
FAULT SIMULATIONOF A WAFER-SCALE NEURAL NETWORK

Norman L. May
B.S., Iowa State University, 1983

A thesis submitted to the faculty
of the Oregon Graduate Center

in partial fulfillmentof the
requirements for the degree

Master of Science
In

Computer Science& Engineering

February, 1988

The thesis ''Fault Simulation of a Wafer-Scale Neural Network" by
Norman L. May has been examined and approved by the following
Examination Committee:

Dan Hammerstrom
Associate Professor
Thesis Research Advisor

Robert Babb n
Associate Professor

..

Richard Hamlet
Professor

Kit Bradley
Tektronix

11

ACKNO~EDGEMENTS

I would like to thank Dan Hammerstrom for his guidance throughout the project. I

am grateful to Tektronix for allowing the time to work on this project. Also, many

thanks to my wife, Donna, for all her patience and help.

111

TABLE OF CONTENTS

List of Figures ..
1. Introduction ...
2. Simulation Environment ..
3. Neural Network Model ...
4. Defect Fault Models ..
5. The Fault Simulator
6. Simulation Results . ..

7. Summary and Conclusions
References ...

Appendix A: Fault Simulator Command Line Description
Appendix B: Fault Simulator File Formats ...
Appendix C: Architecture Simulator to Fault Simulator Interface
Appendix D: Fault Effects
Biographical Note

IV

v

1

4

9

19

29

48

61

64

66

69

82

89

102

LIST OF FIGURES

1. Neural Network Tool Interaction

1 Connection Node Model...

J..N-graph to P-graph mapping

t P-artial Hardware Block Diagram for a CN ...

5. PN Block Diagram
I. PTP Bus communication

7. PBH Bus communication

8. Wafer radial zone and quadrat grid ...

t. Faults in a 4-bit microprocessor ...

10. Logic vs Electrical topology

n_ Fault Locations in the n-graph ...
12. Fltsim Processes

13_ PN BlockSizes

14. Exponential PBH bus length

15. PBH Bus Lengths ...

16. Hardware fault to n-graph mapping ...
17 _ PN block sizes with DAC = 75000 ..

18. PN blocksizes with DAC = 0 andPN CONTROL= 0
19. RandomDistributionof 100faults ...
It Fault SimulatorFaultDistribution
21. Hardwareblockfaults ...

%l.Fault statistics summary
Zl. Fault clusteringin the PNs ..
ji. Circuit model granularity...
Bl_ PAD File ..

B2. Technology File ...
B3. Fault Parameter File ...

84_ Fault Statistics File

15. Fault Statistics File (con'd) ...
00. Faulted BIF File

Cl. Fault routine parameters

DL Faulted Hardware to Fault Representation ..

D2. Fault Representation to Fault Action ...

v

5
10

11

12
14
15
15
24
25
26
32
36
40
41
41
45
49
50
53
53
54
55
58
59
70
73
74
76
77

80
86

100
101

ABSTRACT

Fault Simulation of a Wafer-ScaleNeural Network

Norman L. May, M.S.
Oregon Graduate Center, 1988

Supervising Professor: Dan Hammerstrom

The Oregon Graduate Center's Cognitive Architecture Project (CAP) is developing

a flexible architecture to evaluate and implement several types of neural networks.

Wafer-scale integrated silicon is the targeted technology, allowing higher density and

larger networks to be implemented more cheaply than with discrete components. The

l~rge size of networks implemented in wafer-scale technology makes it difficult to assess

the effects of manufacturing faults on network behavior. Since neural networks degrade

gracefully in the presence of faults, and since in larger networks faults tend to interact

with each other, it is difficult to determine these effects analytically. This paper

discusses a program, FltSim, that simulates wafer manufacturing faults. By building an

abstract model of the CAP architecture, the effects of these manufacturing faults can be

determined long before proceeding to implementation. In addition, the effects of archi-

tectural design trade-offs can be studied during the design process.

VI

1

1. INTRODUCTION

The Oregon Graduate Center (OGC) Cognitive Architecture Project (CAP) is

developing a flexible architecture to evaluate and implement several types of neural net-

works. Wafer-scale integration is the targeted technologyfor implementing the architec-

ture, allowing higher density and larger networks to be implemented than with discrete

components. As the size of the networks implemented increases, the effects of processing

faults on the architecture become more difficult to evaluate. Neural networks degrade

gracefully in the presence of faults, making analysis difficult. Also, especially in larger

networks, faults tend to interact with each other. To what extent processing faults will

effect the operation of the network is the question the fault simulator, Fltsim, answers.

Neural networks are fault tolerant and are scalable. Each processing node is work-

ing asynchronously on part of the problem to be solved. Messages, (current node output

states) are passed between nodes, but the actual function and memory of the network are

completely distributed[Ham86a]. This node independence allows additional nodes to be

added to the architecture with little or no overhead, thus achieving scalability. The node

independence also improves the fault tolerance of the network. If any of the nodes are

damaged, the entire function is not lost, but nodes may participate in several representa-

tioDS,only decreasing the fault tolerance if the node is damaged.

.This work was supported in part by the Semiconductor Research Corporation contract no. ~lO-O97, and jointly
by the Office or Naval Research and Air Force Office or Scientific Research, ONR contract no. NOOO14ff1 K 0259.

2

The neural network can be visualized as a large, multidimensional, directed graph

of connection nodes (CNs), called the n-graph. The physical network is comprised of a

repeated pattern of processing nodes (PNs) interconnected by bus structures. The inter-

connections between the PNs form a graph referred to as the p-graph. Typically, the n-

graph is much larger than the p-graph, so that a subset of connection nodes in the n-

graph is mapped onto a physical node (p-graph node). The number of CNs in each PN

may vary. One extreme uses one PN to implement all the CNs, one connection at a

time, which is too slow for large networks. The opposite extreme is a "direct" implemen-

tation using one CN per PN, which requires more silicon area for all the PNs and PN

connections.

The fault tolerance of the architecture is affected by the p-graph to n-graph map-

ping. Mapping a subset of CNs onto a PN reduces the amount of fault tolerance in the

network implementation. H a PN is defective due to processing faults, the entire CN

subset is defective, having more impact on the operation of the network. Although, some

fault tolerance is preserved, since the the function and memory of the physical network

are distributed over the PNs. Losing one PN will not cause the entire network function

to be lost. The mapping of the n-graph to the p-graph has a major effect on the fault

tolerance of the network and can be evaluated using Fltsim.

The main limitation in the production of cost effectivewafer-scale integrated dev-

ices is the processing faults that occur. Each wafer has defects that cause malfunctions

in their operation. Some architectures that are implemented using wafer-scale integra-

tion try to route around dead cells and have redundant nodes that can be swapped in to

replace these dead cellslLei85a,Har88a]. Swapping cells involves effort to determine

3

which cells are dead and redundant hardware and communication paths to route around

the dead cells. The cost for this extra effort and hardware redundancy made wafer-scale

integration more expensive than discrete implementations. Neural networks, however,

are inherently fault tolerant and do not require as much redundant hardware. The

amount of redundant hardware required can be evaluated using Fltsim.

Fault simulation of the CAP architecture is used to predict the operation of the

network containing manufacturing defects. These predictions can be used to improve the

fault tolerance of the networks by providing feedback before the design has been imple-

mented. Large networks can be simulated using Fltsim, due to the scalability of the

architecture (e.g., all the PNs have the same structure). More realistic faults can be

modeled in the architecture using the fault characteristics of wafer-scale integration and

by taking fault interactions into account.

A fault simulator program tool developed to evaluate the CAP architecture is

described in this thesis. The purpose of the fault simulator is to use standard models to

model the faults typically found in a wafer, not to develop new ways to model faults in a

wafer circuit. Chapters 2, 3 and 4 provide background information on the simulation

environment, the CN/PN models and the fault models, respectively. Chapter 5 discusses

the design and operation of the fault simulator, followedby the results of the simulation

in Chapter 6 and a summary in Chapter 7. For the purposes of this thesis, it is assumed

that the reader is familiar with neural network concepts.

4

2. SIMULATION ENVmONMENT

The Cognitive Architecture Project group' at the Oregon Graduate Center has

developed tools and languages used to evaluate, simulate, and implement several different

types of neural network architectures, as shown in Figure 1. These tools and languages

are general in nature, allowing several different types of neural networks to be simulated

and evaluated. A brief overview of these tools will help in understanding how the fault

simulator interfaces with them.

A major goal in the design of the CAP tools is flexibility. To achieve this goal,

much of the iilformation the tools need for modeling functions of the network is read

from data files. Obtaining the information from input files allows many architectures

and fault models to be simulated more quickly than if the models were built into the

actual code of the simulator. Also, some of the files are read by several different tools

being developed at OGC, avoiding redundant information between files and helping to

ensure information consistency between tools. Appendix B: Fault Simulator File For-

mats discusses the file formats in more detail.

A network specification begins with general descriptions and proceeds to greater

levels of detail. A user first specifies a network with NDL, an extensible Network

Description Language. NDL is then translated and expanded into a BIF file, which con-

tains network structure, state, and state transition information describing the n-graph.

In order for the simulators to use the information thus generated, a computer program,

5

High-Level
Network

Description

NDL
Physical

Architecture
Description

BIF

iPse Based Simulators

NDL-Network Description Language
BIF -Beaverton Intermediate Form

mBIF -mapped BIF
fBIF -BIF fault fields
ANNE -Another Neural Network Emulator
HAS-Hardware Architecture Simulator

Figure 1-Neural Network Tool Interaction.

6

'Mapper", maps CNs to physical computational elements, PNs, using a PAD (Physical

Architecture Description) file and places the mapping information in the mBIF

file[Bai88a]. A physical computational element corresponds to a single processor on a

multi-processor machine, a device on a chip, or any other kind of processing element that

simulates a connection node. The input to either simulator is then a BIF file augmented

with physical node mappings (mapped mBIF file).

The PAD file describes the physical implementation of the architecture. It contains

the number of PNs on the wafer and their geometry, the maximum number of CNs in a

PN, the number of data bits/signal lines for each word or communication path, and the

connectivity for the communication paths. From this description, a complete block

diagram of the circuitry (PNs and their interconnectivity) can be built.

There are two architecture simulators, each serving a different purpose. The more

general purpose simulator, ANNE (Another Neural Network Emulator), allows for the

expedient testing and debugging of a wide variety of connectionist/neural network

modelsIBah88a]. Models can therefore be "stress tested" before committing them to the

more special purpose simulator, HAS (Hardware Architecture Simulator), which simu-

lates network behavior using a chronologically correct software emulation of the targeted

wafer-scale hardwareIJag88a]. HAS provides the user with performance assessments of

hardware design choices and points out potential weaknesses. Each simulator provides

an overall structure to emulate the network. Within the CNs in the network are various

functions to calculate a CN output. These functions are provided through user routines,

which are supplied by the user and called by the architecture simulators.

7

The fault simulator uses a PAD file, a silicon technologyfile and a mapped BIF file

to generate a physical representation of the neural network on the wafer. To convert the

blocks of the block diagram described in the PAD fileinto actual physical representations

of the architecture, the sizes of the blocks must be known. The size information is read

from a technology file. It contains sizes for memory cells, buffers,and all the other basic

elements that comprise the hardware blocks. These sizes are multiplied by the number

of devices internal to the block to obtain the block size. Faults are generated and

located in the physical representation using the characteristics of wafer-scale statistical

fault models. The fault parameters required to generate the faults in the physical model

8.re ~ead from the fault parameters file. Parameters such as the average defect density,

fault, clustering coefficients and ratio of fault types are included.

The faulted BIF file, fBIF, which contains the fault fields for the mBIF file, is writ-

ten by the fault simulator. The network simulators, HAS and ANNE, read both the

mBIF file and the fault fields in the ffiIF file to modify their operation accordingly.

Differences in network operation due to faults can be evaluated to determine the impact

of the faults and hence the impact of certain design decisions.

The fBIF file contains the fault fields to be included in the user routines of the

architecture simulators HAS and ANNE. The user routine will make subroutine calls to

system fault routines at various points in the ON calculation. The fault routine calls will

access the fault fields contained in the fBIF file to .simulate the faults in the hardware.

The user routine will call the fault routine several times, passing different parameters

each time to model faults in various hardware blockswhich affectdifferent sections of the

n-graph. The appendices provide more detail on the interface between the fault simula-

8

tor and the architecture simulators, and how faults in the various hardware blocks are

modeled in the n-graph.

Fltsim can generate two other output files,fstat and test. The fstat file contains all

the fault statistics for the fault simulation and test con.tainsintermediate Fltsim values,

which gives more detail about the network size and fault calculations.

The fault statistics summarize the faults in the physical system and how these

faults affected the n-graph. They also indicate the n-graph utilization of the p-graph.

These statistics list each fault type, the section of the hardware block that it occurred in,

and where in the n-graph it was mapped. Physical faults can affect the n-graph in multi-

pIe areas depending 011the mapping of the n-graph onto the p-graph. If multiple faults

affect a single n-graph section, the worst case fault is determined and is modeled in the

network. The worst case fault is selected by either combining the faults into one fault,

or determining which of the faults has more impact on the network. The statistics file

indicates the physical defects that were combined to fault a single BIF section.

The utilization of the p-graph by the n-graph is listed with the fault statistics to

help evaluate the faults that occurred in the network. For example, a small n-graph

mapped onto a large p-graph will result in few faults in the p-graph affecting the opera-

tion of the network. When faults in the p-graph do not have much affecton the n-graph,

it may mean either that the p-graph is underutilized or the design is fault tolerant.

The test file contains intermediate values used in the fault simulator. Input file

values are echoed in the test file, such as the sizes of the PN blocks and the actual fault

locations. The test file can be used to debug the system or to give greater information

about the fault generation in the network.

9

3. NEURAL NETWORK MODEL

Neural Model

A neural network model is comprised of many processing units, referred to as CNs,

operating asynchronously. Each CN transforms its inputs into a single output value

using non-linear functions. The function that is used to calculate the node output value

depends on the type of neural network used. These CN functions are derived so that the

overall function of the network is to map a ~et of input values to a desired set of output

values using a "best match" selection. The information stored in the network that most

closely matches the input selection criteria is selected as the output of the network.

The CNs in the neural network are interconnected by direct, node-to-node links.

Although there is large connectivity, it is not total, i.e., not all nodes are connected

together [Ham86a]. Figure 2 shows the conceptual model of a connection node (CN).

Separate site functions, SBite, and a CN function, f CN, are shown in the figure. The out-

puts of each site function are used as the inputs for the CN function. A single value is

calculated in the CN function to be passed to the output site. The output site passes the

CN output to the next destination, another CN input site or the output of the network.

If the destination is another CN, the output site signal will excite or jnhibit the destina-

tion CN(s).

10

I~ SSITE
IJ>(

Figure 2 -Connection Node 1-.1odel.

Hardware Implementation

An n-graph to p-graph mapping comqines groups of CNs into Processing Nodes

(PNs) as shown in Figure 3. The CN interconnections would be inefficientto implement.

directly with current silicon technology due to their large number. Silicon provides a

small number of high bandwidth connections, but CNs require a large number of low

bandwidth connections. Therefore, a connectivity mismatch exists between silicon tech-

nology and the required architecture of the network. Interconnection buses are multi-

plexed since metal lines are too expensive to dedicate to a single CN connection[Bai86a].

By combining CNs into PNs and using a multiplexed interconnection scheme, the

efficiencyof the network is preserved.

.

IJI

SITE

INx S5ITE

CN
IJ>(

fCN

OUTPUT
CN OUTPUT

SITE

E

11

Figure 3 - N-graph to P-graph mapping.

Figure 4 shows a partial block diagram of the hardware implementation of a CN.

The CN input is received from another CN output or is an external input to the net-

work. For the assumed PN model, this value is stored in the CN memory. A

corresponding weight value is stored in another memory block. A Digital to Analog Con-

verter (DAC) is used to convert these binary numbers to an analog signal corresponding

to the multiplication of the CN value and the weight. Each analog signal is combined in

the Analog to Digital Converter (ADC) which acts as an analog arithmetic logic unit, to

convert the output back to a digital format. The ADC calculates the CN output using

12

Inx

CN MEM X

W X
OAC

LEARNING
ALGORITHM
STATE
MACHINE

Figure 4 -Partial Hardware BlockDiagram for a CN.

the equation:

where f CN is the CN function and each S is a site function. The site function uses as

arguments the link inputs and their respective weights from the other CNs. One arith-

metic unit calculates several CN function outputs in a time multiplexed fashion. For

In0 -ICN MEM 011
-'OAC. I I

W (3

In 1 I

.

