l e t M x t u i n u n i t M x = u
letM y t (l e t M x t u i n w) i n t = l e t M x t u i n y t w i n t wherex@fv(t)

lift:, (lift$ t) = lift; t
lift$ (unitM t) = unitN t

letN x t lift; u in lift; t = l i f t5 (letM x t u in t)

Here M and N range over all monad functors, and t, u and w denote meta-terms (and
not terms of XSC!). We shall exploit these equalities in the sequel, generally without special
mention.

The strengthM operator also obeys:

s trengthM (t, unit u) = unitM (t, u)
let v t strengthM (t, u) in s trengthM v = strengthM (t , letM v t u in v)

let (-, x) t strengthM (*, t) in unitM x = t
s t rengthM (t, s t rengthM (u, w)) = let ((x, y), z) t strengthM ((t, u), w)

in unitM (x, (y, z))

2 = all integers

V = (dwrong:1+dvar:S+dconst:k+dabs:SxV+dapp:VxV
+ dlet : S x V x D + dletrec : S x V x D
+ ddeft : V + ddefu : V + dsplice : V + dlift : V
+ d u n i t m : V + d l e t m : S x V x V + d r u n : D)

V = (wrong: l + i n t : Z + f u n c : E V + E V
+ (Cn>O tfuncn : (n lgSn 77 + E V)
+ code- M V + cmd : M I 0 (E V))

I

Figure 9.18: The semantic sets 2 and V, and the predomain V

Since all uses of strength, are implicit, all uses of these equalities are similarly left
implicit.

9.5.2 Semantic Sets and Predomains

Figure 9.18 defines the set D and the pre-domain V. Source terms of AsC generated at
run-time will be given a denotation in V. Notice it contains an injector for each source-
term construct, and the additional injector dwrong to signal a catastrophic run-time type
error during code construction. By "catastrophic," we mean not the failure of type-checking
within run, which is signalled by an exception in the M I 0 monad, but rather a fundamental
type error such as application of an integer.

Given d E D, we write temn0f (d) to denote the term t represented by d; it is undefined if
d is or contains dwrong : *.
Values, the result of evaluation, will be given a denotation in V. We have presented its
semantic equation in a form convenient for the model of types and terms to follow, however
since V is not pointed a little care must be taken to see it has a solution. Consider the
domain E V. By pushing E into the summands, and switching from categorical coproduct,
+, to coalescing sum @, we have E V = V1, where

V' = (wrong : E 1 @ int : E 2 @ func : E (V' + V')
@ (en,, tfuncn : E (inlSil , n + vf))
@ codef E (M V) @ cmd : E (M I 0 V'))

This equation may be solved in Dom. Then V 2 J. V1, where J. removes the least element
from a domain. Again, we shall ignore the functions mediating this isomorphism.

Values include the usual integers, functions and (wrong : *), signalling a catastrophic run-
time type error. Notice that functions are call-by-name. The injectand (tfunc, : f) is a
witness function taking a tuple of n witnesses to a computation of a value. In practice,
these witnesses will be run-time representations of monotypes.

The injectand (code : 77ad) represents a piece of code, which is modelled as a function
accepting a fresh name supply and yielding a computation of a run-time representation of
a XSC source term. When code is copied from its point of definition to its final destination,
any binders within it will be renamed away from any variables in its new lexical scope by
applying the appropriate fresh name supply.

The injectand (cmd : mio) represents an 110 computation. It accepts a fresh name supply,
and yields a computation in the I 0 monad. Notice that the I/O computation yields a
computation of a value, rather than a value directly. Otherwise (the denotation of) unit t
would be strict in t.

9.5.3 Denotation of Types

Figure 9.19 presents the denotation of stage 0 types and type schemes as ideals [59] of E V.

To motivate the definitions, consider how to assign a meaning to the type ((Int 1).
Clearly it should contain all functions which, given a fresh name supply, return a compu-
tation yielding a run-time generated piece of syntax. Hence, as a first approximation:

[CC Int 311 = E {code : md I md E M V, nms E Names md nms E E V)

Of course, we also wish to ensure (in this case) only integers are generated at run-time,
suggesting the smaller denotation:

[CC Int 331 = E {code : md I md E M V, nms E Names ==+ md nms E E VWt)

where -
Vwt = {d E V I (a,,, I true I Pinit I-' termof (d) : Int))

However, now the denotation is too small, as it forbids the run-time generation of open-
code; that is, code containing free variables. Thus we must index the denotation by an
appropriate kind and type context for use within the well-typing judgement:

[CC Int = E {code : md I md E M V, rzms E Names * md nms E E Vwt}

where
Vwt = {d E 23 I (E I true I r I-' termof (d) : Int)}

Now, however, we must be more precise about exactly which lists of "fresh" variable names
within Names are suitable. To prevent name-capture (which is the whole point of including
the machinery for renaming in the first place!), nms cannot contain any names within r:

[CC Int >>1@,7) = E {code : md I md E M V, nms E Names,F * md nms E E Vwt}

where DWt is as above.

Alas, this denotation is still too large, for it includes members of M V which simply
ignore nms and rename bound variables arbitrarily, or not at all. For example, imagine
an md E M D which produces a d E DWt in which a bound variable has been renamed
arbitrarily so as to clash with the type context (with new type variables in z) . In that
case, however, the derivation

-
A -tt z I true I I? +t re k0 termof (d) : Int

would fail, since shadowed variables are forbidden. This observation suggests misbehaving
computations may be rejected if we require their results to be well-typed for arbitrary

[~ n t] (~ , ~ = E {int : 4 i E 2)
--

17 -> vlen = n { s (~ , ~) I (G 7 C) extends (A, r) }

where S(z,c) = E func : f

- -
Ir?Ymn = n { s (, , I (G , K) extends (A7 r) }

f E E V - + E V ,

ev E ~ r l (~ + z , F + i T)
* f ev E [vP(ii+a,r+r,) 1

{ where S(=,K) = E code : md

- -
Irr 7 I I ~ (~ , ~) = n { s (~ , ~) I (G, C) extends (4 r) }

md E M D ,
nms E Names\F+r,
--. md nms E E Dwd

{ where S(z,E) = E code : md

-- - -
110 7j(x,F) = n {s(z,E) I (a e 7 r e) extends (A, r) }

1 I

Figure 9.19: Denotation of ASC types as ideals of E V

termof (d) well-defined,

va . vars(a, ternof (d)) G don@')

md E M D ,
rims E names\^++;
3 md nms E E DWt(a,,r,)

where S - - - E cmd : io
(&,re) -

Ainit I-O v:,
[f o r a l l a: . C => T] (~ , ~) = Fe D [m] L) B

where D = named(C)
and names(D) = (w l , . . . , wn)

t = ternof (d) well-defined,
~ + t n , ~ t r u e ~ F + t K I - O t : r

io E M I 0 (E V),
nms E N a r n e ~ \ ~ + ~ A (io nms) $10 ea

ea E [7l(X,F)

and S (, B) = E tfuncn : f
f~ cn1,,,,7)+~v7
f ([wllenv(B). . - - 7 [wnl env(~))

E C r [m l l (a , ~)

(well-kinded) r, and extending and h.
Since ideals are closured under intersection, this condition is easily enforced using the -- --
definition as it appears in Figure 9.19. We write (A,, I',) extends (A, I?) to denote that
dom(h) n d o m (x) = 8 and dom (F) n dom (c) = 0. Furthermore, we require that Aait ;
(z~fn,) to I?,, ;r, context, though for readability we - shall often leave such well-kinding
assumptions implicit. We also implicitly assume Fmit ; I' is well-kinded in Ainit ; h.
The denotations for the remaining types must similarly take into account this uniform
renaming behaviour. For C?) we obviously cannot require generated terms to be well-
typed, but instead only require their free-variables to be contained within T. To this end,
if z E 2 we write vars(z, t) for all free variables at stage z in term t. Notice that z may
be negative: for example vars(-1, CC - -x 1)) = {x).

A function must behave uniformly regardless of the lexical scope it is applied within, even
though that scope will generally be deeper than the scope of its definition. Hence the
denotation of function spaces is similarly an intersection over all kind and type context
extensions. 110 computations must also be uniform over all extensions.

Finally, the denotation of a type scheme includes only those witness functions which behave
correctly for any (ground) types satisfying the scheme's constraint. This use of intersection
of ideals is familiar from the semantics of polymorphism given by MacQueen et al. [59].
Notice that if C is unsatisfiable, the denotation of f o r a l l a . C =C T will be all of E V.
This fact will be important when we come to.show type soundness in the sequel.

Notice that is well-defined if Ainit ; & t-O T scheme and Ahit ; h k0 Finit ; context.
That is, a must be closed at stage 0, but may contain type variables from h at higher
stages.

9.5.4 Denotation of Run-Time Terms

The denotation of run-time terms naturally divides into two halves. For higher-stage terms
the semantics describes how run-time terms are rebuilt by splicing and renaming. This
semantics is defined in Figure 9.20. We let q range over run-time environments mapping
both witness variables, w, to witnesses in T, and variable names, x, to computations of
values in E V. Then, given a stage-(a + 1) term tn+1, we have [t,+l]l;+l E N V.
Notice that each occurrence of a variable is renamed as it is encountered by looking up its
name in the renaming environment. Dually, each binding occurrence of a variable results
in the renaming environment being extended. The fresh name supply is not threaded
throughout the computation, but rather inherited according to ASC's scope rules. In the
splice expression - T, T must be evaluated to yield a code value, which is then rebuilt to
yield the result.

For stage 0 terms, the semantics is the familiar untyped semantics of the call-by-name
A-calculus, augmented with witness passing, 110, and the propagation of the renaming
environment. Given a run-time term T, we have [T I : E R V. As usual for denotational
semantics, we ignore the sharing of computation which would take place in a call-by-need
operational semantics for ASC .
Notice that, unlike for higher-staged terms, there is no need to propagate a fresh name
supply within the semantics of stage 0 terms. Since only run rebuilds code, and run is

[XI,"+' = letN res t lift: (getR "x")
in unitN (case res of {

name : nrn + dvar : nm
otherwise + dwrong : *

1)
[k]l,"+' = unitN (dconst : k)

[\x . t],"+' = letN (nm, d) t renameN "x" [t];+l
in unitN (dabs : (nm, d))

[t u];+' let^ d t It],"+'
in letN dl t (u],"+l
in unitN (d a p p : (d , d l))

[l e t x = u i n t],"+l = letN d t [u];+'
in letN (nm, d l) t renameN "x" [tlJ;+'
in unitN (dlet : (nm, d , d ')) . .

[le trec x = u i n tB,"+' = letN (nm, (d , d l)) t renameN "x"
(prod, [uH;+' it];+')

in unitN (dletrec : (nm, d , d l))
[CC t >>IJ;+l = let^ d t

in unitN (ddeft : d)
[c? t ?>n,.+l = let^ d t [t]1,"+2

in unitN (ddefu : d)
[- T I ; = letN v t lift: [T I :

in case v of {
code : md + lift: md;
otherwise + unitN (dwrong : *)

1
[-t],"+2 = let^ d t [t];+l

in unitN (dsplice : d)
[lift t b y nJ,"+' = letN d t

in unitN (d l i f t : (d , n))
[unit t],"+l = letN d t [tj,"+'

in unit^ (dunitrn : d)
l l e t x <- u i n t];+' = letN d t [u];+'

in letN (nm, d l) t renameN "x" [t],"+'
in unitN (dletrn : (nm, d , d l))

[run dl,"+' = let^ d t [t],"+'
in unitN (drun : d)

Figure 9.20: Denotation of ASC stage n + 1 terms

[z]: = lift2 (q x)
[Ax . TI: = let^ f t closure fun^ (Xev . [T]:,,,,,)

in unitR (func : f)
[T u]; = letR v t [T$

in letR ev t closureg [u]:
in lift: (case v of {

func : f + f ev;
otherwise + unitE (wrong : *)

1)
[letw B in TI; = [TIOnv(B,q)

[X(wl, . . . , wn) . TI: = let^ f + closurefunER (X(YI - - , ~ n) - [TI:,q rtyl ,..., a,,ryl)
in unitR (tfunc, : f)

[T (Wl,. . . , Wn)]: = let^ v t [TI:
in lift: (case v of {

tfunc, : f + f ([WiBq,. . . , [Wnlq);
otherwise + unitE (wrong : *)

1)
[let z = U in T]: = letR ev t closure: [U]:

in [Tl:,x,ev
[letrec x = U in T]: = letR ev t closure fix^ (Xev . [U]:,x,.e,)

in BTB:,xeev
[(t)]: = letR rnd c closure: It];

in unitR (code : md)
[lift U using W]! = letR v t [U]:

in case (v, [W],) of {
(int : i,tint : *) + unitR (code : unitM (dconst : a)) ;

I otherwise + unitR (wrong : *) I

I I

Figure 9.21: Denotation of ASC stage 0 pure terms

performed only within the I 0 monad, the semantics may push the fresh name supply into
this monad. (We could go even further and eliminate the fresh name supply altogether by
simply re-using a global fresh name supply within the denotation of run. However, to do
so would complicate the proof of type soundness.)

Figures 9.21 presents the denotation of non-monadic terms. Notice the use of closure,
closurefun and closurefix (over various monads) to ensure the renaming environment is
propagated to match the static lexical scope of the program. A semantics in which these
closures also capture the environment q is also possible. (We chose not to do so because
the present version forms the basis of a translation from ASC into a "vanilla" higher-order
functional programming language lacking any staging constructs. In this case the target
language provides partial-application closures implicitly.)

The denotation for deferred expressions makes it clear that (t) is a value, and thus t is not
rebuilt when (t) is evaluated.

[unit TI: = letR ev t closure: [TI:
in unitR (cmd : unitMIo ev)

[let z t U in T]: = letR ev t closure: [U]:
in letR f t closure fun^ (Xev' . [TI: ,z,,,,)
in unitR (cmd : letMIo v t liftrIO ev

I in case v of {
I cmd : ioev + 1

letMIo ev' t ioev
in letMIo v' t liftE1O (f ev')
in case v' of {

cmd : ioev' + ioev';
otherwise + unitMIo (unitE (wrong : *))

1;
otherwise + unitMIo (unitE (wrong : *))

1 >
[run T a t W] : = LetR ev c closureg [TI:

in unitR (cmd : letMIo v t lift?I0 ev
in case v of {

code : md +
letMIo d t liftK1O rnd
in if tennOf (d) well-defined -

and (G I true I I'init I-'
ternof (dl : ~YP~O~([WBV)
c, TI) then

unitM1o run^ [T ~ P)
else

throwMIo;
otherwise

u n i t ~ ~ o unit^ (wrong : *))
1)

I I

Figure 9.22: Denotation of XSC stage 0 monadic terms

Figure 9.22 presents the denotation of the monadic constructs. The semantics of let x t
U in T is complicated by the two-level nature of I/O computations. That is to say, we must
be careful to distinguish evaluating an I/O command ("Is it defined?") from performing
an I/O command ("What does it do?"). Most interesting is the semantics for run T a t W.
It creates an I/O command which, when performed, will rebuild T to a representation, d,
of a run-time term, then check if termof (d) is a well-typed term in the empty kind and
type contexts. If so, the type judgement will return a new run-time term TI, which is then
evaluated in the empty environment. Otherwise, an exception is thrown by throwMIo.

Finally, Figure 9.23 presents the denotation of the constants, which are straightforward (if
somewhat tedious).

It is possible to refine the semantics of statically typed code in a number of ways. Firstly,
because no constraints cross statically typed code boundaries, it is possible to translate

[i]' = unitR (int : i)
[throwj8 = unitR (cmd : t h r o w ~ ~ o)

[(try -catch .)I! = Xriol rioz .
E letR e q t closureR raol

E in letR e q t closureR rio2
in unitR (cmd : letMIo vl t liftfIO e v ~

in case vl of {
crnd : ioevl +

trycatchMIo iOeVl
(letMIo q t liftfIO e q
in case 'u;! of {

crnd : i o e q + ioe3;
otherwise +

unitMIo (unitE (wrong : *))
1);

otherwise + unitMIo (unitE (wrong : *))
1)

[putint]: = Xri . let^ eu t closureg ri
in unitR (cmd : l e t ~ ~ o v t liftfIo ev

in case v of {
int : i letMIo - t putintMIo i

in unitMIo unit^ (int : 0));
otherwise + unitMIo unit^ (wrong : *))

1)
ngetintB; = unitR (cmd : l e t ~ ~ o i t getintMIo

in unitMIo (unitE (int : I)))

I I

Figure 9.23: Denotation of XSC stage 0 constants

these source terms to run-time terms during type checking. This compile-time translation
is in contrast to the present approach which performs this translation only when such
(rebuilt) code is to be run. Secondly, as a result of the first refinement, there is no need to
type check statically typed code at run time at all.

To implement these refinements would unfortunately require duplicating much of the ma-
chinery currently shared between dynamically- and statically typed code. Because dynam-
ically typed code does require the construction and type-checking of members of 27, it is
easiest to make statically typed code do likewise.

9.5.5 Type Soundness

Run-time terms which encounter a catastrophic run-time type error are denoted by [wrong :
*]. We first show the denotation of every well-kinded type does not include such a value.

Lemma 9.5 If Ainit ; a' I-' T : Type and Ainit ; a' I-' ; context, then [wrong : *] $2

I~ l (z ,m -
A

Proof By induction on derivation of Ainit ; A' to T : Type.

Given a constraint C s.t. A ; & t o C constraint, we say C is satisfiable in A if true te
exists A . C. We say a type scheme f o r a l l A . C => T s.t. A ; & to C constraint
is satisfiable iff C is satisfiable in A. Finally, we say a type context I? is satisfiable if
V(x : a) E I?, a is satisfiable.

--
We say 7 models I? with respect to (Ar,I?'), written 7 +(F,r.) r, if I? is satisfiable and
dom(I?) dom(7) and V(x : T) E J? . 7 x E E [T] (= ,~) .

Let p range over injective finite renaming environments mapping variable names to (fresh)
names. Note that p need not be idempotent.

We now show that the denotation of the translation of a well-typed term is a member
of the denotation of its type. The theorem statement is quite complex, since it must tie
together:

the static kind context (A ; E) and static type contexts (I' ; r');

the current renaming p, which has domain F;
the current dynamic type context c, which assigns a type to all the variables in the
range of p; and

-- --
for higher staged terms, an arbitrary extension (A,, r e) to (A', I?,), and the current
fresh name supply nms, which cannot contain any names from t+ c.

Theorem 9.6 (Soundness)

(i) If A ; =(C I I' ; j? to t : T v T, and A I- 8 gsubst, and true Fe 8 C v 3, and

p P c C, and 7 C(F,~K) r then BT%++env(s) P 18 T~(Z,BK)

(ii) If A ; 1 C ; I I? ; r' I-:" t : T v tr, and A t- B gsubst, and true te
0 C r 3 , and p F c, and 7 +(F,eT;) 8 I?, and nms E name^,^,^ and
-- A - r n+l (A,, I?,) extends (A', 0 I?,) then [t]n,+enu(B) (nms, p) E E Vwd, where

V w d = { d E V 1 V i termof . vars(i (d) - well-defined, n, termof (d)) E d o m (~ ')

(iii) If, in addition to the hypotheses of (ii), we also have b = tt then
r n+l It Bq-++enu(~) (nms,p) E E Vwt, where, if n > 0 then

termof (d) well-defined,
A ~ - I + ~ I B F I (Br,)+kr,t-h t e r m ~ f (d) : B T

otherwise

termof (d) well-defined,
Ar - t t a , I t9C '1 (8 c) + t - c t - O t e rmOf(d) :O~

Proof See Theorem D.8.

Finally, the translation of a well-typed term never encounters a catastrophic type error.

-
Corollary 9.7 If a,,it I t rue I Finit t-O t : T v T then [TIP 0 # [wrong : *].

Proof Immediate from Theorem 9.6 and and Lemma 9.5.

Chapter 10

Conclusions to Part I1

10.1 Related Work

Two-stage functional languages were first developed to express the results of binding time
analysis in preparation for partial evaluation [51, 75, 761. Nielson and Nielson generalised
the concept to arbitrary stages [77]. The syntax of XSC has its origin in Lisp [61]: our
(? . . . ?), - and run operators roughly correspond with Lisp's ' (. . .), ' and eval opera-
tors. Of course Lisp must perform run-time type checking for every expression, dynamically
generated or otherwise.

Davies and Pfenning demonstrated two Curry-Howard correspondences for staged lan-
guages. Staging restricted to closed-code corresponds with the modal calculus S4 [21],
while staging with open-code but without a run operator corresponds with a linear-time
temporal logic [20]. A nai've combination of these two calculi in which the distinction
between closed and open code is forgotten is unsound: vir run may encounter unbound
variables [107]. Motivated by the categorical framework of Benaissa et al. [lo], Taha et
al. [I061 have developed a sound calculus which supports both closed and open code, but
at the cost of a somewhat clumsy syntax in which the free variables of open code must be
explicitly "reconnected" whenever code is spliced.

The statically typed code fragment of XSC is based upon MetaML [104, 107, 971. However,
unlike MetaML, XSC is careful to restrict the use of run so as to avoid the open-code problem
mentioned above.

The dynamically typed code fragment of XSC is an extensive reworking of the calculus,
Xdyn, presented in Shields, Sheard and Peyton Jones [99]. The differences are significant:

Xdyn supports only unconstrained parametric polymorphism, whereas XSC supports
arbitrary constrained polymorphism.

Xdyn is call-by-value, XSC is call-by-name or call-by-need.

Xdyn assumes a full type-passing-based implementation, whereas ASC passes run-time
representations of types only where they are required by run.

Xdyn's type system does not prevent the application of run to open code. Instead,
such code is regarded as ill-typed at run-time. By contrast, XSC places run in the
I0 monad, which restricts its use, but also ensures at compile-time that only closed
code may be run.

Xdyn uses Wright and Felleisen's [I151 style of context-based small-step operational

semantics. This semantics requires an (infinite) family of mutually-recursively defined
rewrite contexts. Type soundness is shown by subject reduction. In contrast, ASC uses
a denotational semantics and type soundness is shown model-theoretically.

Adyn's operational semantics handled the problem of variable renaming implicitly: P-
reduction is assumed to avoid name capture by "inventing" a fresh name as required.
In ASC1 this aspect is modelled explicitly, and hence we believe, more honestly.

Both Xdyn and XSC use a type-directed translation into a run-time language. However,
because Xdyn does not support type constraints, its translation does not need to
introduce any witness passing. Thus it is possible to translate all Xdyn code fragments
into the run-time language at compile-time, and execution need only splice these
fragments together to generate a final run-time term. The operational semantics for
Adyn exploits this compile-time translation by simplifying the run-time type checking
problem to a series of residual unification problems performed at each splice point.
In contrast, dynamically typed code in XSc cannot be translated to the run-time
language at compile-time, since the translation depends on which constraints arise
at run-time. As a result, XSC requires full type checking of terms at run-time, and no
simplification is possible.

The denotational semantics of Sections 9.5.3 and 9.5.4 is somewhat of a chimera. Its
motivation is the functor-category semantics for two-level languages of Moggi [73], but re-
presented in a point-full form with a concrete base category of well-kinded type contexts
and well-typed environments. The beauty of this semantics is that, at the term level, it
has the simplicity of Gomard and Jones' [33] original denotational semantics for two-level
languages (though with the fresh names supply made explicit rather than left implicit as
in their work).

It is unclear whether the statically typed code fragment of XSC could be given a categorical
semantics within the framework of Benaissa et al. [lo].

More recently, Gabbay and Pitts [30] have developed a non-standard set-theoretic foun-
dation, and Fiore, Plotkin and Turi [28] a category-theoretic framework, for inductive
datatypes involving name binders. In both theories, a-conversion is "built-in." Represent-
ing the semantics of ASC in one of these settings would effectively factor out all explicit
manipulation of variable names, resulting in a tremendous simplification.

10.2 Conclusions and Future Work

We presented ASCl a calculus supporting the run-time generation of both statically and
dynamically typed code. It is flexible enough to allow code fragments to contain free
variables, while also ensuring such variables are always bound within result code. For
dynamically typed code, type checking is deferred until just before the code is to be run.
Run-time generated code which is ill-typed raises an exception, and hence may be handled
gracefully. On the other hand, we have shown that statically typed code is always well-
typed, and hence requires no run-time check. We demonstrated the utility of mixing both
statically and dynamically typed code within a single program.

The calculus also supports constrained polymorphism, and hence many other type features
such as the type-indexed-rows of Part I, implicit parameters [57], and type classes [47, 1091.

This suggests ASC is a suitable foundation on which to implement full-scale multi-staged
languages.

To the author's knowledge, AS' is the first system to combine all of these features.

We have not yet developed a type inference system for XSC. Because both statically and
dynamically typed code share the same three constructs, inference may be problematic. In
this case we may need to syntactically distinguish these constructs.

On the theoretical side, though we have shown (model-theoretic) type soundness for AS',
we have not shown staging-correctness. The usual approach [71, 771 is to first define an
erasure function taking a multi-stage term to a single-stage term by erasing all .CC 33 and
- operators. Then a logical relation [69] is constructed between multi-stage terms and
their stage-erasure. By the logical relations lemma, correctness follows if all constants are
related. It is not at all obvious such an approach will work for XSC, particularly given its
rich type structure and the remarks of Moggi [71].

Appendix A

Recognising XML Elements

This appendix shows how to extend the syntax and typing rules of XTIR (as presented in
Chapters 4 and 5) to handle terms in native XML syntax (as outlined in Section 3.4). Our
exposition is extremely brief, and no proofs of correctness are provided. Though awkward
to express formally, the material of this appendix is for the most part a straightforward
application of automata theory.

(The reader interested in what my long suffering supervisors, John Launchbury and Simon
Peyton Jones, have had to put up with over the years is invited to attempt to decipher
this material without the aid of the explanatory text.)

Recall from Section 3.4 that T * is shorthand for L i s t T, where L i s t is the datatype:

data List = \a . Cons (a , L i s t a) I N i l

Similarly, T ? is shorthand for Option T, where Option is the datatype:

data Option = \a . Some a I None

Also recall (r l 1 . . . 1 abbreviates One (TI # . . . # Tn # Empty), and dually,
(r l & . . . & 7,) abbreviates A l l (71 # . . . # Tn # Empty).

Figure A . l presents the required extensions to XTIR types, terms and patterns. An element,
e, is a tag delimited sequence of element items, ez. We allow an element item to "escape"
from XML syntax back to native XTIR syntax by using the special <<. . .>> form. A tag is a
saturated newtype of the form A TI . . . T, . Each T, must be a monotype, and the application
must have kind Type. This restriction is necessary in order to be able to construct an
automaton for the body of A (see Section 3.4). We extend the language of XTIR terms with
strings, elements, and the data constructors of the above datatype declarations.

XML elements may also appear within patterns. For the most part XML patterns are
handled analogously to XML elements within terms, hence we shall elide the rules dealing
with them.

