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Data-Driven Methods for Extracting Features from Speech 
Narendranath Malayath, B. Tech., A4. S. 

Ph.D.,  Oregon Graduate  Insti tute of Science and  Technology 

January, 2000 

Thesis Research Advisor: Dr. Hynek Hermansky 

Feature extraction plays a major role in any form of pattern recognition. Current 

feature extraction methods used for automatic speech recognition (ASR) and speaker 

verification rely mainly on properties of speech production (modeled by all-pole filters) 

and perception (critical band integration simulated by Mel/Bark filter bank). We propose 

stochastic methods t o  design feature extraction methods which are trained t o  alleviate the 

unwanted variability present in speech signal. In this dissertation we show that  such data- 

driven methods provide significant advantages over the conventional methods for feature 

extraction. 

In the first part of the dissertation discriminant methods are introduced for extracting 

spectral features for ASR. Spectral basis functions which preserve phonetic class sep- 

arability are derived using linear discriminant analysis (LDA). It is observed that  the 

discriminant basis functions analyze the low frequency part of the spectrum with higher 

resolution than the high frequency part. This trend is consistent with properties of human 

hearing which are explained using the notion of critical bandwidth and emulated in the 

current feature extraction modules by Mel/Bark filter bank. The proposed discriminant 



features are shown t o  outperform the conventional features in ASR experiments. 

The second part of the dissertation introduces data-driven methods for the design of 

channel normalizing filters for speaker verification. It has been observed that  a reasonable 

verification error can be achieved if the speaker uses the same handset and telephone line 

for testing. On the other hand if the speaker uses a different telephone handset while 

testing, the verification error can increase by four to  five times. We introduce a data- 

driven method for designing filters capa,ble of normalizing the variability introduced by 

different telephone handsets. The design of the filter is based on the estimated second 

order statistics of handset variability. This filter is applied on the logarithmic energy 

outputs of Me1 spaced filter banks. The effectiveness of the proposed channel normaliz- 

ing filter in improving speaker verification performance in mismatched conditions is also 

demonstrated. 

xvi 



Chapter 1 

Introduction 

Automatic extraction of useful information from speech has been a subject of active re- 

search for many decades. It is known that  the information contained in speech is carried 

from the speaker t o  the listener in the form of vibrations (pressure waveform) in air. These 

vibrations can be converted into an electric signal by a microphone which acts as a trans- 

ducer. Typically, it is the sampled and digitized form of this electric signal that  we refer 

t o  as the speech signal. Automatic speech recognition(ASR) focuses on the extraction 

of the linguistic message from the signal. ASR could lead t o  the development of more 

efficient and natural means of communication with computers. It could also play a crucial 

role in making business over the telephone more efficient and cost effective [2]. Speaker 

verification addresses the problem of verifying the identity of a speaker from the speech 

signal. Speaker verification can be used for verifying the identity of a customer in banking 

applications or automatic tagging of speech in multi-speaker conversations [3, 4, 5, 6, 71. 

The speech signal contains information about many sources. Information about these 

sources get manifested in the signal as variability. For example, the signal characteristics 

vary when a speaker utters two different phonemes. Knowledge of this variability and 

its relation with the spoken phonemes enable us t o  predict the phoneme from the speech 

signal. The relation between the source of information and the variability that  it causes 

can be represented by class-conditional distributions in the signal space. The farther apart 

the class-conditional distributions are located in the signal space the better would be the 

prediction. This prediction cannot be error free if there are other sources of information 

causing variability which make the class-conditional distributions overlap. 

The application dictates the source of information that  needs t o  be focused on. For 



example, in ASR it is the linguistic information that  is of interest while the variability due 

t o  speaker information can cause confusion and needs t o  be treated as noise. Similarly, 

for speaker verification speaker information is important while variability due t o  micro- 

phones information could potentially degrade the performance. Hence it is evident that  

recognition systems need a mechanism to  focus on the desired source of information while 

ignoring undesired sources of information. 

One method t o  achieve this is by training stochastic classifiers with data  that  contain 

the various sources of information. For example speaker independence is achieved in 

ASR by training the recognizer using speech data  collected from multiple speakers. This 

approach has the following disadvantages: 

a A large amount of data  is necessary t o  achieve a good coverage of all the sources 

of information. Additionally, training the classifier with large amount of data  is 

computationally expensive. 

a If a particular source of variability, for example, acoustic environment (or speaker) is 

not well covered in the training data then a new acoustic environment (or speaker) 

makes it necessary t o  retrain the recognizer. In addition t o  retraining, this would 

also necessitate fresh data  collection in the new acoustic environment or from the 

new speaker. 

Incremental adaptation of the stochastic classifiers using a limited amount of data  is 

an effective alternative t o  retraining the classifier. Adaptation methods are often used 

to  adapt parameters of the classifier t o  the voice of a new user or a microphone [8, 91. 

Yet another method involves extraction of features from the speech signal that  carry 

primarily information about the desired source while suppressing the information about 

the undesired sources [lo]. Training the stochastic classifiers, adaptation t o  new acoustic 

environments or speakers, and the use of robust features are all important in providing 

robustness in recognition systems l .  

The feature extraction methods that  are currently used in speech and speaker recogni- 

tion systems are often based on human knowledge about speech production and perception. 

We use the term robustness to mean invariance to undesired sources of information. 



For example, linear predictive coding (LPC) of speech is based on modeling the speech 

production mechanism as an all-pole filter [ l l ] .  Similarly, Me1 frequency cepstral analysis 

[12, 131 and perceptual linear predictive analysis [14] are motivated by properties of human 

auditory system. Incorporating properties of speech production and auditory perception 

could improve speech processing. However, the specific properties of speech production 

and auditory perception which are important for reliable recognition of speech and speaker 

are not clearly understood. In other words, all the properties of speech production and 

perception may not be relevant (or may be even harmful) for extracting information from 

speech. Moreover, the objective of feature extraction is not t o  model the speech production 

accurately or t o  mimic human auditory perception, but we are interested in features which 

carry primarily information about the desired source of information while suppressing the 

information about the undesired sources. 

In this thesis, we propose novel feature extraction methods that  are designed t o  focus 

on the desired source of information while de-emphasizing the undesired sources of infor- 

mation. These feature extraction methods are trained on databases that  are independent 

of any specific tasks and hence need not be retrained for every new task. We demonstrate 

that  the use of such data-driven feature extraction methods improves the performance of 

speech and speaker recognition systems while providing useful knowledge about the nature 

of information carried by the speech signal. 

The remaining part of the chapter is organized as follows. The various sources of 

information that  are carried by the speech signal are discussed in the next section. The 

relation between the variability introduced by a source and the information contained in 

the signal about the source is established in Section 1.2. Relevance of extracting features 

from the signal is emphasized in Section 1.3. Section 1.4 gives a brief introduction to  the 

current methods for speech and speaker recognition. Section 1.5 introduces the notion of 

data-driven feature extraction. The issues that  need t o  be addressed in data-driven feature 

extraction are discussed in Section 1.5.1. Section 1.6 summarizes the contributions of the 

dissertation. Section 1.7 gives an overview of the dissertation. 



1.1 Sources of Information in Speech 

The characteristics of the speech signal (or measurements made from the signal) vary 

with many factors. For example, if the same speech sound uttered by the same person is 

recorded using different microphones, the resulting set of signals will have different charac- 

teristics depending upon the nature of the microphones. Hence the probability distribution 

of the signal depends on the microphone used and the signal contains information about 

the microphone. The main sources of information in speech signal are the following: (a) 

Phoneme, (b) Phonetic context or Coarticulation (c) Speaker, (d) Channel. 

Phoneme Information 

The smallest segments of sound that  can cause a change in the meaning of a word are 

termed as phonemes [15]. Often phonemes are considered as the basic units in conveying 

linguistic information and hence the ability to  correctly hypothesize the phoneme from the 

acoustic signal is crucial in automatic speech recognition. The information carried by the 

speech signal about the identity of the phonemes is referred t o  as phonetic information. 

Coarticulation-articulation or Context Information 

Both the acoustic characteristics and the perception of a sound are influenced by the 

sounds that  precede and follow. The acoustic influence of a sound on its neighbors is 

mainly caused by the inherent inertia of the speech production mechanism. We call the 

information carried by a speech sound about the identity of the following and preceding 

sounds as context information or coarticulation information. 

Speaker Information 

Human beings are able t o  recognize a familiar speaker from speech. The speech signal 

carries information about many factors that  helps us in recognizing speakers. These factors 

include dialect, prosodic features that  are specific t o  a speaker, vocal tract characteristics 

and vocal source characteristics [16]. The information that  is contained in the signal that  

carries the identity of a speaker is termed as speaker i n  formation.  



Channel Information 

The recording instruments and the communication channel affect the characteristics of 

the speech signal. The variability introduced by the microphones, communication chan- 

nels, and any acoustic noise that  gets added t o  the signal is referred t o  as the channel 

information carried by the speech signal. 

1.2 Variance and Information 

From the discussion in the previous section it is clear that  the speech signal contains 

information about various sources. In this dissertation we often refer to  the variability 

introduced by a source t o  imply the presence of information about the source. Often 

the feature extraction module achieves the goal of suppressing the unwanted sources of 

information by alleviating the variance introduced by those sources, while preserving the 

variability introduced by the wanted source. Hence in this section we formally review 

the relationship of the statistical quantity of variance t o  the mathematical definition of 

information. The entropy of a random variable x ,  H ( x ) ,  is defined by the expected value 

of - ln[p(x)], where p(x) is the probability density function of the random variable x: 

If the random variable x is Gaussian, then the entropy H is related t o  the variance pa- 

rameter a2 by the monotonic function [17] 

H (x) = In 06. 

This indicates that  the uncertainty associated with normal random variable x monotoni- 

cally increases with its variance. 

The information carried by the speech signal about a source can be quantified by 

the mutual information between the source and any measurement taken from the speech 

signal. Mutual information is a measure of the reduction of uncertainty of one random 

variable due t o  the knowledge of the other [la]. For example let us consider speaker as the 

source of information represented by the random variable x. Let the number of speakers be 



restricted t o  two which makes x a discrete random variable that  can take two values with 

equal probability of 0.5. Let y be a single dimensional feature extracted from the speech 

signal. Then the mutual information I ( x ;  y) tells us about the reduction in uncertainty 

about the identity of the speaker if we have the knowledge of the measurement y. Hence 

the mutual information between x and y directly quantifies the amount of information 

carried by the measurement y about the identity of the speaker. The mutual information 

I (x; y) is defined by 

p(x' dxdy. ~ ( x ;  y) = - Jp(x7  y) ln [p(x)p(y)] 

If the class conditional probability density functions of the two classes are normal and the 

the variances of the two distributions are equal then the joint distribution x and y is given 

where N ( y  : pi, a2) represents a univariate Gaussian function of y parameterized by mean, 

pi and variance 02. The categorical variable, x, representing the speaker identity is allowed 

t o  take either the value 1 or 2. From equation 1.1 and 1.2 the mutual information between 

x and y can be shown to  be equal to  

N ( y : p i , a 2 ) l n  2N(y : pi, 02) 

i=l CL1 N ( Y  : pi, a 2 )  

I ( x ;  y) is dependent only on the class conditional means p ~ ,  p~ and the variance 02. 

Figure 1.1 shows normalized I ( x ;  y) as a function of the sample variance of the class 

conditional means. It is evident from the figure that  for a fixed class conditional variance, 

an increase in the variance of the class conditional means results in an increase in mutual 

information. This observation is intuitive since an increase in the separation between the 

two class conditional means will result in an improved class separability. If the two classes 

have the same class conditional mean then the measurement y provides no information 

about the factor x. This follows from the fact that  if the variance of the class conditional 

means is zero the mutual information also diminishes t o  zero. From the figure it is also 
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Figure 1.1: Plot showing the effect of class conditional means and variances on the mutual 
information between the measured quantity y and the classes represented by the categorical 
variable x. 

clear that ,  if the variance of the class conditional means is held constant, then an increase 

in the class conditional variance decreases the mutual information. 

From the above discussion it is concluded that  the variance of the class conditional 

means is directly related to  the information contained in the measurement about the 

classes. Moreover the class conditional variances can be considered as the noise process 

that  reduces the information contained in the measurement. It is also interesting to  note 

that  the variance of the class conditional means (between-class variance) and the average 

of the class conditional variances (within-class variance) are used in Linear Discriminant 

Analysis (LDA) t o  estimate directions in the feature space that  preserve maximum class 

separability. LDA is extensively used in our effort t o  derive improved features. A detailed 

discussion on LDA is given in chapter 2. 



1.3 Relevance of Feature Extraction 

From the discussion presented in the previous section it is clear that  there are various 

sources that  introduce variability in the speech signal. Depending upon the application, 

typically we are interested in identifying only one source of variability. Hence an effective 

feature extraction technique should be able to  capture the variability in the data  caused 

by a desired source while suppressing the variability caused by undesirable sources. For 

example, in speech recognition, it is highly desirable t o  have features that  carry mainly 

phonetic information. Similarly for speaker recognition it is important to  have features 

that  carry mainly the speaker specific information while alleviating the variability intro- 

duced by channel. 

Feature extraction cannot provide any significant advantage if, (a) the training data 

used t o  train the recognizer contain all the variability(unwanted and wanted) that  the rec- 

ognizer is expected to  encounter during the test phase, and (b) the recognizer is flexible 

enough t o  capture any arbitrary distribution. In such a case the classifier can directly learn 

the invariant features from the training data. For the effective functioning of statistical 

classifiers many constraints are built in. For example, a limited number of Gaussian func- 

tions with diagonal covariances are used t o  approximate class conditional distributions. 

In many applications it is also not practical to  train a classifier using data. with all the 

variability that  may be present in the testing phase. For example, in speaker verification, 

a statistical model has t o  be built from a relatively small amount of speech data  t o  rep- 

resent the acoustic features of the target speaker and it is not practical t o  have training 

utterances collected from multiple telephone handsets. Hence the model will be highly 

biased towards the handset used t o  record the training utterance. Thus in such a situation 

it is highly desirable t o  have features that  are insensitive t o  channel characteristics. 

1.4 Extracting Information from Speech 

Out of the various types of information carried by the speech signal, the phonetic and 

speaker information are the most important sources. Extraction of phonetic information 

from the signal is crucial in implementing automatic speech recognition (ASR) systems. 



Similarly, extraction of speaker information is inevitable for speaker verification systems. 

This section briefly discusses the current dominant methods used for ASR and speaker 

verification. 

1.4.1 Automatic Speech Recognition 

The goal of automatic speech recognition is to  recognize the sequence of symbols from the 

speech signal. The speech signal is processed first t o  derive a sequence of feature vectors 

represented by X = ~ 1 x 2  . . . x ~ .  Then the task is t o  determine the sequence of symbols 

spoken, W = Wl W2. .  . Wk. According t o  Bayes' theory, for minimum error these symbols 

are t o  be chosen t o  maximize the posterior probability 

In most current speech recognizers, the class conditional distributions of the feature vec- 

tors are modeled using Hidden Markov Models [19, 21. The prior probability p(W) is 

implemented as a language model that  prefers more probable sequences of symbols over 

the less probable ones. Hidden Markov Models (HMMs) are trained using sequences of 

feature vectors extracted from symbols or phonemes. For large vocabulary continuous 

speech recognition (LVCSR) the language model is trained on a large text corpus. 

While both the language model and the HMMs are trained, the feature extraction 

module is still largely left for the designer t o  hand-craft. 

1.4.2 Speaker Verification 

The objective of a speaker verification system is to  verify the identity claim of a speaker 

from his or her speech. A speaker verification system could be either text dependent or 

it could be text independent [5]. In text dependent speaker verification, the speaker is 

constrained to  speak a specific text. No such restriction is placed in a text independent 

speaker verification task. Current text-independent speaker verification systems are based 

on modeling the feature vectors of the target speaker using a Gaussian mixture model 

(GMM) [20]. The unwanted linguistic variability of the acoustic features is suppressed 

by the simultaneous use of two GMMs, one is a speaker-specific GMM (A,), modeling 



the acoustic space of a given speaker, the second is the so called universal background 

model ( A b )  [21]. The universal background model (UBM) is a speaker independent model, 

trained using the speech data  of a large number of speakers. Thus the UBM represents 

a speaker independent distribution of the feature vectors. The speaker-specific model is 

obtained by maximum a posteriori (MAP) adaptation of the UBM with the data  of the 

specific target speaker. 

During the verification phase, the claim is rejected or accepted by comparing the log 

likelihood ratio with a threshold 8 as illustrated by the following equation, 

p(XJX,) reject 

In 5 8,  
P(X  I X b )  accept 

where X is a set of feature vectors extracted from the speech signal. It has been observed 

that  a reasonable verification error can be achieved if the speaker uses the same handset 

and telephone line for testing [20]. On the other hand, if the speaker uses a different 

telephone handset while testing, the verification error can increase by four t o  five times 

[22]. Hence processing techniques that  are robust t o  channel variability are of significance 

in speaker verification. 

1.5 Data-driven Feature Extraction - Deriving knowledge 

from data 

Figure 1.2 shows the block diagram of a generic classifier that  could be used for ASR or 

speaker recognition. The speech signal is first processed t o  extract features and these fea- 

tures are input t o  a statistical classifier. During the training phase the classifier estimates 

class conditional probability distributions of the feature vectors. During testing, given 

a feature vector (or a sequence of vectors) the classifier selects a class (or sequence of 

classes) that  best explains the generation of the feature vectors. The classifier is typically 

trained on a task specific database. For example, if we are interested in recognizing a 

sequence of digits, the classifier is trained using a database that  consists of continuously 

spoken digits. If the recognizer has t o  be speaker independent, then the database needs to  

have utterances from multiple speakers. Similarly, t o  make the system robust t o  handset 



Figure 1.2: Generic form of a recognizer used in speech and speaker recognition. While 
the statistical classifier is trained using a task specific speech data-base, the design of the 
feature extraction module is largely left to  the knowledge of the designer. 
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variability, the recognizer has t o  be trained using utterances recorded through multiple 

telephone handsets. 