JCN MEM 1 I I I I

o-'OAC. I I I I

I I
AOC

W 1 I I I I I -I

AND I CN OUTPUT
MUX

13

example, the initial networks at OGC use the site and CN functions shown below:

S8ite = E (inz X wz)
z

1
fCN = 1 + e -Slit,

Arithmetic is performed using analog techniques instead of digital in order to save

silicon space on the wafer, increase fault tolerance and increase the speed of the net-

work.l Although digital signals are preferred because digital signals are easier to multi-

plex over several interconnections and provide more reliable communication.

The Learning Algorithm State Machine, LSM, implements the weight adjustment

or learning algorithm for the CN. Most learning algorithms use the current output for

the CN, the current input, a learning rate constant, and a second order term not

in<;luded here. The arithmetic operations typically performed by the learning state

machine include multiplication and subtraction, and perhaps others, depending on the

learning algorithm. Therefore, the learning state machine contains multiplier and sub-

traction circuitry, tailored to the learning algorithm to be used and a Programmable

Logic Array, PLA, is used to implement the LSM control. The arithmetic circuitry cal-

culates a new weight to be stored in the WEIGHT memory hardware block. The LSM

operates concurrently and asynchronously with the other CN functions.

Figure 5 shows the PN block diagram. Several CNs (shown in Figure 4) are

mapped onto this block diagram. No global control signals are needed for the PNs, and

each PN operates asynchronously with respect to the rest of the PNs in the network.

1Patents Pending - OGe

14

Only the messagesthat are passed between PNs require synchronization.

Two modes of communication between PNs are implemented. One uses a grid net-

work, shown in Figure 6, which is called Point-To-Point (PTP) communication and the

second is a tree-like structure, shown in Figure 7, called the PN Broadcast Hierarchy,

I CONTROL I

I'IDCRESS
DECCDE CN II UEIGnT

MEMORY
CAt

CH
/\DC IOUTPUT
~ND
MUX

flDCRESS

PTP CONTROL

I'IDORESS CCMPME

DEMUX

PTP DATIVIIDCR BUFFERS ICNTL

PTP BUS

PTP BUS

PTP BUS

PTP BUS

PBH TR~SM ITTER BUS

PeN REtE I UER BUS

Figure 5 -PN Block Diagram.

15

(PBH).2The PTP network connects a PN with each of its four nearest neighbors. Mes-

sages include a destination PN address that is used to route the message through each

PN. The PN receives a message and determines whether it is the destination PN. If the

PN was not the final destination, the message is retransmitted to the next PN using a

predefined routing algorithm.

Figure 6 - PTP Bus communication.

PBH Transmitter Bus PBH Receiver Bus

PN4

Figure 7 -PBH Bus communication.

2 PTP and PBH havePatents Pending - OGC

16

The PBH is used to broadcast messages to several PNs simultaneously, updating

many CNs with one message. PNs are grouped into PBH broadcast regions that are

physically connected by a common PBH bus. When any of the PNs in the region sends a

message, all the PNs in the region receive it. The PBH bus is split into transmitter and

receiver link sections. To broadcast a message using the PBH network, a PN sends its

own source CN address along with the data onto the PBH transmitter bus. It is received

by a concentrator which retransmits the message to the next higher level concentrator in

the tree. Each concentrator accepts messages from two lower level concentrator, allow-

ing only one of the two to transmit at a time. At the top node, the message is then sent

to the receiver links. Messages are received by deconcentrators and are retransmitted to

two lower level deconcentrators. All the PNs in the region receive the message from the

broadcast tree. For each message address that matches an entry in the CN address

decoder, the data is stored in the CN MEMORY hardware block. PN messages use the

PBH transmitter line to traverse up to the top node in the tree, and descend the receiver

bus, communicating simultaneously to all connected PNs. Control lines are used to avoid

collisions and perform arbitration as the messages traverse up the tree.

The PBH regions may overlap, allowing PNs to belong to multiple PBH regions.

The PN will transmit and receive messagesfrom all the PBH regions it belongs to. Each

CN in the PN will determine which of the PBH regions to transmit messages to and

which regions to receive messagesfrom.

In Figure 5, the PBH ControljDemux and PTP control/address compare/demux

control their respective communication channels, both in the sending and receiving of

messages. One set of data lines is used to send both the address (ON #) and data (ON

17

output value) information in each of the PTP and PBH communication schemes. This

information may be sent in a serial mode, depending on the architecture modeled. The

width of the data bus is read in from an architecture description file. Control lines are

used to handshake the data (i.e., Data Valid and Data Accepted).

The information from other CNs is routed though the PTP or PBH section in the

PN. The address field is separated from the incoming word and sent to the address

decoder to check for a match. The address decoder uses a Content Addressable

Memory, CAM, to check for the presence of that CN number (address). If present, the

data information is loaded into the matching CN MEMORY location(s), which contain

other CN output values.

As mentioned before, the contents of the CN MEMORY and correspondingweights

are used by the computation unit to calculate each CN output. The computation is per-

formed by the DAC and ADC blocks. Each CN in the PN has its output calculated in a

cyclic manner. Each output and its CN number are then routed to either the PTP or

PBH communication channel, as predetermined by the type of CN routing, to be passed

on to other CNs.

A Learning State Machine monitors the CN outputs to calculate the new weight for

that CN. As each CN output is calculated, the LSM calculates the new weight value

using a predetermined learning algorithm. The new weight value to be used for the next

incoming CN value is stored in the WEIGHTS memory.

A PN control block is included to represent any control signals that are used

throughout the PN. The control circuitry represented is the portion of the PN circuitry

that coordinates the operation of all the hardware blocks within a PN. For example,

18

circuits controlling the timing of data transfer between all the hardware blocks in a PN

would be represented in the PN control block. Control circuitry local or affecting only

one PN hardware block should be included in that hardware block.

19

4. DEFECT FAULT MODELS

Originally, defects in integrated circuit fabrication were considered to be purely

random. As the defect densities were reduced by better process control, it was assumed

that those defects were random and could be modeled using a Poisson

distribution [Sta86aj. Later, it was discovered that the defects were not random. As

integrated circuit size increased, it was discovered that the defect distributions deviated

from the simple Poisson distribution model. Larger circuits exhibit fault clustering which

is not modeled using simple Poisson distributions and a more detailed model must be

used. A compound Poisson distribution can be used in which a wafer is sectioned into

areas with the average number of faults in each area specified by a variable. Clustering

can be modeled as independent regions with varying numbers of faults[Sta86a, Che87aj.

Within each area, the Poisson distribution can be calculated as before.

CMOS circuit technology is the process chosen to implement the neural networks

at OGC. A typical p-well CMOS process with one metal layer requires 7-8 processing

steps and masks[Wes85aj. Each of these steps can potentially add new defects to the

wafer. There are two categories of faults that can occur in processing a wafer, global

defects and local defects[Har88a,Che87aj. Global defects affect the operation of the

entire wafer and are generally catastrophic in nature. Global defects are generally pro-

cess defects and include problems such as mask misalignment and oxide thickness defects.

All, or most of the cells on the whole wafer will have the same fault defect present. The

number of wafers with global defects can be derived statistically and affects the yield

20

directly. Thus, global defects are not considered by the fault simulator.

The second category, local defects, are those that occur at single points on the

wafer. Local defects include extra or missing material defects, oxide pinholes, or via

resistance faults[McD8~a], which result in opens and shorts in the circuit. The fault

simulator will model local defects, as these affect a single PN or groups of PNs which

may not critically affect the output of the network. The network will operate despite

faults due to the inherent fault tolerance of the neural network, but the performance will

be degraded. Fault simulation will provide an analysis tool to determine the degree of

performance degradation in large physical implementations of neural networks.

Fault Distribution

Local' processing defects in a wafer can be characterized by statistical studies of

defects on other wafers, which indicates that the fault density increases towards the edge

of a wafer and that faults tend to cluster in groups[Sta86a]. These characteristics are

used in the fault description model to determine what the effects of actual processing

faults would be on a particular network. Defects tend to cluster within wafers and

among wafers in a batch. Clustering can be attributed to the batch oriented process,

where the processing conditions vary from lot to lot[WaI86a], or from concentrations of

impurities in the air or in the process.

To get some idea of the fault spatial distribution, F. M. Armstrong and K. Saji

examined 12 blank wafers from a manufacturing line to determine the location of all

defects, which lead to circuit faults[Sta86aJ. Each wafer was sectioned off into smaller

areas referred to as quadrats, and the number of defects in each quadrat was counted.

21

Various quantities of quadrats were used for each wafer, consisting of a 12x12, 8x8, 6x6,

4x4 and a 2x2. The distributions of the numbers of defects per quadrat were tabulated.

The mean, variance and mean-Urvariance were compared for each quadrat size. The

larger quadrats, (quadrats with the fewest grids, such as the 2x2), had the greatest devia-

tion from Poisson statistics. This deviation indicates faults were clustered within the

quadrats[Sta86aj. The goodness of fit between the statistical model and the data was

determined using the chi-square test. The tabulated defect statistics were analyzed to

determine which of four different compound distributions provided the best fit for these

data. Of the twelve wafers tested, four wafers were best modeled by a mixed Poisson-

binomial distribution, four others by a Neymann Type A distribution, three others by a

negative binomial distribution, and one wafer fit all of these distributions equally well.

None of the compound distributions matched the data significantly better than the other

distributions. But, for all the wafers, each of these distributions gave a much better fit

than Poisson's distribution[Sta86a].

Several yield models based on mixed Poisson statistics are derived from observed

statistical data and not directly from the wafer fabrication process[Har88aj. Since fault

distributions vary between and within process lines and product lines, fault models tend

to vary, causing some dispute on their validity. The end result of the model though is to

simplify the physical process of fabricating a circuit, and as long as the model fits the

actual data within the given tolerances, the model is valid. Since all the distributions

modeled the fault clustering similarly and all of them did better than the Poisson distri-

bution, any of the fault models can be used to model the fault distribution. For the

analysis in this thesis, a Poisson-negative binomial was used to model the fault clustering.

22

The probability of finding x defects in a wafer quadrat is:

~~
Pr(x) = x!f(a} (l+A/a)x+Q

where A is the expected (average) number of defects in an area and a is the clustering

coefficient between areas on the wafers. Lower values of a correspond to greater cluster-

ing. The variance for the number of faults found in an area is:

var(x) = A(l+A/a)

These equations were found to fit Stapper's test data and were verified using the chi-

square test. Stapper concluded that these tests were conservative, and that actual wafers

would exhibit even more fault clustering traits[Sta86aJ.

A second trait of the spatial distribution of faults is related to the distance from the

center of the wafer. Defects in a wafer are more common around the edge of the wafer

and exhibit a radial distribution of the form:

where h(r) is the probability of a defect occurring at a given distance r away from the

center of the wafer, and Cl and C2 are constants[WaI86aJ. There are many factors that

contribute to this effect: the edge being more exposed to air, tilting of the silicon wafers

while processing, the lithography defocusing towards the edge of the wafer, or the han-

dling of wafers by the edges.

For this thesis, both fault clustering and the radial distribution of faults are

modeled. The fault simulator combines Stapper's fault clustering model with the radial

23

fault distribution model, which is the same concept used by Harden and Strader[Har88a].

Fault clustering is modeled in the neural network wafer by dividing it into a 12x12

grid with varying defect densities in each area. The number of faults in each area will be

determined by a two zone radial distribution where tpe density of faults will be greater

towards the edge of the wafer. The inside zone will have a lower defect density than the

outside zone. The average total number of defects (ATD) to model in the network is

equal to the defect density (defects per square inch) multiplied by the area required for

the network. Each quadrat starts with a common base defect density equal to ATD/144,

or the total number of defects divided by the number of grid areas, or quadrats. The

common defect density for each quadrat will produce the fault clustering effect using the

Pr(x) equation to calculate the number of faults per quadrat area. This defect density is

multiplied by a radial distribution modifier that is greater than one for the outside zones

and less that 1 for the inside zones, resulting in a higher average number of defects for

the outside zones, and lower average number of defects per quadrat for the inner areas.

The constraint is that the sum of the probabilities for each quadrat (defect density) must

equal unity to preserve the total average number of defects per wafer.

The radial distribution zones and quadrat grid are shown in Figure 8. The circular

shape of the wa1'er is approximated in the simulation by a square area as shown by the

outside box. Likewise, the radial zones are approximated with squares as shown by the

inner box. Dashed lines represent the 144 quadrat boundaries. Once the number of

defects have been determined for the quadrat area, the defects are placed randomly

inside this area.

24

. Figure 8 - Wafer radial zone and quadrat grid.

Physical Faults

The basic local defects in a wafer modify the operation of the circuit. Most of the

defects manifest themselves as either opens in the signal path or shorts between signals

or between signals and fixed sources. For example, extra polysilicon or metal can short

two lines on the same layer, extra polysilicon can cause an open by forming a new

transistor if over an active wire, extra material can cover a via or missing material can

cause opens in signal lines. Walker discusses these defects in depth and their implications

on circuit behavior. [WaI86a]. Another study examined 43 failed circuits in a 4-bit

microprocessor chip. The results of the observed failure modes are shown in Figure

9[GaI80a). The physical fault types are modeled using the logic fault models, which

modify the logicaloperation of the network.

I I I I I I I I I I I
I I I I I I I I I I I
I I I I I I I I I I I---+ ---+-- -+---+ --- +---+--- +---+- --+ ---+---+---
I I I I I I I I I I I
I I I I I I I I I I I
I I I I I I I I I---+--- ---+---
I I I I I I I I I
I I I I I I I I I
I I I I I I I I I---+------+---+---+---+---+---+---+--- ---+---
I I I I I , I I I
I I I I I I I I I
I I I I I I I I I---+-----.+---+---+---+---+---+---+------+---
I I I I I I I , I
I I I I I I I I I
I I I I I I I , I---+------+---+---+---+---+---+---+--- ---+---
I I I I I I I I I
I I I I I I I , I
I I I I I I I I ,---+--- -- -+---+---+--- +-- -+--- +--- +--- ---+---
I I I I I I I I I
I I I I I I I I I
I I I I I I I I I---+--- ---+---+---+---+---+---+---+------+---
I I I I I I I I I
I I I I I I , I I
I I I I I I I I I---+--- ---+---+---+---+---+---+---+------+---
I I I I I I I I I
I I I I I I I I I
I I I I I I I I I---+------+---+---+---+---+---+---+--- ---+---
I I I I I I I I I
I I I I I I I I I
I , I I I I I I I---+--- ---+---
I I I I I I I I I I I
I I I I I I I I I I I
I I I I I I I I I I I---+--- +---+-- -+---+---+---+---+---+---+---+---
I I I I I I I I I I I
I I I I I I I I I I I
I I I I I I I I I I I

25

Figure 9 -Faults in a 4-bit microprocessor.

Logic Fault Models

One approximate model for physical defects is where signal paths are shorted or

opened. This model is adequate when the actual physical layout of the wafer is known,

so that it can be determined which signal paths are likely to be shorted together. The

fault simulator works from a higher level description of the network, and the actual lay-

out has not been developed yet. Therefore, the short/open model physical defect types

a.re not used in the fault simulator. Instead a stuck-at model augmented with .special

fault models is used.

Stuck-At Model

As the level of integration increases, the stuck-at model becomes progressively less

accurate (GalSOaJ. There are two reasons for the inaccuracies. First, not all faults can be

modeled using the stuck-at fault model. Some faults will actually change the function of

the gates, and not always force it to a high or low state, and some faults create state-

dependent behavior. For example, in Figure 10, if the transistor with input e is shorted

so it is always on, whenever / is low, the path to GND is completed, forcing the output

low. If e was low, the output is correct, otherwise the operation of the circuit is defec-

tive.

Short between metalizations 39%
Open metalization 14%
Short between diffusions 14%
Open between diffusions 6%
Short between metalization & substrate 2%
Unobservable 10%
Insi ificant 15%

26

Second, a topology for the transistor circuit has to be assumed for the logic gate

topology. Figure 10 shows a logic function and the transistor circuit to implement it.

Faults are generally modeled using the logic schematic, but this does not always

correspond to the transistor circuit which, in turn, does not always correspond to the lay-

out. The X's shown in the logic schematic and transistor schematic indicate points that

cannot be modeled in the corresponding schematic.

CMOS uses a complementary set of transistors for connecting the output to either

to VDD or VCC. A fault in the path connecting the output to VDD will cause the out-

put node never to be discharged via that path. Yet, a parallel path connecting the out-

put to VDD will discharge the node, with seemingly correct operation. The fault is only

detected when the faulty path is supposed to be activated, and the output is still high.

The stuck-at model does not model this type of "intermittent" defective operation. By

using the stuck-at model for "intermittent" nodes like this in the fault simulation, the

lJCC

LOAD

A
B

OUTPUT

?
C
D ?

E
F

F

UDD

Figure 10 -Logic vs Electrical topology.

27

worst case operation for the node can be modeled. The model implies that the node is

always stuck high or low, but it is actually stuck only for a subset of input combinations.