Figure A.l also presents some additional structure required by recognisers. We shall be
constructing Glushkov automata [17] which have as states the positaons of a regular ex-
pression (type). Hence we take as the set of states for type T all ways of delimiting the
sub-terms of T by [-I. In other words, a position, p, is a factorisation of T into a context,
P, and a sub-term, v, of T such that T = P[v].

The Glushkov automata we shall construct will be augmented to rewrite a sequence of
XML sub-elements into a XTIR term in native syntax. To this end, the automata include a
stack, st, of intermediate run-time terms, and the transition function specifies a sequence
of stack actions, acts, to be performed on the stack when making a transition.

T, v ::= String 1 . . .

Strings str
Elements e ::= < A 71.. . rm> eil . . . ei, < / A > m , n > O
Element patterns ep ::= < A 71 . . . T,> eipl . . . eip,, m,n 2 0
Element items ei ..- ..- str I e I << t >>
Element pattern items eip ::= str I ep I << p >>
Terms t, u ::= "str" 1 e 1 Cons 1 Nil 1 Some 1 None 1 . . .
Patterns p, q ::= "str" I ep I Cons p q 1 Nil 1 Some p 1 None 1 . . .

Recogniser position contexts P[*] ::= 1 P[*] * 1 P[*] ?

I (71, ..., p[*], ..., 77~) n 2 O
) (71 1 ... 1 P[.] 1 ... 17,) n > 2
1 (r l & ... &P[*]& ... &T,) n > 2

Recogniser positions p ::= P[T]
Recogniser actions act ::=null I tuple(n) I C I I (none I some

(inj(%) 1 < 1 unseen(i) 1 seenci) I prod(n)
Action sequence acts ::= . I act, acts
Special stack term special ::= C 1 < 1 unseen(i) I seen(i)
Term recogniser stack st ::= . (st, speczal I st, T

Figure A.l: Extensions to XTIR types, terms and patterns for handling XML elements,
and syntax for recogniser components

Thus, each automaton includes a simple stack machine with the following operators:

null pushes the empty string ' I " .

tuple(n) pops n terms and pushes their aggregation as a tuple.

C pushes itself as a "start of list" marker.

I pops the stack back to and including the last C marker, and pushes the aggregation
of all popped terms as a list.

none pushes None.

some pops a term T and pushes Some T.

inj (i) pops a term T and pushes lnj (lncl-I One) T. We write lncj to denote j
applications of I nc.

< pushes itself as a "start of unordered sequence" marker.

unseen(i) pushes itself to signal the topmost term as a "default" to use if the i'th
(in canonical order) member of an unordered sequence is missing.

seen (i) pushes itself to signal the topmost term has occurred as the i'th (in canonical
order) member of an unordered sequence.

I S(st I acts) = st' I

S(st I .) = st
S(st I n u l l +t acts) = S(st +t "" I acts)

S(st +t Ul, . . . , Un I tuple(n1 +t acts) = S(st +t (Ul, ..., Un) I acts)
S(st I [+t acts) = S(st +t C I acts)

S(st Sf [, Ul,. . . , Un I 1 +I- acts) = S(st +t (Cons Ul (... (Cons Un Nil)...)) I acts)
S(st I none +t acts) = S(st +t None I acts)

S(st St U I some i+ acts) = S(st -I+ (Some U) I acts)
S(st -I+ U I i n j (i) +t acts) = S(st +t (Inj (lnci-l One) U) I acts)

S(st I < +t acts) = S(st +t < I acts)
S(st I unseen(i) +t- acts) = S(st +t unseen(i1 I acts)

S(st I seen(i) Sf acts) = S(st +t seen(i) I acts)
S(st +t- <, Ul, unseen(il), . . . , Un, unseen(in),

Tl,seen(jl), . . . , T,, seen(j,) I ~ r o d (n ') St acts) =
S(st +t (Ti, ..., Th,) I acts)

where
VO < k,kt 5 m . ik = ikt =$ k = k'
VO < k,kl 5 m . jk = j k r ==. k = k'

if k = j k t

V O < k 5 n f . T i = Up, if Bk" . k = j k r r A k = i k t

{ e e , otherwise

I
Figure A.2: Executing a sequence of recogniser actions upon a stack of XTIR run-time
terms

a prod(n) pops the stack back to and including the last < marker, and pushes a tuple.
The term in position i of the tuple is either the popped term which was marked by
seen(i) , or if no such term exists, the popped term which was marked by unseen(i1.

These actions are formalised in Figure A.2.

Figures A.3, A.4 and A.5 present the definition of the function 6. Given a position P[T],
where T is a monotype, G constructs a transition function for an augmented Glushkov
automaton recognising the language of T when viewed as a regular expression. The alphabet
of this language is XTIR monotypes. G is undefined if T is not 1-unambiguous as a regular
expression.

In XMX, the constraint readable T is true if T is a newtype application whose normalised
body is in the domain of G. The constraint writable T is true if, furthermore, this body
type is first-order. The witness for both of these constraints is the automaton constructed
by G.
A version of 6 for constructing un-augmented Glushkov automata was presented as an
example in Section 8.2. A simpler version of this construction may also be found in
Briiggemann-Klein et al. [13].

To ease the notation we shall adopt an informal record-like syntax. Given a position P[T],

I P [P [r]] = {pos ; empty ; f irs t ; last ; fo l low) I
~ [~ [~ t r i n g l l = { G[P[V -> T I] = { WVlB = {

pos = { P [S t r i n g]) ; pos = { P [v -> 71); pas = { P [A]) ;
empty = null; empty = -; empty = .;
first = { P [S t r i n g] (.)) ; first = { P [v -> TI (.)) ; first = { P [A] (-)) ;
last = { P [S t r i n g] (-)) ; last = { P [v -> T I (-)) ; last = { P [A] (.)) ;
follow = Xp . 0 follow = Xp . 0 follow = Xp . 0

1 1 1

G [P [(T I - . ~ n)]] = {
pos = { thispos) U UoCi<,, - p s i ;
empty = empty act^^,,+^;
first = {thispos(-)) U UO<i5initne {p(emptyactso,; St acts) I p(acts) E first,!);
last = {thispos(-)) U Ujn,lne<,<n{p(acts St empty act^;,,+^) I p(acts) E last:);

fozlO':h " Ui<j<rnin(neztnei,n)
{pi(acts St emptyact~; , j Sf acts') I pt(acts') E first;),

follow = X P - U ~ < i < n i f p(acts) E last{
follow: p, i f p E posi I., o t h e r w i s e

1
where

V O < i 5 n . Pi[@] = P [(T I , . . ., 7 , -1 , m r T;+I, . . ., T n)]

V O < i 5 n . {pos: ; empty: ;first,! ; last: follow^) = G [p f [~ ;]]
V 0 < i 5 n . nextne; = max i < j 5 n + 1 . V i < k < j . empty; # -
V 0 < i 5 n + 1 . prevne; = min 0 < j < i . V j < k < i . empty; # .
t/ 0 < < j 5 n + 1 . emptyactsijj

+ti<k<jemptyL U t u p l e (n) , i f V i < k < j . empty; # A j = n + 1
= * i < k < j e m ~ t ~ L ,

{.>
i f V i < k < j . empty; # -
otherwise

thispos = P [(T ~ , . . . , T n)]

initne = m i n (n m t n e o , n)
finalne = m a x (p r e ~ n e , + ~ , 1)

F i g u r e A.3: Building a recogniser from a X T I R type (part 1 of 3)

?[P[(TI I . . . I ~ n)]] = {
pos = { thispos} U Uo<i<n posi;

{
e m p t y ; + t i n j (~ - ' j) , i f V O < k j n . e m p t y ; # . j k = j

empty = ., i f V O < k 5 n . e m p t y ; = .
undef ined, o therwise;

first = { thispos(-)) U Uo,,,, first:;
last = {thispos(.)} U Uo,,ln{p(acts +t i n j (a-' i)) I p(acts) E lastj};

follow: p, if p E posf
follow = XP - Uo<j5, , otherwise

where
V 0 < i j n . Pi[*] = P [(T ~ I . . . I 7;-1 I I Ti+' I . . - I ~ n)]
V 0 < i 5 n . {pos: ; empty: ;first: ; last: follow^) = G[P:[T,]]
thi~pos = P [(T ~ I . - . 1 ~ n)]
{a) = sort~ngPe97Tl~(71,. . . ,Tn)

i[P[(Ti % . . . & ~ n)]] = {
pos = {thispos) U Uo<i<n POS:;

emptyacts G p r o d (n) , if V 0 < i 5 n . empty[# .
empty = otherwise;

first = {thispos(.)) u Uo,iln{p(emptyacts i+ acts) I p(acts) E first:};
last = {thispos(.)} U Uo<i5n{p(acts -ti- seen(*-' i) +t prod(n)) I p(acts) E last:);

Uo<j,n{p'(acts +t seen(n-' i) -I+ acts') I p1(acts') E firstj},
if p(acts) E last:

follow = . U o < ~ n follow: p, if p E pas:
otherwise

t
where

v 0 < 2 5 K4 . P:[*] = P[(T1 & . . . & 7;-1 & & T;+l & . . . 8c Tn)]
v o < a 5 n . {pos: ; empty: ; first: ; last: ; followj) = ~[P:[T;]]
thispos = P [(T ~ & . . . & Tn)]
{a} = s o r t i n g P e m s (~ ~ , . . . , Tn)

empty! +t unseen(*-' i) , if empty: # .
emptyacts = < +t +t-o<i<n o therwise

F i g u r e A.4: Building a recogniser from a XTIR type (part 2 of 3)

GUP[, *ID = {
pos = {thispos) U post;
empty = C, I ;
first = {thispos(.)) U { p (C - t i - acts) I p(acts) E first');
last = {thispos(-)} U {p(acts ft- I) I p(acts) E last');

follow = Xp . follow' p U {pt(acts -I-/- acts') 1 p1(acts') E first'), if p(acts) E last
follow' p otherwise

1
where

PI[.] = P[. *]
{post ; - ; first' ; last' ;follow1) = 9[P1[r]1
thispos = P[T *]

G [P [r ?]I = {
pos = {thispos) U pos';
empty = none;
first = { thispos (-)) u first';
last = {thispos(-)) U (p(acts -ti- some) I p(acts) E last'};
follow =followt

1
where

P1[.] = P[. ?]
{post ; . ; first1 ; last' ; follow') = GIP1[r]]
thispos = P[T ?]

All definitions have the additional side conditions:
P[T](-) E filrst A P1[v](-) E first A cmpO(r ,v) = eq P = P'
V p E pos . P [r] (-) E follow p A P'[v](-) E follow p A cmpO(r, v) = eq P = PI

Figure A.5: Building a recogniser from a X T I R type (part 3 of 3)

6 constructs a record of the form:

i
POS = { P I , . . . , P ~) ;
empty = acts;
first = { ~ ~ (a c t s l) , - . - ,pn(actsn));
last = {pl (actsl) , . . . , pn(actsn));
follow = f

1
where

pos is the set of sub-positions of T , including r itself.

empty is a sequence of actions which will construct (on the top of the stack) a run-
time term of type r to represent that r is "missing." For example, a missing Just r is

R {post ; empty' ; first' ; last' ; follow') = {
last = last' U if empty + . t hen start(empty) else 0;
follow = Ap . if p = start then first' else follow' p

I

Figure A.6: Converting a recogniser to use start

constructed by the action none, which constructs the run-time term None. Similarly,
a missing T * is constructed by the actions [,I, which construct Nil. If T must be
present, then empty will be empty.

first is a set of (p, acts) pairs representing all possible first positions of T, and for
each position, the actions to perform before moving to the position. We shall write
these pairs in the form p(acts), to signal that acts is determined from p.

last is the dual to first. It contains all possible last positions of T, and for each
position, the actions to perform after leaving the position.

follow is a function, f , from positions to sets of (p, acts) pairs, representing the
automaton's transition function. Iff p' = {pl(actsl), . . . ,p,(acts,)) then for each i ,
actions acts; should be performed if a transition is made from p' to pi.

The definition of Q is straightforward, but unfortunately very ugly. Since we wish to be
able to construct empty terms, such as a tuple, in a single step, we are prevented from
using the more elegant recursive decomposition of composite types.

Figure A.6 presents the function 72. Given a record constructed by Q, R builds first and
follow members which use the dummy position start to signify the initial position. This
function allows us to discard pos, last and empty in what follows.

Finally, we come to the problem of type inference for XML elements. Figure A.7 presents
the new type inference rule IELEMENT, in addition to two ancillary judgements.

Given an XML element, rule IELEMENT proceeds by inferring the type of, and converting
to a run-time term, each element item. This initial conversion is handled by the ancillary,
and trivial, I-,, judgement. The problem is then to combine a sequence of typed run-time
terms Ul : vl, . . . , Un : vn into a single run-time term T representing the XML element
in native syntax. This combination is done by first expanding the saturated tag name
A TI . . . T,,, to the normalised type nomn(rl 71.. . T,), where T' is the body of the newtype
A. Since each T, is ground, so is norm(rl 71.. . T,), hence this type may be used to
construct an augmented Glushkov automaton. The automaton is then simulated on the
sequence vl . . . v,. If it reaches an accepting state, the desired T will be left on its stack.

The ancillary judgement

performs this simulation. It takes as input the sequence Ul : 71,. . . , U, : Tn, the current
position p, the current stack st, the current constraint C, and a coercion, B, accumulated
so far for C.

Rule EILAST checks if the empty sequence is acceptable. If so, any final actions are per-
formed to yield a singleton stack containing T.

(newtype A = 7') E tdecls
A : nl -> . . . -> Km -> Type E Ainit

v i . Ajnit I- T , : K ,

O1 1 Cl I r k , , eil : vl L) Ul
g2 1 C2 I J? b e j ei2 : ~2 9 U2

en I Cn I 0 . . . 0 el kei ei, : vn L) Un
{last ;follow) = R G[*[norm(~' TI . . . rm)]j

9 1 = 9 n ~ . . . ~ 8 1 C 1 = C l +...+kcn
8'' 1 (C' (-) D (D I B) I . I start I-r{last;follow) UI : 9' ~ 1 , . .., Un : 9' vn C, T

IELEMENT
(9" o 91),fi(r) I D I I' I- <A 71.. . %> eal . . . ezn : A 7 1 . . .% L) letw B in T

91 C I I ' I - s t r : ~ v T 91 C I I ' I - ~ : T V T
EISTR EIELEM

91 C I r k , , s t r : ~ ~) T 91 C I I ' k e i e : ~ ~ T

91 C I I ' I - t : r L) T
EITERM

91 C I I ' I - , , < < ~ > > : T L -) T

p(acts) E last S(s t I acts) = T
EILAST

Id I (C I B) D (C I B) l st l P I -~{ las t ; f o l row) ' L) T

P[v](acts) E follow p cmp@(v, T) E {eq, unk)
VP'[vl](acts) E first . cmpe(vl, 7) E {eq, unk) ==+ P'[vl] = P[v]

9 ((C +t- v eqT I B) D (D I B') I S (s t I acts) +t U I P[v] ~r{last ; fol lowl rest L, T
EIFOL

9 1 (C I B) D (D I B') I st I P ~ r (1 a s t ; f o l l o w) U : 7, - T

92 I (Cl I B' * B) D (D I Btl) I st I P ~ r { l a s t ; f o l l o w) 91 rest - T
EISIMP

02 91 1 (C I B) D (D I B1') I st I P I -~{ las t ; fo l low) rest v T

I I

Figure A.7: Extensions to XTIR type inference rules to recognise and convert XML elements
to XTiR run-time terms

Rule EIFOL attempts to make a transition based on the current type T. The rule succeeds
if there is exactly one possible follow position with a type unifiable with T. If there are no
such follow positions, the sequence is ill-typed. If there is more than one follow position, the
programmer must supply some type annotations, or reorder the sub-terms of the program,
so that the transition may be uniquely determined. (A possible refinement of this rule
is to allow speculative choices and backtracking.) If all is well, the appropriate equality
constraint is added to the current constraint context, the transition actions are performed,
the next run-time term is pushed onto the stack, and the rule proceeds recursively.

Rule EISIMP is the analogue of rule ISIMP, and allows constraints to be simplified whilst
in the middle of recognising an XML element. This simplification step is vital to allow
transitions made for earlier element items to guide the transitions for later element items.

Appendix B

Proofs for Chapter 4

B.l Type Order

Lemma B.l Given A I- r/r ' /v/v1 : T y p e , and A I- 8 subst, then:

(i) I f cmpo(r,rl) = eq and cmph(7, v) = It and cmph(8 v , 8 7) E {It, eq) then
cmpo (v , T I) = unk and cmpo (8 v , 8 T ') E {unk, It).

(ii) I f cmpo (7 , ~ ') = x E { I t , g t) and cmpb (T , v) = I t and cmph (8 v , 8 T) E { I t , gt) then
cmpo (v , 7') = x (and thus cmpo (8 v , 8 7') = 2) .

(iii) I f cmpo (T , 7') = eq and cmpb (7, v) = I t and cmpb (T', v l) = I t and cmpb (8 v , 8 T) E
{ I t , eq) and cmph(8 v', 8 7') E { I t , eq) then (cmpo(v, v') = unk and
cmpo(8 v , 8 v') E { I t , eq, gt)) , or cmpo(v, v') = cmpo(8 v , 8 v').

(iv) If cmpo(r, T I) = x E { I t , g t) and cmp;(r, v) = I t and crnph(~', v') = I t and
crnpb(8 v , 8 T) E {It,eq) and cmpb(8 v', 8 7') E { I t , eq) then cmpo(v,vl) = x
(and thus cmpo(8 v , 8 v') = x).

Proof

(i) We have

preorderg (7) = r +t [a] +t r'

preoder; (v) = r +I- [y] +t r"

prwrderc (7') = r +I- [a] -t i- T'

case y = b for a <a b. Thus cmpo(v,r') = unk. I f 8 a = dl 8 b = c for c la d,
then cmpo(8 v , 8 T I) = unk as required. If 8 a = G, 8 b = F for F sF G, then
cmpo (8 v , 8 7') = I t as required.

case y = F. Thus cmpo(v,~ ') = unk. Then 6 a = G for F sF G, and
cmpo(8 v , 8 tau') = I t as required.

(ii) Let x = It. We have

preorderg (T) = r +t [F'] +t r' +I- [a] +t rtl

preorderg (v) = r +t [F ' +t- r' +t [y] +t r"'

preorderc (7') = r +t [G'] -I+ r""

where F' < F GI. Then y = b for a <" b, or y = F. Then, regardless of 8,
cmpo(v, 7') = cmpo(8 v ,8 T I) = It as required.

The case for x = gt is similar.

(iii) We have

preorder$ (T) = r S f [a] +t r1

preorderg (v) = r +t [y] +t- r"

preorderg (7') = r +t [a] +I- r1

preorderc (v') = r +t [z] +t- r"

case y = b, z = c for a <" band a <a c. Thenif0 a = f , 0 b = el 8 c = d for
d 5" f and e la f , then cmpo(v,vl) = cmpo(8 v , 8 v') = unk as required. If
8 a = H , 8 b = G, 0 c = F for F sF H and G sF H then cmpo(v,v') =unk
and cmpo(8 v, 8 v') E { I t , eq , g t) , depending on relation between F and G, as
required.

case y = F , z = G: Then 8 a = H for F sF H and G sF H. Thus cmpo(v,vl) =
cmpo(8 v, 8 v') E { I t , eq , g t) , depending on relation between F and G, as
required.

(iv) Let x = I t . Then we have

preorderg (T) = r +t [F1] -I+ r1 +t [a] +I- r y

preorderc (v) = r Sf [F'] +t r' -I+ [y] +t r p

preorderg (7') = r +t [GI] +I- rl1 +t [c] +I- r r

preorderg (v') = r +t- [GI] -I+ r" -I+ [z] -t+ rF

where F' < F GI, and g = b for a <" b or y = F , and z = d for c <a d , or z = G. In
all four cases, regardless of 8, cmpo(v, v') = cmpo(8 v , 8 v') = It as required.

The case for x = gt is similar.

L e m m a B.2 Let A k T , v , 7' : Type s.t. cmpb(7, 7') E { I t , e q) and cmp;(r1, v) E {I t , eq) .
Then

(i) If cmpo (T , v) = e q then cmpo (T , T') = eq.

(ii) If c m p o (~ , v) = I t then cmpo(r, 7') = I t .

Proof Straigtforward reasoning with preorder; (T) , preorder; (v) and preorder; (7').

Lemma B.3 Let K E {Type, Row) and A I- r/vl/v : K and A t- 8 subst. If cmpo(r, v) = x
for x # unk then cmpo (8 T , 8 v) = x.

Proof The result is immediate from the definition of lexcmpp when T and v are types.
Consider the case for rows, and assume:

cmpo((#), ';i I, (#In B 1') = x # unk .

By inspection of preorder; and lexcmpp, 1 = 1'. If m # n then 5 and E do not affect the
result and we are done. Now assume m = n. Then

where w and n' are the sorting permutations under cmpb. We need to show:

where

and where n" and n"' are the obvious sorting permutations under cmpd.

There are two possibilites:

(i) It is possible that 8 may "flipn the relative ordering of two types in 7 , U , or both. To
be more precise, given i # j, it is possible for n-I i < n-' j, but T" -~ i > xt'-' j
(and similarly for n' and n'").

However, Lemma B.l shows that in all such cases the result of lexcmpp against the
reordered types remains unchanged.

(ii) It is also possible that a type in 7" may be inserted into 7 and B so a s to be placed
before a type in 7 and after a type in 8 which were previously matched against by
lexcmpp (or vice-versa) .
However, Lemma B.2 shows such insertions cannot change the result of lexcmpp.

0

The following lemma is required in Section 4.4.

Lemma B.4 Let, for all (finite) i, A I- ri/vi : K j and ni E {Type,~ow) and cmpo(r;, v,) =
unk. Then there exists a I- 8 : A -+ s.t. for all i, cmpo(8 T,,O vi) E {It, gt).

Proof Let 8 be the substitution h, where for each (a, : K;) E A, A, is a fresh
newtype declared as

newtype A, = In t

and ri is the type
if K, = Type

A, # Empty, if K; = Row

Then the result follows from inspection of cmpo.

Note that cmpo(.r, v) = unk does not imply there exists a 8 s.t. cmpo(r, v) = eq. For
example, notice cmpo(a, a -> a) = unk, but cmpo(8 a, 8 a -> 8 a) = eq implies 8 a is an
infinite type, which is not allowed. This will be important in Chapter 5.

B .2 Unification

Lemma B.5 If A I- 6 subst and A I- C constraint and eqs(C) = C and 8' E mguso (8 I- C)
then there exists a A' s.t. A +t A' I- 8' subst.

Proof By inspection. The rule for unification of rows may introduce a fresh variable,
which should appear within A' with kind Row.

Lemma B.6 (Soundness of Unification) If Vi . 8 T, = 7, A 8 v, = v, then 8' E
mguso(8 I- 7) implies 38" . 8' = 8" o 8 and V i . cmpo (8" T,, 6" v,) = eq.

Proof Let size(r) denote the size of a type T, which is defined as:

We extend size to equality primitive constraints by

size (T eq v) = size (T) + size (v)

and to sets of primitive equality constraints as the sum of each member constraint size.

Then the theorem follows by an easy induction on s i z e (m) using Lemma 4.2 (iv).

Lemma B.7 (Completeness of Unification) If V i . cmpo (8 T,, 8 v;) = eq then 38' E
mguso (Id I- 7) and 8" s.t. 8" 0 8' ldom(e) - o 8.

Proof W.1.o.g. we assume only a single primitive equality constraint T eq v. (Multiple
constraints may always be collapsed to one by constructing a suitable pair of function
types. >
Then we proceed by pairwise induction on the structure of (7, v):

case (a, a): Immediate.
case (a, v), a @ fvo (v): Then mguso (Id I- a eq v) = {[a I+ v]). Let 8" = 8\,. Then since

8 a = T s.t. crnp0(.r,8v) = e q , we have 8"o[a I+V] -0 8.

case (7, a), a @ fvO(v): As above.
case (a, v) , a E fvo (v): Then cmpo (8 a, 8 v) = eq implies 8 is not idempotent.
case (F T , F U): W.1.o.g. assume F has arity 2.

By definition cmpo(8 (F 7 1 r2), 8 (F vl v2)) = eq implies

By I.H. on (a) there exists a 8; E mguso(Id t- 7 1 eqvl) and a 87 s.t. (8; 0 8;)rdom(e) -0

8.
Then by (b)

cmpo (8; 8; 72,6: 8; v2) = eq (4

By I.H. on (c) there exists a 8; E mguso(Id I- 8; 7 2 eq 8; 212) and a 8; s.t.
I t

,dom(ey) =o ' 1 '

Let 8" = 8;. Then

By definition

mguso (I d t- F 7 1 7 2 eq F v1 212)

= {e; e; I 8; E mguso(Id I- 71 e q v l) ,
e; E m g ~ ~ ~ (~ d t- e; 72 eq 8; v2) 1

Then the result follows since all such 8; and 8; are collected.
case (F 7, G U), F # G : Then by definition cmp(8 (F T) , 8 (G U)) E {It, g t) .
case ((# I m T 1 , (#) , U 1'): Notice if m = 0 or n = 0 then an earlier case will apply.

W.1.o.g. assume

where

-
Then since cmpo(8 ((#Im ?: l) , 8 ((#In v I !)) = eq, by Lemma 4.2 (iv)

Consider j = 7r 1:

case 1 5 j 5 n: Thus we have

By I.H. on (a) there exists a 8; E mguso(Id k 71, vj) and a 8; s.t. 8: o 8: tdom(e) = O

8.
Then by (b)

- -
~ m p ~ ((#) , + ~ r - ~ T"'\~ I N , (#)n+nf-l v " ' ~ I") = eq (c>

where 7/N and are defined as for 7 and v', but using 8; o 8; instead of 8.
Then by I.H. on (c), there exist a 8; E mguso(Id t- 8: 8; Ti1 I) eq

8; 8; By 1')) and a 8; s.t. 8; o 8;tdom(ey) -0 8:.
Let 8" = 8;. Then

By definition of Sj

Then the result follows since all such 8; and 8; are collected, and mguso(Id I-
(#) ?: eq (#) n-l F It) includes Sj.

case n + 1 < j 5 n + n': Thus we have

-
and It = a for some a s.t. 8 a = (#),I vl' 1".
Furthermore, if a E fvo (~ 1) then by (d) a E fvo (up,), and thus 8 would not be
idempotent. -
Let 8; = 8\, o [b I+ (#),1-1 vt'b-n I"]. Then since b fresh, by (d) and Lemma 4.2
(iv)

(8: O [a ++ 7-1 # b])jb GO 8 (f)

Thus

which is to say

cmpo(8; o [a ++ TI # b] ((#),-I 5\1 1),0; 0 [a ++ TI # b] ((# I n V b)) = eq (g)

Then by I.H. on (g), there exists a 8; E mguso(Id I- 1 eq
(# In B b)[a r, T # b]) and $ s.t. (8; 0 8;) idom(8~l -0 8:.
Then by (f)

The result follows from the definition of St and that mguso(Id I- (#),-1 7 eq
(#) v 1') includes St.

a

For the most part we shall supress the projection required in the above lemma.

