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Abstract 

Knowledge Constraints in Speaker Adapt at ion 
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Thesis Advisor: Dr. Yonghong Yan 

In speech recognition research, transformation-based adaptation algorithms provide an 

effective way of adapting acoustic models to more closely match the test-speaker acoustics 

thereby improving the recognition performance. However, when only limited amounts of 

adaptation data are available, the transformation is often poorly estimated, which causes 

performance degradation. 

This thesis presents the Markov Random Field Linear Regression (MRFLR) algorithm, 

which constrains the adaptation by the correlations among acoustic parameters. The 

correlations are estimated from the training corpus and hypothesized as prior knowledge 

of acoustic models. By explicitly incorporating them into adaptation, robust and fast 

adaptation can be achieved. The Markov Random Field theory is used to model the 

correlations. 

The hypothesis is tested by comparing MRFLR with Maximum Likelihood Linear 

Regression (MLLR), a widely used transformation-based adaptation algorithm. Experi- 

mental results show that MRFLR outperforms MLLR when adaptation data are sparse, 

and converges to the MLLR performance when more adaptation data are available. 



Chapter 1 

Introduction 

Speech is the primary form of human communication. When speaking in a noisy room, 

talking on the phone, or meeting with different people with different dialects, a native 

speaker seldom has any difficulty in understanding others after exchanging a few sentences. 

This is nature's example of adaptation. The human brain serves as a wonderful adaptor 

without demanding any host attent ion. 

However, when it comes to computer speech recognition, it is very difficult to deal with 

variations in speech. Often, a speaker change, or even an emotional change in the same 

speaker, causes recognition performance to degrade. 

Speech variations come from many sources: background noise, channel condition, mu- 

sic, speaker emotion, dialects, disfluency, etc. Roughly, adaptation can be done in two 

directions: Environment Adaptation and Speaker Adaptation. The former focuses more 

on the background of speech and the later emphasizes the speech and the speaker. This 

thesis focuses on speaker adaptation. 

1.1 Speech Recognition 

Speech Recognition research originated as early as the 1950's and has been a continuous 

effort for the past fifty years due to its widespread use in a variety of applications including 

information retrieval, data entry, and general man-machine communication. 

The performance of speech recognition systems has improved dramatically in the past 

few years. Figure 1.1 shows some bench-mark results from workshops that NIST (National 

Institute of Science and Technology) has been sponsoring since 1988 for promoting speech 
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Figure 1.1: History of speech recognition benchmark tests 

Rapid development is achieved in the speech recognition field. By the year 2003, the perfor- 
mance of speech recognition systems on the Conversational Speech task is expected to reach an 
acceptable WER of 10%. 

recognition research. 

In 1988, The Resource Management (RM) task, indicated by 'lk' in the figure, was 

considered difficult for continuous speech recognition. The RM task is a 1000-word recog- 

nition task set in a quiet environment. The test utterances have restricted patterns such 

as commands and general descriptions. The Word Error Rate (WER) was about 20%. 

Three years later, the CMU system [17] successfully pushed the WER down to 3.6%. The 

same rapid improvement was achieved on the World Street Journal (WSJ) task, both for 

the read speech 20,000-word task and the spontaneous speech 5000-word task, indicated 

by '20k' and '5k' in the figure respectively. These two tasks use corpora of WSJ news text. 

The HTK system [42] took top honors. 

In recent years, the Broadcast News task and the Conversational Speech task, which 

mix daily conversations with background noise, music, and commercials, have become 

the next two challenging targets to be conquered. The recognition performance on the 



Conversational Speech task is expected (by NIST) to reach an acceptable WER of 10% 

by 2003. 

While the research systems used in these competitions remain too complicated (regard- 

ing the memory requirement or running time) to move out of the laboratories, simplified 

real-time systems already have found their way into the dictation market, such as IBM's 

via Voice, and Dragon's Naturally Speaking. 

1.2 System Structure 

/ Lexicon 1 

Acoustic model 

Figure 1.2: Structure of a speech recognition system 

Language model 

Speech sounds are first converted to a sequence of features and then the recognition is 
performed to find the hypotheses that best match the speech. 

The structure of a conventional speed1 recogriition system is shown in Figure 1.2. It 

usually includes: 

1. Pre-processing: Feature generation 

Speech - 

In this step, a speech utterance is converted into a sequence of speech features, which 

are used as observations in the mathematical modeling of acoustics. Ideally, the 

speech features should contain as much information as possible about the linguistic 

content of the speech while being reasonably compact and free of redundant detail. 

Perhaps one of the most 'widely used speech features is Mel-Frequency Cepstrum 

Coeficients [9] (MFCC). The cepstrum coefficients are obtained by Inverse Fourier 

--7 
Pre-processing Recognition 

Features - Post-processing 
Hypotheses - Recognition - 

output 



Transformation of the logarithm of the speech spectrum. The mel-scale warping is 

done on the spectrum to reflect the non-linear perceptual characteristics of human 

hearing. 

For some systems, the pre-processing step may also include segmentation, channel 

and gender detection, and speaker clustering. 

Segmentation is the task of chopping long utterances into short ones for a better 

control of later recognition steps. Usually the speech recognizer is not capable of 

handling very long utterances due to the memory and speed restrictions. 

Channel and gender detection is for those systems that use multiple acoustic models. 

Usually each acoustic model corresponds to one channel or gender condition. The 

acoustic model is a set of model parameters that describe the acoustic properties of 

phonemes, words, or utterances. The channel and gender detection step tags each 

test utterance for an appropriate acoustic model to use in the later steps. 

Speaker clustering is used to gather together more speaker dependent data for a bet- 

ter adaptation performance (discussed later in Section 1.4). If speaker information 

is unknown for the test utterances, a speaker detection step is required. 

2. Speech recognition: Hypotheses search 

In this recognition step, the speech recognizer performs a massive search to find the 

most likely word-sequence hypotheses that match the acoustic observations. The 

match is based on the acoustic model and constrained bv the language model and 

the lexicon. The language model consists of the probabilities of word sequences. 

For example, the popular trigram language model includes the occurrences of most 

frequent word triples and word pairs. The lexicon is a list of vocabulary words in 

the system and their pronunciations. 

3. Post-processing: Recognition result 

This optional post-processing step performs a refinement of the recognition hypothe- 

ses. The techniques used might include a high-order language-model re-scoring, or 

a second recognition pass with a more-detailed acoustic model and language model. 



1.3 The Acoustic Model 

The performance of a speech recognition system varies with the acoustic model. Although 

the language model and the lexicon play an important role in large vocabulary systems, 

this thesis focuses on improving the acoustic model accuracy. 

For modeling common characteristics of many speakers, the acoustic model is usually 

trained with utterances from a large number of speakers. A Speaker  Independent  (SI) 

model is less sensitive to speaker variations. This speaker independent property of the 

acoustic model is desired for applications facing more than a single speaker since training 

one SD model for each speaker is impossible in these applications. 

However, the performance of a SI model is not as satisfactory as that of a Speaker 

Dependen t  ( S D )  model. The reasons for this are as follows: 

The SI model represents only an average property of all the speakers in the training 

set. In other words, the model is not particular to any of the speakers. If a model 

could be trained particularly for a test speaker, the performance would usually be 

better than that of the SI model. For example, in the Febuary 91 ARPA RM1 

(Resource Management) Benchmark test, the best performance for the SI system is 

3.6% WER (CMU [17]) while the best performance for the SD system is 1.8% WER 

(MIT (301). 

The performance of a SI system degrades dramatically if the test speaker is different 

from any of the speakers in the training set. Moreover, it is often impossible to 

cover all the possible speakers in a training set of practical size. For exanlple, 

in the W S J  Switchboard 5000-word benchmark tasks, the performances of native 

speaker (EngIish) tasks ranges from 8% WER to 20% WER while the performances 

of non-native speaker tasks range from 20% WER to 30% WER. There is a major 

degradation in performance with different speaker conditions. 

Therefore, to improve performances of SI systems, a reasonable approach might be to 

dynamically adapt the SI model to each test-speaker according to some enrollment data. 

The adapted model is then used in the final recognitions. 



1.4 Speaker Adaptation 

Speaker adaption is the term used to describe the suite of techniques which modify the 

acoustic model to more closely match the test-speaker. Speaker adaption has been widely 

used in speech systems facing a large or changeable user base. 

Enrollment data 

1 Acoustic information 

m 
The adapted model 

Speaker adaptation 

Figure 1.3: Speaker adaptation block diagram 

Speaker information is extracted from the enrollment data and the SI model is up- 
dated to more closely match the test speaker. 

The process of speaker adaptation is like a rapid training session, as illustrated in 

Figure 1.3. Given some enrollment data (also called adaptation data: a set of utterances 

from the test speaker and the corresponding references), acoustic information about the 

test speaker is extracted and the SI model is adapted towards the test speaker. The 

enrollment data for speaker adaptation can be obtained either from a "speaker training" 

session, in which the speaker is directed to say certain sentences, or from a previous 

recognition pass on the test data. 

Unlike traditional training algorithms, which rely on a large amount of training data to 

update each model parameter individually, speaker adaptation algorithms make a broad 

adjustment of model parameters based on the limited amount of adaptation data. For ex- 

ample, the Maximum Likelihood Linear Regression ( M L L R )  algorithm estimates a trans- 

formation matrix from the adaptation data and then updates all the model parameters. 

Hence, the transformation matrix requires a robust estimation for its wide touch on the 

model parameters. 



Due to the large number of parameters in an acoustic model, existing speaker adapta- 

tion algorithms still require quite a lot of adaptation data to ensure an accurate estimation. 

When there are not enough data to provide such an estimation, a negative adaptation ef- 

fect may result. 

Research on improving speaker adaptation can be done in the following two directions: 

(1) Extract more test-speaker information from the limited amount of adaptation data. 

(2) Incorporate prior knowledge of acoustic models into the adaptation. The latter is the 

topic of this thesis: Knowledge Constraints in Speaker Adaptation. 

1.5 Knowledge Constraints 

Acoustic parameters (or model parameters) considered as random variables are not inde- 

pendent of each other. These parameters are correlated with each other in various ways. 

The correlations mainly come from the following sources: 

Common structure of vocal tracts 

Humans have a common structure of vocal organs, such as oral tract, nasal tract and 

larynx, to produce sounds. This common physical structure results in the similarities 

of different people producing the same sounds, which is one of the reasons why people 

are able to communicate with each other. Therefore, if correlations exist in each SD 

model, there exists a common set of correlations among all the models. These 

correlations reflect the internal structure of speech sounds. 

Phonological rules, language, and dialect 

Phonological rules describe certain ways in which people pronounce words. Accord- 

ing to these rules, some phonemes are more related to each other because it takes 

similar movements of the vocal organs to pronounce them. For example, in OGIBET 

(a phoneme system for English), phoneme /er/ (bbd) and /axr/ (butter) are similar 

in terms of vocal movements. Therefore, there exists correlations among the model 

parameters that model these related phoneme acoustics. 



These correlations among acoustic parameters are hypothesized as a representation 

of the internal structure of speech sounds, or prior knowledge of acoustic models. As- 

sumed invariant among different environments, these correlations can be used in speaker 

adaptation to improve adaptation performance in the following two ways: 

If some parts of the acoustic parameters have enough data to be adapted, other 

parts of the parameters can also be adapted from the correlations. 

If more than one part of the parameters can be adapted. Their correlations can 

serve as a constraint on the possible outputs of the adaptation. 

Intuitively, correlation-based adaptation (also called Dependency Modeling techniques) 

functions as follows: a local change of model parameters is made and then the change is 

smoothed to the neighbors, other model parameters determined by the correlations. For 

example, if phoneme /er/ is observed in the enrollment data, the model parameters that 

model phoneme /er/ are adapted. Furthermore, according to the correlations, the changes 

are smoothed to phoneme /axr/ so that model parameters that model phoneme /axr/ are 

also updated. 