A tradeoff exists between the accuracy of the simulation and the amount of infor-

mation about the physical architecture to be supplied. To improve sjmulation accuracy,

more information is required. But, the purpose of the fault simulator is to model an

architecture before the design is complete to ensure fault tolerance, therefore, many sim-

plifying conservative assumptions were made.

The fault simulator will produce a first cut yield estimate for the wafers. Fault

modeling is best done using a high level fault mechanism versus a more detailed model

that is more accurate, but requires a mor-e detailed architectural description and design.

The accuracy of the model will be limited due to this abstracted architectural descrip-

tien.

The stuck-at model forces a signal to an always high (S-A-l) or always low (S-A-O)

state, allowing single bits in data words to be faulted. A single physical defect will map

to a hardware block in the wafer, where a stuck-at fault will be assigned. Usually a sin-

gle physical defect will map to a single bit in a data and/or address field. But poten-

tially, a single physical defect can cause multiple stuck bits. For example, multiple stuck

bits occur when a data word is transmitted in portions using a multiplexed data bus with

a defective signal line or a large defect can bridge several devices or wires. Each data

word portion will have the same faulty bit position.

Physical defects can prevent data transfers between hardware blocks; these are usu-

ally defects in handshake or control signals. Faults can inhibit the transfer of the weight

data from the learning state machine to the weight memory or data from one PN to

28

another PN site input. One method of modeling the inhibited data transfer is to fault all

the bits in the data word. All the data lines would be stuck-at 0 or 1. The destination

hardware block of the transfer would be updated with a new value that is either all high

or all low. In reality, the inhibited data transfer will cause the destination node to keep

its old value, ignoring the new value. The fault simulator uses a "NO CHANGE" flag

which allows data transfers to be inhibited, forcing the destination to keep its old value.

29

5. THE FAULT SIMULATOR

Several of the goals for the fault simulator development were:

. Flexibility

. High level architecture description input

. Modular routines

. Efficient memory storage (for large networks)

. Efficient execution time (for large networks)

. Worst case fault model

The fault simulator provides a basic framework for modeling faults in a neural net-

work wafer described by a high level architecture description. This architecture will gain

more detail as the design progresses. The fault simulator can adapt to the changes

without a major redesign of the concepts used in the simulator. As the architecture

becomes more detailed, the model and fault simulation should become more accurate.

This flexibility is accomplished by using a modular structure for the simulator routines.

For example, a single routine calculates the size of the PN. As this calculation becomes

more accurate, this routine can be modified to the new, more accurate model. The fault

generation routine is another example of a modular routine. The original fault genera-

tion package placed faults using a completely random distribution. The second fault gen-

eration package, which incorporated fault clustering and radial distribution, required that

only one routine be replaced.

30

The fault simulator will be used to analyze ultra-large-scale integrated silicon

neural networks. Networks to be simulated at aGe will have 128 PNs, 4K CNs (16

CNs per PN), and 2 million connections. The BIF file to describe this network would

require over 26 megabytes of data. Therefore, utilizing the memory required to run the

fault simulation efficiently is a constraint. Usually as memory is conserved, the execution

time is increased, which is another constraint. A proper balance of the required memory

space and program execution time was needed. Minimizing the memory requirements is

the more important constraint to allow simulation of larger networks.

Fltsim reduces the amount of memory and execution time by using a high level

architecture description to model the hardware. For example, since the network is

comprised of an array of similar PNs, only one set of hardware block sizes internal to the

PN is calculated. Only the outside boundaries for the PNs are replicated for the entire

wafer, and not all the internals for the wafers. Also, to reduce the amount of memory

used, the entire mBIF file is not stored in memory, but only the connectivity of the n-

graph is stored.

A fault field in the fBlF file consists of two numbers, a fault index and a fault

modifier. The fault index indicates the type of fault (S-A-l, S-A-O or NO CHANGE),

and the type of target value to be faulted. The types of target values that can be faulted

are a data word, a message address or both the address and data portions. The fault

modifier indicates the specific bits to be modified in the targeted value. As an example,

the index may indicate a S-A-Ofault in a data word. The modifier will contain a's for

the faulty bits that are stuck-at-Oand the rest are 1's. The target value is AND'ed with

the modifierto give a new target value. The faulted bits are alwayslow. The S-A.}

-- - --.

31

fa.ult is modeled in the same way, except l's are OR'ed with the target value. Another

type of fault is the ''NO CHANGE" fault, which forces the target value not to be

updated with new values. NO CHANGE faults are implemented one of two ways. For

output links, the message's address field is set to an invalid node in the network, causing

the message to be lost. For input values, the new value is set to its previous value. For

example, if a handshake line is faulty, message transfers between PNs will not occur, so

that the target value is not updated. The update is inhibited by sending the message to

an invalid node in the network. As such, the target value in the destination CN does not

get updated and will keep its old value. NO CHANGE faults do not use the fault

modifier field.

Faults in the hardware of the network can be modeled as faults in the n-graph

model of the network. Since BIF describes this n-graph model, faults will be mapped to

the n-graph and then to the BIF file..

In the n-graph, faults can manifest themselves in the CN output, the links between

nodes, the weight fields, or the output of the site to the CN. Figure 11 shows the

diagram of the n-graph with X's indicating where faults are to be modeled. To model n-

graph faults, four fault fields are required in the BIF file, one for each area mentioned,

the CN, Site, Link and Weight. These fields allow multiple faults to occur in different

areas of a CN, but only one fault field per area is allowed, to reduce the complexity of

the system. Faults that modify a common n-graph area are combined using a set of

worst case fault rules. These rules combine, if possible, two faults to effect all faulty bits

from both fault modifiers, otherwise they choose a fault that has more impact on the

operation of the network. Faults will be combined if the fault fields of the indexesare

32

IN

Figure 11 -Fault Locations in the n-graph.

equal, i.e., if both faults modify the same address and/or data portions of the target

values. The rules for determining the worst fault are listed in order of precedence below:

1. ''NO CHANGE" faults

2. Address fault over Data faults

3. Address and Data faults over Data faults

4. S-A-Oover S-A-l faults and combine faulty bits

5. Combine faulty bits

"NO CHANGE" faults are assumed to be the worst type of fault, since they are the

result of a control or handshake fault, which affects all the bits in the word. Faults

modifying only the message address bus have more impact than faults that modify the

data words. Faults modifyingboth the address and data are worse than faults that just

modify the data. If the faults modify the same address and data values, the fault

)

I.J)0:
/...... SITE

,

SSITE

'V
INx
I.Jx

CN

fCN

OUTPUT CN OUTPUT

SITE
' ,
A

, /
7">:

IN)
I.J)

SITE

INx S
I.Jx

SITE

33

modifiers are combined. If several faults are all S-A-l (S-A-O)faults, the modifiers are

combined, faulting all the stuck bits. ITseveral faults have a combination of S-A-l and

S-A-O faults, S-A-O is assumed and the faulty bits are combined so that they will all be

stuck at O. The main idea is to provide a single worst case fault with only one field. So,

although the type of fault is changed, the impact on the network will be the worst case.

Assumptions

Some hardware and fault modeling assumptions had to be made when developing

the fault simulator. These assumptions were needed to simplify the design of the fault

simulator and also because the hardware architecture is not yet completely defined. As

the hardware becomes better defined, it can be modeled more accurately. Assumptions

relating to how the physical hardware faults are modeled and how they affect the opera-

tion of the network will be reassessedlater.

The assumptions can be divided into two categories. The first category of assump-

tions simplified the hardware model and the second category simplifies the modeling or

representation of the faults in the network. Each impacts the modeling of the network

and is now described in more detail.

The connectivity for the PTP connections was assumed by the PN network loca-

tions in the network as specified in the PAD file. Although the PTP connectivity is

explicitly stated in the PAD file for the PTP connections, a simplificationwas to use the

PN x,y location in the network and assume physicallyadjacent PNs in the wafer are con-

nected by a PTP bus. Minimal area is used when connecting adjacent PNs and thus will

be the most common configuration. The networks currently planned to be modeled at

-- - -- ---

34

OGC will connect adjacent PNs.

The message routing algorithm for the PTP communication is assumed. A message

sent from one PN to another will travel in the x direction first until the correct column is

reached, then in the y direction until the destination PN is reached.

The PAD file specifiesthe number of LSMs in each PN. If one of the LSMs has a

defect, all the weights updated by the defective LSM will be faulted. The assumption

that each LSM has an equal number of weights is assumed. So one defective LSM will

cause 1/(# LSMs)of the weights to be faulted.

The structure of both the PBH Transmitter bus and the Receiver bus was assumed

to be a binary tree. Concentrators have two input links from lower bus levels and one

output link to a higher level. Transmitters have one input link from a higher bus level

and two output links to lower levels in the bus.

PBH regions must have a common structure. That is, each region must contain the

same number of PNs and each level the same number of data and control signals, which

reflects the assumed symmetry in the n-graphs to be emulated.

The assignment of the CNs, Sites, Links and Weights to specificlocations within a

PN was assumed to be in the order listed in the BIF file. The BIF fileuses a hierarchical

notation to list the n-graph sections; a CN section is first, then all the Sites for the CN,

followed by all the Links for each Site. Thus, all the information is grouped in order in

the BIF file, and will therefore be adjacent in the PN hardware.

The second category of assumptions concerned fault modeling. The defects

modeled on the wafer are point faults with zero diameter. Actual faults have a non-zero

variable diameter size. If a defect is located on a signal line, the defect diameter and the

35

line width will determine if the line is completely severed or just partially nicked. If the

defect is between two metal runs, the defect diameter and the line spacing will determine

if the two lines are shorted together. The defect size, line width and line spacing are not

modeled explicitly in the fault simulator.

Faults are modeled as single bit faults, such as defects in a single data bit in a

memory, a single DAO or ADO output or a single data buffer. These single bit faults

may affect several bits depending on how the hardware is used, but only one bit is defec-

tive in the hardware block per physical defect. For example, the RAM structures may

have defects in the row or column address decoding, disabling a whole set of bits for the

entire PN. These defects affect the control structure of the individual hardware blocks.

A future enhancement would be to add probabilities of faults in the control structures for

individual hardware blocks that would affect sets of bits. For the LSM, a probability has

been defined by catastrophic faults in the LSM; This concept could be expanded for

other hardware blocks.

Each hardware block contains the circuitry to perform the indicated function. The

area inside a block does not include any free area. Defects that occur inside a hardware

block will affect the function of the block. No allowance for free areas between the lines

and devices is made. This free area can be compensated for by decreasing the defect

density.

The ffiIF file conveys the fault actions to be performed in the architecture simula-

tors. Only one fault field was allowed per n-graph section. Either multiple faults that

affect a common n-graph section are combined, or the worst case fault is used. The rules

for choosingthe worst casefault are assumed to produce a fairly accurate model of the

36

real system.

Basic Fault Simulator Processes

Figure 12 shows the basic execution flow of the fault simulator. Fltsim starts by

Ie
File

meters

Ie

r ~
I Output fBIF I

: (optional) :L ~

faulted BIF..

Output Fault
Statistics

fault statistics

Figure 12-Fltsim Processes.

,.,.----....
start

-"

Build - PADFi

Physical Model
Technology

I

Generate Faults fault ParaJ

I

Map Faults to
Physical Model

,
MapPhysicalFaults mBIFFi
to n-graph(mBIF)

-

1

- -- -- -- .-.--

37

building a physical model of the circuitry. Size information read from a technology file

and a physical architecture description, PAD, file are used to construct the model. The

fault model parameters are obtained from a fault parameter file that describes the

characteristics of the faults. Stuck-at-l and Stuck-at-O faults are generated and placed

on the wafer using an x,y coordinate system. These defects are then mapped into the

physical hardware blocks in the network. The impact on the operation of the p-graph

network is assessed to determine how the n-graph is affected by the faults. Faults in the

p-graph are mapped to the n-graph. Knowing the effects of the faults in the n-graph, the

ffiIF file can be created including a fault index and fault modifier to modify the n-graph

operation. These fault fields will indicate to the architecture simulators, HAS and

ANNE, how to model the faulted network. Fault statistics are generated to provide the

needed feedback to evaluate the new operatIon of the network simulation by HAS or

ANNE. The following sections will describe each Fltsim execution phase in more detail.

Physical Model

The fault simulator builds a block representation of the circuitry to be modeled.

Each PN's internal circuitry is identical, each PTP bus is identical, and each PBH bus

communication region is assumed to be identical. Therefore, to drastically reduce the

number of calculations and stored information, only one PN hardware block representa-

tion and one PTP and PBH bus representation are calculated. The technology and PAD

filescontain the required information to build these representations.

The PN is modeled as a rectangular area containing the hardware blocks. An

aspect ratio determines the x and y dimensions for the PN. Given the PN x,y dimen-

sions, each PN in the network is assigned a physical location on the wafer. The PNs are

38

separated on each side by a bus communication area, which is calculated from the bus

line width and the number of bus lines. Note that the locations of the hardware blocks

within a PN are not assigned. The locations of the PNs, PN hardware blocks and bus

areas are discussed further in the placement of the faults in the hardware.

The technology file contains information describing the sizes of the basic elements

used in the blocks. The sizes are dependent on the technology used to fabricate the dev-

ice. It contains fields that describe line widths, sizes of memory cells, DAC cells, ADC

cells and buffers. Basic element sizes are multiplied by the hardware block dimensions

given in the PAD file. Not only will the basic element size indicate the space required

for its basic function, but it will also contain an added amount for the' control of the

function. For example, a memory cell can be implemented using a fixed amount of area.

Also included in the memory cell area is an amount for the row and column buffers and

address decoding that will be part of that hardware block. Some basic elements can be

thought of as a bit slice processor, where sections of components are added to expand its

capabilities. The LSM is an example. As each LSM is added, a new separate structure is

added to the existing circuit, expanding the LSM's capabilities. Expanding the LSM's

capabilities allows additional learning algorithms to be used.

The PAD file describes the p-graph for the network, contains information used to

organize the basic elements into the hardware block sizes, and indicates the interconnec-

tivity of the network. The PAD filedescribes the PNs and CNs in the network, the lay-

out of the PNs in the network, the PTP communication structure and the PBH com-

munication structure. Information regarding the dimensionsof the blocks in a PN, such

as the number of bits in the weight field and the maximum number of CNs in a PN is

39

included in the PAD file. Figure 13 shows the dimensionsof the blocks in a PN. The

actual values are given in the PAD file.

The amount of silicon area covered by the PTP and PBH bus structures between

the PNs is calculated. The PTP uses a simple grid network where the bus area betweel}

two PNs is the product of the number of bus lines, the line width, and the distance

between the PNs. The total bus area between PNs is multiplied by the number of PTP

buses between PNs.

The PBH bus size calculation is more involved, since it uses a tree structure com-

munication path to broadcast messages to several PNs simultaneously. To model faults

in the PBH ttansmitter bus, the bus area for each level of both the PBH transmitter bus

and the receiver bus must be calculated, as faults in various levels affect the network

differently. Bus signa] l;ngths increase towards the top concentrator and deconcentrator

nodes in the PBH network. Every second level, while ascending the PBH transmitter

bus, the bus increases in length exponentially. If we assume the x and y dimensions are

the same for the PN and level 0 has length 1, then level 1 will have length 1, level 2

length 2, level 3 length 2, and level 4 length 4. If the PN dimensions are pIl-X and pn_y,

and pn sep is the distance between the PNs, Figure 14 shows a table of the bus lengths

for increasing levels. The relative bus lengths are shown in Figure 15. Dark lines

represent the PBH buses and the squares are the PNs array in the network. Bus faults

are more likely to occur in the upper levels of the PBH network due to the longer bus

lines and bigger buffers required to drive the longer lines. Worse yet, these upper level

faults corrupt a higher percentage of the PN messages in that PBH region.

40

CAM

ADDRESS
DECODE

11 OF CN
INPUTS
FOR A PN

11 OF CN
INPUTS

NUM_CN_ENTRYCIJFOR A PN
CONTROL

CAM CONTENT ADDRESSABLE MEMORY SIZE

CN
MEMORY

WEIGHTS DAC

11 OF CN
INPUTS
FOR A PN

11 CF CN
INPUTS
FOi< f) PN

11 OF CN

I

ADC
INPUTS AND I NUM_CNS
FOR A PN MUX

MS = MEMORY SIZE

Figure 13- PN BlockSizes.

LEARNING

I

STATE I NUM_LSM
PTP CONTROL MACHINE

ADDRESS COMPARE
PTP_OEMUX_SIZE LSM_SIZE

DEMUX

IPTP DATA/ADDR BUFFERS
BUFFER_SIZE

IPTP DATA/AODR BUFFERS
BUFFER_SIZE

I
PBH CONTROL

I PBH_DEMUX_S IZE

IPTP DATA/AODR BUFFERS
BUFFER_SIZE

I DEMUX

IPTP DATA/AODR BUFFERS
BUFFER_SIZE

IPBH DATA/AODR BUFFERS I CNTL I

BUFFER_SIZE

PTP_DATA PTP_CNTL PBH_DATA[0 J[0 J PBH_CNTLC a J[a J

41

Level Lenl!:th

o pn-sep
1 pD-Sep
2 2*(pD-X+ pIl-5ep)
3 2*(pI1-y+ pIl-5ep)
4 4*(pD-X+ pIl-5ep)
5 4*(PI1-Y+ pIl-5ep)
6 8*(DD-X+ Dn-se

Figure 14- Exponential PBH bus length.