Corollary B.8 (Most General Unifiers) For all 0' E mguso(Id 1 8 T eq8 v) there ex-
ists 8" E mguso (Id (-) and 8'" s. t . 0' o 8 - 0 8"' o 0".

Proof If 8' E mguso(Id 1 8 r eq 8 v) then by Lemma B.6 Vi . cmpo(Ot 8 T,, 8' 8 v,) = eq.
Then the result follows from Lemma B.7. 0

B .3 Entailment

Lemma B.9 Let A I- C constraint s.t. C = eqs(C), A I- T ins p constraint and I- 8 : A +
Ain,. Then if (a) 7 + 8 C and (b) C I-, T ins p v W then WIT E [8 T ins 8 p].

Proof By induction on derivation of (b):

case MEMPTY: Let (b) be
C Fm T ins Empty C, One

Since sortingPerms(6' T) = {ad) we have

[One]q = iind : 1 E (iind : id-' 1) = 18 T ins ~mpty]

as required.
case MREF: Let (b) be

C I-, r1 i n s p v w

Then by MREF

W.1.o.g. let p = 7 2 # . . . # rn # 1 and p1 = 7; # . . . # 7; # I' where n,m > 0.
By (c) and Lemma 4.2, n = m, 1 = 1' and there exists a permutation n : n - 1 -+ n - 1

s.t. V i . Cmpowque (T , + ~ , rtT = eq. Again w.l.o.g., we may assume

I 8 1 = 7,+1# . . . # 7,+,1 # Empty = rn+~ # . . . # T;+,, # Empty = 8 1'

for n1 _> 0. By idempotency of 8, Vi . 8 Tn+i = rn+,.
Then define n' : n + n' + n + n' as

Then
V i . cmpopa,,,(8 r;, 8 T ~ I ,) = eq A n' 1 = 1 (d)

By (a), [wIq E 88 7' ins 8 pl], which implies there exists a j s.t.

S # 0 A n"' E S rlll-' 1 = j

[w] , = iind : j

where S = sortingPerms (0 T;, . . . , 8 T;+,,).

Now let n" E sortingPernas(8 T I , . . . ,0 T,+,I). Then there exists a n'" E S s.t.

Then by (d) and (e)

Since this holds for every n", by (f) [w] ~ E [8 7 1 i n s 8 p] as required.
case MCONT: Let (b) be

C l - m ~ l i n s p - W

where w.1.o.g. assume p = 7 2 # . . . ~ ; - 1 # ri+l # . . . # rn # I for i > 1.
Then by MCONT

where p1 = 7 2 # ... # 7, # 1.
W.l.o.g., we may assume 0 1 = Tn+l # . . . # Tn+,, # Empty for n' 2 0. By idempotency
of 0, Vi l . 8 T,,+,I = Tn+i'.

By I.H. on (d) [WBq E [[0 TI i n s 8 7 2 # . . . # 0 rn+,r # 11, which implies there exists a

s # f l r \ ? ' r € ~ & ~ - ~ l = j

[W],, = iind : j

where S = sortingPewns(8 7 1 , . . . ,8 rn+,t)-

Let w' E sortingPerms(8 r1,8 7 2 , . . . ,8 7,-1,8 r;+l,. . . ,8 rn+,l)- Then there exists a
71. E S s.t.

71.' i' = if i' < k then
if w i' < i then 7r i' else (.rr a ') - 1

else
if w (i' + 1) < i then w (i' + 1) else (w (i' + 1)) - 1

where k = w-I i .
By (c) and stability of cmpopque cmpopaque(8 r 1 , O 7,) = It, and thus j < k.
Let j' = 1. Then since T I j = w j = 1, we have j = j'.
Since this holds for every T I , we have I[W],, E 88 7 1 ins 8 p] as required.

case MDEC: As for case MCONT, but this time since ~ m ~ ~ ~ ~ ~ ~ ~ (7 ~ , 7 ;) = gt, j > k , and
t h u s j > l . T h e n r l (j - l) = n j = l , s o j l = j - l , w h i c h i s t o s a y j = j l + l . Thus

[Dec W],, = case [W],, of {
iind : i' + if i' > 1 then iind : a' - 1 else iwrong : *;
otherwise + iwrong : *

1
= iind : j'

E [8 TI ins 8 p]

as required.
case M E X P : Let (b) be

C Frn r1 i n s p v W

where w.1.o.g. assume p = 7 2 # . . . # Tn # 1.
Then by M E X P

where p1=r2# ... #7;-1 #r,+l # . . . # r n # I for i > 1.
W.l.o.g., we may assume 8 1 = rn+l # . . . # rn+,t # Empty for n' 2 0. By idempotency
of 8, Qi . 8 rn+i = rn+i.

By I.H. on (d) [W] , , E [8 r1 ins 8 p'], which implies there exists a j s.t.

s # f l r \ ~ € ~ - - ' . w - ~ l = j

[W],, = iind : w-' 1

where S = sortingPerms(8 r1,8 7 2 , . . . ,8 r;-1,8 r,+l,. . . ,8 rn+,l).

Let n' E sortingPerms(8 7 1 , . . . ,6 T,+,,). Then there exists a n E S s.t.

n i f = if i' < k then
if n' i' < i then n' if else (n' i t) - 1

else
if n' (i f + 1) < i then n' (i f + 1) else (n' (2' + 1)) - 1

where k = 7rl-l i.
Let j' = 1. By (c) and stability of cmpopque, cmpopaque(8 ~ 1 , 8 7,) = It, thus
j' < k.
Then n j' = T' j' = 1, so j = j'.
Since this holds for every n', we have [WBq E [8 TI ins 8 p] as required.

case M I N C : As for case M E X P , but this time since c ~ ~ ~ , ~ , ~ (T ~ , T ~) = gt, j' > k .
Then n (j' - 1) = n' j' = 1, thus j = j' - 1.
Thus

[lnc W I q = case [W] , of {
iind : i' -+ iind : i f + 1;
otherwise + iwrong : *

1
= iint : j'
E [8 ins 8 p]

as required.

Lemma B.10 (i) If Ainit I- c / d constraint and c r d then [c] = [dl .

(ii) If A,, t- C / D constraint and 7 C and C 5 D then 7 + D.

Proof

(i) case c = T e q v . Then d = T' eqv' where cmpO(T, 7') = eq and cmpO(v, v') = eq, or
vise versa.
If c m p O (~ , v) = eq then by Lemma 4.2 c m p O (~ ' , v ') = eq. Thus ([dl = {itrue :
*) = [c].
Otherwise if cmpO(r, v) E {It, g t) then by Lemma 4.2 c m p O (~ ' , v') E {It, gt).
Thus [dl = 0 = [c].

case c = T ins (#), C Empty. Then d = T' ins (#In 2 Empty where cmp0(7, T) = eq -
and cmpO((#) , Zi Empty, (#I, v' Empty) = eq.
If V n E sortingPerms(~, vl, . . . , v,) we have n-l 1 = j for some j . Then by the
same reasoning as for case M R E F in Lemma B.9 sortingPems(.r, v l , . . . , v,) =
sortingPerms(~' , v'l, . . . , vk). Thus [d] = {iind : j) = [dl .
Otherwise, there exists an i s.t. cmpO(r, v,) = eq. Thus there exists an i' s.t.
cmpO(.r, wit) = eq. Thus [d] = 0 = [c].

(ii) Let (w : c) E C , and let (w : d) E D be the coresponding primitive constraint s.t.
c E d. Since q J= C , q w E [c] = [d J , SO q D.

Lemma B.ll Let A t- C/ C' constraint and C = inss(C) and A I- 8 subst. Then

(i) satisfied (8 C) =+ satisfied(C)

(ii) satisfied (C) A C - C' * satisfied (C')

Proof

(i) Assume satisfied(8 C) and isatisfied(C). Then there exists (7 ins (#In U I) E
C and an i s.t. cmpo,qu,(~,vi) = eq. But then by stability of cmpop,,,
cmpopqu, (8 T, 8 v,) = eq, and hence isatisfied(9 C).

(ii) Similar.

Lemma B.12 Let A I- C constraint and A t- d constraint and (a) C Fe d c, W and
t- 0 : A + Ainu and (b) 71 /= 0 C. Then [WjV E 68 d l .

Proof By case analysis on d:

case EQUALS: Let d = T eq v. Then by EQUALS:

and W = True.
Then by definition of saturate:

V8' E mguq(1d I- eqs(C)) .
satisfied (8' inss (C)) +

cmpg(8' T, 0' v) = eq

Then by Lemma B.8:
V8" E mguq (Id I- 8 eqs(C)) .

38' E mgusO (Id I- eqs(C)) .
3er1' . 8'1 e E0 ellf 8'

A satisfied (8' inss(C)) *
cmpQ (6' T, 8' v) = eq

BY (b)
(T' eq v') E C =+ cmpQ(8 T I , 8 vl) = eq

and
(7' ins E C + lisIn(8 T', 8 p')

Then by (d) and Lemma B.7

Id E mgusO (Id I- 8 eqs(C))

and by (4
satisfied (8 inss (C))

Thus, by (c), taking 8" = Id

38' E rngus~(1d I- eqs(C)) .
3elN . e E0 efll el

A satisfied (0' inss(C)) *
cmpO(el T, 0' V) = eq

which by Lemma B.ll (i) and stability of c m p ~ implies

38' E mguq (Id I- eqs(C)) .
3eN1 . e f 0 elN e1

A satisfied (6"' 8' inss (C)) =.=.
cmpO(elN e1 7, elN el V) = eq

Then by (f) and Lemma B.ll (ii) satisfied (8'" 0' inss (C)), thus cmpO (8 T , 8 v) = eq
and thus

True E 88 T eq 0 V]

as required.
case INSERT: Let d = T i n s p. Then by INSERT:

~ 8 ' E saturate(C) . 0' inss(C) Frn 8' T i n s 8' p v W

Then, by same argument as for case EQUALS:

30' E mgusO(Id I- eqs(C)) .
3e111 . e re ell1 el

A satisfied (0''' 8' i n s (C)) ==.
0' inss (C) Frn 0' T i n s 8' p t-) W

By Lemma B.9, if 7' 8"' 8' inss(C) then

[wlo, E [em el T i n s ON' 0' p]

Thus by (b) and Lemma B.10 (i)

[WIo E [6 T i n s 8 p]

as required.

Lemma B.13 Let A I- C constraint and A I- D constraint and C Fe D L, B. Then
C IFe D v B.

Proof Let I- 8 : A + Ainit and 7 be s.t. q b 0 C. Then by rule CONJ C F e w : d - W
foreach(w:d)~D,wherebyLemmaB.12[W]~~[~d~.Thusenv(B,q)~8D.

Lemma B.14 Let A I- C constraint and A I- d constraint and C .ke d t-) W and I- 0 :
A + Acit and q /= 6' C. Then

(i) If d = T eqv then [W] , = itrue : * and eqF(8 T,O v).

(ii) If d = r ins p then [Wlq = iind : i, and if 8 p = (#In U Empty then S # 0 and
Vn E S . .rr-l 1 = i , where S = sortingPerms(8 T, vl, . . . ,vn) .

Proof By Lemma B.12 [W] , E ([8 d l .

(i) Then [True], E [B T eq8 v] and so, since 8 is grounding, by Lemma 4.2 eqQm(8 r , 8 v)
as required.

(ii) Then [W] , E [8 T ins 8 p] where 0 p = (#), T7 Empty. Let S =
sortingPerrns(8 r ,v l , . . . ,v,). Then S # 0 and V.rr E S . .rr-I 1 = i. Thus
([WIq E {iind : i) as required.

Lemma B.15 Let A I- C constraint.

(i) Let I- 8' : A + A;,,, and q be s.t. q + 8' C. Then there exists a 8 E saturate(C)
and a 0" s.t. 8' -0 8" o 8.

(ii) Let 8 E saturate(C). Then there exists a I- 0' : A -+ Ainit, 8" and 7 s.t. 7 J= 8' C
and 8' -0 8'' o 8.

Proof

(i) Let I- 0' : A' -+ A,, and q be s.t.

Then by definition of i-== we have

V(T eqv) E eqs(C).
cmpo (0' 7, @ V) = eq

and thus by Lemma B.7
38 E mgusO(Id I- eqs(C)) .

3 e n . e 1 ~ 0 e u 0 e

Also by definition of + we have

V(r ins p) E inss(C) .
3.

e lp= (#) , ; i i ~ m p t ~
A S = sortingPems(8' T , vl, . . . , v,) # 0

1 A.rr1,xz E S *ql 1 =?T; 1

In the following, let r , p and ;ii be drawn from one of the insertion constraints in C.

Assume that ~ m p ~ ~ ~ ~ ~ ~ (8 ' 7, v,) = eq for some i. But then sortangPernas would
contain at least two permutations, .rrl and nz, differing in their ordering of 8' T and
vi. Thus .rr;l 1 # rz1 1, which contradicts the assumption. Thus

-
Now assume isIn(8 T, 8 p), where 8 is as given in (a). Then if 8 p = (#), v' 1 we
have

36 . cmpOpaque (8 T, v:) = eq

which by transitivity and stability of cmpopaque implies

where 8" is as given in (a). But then since m < n

which contradicts (b). Thus we conclude ~ i s I n (8 7,8 p).

Thus by (b), above argument, and definition of isIn

38 E mgusg(1d I- eqs(C)) .
V(T i n s p) E inss(C) . -.isIn(B 7,8 p)

~ 3 8 " . 8 ' ~ ~ 8 " 0 8

which is equivalent to
38 E mgusg (Id I- eqs(C)) .

satisfied (8 inss (C))
~ 3 8 " . 8 ' ~ ~ 8 " 0 8

from which the result follows by definition of saturate.

(ii) Let 8 E saturate(C).

By definition of saturate, we have

8 E mgusg (Id I- eqs(C)) .
V(T i n s p) E inss(C) . ~ i s I n (8 T, 8 p) (c)

which is to say, for each (T i n s p) E inss(C), if 8 p = (#Im E I then

We seek a 8" and 7 s.t. (8" o 8) : A -+ A;,,, and T,I + 8" o 8 C.

By Lemma B.6 and the stability of cmp0, we have

V(T eqv) E eqs(C) . cmp0(8" 8 T, 8" 8 v) = eq

regardless of O", hence the equality constraints in C do not restrict our choice of 8".

Similarly, by the stability of cmpOpque, ~ m p ~ ~ ~ ~ ~ ~ (8 T, v,) E {It, gt) implies
cmPopaque(8'1 8 7,8" v,) E {It, gt} for any 8", hence these pairs of types within
insertion constraints in (d) also do not restrict our choice of 8".

Hence 8" is constrained only by those insertion constraints s.t.

(7 i n s p) E inss(C)
A 8 p = (#) m E I
A 3i . cmpopque (8 7, v,) = unk

Collect all such pairs of types as 7 and 7. Thus Va . cmpOpaque (8 T:, v;) = unk.

Then by Lemma B.4, there exists a 8" (constructed within the proof) s.t.

Vi . cmpOpaq,, (8" 8 T:, 8" vi) E {lt, gt) (4

Now consider again each insertion constraint (w : 7 i n s p) E inss(C), where 8' p =
(#) , 5 I. From (d) and (e) we have

Vi . ~ m ~ ~ ~ ~ ~ ~ ~ (8 / ' 8 7,6" v,) E {It, gt}

Furthermore, if 1 = a, then by the construction of 8" we have 8" a = A # Empty for -
a fresh newtype A. That is, 8" 8 p = (#),+I (6" v Sf A) Empty. Since A t- a : Row,
A t- T : Type, and A t 8 subst, 8 7 # a, and so since 8"08 is a grounding substitution

Define S as either (if 1 = Empty)

S = sortingPerms(OV 8 r, 8" vl, . . . ,ON v,)

or (if I = a)
S = sorting~erms(ON 8 r , 8'' v1,. . . ,ON urn, A)

Then we have S # 0 and n l , Q E S 1 ='IT;' 1. Thus

[O" 8 7 i ns 8" 8 p] = {iind : j)

where j = n-I 1 for every n E S. We thus take q w = lncj One.

Taking 6' = 6" o 8, we have 7 8 C as required.

Lemma B.16 satisfiable(C) iff saturate(C) # 0.

Proof Immediate by Lemma B.15.

Lemma B.17 If C te D and satisfiable(C) then satisfiable(D).

Proof Let C ke D v B. Since satisfiable(C) there exists a 8 and 7 s.t. q + 8 C. Then
by Lemma B.13 env(B, q) 8 D. Thus satisfiable(D).

Lemma B.18 If A I- C constraint and 8 E saturute(C) then there exists a A' s.t. Ai+A1 I-
e subst.

Proof By definition of saturate and Lemma B.5.

Lemma B.19 If A I- C/D constraint and A I- 8 subst then

(i) saturute(C) = 0 implies saturate(6 C ft- D) = 0

(ii) saturate(8 C +t D) # 0 implies saturate(C) # 0

Proof From definition of saturate, Lemma B.7 and stability of cmpopa,,,.

Lemma B.20 Let A I- C constraint and 1 8 : A -+ Ainit and C = inhs(C) and r) + 8 C.
Then t r u e ke 8 C v B and env(B) = r)rnames(q.

Proof Notice the restriction of C to only include inheritable constraints. This restriction
is necessary because t r u e can never entail 8 C if C contains implicit parameter constraints.

Let r) 8 C. By coNJ, it is sufficient to show for each (w : c) E C that t r u e be 8 c 4 W
for [W] . = q w. However, by Lemma B.12 we already know [W] . E [8 c] 3 q w, and thus
11 W] . = r) W. Hence we need only show existance of a derivation.

We proceed by case analysis on each (w : c) E C.

case c = 7 eq v. Then by definition cmpo(8 r, 8 v) = eq. Thus by CONJ and EQUALITY

t r u e Fe 8 r eq8 v.
case c = r ins p. W.1.o.g. assume 8 p = (#), i7 Empty. Then by definition

1 sortingPerms(8 r, vl, . . . , v,) = S where S # 0 and 7r1, 7r2 E S s 7rr1 1 = 7rs 1.
Thus Vi . cmpoPque(8 r , vi) E {It, gt). Thus by inspection of rules for km,
t r u e 8 r ins 6 p. Then by CONJ and MEMBER t r u e 8 T ins 8 p.

0

Lemma B.21 Let A I- C/D constraint. If C I-e D 4 B1 and C Fe D v B2 then for
every I- 8 : A -+ Ainit and r) set. 7 + 8 C, env(B1, q) = env(B2,q).

Proof By Lemma B.13 env(B1, q) /= C and enu(B2,q) + C. By the definitions of
Figure 4.14, the denotation of each member of C is a singleton. Hence env(B1,r)) =

(B2,r))

Lemma B.22 If C km r ins p v W and cmpopaque (r , r l) = eq and cmpoPqu, (p, p') = eq
and C = C' then C' Frn T' insp' 4 W.

Proof Straightforward induction. D

Lemma B.23 If C Fe d 4 W and d - d' and C r C' then C' Fe d' v W.

Proof From Lemma B.22 and Lemma 4.2 (xiii) if d is an insertion constraint. Otherwise,
result is immediate from transitivity of cmpo.

Lemma B.24 If C Fe D 4 B and D z D' then C be D' 4 B.

Proof From Lemma B.23. 0

Lemma B.25 Let A I- C constraint and A I- r : Type and A I- p : ROW and A I- 8 subst.
Then (a) C k m r i n s p v W implies8 C k m O r i n s 8 p q W.

Proof By induction on derivation of (a):

case MEMPTY: Immediate.
case MREF: Let (a) be

C t - m r i n s p ~ w

Then by MREF

and thus by stability of cmpopque

Hence, by MREF

B C t - m e ~ i n s B p ~ ~

as required.
case MCONT: Let (a) be

C F m T i n s (#),-I i?\i 1 L-) W

Then by MCONT

CmPopaque (7 7 vi) = l t
CI-" i i n s (#) , E l v W

Thus by stability of cmpopaqUe and I.H. on (c)

cmpWaque (e T , e v,) = l t e C k m 7 i n s (#In (8 E) (0 1) r-$ W

hence by MCONT

8 C Frn 8 r i n s (#),-I (8 D\,) (8 1) v W

as required.
case MDEC, MEXP, MINC: Similar to case MCONT.

Lemma B.26 Let A I- C constraint and A t- d constraint and A I- 8 subst. Then C I-m
d s, W implies 8 C F m Bd v W .

Proof By case analysis on d :

case d = r eq v . Then by EQUALS

VO' E saturate (C) . cmpO (0' r, 8' V) = eq

Then by definition of saturate:

VB' E naguq(1d t- q s (C)) .
satisfied (0' inss (C)) +

(0' T , 0' V) = eq

Then by Lemma B.8
Ve" E mguq(1d I- f3 eqs (C)) .

38' E mgusO(Id I- eqs(C)) .
3ett1 . etl e s0 ellt e1

A satisfied (8' inss(C)) *
cmpO(et T,O' V) = eq

Then by stability of cmpg and Lemma B. l l (i)

VO" E mgusg(1d I- 8 eqs(C)) .
38' E mgusg (Id I- eqs (C)) .

3eN1 , eu 8 ettf e1
A satisfied (8"' 8' inss (C)) *

cmpg(8"' 8' T , enr 8' V) = eq

Then by Lemma B. 1 1 (ii)

Wr' E mgusO (Id I- 8 eqs(C)) .
satisfied (ON 8 inss (C)) *

cmpg(Orr 8 7, err 8 V) = eq

and hence
V8" E satunate(8 C) . cmpQ(8" 8 T , 8'' 8 V) = eq

which by EQUALS implies
8 C ke 8 7 e q 8 v L, True

as required.
case d = T ins p: Then by INSERT

V8' E saturate (C) . 8' i n s (C) krn 8' 7 ins 0' p L) W

By the same reasoning as for case EQUALS

V8" E mgusg) (Id I- 8 eqs(C)) .
38' E mguq (Id I- eqs(C)) .

3e1" . OM e r g en' et
A satisfied(8' inss(C)) *

8' anss(C) Frn 8' T inse t p L) W

Then by Lemma B.25 and Lemma B.l l (i)

V8" E mgusg(Id I- 8 eqs(C)) .
36' E mguq (Id I- eqs(C)) .

3eUt . ,gtf 8 = 8"' or
A satisfied(8'" 8' inss(C))

BrN 8' inss(C) Frn 8"' 8' T ins 8r'' 8' p L) W

Thus by Lemma B. l l (ii) and Lemma B.22

VB'' E mguq(1d I- 8 eqs (C)) .
A satisfied (8" 8 inss (C)) +

8/' 8 inss(C) Frn Orr8 7 ins8" 8 p v W

which by INSERT implies
e C I - e 8 ~ i n ~ 8 p ~ W

as required.

Lemma B.27 Let A I- C constraint and A I- D constraint. and A I- Bsubst. Then
C krn D v B implies 8 C Frn 8D L, B .

Proof Straightforward application of Lemma B.26.

Lemma B.28 C I-e C v .
Proof Straightforward from definition of rule MREF and definition of saturate.

Lemma B.29 If (a) C Ern T i n s p L, W and satasfied(C) then -.isIn(r,p).

Proof By definition of satisfied and straightforward induction on (a).

Lemma B.30 If A I- C/D constraint and A I- d constraint and (a) C Fe D v B and (b)
D F e d L, W then C ke d L, W'.

Furthermore, if I- 8 : A -+ Ainit and 7 8 C then [W]env(B,.q) = [W']t7.

Proof The first part procceds by case analysis on d:

case d = T eq v: By (a) and definition of saturate

V8" E mgusO(Id t- eqs(C)) .
satisfied(8" inss(C))

V(T' eqv') E eqs(D) . cmpe(B1' T', 8" v') = eq
A V(r l i n s p') E inss(D) . 8" inss(C) Frn 8" T' i n s 8" p' L) -

Then by Lemma B.7 and Lemma B.29

V8" E mgusO (Id t- eqs (C)) .
satisfied (8" inss (C)) * (d)

Id E mgusO(Id I- 8" eqs(D)) A satisfied(8" inss(D))

Since by Lemma B.26 on (b)
0" D I-" 8" d

we have

then by (d) we may take 8' = Id so that

satisfied (8" inss(D))
A cmpO (8" T, 8" v) = eq

Thus
V8" E mgusg (Id I- eqs(C)) .

satisfied (8" inss (C))
cmpO(k T, 8" v) = eq

so by EQUALS
C ke T eq v True

as required.
case d = T i n s p: By (a) and definition of saturate:

V8" E mgusO (Id t- eqs(C)) .
satisfied(@' inss(C))

V(T' eq v') E eqs(D) . cmpO(BN T' , 8" v') = eq (d)

A V(w : T' i n s p') E inss(D) . 8" inss(C) brn 8" T' i n s 8" p' v W:

where B = w = W l .
By the same arguments as above we have

V8" E mgusO(Id I- eqs (C)) .
satisfied(8" inss (C)) *

Id E mgusO(Id l- 8" eqs(D)) A satisfied(8" inss(D))

Since by Lemma B.26 on (b)

we have
V8' E mguq(1d I- 8" eqs(D)) .

satisfied(8' 8" inss(D)) ==.
8' 8" inss(D) krn 8' 8" T i n s 8' 8'' p v W

then by (d) we may take 8' = Id so that

V8" E mgusO (I d I- eqs(C)) .
satisfied(8" inss(C)) (4

8" inss(D) krn 8" T i n s 0'' p v W

By inspection, each rule for deciding Frn has zero or one invocation of Frn in its
hypotheses. Hence, a derivation of

8" inss (D) Frn 8'' T i n s 8" p L-) W

is a chain with leaf an instance of rule MEMPTY or MREF. We consider each case:

case MEMPTY: Replace the leaf

MEMPTY
8" inss(D) Frn T' i n s Empty L-) One

with

MEMPTY
8" inss(C) Frn T' i n s Empty v One

Then 8" inss(C) Frn 8" T i n s 8" p v W , and so

V8" E mgusO (I d k eqs(C)) .
satisfied (8" inss(C)) +

8"inss(C) Frn 8" T i n s 8" p v W

which by INSERT implies
C I - e ~ i n s p ~ W

as required.
case MREF: The leaf is of the form

(W : 8" T I ins 8" pl) E ON inss (D)
cmpowoue (8" r l , T") = eq - . . .
cm~opaque (8" P I , PI') = eq

MREF
9" inss(D) I-m rl' ins p" L, w

and so by Lemma B.22

ON inss(C) F m TI' ins pl' L, W t

Hence
8" inss (C) I-m 8" r ins 8" p v W [W t+ W l]

and thus
V8" E mguq (Id I- eqs (C)) .

satisfied(k i ~ s s (C)) *
BMinss(C) km 8" r ins 8" p + W [w I+ W l]

which by INSERT implies

For the second part, notice that by Lemma B. 12 [W'],, E [8 dl , env(B, q) + D, and thus
[W l e n v (~ , q) E 88 dl. Then [WIIq = BWBenv(~,q)- C1

Lemma B.31 If A I- C / D 1 / D constraint and C F e D' v B and D' I-e D v B' then
C I-e D v BI1.