While the classifiers are trained on a task-specific database, the feature extraction 

modules are generally hand crafted to  simulate certain properties of human hearing. For 

example, the short-time Fourier spectrum is passed through a set of auditory-like filters 

to  simulate the non-uniform frequency resolution observed in human auditory system. 

Even though feature extraction modules based on human speech perception have shown 

robustness t o  additive and convolutive distortions [12, 14, 231 they are not necessarily 

optimized to perform specific tasks like speech recognition and speaker verification. 

Figure 1.3 shows the block diagram of the generic recognizer with the proposed data- 

driven method for feature extraction. The feature extraction module is optimized using a 

speech corpus that  contains multiple sources of variability. The feature extractor is trained 

to  preserve the desired source of variability while suppressing the unwanted variability. 

The proposed data-driven approach for deriving features can be defined more formally as 

follows. Let s be the initial representation of the speech signal. The process of extracting 
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Figure 1.3: The proposed data-driven approach for designing the feature extraction mod- 
ule. 
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a set of N features, f ,  from s is given by 

f = F (s) (1.5) 

Feature Extraction 

The objective of data-driven feature extraction is to  estimate F(-)  so that  the extracted 

feature f contains as much of the desired information as possible while suppressing the 

unwanted information. Note that  the function F(.) defines all the steps involved in the 

feature extraction method. The following section discusses the issues involved in the 

proposed data-driven feature extraction paradigm. 

- 

1.5.1 Issues in Data-driven Feature Extraction 

The following important issues need t o  be addressed in the implementation of data-driven 

feature extraction methods: 

a Complexity of  feature extractor: An important issue is the allowable complexity 

of the function F(.) that  extracts features. If the function F(.)  is unconstrained, 

then unreasonably large amounts of data  and computation may be necessary t o  get 

a good estimate of the function. Hence in this work we use linear functions t o  extract 

features. 



Measure of optimality: The effectiveness of the approach depends on the optimal- 

ity measure used to  select the feature extraction function I?(.). If the desired source 

of variability is d then the ideal measure that  needs t o  be maximized is the mutual 

information between the factor d and the extracted feature f ,  I(f, d). This involves 

the estimation of joint probability density function o f f  and d [24, 251. Estimation 

of the joint density and the following search for the optimal I?(.) is computationally 

cumbersome. To avoid this, we define an optimality measure so that  the extracted 

feature f captures the maximum amount of variance due t o  the desired source while 

minimizing the variance captured from the undesired source. If the covariance due 

t o  the desired source of variability is Cd and that  of the undesired source is C,  the 
F ~ C  F linear transformation, I?(.), is estimated to  maximize &. AS seen in Section 1.2, 

the above measure will maximize the mutual information only if the distributions 

are normal with equal class-conditional covariances. 

Generalization capability: The ability of the estimated feature extraction method 

t o  generalize t o  new databases will determine the re-usability of the data-derived 

feature extraction module. For good generalization, the database used for estimating 

the feature extraction method should contain a sufficient sampling of all the possible 

variabilities that  we expect t o  encounter in the application. 

Initial representation: The choice of the initial representation of speech from 

which we attempt t o  extract features is an important issue. To make a minimum 

number of a priori assumptions, it would be necessary t o  choose the speech signal 

itself as the initial representation. In this thesis, we use the spectrogram resulting 

from the short-time Fourier analysis as the initial representation s .  Hence we are 

not attempting t o  question the optimality of short-time Fourier analysis. But the 

general paradigm is applicable to  any arbitrary initial representation including the 

speech waveform. 

1.5.2 Advantages of the Proposed Data-driven Approach 

The proposed data-driven method for feature extraction has the following advantages. 



1. Feature extraction involves reduction in dimensionality. By using data-driven meth- 

ods for feature extraction we are making sure that  the dimensions that  are preserved 

carry the maximum amount of useful information (or carry the least amount of harm- 

ful information) and thus improving the accuracy of the recognizer. 

2. A well trained data-driven feature extraction module will suppress the unwanted 

variability present in the speech signal. This could potentially reduce the amount 

of da ta  necessary for training the statistical classifier. This is due to the fact that 

the knowledge derived by the feature extraction module about the various sources 

of information is reused in every new task and hence need not be re-learned by the 

classifier. For example, if the extracted features are invariant t o  handset character- 

istics, then it is not necessary to  train a speaker verification system with data  from 

multiple handsets. 

3. The data-driven feature extractor can provide knowledge about the characteristics 

of various sources of information carried by the speech signal. In this dissertation we 

will show that  linear methods for feature extraction can be interpreted as spectral 

basis functions and temporal filters. The characteristics of these basis functions and 

filters can give insight into the structure of the various sources of information present 

in the signal. 

1.6 Contributions of the Work 

The dissertation is based on the hypothesis that  data-driven feature extraction can provide 

more robust features than the conventional methods that  are based on human knowledge 

about speech production and auditory perception. Two distinct data-driven methods are 

presented t o  support the hypothesis. In the first method, discriminant analysis is used to  

derive spectral features that  provide better phonetic separability. The effectiveness of the 

discriminant spectral features is tested using ASR experiments. In the second method, 

data-driven techniques are used to  design temporal filters t o  alleviate the variability intro- 

duced by telephone handsets. These filters are shown t o  improve the robustness of speaker 

verification systems. The main contributions of this work are summarized below. 



a Data-driven feature extraction: We propose a feature extraction technique that  

is based on retaining the wanted source of variability while suppressing the unwanted 

variability. Such an approach is motivated in Section 1.5. The possible advantages 

of data-driven feature extraction are outlined in Section 1.5.2. 

a Discriminant spectra1 basis functions: Discriminant methods are used for ex- 

tracting spectral features for ASR. Spectral basis functions that  preserve phonetic 

class separability are derived using linear discriminant analysis (LDA). For this anal- 

ysis we use a large hand-labeled speech corpus that  contains about 3 hours of data. 

The proposed discriminant features are shown t o  outperform the conventional fea- 

tures in a continuous digit recognition task. 

a Analysis of spectral basis functions: It is observed that  the discriminant basis 

functions analyze the low frequency part of the spectrum with higher resolution than 

the high frequency part. Further analysis is presented which relates non-uniform fre- 

quency resolution, phonetic discrimination, and spectral properties of speech sounds. 

a Estimation of handset variability: A method t o  estimate the second order statis- 

tics of the variability introduced by telephone handsets is proposed. The proposed 

method uses time aligned utterances recorded using different types of telephone 

handsets. 

a Temporal filter design. We introduce a data-driven method for designing filters 

capable of normalizing the variability introduced by telephone handsets. The design 

of the filter is based on the estimated second order statistics of handset variability. 

The filter is applied on the log energy outputs of Me1 spaced filter bank. The effec- 

tiveness of the proposed handset normalizing filter in improving speaker verification 

performance in mismatched conditions is also demonstrated. 

1.7 Outline of the Dissertation 

Chapter 2 provides a brief introduction t o  linear transformation techniques used for fea- 

ture extraction. The methods include principal component analysis (PCA) and linear 



discriminant analysis (LDA). Further the chapter describes the application of PCA and 

LDA to  derive spectral basis functions from the critical band spectrum. The spectral 

basis functions derived using PCA and LDA are compared t o  the basis functions used 

in the discrete cosine transform (DCT). The effect of phonetic classes on the shape of 

the discriminant functions are discussed. The chapter also demonstrates the capability of 

discriminant basis functions t o  reduce the error in comparison with the DCT and PCA in 

a continuous digit recognition task. 

Chapter 3 discusses our attempt to  directly derive spectral basis functions by applying 

discriminant analysis on D F T  spectrum. This avoids the need for critical band filters. It 

is observed that  the discriminant basis functions analyze the low frequency part of the 

spectrum with higher resolution than the high frequency part. The cause and effect of such 

basis functions are investigated. Performance of these basis functions are also evaluated 

by ASR experiments. 

In Chapter 4, we propose a data-driven method for designing temporal filters for 

normalizing the variability introduced by different telephone handsets. First a brief in- 

troduction t o  temporal processing is provided. This is followed by an analysis of the 

characteristics of handset variability. This leads t o  a discussion of the data-driven method 

used for designing a handset normalizing RASTA (RelAtive SpeacTrAl) filter [23, 261. 

The design of the filter is based on the estimated second order statistics of phonetic and 

handset variability. These estimates are used by oriented principal component analysis 

(OPCA) in order to  derive an optimal filter. The characteristics of this filter is compared 

with the conventional RASTA filter [23]. 

The application of these filters in speaker verification is presented in Chapter 5. The 

speaker verification task of the 1998 and the 1999 speaker recognition evaluation conducted 

by the National Institute of Standards and Technology (NIST), is used for comparing 

the data-driven filters with conventional channel normalizing methods like RASTA and 

mean subtraction (MS). The effect of designing the filters using mean removed temporal 

trajectories are also discussed. 

Chapter 6 summarizes the work and suggests future directions. 



Chapter 2 

Spectral Basis Function for Automatic 

Speech Recognition 

2.1 Introduction 

In the past, data-driven techniques have been used for designing temporal RASTA filters 

for enhancement of noisy speech [27] and for robust ASR [28, 291. In this chapter we 

attempt t o  derive optimal spectral basis functions for ASR. Principle component analysis 

(PCA) and linear discriminant analysis (LDA) [30, 311 are used for designing optimized 

spectral basis functions for the projection of the critical-band spectrum. This is an attempt 

t o  question the optimality of the cosine basis in the context of discriminating phonemes. 

A brief discussion of this work can be found in [32]. 

The chapter is organized as follows. The next section briefly discusses the impact of 

using data-driven approaches on language and acoustic modeling in ASR. The section 

highlights the advantages of data-driven methods in comparison with knowledge based 

systems. This serves as a motivation for adopting data-driven methods for feature extrac- 

tion. Section 2.3 reviews one of the widely used feature extraction methods, which uses 

an auditory-like filter-bank analysis followed by DCT. This representation serves as the 

baseline for all the speech recognition experiments described in this chapter. The following 

section discusses principle component analysis of the critical-band spectrum as a method 

to design a spectral basis. The characteristics of the basis function derived using PCA are 

compared with the conventional cosine basis. Section 2.6.3 introduces the use of LDA for 

deriving basis functions. The influence of the constituent phonetic classes on the shape of 



the discriminant basis functions is also discussed. Results of frame based phoneme recog- 

nition experiments are reported in Section 2.7. Performance of the discriminant basis 

functions is further analyzed by connected digit recognition in Section 2.8. 

2.2 Data-Driven Approaches in ASR - A Brief History 

Typical large vocabulary automatic recognition of speech (ASR) consists of three main 

components: feature extraction, pattern classification, and language modeling. Feature 

extraction attempts to  reduce the data  rate of raw speech data  by alleviating irrelevant 

variability such as speaker characteristics or environmental noise. Pattern classification 

further reduces the da ta  rate by classifying each time instant into one of the subword- 

unit classes, and language modeling compensates for possible errors of classification by 

emphasizing more likely word combinations. 

Early ASR systems were inspired by the advances in artificial intelligence (AI) 1331. 

These systems relied on sets of rules for pattern classification and language modeling. 

These rules were often prescribed by experts in reading spectrograms and hand crafted for 

specific recognition problems at hand [34, 35, 361. They worked reasonably well for small 

tasks under controlled environments. The performance of such systems were found to  be 

fragile [37]. 

The past two decades have witnessed the introduction of stochastic approaches in both 

the pattern classification and the language modeling modules. These stochastic approaches 

brought the rich mathematical basis that  was available in the classical pattern recognition 

literature to  ASR. In the current ASR systems, the pattern classification module uses 

Hidden Markov Models (HMM) [19, 21 and Artificial Neural Networks [38] while the 

language models are in the form of N-grams which are trained from a large text corpus 

[39]. Stochastic techniques typically use only minimal a priori assumptions about the 

nature of the problem. Such techniques estimate the parameters of models directly from 

the data. Replacing the hardwired prior knowledge by the knowledge derived from the 

data  turned out t o  be one of most significant advances in ASR research. 
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Figure 2.1: Generic form of dominant speech representations used in ASR. The short-time 
speech spectrum is modified by auditory-motivated processing. This may include warping 
of the frequency axis and smoothing of the spectrum by simulated auditory-like filters. 
Modifications along the amplitude axis typically involves a logarithmic nonlinearity. The 
modified spectrum is then projected on cosine basis. 

2.3 Current Feature Extraction Techniques for ASR 

Data-driven approaches are still largely absent in the analysis module. Only recently, 

some emerging efforts in deriving temporal RASTA processing from the da ta  have started 

to  appear[28, 29, 401. The current work attempts t o  extend such data-driven techniques 

into optimization of spectral bases in speech analysis. 

The analysis module in ASR typically consists of a series of processing steps as shown 

in Figure 2.1. Some of these steps are inherited from speech coding, and some justified 

by perceptual or pattern matching arguments. A widely used speech representation is 

the auditory-like cepstrum [12, 141. This cepstrum represents an appropriately modified 

(through auditory-like frequency and amplitude warping and critical-band smoothing) 

short-term spectrum of speech, projected onto a cosine basis. The short-term spectrum 

is derived from about 25 ms long consecutive segments of the speech signal. The spectral 



modifications are justified by properties of human hearing [14], and the cosine projec- 

tion by the need for partial decorrelation of features [41] used in the subsequent pattern 

classification. 

2.3.1 Short-time Fourier Analysis 

Short-time analysis is one of the most widely used and accepted processing techniques for 

speech. The fundamental assumption in short-time analysis is that  even though speech 

is non-stationary, over sufficiently short-time intervals it can be considered stationary. 

Hence the Fourier transform of a short segment of speech should give a good spectral 

representation of speech. The discrete short-time Fourier transform of a signal s(n) is 

given by 

where t is the discrete time index and h( t )  is a symmetric window applied t o  the short-time 

signal and is non-zero only in the interval - k  to  k .  Typically a Hamming window of 25 

ms duration is used. Such a window when applied on a signal which is sampled a t  8 kHz 

will band-limit S(w,  t )  t o  80 Hz in t dimension. Hence S(w, t )  needs t o  be sampled a t  160 

Hz [42, 431. However, in practice, we have observed that  sampling a t  100 Hz (every 10 

ms) makes no difference t o  the processing. 

2.3.2 Non-Uniform Frequency Resolution 

The squared magnitude of the short-time Fourier spectrum, Sp(w, t )  = )S (W,  t ) ) ,  is further 

processed t o  simulate the non-uniform frequency resolution observed in human auditory 

perception. The notion of critical bands suggests that  the resolution of the human ear 

is non-uniform across the frequency band [44]. This is due t o  integration of energy of 

signals that  fall within a critical band. Psychoacoustic experiments using simultaneous 

frequency masking have revealed that  the bandwidth of critical bands increases with the 

center frequency. This property of hearing is simulated in the current feature extraction 

modules by projecting the short-time power spectrum onto the frequency responses of the 

simulated critical band filters, represented by the following equation 



where fk and s, are column vectors representing the frequency response of the kth critical 

bands and the short-time power spectrum respectively. This operation yields s l , k  which is 

the logarithmic energy output from the kth critical band. 

2.3.3 Projection onto Cosine Basis 

The logarithmic critical band spectrum is then projected onto a cosine basis by the matrix 

multiplication, 

where sl is the vector of 15 critical band energies and C the matrix whose rows are the 

cosine basis function. The feature vector cc resulting from the DCT is also known as the 

cepstruml. It has been shown that  for vectors which are generated by a first order Markov 

processes, projection onto a cosine basis approximately decorrelates the distribution [41, 

47, 481. Decorrelated feature vectors can be effectively used in training HMMs that  use 

diagonal covariance matrices for modeling class conditional distributions. The capability 

of the DCT t o  decorrelate the features is illustrated Figure 2.2. The figure shows the 

covariance of the critical band spectral vectors computed over the English portion of the 

OGI STORIES corpus. This portion of the corpus consists of fluent telephone-quality 

speech from 210 adults of both genders. I t  is clear from the figure that  the cosine basis 

functions make the total covariance close t o  diagonal. But still the covariance matrix 

computed in the cepstral space does have significant off diagonal elements. I t  is also 

interesting to  note that  the variance captured by the first cosine basis vector amounts to 

'Typically only the f i s t  few components of this cepstral vector are used for ASR. This truncation 
leads to a smoothing of the auditory spectrum. One of the f i s t  uses of cepstrum was in the form of 
homomorphic deconvolution. Truncation of a cepstral vector leads to what is known as cepstral smoothing 
of the log-magnitude spectrum, thus deconvolving the source and the system characteristics present in the 
log-magnitude spectrum. This technique, to our knowledge, was first introduced in speech processing by 
A.  M. No11 [45] and later extended for spectral smoothing by A. Oppenheim [46]. In the case of auditory 
power spectrum this smoothing has already been achieved up to some extent by the critical band filters. 
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Figure 2.2: Upper left: The cumulative variance captured by using progressively higher
frequency cosine basis vectors. Upper center: Covariance matrix of the original critical-
band auditory spectral space derived from about 3 hours of OGI STORIES speech corpus.
As seen, the spectral covariance matrix is far from diagonal. Upper right: The total
spectral covariance matrix, projected on the first 8 vectors of the cosine basis, is partially
diagonalized. The figure also shows the first 6 cosine basis functions.

about 70% of the total variability. Since the first cosine basis vector is flat across the

critical bands, it means that the majority of variance in the speech spectrum is caused by

variation in average energy. The first 10 cosine basis functions capture almost the entire

variance present in the data. This indicates that the 15 dimensional critical band spectrum

can be represented by a significantly lower dimensional vector which supports the cepstral

truncation often performed in ASR. This also indicates the amount the redundancy that

is present in spectral vectors.