Figure 15 - PBH Bus Lengths.

Fault Generation

The fault generator produces a list of defects using the fault models discussed ear-

lier. The fault parameters used to calculate the fault locations and types are read from a

fault parameter file. Parameters can be varied quickly, without recompiling Fltsim, to

determine how the fault parameters affect the performance of the network. Of primary

interest is how the fault density and fault clustering affect the operation of the networks.

The fault parameter file will specify the fault density for a network. The fault density is

multiplied by the size of the network to determine the average number of defects to

place in the network. The number of defects in the network is divided by the number of

quadrats to determine the base average number of quadrat faults. The base number is

adjusted for inner and outer zones to model the radial distribution.

42

An array of normalized fault location coordinates is generated, i.e., each coordinate

ranges from 0 to 1. The normalized coordinate is multiplied by the network overall

dimensions to get the actual physical x,y fault coordinates. With each fault the fault

generator associates the fault type, S-A-l or S-A-O. The ratio of the fault types is

specified in the fault parameters file.

Mapping Faults to Physical Model

The physical coordinates for each fault are used to determine which hardware sec-

tion contains the fault. The fault can occur in a PN or the bus area between the PNs. If

the fault is in a PN, the hardware block that the fault is in is determined statistically as

a random number with uniform distribution. The probability that the"fault is in a block

is given by:

blockarea
Pr(block) = PNtotal area

Thus, on the large scale, faults use the wafer-scale fault model characteristics, but within

the PNs, the faults are placed according to the block sizes. Once the fault is isolated to a

hardware block, the fault is mapped to specific CNs within the PN which determines

how the CNs are affected.

If the fault is located between PNs, it is modeled in the PTP or PBH bus structure

or the unused area. Faults in the unused area do not have any impact on the network.

The bus structure that faulted is determined, along with a faulty bus segment within the

bus structure. The faulty bus segment determines which PN messages to corrupt. Bus

segments include the PTP bus between two adjacent PNs, the PBH bus between a PN

43

and the concentrator/deconcentrator nodes or the bus between

concentrator/deconcentrator nodes. A uniformly distributed random number is gen-

erated to determine in which bus and bus portion to place the fault. The probability of a

fault in a bus is given by:

area of the bus segment
Pr(bus segment) = total area between PNs '

where neither the PTP or PBH bus may be affectedif the fault occurs in an area with no

bus lines. For a PTP fault, the faulty segment indicates on which side of the PN the

fault occurred. Four PTP buses are associated with each PN, one on each side. For the

PBH transmitter and receiver buses, the level in the PBH tree is indicated along with the

closest PN to the fault. The closest PN to the fault indicates which PBH region that

contains the fault. If the PN is in overlapping PBH regions, one of the PBH regions is

chosen, with equal likelihood,to contain the fault. The faulty PBH level and closest PN

indicate which part of the PBH subtree is affected. The bus area required for each PBH

level for each transmitter and receiver bus determines the probability of a fault occurring

in that bus portion.

The buses that connect the PNs together are the most critical area to model in this

architecture. While faults in a PN will generallycause a single ON or PN to fail, a fault

in the bus area will cause several PNs to receive faulted data information. This is espe-

dally true for PBH structures where a message is sent to several PNs simultaneously.

The bus signal area itself is not the critical factor for faults, as buses can be expanded to

reduce bridging and open bus faults. What is more likely to fail are active

devices[Lei85a]. Bus wires only require a few masking steps, versus active devices which

44

reqUire many more. For the MIT Lincoln Laboratories project[Raf85aj, yields were

predicted at 30 to 50 percent for cells and 95 percent for wires. Each PBH concentrator

node and deconcentrator node contain buffers to drive the bus line to the next node.

Also, in the concentrator nodes some form of contention avoidance circuitry is used to

avoid bus collisions,which adds more circuitry and area. Larger bus buffers towards the

top nodes in the tree will be required to drive the longer bus lines. These

concentrator/deconcentrator nodes are more susceptible to faults than just simple bus

lines. A PBH region connects several nonadjacent PNs. Bus line lengths increase by

O(2n) for every second level. It does not take many levels to make this bus circuitry

large and susceptible to faults.

Mapping faults to the n-graph

A mBW description is read which describes the n-graph. Subsections in the mBIF

file describe each CN, each CN site, and all site links and weights. As each subsection of

the mBIF file is read, the list of physical faults is checked for the faults pertaining that

mBIF subsection. If multiple faults are found to affect a common subsection, the faults

are combined into one set of fault fields to model the worst case operation of the net-

work. Each mBW subsection is read, checked for faults, and the fault fields written

before proceeding to the next subsection to reduce the memory requirements of large net-

works. Figure 16 shows a partial mapping of hardware block faults to n-graph areas

affected. For example, each link input value is stored in the CN MEMORY hardware

block. If a CN MEMORY word is faulty, the corresponding link input to the CN will

have a S-A fault modeled in the input message. More detail on how the faults are

mapped is provided in Appendix D.

45

JM
II, ()]

SITE

SinE I ~
\ CN

\. foo,
CN . I " I CN OUT;:vr

" ,, .
'\

..., " I
I "" I
. SITE "\ I, " /

S ,)(
\ 1m " ~"
\ - - - ,) "

,.,- \ \
LEARNING

I
~ \

STATE ~
MACHINE ~ I " \

j(.

~
'" '~

~
'" '

1 ~

,'

D
\

ADDRESS ItS X '" '* X \
DECODE CN WEI GHTSDAC ,

PN I MEMORY ,
ADC CN OUT?I.JT~'
AND -"

MUX

Figure 16 -Hardware fault to n-graph mapping.

The mBIF file describes the connections between CNs in the link subsection. This

connection can be via the PTP or PBH communication networks, as indicated in the link

subsection. The entire communication path that implements this connection must be

checked for faults. If PTP communicationis used, the PNs send a message that is poten-

tially routed through several PNs in a grid network. If PBH is used, messagesare routed

through intermediate nodes. If a fault has occurred in any part of the communication

path, the message will be corrupted or even lost. Corrupted or lost messagescorrespond

46

to the actual physical results of a defect. Therefore, the entire message path is checked

for faults for each mBIF link connection.

Another consideration for modeling faults in the PBH network is whether to modify

the source PN sendi~g the message or the destination PN receiving the message. If a

defect occurs in the PBH transmitter tree link, all PNs sending messagesin that subtree

will have their messages corrupted. PNs not using this faulty link can send messages

that do not get corrupted. To model these corrupted messages, the output links for the

PNs in the faulty subtree will be faulted. Defects that occur in a PBH receiver bus link

for a given level will affect all messagessent to the PNs using that link. All PBH mes-

sages to PNs in a faulty subtree portion will be corrupted, while the PNs not in that sub-

tree will receive the message uncorrupted. Therefore, receiver bus faults are modeled on

the input links to the CNs.

Both the PTP and PBR messages are sent over multiplexed buses. The message is

divided into subwords that are transferred over the bus. A defective data bus line will

cause each subword sent over the bus to have the same fault, faulting bits in both the

address and data fields of the message. Thus, one faulty signal line will cause a faulty bit

in each subword. ITthe data and address are multiplexed ~sing only one signal line and

it is faulted, all the address and data bits in the messagewill be corrupted.

Output Fault Data

Two fault files are produced by Fltsim, fBIF and Istat. The fBIF filecontains a sec-

tion of C program code that is included by the architecture simulators to initialize an

array of fault indexes and modifiers. Three other arrays are also included in the fBIF file

"0 _ __.

47

and are used to access the fault array by the architecture simulators. The modified

operation of the network is evaluated using the architecture simulators. At various

points in the network simulation, fault routines are called that modify intermediate

values in each CN. For example, the output of a site function may be faulty. A site

function routine calculates the site function output and passes it to a fault routine, which

accesses the fBIF fault fields to potentially corrupt the site output. The fault routines

modify the CN values using one of the logic fault models presented here, S-A-O,S-A-l or

"NO CHANGE".

The fstat file is the fault statistics file, which lists the defects and how the n-graph

was modified along with a summary of the faults. The fstat summary includes the per-

centage of faulted CNs, links, sites, and weights in the network. More detail on the con-

tents of the fstat file is in Appendix B, Fault Simulator File Formats. Understanding and

predicting the network's performance can be done using the fault statistics.

A third file, test, can be generated which provides more detailed information on

intermediate calculations used in the fault simulation. Sizes of the various hardware

blocks and bus structures and actual fault locations are examples of the information con-

tained in this file.

- -.------.-

48

6. SIMULATION RESULTS

The fault simulator executes several basic processes to model faults in the neural.

network. (These processes were introduced in Chapter 5.) The results of each inter-

mediate process are presented in this chapter.

The network discussed in this chapter is a feed forward 128 x 128 neural network.

Three layers of CNs are present in the network, each with 128 nodes, for a total of 384

CNs. Feed forward implies all messages from a layer are sent to a higher layer. Each

CN has one input site and one output site which receives/sends messages, for a total of

384 input sites and 384 output sites. Since no faults are modeled in the output sites, they

are not included in the fault statistics.

Each CN in the first layer has one input link that receives the input to the network.

Also, each CN in the first layer has an output link with each CN in the second layer,

which accounts for 1282 or 16,384 links. Likewise, each CN in the second layer has an

output link to each CN in the third layer. Each CN in the third layer has one output

link, which is the output for the network. A total of 32,896links are present in the net-

work. Since faults are modeled separately on the input and output links, they are

counted separately Cor the Cault statistics, and are referred to as IN LINKS and OUT

LINKS. For this experiment, the simulated network used only PTP communication to

implement the links. The PBH communication was not used.

49

The CNs are mapped to 8 PNs in the network. Each PN contains 48 CNs. Four

of the PNs have 6144 input links, one has 6017 input links, one has 2207 and two have 48

input links. Varying quantities of input links is due to the first CN layer having fewer

inputs.

The fault simulator first builds a physical modelof the hardware to be faulted. The

technology file and PAD file determine the required area for the various hardware blocks.

A IJ:l CMOS process is used to implement the network. As no actual hardware has been

designed, estimated sizes, some from the advanced VLSI class project designs, (which are

scaled to 1.25J.L),are used in this thesis.

The sizes calculated by Fltsim for the network are shown in Figure 17. Prelim-

inary size calculations show that the largest PN hardware block is the DAC, covering

90% of the PN area, and second largest is the PN control section, covering 6% of the

Figure 17 -PN block sizes with DAC = 75000.

Section Area (Square microns) Percent
ADC 4800000 0.70
DAC 614400000 90.22

PN CONTROL 40960000 6.01
MEMORY 6553600 0.96
WEIGHT 6553600 0.96

LSM 1600000 0.23
ADDRESSDECODER 6144000 0.90

PTP ...DEMUX 100 0.00

(1 of 4) PTP_CNTL 100 0.00

(1 of 4) PTP -BUFFER 100 0.00
PBH...DEMUX 0 0.00
PBH-CNTL 0 0.00

PBH-BUFFER 0 0.00

total PN 681012100 100

50

Figure 18 -PN block sizes with DAC = 0 and PN CONTROL = O.

PN area. The remainder of the hardware block areas are insignificant. The area

r~quired by the DAC and PN CONTROL circuits were determined to be too large and

would skew the results, so two additional sets of simulations were run, one with the DAC

size set to 0 and one with the PN CONTROL set to O. These additional simulations

help determine how the DAC or PN CONTROL sizes effect the fault tolerance of the

network. Figure 18 shows the resulting sizes of the networks. Although it is unreason-

able to assume these two areas can be eliminated completely in the circuit, stricter

design rules and redundancy can be used to effectively reduce the chance of faulty opera-

tion. The sizes of the hardware blocks will be further studied as either the inputs to cal-

culate these sizes are inaccurate, or the design should be changed to reduce this area or

increase the fault tolerance of the block. The results from these architectures will have

skewed results until more accurate size information is available. For the purpose of this

thesis, these sizes will be assumed to be correct. (The focus here is on the simulation tool

DO PO
Section Area (SQ.microns) Percent Area Percent
ADC 4800000 7.21 4800000 0.75
DAC 0 0.00 614400000 95.99

PN CONTROL 40960000 61.49 40960000 0.00
MEMORY . 6553600 9.84 6553600 1.02
WEIGHT 6553600 9.84 6553600 1.02

LSM 1600000 2.40 1600000 0.25
ADDRESS DECODER 6144000 9.22 6144000 0.96

PTP ..DEMUX 100 0.00 100 0.00
(1 of 4) PTP_CNTL 100 0.00 100 0.00

(1 of 4) PTP -BUFFER 100 0.00 100 0.00
PBILDEMUX 0 0.00 0 0.00
PBILCNTL 0 0.00 0 0.00

PBH-BUFFER 0 0.00 0 0.00
total PN 66612100 100 640052100 100

51

and not the specific architecture.)

To obtain a statistical sampling, the simulation was run 5 times with the original

DAC and PN CONTROL sizes and 5 times with the DAC set to 0 square microns and

12 times with the PN CONTROL set to 0 square microns. The results of each set of

simulations are compared in this chapter. The network with the original DAC and PN

CONTROL sizes will be referred to as D75, the network with the 0 DAC size will be

referred to as DO, and the network with the PN CONTROL size of 0 will be referred to

as PO.

Figure 19 shows a completely random defect distribution on a wafer, where a "I"

indicates a S-A-l fault and a. "0" indicates a S-A-O fault. Compare this random distribu-

tion with a more accurate model using fault clustering and radial distribution charac-

teristics shown in Figure 20. The input parameters for generating the fault distribution

shown in Figure 20 specified a defect density of 15 defects per square inch, the pe'rcen-

tage of S-A-O faults is 30%, the clustering coefficient is 0.49, and the inner to outer zone

fault density ratio is 1.0. These values are typical values. Fault densities observed in

industry range from about 15 defects per square inch to about 35 defects per square inch.

For the purposes of this simulation, the lower bound was chosen. The percentage of S-

A-O faults was chosen arbitrarily for these first simulations. This percentage does not

have a major impact on the operation of the faulted network, as a fault will be modeled

in the network regardless whether it is a S-A-Oor a S-A-l fault. The fault clustering

coefficient of 0.49 produces less of an even distribution of faults and is from Stapper's

paper on fault clustering[Sta86a]. The first architectures that are being modeled do not

cover an entire wafer, but represent a large die on a wafer. Since the radial distribution

52

model only accounts for the distribution of faults for an entire wafer, and not for indivi-

dual die on a wafer, the radial distribution is not taken into account here by setting the

inner and outer fault densities equal. The resulting fault distributions from the fault gen-

erator of the fault simulator correspond to the figures shown in Stapper's paper on fault

distribu tions[Sta86a].

The calculated size of the neural network was 8.45 square inches for the D75 net-

work, 0.83 square inches for the DO network and 7.94 square inches for PO. With a fault

density of 15 defects per square inch, an average of 126 faults should occur in the D75

network, 12.4 faults in the DO network and 119 faults in PO. For the D75 network, the

average number of physical faults was 123 with a range of 99 to 151. For DO, the aver-

age number of faults was 11.2 with a range of 5 to 18 faults. For PO, the average

number of faults was 123.4 with a range of 101 to 142 faults. Removing the DAC circui-

try reduces the total amount of silicon area considerably, -thereby reducing the number of

faults present in the DO network, whereas removing the PN CONTROL has a smaller

effect on the network size and number of faults. Due to the randomness of the fault

simulation, a wide range of faults occur in the network. The actual number of faults

varies from the predicted values, but they are reasonably close. The average number of

faults for PO is greater than for D75. This increase is due to the randomness in the simu-

lation. More simulations should increase the average for D75 and reduce the average for

PO.

As expected, for each network, there is a correlation between the relative hardware

block size and the percentage of faults present in the block. Consequently, the majority

of PN faults generated are either DAC or PN CONTROL faults. Figure 21 summarizes

53

, :0 O. .
0 . . . , . . JJ

: :1: : .0: : :0: . : 0:... , ..i... , .0 .0 .~: : : : : : . : : : 0 :
, l'8 ' ..1)0

. . 'It.. . . .:.. . .:. . 0:' . . . ~. . . : .D ~. . . .:.. ..: . .:. . . 11" . .v o. ' 0 ' 1 O . . ,
: : : : :n: : : : O. :

. . , , '\:1' h'0"
0' : : 0: : : u : : : :

=1 . . I~ . . '0' . . .
. 'E)~'" .:.. .~.,. .: ~... ~.. .~... ':'" ':'" ';' .,. ~...

