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ABSTRACT 

THE ELASTIC AND INELASTIC BEHAVIOR OF WOVEN GRAPHITE 

FABRIC REINFORCED POLYIMiDE CObfPOSITES 
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Supervising Professor: Maciej S. Kumosa 

In many aerospace and conventional engineering applications, load-bearing composite 

structures are designed with the intent of being subjected to uniaxial stresses that are 

predominantly tensile or compressive. However, it is likely that biaxial and possibly tria-ial 

states of stress will exist throughout the in-service life of the structure or component. The 

existing paradigm suggests that unidirectional tape materials are superior under uniaxial 

conditions since the vast majority of fibers lie in-plane and can be aligned to the loading axis. 

This may be true, but not without detriment to impact performance, interlaminar strength, 

strain to failure and complexity ofpart geometry. h circumstances where a sufficient balance 

of these properties is required, composites based on woven fabric reinforcements become 

attractive choices. 

In this thesis, the micro- and mesoscale elastic behavior of composites based on 8HS 

woven graphite fabric architectures and polyimide matrices is studied analytically and 

numerically. An analytical model is proposed to predict the composite elastic constants and 

is verified using numerical strain energy methods of equivalence. The model shows good 

agreement with the experiments and numerical strain energy equivalence. Lamina stresses 

generated numerically from in-plane shear loading show substantial shear and transverse 

normal stress concentrations in the transverse undulated tow which potentially leads to 

intralaminar damage. 

xxvii 



The macroscale inelastic behavior of the same composites is also studied 

experimentally and numerically. On an experimental basis, the biaxial and modified biaxial 

Iosipescu test methods are employed to study the weaker-mode shear and biaxial failure 

properties at room and elevated temperatures. On a numerical basis, the macroscale inelastic 

shear behavior of the composites is studied. Structural nonlinearities and material 

nonlinearities are identified and resolved. In terms of specimen-to-fixture interactions. load 

eccentricities. geometric (large strains and rotations) nonlinearities and boundary contact 

(friction) nonlinearities are explored. In terms of material nonlinearities, anisotropic plasticity 

and progressive damage are explored. A progressive damage criterion is proposed which 

accounts for the elastic strain energy densities in thre? directions. Of the types of 

nonlineari ties studied, the nonlinear shear stress-strain behavior of the composites is 

principally from progressivr intralaminar damage. Structural nonlinearities and elastoplastic 

deformation appear to be inconsequential. 
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1 

INTRODUCTION 

There has been a growing interest, particularly in the last ten years, to use composite 

materials in structural component applications primarily within the military and aerospace 

sectors. Although these sectors drive the greatest use of composites on a percent weight 

basis. focus is shifting towards expanding use in commercial applications where higher 

strength-to-weight ratios, damage tolerance and near net-shapability are important 

considerations. Of the numerous classes of composite material systems employed for use in 

structural applications ranging from aircraR and space structures to automotive and 

biomedical applications, unidirectional (UD) composite systems have received the most 

treatment. However, UD composites are limited in applications requiring orthogonal 

reinforcement, increased intra- and interlaminar shear strength, better impact resistance and 

near net-shapability over complex geometries. Orthogonal woven fabric or textile composites 

overcome some of the aforementioned limitations found in UD composites. Woven fabric 

structural composite systems for engineering structures draw on many traditional fabric 

fom~s and processes. In general. the systems employed for aerospace structural applications 

are those fabrics that most effectively translate stiff, strong yams into stiff, strong composites 

PI. 
A woven fabric composite has an internal structure that may be defined across several 

scales. If we begin at the molecular scale, structural details of both the polymer matrix and 

fibers profoundly affect stiffness and strength. A preferred choice in aerospace materials, the 

carbon fibers owe their strength and axial stiffness to the oriented graphitic sheets of 

preferentially arranged carbon atoms. The polymer matrix properties are determined by the 

degree of crosslinking, packing density, backbone chemistry, i.e. aromaticity and chain 



morphology. Stepping up to the next scale, several orders of fibers in the neighborhood of 

1 0" 1 0" are arranged into yam bundles (tows). These tows behave as highly anisotropic 

entities with high strength and stifmess properties preferential to the long axis. Although the 

tows are oriented in the same general direction, there arises some statistical variation in 

stresses and strains From tow to tow due to randomness. Therefore, at the scale of roughly 

1 0" m ( 1 0' mi Is), we can average out the heterogeneous structures at the previous scale and 

consider composite elastic properties as approximately uniform. Finally, the engineering 

structure itself, possibly at this scale, may no longer be distinctly separate fiom its composite 

constituents and in fabricating the woven fabric composite we may simultaneously be 

fabricating the engineering structure. 

The unique structures of fabric composites do also bring with them potential 

problems in mechanical testing and evaluations. The majority of current test methods were 

developed for unidirectional composite structures, random short-fiber composite structures 

and simple woven systems. Due to microstructural differences in the laminated composite 

architectures, there is inherent uncertainty as to whether the apparent elastic properties 

measured for fabrics, using current test methodologies, are indeed accurate representations 

of material behavior. This uncertainty becomes even greater when the composite is evaluated 

to determine response throughout a stress quadrant since the majority of in-service composite 

loading conditions will likely be biavial to some degree. Therefore, to design against the 

weakest mode or modes of failure, we must clearly understand the failure mechanisms and 

behavior. 

It is now well established, in large part by NASA's Advanced Composite Technology 

(ACT) program defined in 1990, that the fiber architecture plays a large role in governing the 

mechanical response of woven fabric reinforced composite materials [ I]. Tow interlacing 

results in inhomogeneous local displacement fields not found in unidirectional tape systems. 

Since loading methods and specimen dimensions developed for tape composite systems may 

not be applicable to fabric composites, it becomes necessary to understand composite 

material behavior, not only at the macroscale where loading conditions are delineated. but 



also at the meso- and microscales where crack nucleation, damage zone development and 

catastrophic failure are initiated. Relationships need to be established that consolidate these 

structural scales and bridge any discrepancies found between the behaviors exhibited by test 

specimens and their considerably larger structural counterparts. 

1.1. General Textile Categories 

There are many groups of woven fabric forms that have been identified and developed. 

However, the most important groups that serve as aerospace structural candidates have been 

identified. partially investigated by the ACT program and grouped as shown in Figure I .  I .  

Basically. the primary groupings (weaves, braids, etc ...) are categorized according to the 

machines and processes used to create them. The dimensionality divisions determine whether 

the fiber preform, minus the matrix, can transport loads continuously in two or three linearly 

independent directions. Considerable effort has been dedicated and is continuing in regard 

to understanding the mechanical behavior of the two-dimensional woven forms, particularly 

the plain and satin weaves vis-a-vis two-dimensional (2-D) quasilaminar systems. 

1.1 . I .  2-D Quasilamioar Composite Systems 

Most woven fabric reinforced composites designed for sheet and skin applications fall into 

the category of a 2-D quasilaminar system. Ifthe application demands high in-plane strength 

and stiffness. the majority of the fibers must lie in-plane with few dedicated for through- 

thickness reinforcement. Any dedication of fibers for thickness reinforcement would be 

detrimental to the in-plane properties. Woven fabric composites that behave in most ways 

like laminates are referred to as "quasilaminar" [I]. In addition, these composites may also 

exhibit degrees of varying quasi-isotropy implying minor variation in off-axis properties 

within the given lamina plane. 



1.2. Ideal Textile Geometries 

Woven fabric composites are formed by the process of interlacing two individual fiber 

bundles or tows perpendicular to one another and impregnating with a matrix to form a layer. 

Each layer is stacked in some desired orientation and cured to form a laminate. The 

crosswise tows are referred to as fill or weft tows and the lengthwise weaver tows are 

referred to as warp tows. The pattem of interlacing warp tows with weft tows is fundamental 

in defining and classifying a two-dimensional weave. In refemng to a 2-D weave pattern, it 

is useful to describe the type of pattern by the number of weft tows interlaced (ni-1) within 

a given repeating unit or cell [2]. Thus, a plain weave (q= 2) interlaces every other weR tow. 

a twill weave (n, = 3) interlaces after every second wet? tow, a four-harness satin (4HS. n, = 

-I) afier every third, a 5HS (ni = 5) afier every fourth and an 8HS (ni = 8) aAer every seventh 

weft tow. There are several advantages associated with the tow interlacing such as increased 

intra- and interlaminar shear strength, impact resistance and near net-shape part production. 

The tradeoff with these benefits is the loss of in-plane strength and stiffness, which depends 

on the number of fibers aligned within the plane of interest. Obviously, when micro- and 

mesoscale geometric features and processing parameters contribute to the overall mechanical 

behavior of woven fabric composites, reasonable models are needed that account for this 

variation to provide sound design data. 

1.2.1. Woven 8HS Geometry 

.4s previously mentioned, there are several 2-D weave architectures for woven Fabric 

composites. The simplest of pattems, the plain weave pattem, characterized by a one- 

o ver/one-under interlacing, reduces the composite sti fhess and strength due to the Frequent 

exchanges of tow positions fkom top to bottom. There are other pattems that reduce the 

number of exchanges and increase the length of the straight segments referred to as the 

"float". Of particular interest within the aerospace structural design community are the satin 



weave architectures, especially the eight-hamess satin or 8HS woven architecture. Since 

exchanges are minimal and the float is longer, the composite affords the opportunity to be 

Formed into complex shapes (drape) while still providing a certain degree of mutually 

orthogonal reinforcement. 

A geometric feature unique to satin architectures is that of lamina asymmetry. There 

are predominantly warp tows on one side ofthe lamina while the other side is predominantly 

weft tows. The tow bends and interlace locations are also asymmetric, leading to coupling 

between extension and bending as well as coupling between extension and in-plane shear, 

i.e. B,,, D,, * 0. Laminate symmetry and quasi-isotropic laminate behavior may be ascertained 

depending on the number of laminae considered and desired orientation during the layup 

sequence. 

Most textile processes produce patterns that are periodic in nature. That is. the 

patterns of interlaced tows or yams repeat in one or two directions. The geometry and 

periodicity of a textile is conveniently described in terms of unit cells. What is unique in this 

definition is that the stress and strain distribution in a periodic textile composite is also 

periodic, provided the external loading conditions are uniform. When the external loads are 

not uniform, periodicity in the stress and strain distributions no longer exists. The term unit 

cell. borrowed from crystallography, defines the requirement that the complete textile pattern 

can be constructed From spatially translated copies of the unit cell without rotating or 

reflecting. The unit cell representation for an 8HS woven fabric lamina is shown in Figure 

1 .?(a). Examination of the 8HS unit cell reveals that even further simplification is possible, 

leading to the smaller repeat unit sub-ceil shown in Figure 1 .Z(b). 

1.3. Graphite Polyimides 

High temperature polymers and polymer matrix composites are finding increased use in the 

aerospace and electronics industries. At present time, polymer matrix composites account 

for about 4% by weight of commercial aircraft and about 10% of military aircraft. Current 



predictions are that, within the next decade, up to 65% of new commercial and military 

aircraft could be polymer composites [3]. 

Graphite polyimides are advanced thermosetting polymer composites that have 

become highly relevant in the realm of elevated temperature applications. These composites 

have extremely good specific properties and are stable to temperatures as high as 360 "C 

(680 " F). Epoxy based, fiber reinforced polymer matrix composites have already achieved 

widespread acceptance as engineering materials for structural applications. These composites 

possess a high specific strength, stiffhess and endurance to fatigue. The room temperature 

specific strengths of structural epoxies are higher than aluminum, titanium alloys and some 

super alloys. Epoxy matrices make attractive choices for resin transfer molding (RTM) and 

resin film infusion (RFI) processes because there is an extensive amount of data available 

and epoxies also meet the requirement of having a low viscosity for complete wetting and 

preform permeability. Notwithstanding, the current status suggests the need for matrix 

replacements which retain comparable or better wetting characteristics for RTM and R F I  

processes, exhibit favorable interlaminar properties and achieve much higher thermal 

oxidative stabi liry for use not only in aerostructures, but also aeropropulsion systems. 

The bulk of the aerospace industry uses graphite fiber reinforced epoxy composites. 

The upper service temperature of these materials is limited to about 150 "C (300 OF). In 

many applications however, temperatures greater than 200 "C (390 T) are commonplace. 

The strength of graphite epoxies would begin to diminish far below this temperature. Hence, 

there is a growing demand for other polymer matrix composites (PMC's) with much higher 

upper service temperatures. Some ofthe more common applications for advanced composites 

might include aeropropulsion system components such as turbine engine compressor casings, 

bearings, exhaust thruster rings, reversers and external surfaces for supersonic aircraft and 

missiles. In such applications, upper service temperatures could approach 425 "C (800 F). 

Materials used in these environments must possess a good balance of mechanical properties 

over a wide temperature range, withstand fluctuations in temperature and experience a low 

percentage of weight loss, even after long term exposure (60,000 hn) at or near upper service 



temperatures. To maintain mechanical properties, the polymer glass transition temperature 

T, must be at least 25 "C (77 O F )  higher than its intended use temperature. 

In most cases, there are essential considerations for using PMC's in the previously 

mentioned applications. One of the foremost considerations would be the significant 

reduction of weight while another would be increased specific strength properties. PMC's 

exhibit greater than three-fold higher specific strengths compared with titanium and other 

traditional aerospace materials due to much lower densities and similar apparent strength 

values. Table 1.1 shows a comparison of the densities and specific strengths for a variety of 

popular aerospace materials. 

1.3.1. Polypyromellitimide Morphology 

I t  has become a requirement in the realm of emerging sciences and technologies that 

processable polymers are endowed with superior thermal oxidative stability (TOS) and 

mechanical properties, particularly at elevated temperatures. Accordingly, the structural 

feature common to these polymers is an aromatic backbone associated with rigidity. 

resonance stabilization and high bond dissociation energies. Since the polymer degradation 

mechanism is principally oxidative in nature, heterocyclic units may be added to increase the 

char yield at higher temperatures. Polypyromellitimides, or commonly polyimides such as 

PMR 15 (see Figure 1.3), are among the best candidates for processable and thermally stable 

matrix resins, although processing by methods such as vacuum bag autoclaving are more 

expensive than injection molding or RTM. 

Generally, high temperature polyimide derivatives evolve from a two-step addition 

and condensation chemistry. Oligomers are formed via a condensation polymerization and 

endcapped with reactive groups which undergo an addition polymerization at a higher 

temperature. Usually, condensation reactions cure with the evolution ofcomposite blister and 

void forming by-products, however the use of reactive endcaps limits molecular weight. In 

the case of PMR1 5 ,  the formulated molecular weight is nominally l SO0 f.m.w. and the 



stoic hiometric ratio of the reactants is 2.0 moles of monomethylester of 5-norbomene-2,3- 

dicarboxylic acid to 2.09 moles of dimethylester of 3,3'4,4'-benzophenonetetracarboxylic 

acid [3, 41. The final preparation of a neat resin involves a partial imidization of reactants 

with solvent evaporation occurring at I21 "C (250 OF). 

1.3.2. Commercial Types 

Polyimides are available commercially with the trade names PMRl5, PMR-11-50, 

VCAF-75, Avimid R, AMB-21, CSPI and L ~ R C "  RP 46. The PMR polyimide class was 

formulated at the NASA Glenn Research Center and PMRI 5 is currently the polyimide that 

has been put to maximum commercial use. However, there is ongoing research at NASA to 

find a suitable replacement for PMRI5 due to the high levels of carcinogenic toxicity 

associated with 4,4'-methylene dianiline (MDA). Meanwhile, it remains to be seen how other 

commercially available replacement polyimides compare to the performance of conventional 

PMRIS. 

Most advanced poiyimide composite systems are manufactured from prepregs in the 

form of Fabrics or tapes, pre-impregnated with the PMR monomer resin. The prepregs are 

subsequently cut and set to the required shapes prior to cure by compression or autoclave 

molding using a vacuum bag system. The plies are subjected to specific temperature-pressure 

cure cycles and the resulting structural laminate is ultrasonically C-scanned for percent void. 

1.4. WG FRP Composite Behavior 

For successful application of woven graphite fiber, reinforced polyimide (WGFRP) 

composites, it is essential to develop a reliable database of material properties and a thorough 

understanding of damage and failure behavior, particularly at elevated temperatures. 

Microcracking and other lifelong fatigue problems must be understood and solved to meet 

the extreme operating conditions of advanced aerospace systems. To maintain the structural 



integrity of WGFRP laminates and to ensure that their mechanical properties remain within 

design specifications, the composite systems are restricted to operate within a limited 

temperature range. At low temperatures, differential strains induced by thermal coefficient 

mismatches may be of sufficient amplitude to result in matrix cracking and interfacial 

debonding in the absence of any external load. The temperature at which microcracking 

occurs depends on the composite system layup, constituent thermal properties, residual 

stresses induced by resin shrinkage and the thermal history. At elevated temperatures, the 

composite displays extensive nonlinear behavior under transverse tension, transverse 

compression and shear as a result of matrix softening. Moreover, in the assessment of 

suitability For engineering applications involving long term static and dynamic loadings. 

information is required regarding the stability ofthe composite in resisting damage initiation 

at high strain rates and at temperatures approaching in-service conditions. 

A major limitation of many PMC systems is the inability of these materials to resist 

intralaminar and interlaminar damage initiation and propagation under multiaxial monotonic 

and cyclic loading conditions. Specific to this dissertation research effort, the performance 

of 8HS woven fabric reinforced, graphite polyimide composites subjected to both biavial 

(shear dominated) mechanical loads and thermal loads is evaluated using standardized 

experimental test methods, novel analytical approaches and numerical simulations. The 

ability to predict the elastic properties and hlly understand damage and ultimate failure 

mechanisms in PMC's subjected to mixed-mode loading conditions is important for further 

composite materials research and development. Some of the important requirements for 

adequate predictions are reliable constituent property data, judicious application of existing 

theories and reasonable micromechanics, mesomechanics and macromechanics models. 

In this thesis, Section 2 provides a survey of the framework for existing theories on 

the linear elastic behavior of homogeneous and composite materials, explicitly describing 

analytical and numerical schemes previously adopted for n-dimensional analyses of woven 

fabric composites. In Section 3, emphasis is placed on the micro- to mesomechanics and 

approach established by the author for evaluating the elastic behavior of woven 8HS 



composite laminates. Woven tow (micromechanics) elastic properties are determined by the 

Composite Cylinder Assemblage (CCA) method and validated by finite element analyses 

according to strain energy equivalence. The 8HS woven fabric lamina (mesomechanics) 

elastic properties are determined by a unique and simplified mechanics approach combined 

with Classical Lamination Theory. Validation is performed in a manner similar to that of the 

woven tows. A detailed thickness lamina stress analysis is also conducted for the following 

fundamental load cases: uniaxial tension, uniaxial compression and in-plane shear. Stresses 

are modeled by uniquely employing a punctual kriging interpolation algorithm. 

Section 4 is dedicated to a macromechanics evaluation and experimental assessment 

of apparent room temperature properties and elevated temperature properties [to 3 15 "C (600 

'F)]. Details are given regarding the In-Plane Biaxial and Modified Biaxial test methods 

employed, the test coupon design and experimental apparatus. In addition, various 

considerations of the Iosipescu tests, including geometric nonlinearities (large displacements 

and rotations), boundary contact nonlinearities (Friction) and load eccentricities (torsion and 

out-of-plane bending) are explored. Within the Framework of nonlinear material behavior, 

an area and volume visualization method is presented to characterize the composite nonlinear 

shear behavior associated with the onset of internal damage (i.e., transverse matrix cracking) 

prior to interlaminar failure. A qualitative comparison is pursued between experimentally 

observed nonlinear behavior and finite element analyses which independently model 

anisotropic plasticity and progressive damage (element death). The main conclusions drawn 

from this investigation are listed in Section 5 and Section 6 looks at possible suggestions for 

future work in regard to the study of WGFRP composite materials. 

In Appendix A, the FORTRAN 77 compiler code is presented in accordance with the 

simplified mechanics approach from Section 3. Appendices B and C present the ANSYS user 

input files developed for this investigation as follows: 3-D woven tow property prediction, 

3-D 8HS woven fabric lamina property prediction and stress analysis, 2-D biaxial and 

modified biaxial Iosipescu shear tests (geometric and boundary contact nonlinearities), 3-D 

Iosipescu shear test (load eccentricities) and 3-D Iosipescu shear test (plasticity and 



progressive damage). Finally, Appendix D details the mechanical drawings for the 

redesigned loading blocks (modified biaxial Iosipescu fixture) used to evaluate the effect of 

load point placement on the failure process in Iosipescu specimens. 



Table 1.1. Material properties for selected aerospace alloys and polymer matrix 
composites.' 

Material Density Youngs Strength Specific Upper Use 
g/cm3 Modulus MPa (ksi) Strength Temperature 

(lb/in3) GPa ern (lo4) ("c) 
(in (10')) 

(Ti-6A1-4V) 443 114 llOO(160) 248 371 
(0.16) ( 1 000) 

(606 1 -T6) -. 7 71 69 310(45) 114(459) 177 
(0.098) 

Low Alloy Steel 7.85 207 2050 (297) 261 800 
(0.283) ( 1050) 
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Figure 1.2. 8HS woven fabric geometries: (a) repeat unit cell (RUC). 
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Figure 1.3. Chemical structure of Polypyromellitimide (PMR1 s ) . ~  



BACKGROUND 

Prior to initiating a research effort such as this forthcoming investigation on the behavior of 

SHS WGFRP composite materials, it is essential to perform an extensive search on all past 

and present literature. This enables the investigator to explore unresolved issues without 

duplicating previous efforts. The exhaustive search on available and reliable literature 

speci fic to the performance and failure of the aforementioned materials has revealed that 

little information exists related to shear dominated, biaxial behavior and failure 

characteristics. Regardless of this fact, judicious application of universally accepted theory 

for other composite systems is also pertinent for woven fabric composites. 

Fundamental to the mathematical treatment of all polymer matrix composite 

materials is a thorough understanding of the concepts of stress, strain and, in general. the 

linear elastic behavior of a solid body. Within the framework of classical elastic theory, the 

linear elastic behavior of a solid body can be described by mathematical models from which 

the intemal displacements and forces are found in terms of the spatial coordinates. The 

classical formulation of the theory of elasticity is a consequence of three cardinal 

assumptions [ 5 ] :  

intemal stresses are at a state of equilibrium, 

displacements are continuous and compatible deformation exists, 

stress-strain relations are governed by Hooke's law. 

In the beginning of this ser:ion, the sets of equations are presented that form the backbone 

for mathematically describing the behavior of a general, three-dimensional body at rest. For 

the purposes of derivation, certain restrictions are placed on the material properties and 

nature of body deformation. The concept of stress is defined and relationships are shown in 



terms of the stress components, body forces and applied loads. Strain is also defined, at this 

point, in terms of displacements and the resulting strain-displacement relations constitute an 

essential element of the theory of elasticity. Based on the intensive' quantities stress and 

strain, linearly elastic material behavior is shown to obey Hooke's law which connects six 

local (point) strains to six local stresses and states that [ 5 ]  

stress and strain are linearly related and response is instantaneous, 

application of force or displacement produces stress, 

normal stresses (strains) result only in normal strains (stresses), 

shearing stresses (strains) result only in shearing strains (stresses), and 

only two independent material constants exist in linear elasticity. 

Following the formulation for linear elastic behavior of a solid body, linear elastic 

behavior of polymer matrix composites is considered. Unlike the analysis of bulk solids 

which are assumed to be homogeneous and isotropic, the analysis of PMC's may account for 

heterogeneity and anisotropy. That is, the properties at a point in the composite body will 

probably not be the same in every direction, nor will they be independent of body position. 

Fundamental to this treatment is the knowledge of the elastic behavior of a UD composite 

lamina. The relation between stress and strain, referred to as the constitutive relation (a 

generalization of Hooke's law), is first presented for the comprehensive three-dimensional 

case. Insight is given as to the physical interpretation ofthe behavior of a non-isotropic body, 

followed by reduction to a simplified two-dimensional analysis based on an underlying 

assumption of plane stress or plane strain behavior. Existing mathematical models are also 

presented for the interpretation of behavior in woven fabric laminae, given the established 

foundation for UD laminae fkom which to build. 

S ubsequent to the discussion of theory governing lamina behavior, the constitutive 

relations for a composite laminate composed of bonded laminae are outlined. Accordingly, 

' An intensive quantity suggests local association to a point and stress and strain are limiting ratios of 
infinitesimals. 



analysis of laminate elastic properties are based on adopting the classical approach of 

Kirchho ff thin plate theory, i.e. classical lamination theory given within the bounds of the 

following assumptions [6] :  

laminae are perfectly bonded to each other, i.e. no slip occurs, 

the interfacial bonds are infinitely thin, and 

lamina thickness varies minimally, and 

the laminate has the characteristics of a thin sheet. 

As with the outline for mathematical treatment of composite laminae, the general three- 

dimensional laminate case is demonstrated, followed by simplifications. Finally, failure 

behavior in composite laminates is identified inclusive of univenaily accepted modes of 

crack propagation and types of failure. In contrast to isotropic and homogeneous materials 

which typically exhibit self-similar crack growth processes, fiber composites wi I1 often 

contain cracks that do not propagate along their original orientations because of micro- 

heteroseneity. In isotropic materials, the direction ofcrack growth is dictated by the principal 

loading condition. As an example, uniaxial tension produces a uniaxial state of stress on the 

plane of a crack. However, the piane of fracture in aligned composite materials is determined 

by both the loading and fiber directions. In two-dimensional composite architectures such 

as a woven fabric composite, multiple planes of fracture can be envisaged leading to the 

concept of damage zones. Accumulation of damage and formation of local zones will also 

be touched upon in this section. 

2.1. Linear Elastic Behavior of a Solid 

As was previously mentioned, the formulation of the theory of elasticity requires adherence 

to the principles of stress equilibrium, displacement continuity and stress-strain relations 

which are a material property. When boundary conditions are stated in terms of geometric 

constraints and applied body loads, three sets of equations completely define the linear elastic 

behavior of a body. They are the equilibrium equations, strain-displacement equations and 



stress-strain equations. What follows is the concise identification of each set beginning with 

those equations of equilibrium. 

2.1.1. Force and Stress 

Newton's first law requires that rigid, solid body equilibrium is a result of balanced forces 

and moments that prevent the body fiom translating or moving along a path and rotating. 

That is 2 F, = 0, 1 F, = 0, 1 F, = 0 and Z M, = 0, T. M, = 0, X M, = 0 with reference to the 

rectangular Cartesian coordinate system. Since the entire body is in equilibrium, then so to 

is any part within the body. With that in mind, it is typical to distinguish between two distinct 

types of forces, external and internal forces. A body can be subjected to different types of 

external loads, but they are classif ed as either a surface load with units of force per unit area 

or a body force with units of force per unit volume. Surface loads occur when one body 

comes into direct contact with another body while body loads occur when one body exens 

a force on another body exempt of any physical contact. Internal surface forces occur on 

unseen intemal surfaces and are stresses if considered as force per unit area. The stress and 

stress components on an internal surface, as shown in Figure 2.1, are given by 

Mfl a = lim - A.6 . r = lim - 

where AF,., are the resolved normal and tangential surface force components acting on an 

element AA of the area A while a and T represent the normal and tangential (shearing) 

components of stress. 

The concept illustrated by Figure 2.1 can be extended to a more general case of a 

complete stress state, at a point, in rectangular Cartesian coordinates. By considering a 

rectangular element of finite size in order to show the surfaces on which stresses may act, it 

is reasonable that three normal stresses and six shearing stresses (three if symmetry is 

accounted for) define the complete state of stress shown in Figure 2.2. 



2.1 J.1. Equations of Equilibrium 

These stresses (positive for convention) are related to each other according to the equilibrium 

equations. In reference to Figure 2.3, a Taylor's series expansion yields [7] 

which presents the stresses on one face of the elemental cube in terms of those stresses on 

the opposite face (for ciarity, stresses on two pairs of faces are not shown). For force 

equili bri urn in the x-direction and moment equilibrium about the z-direction, the stresses 

must be converted to forces by multiplication of the corresponding areas. Thus, along the 

positive x-direction, the concise force summation due to [7] is given as 

where f, or pg, is the force due to gravity and the only body force under consideration. 

Similarly, in considering moment equilibrium about the z-axis passing through the center of 

the element, there are no body moments present, thus concise moment summation follows 

Upon Further simplification of Eq. 2.3, the x-direction force equilibrium relationship is given: 



By repeating the same exercise for the other directions and converting stresses to forces by 

multiplication of corresponding areas, the remaining two Force equilibrium equations are 

Likewise, the simplification of the moment summation about the z-axis (Eq. 2.1) in which 

the limit as dx - 0 and dy -0, and cancellation of the common factor (dx dy dz) gives 

The additional equations determined from moments about the other axes are r,_ = T ~ , , T = ~  =r, 

and expressing the force and moment equilibrium equations in matrix notation are given by 

Based on the derivation resulting in Eq. 2.8, the six equations couple the nine stresses and 

it is assumed that each stress is uniform across the face of the element in Figure 2.3. Also, 

the stress state at a point, given by a specific orientation, will uniquely determine the stress 



state at the same point with respect to any arbitrary orientation within the same coordinate 

system according to the rules of stress transformation readily available in the literature. 

2.1.2. Displacement and Strain 

The displacements of a point within a solid body can be determined by measuring the 

translation of that point, subsequent to solid body loading, in the x, y and z-directions relative 

to the location in a specific coordinate system when the body is not experiencing a load. 

Rigid body displacement refers to the condition when all points within a body move by the 

same amount, while deformation is an indication ofrelative displacement occurring beween 

two or more points within a body. In reference to Figure 2.4, the displacements in the 

coordinate directions are denoted by u, v and w, respectively. Consider two points in an 

undeformed elemental cube denoted by 1 and 2. If point 1 is expressed in terms of x, y and 

z-coordinates, then the position of 2, with respect to I,  is located at x + dx, y + dy, and z + 

dz. In examining the relative motion between these two points, a line is connected between 

them with the distance given by & ?  = dr2 +clv2 +& . In the strained state, the distance of the 

line between the relative points 1 ' and 2' is defined as di ? = & +& ? +& '. The coordinate 

displacements u, v and w of(1) are differentiable Functions given by u = x' - x, v = y' - y and 

w = z' - z. Solution to the line distance in the strained state by substitution may be expressed 

as (I; ' = ch ? +(lv ? +dz 2 c21/lidr +2dv4, +2dwdz +dlc +dv ? +dbv 2 . Therefore, the relative distance 

between the strained and unstrained states is given by [7] 

Fo 1 lowing the rules governing differentiation of partials 



Eq. 2.9 c an be rewritten as Eq. 2.1 1 where the strains are partials in terms of displacements 

as shown by Eq. 2.12 

dv a a4 a4 av drv 
y,. =-+-+-- +-- +-- 

ax ay ar qv at ay 3.r dy 
drv av at4 a4 av &v &v =-+-+-- Y ?.= +-- +-- + a aym aya + a ~  

If i t  is assumed that the deflections are small compared to the characteristic solid body 

dimensions, then it is reasonable to ignore the squares and products of the first partial 

displacement derivatives in Eq. 2.12. By dropping the higher-order terms, the simplification 

leads to the recognizable linear strain-displacement relationships given by the following: 
all d tl dw dv au - dw av - 

CIS- .  Cv=--, &.I-, yo.=-+-, y,,-- + -  + -  "'" where E and y are the 
3.r - Sy - sz 3.r dy - $v dz dz d,r 

normal and shear strain components. Consistent with matrix notation. the linear strain- 

displacement equations can be rewritten as [7] 



2.1.2.1. Equations of Compatibility 

Shearing strains have a physical interpretation as changes in the angular orientation of a body 

[7]. In other words, a shearing strain can be defined as the reduction in what was originally 

a right angle For the case of a two-dimensional element. In reference to Figure 2.5. an 

undeformed element is defined by ABCD. Subsequent to shear deformation, the element 

edges AC and AD have rotated to their new positions denoted by lines A'C' and A'D' 

through the angles y ,  and y2. According to small angle approximations, the derivatives of 

the displacements forming the angles are equivalent to the sines ofthe angles, so the shearing 

strain y,, may be defined by 

For the three-dimensional case, a similar explanation exists lor defining the shear strains y, 

and y,,. If the displacements are eliminated from the strain-displacement equations, the 

compatibility equations can be defined. As an example, the following operations and 

substitutions are performed for the strain component y,, given by Eq. 2.15 [7]: 



By similar substitutions, the remaining equations ofcompatibility can found from the strain- 

displacement relationships and are given by 

These equations (Eqs. 2.15 and 2.16) represent the physical fact that a solid body remains 

intact aRer deformation, i.e. neighboring points within the body are in a mappable, one-to- 

one relationship. 

1.1.3. Material Properties and Hooke's Law 

The equilibrium, linear strain displacement and compatibility relations are independent of, 

and thus, say nothing about the material or materials of a solid body. They are applicable to 

any continuous. solid body experiencing small displacements. The relationships between 

stress and strain. dependent on material characteristics, are the stress-strain equations. The 

equations which connect the six stresses at a point to the six strains at a point are referred to 



as Hooke's law. Hooke's law describes the linear elastic behavior ofa solid and, essentially, 

the law is reemphasized by the following [ 5 ] :  

stress and strain are linearly related, 

application of either force or displacement can produce stress, 

stress-strain response is instantaneous, 

normal stresses directly refer to normal strains, 

shear stresses directly refer to shear strains, and 

there are two independent material constants in linear elasticity for homogeneity and 

isotropy. 

The local deformation of a linear elastic, homogeneous and isotropic elemental cube 

due to axial stress is shown in Figure 1.6. Ifthree normal stresses are applied simuItaneously 

and no angular distortion is present, then superposition of individual stress results gives 
1 1 

Er = -[or - v b , *  +o;)]. E,, = E[c.,, 
1 - v(a, +oJ, E. = --[a. - ~ ( 0 . ~  +q * where E and v are 

E E -  
Young's modulus and Poisson's ratio, respectively. If purely shear stresses are applied to the 

cube to produce angular distortions, this can be expressed in terms of the shear modulus G - - - 
L 

f\' as k. Again, in remaining consistent with matrix notation, these six 
Y t ) = - r Y - = - r Y z r  =- 

G I '  G 
equations which efine Hooke's law and relate stress to strain are rewritten as 

A+2G A h 0 0 0  

h A+2G h 0 0 0 

A A A+2G 0 0 0 

0 0 0 G O O  
0 0 0 O G O  
0 0 0 O O G  

where 



2.2. Mechanics of a Composite Lamina 

In the previous section, the governing equations of classical elastic theory for a 

homogeneous, isotropic solid body were described. According to Hooke's law, it was 

established that only two independent elastic material constants were necessary to specify 

the constitutive relations. The relations that exist among the five possible constants are 
L' C k7 
L Ad L defined accordingly as G = -, K = , k =  , where E is Young's 

Z(l +v) 3(1-ZV) 2 1 -v-2$) 
modulus, G is the shear modulus, v is Poisson's ratio, I t  is the bulk modulus and k is the 

plane strain bulk modulus. For a generally anisotropic material, where the material properties 

vary with direct ion, twenty-one independent constants are needed to describe elastic stress- 

strain behavior. 

2.2.1. Unidirectional Composite Lamina 

A UD composite lamina having continuous and straight fibers in a matrix, as illustrated by 

Figure 2.7, can be considered a homogeneous and orthotropic (three mutually perpendicular 

planes of symmetry) continuum where the consideration of homogeneity is valid if the scale 

in question is considerably larger than the inter-fiber spacing. Further, the lamina can also 

be treated as transversely isotropic in the x, and x, material coordinate directions (see Figure 

2.7) if i t  is assumed that the fibers are randomly distributed having circular cross-sections. 

With this. the number of independent elastic material constants necessary to describe the 

elastic behavior o f a UD lamina reduces from twenty-one to five. Of the five constants, four 

can be experimentally determined from a series of static off-axis tensile tests. 

2.2.1.1. General Constitutive Relations 

Hooke's law can be generalized using a contracted form of tensor notation and expressed 

concisely by the following equation [6]:  



where i. j = 1, ..., 6, o, are the components of stress, C,j is the stifhess matrix and are the 

components of strain. Since the stifhess constants are symmetrical, i.e. C, = C,, the expanded 

form of Eq. 1.19 is given in matrix notation by 

From the matrix notation denoting the generalized constitutive relation in Eq. 2.20, further 

manipulation gives an explicit definition for the six equations that relate stress to strain as 

There is also a set of inverted relations which correspond to those defined by Eqs. 1.19 to 

2.2 1 and connect strain to stress in terms of the compliance matrix S,j. The inverted set is [6] 



Likewise, the six equations that relate strain to stress are 

For a UD lamina that exhibits orthotropic symmetry and transverse isotropy in the x, - x, 

material principal coordinate plane (refer to Figure 2.7), the following constitutive relations. 

in terms of components of the stiffness matrix. hold [2]: 

where the C,, components, defined in terms of the engineering elastic constants, are 



As with the generalized form of constitutive relations for a LJD composite lamina, Eq. 2.24 

may also be inverted for the case of an orthotropic lamina leading to strain-stress relations 

in terms of the compliance matrix: 

2.2.1.2. Simplified Constitutive Relations 

I t  is evident from Figure 2.7 that the constitutive relations for a composite lamina can be 

simplified if the dimension in the x, (thickness) direction is considered to be sufficiently 

smaller than both of the in-plane dimensions. This consideration reduces the problem to two- 

dimensions, either of the plane stress or plane strain form. Clearly, the implication is that the 

nonzero stresses are arbitrarily restricted to in-plane, hence the nonzero quantities are not 

functions of x, ( a, = r,, = t,, = 0). For this, the stress-strain relation for a LID lamina given 

in terms of the matrix of mathematical moduli becomes 

where Q, ,, Q , ,  Q,? and Q, are identified as the reduced sti ffnesses. The equation above 

suggests that no coupling exists between tensile and shear strains [6] ,  i.e. orthotropic 

composite materials exhibit no shearing strains when applied loads act coincident to the 

principal material directions. The Q,, components of the reduced stiffhess matrix from Eq. 

2.27 are given in terms of the engineering constants as 



The reciprocal of Eq. 2.27, the strain-stress relation, is given by 

When the direction of applied load does not coincide with a principal material direction, then 

coupling between tensile and shear strains exists. Consider the sufficiently thin. UD lamina 

7 8. From with fibers oriented at an angle 1 to the principal coordinate axis shown in Figure -. 
classical theory of elasticity, the stress-strain relation becomes [6] 

where the Qg components of the matrix are referred to as the transformed and reduced 

stiffness components. In terms of the reduced stiffhess matrix components and 1, the 

transformed and reduced stiffness components have the following values: 



As before, inverting Eq. 2.30 leads to the familiar strain-stress relation given by 

Relationships similar to Eq. 1.31 are possible for the components of the transformed 

compliance matrix in terms of the compliances and the off-axis angle 1. They are given by 

- 
S , ,  = S,, cos" A + ( 2 ~ , ,   sin' A cos' A + S,, -- sin" I 
- 
S,? = S,,  sin' A + ( 2 ~ , ~  +Q6,)sin2 kcos' A +SZ2 COS" I 

- 
s,, = (x, , - X, - s,, )sin I cos3 I - (2s'' - Z S , ~  - )sin3 I cos A 
- 
S?,  = (ZS, , - XI? - S,, )sin l cos A - (zs,~ - ZSlz - S,, )sin A cos3 A 

Finally, if the local elastic properties are known with respect to the material coordinate 

system, the engineering elastic constants can be determined for the Cartesian coordinate 

system. Combination of Eq. 2.33 with the relations for compliances, in terms of engineering 

elastic constants, results in the following: 



2.2.2, Woven Fabric Lamina 

The analytical and numerical treatments adopted for evaluating the performance of textile 

structural, reinforcing composite materials are not as well established compared to UD 

composite reinforcing materials. One reason the level of understanding has not reached the 

maturity that it has for UD composites is purely due to composite material and processing 

design evolution. Primarily though, a precise understanding of textile structural composite. 

elastic and nonlinear behavior is tied directly to the level of complexity. Behavior of these 

composite architectures is dictated by a greater number of geometric and processing 

parameters vis-a-vis UD composite architectures. Parameters such as fabric lamina structure 

(weave style, tow density, fabric count, tow crimp, warp/fill tow characteristics) and fabric 

laminate structure (lamina sequence, lamina orientation, asymmetry, balance) greatly 

influence the composite behavior under multiaxial loading, in-service conditions. Under such 

conditions. these parameters may result in coupled interactions, thus complicating the nature 

of the problem. Therefore, it is necessary to either account for as many parameters as 

possible, or make reasonable assumptions/simplifications when developing analytical and 

numerical techniques to analyze woven fabric composite behavior. What follows is an 

account of analytical models found in the literature for analysis of woven fabric composite 

laminae. 

Several analytical methodologies have been proposed to predict the linear elastic and 

nonlinear behavior of woven fabric composites, particularly for two-dimensional orthogonal 

plain weave architectures [2,8-141. Ishikawa and Chou [t,8-91 have developed three models, 



viz. the mosaic model, the crimp or fiber undulation model and the bridging model. The one- 

dimensional mosaic model idealized the fabric structure as an assemblage of asymmetric 

pieces of cross-ply laminates by omitting tow continuity and interlacing. Stifhess constants 

were evaluated based on the assumption of either isostrain (parallel) or isostress (series) 

conditions. Variation in stress and strain near the interlaced regions was neglected and the 

model provided reasonable upper and lower bounded solutions to in-plane stiffhess 

constants. The one-dimensional crimp or fiber undulation model extended the series mosaic 

model to include tow continuity and undulation, but only in the direction ofapplied load. The 

undulated tow was also treated as a single fiber, hence tow cross-sectional shape was 

excluded. This model was particularly well-suited for fabrics with a minimal number of fill  

tows per warp tow exchange (o,), such as defined by a plain weave. The stiffness constants 

predicted by this model were lower than those predicted by the series mosaic model because 

transformed and reduced stiffness was evaluated as a function of the local off-axis angle in 

the FI lling direction. For satin weave architectures, the two-dimensional bridging model was 

proposed and this model was essentially a combination of the series and parallel models, 

again with continuity and undulation considered only in the direction of applied load. For 

this model, it was postulated that the regions immediately surrounding either end of the 

interlaced region acted as load bridges and regions immediately adjacent had the same 

average mid-plane strain and curvature. Comparisons made with experimental results for 

satin weave composites showed good agreement. 

Naik et al. [ll-131 developed a two-dimensional model to account for fiber 

continuity and undulation in both the warp and fill tow directions. The model idealized tow 

geometry with equations of periodic functions that constrained a tow to conform to the 

mutually orthogonal tow. For plain weaves with a closed architecture, i.e. adjacent tows in 

contact. the resemblance was a good match, however asymmetry resulted in open weaves if 

the gap was not taken into account. Woven fabric lamina, in-plane elastic constants were 

determined by homogenization of through-thickness properties (from lamina slices cut off- 

axis or on-axis) and assembling slices in a series-parallel (SP) or parallel-series (PS) fashion. 



The upper bounded prediction of elastic moduli from the 2-D PS model was less than the 

parallel mosaic model and greater than the series mosaic model, while the lower bounded 

prediction From the 2-D SP model was less than the series mosaic model. 

To more accurately represent both the open and closed plain weave geometries, 

Walsh and Ochoa [ i  41 developed a revised set of three-dimensional shape equations. Their 

model did not constrain the tows to conform, thus the representation of the lamina by 

successive cross-sections was symmetric and correct for open weaves. However, the model 

did assume periodic functions and lenticular (idealized) cross-sectional tow shapes exhibiting 

two-axis symmetry. The mathematical moduli were homogenized with respect to the global 

coordinates by through-thickness integration and in-plane average elastic properties were 

found by simultaneous solutions to homogenization processes along the fill and warp 

directions. Comparisons to experimentally determined apparent properties for S-RIM plain 

weave composites showed quite good agreement. 

2.2.2.1. One-Dimensional Characterization 

The one-dimensional fiber crimp model considers continuity and undulation in the filling 

direction with a cross-sectional slice at x = 0 described by the shape functions due to 

Ishika~va and Chou (refer to Figure 2.9). The periodic function given to describe the sectional 

shapes of the warp yams and filling yams are, respectively 



The extension, extension-bending coupling and bending stiffhess matrices, that is Aij, B,,, and 

D,j, are evaluated by assuming that classical lamination theory is applicable to infinitesimal 

slices of 4, along the y-axis. This being the case, the extension stiffhess matrix, as an 

example, is found by integrating the in-plane mathematical moduli for each constituent 
a 

through-thickness. Over the range of 0 5 ?: s - , the summation of the average moduli with 
2 

respect to the local off-axis angle 5 gives A, according to the following equation fiom [2]: 

where the superscripts M, F and W denote the matrix, fill and warp constituents. The local 
d off-axis angle is given by <(v)=arctan(-h,[v)). The fill tow matrix of local mathematical 
cr. 

moduli is expressed in terms of the undulation angle in the filling direction and the 

constituent tow elastic properties as 



where the following relationship holds: 

Expressions in the manner of Eq. 2.36 can also be written for the extension-bending coupling 

and bending stiffnesses over all regions. The expressions for the qj, B,, Dij stiffhesses can 
a 

be expanded in terms of lamina thickness and explicitly stated for 0 5 y 5 7 as - 

2.2.2.2. Two-Dimensional Characterization 

The 2-D series-parallel (SP) and parallel-series models (PS) consider fiber continuity and 

undulation in both directions. Refemng to the weave cross-sections (X-Z. Y-2) shown in 

Figures 2.10 and 2.1 1, the regions a, to a, and b, to b, are given by Naik et al. [11-131 as 



The two-dimensional shape equations are determined by taking through-thickness slices of 

a plain weave unit cell across the warp tow (Y-axis @ y = 0) and across the fill tow (X-axis @ x = 0). The shape equations are written to idealize the geometry of the on-axis fill tow or 

off-axis warp tow according to periodic functions in terms of the bounds described by 

regions in Eq. 2.40. The functions constrain the geometry of the on-axis tow to follow the 

o ff-axis tow, which is suitable for closed-gap architectures. These functions due to [I  I ] are 

given by 

h2 (x) = 

hv, (x) = 

Since the geometry of mutually orthogonal tows of the plain weave are constrained to 

conform as given by Eq. 2.41, it is expected that the local off-axis angle of undulation for the 

warp tow is identical to the derivative of the fill tow undulation. With this, the local off-axis 

angle of undulation for the warp tow is given by 



The extension, extension-bending coupling and bending stifmesses are evaluated From the 

mathematical moduli for each constituent of the infinitesimal (dx or dy) slices, identical to 

the procedure outlined for one-dimensional characterization. The SP approach then adopts 

a two-step assembly scheme to determine the elastic constants of the plain weave, fabric 

lamina. First, all infinitesimal through-thickness slices along the applied loading direction 

(on-axis) are assembled assuming the stresses are the same in each slice, thus an isostress 

condition. Second, all cross-sections on-axis are assembled assuming an isostrain (same 

strain) condition. Accordingly, the average in-plane compliances on-axis are found From [ I  11 

The average. in-plane stiffhess constants are found by integrating the inverted average 

compliances from Eq. 2.43 with an isostrain condition according to 

Alternatively, the PS approach merely reverses the order of integration in the SP scheme to 

determine the elastic constants. 