This scenario is different from those adaptation algorithms that rely only on the adap- 

tation data to update the model parameters. Therefore, the use of prior knowledge in 

speaker adaptation is called Knowledge Constraints. 

However, existing dependency modeling techniques do not meet the needs of fast adap- 

tation since changes of model parameters are only made to observed phonemes in the 

enrolllrlcnt data and their correlations. Due to of the  c.onlplexity in nlodeling correlations, 

dependency modeling methods usually model only local correlations (correlations within 

a small neighborhood of a given phoneme). For an acoustic model that has millions of 

parameters, a large amount of adaptation data is required to make a significant change to 

the model. 

1.6 This Thesis 

In this thesis, various speaker adaptation algorithms and dependericy modeling techniques 

have been studied. Existing problems of these techniques include: 



1. Existing transformation-based adaptation algorithms make fast adaptat ion. How- 

ever they require a large amount of adaptation data to robustly estimate the trans- 

formations. If the amount of adaptation data is insufficient, a negative adaptation 

effect may result. 

2. Existing dependency modeling techniques make local modifications of model param- 

eters. Thus they have a slow convergence to the test-speaker. 

This thesis presents the Markov Random Field Linear Regression (MRFLR) algorithm, 

which is a transformation-based adaptation algorithm constrained by correlations. The 

contributions of this thesis are as follows: 

1. It provides a novel way of incorporating the prior knowledge of acoustic models into 

the most widely used transformation-based adaptation method: MLLR. 

2. It solves the difficulty that early attempts to combine these two techniques fail to 

find a closed-form solution for estimating the adaptation parameters. 

The MRFLR algorithm has advantages of both fast adaptation and robust estimation. 

When there is only a limited amount of adaptation data available, the knowledge con- 

straints in MRFLR improve the adaptation performance while normal adaptation methods 

often cause performance degradations. 

Applications of the MRFLR algorithm are various speech dialogue systems that, require 

a fast speaker adaptation. As an extension, the MRFLR adaptation can be also used to 

improve the SI model performance. 

1.7 Organization of this Thesis 

Section 2 gives a general description of modeling acoustics using Hidden Markov Models, 

the most widely used statistical approach for speech recognition. The discussion mainly 

focuses on the training part since the concepts and equations will be used in the later 

chapters. 



Section 3 reviews some known speaker adaptation algorithms. The transformation- 

based adaptation method and dependency modeling techniques are presented in detail to 

show their relation to the MRFLR algorithm developed in this thesis. 

Section 4 details the MRFLR algorithm. Section 5 outlines the baseline system for the 

evaluation of the MRFLR algorithm. Section 6 presents the experimental results. The 

evaluations are based on performance comparisons between MRFLR and MLLR on the 

WSJ task. Section 7 summarizes the thesis. 



Chapter 2 

Acoustical Modeling with HMMs 

In speech recognition research, statistical methods are widely used to characterize both 

the time and spectral properties of speech sounds. A general description of the recogni- 

tion procedure is to find a word string W = wl, w2, ... W L  that maximizes the posterior 

probability of the string W given the speech observation 0 = ol,02, ...qr, that is: 

w = argmax P ( W I 0 )  
W 

(2.1) 

The right hand side of Equation 2.1 can be re-written according to the Bayes rule: 

where P ( 0 )  is the distribution of the speech observation. 

Since P ( 0 )  is irrelevant to the recognition and usually considered constant over the 

time period of interest, Equation 2.1 now becornes: 

w = arg max P(T/fr)P(OI W )  
W (2.3) 

The recognition procedure is a massive search over all the possible word sequences to 

find a word sequence w that maximizes Equation 2.3. P ( W )  acts as a grammar constraint 

on the word sequence, and P ( 0 I W )  measures how well the word sequence matches the 

observed speech sounds. 

P ( O ( W )  is usually called the acoustic model. In large vocabulary systems, the acoustic 

modeling unit is usually each context triphone1 rather than each word, as illustrated in 

'Context triphones are phones that take into account their left and right context. The purpose of using 
triphones in the systems is to model the co-articulation effect of speech. 



speech - ... - -  - - - -  * recognition 

lphoneme level 1 

Figure 2.1: Three layers modeling of a sentence 

The modeling unit is context triphones. They are obtained by first expanding each word 
in a sentence into its pronunciations and then constructing triphones according to the left 
and right context of each phoneme. The phoneme /sp/ represents an optional short pause 
between two words. Usually /sp/ is skipped when considering contexts. 

Figure 2.1. A word is represented first by a series of phonemes according to its pronun- 

ciations and then by a series of context triphones. The construction of a triphone is to 

combine each phoneme with its left and right context,. Each context triphone is modeled 

by a certain model. In the latter chapters, the acoustic model is denoted as A following 

standard conventions. 

2.1 Hidden Markov Model 

For rnodeling acoustics, historically there are marly tt:chniques: dynamic template com- 

parison, knowledge-based matching, neural network, and Hidden Markov Model (HMM). 

These techniques have their own advantages in certain applications. However, when the 

recognition tasks extend to unlimited vocabulary and an unconstrained environment, 

HMM is so far the most promising and effective approach. It is simple in theory and 

has efficient algorithms in both training and recognition. 

A HMM is a finite state machine that changes its state once every time unit. Figure 2.2 

illustrates a typical three-state HMM. (State 1 and 5 are pseudo states.) The transition 
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Figure 2.2: The Hidden Markov Model 

A HMM is a finite state machine with transition probability a,, from one state i to 
another j .  The observation sequence is generated with output probability density 
b, ( o t )  represented by Gaussian mixture densities. 

from state i to state j is determined by the probability aij. At each state j: a speech vector 

(observation) ot is generated with probability density bj(ot), represented by Gaussian 

mixture densities: 
Ki 

where K j  is the number of mixture components of state j ,  wjr, is the weight of mixture 

component k of state j (c::, wjk = I), and N ( . )  is a multivariate Gaussian distribution 

with mean vect,or ~ 6 j k  and covariance matrix Cjk: 

where D is the feature dimension and (ot - pjk)T denotes the transposition of (ot - pjk). 

There are two basic assumptions in the HMM framework: 

1. The first-order Markov assumption enforces that the current system status (being 

at a state) depends only on its previous status: P(qt ( qt-12 qtP2, ....qo) = P(gt 1 qtP1) 

where qt stands for the system being at state qt at time t .  



2. The output independence assumption assumes that the output probability of a state 

depends only on the state at a certain time, regardless of when and how the state is 

entered. 

Under these two assumptions, the probability that an observation sequence 0 = 

01, 02, ..., OT is generated given the acoustic model A moving through the state sequence 

q = 40, ql, .. ., q~ can be calculated as follows: 

In practice, the state sequence q is hidden to us, which is why the model is called a 

hidden Markov model. 

2.2 Recognition: The Viterbi Algorithm 

The recognition computation includes the calculation of the likelihood function P ( 0  1 A), 

which measures how well the acoustic model matches the given speech observation. It is 

simply a summation over all the possible state sequences: 

Equation 2.7 can be computed efficiently by defining the forward probability (See 

the forward-backward algorithm [4]), which is the probability of the partial observation 

sequence 01,02, .. .ot and state i at time t ,  given the model A: 

at@)  = P(01,02, ..., ot, qt = 2 1 A) 

Therefore, 

where N is the number of states in the model. 



Inductively, ai(t) can be solved as follows: 

N-I 

Replacing " C" with "max" in Equation 2.7, Equation 2.9 and Equation 2.10, these 

equations describe the Viterbi algorithm actually used in speech recognition systems. 

By considering only the best state sequence at any time, the Viterbi algorithm has the 

advantage of in-place calculation, that is, there is no need to store all the at(i) over time 

t .  Therefore, it is memory efficient. 

The Viterbi algorithm also includes saving traces of the search so that the best state 

sequence can be retrieved after the search. More details of the Viterbi algorithm can be 

found in Rabiner7s book [32]. 

2.3 Training: The Baum-Welch Algorithm 

Solving the HMM training problem is difficult due to the fact that the state sequence is 

hidden to us. There is no "correct" state sequence corresponding to a given observation 

sequence for all but the case of degenerate models. Therefore, no sufficient statistics of the 

state sequence, as well as of the mixture weight, is available to obtain an analytical estima- 

tion [20]. Under this circumstance, the Maximum Likelihood (ML) estimation is usually 

obtained through the Baum- Welch algorithm, also called the Expectation Maximization 

(EM) algorithm [lo]. 

The EM algorithm is for obtaining the ML estimation in the general case of incomplete 

data. Hence the incomplete data is the speech observation 0 ,  and the complete data 

Y = (O,K,  q) is the union of the speech observation 0 ,  the hidden mixture component 

K, and the state sequence q. The algorithm iteratively maximizes an auxiliary function 



Q(A, A), defined as the expectation of the complete data log likelihood P ( Y  I 0, A) given 

the incomplete data 0 and the current model A: 

all q all n 

It is shown by Liporace [25] that maximizing the likelihood function is equivalent to 

maximizing the auxiliary function: 

Therefore, by iteratively maximizing the auxiliary function, the EM algorithm converges 

to the ML estimation of the acoustic model. 

In the output probability density Equation 2.4, since the mixture weights are summed 

Ki to one (Ck=l w j k  = 1) and the mixture weight number K j  is fixed for each state j ,  it 

has been shown that a HMM state with a mixture density is equivalent to a multi-state 

single-mixture density model that each mixture component has the statistical population 

equal to the mixture weight [18]. With this property, Equation 2.1 1 can be expanded as: 

P ( 0 ,  q, I A) 
T T 

all q all )E t=l t= l  

where 

P(O.  q ,  I AX) C 1% aqt- 1qt 
all q all n 

T 

Q ( i ,  A) = C P("' " l 
log w q t k ,  

all q all K P ( 0  I A) ,=I 

T 

all q all n 

Because of the separability of &(A, A) into three independent terms, Q(A, A) can be 

maximized by separately maximizing the individual terms: the transitions, the mixture 

weights, and the Gaussians. 



The further deductions to maximize each individual item in Equation 2.12 are similar. 

As an example, the Gaussian auxiliary function Q ( N ,  A) can be expanded as: 

T 
'(07 q7 I A) C log ~ ( 0 ~ ;  eqtk , )  

all q all n 

N K, T 

= C C C  P(0 = ot, qt = j, kt = k ( A)  

P(0 I A) 
logN(0t; d j k ,  gjk) 

j=l k = l  t=l 

where yt(j, k) = P(0 = ot, qt = j7 kt = k I A)/P(O I A). 

In Equation 2.13, yt(j, 5) is used as an a-posteriori probability. In the EM algorithm 

it is estimated, according to the current model A, as the probability of observation ot at 

state j ,  mixture component k, and then the value is used to estimate the new model i. 
The calculation of yt(j, k) is through the forward and backward probabilities 141. The 

forward probability and its calculation are discussed in Section 2.2. The backward prob- 

ability is defined as the probability of the partial observation sequence from t + 1 to the 

end, given state i at time t and model A: 

and the inductive calculation of Bi(t) is as follows: 

The estimate yt(j, k) is then calculated as [28]: 



Finally the EM estimation of the HMM parameters is as follows: 

2.4 HMM Configurations 

The previous two sections discussed the mathematical equations for the HMM training 

and recognition. In a practical system with a training corpus of certain size, two questions 

have to be answered before one can start to build an acoustic model: (1) How many 

acoustic parameters should there be in the model? (2) How can these parameters be 

robustly trained? The former question is related to the modeling ability of the model 

while the latter has influence on the robustness of the model. 

In a typical context triphone system, the modeling unit is a triphone. There are often 

more triphones in the model than those observed in the training corpus. Certain tying of 

acoustic parameters is required to robustly train the model. 

The tying of acoustic parameters can be in different levels: state level, mixture com- 

ponent level, or mean-vector/covariance-matrix level, which results in different HMM con- 

figurations. In this thesis, the state-tying scheme illustrated in Figure 2.3 is used. All the 

equations are derived based on the state-tying scheme. With simple modifications, the 

algorithm developed in this thesis can be easily applied to other HMM configurations. 