. 0 . . , . . O' . . .
.. ~... .:.:.1). .. . ~ .00: ~.. . . .:.:.:.:,v. .0 ' . . O. 0 O., .. ,. n

. O' : .. '0" ..:.. .. ~. 'j :~1. : . . . : . . . :.. ..:.. .. ~.. u ' . :U'-. . 1: 1:.. , . .

~
. ,'. '" . . .~.1' ~,. . ". . . "'

. ...,... 1: .
: . :1 : : : : : : : 0:.. ~.. \ 1 I..

()
. . . J1' , , :. . ,1(.\. . .'. : . . . : . . . :. .t'" .. . ~ . .1. J.Y I ' . .

p: : : 0 0 : : ;... : : :
. , . \ .1. '.' . . '.' . . '.' . . .'1:/.. . , . . . \ . . . v- . . '0' . '.' . . . , 1. . . . 0.0. , . 1 .: 1: : : 0 : :0: : : 0:

.
. '.', . . . ~ '1 .0 ' ~. . . '.' . .O~ O': 0 : 0: O' : : : :0: : :
g O. . .00

Figure 19 - Random Distribution of 100 faults.

......,..

,

1 :......I...... "
.r" .:.,..~...:.., ;1.. .: :.. : : 0°...0. I1...'... ~ .0 .:...:...:...

1 : : : . : : . .
. 9.. .. 1111'. .. I" ..0 '

. . . . '1 0
.. ::..:.:. : : ::..:. 1. ..:. :

Figure 20 -Fault Simulator Fault Distribution.

54

the average number of faults that occurred in each hardware block for each of the simu-

la.tions. These fault rates cn be compared to the hardware block sizes shown in Figures

17 and 18.

The impact of the faults on the p-graph is mapped to the n-graph. The physical

fa.ults generated an average of 25144.2 faults in the n-graph for the D75 network, 17702.8

fa.ults for the DOnetwork and 1152.7 faults for the PO network. Figure 22 shows a n-

graph fault summary, indicating the number of entities in each n-graph section, the aver-

age number of entities that were faulted, the average percentage that were faulted and

the range of faults that occurred in the n-graph section for the simulations. The sections

consist of CNs, IN SITES, IN LINKS, OUT LINKS and WEIGHTS, which refer to the

specific areas in the n-graph where the fault impacts are modeled.

Figure 21 - Hardware block faults.

D75 DO PO

Section Faults Percent Faults Percent Faults Percent
ADC 1.2 0.98 0 0.00 0.58 0.47
DAC 107.8 87.64 0 0.00 119.58 96.89

PN CONTROL 8.4 6.83 7.2 64.29 0 0.00
MEMORY 2 1.63 1.2 10.71 0.67 0.54
WEIGHT 1 0.81 1.2 10.71 1.08 0.88

LSM 0.6 0.49 0.2 1.79 0.25 0.20
ADDRESS DECODER 1.8 1.46 1.4 12.50 1.25 1.01

PTP..DEMUX 0 0.00 0 0.00 0 0.00

(1 of 4) PTP _CNTL 0 0.00 0 0.00 0 0.00

(1 of 4) PTP ...BUFFER 0 0.00 0 0.00 0 0.00
PBILDEMUX 0 0.00 0 0.00 0 0.00
PBILCNTL 0 0.00 0 0.00 0 0.00

PBH-13UFFER 0 0.00 0 0.00 0 0.00

total PN 123.0 100 11.2 100 123.42 100

55

Figure 22 - Fault statistics summary.

The number of faults modeled in the CN, IN LINKS and WEIGHTS were con-

sistent for all three networks. These n-graph sections do not depend upon the size of the

DAC or PN CONTROL hardware blocks. The number of faults in the CN and IN

LINKS was low, which indicates that these sections should be reliable. The WEIGHTS

section had a large average number of faults with a wide variation of faults between

simulations. Some simulations had a. large Dumber of faulted weights and some did not

have any weights faulted. This wide range of faults is due to the random quantity and

placement of the faults in the network and how the network is modeled. For example, a

D75
Section Number Faulted Percent RanJ!:e

CN 384 0.8 0.21 0 - 2
IN SITES 384 92.4 24.06 76 - 111
IN LINKS 32896 1.0 0.00 1 - 1

OUT LINKS 32896 22582.4 68.65 14416 - 32656
WEIGHTS 32896 2467.6 7.50 1 - 6144

DO
Section Number Faulted Percent Ranj1;e

CN 384 0.00 0.00 0 - 0
IN SITES 384 0.00 0.00 0 - 0
IN LINKS 32896 0.6 0.00 0 - 1

OUT LINKS 32896 16473.0 50.08 6446 - 26752
WEIGHTS 32896 1229.2 3.74 0 - 6144

PO
Section Number Faulted Percent Ranj1;e

CN 384 0.4 0.11 0 - 2
IN SITES 384 102.1 26.58 90 - 111
IN LINKS 32896 0.3 0.00 0 - 2

OUT LINKS 32896 21.3 0.07 0 - 96
WEIGHTS 32896 1028.58 3.1 0 - 6144

56

single fault may occur in the weight memory, faulting a single weight, or it may occur in

a LSM, affecting all the weights in a PN. LSM defects fault all the weights that the LSM

updates, which, if there are only a few LSMs in a PN, will be a large number of weights.

The number of faults modeled in the IN SITES was dependent on the size of the

DAC. (Faults in the DAC fault the input SITE calculation.) Thus, the D75 and POnet-

works had more of the input sites faulted than the DOnetwork. The DAC will be a criti-

cal section to make fault tolerant to ensure the integrity of the input site functions.

The number of faults modeled in the OUT LINKS was dependent on the size of the

PN CONTROL. The large number of faulty output links is due to the large PN control

hardware block. Defects in the PN control inhibit all the CNs in the PN, impacting a

large section of the network, resulting in a high percentage of faulty output links. The

size of the PN control will need to be examined to determine if this calculated size accu-

rately models the function expected by the fault simulator, e.g., if a defect in the PN

control section will not impact all the CNs in the PN, then it should be modeled in one

of the other hardware blocks.

Due to the large fraction of output links faulted, the PN CONTROL section will be

the most critical area to make fault tolerant. With the fault tolerance of this area

increased, as implied by the PO network, the number of OUT LINK fault becomes

acceptable. A wide variation of faulted LINKS occurred for the D75 and DOnetwork.

As with the WEIGHTS, this variation is due to the random quantity and placement of

the faults. Also, for the output links, recall that the number of links in a PN varied from

48 to 6144. PN CONTROL faults in different PNs will fault varying quantities of OUT

LINKS, which adds to the wide range of OUT LINKS faults.

57

A consistently large number of faulty n-graph sections or a wide variation in the

number of faulty n-graph sections indicates that the hardware block contains critical

logic. Using Fltsim. the DAC, PN CONTROL and LSM hardware blocks have been

identified as containing critical logic for the current network. Either the areas required

to implement these functions should be decreased or the amount of redundancy increased

to alleviate these problems.

For the preliminary networks simulated, there was no fault interaction; the number

of combined faults for all the simulations was zero. The lack of faults being combined

can be attributed to several factors. The foremost reason is the relative area of the bus

structures is much smaller than the size of the PNs. Faults in the bus areas are most

common faults to be combined, but due to the relatively small size of the bus, few faults

occur in the bus. Also, the faults that occur in the PN CONTROL are modeled as NO

CHANGE faults, which are not combined with other faults.

Fault clustering does have an impact on the operation of the network. Figure 23

shows a list of each PN and the number of faults occurring in the PN. PNs 3 and 4 have

a minimal number of defects and have the greatest probability of operating normally.

On the other hand, fault clustering caused PNs 0 and 2 to have a higher quantity of

faults, resulting in a greater chance that those PNs will be unoperational. The actual

fault impact would need to be examined in each case, as any fault may disable the entire

PN.

Execution times for Fltsim are dependent upon the physical sizeof the network and

the number of CNs, sites and links in the n-graph. As the size of the network increases,

more faults are generated that require a longer search time for the n-graph section. Also,

25

20

15

PN Faults

10

58

5

LJ
o 1

I I I I

2 3 4 5
PN

L.J
6 7

Figure 23 - Fault clustering in the PNs.

as the number of CNs, sites, and links in the n-graph increase, the greater the number of

sections to check for faults.

Execution times were measured for Fltsim modeling a 12 PN, 1 CN per PN net-

work and the 128 x 128 network, (with 8 PNs and 364 CNs). For the 12 PN network,

the fault simulator with no test output executed in 8 seconds on a VAX 11/780 with 2.4

seconds of user time and 0.6 seconds of system execution time. Generating the t.est out-

put increased the user time to 3.1 seconds, while the other times remained constant. For

the 128 x 128 network, the execution time was 30 to 40 minutes. The total amount of

area available on a 4 inch wafer is 12.5 sq. inches. The D75 network used 8.45 sq. inches,

which is 68% of the total amount available. Using a similar network architecture, a full

wafer could be simulated in about 1.5 hours on the VAX. Running Fltsim on a more

powerful computer, such as a Sun 4, will reduce the time to 20 to 40 minutes. Larger

wafers can then be simulated on the Sun computer.

.- . _.. __ _. _ ..u.

59

Verification of the fault simulator is complicated by the size and complexity of the

network being modeled. The only way to truly verify the correct modeling of process

faults and their impact on the neural network architecture is to fabricate several wafers,

identify physical fault locations and examine the faulted network's operation. Compar-

ing the actual data collected to the fault statistics produced by the fault simulator and

the operation of the architecture simulators would determine the accuracy of the fault

simulator. Since actual implementation is not yet feasible, another verification method is

required.

One other verification method is to place faults into the physical hardware model

and determine the faulted operation by hand. Placing faults in each different area to cal-

culate the effects of the network operation would be time consuming. Also, since pro-

cessing faults tend to cluster, there is fault interaction where multiple faults occur in a

single message path. Fault interaction and the large size of the networks prohibit a com-

plete hand calculation of fault effects.

To verify the operation of Fltsim, several faults located by the fault generation rou-

tine were studied for their impact on the operation of the network. These faults modify

the network operation according to predicted hand calculations.

Two extremes can be used to model the granularity of the circuitry in the architec-

ture, as shown by Figure 24. One extreme is to model the circuit as implemented in the

PN Level Fltsim Level Wire Level

Figure 24-Circuit model granularity.

-- - - -

60

silicon, as gates and wires. Although this model is the most accurate, it requires too

much detail that is not yet available and would require extensive memory and time to

simulate. The opposite extreme is to model the architecture at the PN level. The inputs

or outputs of the PN could be modeled as containing the faults. This level is too coarse

as each PN is comprised of several different functions. Faults in each of these functions

affects the operation of the network differently. Fltsim is in the middle of these two

a.pproaches and models the network more accurately than the PN level, but not at the

gate level. The question remains, how much accuracy is lost from the wire model? More

research is required to answer this question thoughly. Fltsim uses the information avail-

able to model the network at its current level of implementation.

The ultimate goal of the fault simulator is to test the fault tolerance of the neural

network architecture being developed. The defects that occur in the hardware do not

need to be modeled exactly in the n-graph. The n-graph is faulted using the best approx-

imation available, which is much better than introducing random faults into the network.

The modifiedoperation of the network will still determine the fault tolerance of the net-

work, even though it is not a perfect model of the actual defective circuit operation.

-- -- ----.-

61

7. SUMMARY AND CONCLUSIONS

A fault simulator tool has been developed that models worst case local defects in a

wafer-scale integrated neural network emulation architecture. The fault simulator allows

the fault tolerance of the neural network to be modeled at a high level before the net-

work is actually implemented. The fault model used is a combination of the fault clus-

tering model developed by Stapper and the radial distribution model.

The contributions made by this work aid the study of the fault tolerance of the

Cognitive Architecture Project at OGC. Fltsim also provides a general technique for

determining the impact of processing faults using a high level description of an architec-

ture. The use of a high level description allowf?fault tolerance to be incorporated into

the design at a higher level, where the fault tolerance is easier to implement. The fault

process could be expanded to other wafer-scale integrated architectures where a repeated

pattern of devices is arrayed on the wafer.

The fault simulator was originally designed to model faults in a silicon implementa-

tion of a neural network. Conceivably,Fltsim could be extended to model faults in a bio-

logical system. Several steps in the fault simulation would require new models, but the

general processes would remain unchanged. An n-graph can be used to describe the bio-

logical nervous system since biological systems have much the same structure as

described by the n-graph. Fltsim would, as before, fault the n-graph operation according

to known biological defects.

62

Fltsim builds a model of how the silicon hardware blocks are interconnected and

each block's size. The size of each block determines the probability of a defect in that

area and the interconnectivity determines which messages are corrupted by defects. A

biological system has a network of nodes or synapses that are interconnected. Sizes for

the various regions can be assigned depending on the probability of defects in those

regions. The fault distribution model can be altered to model the characteristics of bio-

logical defects. Stuck-at faults can model the incorrect activation between the synapses.

The n-graph operation could be faulted as normally done, and HAS or ANNE could be

used to simulate the faulted network.

Future Enhancements

As the network is refined, and can be modeledmore accurately, the fault simulator

can be enhanced to provide a better fault analysis. The communication structure is of

primary concern, as it is the link for the neural network model, and ties many nodes

together through time division multiplexing. Some assumptions were made to simplify

the design of the fault simulator. The uniform PBH areas should be expanded to non-

uniform PBH areas with varying numbers of data/control lines and different sizes of

regIons. The concentrator/deconcentrator nodes should be assigned sizes to add to the

bus area. These concentrator/deconcentrator node sizes could increase in size towards

the top nodes to model larger buffers sizes. Future versions of the PBH bus will possibly

include a fat treelRud88aJ, where the width of the data bus increases towards the top

nodes, resulting in a higher data bandwidth at the top nodes. The fat tree helps alleviate

the bottleneck of many PNs sending messagesusing the PBH bus. Also, redundant root

nodes or communication channels should be added to increase the fault tolerance of the

63

network. Redundant hardware can be modeled by not faulting the n-graph operation

until a predetermined number of faults occur in the hardware block.

Bus line spacing, bus line width and defect sizes could be included in the simulation.

Studies have been done on how these parameters relate to one another. Incompletely

severed bus lines or partially damaged transistors could cause AC parameter faults.

These faults could be modeled as delay faults in the network, where the signal gets to the

proper value, but it takes longer to make the transition. HAS and ANNE already model

delays in the network for normal message transfer times.

Faults in the hardware blocks could have different effects on the network operation

according to predefined probabilities. Currently, single bit faults are modeled. A single

defect may damage the control structure in a hardware block or a large defect could

effect multiple bits. For example, in a RAM two adjacent bits may be faulty, or a whole

row or column may be faulty. Information about the layout of the cell will indicate the

probabilities for multiple bit faults.

A modification to reduce the execution time of Fltsim would be to sort or hash the

fault list. For each section in the BIF file, the fault list is searched for faults that effect

that section. If the list could be searched faster by sorting the list of pointers by specific

types of faults, this search time would be reduced. Currently this search time is the

major bottleneck for the simulation.

64

References

Ham86a.
Dan Hammerstrom, "Connectionist VLSI Architectures," Project Proposal, Dept.
of Computer Science,Oregon Graduate Center (Aug 1986).

Lei85a.
Tom Leighton and Charles E. Leiserson, "Wafer-Scale Integration of Systolic
Arrays," IEEE Transactions on Computers 0-34 pp. 448-461(May 1985).

Har88a.
Jim C. Harden and Noel R Strader D, "Architectural Yield Optimization for WSI,"
IEEE Transactions on Computers 37(1) pp. 88-110(Jan 1988).

Bai88a.
Jim Bailey, "Mapper - A Program to Map CNNs to Physical Networks," Techni-
cal Report, Dept. of Computer Science,Oregon Graduate Center (1988).

Bah88a.

Casey Bahr, ANNE: Another Neural Network Emulator, MS Thesis, OGC (1988).
Jag88a.

Kevin Jagla, Concurrent Neural Network Simulator - HAS, MS Thesis, OGC
(1988).

Bai86a.
Jim Bailey and Dan Hammerstrom, "How to Make a Billion Connections," Techni-
cal Report No. CS/E-86-oo7, Dept. of Computer Science,Oregon Graduate Center
(August 1986).

Sta86a.
C. H. Stapper, "On yield, fault distributions, and clustering of particles," IBM
Journal of Research and Development 30(3) pp. 326-338(May 1986).

Che87a.
Chen, Ihao and Strojwas, Andrzej J., "Realistic Yield Simulation for VLSIC Struc-
tual Failures," IEEE Transactions on Computer-Aided Design CAD-6(6) pp. 965-
980 (Nov 1987).