2.2.2.3. Three-Dimensional Characterization 

The main difference in the approach due to [14] is in defining the shape equations based on 

periodic functions that describe the tow centerline and tow perimeter explicitly, thus 



avoiding constrained tow geometries and asymmetry in open-gap plain weave architectures. 

Here, the gap defined by observations ofmicrographs from S-RIM composite cross-sections 

is accounted for in terms of the period of undulation given by an idealization of the mutual 

tow: 

Y ~ 1 1  = d a  ,, + g ,,, 1 
W ,%,, = 2b/, +Qi,l) 

Since the period Jr of each tow undulation is independently defined in terms of the off-axis 

tow width a and gap g, the local off-axis angle of undulation for the warp tow is not identical 

to the derivative of the fill tow, hence the orthogonal tow geometries are not constrained to 

conform. In arriving at the shape equations that describe the upper and lower warp or A l l  

tows independently of each other, the tow centerlines are modeled according to the 

prescribed height of the OK-axis tow. The cosine functions describing the centerlines {,,, and 

4,,,,, are given by 

A comparable set of cosine hctions,  referenced from the centerlines, describe the 

orthogonal tow cross-sectional perimeters bounded by the regions 0 to (%,, + &,) and 0 

to (a,i,, + g,,,). A process similar to that described for two-dimensional characterization is 

adopted for evaluating the elastic constants once the shape functions and local off-axis 

undulation angles have been established. As noted by Walsh, this method does not 

inadvertently force larger local angles of undulation for open architectures where 

increasingly smaller undulation angles are expected due to the presence of a gap between 

adjacent tows. In other words, an open weave architecture is not prescribed to follow the 

same geometry as a closed weave architecture. Because of this, a more accurate estimation 



of the off-axis stifmess leads to greater accuracy in predicting the remaining in-plane elastic 

constants for the plain weave laminae. 

1.3. Mechanics of a Composite Laminate 

In this section, the methods used for evaluating the elastic properties of laminates fiom the 

properties and orientation of individual laminae are outlined. Reasonable evaluations of 

composite laminate elastic and thermoelastic properties are important in the design 

composite plates and components since it is essential that laminate response to external loads 

and conditions can be predicted [6] .  The most established theory for analysis of laminates 

rakes the form of the Kirchho ff hypothesis for thin plates or classical linear thin plate theory. 

Following the adaptation of this theory for analysis of composite laminates, commonly 

referred to as classical lamination theory (CLT), the subsequent four assumptions are made: 

[2,5]  

Upon application of a load to a plate with a through-thickness, lineal element normal to 

the plane of the plate, the element undergoes at most a translation and rotation with 

respect to the initial coordinate system, but remains normal to the plate. 

The plate resists in-plane and lateral loads only by in-plane action, bending and 

transverse shear stress, not by through-thickness, block-like tension or compression. 

There is a neutral plane, on which extensional strains may not be zero but bending strains 

are zero in all directions. 

The laminate midplane is analogous to the neutral plane of the plate. 

2.3.1. Classical Lamination Theory 

According to the foregoing assumptions for adaptation of the Kirchhoff hypothesis for thin 

plates, the strain components can be derived fiom the midplane strains and cwatures. The 
u y,v - av' atl ' a~ ' 

midplane strains are expressed as E = - , & . .  -- , Y  ? = - + -  where u' and v' are 
ax 3~ ay a . ~  



expressed in terms of the x and y coordinate directions. The midplane curvatures are 
u- w - d-w - _ d- w expressed as qr = -- , , KJ3, - -- , , % -  - and are related to the z-coordinate 
dx - au - a.ray 

direction. Here, r,, refers to the curvature of twist about the plane of the plate. The strain 

components are expressed in matrix form as [ 5 ]  

The equation above implies that the strains vary linearly with z meaning that throug 

thickness sections remain plane and normal after deformation relative to the original 

coordinate system with its origin at the midplane. If the strains vary linearly, then lamina 

(ply) stresses must vary in proportion to lamina stifiesses. In terms of the laminate. the ply 

stress components are given by 

where the subscript k denotes the contribution from the kth ply within the composite 

laminate. According to the plate shown in Figure 2.12, the forces and moments have a lineal 

distribution. In reference to the stress components for the kth ply in Eq. 2.48, force and 

moment equilibrium are considered. 

The Forces and moments that are responsible for producing in-plane ply stresses are 

denoted by N,, N,, N,,, M,, My and M, where the N's are the ply-level forces and the M's 

are the ply-level moments. For force equilibrium, the integrated, through-thickness laminate 

stress must be equivalent to the corresponding force that produces it. The total force, 

determined from contributions of all plies within the laminate, can be expressed by the 

following [2]: 



Likewise, the total moment determined From contributions of all plies within the composite 

laminate can be expressed as [2] 

The peculiar mechanical behavior of composite laminates can be discerned by examining 

Eqs. 2.49 and 2.50. Equation 2.49 implies that changes in curvature (bending strains), 

stretching and squeezing are brought about by the tensile Forces and compressive forces 

given by {Pi). Also, Eq. 2.50 implies that the moments given by (M), in addition to changes 

in curvature, can produce squeezing and stretching strains. 



2.3.2. Laminate Constitutive Relations 

From the previous force and moment equilibrium analysis, the constitutive relations for 

laminated composites can be expressed in a condensed form as follows: 

where the A. B and D matrices are the extension, extension-bending coupling and bending 

stiffnesses, respectively. Upon expansion of Eq. 2.5 1, the solution to the stiffnesses can be 

written in terms of summations of transformed and reduced stiffnesses (from Eq. 2.30) 

belonging to individual laminae having h l h  thicknesses 

2.3.2.1. Considerations for Thick Laminates 

When the thickness dimension of the laminate compared to the in-plane dimensions is such 

that the laminate cannot any longer be considered sufficiently thin, other considerations must 

be given to though-thickness behavior which forces departure from classical plate theory. 

Transverse shear deformation present in anisotropic materials having high ratios of Young's 

moduli to interlaminar shear moduli can be approximately accounted for in thin plate theory 

by allowing the transverse shear strains to be non-zero. These strains can be related, by 

appropriate constitutive relations, to the thickness shear force resultants Q, and Q, (see 

Figure 2.12) defined in Eq. 2.54 [2]: 



The existence of transverse shear deformation results in new expressions for the curvatures 

in terms of the rotations of the midplane normals o, and o, about the y and x axes. It is 

important to note that the new curvatures are not equivalent to the curvatures established in 

the classical theory of thin plates. Based on a generalized form of the stifhess matrix <and 

Eq. 2.5 1 written in terms of the new curvatures, the shear force resultants can be stated as [2] 

The constant a,, as described in [2], is found by a match of the exact elasticity solution to an 

approximate solution which satisfies vanishing, thick-plate surface transverse shear stresses. 

Further. solution to the thick plate analysis is found by substitution of the above equations 

into the motion equation and determining the unknowns based on the total energy of the 

system. This procedure and its solutions are further explained in other works as cited 

specifically by Chou [2]. 

2.3.2.2. Considerations for Temperature 

.Another factor to consider when evaluating the behavior of polymer matrix corn posi tes 

exposed to extreme conditions is the effect of temperature. Deformations in composite 

laminates can occur From both externally applied mechanical loads and thermal loads arising 

from temperature changes. Since polymers undergo dimensional and elastic property changes 



related to characteristic thermophysical properties, it can be expected that composites having 

constituent polymer matrices will behave similarly. Thermophysical properties such as 

thermal diffusivity serve as useful metrics for evaluating how quickly composite materials 

will respond to changes in thermal environments. Owing to the uniqueness of materials such 

as UD composites, the aligned fibers are insensitive to these changes, so susceptibility i; 

governed mainly by the polymer matrix. That is, transverse and shear properties are most 

likely to be affected. 

The process of manufacturing composites from advanced thermosetting matrices such 

as epoxies and polyimides involves polymerization of liquid monomers. The degree of 

polymerization and crosslinking influences the mechanical behavior and is dependent on 

parameters such as temperature and pressure. Polymer characteristics such as molecular 

weight (M,) and glass transition temperature (T,) are important considerations in end-use 

applications involving structural reinforcement and hostile environments. These 

characteristics tend to be greatly influenced by the degree of crosslinking that takes place 

during the thermosetting process as illustrated by time-temperature-transformation diagrams 

[ I  51. At a temperature above T, and log time below vitrification, the majority ofcrosslinking 

occurs. At this temperature, the polymer matrix is still viscous enough to be considered 

"stress-free". In the later stages of cure and post-cure, microstresses within a composite arise 

due to resin shrinkage and differential thermal contraction between the fibers and matrix. The 

level ofthese stresses depends on the shrinkage characteristics of the matrix and differences 

between fiber and matrix coefficients of thermal expansion (a). When the composite is 

exposed to elevated temperature environments, changes in residual stress levels particularly 

influence shear and transverse failure processes and properties. 

Changes in stresses due to thermal loads are considered self-equilibrating and 

dilatational when the entire composite laminate is considered [2]. In general. laminate 

properties along the fiber directions are a lot less sensitive to the effects of temperature in 

comparison to shear properties and properties transverse to the fiber directions. Classical 

laminat ion theory can be modified to account for the non-mechanical strains due to thermally 



and hygroscopically induced deformations. For brevity, the macroscopically homogeneous, 

composite constitutive relation given by Eq. 2.20 is modified to account for temperature 

effects here as follows: 

where the products a,jAT indicate the strains due to a thermal load, as are the linear 

coefficients of thermal expansion (CTE) and AT is a uniform change in temperature from the 

reference temperature where residual microstresses are non-existent. For the purposes of 

lamina scale analysis, Eq. 2.55 is reduced to the following constitutive relation (Eq. 2.30): 

If the principal material coordinate in the fiber direction differs From the reference coordinate 

axis by some angle I, then the CTE's given in Eq. 2.56 are arrived at through tensor 

transformations defined by a, = a, ,cos2A + a,,sin2h, .- a,. = a,,cos2~ -- + a, ,sin2)i and 

un = (a,,  - a,,)sinhcosk. -. Analogies to Eqs. 1.49 and 2.50 can be made by considering the 

CTE's and temperature changes as a function of laminate thickness and time as detailed in 

2.4 Failure Behavior of Composite Laminates 

In most structural component applications where advanced composites are desired for their 

strength-to-weight, dimensional stability and performance tailoring characteristics. it is not 



uncommon for these materials to experience biaxial or even triaxial loads. From the design 

and application perspectives, it is necessary to accurately characterize the linear elastic and 

nonlinear behaviors under mixed-mode loadings capable of producing damage and 

catastrophic failure. Ultimately, the ability to predict bounds for mechanical properties, 

de termine residual load carrying capacities and understand damage mechanisms in fiber 

reinforced composites subjected to weaker-mode (shear dominated), biaxial loading 

conditions are important for furthering development. In this section, the most commonly 

characterized modes of crack propagation and types of failure in PMC's are understood. 

2.4.1. Modes of Crack Propagation 

Mechanisms of crack formation and crack propagation in continuous fiber composites are 

governed by the microstructure and the state of stress in the immediate vicinity of the crack 

front. Continuous fiber composites exhibit micro-heterogeneity and contain intrinsic micro- 

imperfections such as voids, debonds at the fiber-matrix interface and matrix cracks. In 

contrast to homogeneous and isotropic materials which exhibit a self-similar crack growth 

behavior, crack orientation and growth in composites is dominated by the principal loading 

condition and local heterogeneity in front of the propagating crack. In isotropic materials, 

there are three fundamental modes or types of loadings that a crack can experience as 

illustrated in Figure 2.13. In reference to planes that define mating crack faces, mode I 

(opening or tensile) has a tendency to open a crack due to an applied, principal load normal 

to the crack plane. Mode I1 (shearing) has a tendency to slide one crack face relative to the 

other in a parallel direction. Mode 111 (anti-plane shearing or tearing) has a tendency to slide 

one crack face relative to the other in a normal, out-of-plane direction. It is not uncommon 

for a cracked body to experience combinations of two or three modes simultaneously 

(referred to as a mixed-mode problem). The plane of fracture in aligned composite materials 

is determined by both the mode of applied loading and the fiber directions. In two- 

dimensional composite architectures such as a woven fabric composite, multiple planes of 



fracture can be envisaged leading to the concept of damage zones. What follows is a 

description of the various types of failure observed in composite laminates due to the 

presence of single and mixed-mode loadings under static (monotonic) and dynamic (low 

cycle fatigue) conditions. 

2.4.2. Failure CIassifications 

In laminated composite materials, classi Acation of failure becomes a question of scale and 

is typified by the mode or modes of loading. To help classify types and modes of failure, it 

is useful to define two scales, the lamina scale (mesoscale) and the laminate scale 

(macroscale). At the macroscale, there are three main classifications to characterize types of 

prevalent failure. Each classification is dependent upon the location of cracking within the 

laminate and the plane or planes on which cracking occurs. In continuous fiber composites. 

intralaminar failure refers to a dominant mode where the majority of cracks are localized to 

the matrix or fiber-matrix interface of individual laminae and growth is transverse (x,) to the 

material principal direction for the aligned fibers. Interlaminar failure refers to a dominant 

mode where the majority ofcracks lie in a plane between adjacent laminae and growth is in- 

plane along the interface(x, or x2). This type of failure is oAen the result of some 

combination of mode I, mode I1 and mode III fracture processes. Translaminar failure refen 

to a dominant mode where intralaminar cracking progresses across more than one lamina and 

fiber separation often results. Ultimately, laminate failure as a whole is highly dependent on 

the properties of' individual laminae and their summed interactions. The concepts of equal 

load sharing (load transfer), edge effects and ply constraints may play a significant role. 

At the mesoscale, individual laminae can fail in different modes depending on the 

external loading conditions. It is essential to understand the failure mechanisms in order to 

predict lamina strength in terms of constituent fiber and matrix strengths [6] .  It is oAen 

assumed that the distribution of strength within all continuous fibers in an aligned fiber 

lamina is the same. Although unrealistic, this assumption is adopted for meso- and 



macroscale predictions in order to ease the computational efforts in predicting behavior. 

Realistically, the strength of continuous fibers are a variable distribution as are the sizes and 

numbers of inherent flaws or crack nucleation sites. By adopting the more realistic 

assumption, an adequate explanation can be given to account for the micromechanisms 

associated with crack nucleation and growth under monotonic and cyclic on-axis or off-axis 

loading conditions. 

ARer Talreja [ 161, mechanical or (and) thermomechanical loads which induce a set 

of irreversible physical or chemical processes that lead to permanent changes within the 

microstructure of a material may be referred to as "damage". Damage in PMC's takes the 

form of a collective set of randomly oriented and shaped matrix cracks, fiber breaks and 

interface debonds. The singular formation of damage is more readily apparent in such 

processes as low-cycle fatigue compared to static processes which result in rapid 

accumulation to catastrophic failure. Damage in and of itself can be separated into two 

phases. a saturation state followed by secondary cracking and large delaminations. The state 

of saturation or characteristic damage state (CDS) defines multiple occurrences of matrix 

cracks that eventually saturate. In the second phase, secondary cracks and delaminations 

localize at some preferential location of primary cracking to form zones of damage 

development. Final failure leading to a marked decrease in load canying capacity may stem 

From either fiber fracture or severe interactions of multiple cracks. Prediction of lamina 

response to the first damage phase requires either singular determination of stresses around 

individual crack tips or a homogenization approach that smean the effects of multiple cracks 

into a locally homogeneous field. Prediction of response to the second phase is much more 

difficult, since families of cracks may emerge having similar effects, but each family acting 

diiferently on the failure process. 

Aligned fiber lamina damage mechanisms under on-axis tensile loading conditions 

can be divided into three distinct categories as shown in Figure 2.14 [16]. Preliminarily, 

transverse cracking within the matrix usually originates From two possible scenarios. The 

first scenario assumes that the matrix is free of voids, debonds or any other inherent flaws. 



From a near-atomic viewpoint, separation within a polymer matrix material occurs when 

enough work is applied to separate polymer chains held by secondary van der Wads forces. 

This is referred to as chain scission [I 71. Also aquestion of scale, the formation of separation 

resulting from chain scission depends on whether local heterogeneity exists between polymer 

molecules and chains. A crystalline polymer exhibits a certain degree of symmetry, therefore 

molecular stresses should be more evenly distributed compared to those in amorphous 

polymers. The second scenario assumes that the matrix is not devoid of flaws. i.e. voids, 

impurities, debonds. Formation of flaws may be linked to the first scenario if formed From 

localized phenomena such as shear yielding or crazing which leads to 100% straining and 

cavitation [ I  71. Usually, transverse matrix cracks nucleate from flaws introduced during the 

manufacturing process. These flaws serve as stress concentrations and magnify stress locally 

so global stress exceeds the material cohesive strength. 

As shown in Figure 2.14(a), lamina strains may be o f a  sufficiently low magnitude 

to confine cracks to the matrix only (dispersed failure). Straining above the characteristic 

dispersive failure can cause crack growth to occur until the fibermatrix interface is reached. 

When the crack-tip stress exceeds the fiber-breakstress, separation occurs as shown in Figure 

2.1 4(b). Once the crack grows to a length sufficient for crack-tip shear stresses to exceed 

interfacial strength, propagation continues along the interface (see Figure 2.14(c)) eventually 

leading to fiber pull-out. A detailed evolution of fiber break processes expanded from Figure 

2.14(b) is illustrated in Figures 2.1 S(a-d). Subsequent to a fiber break, tensiie stresses near 

the void edges are magnified causing transverse crack progression to an adjacent fiber. If 

adjacent fibers are stronger than the failed fiber, only successive matrix cracking may occur. 

This may lead to fiber bridging where a portion of the load previously supported by the 

matrix is redistributed to the intact fibers. It is likely that laminadamage development under 

on-axis tensile loading conditions exists as combinations of damage depicted in Figure 

2.1 q d ) .  

When a continuous, aligned fiber lamina is subjected to off-axis tensile loading 

conditions, the predominant mode of failure is dependent upon the angle of the loading axis 



relative to the fiber axis. Three simple fracture modes are plausible: longitudinal tensile 

fracture, transverse tensile fracture and intralaminar shear fracture [6]. At small angles 

between the loading and fiber axes, damage and failure mechanisms are dictated as 

previously described. As the angle increases, damage accumulation is by both mode I and 

mode I1 conditions, i.e. mixed-mode. In this regime, there are interactions between tensile 

stresses and shear stresses that lead to transverse tensile and intralaminar shear cracks within 

a given plane. As the loading axis becomes normal to the fiber axis, crack growth progresses 

by mode I (opening displacements) and transverse fiber debonding occurs. 

For two-dimensional woven fabric composite laminae, evolution of damage leading 

to catastrophic failure is influenced by loading conditions, fiber count (tow densities), tow 

geometry, weave architecture (tow waviness) and lamina fiber volume fraction. For 

laminates, overall fiber volume fraction and layup sequence (constraining and asymmetry) 

must also be considered. Several accounts [2, 18-24] have been made for characterization of 

the failure processes in plain and 8HS woven composite materials, primarily for simple 

uniaxial tensile and compressive loading conditions. Ishikawa and Chou utilized their fiber 

crimp and bridging models to study the nonlinear "kneett stress-strain behavior in woven 

Fabric composites. For plain weave composites, they found that the knee phenomenon was 

attributed to successive failures of transverse tows (warp tows) such that the stress-strain 

curve became linear again after the lowest strain in the failed region reached the transverse 

breaking strain E,. For satin weave composites, it was determined that the knee stress was 

higher than in plain weave composites for a given knee strain due to the presence of bridging 

zones for load transfer. 

Naik er a/. [I  81 analyzed the uniaxial and off-axis tensile failure behavior in plain 

weave fabric composites with and without a central hole. It was Found that failure in on-axis 

tensile specimens was essentially linear and catastrophic while severity of nonlinear behavior 

in o ff-axis specimens was a function of the angle between the loading and tow axes. The 

strength in the notched woven composites was higher than in the un-notched composites due 

to more significant tow reorientation. Subsequent to matrix failure, it was observed that the 



woven tows in the off-axis composites gradually reoriented towards the plane of principal 

stress. This phenomenon of reorientation was manifested by periodic rising and falling in the 

stress-strain curve and higher loading at failure as well. The presence of a hole or notch 

permitted reorientation to occur faster, thus raising the failure strength of the notched woven 

fabric composites. 

Farouk and Langrana [19] investigated the mode I fracture process (translarninar) in 

plain weave graphite-PMR15 using single-edge, notched beam (SENB) specimens and 

acoustic emission. They characterized the mode I fracture process according to the following 

stages: 

elastic deformation with few acoustic events and a linear relationship of load with 

displacement. 

pseudo-o last ic deformation showing acoustic events due to matrix cracking and fiber 

pull-out with a monotonic, but nonlinear load increase, and 

failure showing a marked increase in acoustic events that characterize fiber breakage 

followed by rapid crack propagation. 

I t  was concluded that the mode I Fracture process in the woven graphite-PMR15 S E W  

specimens exemplified behavior typical of brittle matrix composites, viz. matrix cracking 

followed by fiber pull-out and fiber breakage. 

A detailed experimental and computational investigation was carried out by Mirzadeh 

and Reifsnider [20] to evaluate tow strain distributions in 8HS Celion (C3000) woven 

graphite-PMR15 composites subjected to uniaxial compression (filling direction). Two- 

dimensional finite element simulations ofadjacent tows were compared with strains obtained 

from an experimental photomechanics (Moire interferometry) study. In comparing the 

photomechanics results with the finite element analysis (FEA) results, they found that FEA 

revealed the presence of a bending moment at the center of undulation and near the adjacent 

warp tow, but photomechanics did not show a moment. Strains determined by the two 

methods, for the most part, showed good correlation and it was concluded that periodicity 

of the undulations reflected periodicity and complexity of the strains. Grape and Gupta 1211 



also analyzed the failure behavior of 8HS carbordpolyimide-based and carbon-carbon 

composite laminates under uniaxial compression as well as a more convoluted loading 

condition, biaxial compression. Their findings indicated that the polyirnide-based composites 

which were void- free compared to the carbon-based composites (a result of carbonization 

steps) suffered less out-of-plane deformation in compression. This suppressed failure by 

shear fault and kink band formation as observed for the carbon-based composites. Principal 

failure in the polyimide-based composites was interlaminar in nature and aligned with the 

primary axis of loading. The tolerance of far greater strain in compression as exhibited by 

the polyimide-based composites was attributed to better interlaminar Fracture toughness. It 

was concluded that both families of 8HS woven composites hi1 when the critical 

compressive failure strain is reached in the direction of the tows. 

Naik [22] developed a general purpose, micromechanics analysis technique 

implemented in a user-program TEXCAD to predict thermomechanical properties, damage 

initiation and progression in plain weave and two-dimensional triaxial braided composites. 

Parametric studies were also performed to investigate the effects oltow geometry, spacing, 

undulation angle, braid angle and overall fiber volume fraction on tensile, compressive and 

shear strength properties. For the plain weave architecture, it was found that an increased 

angle of undulation lowered tensile and compressive strength due to an increase in the rate 

of damage accumulation. Damage accumulation in the tows and nonlinear response of the 

matrix was also found to be detrimental to performance in shear. 

Gyekenyesi et al. [23] conducted an experimental investigation to study the elevated 

temperature [255 "C (491 OF)], static tensile and fatigue behaviors of 8HS woven graphite- 

AMBZ 1 composites with the emphasis on new testing techniques. For the static tests, it was 

noted that linear stress-strain behavior was observed up to 90% of the ultimate load, while 

nonlinearity near or at hilure was attributed to tow failure and matrix cracking. They also 

concluded that elevated temperature had no effect on the tensile modulus and strength 

properties. In terms of isothermal fatigue, strain ratcheting behavior was observed at the 

beginning and ending of fatigue life and outside ofthis behavior, a general trend of increased 



stiffness was observed for an increasing number of fatigue cycles. This was associated with 

the periodic straightening and kinking of on-axis tows resulting in lock up. 

Alif et al. [24] investigated the mode I, mode I1 and mixed-mode interlaminar 

fracture processes in 5HS woven carbon-epoxy composites using double cantilever beam 

(DCB), end-notched flexure (ENF) and mixed-mode bending (MMB) experimental tests. 

They identified transverse tow debonds as the mechanism primarily responsible for fracture 

and noted that the fracture toughness-crack length curve showed and increased resistance to 

propagation due to an unwieldy growth path around the interface of the transverse (fill) tow. 

" S tic k-slip" behavior was observed in the nonlinear regime of the load-displacement curve 

as a result of the growth resistance and the energy consumed to debond fill tows was 

estimated at 50.0 lim' (3.4 fi-lbsl~'). 

2.4.3. Numerical Schemes 

Several numerical models have also been proposed to predict the elastic properties and 

overall mechanical behavior of plain weave fabric composites. Zhang and Harding [XI 

developed a model based on the finite element method for micromechanics analyses and 

principle of strain energy equivalence. Although the plain weave fabric lamina was modeled 

considering undulation in one direction, it was suggested that a two-dimensional case should 

be considered. A more representative case of the actual plain weave unit cell was developed 

by Blackketter et d. [26] The tow cross-sectional aspect ratio which was obtained from 

photomicrographs, was included in the finite element model and the observed fiber volume 

fraction was obtained by iteration. Tows were assumed to conform perfectly to each other, 

resulting in a mathematically continuous model. An incremental iterative finite element 

algorithm was developed to analyze tensile loading responses, shear loading responses and 

estimate some of the effects of damage through stifmess reduction schemes. 

Extensive work on 2-D and 3-D finite element analyses of plain weave fabric 

composites has been done by Whitcomb et a[. [27-291 A new 2-D finite macro element was 



developed and evaluated to account for element spatial variation of material properties. 

Detailed stress analyses of plain weave fabric composites were also performed using a 

globaVloca1 finite element method. It was found that surface stress distributions differed 

from internal stress distributions and failure behavior was influenced by a geometric feature 

defined as the tow waviness ratio, Effective elastic moduli were also found to be sensitive 

to the tow waviness ratio and increasing tow waviness in plain weave composites, subjected 

to uniaxial tensile loads, resulted in initial failure due to high transverse normal stress. In this 

case, the particular failure mode was 0" fiber tow separation. When the tow waviness 

decreased, the initial failure mode was 0" fiber tow fracture from high longitudinal stress. 

The deformation behavior also tended towards that of cross-ply laminates. 



Figure 2.1. Surface components of normal and shear stresses. 

Figure 2.2. Stress components acting on an elemental cube. 



Figure 2.3. Complete force description on elemental cu 
( ARer Eisley 1989.)' 
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Figure 2.4. Deformation of elemental cube. (After Eisley 1989.)' 



Figure 2.5. Element in-plane shear strains. ( ARer Eisley 1989.)' 

Figure 2.6. Local deformation of elemental cube. (After Eisley 
1989.1' 
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Figure 2.7. Continuous fiber unidirectional composite lamina. (After 
Chou 1992.)' 
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Figure 2.8. Continuous fiber unidirectional composite lamina with fibers 
oriented at an angle h kom the reference axis. (After Chou 1992.)' 



Figure 2.9. Derivation of one-dimensional crimp or fiber undulation 
model. ( ARer Chou 1992.)' 

Figure 2.10. Definition of 2-D shape functions for X-Z slice. 
(Mer Naik et ol. 1992 . ) I  



Figure 2.1 1 .  Definition of 2-D shape functions for Y-Z slice. 
(ARer Naik et a/ .  1992.)" 

Figure 2.12. Laminate subjected to in-plane force and moment resultants. 
(After Krishnarnachari 1 992.)5 
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Figure 2.13. Crack propagation modes: (a) tensile, (b) shearing, and (c) tearing. 



Figure 2.14. Damage mechanisms in aligned fiber composites subjected to on- 
axis loading conditions: (a) transverse matrix cracking, (b) 
fiber breakage, and ( c )  interfacial shear failure. (After Talreja 
1987.)" 



Figure 2.15. Evolution of fiber damage in aligned fiber composites: (a) fiber 
break with interfacial debonding, (b) fiber break expanding matrix 
crack, (c) matrix crack with fiber bridging, and (d) compilation ofa, 
b, and c. (AAer Talreja 1 987Ji6 
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MICRO- AND MESOSCALX ELASTIC BEHAVIOR 

3.1. Prediction of Elastic Constants 

Based on the comprehensive review of theories presented in the literature and just 

summarized for the elastic analyses of woven fabric composites, it becomes readily apparent 

that more effort has been spent on understanding the behavior of composite architectures 

based on the plain weave vis-ivis architectures based on the satin weave. With the exception 

of models proposed by Chou et al., little work has explicitly been outlined for 8HS woven 

fabric composites. Rather, it has been stated in the various other works that the theories 

developed for plain weaves could be extended to satin weaves provided modifications were 

made to include the straight portion of the tows adjacent to the interlaced region. To the 

author's knowledge, no formal analytical analysis has been presented exclusively for an 

arbitrary and random 8HS weave pattern and verified both by experimental and finite 

element methods. In light of this. the intentions of the current research presented herein are 

two fold: I ) development of a simp ti fied two-dimensional micro-to-mesomechanics model 

suitable for estimating the elastic constants in 8-harness satin woven fabric composites, 

based on random tow cross-sectional shapes and tow arrangements lacking contiguity; 2) 

assessment of the model validity by comparing the estimations to those obtained from 3-D 

finite element based, strain energy analyses and mechanical testing. The simplified 

mechanics model presented here assumes that the woven 8HS fabric lamina may be treated 

as a two-layered laminate if the micromechanics analysis is carried out using the woven 

fabric tow average V, The finite element model presented for verification purposes 

represents an idealized volume element (WE) From a fabric unit cell where the IVE V, is 



reached through an iterative process. 

In the course of analyzing the composite lamina behavior, it is commonplace to 

choose a modified square boundary of equivalent area to the hexagonal boundary for 

simplicity of calculation. By adopting the notation ofChou [2], the equivalent sub-cell major 

dimensions are given as: 

hexagonal dimensions: (3a) x (3a) simplified dimensions: ( h a )  x (481) 

where a is the width of the warp or weft tow. In addition to boundary generalizations, 

calculations are often reduced by assuming tow cross-sections of the following shapes: 

rectangular, perfectly elliptical and lenticular, i.e. shaped like a biconvex lens. The strain 

energy analyses presented in this research assume the model geometry within the larger 

repeat unit. but the simplified mechanics approach does not idealize the tow cross-sectional 

shape as lenticular and symmetric. The model geometry is employed using the simplified 

dimensions only to facilitate ease in application of suitable prescribed displacement boundary 

conditions. 

3.1 .l. Examination of Lamina Geometry 

3.1. I. 1. Woven Tow Cross-Section 

Evaluation of woven composite lamina and laminate stiffhess requires an accurate 

description of the woven tow geometry, including both the woven tow cross-section and tow 

centerline. Rather than assuming an idealized geometry described in terms ofcomplimentary 

functions that force contiguity between the warp and fill tows, the particular shape of the 

SHS woven tow cross-section observed in SEM micrographs (Figure 3.1) may be described 

by specific rational B-splines and polynomial functions where z = f(x or y). depending on 

the tow considered. If a given threshold level is applied to the micrograph of the lamina 



cross-section, a binary image can be rendered that separates the tows from the matrix 

sufficiently to allow for boundary digitizing2. As shown successively in Figures 3.2(a) and 

3.2(b), this technique permits an accurate tow rendition and recording of coordinate pain ([x, 

z] or [y, z]) of points selected around the perimeter of the tow. The mathematical 

representation of the particular shape of a reproduced tow cross-section retains somewhat 

better accuracy if the perimeter is halved about an imaginary avis through the geometric 

center or centroid as given by 

where ; represents the x-coordinate of the warp tow centroid and the numerators are 

formulations of the "first moment" of the area element dA about the z and the x axes, 

respectively. The relationship is similar for locating the ti11 tow centroid. 

Once the coordinate pairs are established for the upper and lower half of the tow 

cross-section (with respect to the centroid), the points can be joined using a piecewise 

polynomial interpolation method such as spline interpolation. The simplest continuous 

polynomial approximation would be by piecewise linear functions. However, comers would 

exist that are not representative of the actual tow cross-sectional shape. More practical, 

natural-ended, cubic splines p(x) are adopted to join the points along the perimeter and are 

given by cubic polynomials of the following form: 

' Thresholding implements an algorithm to select all regions of pixels having similar contrasts and applies 
the same color Ievel to these regions, either black or white in the case of a binary threshold. Levels of 
threshold are determined by locations on a histogram range from 0-255. 



Cubic splines on an interval a s x r b corresponding to the space between two points or 

nodes have, by definition, continuous first and second derivative everywhere in that interval. 

The cubic polynomial coefficients are determined using Taylor's formula in the following 

manner to obtain 

The strain energy minimization by using splines to fit curves through points is proportionate 

to the square of the second derivative ofthe spline. Curve fits chosen by natural splines result 

in a linear graph of the interval endpoints because natural splines are functions that result in 

the integral tending towards zero as follows: 

3.1.1.2. Woven Tow Centerline 

The geometric description of the warp or fill tow centerline is approached in the same 

manner as the description of the tow cross-section. An appropriate threshold level is applied 

to an S EM micrograph of the lamina or laminate edge (see Figure 3.3(a)), rendering a binary 

outline of the woven tow path as it passes over or under a mutually orthogonal tow (fill). To 

amve at coordinate pairs for points representing the tow centerline, the path thickness 

represented by Figure 3.3(b) must be divided evenly along the path with respect to an 

imaginary axis though the geometric center of the orthogonal tow. By advancing in 

increments along the path and determining the new centroid at each increment, the difference 

between z-coordinates of the upper and lower digitized points (path perimeter) yields a new 



point that coincides with the centroid. Necessarily, the tow centerline and geometric center 

of the tow should be identical. Piecewise polynomial approximations for natural-ended 

splines that satisfy Eq. 3.4, as previously described, are also used to connect the centerline 

points in a continual fashion. 

3.1.1.3. Woven Tow Surfaces 

Once the particular geometry of the woven tow cross-sections and centerlines is known. 

upper and lower tow surfaces may be accurately described by two-dimensional 

approximations in terms of z = f(x, y). Additionally, rendition of tow volumes is possible by 

extruding either the warp or fill tow cross-section along the path defined by its mutually 

orthogonal centerline. At this stage, it also possible to delineate the adjacency ofneighboring 

tows in both closed and open weave architectures and characterize the requisite lamina and 

laminate volume fractions. Figure 3.4 displays such an arrangement of upper fill tow surfaces 

created from two-dimensional piecewise approximations with the local off-axis angle of 

undulation given as 5 and in-plane dimensions defined according to reduction of the 8HS 

woven unit cell. The simplest case of describing the lamina geometry assumes that the lower 

fill  tow surfaces are reflections of the upper fill tow surfaces along the z-axis, and the 

resulting set of fill tow volumes is a reflection of the mutual warp tow volumes rotated 90' 

about an imaginary z-axis (through the interlace). Although it is certainly plausible that 

variations in tow cross-sections arise from the manufacturing process, inaccuracies in lamina 

stiffness calculations are trivial compared with those stemming from discrepancies in 

constituent properties and volume fractions. 

3.1.2. Micromechanics Approach 

A suitable laminate analysis for carbon fiber based, woven fabric composites distinctly 

emerges from three structural scales due to inherent differences between constituent material 



properties and lamina architectures. At the micromechancs scale, it is beneficial to analyze 

the interactions between individual fibers, fiber bundles and the surrounding matrix. 

Composite Cylinder Assemblage (CCA) theory is usually employed and affords simple, 

closed-form solutions to predict effective elastic properties at this scale by treating the 

constituent phases as transversely isotropic. At the mesomechanics scale, the complex lamina 

geometry is either simplified to facilitate the ease of computations or the geometry is 

represented by periodic shapes and trigonometric functions. Judicious use of classical 

lamination theory is applicable at the mesoscale to homogenize through-thickness properties 

and arrive at Cartesian planar stifhess constants in terms of thickness cross-sections, i.e. 

mathematical moduli - Qi,'s. Average laminae compliances or stiffhesses are found. 

depending on the order of integration, by assuming isostress and isostrain conditions during 

the assembly of infinitesimal thickness slices. Prediction of macroscale laminate elastic 

properties involves application of classical lamination theory an additional time to 

homogenize mesoscale lamina properties in terms ofthe total composite laminate thickness. 

The macroscale elastic behavior of the laminate is dependent on the ply mangement and the 

values obtained at this scale can equally be compared to the apparent experimental elastic 

properties. 

3.1 .LA. Evaluation of Woven Tow Properties 

A woven fabric lamina may be considered as a "composite within a composite" with the 

bundled tows, surrounded by a matrix, forming the first composite material and the woven 

lamina, surrounded by a matrix, forming the second composite material. The least 

complicated approach to take in evaluating the elastic properties of the 8HS woven fabric 

tow is to treat individual tows as unidirectional composites composed of continuous arrays 

of fibers and surrounding matrix. In practice, the fiber-to-fiber "lattice" spacings and 

diameters are highly irregular, so it does not make much sense to evaluate fiber volume 

fraction based on the argument of maximum 2-D circle packing density (analogous to the 



Keplsr Conjecture) with regular tessellations of the form 

where R is half the center-to-center spacing of fibers and r is half the fiber diameter. Instead, 

it is more practical to evaluate fiber volume fraction based on observations and 

measurements of scanning electron micrographs taken From actual laminate cross-sections. 

Analyses of SEM images taken From several cross-sections lead to measured binary ratios 

(normalization ofthe number of white pixels to the total image area in pixels) in the range 

of 0.7 1/1.00 to O.74/l.OO as shown in Figure 3.5 for the composites considered here. The 

measured binary ratios or area fractions can be considered to be an equivalent representation 

of the measured tow volume fractions if the phases are assumed to be infinitely long and 

continuous and if variations in tow-to-tow cross-sections are considered negligible. Once the 

ranges of measured volume fractions of fibers and constituent material properties are 

determined, CCA theory can be applied successfully to calculate the equivalent elastic 

properties, in the principal material directions, of the unidirectional composite laminae (warp 

and fill  tows). Subsequently, classical lamination theory may also be applied to evaluate 

lamina and laminate properties. 

3.1.2.2. Composite Cylinder Assemblage 

The CCA model due to Hashin and Rosen [30-321 g i ~  {es clos ed-form, anal yticai expressions 

for the effective elastic constants of a LJD lamina where the transversely isotropic (assumed) 

fiber and matrix are modeled as concentric cylinders. The longitudinal Young's moduius E,, 

of the CID composite lamina is given by 



where the sub- and superscripts f and m denote material properties of the constituent fiber 

and matrix phases, respectively. The subscript 1 refen to the longitudinal fiber direction and 

the subscripts 2 and 3 refer to the directions transverse to the fiber. The matrix volume 

fraction is V,,# = ( I  -5.). The transverse Young's modulus Em- ,, is a bounded solution and the 

bounds are given by 

where the superscripts LIB and LB are the upper and lower bounds of the solution to the 

transverse Young's modulus. Both the upper bounded and lower bounded solutions for E2? 

are dependent on the transverse bulk modulus k*, of the UD lamina and a bounded solution 

for the transverse shear modulus G', as well: 

Although a more accurate Generalized Self Consistent Scheme (GSCS) for G', has been 

developed based on equivalent, homogeneous composite properties (single fiber surrounded 

by an equivalent composite instead of constituent matrix material), the upper and lower 

bound solutions for G', are adopted for the sake of maintaining consistency. The bounded 



solutions are carried through the complete analysis in its entirety for woven tow properties. 

The concise forms for the upper and lower bounds are given as 

qLB = GG + 
1 + V ,  (k,  + ZG; ) 

The bounds given by Eq. 3.9 are acceptable solutions when the fiber transverse shear 

modulus is larger than the transverse shear modulus of the matrix and the fiber bulk modulus 

is larzer than the matrix bulk modulus, that is when G\ > Gm, and k, > k,,,. If the opposite 

conditions exist, then the upper and lower bounds for the transverse shear modulus ofthe UD 

lamina are given by 

G ; ~ ~  = G; 

G ; ~ ' ~  = G; + J 

1 v, (k,  + ZGZ ) 

In either case, the following relationships, given in terms of the constituent tiber or matrix 

elastic properties, hold for the fiber and matrix transverse bulk moduli with the fiber 

transverse bulk modulus defined as 



and the matrix transverse bulk modulus defined as 

while relationships between the fiber and matrix transvene bulk and shear moduli are given 

as the following: 

The remaining in-plane elastic properties, the longitudinal shear modulus G,2 and 

longitudinal Poisson's ratio v,, of the UD composite lamina, can be expressed accordingly: 

If the transverse Poisson's ratio v, of the LID composite is desired, then a bounded solution 

can be given in terms of the upper or lower derivations of the transverse shear modulus 

according to the expression 



3.1 J.3. Strain Energy Equivalence 

Accurate application of numerical methods to validate the elastic properties determined from 

the CCA model involves the analysis of a representative volume element (RVE). The RVE 

is modeled based on a periodic fiber packing sequence and although the ideal square or 

hexagonal packing model given by Eq. 3.5 is chosen for simplicity. the numerical fiber 

volume fraction is made equivalent, by iteration, to the actual fiber volume fraction 

determined from SEM cross-sections. From a numerical standpoint, it is important that the 

RVE accurately represents periodicity and the accompanying periodic boundary conditions. 

Without such accuracy, the RVE elastic constants predicted will be representative of the 

composite. If the proper choices are made lor a periodic geometry and boundary conditions. 

the stress and strain states should also be periodic even though they are not necessarily 

uniform as in homogenous materials. By assuming strain energy equivalence, it can be 

shown (see Sun and Vaidya, cf. [33]) that subjecting the periodic RVE to appropriate surface 

tractions or displacements that would produce uniform stresses in a homogenous medium 

is valid here. Macro-stress and strain, based on classical lamination theory pertaining to 

average moduli of homogenous media, are derived via an average of the stress and strain 

tensor over the RVE volume as follows where the averages are given as 

According to strain energy equivalence criteria, the strain energy U' is stored in the 

heterogeneous RVE with a potential equivalent to external work W' done by a force acting 



on the volume. It can be assumed that the difference in this strain energy and that of the 

homogeneous volume (U) yields the following relationship: 

where u, represent boundary displacements. If the volume is discretized in such a manner that 

produces a large number of elements and nodes, the use of Eq. 3.19 becomes somewhat 

unwieldy to manage. In the place of the volume integral, the divergence theorem of Gauss 

can be applied to convert the volume integral into a surface integral by 

in general : 

where T is a closed and bounded region in space whose boundary is a piecewise smooth 

surface S. If F(x, y, z) is a vector function that is continuous and has continuous first partials 

in the T domain, then n is the outwardly normal unit vector of S. Therefore, Eq. 3.19 

becomes 

Similarly. Gaussian divergence theorem may also be applied to the volume integral given 

in Eq. 3.18 to yield a relationship for tensorial strain in terms of a surface integral as given 

by the Following equation: 



where V is the RVE volume, S is the boundary RVE surface, u, is the ih component of 

displacement and nj is the jh component ofthe outwardly normal unit vector. From Eq. 3.22, 

displacements can be prescribed on the boundary surface and tractions can be determined 

from resulting surface reactions to prescribed displacements. In all cases, it is assumed that 

the Cartesian and principal material coordinate systems are coincident. 