- Furthermore, if t- 8 : A + Ainit and q + 8 C then env (B Sf B1, q) ,names(D) -
env (B1l, 7) Incmes(D)

Proof By Lemma B.30 and definition of env. 0

Lemma B.32 If A I- C / D / d constraint and C F m d L, W then C - t t D F m d L, W

Proof Straightforward induction. 0

Lemma B.33 If A I- C / D / d constraint and (a) C I-e d v W then C +t D I-e d v W .

Proof Notice that if t9 E mgusg(Id I- eqs(C)) and 8' E mgzdsg(Id I- eqs(C) +t eqs(D))
then by Lemma B.6 and Lemma B.7 there exists a 8" s.t. 8' q j 8" o 8.

Furthermore, by stability of cmpOpaque, if +In (8' r , 8' p) then .-.isIn(8 r, 8 p).

We proceed by case analysis on d:

case d = (7 e q v) , W = True: Then from (a)

V8 E mguq (Id I- eqs(C)) .
(V(r1 i n s P') E inss(C) . l i s In (8 T', 8 p'))

cmp0(8 T , O v) = eq

Then by above results

V8' E mguq (Id I- eqs(C) tf eqs(D)) .
38 E mgusO(Id I- eqs(C)) . 38" .

8' q, 8" 0 8
A (V(T' i n s p') E inss(C) . lisIn(0' T', 6" p'))

cmpO (8 T , 8 v) = eq

Thus by the transitivity and stability of cmpQ

V8' E mgusO(Id t eqs(C) -I+ eqs(D)) .
(V(T' i n s p') E e'nss (C) . lisIn(8' T', 8' p')

A V(T' i n s p') E inss(D) . ~ i s I n (8 ' T' , 8' p')) +
cmpO (8' T,O' v) = eq

which is equivalent to
C +t D F e d L, True

as required.
case d = (T i n s p). Then from (a)

V8 E mgusO (Id I- eqs (C)) .
(V(T' i n s p') E inss(C) . ~ i s I n (8 T', 8 pi)) ===+

8 inss(C) Frn 8 T i n s e p L-) W

Then by above results

Ve' E mgus@ (Id t eqs(C) +t eqs (D)) .
38 E mgusO(Id t eqs (C)) . 38" .

8' ~0 8" o 8
r\ (V(T' i n s p') E inss(C) . lisIn(8' T', 8' 4)) =$

8 i n ~ s (C) t - ~ 8 ~ i n s 8 p v W

Thus by Lemma B.25, Lemma B.22 and Lemma B.32

Q8' E mgusO(Id I- eqs(C) +t eqs(D)) .
(V(T' i n s p') E inss(C) . +In (8' T', 8' p')

A V(T' i n s p') E inss(D) . ~ i s I n (8 ' T', 8' p')) =j

6' inss(C) Sf 8' inss(D) Frn 8' 7 i n s 8' p v W

which is equivalent to
C - t + D F e d ~ W

as required.

Lemma B.34 If A l- C/D/D1 constraint and C ke Dl L, B then C -kt D Fe D' L, B.

Proof Straightforward application of Lemma B .33. 0

B.4 Type Soundness

Lemma B.35 If A F C constraint and A I- I' context and A I C I I' I- t : T then A I- T :

Type.

Proof Easy induction. Notice the use of well-kinding judgements within VAR, LET, ~ 3 ,
~ 4 , ~5 and ~ 7 . 0

Lemma B.36 Let (a) A I C 1 I? I- t : T and (x : f o r a l l A' . C' => TI) E r .

(i) For every (run-time) specialisation of x within t there exists a I- 8 : A' + A and W
s.t. D = named(C1), names(D) = W and C Fe 8 D.

(ii) If x E fv(t) then there exists a I- 8 : A' + A and E s.t. D = named(C1), names(D) =
W and C Fe 8 D.

Proof For (i), by induction on derivation of (a):

case VAR: Let (a) be
A I c l r ~ - ~ : ~ ~ [m]

If y # x then the result holds vacuously. Otherwise, we have y = x, and by vAR

where D = named(C1). The result is immediate.
case APP: Let (a) be

A I c l r ~ - ~ U : T
where by APP

case (in t) By I.H. on (b) the result holds for each specialisation of x in t.
case (in u) Similary, by I.H. on (c) it holds for each specialisation of x in u.

case LET: Let (a) be
A (C I r k l e t y = u i n t : r

Then by LET

Y E f 4 t)
Di = inhs(C)

saturate(Di St D;) # 0
a - ~ a ~ I o ~ + + D ; I r k ~ : ~ ~

A1 C I r , y : a t t : ~

A I- Di constraint

A u A" I- D; constraint

where a = f o r a l l AN . anon(D4) => 7". (We shall ignore shadowing, thus x # y.)

case (in u) W.1.0.g. assume dom(A')ndom(Art) = 0 and that named(anon(D4)) = D;.
By I.H. on (e), for each specialisation of x in u, there exists t 8 : A' + A St A"
s.t.

D; u D; I-" e D (i)

where D = named(C1).
By I.H. (this time using y, which is known to occur at least once within t by (b))
on (f) for each specialisation of y in t there exists at least one k 8' : A" + A s.t.

Notice by (g) 8' Di = D;. Then by (c)

and thus by (j) and CONJ
C I-" 6' (Di -t+ Di)

Then by (i), Lemma B.27 and Lemma B.31

which is equivalent to
C I-" (8' 0) ydom(A()

Furthermore, we have I- (8' o 9) ,do,?(A:) : At -+ A.
Thus the result holds for each specialistion of x via y in t.

case (in t) By I.H. on (h) the result holds for each specialisation of x in t.
Notice that (d) plays no part in this result. Indeed, the test for satisfiability in rule
LET is purely to aid the locality of error diagnostics.

Other cases proceed similarly.

For (ii), notice that if x E fv(t) then it must be specialised at least once.

LemmaB.37 (i) I f A I C (F I - t : r v T t h e n A + t A t I C I r I - t : r v T

(ii) If A*Ar 1 C I r k , t : T V T[m] then A I C I r t , t : T v TI.].

Proof Straightforward induction. 0

Proof Straightforward induction.

Theorem B.39 (Type Soundness)

(i) If

(a) A1 C I I ' I - t : r L) T

(b) I- e : A -+ ahit
(c) env(B) + 0 C

(dl 71 I= r

(ii) If

(a) A I C I TI-, t : T L) T[o]

(b) I- e : A -+ Ahit

(c) env(B) + 0 C

Proof By induction on derivation of (a). (We shall mix the two proofs and rely on the
rulename to distinguish between statements (i) and (ii).)

case INT: Let (a) be
A I c I r I - i : I n t ~ - $ i

Then by definition

[i],,Stenv(B) = unitE (int : i)

E E {int : i 1 i E 2')

= re 11n1

as required.
case APP: Let (a) be

A I C I I ' I - ~ U : T L) T U

Then by APP we have

A1 C I I ? l - t : v v T
A I c l r t - u : ~ ' ~ u

C Fe v eqv' -> T L) True

By (c) and Lemma B.14 eqc (6' v, 6' v' -> 8 7) and thus

By definition

[T U]r)+env(~) = let^ V + KTPr)+env(~)
in case v of {

: f --) f [U],+env(B);
otherwise + unitE (wrong : *))

By I.H. (i) on (f)
u ~ q - t t e n v (~) E ge v'B

By I.H. (i) on (e)

BTBq+env(~) E 80 vI
E [9 v' -> 8 T]

= E {func : f I f E E v + E V, V' E [6' v'] + f V' E Be 71)

thus v is tagged by func, and

as required.
case VAR (normal case): Let (a) be

Then by VAR

where a = f o r a l l a . D => 7, D' = named(D), and names(D1) = (wl,. . . , wn).
By (c) , (g) and Lemma B. 13

env(B +t B') + 8 (D 1 [a]) (h)

By de f in i t i on

[letw B in x narnes(D')]qit,nv(B)

= [X (~ 1 , . - , w n 11 env(B1,qitenv(B))

= [X (~ 1 7 - - - 7 ~ n)] q + e n v (~ # B ')

= let^ v t [~] q + e n v (~ # B ')
in case v of {

i funcn : f -+ f ([z ~ l] q # e n v (B # B ') ~ . 7 I ~ n l q + t e n v (~ # ~ ')) ;
otherwise + unitE (wrong : *))

= letE v t [X I q

in case v of {
i funcn : f * f ([W] env(B+B1) 7 . . - 7 [w n] env(B+Bt)) ;
otherwise + unitE (wrong : *))

= (*I
W.1.o.g. a s s u m e dona(8) n7i = 8. Then by (d) a n d (e)

[xBq E [8 f o r a l l a . D => T]

= [f o r a l l a . 8 D => 8 T]

I- 8" : O: A*,,#,
= n { ~ (e t l , B l l) I e n v (B r l) 0" (0 D l)

T a k i n g 8" = [a] a n d B1' = B -tt B', by (h) v i s t agged by i f unc , a n d

where

w h e r e
f ([~ l] e n v (B + B ~) 7 . . . 7 I [~ n] e n v (~ - l t B ')) E Be (T[ml) l

: f

a s required .
case VAR (f = (I n j -1): L e t (a) be

f E nll,5nz -+ E V7
f ([w ~] ~ ~ ~ (B ~ ~) ~ . - 7 [w n ~ e n v (B t t))

E 18" (8 T)]

A I C I I? I- (I n j -) : (a -> One (a # b)) [a I+ 7, b I+ p] L) letw w = W in (I n j -1 w

Then by VAR

A I- T : Type (4
A I- p : Rpw (f

C Fe w : (a i n s b) [a I+ 7, b I+ p] L) w = W (g)

By definition

[letw w = W in (I n j -1 w] ~ + + ~ ~ ~ (~)
-
- [(In j -1 (w)Denv(w= ~ , ~ + + e n v (B))

= !(Inj -1 (w)]q+env(w= w,env(~))

= g(X(wr> - Ax . lnj W' X) (~)]~++env(w=d,env(~))

= [AX - Inj W xBq++env(w= w,env(B))

= unitE (func : Xy . case [W]env(B) of {
iind : i + unitE (inj : (i, y))
otherwise + unitE (wrong : *)))

By (c), (g) and Lemma B.14, if 8 p = (#), ?7 Empty then

S t # @ A V T E St . .rr-I 1 = j A [W]env(B) = iind: j

where St = sortingPenns(8 T, vl, . . . , vn).
Let n E St. Then

(*) = unitE (func : Xy . unitE (inj : (j , y)))

where

as required.
case VAR (f = (Triv)): Let (a) be

{ s = E j : (i, v)

A I C I I' !- (Triv) : All Empty L, letw in (Triv)

15 i 5 (n + I),
if i = j then v' E [8 T]

else v' E [v(,

Then by definition

= [o r ->One (8 7 i tep)]

= [O (7 -> One (T, PI)]
= [e ((a ->One (a # b)[a * ~ , b I-+ PI))]

[letw - in (T r i ~)] ~ + + ~ ~ ~ (~)

= B(Tri~)jlq+env(~)

= BOBq+env(~)

= unitE (prod,, : ())

E E {prodo : 0)
= [8 All Empty]

as required.

case VAR (f = (- && -1): Let (a) be

A I C I I? I- (- && -1 : (a -> A l l b -> A l l (a # b))[a I+ T , b I+ p]
v letw w = W in (- && -1 w

Then by VAR

A F T : Type

A t- p : Row

C F e w : (a ins b)[a I+ T , b I+ v w = W

By definition

= [(X(wl) . Ax . Xy . insert x a t W' into y) (~)] q * ~ ~ ~ (~ = w , e n v (~))

= [Ax . Xy . insert x a t w into gBq++env(w=W,env(~))

= unitE (func : Ax1 .
unitE (func : Xyl .

letE v e y1

in case (v , [w]l env(B)) of {
(prodnr : (v i , . . . , v;,), iind : i) +

unitE (if 1 5 a 5 (nl + 1) then V" else wrong : *);
otherwise + unitE (wrong : *) 1))
N I I I I I where v = : (v l , . . . , vi-l, x , v,, . . . , vnr)

= (*)

By (c) , (g) and Lemma B.14, if 8 p = (# I n 7 Empty then

St # 0 A VT f S1 . x-' 1 = j A WBenvcB) = iind : j

where St = sortingPerms (8 T, vl , . . . , vn).
Let n E S' and

if i < j
(T (i + 1)) - 1, otherwise

Then n1 E sortingPerms(vl, . . . , vn).

Thus

(*) = unitE (func : Ax1 .
unitE (func : Xyl .

letE v t y1
in case v of {

prod, : (v i , . . . , v:) + unit^ v";
otherwise + unitE (wrong : *) 1))

I1 I I I I I where v = : (v l , . . . , v j - l , x , v j , . . . , v,)

and T = E {prod, : (v i , . . . , vk) I v i E [v+ 11,. . . vk E [v,l ,I}

= 10 r -> AU (0 p) -> A l l (0 T # 0 PI]
= [0 (r -> A l l p -> A l l (7 # PI)]
= ((a -> AU b -> A ~ I (a # b)) [a I+ 7,b ++ PI)]

as required.
case vAR (f = A): Let (newtype A = r) E tdecls and let (a) be

A I C (I? k A : (raom(r a1 . . . a,) -> A a1 . . . a,)[-] v letw - in A

Then by vAR
At--

By well-kinding of T , 0 T = T . Then

8 (n o m (r a1 . . . a,)[=]) = 0 nomn(7 vl . . . v,)

= n o m (r (8 v l) . . . (0 v,))

By definition

[Ietw . i n A] q + e n v (~)

= BABqi+env(~)

= [Ax - A ~] q i + e n v (~)

= unitE (func : Xy . foldA y)

= [n o m (r (0 ~ 1) . . . (0 v,)) + A (0 ~ 1) . . . (8 v n)]

= [0 (n o r m (r v l . . . v,) -> A vl . . . v n)]

= [0 ((n o r m (r a1 . . . a,) -> A a1 . . . a,)[=])]

as required.
case ABS: Let (a) be

Then by ABS

A I C (r t- Cabs) : r v T[undefined]

A I C I r k l abs : r v T[.]

Notice

Then by I.H. (ii) on (e)

as required.
case DISC: Let (a) be

A I C I I? I- (absl, ... , a b ~ , + ~) : 7 v let z = U in T[z]

Then by DISC

A I C I r F 1 absl : 7 v T[.]

A I C I I? I- Cabs2,. . . , a b ~ ~ + ~ l : r1 3 U
C F e r eq 7' <+ True

By (c) , (g) and Lemma B. 14 e q r (I9 r, 19 7') , hence

[I9 r] = [I9 T I]

By definition

(Notice the translation let-binds U so as to avoid duplicating it within the body of T.
Since our semantics is call-by-name, we may safely undo this.)
By I.H. (i) on (f)

Then, by I.H. (ii) on (e)

as required.
case LET: Let (a) be

A I C I I? I- l e t x = u i n t : 7 v let x = Xnames(D2) . U in T

Then by LET

x E fv(t)
A I- Dl constraint

A i+ A' I- D2 constraint

Dl = inhs(C)

saturate(D1 -t+ D2) # 0
A U A ' I D ~ ~ + D ~ ~ ~ ~ - u : v c) u

A I ~ I ~ , x : u ~ - ~ : T L) T

where a = f o r a l l (z . anon(D2) => v, names(D2) = (wl,. . . , wn), and A' = m.
By definition

[let x = X names(D2) . U in T]v+env(B)

= KTBq+env(~)+z~v

= (*I
where

Since by (b) dom(0) n dom(At) = 0, by (f)

A' I- 0 D2 constraint

By (e) and Lemma B.36 (ii) there exists F 8' : A' -+ A s.t. C Fe 8' D2 v B'. Then
by Lemma B.13 env (B -ti- B') + 8 o 8' D2. By (b) this is equivalent to

where F (0 0 8') ldorn(A,) : A' + Ain".
Now let 8'' and B" be s.t.

By above argument at least one such 8" and B" exists.
Then, since 8" o 8 Dl = 8 Dl, by (c) and (h) we have

and so by I.H. (i) on (k)

Since this holds for any choice of 8" and B" s.t. (m) holds

E n { ~ (o ~ . B f f) I I- t9'I : At + A,,,,t,
env (B") 8" (8 D2)

= [fo ra l l a . (0 unon(D2)) => (8 v)]

= [8 (f o r a l l o . unon(D2) => v)]

Now, let q' = q, x I+ v. Then qt (8 r) , x : (8 a). Thus by I.H. (i) on (1)

where

as required.
Notice (h) and (j) play no part in soundness. The former is always true in XTIR as
presented, and the latter serves only to detect unsatisfiability as early as possible.

case PI: Let (a) be
A1 C I I ' I - o t : ~ ~ T

ifuncn : f

Then by p l

hI C I ~ I - ~ : T L) T

f E n ~ ~ , ~ , ~ -+ E v?
f ([W]~,U(B~~), + - 7 [wn]env(Bf1))
E [en (e v)]

which by I.H. (i) implies [T]quenv(B) E I[8 T] . Since T has no "hole", the result is
immediate.

case ~ 2 : Let (a) be

A I C I I' I-,+1 \i . t : I n t -> 7 v Ax . case x of { i + T[e X I ;
otherwise + l x)

Then by p2 A (C I I' I-, t : T v T[.], and since x @ dom(I'), by Lemma B.38

Let v be s.t.

v E [~ n t]

= E {int: i I i E 2)

and let q' = 7, x I+ v. Then by (d) q' + (8 I'), x : Int .

[u],++env(B) E UInt -> 0 71

= E {func : f I f E E V += E V, v' E [~ n t] * f v' E [B T] }

Thus

lU 21)q'+env(~)

= let^ v' +- [U]q'++env(B)
in case v' of {

func : f f [~] ~ ' + e n v (B) ;
otherwise + unitE (wrong : *))

= let^ func : f [U]19++enu(~)
inf v

E IP 71

Then by I.H. (ii) (using 7') on (f)

By definition

[A x . case x of { i + T [U X I ; otherwise + U x)]q+env(B)

= unitE (func : Ax' . letE v' t [x]q+Cenv(B),zex~
in case v' of {

i n t : j += if i = j then [T [U ~]] ~ + + ~ ~ ~ (~) , ~ ~ ~ l
B U x]q+env(~),x++x';

otherwise + unitE (wrong : *)))

= (*>

Then, since the choice of v was arbitrary s. t. (g) holds, by (h) and (i)

(*) E E {func : f I f E E V --+ E V, v" E [~ n t] ==. f vl' E [B T I }
= [I n t -> 0 T]

= [B (I n t -> T)]

as required.
case ~ 3 : Let (a) be

A I c I r t - n + l \ ~ p . t : ~ v ~ . . . v , - > T
9 A x . let y = A-' x in T[Xy . (A y)] y

Then by p3

At-v:K.

C ke nom(vl vl . . . v,) eq7' L) True

A 1 C I r \p . t : T I - > T L) T[.]

Notice by well-kinding of v'

e norm(vt vl . . . v,) = norm((8 v') (8 VI) . . . (0 vn))

= norm(vl (0 vl) . . . (8 v,))

By (c), (g) and Lemma B.14 eqT(8 norm (v' vl . . . v,), 0 7')) and thus

f E E V + E V ,
V' E [(A (8 vl) . . . (8 ~ n))] + f V' E 88 71

Then by definition

[AY - U (A ~)]q t tenv(~)
= unitE (func : Xyl . let^ v t [U],+env(B),y+,y:

in case v of {
func : f -+ f fold^ I[~]~+env(~),yHy~);
otherwise + unitE (wrong : *)))

= unitE (func : Xy' . let^ func : f t [U~qSI-env(B)
in f (foldA y'))

E E {func : g) g E E V + E V, V" E [nomn(vl (8 vl) . . . (8 vn))] * g V" E 88 71)
= [norm(vl (8 vl) . . . (8 v,)) -> 8 711
= [e TI -> e
= fe (TI -> 711

Thus by I.H. (ii) on (h)

By definition

[AX . let y = A-I x in T [A ~ . u (A y)] Y] ~ ~ ~ ~ ~ (~)

= unit^ (func : AX' let v t I[T[AY . U (A ~)]]q+env(~),z~z~,~~unfold~ z1

i n case v of {
func : f -+ f unfoldA xi;
otherwise + unitE (wrong : *)))

= unitE (func : Ax' . le t func : f t [T[Ay . U (A y)]]71Stenv(B)
i n f (unfoldA XI))

E E {func : g I g E E v -+ E v , V' E [A (e vl) . . . (8 v,)] ==. f V' E ge T])

= [A (e v ~) . . . (e v,) -> (e T)]

= ge ((A vl . . . v,) -> T I]

as required.
case ~ 4 : Let (a) be

A I C I I' Fn+1 \Inj p . t : One (v # p) -> T
v Ax. case x of {Inj W y + T[Ay . (Inj W y)] y;

otherwise -+ x)

Then by p4

A I c I r I-,+~ \p . t : v -> 7 C) T[.]
C ke v i n s p v W

A i- p : Row

By (c), (g) and Lemma B.14, if 8 p = (#In 7 Empty then

S' # 0 A Vx E S' . r-l 1 = j A [W]env(B) = i int : j

where S' = sortingPerms(8 v, vi, . . . , v;).
Let x E S'. By (e)

[UIlqi+env(~) E (One (v # P) -> T)]

E [One (8 v # 8 p) -> 8 r]

=E{func: f I f E E V + E V , V ' E S + f v ' E [~ T])

where

inj:(i ,vl)
l < i < n ,
i f i = j t h e n v ' ~ [O v]
else v' E [vb i,-l]

Then by (h) and (i)

= unitE (func : Xy' . letE v +- [U]v+-env(B)
in case v of {

func : f 4 f (case [W], of {
iind : i 4 unitE (inj : (i, y'));
otherwise + unitE (wrong : *)))

otherwise + unitE (wrong : *)))

= unitE (func: Xyt . letE func: f t [U]l)Stenv(B)
in f (unitE (inj : (j , y'))))

E E {func : g I g E E V -+ E V, V' E [8 V] + g V' E [O 7-11

=[Ov->Or]

= [e (v -> T)]

Then by I.H. (ii) on (f)

Let vt' be s.t.
V" E [One (8 v # 0 p)]

and let q' = 7, x I+ v". Then by (d) 7' (8 I?), x : 8 (One (v # p)).
By definition

~]q 'S tenv(B)

= let^ v + [UBqli+env(~)
in case v of {

func : f f [~]q'+env(~);
otherwise + unitE (wrong : *))

= let^ func : f + [UBrl+-env(~)
inf v

E Be 71
Since x is fresh, by (f) and Lemma B.38

Thus by (1) and I.H. (ii) (using ql)

By (h) and by definition

[Ax . case x of { Inj W y + T [X y . U (Inj W y)] y ;
otherwise + U x)] , , + ~ ~ ~ (~)

= unitE (func : Ax' . letE v t [~] , + ~ ~ ~ (~) , ~ ~ ~ t
in case (v , [W],) of {

(inj : (j', v ') , iind : i) -+
if i = j1 then

 let^ v" t ~ T [X Y - U (Inj W ~)I]q+env(~),z,zl,y,v~
in case v" of {

f ~ n c : f + f [~ lq+env(~) , z *z ' ,~ *v~ ;
otherwise 4 unitE (wrong : *))

else I[U x l , + e n v (~) , z ~ z l , y ~ v l ;
otherwise -+ unitE (wrong : *))

= unitE (func : Ax' . letE v t x'
in case v of {

inj : (j l , v ') +
if j = j' then

 let^ func : f + [T[AY U (Inj W Y) IBv+env (~)

in f v'

else [U ~B~+env(~),z++zt ;
otherwise + unitE (wrong : *))

Then since the choice of v" was arbitrary s.t. (k) holds, by (j) and (1)

(*) E E {func : f I f E E V + E V , v" E [One (8 v # 8 p)] ==. f v" E 88 T])

= [one (8 v # 8 p) -> (8 T)]]

= [8 (One (v # p) -> T)]

as required.
case ~ 5 : Let (a) be

A I c I r I-,,, \p b ~ t q . t : ~ i i (v l # p) -> T

v Ax . let y z = remove W from x
in T [A y . X z . l (insert y a t W in toz)] y z

Then by p5

A I C I I? t-n+2 \P . \q . t : ~1 -> ~2 -> T v T [e]

C b e A l l p eqv2 9 True

C b e v l i ns p L) W

A I- p : Row

By (c) , (g) and Lemma B.14, e q c (A l l (8 p) , 8 v 2) , and thus

-
Similarly, by (c) , (h) and Lemma B. 14, if 8 p = (#In vt Empty then

St # 0 A VT E St . n-' 1 = j A [W]env(B) = iind : j

where St = sortingPemas(8 vl, vi , . . . , v',).
Let n E St, and let

I (T i) - 1, i f i < j
T i =

(T (i + 1)) - 1, otherwise

Then T' E sortingPerms (vi , . . . , v',).