In the state-tying scheme, HMM states are clustered together according to their acous- 

tic similarities. All the states in such a state cluster share the same mixture parameters 

including the number of mixture components and parameters of each mixture component 

(mixture weights, mean vectors and covariance matrix). 



0 Triphone model 
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Mean vector 
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Figure 2.3: State-tying HMM configuration 

Each triphone is modeled by a three-state HMM. The HMM states are tied to reduce 
the total number of parameters in the acoustic model. Each distinct HMM state 
consists of multiple mixture components. Parameters of each mixture component 
include the mixture weight, the mean vector, and the covariance matrix. 

2.5 Notations 

In the above state-tying configuration, each mixture component can be viewed as drawn 

from a pool of mixture components. Therefore, the mixture components can be uniquely 

indexed for notation simplicity and consistency. 

In the rest of the thesis, the notations for the parameters of mixture component k of 

HMM state j will be simply addressed by a mixture component index m (m = 1...11.f). 

where M is the number of mixture components in the acoustic model. (The state index can 

be easily retrieved from the tying structure given the index m.) These parameters include: 

mixture weight w,, mean vector pm, covariance matrix C, and mixture occupation ym(t) .  

For example, Equation 2.13 will be re-written as follows: 

A detailed list of notations used in the thesis can be found in Appendix A. 



Chapter 3 

Overview of Adapt at ion Techniques 

The purpose of Speaker Adaptation is to compensate for the mismatch between the acous- 

tic model and the acoustic characteristics of the test speaker. By adapting the SI model to 

each particular test-speaker, Speaker Adaptation techniques help improve the recognition 

performance. 

3.1 Adaptation Scenarios 

Supervised or unsupervised 

Depending on whether the source of the references (of the enrollment data) is known or 

unknown, applying speaker adaptation can be in the supervised or unsupervised mode. 

Supervised mode refers to the situation where the references of the enrollment data 

are known. For example, in the "speaker training" session of some dictation systems, a 

speaker may be directed to say certain sentences for enrollment. 

Unsupervised mode refers to the situation where the references of the enrollment data 

are unknown. The recognition results with the SI model are usually used as the refer- 

ences. The errors in these references can be smoothed by accurnulating the re-estimation 

parameters over a certain amount of adaptation data. Positive adaptation effect can be 

expected in average if the SI system has a high enough recognition rate. The lexicon and 

language model also help achieve such a positive effect during recognition. 



Batch mode, incremental mode or  auto-adaptation 

With respect to the source of the enrollment data, applying Speaker Adaptation can be 

in Batch mode, in Auto-adaptation mode, or in Incremental mode. 

In Batch mode adaptation, additional data from the test-speaker are used as the 

enrollment data, that is, the enrollment data and the test data are two different sets of 

speech from the same test-speaker. The Batch mode adaptation is suitable for applications 

in which the enrollment data of the test-speaker can be pre-collected. 

In Auto-adaptation mode, the same data are used for both testing and enrollment. 

The references of the enrollment data are obtained from a previous recognition pass using 

the SI model. Then the SI model is adapted to the test-speaker and the test data is 

re-recognized using the adapted model. This mode is suitable for speech recognition that 

does not real-time response. 

Test sentences 

Figure 3.1: Incremental mode adaptation 

In each incremental step, an acoustic model is adapted from the previous model using 
increasing amount of enrollment data. This adapted model will be used as a base 
model for the next incremental step. 

In the Incremental mode (Figure 3.1), the adaptation is perfvr~rled in intervals as the 

test-data accumulate. The first several utterances (of the test data) are recognized with 

the SI niodel and then used as the enrolIment data for the first adaptation. The references 

come from the recognition results. The adapted model is then used to recognize the next 

several sentences for the successive adaptations. This proc.edlire repeats until all the test 

sentences are recognized. The advantages of the Incrernental mode adaptation are that 

(1) there is little time delay for adaptation and (2) more adaptation data can be used 

as more test data become available. The Incremental mode is typically used for online 



adapt ation. 

3.2 Various Adaptation Techniques 

Adaptation techniques can be categorized roughly into two classes: those that normalize 

individual speaker variations and those that adapt the SI model to individual speaker 

variations. The former is also called Speaker Normalization. 

3.2.1 Speaker Normalization 

Vocal Tract Length Normalization 

Vocal Tract Length Normalization (VTLN) [12,22, 391 normalizes speaker variations in the 

signal space. It compensates the Vocal Tract Length (VTL) among individual speakers. 

The VTL contributes to the variability of speech waveforms. The first order effect of a 

difference in VTL is a scaling of the frequency axis [12]. 

The procedures of VTLN include first obtaining an optimal frequency warp scale, by 

either scanning a possible warping range or by estimating the warp scale from the formant 

positions, and then computing the feature vectors from the accordingly warped frequency 

axis. The resulting feature space is speaker normalized. 

Speaker Adaptive Training 

Speaker Adaptive Training (SAT) [2, 1 ,  31 is motivated by the observation that variability 

in SI models can be attributed to both within-speaker phonetic. variat-ion and variation 

among the speakers of the training population. These two variations can be decoupled 

and the inter-speaker variation can be eliminated. The resulting compact model is more 

suitable for adaptation than the SI model. 

The removal of inter-speaker variation is done by normal Speaker Adaptation tech- 

niques. The exact procedures consist of estimating a transformation matrix for each 

training speaker to account for the individual speaker variation and jointly estimating a 

new model so that the likelihood of the training data is maximized. 



Figure 3.2: Adaptation using a mapping function 

If a mapping function f ( . )  can he estimated, the SI model can be mapped to  the 
test-speaker dependent niodel in the acoustic hyper-space. 

3.2.2 Transform Based Adaptation 

Consider the acoustic hyper-space where the SI model X and the test-speaker dependent 

model (unknown in practice) are two vectors, as illustrated in Figure 3.2. The SI model 

can be viewed as a combination of all the SD means in the training corpus. If a mapping 

function = f (A) can be estimated from the adaptation data, then the S1 model can be 

adapted to the test speaker. 

The mapping function f (.) can be either linear or nonlinear. However, only linear 

mapping has been widely studied due to its simplicity in mathematics and effectiveness 

in practice. 

Maximum Likelihood Linear Regression 

Maximum Likelihood Linear Regression ( M L L R )  [24] uses linear transformation matrices 

to adapt the mean vectors of the SI model. Usually only the mean vectors are adapted 



because they are considered to contribute most to speaker variations. There have been also 

studies on variance compensation [13] ,  which report additional performance improvements. 

Given a mean vector p ,  a transformation matrix A (of size D x D) and an offset vector 

0, the adapted mean vector ,4 is as follows: 

Denoting the transformation matrix W = [ A  P] and the augmented mean vector f i  = 

[pT 1 1 ~ , ~ ~ u a t i o n  3.1 can be simplified as follows: 

The transformation matrix W is estimated from the adaptation data under the crite- 

rion that the likelihood of the adaptation data is maximized. According to Section 2.3, it 

is equivalent to maximizing the auxiliary function ~(i, A). 

Referring to Equation 2.12, the auxiliary function can be divided into three parts. Ig- 

noring the mixture weights Q(k, A) and the transitions Q(A,  A) since they are not changed 

during adaptation, the auxiliary function can be written as: 

Assume yt (m) is not affected by the adaptation. The estimation of the transformation 

matrix W can be obtained by solving: 

Equation 3.4 becomes: 

M T  

If the covariance matrices of the acoustic model are diagonal1, Equation 3.5 has a 

computationally feasible closed-form solution: 

' ~ o s t  speech recognition systems use diagonal covariance matrices to save memory and reduce compu- 
tation during recognition 



where Wi denotes the i th  row vector of matrix W, Zi denotes the i th row vector of matrix 

Z, and 

More than one matrix can be used in MLLR to transform the mean vectors. Each 

transformation matrix corresponds to a certain phonetic class (defined as a cluster of 

mixture components) called a regression class. The usage of regression classes refines 

the MLLR adaptation but also requires more data to be effective. Details of how to 

generate regression classes can be found in Gales's technical report [14]. 111 Section 4.7, a 

decision-tree based regression-class generation method will also be introduced. 

3.2.3 Dependency Modeling 

Dependency modeling has been studied as a way of incorporating prior knowledge of 

acoustic models into adaptation. The goal is to improve the adaptation performance 

given a limited amount of adaptation data. In this case, popular adaptation algorithms, 

such as MLLR, generate ill-structured transformation matrices due to a lack of constraints 

in the matrix estimation. 

The motivation for modeling dependency comes from the observation that acoustic 

parameters in the same phonetic class or across different phonetic classes are highly corre- 

lated. These parametric dependencies reflect the internal structure of acoustic models and 

can be used as parameter predictions (predicting unseen model parameters) and knowledge 

constraints (avoiding erroneous parameters) in adaptation. 

The next three algorithms demonstrate three different ways of modeling the depen- 

dencies. The emphasis is on how the correlations are modeled. 



Predictive Speaker Adaptation 

The Predictive Speaker Adaptation method (PSA) [8] assumes that linear correlations 

occur in different acoustic units (word, phone, triphone, etc). During training, correlations 

among all the pairs of the mean vectors are estimated so that for any mean vector index 

p and q, fi, = apq + bpqpq, where up, and bpq are the coefficients. 

The adapted means 

, . . .  
; ? k'..'.. 

\ , ,, .. 
# I ,  , , -. '..The q-th prediction 
, , \ ' '  

t '. '. , . ,  
I , \ \ .  
I , . .  

I ,  \ . ,  , . .  The SI means b b''6'-..0 
Figure 3.3: Predictive Speaker Adaptation 

The adapted means are linearly correlated with the SI model means. 

As illustrated in Figure 3.3, let y, = a,, + bpqpq denote the 9th prediction for fip and 

let Y denote the set of all the y,. The distribution of y, is simplified to be normal with 

mean fip, and covariance ui. Therefore, 

The ML estimation of fip can be obtained by maximizing Equation 3.11. 

Extended Maximum A Posteriori 

The Extended Maximum A Posteriori (EMAP) adaptation [45] models the correlations 

both across speakers and within acoustic models. 

Assuming feature dimensions are not correlated, EMAP adapts each feature dimension 

individually. Let R denote the number of speakers in the training set, M the number of 

mean vectors in the acoustic model, and let d denote the current feature dimellsion of 

concern. Let denote the dth element of mean vector m (rn = l . . .M) of speaker 

r (r = I... R). The correlations are modeled among columns and rows of the following 



mean-vector matrix: 

... . . . . . . . . . 
( R )  piR) piR) . pi" 

For the correlations across all the speakers, the distribution of the mean values in 

column m is assumed normal with mean p ,  and covariance matrix C,. For the correla- 

tions within acoustic models, the distribution of the mean values in row r is also assunled 

normal with mean po and covariance matrix Co. These assumptions are used to represent 

the distribution of the acoustic model P(A). 

EMAP incorporates correlations into adaptation under the Maximum A Posteriori 

(MAP) framework [21, 15, 451. The MAP criterion is as follows: 

= arg max P(X I 0) 
X 

= arg m a .  P ( 0  I X)P(A) 
X 

Recall that the ML criterion is: 

= arg max P ( 0  I A)  
X 

(3.13) 

Comparing Equation 3.12 with Equation 3.13, the introduction of the prior distribution 

of acoustic model P(X) provides us a way to incorporate prior information of the acoustic 

model into the adaptation. If the prior P(A) is assumed constant but unknown (P(X) a 

constant), the MAP estimation reduces to the ML estimation. In practice, the prior P(X) 

is approximated with estimates from the training corpus. In EMAP, it is represented by 

the previously discussed assumptions. 

Markov Random Field 

Like EMAP, the Markov Random Field ( M R F )  adaptation [34, 35, 361 also models the 

correlations to represent the prior distribl~tion of the acoustic model P(A). The difference 

is that the representation is based on the MRF theory rather than the simplified normal- 

distribution assumptions. 