Urlinricil Te~tsde Case (E,,) - For the case of axial loading, a quarter-symmetry RVE 

can be modeled to determine the longitudinal tensile elastic modulus. The following 

boundary conditions are imposed (with node matching) on the finite element model shown 

in Figure 3.6: 

6,(0, y, z) = 0 

6,( OSa, y, z) = constant 

Clearly. Eq. 3.22 reduces to the more apparent definition of strain as given by 

The average stress in the RVE can be determined by equating the external work to the strain 

energy stored within the RVE and solving [33]: 

there fore 

Finally. the longitudinal tensile modulus and Poisson's ratio are obtained as Follows, 

assuming a prescribed displacement (63 of unity. This is based on the premise that a = b and 

P, is the resultant surface reaction derived from the prescribed boundary conditions 



Triznsverse Tensile Cases (E, = E=) - Similarly, the transverse tensile elastic moduli 

E, and E, can be calculated, based on the above derivations, and by assuming that the 

following boundary conditions ayain apply to the finite element model shown in Figure 3.6: 

6,(x, 0, 2) = 0 

6,( x, OSb, z) = constant 

6,(x* y, 0) = 0 

6,( x. y, 0 5 )  = constant 

Lottgittidina 1 Shear Case (G,,) - 
specific boundary conditions imposed 

and LT = -($) 

The case of longitudinal shear loading requires more 

on a full representation of the square array, i.e. no 

planes of symmetry are assumed. Since this type of loading is independent of the long axis 

(axis parallel to the fiber), boundary conditions must be such that both the Y-Z planes at x 

= 0 and x = 1 .Oa displace identically to each other. Ideally, this also implies that nodes on 

opposing Faces share the same planar locations. To satisfy this requirement. the following 

boundary conditions are applied to the finite element model in Figure 3.7: 

6,(x.O, z) =S,(x, 0,z) =S,(x, 0, z) = O  

6,(x, 1.0b. z) = constant 

6,(x. Lob, z) = 0 

To assure that both Y-Z planar surfaces at x = 0 and x = 1.0a displace by an identical amount 



at every point on each surface, the additional prescribed boundary conditions are 

y* 2) = 6,( 1 .oa, y, 2) 

6,(0, y, 2) = 6,(1.0a, y, 2) 

6,(0, y. z) = 6,(1*0a, y. 2 )  

As in the previous cases of deriving the axial and transverse tensile elastic constants. 

a similar solution For the longitudinal shear modulus is adopted fiom Sun and Vaidya and 

shown as well. Again. application of Gaussian divergence theorem to the RVE yields the 

following relationship for average equivalent shear strain y,: 

err - 2 
u,n ,  + ~ d , , n , ) d ~  y.-+ -7 j&.# =+ j( 

Accordingly, by equating the external work to the strain energy stored within the RVE 1331 

and reducing Eq. 3.29 according to prescribed boundary conditions, a relationship is obtained 

for thc longitudinal shear modulus in terms ofthe equivalent force. Based on the premise that 

r = b and P,, is the resultant surface reaction derived from the prescribed boundary 

conditions 

therefore, based on the premise that a = b and P, is the resultant surface reaction derived 

from the prescribed boundary conditions, the longitudinal shear modulus is given by 

This analysis can also be employed for the case of transverse shear (GJ similarly. An 



alternate set of boundary conditions are imposed to deform the RVE (Figure 3.7) in a manner 

such that it forms an unrestricted parallelepiped about the fiber axis 

6,(r, y, 0) = 6,(x, y, 1 .0~)  = &Jx, 0, z) = 8,(x, 1.Ob. z) = 0 

- [6,(x, y, O)] = 6,(x, y, 1 . 0~ )  = constant 

- [6,(x, 0, z)] = 6dx, Lob, z) = constant 

3.1.3. R.Iesomechanics Approach 

At the mesoscale, classical lamination theory is considered applicable for evaluating the 

equivalent elastic properties of the woven fabric lamina. Several mathematical models [8- 14, 

34-35] have previously been proposed to account for the woven fabric geometry in 

evaluating elastic properties, particularly for the plain open and closed weave architectures. 

For satin weaves specifically. Ishikawa and Chou proposed the bridging model which was 

necessarily a combination of their series and parallel models. The 2-D bridging model treats 

the non-interlacing tows surrounding the interlaced region as an assemblage of cross-ply 

laminates that act as load bridges. Tow undulation is considered only in the loading direction 

while the cross-sectional geometry and orthogonal undulation are not considered. In this 

research. a simplified 2-D model is proposed for the 8HS woven architecture that accounts 

for actual undulation of mutually orthogonal tows and actual tow cross-sections, including 

random variation. 

3.1.3.1. Evaluation of  Woven Lamina Properties 

The basic premise of the simplified 2-D model considers the 8HS woven fabric lamina as a 

laminate having two layen and a V, equivalent to that of the woven fabric tows. From the 

digitized reproduction of the tow centerlines and tow cross-sections by cubic spline 

interpolation. mth-order polynomials are fitted according to the method of least-squares 

approximation. As an example, consider a straight line z = a + bx or z = c + dy (consistent 



with the previously established coordinate system) fitted through the given points (xl, z,), 

. . . , (x,, z,) or ( y,, zl), ... , (yn, z,,) so that the sum of the squares of the distances of those 

points from the straight line is a minimum, where the distance is measured from the z- 

direction. The point ordinate a + bx, or c + dy, corresponds to an abscissa x, or y,. Therefore, 

the distance from (x,, ZJ and (y,, 3) is lz, - a - bxjl and Jz, - c - dy,l, respectively. In general, a 

polynomial of degree m is given by 

and the sum of the squares of the distances q takes the form given by 

where q depends on (m + I )  parameters b,,, ..., b, and there are (m + l )  conditions or 

minimums which give a system of (m + I )  normal equations. Upon extending the example 

for the case of a second-order least-squares polynomial approximation with a quadratic 

polynomial of the following form: 

where the normal equations (summation from I to n implied) are given by 

This system is symmetric and solution to the unknowns b,, b, and b, is accomplished by one 

of the more commonly used numerical methods such as Gauss elimination, Gauss-Seidel 



iteration or LU-factorization. A modified method ofGauss elimination with LU-factorization 

is employed to solve the system of normal equations for the unknowns in rnhsrder 

polynomial fits of the upper and lower tow cross-sectional perimeters and tow centerline as 

illustrated by Figures 3.8 and 3.9. The success criterion used for determining the appropriate 

polynomial order of fit is a coefficient of determination R' 20.95. 

3.1 J.2. Compliance Transformation 

The equivalent elastic properties of the warp and fill laminae can be determined by 

evaluating the average reduced compliance for the local off-axis angle of undulation. The 

local off-axis angle of undulation for the warp and fill tows is given by 

4 

where C is the local off-axis angle as represented in Figure 3.4 and z is given in terms of x 

or y and is equivalent to the least-squares polynomial approximation for either the warp or 

f i l l  tow centerlines (defined by Eq. 3.32 for a rnh-order polynomial). The particular off-axis 

angle reduces the effective elastic constants with respect to the Cartesian (global) coordinate 

directions. Solution to derivatives in (3.36) are the slopes of secant lines that approximate 

lines tangent to any segment of the least-squares polynomials. Unlike numerical integration 

which is a smoothing process, differentiation is much less accurate since the derivative is the 

limit of the difference quotient. The forward difference quotient tends to underestimate the 

derivative and the backward difference quotient tends to overestimate the derivative. The 

symmetric difference quotient provides the best approximation to the slope of the tangent 

dz P(.r + ~ r )  - p(x - AY) - = lim 
dr L ~ + O  [ 2, 



From Hooke's law, the constitutive relations of a UD lamina which relate strain to 

stress in terms of the compliance matrix Si, can be expressed in the generalized form with 

contracted notation 

where i, j = 1. ..., 6 in reference to the material principal coordinate system x, - x, - x,. For 

a UD lamina with fibers oriented at an angle C with respect to the Cartesian reference axis 

(see Figure 3.10), the generalized form of the constitutive relations in terms of the 

transformed reduced compliance matrix Sij can be expressed as 

In this case, the transformed reduced compliance constants S, where i, j = I ,  .... G can be 

written for the transversely isotropic warp or fill tows as follows (afler [36]): 

The effective elastic properties for the equivalent warp and fill laminae are determined by 

inverting the averaged, local transformed compliance. The average compiiance is the mean 



integral value of the local compliance given as 

where the limit of integration 4 is defined as the maximum off-axis angle of warp or fill tow 

undulation. The maximum off-axis angle may be stated as 

4, = rnax tan-' d [ z  = PMI] [ (3 

and determined for the warp or fill tow centerline by utilizing techniques to sort the local off- 

axis angles into ascending order by numerical methods such as straight insertion. quicksort 

and Shell's method. 

3.1.3.3. Application of Classical Lamination Theory 

The elastic properties of the woven fabric lamina can be evaluated using classical lamination 

theory (CLT). Knowing the effective elastic properties of the warp and fill laminae, the 

lamina can typically be treated as a three-layered laminate and evaluated at the V, of that 

specific lamina. It is also proposed that the lamina can be treated as a two-layered laminate 

and evaluated at a V, equivalent to an average value for the woven warp and fill tows. Under 

the assumptions of the Kimhhoff conjecture for thin plates, the constitutive relations in 

condensed form are given as [2]  

where N and M are membrane stress and moment resultants, respectively. The strain and 



curvature of the laminate midplane are E, and K,. The [A], p] and [Dl (extensional. 

extensional-bending coupling, bending) stifhess matrices are evaluated accordingly by 

where [GI, are the reduced mathematical moduli of the laminate kIh-layer corresponding to 

the lamina defined by a thickness (h, - h,.,). On the basis of assuming that the equivalent 

two-layered laminate is composed of LID laminae with transformed tows (fibers) in the x and 

y directions, the non-vanishing stiffness constants are given as 

where the following relationship does apply: 

In Eqs. 3 &(a-g), E, , and Ezz are the Young's moduli, G,z is the in-plane shear modulus and 



v ,, is the Poisson's ratio determined from inversion of the averaged compliance given by Eq. 

3.4 1. In reference to the geometrical midplane of the two-layered laminate, the total laminate 

thickness h is determined by evaluating the average warp and fill tow thicknesses h, and h,. 

The average tow thicknesses can be determined by analysis of the least-squares polynomial 

approximations p(x, y) to the perimeter of the tow cross-sections. Given a maximum tow 
h width of a, the mean value of thickness i- in reference to the midplane, is found by 
2 '  

Assuming the polynomials were approximations to points defining the upper and lower 

perimeter about the geometric center of the respective tow (Eq. 3.5), then the thickness 

represents the sum of mean values evaluated by Eq. 3.47. 

3.1.3.4. Numerical Strain Energy Method 

With reference to the numerical strain energy approach adopted for verification of the 

micromechanics solution, a similar numerical analysis can also be employed to verify the 

results obtained from the simplified 2-D mesomechanics model. The 8HS woven fabric 

lamina repeat volume element is simplified to an idealized volume (WE) having planar 

dimensions as suggested by Ishikawa and Chou [2]. Under presumptions similar to those for 

the treatment of thin homogeneous plates, the top and bottom lamina surfaces are lefl free 

of tractions, i.e. a single ply analysis. Lamina elastic constants are evaluated by prescribing 

linearly independent displacements suitable for the requisite state of deformation. As with 

the numerical verification of woven tow properties, a direct frontal or wavefront solver is 

used in the finite element analysis to compute macrostress components obtained from 

averaging forces on IVE faces in the directions of interest. As an example, the macrostress 



component cr,, in the Cartesian coordinate system can be obtained by 

1 
o.Lr = -TF~{~~(-~  8 n h , )  = . r = f i a , x 2  = y , . r 3  - -  - -1 

where F,'"' is the nodal reaction at the nth node on the face normal (at y = ih) and 

summation occurs over all nodes on that face. It is worthwhile to note that use of Eq. 3.48 

in the manner presented is equivalent from a numerical perspective to the use of Eq. 3.18. 

Evolution of the IVE From the RVE is shown in Figure 3.1 1 where the lamina thickness (hJ 

given above is influenced by the exact V, determined from an iterative process. 

In general, the equations for solving static and linear finite element analyses are of 

one of the following Forms [37]: 

where (Kl represents the total stifhess matrix, {u) is the nodal degree of freedom (DOF) 

vector and (F} is decomposed into the applied load vector (Fa} and the nodal reaction load 

vector { Fr}. The total applied load vector is the sum of the applied nodal load vector { Fn) 

and total of all element load vector effects {Fc). Nodal DOF values on every node can be 

obtained if boundary conditions are sufficient to guarantee a unique solution to Eq. 3.49. The 

nodal reaction load, i.e. the 1 F,'"' in Eq. 3.48 is considered for all pertinent DOF's where 

only the loads at imposed DOF are output can be written as 

Displacement boundary conditions are imposed on the lateral faces of the WE in a manner 

that would produce uniform strains in an equivalent homogeneous medium. For instance, a 

uniform strain state in the warp direction (E,  in reference to the model shown in Figure 3.12) 

implies that the following boundary conditions are applicable 



(6, (x, 0, z) - 6, (x, J8a, z) = 0) 

(6, (x, 0, Z) - 6,  (x, J8a, z) = 0) 

(6, (x, 0,z)  - 6, (x, Jga, z) = 0) 

For the remaining planar states of deformation, the non-zero boundary conditions are 

cyy (6, (x, 0. Z) - sy (x, &a, 2) = const.) 

Y %). (6, (x, 0, z) - 6, (x, d8a, 2) = const.) (6, (0, y, Z) - 6,  (J8a, y, z) = const.) 

3.2. Fundamental Stress Distributions 

Woven fabric composites offer the potential of providing increased intra- and interlaminar 

strength and damage tolerance in comparison to traditional composites. Two-dimensional 

orthogonal woven fabric composites, such as those based on the plain and satin harness 

weaves. provide better bi-directional stability and balanced properties than their 

unidirectional (UD) counterparts. They also offer higher packing densities in relation to 

thickness and they exhibit greater resistance to impact loads. However, the in-plane elastic 

properties are usually lower since the interlaced regions exist out-of-plane and these regions 

contribute to the inefficient translation of elastic properties from the fiben to the fabric. 

The process of manufacturing woven prepregs from numerous bundles. containing 

several thousand fibers, involves repeated handling of the fibers. Repeated handling of the 

fibers and bundles may lower the statistical bundle strength and promote potential sites for 

crack nucleation. The interlaced regions often act as concentrations for stress while the 

regions adjacent to the interlacings often act as bridges for the transfer of load depending on 

the loading condition. A periodic network of these interlaced and bridging regions might 

provide a certain path for crack growth or provide a means to blunt it. Usually, this 

periodicity leaves a characteristic damage state (CDS) which is defined by the accumulation 

of damage zones. 



Damage zones made up of intralaminar, interlaminar and translaminar cracking are 

much more complicated to predict and characterize when compared to the more predictable 

failures found in aligned fiber composites. Unlike the behavior of aligned fiber composites, 

woven fabric composite behavior tends to be more three-dimensional in nature. Although 

accurate predictions of strengths and modes of failure are nearly impossible in these 

materials without considering micromechanics and material nonlinearities, a practical 

starting point is the analysis of lamina stress distributions. Since the behavior of woven 

fabric composites tends to be suggested spatially rather than in-plane, it only makes sense 

that lamina stress distributions should be analyzed spatially to evaluate bundle (tow)-matrix 

interactions. 

The amount of three-dimensional work done to evaluate the stress-strain behavior in 

woven fabric composites has been very limited in comparison to 2-D and quasi 3-D studies. 

From the standpoint of finite element analysis, the woven fabric architecture is quite 

cumbersome to model in 3-D. The boundary conditions which accurately represent the 

periodic displacements of a repeat unit cell (RUC) within a stacked laminate are not fully 

understood. Additionally, an infinite number ofperturbations are possible with respect to the 

waviness of tows, lenticular shapes of tow cross-sections and arrangement of laminae within 

a stacked laminate. Until recently, the sheer computing horsepower needed for even the 

simplest of 3-D analyses was not widely available and software was not robust enough to 

handle the more complex modeling tasks involving Boolean operations. Considering the 

number of nodes and elements required for an accurate description of a single lamina, let 

alone a woven laminate which considers any of the possible perturbations, it is no wonder 

that the depth of studies in 3-D stress analysis of woven fabric composites has been limited. 

Woven fabric composites may be viewed as distinctly separate on three geometric 

scales. the microscale (constituent fibers and matrix), mesoscale (woven laminae) and 

macroscale (woven laminate). It is far too complicated to model details of the microscale 

since numerous and discrete heterogeneities are present. At this scale, it makes more sense 

to homogenize behavior and treat the woven tows as transitional, i.e. UD composite 



materials. At the mesoscale, it is much more feasible to include details of the geometry in 

modeling the behavior of woven composites. This type of work on mesoscale modeling of 

behavior in woven composites, particularly the plain weave architecture, has been performed 

largely by Whitcomb el al. [27-291, Blackketter et al. [26], Ishikawa and Chou [2.8-91, Foye 

1381 and Marrey et al. [39]. 

In Refi 27-29, a 2-D finite macroelement was developed which accounted for element 

spatial variation of material properties. Two-dimensional stress analyses of plain weave 

fabric composites were performed using a global-to-local finite element method. The 

macroelement was also extended to the 3-D case which utilized submodeling or 

substructuring (global-to-local) techniques. It was found that surface stress distributions 

differed from internal distributions and failure behavior was influenced by the degree of tow 

waviness. Increases in tow waviness showed little influence on effective properties, but 

affected initial failure in uniaxial tension due to higher transverse normal stress. Stress 

analyses for the 3-D model considered the effects of stacked boundaries, but were resolved 

into 2-D contour plots along single cutting planes only for the case of uniaxial tension. 

A more representative case of the actual plain weave unit cell was modeled, in Ref 

26, using details obtained from photomicrographs. The observed tow aspect ratio was 

included in the model and the correct fiber volume fraction was obtained by iteration. An 

incremental iterative finite element algorithm was employed to analyze tensile and shear 

s tress-strain behavior and estimate the effects of progressive damage by sti f i e s s  reduction. 

Analysk of stress distributions within the plain weave unit cell was not included. Refs 2,8-9 

considered idealized cross-sections in establishing their one-dimensional ( 1 -D) and quasi 2-D 

mosaic, fiber bridging and undulation models. The models were simple and effective for 

predicting thennoelastic properties of plain and satin weave composites, but detailed 

analyses of stress distributions were not possible since internal boundaries were not 

representative. 

A finite element scheme was developed ( Ref 38) using replacement elements to 

model the unit cell with inhomogeneities which predicted overall cell elastic properties 



reasonably well. In Ref 39, the thermoelastic properties of plain and five-hamess satin (5HS) 

woven composites were evaluated by considering the woven unit cells within a continuum 

and as explicit plates of finite thickness. The continuum model considered the unit cells as 

rectangular parallelpiped geometries having periodic boundary conditions to maintain 

continuity of stresses across cell boundaries. The homogeneous plate model was a direct 

analysis which modeled strains and curvatures independently to arrive at therrnoelastic 

properties. 

The objective of this study was to determine the stress distributions in a 3-D 8HS 

woven fabric volume element along multiple cutting planes for the cases of uniaxial tension. 

compression and in-plane shear. These stress distributions within each plane were 

represented by surfaces derived from grids of sparse, irregularly spaced data which was 

smoothed using kriging interpolation. To the author's know ledge, a detailed analysis of 

stress variation through-thickness, by surface interpolation, has not been performed for any 

woven composites. The advantage of such a method is  that stresses, from interaction of the 

interlaced region with the bridging regions, are suggested spatially rather than in-plane. 

3.2.1. Finite Element Model 

The linear elastic, finite element model proposed for this study was introduced in the 

aforementioned section. Initially, the goal was to model the woven cell as it appeared in 

micrographs of laminate cross-sections. The exact shapes ofthe woven tow centerline and 

cross-sec t ion obtained from digitized scanning electron microscopy (SEM) micrographs were 

included in modeling the geometry of the 8HS volume element. These random and irregular 

shapes were later discarded due to failed Boolean operations and mesh discretizations 

lac king continuity. However, the cross-sectional aspect ratio, averaged From several woven 

tows. was retained along with the lamina volume Fraction measured using image analysis. 

Difficulties encountered in establishing the correct matrix volume fraction were similar to 

the problems reported by others in the literature [26,29]. Details of the model geometry. 



material properties and boundary conditions assumed for the analysis of a single lamina 

subjected to fundamental loading conditions are discussed below. 

3.2.1.1. Geometry and Materials 

Due to erron in meshing the real shapes of the woven tows and centerlines, an idealized 

volume element (WE) was employed. The basic 8HS woven IVE is shown in Figure 3.13(a) 

with the matrix removed for clarity. The IVE from a RUC consists of three warp tows 

running in the x-direction and three fill tows running in the y-direction. The center warp tow 

interlaces the center fill tow by running over the top of it and under the adjacent fill tows. 

Similarly, the center fill tow runs over the tops of the adjacent warp tows. All of the pockets 

bounded by neighboring tows are filled with matrix material. The hexagonal boundary of the 

IVE was reduced to a square boundary [2,8-91 to simplify the imposed boundary conditions. 

The major area of the IVE is given by JBu where a is the average width of a woven 

tow. In this work, the average width was 1393.6 pm (54.9 mils) with an average lenticular 

aspect ratio of 8.3: 1. The overall lamina thickness k depends on the volume fraction of 

matrix within the lamina. For a certain volume fraction, the heights of the lateral faces are 

adjusted incrementally until the difference between the W E  volume and tow volumes 

converges on the matrix volume fraction. A matrix volume fraction of 0.36, as an example, 

required it to be 341 pm (13.4 mils). The IVE was meshed with ten-node tetrahedral 

elements which have three degrees of freedom and exhibit quadratic displacement behavior. 

The mesh shown in Figure 3.13(a) was limited to 4757 elements and 9474 nodes. The 

material properties were arbitrarily selected from the composite systems studied and 

compared in Section 3.1. Although that work was generally based on woven graphite fibers 

embedded in a PMRl5 matrix, the range for reported constituent properties was found to be 

quite large. It was decided that the constituent material properties having the lowest values 

would be used, those of composite system A-a. They are 

Fibers - C3000: 

E, ,  = 234.5 GPa (34.0 Msi) EZ2 = 13.8 GPa (2.0 Msi) E,, = 1 3.8 GPa (2.0 Msi) 



G,,  = 11.4 GPa (1.7 Msi) 

v,, = 0.20 

12.futri.u - PMR I S :  

E, , = 3.3 GPa (0.18 Msi) 

Tows - UD C3000 - PMRI 5: 

E, , = 169.8 GPa (24.6 Msi) 

G,? = 4.6 GPa (0.67 Msi) 

V I 2  = 0.24 

G,, = 4.8 GPa (0.7 Msi) 

v,, = 0.25 

GI2 = 1 .Z GPa (0.1 7 Msi) 

E2? = 9.2 GPa (1.3 Msi) 

GI, = 3.1 GPa (0.45 Msi) 

v,, = 0.37 

G, = 4.8 GPa (0.7 Msi) 

v2, = 0.25 

E,, = 9.2 GPa ( 1.3 Msi) 

G2, = 3.1 GPa (0.45 Msi) 

v2, = 0.37 

3.2.1.2. Boundary Conditions 

The coordinate system adopted for the application of prescribed boundary conditions is 

shown in Figure 3.13(b). It was assumed that this model is not part of a continuum in the z- 

direction, but a single lamina having a finite thickness. The top and bottom lamina surfaces 

parallel to the x-y plane are free of tractions and opposing lateral faces are still assumed to 

be bounded by neighboring volume elements, therefore imposed constraints on these faces 

needed to be periodic. Referring to Figure 3.13(b), the constraints imposed for nominal 

tensile loading along the y-direction parallel to the fill tows are 

where the variable k refers to a constant which is an unknown displacement due to Poisson 

contraction. For nominal compressive loading along the y-direction, the imposed constraints 

were identical to those given by Eq. 3.51, except the sign is reversed on the applied 



displacement 6. 

The constraints imposed for in-plane shear loading assumed that the sheared faces 

remained straight after deformation and the nodes on opposing faces normal to the direction 

of shear displaced by identical amounts. These constraints are 

3.2.2. Stress Modeling 

The main focus of this work was to determine stress distributions through the thickness of 

an 8HS W E  in terms ofthe imposed constraints described in the previous section. Evaluation 

of the stress distributions along multiple planes served to explain the interactions between 

the interlaced region and the adjacent bridging regions. Although cumbersome, the most 

straightforward method to extract stress surfaces from the solution of a finite element model 

is by using a number of sweeping lines. The sweeping lines are particular lines in which the 

stresses of interest are known or can be extrapolated from nearby nodes. Ry moving the 

line(s) through the model thickness, a cutting plane can be generated. Whether the plane 

becomes a regularly spaced or irregularly spaced grid depends on the number of stress values 

extrapolated along a line and the number of increments through the thickness. If they are 

equal, the grid is regularly spaced. Herein, the number of tetrahedral finite elements that 

spanned the volume permitted a total of forty-nine extrapolated stress values along a sweep 

line. The line was incremented in the z-direction ten times, resulting in an irregularly spaced 

grid made up of 390 points per cutting plane. The details of the orientations of cutting planes 

(CP I -CP3), with respect to the warp and fill tows, are illustrated in Figure 3.14. Changes in 



cross-sectional tow geometries are also delineated as the CP transitions from 1 to 3. 

Symmetry was exploited and the CP's only needed to span half-way across the volume and 

lie within a quarter-quadrant. 

3.2.2.1. Kriging Interpolation 

Computational constraints can place limits on the number of stress values extracted from the 

finite element solution. The disadvantage in producing a stress surface from a sparse data set 

is that information may be lost or misrepresented. One method which can be employed to 

statistically "fill" the sparse data set is kriging interpolation [40-411. This method of 

interpolation predicts unknown values from data observed at known locations. The basic 

premise of the kriging algorithm is to estimate a certain unknown point with the weighted 

sum of known points in terms of minimizing the error in spatial distribution ofthe predicted 

values. Consider a set of N known points P where each point Pi is expressed in terms of its 

coordinates (x,, y,) and a stress (2,). The unknown point Qij may be estimated by calculating 

the weighted sum oFP 

where w, is the weighting given to the nt%own point. Individual weightings can be 

assigned to all unknown points which constitute the target surface of points N. The key of 

the algorithm involves the appropriate selection of weights for each estimation based on error 

variance. Rather than using covariance to calculate each weight set or vector wii, a variogam 

V is constructed 



where the elements Dij are the distances fiom known points Pi to known points P,. The 

weight vector w, can then be calculated by w, = $v-I where d,, are the distances fiom the 

unknown points to each known point. Once the weights are known, the unknown points can 

be calculated in terms of the known points. 

3.2.2.2. Punctual Kriging 

The specific form of kriging interpolation used to the generate stress surfaces from the sparse 

data sets is punctual kriging. Also referred to as ordinary kriging, it is the simplest variety 

of kriging. With punctual kriging, the estimation and error of estimation depend on the 

chosen weights. The optimal weights which produce unbiased estimates and have the 

smallest variance are obtained by solving a set of simultaneous equations. Consider three 

known stress values P,, P, and P, used to estimate the nth unknown stress value Q. Three 

weights w,, w, and w, are required to make an estimate of the unknown stress value. The 

punctual kriging algorithm begins with the three simultaneous equations 

where ?(aij) represents the semivariance between points i and j having the distance of a 

between them. The values of the semivariances are taken from either a known or estimated 

semivariogram and an unbiased solution is ensured with a fourth equation. This forth 

equation is given by 

To assure that the minimum possible error in estimation is obtained, a Lagrange multiplier 

is introduced. The complete set of equations can be represented in matrix form according 

to the following 



Once the weights [w] are known, the estimation (Q) and variance (s') of the estimation can 

be made from 

The variance of estimation represents the real scatter of all estimates about the true value. 

The bigzest advantage with punctual kriging as well as other kriging varieties is that 

estimations have minimum error associated with them and the error is always quantified. A 

more detailed explanation discussing the salient issues of the punctual kriging method and 

other kriging methods can be found in Re/s 40-4 1. 

3.3. Results and Discussion 

Prediction of E l d c  Constants - The ranges of constituent properties for the graphite or 

carbon fibers and poiyimide matrices considered in this investigation are presented in Table 

3.1. With reference to this table, all subsequent results presented are in terms of a particular 

composite system. As an example, system F-ctt"refers to a composite possessing the upper 

limit of reported values for T650-35 (3k) fiber properties combined with the upper values for 

PMRl5  matrix properties. The ~ - b ' ' ~  and F-c systems are used here extensively for 

comparison as they are more representative of an average of constituent properties for the 

composite materials tested in the experimental program. It is seen fiom Table 3.1 that the 

reported range for fiber-based properties varies significantly, particuiarly in the transverse 

directions. Graphite and carbon-based fibers exhibit highly anisotropic behavior so this is not 



entirely unexpected, particularly considering the difficulty in obtaining or estimating these 

values. 

On the basis of CCA theory, Table 3.2 presents the results for several composite 

systems having various combinations of constituent properties. Upper and lower bounds for 

the transverse tensile and shear elastic properties are shown in accordance with the bounded 

CCA prediction. The {H) represents an upper bound where the transverse shear modulus of 

the fiber is much greater than the matrix shear modulus, while the lower bound { L )  

represents the opposite. As expected, the greatest difference between the upper and lower 

bounds occurs with the greatest range between fiber transverse and matrix shear moduli 

exhibited by system B-b. The F-c'" system appears to maintain the best balance of 

longitudinal and transverse properties. Clearly, Table 3.2 also shows that intralaminar and 

transverse shear behaviors are influenced more by the elastic properties of the matrix than 

of the fibers. CCA theory provides a simple closed-form expression for the equivalent 

composite shear modulus in terms of the matrix shear modulus and rule-of-mixtures ratio. 

Therefore, a nominal increase of 12% in fiber shear properties results in a 5% increase of 

equivalent shear properties while the same increase in matrix shear properties adds an 

additional 5 or 6%. 

Linear elastic finite element results for the micromechanics analysis of woven tow 

properties from the example composite system ~-b"", as a function of V ,  are provided in 

Figures 3.15-3.19. For the periodic geometry of a quarter-symmetry square array RVE, fiber 

diameter was held constant at 7.37 pm (0.29 mils) and requisite volume Fractions of 

surrounding matrix were achieved by numerical iteration. The apparent elastic moduli were 

determined using two approaches: I )  averaged stress - applied strain (dividing the equivalent 

force from summed nodal reactions by the normal area), and 2) strain energy principles 

(equating the external work to internal strain energy). Comparisons of the present results 

were made with the analytical micromechanics solutions of Hashin and Rosen (CCA) [30- 

321. Halpin-Tsai [42] and Chamis [43]. For the longitudinal tensile modulus El ,, agreement 

between the numerical and closed-form solutions is excellent as shown in Figure 3.15. 



Although the practical range of V,approximately varies from 0.3 to a theoretical maximum 

of 0.8, the entire range from absolute matrix to absolute fiber is shown for the purpose of 

comparison. It is evident from Figure 3.16 that the numerical solution for the transverse 

tensile modulus E,, -- tends to converge on the lower CCA bound near a Vi of 0.45 and the 

upper CCA bound near 0.65. Beyond this, the current model predicts slightly larger values 

for E,, compared with the closed-form solutions. Within the usehl range, the numerical 

solution for the intralaminar shear modulus G,, predicts values near the model presented by 

Chamis for highly anisotropic materials such as carbon-based fibers. As seen from Figure 

3.1 7. the FE model suggests an average approximation that falls within the bounds provided 

by the analytical micromechanics solutions as the V,approaches 0.65. At a V, between 0.7 

and 0.8. the FE model suggests an upper bound approximation to the shear modulus. 

The results for the longitudinal Poisson's ratio v,? and transverse Poisson's ratio v?, 

are presented in Figures 3.18 and 3.19. The analytical approaches essentially predict a linear 

reduction in v,? with increasing V ,  the exception being a minor inflection in the CCA 

solution near 0.4. The FE model transitions from an underestimate to an overestimate in the 

range of 0.4 to 0.5. The reasons for such a trend are twofold: first of all, a somewhat linear 

declination in the longitudinal Poisson's ratio with increasing V, is expected due to a 

reduction in the amount of transverse straining possible from contraction. This depends not 

only on the degree of anisotropy of the fiber, but also on the fiber volume fraction, 

constituent Poisson's ratios and constituent plain strain bulk moduli. Here, the difference in 

magnitudes of relative transverse straining occurring in the fiber and matrix for a given 

applied longitudinal strain govern the slope of the line over the range of V, considered. 

Secondly, the transition in v12 between 0.4 and 0.6 as seen in Figure 3.18 seems to be highly 

dependent on the FE discretization procedure. The quarter-symmetry EWE, constructed for 

the longitudinal and transverse tensile load cases, used 159 ten-node isoparametric 

tetrahedral elements (354 nodes) while the full RVE, constructed for the longitudinal and 

transverse shear loading cases, used 1049 ten-node isoparametric tetrahedral elements ( 1 768 

nodes). Further mesh refinement, particularly in the thickness direction, tended to result in 



both Poisson's ratios converging on the solution predicted by the theories. For v,,, the 

trending line became more linear and any inflection was less evident. Changes in the solution 

for v2, shown in Figure 3.19 subsequent to further through-thickness mesh refinement were 

similar. Under the auspices for calculating the transverse Poisson's ratio according to the 

relationship v,, = (E2t/2G,,)-1, the trend in behavior with increasing V, appears to be a 

consequence of the larger or smaller difference in increasing transverse tensile stiffness of 

the equivalent composite relative to transverse shear about the fiber axis. Given this, the 

magnitude of c hange in stiffness behavior in transverse tension and shear seems equivalent 

within the ranges of 0 to 0.4 V, and 0.6 to 0.8 V, 

Based on the same requisite volume fractions as considered in the tow analysis, Table 

3.3 compares the non-zero extension, extending-bending coupling and bending compliance 

solutions for 8HS woven laminae having the same T650-35 fiber properties, but different 

polyimide matrix properties. These values are compared with a baseline solution for a lamina 

having no undulations, essentially a UD cross-ply. If differences in non-zero terms are 

compared for each lamina, it is clearly suggested that variation in properties of the matrix 

influence the diagonal (66) and off-diagonal { 12) terms to a greater extent. Upon closer 

scrutiny, it is found that these terms diminish by some 20-30% when matrix elastic properties 

are augmented by approximately 40%, implying enhanced stifkesses. The present model 

also suggests an inverse behavior when comparisons are made between both lamina 

architectures. That is, a significant increase occurs in diagonal extension and bending { 1 1 ] 

terms when local off-axis undulation angles ranging from 1042.3" (using quick-sort and 

Shell's methods) are considered as observed for the 8HS architectures in this investigation. 

Contrarily, the extension-bending coupling terms reduce to 18% oftheir baseline value while 

very little finite change is evident for the diagonal (66)  terms. Variations in extension and 

extension-bending coupling compliances with local angle of undulation are shown in Figures 

3.20 and 3.21. The ranges indicated are for a woven lamina with a system of type ~-b"" 

having a measured tow V, of 0.72. Two important indices are evident from these range 

charts: 1 ) constituent elastic properties, and 2) angle of undulation. It appears that the present 



model would predict maximum extension {AI I,L2} terms and minimum extension-bending 

coupling { B , ) terms near an undulation angle of 16" .This seems reasonable for the case 

of a plain weave architecture (ni = 2) depending on the size of the gap between adjacent tows. 

The macroscale laminate solutions for several of the composite systems are provided 

in Table 3.4 on the basis of results from the mesoscale predictions carried over from CCA 

(see Table 3 2). The composite laminate elastic properties are based on a 16-layer laminate 

having a total thickness of 5.00 mm (0.20 in), representative of the composite plaques tested 

in tension, off-axis tension and shear. In comparing the macroscale results with the range of 

apparent elastic properties determined experimentally (c.f. Section 4) and given in Table 3.5, 

it can be seen that the model tends towards underestimating the mean of Ell and E2? by 7.5% 

and v,, by l I%,  while overestimating the mean of GI? by 21% for the F-c"" system. 

Additionally, the gap would increase by 15% for E,, and ELL of the ~-b'" '  system, but Glr 

would be underestimated by 7%. This suggests that either the actual matrix properties lie in 

between the and c constituent system properties or the simplified model predicts average 

diagonal [A,,]" terms greater than what is to be expected. However, considering the range in 

measured apparent composite elastic properties, the model seems to provide reasonable 

bounded approximations. 

Structure-performance maps for evaluating the composite off-axis elastic behavior, 

in terns of constituent system properties, are shown in Figures 3.22-3.24. In total, the off- 

axis performance of six systems was determined, five in the type A, B, C, F systems and the 

composites From the experimental program. Relationships behveen the longitudinal and 

transverse tensile moduli, intralarninar shear modulus and longitudinal Poisson's ratio were 

established over off-axis angles (P) ranging from 0" to 45" according to the familiar 

transformation expressions. For the range of angles considered, agreement between the 

various systems and the experiments seems to be quite good. Presumably, the remaining 

angles in the second-half ofthe quadrant should result in identical cuntes since reinforcement 

is mutually orthogonal. In this work, it was initially assumed that this was the case and 

subsequently verified through experimentation. In instances where curves did not match 



would tend to indicate the extent of unbalanced properties, i.e. more orthotropic than quasi- 

isotropic (0190 " vs. warp-aligned). The usefulness of the structure-performance maps lies in 

the ability to tailor the architecture and constituent properties to suit a desired off-axis elastic 

behavior with some degree of certainty. From these maps, knowledge of the complete range 

of in-plane elastic response is only a matter of measuring a particular elastic constant for a 

given system once the relationships are firmly established. 

The relevant metrics presented in Table 3.6 for the 8HS woven composite 

architectures considered were determined by image analysis of SEM micrographs and C- 

SCAN data. This information was passed into the simplified mesoscale model as well as the 

woven tow and lamina FE models. From this table, an average fiber diameter of 7.37 pm 

(0.29 mils) was used in the micromechanics FE models as previously described. These 

solutions to the woven tow elastic properties were passed into the mesomechanics IVE 

model having a major tow width of 1393.60 pm (54.87 mils). The resulting tow aspect ratio 

of 8.3: 1 and corresponding volume hction of matrix were correctly established by 

numerical iteration. Analytical and numerical elastic analyses of the ~-b'"' and F-c"" 

composite systems evaluated at the equivalent tow and laminate V, were compared to the 

experimentally obtained properties. The results from these comparisons are presented in 

Table 3.7. 

The composite elastic properties obtained from the present analytical approach are 

in agreement with the composite elastic properties obtained from the finite element analyses 

for both systems and fiber volume fractions under consideration. Additionally, when 

compared with the apparent elastic properties presented in Table 3.5, the results in Table 3.7 

tend to reiterate the notion that the actual range of constituent properties for the composite 

materials tested lies somewhere in between those assumed for ~ - b ' ~  and F-c'"'. It is also 

suggested that assuming the tow V, in the simplified, two-layer lamina model serves as a 

much better lower bound approximation to experimentally determined elastic properties than 

assuming the laminate V, when considering the ~ - b ( ' ~  system. Mostly, the predicted and 

experimental elastic properties tend to converge on the F - C ' ~  system with the exception of 



the intralaminar shear modulus, which is slightly overestimated. 

Stress Distributions - Two issues will be addressed below. First, the stress distributions in 

the 8HS woven IVE will be presented for the three fundamental loading conditions and 

cutting planes. The variants in stress surfaces will be discussed in the manner of possible 

interactions between the interlaced and bridging regions. Second, potential failure modes will 

be discussed by comparing the normalized stress magnitudes to the assumed strengths of the 

constituent materials. 

For determining the variants in stress distributions within each CP, the 10 x 49 

irregularly spaced grids were constructed from the assembly of sweep lines, each of which 

represented 10 points of stress extrapolated from nearby nodes. An example of these points 

for the uniaxial tensile stress state within CPI, due to applied tension, is shown in Figure 

3.25. Each irregularly spaced grid was correlated to a much finer, regularly spaced grid of 

50 x 50 using a neighborhood search radius of 2 and a smoothing factor of 0.5. Stresses 

under consideration were uniaxial tensile, compressive. in-plane shear and transverse normal 

stresses. The values extrapolated to a sweep line at a given z-increment were normalized to 

the average applied stress calculated from summed nodal reactions ( F , ~  and given by the 

following: 

d,. = 

where a is the average tow width, h is the average lamina thickness and the superscript {nJ 

refers to individual nodes. 

Table 3.8 lists the minimum and maximum normalized stresses From each CP in 

terms of the loading condition. It can be seen that both applied tensile and compressive loads 

result in the highest normalized uniaxial tensile and compressive stresses (a,) within CP3. 

Furthermore, the greatest transverse normal stress (03 range occurs within CP2. In shear, it 

appears that the magnitudes of concentrated, in-plane shear stress (0,) are similarly 



distributed between all three cutting planes. Shear loading also exhibits the greatest 

normalized range oftransvenc tension within CP2 compared to the other cutting planes that 

are subjected to either tension or compression. This tends to support the results described in 

other work (c.f. Section 4) where the author reports transverse tension as responsible for the 

out-of-plane deformation (bulging) observed in losipescu shear and off-axis tensile 

specimens. 

The uniaxial tensile and transverse normal stress distributions resulting from an 

applied tensile load are presented in Figures 3.26-3.28 for CP1-3, respectively. Using the 

cross-section of CPl From Figure 3.14 as a guide, it can be seen in Figure 3.26(a) that the 

maximum and minimum tensile stress peaks lie between 0.50 ( l/d2*a) and 0.75 (3 J2/4*a). 

Also. these peaks are nearly anti-symmetric with respect to the fill tow centerline. An 

analysis of local displacements and moment summations performed in this study suggests 

that straightening of the fill tow is constrained at its boundary with the interlaced region by 

mutually orthogonal warp tows on either side. The coupling between extension and bending 

tends towards bending which appears to place the fill tow in tension and the sections above 

and below (bounded by the warp tows) in compression. 

In Figure 3 .X(b), the transverse normal stress peaks at I 3% of the applied stress and 

is essentially constant across the cutting plane at the location within the tows where the off- 

axis angle is a ma..imum at 0.707 (ZdZ3.a). Here, relative local displacements indicate that 

fill  tow straightening pushes the interlaced warp tow out-of-plane (+z), but the warp tow is 

being constrained by adjacent, straight warp tows. The straight warp tows counteract this 

(+z) movement leading to the adjacent, straight fill tows being pushed slightly in the (-z) 

direction. In comparison to the plain weave analysis [c.E 291 , it seems that the presence of 

normal stresses due to tension are lessened by the bridging regions, smaller angle of 

undulation and absence of a neighboring ply constraint. 

Figures 3.27(a) and 3.27(b) show the uniaxial tensile and transverse normal stress 

distributions from an applied tensile load for CP2. The predicted tensile stress exceeds the 

applied stress in two regions, between y = 0 to 0.25 and y = 0.6 to 0.75 where the maximum 



off-axis angle of warp tow undulation occurs at x = +(d2/3*a). The depths at which both 

peaks occur (between 0 to -0.2) are coincident with both the outer edge of the straight, 

transverse warp tow and boundary between the straight and interlaced, transverse warp tows. 

This indicates that the gradual reduction in the aspect ratio of the tow cross-section to an 

acute angle results in magnification of the tensile stress. The effect of coupling on the 

transverse normal stress within the interlaced warp tow is greater than in CPI, although it 

can still be considered negligible at a maximum in compression of 8%. The difference 

between the tensile and compressive peaks is a result of the difference in relative out-of- 

plane movement of the undulated warp tow as compared to the straight warp tow. 

Figures 3.28(a) and 3.28(b) show the uniaxial tensile and transverse normal stress 

distributions from an applied tensile load for CP3. As within CP2, the stress peaks are 

similarly located and coincident with the outer edge and inner boundary of the transverse 

warp tows. However, the stress concentration at x = +(21/2/3*a) is magnified by a factor of 

four compared to the stress concentration at x = +(d2/3*a) since the greatest tensile stress is 

realized within the bridging region. Figure 6(b) shows that there is some compressive 

transverse stress on the bottom ofthe center warp tow near the boundary of the interlaced fill 

tow as a result of fill  tow stretching and movement of the warp tow. 

The uniaxial compressive and transverse normal stress distributions resulting from 

an applied compressive load are presented in Figures 3.29-3.3 1 for CPI-3, respectively. The 

greatest distinction between the stress distributions for applied tension and applied 

compression is the resulting state of stress. That is, the magnitudes of the stresses are exactly 

the same for each cutting plane, but the signs of the stresses are opposite. If the behavior of 

the tows within the planes is exactly opposite in uniaxial compression in comparison to 

uniaial tension, then the reasoning should be opposite also. For example, consider the 

uniaxial compressive and transverse normal stress distributions for CPI as presented in 

Figures 3.29(a) and 3.29(b), respectively. In compression, the center fill tow is prone to 

bending and possibly kinking. The coupling places the fill tow in compression and the 

sections above and below (bounded by the warp tows) in tension. The transverse normal 



stress distribution is exactly opposite in this case because the center fill tow itself moves out- 

of-plane (-z) which also pushes the bridging tows slightly out-of-plane. For CP2 [Figures 

3 N ( a )  and 3.30(b)] and CP3 [Figures 3.3 1 (a) and 3.3 1 (b)], the magnification effects of the 

transverse warp tow edges are similar to the case of applied tension. 

Figures 3.32-3.34 show the in-plane shear stress and transverse normal stress 

distributions for CP 1-3 as a result of an applied, in-plane shear load. Clearly, the magnitudes 

of the peak in-plane shear stresses are similar for all three cutting planes. Also, the transverse 

normal stress concentration is much greater within CP2 than for any plane under the uniaxial 

loading conditions. It can be seen in Figure 3.32(a) that the maximum shear stress in CPI is 

2.3 times greater than the applied stress and occurs in the region of y = (X 'M *a), where the 

center warp tow bounds the center fill tow on the concave side of undulation. The shear 

stress gradually increases from the point where the tow path transitions off-axis and reaches 

a maximum with attainment of the maximum. local off-axis angle of undulation. In Figure 

3.32(b). transverse tension within CPI appears constant at 3% except for the upper surface 

and mid-plane at y = 0 where it decreases. 