BY (4

[U]17+env(~) E I[e (All (~ 1 # P) -' 7)B

= [A l l (8 vl it 8 p) -> (8 T)]

= E {func : f I f E E v -+ E V , v1 E [~ l l (8 VI # 8 p) j - f v1 E 88 71)
(k)

By definition

[~ y . ~z . u (insert y a t W into

= unitE (Xyt . unitE (Xz' .
letE v %U]q+env(~),y*yf,zez'
in case v of {

func : f --) f (let^ 4- [~] ~ + e n u (~) , ~ e ~ ~ , z c + z '

in case (vl, EWIq+env(~),ywy~,zez') of {
(prod, : (v:, . . , v:), iind : i) +=

unitE (if 1 5 i _< n + 1 then v"' else wrong : *);
otherwise -+ unitE (wrong : *)));

otherwise + unitE (wrong : *))))

where

Then by (j) and (k)

(*) = unitE (Xyl . unitE (Xz' .
letE : f [U]v+env(~)
in f (letE v1 t z1

in case v1 of {
prod, : (vr, . . . , v:) -+

I II unitE (prod,+l : (v:, . . . , VY-~, y , vj , . . . ,v:));
otherwise += unitE (wrong : *)))))

Notice if V i . vr E vl, , and y' E [O vl] then

(*) E E {func : g I g E E V -+ E V, v E [O vl] + g v E S)

where

S = E { f u n c : h I ~ E E V + E V , V E T + h v ~ [Or])

T = E {prod, : (y, . . . , ern) I y E [v> . . . , v,, E [vll , I)

and thus by (i)

Then by I.H. (ii)

[T[Xy . Xz . U (insert y at W into z)] ~ ~ ~ ~ ~ (~) E [O (vl -> 212 -> T)] (1)

By definition

[Ax . let y z = remove W from x
in T[Xy . Xz . (insert y a t W into z)] g z] ~ + ~ ~ ~ (~)

= unit^ (AX' - let^ v [~] ~ + e n v (B) , z ~ x ~

in case (v, [W]q+-env(~),x~x') of {
: (vi, . . . , v:-~, v", v:, . . . , v;), iind : i) +

if 1 _< i 5 (n + 1) then
[T[Xy . Xz . U (insert y at W into z)] y zBqt

else unitE (wrong : *);
otherwise + unitE (wrong : *)))

where

I = 7 +t env(B), x I+ x', y t) v", z t) unitE (prod, : (vi,. . . , viel, v:, . . . , v;))

Then by dj)

(**) = unitE (Ax1 . letE v t XI

in case v of {
: (vi, . . . , v!-~, v", vj, . . . , v;) -+

[[T[Xy . Xz . U (insert y a t W into z)] y z],tt
otherwise -+ unitE (wrong : *)))

E E {func : f I f E E It --+ E V, v E pi1 (8 vl # 8 p)] 3 f v E 71))

= [0 (All (vl # p) -> T)]

as required, where

I I qrl = 17 +I- env(B), y t+ v", z t+ unitE (prod, : (vi, . . . , vj-l, vj, . . . , vh))

case ~ 6 : Let (a) be

A I C I I' I-,+1 \Triv . t : A l l Empty -> T L, Ax . let () = x in T[e x]

Then by p6 A I C I I' I-, t : T v T[e], and so since x is fresh, by Lemma B.38

[U]7pt+-env(~) E [A l l Empty -' TI
= E {func : f I f E E V -+ E V, v1 E [~ l l ~mpty] ==. f V' E [8 T]) (g)

Let v be s.t.

v E [A l l Empty]

= E {prodo : ())

and let q l = q,x t, v.
Then by (g) and by definition

[U x l q ' ~ e n u (~)

= letE v [U]b-ttenu(~)
in case v of {

func : f -+ f [xBql+enu(~)
otherwise + unitE (wrong : *))

= letE func : f t [U]q+env(B)
inf v

By (d) q1 + (8 I'), x : (8 A l l Empty), so by I.H. (ii) (using 7') on (f)

By definition

= unitE (Ax' . letE v' t l[xjv+-env(B),xez~
in case v' of {

prodo 0 -) [T[U ~] ~ ~ + e n v (L ?) , x + + z ' ;
otherwise + unitE (wrong : *)))

= unitE (Ax' . letE v' t x'
in case v' of {

prodo : O -) ET[U ~III~+-env(~) ,x++x~;
otherwise -+ unitE (wrong : *)))

Then since the choice of v was aribitrary s.t. (h) holds, by (i)

(*) ~ E { f u n c : g ~ g E E V + E V , v ~ [A l l E m p t y] * g v ~ [~ ~ ~)

= [~ll Empty -> 8 T]

= [O (A l l Empty -> T)]

as required.
case ~ 7 : Let (a) be

A I c I r t-n+l \X . t : -> cs AX . T F X I

Then by p7

A I C I I ' , X : V I - ~ ~ : T V T[m]

A 1- v : Type

[U]qitenv(B) E ie (v ->
=[Ov->Or]

= E {func : f I f E E V + E V, v' E 16' v] + f v' E [O T]) (h)

Let v be s.t.

and let 7' = 7 , x I+ v .

Then by (h) and by definition

= let^ v 'r [U]a'+enu(~)
in case v of {

func : f f [[x]++enu(~);
otherwise -+ unitE (wrong : *))

= let^ func : f + BUBq+env(~)
inf v

By (d) and (g) q' + (8 I?), x : (8 v). Then by I.H. (ii) (using 7') on (f)

By definition

[Ax. T[U XI]
= unitE (func : Ax' . [T[U ~]] q + ~ ~ ~ (~) , ~ + # ~ f)

= (*I
Since the choice of v was arbitrary s.t. (i) holds

(*) E E {func : g I g E E V -+ E L', v E I[8 v] g v E 18 T])
= 18 v -> 8 T]

= ge (v -> T)]

as required.

Appendix C

Proofs for Chapter 5

C.l Simplifier Correctness

Lemma C.l Let A I- C / D constraint and A t- 7 : Type and A I- p : Row and A I- 8' subst
and notln (C I- r, p).

Then 8 E saturate((8'C) +t D) implies ~ i s I n (8 8' r , 8 8' p).

Proof By definition of saturate

8 E mgusQ(Id I- eqs((O1 C) +t D))
A V(r t i n sp l) E inss((8' C) -kt D) . l i s In(8 T', 8 p') (a)

-
W.1.o.g. assume p = (#), i7 1, and 8 8' 1 = (#I, v" I' and thus 8 0' p = (#),+, v1 I t ,
where

Now assume isIn(8 8' T , 8 13' p), that is, there exists an i s.t.

We shall show each possible value for a leads to a contradiction.

case 1 5 i < m: Thus cmpopque (8 8' r , 8 8' v i) = eq.
Since by definition of notIn, notEqual(C t- T,v,), then by definition of notEqual,
satisfied and isIn we have

V8" E mgusOPque (Id k r eq V i) .
3(r1 i n s p') E i n s (C) . isIn (8" T', 8'' p')

Then by Lemma B.8 and stability of cmpOPque:

VB1I1 E mgusOPque (Id I- 8 8' T eq 8 8' v i) .
38" E mgusoPque (Id I- T eq vi) .

3el111 . en' 8 8' etltl 81' .
3(r1 i n s pl) E inss (C) . isIn (8"" 8'' T I , 8"" 8" p')

and thus by transitivity of cmp,,,,,

V8"' E mgus,,,,, (Id I- 8 8' T eq 8 8' vi) .
3(r1 ins p') E inss(C) . isIn(8"' 8 8' T', 8'" 8 8' p')

But by (b) and Lemma B.7

38"' E mg~s,~,~,, (Id I- 8 8' r eq 8 8' v,) . 8'" = Id

Thus
3(r1 ins p') E inss (C) . isIn(8 8' TI, 8 8' p')

which contradicts (a).
case m < i 5 (m + n): Thus Cmpopoque (8 8' 7, V Y - ~) = eq (and of course 1 # Empty.)

Then by definition of notIn
-

3(r1 ins (#) , r rtl I r r) E inss(C) . cmpopque(~, 7') = eq A 1 = I"

which by stability of cmp,,,,, implies
-

3(7' ins (8) ,, T" I") E anss(C) . cmpop,, (8 8' T, 8 8' 7') = eq A 1 = 1"

which by (a) implies
- I ' I 3(r1 ins (#) , r T" 1") E inss(C) . 88' I" = (#In VN I' A r , v , - ~) = eq

that is
3(7' ins p') E inss(C) . isIn(8 8' T', 8 8' p')

which contradicts (a).

Lemma C.2 Let A I- C constraint and inhs(C) = C and A t- r : Type and A I- p : Row
and notIn(C I- r ,p) and I- 8 : A + Ainit and q 8 C.

Then 1 isIn (8 7,8 p) .
Proof By Lemma B.15 (i) Id E saturate(8 C). Then the result is immediate by
Lemma C.1.

Lemma C.3 Let A t- C constraint and E E dom(A) and (B I C) D (8 I C' I B). Then

(i) 8 C' = C'

(ii) A I- Ct constraint

(iii) There exists a A' s.t. A +t A' I- 8 subst

(iv) A I- OrE subst

(v) C' = false or there exists Dl, D2 and D3 s.t. C = Dl +t D2 and C' = (8 Dl) +t D3

Proof

(i) In rule ~ 2 , [b I+ r] is applied to C, so the rusult follows by idempotency. In rule s17,
dom(8) fl fu@(C) = 0. All other rules yield Id.

(ii) In rule ~ 1 7 , 8 may introduce fresh variables into 8 D, but this constraint does not
appear within the result. All other rules do not introduce fresh variables. The
preservation of well-kinding is by inspection.

(iii) For rule ~ 1 7 , A' is as given by Lemma B.18. For all other rules, A' = a .

(iv) In rule s2, T is well-kinded by well-kinding of C, b eq r. In rule s17, dom(8) n 5 = 0.

(v) C' = f a l s e in rules s4-s7, s16 and s18. For the remaining rules, result follows by
inspection.

Lemma C.4 Let A I- C constraint and 5 dom(A) and (E I C) o (8 1 C' I B). Then

(i) C' FeO C v B

(ii) 8 C Fe C' v B'

(iii) If there exists a I- 8' : A + Ainjt and q' s.t. q')= 8' C, then there exists a
t- 8" : A + Acu s.t.

(iii. 1) 8' l a~ fue (G I) -0 (8" 8) l ~ ~ h (c ~)
(iii.2) 7' 8" 0 8 C

(iii.3) env(B',ql) + 8" C' (where B' is from (ii) above)

Proof We may substantially simplify each of these conclusions in specific cases.

(i) If C' = f a l s e then the result holds vacuously. Otherwise, by Lemma C.3, C =
Dl -I+ D2 and C' = (8 Dl) -I+ D3. Then it is suficient to show

since by Lemmas B.28 and B.34 (8 Dl) +t- D3 Fe 8 Dl v -.

(ii) If C' = f a l se , then we need show 8 C Fe fa l se , which is to say

Otherwise, by Lemma C.3, C = Dl -I+ D2 and C' = (8 Dl) -I+ D3. Then it is sufficient
to show

8 (Dl -I+ D2) I-e D3 (4

since by Lemmas B.28 and B.34 8 (Dl -I+ D2) Fe 8 Dl v ..

(iii) If C' = f a l s e then by (ii) saturate(8 C) = 8. Thus by Lemma B.15 (i) there is no
8' and q' s.t. q' + 8' C.

Otherwise, it is sufficient to show (iii.1) and either one of (iii.2) and (iii.3). To see
how (iii.3) follows from (iii.2), notice that given q' 8' C, by (i) and Lemma B.26
8" o 8 C Fe 8" C' L) B'. Thus by (iii.2) and Lemma B. 13 env (B', q'))= 8" C'.

Conversely, to see how (iii.2) follows from (iii.3), notice that given q' 8' C, by
(ii) and Lemma B.27 8" C' ke 8" o 8 C v B. Thus by (iii.3) and Lemma B.13
env(B, env(Bt, 7')) 8" o 8 C. But by (i), (ii), Lemma B.31 and Lemma B.28
env(B, env(B',q'))lnames(C) = q, SO that q 8" o 8 C.

Notice that by the above argument, if 8 = Id, then we may take 8" = 8'. Thus (iii.1)
and (iii.2) are vacuous, and (iii.3) follows from (iii.2).

We procced by case analysis of the rewrite rule:

case sl: We have
(ZI C,T e q v) ~ (I d I C , v e q r I .)

(iv) Since (T eq v) = (v eq T), by Lemmas B.24 and B.34

as required.
(vi) As for (iv).

case s2: We have
(Z I C ,b e q r) ~ ([b rtr] 1 C [~ H T] I .)

where
b e fv0(7)

(iv) Immediate.

(vi) Immediate.
(iii) Let + e1 C,e1 b e q e ' ~

Then cmpg(8' b,8' T) = eq. Let 8" = 8ib.

(iii.1) Then by (a)

(iii.2) Then by Lemma B.10

(iii.3) Follows from (iii.2)

case s3: We have
(El C C , F ~ e q F Z) r > (I d I C , m l -)

(iv) If 8 E saturate(C,TiTijT) then Vi . cmp(8 r i ,8 v,) = eq, and thus
cmp(F 8, F 8) = eq. Thus by EQUALS and CONJ

as required.

(vi) As for (iv).

case s4: We have
(El C , F 7 e q G @) t > (I d I f a l s e I -)

where F # G.

(v) Since cmpO(F 7, G V) E {I t , gt)], by Lemma B.6 mgusO(Id I- F ? eq G @) = 0.
Thus satumte(F 7 eq G D) = 0. Then by Lemma B.19 (i) saturate(C, F 7 eq
G @) = 0 as required.

case s5: We have

where
m > n

(v) By (a) and Lemma B.6

mgusO(Id I- (#Im ? b eq (#I,, @ Empty) = 0

and thus saturate(C, (#Irn 7 b eq (#In V Fmpty) = 0.

case s6: We have

(E 1 I, (#Irn 7 Empty eq,,, (#In 5 Empty) (Id I f a l s e I -1

where
m # n

(v) By (a) and Lemma B.6

and thus saturate(C, (#Im 7 bEmpty(#In @ Fmpty) = 0.

case s7: We have
-

(E 1 C, (#Im T 1 e%ow (#In @ 1') D (Id 1 f a l s e I a)

where
notIn(C 1- Tj, (#In 5 1')

(v) Assume there exists a 0 s.t.

Then by (a) and Lemma C.l i isIn(0 rj,8 ((#). @ I !)) . But then by Lemma 4.2

(i.1
cmpO(O ((#Im ? 1),0 ((#In @ 1')) # eq

which contradicts (b). Thus saturate(C, (#Irn 7 I eq,,, (#In @ 1') = 0.

case s 8 : We have

(E I C, (#Irn ? 1 eq (# I n B I')
D (Id I C,T; eqType V j 7 (#)m- l y\; 1 eq (#)n- l B\j I' I .)

where

(iv) Let
- 6 E saturate(C, T; eqTwe 9, T\; 1 eq B\j 1')

Then by Lemma B.6

and thus by Lemma 4.2 (iv)

Then by EQUALS and CONJ

as required.

(vi) Let
8 E saturate(C, (# I m 7 I eq (#In B 1')

Then by Lemma B.6

and thus by Lemma 4.2 (iv)

Then by EQUALS and CONJ

Notice that (b) plays no part in this result, and serves only to distinguish this rule
from rule ~ 7 .

case s 1 0 : We have

where

(iv) By (a), (b) and stability of cmpopaque, if 8 E saturate(C, w : r insp) then

Then by MREF, INSERT and CONJ

as required.
(vi) Vacuously,

C, w : r ins p, w' : r1 ins p' Fe t r u e c, .

case s 1 1 : We have
(E] C, w : T i n s h p t y) D (Id 1 C 1 w = One)

(iv) By MEMPTY, INSERT and CONJ

(vi) Vacuously,

case s13: We have

C, w : T ins Empty F e true

(E 1 C, w : T i n s (#In D I) D (Id I C, w' : r ins (#In-1 D\, I I w = Inc w')

where
CmPopoque (7, vi 1 = gt (a)

and w' fresh.

(iv) Let 0 E seturate(C, w' : r ins(#I ,-I Eii I). Then by (a) and stability of cmpopaque

By MREF

C, w' : 8 r ins 8 ((#In-1 ;i7\, I) Fm 0 T ins 8 ((#),-I ZT\, I) v w'

and so by (b) and MINC

C, W' : 8 r ins 8 G\, I) Fm 0 T ins 0 ((#In 77 1) Inc w'

Thus by INSERT and CONJ

C, w' : r ins (#In-l E\, I w : T i n s (#I,, ;i7 I c-$ w = Inc w'

as required.

(vi) Let 0 E saturate(C, w : T ins (#), ?? 1). Then by (a) and stability of cmpoPque

By MREF

and so by (c) and MDEC

C,w : O T ins0 ? ? I) Fm 0 7 i n s8 ((#)n-l Zi\, I) v Dec w

Thus by INSERT and CONJ

C, w : T ins (#In ?J 1 ke w' : T ins Zi\, 1 L, w' = Dec w

as required.

case s12, s14, s15: As for case ~ 1 3 .
case s16: We have

(EI C , w : T i n ~ p) ~ (I d I f a l ~ e I -)

where
isIn (T, p)

(v) Immediate from (a) and stability of cmpoPque.

case s17: We have
(El C + t D) b (e I C I B)

where

f-lf%(C> = 0
f v g (D) t I ~ = @

0 E saturate(D)

V8"' E satumte(D) . true ke 0"' D LS B

(iv) By (d) and Lemma B.34
8 C t - e 8 D v B

as required.

(vi) Trivially, we have
O C ~ O D t - ~ t r u e c - + .

as required.

(iii) Let

and let ON = ellwfyp(C).

By (a) and (b) we may split A into Ac and AD s.t.

A = A c + t - A ~

a E dom(A c)

Ac I- C constraint

AD t- D constraint

Then by Lemma B.18 there exists a A', s.t.

AD +t A', 8 subst

W.1.o.g. we map assume dom(A',) n dom(Ac) = 8.
(iii.1) By (e) dom(8) f l (a u fv@(C)) = 0. Thus

(iii.2) Since

by Lemma B.15 (i) there exists a 8'" E saturate (D) and a 9"" s.t. 8' EB 8"" o 8"'.
But by (d)

true F e 8"'D L-) B

and by Lemma B.27
true ke 8"" o 8''' D B

and so by Lemma B.24
true F e 8' D L-) B

which by Lemma B.13 implies

and thus by (f)
env(B, = drnamesD

Notice 8" o 8 C = 8' C, thus + 8" o 8 C

Furthermore, by (a) and (b) 8" o 0 D = 8 D , thus since env(B) 8 D , by (g)

Taken together, we thus have

(iii.3) Follows from (iii.2)

case s18: We have
(3 I C +t D) D (Id I false I .)

where

(v) By (c) and Lemma B.19 (i)

as required.

Note that (a) and (b) are unnecessary for this result, and are included only for prag-
matic reasons.

Lemma C.5 Let A I- Cl constraint and 7i Si dom(A) and (3 I Cl) D* (81 1 C2 I B1). Then

(i) C2 I-" 81 CI v B2 where if 02 : A -+ Ainit and ql + 192 C2 then
env(B2t '5'1) lnames(Cl) = en'J(B17 91) bames(Cl)

(ii) 6'1 Cl be C2 L) B3

(iii) If there exists a I- 03 : A + Ainit and 772 s.t. q2 03 Cl, then there exists a
I- e4 : A -+ ninit s.t.

(iii.l) O3 .LJh(cz) -0 ('4 o '1) wfi0(~2)
(iii.2) 772 + e4 0 el Cl

(iii.3) env(B3, Q) + O4 C2 (where B3 is from (ii) above)

Proof By induction on derivation:

case SDONE: We have
(E 1 c) D* (Id 1 c 1 -)

Then (i) and (ii) hold by Lemma B.28, and (iii) holds vacuously.
case SSTEP: We have

(Z I c1) D* (e; 0 e; 1 c2 I B; u B;)

where by SSTEP

(i) By I.H. (i) on (b) C2 I-" 6': C3 v B l where if I- 82 : A -+ Ainit and ql + 02 C2
then env(Bl7 771) lnames(C3) = en^(^:', 81) rnames(c3).

By Lemma C.4 (i) on (a) C3 Fe 0; Cl L) Bi. Then by Lemma B.27 and
Lemma B.31 C2 I-" 0; 0 6: Cl v B; where if k 82 : A -+ Ainit and ql e2 C2

then

as required.

(ii) By Lemma C.4 (ii) on (a) 0: Cl F e C3 L) B; for some BA. By I.H. (ii) on
(b) 0; C3 Fe C2 L) B{ for some B{. Then by Lemma B.27 and Lemma B.31
0; o 0: Cl F e C2 L) B3 for some B3, as required.

(iii) Let I- 03 : A + Ahit and q2 be s.t. q2 03 Cl.
Then by Lemma C.4 (iii) on (a) there exists I- 0; : A + Awt s. t.

where BA is from (ii) above.
Then by I.H. (iii) on (b) (using 0; on C3, which is appropriate by (e)) there exists
I- 0; : A -+ s.t.

1 - = ,911 r la -0 (4 o e:l) t~

env (BA, q2) 0: 0 0; C3
env(Bl, env(B$,m)) + 0; C2

where B{ is from (ii) above and 5 = E U U,,, fvg, (0; a) u fvO(Cz).
(iii.1) By Lemma C.3 on (a) fv0(C2) E fv0(C3). Then by (c) and (f)

(iii.2) By (i) C2 Fe 0: o 0; Cl L) Bi, SO by Lemma B.27 0: C2 F e 0; o 0; o 0; Cl L)

BJ. Then by (h) and Lemma B.13 env(Bi, env(Bt, env(BA, rn))) O:oB;o0; Cl.
But by (i), (ii) and Lemma B.31 env(B4, env(B;, env(B$, m))) tnames(cl) = ~ 2 -

~ h u s q +e;oe;oo; c,.
(iii.3) Immediate from (h).

C.2 Soundness of Type Inference

Lemma C.6 If 8 I C I I- t : T or 8 I C t : r then dom(8) fvg(I'), 8 C = C , and
~ T = T .

Proof Easy induction. The case for SIMP requires Lemma C.3. Notice the use of
restriction or ellimination in rules ISIMP and 1 ~ 7 .

Lemma C.7 If A I- I' context and 8 1 C I I? I- t : T or 8 1 C I r I- , t : r then there exist a
A' s.t. A -I+ At I- 8 subst, A ii- A' I- C constraint, and A -I+ A' I- T : Type.

Proof By induction on derivation, using Lemma C.3 (ii) in rule ISIMP, and relying on
the freshness of introduced type variables. Notice each fresh type variable is introduced at
a specific kind in rules IAPP, IVAR, I P ~ , IP4, IP5 and I P ~ . 0

Lemma C.8 If

(b) A I- D constraint

(c) D be C C) B

(d) saturate(D) # 63

thenAI Dirt-t:rv T ' o r A I D I ~ I - , ~ : T v T ' [@] .

Furthermore, if I- 8 : A + Ainit and env(Bt) 8 D and and q + 8 r then

IITlqi+env(~,enu(~t)) = I[TtB7+env(~~) Or BT[U]Bq+env(~,env(~~)) = BTt[U]Rq+env(~') for well-
typed U.

Proof By induction on derivation of (a):

case APP: Let (a) be
A1 C I r I - t u : r C) T U

Then by APP

A1 C l I ' I - t : v ~ -) T

A I c1r1-u:v'+ u
C te v eqType v' + r L) True

By (c) and Lemma B.31

D k e v eqType v'+ r v True

By I.H. on (e)
A I D I I ' I - t : v ~ -) T '

[T]qi+env(~,env(~t)) = [T t k) i t e n v (~ t) -
Also, by I.H. on (f)

a l o l r t ~ : ~ ~ ~ ut

and [U] q + e n v (~ , e n v (~ ')) = [U'1)q+env(Bt)-
Then by APP

A l D l I ' t - ~ U : T V T ' U '

and

[T UIq+env(B,env(B'))

= let^ v 4- [T] q + e n v (~ , e n v (~ ~))
in case v of {

func : f --) f [U]q+env(B,env(Bt)) ;
otherwise + unitE (wrong : *))

= let^ v + [T1Bq+env(~t)
in case v of {

f ~ n c : f --) f [U '] q + e n v (~ ~) ;
otherwise + unitE (wrong : *))

= BT' U'Bq+env(~')

as required.
case VAR: Let (a) be

A I C I I' I- x / f : T[-] 211 letw B" in x / f n a m e s (D 1)

Then by VAR

c te Dl[-] V] B"

where (x / f : f oral l a . D => T) E I' and D' =. n a m e d (D) .
By (c) and Lemma B.31

D Fe D1[-imT] v BIN

where e n v (B St B", e n v (B ')) = e n v (B I N , en^(^')) rnames(DJ).
Thus by VAR

A I D I 7 [0] v letw Bt" in x / f n a m e s (D 1)

and

[Ie tw B" in ~ / f names (D ')] q + e n v (~ , e n v (~ t))

= l x / f names (Dt)Bq+env(8" ,env (~ ,env (~ ')))

= l x l f names (D ' > ~ q + e n v (~ + ~ t t , e n v (~ t))

= L x / f names(D')]]q+env(~"t,en~(~t))

= [letw B"' in x / f n a m e ~ (D ')] ~ + ~ ~ ~ (~ ,)

as required.

Remaining cases are similar.

Lemma C.9 If

(a) A I- C constraint

(b) A I- I' context

(c) A I C I ~ I - ~ : T L) T O ~ A (C I ~ I - , ~ : T L) T [~]

(d) A +I- A' I- 8 subst

(e) saturate(@ C) # 8

t h e n A + t A ' 1 8 C I 8 l ? l - t : 8 ~ ~) T 0 r A + t A 1 1 8 C 1 8 I ' ! - , , t : 8 ~ ~ T[.].

Proof By induction on derivation of (c):

case VAR: Let (c) be

A I C I l? I- x/f : ~[a] v letw B in x/f names(D1)

Then by VAR

where D' = named(D).
W.1.o.g. assume dom(8) n ii = 0. Then 8 (Dl[-]) = (6 D1)[a t, 8 v] and
8 (f o ra l1 a . D => T) = f o r a l l a . (8 D) => (8 7).

By (g) and Lemma B.27

Notice (8 ~) [a I+ 8 v] = 8 (~ [m]) .
Thus by VAR

A +t A' I 8 c I 8 r I- x/f : 8 (~ [m]) L) letw B in x/f names(D1)

as required.
case LET: Let (c) be

A1 C I I ' I - l e t s - u i n t : ~
v let x = X names(Dz) . U in T

Then by LET

x E fv(t)
A I- Dl constraint

A +t A" I- D2 constraint

Dl = inhs(C)

saturate(D1 +t D2) # 0
A+tA"I D l + t D 2 1 1 ' t - u : v ~ U

A1 C I r , x : u t - t : ~ ~) T

where a = f o ra l1 AN . anon(D2) => v.
W.1.o.g. assume dom(8) n dom(AN) = 8. Then 8 (f o r a l l AN . anon(D2) => v) =
f o ra l1 AN . anon(8 D2) => (8 v).
By (d), (g) and (h) we have

A +t A' I- 8 Dl constraint

A +t A' i+ A" I- 8 D2 constraint

By definition of inheritable we have 8 Dl = inhs(8 C).
By (f), (m) and Lemma B.36 (ii) there exists I- 8' : A" + A s.t. C Fe 8' D2. By
Lemma B.27

8 C I-" 8 (9' D2)

which, since dom(8) n dom (A") = 8, is equivalent to

8 C I-" 8" (8 D2) (PI

where 8" = (8 0 8')ldom(atl).
Thus by Lemma B.17 saturate(BN (8 0 2)) # 8, so by Lemma B.19 (ii)

By (n) and (d) 8" o 8 Dl = 8 Dl, so by (i), (p) and rule CONJ

Hence by (e), Lemma B.17 and Lemma B.19 (ii)

Now, by I.H. on (1)

and by I.H. on (m)

Finally, by LET
A + t - A 1 1 8 C 1 8 r t - l e t x = u i n t : O ~
c, let x = X names(D2) . U in T

as required.

Remaining cases proceed by Lemma B.27

Theorem C.10 (Soundness of Inference) Let A t- I? context. If (a) 8 I C I I? I- t : r
or 8 I C I F I-, t : T and (b) saturate(C) # 0 then A +I- A' I C 1 8 F t- t : T or
A +t- A' I C I 8 I? t-, t : T, (where A' is as given in Lemma C.7).