MRF arranges all the mean vectors into a Markov random field Q in such a way 

that the column number represents the index of the mean vectors and the row number 

represents the feature dimensions. For example, each point (p, q )  in the field represents 

the 9th element of mean vector p in an acoustic model. 

Under the MRF theory, P(X) has the following form: 

In Equation 3.14, z and /? are constants. The summation is over all the cliques, 

defined as pairs of points (in field Q) whose values show high correlations during training. 

V,(Q) measures contributions from the cliques and has a simple form similar to the linear 

correlation: 

where x, and y, are the two points in clique c and (A,,,, a,, bc) are coefficients of clique 

c to be estimated. 

The MRF adaptation incorporates correlations into adaptation also under the MAP 

framework. By solving Equation 3.12 with the prior from Equation 3.14, the MRF adap- 

tation has an iterative solution. 

The Markov random field has a theoretically equivalent (Luettgen [26]) alternative 

called the multi-scale representation, from which efficient recursive solutions to both the 

parameter estimation and adaptation can be derived [7, 191. 

More discussions of the MRF theory will be presented in Chapter 4 since the algorithm 

developed by this thesis also uses the MRF thcory to model the correlations. 

3.3 This Thesis in Perspective 

The dependency modeling methods have explored possible ways of incorporating the cor- 

relations into adaptation. During adaptation, they share the common trait that each 

individual parameter is updated and then the change of a parameter is smoothed 'to' or 

'by' its neighbors. This adaptation strategy results in a slow convergence to the test- 

speaker: a large amount of adaptation data is required to make a sufficient change to the 

acoustic model. 



The transformation-based adaptation algorithms have the advantage of making broad 

adjustments of the parameters. However, when the adaptation data are sparse or not 

representative, the estimated transformation matrices are ill-structured. 

This thesis proposes the MRFLR (Markov Random Field Linear Regression) aIgo- 

rithm, which constrains the transformation estimation with the correlations among acous- 

tic parameters. The purpose is to prevent the estimation from generating ill-structured 

transformation matrices, thereby improving the adaptation performance when only a lim- 

ited amount of adaptation data is available. It can also be viewed as a combination of the 

linear transformation-based adaptation and the dependency modeling adaptation. 



Chapter 4 

Markov Random Field Linear Regression 

In this chapter, the MRFLR (Markov Random Field Linear Regression) algorithm will be 

developed. It is an extension of MLLR under the MAP criterion. The hypothesis of MR- 

FLR is that the correlations among acoustic parameters represent the internal structure 

of speech sounds, that is, prior knowledge of acoustic models. These correlations can be 

modeled and explicitly used as a constraint on the possible outputs of the transformation 

estimations. The resulting transformation matrices will be more robust compared with 

the traditional MLLR approach. MRFLR is particularly useful for speech applications in 

which the amount of adaptation data is limited. 

Early attempts of extending MLLR to incorporate prior knowledge have faced various 

difficulties. For examplej ignoring the Gaussian transitions and the mixture weights1, the 

prior distribution of the acoustic model is normal-Wishart as explained below: 

The first itern P ( p  ( C) ill Equation 4.1 is normal: 

and the second item P ( X )  is Wishart: 

where is a scale matrix of size p x p, n is a degrees-of-freedom parameter, p is the 

'Leggetter [23] has a detailed analysis of adapting various HMM parameters using the transformation- 
based adaptation. The conclusion is that the effect of the Gaussian transitions and mixture weights is small 
in a continuous density system. It will not adversely affect the adaptation performance by not adapting 
these parameters. 



dimension p E M . D (M is the Gaussian mixture-component number and D is the 

feature dimension), and po (size p x 1) and Xo (size p x p) are parameters of the normal 

distribution. 

The representation of the prior knowledge with the normal-Wishart distribution has no 

closed-form solution for the matrix estimation. Moreover, modeling both the mean vectors 

and the covariance matrices involves too many computations to be feasible in a realistic 

adaptation. A reasonable scaled-down task would be to assume the distribution of the 

covariance matrices P ( X )  to be an unknown constant and model only the mean vectors, 

since the mean vectors are regarded as contributing the most to speaker variations. 

The representation of the prior knowledge with the normal distribution (as in Equa- 

tion 4.2) has the drawback that it is difficult to use empirical Bayesian methods [40] to 

estimate the prior parameters due to the excessive size of the parameter space. 

MRFLR, as the name implies, uses an implementation based on the Markov Random 

Field (MRF) theory [ll] to model the correlations among the mean vector field. The 

advantage of using MRF is that only large correlations exhibited on prior speakers will be 

included to represent the prior. The closed-form solution for the matrix estimation can 

be obtained under a reasonable simplification. 

The following sections will first focus on the modeling of the correlations and then the 

formula deduction of MRFLR. Discussion and implementation issues will be presented 

thereafter. 

4.1 Markov Random Field 

Consider a two-dimensional random variable field Q that consists of all the mean vectors 

of an acoustic model A, as illustrated in Figure 4.1. The size of the field is D x M :  

where D is the feature dimension and M is the number of Gaussian mixture components 

in the acoustic model. Each column number represents the index of a Gaussian mixture 

component and each row number represents the index of a feature dimension. For example, 

each point p, q refers to the 9th element of mean vector p and each column vector represents 

the corresponding mean vector in the acoustic model. 



M columns 

Figure 4.1: MRF representation of mean values 

The random field consists of all the mean vectors of an acoustic model. Each column 
number represents the index of a Gaussian mixture component and each row number 
represents the index of a feature dimension. Cliques are defined as pairs of points 
that show high correlations during training. 

The idea of arranging the Gaussian means into a field was brought up by Shahsha- 

hani [34] in 1995. There is a slight difference between his approach and the one described 

above. In his approach, the mean vectors in the field should be normalized by removing 

the inter-speaker scalars (See SAT, Section 3.2.1). Therefore only the phonetic variations 

are modeled by the field. This thesis does not normalize the mean vectors and thus models 

both the phonetic variations and the inter-speaker variations. 

In such a random variable field, correlations exist as some variables (mean values) 

depend on other variables. Gliques are defined and detected as pairs of points2 that show 

high correlations during training. (Details of how to detect cliques will be discussed in 

Section 4.6.) The dependencies can be expressed as follows: 

where zs and xT are points in the field, 52, is the set of clique points of x,, and {x,, r # s )  

is an abbreviation of all the points in the field except point x,. 

The left part of Equation 4.3 is called the local characteristics of point x,. According 

2According to Shahshahani's research work [34], using three(or more)-point cliques do not necessarily 
improve the ability of modeling the correlations. Therefore, two-point cliques are used in this thesis for 
simplicity. Adding a bit of complexity, estimation equations of MRFLR using arbitrary-point cliques can 
be obtained. 



to Besag [5], the joint distribution of the field P(Q)  is uniquely determined by all these 

conditional probabilities (local characteristics). 

However, specifying the local characteristics is extremely difficult (Chellappa and 

Kashyap [6]). This seeming limitation of the MRF theory has been addressed by a the- 

orem [38, 51 that reveals the equivalence of the Markov random fields and Gibbs fields 

(Hassner and Sklansky [16]). Thus, for the equivalent Gibbs field Q, the joint distribution 

of field Q has the following form: 

where z is a normalizing constant (called the partition function), P is a scale (or the 

temperature T = $), and V,(Q) is called the potential function whose form will be discussed 

next. The summation is over all the cliques. 

These terminologies come from statistical physics, wherein such measures are "equilib- 

rium states" for physical systems. The potential function V,(Q) represents contributions 

to the total energy from external fields. In MRFLR, since only two-point cliques are 

involved, the potential function is proposed based on the straight-line fitting. 

Let x, and y, denote the two points in clique c.  The X 2  merit function measures how 

well a, + b,x, fits y, given samples of x, and y,: 

where a, and b, are coefficients, x?) is the r th  sample of point T ,  and arc is the standard 

deviation of z,. The same notation convention applies to y,. 

The potential function Vc(Q) is thus defined as follows: 

where w, = l / (a ic  + b?~:~) .  

In the latter formula deductions, the index c of the clique parameters will be dropped 

for notation simplicity. 



4.2 MRFLR Adaptation 

As MLLR estimates the transformation matrix under the ML criterion, MRFLR estimates 

the transformation matrix under the MAP criterion. Referring to Equation 3.3, the MAP 

criterion has the following auxiliary function taking into account the contributions from 

In Equation 4.7, i is the updated acoustic model, whose mean vectors have been 

adapted by a transformation matrix W as in MLLR: 

T 
where W is a D x (D  + 1) matrix and /i = [pT 11 is the augmented mean vector. 

Since only the mean vectors are modeled and the covariance matrices are assumed un- 

changed during adaptation, ~(i) has the following form (Equation 4.4 and Equation 4.6): 

where i and y are the two points of clique c in the adapted Markov random field, that is, 

each column vector (the mean vector) has been transformed according to Equation 4.8. 

In Equation 4.9, the two points of a clique can be from different feature dimensions, 

which makes further equation deductions difficult. Equation 4.9 needs some simplifications 

before one can proceed. The following facts have been considered: 

In HMM systems, diagonal covariance matrices are often the choice to reduce the 

computational complexity and storage requirement. The underlying assumption of 

using diagonal covariance matrices is that feature correlations across different dimen- 

sions are less important than those within the same dimensions. The performance 

loss of using diagonal covariance matrices can often be compensated by using more 

Gaussian mixture components. 

In Leggetter's technical report of MLLR [23], the adaptation effects of using diago- 

nal transformation matrices have been studied. The experimental results show that 



although diagonal transformation matrices are less effective than full transformation 

matrices, similar performances can be achieved by using more diagonal transfor- 

mation matrices so that there are equivalent number of matrix parameters in both 

diagonal and full transformation matrices. 

Table 4.1 shows some experimental observations for the MFCC feature (12 me1 

frequency cepstral coefficients, energy, and their first and second derivatives, total 

of 39 parameters). Linear correlations were detected on acoustic models trained for 

the WSJ 20K task using the standard SI284 training set. 

In Table 4.1, the number of cliques for each feature dimension is shown from the same 

dimension as well as from different dimensions. Although some dimensions have a 

relative higher percentage (all of them <6%) of cross-dependencies than others, the 

overall number of cross-dependencies is only 1.17% of the total. Therefore, it is 

numerically safe to ignore these cross-dimensional cliques. 

Based on the above observations, The assumption is made that contributions from 

those cross-dimensional dependencies are small in numbers compared with those equal- 

dimensional dependencies. Therefore, the cross-dimensional cliques are ignored in Equa- 

tion 4.9. 

Equation 4.9 can be re-written as: 

where f i x  and fi ,  are the corresponding column mean vectors of the field, and E ( ~ )  is a 

1 i = j = d  
D x D matrix, E:;) = , with d being the feature dimension of the two 

0 otherwise 

points in clique c. 



Table 4.1: MFCC correlations distributions 



Plugging Equation 4.8 and Equation 4.10 into Equation 4.7, the MRFLR auxiliary 

function is re-written to be: 

Up to present, all the pieces have been put together to solve the matrix estimation 

problem. The transformation matrix can be estimated by maximizing the MRFLR auxil- 

iary function. Setting the differential of Equation 4.11 w.r.t. W to zero, it goes: 

where EY) is the dth column vector of ~ ( ~ 1 .  

Define Z ,  v(') (m),  v ( ~ )  ( c ) ,  ~ ( " ( m ) ,  and D ( ~ ) ( c )  as follows: 

Equation 4.12 is re-written as follows: 



If the covariance matrix Em is diagonal ( E ( ~ )  is always diagonal), MRFLR has a 

computational-feasible close-form solution. Equation 4.15 becomes: 

where 
M 

Ghl (i) = (m) ~ ( h : )  (m) - /3 v!,2) (e) D;) (e) 

Fixing i, Equation 4.16 can be viewed as a set of linear algebraic equations for solving 

Wih (indexed by 1 ) .  Therefore, the MRFLR solution is as follows: 

where Wi is the i th row vector of W and Zi is the i th row vector of Z.  