The rest of the chapter explores alternative linear mapping techniques to the DCT for



improving the performance of ASR. The technique used is based on analyzing spectral fea- 

tures extracted from about 3 hours of speech data  from the OGI STORIES corpus. This 

corpus thus contains all major sources of variability encountered in the speech signal, in- 

cluding channel/handset variability, context/coarticulation variability, speaker variability, 

and phonetic variability. 

2.4 Linear Mapping for Feature Extraction 

This section briefly reviews linear mapping techniques for extracting features used in this 

as well as the following chapter for extracting features. Principal component analysis 

(PCA) and linear discriminant analysis (LDA) are two linear mapping techniques which 

are extensively used in pattern recognition. While principal component analysis focuses 

on preserving as much variance as possible, LDA tries t o  preserve the variability that  max- 

imizes linear separability of 2 or more classes. Both PCA and LDA are linear techniques 

that  try t o  extract features from a random vector by projecting the vector onto a set of 

basis vectors. Consider an N dimensional random vector x having zero mean. Then a 

set of features yi can be extracted from x by projecting x onto feature-extracting basis 

functions given by 

In the above equation, 4; is the basis which extracts features by linearly combining 

(weighted average) the components of the random vector x. Note that ,  for each of 

the features y; i = 1 , 2 . .  . N to carry unique information about x, the basis vectors, 

b;, i = 1 , 2  . . . N have t o  be linearly independent. It is the properties of 4; that  differen- 

tiate PCA from LDA, and the next two subsections elaborate on these properties. Also 

note that  the DCT is a special case of a linear mapping where the basis functions, 4;, are 

cosines. 



2.5 Spectral Basis from Principal Component Analysis 

2.5.1 Principal Component Analysis 

If the basis functions 4; in Equation 2.3 are the eigenvectors of the covariance matrix of x, 

then the resultant feature extraction is termed as principal component analysis [49]. This 

is also the discrete version of Karhunen-Lo6ve transform (KLT). The basis functions 4; 
are used t o  represent x with an M dimensional vector where M < N. The PCA-derived 

basis guarantees that  the lower-dimensional representation gives minimum reconstruction 

error. Since 4; are orthogonal to  each other2, x can be reconstructed from y; using the 

following equation. 

Note that  4; are sorted according to  the corresponding eigen-values. Hence, if X i ,  i = 

1 , 2 . .  . N  are the corresponding eigen-values, then A; 2 X j  if i < j .  If the eigenvectors of 

the covariance matrix of x are used as 4; then the error in reconstruction, E ,  given by 

F = E [(x - ii)2] , 

is minimum for any M. It can also be shown that  the covariance matrix of the vector 

y = [y1y2.. . yN] is diagonal. Hence the two main advantages of using the PCA basis to  

extract features are that  (a) Dimensionality reduction guarantees minimum reconstruction 

error, and (b) the covariance matrix of the extracted feature is diagonal, aiding the use of 

simpler models. Note that  PCA is designed to  minimize the reconstruction error and not 

the classification error. 

2.5.2 Principal Component Analysis of Critical Band Spectrum 

In this section, the effectiveness of the cosine transform in decorrelating the speech rep- 

resentations is studied. This is done by comparing the cosine basis t o  the basis function 

'since covariance matrices are symmetric, eigenvectors of a covariance matrix are always orthogonal to 
each other. 



obtained from principal component analysis which involves solving the following eigen- 

value problem, 

Ce; = Xe;. (2.5) 

where C is the covariance matrix of the feature vectors extracted from the STORIES 

database. The principal component analysis was performed on 15-dimensional critical 

band spectrum obtained by using Bark spaced trapezoid-shaped filters [14]. Figure 2.3 

shows the basis functions derived through PCA of critical band spectrum. The basis 

vectors are reminiscent of cosine functions, with the first vector measuring the spectral 

energy, and the consecutively higher ones similar t o  cosine-like functions with decreasing 

period. The transformed covariance matrix is of course diagonal. 

The following two conclusions are drawn from this analysis: 

The DCT makes the total covariance of the critical band spectrum approximately 

diagonal. 

I t  is clear by comparing Figure 2.3 and Figure 2.2 that  the PCA basis is very similar 

t o  the cosine basis. Thus, DCT is a good choice for decorrelating the critical band 

spectrum. This also indicates that  cepstral truncation can be used as a method to  

reduce dimensionality, which results in minimum reconstruction error. 

2.6 Discriminant Analysis of Critical Band Spectrum 

2.6.1 Linear Discriminant Analysis 

In speech recognition, the features extracted from the signal are used t o  classify the sounds 

into phonetic categories. Hence a feature extraction technique should be designed to  

preserve as much class separability as possible. An ideal feature extractor should be able 

t o  reduce the error t o  its theoretical limit, which is given by Bayes' error [49]. For an 

L class problem, the Bayes' classifier that  yields minimum error compares L a posteriori 

probabilities, P ~ ~ , ( X ) ,  pzlx(x) . . .pLlx (x), and classifies x t o  the class that  gives maximum 

a posteriori probability. Another interesting point is that  the a posteriori probabilities are 
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Figure 2.3: Upper left: The cumulative variance captured by the first 8 principal compo-

nents. Upper center:The total spectral covariance matrix projected on the basis vectors

given by principal component analysis. The first six basis functions derived by PCA of
the critical-band spectral space are also shown.

not linearly independent, since

L

LPilx(X) = 1.
i=l

(2.6)

Only L - 1 of the L posterior probabilities are linearly independent. Hence these L - 1

linearly independent features are the ideal set of features that would give an error which is

equal to the error given by a Bayes' classifier. That is, by transforming the original random

vector x into an L - 1 dimensional vector by using the transformation, Yi = Pilx(x), i =

1, 2, . .. L - 1, no classification information is lost.

Even though Bayes' error is the best criterion and the a posterior probabilities the

best features, a posteriori probability functions are hard to estimate without severe biases



and variances. Hence, in discriminant analysis simpler measures are used t o  optimize the 

feature extraction process. 

The basis functions used for LDA are designed t o  maximize linear separability between 

classes. Linear separability is defined with the help of within-class and between-class 

scatter matrices (covariance matrices). The within-class covariance represents how much 

the samples within a class vary and is given by 

where p; and P, are the class conditional mean and the a priori probability of the f h  class 

respectively. The between-class covariance matrix is the covariance of the class conditional 

means themselves given by 

where Pi is the a priori probability of class i. 

A property of S,  and Sb is that  they sum up t o  the total covariance and hence LDA 

can be viewed as decomposing the total variability into within-class and between-class 

variability. A widely used criterion for class separability is defined by 

It is straight forward to  show that  the set of basis vectors C$i, that  satisfies the following 

generalized eigen-value problem 

maximizes F. It must be noted that  the matrix Sb can have a maximum rank of L - 1. 

Which in turn makes the rank of [SilSb] also L - 1. Hence the maximum number of 

linearly independent basis functions that  can be computed using the above equation is 
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Figure 2.4: Illustration of the difference between PCA direction and LDA direction. Pro-
jecting the original two-dimensional vector onto the PCA direction preserves maximum
variability. But the resultant class conditional distributions overlap significantly. On
the other hand, projection onto the LDA direction yields a one-dimensional feature with
minimal overlap of class conditional distributions.

L - 1. Figure 2.4 highlights the difference between LDA and PCA. From the figure it is

clear that PCA may provide features which result in significant overlap of class conditional

distributions, which in turn results in higher error. On the other hand LDA yields features

with minimum overlap of class conditional distributions.

It should be noted that the basis functions computed using LDA are optimal only

under the following assumptions:

. The class conditional distributions are normal.

. All the class-conditional covariances are equal.



Only two classes are involved in the classification. 

If the above conditions are met, then the basis functions given by LDA are guaranteed 

t o  be optimal and the classification error will be equal to  the Bayes' error bound. When 

these conditions are not met, dimensionality reduction using discriminant basis vectors can 

increase the overlap of class conditional distributions. This in turn causes an increase in 

the lowest theoretical achievable error. But practically, even for multi-modal distributions, 

t r ~ c e ( S ; ~ S ~ )  has been found to  be a good measure for class separability unless the class 

conditional means are all the same [49]. Moreover, in this thesis, LDA is used not only 

as a feature extraction method to  reduce classification errors, but as a analysis tool t o  

understand the nature of variability that  is important for phonetic discrimination. 

2.6.2 Review of Discriminant Methods for Feature Extraction in Speech 

LDA is not new t o  speech processing. To our knowledge, its use has been first studied 

by Hunt [41]. Later, in a series of articles, Hunt and his colleagues used LDA t o  combine 

disparate acoustic parameters including temporal derivatives t o  improve performance and 

for dimensionality reduction [50, 51, 521. They call it IMELDA - Integrated Mel-scale 

representation with LDA. In all these studies, classes defined by the states of HMMs 

were used to  compute the within- and between-class covariances. These statistics were 

derived from trained HMMs representing words. More recently Ayer extended the idea 

of IMELDA t o  optimize word separability using gradient decent methods, which he calls 

whole-word adaptive LDA (WALDA) [53]. This version of LDA was designed t o  focus on 

those word tokens that  yield borderline recognition decisions. Discriminant analysis was 

also used by Brown t o  process several concatenated feature vectors, thus addressing both 

temporal and spectral dimensions [54]. 

Doddington uses a state specific discriminant transformation for improving the recog- 

nition performance. For each of the HMM states a transformation which enhances the 

discrimination between that  state and other confusable states is derived [55]. A similar 

method for improving the recognition performance of an HMM based ASR system was 

reported by Woodland and Cole [56]. 



Linear discriminant analysis is further optimized by Schukat-Talamazzini in a maxi- 

mum likelihood frame-work and is used to  optimize the projection used for feature ex- 

traction and HMM parameters simultaneously [57]. However this method was found to  

be impractical due to  its computational needs. Finally a comparison of various linear 

transformations as alternatives t o  the DCT can be found in [58, 591. 

All the work related t o  the application of discriminant analysis found in the literature 

focuses on improving the recognition performance of a specific task by using discriminant 

vectors instead of the DCT. In this thesis (in the current and following chapters), the focus 

is on deriving discriminant vectors from various initial representations. The objective is not 

only to  improve the recognition performance but also to  understand the characteristics 

of the short-time spectrum relevant for phonetic discrimination. The work reported in 

this dissertation regarding the use of discriminant linear transformation is unique in the 

following aspects: 

1. We use phonemes as classes and relatively large labeled databases t o  estimate S, 

and Sb and not the classes defined by states in HMM . This makes the results less 

dependent on the particular HMM structure used for recognition. 

2. For estimating the LDA basis functions, we use a sufficiently large database (ap- 

proximately 3 hours of speech) which contain all the major sources of information. 

The effectiveness of the discriminant basis functions are then evaluated by ASR 

experiments. We consistently use an independent corpus for this evaluation. This 

would help in evaluating the generalization capability of the proposed discriminant 

analysis. 

3. We analyze and interpret the shapes of the discriminant basis functions. Such an 

analysis, for example, could lead to  the understanding of the type of spectral changes 

which carry significant phonetic information. 

4. We apply discriminant analysis directly t o  the DFT-spectrum, bypassing the filter- 

bank analysis. This leads t o  establishing a link between nonuniform frequency res- 

olution (implied by Me1 and critical-bank integration) and phonetic discrimination. 



In the next section, we investigate the use of LDA t o  derive spectral weighting functions 

(spectral basis) as an alternative to  the cosine basis used in the conventional Mel/critical- 

band cepstral analysis. 

2.6.3 Discriminant Basis Functions 

From the previous section it is clear that  the DCT approximately decorrelates the features. 

In this section, the optimality of such a rotation in preserving phonetic discriminability 

is questioned. In this context it is assumed that  phonemes are the basic units for speech 

recognition. Hence the rotation and dimensionality reduction should be able t o  preserve 

the variance introduced by phonemes while suppressing the variance introduced by sources 

like coarticulation, channel and speaker. The PCA/DCT basis projects the features onto 

the directions of maximum variability. As known, there are many sources of variability in 

speech, many of them harmful for phonetic classification [60, 61, 621. Hence it is desirable 

to  project the space on the direction of maximum separability rather than on the direction 

of maximum variance. As described in the previous section linear discriminant analysis 

estimates the direction of maximum linear separability. 

As seen in the previous subsection, computing the discriminant vectors involves gen- 

eralized eigendecomposition of (Sb, Sw), where S, refers t o  the matrix of the mean of 

the covariances of classes and Sb the matrix of the covariance of the means of the classes. 

Figure 2.5 shows the diagonal elements of the within- and the between-class covariance 

matrix, computed on critical band spectral features from the STORIES database. This 

computation involved approximately 650,000 feature vectors. It is interesting that  the 

between-class variance is significantly higher than the within-class variance a t  around 5 

barks. This suggests that  the maximum amount of discriminable information is present 

at around 500 Hz. This observation is consistent with the work reported by Yang et. al., 

[24] where it was shown that  the mutual information between phonetic labels and spectral 

measurements is the highest for the spectral band centered a t  around 500 Hz. Figure 2.5 

also illustrates the effect of removing the mean of the spectral vectors from each utterance 

on within- and between-class variance. It is clear that  mean normalization significantly 

reduces the within class variance without affecting between-class variance. This can be 



- - Within class - Across class 

Without Mean Subtraction With Mean Subtraction 

Frequency (Barks) ~ r e h u e n c ~  (Barks) 

Figure 2.5: The within- and the between-class variances computed on critical band spectral 
feature with and without utterance based mean subtraction. 

explained as follows: Long-term average of logarithmic spectra primarily contains infor- 

mation about the speaker and channel [62], both of which contribute t o  within-class vari- 

ance. Hence subtracting the average spectral vector from each of the utterances reduces 

the within-class variance without affecting the between-class variance. 

We have often observed that  a direct computation of the discriminant eigenvectors 

leads t o  noisy solution. Such a solution is characterized by discriminant vectors that  

are not smooth. This is because of directions in the feature space that  yield a high F- 

ratio but contain very little variance3. In this work we alleviated this problem by first 

smoothing the critical-band energy vectors using truncated PCA, which preserved 99% of 

the original variance in the data. This eliminates directions in the feature space containing 

less than a 1% of total variance and makes the solution relatively noise free. The result 

is illustrated in Figure 2.6 which shows the first six eigenvectors (linear discriminants) of 

the PCA-smoothed (99% of variance) Fisher discriminant matrix [63]. 

3Since F-ratio is the ratio of between- and within-class variance, it can assume a large value even if 
both the between- and within-class variances are s m d .  



Covariance : After transformation 

Index of Discriminants 1 5 10 15 

-0.5 

1 5 10 15 1 5 10 15 1 5 10 15 
Frequency (Barks) 

Figure 2.6: Upper left: Eigenvalues of the LDA-derived basis vectors. Upper center: The 
total critical-band spectral correlation matrix, projected on the first 8 basis vectors of the 
LDA-derived basis. The first 7 LDA-derived spectral basis functions of the critical-band 
spectral space are also shown. 

The first four discriminant basis functions seems t o  be significantly different from 

cosine functions. Unlike the first cosine function, the total energy of the spectrum is no 

longer measured. The first discriminant appears t o  evaluate spectral energy in the first 

formant region and could be primarily discriminating between sonorant and non-sonorant 

sounds. The second and third discriminants seem to  be focusing on spectral ripples [64] 

in the central part of the critical-band spectrum, the second one being more sensitive to 

larger ripples than the third one. The 4th one analyses the portion of the spectrum that  

lies above 5 Barks. The 5th discriminant vector is sensitive t o  spectral ripples with a 

5 Bark period. The 5th and 6th discriminants are very similar t o  sinusoidal functions. 
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Figure 2.7: Effect of constituent phonetic classes on the shape of discriminant basis vectors 
derived using LDA. 

The higher discriminants are less important as the eigenvalues associated with them are 

relatively small. Just  as in the PCA, the LDA-transformed covariance matrix is also 

diagonal. 

2.6.4 Effect of Constituent Classes on the Discriminant Vectors 

It is important t o  note that  the shape of the discriminant spectral basis vectors is deter- 

mined by the phonetic classes under consideration. In order t o  illustrate this point the 

design of the discriminant spectral basis functions was carried out by considering only 

the vowels. In Figure 2.7, the resultant discriminant basis functions are compared with 

those computed by LDA of all phonetic classes. The major difference between the two 

sets of basis is in the first discriminant vector. When all the phonemes are considered 



the first discriminant vector seems t o  integrate the energy in the first formant region as 

well as analyze the spectral slope of the spectrum. Such an analysis could only be help- 

ful in distinguishing sonorant sounds from non-sonorants. Hence the vectors designed to  

discriminate various vowels does not have such a function. Another difference is in the 

absence of frequency selective basis function (4th). 

The dependency of the discriminant functions on the set of phonemes involved in the 

design suggests the use of a different spectral basis depending upon the vocabulary used 

in the ASR task. 

2.7 Phoneme Classification Experiments 

To asses the effectiveness of the data-derived spectral basis we ran a phoneme-classification 

experiments. T he task was t o  classify individual frames of the test set into one of the 29 

phonemes. The classification was based on a single spectral frame. Logarithmic spectral 

mean was subtracted from each file to  partially compensate for communication channel 

differences. Speech from about 1400 files from the OGI NUMBERS corpus were used in 

the training of a simple single-density, diagonal-covariance Gaussian classifier. Each file 

contains an utterance of a sequence of digits (zip codes, telephone numbers etc.) spoken 

by a single speaker. Approximately 120, 000 spectral frames from around 800 utterances 

were used for testing. This experimental setup was used for evaluating the following three 

different spectral bases vectors. 

1. Cosine spectral basis (8 DCT coefficients). 

2. Spectral basis from PCA of OGI STORIES corpus (first 8 coefficients) 

3. Spectral basis from LDA of OGI STORIES corpus (first 8 coefficients). 

Results of these experiments are shown in Table.2.1. The full covariance classifier results 

are practically identical (they should be identical if there was no truncation of higher 

basis functions since such classifier is invariant under linear projections). For the diagonal 

covariance case, which is of more interest for HMM classification, the LDA-derived basis 

vectors perform better than both the cepstrum and the PCA basis. This difference in 



Table 2.1: Phoneme classification error on the OGI Numbers corpus 

performance is significant according t o  the binomial test for a chosen significance level of 

0.001 (i.e a t  99.9% confidence level). 