In Figure 3.33(a), the maximum shear stress concentration in the undulated warp tow 

is 2.4 times greater than the applied stress where the off-axis angle of undulation is a 

maximum. The peak tends to follow the path where the edge of the undulated section of the 

fill  tow interlaces with the center warp tow. The maximum normal stress within CP2, as seen 

in Figure 3.33(b) is 65% of the applied stress with nearly a 100% range. For CP3, Figure 

3.33(a) shows the maximum to be 1.8 times greater and increasing as the center section of 

the undulated warp tow is reached. In comparison to CP2, the normal stress range is the next 

largest at 33% as shown in Figure 3.34(b). The summed moments and relative, local 

displacements suggest that coupling between shear and bending is greater within the bridging 

region. i.e. CP3. Shearing ofthe transverse warp tows is constrained by the undulated till tow 

and shearing of the longitudinal fill tows is constrained by the undulated warp tow. This 

"locking" causes a rotation about the z-axis which pushes the center warp tow out-of-plane 

(+z) within the region of CPZ at y = (2J2/3*a). 



Failure Curtsiderations - The results for the stress distributions in the 8HS woven fabric 

composite, given in the previous section, cannot be used with absolute certainty to predict 

failure initiation. There are several reasons for this: first of all, matrix plasticity was not 

considered in this analysis. It is not clear to what degree plastic flow occurs in the resin rich 

pockets even though neat PMR-type resins typically exhibit elastic-brittle behavior in tension 

and shear. Secondly, the lenticularly shaped tows were assumed to have edges with acute 

angles. Clearly, there must be significant stress magnifications from the presence of sharp 

comers. However, it is believed that trends in distributions should be similar, but the 

magnitudes of the peaks might change, particularly for applied tension and compression 

within CP2-3. Lastly, structural nonlinearities (e.g. tow rotation and friction) were not 

considered in this analysis. Ideally, the interlaced tows should be allowed to slide over each 

other upon failure of the boundaries and resin pockets. For the case of in-plane shear, this 

would result in stress redistribution and residual stiffness. 

From the computational viewpoint, including both structural and material 

nonlinearities in the analysis of an IVE having adequate mesh density becomes too memory 

and storage intensive. Also, modeling of woven tow edges having radii presents two 

additional problems. A much finer mesh is required near the edges to maintain the radii and 

Boolean modeling operations usually fail when intersections of comers are not distinctly 

sharp. If the limitations of the model presented here are accepted, a course approximation of 

failure initiation for each of the loading conditions could be given. 

Based on work by the author (c.f. Section 4), the tows can be treated as LID 

composite materials having the following normal and shear failure stresses: X,,"" = I 900 

MPa ( 130.1 ksi), X22t0w = X,,'OW = +40/-180 MPa (+5.8/-26.1 ksi), XI,'"* = 60 MPa (8.7 ksi) 

and X, = 75 MPa ( 10.9 ksi). For simplicity, it is assumed that the interphase failure 

stress is the same as the matrix and the matrix fails in tension under shear loading conditions. 

If the normalized stress distributions presented in the previous section are compared with the 

normalized failure stresses, then failure initiation can be approximated. For the cases of 

tensile and compressive loading, the applied stress is 29.0 MPa (4.2 ksi) relative to a 



prescribed displacement 6 of 5.0 pm (0.2 mils). For the case of in-plane shear loading, the 

applied stress is 2.7 MPa (0.4 ksi) at a prescribed displacement of 5 .O pm (0.2 mils). Based 

on the assumed failure stresses, an applied tensile load in the fill direction should cause the 

undulated warp tow to fail in transverse tension near x = +(2dU3)*a. In this region, both the 

in-plane (0,) and normal transverse stresses exceed XZ1J3 of the warp tow. For compression, 

only the normal transverse stress exceeds X,, of the warp tow. 

For the applied shear stress of 2.7 MPa (0.4 ksi), the shear failure stress X,:" is not 

exceeded in any one of the regions. However, in-plane shear { 12 } and normal (33 ) tensile 

failures may still be extrapolated at higher applied stresses since the model is linear elastic. 

For an applied shear stress 0125.0 MPa (3.6 ksi), the undulated warp tow fails in shear at its 

edge y = (3/2/3*a) from x = 0 to +(J2+a). Normal tensile stress ( 3 3 )  in this region is 41% 

of the tow failure stress. Possibly, tensile matrix failure at the tow boundaries occurs prior 

to failure of the transverse warp tow in shear. If this is the case, then the undulated warp tow 

would be forced further out-of-plane increasing the normal tensile stress. Normal tensile 

failure could initiate due to an applied shear stress not much greater than what is required for 

in-plane shear failure. From experiments, this has been observed on several occasions for the 

SHS woven fabric composites tested off-axis and in shear. It is also worth noting that the 

onset of intralaminar damage (discussed in the subsequent section) of these composites, 

using the Iosipescu shear test, was found to be approximately 25.0-35.0 MPa (3.6-5.1 ksi). 



Table 3.1. Reported constituent elastic properties for various graphite and 
carbon-based, anisotropic fibers and polyimide-type matrices. 

- - - - - - - - - -- - 

S~stem Ref Fibers El l  GPa EZ2GPa G12GPa G,GPa v,, v, 
(Msi) (Msi) (Msi) (Msi) 

A 20 C3000 234.5 13.8 11.4 4.8 2 0  2 5  
(34.0) (2.0) t 1.7) (0.7) 

System Ref Matrixb E,,GPa GI, GPa 
(Msi) (Msi) 

a 20 PMRl5 3.3 1.2 
(0.48) (0.17) 

'~onstituent property maxima. 
T o w  density. 
hlsotropic. 
'NASA LeRC and Amoco Corp. 
"ASM Engineered Materials Handbook, Vol. I : Composites. 
"'DuPont-AMS. 









Table 3 .S.  Apparent elastic properties obtained by off-axis tensile and biaxial 
Iosipescu shear experiments (c. f. Section 4). 

Apparent Elastic Properties 
Experimental Test 

E,,  GPa E,, GPa G,,  GPa 9 1  

(Msi) (Msi) (Msi) 

On-Axis / Off-Axis Tension 76.9 rt: 6.2 76.9 f: 6.2 6.0 0.5 .08 * -03 
( 1  1.1 * 9 ( I  1 .  9 (.9 * .O7) 

Biaxial Iosipescu Shear 6.5 St 1 .O 
(-9 -15) 

Table 3.6. Metrics for the fiber, tow. lamina and composite plaque obtained 
from SEM micrographs and C-SCAN data. 

Metric Fiber pm Tow pm Lamina pm Plaque mm 
(mils) (mils) (mils) (in) 

Diameter 7.37 ---- ---- ---- 
(0.29) 

Major Width ---- 1393.60 4 180.80 304.80 
(53.87) ( 164.60) ( 1 2..00) 

Major ---- 167.70 30 1.25-392-00 3.92-5 S O  
Thickness (6.60) ( 1 1.86- 15.43) (0.15-0.22) 



Table 3.7. SMM and FE results for elastic properties of the ~ - b ( ~ '  and F - C ' ~ )  

evaluated at tow and laminate fiber volume fractions. 

vr System Model E,, GPa E&Pa G, ,  GPa "12 

(Msi) (Msi) (Msi) 

0.72 ~-b'ti) SMM 62.70 62.70 5.70 0.06 
(9.09) (9.09) (0.83) 

F-&') SMM 7 1 .OO 7 1 .OO 7.40 0.07 
( 10.30) ( 10.30) ( 1.07) 

0.62 ~-b(ti) SMM 50.60 50.60 4.30 0.06 
(7.34) (7.34) (0.62) 

F&) SMM 58.50 5 8 S O  5.70 0.06 
(8.48) (8.48) (0.83) 

No tc: SM hl refers to the present analytical simplified mechanics model. 
FE refers to the equivalent force and strain energy finite element models. 



Table 3.8. Maximum and minimum normalized stresses extrapolated to 
irregularly spaced grids within cutting planes. 

Load Case 

Tension 

Compression 

In-plane Shear 

Stress Normalized CP Samples Min Max Range 

Note: The mncrostresses e, are evaluated by summation o f  nodal reaction forces from prescribed 

displaccments on lateral faces. Prescribed dispIacements are arbitrarily set at 5.0 pm (0.20 mils). 



(PIXELS) 

Figure 3.1. Evaluation of the tow cross-section geometry from a SEM 
micrograph of the 8HS woven composite plaque. 



(PIXELS) 

F i p e  3.2. (a) Tow cross-section with thresholding applied to determine the 
perimeter, and (b) binary representation of the tow calibrated to 
the centroid for digitization. 
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(PIXELS) 

250 

Figure 3.3. (a) Evaluation o f  the woven tow undulation from a SEM micrograph 
of the 8HS woven composite plaque, and (b) binary representation 
of the undulation calibrated to the mutually orthogonal tow centroid 
for digitization. 



Figure 3.4. Rendition of the upper surfaces of the 8HS representative element 
derived from cubic spline interpolation and mth-order polynomial 
approximations. 
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Figure 3.6. % symmetry 3-D FE model assumed for the analysis 
of tow longitudinal elastic properties. 
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Figure 3.7. 3-D FE model assumed for the analysis of tow longitudinal 
and transverse shear elastic properties. 
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X I  (FIBER DIRECTION) 

Figure 3.10. Definition o f  the off-axis angle o f  undulation for evaluation o f  
average transformed reduced compliance relative to the principal 
material coordinates. 
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Figure 3.1 1 .  Evolution o f  the idealized volume element (IVE) FE model from the 
representative volume element (RVE). 



8HS WOVEN IVE 

Figure 3.12. 3-D FE model assumed for the analysis of 8HS woven fabric 
composite elastic properties. 



Figure 3.13. (a) Finite element discretization of  8HS woven IVE into 4757 
elements and 9474 nodes using 10-node tetrahedral elements, 
and (b) coordinate system used to identify imposed boundary 
constraints. 



CPZ 

Figure 3.14. Orientation of CP 1-3 within the volume element and transition 
of cross-sectional tow geometries from CP 1-3. 
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Figure 3.33(a). In-plane shear stress distribution within CPZ under applied in-plme shear. 









4 

MACROSCALE ELASTIC AND INELASTIC BEHAVIOR 

In many aerospace and conventional engineering applications, load bearing composite 

structures and components are designed with the intent ofbeing subjected to uniaxial stresses 

that are predominantly tensile or compressive. In this way, the principal reinforcing direction 

of the fibers may be aligned during the manufacturing process, i.e. tailored to offer greater 

stiffness and potentially minimize strength knockdown in the direction ofinterest. However. 

throughout the in-service life of the structure or component it is likely that biavial and 

possibly triaxial states of stress will exist. Ifof sufficient magnitudes exceeding some critical 

stress, these multiaxial states may induce damage which greatly reduces the loading carrymg 

capabilities of the structure and may potentially lead to catastrophic failure. It is here where 

the tradeoffs are made when tailoring the performance of composite structures to suit a 

particular expectation. The existing paradigm suggests that LID tape materials are superior 

under uniaxial conditions since the vast majority of the fiben lie in-plane and can be aligned 

to the loading axis. This may be true, but not without detriment to impact performance, 

interlaminar strength, strain-to-failure and complexity of part geometries. 

4.1. Shear and Biaxial Properties 

In circumstances where sufficiently high in-plane orthogonal stiffnesses are required along 

with higher strain-to-failure and impact resistance, composites based on woven fabrics such 

as the SHS architecture become an attractive choice. This is particularly true if the end use 

is a component having a greater level of' geometric detail. As suggested in Section 1 .O, the 

behavior of components having geometric detail at the scale of roughly 10" m (1 0' mils) may 

be synonymous with behavior of the woven composite structures themselves. Therefore, it 



is extremely important to be able to accurately determine the elastic and strength properties 

while at the same time characterizing the principal types of failure that occur within the 

various locations of stress space. The majority of experimental testing standards developed 

for evaluating these properties and characteristics were done so on the basis of UD composite 

materials. Consequently, the databases and levels of understanding that exist for woven 

composites are not as prevalent as those that exist for their UD counterparts. There seems to 

be some level of agreement though that the ASTM-type tests established for LID tape 

materials are suitable for the simpler 2-D woven laminates that behave in a manner similar 

to conventional laminates. i.e. quasi-laminar. 

Of the ASTM standardized tests available for evaluating the uniaxial tensile, off-axis 

tensile and intralaminar shear behaviors of conventional laminates, two seem to show the 

most promise in terms of associated facility and material costs, namely ASTM D 3039-76 

(cf. [44]) and ASTM D 5379-93 (cf. [45]). The later of these, based primarily on the early 

works of Iosipescu and Arcan, serves as the author's experimental basis for shear 

characterization of 8HS woven fabric composites. Notwithstanding, a modified version of 

this test is adopted for evaluating the biaxial shear properties of 8HS woven fabric 

composites exposed to both room temperature and elevated temperature environments. As 

part of the process for assessing whether the modified fixture produces reasonable results for 

these composites. the off-axis tensile test is also used: I )  to check results from the biavial 

shear tests, and 2) to aide in understanding the complex stress states that may result from the 

biaxid shear test given that these complexities are already well-publicized for other 

composite materials in reference to the standard intralaminar shear test. 

4.1 .l. The Experimental Tests 

In 1967, N. Iosipescu proposed a method to determine the shear properties ofmetals that was 

relatively simple to conduct and employed small, easily fabricated specimens [&I. The basis 

for the Iosipescu test was classical beam theory which formalizes the existence of pure shear 



relative to a cross-section of a beam loaded in such a manner to produce a zero bending 

moment. This manner of loading, in terms of the force, shear and moment diagrams, is 

illustrated in Figure 4.1. From beam theory, the shear stress distribution along the throat 

where the zero moment exists is parabolic. Iosipescu postulated that the inclusion of 90" 

opposing v-notches at this location would produce a uniform shear distribution instead of the 

parabolic distribution. His argument was that the isostatics ofthe stress-free surfaces at 2 45 ' 

resulted in coincidence of the plane of principal stress, thus the principal stresses would be 

zero at the notch root. Hence, there should be no existence of normal stresses or shear stress 

concentrations at either notch root. However, a plethora of experimental and numerical 

studies have proved his original argument to be incorrect. 

The original test used cylindrical test specimens with a 90" v-notch cut completely 

around the circumference of the specimen mid-section. This specimen trans forms the 

parabolic shear distribution into a distribution that is constant between the notches. Failure 

by shear is also more easily promoted due to the reduced cross-section. For this test, the 

average shear stress is obtained by dividing the cross-sectional area between the notch roots 

into the applied load P 

where rv is the distance between opposing notch roots and t is the "as received thickness of 

the specimen. Adams and Walrath [47-491 suggested that the Iosipescu shear test method 

was suitable for determining material in-plane and through-thickness shear properties of 

unidirectional composites and sheet moulding compounds (SMC's) by using flat, rectangular 

specimens with notches machined at the mid-length. With the efforts of Adams, Walrath and 

S l epetz er al. [ 5  01, the Iosipescu specimen geometry and loading scheme have been certified 

through extensive investigations and finite element analyses. Additionally, more 

comprehensive investigations by Adarns and Walrath [5 11, which included analyzing the 



stress distributions in the Iosipescu specimen as a function of geometry and orthotropy ratio 

(E, ,/E,,). - - resulted in a redesigned specimen and fixture. 

The Wyoming test, in accordance with ASTM D 5379-93 uses a coupon with 

opposing v-notches and generates apredominant state of shear stress in the gage section from 

counteracting moments produced by two force couples. Shear strain is measured at the center 

of the notch root axis by two strain gages oriented at i 45" to the longitudinal axis of the 

specimen (likewise, the same orientation to the notch root axis). For highly orthotropic 

materials, i t  has been demonstrated that the shear stress distribution around the notch root 

is weakly dependent on notch depth and strongly dependent on notch angle and radius. It has 

also been demonstrated by Barnes et al. [ 52 ]  that the apparent shear moduli of LID 0" and 

90' glass-polyester Iosipescu specimens is nearly the same, though the apparent intralarninar 

shear strength was strongly dependent on fiber orientation. 

Comparative studies have been made between isotropic and orthotropic specimens 

to determine the questionable influences of geometry, loading configuration and fiber 

direction on stress distributions and to understand why the shear stress field in not uniform 

as originally speculated by Iosipescu. Kumosa et al. [53-541 compared the numerically 

generated von Mises stress contours from force-couple and prescribed displacement 

boundary conditions to isochromatic Fringe pattems observed during shear tests. They found 

that the force-couple boundary conditions originally proposed by Iosipescu provided a closer 

match to the observed hnge  pattems than did the displacement boundary conditions 

proposed by Adarns and Walrath. Several researchers have also employed moire 

interferometry techniques and isochromatics as tools to evaluate the state of stress in 

[osi pescu specimens. Displacement fields and fringe patterns have been compared with finite 

element results to evaluate loading configurations, boundary conditions and experimental 

errors. tfju [55-561 opted for a more compact version of the specimen with u-shaped notches 

and a larger throat. Combined with interferometry and a newly proposed shear gage [57] 

which measures an average of the shear strain field from the top to bottom notch, the 



compact specimen was shown to produce measurable shear strains having less scatter 

compared with the now traditional test. 

As a result of lengthy studies conducted by Broughton and Kumosa [53-54, 581, a 

new in-p lane biavial shear test fixture was designed. Based upon the aforementioned 

Iosipescu shear test and the Arcan in-plane stress method [59] ,  the biaxial test fixture allows 

rotation of the externally applied load in reference to the specimen notch root axis and is 

capable of measuring mixed-mode failure and Fracture properties of isotropic and composite 

materials. It has successfully been used for measuring room temperature. mixed-mode failure 

properties of UD carbon-epoxy, glass-polymer, carbon-PEEK, Ti-Sic and Teak wood [60- 

621. It has also been employed in the current research program for characterizing the elastic 

and biaxial shear failure properties of 8HS woven graphite fabric and UD graphite-pol yimide 

(PMRl5  and Avirnid R) composites at room and elevated temperatures approaching 3 15 "C 

(600 " F). Lastly, the biacial fixture in conjunction with a newly modified version have been 

used to establish the influences of geometric, boundary contact and material noniinearities 

on observable nonlinear shear stress-strain behaviors [63-681. 

Based on the biavial Iosipescu test fixture shown in Figure 4.2, the components of 

load applied to the individual blocks, as a function of the extemally applied compressive load 

P at some angle a to Po, can be derived using moment and force balance considerations. 

Referring to Figure 4.4, consider the following expressions for load components as a hnction 

of loading angle: 

where P is the extemally applied load and the angle a is taken as positive when the specimen 

is rotated counter-clockwise and negative when rotated clockwise. Thus, the test specimen 

is loaded in shear-tension for negative loading angles (-a) and in shear-compression for 

positive loading angles (+a). Consequently, for any calculations involving the load 



components, the signs are carried. From Figure 4.4, it becomes obvious that the expressions 

given by Eq. 4.2 are admissible only for values of a in the range air a 5 a;, where the 

critical load angles are given by 

2c 
a; = tan-' 

According to the approach outline here, it has been suggested that the composite biaxial 

strength properties may be obtained as originally proposed by Arcan [59]. It follows then that 

Eq. 4. I would be modified to account for the loading angle: 

From an experimental viewpoint, the apparent in-plane shear modulus G ,  and shear 

strength XXy can be evaluated by measuring the applied load, cross-section and shear strain 

bctween opposing v-notches. According to global coordinates (X, Y, 2) rather than the 

principal material coordinates (x,, x2, x,), the apparent in-plane shear modulus is then 

defined: 

where the integrated shear stress t, is the far-fieid load divided by the cross-sectional area 

between the notches, y, is the shear strain and the integrations are line integrals having limits 

equivalent to the notch root axis. The shear strain cannot be measured directly with strain 

gages. however. according to the previous theory normal strains oriented at + 45 "are a 

measurable representation of shear strain given a pure shear state. The normal strains can be 

represented in terms of the strains in the specimen coordinate directions by 



Subtracting the strain in the positive direction from the strain in the negative direction 

defines the shear strain in terms of the measured gage strains, e.g. 

It can also be reasoned that the average strain measured by a gage having a nominal grid area 

AxB can be defined as follows: 

where ds* and dt' are in reference to the axial and transverse gage dimensions A and B, 

respectively. It is recommended to monitor strains on both faces of the specimen to minimize 

erroneous shear modulus measurements as a result of specimen twisting and lateral 

instability. The apparent modulus then is calculated from the average of readings obtained 

from both gages. 

Since efficient characterization of intralarninar shear properties has long been a 

subject of controversy because of the difficulty in producing a state of pure shear in practical 

laboratory test specimens. the off-axis tensile test was also used to check results obtained 

from the biaxial Iosipescu tests. The tensile test on UD composites having fiben oriented at 

some angle to the loading axis has been successfully employed for a number of years by 

researchers to obtain composite elastic properties. apparent failure stresses and verify 

material symmetry assumptions of a particular composite system. This test is as equally 

attractive in its simplicity as the Iosipescu test is to conduct, however it does have 

disadvantages. The biggest disadvantage associated with the off-axis tensile test is that the 

configuration can introduce errors in the measured elastic ply-level material parameters due 



to an effect of end-constraint [69]. Under a uniformly applied axial stress, the ends of the 

specimen attempt to rotate from shear-extensional coupling. The amount of rotation is 

influenced by the angle of fiber orientation, specimen geometry, material anisotropy and end 

constraint. If the ends of the specimen are firmly gripped, rotation cannot take place and a 

highly inhomogeneous state of deformation takes place in the specimen. This may lead to 

erroneous measurements of composite material properties and premature failure outside of 

the specimen gage section near the grips. 

For characterizing the behavior of LID composites, the most popular off-axis 

configurations have been the 10" and i 45 " tests. In 1977, Chamis et a!. [70] proposed that 

the 10" off-axis tensile test should be considered as a standard for intralarninar testing of UD 

composite materials based on the theoretical and experimental results from their 

investigation. Some oltheir arguments for selecting this test over other practices were: ( I )  

the use of a familiar procedure (ASTM D 3039-74), (2) specimens can be cut From the same 

composite plaque used for evaluating longitudinal and transverse properties, (3) specimens 

are free of lamination residual stresses in contrast to 45" specimens, and (4) the 

intralaminar shear strain approaches its maximum when the angle between the fiben and 

direction of applied load is 10". The specific disadvantages cited in reference to this 

configuration aside from care in preparing and aligning the specimen and gages were: (1) 

three strains needed to be measured at a point, and (2) both stresses and strains required 

transformation. 

By adopting the off-axis tensile test for woven fabric composites, the ply-level 

stresses in specimens with tows oriented at an angle to the principal loading axis can be 

determined from established transformation equations which are derivable from force- 

equilibrium considerations. With reference to Figure 1.5, the stresses are given by 

f o,, = 0, cos2 p 
f a, = a, sin' p 
f r ,, = o, sin /3 cos P 



where refers to the angle between the tows and applied stress (03 along the long axis of 

the specimen and the superscript f refen to the principal fiber coordinate at the ply-level. The 

ply-level strains in the off-axis specimens can be determined using strain gages with three 

elements individually oriented at O", 45" and 90'. On the basis of the shearing strain 

interpreted from the gages as y.ry = ( - E , + ~ E ~ ~ - E , , ) ,  the strains in the material coordinate 

system, in terms of the gage strains and off-axis angle, are given by 

E { ,  = E ,  cos2 P + E ,  sin' P + ( ( - E ,  + Z E , ~  -Ep)sinPcosp) 

EL -- = &, sin2 P + E ,  cos2 P - ( ( - E x  + 2~~~ - & J s i n ~ c o s ~ )  

y / ;  =( -E ,  + E + ~ z ~ + ( ( - E ,  + 2 ~ ~ ~  - E ~ ) C O S Z P )  

In this research, three different composite systems, based on woven graphite fabric, 

reinforced polyimides were mechanically tested. Four composite plaques impregnated with 

a PMRIS matrix were provided by the NASA Glenn Research Center and two composite 

plaques impregnated with an Avimid R (dianhydride-diarnine monomers) matrix were 

provided by Pratt & Whitney. The PMR type composites were reinforced with a sized T650- 

35/31( 8HS cloth from Anloco Performance Products Inc., and the stacking sequence was 

[O "1 ,, with floating undulations. The dimensions of the cut prepregs used for assembling the 

PMR laminates were 304.8 mm x 304.8 mm (12.0 in x 12.0 in) with total laminate 

thicknesses of 3.82 mm (0.19 in), 5.15 mm (0.20 in), 5.50 mm (0.22 in) and 5.38 mm (0.21 

in) for plaques one through four, respectively. 

The Avimid R type composites were also reinforced with a sized T650-393k 8HS 

cloth from Amoco Performance Products Inc. The stacking sequence for the first laminate 

was [O"],,, with floating undulations and the sequence lor the second laminate was 

[O ' / 9 0  '1 ,,,,. The cut prepreg dimensions used for assembling the Avimid R laminates were 



identical to the PMR laminates, but total laminate thicknesses were 3.92 mrn (0.15 in) for 

both plaques one and two. 

All composite systems followed a simulated autoclave curing cycle according to 

General Electric specifications. Subsequent to layup, the prepreg would be placed into a 

preform mold for approximately one hour at 200 "C (392 " F) allowing for partial imidization 

and dimensional stability (B-staging). Next, the stack would be moved to a matched mold 

and cured under a specific pressure-temperature-time profile. A typical profile might have 

proceeded as Follows (data arbitrarily chosen due to sensitivity of information): ramp From 

room temperature to 200 'C (392 OF) at 2.8 "C (5 "F)/min and hold for 60 minutes; apply 

14.2 atmospheres (200 psi) pressure at the end of sixty minutes, ramping pressure at 1.4 

atmospheres (20 psi)/min and simultaneously ramping temperature at 1.7 'C (3 "F)/min until 

curing temperature, say 330 OC (662 O F )  is attained; hold final temperature and pressure for 

two hours and then reverse ramp rates until room temperature and atmospheric pressure are 

attained. Primary and possibly secondary post-cure cycles were used to raise both the T, and 

thermo-oxidative stability of the composite systems. 

The number of post-cure treatments required was dependent on the desired 

thermornechanical properties. Fiber volume fraction. void content and density were 

commonly evaluated using acid digestion techniques and ultrasonic C-scans (ASTM D 2734 

and ASTM D 3 171). All composite plaques C-scanned and used for mechanical testing 

showed exceptional density and uniformity with only varying attenuation near the edges 

indicating possible defects. Any material showing attenuation was further inspected with a 

microscope prior to being used and if questionable, it was immediately discarded. 

4.1.1.2. Specimen Designs 

The Iosipescu specimen dimensions called out by the standard require specimen sizing in 

reference to the Wyoming-type test fixture. For that standard fixture, the nominal specimen 

dimensions are given by a length of 76.0 mm (3.0 in), width of 20.0 mrn (0.75 in), notch root 



axis length of 12.0 mm (0.45 in), notch radius of 1.3 rnm (0.05 in), notch depth of 4.0 

mm(0.15 in) and an included notch angle of 90". The specimen design employed in this work 

for the bizvial Iosipescu fixture is shown in Figure 4.6(a) using Table 4.1 as a reference. The 

two most significant changes between the standard specimen geometry and the geometry 

shown in Figure 4.6(a) are the nominal lengthening to 80.0 mm (3.15 in) and sharpening of 

the notch radius to 0.45 mm (0.0 18 in). The biaxial fixture uses shorter loading blocks with 

reaction centers between the outer loading blocks and inner loading blocks placed further 

apart. Lengthening of the specimen is required to maintain anti-symmetric loading and 

balanced moments across the entire span of the specimen. A criticism towards this type of 

design has been made by several researchers in regard to the close proximity of inner load 

points with respect to the notch. They argue that larger transverse compressive stresses are 

present which are likely to "spill" into the gage section of the Iosipescu specimen and have 

detrimental effects on both the shear stress distribution and failure process. To dispute their 

arguments and ascertain the influences that placement of load centers has on the shear 

stresses and failure process, a new loading block design was mated to the biaxial fixture (see 

Appendix D). These blocks distribute the load at contacting regions on the specimen in the 

same manner as the standard suggests. The specimen design for this configuration termed 

the modified biavial fixture is shown in Figure 4.6(b) using Table 4.1 as a reference also. 

In regard to sharpening of the notch radius, previous work (cf. 51-54, 58, 60-62) 

showed that the effects of singular stresses at the notch tip and their contribution to a 

reduction in apparent shear strength tended to be insignificant when the notch radius was 

greater than 0.35 mm (0.0137 in). In addition, several trial shear tests were performed using 

SHS woven fabric composites to calibrate the test equipment and it was observed that failure 

of these specimens was not classically UD orthotropic, i.e. cracks did not seem to nucleate 

at the roots of the notches and propagate away from the roots resulting in distinctive load 

drops. Rather, the entire gage section appeared to manifest as one large (almost symmetric) 

zone of damage which seemed to be self-contained within the throat between the notches. 

In light of these facts. the decision was made to leave the grinding wheel "as-is" with an 



included radius of 0.45 rnm (0.01 8 in) instead of taking the risk and possibly damaging the 

wheel by redressing it to produce a larger notch radius. 

The biavial and modified biaxial Iosipescu shear test specimens were machined from 

the first two PMR and Avimid R type plaques, resulting in seventy-two graphite-polyimide 

specimens and seventy-two graphite-Avimid R specimens. The last two PMR plaques were 

reserved for o ff-axis tension tests, although sixteen shear test specimens were machined from 

the remaining material of both plaques. Each specimen blank was cut with a diamond-tipped 

blade and included a 2.0 mm (0.078 in) allowable tolerance on all sides for more precise 

machining operations. Each blank was then surfaced ground to final dimensions and the 

notches were ground to the desired depth using a grinding wheel dressed in the form of a v- 

notch having a 90" included angle. Special precautions were taken during the critical step 

of mac hi ning the notches and all operations were performed under a copious flow of water. 

Post-mac hining requirements included immediate specimen drying to reduce moisture 

absorption by the matrix and examination of all surfaces with an optical microscope. In all 

instances where visible damage from machining was noticed, the specimens were discarded 

(or used as a trial). Notch radii of all specimens were held consistently at 0.45 mm (0.0 18 in). 

The tensile and off-axis tensile specimens were machined to final dimensions (see 

Figure 46(c) and Table 4.1) called out by the standard using a surface milling machine 

instead of a surface grinder. Post-machining requirements also included drying to prevent 

moisture absorption and optical examination of all surfaces. Aluminum tabs were epoxied 

to the specimen ends to prevent crushing within the hydraulic grips and the ends were pinned 

with steel pins to prevent slipping under predicted loads high enough to cause failure. The 

aluminum tabs were tapered by 15" at the ends opposite the grips to relieve stress 

concentrations and avoid premature failure near the grips. A composite oblique end-tab 

configuration, which has shown a great deal of promise in eliminating the effects associated 

with end-constraints [71] in UD composite materials, was not used on the woven fabric 

composite specimens. The reasoning was that although ply-level extensional-shear coupling 

would be present, the rotation at the specimen ends would be somewhat lessened compared 



to UD composite materials because of orthogonal reinforcement within each ply and 

symmetric stacking within the laminate. 

4.1.1.3. Apparatus 

The shear and biavial shear experimental tests at room temperature were predominantly 

carried out on an Instron platform within the Fracture and fatigue laboratory at Oregon 

Graduate Institute of Science & Technology's Materials Science Department. Due to the lack 

of Facilities for elevated temperature shear testing of composite materials, the second phase 

of experiments was moved to the Advanced Materials and Structures laboratory at the 

University of Denver. The available platforms included an apparatus based on a Dillon 

tensile tester which was piloted for shear testing during the course of this research and an 

MTS platform which was adapted for elevated temperatures during the initial stages oloff- 

&.is testing and final stage of shear testing. 

The room temperature experiments, depicted schematically in Figure 4.7. were 

performed on a closed-loop. servo-hydraulic Instron Dynamic Test System (Model 1 230-20) 

with a 88.96 kN (20.0 kips) load capacity. All mechanical tests performed at room 

temperature were displacement controlled and monotonic compressive loads were applied 

at a constant crosshead displacement rate of 0.5 mdrnin (0.0197 in/min). Strain 

measurements were obtained by three different series of gage configurations for the purpose 

of comparing apparent elastic properties. The smaller configuration was the Micro 

Measurements WA-06-060WR-120 45' rectangular, three-element stacked rosette. The legs 

could be oriented at -45'190a/+45' in half-bridge configuration to evaluate shear strain 

directly using Eq. 4.7 or the legs could be oriented at Oa/45'/90'' and the shear strain be 

resolved from the component strains. This series ofgage is fully encapsulated constantan and 

temperature self-compensating with an active grid area of 2.3 1 rnm' (0.0036 in'). The larger 

configurations were the Micro Measurements MA-06-C085C-500 245 ', stacked Iosipescu 



shear gage and the Micro Measurements NtA-06-C032B-500/SP6 1 r 4S0, side-by-side 

Iosipescu shear gage. These gages were also used in a half-bridge configuration to evaluate 

shear strain directly from Eq. 4.7 without influence of normal strains. These series of gages 

provide polyimide encapsulation and temperature self-compensation with active grid areas 

of 24.4 1 mm' (0.038 in') and 9.50 mmL (0.01 5 in'). 

The main reason behind the use of the larger shear gages was to eliminate erroneous 

measurements of the apparent shear modulus associated with the smaller, centrally located 

rosettes. I t  is widely understood now that the use of small gages to measure the avenge shear 

strain may produce as much as 30% error in shear modulus values depending upon the 

specimen geometry, material orientation, loading condition and orthotropy ratio [57,72-731. 

A classic example of this can be demonstrated when measuring the shear moduli of 0' UD 

and 90' UD carbon-epoxy Iosipescu specimens using the same type of small strain gages. 

Beam theory predicts that both values should be the same, however what actually occurs can 

be seen by Figure 4.8. Since a small gage only measures average strain locally at the 

specimen center, it can be expected that differences may be large when the strain 

distributions are vastly different. In the past, correction factors have been assigned to account 

for these errors due to orientation and onhotropy ratio. but these factors aren't necessary 

when the shear gage is used. Strain integration along the entire notch root axis provides much 

more agreeable results between the two material systems. 

It has also been suggested in the literature that the lack of consistency in strain 

measurements from specimen-to-specimen and in particular, from the + leg to the - leg, 

might be due to specimen twist and out-of-plane bending, although these types of explicit 

eccentricities had not previously been investigated. As compensation for these possible 

effects on shear strain measurements, gages were placed on both sides of each Iosipescu 

specimen and the average strain taken fmm both gages was used to calculate the shear 

modulus. It was expected that the back-to-back strain gage configuration would provide the 

best repeatability among the specimens. 



The elevated temperature experiments, depicted schematically in Figure 4.9, were 

performed on the basis of two configurations. The initial groundwork for understanding 

composite behavior at elevated temperatures was based on an open-loop, mechanically 

driven Dillon tensile test platform having a 44.48 kN (1 0.0 kips) load capacity. For this 

platform, a forced-convection environmental chamber (refer to Figure 4.3) was custom built 

to fi t  between the stationary crosshead and load screw. For shear and biaxial testing, a 

custom fixture was also designed to fit within the chamber and compress the biaxial 

Iosipescu fixture when tension was applied at a constant crosshead displacement rate of 0.5 

mm/min (0.01 97 idmin). Strain measurements were obtained using the smaller configuration 

Micro Measurements WK-06-060 WR- 120 45 ', rectangular three-element stacked rosette 

designated for wide range temperature applications. This series of gage is Fully encapsulated 

K-alloy with high endurance leadwires and temperature self-compensating with an active 

grid area 012.3 1 mm' (0.0036 in'). The temperature range of this gage, which is the widest 

available for standard configurations, is -269 "C to 400 "C (-452 O F  to 750 "F) pending 

short-term exposure. At test temperatures above 260 "C (500 F), conventional tin alloy soR 

solders melt and strain gage leadwires oxidize. To overcome this, a silver solder paste was 

used to attach fiberglass encased leadwires to the strain gages. For testing at 3 15.6 'C (600 

' F). a temperature-cured epoxy coating (M-Bond GA-6 1) was also employed to protect the 

gage contacts against oxidation. 

Preliminary testing ofthe PMR15 (second plaque) and Avimid R (plaques one and 

two) based composites using the Dillon platform proved to be very cumbersome and time 

consuming. Since the biaxial shear test fixture was completely enclosed within the insulated 

chamber. access to the specimen or fixture for minor adjustments in specimen position was 

nearly impossible. Additionally, the fiberglass encased leadwires were so stiff that proper 

routing through the bottom of the chamber to avoid grounding on the biaxial fixture became 

a problem and often resulted in the leadwire contacts being pulled from the specimen surface. 

Aside from the twenty-four hour cure time required for the adhesive used to attach the strain 

gages, one to two hours was required for curing the protective epoxy coating as well as six 



to twelve hours to allow for heating and cooling of both the environmental chamber and test 

fixture. Optimistically, static testing of five specimens required fourteen to twenty days to 

account for many of the various issues which arose throughout the process, in particular, 

avoidance of noxious fumes. 

Based on the problems associated with using the Dillon tester, the choice was made 

to move to a different test apparatus and redesign the experimental setup to permit shear and 

tensile testing at room and elevated temperatures. The MTS Model 880 Dynamic Material 

Test System was chosen and is a closed-loop, servo-hydraulic mechanical test system with 

a 222.4 kN (50 kips) load capacity. All elevated temperature tests performed using this 

system were displacement controlled and monotonic compressive and tensile loads were 

applied at constant crosshead displacement rates of 0.5 mm/min (0.0297 in/min). The 

hydraulically actuated grips were fitted with smooth faced wedges for acoustic emission 

purposes and serrated wedges were added for standard tension testing. The assembly of 

components for acquiring test data from this experimental setup as illustrated in Figure 1.9 

served several purposes. As in the previous cases, the Measurements Group 2 IZOA strain 

signal conditioner and 2000 AID converter were used to acquire data from the strain gages 

and the Type K thermocouples. For heating specimens, the chamber was replaced by two 

Research Inc. 4 184 infrared strip heaters, a Model 60906 SCR (SC rectifier) to supply power 

to the heaters and a Omega CN4400 for closed-loop temperature control. Placement of the 

infrared strip heaters with respect to the MTS grips is shown in Figure 4.10. The main 

benefits of the strip heaters over the chamber were focusing of the heat source, rapid heating 

and cooling to the ambient which was much larger than the heat sink. 

Acoustic emission monitoring capabilities were also integrated into the setup to 

evaluate the amplitudes of acoustic events and rate of events as functions of applied 

displacement and fiber angle relative to the axis of tensile loading. Time-of-flight 

characteristics could be measured using two Digital Wave Model B 1025 transducers (Figure 

4.1 1 ) in which the signals were amplified with Digital Wave AE broadband pre-amps. The 

amplified signals were conditioned by passing through high and low-pass filtering prior to 



being acquired using Digital Wave parametrics and countedtimer hardware. With this 

arrangement, single event characteristics could be studied at any point in time during the test 

in addition to the accumulation of events which spanned the entire test. 

4.1.2. Apparent Elastic Constants 

4.1.2.1. Stress and Strain 

A study of the literature pertaining to measurement of composite elastic constants suggests 

that more than one proposed method exists for correctly interpreting stress-strain data when 

evaluating apparent composite properties. According to ASTM D 5379, the shear chord 

modulus of elasticity is calculated as the slope of the shear stress-shear strain line as defined 

by two points lying within the linear regime. Although the test procedure is fairly 

straightforward, the manner in which the departure from linear elastic behavior (i.e. transition 

or yield) is determined is somewhat ambiguous. Depending on the test conditions and 

behavior of the composite, this departure could be elastic-brittle, elastic-perfect plastic. 

bilinear elastoplastic or multilinear elastoplastic in nature and hence, increasingly more 

subtle. In composites which undergo significant plastic deformation prior to damage 

development. the separation between strain recorded at the deviation from linearity and strain 

calculated at the transition becomes greater which may lead to a false sense of where the 

yield point actually occurs. For this reason, the transition point was not considered within 

this study to determine the first 50% of the linear elastic regime where the shear modulus 

was calculated. 

The method adopted for data reduction in determining the extensional and shear 

elastic properties is similar to the method proposed in Ref: 74. Unlike highly orthotropic 

composite materials which might require stress and strain correction facton to account for 

the lack of uniformity across the gage section, correction factors were not calculated for the 

8HS woven fabric composites. It was assumed that these composites behaved as quasi- 



isotropic laminates, provided they were symmetrically oriented. Preliminary load-unload 

tests at increasingly higher loads were used to indicate the range of strains within the linear 

regimes and roughly establish where the first 50% occurred. These tests provided an 

indication of the limiting strain at the point when the unloading slope began to change. These 

tests also showed that s!ight nonlinear behavior was present at the beginning of the load 

history for both types of tests even though a small preload was used to "seat" the fixtures. For 

the shear tests, it seemed that additional sliding and load repartitioning occurred until the 

contacting surfaces became perfectly mated at which time the shear response became linear. 

For the tensile tests, the initial nonlinear response was directly associated with seating of the 

serrated wedge inserts into the grips. In both test cases, these initial responses were ignored 

in estimating the 50% region of the linear elastic regimes. Least-squares straight lines were 

fitted to the experimental data and the point where the fitted lines began to deviate from the 

experimental curve marked the endpoint for the linear regime. Once the endpoint was 

established, the slope of the line was calculated using the first half of the line. If deviation 

from the least-squares fit was not clearly evident, then the slope was calculated within the 

first 2025% of the maximum load capacity. 

Preliminary comparisons of shear strain readings from gages placed on the front and 

back of each Iosipescu specimen caused some concem. Not only were the readings 

signi ficant 1 y different between gages, but the readings were also different between the +leg 

and -leg, each oriented at 2 45' to the notch root axis. The concem was that these differences 

would not provide accurate and repeatable shear modulus measurements. A possible 

explanation of these differences was given by Adam et al. [75] in their comprehensive 

experimental strain analysis of the Iosipescu shear test specimen. They concluded that the 

d i fference in strain measurements observed between the +leg and the -leg of a two-element 

rosette was not a result of strain gage misalignment in terms of rotation about the center of 

the specimen gage section. This difference was, however, a function of the degree of 

onhotropy exhibited by the material. Materials which had greater orthotropy ratios showed 

greater differences between the strains measured at 245'. This behavior was also duplicated 



by the author using WD carbon-epoxy and isotropic titanium-aluminide Iosipescu specimens. 

Apparently, materials with low transverse stifmess result in higher normal strain E, in the 

gage section of Iosipescu specimens and the higher longitudinal strain E, is a result of 

Poisson effects induced by compression from the inner loading blocks. The net outcome is 

that the presence of these strains does not affect the shear modulus calculations (c.f. Eqs. 4.5- 

1.7) because a shif? of the Mohr's circle representation of the strain state shows that the 

tensile and compressive strains at 45' change in magnitudes by the same amount, i.e. the 

compressive strain increases while the tensile strain decreases. 

Apart from the explanation given for the difference in shear strains From each leg, it 

has been suggested by others for UD composite materials that the difference between shear 

strain calculated from the front and back gages is due to specimen twisting from an applied 

torsion about the long auis. In the preliminary stages of this study. twisting of the 8HS 

woven fabric composites was also noticed, however as will be discussed later, torsion was 

not the cause of unequal gage readings. Rather, the difference arose from lateral bending 

which proved to be unavoidable in the Iosipescu test because the nature of specimen loading 

is always anti-symmetric. 

4.1.3. Apparent Failure Stresses 

One of the primary concerns in the design of composite components is knowledge of the 

composite strengths. In order to accurately predict composite failure and assign factors of 

safety or design allowables, designers must employ reasonable failure criteria. The inputs to 

these failure criteria are usually in terms relating the measured ultimate strengths to the 

applied stresses. So it becomes necessary then to be able to correctly evaluate the composite 

strength properties. The problem lies in attempting to clarify what is meant in defining the 

material tensile strength or shear strength for example. Not only does this clarification 

become a question of semantics, but we are finding that it is also test dependent which 

contradicts the notion of strength being intrinsic. Although the semantics are somewhat 



ambiguous as set forth in the standards for tensile and in-plane shear testing, in the strictest 

sense, the term "strength" should imply the stress reached at failure when failure is governed 

solely by a homogeneous and uniform stress field, whether it is pure shear or pure tension. 

This is where the controversy emerges: few, if any, of the available experimental tests for 

composite materials can produce a pure and uniform stress state. 

For two of the most popular tests used to determine composite strength properties of 

UD composites, examples of this problem have been made completely obvious by Refi. 76- 

77. From the arguments given by those authors, it might make more sense to view the 

composite apparent tensile and in-plane shear strengths as the resistances ofthe material to 

macroscopic shear and tensile loading as produced by the given experimental test. This 

explanation, then, tends to fall in-line with the comments made in Re$ 77 and is the 

viewpoint adopted for evaluating strength properties of composites based on woven fabric 

reinforcements. 

The process of evaluating the composite shear strength properties has proved to be 

a very wide-open and debatable issue, therefore it was decided to characterize the woven 

fabric composite shear and biaxial "strengths" on the basis of three types of exhibited 

behavior. After all. the issue of apparent strength has been a debatable one so the concept of 

how failure is strictly defined must be arguable also. For the shear and biaxial Iosipescu 

specimens tested at room temperature, the shear stresses were determined at the onset of 

nonlinearity, as established in the previous section, and the shear stresses were also 

determined at the onset of failure and at the maximum loading capacity. The onset of failure 

was chosen to coincide with the inflection point on each stress-displacement curve. The 

likelihood of strain gage debonding was high at large strains and both the load (stress)- 

displacement and stress-strain results were necessary to determine failure stresses. For the 

shear Iosipescu specimens tested at elevated temperatures, the failure stresses were 

considered only at the onset of failure and the maximum loading capacity on the stress- 

displacement curves. Above 204.4 'C (400 O F ) ,  behavior would likely be very nonlinear and 

reasonable comparisons of elastic limits might be questionable. 



4.1.3.1. Comparisons at Elevated Temperatures 

In addition to knowledge of composite failure behavior at room temperature, much remains 

to be learned about the mechanical behavior of composites exposed to thermornechanical 

loads. Structural composite architectures based on cost effective and easily processed 

polyimides, such as PMRlS, have often been employed in turbofan engine components. 