4.3 Understanding The MRFLR Formula 

For an intuitive understanding of the MRFLR estimation, Equation 4.18 has two accu- 

mulators, the numerator matrix G (Equation 4.17) and the denominator matrix Z (Equa- 

tion 4.13). Both of the two matrices consist of a left part coming from the adaptation 

data (the same as that in MLLR, Equation 3.7), and a right part coming from the cliques. 

The left parts reflect the influence of the adaptation data while the right parts reflect the 

influence of the prior knowledge. 

For a clearer explanation, the accumulators in the MRFLR solution Equation 4.18 can 

be simplified to scalars: 

where 7 = gl/ (gl f S T ) .  

In Equation 4.19, the value zl/gl represents the estimate of value to from the adaptation 

data, and the value zT/gT denotes the estimate of value w from the training corpus. The 



ratio 7 is determined by the amount of adaptation data. The MRFLR solution of value 

w is one of the following: 

1. If the ratio 7 is very small (7 -+ 0), then w z z,/g,. This case indicates that when 

adaptation data are sparse, the knowledge constraints dominate the estimation and 

preserve the structural information of the transformation matrix obtained from the 

training data. 

2. If the ratio 7 is very big (7 -+ I) ,  then w % zl/gl .  This case indicates that when 

more adaptation data are available, the adaptation data dominate the estimation. 

The MRFLR performance converges to the MLLR performance. 

3. Otherwise, w is somewhere between zt/gl and z,/g,. The effect of knowledge con- 

straints on the estimation is determined by the amount of available adaptation data. 

4.4 Incremental Adaptation Formula 

The MRFLR solution presented in Equation 4.18 assumes that adaptation data have 

been observed before the estimation takes place. In the incremental adaptation mode, 

only up-to-present adaptation data are in sight. The incremental adaptation formula 

can be obtained by re-arranging the estimation equations to separate those components 

dependent on time. 

Equation 4.13 is re-arranged as: 

Equation 4.14 is re-arranged as: 

With Equation 4.20 and Equation 4.21, the MRFLR estimation can be carried out 

with up-to-present adaptation data. 



4.5 Multiple Transform Matrices 

As mentioned in Section 3.2.2, multiple transformation matrices can be estimated in MLLR 

to improve the adaptation performance. Each transformation matrix corresponds to a 

regression class: a set of Gaussian mixture components with similar acoustic properties. 

This scheme can also be used in MRFLR. 

To extend MRFLR to multiple transformation matrices, one has to overcome the diffi- 

culty that the correlations among acoustic parameters might be across different regression 

classes. Hence, a joint estimation of all the transformation matrices is required to achieve 

the optimal solution, which is computationally expensive if not impossible. 

However, if it can be assumed that most of the correlations occur within the same re- 

gression classes, then the estimation can be carried out separately for each transformation 

matrix, ignoring the correlations that cross different regression classes. This assumption is 

reasonable considering the acoustic parameters are more similar within the same regression 

classes than across different classes. 

Table 4.2 shows the correlations of acoustic models trained for the WSJ 20K task3. 

The regression classes are indexed by the numbers in the first column. Correlations within 

the same regression classes are shown in the second column and correlations across differ- 

ent regression classes are shown in the third column. The correlation pairs across different 

regression classes occupy only a small percentage (less than 3%) compared with the cor- 

relations within the same regression classes. 

The re-estimation equation remains the same as in Equation 4.18 except that the 

summation of the Gaussian mixture components and the summation of the cliques are 

from each corresponding regression class. 

3 ~ h e  number of cliques in Table 4.2 is bigger than that in Table 4.1 because we intentionally include 
more cliques in the table. 



Table 4.2: Correlations statistics for regression classes 

1 r-class I across / within 1 % 11 r-class I across I within I % )I 



4.6 Implementation Issues 

4.6.1 The Training and Adaptation Procedure 

The MRFLR training procedures consist of detecting cliques and estimating the clique 

parameters. We first go through the steps and then focus on some specific issues. 

1. Preparation of SD models 

In both clique detection and clique parameter estimation, a set of SD models is 

used as samples of the field variables. Collecting samples from different speakers 

ensures that the extracted correlations are independent of speakers, thus represent 

a common set of prior knowledge within acoustic models. 

These SD models can be trained using the traditional EM algorithm if there are 

enough training data for each speaker, or can be derived from the SI model using 

MLLR (adapting the SI model to each training speaker) otherwise. 

2. Clique detection 

The clique detection step requires massive computations. Correlations between all 

pairs of points in the field are calculated and those less correlated pairs are discarded. 

Section 4.6.2 has some discussions on possible pruning that is necessary to accomplish 

this step, due to the big size of the field. 

The correlation can be either linear or nonlinear. In this thesis we consider two 

kinds of correlations: the Pearson algorithm for linear correlation and the Spearman 

algorithm for rank-based correlations [31]. 

Given samples of two points dr) and y('), r = l...R, the Pearson linear correlation 

is calculated as follows: 

where 3 and y are the means of x(')'s and y(r)'s, respectively. 

The value I lies between -1 and 1, inclusive. The absolute value of taking 1 

means a perfect straight-line correlation while a zero value of means not linearly 

correlated. 



The concept of the rank-based correlation is to replace the value of each x(') by the 

value of its rank among all the other x (~ ) ' s  in the sample, that is, 1,2 ,  ..., R. The 

resulting list of numbers will be drawn from a perfect uniform distribution function. 

The Spearman rank-based algorithm uses the same linear correlation equation as 

Equation 4.22 with the sample values replaced with ranks for both x(')'s and y(T)'s. 

Theoretically, the rank-based correlation is more robust than the linear correlation 

because of the known sample distributions. 

3. Clique parameter estimation 

Given a set of SD means, the estimation of clique parameters is to minimize the X2 

merit function (Equation 4.5). The Linear Fitting algorithm can be used. It is a 

standard algorithm to estimate the coefficients by fitting a straight line according to 

the given two points with uncertainties on both coordinates. The theory behind it 

can be found in the Numerical Recipes [31]. 

4. Accumulator initialization 

In Equation 4.17 and Equation 4.13, the right parts of the G Z accumulators involve 

no adaptation data. They serve as initial values for the accumulators and can be 

calculated before-hand. This feature is nice in practice since all the computations 

happen in the training stage. There is no additional computation required during 

adaptation, compared with MLLR. 

The adaptation procedures are the same as those in MLLR except for the add-on items 

for the G Z  accumulators. 

1. Obtain statistics for each model 

Run the Forward-Backward algorithm to obtain the statistics for each Gaussian 

mixture component over some adaptation data. The statistics can also be obtained 

through the Viterbi alignment if speed or memory is in concern. 

The adaptation targets come from either pre-determined resources (in the supervised 

adaptation mode) or a previous recognition pass (in the unsupervised adaptation 

mode). 



During the process, the G Z matrices are accumulated according to Equation 4.17 

and Equation 4.13. 

2. Calculate the transformation matrices 

In the batch mode or auto-adaptation mode, the transformation matrices are calcu- 

lated after all the adaptation data have been observed. In the incremental mode, the 

transformation matrices are calculated after each incremental step. The calculation 

follows Equation 4.18. 

3. Update the mean vectors 

All the mean vectors are transformed according to Equation 4.8. Certain models 

may be intentionally untouched for they are less speaker dependent. For example, 

a silence model and an optional short pause model are often well trained in the SI 

model and reflect more environmental property rather than acoustic characteristics 

of a speaker. The silence model is used to model silence of certain duration in 

speech, and the optional short pause model is used to model the optional short 

pauses between two words. 

4. Perform recognition with the adapted model 

Perform recognition on the test utterances using the adapted acoustic model. For 

the unsupervised mode, this is a second recognition pass on the test utterances. 

4.6.2 Clique Detection 

Clique detection is a step in MRFLR to identify cliques. Due to the big size of the field, 

some sort of pruning schemes have to be used to accomplish the task. For example, the SI 

model used in this thesis has 7,500 states and each state 12 mixture components, which 

is about 90,000 mixture components. The field size is 39 x 90,000 (39 is the feature 

dimension). The computation is about 90,000 x 90,000 x 39/2 z 1.58 x 1011 times 

correlation calculations. 

The proposed pruning method groups all the Gaussian mixture components into a 

hierarchy tree according to their acoustic similarity. The clique detection is proceeded 



as a top-down process: If two parent nodes are considered correlated, then the detection 

continues with more details for their child nodes. Otherwise, their child nodes are assumed 

not correlated. 

Regression classes 

MM states \ / 

/ \ Gaussian mixture components I \ 

Figure 4.2: Pruning hierarchy for clique detection 

The top level considers correlations among regression classes. The middle level consid- 
ers correlations among HMM states. The bottom level considers correlations among 
Gaussian mixture components. 

As illustrated in Figure 4.2, the three-level pruning-tree is arranged as follows: 

The bottom level 

This level consists of all the Gaussian mixture components. 

The middle level 

The middle level consists of all the HMM states. According to the HMM tying dis- 

cussed in Section 2.4, each node in the middle level has its child nodes (in the bot- 

tom level) that are Gaussian mixture components associated with the corresponding 

state. 

As different HMM systems have different model configurations, the middle level may 

have flexible settings accordingly. 

The top level 



The first level consists of a set of regression classes. Each regression class has child 

node that are HMM states in the middle level. 

For each feature dimension, the clique detection and pruning proceed as follows: 

1. Data preparation (bottom to top) 

(a) Construct a vector for each bottom level nodes. Each element of the vector 

comes from the mean values of the prepared set of SD models (Section 4.6.1). 

For example, if a bottom level node is associated with mixture component m 

and the current feature dimension is d, then the r th  element of the vector is 

the dth element of the mean vector of Gaussian mixture component m in SD 

model r .  

(b) Calculate a vector for each middle level node as an average over all the vectors 

in the child nodes. 

(c) Calculate a vector for each top level node as an average over all the vectors in 

the child nodes. 

2. Clique detection (top to bottom) 

(a) Calculate correlations among all the nodes in the top level and drop those pairs 

of nodes that are less correlated. 

(b) Expand the remaining pairs to the middle level. 

(c) Calculate correlatioris arnorig the corresponding nodes and drop those pairs of 

nodes that are less correlated. 

(d) Expand the remaining pairs to the bottom level. 

(e) Calculate correlations among the corresponding nodes and save those cliques 

that show high correlations. 

Let M denote the number of Gaussian mixture components in the acoustic model. 

Without any pruning, the clique detection step requires $ M ~  times correlation calculations 

in average for each feature dimension. With the proposed pruning algorithm, the clique 



detection step requires i r 2 M 2  times correlation calculations in average for each feature 

dimension. The parameter 0 5 r 5 1 represents an average correlation rate, that is, how 

many correlation pairs have high enough correlations to be passed to the next level. 

From the above analysis, the pruning algorithm does not change the complexity of the 

clique detection but speeds up the process by reducing a constant factor in the complexity 

measure. 

4.7 The Regression Class Tree 

In both MLLR and MRFLR, assigning a transformation matrix to a regression class can 

be pre-wired (fixed) or through a dynamical approach such as the regression-class tree 

(regression tree from now on). 

Figure 4.3: A regression class tree 

Each tree node is a regression class with each parent node consisting all the Gaus- 
sian mixture components of its child r~odcs. During adaptation, the transformation 
matrices are assigned through a top-down search to the lowest tree nodes whose 
frame-counts satisfy a given threshold. 

Figure 4.3 illustrates a typical regression tree. Each tree node is a possible regression 

class. A parent class includes all the Gaussian mixture components of its children. Hence 

the root node represents the global regression class and the children of each node represent 

more specific classes. 

During adaptation, transformation matrices are assigned through a top-down search 

to the lowest possible regression classes that satisfy a given frame-count (or an occupation 



count) threshold. The threshold is set to ensure the robust estimation of each transfor- 

mation matrix. 