2.8 Connected Digit Recognition Experiments 

LDA 
52.10 % 
51.27 % 

Covariance 
DIAG 
FTJLL 

In order t o  asses the usefulness of the discriminant basis functions in a practical ASR ap- 

plication these basis functions were used as feature extractors in an HMM based connected 

digit recognizer. The task is to  recognize connected digits spoken by multiple speakers 

over different telephone channels. The digits part of the OGI numbers database was used 

for this purpose. The training part consists of about 2500 training utterances and the 

testing part consists of around 2200 utterances. Context independent monophones were 

the basis acoustic models for decoding the digit strings. Multiple pronunciations for the 

digits were also considered. 

Figure 2.8 shows the word error rate for the discriminant features as compared to  the 

DCT and PCA features. The error given by the discriminant features is consistently lower 

than the PCA and DCT features. For lower dimensional features, LDA features yield 

significantly lower error. While using 4-dimensional features the error reduction is more 

than 30%. Hence it can be concluded that  by using a discriminant spectral basis, we can 

either achieve lower error, or we can maintain the same performance with smaller number 

of features. 

The performance of the LDA-derived feature vectors with additional dynamic features 

given by velocity and acceleration coefficients [65] was also analyzed. Table 2.2 summarizes 

the results. For all these experiments the delta and acceleration coefficients were appended 

t o  the DCT- and LDA-derived feature vectors. For these experiments the architecture 

of the HMMs was varied to  observe the effect of complexity of modeling (number of 

DCT 
53.10 % 
51.30 % 

PCA 
54.00 % 
51.32 % 
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Figure 2.8: Word error rate given by PCA, DCT and LDA features as a function of the 
number of dimensions of the feature space. 

parameters used t o  model the distribution of the feature vectors). From the table it is 

Table 2.2: Comparison of word error rates given by cosine (DCT) basis function and 
discriminant functions derived using LDA. The task is t o  recognize continuously spoken 
digits from the OGI Numbers corpus. For the above experiments, 8 features appended 
with the velocity and acceleration coefficients were used. 

clear that  irrespective of the complexity of modeling, the LDA basis functions outperform 

the DCT. It must be noted that  only the 1-state 1-mixture model matches with the 

assumptions that  went into LDA while in other cases mixture models with multiple states 

were used t o  model the class conditional distribution. Hence it is very encouraging t o  note 

that  even a t  very low error rates (from 5-state 3-mixture case) when the complexity of 



modeling is very high the LDA basis performs significantly better than the DCT. 

2.9 Discussion and Conclusions 

In this chapter we first examined the nature of the basis functions that  correspond t o  the 

direction of maximum variability derived using principal component analysis of the critical 

band spectrum. The results indicate a high similarity between these basis functions and 

the cosine functions used by DCT. Linear discriminant analysis (LDA) was performed on 

the critical-band spectrum by considering context independent phonemes as classes. The 

discriminant basis functions were found to  be significantly different from the cosine func- 

tions. The alternative spectral basis functions offer an advantage in phoneme classification 

of spectral vectors. This advantage seems to  hold irrespective of the complexity of the 

task. The LDA derived basis functions outperformed the conventional DCT in connected 

word recognition tasks as well. 

Periodicity of the optimized spectral bases in the Bark domain could point t o  the 

usefulness of Bark-like spectral warping in phoneme classification. The zero-crossings 

of the LDA-derived spectral basis functions are reasonably uniformly spaced on the Bark 

scale of the auditory-like critical-band spectrum. Thus, it appears that  the Bark frequency 

scale allows for use of simple basis functions in phoneme classification. The following 

chapter further examines the relevance of Mel/Bark warping in the context of phonetic 

discriminability. 



Chapter 3 

Non-uniform Frequency Resolution from 

Speech Data 

3.1 Introduction 

In the previous chapter the optimality of the DCT applied t o  the critical-band spectrum 

was analyzed. It was shown that  basis functions derived using linear discriminant analysis 

perform better than the DCT. In this chapter the utility of critical-band analysis itself 

is investigated. Use of critical-band analysis (or Me1 filter-bank analysis) is motivated by 

properties of hearing. This analysis provides a non-uniform resolution to  the short-term 

Fourier spectrum of speech signal. In this chapter we investigate the usefulness of such an 

analysis from the point of view of pattern recognition and spectral properties of speech 

sounds. Through such an analysis we show that  the Bark/Mel like frequency resolution 

automatically results from discriminant analysis of short-time Fourier spectrum of speech. 

We also show that  such a resolution can be traced to  the spectral properties of vowels. 

These properties are further related t o  the physiology of the vocal tract. 

This chapter is organized as follows. The next section briefly discusses the origin of the 

concept of critical bands as it evolved out of perceptual experiments. It also describes the 

signal processing methods used t o  emulate this property of hearing. Section 3.3 reports 

the results of the discriminant analysis performed on the D F T  spectrum and discusses the 

nature of discriminant information across the spectrum. The effect of constituent pho- 

netic classes on the nature of discriminant functions is the focus of Section 3.4. Section 

3.5 explores the causes for the non-uniform resolution found in the spectral discriminant 



function. The effect of such non-uniform resolution in terms of sensitivity to  formant loca- 

tion is discussed in Section 3.6. ASR experiments with features extracted by discriminant 

basis functions are reported in Section 3.7. 

3.2 Non-uniform Spectral Resolution - Its Origin 

3.2.1 Critical Bands 

The presence of one sound may obscure or even prevent the perception of another sound. 

The process by which the threshold of audibility of a sound is raised by the presence of 

another sound is termed as masking. Perceptual experiments involving masking can pro- 

vide useful information about properties of hearing. In this section, earlier work involving 

such perceptual experiments is reviewed. Specifically of interest is simultaneous masking 

in which the signal is presented simultaneously with the masker. I t  was these experiments 

that  led t o  the concept of critical bands. 

The first systematic study of the masking of a pure tone by another was reported 

by Wegel and Lane [66]. In their work, the threshold of audibility of a tone with vary- 

ing frequency was estimated in the presence of a fixed frequency sinusoidal masker. The 

masked audiogram' generated from these experiments show steep slopes on the low fre- 

quency side. The slopes on the high frequency side are less steep. The notion of critical 

bands was introduced by Fletcher [67] in order t o  explain many such phenomena related 

t o  simultaneous masking. In particular it was devised t o  explain the masking phenomenon 

of a narrow band (sinusoidal) signal by wide-band noise. He hypothesized that  the early 

auditory system works as a bank of bandpass filters with overlapping center frequencies. 

He again hypothesized that  only a narrow band of frequencies surrounding the tone (the 

critical band) contributes to  the masking of a pure sinusoid. This hypothesis was later 

confirmed with the help of experiments in which the threshold of hearing a pure tone was 

measured in noise. It was observed that  an increase in noise bandwidth beyond a certain 

limit does not effect the threshold [68, 691. Figure 3.1 shows the critical bandwidth as a 

'The figure showing the variation of the threshold of audibility as a function of the frequency of the 
masker is called the audiogram 



function of the center frequency. The estimation of critical bandwidth is due t o  Zwicker 

e t  al., [44]. It is clear from the figure that  the critical bandwidth increases with frequency. 

This suggests that  the ear has more resolution in the lower frequency region than in the 

high frequency region. A low frequency pure tone is masked only by sounds that  are 
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Figure 3.1: Variation of the critical band width as a function of the center frequency. 

within a small frequency range centered around the frequency of the pure tone. In the 

case of high frequency tones, sounds within a relatively wide range of frequency around the 

frequency of the pure tone can mask the stimulus. From the above discussion, it is clear 

that  auditory system uses non-uniform resolution in perceiving sounds. This resolution is 

high in the lower frequency region and low in high frequency region. 

3.2.2 Simulating Critical Bands for ASR 

It was observed in the previous section that  the notion of critical bands suggests that  the 

resolution of the human ear is non-uniform across the frequency band. As discussed in the 

previous chapter, this property of hearing is simulated in the current feature extraction 

module by projecting the power spectrum onto the frequency responses of the simulated 



critical band filters. Figure 3.2 shows the basis functions onto which the power spectrum is 

projected t o  simulate critical band integration [14]. The set of filters illustrated in Figure 

Frequency 

Figure 3.2: The basis functions used t o  simulate the critical bands. Note that  only a few 
filters are shown t o  clearly illustrate the increasing band-width with centered frequency. 

3.2 is used in perceptual linear prediction (PLP). The frequency response of these filters 

have a trapezoidal shape and their bandwidths are equal in the Bark frequency scale [14]. 

The Bark frequency R is related to  frequency w in the following manner [70]. 

Another widely used simulation uses triangular shaped filters and follows Me1 frequency 

scale [71] instead of Bark. The Hz t o  Me1 conversion is given by the following equation. 

Thus both the Me1 and Bark frequency scales expand the frequency axis in the lower fre- 

quency region and compresses the high frequency region. Filter-banks with equal band- 

widths in these scales have the effect of providing lower resolution in the high frequency 



region and higher resolution in the low frequency region. In the remaining part of this 

chapter the relationship between this non-uniform resolution and phonetic discriminability 

is investigated. The effect of such resolution in measuring distance between two spectra 

is also studied. 

3.3 Analyzing the Nature of Discriminant Vectors 

The nature of phonetic information carried by different parts of the spectrum needs to  be 

analyzed in order t o  understand the relevance of Mel/Bark like warping. In this section we 

explain the use of linear discriminant analysis (LDA) to  analyze the phonetic information 

carried by the different parts of the spectrum. For this we use the English portion of 

OGI STORIES corpus which consists of about 200 speakers, each speaking for about a 

minute. Short-time Fourier analysis on this database yields logarithmic spectra from over 

600,000 frames of data2. First, only vowels were considered for discriminant analysis. 

Class conditional means and covariances were computed for 12 vowels. The mean spectral 

patterns corresponding t o  the 12 vowels are shown in Figure 3.3. The mean spectral 

patterns do not show the harmonic structure usually present in the spectrum of vowels. 

This is due t o  the extensive averaging done over multiple speakers and phonetic contexts. 

Also notice that ,  in general, the second and third formants are fused together, again caused 

by averaging. Out of the two spectral peaks exhibited by most of the mean patterns, the 

first one seems t o  be significantly sharper than the second. 

The covariance of the mean vectors constitutes the between-class covariance Cb and 

the average of the class conditional covariances gives the within-class covariance C,. As 

seen in the previous chapter, eigendecomposition of CilCb yields the discriminant vectors 

that  point in the direction of maximum class separability. 

Figure 3.4 shows these linear discriminant vectors. The first noticeable pattern in 

these basis functions is the higher emphasis given t o  the low frequency part (up to  2 kHz) 

of the spectrum. This suggests that  this portion of the spectrum carries the majority of 

'A 256 point DFT was used to compute the short-time Fourier spectrum. Since this analysis results in 
a symmetric spectrum, only the first 129 points were considered. The speech was sampled at 8 kHz and 
hence the 129 point spectrum gives a uniform resolution of 31.25 Hz. 
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Figure 3.3: The mean spectral patterns computed for 12 vowels from the OGI STORIES 
corpus. 

features relevant for discriminating vowels. Another important feature is that  the higher 

order basis vectors have more cycles than the lower ones. Since the discriminant vectors 

are ordered with respect t o  the amount of discriminable information carried, it implies 

that  the gross shape of the spectrum provides features that  are more important than 

finer details. Within each discriminant vector the analysis resolution seems t o  drop with 

frequency, as indicated by the length of half cycles observed in the basis functions. For 

example, in the first discriminant vector, the periods of the first three half cycles are about 

185 Hz, 375 Hz, and 1125 Hz, respectively. This clearly indicates an increased analysis 

resolution given t o  the lower frequency region as compared to the high frequency part of the 
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Figure 3.4: The first four discriminant vectors which describes directions in the feature 
space which provides maximum linear separability between vowels. 

spectrum. Figure 3.5 shows the period of the half cycles, also known as the ripple period, 

as a function of frequency measured form the first six spectral discriminants. From the 

figure it is evident that  the ripple period increases with frequency and hence the analysis 

resolution decreases with frequency. The trend is similar t o  the resolution provided by 

critical band analysis. This result indicates that  the discriminative information in speech 

sounds is consistent with the non-uniform frequency resolution observed in human auditory 

system. Such non-uniform frequency resolution has also been suggested as a method to  

normalize vocal-tract length variations caused by speakers [72]. 



First Discriminant 

- i2.5r7 

'5 1.5 
a 
a 1  - 
20.5 .- 
II: 

0.4 

0.2 

0.1 0.5 1 2 4 
Frequency (kHz) 

0.1 0.5 1 2 4 
Frequency (kHz) 

Figure 3.5: Plot showing the period of half-cycles (ripple period) as a function of frequency, 
measured from the first six discriminants. 

3.4 Effect of Constituent Phonetic Classes on Discriminant 

Vectors 

In this section, we describe the results of discriminant analysis on four different phonetic 

categories. The categories are vowels, stops, fricatives and diphthongs. The phonemes 

involved in these broad categories are listed in Appendex A. This experiment is designed 

to  investigate the relationship between the nature of the discriminant vectors and the 

phonemes present in the broad categories. 

Figure 3.6 shows the first four discriminant vectors derived separately from vowels, 

stops, fricatives, and diphthongs. Nasals were left out since there were only two classes 

present in the analysis (which would lead to  only one linearly independent discriminant 

vector). From the figure it is clear that  the non-uniform resolution is prominent only in 

the discriminant vectors extracted from vowel and diphthong categories. The discriminant 

vectors extracted from stops and fricatives seem to  lack this behavior. This indicates that 



the non-uniform resolution exhibited by the discriminant vectors indicates some charac- 

teristics which are specific t o  sonorant sounds. Although the discriminant basis functions 

Fricatives 
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Figure 3.6: Linear discriminant vectors on sub-categories of phonemes. For vowels the 
discriminant vectors clearly indicate a higher analysis resolution in the low frequency 
region than in high frequency regions. This trend is absent for the stops and fricatives. In 
the case of diphthongs the non-uniform resolution is again evident especially in the first 
two discriminants. 

derived from stops and fricatives are noisy the functions seem to  exhibit certain interesting 

behavior. For example, the main difference between voiced and unvoiced stops is in the 

presence or absence of a spectral peak caused by voicing. This is illustrated in the mean 

spectral patterns of phonemes shown in Appendix B. The prominent peak in the first 

discriminant extracted from stop sounds could possibly detect the presence of voicing. 



From an articulatory point of view, sonorants can be characterized by spectral features, 

where as the characteristic features of obstruents lie in the spectral dynamics. This is 

further supported by the F-ratio (ratio of across class t o  between class variance) given by 

the broad categories. Figure 3.7 shows the F-ratio given by the various broad categories. 

It is evident that  vowels and diphthongs provide significantly higher F-ratios as compared 

t o  stops, fricatives, and nasals. This implies that  there is limited benefit in using using 

the short-term spectrum as a feature to classify obstruent sounds. 
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Figure 3.7: The F-ratio as a function of number of discriminant vectors used. The vowels 
and diphthongs possesses significantly higher linear-separability as compared t o  stops, 
fricatives and nasals. 
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Experiments in the previous section have demonstrated that  the non-uniform resolution of 

the discriminant vectors is due t o  vowel-like sounds. Hence we analyze the functions that  

are optimal for discriminating two vowels. Figure 3.8 shows various pairs of mean spectral 

patterns and their corresponding discriminant functions. From Figure 3.8 we can see that  

- 7- Nasals 



the spectral means of vowels are characterized by two spectral peaks3. It is also quite 

evident from the shape of the spectral means that  the width of the spectral peak increases 

with frequency. For simplicity the class conditional covariances are assumed t o  be white. 

As shown in Appendix C, this implies that  the the direction of maximum separability is 

given by the difference vector d = pl - p2. From Figure 3.8 it is evident that  the shape 

of these discriminant vectors clearly show non-uniform analysis resolution. It is shown in 
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Figure 3.8: The class conditional spectral means of two pairs of vowels and the corre- 
sponding discriminant function. 

Appendix D that  this non-uniform resolution is caused by the broader peak that  appears 

in the high frequency region of the spectral means. 

Relation to  Speech Production 

In this subsection, the cause for the non-uniform width of peaks that  appear in the spectral 

mean vectors is explained in terms of speech production. Note that  these mean vectors are 

computed by averaging spectral vectors obtained from real speech data.  Within a vowel 

class, the formant location varies from one spectral vector t o  another. One reason for this 

3Note that the spectral peak and width of the peak are not directly related to the formant and band- 
width. The spectral shape corresponding to p1 and pz has been averaged over many individual instances 
and hence need not physically resemble the spectrum of any speech sound. 



variability is due t o  the differences in length of vocal tracts across multiple speakers. It 

can be shown that  for a uniform tube model of the vocal tract ,  a change in the length of 

the vocal tract affects the higher formant locations more than the lower formants. Thus 

the variance of higher formant locations will be larger than that  of the lower formants. 

Hence the peaks that  appear in the high frequency region of the mean spectral vector will 

be broader. For a uniform tube model it can also be shown that  the rate of change of 

logarithmic resonant frequencies with respect t o  the vocal tract length are equal for all 

the formants. This implies that  for maximum linear discriminability, the frequency axis 

has t o  be logarithmically warped. The same effect can be achieved by using discriminant 

basis functions which provide non-uniform analysis resolution. 