Previous studies have addressed the elevated temperature performance of composites based 

on PMRI 5 under thermal, static tensile and fatigue loading conditions, but no work has 

addressed the quasi-static shear and biaxial performance as a function of temperature. 

Considering that PMRIS polyimide resin is not environmentally friendly to process. a 

suitable replacement resin (non MDA) cannot be suggested until all aspects of PMR-based 

composite behavior are fully realized. In this study, the elevated temperature experiments 

were performed to evaluate the influence of matrix composition and ply orientation on shear 

deformation and shear failure behavior. Iosipescu specimens from the second graphite- 

PMR 15 plaque [Oa] ,, were compared to specimens from the graphite-Avimid R plaques 

[O'],,,, and [0'190a],,. The degradation of stiffness and strength properties was explored 

together with the effects of viscoplastic behavior. Due to the difficulties associated with 

quasi-static shear and biavial testing at elevated temperatures, the results were too limited 

to suggest statistical significance. However, these initial studies were fundamentally 

necessary to support any future efforts in life prediction ofthe polyimide composites exposed 

to harsh environments. 

4.2. Modeling of Shear and Biaxial Tests 

From the preliminary shear and biaxial test results obtained during the equipment calibration 

phase at room temperature, it was noticed that the stress-displacement curves were mostly 

linear or bilinear, but the shear stress-strain curves were highly nonlinear. It also appeared 

that the slopes of both responses were dependent on the biaxial loading conditions. Clearly, 



a complete understanding of the elastic and inelastic behavior required knowledge of the 

damage and failure processes in conjunction with the fixture-to-specimen interactions. In 

assessing the woven fabric composite response to shear and biaxial deformation, certain 

structural and material nonlinearities were identified. The structural nonlinearities were 

boundary contact (friction) and large strains/rotations (geometric), while the material 

nonlinearities were elastoplastic deformation and progressive damage. The challenge was to 

determine which of these nonlinearities was the most characteristic of the shear and biaxial 

load histories. 

&!.la Structural Nonlinearities 

In practice, the in-plane shear response of most composite materials is exhibited by severe 

nonlinearity. The nonlinearity is usually attributed to plastic deformation of the matrix. 

However, it is certainly possible that this response could be partly composed of geometric 

nonlinearities, i.e. large rotations and displacements as well as boundary contact 

nonlinearities such as sliding between the specimen contacting surfaces and the fixture 

loading blocks. These effects could be especially well-pronounced in the Iosipescu 

specimens subjected to large displacements. Since the woven fabric composites investigated 

in this research fail at large displacements, especially under biaxial loading conditions, these 

nonlinear effects must be evaluated numerically. The influence of these effects on the 

stresses and failure process needs to be established. 

Ho el al. [78] previously had investigated the effect of structural and material 

nonlinearities on the stress distributions in UD graphite-epoxy Iosipescu specimens subjected 

to relatively small displacements. They concluded that nonlinearities cannot be ignored when 

evaluating the stress distributions in 0' and 90' specimens, however their approach was 

questionable. In analyzing the nonlinear response of Iosipescu specimens, two conditions 

are never known a priori, namely the nonlinear constitutive equations and friction between 

the specimen contacting surfaces and fixture loading blocks. In their analysis, the fiction 



coefficient and constitutive relationships were modified iteratively until a good match was 

obtained between the numerical and experimental results. This is not strictly correct because 

a match can almost always be obtained between both sets of results. Ideally, the numerical 

results should depend only on the unknown coefficient of friction and not on modifications 

to the nonlinear material behavior. 

Attempts were made herein to establish the effects of specimen sliding and geometric 

nonlinearity (due to the change in specimen geometry) on the global mechanical response 

and internal stresses of the Iosipescu specimens. The finite element computations were 

performed assuming that the specimens were loaded in both the biaxial and modified biaxial 

fixtures. Large displacements [8 2 3 mm (0.1 in)] were prescribed and the boundary contact 

condition allowed Coulomb Friction (sticking-sliding) with a coefficient range of 0.1 to 0.8. 

Both 2-D finite element models shown in Figures 4.1 Z(a) and (b) employed contact point-to- 

surface pseudo-elements from the ANSYS element library (CONTAC48) which were placed 

at the interfaces between the loading blocks and the specimens. The models maintained a 

thickness of' unity and were constrained at the specimen center against vertical and horizontal 

displacements (6,,S, = 0). The loading blocks on the right side were prescribed displacements 

of 6, = -0.56 whereas the loading blocks on the opposite side of the specimen were 

prescribed positive displacements of the same magnitude. Thus, the total prescribed 

displacement acting on the specimens was equal to 6.  Using these boundary conditions, the 

effect of specimen rotation with structural nonlinearities was also studied by resolving the 

prescribed displacements into component displacements of 6&in a) and &(cos a). 

42.1 -1. Geometric 

Geometric nonlinearities refer to the nonlinear behaviors associated with a structure as it 

deflects. Since the stiffhess [K] is a Function of the displacement (u), shape change 

prescribed by large deflections causes the stifmess to change. In their investigation of 

geometric nonlinearities in the Iosipescu test, Ho et al. stated that the specimen distortion in 



0" and 90" UD composites did not influence the shear response because of the 

overestimation of distortion angles due to fiber rotation. An important aspect here was to 

detem~ine whether or not this rotational behavior, when coupled with contact analysis, was 

influential on the stress field distribution in woven fabric composites. 

When 2-D eight-node isopararnetric finite elements are employed in a nonlinear 

analysis, the ANSYS program can account for four types of geometric nonlinearities: large 

deflection, large strain, stress stiffening and spin softening (see Table 4.2) [79]. The large 

deflect ion procedure is used when rotations are large and the stress induced mechanical 

strains are small. According to related theory, the approach adopted to solve large deflection 

problems incorporates a co-rotational algorithm of the form 

where [B,l represents the usual small strain-displacement relationship in the original 

coordinate system and [TJ relates the orthogonally transformed element coordinates to the 

original coordinates, the difference indicating the amount of rigid body rotation. In contrast, 

the large strain procedure assumes mechanically induced strains are of a finite nature and that 

there is an associated volume change in the material. The volume change can be described 

in terms of the deformation gradient where [I] is the identity matrix and the deformation 

gradient [F] defines the difference between position vectors for the deformed and 

undefonned positions of a deformed body: 

where 



Based on the right polar decomposition theorem, the deformation gradient can be 

separated into rotation and shape change according to 

where [R] is the rotation matrix ([R]~[R] = [I]) and [U] is the right stretch or shape change 

matrix. This theorem specifies that material lines will remain orthogonal even though they 

will not after a shearing type ofdeformation.. Either of these conditions may be augmented 

through implementation of stress stiffening which couples the in-plane and transverse 

displacements, generating an additional stiffness matrix. Stress stiffening tends to reduce 

oscillations in convergences associated with problems posing a high degree of structural 

nonlinearity such as exhibited in large displacement and element rotation problems. The 

reduction in convergence oscillations directly reflects upon the reduction in total problem 

solution times. 

Direct implementation of the co-rotational algorithm involves [79] determining the 

updated element transformation matrix [T,], extracting the deformational displacement (4'1 

from the total element displacement (4) for computing both the stresses and restoring force 

( F,"') and updating the node rotations fiom the rotational increments {Au} . From Eq. 4.1 1, 

the elemental tangent stifmess matrix takes the form 

and the element restoring force is 



The elastic strain is computed by [B,] and the elemect deformational displacement is 

responsib le for straining. 

4.2.1.2. Boundary Contact 

Friction is a complex phenomenon and is a function of the swface roughness, temperature, 

materials in contact and relative velocities. The contact problem involving mutual boundaries 

and friction is highly nonlinear, not only because of the varying conditions, but because of 

the Friction itself. According to Chen and Yeh [80], contact or collision between component 

surfaces cannot allow for penetration and the contact tractions are always compressive. 

Mathematically, Xiaoyu [8 11 has presented the relationship for bodies (A and B) that cannot 

penetrate into each other: 

where u" and uB are the displacements of a pair of opposing surface nodes and n = nB = -nA. 

where the n's are the surface normals and g, is the separation function given by 

The coordinates (E, q, 6 ) are in reference to some defined local coordinate system andc-' or 

< is the local shape of body A or body B.Coulomb's law states that the sliding force F,, 

transmitted between two bodies cannot exceed a fraction of the normal force F,. That is 

where F, is the critical fiction resistance and p is the coefficient of friction. Beyond F,. 



relative sliding between the bodies will start to occur. As sliding occun, tangential forces 

arise between opposing contact and target surfaces. Contact kinematics is concerned with the 

precise tracking of the nodes and surfaces to define clear and unambiguous contact 

conditions, e.g. to delineate between an open or closed contact situation. How this task is 

accomplished depends on the numerical algorithm employed to manipulate both the 

tangential forces (sliding) and normal forces (sticking and penetration). Depending on the 

solution method, rules for contact compatibility must be met. 

The ANSYS finite element analysis code [79,82-831 permits the user to specify two 

methods for enforcing contact compatibility, the penalty method or a combined penalty plus 

Lagrange multiplier method. To conduct a contact finite element analysis as in the case of 

modeling boundary contact between the Iosipescu fixture loading blocks and specimen, a 

stiffness relationship must be established between the areas of contact. This can be 

accomplished via an imaginary spring placed between the mating areas when contact occurs. 

Under the penalty method, compatibility is enforced by means of a contact stiffness as 

where & is the input contact stifhess and g, is the contact gap. For the combined penalty 

plus Lagrange multiplier method, a Lagrange multiplier component of force is computed 

locally and iteratively. This component can be expressed as 

where 4., is the Lagrange multiplier force at iteration (i+l) and o is a user defined 

compatibility tolerance. In any case, the contact stiffhess has to be selected so it is large 



enough to keep the penetration acceptably small, but small enough to ensure that 

convergence or ill-conditioning is not caused. Since user input values for the normal and 

tangential forces are not known a priori, suitable approximations must be made through 

iterations and trial-and-error. A reasonable starting point for estimating contact sti fhess and 

tangential force for gross solids can be assumed as 

where f is a factor between 0.01 and 100, E is the elastic modulus of the more pliable 

contacting material and h is a measure of the characteristic contact length. It should be noted 

that these estimates may or may not constrain the model from over-penetration of mutual 

surfaces. The proper choice will depend on the compliance ratio of the contacting material 

to the target material. If the ratio is extremely high and (or) the displacement is large, gap 

criteria may not be met. 

In implementing the elastic Coulomb friction model which allows both sticking and 

sliding conditions, the tangent stiffness matrix, formed by the outer product of interpolation 

vectors, is of the form 

where the interpolation vectors (N,} and (N,) are given in terms of a local s-n coordinate 

system relative to the contacting plane as 



where s* is dimensionless and ranges from - 1.0 to + 1 .O. Initially, contact is treated as elastic 

sticking and the goal is to determine the penetration g and the contact point s* regardless of 

frictional forces. Subsequent to initial contact, friction develops according to 

4.2.2. Load Eccentricities 

Over the last fifteen years, a number of researchers have contributed significantly to identifying 

and understandins many of the idiosyncrasies associated with the testing of composite materials 

using the Iosipescu shear test. The popularity of this test for shear characterization of composite 

materials is, in large part, due to three factors. The test specimen geometly is simple and 

relatively easy to produce, the material and associated facility costs can be made low compared 

with more advanced test schemes and the test is reasonably easy to conduct, or so things appear. 

The reality is that interactions between the Iosipescu shear test fixture and specimen can be 

complex and oRen lead to a combined state of stress which lacks uniformity, contrary to what 

was originally theorized [46]. 

The existence of vast amounts ofdata for numerous composite materials supports the idea 

that degees of interaction are made highly dependent on geometry, material anisotropy and 

material orientation, fiuther lending credibility to the problems associated with completely 

understanding the test. As an example, an improperly designed test can eccentrically load a 

specimen and produce unwanted characteristics like erroneous shear modulus measurements and 

failures at loads below the actual apparent shear strength. To this end, a great deal of time has 

been spent by many to understand these problems and interpret which behavior is truly 

representative of the test. Likewise, time has been invested in attempts to optimize the design of 

the specimen, fixture and testing apparatus with a fair amount of documented success [48-49.5 1 - 

52,54,58,63,66,84-891. 



According to beam theory which serves as the basis for the Iosipescu test, an anti- 

symmetrically loaded beam absent of any bending moment produces a pure shear stress 

distribution that is classically parabolic along the gage section where the bending moment is zero. 

When opposing notches, each having a 90" included angle, are located on either side of the gage 

section a more uniform shear stress distribution results. However, if this load condition changes 

From being anti-symmetric to some other condition, questions arise as to the states of stress and 

strain produced within the gage section and on the specimen surface. Besides the requirement of 

load anti-symmetry, other factors such as specimen width and load point effects can influence the 

outcome of the Iosipescu test. 

Traditionally, the load configuration has been explained as either a point load or an 

evenly distributed load, but finite element analyses and certain experiments have shown that 

neither assumption is correct. In fact, the shapes ofthe distributions at the regions of fixture 

contact tend to depend on characteristics of the deformation process and the manner in which the 

load is repartitioned. The principle of St. Venant has also been adopted in many cases (including 

the author's own work) to rule out the possibility that compression induced by the inner contact 

regions near the notches does not spill into the gage section and affect the failure process. More 

than likely, it is not discernible on the specimen macroscale whether this is, in fact, a realistic 

assumption. From a practical standpoint then, the Iosipescu shear test should be viewed as a 

complex balance between a compression test which induces Euler buckling, a bending test and 

a pure shear test with the shear component being the most prevalent. This balance can and has 

been sho~vn to be swayed by test fixture design thin test specimens, material anisotropy. notch 

geometry, contact surface heterogeneity and nonlinearities to name a few. 

Odom el al. [87] focused on three concerns specific to the test using the Wyoming 

fixture, namely interactions at the fixture-specimen interfaces, specimen twisting and fixture 

misalignment. They found that the modified Wyoming fixture does not anti-symmetrically load 

the specimen as suggested by the differences in the distribution of strain measurements h m  

gages placed on the specimen beneath the regions of fixture contact. They also concluded that 

compliance mismatch between fixture halves was not the reason for specimen twisting and the 



often reported large differences in strain measurements between the front and back surfaces of 

the specimen. With a lateral moment applied to the fixture, it was shown that these differences 

did not appear to be a hnction of increasing moment. Lastly, it was shown that fixture 

misalignment seemed to be largely responsible for erroneous shear modulus measurements. On 

unidirectional carbon-epoxy, they reported a 2 1% mor in measurement for 2.72" misalignment. 

In a later experiment involving a new Wyoming fixture design with improved bearing fits, it was 

concluded that observed twisting and strain mismatch was attributable to lateral instability of the 

specimen. although this was never proved [89]. 

h their whole-field strain analysis, Xing et al. [85] employed moire interferometry and 

finite element analysis to evaluate the experimental errors associated with the effkcts of specimen 

hvist. bending moment and the loading points for woven graphite-epoxy composites. Twisting 

was simulated by forcing non-simultaneous contact of the load points through the use of small 

diameter wire placed between one side of the specimen and fixture. Moire interferometry results 

indicated a 50% increase in shear strain from the addition o fa  torsional load component for the 

same load as applied in the ideal case. Pierron et al. [74,78] identified poorly profiled 

contacting surfaces as responsible for differences observed between strain measurements on 

the Front and back faces of Iosipescu specimens. A surface profilometer was used to measure 

deflections on the contacting surfaces and it was found that poorly profiled 0 UD composite 

specimens presented less scatter in strain measurements than similarly profiled 0c/900 cross- 

ply composite specimens. They reasoned that the surface hardness in the cross-ply specimens 

(due to the 90" reinforcing fibers) was higher than in the UD specimens. This prevented load 

repartitioning and led to specimen twist Crom the additional torsion. 

In this numerical study, the goal was to explicitly impose four types of eccentric 

loads to the Iosipescu specimen, in combination with shear, and identify which mode 

resulted in the largest difference in surface strains. It needed to be established what effect (if 

any) eccentric loads had on the stress-strain distributions between alternating layers of ply 

and matrix. Additionally, it was necessary to establish the influence of load point spacing on 

the generation of additional moments which could bias the measurement ofelastic properties. 



Of the nearly infinite number of load perturbations possible, five modes were identified 

(including the case of shear) for comparison as shown in Figures 4.13(a-e). Case (A) is the 

condition of shear where there are no resultant moments M, and Mv. Case (B) is the 

condition of shear + asymmetric tonion where, ideally, torsion is imposed to one-half of the 

specimen and the resultant moment M, exists, but is less than Case (C). For Case (C) which 

is shear + anti-symmetric torsion, opposing torsion is imposed to both sides of the specimen 

and the resultant moment M, is the lasest of all cases. Case (D) is the condition of shear + 

lateral bendinq where the top and bottom surfaces of the specimen bend towards each other 

about the long axis rather than twist in opposite directions. Lastly, Case (E) is the condition 

of shear + lateral rotation where poorly profiled contacting surfaces slide on the fixture 

loading blocks in such a manner that the specimen becomes unstable along one edge. 

4.2.2.1. Numerical Models 

Two 3-D numerical models were proposed for this study and are shown in Figure 4.14. The 

finite element model of the biaxial Iosipescu specimen, shown in Figure 4.14(a), consists of 

eight-node, layered structural elements (SOLID46) from the ANSYS element library [90]. 

The ply and matrix layer thicknesses were selected based on a sixteen ply, quasi-isotropic 

graphite-PMR15 composite having a nominal thickness of 5.0 rnm (0.2 in). The total number 

of layers within a single SOLID46 element through-thickness were thirty-one. Measurements 

of actual ply thicknesses of 289.0 pm (1 1.4 mils) suggested a matrix interface thickness of 

25.0 pm (0.98 mils). Considering that interface thicknesses ranging from 10-100 pm (0.39- 

3.9 mils) were reported by the NASA Glenn Research center' for similar composites, the 

thicknesses chosen for each layer in these numerical models seemed reasonable. The finite 

element model of the modified biaxial Iosipescu specimen (see Figure 4.14(b)) shared 

identical elementhyer properties and both models permitted geometric nonlinearities and 

Data provided by Mr. Mike Castelli of the NASA Glenn Research Center. 



boundary contact (CONTAC49) at the specimen-to-fixture interfaces. From the previous 2-D 

studies, the coefficient of friction between the blocks and specimen contacting surfaces was 

chosen as 0.3. 

4.2.2.2. Properties and Boundary Conditions 

The analytical model presented in Section 3 along with the results from the early phases of 

experimental testing and 2-D finite element analyses provided the basis for the material 

properties assumed in this study. These properties are presented in Table 4.3. The boundary 

conditions imposed were done so in a manner representing what might be plausible if a 

specimen was carelessly placed in the test fixture or if the mating contact surface profiles 

were mismatched. For each load case, the loading blocks were moved relative to the 

specimen centerline (x-axis in Figure 4.13) in ways which would produce the desired 

eccentricity. Assume that the coordinate system is located at the specimen center, in 

reference to Figure 4.13, and has the same orientation as shown. The boundary conditions 

imposed with respect to each eccentric load case are presented in Tables 4.4 and 1.5 for the 

biaial and modified biavial models, respectively. The x, y and z-coordinate displacements 

in these tables are normalized to the locations of the centers of Force distribution ([* c or * 
1. 5 h/Z + a. ti2 + constant] as given in Table 4. i). For this study, the constant in i z was 

arbitrarily chosen as 3. This implies that the moments about the x-axis were induced from 

displacements offset by three times the specimen half-width to produce the desired 

eccentricity. 

Shear, shear-compression and shear-tension stress states were numerically generated 

in the specimen gage section to determine the influence of biaxial stresses on the load 

eccentricities and calculated surface strains. The prescribed displacements for the shear- 

compression and eccentric shear-compression loading conditions were resolved into the 

component displacements in x and y such that 6,' = G,(sin a) and 6,' = S,(cos a), where a = 

+30" was counter-clockwise eom the vertical load axis. Similarly, the prescribed 



displacements for the shear-tension and eccentric shear-tension loading conditions were 

resolved into component displacements where a = -30" was clockwise from the vertical load 

axis. For all cases, the assumed global displacement 6 was arbitrarily set at 0.05 mrn (2.0 x 

10*' in) and each half of the specimen was prescribed * 0.56. 

The resultant global loads P and residual moments M, (where i ... x,y,z) were 

calculated from the summed reactions F, at the loading blocks due to prescribed 

displacements. The resultant loads were calculated on each side of the specimen relative to 

its centerline by adding the reaction at the inner loading block to the reaction at the outer 

loading block. The residual moments were also calculated on each side of the specimen by 

summing the block reactions F, (where i ... x,y,z) at the inner and outer loading blocks about 

the specimen center. 

4.3. Nonlinear Material Behaviors in Shear 

The in-plane shear response of most composites is highly nonlinear as suggested in Section 

42.1. Results for SHS woven fabric composites based on polyimide matrices tend to support 

this statement even though data from neat resin tests implies elastic-brittle behavior. 

Although structural nonlinearities might contribute to some degree, the severity of the 

observed nonlinear shear behavior clearly suggests that material nonlinearities must play an 

important part. In order to evaluate the significance and type of nonlinear material behaviors, 

the author has proposed a set of numerical analyses which decompose these nonlinearities 

into those responses which are macroscale, elastoplastic or plastic along with those responses 

which indicate macroscale, progressive damage. 

The problem of evaluating composite material nonlinearities at the macroscale can 

really be viewed as either one of two cases. In the first case, a solution to the nonlinear 

material problem may be derived on the basis of forcing experimental data to collapse on a 

particular mathematical relationship which best fits the behavior and is in-line with plasticity 

theory. In the second case, a solution may be reached by applying generalized hct ions  of 



plasticity theory on the basis of assuming that the material behaves accordingly and provides 

reasonable agreement to experimental data. Several researchers have successfully 

implemented models to predict the elastic-plastic responseofUD polymer matrix composites 

[68,9 1-94]. However, determining the nonlinear mechanical response of woven fabric 

composites using experimental uniaxial and (or) biaxial tests has been limited [ I  8,202 1.951. 

0 f the few published attempts to apply a macroscopic continuum approach to determine the 

plastic behavior of woven fabric composites, Vaziri et al. [96] suggested a model which 

requires knowledge of the axial and shear yield strengths. These yield strengths can be 

difficult to obtain experimentally for most composite materials and their model only 

provided a bilinear approximation of plastic properties. Naik [22] suggested an empirical 

relationship between shear stress and shear strain, however this type of approach cannot be 

generalized to various fiber architectures, e.g. UD composites, 2-D woven fabric composites 

or 3-D woven fabric composites. 

More recently, Odegard er ol. [68] proposed a inelastic constitutive relation for 

woven fabric composites based on a power law-type ofbehavior. This approach Followed the 

first case described above for deriving nonlinear material behavior in that experimental data 

from a series of o ff-axis tensile tests was collapsed into an effective stress-strain curve. The 

only limit to this approach was that the ANSYS finite element code did not readily permit 

describing nonlinear material using a power law relationship. A work-around was 

implemented in which the power law curve was approximated with a series of progressive 

bilinear numerical approximations. The results for shear deformation at small strains were 

in good agreement with the experimental results for 8HS woven fabric composites tested 

using the modified biaxial Iosipescu fixture. 

This work focused on the second case described above for deriving nonlinear material 

behavior. A generalized yield function for 3-D anisotropic plasticity was applied to 

numerically evaluate the nonlinear material behavior of biaxial Iosipescu specimens tested 

under shear dominated, biaxial loading conditions. The finite element model adopted the 

same geometry as the model used to study load eccentricities. However, the element type was 



changed because the layered SOLID46 elements do not permit plastic material behavior, nor 

do they permit element death which is focused on in Section 4.3.2 for progressive damage 

analysis. The finite element model consists of 7391 nodes and 1044 twenty-node 

isoparametric, structural brick elements (SOLID95) From the ANSYS element library [97]. 

The model also consists of 5232 CONTAC49 pseudo-elements, again with an assumed 

friction coefficient of 0.3 chosen fiom the results of the 2-D finite element analyses. The 

composite elastic properties, yield stresses and tangent moduli are given in Table 4.6. 

4.3.1. Anisotropic Plasticity 

Plasticity theory provides a mathematical Framework to characterize the elastoplastic 

response of materials. For rate and time independent plasticity, three ingredients are a 

necessity to the theory, namely the yield criterion, the flow rule and the hardening rule. 

Plastic strains are assumed to develop instantaneously and irreversible straining is indicated 

at a certain level of stress. That is, a material develops plastic strains when an equivalent 

stress is equal to some defined material yield parameter ailY such that 

If the yield parameter or criterion is not exceeded at a current stress level, then stresses will 

develop according to linear elastic constitutive relations. For orthotropic solids, Hill [98] 

proposed a quadratic yield function in terms of stresses to reflect differences in strengths due 

to anisotropy. This quadratic yield function is of the form 



where the subscripts I ,  2 and 3 refer to the principal directions of a generally orthotropic 

material and F, G, H and L, M, N are parameters that characterize the current state of 

anisotropy. The first three orthotropic material parameters F, G and H are defined in terms 

of the tensile yield stresses (X, Y, Z), in the principal directions, to be 

where only one of the F. G or H parameters can be negative and the yield stresses differ 

considerably. Together with hvo similar inequalities, F zG only if X 2Y. The last three 

orthotropic material parameters L, M and N are defined in terms of the shear yield stresses 

(R. S. T), with respect to the principal directions, to be 

The theory adopted here b r  plasticity in woven fabric composites extends Hill's 

theory for orthotropic solids to account for a difference in yield strength in tension and 

compression. With ANSYS [99], the associative flow rule is assumed and plastic strains 

occur normal to the yield surface which is a distorted circular cylinder initially shified in 

stress space. Work hardening is also assumed which suggests that the surface expands in size 

while remaining centered about its initial centerline. The yield criterion in Eq. 4.26 is then 

redefined to be 

where [N] describes the variation of the yield stress with orientation and takes the form of 
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{M} is a strength differential vector that accounts for the differences in yield strength 

between tension and compression and k is the material yield parameter. 

Plastic strains are incremented according to the associative flow rule given by the 

relationship 

where d L  is a Lagrangian multiplier which determines the amount of plastic straining. It is 

evident that the size of the plastic increment is related to the current stress state. the total 

strain increment and the form of the yield and potential surfaces. Since the current stress state 

is reduced by plastic straining to satisfy the yield criterion, the criterion must represent a 

closed surface. From this, the independence of the uniaxial strengths are restricted through 

satisfying three conditions. The first condition, the consistency equation must be met because 

plastic incompressibility is assumed. This equation is given by 

where X, Y and Z are the uniaxial strengths and the superscripts + and - indicate tension and 

compression, respectively. The second condition is that the yield strengths must also define 

a closed, elliptical yield surface by meeting the equation 



where the individual terms of the [N] matrix can be evaluated by 

and o"; are the tensile and compressive yield strengths in (x, y, 2, xy, xz, yz). Assuming that 

N , ,  = 1, the material yield parameter can be determined by k = (a-,)(a',). The third condition 

is that the elliptical yield surface must be satisfied through an equivalent plastic strain level 

of 20% since work hardening requires the yield strengths to change with increased plastic 

straining. 

Numerical implementation of plastic straining employs a Euler backward scheme to 

enforce the consistency equation which ensures that updated parameters lie on the closed 

yield surface. Based on a trial strain, a trial stress is used to evaluate the equivalent stress. 

I f  the yield stress is not exceeded, no plastic strain increment is necessary. However, if the 

yield stress is exceeded, then the Lagrangian multiplier is determined using a local Newton- 

Raphson iteration procedure and the plastic strain increment is calculated from Eq. 4.32. The 

current plastic strain is updated from the previous step (if it exists) and the elastic strains are 

given by 

where E' refers to the trial strains and d8" are the plastic strain increments. Knowing the 

elastic strain components. the stress components are readily available according to the 

relationship (do} = [Dl ( ~ E P ' }  where [Dl is the strain-displacement matrix. 



43.2. Damage and Failure 

Several damage and failure criteria have been proposed to predict the initiation of damage 

and strengths of composite materials. These criteria are usually either stress or strain based 

and may be categorized as explicit or empirical. The maximum stress and maximum strain 

criteria are explicit. That is, failure is assumed to occur when singular stresses or strains 

exceed their critical values in any one of the principal material directions. Unlike the explicit 

failure criteria, empirical failure models adopt some form of a quadratic or higher-order 

polynomial which best approximates the failure surface. The polynomials also typically 

include one or more interaction terms that can be dificult to experimentally obtain. The best- 

known of these criteria which can be quadratic in stress or strain space are the Tsai-Hill, 

Tsai- Wu and Hashin criteria [ 100- 1021. These criteria maintain some interactions in terms 

and essentially have extended the von Mises yield criterion to account for the orthotropic 

bchavior exhibited by many composite materials. The main disadvantages of the first two 

criteria is that they cannot predict failure modes well and they tend to underestimate failure 

stresses under certain biaxial conditions. The advantage of the Hashin criterion is that fiber 

failure in tension or compression is indicated as well as matrix failure in tension or 

compression. 

From the standpoint of including one or more of the above failure criteria in a 

progressive damage scheme using finite element analysis, implementation can prove to be 

complicated. Oflen, what was done in the past was to incorporate the appropriate criterion 

to indicate either a fiber-based failure or a matrix-based failure and reduce stiffnesses at 

"failed" element integration points in the direction of failure. With this approach, it 

intuitively made sense to permit a near-zero stiffness in the failed directions upon satisfying 

the criterion while permittingresidual stifhess in the other directions. The stifmess reduction 

scheme often adopted for UD and plain woven composites in these instances was similar to 

the scheme proposed by Blackketter et ol. [26]. That is, the reduction multiplier was biased 

towards the failure mode and total element failure occurred after 6WO% of the points failed. 



For many finite element codes, implementing such a continuous or "progressive" 

reduction scheme through the entire load history is not as problematic as with other codes. 

In ANSYS, making changes to material stifmess on a element integration point basis is less 

straightforward than making material stifhess changes to suggest damage on the basis of 

total element failure. However, it doesn't make much sense intuitively to employ any of the 

previous failure theories as criteria to fail elements altogether. With this approach (element 

death scenario), a damage criterion which accounts for both stress and strain over a given 

volume seems to be more appropriate. 

4.3.2.1. Progressive Damage Criterion 

The failure criterion proposed by the author for use in predicting the progression of damage 

in SHS woven fabric composites, subjected to shear and biavial loads, is based on the total 

of the average strain energy density to critical strain energy density ratios 

where the U ,, are the volume equivalent, linear elastic strain energy densities and the U,' 

are the critical strain energy densities determined from experimental stress-strain curves. The 

volume average elastic strain energy densities are given by 

where the average stresses and strains are derived by averaging the respective tensors over 

each ofthe finite element volumes (V) as 



Combining Eqs. 4.37,4.38 and 4.39 yields 

This equation implies that failure occurs when the sum of various combinations of the six 

ratios o f instantaneous strain energy densities to critical strain energy densities becomes 

equivalent to one. It further suggests that the material is generally orthotropic and each of the 

principal strain energy densities are independent of each another. In this study, Eq. 4.40 was 

implemented in a ANSYS progressive damage routine using the full Newton-Raphson 

incremental iterative method. 

At each load step, every element within the 3-D model of the biavial Iosipescu 

specimen was checked to see if the failure criterion was satisfied. If failure was calculated, 

the element was "killed" by reducing its stifhess to a value well below that of unity (0.50). 

A very small value was necessary to maintain some discrete stiffness and avoid convergence 

di fficul ties. A1 though the element physically remained within the model, there was no 

contribution on calculating the load vector. At each new load step, additional elements which 

met the criterion were failed and the tangent stiffness matrix was recomputed. When 

equilibrium was established between the internal (using the updated tangent stifmess matrix) 

and external load vectors, the analysis was advanced to the next load step. The failed 

elements were stored in each load step in reference to the criticai strain energy density that 

was exceeded. The motivation behind storing the failed elements was: I )  to identify which 

components of Eq. 4.40 were the most representative, and 2) to see if some order of 

qualitative comparison existed with the damage reconstructed from the composite Iosipescu 

specimens using the procedure outlined in following the section. 



1.3.2.2. Damage Recoastruetion 

For 0" UD composite specimens (fibers oriented parallel to the long axis of the Iosipescu 

specimen), failure under all loading conditions, either shear or biaxial, occurs as a result of 

a..ial splits initiated at the roots of the notches [54,58, 60-621. These form parallel to the 

fibers and propagate on one side of the notch tip away From the innermost loading point. The 

split formation is always manifested by two successive drops on the stress-displacement 

curve. Unidirectional composite specimens having 90' fibers (oriented parallel to the notch 

root axis) always fail catastrophically. For all loading angles, cracks originate at the notch 

root and propagate in an unstable manner parallel to the fibers. 

The failure process in both 0' and 90° LJD Iosipescu specimens can be easily 

determined since the failure is through-thickness and the cracks are visible on the specimen 

surface. For the woven fabric composites, the failure process is much more complex and can 

vary through the thickness. Ln this case. the failure characteristics cannot be determined by 

examining only the specimen surface. therefore a detailed analysis of through-thickness 

damage is required. 

In order to thoroughly evaluate the damage zone development and failure modes most 

prevalent in the graphite-PMR 1 5 Iosipescu specimens subjected to shear dominated, biaxial 

loading conditions, specimen dissection and serial image reconstruction are required. Typical 

methods used to image composite material damage rely on SEM backscattering, texture 

mapping, stereo pair imaging, grid generation and solid modeling. The proposed method 

combines certain aspects of these typical methods and yields potentially more useful 

information regarding the initiation and development of damage in the specimens through- 

thickness. 

Following a shear test, the central section of the tested Iosipescu specimen was 

removed along predefined cutting planes (see Figure 4.15) using a Buehler Isomet low speed 

saw. All cuts were made with a diamond-tipped, circular blade immersed in a special cutting 

fluid to permit smoother "'cut" surfaces and keep the blade cool. Once the central specimen 



section was removed, the surface of the sample was saturated with Gatan G-60 quartz- 

crystalline epoxy and pressurized at 3 1 0.3 kPa (45.0 psi) for twenty- four hours to "drive" the 

epoxy into the fracture surfaces. The main reasons for using the Gatan G-60 were its low 

viscosity, temperature curing requirements and capabilities for making sub- y adhesive joints. 

Ailer twenty-four hours of pressurization and curing, the sample was placed in a 6.4 

cm (2.5 in) diameter mold and hard-mounted using sample preparation epoxy. The hard- 

mount allowed for safe handling during the hand polishing process using lapping disks and 

it allowed for secure placement within the SEM. A sample jig was also designed which was 

capable of moving the sample by a specific value in the z-direction. This was necessary to 

consistently maintain the same working distance within the SEM after each polish operation. 

The hard-mounted sample was initially polished just enough to remove the top layer ofepoxy 

and expose the sample surface. This was designated as the z-axis reference surface and 

tagged index-00. Two sets of three image registration holes were located around the 

boundaries of the regions of interest (ROI). One of the sets of image registration holes was 

located at the section center while the other set was located near the top of the notch as 

shown in Figure 4.16. 

ARer exposing index-00, the surface was sputtered with 150 A (5.9 x 104 mils) of 

Au-Pd deposit from a Technics Hummer 11, dc sputtering system. This was done to prevent 

localized charging and poor image sampling during the image capturing process. Images 

were captured using the Zeiss Model 960 analytical SEM in backscatter mode. The working 

distance was fixed at 16.0 mm (0.63 in), the beam current was 20 kV and the maximum 

magnification set by the screen capture board was 45x. ARer imaging index-00, a 350 pm 

i 25 pm ( 13.8 mils * 0.98 mils) thickness was polished away to expose index-01 which was 

again saturated with epoxy. The image capturing and sample polishing processes were 

repeated until the midline of the composite laminate was reached, at which point the 

processes were stopped. It was assumed that the damage would be symmetric about the 

midline since the out-of-plane deformation observed in the Iosipescu specimens, tested in 

shear, appeared to be nearly symmetric. These processes were also repeated on an untested 



specimen to evaluate whether or not polishing caused additional damage. 

From the image captures, 2-D "damage maps" were created using the public domain 

program NIH Image. The program was developed at the U.S. National Institutes of Health 

and is freely available via the internet at httr>:l~rsb.intb.nih.~,ovinih-in~;tu,ei. All indexes were 

treated separately for both the center target and the notch target. A low-pass smoothing filter 

was applied in conjunction with a 3x3 median (rank) Alter and the image threshold was 

manual 1 y adjusted. The combination of both filters and manual thresholding helped to 

establish where the edges ofdamage were relative to the undamaged composite material. The 

filters smoothed out image noise (artifacts) and thresholding separated darker contrast from 

lighter contrast. For this analysis, 3x3 smoothing kernels were of the form 

and were assumed to remove noise from 1-D or 2-D signals while preserving the image 

information content. According to Bovik et nl. [103], the 2-D rank filter may be defined as 

,fg = median{Xi7:(if ,  j') E ~ ( i ,  j ) }  

where W(ij) reflects centering of the filter window at image coordinates (ij). Basically, each 

pixel within a 3x3 neighborhood was replaced with a median value or, all nine pixels were 

sorted and the center was replaced with a median fiom the neighborhood. 

Once the process of edge detection was finished, the maps were stacked in order and 

averaged. resulting in 2-D image composites. At this point, a partial quantitative analysis was 

done to determine the area Fractions of damage as a Function of the depth Eiom the sample 

surface. Objects were analyzed using the public domain program UTHSCSA Image Tool 

1 .E. The program was developed at the University of Texas Health Sciences Center at San 

Antonio and is freely available from the internet by anonymous FTP at maxrad6.uthscsa.edu. 



Important characteristics in the analysis were the number of objects per index, the area of 

each object, the mean area size and standard deviation. 

4.4. Resu Its and Discussion 

Apporerit Elastic Comtants - Two sizes (three types) of strain gages were used to establish 

the effect of gage size on the error in shear modulus calculations as reported by Re/s 5537. 

The legs of the smaller and centrally located rosette were oriented at -45'/904/+45' in a half- 

bridge configuration to evaluate shear strain and the legs of the larger shear gages (either 

side-by-side or stacked) were oriented at r 45'. In both instances, shear strain was directly 

calculated from the measured normal strains using Eq. 4.7 and the shear modulus was 

calculated from the average of shear strains on the front and back faces of each specimen. 

An example of gage size effect on the measured strains from PMR15-type Iosipescu 

specimens is shown in Figure 4.17. It can be seen that there is minimal effect of gage size 

on measured normal strains at 245' for an applied shear stress at or below 20.0 MPa (2.9 

ksi). Specifically. the difference in average shear strain between both gage sizes is less than 

5.0%. This suggests two possibilities: 1) the shear stress and strain distributions along the 

notch root axes of 8HS woven fabric composite Iosipescu specimens are fairly uniform, or 

2) local surface shear stress and strain heterogeneity occurs on a scale smaller than the size 

of the rosette gage [2.3 rnm' (3.6 x 1 o ' ~  in')]. 

Since the average shear strains calculated using either size of gage were nearly 

equivalent for the PMRl5 and Avimid R composite systems, the following results for shear 

modulus. as reported in Table 4.7, were independent of the specified type of gage. The shear 

modulus for each composite system was calculated using the slope of the shear stress-strain 

curve within the first 20% of the linear elastic regime. The ending point ofthe linear regime 

was identified according to the method described in Section 4.1.2.1. That is, the ending point 

on a shear stress-strain curve was that point common to the deviation of several progressive 

reloading curves from a least-squares tit line as shown in Figure 4.18. A scaled 



representation of the departure from a least-squares fit line is shown in Figure 4.18(b) for 

five typical graphite-PMR15 (first plaque) reloading curves. In that instance, the curves 

clearly deviate from the least-squares fit at a shear stress of 23.0 MPa (3.3 ksi) and 

corresponding shear strain of 0.3%. This implies that the shear modulus, i.e. the slope taken 

within the first 20% of the line length, equates to 7.5 GPa (1.09 Msi) for that pmicular 

example. It  can also be seen in Fiawe 4.18(b) that the shear stress-strain response is bilinear 

from 0.3% to 0.6% strain with a 17.0% reduction in the elastic modulus. This reduction, the 

tangent shear modulus, is attributed to the onset of intralaminar damage. 

Figures 4.19(a) and 4.19(b) compare superimposed shear stress-displacement shear 

stress-strain curves of Iosipescu specimens From the third and fourth PMR1 5-type plaques 

with a specimen from the first PMR 15-type plaque. These curves represent specimens tested 

using the biaxial Iosipescu fixture at a = On. The effect of variations in laminate fiber volume 

fraction and manufacturing process are readily apparent. The thicker plaques do not seem to 

demonstrate as substantial of a reduction in applied shear stress when compared to the 

thinner plaque. For a given level of stress, there is also considerably more straining in the 

plaques having a lower volume Fraction of fibers. This seems to suggest that added matrix 

material takes up the additional stress and prolongs a catastrophic type of failure in exchange 

for progressive intralaminar damage. The prolonged progression of intralaminar damage may 

explain the bilinear response seen in the stress-displacement curves for the thicker plaques. 

From the series of standard and off-axis tensile tests, typical examples of stress- 

displacement and stress-strain responses for the third PMRl5 plaque can be seen in Figures 

420(a) and 4ZO(b) (P = O', 15'. 30a, 45'). As the angle between the woven tows and 

principal loading axis increases, the severity of nonlinearity increases similar to that 

exhibited by the shear stress-strain curves for the Iosipescu specimens. Unlike the shear 

stress-displacement and shear stress-strain curves which are vastly different, the off-axis 

tensile stress-displacement and stress-strain curves are similar. With the exception ofthe off- 

axis test at p = 1 5'. the relationship between displacement and strain remains essentially 



constant. This is not the case with the shear tests which require both types of curves to fully 

understand the mechanical response. 

It can be seen in Figure 4.20(b) that the tensile response at P = 0' is linear elastic. 

Although it is not shown in this figure, the entire response could be characterized as elastic- 

brittle which was the case for nearly all of the specimens tested on-axis in tension. In using 

the first 20% of the curve to calculate the tensile modulus, a value of 75.0 GPa (10.9 Msi) 

was amved at for this particular example. The range of values for the tensile modulus as 

determined from all tensile specimens tested on-axis is reported in Table 4.7. Differences 

between the tensile modulus calculated along the warp tows ( I 1 ] and along the fill tows 

{ Z ? ]  were negligible, so the fabrics were considered to be primarily balanced. For the 

purpose of verifying the shear modulus values obtained using the Iosipescu method, the 

range for the shear modulus obtained using the off-axis tests is also reported. For off-&.is 

data, the shear modulus was calculated using the familiar equations of transformation (c.f. 

Eqs. 1.9 and 4.10). On average, the shear modulus obtained using the biarial Iosipescu shear 

test was 7.7% higher than the shear modulus obtained using off-axis tensile test. In off-axis 

tension, the distribution of strain within the gage section of the tensile specimen tended to 

be more uniform than the distribution of strain within the gage section of the biaxial 

Iosipescu specimen, i.e. less parabolic. Therefore, the integrated strain was slightly higher 

which resulted in a lower shear modulus for a given level of applied stress. 

Apparerit Biavial Failure Properties - At room temperature, the graphite-PMR15 specimens 

machined from the same composite plaque possessed quite repeatable loading and failure 

characteristics when subjected to shear (a = Om), shear-tension (-45' c a c 0') shear- 

compression (+45' > a > On) loading conditions. However, comparisons made between these 

biavial loading conditions revealed obvious differences in the characteristics. For example, 

the stress-displacement and stress-strain curves in Figure 4.2 1 show the responses o f 

specimens from the first plaque tested at loading angles of O', +30°, and -30'. The stress- 

displacement responses are quite linear and similar at a lower applied stress, but the 

responses to biavial loading conditions become much more evident at a higher applied stress. 



Clearly, the slopes of both curves for each angle are the greatest in shear followed by shear- 

compression and shear-tension. Moreover, sudden drops in the applied stress are apparent 

upon reaching the maximum load carrying capacity of the specimens. 

In all shear test cases, a general trend towards stress stability was observed afier the 

maximum load carrying capacity was reached. The shear-compression test cases also showed 

some stress stability, but it was more of a gradual declination rather than a plateau beginning 

at a crosshead displacement of 7.0 mm (0.28 in). The exceptions to this observed stress 

stabilization were the shear-tension test cases associated with the larger displacements. Here, 

the responses led to a significant secondary and, at times, a tertiary rise following a drop in 

applied stress. It is believed that these additional rises and falls in stress were a result of the 

transfer of load to intact tows and realignment of the intact tows towards the principal 

loading axis. Since the composite tensile failure stresses are twice the composites 

compressive failure stresses [2 11, it is more likely that the tows could withstand additional 

stress in tension upon realigning. 

The biaxial responses of the graphite-PMR15 specimens machined From the second 

plaque were similar to the biaxial responses of specimens from the first plaque for a low to 

intermediate applied stress. However, the stress-displacement curves did not show the 

presence of a sudden drop in stress after reaching a maximum. Rather, the applied stress 

gradually decreased with no distinct point of inflection on the curves as illustrated in Figure 

4.22. The graphite-Avimid R systems were dependent on the biaxial loading conditions as 

well, but the stress-displacement curves were entirely different (see Fig. 4.22). In all cases, 

a "kneett phenomenon characteristic of propagating multiple transverse matrix cracks was 

observed instead of the sudden drop associated with delaminations and the onset of failure. 