Gales [14] presented some of the popular regression-tree generation algorithms. These 

algorithms use a bottom-up clustering scheme and are driven only by the training data. 

Hence there exists a problem that the regression tree could be biased by the training data. 

It is desired that the generation procedure be constrained by some phonetic knowledge. 

This thesis proposes a regression-tree generation algorithm, which is an extension of 

the phonetic decision-tree algorithm [44] widely used in acoustic training. The advantages 

of using the proposed algorithm are as follows: 

1. Combine the phonetic knowledge and the data-driven method together to prevent 

the tree generation procedure from being biased by the training data. 

2. By using similar methods in both acoustic training and regression-tree generation, 

the resulting regression tree is more similar to the training configuration than those 

traditional regression tree derived from data-driven-only methods. There is less 

mismatch between the training and the testing configurations. 

As stated in Section 2.4, HMM parameters are tied to balance the modeling ability and 

trainability. The phonetic decision-tree algorithm is used to cluster acoustically similar 

HMM states together to provide a state-level tying. 

The phonetic decision tree is a binary tree with a yes-or-no phonetic question attached 

to each node. Initially all the states (usually of a specific central monophone) are placed 

at the root node. Depending on each answer, the pool of states is split and this continues 

until the states have trickled down to leaf nodes. All the states in the same leaf node are 

then tied. For example, in Figure 4.4, the decision tree partitions all the states into six 

subsets (leaf nodes), and the state parameters are tied together for each subset. 

The question attached to each node is selected from a set of phonetic questions so as to 

maximize the IikeIihood of the training data given the corresponding state tying. Usually 

the means vectors, the variance matrices, and the state occupations of single Gaussian 

distributions are used as sufficient st at istics to calculate the likelihood increase. Splitting 



/ Initial set of untied states 

Tie states in each leaf node 

Figure 4.4: Phonetic decision tree 

Each phonetic question splits the HMM states into two subsets and increases the 
overall likelihood of the training data. The questions are selected from a question set 
so as to maximize the likelihood increases. The HMM states in each leaf-node cluster 
will be tied together to reduce the total number of parameters in the acoustic model. 

any pool into two will increase the likelihood since it provides twice as many parameters 

to mode1 the same amount of data. 

The proposed regression-tree generation algorithm has made the following modifica- 

tions to the decision-tree algorithm: 

1. Assurne Gaussian mixture components within a HMM state are already acoustically 

similar enough so that they are by default clustered together (belonging to the same 

regression classes). 

2. The phonetic questions are extended to include both state questions and central 

monophone questions as follows: 

(a) state questions: For example, is this state the central state of some HMMs? 

(b) left context questions: For example, is the left context vowel? 



(c) right context questions: For example, is the right context nasal? 

(d) central monophone questions: For example, is the central monophone 'a'? 

The procedure of the regression-tree generation algorithm is as follows: 

1. Create the root node and associate it with all the HMM states. 

2. For each leaf node, evaluate each question in the question set: Calculate the likeli- 

hood increase if the HMM states are split according to the current question. The 

best question is recorded that results in the maximum likelihood increase. 

3. Select the leaf node that has the maximum likelihood increase. 

4. If the selected leaf node has the total likelihood value below a given stopping thresh- 

old, the algorithm stops. 

5. Split the selected node into two child nodes. The left child is associated with HMM 

states (from the selected node) that answers yes to the best question and the right 

child is associated with HMM states that answers no. 

6. Repeat Step 2 to 5 until the likelihood increase below a given threshold. 

The resulting algorithm generates a regression tree for the Gaussian mixture compo- 

nents. For example, in Figure 4.5, nine regression classes are generated. During adapta- 

tion, transformation matrices will be assigned to the lowest tree nodes whose frame counts 

satisfy a given threshold. 



Figure 4.5: Phonetic regression class tree 

With the expanded question set, the phonetic regression tree clusters the Gaussian 
mixture components into regression classes. The question "C-Vowel" asks if the 
central monophone is vowei and the question "state-12" asks if the Gaussian mixture 
component belongs to state 1 or 2. 



Chapter 5 

The Baseline System 

5.1 Baseline System 

The 1998 OGI-FONIX [43] large vocabulary system was used as the baseline system. It is 

a continuous HMM-based system designed mainly for transcribing Broadcast News. This 

chapter presents the training and recognition sub-systems used in the evaluation of the 

MRFLR algorithm. 

To speed up the experimental cycle without losing much generality of the test envi- 

ronments, the ARPA WSJ 20K task has been chosen as the test bed. With about 20,000 

words in the system vocabulary, the test set has an out-of-vocabulary rate of 4%. 

5.2 Acoustic Feature 

The acoustic front end extracts 12 me1 frequency cepstral coefficients, energy, and their 

first and second derivatives (total of 39 parameters) from every 10 ms frame. Cepstral 

Mean Normalization is performed on each utterance. 

5.3 Acoustic Training 

The standard SI-284 acoustic training set was used to train the SI model. The SI-284 

training set contains 283 speakers, 110 to 150 sentences for each speaker. The acoustic 

model is state-tied based on the phonetic decision-tree algorithm and trained with the 

standard EM algorithm. The training procedure is shown in Figure 5.1 and explained as 

follows: 
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Figure 5.1: The acoustic training procedure 



1. Monophone initialization and training 

The monophone set has 48 monophones. They were initialized from the TIMIT 

corpus1 and then trained using the traditional EM algorithm on the SI-284 training 

set. Three iterations of the EM training were performed to ensure the convergence. 

2. Context triphone training 

The monophone models were cloned to their corresponding context triphones (only 

for those observed triphones in the training set). Another four iterations of the EM 

training were done to tune the triphone models to the SI-284 training set and to 

collect statistics for the next clustering step. 

3. Clustering and state tying 

The phonetic decision-tree algorithm was used to perform state clustering and then 

state-tied to the corresponding mixture parameters (mixture weight, mean vector 

and covariance matrix). Up to this step there is only one Gaussian mixture compo- 

nent for each HMM state. 

4. Clustered triphone training 

The clustered triphone model was again trained with the EM algorithm on the SI- 

284 training set. After every three or four iterations of training, each HMM state 

in the model was split to more mixture components. The final acoustic model has 

7500 states with each state consisting of 12 Gaussian mixture components. 

5.4 Language Model Training and The Lexicon 

The CMU-Cambridge language model package V2.0 was used. The text materials included 

the WSJ language model data obtained from LDC (Linguistic Data Corporation). The 

Good-Turing method was used to estimate the back-off trigram and bigram language 

models. They contained 17M trigrams and 7M bigrams respectively. The perplexity on 

the ARPA Nov92 test set is 129. 

 h he TIMIT corpus of read speech includes time-aligned phonetic transcription of American English 
of 630 speakers and 8 major dialects 



According to the occurrence of words in the text training corpus, the lexicon was se- 

lected to have 19979 words. The dictionary was selected from the most frequent pronun- 

ciations in the SI-284 training set and has 23714 pronunciation entries (including multiple 

pronunciations for some words). 

u 
abound 

Figure 5.2: Recognition on the lexical tree 

Words with the same prefix pronunciations share the same tree paths. The search is 
performed as the search paths pdssing through the lexical tree. 

5.5 Tree-search Recognition 

In recognition, the search for the most likely word sequence is based on the lexical tree, 

a prefix pronunciation tree, as illustrated in Figure 5.2. Each tree node (except the 

pseudo root node) is a phoneme of some word pronunciations. Words with the same 

prefix pronunciations share the same tree paths. Each leaf node is associated with a word 

whose pronunciation is represented by the path from the pseudo root node to the leaf 



node. 

The recognition is processed as the search paths passing through the lexical tree. The 

search is initialized from the pseudo root node. The context triphone is rendered and the 

corresponding acoustic model is used to calculate the acoustic score. The search path 

splits at the tree branches so that every possible path will be traversed. 

At each leaf node, the language model score is attached. The word associated with the 

leaf node is recorded as the search history and the search path goes back to the pseudo 

root node for searching the successive words. 

At the end of search, the search path with the best likelihood score is traced back to 

retrieve the most likely word sequence and output as the recognition result. 

During the search, many pruning strategies are explored so as not to exhaust memory. 

For example, the state pruning method discards those search paths that have too low 

acoustic scores (unlikely to be the best at the end of the search). More details of efficient 

search algorithms can be found in Young's papers [37, 291, and Ravishankar's thesis [33]. 

5.6 Baseline 

This baseline system achieved 12.6% WER on the Nov92 test set, as in Table 5.1. There 

are 8 speakers in the test set with each speaker 41 to 45 utterances. 

Table 5.1: Baseline WER on WSJ20K Nov92 

Speaker Sub Del Ins WER 

440 9.1 1.2 3.2 13.4 
441 15.3 1.9 3.6 20.8 



Chapter 6 

Evaluation of MRFLR 

This chapter studies the performance of the MRFLR adaptation presented in Chapter 4 

by conducting a series of experiments on the ARPA speech corpora. The performance of 

MRFLR will be compared with that of the most popular MLLR adaptation since MRFLR 

is a direct extension of MLLR and also since MLLR is the most widely used adaptation 

algorithm in speech recognition systems. These experiments include: 

1. MRFLR vs MLLR with supervised sparse data in the batch mode 

2. MRFLR vs MLLR with unsupervised sparse data in the auto-adaptation mode 

3. MRFLR with different scaling factors 

4. MRFLR vs MLLR with multiple transformation matrices 

5. MRFLR vs MLLR in the incremental mode 

6.1 Statistical Analysis 

For statistical analysis on the performances of two systems: MRFLR vs MLLR, the sta- 

tistical tool provided along with the WSJ20K benchmark test is used. The tool has 

implemented: (1) matched-pairs test on sentence segments, (2) Wilcoxon signed-rank test 

on speaker accuracy rate. 

Matched-pairs Test 

The matched-pairs test is based on sentence segments. The sentence segments are detected 

using a state-machine illustrated in Figure 6.1. The term "correct" means both the two 



systems correctly recognize the current word. The term "error" means at least one system 

incorrectly recognizes the current word. A sentence segment is thus a sequence of words 

with the segment's end being given the number (min-good) of correctly recognized words 

for both systems. The value min-good is set to one word in this thesis. 

I 
correct (---o ------, 

1 error 

I r? error if #correct==min-good 

/ 1 1 then store the segment 

Figure 6.1: State machine for locating sentence segmentations 

The term "correct" means both the two systems correctly recognize the current word. 
The term "error" means at least one system incorrectly recognizes the current word. 
A segment is a sequence of words that end with given the number (min_good) of 
correctly recognized words. 

For each segment i, the variate di is defined as the difference of the number of mis- 

recognized words from the two systems. The hypotheses of the matched-pair test are as 

follows, denoting d as the mean of the differences: 

The null hypothesis Ho : d = 0 

The alternative hypothesis Ha : d # 0 

Defining the standard normalized variate z = & i d l a  (where n is the sample size and 

a is the standard deviation), the decision of the matched-pair test can be made on the 



following decision rule: reject Ho if lzl > z,, where z, is a critical value [27] from a 

standard normal table corresponding to the confidence level 100(1 - a)%. 

Wilcoxon Signed Rank Test 

The Wilconxon test [41] is a non-parametric test that utilizes information on both the signs 

and the magnitudes of the differences of the speaker accuracy in the two systems. Define 

di the differences of the word accuracy rates of speaker i of the two systems. Omit zero 

differences and reduce the sample size n if necessary. The hypotheses of the Wilconxon 

test are as follows, denoting d the mean of the differences: 

The null hypothesis Ho : d = 0 

The alternative hypothesis Ha : d # 0 

Order the absolute values of the differences Idi\ from smallest to largest, and assign 

ranks from 1 to n to the ordered absolute values. Determine the sum T+ of the ranks 

assigned to the positive di and the sum T- of the ranks assigned to negative di. Let 

T = min(T+,T-). 