Proof By induction on derivation of (a):

case IAPP: Let (a) be
O2oO1I C I I ? t - t u : b

Then by IAPP

where
C = (82 D) -kt D' +t- (82 T) eqType (v -> b)

and b : Type fresh.
By (f) and Lemma C.7 there exists a Al s.t. A+tAl t- 81 subst, A+Al t- D constraint,
and A St Al I- T : Type. Furthermore, by Lemma C.6 dom(O1) 5 fv@(r).
Then by (g) and Lemma C.7 there exists a A2 s.t. A St Al +t- A2 I- 82 subst, A +t
A, St A2 I- Dl constraint, and A -I+ Al St A2 I- v : Type.
By (b) and Lemma B.19 (ii) saturate(D) # 8, so by I.H. on (f)

Similarly, by (b) and Lemma B.19 (ii) saturate(Df) # 0, so by I.H. on (g)

Let
A' = A1 +t- A2 +t- b : Type

By (k) and Lemma B.37

and since by (b) and Lemma B.19 (ii) saturate(02 D) # 0, by Lemma C.9

A + A ' I e2 D 1ezoe l r t - t : e 2 T

and since C ke 82 D v ., by Lemma C.8

Similarly, by (0) and Lemma B.37

and since C I-e Dl c, -, by Lemma C.8

Then, since C Fe (82 7) eqTyp, (v -> b) L-) True, by APP

as required.
case IVAR: Let (a) be

Id I C 1 I- x / f : ~ [a I+ b]

Then by IVAR

(x / f : f o r a l l ZTE . D => T) 7) I'
-
b : rc fresh

C = named(D[a I+ b])

Let A' = b:rc and Dl = named(C). Then C Fe D1[a I+ b]. Thus by VAR

as required.
case ILET: Let (a) be

O2oO1/ C I r I - l e t x = u i n t : r

Then by ILET

where a = f o r a l l A" . anon(D3) => v and C = (82 D2) f t D4.
By (g) and Lemma C.7 there exists a Al s.t. A i+ Al I- el subst, A i+ Al I-
Dl constraint, and A i+ Al t- v : Type. Furthermore, by Lemma C.6 dom(O1) C fvO(I').
By definition of gen, Dl = D2i+ D3, At' 5 Al, f ~ ~ (D ~) n d o m (A ' ~) = 0, anheritable(D2),
and

d o m (~ l l) n fvQ(el r) = 0 (k)

Then by (k), (j) and Lemma C.7 there exits a A2 s.t. A i+ (Al \ dom(AM)) * A2 I-
02 subst, A+ (Al \ dom(AU)) * A2 I- D4 constraint, and A f t (Al \ dom(AM)) +A2 t-
T : Type. Furthermore, by Lemma C.6

Since all type variables in A2 are created fresh, we may also assume dom(Az) n
dom(A1') = 0. Thus

dom(02) n dom(A1') = 8 (4
Let A' = (A1 \ dom(A1')) Sf A2. Then

A +t A' I- (02 D2) +t inhs(D4) constraint (4
A +t A' +t A" t- 19, D3 constraint (0)

By definition of gen, ihns(D2) = D2. Thus

and by Lemma B.34

By (i) and Lemma B.19 saturate(D1) # 0, so by I.H. on (g)

Then by Lemma B.37

and by Lemma C.9

A U A ~ + ~ A ~ I e2 (D ~ U D ~) 1 e20e1 r I- U : e2 u

and (q), (i) and Lemma C.8

Notice by (m) O2 f o r a l l A" . anon(D3) => v = f o r a l l A" . anon(B2 D3) => (02 v).
By (b) and Lemma B.19 saturate(D4) # 0. Then by I.H. on (j)

Since by CONJ C ke D4 L) ., by Lemma C.8

We may now apply LET using (reading from topleft to bottom-right of the rule's
hypotheses) (f)7 (4 , (0 1 7 (PI, (i), (4 and (4 to give

as required.
case ISIMP: Let (a) be

Then by ISIMP

By (f) and Lemma C.7 there exists a Al s.t. A -ti- Al I- el subst, A f t Al l-
C' constraint, and and A f t Al I- T : Type. Furthermore, by Lemma C.6 dom(el) 5
fvQ (r) . Thus f v ~ (el r) U fu0 (7) C dam (A -kt A1).
Then by (g) and Lemma C.3 there exists a A2 s.t. A f t Al -ti- A2 I- C constraint, and
A + A l + A 2 I- e2 subst.
firtherrnore, by Lemma C.4 (i)

Then by (b), (h) and Lemma B.17 saturate(02 C') # 0, so by Lemma B.19 (ii)
saturate(C1) # 0. Then by I.H. on (f)

Let A' = Al u A2. By (i) and Lemma B.37

and since saturate(e2 C') # 0, by Lemma C.9

and by (h) by Lemma C.8

The result follows since 82 o el I' = (82 0 el) ,fia(r) r .
case 1~7: Let (a) be

t9ib I C I \x . t : (6 b) -> T

Then by 1 ~ 7

81 C I l ? , z : b I - , t : ~

b : Type fresh

By (f) and Lemma C.7 there exists a A' s.t. A + b : Type-ti- A'I- esubst, A f t b :
Type + A' I- C constraint, and and A -I+ b : Type + A' I- T : Type.
By (g) and idempotency of substitutions, A + A' l- 8 b : Type.
Then by I.H. on (f)

A f t A l I c ~ e r , ~ : e b t - , t : ~

and thus by ~7
A u a' I c I e r I-,,, \X . t : (e b) ->

The result follows since b fresh and thus 8 r = 8\b I?
Remaining cases are similar.

Appendix D

Proofs for Chapter 9

D.l Entailment

Lemma D.l Let A ; a,,it I-' C constraint and A ; I-' d constraint and A t- 8 gsubst
and 7 8 8. Then

(i) C d L, W implies [W],, E ([e d]

(ii) C Fe w : d v w = W implies Vi . [Wilrl E [O d,]

Proof (i) By induction on derivation of C Fe d v W.

case EXISTSRTTYPE: First notice that for any ground type v, [rttype v] is non-empty.
W.1.o.g assume dom(8) n dorn(At) = 0. By I.H. [True] E [exists A' . 8 21. Thus
there exists 8' s.t. A' I- 8' gsubst and [B' 8 di] is non-empty for every di. Notice
A +t- A' I- 8' o 8 gsubst, and thus 8' 8 T is ground. - Then 18' 8 (r t type T)] is also
non-empty. Hence [True] E [exists A' . (r t type T , d)] as required.

Remaining cases straightforward.

(ii) Straightforward.

Lemma D.2 Let 8 be a well-kinded grounding substitution. If t r u e Fe 8 C v B and
C Fe D v B' then t r u e Fe 8 D v B'' and env(BU) = env(B1, e n ~ (B)) , ~ ~ ~ ~ ~ (~) .

Proof Let C = m 7 B = w = W, D = w 1 : d , B ' = w l = W1andB"=w'= Wt'. By
Lemma D.l

Then env(B) w : 8 c. Again by Lemma D.l

Then since each [8 d,] must be a singleton, we have for all i

as required.

Lemma D.3 If A ; I-" C / D constraint and A I- 8 gsubst and C be D then 8 C Fe 8 D

Proof By induction on derivation of C Fe D.

case EXISTSRTTYPE: We have

C Fe ex i s t s AN . (rttype T , D)

and by I.H.

8 C Fe 8 rttype anyground(AM, T)
8 C Fe 8 ex i s t s A" . D

W.1.o.g. assume dom(AM) n dom(A) = 0. Then

8 C Fe rttype anyground(Atl, 8 T)
8 C Fe ex i s t s A" . 8 D

and by EXISTSRTTYPE

8 C Fe ex i s t s A" . (rttype 8 T , 8 D)

which implies
8 C Fe 8 ex i s t s AN . (rttype T , D)

as required.
case EXISTSLIFTA: We have

C Fe ex i s t s AN . (l i f tab le a , D)

By I.H. we have
8 C Fe 8 ex i s t s A" . D

W.1.o.g. assume dom(A1') n dom(A) = 0. Then since a E dom(Atr), 8 a = a.
Furthermore

8 C be ex i s t s A" . 8 D

Then by EXISTSLIFTA

8 C be ex i s t s At' . (l i f tab le 8 a , 8 D)

and thus
8 C Fe 8 ex i s t s A" . (l i f tab le a , Dl

as required.

Remaining cases straightforward.

D.2 Type Soundness

Note that to ease the notation a little, in the following proofs we shall ellide the subscripts
on the sets S, Vwt and Vwd used within the definiton of types.

Lemma D.4 (i) 1f h I I fi to t : r then Vi . vars(i, t) fi'

(ii) If h I E I fi I-; t : r then Vi . vars (i - n, t) & fi'

Proof By straightforward induction on derivation.

Lemma D.5 If Vi . a I-' E' constraint and Vi . a I-' fi' context then

- - -
(i) A (C I r I-' t : T implies x I-' r : Type.

(ii) h I I I-!+' t : r implies h I-"+' r : Type.

Proof By straightforward induction on well-typing derivation. Rules ABSO, LETRECO,
LIFTO, RUNTO, RUNUO, SPLICEU~ and their higher-staged counterparts are careful to check
the well-kinding of introduced types.

-- --
Lemma D.6 If v E [u] (~ , ~ and (A', I?') extends (A , r) and o is satisfiable, then v E

[a1 (x+tz,r+~")

Proof

case a = r for a simple type r: Then
-
Ainit ; x to r : Type

We proceed by induction on derivation of (a):

case INT: Immediate.
case FUN: Let (a) be -

~ ~ , ; ' Z Z I - ' r - > v : ~ y p e

Then by FUN -
Ajnjt ; 'ZZ I-' v : Type

Let a, and r, be s.t.

(&, r,) extends (x i+ a', fi +I- F)

Then

(a, * E, r, i+ F) extends (3 , F)

Since by definition

v E 17 -> vl(a,r1

= n { S 1 (g, c) extends (h , fi) }

where

func : f
f € E V - + E V ,

ev E [~](a++z,r+tr:)
* f ev E B~D(a+tr;i;,r~r:,

Then v = I or v = (func : f) s.t. if

then

f ev E Bvl (E++z++~~,~=++T"++E)

Since the choice of a, and r, was arbitrary s.t. (c) holds, we have

as required.
case CODET:

Let a, and be s.t.

(a,, c) extends (a -I+ E, -I+ F)

Then
(E +I- a,, ii- c) extends (a, r)

We have
v E n {S I (F, F) extends (Z, F) }

where
md E M V, nrns E name^\^+^
d md nrns E E Vwt

and
termof (d) well-defined,

Z) , ~ = { ~ E D ~ - A + t P I t rue I F + I - m 0 termOf(d) : T

Then v = I or v = (code : md) where if nrns E N ~ m e s \ ~ + + ~ + ~ then md nrns E
E DL, where

termof (d) well-defined,
A + ~ - E + I - ~ , I t rue Ifi+I-F-I+ct-O termOf(d) : T

Then since the choice of a, and r, was arbitrary s.t. (b) holds, we have

v E [CC 7- >>](Ti,+a',F,+?")

as required.
case CODEU: Similar to case CODET.

case 10: Let (a) be
A,, ;&I-' I0 7 : Type

Then by 10
Ainit ; Z I-' T : Type

--
Let A,, re and nrns be s.t.

-- --
(A,, re) extends (Z +I- At, I? -I+ F) A nrns E Nameqp+F+E

Then
(E +t- x, T" +t c) extends (5 , F)

Thus if

v E U I O ~ B (F , E)
= n { S I (g, E) extends (5 , F) }

where

then v = I or v = (cmd : io) and

cmd : io

(io nms) 4-10 ea * ea E [~](;i-,~)

io E M I 0 (E V) ,
nms' E name^,^++^ A (io nms') ko ea
* ea E 87I(;i-,r;)

Then by I.H. on (b)

(io nms) 4-10 ea * ea E [T] (~ + ~ , ~ , . + ~)

--
Since the choice of A,, I?, and nms was arbitrary s.t. (c) holds, we have

as required.
case VAR: Not possible.

case a = f o r a l l a . C => T: Then

A,, ; ;h I-' f o r a l l a . C => T scheme

where C is satisfiable in m.
Let ?7 be types s.t.

a i n i t I - O n
true t-e D [m] v B

for D = named(C) and nanaes(D) = (w ~ , . . . , w,).
By SCHEME

(A,,, +t a) ; ;h t-O T : Type

and thus
Ainit ; I-' T[-] : Type

Then

Ainit t-O E L ,
= n { s l - true I-, D[u I+ v'] L-) Bt 1

Then v = I or v = (tfunc, : f) s.t.

where

By I.H. on (c)

tfunc, : f

Since the choice of Tj was arbitrary s.t. (b) holds, we have

f E n l , , , n ~ + ~ ~ ,
f ([wllenV(~l), . - 0 7 Bwnlenv(~1))

E ++ vrll(a,r)

as required.

-- - -
Lemma D.7 If q + (X , ~) rrr and (A1, I?') extends (A, I?) then q ~ (~ , + ~ , f u P) I'll.

Proof By pointwise application of Lemma D.6. C7

Theorem D.8

(i) If

(a) ~ ; a l I ~ l r ; F I - * t : r ~ ~
(b) A k 8 gsubst

(c) true Fe 8 C v B
(d) p F E
(el 9 k(z,ei;~) 6 r

then ITli+env(B) P f8 T~(F,OC)

(ii) If

(a) A;EI c ;F~r ;F t ;+ l t : 7 v t 1
(b) A I- 8 gsu bst

(c) true Fe 8 C 9 B
(d) p F c r,
(4 7 BE) 0 r

-- - -
(f) nms E and (Ael r e) extends (At7@ r,)

r n+l
then it 17+env(B) (nms, p) E E Dvd where

termof (d) well-defined,
i . vam(i - n, tcimOf(d)) i d a m (c i) }

(iii) Furthermore, if the conditions (a)-(f) of (ii) hold and

(g) b = tt

I n+l
then it ~,+.,V~B~ (nms, p) E E Vwt, where, if n > 0 then

ternof (d) well-defined,
at+ta,~ e F 1 (e C) i + K k & ternOf(d)

otherwise

termof (d) well-defined,
A t + t a , I e r I (er ,)+tr , l -o termOf(d) : O r

Proof

By induction on derivation:

case FORGET~:
(ii) Let (a) be

a ; p) c ; F ; c l ' / r ; f i T ~ ; + l t : ~ ~ t t

Then by FORGET^

Then result follows directly from I.H. (ii) on (h).
case VARO:

(i) Let (a) be

Then by VARO

where Dl = named(D). Let names(Dt) = (wl, . . . , w,).

By definition

Blew B' in x names(^')]:+^,,,,(^) p

= 1" n a m e s (~ l) ~ ~ + + e n v (B ' , e n u (B)) P

= (l e t R v t (lift: ((7 St e n v (B 1 , e n v (B))) x))
in lift: (c a s e v of {

t f u n c m : f + f (f , ~ l] ~ _ ~ e n v (~ ' , e n v (~)) , - . ., [wrn]q+env(~' ,env(B)));
otherwise -+ unitE (w r o n g : *)

1) P
= letE v t 7) x

in case v of {
t f u n ~ r n : f f ([w l B e n v (~ ' , e n u (~)) , . . 7 B w m B e n v (~ ' , e n v (~))) ;
otherwise + unitE (w r o n g : *)

1
= (*I

W.1.o.g. assume d o m (8) = 0. Then from (e) and (f)

t rue Fe (8 D') [a] v ' ~ B'I

where

t rue Fe ex i s t s a . (9 Dl)

{ S = E t func, : f

Then by Lemma 9.4, there exists 7 s.t. I-' v' and t rue Fe (8 D t) [a t, v'].
Hence the intersection in (i) is not all of E V.
Hence v must be tagged by tfunc,, and

f E n15;ln 7 -+ E V ,
f ([wl]enu(B")? - - . , BwmBenu(~t1))

E E(8 ~) [a I+ v f I l (= , e ~)

(*) = letE (tfunc, : f) t 7) x
in f ([~l]enu(B~,env(B)) , - . - , Bwm~enu(B1,env(B)))

By (e) and definition of satisfiability

From (c) and (h) and Lemma D.2

t rue Fe 8 (Dl[-]) BIN A tli . [W ;] ~ ~ ~ (~ I I I) = [w ~] ~ ~ ~ (~ I , ~ ~ ~ (B)) (j)

Notice 8 (Dr[=]) = (8 D f) [a t, 8 v].
From (b) and (g)

a c # ; a l t - O e v : ~

Then by (i), (j) and (k)

and thus
(*) E [(B s) [a H (8 v)]] (~ , ~ ~) = i8 (~ [~ I) I (F , ~ E)

tfunc,: f'

as required.
case V A R ~ :

(ii) Let (a) be

f1([~1]env(~',env(~))~..-,[~rnBenv(~',env(~)))

E I(8 T)[a I+ (0 v) l l (~ , e z) I

Then by V A R ~

where D' = named(D).
Notice (I' ; i?)"+l = Fn. Then by (d) and (h), p z E Fn and s E dom(p). W.1.o.g.
assume p x = y.
By definition

n+l
BxBg+env(B) (nms7 P)

= (letN res t lift: (getR "x")
in unitN (case res of {

name : nm + dvar : nm
otherwise += dwrong : *

1)) (nms7 P)
= letE res t unitE (p "x")

in unitE (case res of {
name : nm -+ (dvar : nm)
otherwise + (dwrong : *)

1)
= unitE (dvar : "y")

= (*I

Then termof (dvar : "y") = y is well-defined, and vars(0, y) = {y) c dom(cn) .
Hence (dvar : "y") E Vwd, so that (*) E E Vwd as required.
(iii) W.1.o.g. assume a n dom(8) = 8.
From (f) and (h)

From (b) and (i)

and thus

From (j), and Lemma D.3
e C" ke (8 D1)[a ++ 8 V]

Then if n > 0, by V A R ~

Or, if n =O, thenC '= - and by VARO

Notice termof (dvar : " y") = y and (8 7) [a e 8 v] = 8 (T [a]). Thus (*) E E DWt
as required.

case ABSO:
(i) Let (a) be

n ; a l I c I r ; T k O \ x . t : (~ - > T) V X X . T

Then by ABSO

Notice (I' ; r') +to x : v = (r +t x : v) ; r'.
From (b) and (f)

~ , , ; a ' t - O 8 v : ~ y p e

Let a, and be s.t.
(a,, r,) extends (a', 8 c)

Then by (b)

Let ev E E V be s.t.

ev E I8 vl (F-,+Z,(~ E)+E)

and let q1 = q, x ++ ev.
Then by Lemma D.7

Using (j) and (I), by I.H. (i) on (g)

By definition

B'x - ~I:+enu(B) P
E

= (letR f closurefun~ (Xev . [T];uenu(B),z++eu)
in unitR (func : f)) p

= nit^ (func : Xev * [~ C + e n v (B) , z + + e u P)
0 = unitE (func : Xev . IIT]lq,+enu(B) p)

= (*>

Since the choice of ev was arbitrary s.t. (k) holds, we have

Furthermore, since the choice of and r, was arbitrary s.t. (i) holds, we have

func : f

(*) E n {S I (g, F) extends (E, 0 G) }

f E E V - + E V ,
ev E [o vl(;i;i++a,,(e r,)++z
* f ev E U8 71 (~ + a , , (e E)+;,

where
f E E V + E V ,
ev E I[e ~ l (~ - , + = , (e T;)+E)

==+ f ev E uo ~J(z+~;,(er ,)+~' i ;)

Thus
(*I E lo v -> 8 7 P (~ , e j 7 ~

and the result follows from 8 v -> 0 T = 8 (v -> 7).
case ABS1:

(ii) Let (a) be

Then by A B S ~ :

Notice (r ; F) +tn+l x : v = r ; (F + t n x : v).
W.1.o.g. assume nms = "y" : nms', where by (f) y g! d o m (c +t K). Let r: = -
I?, ftn y : v and p' = p[x I+ y]. (Note that this renaming of x to y may override a
previous renaming of x of p).
Since nms contains only distinct variable names,

and --
(A,, r e) extends (n', 0 r:)

From (e) and Lemma D.7
!=(E,OF) 0

Hence by I.H. (ii) on (h)

where
termof (dl) well-defined,

Vi . vars(i - n, termof (dl)) d o m (c i)

By definition

I n+l
' in,+ena(B) ("ms7~)

r n+l = (letN (nm, d) t rename^ "x" [t]n,+enu(B)

in unitN (dabs : (nm, d))) (nms, p)
I n+l = letE it lq,+env(B) (nms, p[x t, y]) in unitE (dabs : ("y" , d))
I n+l = let^ d t [t]q+enu(B) (nms, p') in unitE (dabs : ("y", d))

= (*I
From (j) d E DLd. Then termof (dabs : ("y", d)) = \y . termof (d) is well-defined,
and vars(O,\y . t e d f (d)) = vars(0, termof (d)) \ {y) E dom(cn) . Hence (dabs :
("y", d)) E DWd, so that (*) E E Dwd as required.
(iii) Furthermore, if b = tt then by I.H. (iii) on (h)

where if n > 0 then

termof (dl) well-defined,
A 1 t + a , ~ O (p ; cll) I (ec)-tt-Ct-& termOf(dl) : 8 7

otherwise

termof (dl) well-defined,
a l i + n , I e (P ; Cl1) I (O ~) + t ~) k O termOf(dl) : O r

Thus d E 'DL,.
From (b) and (i) -

A1knOv:Type

Then, if n > 0 by A s s 1

Then since 8 v -> 8 T = 8 (v -> T) we have (dabs : ("y", d)) E Vwt and thus (*) E
E Vwt as required.

case APPO:
(i) Let (a) be

A ; E I c I ~ ; F ~ - O ~ U : T L) T u
Then by APPO

By definition

IT uB:+enu(B) P

= let^ v + I 'I ;+env(~)

in letR ev c closureE u] : + + ~ ~ ~ ~ ~)
in lift: (case v of {

func : f -+ f ev;
otherwise -> unitE (wrong : *)

1) P

= let^ v + BTl;+envcB) P
0 in letE ev t unit^ [[U]ltl+envcB) p

in case v of {
func : f + f ev;
otherwise + unitE (wrong : *)

1
= letE IT$+env(B) P

in case v of {
fun' f + (f l'l;+enu(B) P I ;
otherwise + unitE (wrong : *)

1
= (*I

By I.H. (i) on (g)
W l : + e n U (B) P I9 V I (F , O F)

By I.H. (i) on (f)

[~]:+mv(B) P E [' (V -> T) I (F , ~ ~)

= I[(g V) -> (9 7) I l (~ , e ~)
- -

= n { s I (&, z) extends (A1, 6 r r) }

where

Taking = and = &, we have

{ s = E func : f

Thus (*) E [9 T] (~ , ~ ~) as required.
case Appl:

(ii) Let (a) be
A ; E I C ; F ; C ~ ~ I ~ ; F F ; + ~ ~ U , ~ ' U ~

f E E V + E V ,

ev E 89 VII(Z+Z,(B c)+c)

* f ev E 89 71 (z + ~ , (e I';)+c)

By definition

Thus v is tagged by func and

I n+l it']q+env(B) (rims) P)
I n+l

= (let^ d + [t I q + + e n v (~)
I n+1

in let^ d' + Iu B q + e n v (~)
in unitN (dapp : (d, dl))) (nms,p)

r n+l
= let^ d + It]q+enu(B) (rims, P)

I n+l in lete dl + 8u lq+env(B) (rims, P)
in unitE (dapp : (d, dl))

= (*I
By I.H. (ii) on (h) and (i)

where DLd = Did = Dwd.
Thus termOf(dapp : (d l dl)) = termOf(d) termof (d l) is well-defined, and Vi . vars(i-
n , termof (d) termOf(dt)) = vars(i - n , termof (d)) U vars(i - n , termof (d l)) C
d o m (c ') . Thus (d a p p : (d , d l)) E Dwd, so that (*) E E Vwd as required.
(iii) Furthermore, i f b = tt then by I.H. (iii) on (h) and (i)

I n+l
It 19-++enu(B) (nms1 P) E E DLt

I n+l I']n i t enu(~) (rims, p) E E D:t

where i f n > 0 then

termof (d l1) well-defined,
AI ++a, I e (77; cll) I (e c> +tE i-,., termOf(d") : e (V -> T) I

otherwise

ternof (d ") well-defined,
v L t = { d u ~ D I - at u n, I e cll I (e r,> i+ r, t-o termOf(d") : e (V -> T) I

and d E DLt.
Similarly, i f n > 0 then

termof (dl") well-defined,
A1 u a, I e (F ; cI1) I (e C) u r, t-; termOf(dl") : e v

otherwise

termof (d"') well-defined,
AI -I+ a, I e cn 1 (e K> u r, k" termof (dl1') : e v 1

and d1 E DLt.
Notice 8 (v -> 7) = (0 v) -> (0 T) . Then i f n > 0, by A P P ~

A1 i+ I 0 (F ; C") 1 (6 c) i+ t-& termof (d) termof (dl) : 0 T

- at 1 0 C" I (0 c) +t t -O termof (d) termof (d l) : 8 T

Hence (*) E E Dwt as required.
case DEFERTO:

(i) Let (a) be
A ; E I c I r ; F t - O t t t > > : t c ~)) ~ ~ (t l)

Then by DEFERTO
A ; Z (C ; t r u e Ir;Ft-kt ~ : T c) t1

--
Let A,, re be s.t.

(a,, K) extends (a', 0 c)
and nms s.t.

nms E name^,^+^

Then by I.H. (iii) on (f)

where

termof (d) well-defined,
A/ +t- n, I true I (8 c) +t r, I-' termof (d) : 8 T

By definition

~(t ')~~-f tenv(B) p
M I 1 = let^ md t closureN [t]q,+env(B) in unitR (code : md)) p

= letE md t unitE (Xnms . [ti]:,+,,cB, (nms, p)) in unitE (code : md)
1 1 = unit^ (code : Xnms . [t]rl,+env(B) (nms, p))

= (*>

Hence, since nms is arbitary s.t. (h) holds, we have

(*) E E {code : md I md E M D, nms E name^\^,+^
* md nms E E DLt

Furthermore, since a, and are arbitrary s.t. (g) holds, we have

(*) E n {S I (z, q) extends 8 c) }

where
md E M D, nms E Names\Euc

+ m d n m s E E D w t

and

termof (d) well-defined,
D W t = { d € ~ I - A 1 + t ~ I t r u e 1 (8 ~) + t ~ F 0 t e r m 0 f (d) : 8 ~

Thus
(*) E Ice 8 7)Y(p,8c) = I0 11 7 ~ Y (~ , O C)

as required.
case DEFERTI :

(ii) Let (a) be

Then by DEFERT~

By definition

611 t1 ll];ztnv(B) (nms7 P)
n+2 i n uni tN (ddeft : d)) (nms, p) = (letN it jq+-env(B)

I n+2
= let^ d -e- It ~ , + e n , c ~) (nms, p) i n uni tE (ddeft : d)

= (*)

Then by I.H. (ii) on (h)

where

termof (d) well-defined,
V i . vars(i - (n + I), termO/(d)) do rn (r i) }

Since termOf(ddeft : d) = CC termof (d) 11 is well-defined and Vi . vars(i -
n, CC termof (d) 1)) = vars(i - (n + I), termof (d)), we have (ddeft : d) E Dwd and so
(*) E Dud a s required.
(iii) Furthermore, by I.H. (iii) on (h)

where

termof (dl) well-defined,
D L , = { d l E ~ I - At +t a, I 8 (c' ; C1l ; true) 1 (8 c) +t termof (dl) : 8 r

Hence d E DLt.
Then, if n > 0, by DEFERT~

Or, if n = 0, then c' = - and by DEFERTO

Since CC termof (d) 11 = termof (ddeft : d) and CC 8 r 11 = 8 CC r 11, we have
(ddeft : d) E DWt, and so (*) E E Dwt as required.

case DEFERUO:
(i) Let (a) be

A ; =] c ~ r ; F ~ O (? t ? l : { ? l - , (t ~)

Then by DEFERUO

(A ; E) + ' A " I G ' ; ~ ~ r ; ~ t - ~ t : r v t '

(A ; p) +tl A" I-' D constraint

By definition

i(t')l~,+enu(B) P
1 1 = unitE (code : Xnms . [t]q,+env(B) (nms,p))

= (*I

Notice (A ; a') +I-' A" = A ; (a' +to A").
Let a, and be s.t.