Wes85a.
Neil Weste and Kamran Eshraghian, Principles of CMOS VLSI Design, A System
Perspective, Addison-Wesley(1985).

McD86a.
J.F. McDonald, Capt. B. J. Donlan, R. H. Steinvorth, H. Greub, M. Dhodhi, J. S.
Kim, and A. S. Bergendahl, "Yield of Wafer-ScaleInterconnections," VLSI Systems
Design, pp. 62-66(December 1986).

Wa186a.

D. M. H. Walker, Yield Simulation for Integrated Circuits, PhD Thesis, CMU (July

65

1986).
Ga180a.

J. Galiay, Y. Crouzet, and M. Vergniault, "Physical Versus Logical Fault Models
MOS LSI Circuits: Impact on Their Testability," IEEE Transactions on Comput-
ers C-29(6) pp. 527-531(June 1980).

Raf85a.
J. I. Raffel, A. H. Anderson, G. H. Chapman, K. H. Konkle, B. Mathur, A. M.
Soares, and P. W. Wyatt, "A wafer-scale integrator using restructurable VLSI,"
Joint Special Issue on VLSI, IEEE Journal Solid-State Circuits and IEEE Trans.
Electron Devices, (Feb 1985).

Rud88a.
Mike Rudnick and Dan Hammerstrom, "Physical Broadcast Structure," OGC
Technical Report No. CS/E-88-018(April 1988).

66

APPENDIX A:

FAULT SIMULATOR COMMAND LINE DESCRIPTION

Fltsim reads and writes several files. Each input file contains information required

by the simulator to build physical models of the architecture. The output files are used

to determine the effects of the faults and as input files for the architecture simulators to

simulate operation of the faulted network. The command line for the fault simulator

includes several options for specifying source and destination file names. Listed below

are the command line optional arguments with the default file names that are used if the

option is not specified. All arguments in brackets are optional.

fltsim [-b BIF. in]
[-t tech. in]
[-f fault. in]
[-p pad. in]
[-S seed]

[-s fstat.output]
[-0 fbif.output]
[-d test. output]

[-T]
[-N]
[-h]

Where -T is TEST mode

-N is No faulted BIF output
-S is the random I generator seed
-h is help

Calling Fltsim with the -h option returns the above text indicating all the options and

default file names that can be specified. The -b option specifies the mapped BIF file

input describing the n-graph, the -t is the technology file input information providing

device size information, the -f is the input fault parameter file to characterize the fault

distribution, and the -p option specifiesthe physical architecture data filedescribing the

67

physical hardware. The -s specifies the fault statistics output file to summarize the

fault information, -0 the faulted BIF fields to be used by the architecture simulators,

HAS and ANNE, and -d the test output file to list intermediate Fltsim values. The

default file names are listed inside the brackets. The format and content of these files

are described in the Fault Simulator File For"matsappendix.

A TEST mode can be specified to write intermediate values of the simulation to a

file. TEST mode can be used to troubleshoot problems that occur, or to obtain more

statistics on the characteristics of the faults or hardware model. Information such as the

calculated size of the PNs, internal block sizes in the PNs, bus sizes and fault locations

are written to this file. Also included is the parsed ffiIF output, listing information about

what the fault simulator thought each line type was (e.g. iotype field or link informa-

tion.). The test file output is helpful if fttsim returns an execution error.

The ,TEST mode can be specified two ways. If the -T option is specified or if the

-d option with a file name is specified, the TEST output will be written. If the -d

option is listed in the command line, the -T is not required. The -T option writes the

test information to the file named test.output. To direct this test output to a different

file name, the -d option with a filename is specified.

Fltsim normally will produce a unique set of random numbers each time the pro-

cedure is invoked. Sometimes it is desirable to have repeatable faults to diagnose prob-

lems with input files or Fltsim routines. Repeatable random number generation is

accomplished by specifying the -5 option with the same seed value. The sequence of

random numbers generated by the random number generator will be identical for each

invocation of Fltsim with the same seed values. The seed value used is printed in the

68

standard output of the fault simulator and is printed in the fault statistics file to allow

repeating the execution of any Fltsim run. The seed is contained in the fault statistics

file because this file is always generated with each fault simulation. Given the same

input file data, successive executions of Fltsim with identical seed values will produce

output fileswith the same contents as prior executions.

Very large networks can be run though the simulator without generating the fBIF

file. The -N option is then used to inhibit the writing of the faulted BIF output. This

option does not effect the modeling of faults, and the fault statistics file, fstat, is still pro-

duced.

69

APPENDIX B:

FAULT SIMULATOR Fll...E FORMATS

PAD File

The PAD file describes the physical architecture of the neural network. It consists

of sizes of the hardware blocks and the connectivity of the network. Comments are

allowed to help describe the network information. Each comment section must be con-

tained on a single line and start with a "/*" and end with a "*/'. This is similar to

comments in the C programming language, except for the fact that comments cannot

span multiple lines. The PAD file has 4 major parts:

. The CN/pN network descriptions

. PTP Network description

. Local PAD region definitions

. PBH Network description

The PAD file starts with a description of the PNs and CNs. The total number of

PNs in the network and how many are in the x and y dimensionsis listed first. Next is

the number of CNs in each PN of the network. Each CN has a number of inputs, which

are values from other CNs. These other CN values are stored in a memory for later use.

The number of bits in each CN value is identified by the CN DATA field. Correspond-

ingly, each input has a weight. The number of weight bits in each value is identified by

the WEIGHT field. The total number of other CN values stored in anyone PN is

70

/******** ********* ************************.e** /

/- PAD VERSION I 6 example file 7/16/87 -/
/- This is an example PAD description file -/
1---* *** 1

/- Start with PN/CN descriptions -/
/***** ** ***...***********...**.********* 1
PN: 16; /- total number of PNs in the network -/
PN_GEO: 4, 4; /- x,y dimension of PNs -/
CN: 2; /- number of CNs in each PN -/
CN_DATA: 8; /- represents current state of other CNs -/
WEIGHT: 9; /- . of weight bits -/
CN_ENTRY: 7; /- . entries of other CN states (input links) -/
CN_ADDR: 15: 4, 9: 2; /- . entries: . address lines -/
LSM: 2; /- . of learning state machines in each PN -/
1-.*** * *---*** 1
/- Define Point-to-point Communication Network -/
1 ***********/

PTP_DATA: 4; /- . of PTP data lines between each PN -/
PTP_CNTL: 2; /- . of PTP control lines between each PN -/
PN_CON. O. 1,41 /- connections between PNs -/
PN_CON. 1: 0,2,5, /- this will be used to map external PN . -/
PN_CON: 2: 1,6,3; /- number system to internal' system -/
PN_CON: 3: 2,7;
PN_CON: 4: 0,5,8; /- CONNECTIVITY FOR ALL PN'S -/
PN_CON: 5: 1,4,6,9;
PN_CON: 6: 2,5,7,10;
PN_CON. 7: 3,6,11;
PN_CON: 8: 4,9,12;
PN_CON. 9: 5,8,10,13;
PN_CON: 10: 6,9,11,14;
PN_CON: 11: 7,10,15;
PN_CON: 12: 8,13;
PN_CON. 13: 9,12,14;
PN_CON: 14: 10,13,15;
PN_CON. 15: 11,14;
/**...*.****.*.****************.*******.****..******** /
/- Define regions of PNs to be used in PBH definition -/
1 *...* *--***.*.*.**-*--*.***.***********-.**1
REGION: 2: 1, 2;
REGION: 1: 3, 6, 7;

/- list PNs in region 2 -/
/- list PNs in region 1 -/

I****..a___a_*_*.*-******-*..*._**-*..*-_.***.** **.**..***1
/- Describe Physical Broadcast Hierarchy Communication Network -/
/**************************.*.******************************e***el
PBH_LEVELS: 2; /- . levels in PBH hierarchy -/

PBH_N: 0: 1: 2;

PBH_BDCAST: 7;

PBH_DATA: 2,4;

PBH_CNTL: 3,

/- PBH PN netlist - includes Region 1 & PN 2 -/

/- 2 data lines in lowest level, 4 in upper 2 -/
/- 3 control lines in all levels -/

PBH_N: 1: 2: 3,4;
PBH_BDCAST. 12;
PBH_DATA: 3,5;
PBH_CNTL: 3,4;

/- PBH PN net list - Regions 2 & PN 3 & 4 -/

Figure Bl - PAD File.

CN...ENTRY. CN...ENTRYis the total number of input links to all the Sites on a CN as

shown in the n-graph. The network uses an addressing scheme where the incoming

71

message's address field is stripped off the message and sent to the address decoder. The

address decoder uses a Content Addressable Memory (CAM) to deter~ine the proper

CN...MEMORY word to store the message's data field in. A reduction in transmission

time and silicon area can be achieved if the number of address bits required is variable.

The CN..ADDR field specifies the number of CN entries with the number of address bits

used. The total number of CN-ADDR entries should add up to the total number of

input links for the CN. An assumption that each CN within the PN has the same

address decoder structure was made, allowing the network to be scaled easier. If the

number of CNs in a PN is changed, the number of address entries changes by a

corresponding amount.

The next block describes the PTP communication network. Each PN is connected

via the PTP communication network to all its immediate neighbors. Each message uses

handshake lines to communicate, for example,Data Valid and Data Received lines. Mes-

sage destinations will not have to be the neighboring PN. The message may have to hop

several PNs before reaching its final destination. Encoded in each message is the destin3r-

tion PN number and CN address. The destination address and data is multiplexed over

a.set of data lines. The PTP fieldsindicate the number of data lines and the number of

control lines for each PTP connection. PN connectivity is listed in the PN_CON fields.

For the example shown, PN # 2 is connected to PN # I, 6 and 3. Fltsim requires

knowledge of the x,y addresses of the PNs in the network, so the PNs listed in the

PN_CON fields must be listed in physical order. That is, the PN at x,y location 0,0 is

first, 1,0 next and soon.

72

The PAD file allows for shorthand notation for grouping regions. Grouping regions

gives a specified number of PNs a given region number that can be referred to later.

Larger numbers of PNs can be more easily developed using these regions.

The last section describes the PBH communicationstructure. The number of levels

in the PBH communication tree is listed first, indicating the number of concentrator and

deconcentrator nodes. Next is the information for each PBH Region in the network.

Note here that the PBH Region is different from the regions defined earlier in the PAD

file. Each PBH Region number is specified in the PBH-N field,with all the PNs listed

for that PBH Region. The PN list starts with all the predefined regions from above

listed first, separated by comas, followed by a colon, and then all the individual PNs

listed. The number of broadcast data lines, PBH data lines, and control lines is similar.

The number of lines for each level of the PBH hierarchy can be specified, allowing

differing n~mber of signal lines for each level. All higher levels from the last number

listed will have the same number of signal lines. For example, the PBILDATA of 2,4

indicates that the lowest PBH level has 2 data lines, the second and all higher levels have

4 data lines.

With all the information given in the PAD file, a block diagram of the physical

hardware is possible. The block diagram will contain sizes of the hardware blocks inter-

nal to each PN and all the connectivity between the PNs.

Technology File

The technology file describes the sizes of the individual elements, such as memory

cells or buffer sizes. Each parameter is specified by a keyword followed by a numeric

73

value indicating the size. Only one parameter is allowed per line and the text after the

numeric value can be used as a comment. Entire lines may be used for comments and

have to be preceded with a "/*".

The values in the technology fileare multiplied by the dimensionsgiven in the PAD

file to determine the silicon areas required to implement the functions. The sizes for the

components must be given in microns and square microns. The memory-size indicates

the size for a single bit memory to store data in the CN MEMORY block containing

other CN values. The adc-size and dac-size are for the analog arithmetic unit to calcu-

late the CN output value. The buffer-size is for the PTP and PBH data and control

buffers to drive the bus to the concent.rator nodes. The cntl-Size indicates the amount of

global control circuitry for a PN. The line-width is the line width for the PTP and PBH

bus lines only. Line width is used to determine the total amount of silicon area a bus line

occupies. Address decoding within a PN is done using a Content Addressable Memory

cell. The size of the CAM cell is listed as the addr-dec-size field. LSm-Size is a scale

memory_size

adc_size

buffer_size

cntl_size

line_width

dac_size

addr_dec_size

Ism_size

weight_size

ptp_demux_size
bh demux size

/* file: technology file */
/* date: 27 Nov 87 */

50 /* memory size */
750 /* adc size */
100 /* buffer size */
800 /* size of control section */
2 /* line width */

750 /* dac size */
75 /* address decode size */
960 /* learning state machine size */
50 /* memory cell size for weight storage */

100 /* ptp control, addr compare, & demux size */
100 /* pbh control and demultiplexer size *

Figure B2 -TechnologyFile.

74

factor for the amount the LSM block increases for each independent learning algorithm

used in each PN. WeighLsize indicates the memory bit size to store each bit of the

weight field. Each PN has a PTP and PBH demultiplexer and control section. This sec-

tion determines if it is the final destination for the messageby examining the PN destina-

tion number. Once the message reaches the final PN destination, this section separates

the address field and the data field and sends them to their correct destination, the

address decoder and CN MEMORY. The size of this section is shown in the

ptP-demux.-size and pblwlemux.-size fields.

Fault Parameter File

The fault parameter file includes all the parameters to be used in the fault genera-

tion routine. Each parameter is specified by a keyword followed by a numeric value indi-

cating the size. Only one parameter is allowed per line and the text after the numeric

value can be used as a comment. Entire lines may be used for comments and have to be

preceded with a "/*". Fault parameters are used to generate the locations of the faults

and the types of faults.

defect_den
s-a-O
c1uster
in out

15
0.30
0.3
0.40

/* file: fault file */

/* date: 27 Nov 87 */

/* average defect density per sq inch */

/* fraction of open faults */

/* clustering coefficient between areas */
inner/outer fault densitv ratio *

Figure B3-Fault Parameter File.

The average defect density for the simulation is shown by the field defecLden. The

defect density is multiplied by the area of the network to determine the average number

75

of defects to place. The fraction of Stuck-at-O faults is a parameter, which also deter-

mines the fraction of Stuck-at-l faults. Fault clustering can be varied by the cluster

parameter. A typical value for the fault clustering coefficient for a wafer is around 0.3.

The fault radial distribution is determined by the in out parameter. The in out parame-

ter is the ratio of the defect density of the inner area divided by the defect density of the

outside area. To simulate a wafer, the ratio of the inner area defect density to the outer

area defect density will be less than 1. To simulate faults on a die in a wafer, the ratio

should be set to 1, as the radial distribution only applies to the wafer model.

BIF File

The BIF file describes the n-graph of a neural network, which is described in more

detail in Casey Bahr's Thesis, "ANNE: Another Neural Network Emulator" (OGC). The

ElF file required by the fault simulator must be mapped to the physical implementation

of the network. The mapper routine should be used to assign n-graph nodes the p-graph

nodes needed by the fault simulator. BIF describes the n-graph Connection Node con-

nectivity. The BIF lists Group information about the CNs, followed by a list of CNs, a

list of Sites for each CN, and a list of links for each Site. Each list describes a different

portion of the connections of the n-graph.

Fault Statistics

The fault statistics file contains the fault statistics of the faults in the network.

The statistics show where faults occurred and what effects on the n-graph they had.

When simulating the network using HAS or ANNE the statistics will provide informa-

tion to aid in understanding the modified circuit operation. Figures B4 and B5 show a

76

portion of the fstat file.

fault statistics
run time - Mon Dec 21 11:42:37 1987

fault
DATA
fault
fault
fault
fault
fault

. 0

S_A_O in dac
index - 1
modifier - 0

input site
pn x,y - 0,0 which is PN . 0
offset - 182

fault 1 1

ALL VALUES IN THIS PN,DO NOT CHANGE DATA ADDR S_A_O in pncntl
fault index - 195
fault modifier - Oxffffffff

fault output link

fault pn x,y - 1,1 which is PN . 3
fault offset - 0

*** END OF LIST FOR SINGLE FAULTS ***
*** FAULT COMBINATIONS LIST ...

(determined when reading BIF file)
(fault I's correspond to faults listed above
and the fault order below is the order faults

are placed in the fBIr file)
CN index -0
Site index - 0
Link offset -0
weight (link) offset - 0
Site index - 1

Link offset - 0

weight (link) offset - 0
Link offset - 1

*** New worst fault 11

weight (link) offset - 1
Link offset - 2

*** New worst fault .1

weight (link) offset - 2
Link offset - 3

weight (link) offset - 3
weight (link) offset - 0

Figure B4 -Fault Statistics File.