The range of apparent shear and biaxial failure stresses of the composites were 

determined at three key stages in the load history, defined in this investigation as the onset 

of damage (transverse matrix cracking), the onset of failure (delamination) and catastrophic 

failure (maximum load capacity). The values at each of these key stages were evaluated by 

superimposing plots of the stress-displacement and stress-strain curves on the same ordinate 



plot unit-scale. The stress at the onset of damage is the point where the stress-strain response 

begins to deviate from linearity as outlined in Section 4.1.2.1. The stress at the onset of 

failure is the point where the stress-displacement response deviates fiom linearity. The stress 

at catastrophic failure is the point on the stress-displacement curve that is synonymous with 

the maximum applied stress. For determining the point at the onset of failure, one parallel 

line was drawn over the linear regime and a second line was drawn tangent to the inflection 

point. A third vertical line was placed at the intersection of the first two lines and the onset 

of failure was that point formed at the intersection of the vertical line with the stress- 

displacement curve. It is believed that the onset of failure, as defined by this method, 

represents significant damage development on the 8HS woven fabric composites. 

For the bulk of PMR15-type specimens machined fiom the first plaque. the 

interpreted values for the onset of failure and catastrophic failure were nearly identical. 

However, the s tress-displacement curves for the specimens fiom the second plaque displayed 

onsets of failure at values below catastrophic failure. For the Avimid R-type Iosipescu 

specimens, the onset was considered to be the same point as the knee. The shear and biawial 

failure stresses of the composites were evaluated from the average stress in the specimen 

gage section and calculated, at this point, using Eq. 4.4. The ranges of failure stresses 

calculated for the three defined stages of progressive failure are given in Table 4.8. The data 

presented in this table was obtained fiom room temperature tests utilizing the biavial 

Iosipescu fixture with short loading blocks. 

The data in Table 4.8 shows that the shear and biaxial stresses of the PMRIS-type 

specimens, established from the applied stresses at the onset of failure, are generally higher 

than the shear and biavial stresses of the Avimid R-type specimens. The data also shows that 

there is little difference between the stresses for the PMR15-type specimens from the first 

and second plaques. The effect of a tensile dominated loading angle on the failure stress 

seems to be negligible, however the effect of a compressive dominated loading angle 

indicates that compression plays a role in reducing the apparent stress at the onset of failure. 

The Avimid R composite systems show this trend as well, but there is more scatter in the 



experimental results. 

Elevated temperature Iosipescu shear testing (a = 0') of the PMRl5-type composite 

specimens, machined From the second plaque, was performed using the experimental setup 

shown in Figure 4.9. Elevated temperature tests were not performed using the first plaque 

due to an insufficient number of remaining specimens. Elevated temperature shear tests were 

also performed using the Avimid R warp-aligned and 0'/90° composites and all of these 

experiments utilized the biaxial Iosipescu fixture with short loading blocks. The effect of 

different loading block geometries on the elevated temperature failure stresses was not 

examined, again due to an insufficient number of composite specimens. 

The shear stress-displacement curves at various temperatures are shown in Figure 

4.23 for the PMRl5 specimens and in Figures 4.24 and 4.25 for the Avimid R warp-aligned 

and 0'/90° specimens, respectively. It can be seen that the stress-displacement curves for both 

Avirnid R composite architectures show similarities as a function of temperature. However. 

these curves are quite different in comparison to the shear stress-displacement curves for 

PMR15. It can also be seen that the shear stresses at the onset of failure and the maximum 

shear stresses for all three composite systems are influenced by temperature. As for the 

stresses at the onset of damage, they were not established because a distinct inflection point 

on the shear stress-strain curves was undefined. The reason for this was that the stiffness 

decreased much more rapidly than the apparent failure stresses did with increasing 

temperatures. In studying typical representations of the gage strain-shear stress curves (see 

Figure 4.26) for tests at 24.4 "C (76.0 "F), 204.4 O C  (400.0 O C )  and 260.0 "C (500 OF), the 

severity of stiffness reductions are obvious. If the maximum shear stresses from the PMRl5 

composite at these temperatures [120.8 MPa (17.5 ksi), 104.7 MPa (15.2 ksi), 97.2 MPa 

( 14. I ksi)] are compared with the shear moduli [6.0 GPa (0.87 Msi), 3.0 GPa (0.44 Msi), 2.8 

GPa (0.41 Msi)], it is evident that the reduction in strength properties is much smaller than 

the reduction in stilfness properties. 

Certainly, the influence of temperature on the apparent strength properties of Avimid 

R is greater than for PMRlS. The data presented in Table 4.9 and Figures 4.27(a) and (b) 



emphasize this fact more clearly. The data in these figures represents the average of three 

specimens at each indicated temperature. As far as the stresses at the onset of failure are 

concerned, a larger reduction was observed for the Avimid R composites above 200 'C (392 

" F) in comparison to the reduction observed for the PMRI 5 composites. At maximum load 

capacities, this trend was still the same even though the Avimid R tended to perform 20.0% 

better at room temperature. As suggested by Figures 4.27(a) and 4.27(b), the room 

temperature. interlaminar fracture toughness of Avimid R is superior to PMRIS. However, 

the shear stability of the PMRl5 matrix is superior to that of the Avimid R matrix at 

temperatures in excess of 250 'C (482 OF). 

Strrrctiiral Notdhearities - The structural nonlinearities associated with the bimial and 

modified bi&~ial Iosipescu shear tests are geometric and boundary contact nonlinearities. 

These two types of structural nonlinearities encompass the effects associated with large 

material rotations and fi-iction between two surfaces in direct contact as defined in Sections 

4.2.1.1 and 4.2.1 2. For both biaxial shear test methods, five cases of friction were 

considered. More than one case was considered to determine the influence of sliding on the 

stress distributions along the notch root =is of the woven fabric composite losipescu 

specimen. The coefficients ofstatic fiction (p) assumed for the first through fiflh cases were 

0.1.0.3,0.5,0.8 and = (linear elastic), respectively. Unlike the study performed by Ho et al. 

[78]. the purpose here was not to assume that the friction coefficient was known o priori. 

Rather, the purpose was to vary the coefficient over a likely range and determine which 

coefficient had the greatest definitive impact on the stresses (if any) and biaxial ratios as a 

function of the applied loading angle. 

The normal and shear stress distributions along the notch root axis of a woven 

graphite fabric Iosipescu specimen (biaxial) are presented in Figure 4.28 for the five cases 

ofsticking-sliding contact. The stresses are normalized to the applied shear stress for a shear 

strain of 0.6%. The applied shear stress was determined by summing nodal reactions at the 

loading blocks. The position along the notch root axis is given in reference to the origin at 

the specimen center. It can be seen in Figure 4.28 that the influence of sliding on the 



distribution of shear stress at the specimen center is negligible while slightly influential near 

opposing notches. The influence ofsliding on the normal stresses, however, is not negligible. 

As the contact conditions progress from sliding to sticking, the tensile and compressive 

stresses increase by factors of 3.7 and 1.6, respectively. When the specimen is compressed 

and sheared. it  shortens. If specimen shortening is not resisted by friction, the tensile stress 

decreases. Since the fiber reinforcement is orthogonal, some counteraction also occurs from 

the Poisson effect due to compression. 

The increasing trend with the sliding condition is similar for both normal stresses 

although the growth in a,' from 0.5 to 0.8 is considerably less than the growth in q* from 

0.5 to 0.8. Also, the shapes of the normal compressive stress distributions are similar for each 

condition of contact, but the shapes of the transverse tensile stress distributions change for 

each condition of contact. The tensile stress distributions become increasing more parabolic 

as the friction coefficient increases. This indicates greater bending on the inclined notch 

faces as contact progresses From sliding to sticking. The severity of bending also tends to 

grow as loading progresses since the resistance of Friction must increase with the normal 

force to maintain the same coefficient. 

The biaxial ratios of the normal stresses to the applied shear stress are presented in 

Figure 4.29 for the bimial Iosipescu specimen. The variation of the biaxial ratios with the 

applied loading angle is presented for each case of friction. Firstly, it can be seen that stress 

state is always biaxial regardless of the loading angle. Secondly, each group of biaxial ratios 

converges within the domain of the loading angle a between 6' and 12' shear-tension. In this 

domain, the tensile stress at the specimen center is only 2.0-5.0% ofthe shear stress, however 

the compressive stress at the specimen center is nearly 30.0%. For all fixed friction 

coe fticients other than 0.1, the biaxiali ty trends point to changing sticking-contac t sliding 

conditions. These changes suggest that load repartitioning between 30' shear-tension and 20' 

shear-compression causes greater sticking in comparison to sliding. Also, the transition from 

transverse tensile stress (+a,) to transvene compressive stress (-a,) is not centered about the 

0' loading angle. This further implies that sliding is more difficult in shear-compression 



compared to shear-tension. The reason for this is because the loading block surfaces 

penetrate further into the composite material surfaces under shear-compression loading 

conditions. 

In Figure 4.30, the distribution of shear stress along the notch root axis of the biavial 

Iosipescu specimen is shown for each loading angle considered and only for the contact 

condition p = 0.3. Clearly, the distributions under shear-tension or shear-compression 

loading conditions are not evenly spaced on either side of a = 0'. Under shear-tension 

loading conditions, the reduction in shear stress becomes more significant between -1 5' and 

-30'. In addition, the parabolic distribution along the notch root axis tends to flatten in 

comparison to the distribution at +40°. Again, these results reiterate the influence greater 

surface penetration by the loading blocks under shear-compression loading conditions. lfthe 

trcnds in the distributions of shear strain along the notch root axis of biaxial Iosipescu 

specimens are similar to the shear stress distributions, a substantial amount of error in the 

calculation of the shear modulus can be envisaged. This could especially be the circumstance 

when small and centrally located gages were used in conjunction with Eq. 4.5. 

The normal and shear stress distributions along the notch root axis of a woven 

graphite fabric Iosipescu specimen (modified biaxial) are presented in Figure 4.3 1 for the 

five cases of sticking-sliding contact. The stresses are normalized to the applied shear stress 

for a shear strain of 0.6%. The applied shear stress was determined in the same manner as 

for the biaxial Iosipescu specimen. It can be seen in Figure 4.3 1 that the influence of sliding 

on the distribution of shear stress at the specimen center is also negligible with the same 

influence near the opposing notches. The influence of sliding on the normal stresses is much 

less in comparison to the influence of the loading blocks on the normal stresses. The most 

noticeable effects produced by the modified biaxial configuration and varying contact 

conditions are much flatter stress distributions and normal stresses which nearly coincide 

with each other. Also, the growth of the transverse tensile stress with an increasing friction 

coefficient is less compared to the biaxial configuration. For instance, the tensile stress 



increases by a factor of 1.5 from p = 0.1 - - compared with 3.6 for the biaxial configuration. 

The increase in the normal compressive stress component from a factor of 1.6 to 2.8 

coincides with the longer blocks having an increased surface area of contact. 

The biaxial ratios of the normal stresses to the applied shear stress are presented in 

Figure 4.32 for the modified biaxial Iosipescu specimen. The variation of the biaxial ratios 

with the applied loading angle is presented for each case of Friction. The most notable 

difference between these biaxial ratios and the ratios for the short block configuration is that 

the stress state is not always biaxial. What is most interesting is that a state of pure shear 

seems to occur within the range of a between 1 5" and 20' shear-tension. In this regime, there 

is little to no occurrence of the normal stresses acting at the specimen center. Moreover, the 

tensile and compressive biavial ratios are almost juxtaposed for each contact condition and 

the domain is smaller. Obviously, these characteristics are tied fully to the loading block 

configuration which induces a compression field further away From the notch root axis. 

In Figure 4.33, the distribution of shear stress along the notch root axis of the 

modified biaxial Iosipescu specimen is shown for each loading angle considered and only 

for the contact condition p = 0.3. Similar to the biaxial Iosipescu specimen, the biavial shear 

stress distributions are not evenly spaced on either side of a = 0'. It can also be seen that the 

shear stress at the center for 15" shear-compression drops below the shear stress at 0' due to 

load repartitioning and an immediate change From sticking to sliding. In comparison to the 

shear stress distributions for the biaxial load case, a large reduction in the shear stress also 

occurs for the modified biaxial case from 15" to 30" shear-tension. Furthermore, the trend in 

the parabolic shape of the distributions is the same but the distributions are even flatter than 

those associated with the biaxial case. 

In Table 4.10, the internal stresses are shown for the two finite element models 

loaded in shear with 1.0 mm (0.04 in), 2.0 mm (0.08 in) and 3.0 mm (0.12) prescribed 

displacements and a coefficient of static friction p = 0.3. The shear stresses are calculated 

in the same manner as the previous examples. Again, the nonlinear effects, geometric and 



boundary contact nonlinearities, have marginal influence on internal shear stresses and 

greater influence on normal stresses for both models. There is good agreement between the 

shear stresses determined at the specimen center and from nodal summation. It can be seen 

that the growth of compression along the notch root axis a, in the biaxial model is high, 

almost 50% of the shear stress. The growth of compression in the modified biwial model 

having longer loading blocks is smaller in comparison. In this case, the compression grow 

to about 10% of the shear stress. This is not surprising since the long blocks, in accordance 

with the ASTM standard, were designed to reduce the compression by moving the centers 

of force distribution away from the notch root axis. 

It can be expected that the stresses in the Iosipescu specimen will change if the 

specimen is rotated either towards shear-tension or shear-compression. It is clearly evident 

that the loading angle affects the mechanical response of the specimen in a manner similar 

to what is observed experimentally as shown in Figure 4.2 1. What is more important is the 

fact that the stresses at the center of the biaxial losipescu specimen are always biaxial and 

large compressive stresses are always present, despite the angle of applied load. Examination 

of the stresses at the center of a modified biaxial Iosipescu specimen, as a function of the 

loading angle, reveals that the normal compressive stress can be entirely eliminated if the 

specimen is loaded at an angle between 15-20' shear-tension. Within this range, the shear 

stress field in the gage section is nearly with only a small tensile stress component. This 

small of a tensile stress component cannot affect the process of failure considerably in the 

woven fabric composites. 

Effects of Loading Points - The biaxial fixture employs short loading blocks. It has 

previously been shown that large compressive stresses develop in the specimen gage section 

for blocks of this geometry. It could be speculated that the in-plane compression along the 

notch root axes of the fabric composite specimens might affect the failure load and mode of 

failure. In the previous section, it was shown that the compression may be entirely eliminated 

by employing a modified loading block geometry and by rotating the specimens toward 

shear-tension. 



Since the admixture of the old and newly designed blocks (refer to Appendix D) 

permits different combinations of in-plane biaxial shear and compressive stress fields to be 

generated, their effects on the failure processes in PMRI 5 and Avimid R composites can be 

studied. If the compression generated by the shorter loading block configuration was 

influential in promoting the failure process in the composites, both the applied loads at the 

onset of failure and the applied maximum loads should increase with application of the 

longer blocks. As seen in Table 4.1 1, this speculation is clearly contradicted. Table 4.1 1 

shows that there are significant differences between the failure loads for the thinner and 

thicker PMRl5 specimens tested in the fixture using the shorter loading blocks. These 

differences most likely are due to improved interlaminar strength resulting from variation in 

the matrix volume fraction. However, if the failure loads are compared for specimens taken 

from the same plaque, the change due to block configuration is insignificant. 

The same statement can be made in regard to Avimid R samples tested under the 

same conditions. For these materials (warp-aligned), the average load at the onset of failure 

(knee) was 4.56 kN ( 1.03 kips) when the short loading blocks were used while the average 

maximum load was 6.45 kN (1.45 kips). If these loads are compared with the loads for the 

same specimen tested in shear using the longer blocks [4.89 kN (1.10 kips) and 6.56 kN 

( I  .47 kips)], it can immediately be concluded that the effect of the normal compression on 

the failure loads is negligible. This same behavior was also observed for the 0e/90* 

specimens tested in shear using the two different loading block geometries. In this case, the 

average loads at the knee and the average maximum loads for the short blocks were 4.55 

kN(1.02 kips) and 6.75 kN (1.52 kips) whereas the same average loads for the specimens 

tested using the longer blocks were 4.89 kN (1.10 kips) and 6.56 W (1.17 kips). 

respectively. 

Effects of Load Eccentricities - The resultant moments and global loads are shown in Tables 

J.l2(a) and 412(b) for the five eccentric cases (including in-plane biaxial loads), two 

different loading block geometries and biaxial loading conditions (applied shear, shear- 

tension and shear-compression). It can be seen that the elfect of eccentric loads on the 



resultant moments and reactions is quite substantial. Significant differences can also be 

observed for the effect of the eccentric loads on the moments and reactions from the biaxial 

(short blocks) and modified biaxial (long blocks) loading block configurations. For the same 

applied displacements, type ofeccentricity and biaxial loading condition, the resultant forces 

and moments from the short blocks are much higher. The forces and moments are also 

noticeably affected by the biaxial loading conditions, especially for the shon block 

configuration. The highest resultant forces occur for in-plane shear-compression loading 

without eccentricities present (Case (A), shear-compression) followed by the cases of pure 

shear and shear-tension. Most importantly, for all biaxial loading conditions and both block 

geometries in Cases (A) and (E), there are no resultant axial M,, bending My and shear M, 

moments on either side of the specimen. For Cases @), (C) and (D), the resultant moments 

M,. M, and M, are very high with the highest M, and M, for Case (C) and the highest M, for 

Case (B). 

Since large axial, bending and shear moments are present if the specimens are 

modeled with eccentric loads (Cases (B), (C) and (D)), large differences should be observed 

in the shear strain calculations on the front and back surfaces. The axial, bending and shear 

moments must generate out-of-plane deformations of the Iosipescu specimens either for the 

case of shear or for shear dominated biaxial loading conditions. Figures 4.34 and 4.35 show 

the integrated shear strains on the fiont and back surfaces for the five load cases and two 

block geometries considered with shear, shear-tension and shear-compression loads. If the 

specimens are loaded in-plane in pure shear, shear-compression and shear-tension without 

eccentric loading, i.e. Case (A), no difference is observed for the shear strains on the Front 

and back specimen surfaces. This is true for both loading block geometries. 

Rotation of the specimen changes the magnitude of integrated shear strains. For the 

same applied displacement, the magnitudes of shear strains are higher for the short loading 

blocks. For Cases (B), (C) and (D), the differences between the front and back shear strains 

are noticeable with the difference being the largest for Case (C). This implies that the 

twisting of the specimen will result in the largest difference between the front to back shear 



strain measurements. However, this difference is not caused by the axial moment M,. The 

bending moment My is the largest in Case (C) and is generated in addition to M, when the 

specimen is permitted to twist. Therefore, the bending moment must generate large out-of- 

plane bending deformation which causes increased front to back shear strain diKerence. The 

bending moment M, arises from the anti-symmetric action of the loading blocks on the 

specimen and cannot be avoided. For Case (C), this action is more severe than for the other 

cases. However, the severity is somewhat lessened through the use of the longer blocks. 

The magnitudes of the out-of-plane displacements 6,  are also shown in Figures 4.34 

and 4.35 for the eccentric load cases, three shear dominated biaxial loading conditions and 

two block geometries. In the case of in-plane biaxial loads (without eccentricities), the out- 

of-plane displacements are the highest when the specimens are loaded in shear-compression 

(Poisson effect). The magnitude of these displacements increases substantially when 

eccentric loads are present. particularly for Case (C). Twisting of the specimens generates 

not only M,, but also increasingly higher M, which forces the specimen surfaces out-of-plane 

in a curved manner. This curvature becomes more pronounced when boundary contact 

(friction) is considered at the interfaces between the loading blocks and specimens. 

[n addition to the evaluation of shear strains on the front and back specimen surfaces, 

the strain and stress gradients through the thicknesses of the layered Iosipescu specimens 

were also considered. The magnitude of shear stress in each of the composite layen is 

significantly higher than magnitude of shear stress in each of the polyirnide matrix layers. 

The largest shear stress gradients occur in Case (C) for both loading block configurations, 

however the effect ofeccentric loads on the gradients appears to be weaker for the long block 

configuration. Shear strain gradients are also present for all eccentric load cases except Case 

(A) and Case (E). Similar to the stress gradients, the long block configuration also weakens 

the effect of eccentric loads on the strain gradients. 

[t can be observed From the data presented in Figures 4.34 and 4.35 that the eccentric 

loads are responsible for the difference in shear strains measured for a variety of Iosipescu 

specimens subjected either to shear, shear-tension or shear-compression. Since the eccentric 



loads also affect the stress distributions through the specimen thickness, it can be expected 

that they should affect the failure process. Even if loading block geometries similar to the 

longer blocks (modified biaxial) are employed, eccentric loads will substantially influence 

the measurements of shear strain and determination of apparent shear strength. If specimen 

twisting is allowed, large axial M, and bending My moments will be generated which create 

large shear stress and strain gradients through the specimen thickness. The magnitudes of the 

moments and gradients will not only depend on the amount of torsion, but also on the 

composite architecture studied using either the shear or biaxial Iosipescu tests. 

The presence of eccentric loads will also affect the failure analysis of composites 

using the Iosipescu test, but their influence on the failure process will strongly depend on the 

nonlinear material behavior. Iosipescu specimens must be modeled considering the effect of 

eccentric loads in conjunction with boundary contact, geometric and material nonlinearities. 

The material nonlinearities, which could be due to plasticity and(or) damage, might either 

increase or decrease the effect of eccentric loads on the failure process. 

Plastic Defurrtiation - The theory which was adopted to model the elastoplastic deformation 

in the woven fabric composite biaxial Iosipescu specimens extended Hill's theory for 

orthotropic solids. Hill's theory proposed a quadratic yield function in terms of stresses to 

reflect the differences in strength due to anisotropy. The extension to his theory accounts for 

strength differences in tension and compression as well. The main drawback in implementing 

the extended theory to account for the plastic deformation in the woven fabric composites 

is quasi-isotropy. That is, the requirements for consistency & a closed, elliptical yield 

surface are ill-suited for quasi-isotropic behavior. These requirements, per the definitions 

given in Section 4.3.1, are well-suited for highly anisotropic behavior. 

For consistency coincident with a closed and elliptical yield surface at 20% plastic 

straining, the compressive strength requirements in the { 1 1 ) and (22 ) directions needed to 

be 40% higher than the values reported in [ I l l .  Also, the tensile strength requirement for 

{ 3 3 } needed to be marginally higher than the value assumed according to 0' LID graphite- 

polyimide data. Initially, this caused some concern as a potential for generating 



underestimates of ( 1 1 ) and (22) plastic straining. However, a review of the numerical data 

over the applied shear load history revealed that the parameters most responsible For 

satisfying the yield function were not in terms of -a,, or -a,?. The yield function was 

principally satisfied in terms of o,, and +a,, to a lesser extent. Since the tensile strength in 

(33 } was overestimated. the (u) plastic zones represented by the plastic strain contoun in 

Figure 436(b) through Figure 4.40(b) are slightly underestimated. 

The in-plane shear (y$) and transverse tensile (E$') plastic strain contours for an 

applied shear stress of 19.6 MPa (2.8 ksi) are shown in Figure 4.36. In Figure 4.36(a), it can 

be seen that plastic shear deformation initially occurs beneath the inner comers of the inner 

opposed loading blocks. Simultaneously, transverse tensile plastic zones begin to form in the 

same regions as shown in Figure 4.36(b). The formation of these zones at the indicated 

locations seems reasonable for a shear stress of 29.6 MPa (2.8 ksi), since a minute amount 

of crushing is actually observed within the same regions olthe composite specimens For im 

applied shear stress of approximately 25.0 MPa (3.6 ksi). Moreover, the shapes of the 

depressions observed on the specimen contacting surfaces beneath the loading blocks suggest 

deformation (crushing process) which could be associated with transverse tensile plastic 

strains. 

For an applied shear stress of 25.8 MPa (3.7 ksi), the plastic in-plane shear strain and 

transverse tensile strain contoun are shown in Figures 4.37(a) and (b), respectively. Plastic 

shear deformation occurs at the opposing notches and merges with the zones formed beneath 

the inner loading blocks. Immediately, the plastic shear deformation at each notch progresses 

toward the center of the biaxial model along the notch root axis as shown in Figure 4.37(a). 

In Figure 4.37(b), it can be noticed that transverse tensile plastic straining progresses by a 

small amount along the inclined notch faces adjacent to the inner blocks. This is due to and 

increase in bending along the inclined face coupled with shear along the notch root axis. The 

in-plane shear (y,:') and transverse tensile (cZP') plastic strain contours for an applied shear 

stress of 3 1.9 MPa (4.6 ksi) are shown in Figure 4.38. As shown in Figure 4.38(a), growth 

ofthe plastic shear zone advances in size and magnitude according to the sequence described 



above while growth of the plastic transverse tensile zones advance to the notches [Figure 

4.38(b)]. 

At an applied shear stress of6 1.4 MPa (8.9 ksi), the size of the in-plane shear [Figure 

4.39(a)] and transverse tensile [Figure 4.39(b)] plastic strain zones are considerable in 

comparison to the size of the zones at 48% lower applied stress. Within the gage section of 

the biaxial Iosipescu model, plastic shear straining has increased by a full-order of magnitude 

as seen in Figure 4.39(a). In Figure 4.39(b), transverse tensile plastic straining has increased 

by a half-order of magnitude and the zones at the opposing notches have merged into the 

center of the gage section. At this level of stress, it is conceivable, judging from the shape 

and magnitude of the plastic transvene tensile strain contours, that coupling between shear 

within in the gage section and bending along the notch faces has been fully realized. 

For an applied shear stress of 90.7 MPa (13.2 ksi), the shear and bending coupling 

within the notch regions causes transverse compressive plastic straining at the juxtaposed 

face of each notch. This effect can be seen in Figure 4.40(b). Assuming that interlaminar 

cracks are present within the gage section of the specimen at this stress level. the state of 

strain in Figure 4.40(b) implies that subsequent crack nucleation and growth are anti- 

symmetric. That is, the positive transverse strain on the upper right and lower let? inclined 

notch faces generates crack opening displacements while the negative transverse strain on 

the upper left and lower right inclined notch faces generates crack closing displacements. In 

comparison, the change in the state of plastic shear strain [see Figure 4.40(a)] at 90.7 MPa 

(1 3.2 ksi) is minimal and practically implies uniformity of plastic distortion within the gage 

section. 

Dam age Morpltology - The deformation and failure processes in the graphite-PMR 1 5 

Iosipescu specimens were vastly different compared to the graphite-Avimid R specimens. 

Moreover. the deformation and failure processes seemed to depend highly on plaque 

thickness. matrix properties and ply configuration, e.g. warp-aligned versus 0'190'. As far 

as both PMR-type composite systems are concerned, the macrofailure process starts with 

some evidence of intralaminar and translaminar cracking which eventually leads to the 



formation of principally large delaminations within the specimen gage section. These 

delaminations are especially large in the case of specimens machined from the first plaque. 

Eventually, one or more of the interlaminar cracks propagates catastrophically. This results 

in a rapid drop in applied load and permanent, out-of-plane deformation (bulging) on both 

specimen faces. For the thicker plaques (second, third and fourth), the formation of 

interlaminar cracks and large delaminations is constrained due to, perhaps, higher 

in terlaminar fracture toughness properties. In these cases, the rapid drops in applied load 

were not observed. 

The sequence of events leading to in-plane kinking, bulging (see Figure 4.43) and 

transverse kinking as a specimen is loaded is shown in Figures 4.41-4.42. It can be seen in 

Figure 4.43(a) that damage along the notch roots has progressed to the stage when 

interlaminar cracks have manifested between all plies with substantial evidence of intra- and 

translaminar cracking. At the stage ofcatastrophic failure as shown in Figure 4.43(b), out-of- 

plane deformation and transverse kinking are severe. These effects are more pronounced 

under shear-compression loading conditions because larger in-plane compressive stresses are 

generated within the gage section (refer to the biaxial ratios in Figs. 4.29 and 4.32). Since the 

compressive stresses are larger, opening displacements will occur at the tips of interlaminar 

cracks, thereby making the interlarninar failure process easier. This might explain why the 

maximum applied load (stress) for specimens tested in shear-compression decreases 

continually subsequent to reaching a maximum stress. For specimens tested under shear- 

tension loading conditions, it would be expected that the interlarninar failure process is more 

difficult since closing displacements are created. 

The macrofailure process that determines failure in the Avimid R-type composite 

systems is the formation of principally intralarninar cracks along the notch root axis. The 

second mechanism is the ensuing formation of interlarninar cracks. These interlaminar cracks 

begin to form at the time when the "knee" becomes noticeable on the stress-displacement 

curve. Since this composite system appears to have good interlarninar fracture properties, e.g. 
G,,AW~IJ R = 1.0 kl/m2 (68.6 fi-lbsltt') and G,,'"~ I S  = 0.3 kJ/mL (20.6 A-lbs/A2), the 



interlaminar failure process is not as severe as for the PMR 15-type system and it always 

occurs at a higher applied stress. Therefore, it is expected the less out-of-plane deformation 

would be exhibited which was the case in this investigation. 

The morphology of the damage zones within the gage sections of the Iosipescu 

specimens tested at elevated temperatures seems to be similar to the specimen damage 

morphology at room temperature. That is, the same form of permanent deformation was 

observed and associated with interlaminar cracking. However, it is difficult to assess, at this 

stage. whether the cracking was more or less severe in the elevated temperature specimens 

compared to the room temperature specimens. 

2-D Darnage Recoristruction - Figures 4.44 and 4.45 present 2-D damage maps for a shear 

tested graphite-PMR 1 5 Iosipescu specimen from the second plaque. The shaded areas shown 

in these maps represent damage generated at the specimen center [Fig. 4.44(b)] and an area 

very close to the notch root [Fig. 4.44(a)]. Each 2-D damage map denotes an approximate 

area on the specimen of 9.0 mmL (1.4 x lo-' in2) which is 9.5% of the square area of a repeat 

unit cell. Below each pixel-by-pixel averaged composite damage map, a profile plot is 

presented showing the relative pixel contrast intensities, by average gray values, as a function 

of the image width. The profile plot illustrates where the majority of cracking is distributed 

across each map and gives an indication of crack size compared to the image width. From 

these maps, the location and magnitude of local damage in the sample areas can be estimated. 

Following the shear test, an observation of the Iosipescu specimen surface indicated 

that the woven tows were reoriented From their initial orientations. In fact, all of the woven 

fabric specimens tested in shear and off-axis showed this characteristic. Prior to the test, the 

tows were orthogonal with the long axis and notch root axis ofthe specimen. Due to the large 

shear stresses generated during the shear test, tow rotation took place within the gage section 

and the final tow orientation was 45" from the notch root axis. From this, it is not 

unreasonable to assume that the diagonal shaded areas on both maps could represent a 

combination of intralarninar failure at the tow matrix interfaces and failure at the tow 

undulations. 



Very little cracking is evident in the longitudinal direction, i.e. parallel to the long 

axis of the specimen. The vertical cracking, indicated by the much larger areas on the left 

sides of the maps, seems to represent the interlaminar failure process. It is possible that one 

or several of the vertical cracks could be associated with the CDS (onset of failure) and 

maximum load capacities shown on the stress-strain and stress-displacement curves (see Fig. 

1.19). From these damage map results and the results presented for the analysis of lamina 

stress distributions in Section 3.3, it might prove worthwhile to speculate on a reasonable 

sequence of events related to understanding the failure processes in shear. 

First of all. the shearing process probably causes the matrix rich pockets and tow 

boundaries to fail in tension which permits easier rotation of the tows. Secondly, the CDS 

is defined when enough intralarninar damage progressively develops to the point where the 

bridging regions can no longer transfer load and the interlaced regions fail. Almost 

simultaneously, the ends of the specimen move toward the specimen centerline and the tows 

kink as a result of shear and compression. Finally, at some critical point in the loading 

history, interlaminar cracks develop and propagate under tiansvene normal tension. The 

increased normal tension in combination with progressive interlaminar cracking permits the 

specimen to bulge out-of-plane from its centerline which forces the tows to transversely kink 

as shown in Figure 4.43(b). If the fracture toughness GIc of the interfaces between layen is 

low, some portion of the interlaminar cracks can propagate catastrophically within the 

specimen causing a noticeable drop in the applied load. 

Since it can be argued that the damage shown in the maps could be artifacts and(or) 

induced during the sample surface polishing steps, an untested specimen was also subjected 

to the same procedure. Figures 4.45(a) and 4.45(b) represent the untested center and notch 

target maps prepared using the techniques described in Section 1.3.2.2. The differences 

between tested and untested center target maps are obvious as are the differences between 

tested and untested notch target maps. The shaded regions on the maps belonging to the 

untested sample likely represent the voids trapped during the process of manufacturing the 

composite plaques. Significant damage caused by the polishing process is not readily 



obvious from the center and notch target maps. 

An important observation can be made when comparing the maps presented in Figs. 

414(a) and 4.44(b). Clearly, the amount of damage generated at the center of the Iosipescu 

specimen is much higher than the damage generated close to the notch root. It seems as if the 

specimen developed large shear stresses at its center in the absence of high stress 

concentrations at the roots of the notches. If this is true, then the woven fabric composite 

materials offer an advantage in shear testing over LJD composite materials by avoiding the 

questionable influences of stress concentrations on the failure process. However, for this fact 

to be of merit, the reconstructed damage must be quantifiable in some fashion that enables 

comparisons to be made. 

Damage area fractions represent the ratio of crack-inclusive areas to the total area. 

In this study. all images that were captured for reconstruction retained a 230,400 sq. pixel 

area. i.e. a 480 x 480 resolution. Figure 4.46 shows the measured difference in damage 

between the center and notch targets by relating the area fraction of damage to the distance 

from the specimen surface. It can be seen that damage accumulated near the upper notch is 

less significant compared to the specimen center. The area fraction for the notch target area 

ranges from 3% to just over 4% while the area fraction for the center target area progresses 

from 8% to 12.5%. It seems as if the shear initiated catastrophic failure (load reduction) may 

originate near the centerline of the specimen and propagate outwards in two directions, 

through-thickness and along the length. From Figure 4.46, it is evident that the polishing 

operation does not alter the state of the material since the area fractions range from 0.3% to 

0.68% for both targets. Also, these values are nearly identical to the measurements reported 

from C-SCAN data following the post-cure of the composite plaques. 

Another important observation can be made by comparing these 2-D damage results 

with the plastic strain contours shown in Figures 4.36-4.40. If it is believed that plastic 

strains could give some indications of the onset of damage and initiation of failure in these 

composites, then the 2-D damage maps contradict the 3-D plasticity analysis for shear. The 

plasticity contours suggested that plastic shear straining originated under the loading blocks 



and propagated rapidly to the notches prior to advancing towards the specimen center. This 

would mean that the measured damage at the notch roots of the Iosipescu specimen should 

be at least equivalent to, if not greater than the measured damage at the specimen center. 

Since this is clearly not the case, one or more of the following facts must be true: ( I )  the 

proposed method of 2-D damage reconstruction does not adequately capture the majority of 

damage within the composite, (2) the composite does not behave in shear according to the 

proposed plasticity model, or (3) the assumption that plastic straining might suggest yield 

and initiation of failure is a bad assumption for these composite materials. 

Predictitlg Progressive Damage - As presented in Section 4.3.2.1, a novel failure criterion 

was proposed to model the macroscale progressive damage in woven fabric composite 

Iosipescu specimens. The criterion is based on the summation of the ratios of average strain 

energy densities to critical strain energy densities determined From experimental stress-strain 

curves. The failure criterion, defined by Eq. 4.40, implies that failure occurs when the sum 

of the six ratios becomes equivalent to or exceeds unity. 

For this study, every element within the numerical model of the biaxial Iosipescu 

specimen was checked at the end of each load step to see if the failure criterion was satisfied 

(refer to Appendix C. 1.3 for the example ANSYS input file). When failure was detected, the 

element was "killed" by simply reducing its total stiffhess to 50% of its initial value. This 

percent reduction in stifhess was selected on the basis of the difference between the 

experimentally observed shear stress prior to catastrophic failure and the shear stress 

observed upon stability after failure. The criterion and stifhess reduction scheme were 

established in terms of the total element distortion rather than distortion in one or more 

principal directions. This meant that any residual stifhesses were not preferential to the 

direc tion(s) where failure went undetected. The advantage of this progressive damage 

scheme was the ease in which it could be implemented using ANSYS. The disadvantage of 

this progressive damage scheme was a lack of sense for the direction in which damage 

progressed, wherefore, it was suitable for merely a macroscale study. 

The elements within the gage section of the biaxial Iosipescu model that were 



predicted by the criterion to fail are shown in Figures 4.47 and 4.48 for numerically 

integrated shear strains (along the notch root axis) ranging from 0.38% to 2.25%. The 

measured volumes of recalled elements which were damaged are also presented. It can be 

seen in Figure 4.47 that damage due to applied shear (a = 0') is first predicted along the 

notch faces and is oriented anti-symmetrically with respect to the notch root axis. According 

to the model, this first occurrence happens at a calculated shear strain of 0.38%, nearly 

synonymous with the point predicted by the analysis considering anisotropic plasticity 

singularly. It can also be seen that the most substantial increase in the progression of damage 

occurs between 0.38% and 0.75% shear strain. h terms of the calculated volume of damage. 

there is a greater than full-order of magnitude increase from 29.1 mm' (0.2 x 10" in3) to 

365.3 mrn"(2.1 x 10" in3). However, between shear strains of 1 .SO%, 1.88% and 2.25% 

(Figure 4.48), the growth of damage diminishes to approximately 10% with a maximum 

predicted damage volume of 1 105.9 mm' (6.7 x 1u2 in'). 

In Figure 4.49, the shear stress-strain curves, considering structural nonlinearities. 

anisotropic plasticity and anisotropic plasticity coupled with progressive damage, are 

compared to typical experimental shear stress-strain curves obtained from biaxial Iosipescu 

specimens belonging to the fourth composite plaque. Clearly, the results from the progressive 

damage analysis are in the best agreement with the experimental data. In fact, the agreement 

is quite good. Moreover, the damage model has predicted the onset of damage at 25.0 MPa 

(3.6 ksi). Comparing with a typical experimental value of 23.0 MPa (3.3 ksi) for the onset 

of damage [c.f. Figure 4.18(b)], yields a difference of less than 10%. This means that the 

nonlinear shear stress-strain behavior is almost entirely attributed to the progression of 

damage and has very little to do with plastic deformation or structural nonlinearities. It also 

implies that any numerical analysis of the Iosipescu test, for the purpose of predicting 

macroscale shear stress-strain behavior and strength properties, must include structural and 

material nonlinearities. A linear elastic approach, often adopted in the past by researchers. 

would lead to a substantial discrepancy. 

In comparing the volumes of damage generated numerically with the Fractions 



produced from the serial reconstruction technique presented in Section 4.3.2.2, it is apparent 

that an acceptable and practical quantitative correlation is not possible. Due to computational 

constraints, the biaxial Iosipescu model was generated to have a single-element thickness. 

Even though the physical damage in the gage sections of the woven fabric composite 

specimens seems to be constant through-thickness, the reconstruction technique tends to 

capture more micro- and mesoscale information. Intuitively, it does not make sense to 

attempt some quantitative comparison of damage acquired by two different methods at two 

di fferent scales. From a qualitative viewpoint however, the shape of the cumulative physical 

damage zone within the gage section of the specimen does compare very well with the 

numerically generated damage zone. Without knowledge of a practical correlation though, 

i t  is merely a coincidence that the maximum numerical damage Fraction of 14.1% [total 

model volume of 7840.4 mm3 (0.5 in3)] is similar to the reconstructed fraction of 12.5% 

(Figure 4.46). 

The progression of macroscale damage in the woven 8HS fabric composite, due to 

an applied in-plane shear stress, was found numerically to follow a sigmoidal growth 

function of percent shear strain as given by 

where f,(y,) is the damage growth function in terms ofthe total (elastic+plastic) shear strain 

and y,? is the total percent shear strain. The function given by Eq. 4.43 yielded a coefficient 

of determination ? of 0.9996.This damage function still requires testing for uniqueness 

against physical damage data. A supplemental technique for serial reconstruction of 

transverse sections has been pursued, but problems still exist in regard to the accuracy of 

stacked image registration. Once a solution to this problem has been found, three- 

dimensional damage fractions can be measured and tested against Eq. 4.43. A reasonable and 

unique fit may confirm both the reconstruction method and progressive damage scheme. 





Table 4.2. Description of ANSYS 5.3 capabilities for solving problems 
involving geometric nonlinearities. (c-f. [79]) 

Geometric Strains Rotations Shape Changes 
Nonlinearity 

Large Strain YES YES YES 
(assumed finite) (may be large) 

Large Deflection YES 
(assumed 

small) 

YES NO 
( large (only rigid body) 

Stress Stiffening YES YES ---- 
(assumed (assumed small) 

small) 1 "-order approximation 

Spin Softening YES YES 
(assumed (assumed sma 11) 

small) radial mass motion and 
subject to angular velocity 

Table 4.3. Material properties assumed in the 3-D analyses of load eccentricities 
imposed on the biaxial and modified biavial Iosipescu specimens. 

Material Material Properties - GPa (Msi)' 

El, Ex E33 G12 GI3 C ,  v,, "13 v, 

Composite 70.0 70.0 1 1.3 7.0 4.9 5.1 0.10 0.25 0.27 
(10.2) (10.2) (1.6) (1.0) (0.7) (0.72) 

Matrix 4.0 4.0 4.0 1.5 1.5 1.5 0.35 0.35 0.35 
(0.58) (0.58) (0.58) (0.2) (0.2) (0.2) 

Block 400.0 400.0 400.0 153.8 153.8 153.8 0.30 0.30 0.30 
(58.0) (58.0) (58.0) (22.3) (22.3) (22.3) 

'.+~ssigned to specified layers ( 3  1 total) within SOLID46 elements. 
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Table 4.6. Material properties, yield stresses and tangent moduli assumed for 
the 3-D anisotropic plasticity analysis based on Hill's orthotropic 
yield function and the variations of tension and compression. 

Material Material Properties - GPa ( ~ s i ) '  

E l  I E2Z E33 G12 GI,  % v ~ 2  '13 '23 

Composite 70.0 70.0 11.3 7.0 4.9 5.1 0.10 0.25 0.27 
(10.2) (10.2) (1.6) (1.0) (0.7) (0.72) 

Matrix 4.0 4.0 4.0 1.5 1.5 1.5 0.35 0.35 0.35 
(0.58) (0.58) (0.58) (0.2) (0.2) (0.2) 

Block 400.0 400.0 400.0 153.8 153.8 153.8 0.30 0.30 0.30 
(58.0) (58.0) (58.0) (22.3) (22.3) (22-3) 

Yield Stresses - MPa (ksi)" 

Composite 990.0 990.0 990.0 990.0 497.0 497.0 95.0 53.0 53.0 
(144) (144) (144) (144) (72.1) (72.1) (13.8) (7.7) (7.7) 

-- . . 

Tangent Moduli - ~ultiplier"' 

E ' L I  1 E',, , EL2 E'c.22 E,3 E', G G I  G', 

Composite 0.01 0.01 0.01 0.01 .0064 ,0064 0.0 0.0 0.0 

'Assigned to SOLID95 structural brick elements. 
t t  Based on iterations which satisfy consistency (Eq. 4.33) and a closed diptical yield surface (Eq. 4.34). 
t*t 

Assumcs nearly linear elastic normal behavior and elastic, perfect plastic shear behavior. 



Table 4.7. Apparent elastic properties obtained by off-axis tensile and biaxial 
Iosipescu shear experiments (verification in Section 3). 

Apparent Elastic Properties 
Experimental Test 

E,, GPa E,, GPa G, ,  CPa VI 2 

On-Axis / Off-Axis Tension 76.9 * 6.2 76.9 * 6.2 6.0 i 0.5 .08 k .03 
( * 9 )  ( 1 1 . 9 )  (.9*.07) 

Biaxial Iosiprscu Shear 6.5 * 1 .O 

Table 4.8. Apparent stresses for graphite-polyimide Iosipescu specimens established 
at the onset of damage (O.O.D.), the onset of failure (O.O.F.) and 
catastrophic failure (C.F.). 

Average Apparent Stresses 

u 
O.O.D. MPa 0.0.F. MPa C.F. MPa 

(ksi) (ksi) (ksi) 

PMR AVRi AVR2 PMR AVRI AVR2 PMR AVR1 AVRZ 



Table 4.9. Apparent stresses for graphite-polyimide Iosipescu specimens established 
at the onset of failure (O.O.F.) and catastrophic failure (C.F.) as a function 
of temperature. 

Temperature O C  Average Apparent Stresses System 
(OF) O.O.F. MPa (ksi) C.F. MPa (ksi) 

3 15.6 (600.0) 53.1 (7.7) 72.0 ( 10.4) 

Avimid R-1 24.4 (76.0) 102.6 ( 14.9) 137.5 ( 19.9) 

204.4 (400.0) 77.4 ( 1 1.2) 1 13.5 ( 16.5) 

232.2 (450.0) 68.0 (9.9) 107.6 ( 15.6) 

260.0 (500.0) 54.4 (7.9) 94.6 ( 1 3.7) 

3 1 5.6 (600.0) 23.1 (3.4) 36.1 (5.2) 

Avimid R-2 24.4 (76.0) 100.1 ( 14.5) 147.3 (2 1.4) 

204.4 (400.0) 74.5 ( 10.8) 118.2 (17.1) 

232.2 (450.0) 70.9 ( 10.3) 1 17.0 ( 17.0) 

260.0 (500.0) 50.8 (7.4) 108.7 ( 15.8) 

3 1 5.6 (600.0) 27.2 (3.9) 46.1 (6.7) 

Note: Avimid R-1 denotes the warpaligned composite system and Avirnid R-2 denotes 
the OG.!'90 " composite system, 



l'able 4.10. Linear elastic and nonlinear sotutions to intcrnd strcsscs at the ccntcr ot'thc biaxial and ~nodif'red 
biaxial losipescu models. 