The decision of the Wilconxon test is made on the following rule: reject Ho if the 

approximate normal test statistic z = T-n(n+ 1)/4 
Jn(n+1)(2n+1)/24 

is in the lower 100(a/2)% tail of 

the standard normal distribution. 

6.2 Speaker Dependent Training Data 

The SD models required by the MRFLR training procedures were obtained using the same 

SI-284 training data. Instead of using the traditional ML algorithm, the MLLR adaptation 

was used to adapt the SI model for each training speaker, since the speaker dependent 

data were not enough to fully train an acoustic model. 

The MLLR adaptation used a regression tree that had 64 leaves at t,he bottom and in 

total 127 regression classes. The occupation threshold was set to 1500 to for pruning the 

regression tree. 



6.3 Clique Detection 

The clique detection was based on a three-level pruning tree (Section 4.6.2) as follows: 

1. The top level consists of 256 clusters of Gaussian mixture components, obtained from 

the phonetic decision-tree clustering. The rank-based correlation was calculated 

using the Spear algorithm. Those pairs were dropped whose correlation value was 

less than 0.6. The remaining pairs were expanded to the middle level. 

2. The middle level consists of 7,503 clusters of Gaussian mixture components, the 

number identical to the HMM states in the model. As in Step 1, the less correlated 

pairs were dropped and the remaining pairs were expanded to the bottom level. 

3. The bottom level consists of all the 90,022 mean vectors. The highly correlated pairs 

detected in this level were saved as the detected cliques of the field. 

Table 6.1 shows the number of cliques in each level. 

Table 6.1 : Clique detection stages 

6.4 Single Transform Matrix With Sparse Data 

level 

top 
middle 
bottom 

As stated in Chapter 4, the MRFLR adaptation constrains the matrix estimation with the 

prior knowledge of acoustic models. It is particularly useful for sparse adaptation data 

cases. When the amount of adaptation data is limited, the adaptation relies more on the 

prior knowledge rather than the informat ion extracted from the adaptation data. 

6.4.1 Data Preparation 

cluster number 

256 
7503 

90022 

There are 8 speakers in the WSJ20K Nov92 test set. Each speaker has two sets of data, 

one for (adaptation) enrollment and the other for testing. Each data set has 41 to 43 

- 
clique number 

126594 
3172939 
11 104362 



utterances, whose lengths are from 6 to 11 seconds with a few short exceptions of 2 to 3 

seconds. 

To draw the performance curve of MRFLR, a series of enrollment sets should be 

constructed with each set being the superset of its immediate precedent. Such enrollment 

sets could be constructed as follows: the first set contained the first test utterance, and 

the second set contained the first and the second test utterances, etc. However, since each 

utterance has a relatively long duration, the amount of adaptation data would soon reach 

a point where the performances of MRFLR and MLLR have no significant difference. 

Therefore, for a thorough study, the enrollment sets are actually constructed as follows: 

1. Generate an enrollment list by including all the enrollment utterances and then 

randomly shuffling the orders. 

2. For each x from 1 second to 20 seconds with an incremental step of one second, 

construct an enrollment set by selecting the first several utterances from the enroll- 

ment list. The summation of the Iength of these utterances matches length x. If an 

utterance is too long to be included, it is chopped at certain word boundary. The 

word boundaries are obtained from either a force-alignment pass (in the supervised 

mode) or a previous recognition pass (in the unsupervised mode) on the utterance. 

6.4.2 Supervised Batch Mode 

The supervised batch mode tests were performed on the Nov92 test set. A series of 

enrollment sets was generated from the Nov92 enrollrrlent data using the  neth hod described 

in Section 6.4.1. Table 6.2 shows the actual lengths of the enrollment sets and their 

monophone coverage (averaged over each speaker). Figure 6.2 shows the performance 

curves of MRFLR vs MLLR. Both these two algorithms used a global transformation 

matrix. 

For the performance curve of MLLR, with adaptation data less than 6 seconds, MLLR 

makes a terrible estimation of the transformation matrix and the performance curve is well 

above the baseline due to the lack of adaptation data. In practical applications, it is desired 

not to turn on MLLR until the amount of adaptation data accumulates. With adaptation 



Table 6.2: The supervised adaptation set 

data from 6 to 13 seconds, MLLR begins to be effective. The adaptation performance is 

getting better as more adaptation data are available. With adaptation data more than 13 

seconds, the performance curve becomes stable with only small glitches. 

For the performance curve of MRFLR, the recognition performance is improved in all 

monophone coverage (%) 
14 

adaptation set 

1s 

the tests (compared with the baseline), which clearly shows us the advantage of incorpo- 

rating prior knowledge. From 1 second to 13 seconds, the MRFLR performance curve has 

a smaller slope than the MLLR curve, which indicates that MRFLR is less sensitive to the 

adaptation data due to the constraint from the correlations. MRFLR continuously out- 

performs MLLR until the amount of adaptation data reaches the 13-second point where 

both MRFLR and MLLR become stable. There are some betters and worses during the 

actual length (s) 

1.28 

merging period. 



10 
2 4 6 8 10 12 14 16 18 20 

Adaptation data (seconds) 

Figure 6.2: MRFLR vs MLLR with supervised sparse data 

Statistical analyses were performed for each test set. Based on a 95% confidence inter- 

val, the matched-pairs tests show that MRFLR and MLLR are different with adaptation 

data from 1 second to 12 seconds. For example, at the 12-second point, there are totally 

378 segments detected. The mean of the differences (of the number of mis-recognized 

words) is -0.053 and the standard deviation is 0.475. The z statistic is -2.167, whose 

absolute value is greater than z, = 1.960. Therefore the null hypothesis is rejected. 

Based on the 95% confidence interval: the Wilcoxon tests show that MRFLR and 

MLLR are different with adaptation dat,a from 1 second to 10 seconds. For example, at 

the 10-second point, Table 6.3 shows the Wilcoxon calculation table. The sum of seven 

positive ranks is 34 and the sum of one negative rank is 2. The z statistic is -2.24, whose 

absolute value is greater than z, = 1.960. Therefore, the null hypothesis is rejected. 



Table 6.3: The Wilcoxon test for supervised 10-second data 

6.4.3 Unsupervised Auto-adaptation Mode 

The unsupervised auto-adaptation tests were performed on the Nov92 test set. A series 

of enrollment sets was generated from the same test set (using targets from a previous 

recognition pass). Table 6.4 shows the actual lengths of the enrollment sets and their 

monophone coverage (averaged over each speaker). Figure 6.3 shows the performance 

curves of MRFLR and MLLR. Both methods used a global transformation matrix. 

speaker 

10 
2 4 6 8 10 12 14 16 18 20 

Adaptation data (seconds) 

difference 
Word Correct Rate (%) 
MRFLR I MLLR 

Figure 6.3: MRFLR vs MLLR with unsupervised sparse data 

rank 
signed 
rank 



Table 6.4: Unsupervised adaptation Set 

1 adaptation set I actual length (s) I monophone coverage (%) 11 



The curves in Figure 6.3 are like those in Figure 6.2 although there are more observable 

glitches due to errors in the enrollment references. 

For the performance curve of MLLR, with adaptation data less than 7 seconds, MLLR 

makes poor adaptations and the performance curve is well above the baseline. With 

adaptation data from 7 seconds to 12 seconds, MLLR begins to improve the recognition 

performance. After the 13-second point, the MLLR performance becomes stable. 

Compared with the baseline, MRFLR improves the recognition performance in all 

the tests except the one-second test set, which again shows us the strength of utilizing 

knowledge constraint in speaker adaptation. 

MRFLR outperforms MLLR with adaptation data less than 10 seconds. The smaller 

slope of the performance curve indicates that MRFLR is less sensitive to adaptation data 

as aIready observed in the supervised experiments. MRFLR converges to the MLLR 

performance with more than 13 seconds adaptation data. 

For the statistical analysis results, based on the 95% confidence interval, the matched- 

pairs tests show significant differences of the two systems with adaptation data from 1 

second to 8 seconds. For example, at the &second point, totally there are 418 segments 

detected. The mean of the differences is -0.117 and the standard deviation is 0.861. The 

z statistic is -2.783, whose absolute value is greater than z, = 1.960. Therefore, the null 

hypothesis is rejected. 

Table 6.5: The Wilcoxon test for unsupervised 5-second data 

With the same confidence interval, the WiIcoxon tests show significant differences of 

speaker 
Word Correct Rate (%) 
MRFLR I MLLR difference rank 

signed 
rank 



the two systems from 1 second to 5 seconds. For example, at  the 5-second point, Table 6.5 

shows the calculation table. The sum of the 6 positive ranks is 33 and the sum of the 

2 negative ranks is 3. The z statistic is -2.10, whose absolute value is greater than 

z, = 1.960. Therefore, the null hypothesis is rejected. 

6.5 Scaling Factor of MRFLR 

MRFLR beta=3e-5 * - 
MRFLR beta= le-4 - -  

MRFLR beta=3e-4 jt 

I 1 I I 1 I I I I I 

Adaptation data (seconds) 

Figure 6.4: MRFLR with different scaling factors 

In MRFLR solution (Equation 4.18), the scaling factor /3 controls the influence of 

knowledge constraints. Figure 6.4 shows the MRFLR performances with different scaling 

factors. The MLLR performance curves are also shown for comparison. 

When P is very small, the MRFLR curve is close to the MLLR curve. As an extreme 

case, MRFLR is identical to MLLR if j3 = 0. 

Turning the scaling factor bigger, the knowledge constraints gain more influences over 



the adaptation data. The performance curve becomes smoother and less sensitive to the 

adaptation data. However, more adaptation data are required to make MRFLR converge 

to the MLLR performance. 

At present, MRFLR has only implemented with a constant scaling factor for all the 

cases. Theoretically, for a little amount of adaptation data, a large scaling factor is called 

for putting more emphases on the prior knowledge. When there are more adaptation 

data available, it is desirable to have a smaller scaling factor so that MRFLR can quickly 

converge to the test-speaker. An ideal solution would be to automatically adjust the 

scaling factor according to the amount of adaptation data. This scheme is being studied. 

6.6 Multiple Transform Matrices 

To test performances of MRFLR vs MLLR with multiple transformation matrices, a re- 

gression class tree was generated using the phonetic decision-tree based generation method 

described in Section 4.7. There are 32 leaves and totally 63 nodes in the tree. 

10.2 
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 

Occupation threshold 

I I I I I I I I I 

- 
MRFLR - - 

-+i MLLR + - 
\ 

- - 

- - 

- - 

- - 

- - 

I I I I I I I I I 

Figure 6.5: MRFLR vs MLLR with multiple matrices 



The adaptation tests were performed in the auto-adaptation mode on the Nov92 test 

set. Figure 6.5 shows the test results given different pruning thresholds. The pruning 

threshold determines both the number of transformation matrices used in the adaptation 

and the amount of adaptation data for each transformation matrix. 

For both MRFLR and MLLR, the performance peak is at threshold 1500. With a 

smaller threshold, MRFLR has better performance than MLLR and with a bigger thresh- 

old, no performance difference is observed. 

This result is not surprising because MRFLR is designed for functioning with limited 

amount of adaptation data. When adaptation data are sufficient as in the multiple ma- 

trices case, the effect of knowledge constraints is overshadowed (Section 4.3). Although 

MRFLR is unable to outperform MLLR at the peak performance, there are still improve- 

ments with off-peak thresholds. In practice, the best pruning threshold may vary with the 

test environment. A preset pruning threshold may not always be optimal. MRFLR helps 

prevent performance degradations in worse cases. 

6.7 Increment a1 Adapt at ion 

The incremental mode tests were performed on the Nov92 test set. A series of incremental 

steps were tested. The same regression tree was used as in the multiple transformation 

matrices experiments. 