BIF file statistics
section number faulted percent faulted
CN 12 1 8.33
SITES 24 0 0.00
LINKS 72 18 25.00
WEIGHTS 72 8 11.11

77

BIF utilizationof the Hardwaredefined in the PAD file
PAD: 16 CN's

2 sites (For now, max sites from BIF file)
2048 Links

PN(O,O):
2 CN's 12.50 percent utilization
2 Sites's 100.00 percent utilization
5 Input Links 0.24 percent utilization

PN(O,l):
2 CN's 12.50 percent utilization
2 sites's 100.00percent utilization
8 Input Links 0.39 percent utilization

PN(0,2):
2 CN's 12.50 percent utilization
2 sites's 100.00 percent utilization
5 Input Links 0.24 percent utilization

PN(0,3):
o CN's 0.00 percent utilization
o Sites's 0.00 percent utilization
o Input Links 0.00 percent utilization

PN(l,O):
2 CN's 12.50 percent utilization
2 Sites's 100.00 percent utilization
8 Input Links 0.39 percent utilization

PN(l,l):
2 CN's 12.50 percent utilization
2 Sites's 100.00 percent utilization
8 Input Links 0.39 percent utilization

PN(1,2):
2 CN's 12.50 percent utilization
2 Sites's 100.00percent utilization
2 Input Links 0.10 percent utilization

PN(1,3):
o CN's 0.00 percent utilization
o Sites's 0.00 percent utilization
o Input Links 0.00 percent utilization

Figure B5-Fault Statistics File (con'd).

The fault statistics are grouped into five sections:

. The header

. Hardware faults

. BIF faults

. BIF fault statistics

. BIF utilization

The fstat header consists of a description of what is contained in the file, "fault statis-

tics", and the time the Fltsim program was executed. All the output files from Fltsim

78

contain a time stamp, which will be identical for all files generated from a single execu-

tion of Fltsim.

The next section lists each fault placed in the hardware circuitry with information

describing the specific location and how it will effect the operation of the circuit. For

example, fault #1 is a fault in the PN control hardware block of PN #3 with a x,y loca-

tion of (1,1). This fault will be modeled by not allowing the output data links to change

value. The actual fault index and modifier to be put into the fBIF file is listed, which

indicates to the fault routines, how to model the fault. The fault offset indicates an offset

within the hardware block that the fault occurred in, and is specific to the hardware

block. See the Fault Effects appendix for more information of how to interpret the offset

value.

The BIF faults list which hardware faults actually effect the operation of the n-

graph. Two types of entries are used, "New worst fault" and "combine for new worst

fault". "New worst fault" indicates the hardware fault listed has more impact on the

operation of the network than the previous fault, or it is listed for the first fault to effect

a BIF section. "Combine for new worst fault" indicates that the listed fault has been

combined with the previous worst fault.

The BIF fault statistics summarize the faults placed in the BIF file. The total units

for each section and the number and percentage of faulted units are listed.

The last section, BIF utilization, shows the utilization of the hardware circuitry by

the BIF description. The number of sections available in the hardware (derived from the

PAD file) is listed followedby the utilizations of the BIF sections for each PN. Extreme

underutilization of the hardware by the BIF file may lead to invalid conclusions to be

79

made. For example, two networks that use the same PAD file are simulated, but one has

a 50% utilization of the hardware and the other has a 100% utilization. Both circuits

use the same PAD file, so the size of the hardware will be the same, resulting in the same

average number of physical faults. Since only 50% of the hardware is used in the first

network, a higher portion of the faults will be in unused hardware, which will not affect

the n-graph, leading to a falsesenseof fault tolerance.

Faulted BIF

The faulted BIF file (fBIF), contains the fault information to be included by the

architecture simulator fault routines. Arrays of fault information will be initialized to be

accessed by the fault routines which are used to modify intermediate ON node calcula-

tions. An example if the fBIF file is shown in Figure B6.

The beginning of the fBIF file contains a comment section providing information

about the generation of the fBIF file. The source BIF file used to generate the fBIF file is

listed to coordinate the proper use of the same BIF file and fBIF file by the architecture

simulator. Using the mIf file with a different BIF file other than the one used to gen-

erate the fBIF file will cause unpredictable results.

Four arrays are initialized in mIF, flts(], fCI1-ptr[], fsite-ptr[][], and flinlwlUm[][].

Flts[] is an array of fault indexes and modifiers to be used to determine how to modify

the interface ON value. The other three arrays are indexes into the fault array, used by

the fault routine to access the appropriate fault index and modifier. FCI1-ptr[cD-index]

points to the ON fault data in the flts(] array. Fsite-ptr[cD-index][site-.index]points to

the site fault in the Ots[]array. FlinLnum[cD-index][site-index]contains the number of

80

I..e *-_t * * *--*at.
*
* fbif file: FAULT INDEXES AND MODIFIERS
*

* source bif file -FF4.bif.Ohas.in
* run time - Hon Dec 21 11:42:371987
****_te_* * **1

static struct fIts {

unsigned short

unsigned int

index;
mod;

} fIt[] -{

0,0,
0,0,
195,-1,
0,0,
195,-1,
0,0,
0,0,
17,-513,
0,O};

static int fcn-ptr[] - {
0,
13,
26,
39,
52,
71,
109,
128,
167};

static iot fsite-ptr[128}[2} - {
{l,4},
[14,17} ,

{27,30},
{40,43} ,

(53,62),
[72,81) ,

(-1,-1),

{-1,-1},

{-1,-1}};

static int flink_num[128) [2] - {
{l,4},
[1,4},
(4,4),
{4,1},
{O,O},
{O,O},
(O,O)};

Figure B6-Faulted BIF File.

links for each site and is used to ensure that the link offset is valid. The link fault index

into the OtsOarray is calculated as an offset from the site fault index. For example, the

first link fault value for each site is the first number after the site Cault value. The

81

weight fault index is next followed by the link fault value for the second link.

Test Output

The test file output contains intermediate values used in the fault simulation pro-

cess. Information about the sizes of the.calculated physical network and its connectivity,

parsed BIF output, fault location information and CN/PN mappings are included in the

test file output. The test file can be used to verify operation of the simulator and to

debug problems with parsing files, or other problems. Due to the length and variety of

information contained in the test file, it is not listed here.

82

APPENDIX C:

ARCIDTECTURE SIMULATOR

TO

FAULT SIMULATOR INTERFACE

The fault information that is to be modeled by the architecture simulators, HAS

and ANNE, is conveyed though the ffiIF file. Fault routines are called from the archi-

tecture simulator routines and user's routines to model the fault's operation. The pro-

cess of calling these routines, and the information to be be conveyed to them will be

described in this section. More detail about this interface is provided in the HAS and.

ANNE architecture simulator descriptions.

Three files are used by Fltsim to model faults by the architecture simulator: fault.h,

fault.c and fbif.output. Fault.h definesconstants used by the fault.c routines and Fltsim.

Fault.c contains the subroutines to model faults in different n-graph sections. And

fuif.output sets an array of fault fieldsfor each subsection of the BIF file. This a.rrayof

fault fields consists of a fault index and modifier for each ON, each ON Site, and each

Site Link and Weight. In order for the architecture simula.torsto call the fault routines

and access the fault fields, certain requirements must be satisfied. An include statement

in fault.c includes the ffiIF fault fields,which must correspond to the ffiIF file produced

by Fltsim to model the faults. Also, the fBIF file must have been generated from the

83

same BW file as being used in the architecture simulator. The fault routines need to be

linked and loaded with the user's fault routines. Each time the fBW output changes, the

fault.c file must be recompiled.

Each fault field in fBIF consists of two numbers, a fault index and a fault modifier.

The fault index uses 8 bits to indicate the type of fault and where to model the fault.

The file fault.h defines constants for the fault fields. Since the fault index value is also

used internally to Fltsim, not all the bits will be used by the fault routines. All the bits

will be defined here for completeness. Bits 0-3 are the fault locations that indicate if the

fault was a data word fault or an addressing fault. Data word faults either modify the

targeted value using bit operations, or do not update the value at all. Address faults

change the routing of the network, so that the address that the message is being sent

from/to will be altered. Bit 4 is set if a range of target values are to be faulted. Bit 4 is

not used by the fault routines. Bit 5 indicates if the fault is a Stu~k-at-l (bit 5 high) or a

Stuck-at-O (bit 5 low) fault. Bit 6 if set high indicates that the target value should not be

altered. That is, an old value and a new value are both passed to the fault routine,

where if the NO CHANGE bit (bit 6) is asserted, the value returned is the old value.

For example, the NO CHANGE fault is used when a handshake line is damaged and the

destination node does not receive new values from the source node it is supposed to be

connected to. The input to the site would always stay at the same value. Bit 7 indicates

that all the CNs in a given PN are faulted when set high. Bit 7 is not used by the fault

routines.

84

6

1 bit

NO_CHG

Fault Index
5 4

1 bit I 1 bit
S-A-l RANGE

3 2 1 0
4 bits

Fault Fields

The NO CHANGE bit has the highest precedence in the fault index, so if it is set,

the old value is returned, and the fault modifier is not used. Otherwise, the Stuck-At bit

is used to determine the operation of the routine. For a data word fault, the Stuck-At

bit will determine if the new value passed should be AND'ed with the fault modifier (8-

A-O)or OR'ed with the fault modifier (8-A-l). The new value is so modified, and the

routine is finished. If the fault is an address fault, the address routing is modified. Note

that both the address and data can be corrupted. In this case, the fault modifierwill be

used to modify both the address and data fields.

The general steps for calling the fault routines are as follows:

1. For each input link:

a. Fault the input link and correspondingweight f1t_1kwt()

2. Update old input link values.

3. Calculate all the site functions for the CN.

4. Fault all site function outputs. f1 t_si te ()

5. Calculate the CN function.

6. Fault the CN function output. f1 t_cn ()

7. For each output link:

a. Fault the data and the destination address. f1t_o1ink()

b. Send the output to the next CN address

8. Calculate the weight functions

85

9. Fault the weight values flt_wt()

10. Update the old weight values.

These steps are performed for each CN calculation in the network. For step I, faulting

all the input links and weights to the CN, a li.nk and weight fault routine, flt_lkwt(),

is called for each input link to the CN. The fault routine will return the value to use as

the link input and weight depending on the fault fields listed in the fBIF file. Figure CI

summarizes the parameters for all the fault routine calls. Six arguments are passed to

the link/weight fault routine, the current CN index and site name that this link attaches

to, the link index, the old (or previous) value of the link input, a pointer to the new link

input and a pointer to the weight for the link input. After the subroutine returns, the

contents of the pointer to the new link input will contain the value to use as the link

input and the contents of the pointer to the weight will contain the new weight. Both

the old value of the previous link input and the current link input are passed to the fault

routine to model faults where the input link is defective, not allowing new inputs to be

transmitted. Faulty input links which do not allow transfers to take place will set the

new input equal to the old input value. The initial old value will need to be determined

for the first call for each link input. After the link fault routine completes, the old value

can be set to the current value for the next pass.

The site function for each site of the CN is calculated in step 3. The output of each

site function is faulted in step 4. The site output is faulted by calling the site fault rou-

tine, flt_site(), with the current CN index and site name, and a pointer to the site

output value. The fault routine will calculate the new site value, using the fault fields,to

be returned as the contents of the site output pointer.

86

flt_lkwt(cnindex,site, link ,old_link ,new_link ,weight)

int cnindex; /* currentcn index */
shortsite; /* currentsite name */
shortlink; /* currentlink index */
shortold_link; /* previouslink value */
short*new_link; /* new link value */
short*weight; /* weight for link */

flt_site(cnindex,site,new_site)
int cnindex; /* current
shortsite; /* current
short*new_site; /* pointer

cn index */
site name */
to the new site value */

flt_wt(cnindex,site, link ,old_weight ,new_weight)

int cnindex; /* currentcn index */
shortsite; /* currentsite name */
shortlink; /* currentlink index */
shortold_weight; /* previousweight value */
short*new_weight; /* new weight value */

flt_cn (cnindex ,new_cn)

int cnindex; /* currentcn index */
short *new_cn; /* new cn value */

flt_olink(cnindex,site,link,new_addr,new_data)
int cnindex; /* current cn index */
shortsite; /* current site name */
shortlink; /* current link index */
short*new_addr; /* new address */
short*new_data; /* new output link value */

Figure C1 - Fault routine parameters.

Faulting the CN function is done similarly. The CN function calculates a new

value and callsthe CN fault routine, flt_cn(), passing itthe CN index and a pointer

to the new CN value. The fault fields are accessed to modify the CN output.

The output links are faulted by calling flt_olink(), which modifies the destina-

tion addre~ and data value to send. The CN output would normally be sent to the des-

tination CNs using the output links. Pointers to the destination CN addre~ and the CN

output are passed to a fault output link routine along with the current CN index, site

name and link index. The addre~ and CN output are modified using the fault fieldsin

the fBIF fileto change the routing and the CN output. The modified CN output isthen

sent to the destination ON using the modifiedrouting.

87

Steps 8 through 10 are used for networks with dynamic weights that are calculated

during execution of the network. Step 8 calculates the new weights for all the input links

using a selected learning algorithm. Step 9 is to fault the weights by calling a fault

weight routine, flt_wt(), passing the ON index, site name, link index, the old weight

value, and a pointer to the new weight value. The fault fields in the fBIF file are used to

potentially modify the contents of the new weight value. Somefaults may cause the new

weight not to be calculated or saved in memory, resulting in the weight never being

updated. The old weight is used in this case, where the new value is set to the old value.

After the fault weight routine completes, the old value is saved for the next pass. The

weights are faulted twice, once with the input links and once when the weight values are

upda.ted. There are two reasons for doing the weight fault twice. First, steps 8-10 are

optional for networks that do not calculate new weight values. Second, the weight

values a.re accessed by the CN at two different times so the faulted value is requi.red

twice. So for consistency between dynamic weight networks and static weight networks,

the weights are faulted twice. Faulting a value twice has no adverse effects, since the

same fault index and modifier are accessedboth times. And faulting a faulted value does

not change the value. For example, AND'ing the fault modifier with a value a second

time does not alter the number.

The actual code to implement the fault routines will depend upon the simulator

used and the site/ON functions and data structures used. Someof the fault routines may

be called from the architecture simulator, and hence should not be called by the user's

routines. With the general guidelines presented here, the interface of the fault routines

to the architecture simulator routines and the user's routines can be implemented. The

88

specific architecture simulator description should describe which fault routines are to be

called by the user's routines.

Shown below is a simplified section of the user's routine for HAS with the fault rou-

tine calls shown in bold prin t:

if(userfx_mode == 1)

(1* receive link input messages *1
L->old_inval= L->inval; 1* save old value for fault routine *1
L->inval .. mes_value; 1* receive message input to node *1
)

else if(userfx_mode -= 2)

(1* Site function - Sum of Products (called once per site input *1
siteval - S->siteval;

wt .. L->inval;
flt..Jkwt(0- > enindex,S->sitename,1.- > link...index,

I.->olcUnval,&(1.- > inval),&wt);
1* fault input link and weight *1

inval = inval * wt;

siteval +- inval;
S->siteval - siteval;
)

else if(userfx_mode -= 3)

(1* CN function - Sigmoid function .*1

siteval = S->siteval;

flt site(O->cnindex,S->sitename,&Siteval); /. fault siteoutput · /
C->output - (1/(1 + exp(~1.0 * siteval»);
)

else if(userfx_mode -- 4)

(1* send outputs to next CN's *1
flt olink(0- >enindex,S- >sitename,1.- > link...index,

&(0- > index),&(O-> output »;
1* fault destination address and CN output *1

sprintf(buf, "%d %d %d",C->index,C->output, time);

send_output(C->index);
}

Since the example shown does not use dynamic weights, step 8-10 are omitted; the

fIt_weight () routine is not called.

89

APPENDIX D:

FAULT EFFECTS

The induced faults reflect the actual physical faults that will occur in the system.

Some approximations were used in the fault model to simplify the design of the fault

simulation and because the CAP network architecture is still in the design phase. This

section will cover each section of the hardware block diagram, describing the general

function of the block, what types of Cwlts caD occur in the block, how the faults effect

the function, and how the faults wilt be modeled in the n-graph. The n-graph is used by

tbe architecture simulators to simulate the operation of the network. The fault fields

written in the fBIF file by Fltsim modify the n-graph operation. The hardware blocks

described here, except for the bus structures, are replicated for each PN in the network.

Potentially several CNs will be in each PN as described earlier in the paper. Somefaults

effect only one CN in the PN, whereasother faults will effect all the CNs in the PN.

There are three basic types of faults modeled here, Stuck-At-l, Stuck-At-O,and NO

CHANGE. The S-A-I and S-A-Ofaults OR or AND a fault modifier with the value,

forcing bits in the word to be always high or low. The NO CHANGE fault forces the

value not to be updated, that is, it retains its previous value.

90

CN MEMORY

The CN MEMORYsection is a RAM that stores values of other CN's function out-

puts or states. The CN MEMORY words stored here will be inputs that the CN func-

tion will use to calculate its output. There is one word for each input link to the CN.

Each input link gets another CN's output to write a unique word in the CN MEMORY.