Modcl Nonlinear Solutiont Linear Elastic solutiontt 

6-mm(in)  a , -MPa a,-MPa 7,-MPa P IA-MPa a , -MPa a , . -MPa  T,,-MPa P/A-MPa 
( ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) 

Biaxial 1.0 (0.04) - 14.5 - 183.1 -500.5 -526.3 5.7 - 147.2 -530.8 -557.7 
( 2  I ) (-26.6) (-72.6) (-76.3) (0.8) (-2 1.3) (-77.0) (-80.9) 

Modified I.O(O.04) 
-22.9 -183.1 -323.7 -307.9 7.9 -27.9 -365.5 -353.1 

Biaxiai (-3.3) (-26.6) (-46.9) (-44.7) ( 1 . 1 )  (-4. I ) (-53.0) (-5 1.2) 

Solution obtaincd sssirr~~ing boundary contact and gconwtric nonlincaritics with ir friction coc fiicicnt of' 0.3. 
" Solution ohti~ir~cd assun~ing perfect contact with infinite friction, 





Table 412(a) .  C'alculatcd global loiids and moments iiom rc;ictions ;it the loading blocks of the biasial modcl. 

Riaxial Model (short blocks) Left Side of Specimen Right Side of Specimen 

M," My" M," 

CASE (A): 
shear (u = 0") - 15 1 1.2 0 0 -6.92 151 1.2 0 0 -6.92 

shear-compression (u = +30°) - 1567.2 0 0 -6.7 1 1567.2 0 0 -6.71 
shear-tension (u = -30") - 1397.5 0 0 -7.1 1 1397.5 0 0 -7.1 1 

CASE (B): 
shear + asymmetric torsion (a = 0") - 1206.6 426.6 -2 18.9 -938.0 1206.6 -437.5 218.9 959.6 

shear + asymmetric torsion (a = +30°) - 1 230.8 434.5 -252.5 -880.7 1230.8 -432.0 251.1 873.0 
shear + asymmetric torsion (u  = -30") - 1234.1 3 1 7.8 - 107.0 -548.9 1234.1 -3 16.0 106.5 538.4 

CASE (C): 
shear + anti-symmetric torsion (a = 0") -969.2 739.5 -5 1 1.8 -2.23 969.2 -739.5 51 1.8 -2.23 

shear + anti-symmetric torsion (a = +30°) -996.8 742.0 -576.4 - 1.99 996.8 -742.0 576.4 -1.99 
shear + anti-symmetric torsion (a = -30") - l089.9 558.0 -282.8 -3.63 1089.9 -558.0 282.8 -3.63 

CASE (D): 
shear + lateral bending (u = 0") -982.4 690.3 -400.1 -2.38 982.4 -690.3 400.1 -2.38 

shcar + lateral bending (u  = +30°) - 100 1.6 7011.6 -442.5 - 1.99 1001.6 -708.6 442.5 -1.99 
shear + latcral bending (a = -30") - 1 O96.4 528.0 - 1 75.4 -0.88 1096.4 -528.0 175.4 -0.88 

CASE (E): 
shear + lateral rotation ( a  = 0") -98 1.8 I 9 2  -0.89 -2.84 981.8 1.92 -0.89 -2.84 

shcar + lateral rotation (u = +30°) -999.3 1.78 -0.96 -2.48 909.3 1.78 -0.96 -2.48 
stlcar + lateral rotation ( a  = -30") - 1 108.7 1.42 -0.37 -4.15 1108.7 1.42 -0.37 -4.15 

Notc: ' SI  units of' h r c c  arc in (N) .  To corlvcrt 10 I:IDS u n i ~ s  ol'(Ibs,), nlrrl~iply by 0.22. . SI units of nronlet~ts arc. in (N*I~IIII ) .  To convart t o  l:lbS units of (lhs,*in), n~uhiply by 8.85 s 10 I .  



Tablc 4.12(b). Calculated global loids and moments fiom reactions at the loading blocks of31ic modified biaxial niodcl. 

Modified Riaxial Model (long blocks) Left  Side of Specimen Right Side o f  Specimen 

CASE (A): 
shear (u = 0") -880.5 0 0 -1.12 880.5 0 0 -1.12 

shear-compression (a = +30° ) -9 1 3.8 0 0 -0.07 913.8 0 0 -0.07 
shear-tension (u = -30") -796.0 0 0 - 1.97 796.0 0 0 - 1.97 

CASE (B): 
shcar + asynlrnetric torsion (a = 0") -783.0 150.8 -144.7 -480.9 783.0 - 150.4 144.3 479.3 

shcar + asymmetric torsion (a  = +30°) -799.6 164.6 - 136.2 -474.9 799.6 - 164.4 135.8 474.7 
shear + asymmetric torsion (u = -30") -728.6 1 70.1 -8 1.9 -37 1.2 728.6 - 1 69.8 8 1 .7 368.2 

CASE (C): 
shear + anti-symmetric torsion ( a  = 0") -696.2 284.3 -323.0 -0.47 696.2 -284.3 323.8 -0.47 

shear + anti-symmetric torsion ((I = +30°) -7 10.0 292.7 -342.8 0.04 710.0 -292.7 342.8 0.04 
shear + anti-symmetric torsion (a = -30") -66 1.1 3 10.8 -2 1 1.7 - 1.03 661.1 -310.8 21 1.7 -1.03 

CASE (D): 
shear + lateral bending (a = 0") -704.3 244.4 -226.4 -0.53 704.3 -244.4 226.4 -0.53 

sl~car + lateral bending (a = +30°) -7 14.4 265.7 -253.5 0.12 714.4 -265.7 253.5 0.12 
shear + lateral bending (u = -30") -665.3 275.3 - 108.1 - 1 .07 665.3 -275.3 108.1 -1.07 

CASE (E): 
shear + lateral rotation (u = 0") -703.7 0.20 -0.28 -0.65 703.7 0.26 -0.28 -0.65 

shear + lateral rotation (tr = +30°) -7 1 1.5 0.13 -0.29 -0. I I 71 1.5 0.13 -0.29 -0. I 1 
shcar + lateral rotation (u = -30" ) -667.5 0.26 -0.22 - 1 .19 667.5 0.26 -0.22 -I. I9 

Notc: ' S1 units of timc itrc ill ( N ) .  To cor~vcrt ro FIBS units of(lbs,), mrtltiply hy 0.22. 
SI units of n~o~ncnts arc in (N4nlm). To convcrt to W S  units of  (lhs, *in), nlul~iply by 8.85 x I0 '. 
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Figure 4.4. PI y-level shear-tension (-a) and shear-compression (+a) biaxial 
stress states in a composite Iosipescu specimen. 



Figure 4.5. Representation for evaluating ply-level elastic behavior in 
the off-axis tensile composite specimens (c.f. Section 4). 
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Figure 1.7.  Room temperature experimental apparatus based on the Dillon tensile 
test pilot at the University of Denver. Tests conducted at OGIST's MSE 
fracture and failure laboratory replaced the Dillon with the Instron DTS 
Model 1 230-20 excluding the environmental chamber. 
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Figure 4.8. Shear strain distributions along the notch root axis in 
Iosipescu specimens with (a) 0' fiber orientation and 
(b) 90' fiber orientation. With small gages. the shear 
strain measured in (a) appears to be higher than in (b). 
(After [flu 199 1 .)73 





Figure 4.10. Placement of R.I. Model 4 1 84 strip heaters. 

Figure 4.1 1 .  Placement of Model B l OZS broadband AE transducers. 



Figure 412(a) .  Two-dimensional finite element model o f  the biaxial Iosipescu 
specimen with 6235 nodes. 2608 8-node quadrilateral and 6- 
node triangular isoparametric elements (PLANE82) and 2 1 0 
contact pseudo-elements (CONTAC48). 

Figure 4.1 Z(b). Two-dimensional finite element model o f  the modified biaxial 
Iosipescu specimen with 5973 nodes, 6454 8-node quadrilateral 
and 6-node triangular isoparametric elements (PLANE82) and 
1 1 74 contact pseudo-elements (CONTAC48). 
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Figure 4.13(b). CASE B 
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Figure 4.13(c). CASE C 
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Figure 4.13(d). CASE D 



Figure 4.1 3(e). CASE E 

Figure 4.13. Load cases under consideration in the eccentric loading of biaxial and 
modified biaxial graphite-PMRlS Iosipescu specimens: (a) CASE A- 
shear loading, (b) CASE B - shear and asymmetric loading, (c) CASE 
C - shear and anti-symmetric loading, (d) CASE D - shear and lateral 
bending, and (e) CASE E - shear and lateral rotation. 





Figure 4.15. Orientation o f  cutting planes for removing damage sample. 

Target 

Target 

Figure 4.16. Removed sample showing locations of imaging targets. 
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Figure 4.27(a). Trends in the average shear stresses at the onset of failure. 
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Figure 4.27(b). Trends in the average shear stresses at their maximums. 
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Figure 4.36 . Plastic strain contours From biaxial Iosipescu analysis at an appli 
shear stress of 19.6 MPa (2.8 ksi), (a) yp',, and (b) E~',. 

ied 



Figure 4.37. Plastic strain contours from biaxial Iosipescu analysis at an applied 
shear stress of 25.8 MPa (3.7 ksi), (a) yp',,, and (b) ePi,. 



Figure . Plastic strain contours from biaxial Iosipescu analysis at an 
shear stress of 3 1.9 MPa (4.6 ksi), (a) Y~',,, and (b) cP',. 

applied 



Figure 4.39. Plastic strain contours From biaxial Iosipescu analysis at an applied 
shear stress of 6 1.4 MPa (8.9 ksi), (a) ypt,, and (b) EP',. 



Figure . Plastic strain contours from biaxial Iosipescu analysis at an 
shear stress of 90.7 MPa (13.2 ksi), (a) yp',,, and (b) cPh. 

applied 



Figure 4.4 1 .  Progression of failure along notch root of Iosipescu specimens subjected 
to applied shear stresses of (a) 23.1 MPa (3.4 ksi), (b) 46.1 MPa (6.7 ksi) 
and (c) 69.2 MPa ( 10. t ksi). 



Figure 4.42. Progression of failure along notch root of Iosipescu specimens subjected 
to applied shear stresses of (a) 92.3 MPa ( 13.4 ksi), (b) 1 1 1.5 MPa ( 16.2 
ksi) and (c) 1 1 1.5 MPa (16.2 ksi) at higher magnification. 



Figure 4.13. Onset o f  failure (a) and catastrophic failure (b) with out-of-plane 
deformation (bulging) along the notch root o f  [osipescu specimens 
subjected to shear at a loading angle a = 0". 
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(a) 29.1 mm' 
(0.2 x lo-' in3) 

(b) 365.3 mm' 
(2.2 x lo-' in') 

Figure 4.47. Prediction of the progression of  damage in woven fabric composite 
biaxial Iosipescu specimens at shear strains y,, of (a) 0.38%, (b) 0.75%. 
and (c) 1.13%. 



(d) 808.3 mm3 
(4.9 x 10" in') 

(e) 994.9 mm3 
(6.1 x 10-' in3) 

(0 1 105.9 mm3 
(6.7 x lo-' in') 

F i p r e  4.18. Prediction of the progression of damage in woven fabric composite 
biaxial Iosipescu specimens at shear strains y, of (d) 1 SO%, (e) 1.88%, 
and (f) 2.25%. 
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CONCLUSIONS 

In Section 3 of this thesis, a simplified mechanics model was proposed to predict the elastic 

constants of 8HS woven fabric composites. The model was based on the use of cubic spline 

and polynomial functions obtained from the fitting of data points which represented the 

centerline and perimeter of woven tows. The constants predicted by the model were checked 

against experimental data and numerical strain energy methods. Also in Section 3, the in- 

plane and transverse normal stress distributions, within three arbitrary cutting planes of the 

woven 8HS NE, were found by interpolation of sparse data using punctual kriging. The 

stress distributions were compared for uniaxial tension, uniaxial compression and in-plane 

shear loading conditions. 

In Section 4 of this thesis, the apparent elastic properties of woven graphite-PMR15 

and woven graphite-Avimid R composites were determined using the Iosipescu shear, 

standard tension and off-axis tension test methods. The apparent biaxial shear strength 

properties were also evaluated at room and elevated temperature conditions. Influence of 

specimen-to-fixture interactions on stress and strain distributions in the Iosipescu specimens 

were studied numerically in terms of load eccentricities and structural nonlinearities. Also 

in Section 4. anisotropic plasticity and progressive damage were considered in evaluating the 

nonlinear shear stress-strain behavior. An effort was made to compare the numerical 

plasticity and progressive damage results with actual damage in the Iosipescu specimens 

obtained by reconstruction of cross-sections assembled in series. Based on the results 

presented in Section 3 and in Section 4, several conclusions may be drawn: 

1 . A simplified micro-to-mesoscale analytical model has been presented for evaluating 

the elastic behavior of 8HS woven fabric composites. The model assumes that 



random variation in geometries of the tow cross-sections and undulations can be 

adequately described by cubic splines and fined mh-order polynomials. The model 

also assumes that warp/fi11 tows can be considered UD composite materials and the 

8HS woven lamina considered as a 2-layered laminate. Results for n-layered 

composite laminate properties show good agreement with experimentally obtained 

apparent elastic properties for the range of constituent properties studied. In 

comparison, the model suggests that the composite plaque constituent properties lie 

between those given for the F-b(M and F-dW systems. 

7 . Evaluation of lamina compliances using the SMM model suggests a range of 

extension and extension-bending coupling constants for the composites considered. 

According to the model results, the limiting cases are shown to exist at local, off-auis 

undulation angles of 0" and 16" approximately. It seems that these angles are 

practical lower and upper bounds for UD and plain weave composite materials. 

respectively. 

3. A 3-D finite element model was also presented to verify the predictions from the 

mechanics model. The idealized volume element simplified the 8HS representative 

volume element to facilitate appropriate use of prescribed displacement boundary 

conditions. The model used the measured tow aspect ratio and volume fixtion 

arrived at through numerical iteration. Elastic properties were calculated from force 

equivalence and strain energy methods. The results compare favorably with both the 

analytical model and the experiments. It is suggested that the tow fiber volume 

Fraction is more appropriate when the 8HS woven fabric lamina is evaluated in the 

manner presented and compared with apparent elastic properties. 

1. Off-axis composite elastic behavior was evaluated through the use of the familiar 

equations of transformation. Structure-performance maps were introduced for several 

of the composite systems considered to show relationships between o ff-axis behavior 

and constituent properties. Comparison between the predicted and experimental off- 



axis properties was favorable, but more importantly, the maps appear to serve as a 

possible guide for constituent composite material selection. 

5 .  A method has been proposed to model the through-thickness stress distributions in 

woven fabric composites subjected to uniaxial tension, compression and in-plane 

shear. Three reference cutting planes were arbitrarily chosen within a 3-D finite 

element model of an 8HS woven idealized volume element (WE) and stresses were 

extrapolated from the nodes to a sparse grid. The stress data from the sparse grid was 

interpolated to a very fine grid using punctual kriging. From the interpolated grid, the 

stress distributions of interest were determined to identify where the largest stress 

concentrations would be found within the 8HS WE. 

6. In uniaxial tension and compression, the largest concentrations of in-plane tensile and 

compressive stresses were found to occur in transverse tows of the bridging regions. 

In shear, the largest concentrations of in-plane shear and transverse normal stresses 

were found to occur in the undulated transverse tow. The normal stress from in-plane 

shear loading was far more significant than the normal stresses from the other load 

cases. 

7.  The finite element model proposed for the 8HS IVE cannot be used with absolute 

certainty to predict failure initiation, because it does not realistically consider 

structural and material nonlinearities. Also, the lenticular tow cross-sectional shapes 

terminate as edges with sharp comers which inevitably causes some stress 

rnagni fication. If reasonable failure stresses are assumed for the constituent materials, 

then failures can be roughly approximated using the stress distributions in 

combination with a maximum stress failure approach. 

8. The application of the biaxial Iosipescu technique has been successful in determining 

the biavial shear dominated failure properties of woven graphite-polyimide 

composites at room and elevated temperatures. The biaxial strength properties of the 

graphite-PMR15 and graphite-Avimid R composites defined by the maximum load 

are different at room and elevated temperatures. 



9. The apparent failure stress of the Avimid R system at room temperature determined 

from the maximum load is higher than the apparent failure stress of the PMRIS 

composite. However, the shear strength properties ofthe graphite-PMR15 composite 

at elevated temperatures are better than the properties of the Avimid R system. 

10. It has been observed in this research that the onset of significant interlaminar damage 

can be associated with the formation of a knee on the shear stress-displacement 

diagrams for the Avimid R system. In the case of the PMR 15 system, intraiaminar 

damage can be defined by the onset of nonlinearity on the shear stress-strain curves. 

which typically occurs in the applied stress range of 20.0-40.0 MPa (2.9-5.8 ksi). It 

appears that development of substantial interlaminar damage in the PMR-15 system 

tested under biavial conditions at room temperature occurs at lower shear stresses in 

comparison with the Avimid R-based composite. At elevated temperatures, the 

interlaminar damage in the PMRlS composite develops at a much higher level of 

applied shear stress than in the Avimid R composite. 

i I .  The mechanical properties and failure modes of the PMRlS composite system tested 

at room temperature are dependent on the manufacturing process. The Iosipescu 

specimens machined from the thinner plate exhibit lower loads at failure in 

comparison with the specimens from the slightly thicker plate. It appears that the out- 

of-plane bulging in the thinner specimens is gcater than in the thicker ones. Since 

the final failure of the specimens is associated with the formation of multiple 

interlaminar cracks, this might mean that the interlaminar strength properties of the 

composites also strongly depend on the manufacturing process. 

12. The effect of eccentric loads on the mechanical response of woven graphite- 

polyimide Iosipescu specimens has been studied considering several possible 

eccentricities with shear dominated loading conditions. The influence of the eccentric 

ioads on the shear strain and stress distributions in the gage section of the specimen 

has been found to be particularly strong if short loading blocks are used. The largest 

bending moment, which is responsible for the largest difference in the front to back 



shear strains, is observed when the eccentric loading conditions simulate the effect 

of anti-symmetric specimen twisting. This bending moment can be reduced, but not 

entirely eliminated, if longer loading blocks are employed. 

13. The presence of eccentric loads will also affect the distribution of shear stresses 

through the specimen thickness within the gage section. Similar to the effect of the 

eccentric loads on the surface shear strains, their influence on the shear stress 

gadients has been found to be the most substantial when the specimens were 

subjected to shear in combination with eccentric twisting. 

14. The 2-D finite element computations of the Iosipescu specimens have shown that the 

specimens loaded in the biaxial Iosipescu fixture in shear develop large compressive 

stresses at the specimen center. This compression cannot be eliminated by rotating 

the specimens. For any biaxial loading conditions, the state of stress in the gage 

section of the specimens is always biaxial with large compressive stresses present 

along the notch root axis. It has been shown, however, that the compressive stresses 

gnerated by the loading blocks can be entirely eliminated if the longer loading block 

geometry is used in conjunction with specimen rotation toward the sheadtension 

loading condition. 

15. The PMRL 5 and Avimid R composites have been tested using the biavial and 

modified biaxial Iosipescu fixtures. Various biaxial shear-compression stress states 

in the specimens have been generated, based on the finite element computations, 

ranging from almost pure in-plane shear to shear-compression. It has been found that 

the effect o F the large in-plane compressive stress generated by the loading blocks in 

the biaxial fixture do not affect the failure modes of the composites investigated 

under shear and shear-tension loading conditions. However, when the compressive 

stresses in specimen gage section are increased due to rotation towards larger shear- 

compression loading angles, the room temperature strength properties of the 

composites decrease. 



16. A technique has been proposed to reconstruct the damage attributable to shear 

deformation within the gage section of woven fabric composite Iosipescu specimens. 

Two-dimensional damage maps have successfully been generated to measure the 

volume of damage through the specimen thickness. It has been shown that the 

reconstruction process does not contribute to any additional damage. 

17. From the reconstruction results, it appears that the presence of relatively sharp 

notches does not influence the failure process in the 8HS woven fabric composite 

Iosipescu specimens. It has been found that at least 50% of the damage occurs central 

to the gage section. No significant damage was detected at the roots of the notches 

which suggests that the test produces a fairly uniform stress field in these materials. 

18. The amount of damage increases as a function of the sub-surface depth and it is 

believed that this behavior is sigmoidal in nature with the maximum coincident to the 

specimen midline. This seems to fit the explanation for the symmetrical out-of-plane 

deformation (bulging) that is observed during mechanical shear testing. 

19. The woven fabric composite Iosipescu specimen (biaxial) has been successfully 

modeled (3-D) numerically to include the effects of structural and material 

nonlinearities. To the author's knowiedge, this in-depth of an analysis was the first 

such case. Boundary contact and geometric nonlinearities were included in 

conjunction with anisotropic plasticity and progressive damage. A failure criterion 

was proposed on the basis of the average to critical strain energy density ratios. It was 

found that simulation of progressive damage provided the best agreement between 

the experimental shear stress-strain behavior and the numerical model. Plastic 

deformation and structural nonlinearities had little influence on the shear response. 

20. The progressive damage scheme predicted the onset of damage to be 25.0 MPa (3.6 

ksi) whereas it was found experimentally to first occur at 23.0 MPa (3.3 ksi). The 

numerically generated damage could not be compared quantitativelywith the damage 

determined from reconstruction. Qualitatively though, the shape of the accumulated 

numerical damage was nearly identical to the permanent deformation within the 



specimen gage section. At this point, it can only be viewed as coincidence that the 

volume fraction of damage predicted numerically and experimentally differed by less 

than 10%. 

2 1 .  The function which best described the numerically generated damage in terms of 

shear strain was asigmoidal growth function. The function given by Eq. 4.43 resulted 

in a +-value of 0.9996. This sigmoidal growth function still requires testing with 

experimental data to verify its uniqueness to the solution. 
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SUGGESTIONS FOR FUTURE WORK 

Based on this research, there are numerous and interesting questions which can be raised in 

regard to the elastic and inelastic behavior of woven composites. Some of the subject areas 

which might be explored in future research endeavors are as follows: 

1. In this research, the biaxial and modified biaxial Iosipescu shear test fixtures were 

employed to determined the mechanical shear and biaxial responses of 8HS woven 

Fabric composite materials. Clearly, some uncertainty still exists regarding the 

interpretation of apparent strength properties for the composites using these tests. [n 

a future study, it would be quite worthwhile to compare results for woven fabric 

composites obtained using the Iosipescu method with results obtained using the most 

desirable of biavial shear test methods, i.e. the combined torsion test on hoop-wound 

tubes. 

7 . A 3-D linear elastic finite element model of the idealized volume from an 8HS RUC 

was developed in this research to verify elastic constants predicted by the S M M  

model and to study the distribution of stresses within a single lamina. It is not clear 

what influence mesh density would have on the accuracy of properties predicted or 

the distribution of stresses. Provided that computational facilities are less limited, it 

would be beneficial to perform mesh optimization and correlate error to mesh size. 

3. The rnesoscale linear elastic finite element model of the woven WE is not sufficient 

to predict failure or completely understand the initiation of failure. For any failure 

model at this scale to be accurate in predicting the initiation of failure and "strength". 

several issues must be considered. Firstly, plastic deformation effects between woven 

tows and within the resin-rich pockets must be included. Secondly, the influence of 



sharp comers which define the lenticular cross-sections must be evaluated and lastly, 

boundary contact (sliding) must be permitted between the mutual tows once the 

matrix fails. 

4. For complete knowledge of woven fabric failure behavior (particularly in shear), it 

is absolutely necessary to establish the relationships between the micro-, meso- and 

macroscales. These scales were treated somewhat independently of each other in this 

research in terms of stresses, progressive damage and catastrophic failure even 

though results at all scales were in fairly good agreement. On the basis of identifying 

specific failure mechanisms, the sensitivity of constituent properties and fabric 

architecture needs to be established. 

5 .  The plasticity analysis was constrained by the conditions of the consistency equation 

and closed, elliptical yield surface. This formulation would have been better suited 

for macroscale studies of unidirectional composites, rather than quasi-isotropic 

composites. As it was, the { I  1 } and (22) compressive properties needed to be 

somewhat overestimated in order for the conditions to be met. Although it seems that 

there was little influence on the results due to the overestimates, it might be 

worthwhile to establish other user-detined plasticity functions to be used with 

ANSYS which are less restrictive. 

6. The progessive damage criterion proposed in this research generates numerically 

"damaged" element volumes whose accumulation only compares geometrically to 

actual damage in Iosipescu specimens reconstructed from serial sections. It would be 

helpful to study the application of other failure criteria to 3-D analyses of the 

Iosipescu specimen. Of particular use would be criteria based on progressive interply 

delaminations, since it is presumed that actual damage under shear dominated, 

biaxial loading conditions is predominantly interlaminar 

7 .  The attempts made herein to correlate actual damage with failed elements in the 3-D 

Iosipescu model are not inherently correct. A correlation between numerical and 

actual damage would be more correct if layers were considered or if. at least, a 



greater number of elements was considered through-thickness. It would be of interest 

also to determine how the numerical growth function (Eq. 4.43) would fit or vary as 

a greater number of elements were considered through-thickness. Notwithstanding, 

more "fine" tuning of the reconstruction technique (particularly image registration 

methods) is required to validate the currently proposed macroscale cumulative 

growth function. 

8. From the experimental shear testing, it is clear that viscoelastic and (or) viscoplastic 

effects are manifested in woven graphite-polyimide composites as a function of 

increasing temperature. At a minimum, the macroscale numerical studies need to be 

repeated while including time and temperature dependent material nonlinearities. 

Additionally, these studies would need to be carried out at the rneso- and microscales 

to be of benefit in understanding how and if damage develops and progresses with 

changes in temperature. For these results to be of funher use in applications for 

extreme environments, a logical progression of the time and temperature dependent 

material studies would be to additionally include hygroscopic effects. 
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APPENDIX A 

A.1. FORTRAN 77 Code: Prediction of Laminate Elastic Constants 

In A. 1. of this appendix, complier-ready example code, in Fortran 77 format, is given for 

predicting woven fabric elastic constants based on the simplified, two-dimensional 

mechanics model presented in Section 3. In A.1.1. sample input data files used in this 

investigation are also included for purposes of demonstrating file format. The example code 

provides an acceptable solution for lower bounds approximations. Elastic constants for other 

classes of composite laminates, such as cross-ply, may be predicted using this code by 

assuming I" order polynomial approximations to woven tow centerline data, i.e. centerline 

coordinates for a line segment. 

PROGRAM W A V E  

This Fortran 77 program calculates the elastic constants of a woven 8-H satin fabric 
composite lamina by treating the lamina as a 2-layer laminate. Individual laminae are 
treated as unidirectional and transversely isotropic; laminae properties are determined 
using CCA. 

The laminae properties are evaluated at the woven tow volume hct ion vs. the laminate 
volume fraction. Knowing the effective elastic properties of the equivalent warp and fill 
laminae (obtained by inverting the mean compliances), the stifhess of the woven fabric 
lamina and the apparent laminate elastic properties can be evaluated using the Kirchhoff 
hypothesis for analysis of thin plates i.e., Classical Lamination Theory. 



P W E T E R ( M a x N = I  5,MaxM=500) 
INTEGER M,N 
REAL A,B,C,P,X,Y 
DIMENSION A( 1 :MaxN, I :MaxN),B(I :MaxN),C(1 :MaxN),X(1 :MaxM),Y(I :MaxM) 
EXTERNAL P 
OPEN (UNIT=10, FILE='CENTER.DATt, STATUS='OLD') 
OPEN (UNIT=20, FILE='EPROPS.DAT', STATUS='OLD') 
OPEN (UNIT=30, FILE='CPOLYFIT.DATt, STATUS='NEW') 
OPEN (UNIT=40, FILE='LOCAL.DATt, STATUS='NEW') 
OPEN (UNIT=50, FILE='CCA.DAT', STATUS='NEW') 
OPEN (UNIT=60, FILE='LECONST.DAT', STATUS='NEW') 
OPEN (UNIT=70, FILE='UPPER.DAT', STATUS='OLD') 
OPEN (UNIT=80, FILE='LOWER.DAT', STATUS='OLD') 
OPEN (UNIP90, FILE='invABD.DAT', STATUS='NEWt) 
OPEN (UNIT=1 00, FILE='WFLAMMA.DAT', STATUS='NEWt) 
OPEN (UNIT= I 10, FILE='LAMMATE.DAT', STATUS='NEW') 

C 

c Least-Squares Polynomial Fit Subroutine Calls for Upper B-Spline 
C 

CALL CNTRLNE(X,Y,M,N) 
IF (M.GT.MaxM) THEN 
PRINT*, 'ERROR: (M2500) TOW CENTERLINE B-SPLINE DATA EXCEEDS 

& PROGRAM CAPABILITIES. PLEASE CREATE DATA FILE WTH FEWER 
POINTS.' 

ENDIF 
CALL MATEUX(X,Y,M,A,B,N) 
CALL POLYSLV(A,B,N,C) 
CALL CENTROUT(C,N) 

c Subroutine Calls for Determining Local Angle of Tow Undulation 
C 

CALL POLY(PCOEFF,N) 
IF ((N-l).EQ. 1) THEN 

CALL DP I (PCOEFF,N,ANG) 
ELSEIF ((N-I).EQ.2) THEN 

CALL DP'(PCOEFF,N,ANG) 
ELSEIF ((N- l).EQ.3) THEN 
CALL DP3(PCOEFF,N,ANG) 

ELSEIF ((N-l).EQ.4) THEN 



CALL DP4(PCOEFF,N,ANG) 
ELSEIF ((N-l).EQ.S) THEN 

CALL DPS(PCOEFF,N,ANG) 
ELSEIF ((N-l).EQ.6) THEN 
PRINT*, 'ERROR: (N=6) EXCEEDS PROGRAM CAPABILITIES. PLEASE DE 

& LETE DATA FILES CREATED WITH PROGRAM AND EtERW WITH A 
LOWER ORDER POLYNOMIAL APPROXIMATION.' 

ENDIF 
C 

c Subroutine Call for Sorting and Selecting Maximum Tow Centerline Angle 
C 

CALL SORT(MAXANG) 
C 

c Subroutine Call for Tow Property Analysis by CCA 
C 

CALL CCA(E 1 1 ,E22HIGH,EXLOW,G 12,G23HIGH,G23LOW,NU 12) 
C 

c Subroutine Call for Compliance Reduction (0 ff-Axis Transformation) and 
c Calculation of Laminae Engineering Constants 
C 

CALL TRNSFORM(EXXH,EXXL,EYYH,EYYL,GXYH,GXYL,NXYH,NXYL) 

c Subroutine Call for Mean Thickness of Upper Cross-Sectional Area by 
c Mean Value of Integration 
C 

CALL THICKl(AVEZ1) 

c Subroutine Call for Mean Thickness of Lower Cross-Sectional Area by 
c Mean Value of Integration 
C 

CALL THICrn(AVEZ2) 
C 

c Subroutine Call for "2-Ply" Laminate Engineering Constants From the 
c [ABDI- 1 Matrices 
C 



CALL ABDl(AVEZ1,AVEZZ) 
C 

c Subroutine Call for " 10-Ply" or " 16-Ply" Laminate Engineering Constants 
c From the [ABDI-I Matrices 
C 

CALL ABD2(ExxH,ExxL,EyyH,EyyL,GxyH,GxyL,NxyH,NxyL) 
C 

C 

STOP 
END 

C 

Least-Squares Polynomial Fit Subroutines for Tow Centerline B-Spline 

SUBROUTINE CNTRLME(X,Y,M,N) 
PARAMETER (MaxM=500) 
INTEGER K,M,N 
REAL X,Y 
DIMENSION X(l :MaxM),Y( 1 :MaxM) 
DATA K,XDATA.YDATA lO,O.O,O.O/ 
M = O  
READ ( 1 O,*,END=20) XDATA, YDATA 

M = M + I  
GOT0  10 

PRINT*, 'ENTER ORDER OF POLYNOMIAL TO FIT TOW CENTERLINE DATA:' 
READ*, N 
PRINT*, 
IF (M.LT.(N+l)) THEN 

PRINT*, 'ERROR, DATA POINTS MUST BE AT LEAST (N+I) OF ORDER' 
PRINT*, 
PRINT 25, M 

FORMAT ( 1 X,'THERE WERE ',I3,' DATA POINTS READ FROM A FILE') 
GO TO 20 
ENDIF 
RE WTND (UNIT= I 0) 
DO 30 K=l,M 

READ (lo,*) XDATA, YDATA 



X(K) = XDATA 
Y(K) = YDATA 

30 CONTINUE 
RETURN 
END 

C 

C 

SUB ROUTINE MATFUX(X,Y,M,A,B,N) 
PARAMETER(MaxN=l5,MaxM=500) 
lNTEGER Col,J,K,M,N,R 
REAL A,B,Pow,Prod,X,XK,Y,YK 
DIMENSION A(l:MaxN,l :MaxN),B(l :MaxN),X(l:MaxM),Y(l:MaxM) 
DIMENSION Pow(0:MaxN) 
DATA Col,J,K,R,Prod /0,0,0,0,0.0/ 
DO 10 R=l,(N+l) 

B(R) = 0 
10 CONTINUE 

DO 30 K=l,M 
YK = Y(K) 
XK = X(K) 
Prod = 1 

DO 20 R=I,(N+I) 
B(R) = B(R)+YK*Prod 
Prod = Prod*XK 

20 CONTINUE 
30 CONTINUE 

DO 40 J= 1 ,(2*N) 
Pow(J) = 0 

30 CONTINUE 
Pow(0) = M 
DO 60 K= t ,M 

XK = X(K) 
Prod = X(K) 

DO 50 J=1,(2*N) 
Pow(J) = Pow(J)+Prod 
Prod = ProdSXK 

50 CONTINUE 
60 CONTINUE 

DO 80 R=l,(N+l) 
DO 70 Col=l,(N+l) 

A(R,Col) = Pow(R+Col-2) 



CONTINUE 
CONTINUE 
RETURN 
END 

SUBROUTINE POLYSLV(A,B,N,C) 
PARAMETER(MaxN= 1 5) 
INTEGER Col,J,K,N,P,Row,T 
REAL A,B,C,Surn 
DIMENSION A(l :MaxN, 1 :MaxN),B( 1 :MaxN),C(l :MaxN) 
DIMENSION Row(1 :MaxN),Z(1 :MaxN) 
DATA Col,J,K,Sum /0,0,0,0.0/ 
DO 10 J=l,(N+l) 

Row(J) = J 
CONTINUE 
DO 50 P=l ,N 

DO 20 K=(P+ 1 ),(N+ 1 ) 
IF (ABS(A(Row(K),P)).GT.ABS(A(Row(P),P))) THEN 

T = Row(P) 
Row(P) = Row(K) 
Row(K) = T 

ENDIF 
CONTINUE 
DO 40 K=(P+ 1 ),(N+ 1) 

A(Row(K),P) = A(Row(K),P)/A(Row(P),P) 
DO 30 Col=(P+I),(N+ 1) 
A(Row(K),Col)=A(Row(K),Col)-A(Row(K),P)* A(Row(P),Col) 

CONTINUE 
CONTINUE 

C O N T N E  
Z( 1 ) = B(Row( 1 )) 
DO 70 K=2,(N+ 1) 
Sum = 0 
DO 60 C0l=1 ,(K- 1) 

Sum = Sum+A(Row(K),Col)*Z(Col) 
60 CONTINUE 

Z(K) = B(Row(K))-Sum 
70 C O N T N E  

C(N+ 1 ) = Z(N+1)/A(Row(N+l),N+1) 
DO 90 K=N, 1 ,- 1 



Sum = 0 
DO 80 Col=(K+I),(N+l) 
Sum = Sum+A(Row(K),Col)*C(Col) 

80 CONTIMJE 
C(K) = (Z(K)-Sum)/A(Row(K),K) 

90 CONTINUE 
RETURN 
END 

C 

C 

REAL FUNCTION P(C,N,T) 
P ARAMETER(MaxN=IS) 
INTEGER K,N 
REAL C,Sum,T 
DIMENSION C(l :MaxN) 
DATA Sum /0.0/ 
Sum = C(N+I) 
DO 10 K=N, 1 ,-I 

Sum = C(K)+Sum*T 
10 C O N T M E  

P = Sum 
RETURN 
END 

C 

C 

SUBROUTINE CENTROUT(C,N) 
PARAMETER (MaxN=125) 
INTEGER K,N 
REAL C 
DIMENSION C(l :MaxN) 
EXTERNAL P 
DO 10 K=l,N+l 

WRITE (30,*) C(K) 
10 CONTNLE 

ENDFILE (UNIT=30) 
RETURN 
END 

C 



c Subroutines for Local Angle of Tow Undulation 
C 

SUBROUTINE POLY(PCOEFF,N) 
PARAMETER (MaxN= IS) 
NTEGER A,N 
REAL PCOEFF 
DIMENSION PCOEFF(1 :MaxN) 
DATA A /O/  
RE WIND (UNIT=30) 
PRINT*, 'PLEASE VERIFY TOW CENTERLINE POLYNOMIAL ORDER: N = ' 
READ*, N 
N = N + l  
READ (30,*) (PCOEFF(A), A= 1 ,N) 
RETURN 
END 

C 

C 

SUBROUTINE DP1 (PCOEFF,N,ANG) 
PARAMETER (MaxN= t S,Inc=l .O,PI=3.14 159) 
INTEGER N,H 
REAL PCOEFF,MinY,MaxY,dY,dY 1 ,dY2,ANG 
DIMENSION PCOEFF(1 :MaxN) 
PRINT*, 
PRINT*, 'ENTER LOWER LIMIT O F  TOW CENTERLINE: ' 
READ*, MinY 
PRINT*, 
PRINT*, 'ENTER UPPER LIMIT OF TOW CENTERLINE: ' 
READ*, MavY 
DO 10 dY=MinY,MaxY,lnc 
H =I  
dY 1 = dY+H 
dY2 = dY-H 

dP = (((PCOEFF(N)*dY 1 **(N-1 ))+(PCOEFF(N- 1)))- 
& ((PCOEFF(N)*dYZ**(N- 1 ))+(PCOEFF(N- 1))))/2*H 

ANG = ABS(( ATAN(dP))*( I 80lPi)) 
WRITE (40,*) ANG 

10 CONTrNuE 
RETURN 
END 

C 



C 

SUBROUTINE DP2(PCOEFF,N,ANG) 
PARAMETER (MaxN=lS,Inc= 1 .O,P1=3.14159) 
WTEGER N,H 
REAL PCOEFF,MinY,MaxY,dY,dY 1 ,dY2,ANG 
DIMENSION PCOEFF(1 :MaxN) 
PRINT*, 
PRINT*, 'ENTER LOWER LIMIT OF TOW CENTERLINE: ' 
READ*, MinY 
PRrNT*, 
PRINT*, 'ENTER UPPER LIMIT OF TOW CENTERLINE: ' 
R E D * ,  MaxY 
DO 10 dY=MinY,MaxY,Inc 
H = I  
dY 1 = dY+H 
dY2 = dY-H 

dP = (((PCOEFF(N)*dY 1 **@I- 1 ))+(PCOEFF(N- 1 )*dY 1 **(N-2))+ 
& (PCOEFFW-2)))-((PCOEFF(N)*dY2**(N-1 ))+(PCOEFF(N- 1 )* 
& dY 2* *(N-2))+(PCOEFF(N-2))))/2* H 

ANG = ABS(( ATAN(dP))*( 1 8OlPI)) 
WRITE (4O,*) ANG 

10 CONTrNuE 
RETURIV 
END 

C 

C 

SUBROUTINE DP3(PCOEFF,N,ANG) 
PARAMETER (MaxN=I S,Inc=l .O,P1=3.14159) 
NTEGER N.H 
REAL PCOEFF,MinY,MaxY,dY,dY l,dY2,ANG 
DIMENSION PCOEFF(1 :MaxN) 
PRINT*, 
PRINT*, 'ENTER LOWER LIMIT OF TOW CENTERLINE: ' 
READ*, MinY 
PRINT*, 
PRINT*, 'ENTER UPPER LIMIT OF TOW CENTERLINE: ' 
READ*, M a Y  
DO 10 dY=MinY,MaxY,Inc 
H =1 
dY1 =dY+H 
dY2 = dY-H 



dP = (((PCOEFF(N)*dY 1 **(N- l))+(PCOEFF(N- I )*dY 1 **(N-2))+ 
& (PCOEFF(N-2)*dY 1 **(N-3))+(PCOEFF(N-3)))-((PCOEFF(N)* 
& dY 2**(N- 1 ))+(PCOEFF(N- 1 )*dY2**(N-Z))+(PCOEFF(N-2)* 
& dY 2* *(N-3))+(PCOEFF(N-3))))/2*H 

ANG = AB S (( AT AN(dP)) *( 1 80/P I)) 
WRITE (40,*) ANG 

10 CONTINUE 
RETURN 
END 

C 

C 

SUBROUTNE DP4(PCOEFF,N,ANG) 
PARAMETER (Ma.xN=I S,Inc=l .O,PI=3.14159) 
INTEGER N,H 
REAL PCOEFF,MinY,MaxY,dY,dY 1 ,dYZ,ANG 
DIMENSION PCOEFF(1 :MaxN) 
PRINT*, 
PRINT*, 'ENTER LOWER LIMIT OF TOW CENTERLINE: ' 
READ*, MinY 
PRINT*, 
PRINT*, 'ENTER UPPER LIMIT OF TOW CENTERLINE: ' 
READ*, MaxY 
DO 10 dY=MinY,MaxY,Inc 
H = I  
dY1 = (dY+H) 
dY2 = (dY-H) 

dP = (((PCOEFF(N)*dY I **@I- 1 ))+(PCOEFF(N-1 )*dY 1 **(N-2))+ 
& (PCOEFFW-2)*dY 1 **(N-3))+(PCOEFF(N-3)*dY 1 **(N-4))+ 
& (PCOEFF(N-4)))-((PCOEFF(N)*dY2**(N- 1 ))+(PCOEFF(N- I )* 
& dY2**(N-2))+(PCOEFF(N-2)*dY2**(N-3))+(PCOEFF(N-3)* 
& dY2**(N-4))+(PCOEFF(N-4))))/2*H 

ANG = ABS(( ATAN(dP))*( 1 80/PI)) 
WRITE (40,*) ANG 

10 CONTINUE 
RETURN 
END 

C 

C 

SUBROUTNE DPS(PCOEFF,N,ANG) 
PARAMETER (MaxN= 1 S,Inc= 1 .O,PI=3.14 159) 
INTEGER N,H 



REAL PCOEFF,MinY,MaxY,dY,dY 1 ,dY2,ANG 
DIMENSION PCOEFF(1 :MaxN) 
PNNT*, 
PRINT*, 'ENTER LOWER LIMIT OF TOW CENTERLINE: ' 
READ*, MinY 
PRINT*, 
PRINT*, 'ENTER UPPER LIMIT OF TOW CENTERLINE: ' 
READ*, MaxY 
DO 10 dY=MinY,MaxY,Inc 
H = I  
dY 1 = (dY+H) 
dY2 = (dY-H) 

dP = (((PCOEFF(N)*dY 1 **(N- 1 ))+(PCOEFF(N- 1 )*dY 1 **(N-2))+ 
& (PCOEFFW-2)*dY 1 **(N-3))+(PCOEFF(N3)*dY 1 ** (N-4))+ 
& (PCOEFF(N4)*dY 1 **(N-S))+(PCOEFF(N-5)))-((PCOEFFW 
& dY2**(N- l))+(PCOEFF(N- l)*dYZ**(N-Z))+(PCOEFF(N-2)* 
& dY 2 **(N-3))+(PCOEFF(N-3)*dYZ*+(N-4))+(PCOEFF(N-4)* 
& dY 2**(N-5))+(PCOEFF(N-5))))/2*H 

ANG = ABS((ATAN(dP))*(l8O/P[)) 
WRITE (40,*) ANG 

10 CONTINUE 
RETURN 
END 

C 

c Subroutine for Sorting Tow Centerline Off-Axis Angles in Ascending Order 
C 

SUBROUTINE SORT(MAXANG) 
PARAMETER (MaxM=5000) 
INTEGER I,N,J,PTR,LAST,FIRST,K 
REAL SLOPE,HOLD,MAXANG 
DIMENSION SLOPE(1:MaxM) 
1 = 1  
REWND (WT=40)  

10 READ (40,*,END=20) SLOPE(1) 
I =I+1 
GO TO 10 

20 N = 1-1 



LAST = N 
DO 40 J=l,N-1 

PTR = J 
FIRST = J+1 
DO 30 K=FIRST,LAST 

IF (SLOPE(K).LT.SLOPE(PTR)) THEN 
PTR = K 

ENDIF 
30 CONTINUE 

HOLD = SLOPE(J) 
SLOPE(J) = SLOPE(PTR) 
SLOPE(PTR) = HOLD 

40 CONTINUE 
MAXANG = S L O P E 0  
RETURN 
END 

c Adopted Method of   ash in ~ O ~ C A  Elastic Property Analysis 
C 

SUE3ROUTNE CCA(El1 ,E22HIGH,E22LOW,Gl2,G23HIGH,G23LOW,NUlt) 
REAL E I 1 ,E22HIGH,E22LOW,Gl 2,G23HIGH,G23LOW,NU12,EF,EFT,EM7GF,GFT, 