3.6 Effect of Non-Uniform Resolution 

The cause of non-uniform frequency resolution exhibited by discriminant vectors has been 

established in the previous section. In this section, the effect of such basis functions 

is analyzed. Since most of the sonorant sounds are characterized by spectral peaks or 

formants, it is important to  understand the sensitivity of these basis functions t o  formant 

locations. The logarithmic spectrum with a single peak (formant) with center frequency 

p and bandwidth b is given by the function, 

1 
~ p ( f  = 10 log10 1 + e(-b"T)2 - 2e-brT c o s ( 2 ~ T ( f  - p)) 1 1 

where T is the sampling period. A scalar feature, y(p), extracted from the above spectrum 

using a basis function d(f) is given by 

The feature y(p) is a function of the formant location p. Finally the sensitivity s(p) of the 

discriminant function d(f )  is computed by 

s(p) gives the magnitude of the rate of change of the feature extracted as a function 

of the formant location p. Figure 3.9 shows the first two LDA basis functions and the 



Discriminant Function Discriminant Function - I 1 

Extracted Feature Extracted Feature 

Sensitivity to Formant Location Sensitivity to Formant Location 

0 O04p-1 02 

0 
0 1 2 3 4 0 1 2 3 4 

Frequency (kHz) Frequency (kHz) 

Figure 3.9: The sensitivity of two discriminant functions to  the location of spectral peaks. 
The figure indicates a progressively decreasing sensitivity with frequency. 

feature y(p), extracted by them, as a function of the formant location p. The last row 

in the figure shows the sensitivity of these features t o  the formant location as defined 

by Equation 3.5. The sensitivity shows a cyclic behavior due t o  the sinusoidal nature 

of the basis functions. The amplitude of these cycles clearly show a decreasing trend 

with frequency. This demonstrates that  the discriminant basis functions provide higher 

sensitivity t o  lower formants than t o  higher formants. 

The above described sensitivity analysis was repeated with 8 dimensional features 

extracted by DCT and LDA and the PLP filter bank analysis. It  is evident from the 

Figure 3.10 that  features extracted by DCT provide relatively uniform sensitivity. The 

features extracted by LDA are more sensitive t o  changes in low frequency than in high 

frequency. Also note the the PLP filter bank analysis, tha t  simulates the critical bands, 

also provides features which are more sensitive to  changes in low frequency than in high 

frequency. Hence, the non-uniform sensitivity of LDA features seems t o  be consistent with 

human hearing. 
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Figure 3.10: The sensitivity of feature vectors extracted by DCT, LDA and PLP filter 
bank analysis. 

Non-uniform sensitivity of LDA features t o  formant location is consistent with the 

properties of human hearing. Using perceptual experiments Flanagan showed that  the 

just noticeable difference in perceiving formants is proportional t o  the formant frequency 

[73]. This means that  for humans to  perceive a difference, formant shift has to  be larger in 

terms of absolute frequency for higher formants than for lower formants. This illustrates 

that  some of the properties of human hearing desirable for phonetic discrimination. This 

property has also been exploited by PLP modeling [14]. 

3.7 Connected Digit Recognition Experiments 

In this section, the effect of discriminant basis functions on connected digit recognition 

is studied. These basis functions are directly applied on the D F T  spectrum. Hence a 

comparison of its performance with the DCT will demonstrate the importance of the 

non-uniform analysis resolution exhibited by the discriminant functions. 

For connected digit recognition, linear discriminant analysis was performed with the 22 

phonemes necessary t o  describe the digits4. The resultant discriminant vectors are shown 

in Figure 3.11. Note that  the first discriminant vector does a voiced-unvoiced detection. 

4The discriminant basis functions were derived from the STORIES corpus. 
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Figure 3.11: The first eight spectral discriminant functions derived from OGI STORIES 
data  base. Only the 22 phonemes occurring in digits were considered for LDA. 

The processing carried out by the first basis vectors t o  the portion of the spectrum that  lies 

in the telephone bandwidth can be summarized as follows. Logarithmic energy between 

300 and 900 Hz is integrated. Energy that  falls above 3000 Hz is then subtracted from 

this quantity. Almost all the voiced sounds has more energy in the low frequency region 

than in the high frequency region. Hence the feature extracted by the first discriminant 

vector will be positive for voiced sounds and will be negative for unvoiced sounds. Hence 

we can conclude that  the first basis vectors helps in making a voiced-unvoiced decision. 

As seen earlier the higher discriminants provide more analysis resolution to  the lower 

frequency region of the spectrum. These discriminant basis functions were used in a 

recognition experiment involving the OGI NUMBERS corpus. The training part con- 

sists of approximately 2500 utterances and the testing portion consists of 2200 utterances. 



Table 3.1: Comparison of word error rates given by features extracted by projecting 
logarithmic spectra on cosine basis vectors and discriminant basis vectors. The task is 
t o  recognize continuously spoken digits from the OGI NUMBERS corpus. The table 
also shows the relative error reduction achieved by the use of LDA-derived basis vectors 
compared t o  cosine basis vectors. 

This database consists of different speakers speaking a string of continuous digits over 

different telephone channels. The number of continuous digits spoken varies from one to  

ten digits. The majority of these utterances are telephone numbers and zip-codes. For 

modeling, phonemes were considered as the basis acoustic units, and these were modeled 

using continuous density Hidden Markov models. The probability density for each state 

was modeled using mixture of Gaussian functions with diagonal covariances. The recogni- 

tion experiments were repeated with various HMM architectures with varying number of 

parameters. The baseline system used the DCT on logarithmic power spectra. This was 

compared with a system that  used the discriminant vectors shown in Figure 3.11 instead 

of cosine functions. Both the baseline system and the system using discriminant features 

used 8 dimensional feature vectors. In both cases, dynamic features consisting of velocity 

and acceleration coefficients were appended t o  the feature vectors. Table 3.1 shows the 

word error rates for the baseline system which used the DCT on Fourier spectrum and 

the system which uses discriminant basis functions. From the table it is evident that  the 

discriminant basis functions significantly reduce the error as compared t o  the DCT. The 

relative reduction in error is always in excess of 20% irrespective of the complexity of 

the modeling used to  represent the phonemes. For 3-state &mixture modeling the error 

reduction is almost 30%. An increase in model complexity leads t o  an overall reduction 

in error. For 5-state 5-mixture modeling the accuracy is above 92%. Even then, the dis- 

criminant basis functions provide a relative error reduction of 21%. This clearly indicates 



Table 3.2: Word error rates for LDA features extracted from three different initial represen- 
tations. Log spectrum refers t o  features obtained by projecting the logarithmic spectrum 
onto the discriminant basis functions. Discriminant features extracted after smoothing 
the power spectrum (either by PLP filter banks or by uniform filter banks) results in a 
minor improvement in performance. 

the significance of Mel/Bark like resolution in achieving better recognition performance. 

Log spectrum 
6.3 % 

3.7.1 Significance of Smoothing the Power Spectrum 

We have shown that  the discriminant basis functions significantly reduce word error rate 

as compared t o  the DCT basis functions. In these experiments we have used logarithmic 

spectrum as the initial representation. As reported in the previous chapter discriminant 

analysis can also be performed on spectral vectors smoothed by critical-band filters. We 

observed that  the error rate resulting from the LDA features derived directly from the 

logarithmic spectrum is higher than that  resulting from the LDA features derived from 

the critical-band spectrum. This could be due t o  the integration done by critical-band 

filters on the power spectrum. In order to  test this hypothesis we derived LDA features 

from filter banks with uniform bandwidth. Table 3.2 compares the performance of LDA 

features extracted from logarithmic power spectrum and from P L P  filter banks. The table 

also shows the results for LDA features derived from uniform filter-banks.5 LDA features 

extracted from uniform filter banks and from PLP filter banks performs equally well. This 

indicates the importance of integrating the power spectrum before passing it through the 

log nonlinearity. 

The spectral integration that  is performed before applying the logarithmic nonlinearity 

cannot be simulated by the LDA basis functions applied on the un-smoothed logarithmic 

spectrum since it requires nonlinear operations. Hence optimization of the filtering op- 

eration cannot be achieved using linear discriminant analysis. However, use of linear 

PLP filter banks 
5.8 % 

5Forty uniform filter banks were used to derive the initial features. Linear discriminant analysis was 
performed on these features using the OGI stories data base as discussed in Section 2. 

Uniform filter banks 
5.8 % 



discriminant analysis makes the choice of these filters less critical. 

3.8 Summary and Conclusions 

In this chapter we investigated the nature of phonetic discriminant information present 

in the short-time spectrum of the speech signal. The shape of the discriminant vectors 

computed using LDA indicates the spectral variations that  are important in discriminating 

phonemes. Analysis resolution of these discriminant vectors was determined by the period 

of a half cycle in the basis vectors. The smaller the period, the higher the resolution. We 

observed that  the discriminant vectors analyze the low frequency part of the spectrum 

with higher resolution than the high frequency part. This trend is consistent with what is 

implied by using Mel/Bark filter banks. The cause of such non-uniform resolution as an 

outcome of LDA was further investigated. It was shown that  this trend is primarily caused 

by vowels and diphthongs. Moreover, the resulting non-uniform resolution is attributed 

t o  the non-uniform width of peaks seen in the class conditional spectral means. The 

effect of such non-uniform resolution on the sensitivity of discriminant features t o  formant 

locations was also analyzed. 

Non-uniform frequency resolution in the form of critical-band filters is mainly used 

in ASR systems to  emulate human hearing. In this chapter we have established a link 

between non-uniform frequency resolution, phonetic discrimination and spectral properties 

of vowel-like sounds. 



Chapter 4 

Temporal Processing for Channel 

Normalization 

4.1 Introduction 

The focus of this chapter is on feature processing methods for increasing the robustness 

of speaker verification systems in the presence of channel variability. The variability 

introduced by microphones in particular and channels in general can significantly degrade 

the performance of both speech recognition and speaker verification systems. In automatic 

speech recognition(ASR) systems it is typically possible t o  train the recognizers with 

speech recorded using different telephone handsets and this makes the system relatively 

insensitive t o  handset variability. On the other hand in speaker recognition, a statistical 

model has t o  be designed from a relatively small amount of speech data  to  represent 

the acoustic features of the target speaker and it is not always practical t o  have training 

utterances collected from multiple telephone handsets. This results in models which are 

highly biased towards the handset used to  record the training utterance. It has been 

observed that  good verification performance can be achieved if the speaker uses the same 

handset and telephone line for testing [20]. On the other hand if the speaker uses a different 

telephone handset while testing, the verification error rate can increase by a factor of four 

to  five [74, 221. Hence features that  are robust to  handset variability are of significance in 

speaker verification. 

In this chapter we introduce a data-driven method for designing handset normalizing 



filters. The resultant filter is applied t o  the temporal trajectories of logarithmic spec- 

tral energies. Any stationary convolutive distortion will be an additive component in the 

logarithmic spectral energy domain, making it convenient for alleviating handset variabil- 

ity. Methods for processing temporal trajectories of logarithmic energy have already been 

proven t o  be effective in dealing with channel variability [23, 751. In the current work 

we suggest a novel method t o  estimate the variability introduced by telephone handsets. 

This estimate is used t o  design a temporal filter which would suppress handset variability. 

Compared t o  some of the earlier methods [75], the proposed filter design method avoids the 

use of computationally expensive and time consuming speaker verification experiments. 

The chapter is organized as follows. First a brief introduction t o  temporal processing 

is provided, followed by an analysis of the characteristics of handset variability. This leads 

t o  a discussion of the data-driven method used for the design of a handset normalizing 

filter in Section 4.4. Methods for the estimation of handset and phonetic variability are 

described in the following two sections, and these estimates are used by oriented principal 

component analysis (OPCA) in order t o  design an optimal filter. The characteristics of 

this filter are discussed in Section 4.6. 

4.2 Introduction to Temporal Processing 

This section provides a brief introduction t o  temporal processing techniques used to  

extract features from speech. For a detailed review refer t o  [27, 401. Temporal pro- 

cessing in the context of this chapter means any modification t o  the temporal trajec- 

tory of a short-time spectral component. This spectral component is the output of an 

auditory-like (Me1 or Bark) filter. Let us denote the spectrogram resulting from short- 

time analysis as S(wk, t i) ,  k = 1 , 2 . .  . N ,  i = 1 , 2 . .  .T, where N and T are the number of 

frequency bands and the number of time steps used for the short-time analysis respec- 

tively. The temporal processing is performed on the logarithm of the squared magnitude, 

Sl(wk, ti) = log((S(wk, t;)12). Then, Sl(wk, ti), i = 1 , 2 .  . . T is the time trajectory of the 

logarithmic energy corresponding to  the lcth frequency band. The power spectrum of such 

a time trajectory is referred t o  as the modulation spectrum [27]. The Nyquist frequency 
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of the modulation spectrum is given by (ti~t~-d' Typically, ti - ti-l (which is the window

shift in the short-time analysis) is 10 ms. Hence the Nyq uist frequency of the modulation

spectrum is 50 Hz. Figure 4.1 illustrates the concept of the modulation spectrum.
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Figure 4.1: Illustration of the notion of modulation spectrum of speech.
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microphone with impulse response h(t) is transformed t o  s,(t) by 

sc(t) = s( t )  * h(t). (4.1) 

After short term Fourier analysis, the short-term spectrum of the signal can be written as 

Sc(w, t) = S(w, t)H(w) (4.2) 

log(l~,(w, t)12) = l o g ( l ~ ( w , t )  1 2 )  + l o g ( l ~ ( w )  1 2 )  
Note that  we have assumed that  the handset is stationary. Hence the short-term spec- 

trum corresponding t o  the handset is independent of time t .  1 0 ~ ( l H ( w ) 1 ~ )  is the additive 

component introduced into the short-term logarithmic spectrum by the handset. This 

additive component could make the distribution of acoustic vectors significantly different 

from the distribution estimated from training data. This in turn leads t o  poor recognition 

performance. One way to deal with this is to  use blind deconvolution [76] which removes 

the long-term average from the logarithmic spectrum. 

It is straightforward to  show that  any convolutive distortion of the signal affects the 

mean of the time trajectory (direct current or the DC component of the modulation 

spectrum). Hence the mean subtraction (MS) operation applied on the log-magnitude 

spectrum (or any of its linearly transformed versions, like the cepstrum), widely known 

as cepstral mean subtraction (CMS) can be viewed as temporal processing which removes 

the DC component of the modulation spectrum. MS has been shown t o  make the features 

robust to  handset variability [77,3]. Mean removal can also be seen as a filtering operation 

where the filter is non causal and uses a variable number of past and future sample for 

the filtering operation. Figure 4.2 (a) shows the impulse and frequency response of the 

filter implied by mean removal. The frequency response is dependent on the length of the 

utterance. The high-pass cut off becomes lower as the length of the utterance increases. 

The MS has been proven to  make the processing robust to  handset variability in both 

speech recognition as well as speaker verification systems [77, 31, but the MS technique 

requires the entire utterance be available a priori and hence is not a suitable candidate 

for real time implementation. 



4.2.1 Temporal Filters 

More recently, RASTA (RelAtive SpecTrA) processing was introduced as an alternative t o  

MS [23]. The RASTA filter is an IIR band-pass filter with the following transfer function 

Figure 4.2 (b) shows the frequency response of the RASTA filter. The filter attenuates 

modulation frequency components below 1Hz and above 10 Hz. Thus, it not only elim- 

inates stationary and slowly varying convolutive distortions, but it also eliminates fast 

varying (higher than 10 Hz) modulation frequency components. The low-pass filtering 

also helps t o  smooth spectral changes present in adjacent frames as a results of analysis 

artifacts (like position of the window with respect to  the pitch period). RASTA-like filters 

have enjoyed considerable success in dealing with channel mismatches in ASR [23]. 

In the case of speaker verification, it has been shown that  modulation frequency com- 

ponents as low as 0.125 Hz carry useful speaker information [I]. Hence use of the RASTA 

filter, which attenuates modulation frequency components below 1 Hz, degrades speaker 

verification performance. In order t o  address this problem, van Vuuren [I] uses a low-pass 

filter in conjunction with mean subtraction to  normalize handset mismatches in speaker 

verification. Figure 4.2 (c) shows the impulse and frequency responses implied by such a 

technique. The design of this low-pass filter was based on performance of a speaker verifi- 

cation system. Hence the technique could be tuned t o  the characteristics of the recognition 

system and the da ta  used t o  evaluate the performance. In the current work, we suggest 

a data-driven method to  automatically design a temporal filter that  suppresses handset 

variability. This method avoids the use of computationally-expensive and time-consuming 

speaker verification experiments [75] in order t o  design appropriate temporal filters. Since 

no explicit recognition is involved in the filter design, the result may also generalize to  

various recognizers. 
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Figure 4.2: Impulse and frequency response of some existing channel normalizing tem- 
poral filters. (a) The filter implied by mean removal. The high pass cut-off frequency 
is dependent on the length of the signal on which mean removal is applied. (b) RASTA 
filter. (c) The temporal low-pass filter used by van Vuuren [l] in conjunction with mean 
removal for handset normalization in speaker verification. 



4.3 Database to Study Channel Variability 

The variability introduced by different telephone handsets significantly degrades the per- 

formance of speaker verification systems [74, 22, 78, 791. Quatieri et al. studied the spec- 

tral differences introduced by carbon button and electret type microphones [go]. They 

found that  carbon button microphones introduce what they call phantom formants due 

to  the non-linear transfer function of the microphone. This demonstrates the severe mis- 

match that  could result from changing the microphone type. Hence the study of handset 

variability reported in this chapter focuses on telephone handset variability. 

For the analysis and estimation of handset variability, the HTIMIT database is used 

[81]. This corpus consists of speech utterances from 192 males and the same number of 

females recorded through various telephone handsets. It consists of 10 utterances per 

speaker. The HTIMIT corpus was collected by passing TIMIT [82] utterances through 

ten different microphones. Out of these ten microphones, four are of electret type and 

four are of carbon-button type. 

As discussed in the previous section one of the factors that  gets affected by variation in 

microphones is the long term average of logarithmic spectrum. Figure 4.3 shows the mean 

vectors of short-term logarithmic spectrum, computed from the same utterance passed 

through six different microphones. From the figure it is clear that  the mean spectral 

vectors differ significantly from one microphone t o  another. As a whole, the spectral 

means corresponding to  the carbon button microphones seem t o  be significantly different 

from that  corresponding t o  electret type. Variability of the spectral means among carbon 

button microphones seems t o  be significantly higher than the variability among electret 

microphones. This is presumably due t o  the physical mechanism used in a carbon button 

transducer to  convert acoustic pressure t o  electric signal. 