(a,, c) extends (a', 8 c)
and nms be s-t.

nms E name^\^-^
W.1.o.g. assume dom(A1') f l dom(a' i+ a,) = 0. Then

(a,, K) extends (a' +I-' AN, 8 c)
and by (e) and Lemma D.7

71 I=(F,+oA~~,oFJ 8 r
Then by I.H. (ii) on (f)

where
termof (d) well-defined,
Vi . uat.s(i, termof (d)) d o m (z)

Since the choice of nms was arbitrary s.t. (i) holds, we have

md E M D, nms E name^\^+^
(*) E E {code : md I + md nms E

Furthermore, since the choice of a, and was arbitrary s.t. (h) holds, we have

(*) E 0 { S I (g, c) extends (z, 0 c) }

where
md E M D, nms E name^\^,+^

=+ md nrns E E Dwd

and
termof (d) well-defined,
Vi . uars(i, term Of (d)) G d o m (c t)

Hence

as required.

case DEFERU~:

(ii) Let (a) be

Then by DEFERU~

(A ; ~ ') + ~ " + ~ A ~ ~ I C ; ~ ; c " ; ~ I r ; P ; i ~ + ~ t : ~ v t ~ (h)

(A ; ,i) + I - ~ + ~ Art t-n+2 D contraint (i)

By definition

I{? t' ?H;&',v(B) (rims, P)
n+2 i n uni tN (ddefu : d)) (nms, p) = (1 " ~ d + It I v + + e n o ~)

I n+2
= let^ d + i t Iwenv(,) (nms, p) i n unitE (ddefu : d)

= (*I
Notice (A ; a') An = A ; (z +n+l).
W.1.o.g. assume dom(AN) n d o m (E Sf a,) = 0. Then by (f)

(a,, c) extends (a' ftn+' Art, 0 c)

and by (e) and Lemma D.7

7 l = ((~ q + ~ + l ~ r r , ~ r r) or
Then by I.H. (ii) on (h)

where

temaOf (d) well-defined,

Vi . vars(i - (n + I), termof (d)) dom(Kt)

Since termof (ddefu : d) = (? termof (d) ?I is well-defined and Vi . vars(i -
n, (? termof (d) ?3) = vars(i - (n + I), termof (d)), we have (ddefu : d) E Vwd and
so (*) E E Dwd as required.
(iii) Furthermore, if b = tt then by I.H. (iii) on (h)

where

dt E D
termof (dl) well-defined,
(a'+ta,)+i-n+l~rt ~ e (c l ; c " ; ~) ~ (oc)i+&t-,",+l

termof (dr) : 6 T

Hence d E DL,.
By (b) and (i) -

At -I+"+' AN I-"+' 0 D contraint

Then, if n > 0, by DEFERU~

-
A! -I+ a, I 0 (F ; C") I (0 c) -t+ (? temnOf (d) ? I : (? I

Or, if n = 0, then C' = - and by DEFERTO
-
At +tK I 0 C" I (0 c) Sf k0 (? termof (d) ?I : C?)

Since (? termof (d) ?) = termof (ddefu : d) and (?I = 0 (?I, (*) E E DWt as required.
case RUNTO:

(i) Let (a) be
A ; E I c ~ r ; T ' T ~ ~ - t : ~ ~ r ~ -) r u n T a t W

A ; E I c I r ; T 7 t - O t : (~ ~)) ~ T

(A ; a,)' k0 T : Type

C ke liftable T v W

--
Let A,, re and nms be s.t.

- --
(Ae, r e) extends (&, 0 E) h nms E N a m e ~ , ~ + ~

By definition

E 0 = (letR ev t closureR [T]v++env(B)
in uni tR (crnd : letMIo v t liftPI0 ev

in case v of {
code : md +

letMIo d t l if t5Io nad
i n if termof (d) well-defined - . . -

a n d (G I true I r;,;t k0
termof (d) : typeof ([W]q+env(~))
v TI) t h e n

unitMIo (runR [TIPo)
else

throwM10;
otherwise -+

unitMIo (unitE (wrong : *))
1)) P

= unitE (cmd : Xnms . let10 u t liftkO ([T]:+~,,~(~, p)
i n case v of {

code : md +
letIo d t liftiO (md nms)
i n if termof (d) well-defined

= unitE (cmd : Xnms

and (G I true I GI-'
termof (d) : tYPeOf([WBr)+env(~))
c-) TI) t h e n

unit10 ([TIBP 8)
else

t hrowIo ;
otherwise +

unitIo (unitE (wrong : *))
1)

(**>I

By I.H. (i) on (f)

P E 16 tt T l l l (~ , o c)
= [t t 0 >>]ca,er,)
= n {s I (.i;,E) extends (i&9c)}

where

and

md' E M D, nms' E name^,^++^
+ md' nms' E E Dwt

termof (d') well-defined,
A' +t I true I (6 c) +C- rk b0 termOf(dt) : 6 T

By (b) and (g) I-' 6 T : Type. Hence from (c), (h) and Lemma D.2

true Fe liftable 8 T L, W' A W']. = [W]enu(Bl = [W]rl+env(B)

and by Lemma 9.4
tYPeOf(BWBqi+env(~)) = 8 7

Thus v must be tagged by code, and md nms E E DLt where

termof (d') well-defined,
A' +I- n, I true I (6 F) ft I-' termof (dl) : 6 T

Thus d E 'DL,, so ternof (d) is well-defined, and

(**) = letIo (code : md) t lift? ([T$++~,~(~) p)
in letIo d t liftko (md nms)
in if (a,,,, I true I r,,it k0 termof (d) : 8 T L, TI) then

unit10 ([T1]P 8)
else

t hrowIo

By I.H. (i) on the embedded judgement

nrnlt 1 true I rinit k0 tennOf(d) : 9 T L, T'

(with identity substitution, empty value environment, empty renaming environment,
and empty renamed context) we have

Thus (**) J,lIo ea implies

ea E 18 TP(G,G)
which by Lemma D.7 implies

ea E 10 71 (~ , e r.;:

Since the choice of nms, a, and were arbitrary s.t. (i) holds, we have

unitE (cmd : Xnms . (**)) E [I0 (8 ~) l (~ , @ r . ;)

which in turn implies

as required.
We may strengthen this result, though we only sketch the proof. Only the overall pro-
gram environment may perform a command of type I0 7. Thus, the I 0 command (**)
will be performed only if run t is performed by the program environment. However, by
the typing rules SPLICET~ and SPLICEU~, it is impossible for I0 code to be performed
underneath a splice. Thus, run t is well-typed with an empty a' and F. Furthermore,
assuming the initial environment qo)o(=,=) I'inir, then may also be empty.

-- - -
In this case, we see that a' = Ainit, I?' = I?, = Finit, and p = 0. Hence the inner
typing judement succeeds, and command (**) does not raise an exception.

case RUNT~:
(ii) Let (a) be

Then by RUNT^

A ; D I c ; F ; c u ~ r ; F t ; + l t : ~ ~ r)) ~ t l
7 <n+1 tn+l : T~~ (A ; A)-

C" t-e rttype r

By definition

I n+l lrun lq-# rnv(B) (nms7 p)

= (letN d +- [t];:tnvcB, in unitN (drun : d)) (nms,p)

= letE d t [t],":tnv(,) (nms, p) in unit^ (drun : d)

= (*>

By I.H. (ii) on (h)
I n+l

It Iq++.env(Bl (rims, P) E EDwd

and hence d E Dwd. Since termof (drun : d) = run termof (d) and vars(i -
n,run termof (d)) = vars(i - n, termof (d)), (drun : d) E DWd and (t) E E Dwd
as required.
(iii) Furthermore, if b = tt then by I.H. on (h)

where if n > 0 then

ternof (dl) well-defined,
D ~ ~ = { ~ I E D I -

AI i+ iC- I e (77 ; cll) I (e c) +t r, I-& temnOf(dl) : cc e 1)

otherwise

I termof (dl) well-defined, Dwt = {dl E D I - ~ l + t - % (e cl1 I (er,)i+KI-O temOf(dl) : (~ 8 7))

Thus d E DLt.
By (b) and (i)

-<n
A1- I-" 8 r : Type

and thus
(al+a,>sn I--" e r : Type

By (j) and Lemma D.3
8 C" te rttype (8 7)

Then if n > 0, by RUNT^
-
A1 t+ I 0 (c'; C") I (0 r,) +t I-,", run termOf(d) : 10 (8 7)

Or, if n = 0, by RUNTO

Since termof (drun : d) = run termOf(d) and I 0 (8 T) = 8 (I0 T), then (drun : d) E
Vwt and (*) E E VWt as required.

case RUNUO:
(i) As for case RUNTO, but using Vwd instead of VWt . Hence there is no guarantee
that the inner typing judement will succeed, and thus in this case run may throw an
exception.

case R U N U ~ :

(ii)/(iii) As for case RUNTI.
case SPLICET~ :

(ii) Let (a) be
A ; E I c ; c 1 I r ; F ~ : , - t : ~ ~ - T

Then by SPLICET~

a ; E f C I ~ ; F ~ - O ~ : ((T I) L -) T

By definition

= (let^ v + lift: ITI;,e,,"(B)
in case v of .I

code : md + lift$ md;
otherwise += unitN (dwrong : *)

1) (rims, P)

= let^ IT]:+-enu(B) P
in case v of {

code : md += md nms;
otherwise + unitE (dwrong : *)

1
= (*>

By I.H. (i) on (h)

0
BTlq++env(B) P E [e (1 7))](=,BE)

= PC e 7)>](F,eF)

= n { S 1 (g, F) extends (Z , 8 c) }

where
md E M V , nms E name^,^,+^
=j md nms E E DLt

and

termof (d) well-defined,
A' +t I true 1 (8 c) -H t-O termof (d) : 8 T

Thus v is tagged by code and

(*) = let^ (code : md) t [T] ; , ~ ~ ~ (~) p in rnd nms

Now, take ak = n,, and rk = G. Then md nms E E DL, for

termof (d) well-defined,
A' I true I (0 c) I-O termof (d) : 8 T

Then by Lemma D.4 (*) E E Vwd as required.
(iii) This time, take n', = and = c. Then (*) E E Dwt as required.

case SPLICET~:

(ii) Let (a) be

Then by SPLICET~

By definition

1 n+2 1- lq-+eno(B) (rims, P)
I n+1 = let^ d e [t lq,e,v(B) in unitN (dsplice : d)) (nms, p)

I n+l = let^ d t [t]qXenv(B) (nms,p) in unitE (dsplice : d)

= (*I
By I.H. (ii) on (h)

I n+l it Iq+env(B) (nms7 P)

where
term Of j d') well-defined,
Vi . r - n, termof (dl)) i d u m (c i) }

Thus d E DLd. Since termOf(dsp1ice : d) = - termof (d) is well-defined and Vi .
vars(2 - n, - termof (d)) = vars(2 - (n + I), - termof (d)), we have (dsplice : d) E Vwd.
Hence (*) E E Vwd as required.
(iii) Furthermore, if b = tt then by I.H. (iii) on (h)

where if n > 0 then

term Of (d') well-defined,
~ ~ a , = { d l t ~ l - A I + ~ = I e (77; cll) 1 (er,)i+C~-,n, termOf(dt) : e((T 3)

otherwise

termof (dl) well-defined,
D L ~ = { ~ I E D I - ~ l + t - a , ~ e clt\ (e r ,) + t r e t O t e r m 0 f (d 1) : 8 ((~ 11

Notice 8 I€ T 11 = (C 8 T 31.

Then, if n > 0, by SPLICET:!

Or, if n = 0, then C' = - and by SPLICET~

Since termof (dsplice : d) = - termof (d), then (dsplice : d) E V w t . Hence (*) E E Dwt
as required.

case SPLICEU~:

(ii) Let (a) be
A ; E I c ; c r 1 r ; F t - ~ - ~ : T L s - T

Then by SPLICEU~

By definition

1 1- T] lg+env(~) (rims, p)

= let^ +- [Tj:uenv(~) p
in case v of (

code : md + md nms;
otherwise + unitE (dwrong : *)

1
= (*I

By I.H. (i) on (h)

I'l;+env(B, P E LO {?Y (=,OK)

= I[C?31 (~ , e

= n { S I (q, E) extends (E, 0 c) }

where
md E M V, nms E Names,EuE

=$ md nms E E DLd

and
termof (d) well-defined,

Vi . vars(i, termof (d)) d o m (r i)

Thus v is tagged by code and

(*) = let^ (code : md) t [~] i + ~ ~ ~ (~) p in md nms

where md nms E E DLd.
Taking = a, and rk = re, we see V w d = DLd. Thus (*) E E V w d as required.

case SPLICEU~:

(ii) Let (a) be

Then by SPLICETU

By definition

I n+2 1- t i,,env(B) (rims, P)
I n+l = letE Bt lIl)+env(B) (nms, p) in unitE (dsplice : d)

= (*I
By I.H. (ii) on (h)

1 n+l
[t lmtenv(s) P) %d

where
term 0 f (dl) well-defined,

Vi . vars(i - n, termof (dl)) G d o m (~ ')

Thus d E ;DLd. Since termof (dsplice : d) = - termOf(d) is well-defined and Vi .
vars(i - n, - termof (d)) = vars(i - (n + I), - termof (d)), we have (dsplice : d) E Vwd.
Hence (*) E E Vwd as required.

case LETO:

(i) Let (a) be

A ; E I c I r ; T t - O l e t x = u i n t : T L) l e t s = (l e t w ~ ' i n X n a m e s (~ ~) . U)in T

Then by LETO

(A ; E) + ~ - O A " I D ~ + ~ D ~ ~ I ' ; ~ ~ - ~ U : ~ J V U (f)
A ; a, I-' Dl constraint (g)

(A ; a,) +to A" F0 D2 constraint (h)
inherit (Dl) (i)

C ke Dl v B' di)
C Fe e x i s t s A" . D2 L) True (k)

A ; E I ~ I (r ; F) - i + ~ x : a t - ~ t : ~ ~ ~ (I)

where names(D2) = (wl,.. . , w,), a = f o r a l l A" . anon(Dz) => v. and A" = a1 :
~ i l , ..., a, : IE,.

By definition

[let z = (letw B' in Xnames(D) . U) in T $ + ~ ~ ~ (~) p
E = (letR ev t closureR [Anames(D) . Uj:,,enu(Bf,en,,(B,,

in ITlO,+en.(B),.,teu) P

= (letR ev t closure: (
letR f e clOsurefun%(X(~l, . . 7 ym) ' ~ " ~ ~ + ~ ~ ~ (B f , e n ~ (~)) , w l ~ y l , . . . , w n ~ y m 1
in unitR (tfunc, : f))

in uTJ;+env(B),zcev) P

Notice (A ; a') +to A" = (A -I+ A") ; a'. Since dom(Atf) fl dom(A) = 0, we have
dom(AM) n dom(6) = 0.
Then by (b) and (h)

A" ; ni I-' 6 D2 constraint (4
By (b), (k) and Lemma D.2

true I- 6 ex i s t s A" . D2 v True true I- ex i s t s AN . (6 D2) v True

Then by (m) and Lemma 9.4 there exists types 2 s.t. ni,,t I - O v' and

true I- (0 Dz)[a t, v'] v B2 (4
From (j) and Lemma D.2

true I- 8 Dl ~t Bl A env(Bl) = env(Bt7 env(d)) (0)

Let 8' = [al I+ vi, . . . , a, t, vb] o 8. Then A +t A" I- 6' gsubst and 0' = 6 F.
Then from (n), (0) and definition of entailment

true ke 6' (Dl +t D2) v B1 +t B2

Then by I.H. (i) on (f)

Since this holds for any choice of 7 s.t. (n) holds, we have

Ainit to 7 5 ,
e V E n (~ 1 - true t (8 D2) [a H vtl] c, B"

Hence
eu E [fo ra l l A" . (0 D2) => (6 v)I(D,~E) = a l (~ , e ~)

where

Notice (I' ; P) +O x : o = (I' -t+ x : a) ; P. Let q' = q, x I+ eu. Then q' b(F,eT;)
0 (r + x : a).
So by I.H. (i) on (1)

[~ D $ + e n u (~) P = (*) E ~ I (i i i , e ~)

tfuncm : f

as required.
case LET^:

(ii) Let (a) be

f E cn,,,,, 7) + E V ,
f ([wl]env(~tt),- - . , [~m]env(~"))

E 8(e v)[a * u " l l ~ ~ , e ~)

Then by LET^

(~ ; a l) - t + ~ + l a ~ ~ ~ C ; T ? ; D ~ + D ~ 1 I ' ; P b ~ + ' u : v r u ' (h)

A ; nl kn+' Dl constraint 6)
(A ; E) +tn+' A" bn+l D2 constraint di)

inherit (Dl) (k)

C" ke Dl (1)

CN be exists A" . Dz (4

A ; E I C ; F ; C ~ ~ I (I ' ; P) + ~ ~ + ~ X : I T / _ ; + ~ ~ : T V ~ ~ (4

where a = (f o r a l l A" . anon(D2) => v).
Notice (A ; E) +tn+' A'' = A ; (Z +tn A"), and (I' ; P) +tn+l x : a = I' ; (F +tn x : o).
W.1.o.g. assume dom(AU) n dom(n' Sf z) = 8. Then

(a,, K) extends (a' +" AN, 0 c)
From (e) and Lemma D.7

7 b(nrstn~tt,e i;;) er
Hence by I.H. (ii) on (h)

where
termof (d") well-defined,

V i . vnrs(i - n, termof (d")) dom(c i)

W.1.o.g. assume nms = "y" : nms', where by (f) y fZ dom(I', -kt r e) . Let =
- r, +tn y : a and p' = p[x H y]. (This may override an existing binding for x in p.)

Since nms contains only distinct variable names

and
(a,, c) extends (E, 8 c)

By (e) and Lemma D.7

7 I = (F , o C) 8

Then by I.H. (ii) on (n)

where
termof (d"') well-defined,
i . u s (- n, termof (drtr)) C dom(c ') }

By definition

r n+l
[let x = u' in t ln++env(B) (rims, P)

- I n+1 - (let^ d + 1~ Iq-++env(B)
I n+l in letN (nm, dl) t- rename^ "x" It]n,+env(B)

in unitN (dlet : (nm, dl dl))) (nms,p)
r n+l

= letE d t [u iq,+env 3) (nmsi P)
t n+ I in let^ + (t]n+env(B) (rims', p')

in unitE (dlet : ("y", d, dl))

= (*)

Then by (0) d E DLd and by (p) d' E VEd. Hence

termof (dlet : ("y", d, dl)) = l e t y = termOf(d) in termof (dl)

is well-defined, and

vars(0, l e t y = termof (d) in termof (dl))

= vars(0, termof (d)) U (vars(0, termof (dl)) \ {y))

E d o m (c n)

Thus (*) E E VWd as required.
(iii) Furthermore, if b = tt then by I.H. (iii) on (h)

where if n > 0 then

otherwise

 ED
term Of (d") well-defined,
(~ + t ~) - ~ " ~ " I 8 (p ; D l + t ~ 2) 1 (8 ~) + t ~ k ~ ~

termof (dl1) : 8 v

Also, by I.H. (iii) on (n)

d " € D

where if n > 0

termof (d") well-defined,
(E+C&);)~A"IB(D~;)D~)((O~)+~~F~

termof (d") : 8 v

otherwise

d N % v
termof (d"') well-defined,
Z + t & I e (F ; ~ ~ ~) ~ (e (c + ~ ~ : ~)) + t ~ k ~

termOf(dl") : 8 T

So now d E 'DLt and d' E #DLt.
BY (b), (i) and dj)

 ED

-
At Fn 8 Dl constraint

-
A1 +tn A" I-" 8 D2 constraint

term Of (dl1') well-defined,
T i i - t t ~ I ~ ~ " I (~ (~ t + ~ ~ : a)) + t ~ k ~

termOf(dl") : 8 T

By definition of inherit and (k)
inherit (8 Dl)

By (b), Lemma D.3 and since dom(8) f l dom(A1') = 8

8 C" ke 8 Dl

8 C" ke e x i s t s A" . 8 D2

Also
8 a = forall A" . (8 anon(Dz)) => 8 v

Then if n > 0, by LET^
-

+t & I (F ; c") I (8 c) +I- r, I-2' let y = termof (d) i n termof (dl) : 8 T

Or, if n = 0 then C' = - and by LETO
-
A1 -I+ h, I 8 C" 1 (8 c) +t re F0 let y = termof (d) i n term0f(d1) : 8 T

Thus (*) E E DWt as required.
case LIFTO:

(i) Let (a) be

A ; al I C I I'; ?;i t-O l i f t t : {{ T 1) v lift T using W

Then by LIFTO

A ;EI c l r ; F t - O t : ~ ~) T

(A ; I-' T : Type

C be l i f t a b l e T v W

By definition

[lift T using ~ g + e n v (B) P

= (letR IITctCenv(B)

in case (v7 [WBs+env(~)) of {
(int : i , tint : *) + unitR (code : unitM (dconst : 2));
otherwise + unitR (wrong : *)

1) P

= let^ v + ITB:+,,(B) P
in case (v7 [W]q+-env(B)) {

(int : i, tint : *) -+ unitE (code : Xnms . unitE (dconst : i)) ;
otherwise + unitE (wrong : *)

1
= (*I

By I.H. (i) on (f)
iTDqt~enu(B) P E 80 T B (~ , ~ F J

By (b), (c), (g) and Lemma D.2

Then by Lemma 9.4

We proceed by (trivial!) case analysis on 0 T:

case Int: By (i)

Then v is tagged by in t , [W] ~ ~ ~ (~ ~ , , ~ ~ (B)) is tint : * and

(*) = let^ (in t i, [T]:+enu(B) P
in unitE (code : Xnms . unitE (dconst : i))

where i E 2. --
Let A,, re and nms be s.t.

--
(A,, I?,) extends (a', f3 c) A nms E N a m e ~ , ~ + ~

Then
unitE (dconst : i) E E Vwt

where

termof (d) well-defined,
V , ~ = { ~ E D I - A'*% I true 1 (O r) * ~ k O termOf(d) : Int

Thus
md E M V, nms E name^,^+^

(*) E E {code : md I
3 md nms E E D,t
--

Since this holds for any choice of A,, re and nms s.t. (j) holds, we have

as required.
(If l iftable were extended to other types, the cases would proceed analogously.)

case LETMO:
(i) Let (a) be

A ; E I C } r ; F ~ O l e t x < - u i n t : ~ ~ ~ ~ .) l e t x t Uin T

Then by LETMO

By definition

E = (letR ev t closureR [u]:+,~~(~,
in letR f t closurefun% (Xev' . T];,+,,(~ ,.,)
in unitR (cmd : letMIo v t liftFIO ev

in case v of {
cmd : ioev +=

letMIo ev' t ioev
in letMIo v' t liftF1O (f ev')
in case v' of {

cmd : ioev' += ioev';
otherwise += unitMIo unit^ (wrong : *))

1;
otherwise += unitMIo unit^ (wrong : *))

1)) P

= let^ ev + unit^ (Qu]:+env(Bi P)
i n let^ f t unit^ (Xev' . ITl,+env(B~,,ce,~ P)
i n unitE (crnd : Xnms . let10 v t liftbo ev

in case v o f {
crnd : ioev -+

letIo ev' t ioev nms
i n letIo v' t liftkO (f ev')
in case v' o f {

crnd : ioev' + ioev' nrns;
o the rwise + unitIo (uni tE (wrong : *))

1;
o therwise + unitIo (uni tE (wrong : *))

1)
= unitE (crnd : Xnms . let10 v t lifik0 ((u] : , + ~ ~ , , ~ ~) P)

in case v o f {
crnd : ioev -+

letIo ev' t ioev nms
in let10 v' + liftbO ((T]:uenv(B),E~ev~ P)
in case v' of {

crnd : ioev' + ioev' nrns;
o the rwise + unitIo unit^ (wrong : *))

1;
otherwise + unitIo (un i tE (wrong : *))

11
= unitE (cmd : Xnms . (**))
= (*I
--

Let A,, re and nms be s.t.

(x, z) extends (r, 0 c) A nms E N a m e s \ z , + ~

By I.H. (i) on (f)

[ul;+env(B) /' le Io V~(F,OK)

E BIO (0 v)B(;zr,e-ir;)

= n { S I (x, e) extends (X, B z) }
where

{ S = E crnd : io
io E M I 0 (E V),
nms E N a m e ~ , r . ; + ~ A (io nms) UIo ea

* ea E Be vIl(p,e 1;;)

Hence v is tagged by crnd and

Notice (I? ; F) +to x : v = (I' +t x : v) ; p. Let q' = q, z I-, ev'. Then

Then by I.H. (i) on (g)

! ~ l i l + e n v (B) P = I'IIi+envcs),ztteut P

E P 10 71 (Z,O r,)

E EIO (6 ~) l (~ , e c)
= n { S t I (g, c) extends @, 0 c) }

Hence v' is tagged by cmd. Thus

where

(**) = letIo (cmd : ioev) t l i ~ p ([U]:+enu(B) p)
in letIo ev' t- ioev nms
in let10 (cmd : ioev') t liftio IT$+^^^(,),^,,^^, p)
in ioev' nms

cmd : io

and
(**) 410 ea * ea E TII (F ,~ C)

io E M I 0 (E V) ,
nms E name^,^+^ A (io nms) $10 ea

+ ea E Be ~ I (A ~ , O r;;,

--
Since the choice of A,, re and nms is arbitrary s.t. (h) holds, we have

as required.
case UNITO:

(i) Straightforward.
case LETRECO:

(i) Similar to ABSO.

case L E T R E C ~ , UNITMI, LETMI, LIFT^:
(ii) and (iii): These cases all proceed as for case A B S ~ , RUNT^ and LET^.

case VARO with constant k:
(i) Straightforward.

case V A R ~ with constant k:
(ii) and (iii): Constants are rebuilt as themselves and have the same type in every
stage.

Bibliography

(Please note that all of the URLs mentioned an this bibliography were correct as of February
2001 .)

[I] ABADI, M., CARDELLI, L . , PIERCE, B., AND PLOTKIN, G . Dynamic typing in
a statically typed language. ACM Transactions on Programming Languages and
Systems 13, 2 (Apr. 1991), 237-268.