Only those CNs connected to this CN store their values in this CN's memory.

The most common defect in RAM structures is to lose single bits in the stored data

words. When a value is read from the RAM, a bit in the stored value will be always

have a high or low value, regardless of what value was written. Defective bits could be

caused in the physical hardware by shorts, opens or leakage current between cells.

Faults not modeled by Fltsim are RAM control structure fauits. Control structure faults

will cause multiple faults in the RAM with only one fault in the device. Row or address

decodjng faults for the RAM are examplesof control structures that could be defective.

Defective bits in the memory will change the input link value for a specificlink. A

random bit in the memory is chosen to be stuck high or low. The defective bit is

mapped to the word the fault occurred in. The defective word corresponds to a specific

input link. This input link in the n-graph will be faulted. The corresponding link will be

determined by the listed order of the links in the BIF file. The first link listed in the BIF

file for a particular PN will be the first word in the memory, the second link in the PN

will be the second word in the memory, etc.

91

ADDRESS DECODER

The address decoder uses a Content Addressable Memory (CAM) structure to

match the incoming CN address with the corresponding CN value in the CN MEMORY.

The incoming CN value is stored in the CN memory word that has a matching address.

If no address match is found, the value is not accepted by any of the CNs in the PN.

The connectivity of the network is stored in the CAM that is described by the link sec-

tion in the BIF file. To save silicon area, the addresses can be of variable length. The

more common local addresses can be encoded with fewer address bits.

Faults in the address decoder will cause improper decoding of the CN address,

resulting in CN data values being written to wrong memory words (incorrect links), no

va.lue being written, or multiple CN values being written at once. Faults in the global

control of the CAM may cause entire rows or columns to malfunction. Single bit faults

are the only faults currently considered by Fltsim.

To fault the address decoder, a random bit within the address decoder is chosen to

be stuck high or low. The bad bit is located within the addresses stored in the CAM.

Since variable length addresses are allowed, each different address length section has a

different probability of a faulty address bit. The faulty address word and faulty bit posi-

tion are identified. The address word is an offset within the address words for a PN.

There is one address word per input link for each CN in the PN. The order of the CN

address words (for each input link) corresponds to the order listed in the BIF file. The

link address for the faulty address order is listed in the BIF file. The link address for the

faulty address word is modifiedto have either a stuck high or stuck low bit. In the archi-

tecture simulators, the destination address will be modified so that if the new address

92

matches some PN/CN in the network, the message will be routed to it. In most cases,

the new address will not match a PN/CN, and the messagewill be lost.

WEIGHTS

The WEIGHTS section stores all the current weights for each CN input link to be

used in the site function. One weight word is used for each input link. The Weights sec-

tion is a RAM that is addressed either when the site function is to calculated, or when

the Learning State Machine is to read or update the value. Typically the weight is mul-

tiplied by the input link value in the site function.

Since the weights section is a RAM, faults here are similar to the faults in the CN

MEMORY section. Any weight bit could be stuck, and would always read a 1 or a O.

Stuck bits will effect the site calculation and the weight update or learning algorithm.

To model weight faults in the site calculation, the weight value is modified with either

stuck high or stuck low bits before using the value in the site function. To model faults

while calculating the new weight using the learning algorithm, the new weight value is

faulted with the stuck bit after the new weight is calculated. That is, the weight was

modified and stored as the current weight when the site function was called. The LSM

used this faulted value to calculate the new weight, and that weight was faulted again,

since it was stored in the same RAM word with the same fault. The second time the

weight is modified, faults in the LSM are also taken into account.

LEARNING STATE MACHINE

The Learning State Machine (LSM) is a PLA running as a background task that

samples and updates all the weights for the site function accordingto a predefined

93

learning algorithm. Various inputs are used to calculate a new weight value, and may

include the current weight, the CN function output, and the CN link input. If any of the

inputs to the LSM are faulted, the new weight value will be faulted. All the LSM input

faults are modeled by the other sections in the PN. Only internal faults to the LSM are

consideredin this block. LSMfaults could cause the LSM not to work'at all or to update

the weights with incorrect values. If the LSM does not work at all, none of the weights

for the PN will be updated with the new weight value, otherwise the fault will cause the

new weight values to have a stuck bit. A predetermined fraction of faults will cause the

LSM not to function at all. If a fault occurs in one of the LSMs, all the CNs updated by

that LSM will have the same fault in all the weight values. When a fault occurs in one

of multiple LSMs in a PN, 1/(# LSMs)of the weights are faulted. See the WEIGHT sec-

tion for more details of how LSM faults are modeled.

DAC

The Digital to Analog converter (DAC) will calculate the site functions for the CNs

in the process of converting the digital words to analog signals. Corresponding words

from the CN MEMORY and the WEIGHTS sections are input to the DAC, converting

the digital signals to analog signals while performing the site function simultaneously.

The analog output represents the output of the site function.

Faults in the DAC section will cause the DAC output to be at an incorrect level,

resulting in an incorrect site function output. Incorrect output levels can be caused by

anyone of the input bits being stuck, which causes a fault identical to a bad bit in the

CN MEMORY. Since the faults to the inputs are the same, input bit faults are modeled

in the CN MEMORYand WEIGHTSsections. Also, the output of the DACcouldbe

94

stuck, causing its output to be always stuck at one of the supply rails, which is modeled

as the output of the site function to always being all ones or all zeros.

ADC and MUX

The Analog to Digital Converter (ADC) will perform the CN function calculation

with analog signals. The ADC will combine all the analog signals from the outputs of

the DACs into one analog signal to be converted back to a digital word that represents

the CN function output to be sent to other CNs. There is one ADC section for each CN

in the PN.

Faults in the ADC section will cause the CN output value to be corrupted. Faults

in the inputs to the ADC will be modeled in the DAC hardware block by changing the

output of the site function. The analog CN function output signal could be faulty, result-

ing in the digital CN function output being all ones or all zeros. The faulted CN output

is sent via the output link to other CNs in the network.

,CONTROL

The Control section groups together the global control circuitry for the PN. This

section will not necessarily be in one physical location in the PN, but will be spread over

the entire PN circuit. Clock signals that pace the PN circuitry and enable and disable

various functions will be the type of control signals that will be included in this section.

Any faults on these control lines will have a major impact on the operation of all the

CNs in the PN. So faults here simply disable the whole PN. None of the output links

from the PN change state, resulting in a static PN state.

95

PTP BUS

The PTP communication bus lines transfer messages between PNs/CNs. The bus

lines are driven by the PTP DATA/ADDRESS/CONTROL buffers. Four sets of bus

lines are present for each PN to connect to each neighboring PN. Messages may travel

through several PNs before reacliing their destination.

Faults may occur in the bus in the form of opens or shorts. Shorts will likely con-

nect two adjacent runs by excess material in fabrication. Opens will occur if a defect

causes a discontinuity in the signal path. Shorts are modeled as stuck high and opens as

stuck low signals in Fltsim. The control lines that handshake the data transfers may be

faulted causing no data transfers to occur. As with the PTP Buffers, the entire message

path is checked for faults. Any faults found in the message path will be modeled in the

output link of the source CN. If any of the data/address lines are stuck, the output of

the CN function will be altered by modifying bits in the message. If the control lines are

stuck, the transfer will be completelydisconnected.

PTP DATA/ADDR/CNTL BUFFERS

The PTP DATA/ADDR/CNTL BUFFERS are the interface for the PTP com-

munication network. This section includes bidirectional buffers for each data/address

line to send and receive the messages, and buffers to control the handshake of the data.

The size of these buffers will be larger to drive the capacitance in the data bus, which

will make them more prone to faults. Four sets of PTP buffersare used for each PN to

send/receive messagesfrom/to any neighboringPN.

96

Faults may occur in any of the four sets of buffers. Faults in the buffers will effect

all the CNs communicating through this set of buffers. The ON does not have to be local

to the PN. Messages may travel through several PNs before reaching the destination

PN(ON). If any of the intermediate PTP buffers are faulty, the message will be cor-

rupted. The message path is determined by traveling in the x direction first, then in the

y direction. For the source and destination PNs, only one side is checked for faults.

Intermediate PNs have two sides checked, as the message enters one side and exits on

another. Any faults in the message path are modeled at the output link of the source

CN. If the output buffer for any of the data/address signals is faulted, the output of the

CN function will be modified. If the input buffer for any data/address signals is faulted,

the output of the sending ON will be faulted. For data/address faults, bits are either

stuck high or low. Since the data is multiplexed, several bits will be stuck. Fltsim does

not distinguish between faults on input buffers or output buffers. If any of the ~ontrol

buffers for the handshake are faulted, all transfers of data using these buffers will be

impaired. PTP control signal faults are modeled by not updating the input link values.

PTP CONTROL/DEMUX

The PTP Oontrol/Demux hardware block controls the input/output operations of

the PTP interface for the PN. Messages are received from the four sets of PTP buffers.

The messages are multiplexed, so this unit reassembles the subwords into a message unit.

The PN destination portion of the address field is checked to see if this PN is the desti-

nation. If this PN is not the destination, one of the four PTP buffers is selected to for-

ward the message, and the message is broken into subwords to be multiplexed over the

data lines. H the PN is the destination, the address field is sent to the address decoder

97

and the data field to the CN MEMORY. For output operations, the CN function output

from the ADC is sent to the PTP control section. The destination address is added to

the message and the message is multiplexed over one of the four PTP communication

buses.

Faults in the PTP control will corrupt the PTP message. Potentially, faults in the

PTP Control could cause either single bit faults in the message, or all the bits in the

message to be faulted. More commonly, faults in this section will cause the whole section

to malfunction, inhibiting all PTP communication for the PN. The individual stuck bits

are accounted for in other hardware sections. Faults in the PTP Control will disable all

the PTP transfers for this PN. All PTP messages routed through this PN will be dis-

abled, and the fault modeled at the source PN PTP output link.

PBH TRANSMITTER BUS

Several separate PBH regions may exist in the network. Each operates and is

modeled as a separate autonomous bus structure. Each PBH region has a binary tree

structure to send messages to a top concentrator node via the PBH TRANSMITIER

BUS. Then the message is sent over to a separate binary structured RECEIVER BUS to

broadcast the message to all the PNs in the region. The PBH TRANSMITIER BUS

contains the multiplexed data/address lines, and some handshake control lines to send

the message to the top concentrator node.

Faults in the bus, as with the PTP BUS, can cause opens or shorts in these signals.

The shorts and opens are modeledby assigning a stuck high or stuck low fault to one of

the data signal lines in a particular level of the PBH tree. This will cause several faults

98

in the address and data fields due to the multiplexed transmission of the data. The fault

is modeled in the output links of all the CNs that use this faulted portion of the PBH

bus. For example, if a PBH region has 4 levels, there would be 16 PNs in the PBH

region. If a.fault occurs on level 2, 4 of the PNs use the faulted portion of the bus and

have their output links faulted.

PBH RECEIVER BUS

The deconcentrator network or RECEIVER BUS, sends a message to all the PNs

in the PBH region using a binary tree structure. The data/address is multiplexed as in

the PBH DATA/ADDRESS BUS. Control lines handshake the data between the nodes.

Faults, as with the other bus structures discussed here, can be opens. or shorts

which are modeled as stuck high or low values. Both the address and data fields will be

modified by the fault. The level in the broadcast bus tree will determine how many PNs

are effected by the fault, as in the PBH TRANSMITTER BUS. The faults will be

modeled in the input links for the receivingPNs.

PBH DATA/ADDR/CNTL BUFFERS

The PBH Buffersdrive the signals from the PN onto the PBH communication net-

work. Bidirectional buffers are used for the data/address interface, and control signals

handshake the data/address transfers. The output buffersdrive the signal onto the PBH

Transmitter Bus and the input buffersreceivesignals from the PBH Receiver Bus.

Any of the PBH buffers may be defective, but Fltsim only models faults in the out-

put buffers for simplicity. Faults in the buffers are modeled as stuck high or stuck low

faults. The messageis multiplexedfor the PBH network,so a messageis transmitted in

99

sever:al subwords. A faulty buffer would cause several bits in the message to be faulty, so

that both the addr~ and data fields are modifiedby a faulty buffer. Since an the CNs

in the PN that use the PBR network use a common set of buffers, if any of the buffers

are faulty, an the CNs in the PN will be faulted. If an output buffer for any of the

data/address signals is faulted, the output of the CN function and the message address

will be modified. Thus, the faulted data will be sent using a faulty address. If any of the

control lines are faulted, an transfers of data will be impaired.

PBH DEMULTIPLEXER

The PBR DEMULTIPLEXER controls the interface to the PBR bus. It controls

both the sending and receiving of messages on the PBR bus. The PBR DEMUX sends

the incoming message's address information to the ADDRESS DECODER and the data

information to the CN MEMORY section. It will also combine the address and data

information from the ADC section in order to broadcast to other CNs over the PBR net-

work.

Faults in the PBR DEMUX will corrupt the PBR messages. Potentially, faults in

the PBR DEMUX could cause single bits faults in the messages, or all the bits in the

message may be faulted. Faults can also cause the whole section to malfunction, inhibit-

ing all PBR communication for the PN. The individual stuck bits are accounted for in

other hardware sections. Therefore, faults in the PBR DEMUX will disable an the PBR

tranSfers for the entire PN. All PBR messages, both inputs and outputs, will be dis-

abled.

100

Figure Dl -Faulted Hardware to Fault Representation.

Figure Dl shows how defects in the various hardware blocks are represented. A

defect will occur at a location within the hardware block, as shown by the first two

columns. From the area and location, specific n-graph areas and fields are identified to

model the fault. If the target value to fault is not to be updated with new values, the

NO_CHG column contains a Y. If updating the value is dependent on other factors, a P

is indicated for a Potential NO CHANGE. Otherwise, the N indicates the value will be

updated. Values that are updated will use the Stuck-At model to model the defects.

The NjY /P is similar for the ALL column. If all the CNs in a PN are to be faulted, a Y

is shown. If faulting all CNs depends on other factors, a P is indicated. And if only the

one CN is to be faulted, an N is indicated. The Field column indicates the target mes-

sage field to fault. Either the address or data fieldsof the target value can be faulted.

Hardware Area Location N-graph NO_CHG ALL Field

CN MEMORY Link In Link N N DATA

ADDRESSDECODER Link Out Link N N ADDR

WEIGHT Link Weight N N DATA

LSM LSM Weight P P DATA

DAC Site In Site N N DATA

ADC and MUX CN CN N N DATA

PN CONTROL NA Out Link Y Y ADDR

PTP DATA BUS Side PTP Link N N ADDRjDATA

PTP CNTL BUS Side PTP Link Y N DATA

PTP CNTLjDEMUX NA PTP Link Y Y DATA

PBH RECEIVER BUS Level/Region PBH In Link N N ADDRjDATA

PBH TRANSMITTER BUS Level/Region PBH Out Link N N ADDRjDA T A

PBH CNTL BUS Level/Region PBH Out Link Y N ADDR/DATA

PBH DEMULTIPLEXER Level/Region PBH Link Y N DATA

101

Figure D2 -Fault Representation to Fault Action.

Figure D2 lists the faults represented in the fault simulator and which n-graph area

will model the fault. For example, a data word fault in the n-graph WEIGHT section

not having the ALL bit set will be modeled in all weights specified by the"link offset or a

range of faults specified by the LSM. If the ALL bit is set, all the weights for the PN

will be modified. Figure D2 also points out whether the input link to a CN or the output

link from a CN will model fault associated in the CN links.

Field N-graph ALL Fault:

DATA In Link N Input link

ADDR Out Link N Output (Source)Address

DATA Weight N Weights for input link or updated by LSM

DATA Weight Y All PN Weights

DATA In Site N Input Site functionoutput

DATA CN N CN functionoutput

ADDR/DA TA PTP Link N Output msgsrouted through fa.ultyPTP link side

DATA PTP Link Y Output msgsrouted through faulty PN

ADDR/DATA PBH In Link N Input msgsrouted through faulty level

ADDR/DATA PBH Out Link N Output msgsrouted through faulty level

DATA PBH Link N Input and Output msgsrouted through faulty level

102

Biographical

The author was born the 23rd of January, 1962, in Princeton, Illinois. After mov-

ing to Iowa, he graduated from Nevada High School in 1980. He graduated with honors

from Iowa State University in 1983 with a B.S. in Computer Engineering.

The summer following graduation was spent in Poughkeepsie, New York, working

as a summer intern for IBM, writing PL/l programs. That Fall, he entered the M.S.E.E.

program at Oregon State University in Corvallis. After the completion of one quarter,

he relocated to Vancouver, Washington to work at Tektronix. He is an electrical

engineer designing automated test equipment, and has also been involved with the

firmware effort in several products.

In the spring of 1984, the author bega~ his studies at the Oregon Graduate Center

as a part-time student while still working at Tektronix. He has been a member of the

Cognitive Architecture Project.