Since in this work, temporal processing is used t o  normalize handset mismatches, the 

effect of different microphones on the temporal domain is also of interest. Figure 4.4 

shows the temporal trajectory of logarithmic energy corresponding to  the 5th Me1 filter 

bank. The major difference between the two handsets is the difference in the frequency- 

dependent gain which shows up as a DC shift in the logarithmic domain. It can also be 
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Figure 4.3: Spectral means extracted from an utterance recorded through six different 
microphones. 

noted that  this DC shift is non-uniform across different segments of the utterance. 

From the above discussion, it clear that  the variation in microphone type affects the 

temporal trajectory of logarithmic energy in a complex fashion. The following section 

develops a method to  mathematically analyze these variations and t o  design filters t o  

suppress this variability. 

4.4 Channel Normalizing Filter Design 

The objective is t o  design a filter which, by acting on the time trajectories of logarithmic 

energies, will minimize the variability introduced by different microphones. The initial 

short time processing will yield logarithmic energies from 19 Me1 spaced filter banks, 

which are represented by Sl(wk, t i ) ,  k = 1 , 2 . .  .19. A one second long time trajectory 

corresponding to  the kth Me1 filter is denoted by, 

T 
xk (t) = [si (wk, t - 50) Si (wk, t - 49) . . . Sl (wr , t + 50)]  , 
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Figure 4.4: Temporal trajectories of logarithmic energies from the 5th Me1 frequency band 
extracted from the same speech segment passed through carbon button and electret type 
microphones. 

represents the signal that  needs to  be filtered. Since the window shift used in the short- 

term analysis is 10 ms, x k ( t )  is a 101 dimensional vector. 

The temporal filtering operation can be represented by the following equation. 

where hk is the vector representing the time-reversed impulse response of the implied filter 

and y k ( t )  is the filtered signal. This filtering operation can be considered as projecting 

the vector x k ( t )  onto the direction h k .  The filtering has t o  be repeated for each of the 

the frequency bands. For simplicity, from here on we drop the index k representing the 

frequency band. 

For handset normalization, h should point t o  the direction in the feature space where 

the variability due t o  handset is minimum. In order t o  prevent a trivial solution (h = 0) 

we impose the additional constraint that  h should retain as much of the relevant signal 

variability as possible, while suppressing the handset variability. The design criteria can 



be achieved by selecting h t o  maximize the signal-to-noise ratio, p, given by the following 

equations. 

where y,(t) and y,(t) are the signal and noise components of y( t )  respectively. In the 

above equation C, is the covariance of the signal and Cn is the covariance of the noise. 

Note that  for this design we are considering the variance caused by handset as noise. It 

is fairly straight forward t o  show that  the quantity p is maximized by setting h t o  el the 

leading eigenvector of the following generalized eigenvalue problem. 

The above design process has t o  be repeated for each of the 19 Me1 filter banks thus 

yielding 19 temporal filters (ek, k = 1 , 2 . .  .19), one corresponding t o  each of the 19 bands. 

The generalized eigendecomposition implied by equation 4.5 is also referred to  as ori- 

ented principal components analysis (OPCA) of the pair of random vectors, ( x , ( t ) ,  x ,( t))  

[83]. It is so called since the principal eigenvector e is steered by the direction of xn ( t ) .  It 

will be oriented towards the direction where x n ( t )  has minimum variance while maximizing 

the variance of x, ( t ) .  If the noise covariance is diagonal, En = 01, then the noise vectors 

are isotropically distributed in the signal space. This will provide no steering t o  e .  In 

such a condition the generalized eigendecomposition C,e = XCne, reduces t o  the standard 

eigenvalue problem, C,e = A e .  Hence it can be concluded that  OPCA is not different 

from PCA unless the noise process x,(t) is colored. Figure 4.5 illustrates this point. It is 

evident from the above discussion that  the second order statistics of the handset and the 

desired signal variability are required in order t o  design handset normalizing filters. 
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Figure 4.5: Illustration of the effect of colored noise in steering the OPCA away from the 
direction of noise variability. The figure also illustrates how OPCA defaults t o  PCA when 
the noise is white. 

4.4.1 Estimation of Channel Variability 

In this section a method t o  estimate the statistics of the handset characteristics is devel- 

oped. The HTIMIT database is used for estimating the handset statistics. HTIMIT con- 

sists of TIMIT sentences passed through ten different microphones and they are recorded 

synchronously. For our experiments speech passed through four carbon button micro- 

phones and four electret microphones was used. Temporal feature vectors extracted from 

speech recorded through i th and the j t h  microphones are denoted by x;(t)  and x j ( t ) .  It 

should be noted that  x;(t) and x j ( t )  are extracted from the same sentence spoken by the 

same speaker in the same phonetic context. The only difference between x;(t) and x j ( t )  is 

that  the speech signal from which they were extracted were recorded through two different 

telephone handsets. Hence the difference between these two temporal vectors dk should 

point in the direction of microphone variability and is given by 

The noise vectors d that  point in the direction of handset variability were computed 

over the entire HTIMIT database. This computation was independently performed on all 

the 19 Me1 frequency banks. The following equation gives the covariance of the handset 



variability, which is required for the design of handset normalizing filters. 

4.4.2 Estimation of Desired Variability 

For the design of the handset normalizing filter, we consider the variability introduced by 

the handset as the undesired source of variability. As discussed in the beginning of this 

section (Equation 4.4) in order t o  yield a non-trivial solution, the minimization of handset 

variability has t o  be carried out while preserving as much of the desired signal variance as 

possible. 

Since our objective is text-independent speaker verification, it is tempting t o  consider 

the variability introduced by various speech sounds (which we call as phonetic variability) 

as undesirable. However, the simultaneous use of universal background model (UBM) and 

the speaker specific Gaussian mixture model (GMM) effectively alleviates phonetic vari- 

ability [21]. Moreover, since each of the mixture components are independently adapted 

using speaker specific data,  the GMM-based speaker verification system can potentially 

capture phoneme specific speaker characteristics. Hence removing phonetic variability 

could potentially degrade the performance. Therefore, in our filter design we are consid- 

ering the variability introduced by phonetic classes as the signal variance that  needs t o  be 

preserved1. For the filter to  be optimal for speaker verification, we have t o  constrain the 

solution of Equation 4.4 so as to  prevent the removal of speaker variability. This can be 

done by considering the combined speaker and phonetic variability as the desired source of 

variability. Even though the current design is not taking this aspect into account (hence 

in this respect is sub-optimal), the capability of the filter in making speaker verification 

robust to handset mismatches is experimentally demonstrated in the following section. 

The phonetic variability that  needs to  be preserved in the 101 dimensional temporal 

vector X k t ( i )  is estimated as follows. Each of these temporal vectors is labeled by the 

phoneme that  is aligned t o  the center element. The class conditional mean of the phoneme 

'Even though the acoustic units defined by the UBM may not have an exact one to one correspondence 
with phonemes, we assume that preserving phonetic variability would lead to an improvement in the 
capability of the UBM in efficiently segmenting the acoustic space. 



p is given by 

where the index i represents the handset index which ranges from 1 to  8 since we are 

using TIMIT sentences recorded using 8 different telephone handsets. If the edges of the 

temporal vectors span beyond the boundaries of an utterance then such vectors are ignored 

for the above computation. The phonetic variability corresponding t o  the k t,h handset is 

computed as the between-class covariance CSk given by 

where Np is the number of temporal vectors labeled as phoneme p, N is the total number 

of temporal vectors involved in the computation and p is the global mean of the temporal 

vectors. The handset normalizing filter can now be estimated for each of the frequency 

bands using Equation 4.4. The next section discusses the characteristics of the estimated 

handset and phonetic variability. 

4.5 Nature of Handset and Phoneme Variability 

In the previous section we proposed methods for estimating handset and phonetic vari- 

ability. Note that  the OPCA approach t o  filter design is meaningful only if the handset 

variability (noise) is colored and is qualitatively different from the signal (phonetic). Hence 

in this section the nature of these two sources of variability are explored. They are ana- 

lyzed only from the point of view of second order statistics (covariance) since we use only 

the second order statistics t o  design the filter. 

Figure 4.6 shows the variance introduced by handset and phoneme into the temporal 

vector corresponding to  the first Me1 frequency band. The variance is nothing but the 

diagonal of the handset and phonetic covariance matrices, Cnk and C S k  respectively. From 

the figure it is evident that  while the handset variability is constant across time, the 

phonetic variability has a peak a t  the center. As we move away from the center of the 

temporal vector, the variability reduces. This trend can be attributed t o  the procedure 
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Figure 4.6: The contrasting nature of phonetic and handset variability. 

used t o  compute the phonetic variability. Phoneme variability was defined as the variance 

of the class conditional means of the temporal vectors. A temporal vector is labeled 

t o  the class t o  which its center frame belongs. Hence the class conditional means of 

various phonemes show distinct phoneme-specific behavior a t  the center [84, 851. Hence 

the variance of these means is higher in the center of the temporal vectors than a t  the 

edges. 

In order t o  further investigate the nature of phonetic and handset variability principal 

component analysis was performed. Figure 4.7 shows the eigenvectors and the corre- 

sponding eigenvalues of the phonetic and handset covariance matrices. From Figure 4.7 

the following conclusions can be drawn regarding handset and phonetic variability. 

1. The Magnitude of handset variability is significantly higher than that  of phonetic 

variability. This can be concluded from the higher eigenvalues associated with the 
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Figure 4.7: Eigenvectors corresponding t o  handset covariance and phonetic covariance. 
The numbers in each of the figures are the corresponding eigenvalues. The number in the 
bracket is the percentage of variability captured by the eigenvector. 

eigenvectors of handset variability. 

2. The leading eigenvector corresponding to  handset variability is flat across time (DC) 

and it explains about 70% of the total handset variability. This means that  the 

direction of maximum handset variability corresponds t o  the DC component of the 

modulation spectrum. Hence it can be concluded that  70% percent of handset 

variability is due t o  the DC component in the modulation spectrum. This means that  

methods like mean subtraction removes only about 70% of the variability introduced 

by handsets. 
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3. The directions of maximum phonetic variability are significantly different from that

of handset variability. This justifies the use of OPCA in order to derive a filter to

suppress the handset variability while preserving the phonetic variability.

4.6 Filter Characteristics

The 1st eigenvector obtained from equation 4.4 is used as the handset normalizing filter.

The filtering operation is carried out by projecting the temporal vectors, xdt), onto the

eigenvector. The frequency response of the handset normalizing filters corresponding to

the 19 Mel frequency bands are shown in Figure 4.8. From the frequency response, it
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Figure 4.8: Frequency response of the data-driven handset normalizing filters

is clear that all these filters attenuate the DC component in the modulation spectrum.

This property makes the filtered time trajectory insensitive to any linear convolutive dis-

tortion. Spectral components above 5 Hz are also attenuated. The filter emphasizes the

components between 1 and 4 Hz. This is one of the main difference between this filter and

the conventional RASTA filter, which passes the frequencies between 1 and 10 Hz (refer

to Figure 4.2). The gain of the filter drops off at about 10dBjoctave after 5 Hz. This



indicates that  the frequency components between 1 and 4 Hz are robust for discriminating 

phonemes in the presence of handset mismatches. As these filters exhibit similar charac- 

teristics irrespective of the frequency band, for further discussion we will be considering 

only one of these filters (extracted from the gth band 900 Hz). 

4.6.1 Comparison with LDA Filters for ASR 

Earlier work by van Vuuren and Hermansky proposed a data-driven filter derived using 

LDA for improving the phonetic discriminability [86]. In their design, phonemes were 

considered as classes. The English portion of the OGI STORIES corpus was used to 

design these filters. One-second-long temporal feature vectors from each of 15 critical 

bands constituted the initial representation. Phonetic labeling information was used to  

classify each of these temporal vectors into one of the phonetic labels. Class-conditional 

means and covariances needed for LDA were computed for each of the phonetic classes, 

and this process was repeated for each of the 15 critical bands. The first three discriminant 

vectors given by LDA were then used as FIR filters and applied t o  the time trajectories 

of critical band energies. Out of the three filters the first (corresponding to  the leading 

eigenvector) filter closely resembled the characteristics of the classical RASTA filter. 

These filters were designed t o  preserve the phonetic variability while suppressing the 

within class variability. The within-class covariance contains the variability introduced by 

speakers, handset and the phonetic context (due to  coarticulation) [62]. Hence the LDA 

filter suppresses not only the handset variability but also speaker and context variability, 

which causes the class conditional distributions of phonemes t o  overlap. 

Figure 4.9 (a) shows the between-class and the within class variance. The between-class 

variance is significantly high for the central element of the temporal vector. The variance 

asymptotically becomes zero while moving away from the central element t o  the edge of the 

temporal vector. This trend is attributed t o  the procedure used t o  compute the phonetic 

variability. Phoneme variability was defined as the variance of the class conditional means 

of the temporal vectors. A temporal vector is labeled according t o  the class t o  which its 

center frame belongs, and the class conditional means of various phonemes show distinct 

phoneme specific behavior a t  the center [84, 851. Hence the variance of these means are 



higher in the center of the temporal vectors than a t  the edges. 

Figure 4.9 (b) shows the handsetfspeaker variability and the variability introduced 

by phonetic context. Note that  if these two are added the resultant quantity is equal t o  

the within-class variability. From Figure 4.9 (c) it is clear that  the temporal support of 

the discriminant filter is significantly shorter than that  of the handset normalizing filter. 

Moreover the impulse response of the handset normalizing filter is smoother as compared 

t o  the discriminant filter. As a result of the relatively smaller temporal support, the pass- 

band of the LDA filter (1 Hz t o  10 Hz) is much broader than the handset normalizing 

filter (1 Hz to  5 Hz). The shorter temporal support of the LDA filter is due t o  the design 

criteria which suppresses not only the handset and speaker variability but also the context 

variability. The context variability increases sharply while moving away from the center 

thus restricting the impulse response to  a period of about 200 ms around the center of 

the impulse response. On the other hand, the handset normalizing filter is designed t o  

suppress only the handset variability and hence is not influenced by the characteristics of 

the context variability. Hence the handset normalizing filter has significant activity for a 

period of about 500 ms making its frequency response more selective. 

4.7 Effect of the Filter on Different Sources of Variability 

Figure 4.10 illustrates the effect of the filter in normalizing handset mismatches. Figure 

4.10 (a) shows the output from the gth Me1 filter for a carbon button and an electret 

microphone. Figure 4.10 (b) shows the same after filtering. By comparing 4.10 (a) and 

4.10 (b),  it is evident that  the mismatch caused by the use of different microphones has 

been significantly attenuated by the temporal filtering operation. Hence the data-driven 

filter is capable of suppressing variability introduced by handsets. It is also important to  

see the effect of filtering in the desired source of variability, which is variability introduced 

by phonemes. For this purpose phonetic and handset variability were estimated from the 

HTIMIT database after applying the handset normalizing filter. Figure 4.11 illustrates 

the effect of filtering on the handset and phonetic variability present in the HTIMIT 

database. Before applying the handset normalizing filter the handset variability is constant 
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Figure 4.9: Comparison of the handset-normalizing filter with the temporal filter designed 
using LDA. (a) Within- and between-class covariances. Note that  the between-class vari- 
ance is maximum a t  the center of the temporal vector while it is minimum a t  the edges 
and vice versa for within-class variance. (b) Further decomposition of within-class vari- 
ance into variances caused by handsetfspeaker and due t o  phonetic context. (c) Impulse 
response of the discriminant filter. (d) Frequency response of the discriminant filter. 
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Figure 4.10: Demonstration of the handset normalization capability of the filter. (a) Time 
trajectories of the logarithmic energy before filtering. (b) The same time trajectories after 
filtering. 

across time and it is significant as compared t o  the phonetic variability. On the other 

hand the phonetic variability is high a t  the center. After filtering, the magnitude of 

the handset variability is significantly reduced without any noticeable reduction in the 

phonetic variability. In fact, the handset variability is reduced t o  one tenth of its original 

magnitude. The filtering has also caused the phonetic variability t o  spread in time. This 

is due t o  characteristics of the impulse response of the filter. The significant reduction of 

variability introduced by handset without affecting the phonetic variability clearly shows 

the effectiveness of the proposed data-driven handset normalizing filter. 

For an objective measure of the effectiveness, the signal-to-noise ratio was computed 

before and after the filtering. The signal-to-noise ratio pk corresponding t o  the kth fre- 

quency band after applying the filter f is defined by the following equation 

where Cnk is the noise covariance (handset variability) and C S k  is the signal covariance 
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Figure 4.11: The effect of filtering on handset and phonetic variance. 

(phonetic variability) extracted from the kth frequency band. Figure 4.12 shows SNR as a 

function of the 19 Me1 frequency bands before and after temporal processing. The RASTA 

filter significantly improves the SNR and the proposed data-driven filter improves the SNR 

even further. This illustrates the effectiveness of OPCA in designing handset-normalizing 

filters. It is also interesting to  note that  irrespective of the type of temporal filter, the 

SNR seems t o  be highest for the 5th and 6th Me1 frequency bands. This is consistent 

with what was seen in Chapter 3 in the context of linear discriminant analysis of spectral 

vectors. 