Table 6.6: Incremental mode with pruning threshold 1500 

Table 6.6 shows the performances with a pruning threshold of 1500. No performance 

difference was observed. This result is consistent with the experimental results in Sec- 

tion 6.6. With a pruning threshold of 1500, there are already enough adaptation data to 

1 
Inc Step (#uttr) 

2 

MLLR WER 

11.3 
MRFLR WER 

11.3 



overshadow the effect of MRFLR. 

Table 6.7: Incremental mode with pruning threshold 1100 

Table 6.7 shows the performances of MRFLR vs MLLR with a pruning threshold of 

Inc Step (#uttr) 

2 

1100. Except in the six utterances case, no performance difference was observed. 

The explanation to this result lies in the amount of adaptation data. For this test set, 

the amount of adaptation data in every incremental step is about 12 seconds. Referring 

to Figure 6.2 and Figure 6.3, MRFLR and MLLR show no significant performance differ- 

MLLR WER 

11.4 

ence with more than 12 seconds adaptation data. Therefore, it is no surprise to see no 

performance difference between MRFLR and MLLR in incremental mode. It might be 

MRFLR WER 

11.4 

good to do more experiments on other tasks to further prove the conclusion. However, in 

incremental mode, we may see that the amount of adaptation data accumulates quickly 

as more test utterances become available. Therefore, the effect of knowledge constraints 

in MRFLR is overshadowed in general. 



Chapter 7 

Conclusion and Future Work 

7.1 Conclusion 

This thesis has studied Speaker Adaptation techniques with a limited amount of enrollment 

data. Existing adaptation methods rely greatly on the enrollment data to extract the 

test-speaker information. When there are not enough enrollment data to ensure a robust 

estimation, a poorly structured estimation will often degrade the recognition performance. 

The hypothesis of the thesis is that the correlations among acoustic parameters rep- 

resent the internal structure of speech sounds. These correlations can be viewed as the 

prior knowledge of acoustic models. By modeling them and explicitly incorporating them 

into adaptation, the adaptation performance can be improved. The knowledge constraints 

play the following two roles: (1) Predict acoustic parameters that are not observed in the 

enrollment data and (2) constrain the possible estimation outputs. 

This thesis presents the MRFLR algorithm that uses the MRF theory to model the cor- 

relations among acoustic parameters and uses the linear transformation matrices to adapt 

the mean vectors of a S1 model to match the test-speaker. Under the feature-dimension 

independent assumption, a closed-form solution has been obtained for the MRFLR matrix 

estimation. 

The MRFLR algorithm was evaluated through a series of comparison experiments with 

the MLLR algorithm. The following experimental results were observed: 

1. MRFLR can be used in the batch mode adaptation and in the auto adaptation 

mode. In these modes, when the amount of adaptation data is limited, MRFLR 



outperforms MLLR. As the amount of adaptation data increases, the performance 

of MRFLR converges to that of MLLR. 

2. In extending the MRFLR algorithm to multiple transformation matrices, no signifi- 

cant performance improvement over MLLR was observed. The experiments include 

using MRFLR with multiple transformation matrices and using MRFLR in the in- 

cremental adaptation mode. One reason is that the amount of adaptation data is 

already enough to robustly estimate the transformation matrices. Therefore the 

advantage of MRFLR is overshadowed. 

The contributions of this thesis are as follows: 

1. It provides a novel way of incorporating the prior knowledge of acoustic models into 

the transformation-based adapt atibn method. 

2. It  solves the difficulty that early attempts of incorporating knowledge constraints 

into transformation-based adaptation algorithms fail to find a closed-form solution 

for the matrix estimation. 

7.2 Extension to This Work 

The following issues of MRFLR can be improved in the future. 

The scaling factor controls the influence of the prior knowledge to the the adaptation 

data. As stated in Section 6.5, an ideal solution would be to adjust the scaling factor 

according to the amount of adaptation data. The more adaptation data, the less the 

scaling factor. 

How many cliques should be appropriate for a practical system is an open question. 

With more cliques, more correlation relations can be embedded within the prior while 

the computational requirement increases, as well as the storage requirement. With less 

cliques, the modeling ability degrades. Hence, the tradeoff has to be made. 

In the multiple transformation matrices estimation, the assumption is made that any 

two transformation matrices are not correlated. This assumption ensures the estimation 

can be carried out separately for each transformation matrix. However, when using the 



back-off scheme in regression-tree pruning, there are cases that a parent node and a child 

node are selected at the same time, which violates the assumption. A joint estimation of 

these correlated transformation matrices is desired. This problem also exists in MLLR. 

The clique detection step in the training procedure requires massive computations and 

a fairly strong pruning method. The future work is to explore efficient algorithms to speed 

up the process. It might be to reduce the size of the field, or to find some mathematical 

equivalence. The multi-scale tree representation of Markov random field is a possible 

solution to this problem. 

In MRFLR, the covariance matrices are not changed. This is partially because of 

the assumption that the mean vectors represent the most contributions to the speaker 

variation, and partially because compensating covariances requires huge computation. In 

MLLR, there is a covariance compensation algorithm which gives an additional 5% to 10% 

performance improvement. If the covariances can be compensated in MRFLR somehow, 

and the computation problem can be solved, the resulting adapted model would be more 

compact for the test-speaker. 
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Appendix A 

Not at ions 

The following notations have been used in the thesis: 

D the feature dimension 

T the time period of interest 

K j  the number of mixture components within state j 

N the number of states in the model 

M the number of mixture components in the model 

R the number of speakers in the training set 

W the MLLR or MRFLR transformation matrix 

wi the i th row vector of the MLLR or MRFLR transformation matrix 

X the acoustic model 

the adapted acoustic model 

Ot the speech observation at time t 

9t the HMM state at time t 

Wjk the mixture weight of mixture component k of state j 

W m  the mixture weight of mixture component m 

Pjk the mean vector of mixture component k of state j 

Pm the mean vector of mixture component m 
T - 

Pm the augmented mean vector of mixture component m, D m  = [ p ~  11 

bm the adapted mean vector of mixture component m 

cjk the covariance matrix of mixture component k of state j 

E m  the covariance matrix of mixture component m 

bj (ot ) the output probability density of state j given observation ot 



aqt-1 ,qt the transition probability from state qt-1 to state qt 

at ( 2 )  the forward probability 

pt (2)  the backward probability 

7t ( j ,  k) the probability of observation ot at mixture component k of state j 

7t (4 the probability of observation ot at mixture component m 

N(ot ;  pjk, Cjk) the Gaussian density function with mean pjk and covariance matrix Cjk 

G ( i )  an auxiliary matrix for the MLLR or MRFLR deductions, ( D  + 1) x ( D  + 1) 

Z an auxiliary matrix for the MLLR or MRFLR deductions, D x ( D  + 1) 

v(m> an auxiliary matrix for the MLLR deductions, D x D diagonal 

v(') (m)  an auxiliary matrix for the MRFLR deductions, D x D diagonal 

v ( ~ )  ( c )  an auxiliary matrix for the MRFLR deductions, D x D diagonal 

D ( m >  an auxiliary matrix for the MLLR deductions, ( D  + 1) x ( D  + 1) 

D(') (m) an auxiliary matrix for the MRFLR deductions, ( D  + 1) x ( D  + 1) 

D ( ~ )  (c )  an auxiliary matrix for the MRFLR deductions, ( D  + 1) x ( D  + 1) 

Q the Markov random field 

z the normalizing constant in the joint distribution of MRF Q 

0 the scaling constant in the joint distribution of MRF Q 

X C ,  YC the two points in clique c  

ac7 bc the coefficients in the linear fitting yc = a,  + bcxc 

a ,  b the simplified notation of a, and bc 

Amin the normalizing constant in the linear fitting 

as the area of points that show dependency to point s 

vc(Q) the potential function of clique c 

x2(ac, bc) the X 2  merit function 

(r) (T I  
X c  , P C  the r th sample of variable x, or yc 

X 7  Y the simplified notation of x ,  and y, 

2, 6 the simplified notation of x, and yc in the adapted field 

Pxc 7 PY, the standard deviation of point x, or yc 

WC the notation of 1/ (oic + b;o:=) 

w the simplified notation of w, 



the corresponding column vector (mean vector) of point x or y 

the corresponding augmented column vector (mean vector) of point x or y 

the corresponding adapted column vector (mean vector) of point x or y 
,' 

1 i = j = d  
the auxiliary matrix, D x D, E$) = 

0 otherwise 

the dth column vector of E ( ~ )  

the correlation measure 



Appendix B 

Tables of Experimental Results 

B. l  MRFLR vs MLLR with supervised data 

Figure 6.2 corresponds to scores in Table B. 1. 

Table B.l: MRFLR vs MLLR with supervised sparse data 



B.2 MRFLR vs MLLR with unsupervised data 

Figure 6.3 corresponds to scores in Table B.2. 

Table B.2: MRFLR vs MLLR with unsupervised sparse data 

B.3 MRFLR vs MLLR with multiple matrices 

Figure 6.5 corresponds to scores in Table B.3. 

B.4 Scaling Factor of MRFLR 

Figure 6.4 corresponds to scores in Table B.4. 



Table B.3: MRFLR vs MLLR with multiple matrices 

1 threshold I MLLR (WER%) I MRFLR (WER%) 

Table B.4: Scaling factors of MRFLR 

11 data (s) I MLLR I MRFLR 3e-5 1 MRFLR 3e-4 I MRFLR le-4 I] 



Biographical Note 

Xintian Wu was born in Shanghai China on March 23, 1970. He attended Tsinghua Uni- 

versity, Beijing, China from 1988 to 1996, and finished his Bachelor Degree (93) and Master 

Degree (96) both in Electronic Engineering. His major was Speech and Communication. 

From 1996 to 2000, Xintian Wu pursued his Ph.D. degree in Computer Science at 

Oregon Graduate Institute of Science and Technology. His major was large vocabulary 

continuous speech recognition focusing on speaker adaptation techniques. 

Starting from 1997, Xintian Wu actively participated in the development of the OGI 

large vocabulary speech recognition system, which later became the 1998 OGI-FONIX 

Broadcast News Transcription system. The system competed in the NIST Broadcast News 

benchmark tests in 1997 and 1998. His involvement during the period was as follows: 

Implementation of standard training and decoding algorithms including the MFCC 

(and MFPLP) feature extraction algorithm, embedded EM training algorithm, decision- 

tree algorithm, treelgraph Viterbi search algorithm, word-graph generation and ex- 

pansion algorithm and the MLLR adaptation algorithm 

Improvement of various algorithms for performance and efficiency. These improve- 

ments included the tree-structure re-entry search, the word-graph expansion and 

re-merging, the phonetic decision-tree based regression tree generation, and the par- 

allelization of the training and decoding algorithms. 

Research on speaker adaptation included the development of the MRFLR adaptation 

algorithm. 

The following areas were of his interest: applications of speech recognition techniques, 

researches on speech recognition algorithms, or other related speech language applications 

and researches. 



List of Publications: 

Wu X., AND YAN Y. Linear regression under maximum a posteriori criterion with 

Markov random field prior. In Proceedings of the 2000 International Conference on 

Acoustics, Speech, and Signal Processing (2000). 

Wu X.,  AND YAN Y. Development of the 1998 OGI-FONIX broadcast news tran- 

scription system. In EUROSPEECH799 (1999), vol. 2 ,  pp. 683-686. 

WU X., LIU C., YAN Y., KIM D., CAMERON S., AND PARR R. The 1998 OGI- 

FONIX broadcast news transcription system. In Proceedings, Broadcast News Tran- 

scription and Understanding Workshop (1999), n.p. 

LIU C., Wu X. ,  AND YAN Y. High accuracy acoustic modeling using two-level 

decision-tree based state-tying. In E UROSPEECH'99 (1999), vol. 2,  pp. 1703- 

1706. 

YAN Y., WU X., SCHALKWYK J., AND COLE R. Development of CSLU LVCSR: 

the 1997 DARPA HUB4 evaluation system. In Proceedings, Broadcast News Tran- 

scription and Understanding Workshop (1998), n.p. 