[2] ABADI, M., CARDELLI, L., PIERCE, B.: AND R ~ M Y , D. Dynamic typing in poly-
morphic languages. Journal of Functional Programming 5, 1 (Jan. 1995), 111-130.

[3] ADLER, S., BERGLUND, A., ET AL. Extensible Stylesheet Language (XSL)
Version 1.0. W3C Candidate Recommendation, Nov. 2000. Available at
http://www.w3.org/TR/2000/CR-xsl-20001121.

[4] AIKEN, A. Introduction to set constraint-based program analysis. Science of Com-
puter Programming 35 (1999), 79-1 11.

[5] AIKEN, A., AND WIMMERS, E. L. Type inclusion constraints and type inference.
In Proceedings of the ACM SIGPLAN Conference on Functional Programming Lan-
guages and Computer Architecture (FPCA '93), Copenhagen, Denmark (June 1993),
ACM Press, pp. 31-41.

[6] BAILEY, D. H., BORWEIN, P . B., AND PLOUFFE, S. On the rapid computation of
various polylogarithmic constants. Mathematics of Computation 66, 218 (Apr. 1997),
903-913.

[7] BARBANERA, F., DEZANI-CIANCAGLINI, M., AND DE'LIGUORO, U. Intersection
and union types: Syntax and semantics. Information and Computation 119, 2 (June
1995), 202-230.

[8] BARENDREGT, H. P. The Lambda Calculus: Its Syntax and Semantics. North
Holland, 1984.

[9] BARENDREGT, H. P . Lambda calculi with types. In Handbook of Logic in Computer
Science, S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Eds., vol. 2. Oxford
Science Publishers, 1992, ch. 2, pp. 117-309.

[lo] BENAISSA, Z. E.-A., MOGGI, E., TAHA, W., AND SHEARD, T . A categorical analy-
sis of multi-level languages (extended abstract). Tech. Rep. CSE-98-018, Department
of Computer Science and Engineering, Oregon Graduate Institute of Science and
Technology, Dec. 1998.

 BENTON, ON, N., HUGHES, J., AND MOGGI, E. Monads and ef-
fects. In International Summer School On Applied Semantics
(A PPSEM'ZOOO), Caminha, Minho, Portugal (Sept. 2000). Available at
http : //www . disi .unige . it/person/MoggiE/APPSF,MOO/BHM .ps.

[12] BRAY, T., PAOLI, J. , SPERBERG-MCQUEEN, C. M., AND MALER, E. Extensible
Markup Language (XML) 1.0, 2nd ed. W3C Recommendation, Oct. 2000. Available
athttp://www.w3.org/TR/2000/REC-xml-20001006.

[13] BRUGGEMANN-KLEIN, A., AND WOOD, D. Unambiguous regular expressions and
SGML document grammars. Technical Report 337, Computer Science Department,
University of Western Ontario, London, Ontario, Canada, Nov. 1992.

[14] BUNEMAN, P., AND PIERCE, B. Union types for semistructured data. In Proceedings
of the International Database Programming Languages Workshop (DBPL-7), Kinloch
Rannoch, Scotland (Sept. 1999), R. Connor and A. 0. Mendelzon, Eds., LNCS 1949,
Springer-Verlag. Also available as University of Pennsylvania Dept. of CIS technical
report MS-CIS-99-09.

[~ ~] B u R N s , J . , LAUZON, M., AND HEIN, R. A. extensible Program-
ming Language (XPL) Specification, July 2000. Draft available at
http://www.vbxml.com/xpl/spec~draft.asp.

[16] CARDELLI: L., AND MITCHELL, J . Operations on records. Mathematical Structures
in Computer Science 1, 1 (Mar. 1991), 3-48.

[17] CHAMPARNAUD, J .-M . , ZIADI, D . , AND PoN'~Y, J .-L. Determinization of Glushkov
automata. In Automata Implementation: Third International Workshop on Imple-
menting Automata, (WIA'98), Rouen, Prance (Sept. 1998), J.-M. Champarnaud,
D. Maurel, and D. Ziadi, Eds., LNCS 1660, Springer-Verlag, pp. 57-68.

[18] CLARK, J . XSL Transformations (XSLT). W3C Recommendation, Nov. 1999. Avail-
able at http: //www . w3. org/TR/1999/REC-xslt-19991116.

[19] DAMAS, L., AND MILNER, R. Principle type schemes for functional programs. In
Proceedings of the Ninth Annual ACM Symposium on Principles of Programming
Languages, Albequerque, New Mexico (Jan. 1982), ACM Press, pp. 207-212.

[20] DAVIES, R. A temporal logic approach to binding-time analysis. In Proceedings of the
Eleventh Annual IEEE Symposium on Logic in Computer Science, New Brunswick,
New Jersey (July 1996), E. Clarke, Ed., IEEE Computer Society Press, pp. 184-195.

[21] DAVIES, R., AND PFENNING, F. A modal analysis of staged computation. In Pro-
ceedings of the 23rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, St. Petersburg Beach, Florida (Jan. 1996), ACM Press,
pp. 258-270.

[22] DECISIONSOFT. XML Script and its uses, 2000. Available at
http://www.~ecisionSoft.com/TechnicalDescription.html.

[23] ELLIOTT, C., AND HUDAK, P. Functional reactive animation. In Proceedings
of the 1997 ACM SIGPLAN International Conference on Functional Programming
(ICFP197), Amsterdam, The Netherlands (June 1997), ACM Press, pp. 263-273.

[24] FALLSIDE, D. C. XML Schema Part 0: Primer. W3C Candidate Recommendation,
Oct. 2000. Available at http : //uwu. w3. org/TR/xmlschema-0.

[25] FANKHAUSER, P., FERNANDEZ, M., MALHOTRA, A., RYS, M., SIMEON, J., AND

WADLER, P. The XML Query Algebra. W3C Working Draft, Dec. 2000. Available
at http://m.w3.org/TR/2000/WD-query-algebra-20001204/.

[26] FERN~NDEZ, M., AND ROBI, J. XML Query Data Model. W3C Working Draft, May
2000. Available at h t tp : //www . w3. org/TR/2000/WD-query-datamodel-2000051 I/.

[27] FINNE, S., AND PEYTON JONES, S. L . Composing the user interface with Haggis.
In Advanced Functional Programming: Second International School, Olympia, Wash-
ington (Aug. 1996), J. Launchbury, E. Meijer, and T. Sheard, Eds., LNCS 1129,
pp. 1-37.

[28] FIORE, M., PLOTKIN, G., AND TURI, D. Abstract syntax and variable binding.
In Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science
(LICS'99), Trento, Italy (July 1999), G. Longo, Ed., IEEE Computer Society Press,
pp. 193-202.

[29] FLANAGAN, D. Javascript: The Definitive Guide. O'Reilly and Associates, June
1998.

1301 GABBAY, M., AND PITTS, A. A new approach to abstract syntax involving binders.
In Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science
(LICS'99), Zhnto, Italy (July 1999), G. Longo, Ed., IEEE Computer Society Press,
pp. 214-224.

[31] GASTER, B. R., AND JONES, M. P. A polymorphic type system for extensible
records and variants. Tech. Rep. NOTTCS-TR-96-3, Department of Computer Sci-
ence, University of Nottingham, Nov. 1996.

[32] GIRARD, J.-Y. The system F of variable types, Fifteen years later. In Logical
Foundations of Functional Programming, G . Huet, Ed. Addison-Wesley, 1990, ch. 6,
pp. 87-126.

[33] GOMARD, C. K., AND JONES, N. D. A partial evaluator for the untyped lambda
calculus. Journal of Functional Programming 2, 1 (Jan. 1991), 21-69.

[34] GOSLING, J., JOY, B., AND STEELE, G. The Java Language Specification. Addison-
Wesley, 1996.

[35] HARPER, R., AND PIERCE, B. A record calculus based on symmetric concatenation.
In Proceedings of the Eighteenth Annual ACM Symposium on Principles of Program-
ming Languages (POPL791), Orlando, Florida (Jan. 1991), ACM Press, pp. 131-142.

[36] HARRISON, W. L., AND KAMIN, S. N. Metacomputation-based compiler architec-
ture. In Fifth International Conference of Mathematics of Program Constructlon
(MPC 2000), Ponte de Lima, Portugal (July 2000), J. N. Oliveira and R. C. Back-
house, Eds., LNCS 1837, Springer-Verlag.

[37] HINZE, R. A new approach to generic functional programming. In Proceedings of
the 27th Annual ACM SIGPLAN-SIGA CT Symposium on Principles of Programming
Languages (POPL'OO), Boston, Massachusetts (Jan. 2000), ACM Press, pp. 119-132.

[38] HOSOYA, H., AND PIERCE, B. C. XDuce: A typed XML process-
ing language. In Proceedings of Third International Workshop on the Web
and Databases (WebDB2000), Dallas, Texas (May 2000). Available at
http://wwv.cis.upenn.edu/ hahosoya/papers/xduce-pre1im.p~.

[39] HOSOYA, H., AND PIERCE, B. C. Regular expression matching for XML. In Proceed-
ings of the 28th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL'OI), London, England (Jan. 2001), ACM Press, pp. 67-
80.

[40] HOSOYA, H., VOUILLON, J., AND PIERCE, B. C. Regular expression types for XML.
In Proceedings of the Fifth ACM SIGPLAN International Conference on Functional
Programming (ICFP 'OO), Montreal, Canada (Sept . 2000), ACM Press, pp. 11-22.

[41] HUDAK, P. Modular domain specific langua,ge and tools. In Fifth International Con-
ference on Software Reuse (ICSR'98), Victoria, B.C., Canada (1998), P. Devanbu
and J. Poulin, Eds., IEEE Computer Soqiety Press, pp. 134-142.

[42] HUDAK, P., MAKUCEVICH, T., GADDE, S., AND WHONG, B. Haskore music
notation-an algebra of music. Journal of Functional Programming 6, 3 (May 1996),
465483.

[43] HUGHES, J. Why functional programming matters. The Computer Journal 32, 2
(Feb. 1989), 98-107.

[44] HUGHES, J. The design of a pretty-printing library. In Advanced Functional Program-
ming (1995), J . Jeuring and E. Meijer, Eds., LNCS 925, Springer-Verlag, pp. 53-96.

[45] IS0 8879: Standard generalized markup language (SGML), 1986.

[46] JONES, M., AND PEYTON JONES, S. L. Lightweight extensible records for Haskell.
In Proceedings of the 1999 Haskell Workshop, Paris, fiance (Oct. 1999). Available
as Technical Report UU-CS-1999-28, Department of Computer Science, University of
Utrecht .

[47] JONES, M. P . Qualified Types: Theory and Practice. Distinguished Dissertations in
Computer Science. Cambridge University Press, 1994.

[48] JONES, M. P. Simplifying and improving Qualified Types. Tech. Rep.
YALEU/DCS/RR-1040, Computer Science Department, Yale University, New Haven,
Connecticut, June 1994. Shorter version appears in FPCA195, 160-169.

[49] JONES, M. P . First-class polymorphism with type inference. In Proceedings of the
24th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Paris, fiance (Jan. 1997), ACM Press, pp. 483-496.

[50] JONES, N. D., GOMARD, C. K., AND SESTOFT, P . Partial Evaluation and Auto-
matic Program Generation. Prentice Hall International, 1993.

[51] JONES, N. D., SESTOFT, P., AND SONDERGAARD, H. An experiment in partial
evaluation: the generation of a compiler generator. ACM SIGPLAN Notices 20, 8
(Aug. 1985), 82-87.

[52] KAHL, W. Beyond pretty-printing: Galley concepts in document formatting com-
binators. In First International Workshop on Practical Aspects of Declarative Lan-
guages (PADL799), Sun Antonio, Texas (Jan. 1999), LNCS 1551, Springer-Verlag,
pp. 76-90.

[53] LANDIN, P. J. The next 700 programming languages. Communications of the ACM
9, 3 (Mar. 1966), 157-164.

[54] LEE, P., AND LEONE, M. Optimizing ML with run-time code generation. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI'96), Philadelphia, Pennsylvania (May 1996), ACM Press,
pp. 137-148.

[55] LEIJEN, D., AND MEIJER, E. Domain specific embedded compilers. In Proceed-
ings of the Second USENIX Conference on Domain-Specific Languages (DSL'99))
Austin, Texas (Oct. 1999), USENIX Association, pp. 109-122. Also appears in A CM
SIGPLAN Notices 35, 1, (Jan. 2000).

[56] LEROY, X., AND MAUNY, M. Dynamics in ML. Journal of Functional Programming
3, 4 (1993), 431-463.

[57] LEWIS, J., SHIELDS, M., MEIJER, E., AND LAUNCHBURY, J. Implicit pa-
rameters: Dynamic scoping with static types. In Proceedings of the 27th An-
nual A CM SIGPLA N-SIGA CT Symposium on Principles of Programming Languages
(POPL700), Boston, Massachusetts (Jan. 2000), ACM Press, pp. 108-118.

[58] LIE, H. W., AND BOS, B. Cascading Style Sheets (CSS), level
1, revised ed. W3C Recommendation, Jan. 1999. Available at
http://www.w3.org/TR/l999/REC-CSS1-19990111.

[59] MACQUEEN, D., PLOTKIN, G., AND SETHI, R. An ideal model for recursive poly-
morphic types. In Proceedings of the Eleventh Annual A CM Symposium on Principles
of Programming Languages (POPL784), Salt Lake City, Utah (1984), ACM Press,
pp. 165-174.

[60] MARAIS, H. Compaq7s Web Language: A Programming Language for the Web, 1999.
Available athttp://uww.research.compaq.com/SRC/WebL/WebL.pdf.

[61] MARTI, J. B., HEARN, A. C., GRISS, M. L., AND GRISS, C. Standard Lisp report.
ACM SIGPLAN Notices 14, 10 (Oct. 1979), 48-68.

[62] MASSALIN, H. Synthesis: An Eficient Implementation of Fundamental Operating
System Services. PhD thesis, Columbia University, 1992.

[63] MATTHEWS, J., LAUNCHBURY, J., AND COOK, B. Microprocessor specification in
Hawk. In International Conference on Computer Languages (ICCL'98), Chicago,
Illinois (May 1998), IEEE Computer Society Press, pp. 90-101.

[64] MEIJER, E. Server side Web scripting in Haskell. Journal of Functional Programmang
10, 1 (Jan. 2000), 1-18.

[65] MEIJER, E., AND SHIELDS, M. XMA: A functional language for con-
structing and manipulating XML documents. Unpublished draft. Available at
http: //www. cse . ogi . edu/'mbs/pub/xmlambda/xmlambda .ps), 1999.

[66] MILNER, R. A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17 (1978), 348-375.

[67] MILNER, R., TOFTE, M., HARPER, R., AND MACQUEEN, D. The Definition of
Standard ML (Revised). The MIT Press, Oct. 1997.

[68] MILO, T., SUCIU, D., AND VIANU, V. Typechecking for XML transformers. In Pro-
ceedings of the Nineteenth ACM SIGA CT-SIGMOD-SIGART Symposium on Princa-
ples of Database Systems (SIGMOD/PODS 20001, Dallas, Texas (May 2000), ACM
Press, pp. 11-22.

[69] MITCHELL, J. C. Foundations of Programming Languages. The MIT Press, 1996.

[70] MOGGI, E . Computational lambda-calculus and monads. In Proceedings of the
Fourth Annual IEEE Symposium on Logic in Computer Science (June 1989), IEEE
Computer Society Press, pp. 14-23.

[71] MOGGI, E. A categorical account of two-level languages. In Proceedings of the Thir-
teenth Annual Conference on Mathematical Foundations of Programming Semantics
(1997), ENTCS 6, Elsevier Science Publishers.

[72] MOGGI, E. Metalanguages and applications. In Semantics and Logics of Compu-
tation, A. M . Pitts and P. Dybjer, Eds., Newton Institute Publications. Cambridge
University Press, 1997.

[73] MOGGI, E. Functor categories and two-level languages. In Foundations of Software
Science and Computation Structure, First International Conference, (FoSSaCS'98)
(1998), M. Nivat, Ed., LNCS 1378, Springer-Verlag, pp. 21 1-225.

[74] NICOL, G. T. XEXPR - A Scripting Language for XML. W3C Note, Nov. 2000.
Available athttp://ww.w3.org/TR/2000/NOTE-xexpr-20001121/.

[75] NIELSON, F. Abstract Interpretation using Domain Theory. PhD thesis, Department
of Computer Science, University of Edinburgh, Oct. 1984.

[76] NIELSON, F., AND NIELSON, H. R. Two-level semantics and code generation. Journal
of Theoretical Computer Science 56, 1 (Jan. 1988), 59-133.

[77] NIELSON, F., AND NIELSON, H. R. Two-level Functional Languages. Cambridge
University Press, 1992.

[78] NIELSON, F. , AND NIELSON, R. H. Automatic binding time analysis for a typed
A-calculus. In Proceedings of the Fifteenth Annual ACM Symposium on Principles
of Programming Languages (POPL788), Sun Diego, Calafornia (1988), ACM Press,
pp. 98-106.

[79] ODERSKY, M., SULZMANN, M., AND WEHR, M. Type inference with constrained
types. Theory and Practice of Object Systems 5, 1 (1999), 35-55. An earlier version
appears in FOOL 4, 1997.

[80] OHORI, A. A polymorphic record calculus and its compilation. ACM Transactions on
Programming Languages and Systems 17, 6 (Nov. 1995), 844-895. An earlier version
appears in POPL793, pp. 99-112.

[81] OLES, F. J . Type algebras, functor categories, and block structure. In Algebraic
Methods in Semantics, M. Nivat and J. C. Reynolds, Eds. Cambridge University
Press, 1985, pp. 543-573.

[82] PELEGR~-LLOPART, E. JavaServer pages specification (version 1.2). Tech. Rep.
JSR-000053, Sun Microsystems, Inc., Palo Alto, California, Oct. 2000. Available at
h t t p : / / j a v a . s u n . c o m / a b o u t J a v a / c o m m u n i t ~ .

[83] PETERSON, J. , HUDAK, P. , AND ELLIOTT, C. Lambda in motion: Controlling
robots with Haskell. In First International Workshop on Practical Aspects of Declar-
ative Languages (PADL'99), San Antonio, Texas (Jan. 1999), LNCS 1551, Springer-
Verlag, pp. 91-105.

[84] PEYTON JONES, S. L., EBER, J.-M., AND SEWARD, J. Composing contracts:
an adventure in financial engineering. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP'OO), Montreal, Canada
(Sept. 2000), ACM Press, pp. 280-292.

[85] PEYTON JONES, S. L., HUGHES, J., ET AL. Haskell 98: A Non-strict, Purely Func-
tional Language, Feb. 1999. Available at http : //m. haske l l . org/onlinereport/ .

[86] PEYTON JONES, S. L., REID, A., HOARE, T., MARLOW, S., AND HENDERSON, F.
A semantics for imprecise exceptions. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI'99), Atlanta,
Georgia (May 1999), ACM Press, pp. 25-36. Also appears in ACM SIGPLAN Notices
3.4, 5 (May 1999).

[87] PEYTON JONES, S. L., AND WADLER, P. Imperative functional programming. In
Proceedings of the Twentieth Annual ACM Symposium on Principles of Programming
Languages (POPL'93), Charleston, South Carolina (Jan. 1993), ACM Press, pp. 71-
84.

[88] PFENNING, F., AND DAVIES, R. A modal analysis of staged computation. Tech.
Rep. CMU-CS-99-153, School of Computer Science, Carnegie Mellon University, Aug.
1999. An earlier version appears in POPL796, pp. 258-270.

[89] PIERCE, B. C. Intersection types and bounded polymorphism. Mathematical Struc-
tures in Computer Science 7, 2 (Apr. 1997), 129-193.

[go] PLOTKIN, G. D. A powerdomain construction. SIAM Journal of Computing 5, 3
(1976), 452-487.

[~ ~] R A G G E T T , D., LE HORS, A., AND JACOBS, I. HTML 4.01
Specification. W3C Recommendation, Dec. 1999. Available at
http://www.w3.org/TR/l999/REC-html401-19991224/.

[92] REID, A., PETERSON, J., HAGER, G., AND HUDAK, P. Prototyping real-time
vision systems: An experiment in DSL design. In Proceedings of the 2lst International
Conference on Software Engineering (ICSE799), Los Angeles, California (May 1999),
ACM Press, pp. 484-493.

[93] RBMY, D. Typing record concatenation for free. In Proceedings of the Nineteenth
Annual ACM Symposium on Principles of Programming Languages (POPL792), AI-
buquerque, New Mexico (Jan. 1992), ACM Press, pp. 166-176.

[94] R ~ M Y , D. Type inference for records in a natural extension of ML. In Theoretical
Aspects Of Object-Oriented Programming. njpes, Semantics and Language Design,
C. A. Gunter and J. C. Mitchell, Eds. The MIT Press, 1993. An earlier verision
appears in POPL'89, pp. 77-87.

[95] REYNOLDS, J . C. Design of the programming language FORSYTHE. In ALGOL-like
Languages, P. W. O'Hearn and R. D. Tennent, Eds. Birkhauser, 1997, pp. 173-233.

[96] SANDHOLM, A., AND SCHWARTZBACH, M. I. A type system for dynamic Web
documents. In Proceedings of the 27th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL'OO), Boston, Massachusetts (Jan.
2000), ACM Press, pp. 290-301.

[97] SHEARD, T., BENAISSA, Z. , AND MARTEL, M. Introduction to Multistage Progmm-
ming Using MetaML, 2nd ed. Pacific Software Research Center, Oregon Graduate
Institute, 2000. Available at http : //cse . ogi . edu/"sheard/papers/manual . ps.

[98] SHIELDS, M., AND MEIJER, E. Type-indexed rows. In Proceedings of the 28th An-
nual ACM SIGPLAN-SIGA CT Symposium on Principles of Programming Languages
(POPL'OI), London, England (Jan. 2001), ACM Press, pp. 261-275.

[99] SHIELDS, M., SHEARD, T., AND PEYTON JONES, S. L. Dynamic typing by staged
type inference. In Proceedings of the 25th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, Sun Diego, California (Jan. 1998),
ACM Press, pp. 289-302.

[loo] STOLZENBURG, F. An algorithm for general set unification and its complexity. Jour-
nal of Automated Reasoning 22, 1 (Jan. 1999), 45-63.

[loll SULZMANN, M. A general type inference framework for Hindley/Milner style sys-
tems. Tech. Rep. TR2000/15, Department of Computer Science, The University of
Melbourne, July 2000.

[lo21 SWIERSTRA, S. D., AND ALCOCER, P . R. A. Fast, error correcting parser combi-
nators: A short tutorial. In Theory and Practice of Informatics, 26th Seminar on
Current Trends in Theory and Practice of Informatics (SOFSEM799) (Nov. 1999),
J . Pavelka, G. Tel, and M. Bartosek, Eds., LNCS 1725, Springer-Verlag, pp. 111-129.

[lo31 SWIERSTRA, S. D., ALCOCER, P. R. A., AND SARAIAVA, J . Designing and imple-
menting combinator languages. In Advanced Functional Programming, Third Inter-
national School, (AFP798) (1999), LNCS 1608, Springer-Verlag, pp. 150-206.

[I041 TAHA, W. Multi-Stage Programming: Its Theory and Applications. PhD thesis,
Department of Computer Science and Engineering, Oregon Graduate Institute of
Science and Technology, 1999.

[105] TAHA, W., BENAISSA, Z., AND SHEARD, T . Multi-stage programming: Axiomati-
zation and type-safety. In Proceedings 25'th International CoEloquium on Automata,
Languages, and Programming (ICALP '98), Aalborg, Denmark (July 1998), LNCS
1443, Springer-Verlag, pp. 918-929.

[I061 TAHA, W., MOGGI, E., BENAISSA, Z., AND SHEARD, T . An idealized MetaML:
Simpler, and more expressive. In Proceedings of the European Symposium On Pro-
gramming (ESOP799) (1999), LNCS 1576, Springer-Verlag, pp. 193-207.

[I071 TAHA, W., AND SHEARD, T . Multi-stage programming with explicit annotations.
In Proceedings of the 1997 ACM SIGPLAN Syntposium on Partial Evaluation and
Semantics-based Program Manipulation (PEPM797), Amsterdam, The -Vetherlands
(1997), ACM Press, pp. 203-217.

[I081 WADLER, P. Monads for functional programming. In Advanced Functional Pro-
gramming: First International Spring School, Bastad, Sweden (1995), J. Jeuring and
E. Meijer, Eds., LNCS 925, Springer-Verlag, pp. 24-52.

[109] WADLER, P., AND BLOTT, S. How to make ad-hoc polymorphism less ad hoe. In
Proceedings of the Sixteenth Annual A CM Symposium on Principles of Programming
Languages (POPL789), Austin, Texas (Jan. 1989), ACM Press, pp. 60-76.

[I101 WALL, L., CHRISTIANSEN, T., AND ORWANT, J. Programming Perl, 3rd ed. OIReilly
and Associates, July 2000.

[I l l] WALLACE, M., AND RANCIMAN, C. Haskell and XML: Generic combinators or
type-based translation? In Proceedings of the 1999 ACM SIGPLAN International
Conference on Functional Programming (ICFP799), Paris, France (Sept. 1999), ACM
Press, pp. 148-159.

[112] WAND, M. Complete type inference for simple objects. In Proceedings of the Sec-
ond Annual IEEE Symposium on Logic in Computer Science, (LICS787), Ithaca,
New York (June 1987), IEEE Computer Society Press, pp. 37-44. Corrigendum in
LICS788, p. 132.

[I131 WAND, M. Type inference for record concatenation and multiple inheritance. Infor-
mation and Computation 93, 1 (July 1991), 1-15.

[I141 WELLS, J. B. Typability and type-checking in the second-order A-calculus are equiv-
alent and undecidable. In Proceedings of the Ninth Annual IEEE Symposium on Logac
in Computer Science (LICS'94), Paris, France (1994), IEEE Computer Society Press,
pp. 176-185.

[I153 WRIGHT, A. K., AND FELLEISEN, M. A syntactic approach to type soundness.
Information and Computation 115, 1 (Nov. 1994), 38-94.

[I161 XML FOR ALL INC. XFA Reference Manual, 1999. Available at
http://www.mnlforall.com/cgi-bin/xfa?doc:doc40.

Biographical Sketch

Mark Shields was born on the 13th of April, 1969 in Melbourne, Australia. He
was awarded a Bachelors of Science, majoring in Computer Science, from Monash
University in 1991, and a Bachelors of Science (Honours) in Computer Science
from The University of Melbourne in 1996. He worked as a software developer
between 1990 and 1995. He began his PhD in 1996 at the University of Tech-
nology, Sydney, transferred in 1997 to the University of Glasgow, and transferred
again in 1998 to the Oregon Graduate Institute of Science and Technology. His
research centers on exploiting type systems to increase the utility, expressiveness
and verifiability of programming languages.

	200102.shields.mark to p. 150.pdf
	200102.shields.mark to p. 261.pdf