4.8 Summary and Conclusions 

In this chapter we have developed a method for dealing with handset variability The hand- 

set normalization is achieved through filtering the time trajectories of logarithmic filter 

bank energies. A novel method to  estimate the statistics of the variability introduced by 

the handset is also presented. The handset normalizing filter is designed to  optimally sup- 

press the handset variability under the constraint of preserving phonetic variability. The 
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Figure 4.12: Signal-to-noise ratio as a function of the 19 Me1 spaced filter-banks where 
signal and noise are defined to  be phonetic variability and handset variability respectively. 
While RASTA filtering improves the SNR, the data-driven temporal filter makes the SNR 
even higher. 

data-driven method uses only the second order statistics and thus the solution is obtained 

by solving a straight-forward eigenvalue problem. This filter attenuates the DC compo- 

nent in the modulation frequency thus making the features relatively insensitive to  any 

stationary convolutive noise. The filter emphasizes the modulation frequency components 

between 1 and 4 Hz. The gain of the filter drops off fairly sharply beyond 5 Hz. We have 

shown that  the filter is effective in suppressing the handset variability. The next chapter 

evaluates the capability of the filter in improving the robustness of speaker verification 

systems t o  telephone handset variability. 



Chapter 5 

Application of Handset Normalizing 

Filters in Speaker Verification 

5.1 Introduction 

In the previous chapter we discussed the design of handset normalizing filters capable of 

suppressing the variability introduced by telephone handsets. In this chapter we demon- 

strate the effectiveness of such filters in improving the performance of speaker verification 

systems. The performance of the data-driven filter is compared with conventional methods 

for channel normalization, like RASTA filtering, and with a recently proposed technique 

that  uses low-pass filtering in conjunction with mean removal [I]. 

This chapter is organized as follows. Section 5.2 briefly covers the statistical modeling 

method used t o  model the feature vectors extracted from the speech of target speakers. 

Section 5.3 describes the details of the task and the database used for speaker verification 

experiments. This section also discusses the measure used t o  evaluate the performance 

of the verification systems. The effect of the handset normalizing filter in improving the 

speaker verification performance is discussed in detail in Section 5.4. This section also 

illustrates the effect of mean subtraction prior t a  filtering on both filter characteristics 

and speaker verification performance. In this section, the possibility of approximating the 

impulse response with mathematical functions is also explored. In Section 5.5 and 5.6, the 

significance of high and low modulation frequency components in the speaker verification 

performance is discussed. In the following section the performance of the proposed data- 

driven filter is compared with that  of a low-pass filter specifically designed for improving 



speaker verification performance. 

5.2 Statistical Modeling for Speaker Verification 

The task of speaker verification is to  detect whether or not a given speech segment was 

spoken by the claimed target speaker. As mentioned in the first chapter, a speaker verifi- 

cation system can be text-dependent or text-independent. All the experiments described 

in this chapter address the text-independent speaker verification problem. In this section 

we briefly discuss the statistical modeling paradigm used for implementing the speaker 

verification system. 

Systems that  use a mixture of Gaussian functions for characterizing the distribution of 

acoustic vectors of target speakers have been shown t o  achieve good verification accuracy 

[20]. Hence for all our experiments the feature vectors extracted from the speech of the 

target speakers are modeled using Gaussian mixture models (GMM) given by 

where p; are mixture weights, N ; ( - )  are Gaussian functions and M is the number of 

Gaussian functions used for modeling the distribution. The Gaussian functions are each 

parameterized by a mean vector, p;, and a covariance matrix, C;. Diagonal covariances 

are used t o  speed up computation. 

In text-independent speaker verification, the phonetic content of the utterance can vary 

significantly from the training utterance t o  the test utterance. Hence an effective method 

is necessary to  suppress the variability introduced by the phonetic/linguistic content of 

the utterances. The unwanted linguistic variability of the acoustic features is suppressed 

by the simultaneous use of two GMMs, one is a speaker-specific GMM (A,), covering 

the acoustic space of a given speaker, the second is the so called universal background 

model (UBM) [21]. The universal background model ( A b )  is a speaker independent model, 

trained using the speech data  of a large number of speakers. Thus the UBM represents 

a speaker-independent distribution of the feature vectors. The speaker-specific model is 

obtained by maximum a posteriori (MAP) adaptation of the UBM with the data  of the 



specific target speaker. 

During the verification phase, the test utterance is scored using the UBM t o  obtain the 

acoustic transcription of the utterance in the form of a few top scoring mixture compo- 

nents. This transcription is used to  restrict the scoring of the speaker dependent GMM to 

a small subset of mixture components [21]. The claim is rejected or accepted by comparing 

the log-likelihood ratio with a threshold 0 as illustrated by the following equation. 

p(x; I A,) re jec t  
5 0, E l n  i p(xi,~a) accept 

where z; is a feature vector extracted from the ith frame. The relative tradeoff between 

false acceptance rate (FAR) and false rejection rate (FRR) is determined by the threshold 

0. 

5.3 Description of the Database 

Continuous telephone quality speech from the SWITCHBOARD-2 phase 2 corpus was 

used for all the speaker verification experiments described in this chapter. This data  set 

was used by National Institute of Standards and Technology (NIST) in its 1998 and 1999 

official speaker verification evaluations [22]. The training data  for each speaker consist 

of approximately two minutes of data collected over two one minute long sessions. The 

test set consists of utterances of durations 3, 10 and 30 seconds. For each of these testing 

durations results were analyzed for the following two different conditions: 

Matched condition: The training and testing utterances are collected from the 

same telephone handset. This condition is met only for the utterances of the genuine 

speakers (target trials). No such restrictions are placed on imposter trials. 

Mismatched condition: The test data  is recorded through a handset which is of 

a different type compared to  the one used for recording the training utterances. For 

example if the training utterance is recorded using a carbon button microphone then 

the test utterance of the target speaker is recorded using an electret type microphone. 

As with the matched condition, no restrictions are placed on imposter trials. 



The errors made by a speaker verification system can be of two types, false acceptance 

(verifying a imposter speaker as the claimed target) and false rejection (rejecting a target 

speaker as an imposter). The trade-off between false acceptance rate (FAR or PFA) 

and false rejection rate (FRR or PFR) is determined by the threshold 8 applied t o  the 

likelihood ratio score. A plot of FRR as  a function of FAR is called the detection (DET) 

curve, illustrated in Figure 5.1. Equal error rate (EER) which is defined as the FAR (or 

FRR) when the FAR is equal to  the FRR, is a widely used measure for evaluating the 

performance of the verification systems. NIST evaluates the performance of the systems 

using a measure called the decision cost function (DCF) where the cost of false alarms 

(CFR) are 10 times more than the cost of false rejections (CFA). The DCF is defined by 

where CFR = 10.0, CFA = 1.0, PTarset = 0.01 and PNonTarget = 0.99. For more details 

refer t o  [87]. In our experiments, results were analyzed using both EER and DCF for the 

matched and mismatched test conditions. 

5.4 Effect of Filtering 

This section provides a detailed analysis of the effect of the handset normalizing filters on 

speaker verification performance. The objective is t o  investigate the effect of the proposed 

data-driven filter in improving the performance of the state-of-the-art speaker verification 

systems. Since the focus of the work is not on improving statistical modeling we use a 

standard GMM system [21] for modeling the speaker dependent distribution of the feature 

vectors. The task used for this is the official speaker recognition experiments suggested 

by NIST during the past two years [74, 22, 781. 

5.4.1 Feature Extraction and Modeling 

The feature extraction module used by the GMM-UBM based speaker verification has the 

general structure as illustrated by Figure 5.2. The initial processing involves the standard 

short-time Fourier analysis. Then the power spectrum is smoothed using simulated Me1 
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Figure 5.1: A typical detection curve (DET) curve. The point of intersection of the dotted 
line and the ROC curve corresponds t o  the operating point which yields equal error rate 
(EER) . 

filter banks. For the speaker verification experiments 19 filter banks falling within the tele- 

phone bandwidth were used. The data-driven filters are then applied on each of the time 

trajectories of logarithmic energies. From each of the 19 filtered time trajectories, delta 

features are computed [88]. The delta features are appended to  the original feature vector 

to  obtain a 38 dimensional vector. This is then whitened using a PCA transform com- 

puted from an independent data  set. We have observed that  whitening helps in reducing 

the number of mixture components without any degradation in performance. 

For modeling the extracted feature we used the GMM-UBM paradigm which is de- 

scribed in [7]. A background model having 256 mixture components was trained using 

data  from 80 speakers. This model was then adapted using the target speaker's data  to  

obtain speaker-dependent models. For the implementation details of the system see [89]. 
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Figure 5.2: Block diagram of the feature extraction module used for speaker verification. 

5.4.2 Experimental Results 

Figure 5.3 illustrates the improvement brought about by the temporal processing. The 

baseline system does not use any filtering to  deal with handset mismatches. RASTA 

processing improves the performance significantly in the mismatched condition. The EER 

is further reduced by the data-driven filter. As the duration of the test utterance increases, 

the performance of all the three systems improves, as expected. However the performance 

improvement in the case of baseline system is much less as compared t o  the systems that  

use temporal processing. Compared to  the un-filtered case, the temporal processing helps 

in making the distribution of the training and the testing vectors more alike. Hence for 

the systems that  use temporal filtering, more data  directly leads t o  a reduction in error. 

In the case of the baseline system, even though the longer test utterances provide more 

data,  its distribution still suffers a mismatch with that  of training data.  Thus longer 

test utterances are not able t o  reduce the error significantly. Due t o  this phenomenon, the 

relative error reduction achieved by the temporal processing increases with duration of the 

test utterance. For the 3 second condition, the data-driven filter yields a 19% reduction 

in error while the reduction in error becomes 35% for the 30 second test duration. 

In the matched condition for 3 second long test utterances, both the filtering techniques 

seem t o  degrade the performance of the baseline system. This is attributed mainly two 
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Figure 5.3: Plot illustrating the significant reduction in EER due to  the use of temporal 
processing. The data-driven filter further reduces the EER as compared t o  the conven- 
tional RASTA filtering. 

causes: 

In the matched condition, the verification system is capable of using the handset 

information in favor of target speakers t o  reject the imposters, who are guaranteed 

t o  use a different telephone line. Hence suppressing handset variability could lead 

t o  a degradation in performance in the matched conditions. 

Since the impulse response of the filter is 1 second long, the filtering artifacts (es- 

pecially a t  edges) could be significant while filtering 3 second long utterances. This 

hypothesis is supported by the results, since the degradation caused by filtering de- 

creases with increased duration of the test utterance. In fact for 30 second long test 

utterances, temporal filtering does provide a minor improvement over the baseline. 



5.4.3 Approximating the Impulse Response using Difference of Gaus- 

sians (DOG) 

By approximating the empirically derived impulse responses by a mathematical function 

we may reduce the noise introduced by the design processes. The choice of the function 

that  can be used for the approximation is dependent on the shape of the impulse response. 

The impulse response of the filters used for the above experiments are shown in Figure 5.4. 

The impulse response of the filter resembles the shape of a difference of Gaussian (DOG) 

-0.21 I J 
0 0.25 0.5 0.75 1 

Time (msec) 

Figure 5.4: Impulse response of the handset normalizing filter. Shape of the filter is similar 
to  of DOG (difference of Gaussians) filters used in image processing. 

function. DOG function can be defined by two parameters, namely the two variances of 

the Gaussians, 

where N (.) represents a univariate Gaussian function and D,(.) represents the DOG func- 

tion, since the means of the two Gaussians are fixed. If the impulse response to  be 

approximated by G(.) is represented by h then we need t o  find al and 0 2  which minimizes 



the squared error between Dg(.) and h. We define a mean squared error criteria given by 

El -1 = argmin,, ,,, [(Dg (61, 6 2 )  - hlT (Dg (61. 6 2 )  - h)] . (5.4) 

The error minimization described by the above equation is carried out by the Gauss- 

Newton method [go]. The - and % that  resulted in minimum least squared error were 

21 and 173 respectively. The mean for the two Gaussians were maintained a t  the center 

of the impulse response (51 for a 101 point filter). Hence the handset normalizing filter h 

can be written as the difference of two Gaussians given by the following equation. 

Figure 5.5 shows the result of approximating the impulse response in both frequency and 

time domains. The frequency response of the approximated filter matches well with the 

original frequency response in the regions where the gain of the filter is high. The DOG 

filter attenuates the high frequency much more than the original filter. The frequency 

components beyond 15Hz are attenuated t o  below -60 dB. This is due t o  the additional 

smoothing which resulted from approximating the filter using difference of Gaussians. 

The DOG filter was used in place of the data-driven filter in speaker verification ex- 

periments. Table 5.1 compares the EER obtained by using the data-driven filter and the 

DOG filter. From the table it is clear that  both the data-driven filter and its DOG approx- 

imation yield approximately the same performance. The DOG approximation seems to  

perform slightly better than the original filter in matched condition. This illustrates the 

feasibility of approximating the impulse response with DOG functions without affecting 

the performance. 
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Figure 5.5: Comparison of the characteristics of the handset normalizing filter and the 
filter obtained by approximating the impulse response with DOG function. 

5.4.4 Effect of Filtering in Addition to Mean Removal 

In the past it has been shown that  mean subtraction (MS) is an effective technique in 

dealing with channel mismatches [91,77]. Unlike RASTA (which being a filtering technique 

can work on the signal online with a fixed delay) the MS technique needs the entire speech 

utterance prior t o  the processing. Thus the MS technique can be used in applications where 

there is the luxury of recording the speech data prior t o  processing. Nevertheless it would 

be interesting t o  see whether the proposed data-driven filters can be used t o  any advantage 

by applying them on mean subtracted time trajectories. For this purpose the handset 

normalizing filters were designed after applying an utterance based mean subtraction on 

HTIMIT. Figure 5.6 compares this filter t o  the filter derived without mean removal. The 

only major difference between the two filters is in the frequency characteristics below 

1 Hz. The filter designed using mean removed data  does not attenuate low frequency 

components. This suggests the lack of handset variability present in the modulation 



Table 5.1: Comparison of data-driven handset normalizing filter and the corresponding 
DOG approximation in speaker verification performance. 

Testing condition Original filter DOG filter 
Matched 13.3 % 11.9 % 

3 Sec Mismatched 24.9 % 25.2 % 
Matched 7.9 % 7.5 % 

10 Sec Mismatched 21.0 % 21.9 % 
Matched 5.6 % 5.6 % 

3n Ser Mismatched 18.1 % 18.4 ?4 

frequencies between 0 and 1 Hz. 

Figure 5.7 compares the performance of a system that  uses only MS with a system 

which uses temporal filtering in addition to  MS. It is evident that  in the mismatched con- 

dition, the data-driven filter significantly improves the performance of the baseline system 

which uses only MS. This improvement becomes more significant as the test utterance 

duration increases. In the case of the matched condition, there is degradation caused by 

the filtering applied on top of MS. This degradation decreases as the duration of the test 

utterance increases. This clearly demonstrates that  the data-driven temporal filter de- 

veloped in this paper can yield significant additional improvements while using standard 

channel normalization techniques like MS. 

5.5 Significance of High Modulation Frequency Components 

In this section we analyze the performance of the data-driven filter used in conjunction with 

MS to  demonstrate the significance of removing higher modulation frequency components 

for robustness. In order t o  assess how well the data-driven filters work on a new task, 

we consider the 1999 official NIST speaker verification task. The training data  for each 

speaker consists of about 2 minutes of data  collected from two separate (about 1 minute 

long) sessions. Testing consists of utterances of durations anywhere between 1 second to  1 

minute. Figure 5.8 illustrates the improvement due t o  the data-driven temporal filter over 

the systems that  use mean subtraction and RASTA filtering. In the mismatched condition 

RASTA filtering performs as well as MS. The data-driven filter applied in addition to  
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Figure 5.6: Effect of mean removal on the frequency response of the data-driven filter. 

utterance-based mean subtraction yields a significant reduction in error when there is a 

handset type mismatch. This clearly illustrates the effectiveness of the proposed filter in 

suppressing the handset variability. In the matched condition, all of the three techniques 

perform equally well. Table 5.2 compares the EER and minimum DCF resulting from 

the use of MS, RASTA, and the data-driven filtering in combination with MS. In the 

mismatched condition, the data-driven filter reduces the equal error rate by more than 25 

%. The MDCF is also reduced by about 10% as compared t o  RASTA. In the matched 

condition the data-driven filter performs as well as MS but RASTA causes a degradation 

in performance. This degradation is attributed t o  the removal of modulation frequency 

components between 0 and 1 Hz which have been shown t o  contain important information 

relevant for speaker verification [75]. Notice that  while MS passes almost all the frequency 

components other than DC, the RASTA filter passes frequency components between 1 

and 10 Hz. Compared to  MS and RASTA filtering the data-driven filter has a much lower 
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Figure 5.7: Temporal filtering can improve the performance even when applied on mean 
removed temporal trajectories. This illustrates the significance of removing high frequency 
components in the mismatched conditions for speaker verification. 

high frequency cutoff. This suggests that  the improvement due t o  the handset normalizing 

filter is due t o  the lower high-pass cutoff. Hence it can be concluded that  by attenuating 

frequency components above 5 Hz, the mismatch between various handsets can be reduced. 

Note that ,  since the data-driven filter was designed using mean normalized feature vectors, 

the filter does not attenuate the DC component of the modulation spectrum and hence 

makes it necessary to  be used in conjunction with mean subtraction. 

5.6 Significance of Low Modulation Frequency Components 

In this section we experimentally demonstrate the significance of low (between 0 and 1 

Hz) modulation frequency components for speaker verification. For this we compare the 

performance of two data-driven filters: (i) one designed using mean normalized temporal 
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Figure 5.8: Plot illustrating the reduction in error in the mismatched condition due to  
data-driven temporal filtering compared to  the conventional mean subtraction (MS) and 
RASTA filtering. 

trajectories and the other (ii) designed using temporal trajectories that  are not mean- 

normalized. Note that ,  since one data-driven filter is designed using mean normalized 

data,  the filter does not attenuate the DC component of the modulation spectrum and 

hence this filter is used in conjunction with mean subtraction. 

The performances of these two filters are compared with the RASTA filter in Figure 5.9. 

From the DET curve it is clear that  the data-driven handset normalizing filter performs 

better than the RASTA filter. However its performance is worse than that  obtained by the 

simultaneous use of the handset normalizing filter and MS. This trend can be explained as 

follows. The handset normalizing filter used in conjunction with MS does not attenuate 

frequency components below 1 Hz (broken line in Figure 5.6). The simultaneous use of 

this filter and MS would imply a frequency response which is dependent on the length of 



Table 5.2: The performance of systems using mean subtraction, RASTA filtering and the 
data-driven filter. The table provides the comparison using both equal error rate (EER) 
and minimum decision cost function (MDCF). 

Mismatched Matched 
Processing 

EER MDCF EER MDCF 
MS 28.8 % 0.084 4.9 % 0.022 
RASTA 27.9 % 0.086 5.4 % 0.027 
MS & Data-Driven Filter 21.4 % 0.078 4.9 % 0.024 

the utterance. The longer the utterance, the lesser will be the attenuation of components 

between 0 and 1 Hz. On the other hand, the handset normalizing filter that  is used without 

MS attenuates the DC component (solid line in Figure 5.6). The frequency resolution of 

this filter is restricted to  1 Hz (since the number of taps are 101). This causes the filter 

t o  attenuate frequency components between 0 and 1 Hz irrespective of the length of the 

utterance. It has already been shown that  modulation frequency components below 1 Hz 

are useful for speaker verification [75] and hence attenuation of these components causes 

the degradation in speaker verification performance. 

5.7 Comparison with Low-pass Filtering 

As discussed in the previous section, modulation frequency components below 1Hz have 

been shown t o  be important for speaker verification [I]. Earlier work by van Vuuren has 

shown that  a low-pass filter with 10 Hz cutoff used in conjunction with mean subtraction 

yields improved speaker verification performance in handset mismatches [l, 751. The 

proposed data-driven filter was compared with the low-pass filter in the NIST-1999 speaker 

recognition evaluation task. 

Figure 5.10 illustrates the improvement brought about by the data-driven temporal 

filter over the baseline system, which uses a low pass filter. The data-driven filter causes 

a significant reduction in error when there is a handset type mismatch. The low-pass 

filter reduces the error by about 10% as compared t o  mean subtraction. The data-driven 

filter further reduces the error by another 10%. This illustrates the superiority of the 
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Figure 5.9: Plot illustrating the effect of mean subtraction(MS) used in conjunction with 
data-driven filter. 

data-driven filter over the experimentally designed low-pass filter. 

5.8 Summary and Comments on Temporal Filtering 

In this chapter we introduced the problem of telephone handset mismatches in speaker 

verification. The performance of a speaker verification system is significantly degraded 

by the variability introduced by different telephone handsets. A handset mismatch can 

increase the verification error by more than five times. In speaker verification applications 

it is practically impossible to  train the speaker models with speech from the target speaker 

recorded over multiple telephone handsets. The proposed data-driven filter is shown to  

significantly reduce speaker verification error in mismatched conditions. The proposed 

data-driven handset normalizing filter outperforms the conventional channel normaliz- 

ing methods like RASTA filtering and mean subtraction. We have clearly demonstrated 
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Figure 5.10: Plot comparing the performance of data-driven temporal filtering, low-pass 
filtering and mean subtraction. 

that  by using feature processing methods which are designed t o  alleviate unwanted vari- 

ability (variability introduced by handset) the robustness of verification systems can be 

significantly improved. The impulse response of the handset normalizing filter can be 

approximated by the difference of Gaussian (DOG) function. Hence the impulse response 

can be represented by a small number (2) of parameters without negatively impacting 

performance. 



Chapter 6 

Summary and Future directions 

The dissertation examines the hypothesis that  stochastic approaches can be used to  design 

feature extraction methods, which could provide substantial advantages over conventional 

feature extraction methods in the extraction of information from the speech signal. The 

proposed feature extractors are trained t o  suppress the unwanted variability while pre- 

serving the desired variability in the signal and the training is carried out using large 

amount of labeled speech data. Thus we call this approach data-driven. The expected 

advantages of this approach are the following: (a) Since feature extraction involves reduc- 

tion in dimensionality, by using data-driven methods for feature extract,ion we are making 

sure that  the dimensions that  are preserved carry maximum amount of useful information 

(or carry least amount of harmful information). This could improve the performance of 

various recognition systems. (b) In addition to  improved performance, data-driven feature 

extraction methods could provide knowledge about the characteristics of various sources 

of information carried by the speech signal. (c) It can also help in validating the opti- 

mality of the current methods for feature extraction. Data-driven methods to  derive both 

temporal and spectral features were presented t o  support the above hypothesis. 

The remaining part of the chapter is organized as follows. Section 6.1 summarizes the 

work. Section 6.2 discusses future directions and Section 6.3 concludes the dissertation 

with some final remarks. 



6.1 Summary 

In the first chapter we introduced a general framework for data-driven feature extraction. 

The main issues t o  be addressed in developing data-driven methods were discussed. 

In the second chapter we examined the characteristics of the basis vectors that  corre- 

spond to  the direction of maximum variability derived using principal component analysis 

of the critical band spectrum. The results indicated a strong similarity between the PCA- 

derived basis functions and the cosine functions used by the DCT. Since phonemes are 

used as the basic units in many speech recognition systems linear discriminant analysis 

(LDA) of the critical-band spectrum was carried out by considering context independent 

phonemes as classes. The discriminant basis functions corresponding t o  the larger eigen- 

values were found t o  be significantly different from the cosine functions. We also showed 

that  the features extracted by the alternative spectral basis functions offer advantage 

in phoneme classification of spectral vectors. This advantage seems t o  hold irrespective 

of the complexity of the task. The LDA-derived basis functions outperformed the con- 

ventional DCT in connected digit recognition tasks as well. The zero-crossings of the 

LDA-derived spectral basis functions are reasonably uniformly spaced on the Bark scale 

of the auditory-like critical-band spectrum. 

In the third chapter we investigated the nature of phonetic discriminant information 

present in the short-time spectrum of speech signal. The objective of such an analysis 

was t o  investigate the suitability of Mel/Bark resolution for phoneme recognition. The 

shape of the discriminant vectors computed using LDA determines the spectral variations 

that  are important in discriminating phonemes. Analysis resolution of these discriminant 

vectors was determined by the period of a half cycle in the LDA-derived basis vectors. 

The smaller the period the higher the resolution. We observed that  the discriminant vec- 

tors analyze the low frequency part of the spectrum with higher resolution than the high 

frequency part. This trend is consistent with the properties of auditory-like filters used by 

the conventional Mel/Bark filter-bank analysis. It was shown that  this trend is prominent 

only while discriminating sonorant sounds. Further analysis led t o  the conclusion that  



non-uniform width of peaks seen in the class conditional spectral means causes the dis- 

criminant functions to  exhibit the property of non-uniform resolution. The sensitivity 

of features derived using the discriminant basis functions, to  formant locations was ana- 

lyzed. I t  was shown that  the sensitivity of the features extracted by these basis functions 

is approximately inversely proportional to  the formant frequency. This trend in sensi- 

tivity is consistent with the properties of hearing. Non-uniform frequency resolution in 

the form of critical-band filters is mainly used in ASR systems t o  emulate certain prop- 

erties of human hearing. Using discriminant analysis we have established a link between 

non-uniform frequency resolution, phonetic discrimination and the spectral properties of 

vowel-like sounds. 

In the fourth chapter, we proposed a method for alleviating the variability introduced 

by different telephone handsets. The handset normalization is achieved by filtering the 

time trajectories of logarithmic filter bank energies. The handset normalizing filter was 

designed using oriented principal component analysis (OPCA). OPCA involves the com- 

putation of noise and signal covariances in order t o  estimate a direction in the feature 

space which captures maximum signal variance while suppressing as much noise variance 

as possible. For designing handset normalizing filters, the variance introduced by different 

microphones was labeled as the noise variance. A novel method to  estimate the variance 

introduced by handsets was also presented. OPCA is used to  design a filter that  optimally 

suppress the handset variability under the constraint of preserving phonetic variability. 

This method for designing filters uses only the second order statistics and thus the solution 

is obtained by solving a straight forward eigenvalue problem. This filter attenuates the 

DC component in the modulation frequency thus making the features relatively insensi- 

tive t o  any stationary convolutive noise. The filter emphasizes the modulation frequency 

components between 1 and 4 Hz. The gain of the filter drops off fairly sharply beyond 5 

Hz. 

In Chapter 5 we introduced the problem of telephone handset mismatches in speaker 

verification. A handset mismatch can increase the verification error by more than five 

times. In applications involving speaker verification, i t  is practically impossible to  train 

the speaker models with speech from the target speaker recorded over multiple telephone 



handsets. Hence the trained models are always biased to  the handset used for collecting the 

training data. During testing, use of a different telephone handset introduces a mismatch 

between the statistics of the test data  and the trained model, which in turn increases the 

probability of error. The proposed data-driven filter was shown t o  significantly reduce 

speaker verification error in mismatched conditions. The data-driven handset normalizing 

filter outperformed the conventional channel normalizing methods like RASTA filtering 

and mean subtraction. We clearly demonstrated that  by using feature processing methods 

which are designed to  alleviate undesired variability (variability introduced by handsets) 

the robustness of the verification systems can be significantly improved. It was shown 

that  the impulse response of the handset normalizing filter can be approximated by the 

difference of Gaussian (DOG) function. Hence the the filter can be represented by a small 

number (2) of parameters without degrading the performance. We further examined the 

effect of using the handset normalizing filter in conjunction with mean subtraction (MS). 

This lead t o  the conclusion that  preserving modulation frequency components between 0 

and 1 Hz is important for speaker verification. This observation is consistent with the 

earlier work which investigated the importance of modulation frequency components for 

speaker verification. 

6.2 Future Directions 

The scope of the work described in this dissertation can be expanded along many direc- 

tions. The following are some of the directions for future work: 

In all the feature extraction methods we have used short-time Fourier analysis t o  

get the initial feature representation. Short-time processing uses many assumptions 

that  are borrowed from speech coding and hence may not be optimal for speech and 

speaker recognition. Developing a data-driven method t o  extract features directly 

from the speech signal (without assuming short-time processing) is a challenging 

direction which needs t o  be investigated. 

The discriminant methods used to  derive spectral basis functions makes a number 

of assumptions about the characteristics of the class-conditional distributions. If 



the computational problems which are caused by relaxing this assumptions could be 

solved then the resulting discriminant solution could be made much more general 

and accurate. 

We have used afeature extraction model given by, f = F (s), where F( . )  is the feature 

extraction function, s is the initial representation and f is the extracted feature. In 

the above feature extraction model, we have assumed that  the function F(.) as linear. 

This assumption makes the feature extractor sub-optimal. A generalized non-linear 

model, if trained with enough amount of da ta  could be much more powerful than 

the linear models discussed in this dissertation. 

For designing spectral basis functions we have assumed phonemes as the classes. 

While phonemes are the smallest segments of sound that  can cause a change in the 

meaning of a word, it may not be the optimal sub-word unit for automatic speech 

recognition. Methods for automatically deriving the optimal set of sub-word units 

from da ta  is another important aspect which we have not explored in this work. 

5.1 Final Comments 

The work presented in this dissertation represents an effort t o  optimize feature extraction 

methods for speech recognition and speaker verification. The majority of the current fea- 

ture extraction modules use assumptions which are not validated as optimal for pattern 

recognition. We have introduced a general paradigm for data-driven feature extraction 

that  attempts t o  derive knowledge from speech data  and this knowledge is used to  design 

better feature extraction methods. We have presented two specific data-driven feature 

extraction methods, (i) spectral basis functions for speech recognition and (ii) temporal 

filters for speaker verification. These feature extraction methods demonstrated the ad- 

vantages of data-driven feature extraction. The data-driven methods presented in this 

dissertation, in spite of providing significant improvement in the performance of speaker 

verification and speech recognition, are sub-optimal due t o  the assumptions that  were 

made while designing. Future work should be directed towards making these assumptions 



realistic which would lead to  more effective realization of data-driven feature extraction 

modules. Finally, we also hope that  the data-driven approach for analyzing the various 

sources of information in the speech signal will lead us t o  a better understanding of speech 

production, transmission and perception. 



Appendix A 

List of phonemes 

Table A.1: The phonetic categories considered for many of the experiments reported in 
the dissertation. 

-- 

Example 

gan 
- ban 
gander - 
dan 
&an 
fine 
$gn 
yine 
re$gn 
- thigh 
- me 
- knee 

Phoneme 
k 
b 

g 
d 
t 
f 
s 
v 
z 
th  
m 
n 

Broad class 

Stops 

Fricatives 

Nasals 

bye 
b y  
boat 
lent 
rent - 

- Yes 
- went 

Example 
beet 
bet 
bit 
bat 
s i t  
above 
cauffht 
fat her 
roses 
- above 
book 
boot 

Diphthongs 
and Glides 

Broad class 

Vowels 

aY 
eY 
OW 

Y 
w 

Phoneme 

i~ 
eh 
ih 
ae 
ux 
ah 
a0 
aa  
ix 
ax 
uh 
uw 



Appendix B 

Mean Spectral Patterns 

In this Appendix the shape of the mean spectral vectors corresponding to various phonemes 

are illustrated. The spectra were computed using a 256 point DFT.  The spectral means 

corresponding t o  36 phonemes were computed from 538471 frames of data. Table B.l 

shows the number of frames used for the computation of each of the 36 phonetic means. 

Figure B.l and Figure B.2 shows the mean spectral patterns of these sounds. 

Table B.l: The number of frames used for the computation of spectral means of various 
phonemes. 

I Phoneme I Examples I Phonemes I E x a m ~ l e s  I 

12696 

10923 
tcl 10581 
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0 1 2 3 4  0 1 2 3 4  
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Figure B.l: The mean spectral patterns of vowels, diphthongs and glides computed from 
the OGI STORIES corpus. 
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Frequency (kHz) 

Figure B.2: The mean spectral patterns of stops, fricatives and nasals computed from the 
OGI STORIES corpus. 



Appendix C 

Difference of Means as Discriminants 

In this appendix we derive the conditions under which the difference vector between two 

class conditional means becomes the discriminant vector. If the two classes have equal 

prior probabilities then the decision rule which yields minimum error is given by the 

likelihood ratio test 

where the two classes in which we are interested are X1 and X 2  and x is the vector of 

measurements. The class conditional distributions are assumed t o  be normal with means 

given by pl and p2 respectively. The class conditional covariances are given by C1 = C2 

= I .  Under these assumptions the log-likelihood ratio is given by 

Let d = pl - p2, then, from equation C.l and C.2 the modified log-likelihood ratio test 

can be written as 

The feature extraction using the discriminant direction d, reduces t o  projecting the un- 

known measurement vector x,  onto d which yields a feature f = xTd. 

From the above analysis it is clear that  the feature f computed by projecting the 

measurement x onto d can be directly compared to  a threshold t o  perform the classification. 

This illustrates the significance of the discriminant vector defined by the difference between 

the two class conditional means. 



Appendix D 

Conditions for Non-uniform resolution 

In this appendix we investigate the conditions under which discriminant basis vectors 

exhibits non-uniform analysis resolution. This analysis is carried out by approximating 

the mean spectral patterns of sonorant speech sounds by Gaussian functions. 

Sonorants are mainly characterized by the vocal tract resonances, which in turn are 

manifested in the speech signal as spectral peaks. Hence it should be interesting to  see 

how the simple discriminant vector d discriminates two spectral peaks which are displaced 

in frequency. The two spectral peaks are assumed t o  have the same width and are approx- 
& 

imated by the Gaussian form, Np,b(f) = e b . Np,b(f) is a function of f the frequency 

and is parameterized by p, the location of the spectral peak and the parameter b,  which 

controls the width of the spectral peak. The two class conditional means p1 and pp are 

represented by Npl,b(f) and Np2,b(f) respectively. The discriminant function d is thus 

given by the difference of two Gaussian functions (DOG) with different means and same 

variance. Figure D.l illustrates the shape of the discriminant function d. The analy- 

sis resolution of the DOG discriminant function is dependent on the parameter b which 

corresponds t o  a bandwidth-like measure of the two class-conditional mean vectors. The 

increased analysis resolution is caused by a smaller value of b which in turn implies a 

narrower bandwidth. It is clear from the figure that the analysis resolution is inversely 

proportional to  the bandwidth of the two spectral peaks to  be discriminated. Hence it 

can be concluded that  if the bandwidth of the spectral peaks that  appear in the class 

conditional means increases with the location of the center frequency, then the discrim- 

inant function will have non-uniform analysis resolution. In particular the discriminant 

function will show high analysis resolution in low frequency regions and low resolution in 



L 

Frequency (kHz) 

Figure D.l: Difference of Gaussians(D0G) as a function of the variance (width of the 
spectral peak). If spectral peaks are modeled by Gaussians then DOG becomes the dis- 
criminant functions t o  classify spectral peaks which are shifted in frequency. The figure 
indicates that  the analysis resolution of these discriminant functions are inversely propor- 
tional t o  the width associated with the spectral peak. 

high frequency region. 

The two class problem is now made more realistic by modeling the class conditional 

means as a linear combination of two Gaussian functions described by 

The class conditional mean pl consists of two spectral peaks located a t  pl and pa with 

bandwidths of bl and bs respectively. The mean vector corresponding t o  the compet- 

ing class has the same two spectral peaks displaced by 61 and S2 in frequency. These 

characteristic s are typical of two distinct vowel-like sounds. The discriminant function 

corresponding t o  these two classes is then given by the difference of the two class condi- 

tional means. This discriminant vector will thus exhibit progressively decreasing analysis 

resolution if bl < bz .  Figure D.2 shows the effect of bandwidth increase in making the 

analysis resolution of the discriminant vectors non-uniform. 



Mean of class 1 

" 
Mean of class 2 :::;I 

0 
Discriminant Function 
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Figure D.2: The shape of the discriminant function clearly indicates a higher analysis res- 
olution in the lower frequency region and a lower analysis resolution in the high frequency 
region. This is an effect of higher bandwidth associated the spectral peak which is located 
a t  higher frequency. 
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