& GM,NUF,NUM,VF,VM,GAMMA,RHO,BETAF,BETAM,AH,GTLOW, 
& GM 1 ,GM2,GM3,GM4,KT,KF,KM 

DATA EF,EFT,EM,GF,GFT,GM,NUF,VF /0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.01 
DATA VhI,GAMMA,RHO,BETAF,BETAM,ALPHA /0.0,0.0,0.0,0.0,0.0,0.0/ 
DATA GTHIGH,GTLOW,GMl ,GM2,GM3,GM4 /0.0,0.0,0.0,0.0,0.0,0.0/ 
DATA KT,KF,KM /0.0,0.0,0.0/ 
READ (20,*) EF,EFT,GF,GFT,NLTF,VF,EM,GM,NUM 
VM = I-VF 
GAMMA = GFTIGM 
KF = ((4/EFT)-(3*NUF**2/EF)-( l/GFT))**(-I) 
KM = ((4EM)-(4*NUM**2/EM)-( 1 /GM))**(- 1 ) 
B ETAF = KF/(KF+2*GFT) 
BETAM = KM/(KM+2*GM) 
RHO = (GAMMA+BETAM)/(GAMMA- 1 ) 
ALPHA = (BETAM-(GAMMA*BETAF))/( I +(GAMMA*BETAF)) 
KT 1 = (KM*(KF+GM)*( I -VF))+(KF*VF*(KM+GM)) 



KT2 = ((KF+GM)*( 1 -VF))+(VF*(KM+GM)) 
KT = KT 1 /KT2 
IF (GFT.GT.GM) THEN 

GMI = (l+BETAM)*VF 
GM2 = RHO-(VF*(l+((3*BETAM**Z*VM**2)/(ALPHA*VF**3+1)))) 
GM3 = l/(GFT-GM) 
GM4 = ((KM+2*GM)*VM)/(Z*GM*(KM+GM)) 
GTHIGH = GM*(l+(GMl/GM2)) 
GTLOW = GM+(VF/(GM3+GM4)) 

ELSEIF (GFT.LT.GM) THEN 
GM I = 1 /(GFT-GM) 
GM2 = ((KM+2*GM)*VM)/(2*GM*(KM+GM)) 
GM3 = (l+BETAM)*VF 
GM4 = RHO-(VF*(1+((3*BETAM**2*VM**Z)/(ALPHA*W**3-BETAM)))) 
GTHIGH = GM+(VF/(GM I +GM2)) 
GTLOW = GM*( I +(GM3/GM4)) 

ENDIF 
E 1 1 = EF*VF+EM*VM+((4*VF*VM*(NUF-NUM)**2)/(VM/KF+VF/K.M+ 1 IGM)) 
NU 12 = NUF*VF+NUM*VM+((VF*VMf(NUF-NUM)*( 1K.M- l/KF)) 
& /(VM/KF+VFlKM+ 1 /GM)) 
E22HIGH = (4*KT*GTHIGH)/(KT+(l+(4*KT*NU 12**2/E l 1 ))*GTHIGH) 
EZZLOW = (4*KT*GTLOW)/(KT+(l+(4*KT*NU12**2/El l))*GTLOW) 
G 12 = GM*((VM*GM+(l+VF)*GF)/((I+VF)*GM+VM*GF)) 
G23HIGH = GTHIGH 
G23LOW = GTLOW 
WRITE (SO,*) El 1 
WRITE (50,*) E22HIGH 
WRITE (SO,*) E22LOW 
WRITE (SO,*) G12 
WRITE (50,*) NU12 
WRITE (SO,*) G23HIGH 
WRITE (SO,*) G23LOW 
RETURN 
END 

C 

c Compliance Reduction by Local Off-Axis Angle of Transformation and 
c Calculation of Laminae Engineering Constants 



C 

SUBROUTINE TRNSFORM(EXXH,EXXL,EYYH,EYn,GXYH,GXYH,GXYL,NXYW,NXYt) 
PARAMETER (MaxM=5000,PI=3.14159) 
INTEGER I 
REAL E 1 1 ,E22HIGH,E22LOW,G12,NU 1 2,G23HIGH9G23 LOW,m,n,NU2 1 H,NUZ 1 L. 
& NU23 H,NU23 L,S 1 1 H,S 1 1 L,S22H,S22L9S 12H.S 12L7S66H,S66L,SUM 1 A, 
& S U M  1 B,SUMZA,SUM2B,SUM 12A,SUM 1 2B,SUM6A,SUM6B,EXXH,EXXL. 
& EYYH,EYY L,GXYH,GXYL,NXYH,NXYL 
DIMENSION ANG(1 :MaxM) 
DATA t,m,n,NUZ 1 H,NU21 L,NU23H,NU23L /0,0.0,0.0,0.0,0.0,0.0,0.0/ 
DATA S1 LH,S1 lL,S22H,S22L,S12H,S12L /0.0,0.0,0.0,0.0,0.0,0.0/ 
DATA S66H,S66L,SUMlA,SUMIB,SUM2A,SUMZB /0.0,0.0,0.0,0.0,0.0,0.0/ 
DATA SUMlZA,SLIMl2B,SLIM6A,SUM6B /0.0,0.0,0.0,0.0/ 
1 = 1  
RE WIND (UNIT=40) 
REWIND (UNIT=50) 
READ (SO,*) E 1 1 
READ (SO,*) E22HIGH 
READ (50,*) E22LOW 
READ (50,') GI2 
READ (50,') NU 12 
READ (50,*) G23HIGH 
READ (50,*) G23LOW 

10 READ (40,*,END=20) ANG(1) 
m = COS(ANG(I)*(PI/l8O)) 
n = SIN( ANG(I)*(PU 1 80)) 
NU2lH = (E22HIGH/Ell)*NU12 
NU21L = (E22LOW/Ell)*NU12 
NU23H = (E22HIGH/(2*G23HIGH))-1 
NU23L = (E22LOW/(2*G23LOW))-l 
S 1 1 H = (m**UE 1 l)+(((l/G12)-(ZfNU12/E1 l))*m**2*n**2)+ 
& (n**4/E22HIGH) 
SI 1 L = (m**J/El 1)+(((I/G12)-(2*NUlZ/EI 1))*mf*2*n**7 -1 + 
& (n**4/E22LOW) 
S22H = llE22HIGH 
S22L = l/E22LOW 
S 1 2 H  = ((NU2 1 H*~**~)/E~~HIGH)+((NU~~H*~**~)I'E~~HIGH) 
S l2L = ((NU2 1 L*m**Z)/E22LOW)+((NU23L*n**2)/E22LOW) 
S66H = (rn**?/G12)+(n**2/G23HIGH) 
S66L = (rn**2/G 12)+(n**2/G23LOW) 
SUMlA = SUMlA+S11H 



SUMlB = SUMlB+SllL 
SUM2A = SUM2A+S22H 
SUM2B = SUM2B+S22L 
SUM12A = SUM12A+S12H 
SUM12B = SUM12B+S12L 
SUM6A = SUM6A+S66H 
SUM6B = SUM6B+S66L 
I = I+1 
G O T 0  10 

20 EXXH = l/(SUMIA/(I-I)) 
EXXL = I/(SUMlB/(I-I)) 
EYYH = l/(SUMZA/(I-I)) 
EY Y L = 1 /(S UMZB/(I- 1 )) 
GXYH = 1 /(SUM6A/(I- I)) 
GXY L = 1 /(SUM6B/(I- 1 )) 
NXY L = (SUM 12A/(I- 1 ))*EXXL 
NXYH = (SUM 12B/(I-l))*EXXH 
WRITE (60,*) EXXH 
WRITE (6O,*) EXXL 
WRITE (60,') EYYH 
WRITE (60,') EYYL 
WRITE (60,') GXYH 
WRITE (60,') GXYL 
WRITE (60,') NXYH 
WRITE (60,') NXYL 
RETURN 
END 

C 

C 

c Subroutine for Calculation of Mean Upper 112 Thickness of Tow Cross- 
c Section by Mean Value of Integration 
C 

SUBROUTINE THICKl(AVEZ1) 
PARAMETER (MaxM=500) 
INTEGER I 
REAL X,Z1 
DIMENSION X(1 :MaxM),Z l(1 :MaxM) 
DATA I,SUMX,SUMZ 1 /1,0.0,0.0/ 



1 0 READ (70,*,END=20) X(I),Z 1 (I) 
SUMX = SUMX+ABS(X(I)) 
S UMZ 1 = S U M 2  1 +ABS(Z 1 (I)) 
I = I + 1  
GO TO 10 

20 AVEZI =SUMZM 
RETURN 
END 

C 

C 

c Subroutine for Calculation of Mean Lower 112 Thickness o f  Tow Cross- 
c Section by Mean Value o f  Integration 
C 

SUBROUTINE THICK2(AVEZ2) 
PARAMETER (MaxM=500) 
INTEGER 1 
REAL X,Z2 
DIMENSION X(1 :MaxM),Z2(1 :MaxM) 
DATA I,SUMX,SUMZ2 /1,0.0,0.0/ 

1 0 READ (80,*,END=20) X(I),Z2(1) 
SUMX = SUMX+ABS(X(I)) 
SUMZ2 = SUMZ2+ABS(Z2(1)) 
I = 1+1 
GO TO 10 

20 AVEZ2 = SUMZXI 
RETURN 
END 

C 

c Subroutine for Calculation of "1-Ply" Laminate Engineering Constants 
c From the [ABDI-1 Matrices 
C 

SUBROUTNE ABD 1 (AVEZ I ,AVEZ2) 
REAL EXXH,E,YXL,EYYH,EYYL,GXYW,GXYL,NXYH,NXYL,NYXH,NY?CL, 
& DnuH,DnuL, 



& a1 1 h,a 1 1 l,a22h,a2219a66h,a661,al 2hTa121,b 1 1 h,b 1 1 l,b22hTb221, 
& d 1 1 h,d 1 1 l,d22h,d221,d66hTd66I,d1 2hTd121,ht,UCEXXH,UCEXXL, 
& UCEYYH,UCEYYL,UCGXYH,UCGXM,,UCNXYH,UCNXYL 
DATA NYXH,NYXL,DnuH,DnuL,al lh,al 11 /0.0,0.0,0.0,0.0,0.0,0.0/ 
DATA a22h,a221,a66h,a66l,al2h,a121/0.0,0.0,0.0,0.0,0.0,0.0/ 
DATA b l  1 h,b 1 llTb22h,b221,dl Ih,dl 11 /0.0,0.0,0.0,0.0,0.0,0.0/ 
DATA d22h,d221,d661,d661,d12h,d121/0.0,0.0,0.0,0.0,0.0,0.0/ 
DATA ht,UCEXXH,UCEXXL,UCEYYH,UCEYYL /0.0,0.0,0.0,0.0,0.0/ 
DATA UCGXYH,UCGXYL,UCNXYH,UCNXYL /0.0,0.0,0.0,0.0/ 
REWIND (UNIT=BO) 
READ (60,*) EXXH 
READ (60,*) EXXL 
READ (60,*) EYYH 
READ (60,*) EYYL 
READ (60,*) GXYH 
READ (60,*) GXYL 
READ (60,*) NXYH 
READ (60,*) NXYL 
NYXH = (EYYH/EXXH)*NXYH 
W X L  = (EYYL/E,XXL)*NXYL 
DnuH = 1 -(NXYH*NYXH) 
DnuL = 1 -(NXYL*NYXL) 
ht = ((AVEZ 1 +AVEZ2)*2) 
a 1 1 h = 1 /(((EXXH+EYYH)*ht)/(2*DnuH)) 
a1 11 = l/(((EXXL+E WL)*ht)/(2*DnuL)) 
a22h = a1 1 h 
a221 = a1 11 
a66h = 1 /(GXYH*ht) 
a661 = l/(GXYL*ht) 
a 12h = I /((NXYH*EYYH*ht)/(DnuH)) 
a 121 = 1 /((NXYL*EYYL*ht)/(DnuL)) 
b 1 1 h = 1 /(((EXXH-EYYH)*ht**2)/(8*DnuH)) 
b 1 11 = l/(((EXXL-E WL)*htf*2)/(8*DnuL)) 
b22h=-bllh 
b221= -b 1 11 
d 1 1 h = 1 /(((E,XXH+EYYH)*ht**3)/(24*DnuH)) 
d 1 1 1 = l /(((EXXL+EYYLJ*ht**3)/(24'DnuL)) 
d22h = d l  lh 
d221 =dl11 
d66h = l/((GXYH*ht**3)/ 12) 
d661 = l/((GXYL*ht**3)/12) 



d 12h = l/((NXYH*EYYH*ht**3)/(12*DnuH)) 
d 121 = l/((NXYH*Er(H*ht**3)/(12*DnuH)) 
UCEXXH = l/(a 1 1 h*ht) 
UCEXXL = l/(al ll*ht) 
UCEYYH = l/(a22h*ht) 
UCEYYL = 1/(a221*ht) 
UCGXYH = l/(a66h*ht) 
UCGXYL = l/(a661*ht) 
UCNXYH = (l/a12h)/(l/a22h) 
UCNXYL = (l/a121)/(l/a221) 
WRITE (90,*) a1 1 h,al 1 1 
WRITE (90,*) a22h,a221 
WRITE (90,') a66h,a661 
WRITE (90,') a12h,a121 
WRITE (90,') b 1 1 h,b 1 11 
WRITE (90,*) b22h,b221 
WRITE (90,') d l  1 h,d 1 11 
WRITE (90,*) d22h,d221 
WRITE (90,') d66h,d661 
WRITE (90,') d 12h,d 121 
WRITE (1 00,*) UCEXXH-UCEXXL 
WRITE (1 00,') UCEWH,UCEYYL 
WRITE ( loo,*) UCGXYH,UCGXYL 
W N T E  (loo,*) UCNXYH,UCNXYL 
RETURN 
END 

c Subroutine for Calculation of"  1 0-Ply" or " 16-Ply" Laminate Engineering 
c Constants From the [ABDI-1 Matrices 
C 

SUBROUTINE ABD2(ExxH,ExxLTEyyH,EyyL,GxyH,GxyL,NxyH,NxyL) 
INTEGER N,I,J,K,L 
REAL T,H,UCEXXH,UCEXXLTUCEYYH~UCEYYL9UCGXYH,UCGXYL~ 

& UCNXYH,UCNXn,UCNYXH,UCNYXL,Ql I H,QI 1 L,SUMQ11 H,SLIMQlI L, 
& Q 2 2 H , Q 2 2 L , S U M Q 2 2 H , S U M Q 2 2 L T Q 6 6 H , Q 6 6 L , S v 6 L , Q l  2H, 
& Q 1 ZL,SUMQ 1 ZH,SLJMQ 1 2L,ExxH,ExxL,EyyH,EyyL,GxyH,GxyL,NxyH,NxyL 

DATA H,UCNYXH,UCNYXL,Ql lH,Q1 lL,SUMQl IH /0.0,0.0,0.0,0.0,0.0,0.0~ 



DATA SUMQl lL,Qt2H,Q22L,SUMQ22H,SUMQ22L /0.0,0.0,0.0,0.0,0.0/ 
DATA Q66H,Q66L,SUMQ66H,SUMQ66L,QI2H,QI2L /0.0,0.0,0.0,0.0,0.0,0.0/ 
DATA SUMQl ZH,SUMQI 2L /0.0,0.0/ 
PRINT*, 
PRINT*, 'ENTER NUMBER OF PLIES WITHIN THE COMPOSITE LAMINATE: ' 
READ*, N 
P r n T * ,  
PRINT*. 'ENTER LAMINATE THICKNESS IN (MM): ' 
READ*, T 
H=T/N 
RE WIND (UNIT= 1 00) 
READ (loo,*) UCEXXH,UCEXXL 
READ ( loo,*) UCEYYH,UCEYYL 
READ ( loo,*) UCGXYW,UCGXYL 
READ ( loo,*) UCNXYH,UCNXYL 
UCNYXH = (UCEYYH/UCEXXH)*UCNXYH 
UCNYXL = (UCEWLAJCEXXL)*UCNXYL 
DO 10 I=l,N 

Q 1 1 H = UCEXXH/( 1 -UCNXYH*UCNYXH) 
Ql  1 L = UCEXXLl(1-UCNXYL*UCNYXL) 
SUMQI IH = SUMQl lH+(QllH*H) 
SUMQI I L = SLIMQI 1 L+(Ql I L*H) 

10 C O N T W E  
DO 20 J=I,N 

Q22H = UCEYW(1 -UCNXYH*UCNYXH) 
Q22L = UCEYYLl(1-UCM<YL*UCNYXL) 
SUMQ22H = SCIMQ22H+(Q22H*H) 
SUMQ22L = SUMQ21L+(Q22L*H) 

20 CONTINUE 
DO 30 K=l,N 

Q66H = UCGXYH 
Q66L = UCGXYL 
SUMQ66H = SUMQ66H+(Q66H*H) 
SUMQ66L = SUMQ66L+(Q66L*H) 

30 CONTlMlE 
DO 40 L=l,N 

Q 1 ZH = (UCNXYH*UCEYYH)/( 1 -UCNXYH*UCNYXH) 
Q12L = (UCNXYL*UCEWL)/(l-UCNXYL*UCNYXL) 
SUMQ12H = SUMQIZH+(Q12H*H) 
SUMQIZL = SUMQltL+(Q12L*H) 

30 CONTINUE 



E x x H  = l/((l/SUMQI IH)*T) 
ExxL = I/((l/SUMQll L)*T) 
EyyH = I/((l/SUMQ22H)*T) 
EyyL = l/((l/SUMQ22L)*T) 
G x y H  = 1 I(( 1 /SUMQ66H)*T) 
Gxy L = 1 I(( 1 /SUMQ66L)*T) 
NxyH = ( 1 /(( 1 / S m Q  I ZH)*T))/(l/((l/SUMQ22H)*T)) 
Nx y L  = ( I  1((11SUMQl2L)*T))/(1/((1/SLJMQ22L)*T)) 
WRITE ( 1  lo,*) ExxH,ExxL 
WRITE ( 1 lo,*) EyyH,EyyL 
WRITE ( I  lo,*) GxyH,GxyL 
WRITE ( 1 lo,*) NxyH,NxyL 
RETURN 
E N D  

A. 1.1. Sample User Input Data 

Constituent Fiber and Matrix Data File 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  258.6 ( E l l  of T650-35 (3k) fibers) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40.0 (Ez, of T650-35 (3k) fibers) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24.0 (G,, of T650-35 (3k) fibers) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.3.. (G, ofT650-35 (3k) fibers) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.26 (v12 of T650-35 (3k) fibers) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.72 (V, of woven tow from image analysis) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.5 (El,  = E2? of PMR- 1 5 matrix) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.70 (GI? of PMR- I5 matrix) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.34.  (v,? of PMR-I5 matrix) 

Digitized Coordinates of Upper Tow Perimeter 

. . . . . . . . . . . . . . . . . . . . .  -646 18 (X-Z coordinate pain referenced from tow centroid) 
-635 25 
-623 30 
-610 32 







Digitized Coordinates of Lower Tow Perimeter 

-3 . . . . . . . . . . . . . . . . . . . . . (Y-Z coordinate pairs referenced from tow centroid) 







Digitized Coordinates of  Tow Centerline 

0 . . . . . . . . . . . . . . . . . . . . . . . (X-Y coordinate pairs referenced from tow centroid) 
0 
0 
0 
0 
0 
- 1 
0 
7 - 
3 
I 

-3 
-1 1 
-12 
-13 
-2 1 
-30 
-36 
-36 
-36 
-41 
-49 
-56 
-65 
-74 
-81 
-90 
-96 
-96 
-96 
- 106 
-120 
-129 
-1 JO 





A.2. FORTRAN 77 Code: The Methods of Hashia, Halpia-Tsai and Chamis 

In A.1. of this Appendix, complier-ready example code, in Fortran 77 format, is given for 

predicting woven fabric elastic constants based on the established methods o f Hashin, 

Halpin-Tsai and Charnis as referenced in Section 3. These methods are used as a basis of 

evaluating the finite element analysis results for prediction of constituent properties. 

A.2.l. The Method of Hasbin 

PROGRAM HASHIN 
C 

c This Fortran 77 program calculates the elastic constants of a unidirectional composite 



lamina from constituent elastic properties according to the micromechanical relations 
proposed by Hashin and R~sen:  Composite Cylinder Assemblage (CCA) 

Output Variables: 
E 1 1 : longitudinal elastic modulus (GPa) 
E22high: upper bound transverse elastic modulus (GPa) 
E221ow: lower bound transverse elastic modulus (GPa) 
G 12: shear modulus (GPa) 
GZ3high: upper bound transverse shear modulus (GPa) 
G23 low: lower bound transverse shear modulus (GPa) 
nu 12: major Poisson's ratio 

Input Variables: 
Ef: longitudinal fiber elastic modulus (GPa) 
Eft: transverse fiber elastic modulus (GPa) 
Em: longitudinal matrix elastic modulus (GPa) 
Gf: fiber shear modulus (GPa) 
Gft: fiber transverse shear modulus (GPa) 
Gm: matrix shear modulus (GPa) 
nuf: fiber Poisson's ratio 
num: matrix Poisson's ratio 
vf: fiber volume fraction 

Inter-calculated Variables: 
gamma 
rho 
betaf 
betam 
alpha 
Gthigh: bounded transverse shear modulus 
Gtlow : bounded transverse shear modulus 
Gm 1 
GmZ 
Gm3 
Gm4 
kt: transverse bulk modulus 
kf: fiber bulk modulus 
km: matrix bulk modulus 

REAL E 1 1 ,EZZhigh,E22low,G 1 2,G23high9G2310w,nu 1 Z.Ef,Efi,Ern,Gf,Gft. 



& 
Sc 

C 

c All 
C 

E l  1 

Gm,nuf,num,v~vm,g~rho,betaf,betam,alpha,Gthi~,Gtlo~, 
Gm 1 .Gm2,Grn3,Gm4,kt,kf krn 

variables initially set to zero 

= 0.0 
E22high = 0.0 
E22Iow = 0.0 
GI2 = 0.0 
G23high = 0.0 
G231ow = 0.0 
nu12 = 0.0 
Ef = 0.0 
Eft = 0.0 
Em = 0.0 
Gf = 0.0 
Gft = 0.0 
Gm = 0.0 
nuf = 0.0 
num = 0.0 
v f  = 0.0 
vm = 0.0 
gamma = 0.0 
rho = 0.0 
betaf = 0.0 
betam = 0.0 
alpha = 0.0 
Gthigh = 0.0 
Gtlow = 0.0 
Gm 1 = 0.0 
Gm2 = 0.0 
Gm3 = 0.0 
Gm4 = 0.0 
kt = 0.0 
k f  = 0.0 
krn = 0.0 

C 

c Constituent properties input fiom user screen 
C 

PRINT*, 'Enter fiber longitudinal tensile modulus in (GPa) ' 
READ*, Ef 



PRINT*, 'Enter fiber transverse tensile modulus in (GPa) ' 
READ*, Eft 
PRINT*. 'Enter fiber shear modulus in (GPa) ' 
READ*, Gf 
PRINT*, 'Enter fiber transverse shear modulus in (GPa) ' 
READ*, GA 
PRINT*, 'Enter fiber Poissons ratio ' 
READ*, nuf 
PRINT*, 'Enter fiber volume fraction ' 
READ*, vf 
PRINT*. 'Enter matrix tensile modulus in (GPa) ' 
READ*, Em 
PRINT *, 'Enter matrix shear modulus in (GPa) ' 
READ*, Gm 
PRINT*, 'Enter matrix Poissons ratio ' 
READ*, num 

C 

c Begin inter-calculations 
C 

v m  = 1-vf 
gamma = GWGm 
k f = ((4/ER)-(4*nuP*YEf)-( I/GA))**(- 1 ) 
km = ((4/Em)-(4*numZ *2/Em)-(1 /Gm))**(- 1 ) 
betaf = kf/(kf+2*Gtt) 
betam = km/(km+2*Gm) 
rho = (gamrna+betam)/(gamma- 1 ) 
alpha = (betam-(gamma*betaf))/( 1 +(gamma*betaf)) 
kt 1 = (km*(kf+Gm)*(l -vf))+(kf*vP(krn+Gm)) 
kt2 = ((k f+Gm)*( 1 -vf))+(vf+(krn+Grn)) 
kt = kt 1 k t 2  

C 

c Upper bounds calculations for Glt > Gm 
C 

If (Gft.GT.Gm) then 
Gm 1 = ( 1  +betam)*vf 
Gm2 = rho-(vP(1+((3*betarn**2*vrn**2)/(alpha*vf**3+1)))) 
Gm3 = 1 /(Gft-Gm) 
Gm4 = ((km+2*Grn)*vm)/(2*Gm*(km+Gm)) 
Gthigh = Gm*(l+(Gml/Gm2)) 
Gtlow = Gm+(vV(Gm3+Gm4)) 

C 



c Lower bounds calculations for Gft < Grn 
C 

Elseif (Gft.LT.Grn) then 
Gml = I/(Gft-Gm) 
Gm2 = ((km+2*Gm)*vm)/(2*Gm*(km+Gm)) 
Gm3 = (1 +betam)*vf 
Gm4 = rho-(vP( 1 +((3*betam**Z*vm**2)/(alpha*vP*3-betam)))) 
Gthigh = Gm+(vV(Gml+GmZ)) 
Gtlow = Gm*(l+(Gm3/Gm4)) 

Endif 
C 

c Begin lamina elastic constant calculations 
C 

E 1 1 = EPvf+Em*vm+((4*vTvm*(nuf-num)**2)/(vm/kf+l/Gm)) 
nu 12 = nuf*vf+num*vm+((vt*vrn*(nuf-num)*(l/km-lkf)) 
& /(vm/kf+vEikm+ l/Gm)) 
E22high = (4*kt*Gthigh)/(kt+( 1 +(4*kt*nu1 2**Z/E 1 1 ))*Gthigh) 
E221ow = (4*kt*Gtlow)/(kt+(l+(4*kt*nu 12**2/El l))*Gtlow) 
G 12 = Gm*((vm*Gm+(l+vf)*Gf)/((l+vf)*Gm+vm*Gf)) 
GUhigh = Gthigh 
G231ow = Gtlow 

C 

c Output results 
C 

PRINT *, 
PRINT *, 
PRINT 10, El 1 

10 FORMAT ( I  X,'Longitudinal Tensile Modulus of Lamina (E 1 1) = ',F6.1) 
PRINT *, 
PRINT 20, E22high 

20 FORMAT (I X,'Upper Bound Transverse Tensile Modulus of Lamina' 
& ' (E22high) = ',F5.1) 
PEUNT *, 
PRINT 30, E221ow 

3 0 FORMAT ( 1 X,'Lower Bound Transverse Tensile Modulus of Lamina' 
& ' (E221ow) = ',F5.1) 
P r n T  *, 
PRINT 40, GI2 

40 FORMAT ( 1 X,'In-Plane Shear Modulus of Lamina (GI 2) = ',F5.1) 
PRrNT ", 
PRINT 50, G23high 



50 FORMAT (lX,'Upper Bound Transverse Shear Modulus of Lamina' 
& ' (G23high) = ',F5.1) 
P W T  *, 
PRINT 60, G231ow 

60 FORMAT ( 1 X,'Lower Bound Transverse Shear Modulus of Lamina' 
& ' (G231ow) = ',F5.1) 
PRINT *, 
PRINT 70, nu12 

70 FORMAT ( 1 X,'Poissons Ratio of Lamina (nu 12) = ',F5.2) 
C 

END 

A.2.2. The Method of Halpin-Tsai 

PROGRAM HLPTSAl 

This Fortran program calculates the elastic constants of a unidirectional composite 
lamina from constituent elastic properties according to the micromechanical relations 
proposed by Halpin and Tsai. 

Output Variables: 
E 1 1 : longitudinal elastic modulus (GPa) 
E22: transverse elastic modulus (GPa) 
G 1 2: shear modulus (GPa) 
nu 12: major Poisson's ratio 
nu23: minor Poisson's ratio 

Input Variables: 
E E longitudinal fiber elastic modulus (GPa) 
Em: longitudinal matrix elastic modulus (GPa) 
Gf: fiber shear modulus (GPa) 
Gm: matrix shear modulus (GPa) 
nu f: fiber Poisson's ratio 
num: matrix Poisson's ratio 
vf: fiber volume fiaction 

REAL E 1 1 ,E22,G 12,nu 12,nu23,Ef,Em,Gf,Gm,nuf,num,vf,zetaE,zetaG, 
& zetaNu,nE,nG,nNu 



All variables initially set to zero 

E l  1 = 0.0 
E22 = 0.0 
G12 = 0.0 
nu 12 = 0.0 
nu23 = 0.0 
E f  = 0.0 
Em = 0.0 
Gf = 0.0 
Gm = 0.0 
nuf = 0.0 
num = 0.0 
v f  = 0.0 
zetaE = 0.0 
zetaG = 0.0 
zetaNu = 0.0 
nE = 0.0 
nG = 0.0 
nNu = 0.0 

Constituent properties input from user screen 

PRMT*, 'Enter fiber longitudinal tensile modulus in (GPa) ' 
READ*, Ef 
PRINT*, 'Enter fiber shear modulus in (GPa) ' 
READ*, Gf 
PRINT*, 'Enter fiber Poissons ratio ' 
READ*, nuf 
PRINT*, 'Enter fiber volume Fraction ' 
READ*, vf 
PRINT*, 'Enter matrix tensile modulus in (GPa) ' 
READ*, Em 
PRINT*, 'Enter matrix shear modulus in (GPa) ' 
READ*, Grn 
PRINT*, 'Enter matrix Poissons ratio ' 
READ*, num 

Begin lamina elastic constant calculations 



zetaE = 0.75 
zetaG = 0.75 
zetaNu = 0.10 
E l  1 = Ef*vf+Em*(l-vf) 
nE = ((E f/Em)- 1 )/((EUEm)+zetaE) 
nG = ((G VGm)- 1 )/((GVGm)+zetaG) 
nNu = ((nuYnum)- 1 )/((nuVnum)+zetaNu) 
E22 = Em*(( l +zetaE*nE*vf)/(l -zetaE*vf)) 
G 1 I = Gm*(( 1 +zet;lG*nG*vt)/( 1 -zetaG*vf)) 
nu12 = nuPvf+num*(l-vf) 
nu23 = num*((l +zetaNu*nNu*vf)/(l -zetaNu*vf)) 

C 

c Output results 
C 

PRINT *, 
PRINT *, 
PRINT 10, El 1 

1 0 FORMAT ( 1 X,'Longitudinal Tensile Modulus of Lamina (E 1 1 ) = ',F6.1) 
PRINT *, 
PRINT 20, E22 

20 FORMAT ( 1 X,'Transverse Tensile Modulus of Lamina (E22) = '.F6.1) 
PRINT *, 
PRINT 30, G12 

30 FORMAT ( 1 X.'In-Plane Shear Modulus of Lamina (G 12) = ',F6.1) 
PRINT *, 
PRINT 10, nu 12 

40 FORMAT ( 1 X,'Poissons Ratio of Lamina (nu1 2) = ',F4.1) 
PRINT *, 
PRINT 50, nu23 

50 FORMAT ( 1 X,'Poissons Ratio of Lamina (n33) = ',F4.2) 
C 

END 

A.2.3. The Method of Chamis 

PROGRAM CHAMIS 
C 

c This Fortran program calculates the elastic constants of a unidirectional composite 



lamina from constituent elastic properties according to the micromechanical relations 
proposed by Chamis. 

Output Variables: 
E 1 1 : longitudinal elastic modulus (GPa) 
E22: transverse elastic modulus (GPa) 
G 12: shear modulus (GPa) 
G23 : transverse shear modulus (GPa) 
nu 1 2: major Poisson's ratio 
nu23: transverse Poisson's ratio 

Input Variables: 
EE longitudinal fiber elastic modulus (GPa) 
Elt: transverse fiber elastic modulus (GPa) 
Em: longitudinal matrix elastic modulus (GPa) 
Gf: fiber shear modulus (GPa) 
Gft: fiber transverse shear modulus (GPa) 
Gm: matrix shear modulus (GPa) 
nuf: fiber Poisson's ratio 
num: matrix Poisson's ratio 
vf: fiber volume fiaction 

REAL E l  l,E22,G12,G23,nu12,nu23,Ef,ER,Em,Gf,Gtt,Gm,nuf,num,vf,vm 

All variables initially set to zero 

E l l  =0.0 
E22 = 0.0 
GI2 = 0.0 
G23 = 0.0 
nu 12 = 0.0 
nu23 = 0.0 
Ef = 0.0 
Eft = 0.0 
Em = 0.0 
Gf = 0.0 
Gft = 0.0 
Gm = 0.0 
nuf = 0.0 
num = 0.0 



Constituent properties input from user screen 

PRINT*, 'Enter fiber longitudinal tensile modulus in (GPa) ' 
READ*, Ef 
PRINT*, 'Enter fiber transverse tensile modulus in (GPa) ' 
READ*, Eft 
PRINT*, 'Enter fiber shear modulus in (GPa) ' 
READ*, Gf 
PRINT*, 'Enter fiber transverse shear modulus in (GPa) ' 
READ*, Gft 
PRINT*, 'Enter fiber Poissons ratio ' 
READ*, nuf 
PRINT*, 'Enter fiber volume fraction ' 
READ*, vf 
PRINT*, 'Enter matrix tensile modulus in (GPa) ' 
READ*, Em 
PRlNT*, 'Enter matrix shear modulus in (GPa) ' 
READ*, Gm 
PRINT*, 'Enter matrix Poissons ratio ' 
READ*, num 

Begin lamina elastic constant calculations 

vrn = 1-vf 
El 1 = (EPvf)+(Em*vm) 
E22 = Ern/(l-vP(1 -(Em/Eft))) 
G 12 = Gm/( 1 -vP( 1 -(Gm/Gf))) 
G23 = Gmi(1-vf+(l-(GdGA))) 

Output results 

PRINT *, 
PrnT *, 
PRINT 10, E l l  

10 FORMAT ( 1 X,'Longitudinal Tensile Modulus of Lamina (E 1 1 ) = ',F6.1) 



PRINT *, 
PRINT 20, E22 

10 FORMAT ( 1  X,'Transverse Tensile Modulus of Lamina (E22) = ',F6.1) 
PRINT *, 
PRINT 30, G12 

30 FORMAT ( I  X,'In-Plane Shear Modulus of Lamina (G12) = ',F6.1) 
PRINT *, 
PRINT 40, G23 

40 FORMAT (W,'Transverse Shear Modulus o f  Lamina (G23) = ',F6.1) 
PRINT *, 
PEUNT 50, nu12 

50 FORMAT ( 1 X.'Poissons Ratio of Lamina (nu 1 2) = 'J4.2) 
PRINT *, 
PRINT 60, nu23 

60 FORMAT ( I X,'Poissons Ratio of Lamina (nu23) = ',F4.2) 
C 

END 



APPENDIX B 

B. 1. ANSYS User Files - 8HS Woven Lamina Stress Analysis 

In B. 1.1. of this appendix, a user input tile is presented in ANSYS 5.3 format for evaluating 

the elastic properties of woven tows from constituent fiber and matrix properties. The tows 

are treated as UD composites which are represented by a single fiber embedded in a 

continuous matrix. The model is a square array and takes advantage of symmetry where 

possible. Elastic properties are evaluated from both volume averaging and reaction force 

summation methods using linearly independent boundary conditions. In B. 1 2. of this 

appendix, results from the single fiber model are transferred to a 3-D model of a 8HS woven 

W E .  From this model, lamina elastic properties are evaluated using the same techniques as 

for the single fiber case. Stresses are also studied for three fundamental loading conditions. 

namely uniaxial tension, compression and in-plane shear. Stresses in the direction of loading 

and out-of-plane are compared on the basis of three parallel planes which cut through the 

thickness at specific locations within the WE. 

B.1 . I .  114 Symmetry 3-D Square Array RVE 

IFILNAM,QTRAXLAL_3D 
/TITLE,Prediction of Woven Tow Elastic Constants Based on Constituent Properties 
:STITLE,Z,Square Array RVE Analysis 
/UNITS,SI 
/GRAPHICS,POWER 
/PREP7 
LOCAL,l 1,0,0,0,0,0,0,-90 
CSYS,1 1 
WPCSYS,, 1 1 



MOPT,LSMO,ON 
BOPT,NUMB,OFF 
ET, 1 ,SOLID92 
ET,2,SOLD92 
MP,EX, 1,234.5e9 
MP,EY, l,l3.8e9 
MP,GXY, 1,11.4e9 
MP,GYZ, 1,4.8e9 
MP,NUXY, 1,0.2 
MP,NUXZ, 1 , O X  
MP,NUYZ, t -0.25 
MP,EX,2,3.3e9 
MP,EY72,3.3e9 
MPYGXY,2,1.2e9 
MP,NUXY ,2,O.35 
R, 1 
R,? 

! 1 0-node isoparametric tetrahedral element 

! Graphite fiber elastic properties 

! PMR-15 matrix elastic properties 

This model treats the lenticular woven tow as a undirectional composite material from 
which the fiber and matrix are idealized as a square array representative volume 
element (RVE). Based on the elastic properties of the constituents, the tow properties 
are predicted according to work and strain energy equivalence principles. The results 
are used as input for constituent properties in the 8-H Woven RVE analysis. 

All scalar values are in microns unless otherwise noted. 

Definition of the cross-sectional fiber geometry 
f - diam=7.37 ! sized filament diameter of 7.37 microns 
a=7.75 ! RVE dimensions for equivalent Vf = 0.7 1 
b=a 
c=b 
CY L4,O,O,(f-diam/2),0,(f-diam/2),360,-(d2) 
/ 'VtEW,l,lJ,l ! switching to isometric view 
NUP, 1 .Z 
! 
! Definition of cutting planes for 114 symmetry 
WPROTA,0,0,90 
VSBW,ALL,SEPO 
VDELE,3,,, I 
WPROTA,O,-90,O 
VSBW,ALL,SEPO 



VDELE,3,,, 1 
! 
! Definition of surrounding matrix geometry 
WPROTA,0,90,0 
WPROTA,O,O,-90 
BLCS,O,O,b,c.-(d2) 
! 
! Definition of cutting planes for 1/4 symmetry 
WP ROTA,0,0,90 
VSB W,2,SEPO 
VDELE,4,,, 1 
WPROTA,O,-90,O 
VSBW,3,SEPO 
VDELE,4,,, 1 
WPROTA,0,90,0 
WPROT A,O,O,-90 
NUMCMP,ALL 
! 
! Performing Boolean subtraction of fiber from matrix 
VSBV,Z, 1 ,,,KEEP 
NUMCMP,ALL 
1 

! Meshing fiber 1/4 volume 
VATT,1,1,1,0 
ESHAPE, 1 ,O 
ESIZE,( f-diam)/S 
MAT, 1 
REAL, 1 
TYPE, 1 
ESYS,O 
VMESH, 1 
! 
! Meshing matris 114 volume 
VATT,2,2,2,0 
ESHAPE, 1 ,O 
ESIZE,a/5 
MAT,2 
REAL,? 
TYPE2 
ESYS,O 
VMESH,2 



! 
! Defining fiber color separation 
VSEL,S,VOLU,, 1 
ESLV,S, 1 
/COLOR,ELEM,BLUE 
/COLOR,VOLU,BLUE 
/COLOR,OUTL,BLAC 
ESEL,ALL 
VSEL,ALL 
! 
! Defining matrix color separation 
VSEL,S,VOLU,,2 
ESLV,S, 1 
/COLOR,ELEM,YELL 
/COLOR,VOLU,YELL 
/COLOR,OUTL,BLAC 
ESEL,ALL 
VSEL,ALL 
EPLOT 
FINISH 
/SOLU 
DISP=l 
! 
! Definition of the analysis type and analysis options 
ANTYP,STAT,NE W 
NROPT, 1 ,,ON 
EQSLV,FRONT 
! 
! Definition of boundary conditions 
ASEL,S,AREA,,2 
ASEL,A,AREA,, I 1 
NSLA,S, 1 
D,ALL,ALL,O 
NSEL,ALL 
ASEL,ALL 
ASEL,S,AREA,, 1 
.4SEL,A,AREA,, 10 
NS LA,S, 1 
D,ALL,UX,DISP 
NSEL,ALL 
ASELALL 



SAVE 
SOLVE 
SAVE 
/POST 1 
S ET,LAST 
! 
! Determination of surface tractions (P) normal to X-Y PLANE 
ASEL,S,AREA,, I 
ASEL,A,AREA,, 10 
NSLA,S, I 
NFOR 
ALLSEL 
! 
! Determination of NU12 
PRNSOL,EPEL,COMP 
FINISH 
SAVE 
/EXIT.ALL 

B.1.2.8HS Woven 3-D WE 

/TILNAM, WEAVE-3D 
/TITLE,Idealized Three-Dimensional Hybrid Analysis of 8-H Woven RVE 
/STITLE,2,Prediction of  Composite Elastic Constants 
/UNITS,SI 
iGRAPHICS,POWER 
/PREP7 
MOPT,LSMO,ON 
BOPT,NUMB,OFF 
SHPP,OFF 
ET, 1 ,SOLID92 
ET,2,SOLID92 
ET,3 ,SOLID92 
MP,EX, 1,9.2e9 
MP,EY, 1,9.2e9 
MP,EZ, 1,169.Se9 
MP,GXZ, 1,4.6e9 
MP,GXY, 1,3.1 e9 
MP,GYZ, 1,3.1 e9 

! 1 0-node isopararnetric tetrahedral element 

! Graphite fiber warp/fill tow elastic properties 



MP,NUXZ, 1 ,O.N 
MP,NUXY, 1 , O X  
MP,NUYZ, 1 ,O.38 
MP,EX,2,5 1.7e9 
MP,EY,2,9.2e9 
MP,EZ,2,5 1.7e9 
MP,GXZ92,4.5e9 
MP,NUXZ,2,0.05 
MP,EX,3,3.3e9 
MP,NUXY ,3 ,O.3 5 
R* 1 
R,2 
R,3 
! This model predicts the composite elastic properties based on input of the constituent 

! Tow undulation elastic properties 

! PMR-I5 matrix elastic properties 

! elastic properties. The model is based on the periodicity of a representative volume 
! element (RVE) for 8-H satin graphite-polyimide. The model assumes that the lenticular 
! cross-section is ideal, however the exact aspect ratio and fiber volume fraction obtained 
! from photomicrographs is intact. 
! 
! All scalar values are in microns unless otherwise noted. 
! 
! Definition of perimeter keypoints from lenticular tow shape 
admod=(sqrt(8))/3 .0 
K, 1 ,-((I 393.6*a-mod)/2.0),0,0 
K,7,((1393.6*a-mod)/Z.O),O,O ! 8.3:l aspect ratio 
K,3,0,(1393.6*a-mod)/(8.3*2.0).0 
K,4,0,-(( 1 393.6*a-rnod)/(8.3*2.0)),0 
! 
! Definition of lenticular half B-splines 
BSPLIN, 1,3,2 
BSPLIN, l,4,2 
LDIV,2,0.5 
! 
! Definition of tow cross-sectional area 
AL,ALL 
APLOT 
! 
! Definition of representative volume element (RVE) dimensions 
*GET.dimJ ,KP,Z,LOC,X 
*GET,dim_2,KP,I ,LOC,X 
*GET,dim_3,KP,3,LOC,Y 



*GET,dirn_4,KP,4,LOC,Y 
a=(dim-1 )-(dim-2) 
b=(dim-3)-(dim-4) 
! 
! Definition of matrix volume fraction multiplier 
vf=1.175 ! Vf = 0.62 
! 
! Copying x-sectional shape to other tow locations 
AGEN,2,1 ,,,a,O,O,O,l,O 
AGEN,2,1,,,-a,O,O,O,l,O 
! 
! Definition of outer tow 
K, 12,d2.0,b*vf/2.0,0 
K, 1 3,3*a/2.0,b*vf/2.0,0 
K, 1 +a/2.0,b*vt/2.0,0 
K, 15,-3*d2.0,b'~W2.0,0 
LSTR,6,12 
LSTR,7,13 
LSTR, 12, I3 
LSTR, 10,13 
LSTR.9,lS 
LSTR, 14,15 
AL,7,14,15,13 
AL,4, 10,12,11 
K, 16,a/2.0,-bl2.0,O 
K, 17,3*d2.0,-b/2.0,0 
K, 18,-d2.0,-b/2.0,0 
K, 19,-3*a/2.0,-b/2.0,0 
LSTR,6,16 
LSTR,7,17 
LSTR.8,16 
LSTR,8,17 
LSTR, 10,18 
LSTR,9,19 
LSTRJ 1,19 
LSTR,l 1,lS 
AL, 18,16,6 
AL, 19,517 
AL.2 1,9,22 
AL,23,8,20 
I 

! defining top laminae plane 

top matrix cross-section 



! Extrusion of boundary tow and matrix areas into volumes 
/VIEW,l,l,l,l ! switching to isometric view 
VEXT,2,9,1,0,0,-3*a 
VPLOT 
! 
! Defining warp tow undulation to "skin" fill tow surface 
ASEL,S,AREA,, 1 
LSLA,S, 1 
KSLL,S, 1 
LGEN,2,1,,,a,O,O,O,l,O 
LGEN,2,3,,,0,0,0,0,1,0 
LDIV,58,0.5 
NUMCMP,ALL 
K,39,3*a/?.O,b/2.0,0 
LSTR,3 8 , N  
LDELE,60,,, 1 
NUMCMP,ALL 
! 
! Reflecting, rotating and translating undulation drag path 
LSEL,S,LINE,,SS,GO, 1 
LSYMM,X,58,60,1,0,1 ,O 
LOCAL,[ 1,0,0,0,0,0,0,90 
CSYS,O 
LTRAN, 1 1,58,63,l,O,l,l 
LGEN, 1,58,63,1,0,-b/2,-(3*a)/2.0,0,1,1 
ALLSEL 
NUMCMP,ALL 
LPLOT 
! 
! Definition of center tow boundary matrix 
LSTR, 1412 
LSTR, l8,S 
LSTR, 16,s 
LGLUE,2,65,20 
LGLUE,66,3,16 
LGLUE, 1,  I3,64,lO 
AL, 1,69,64,70 
AL,2,65,67 
AL,3,66,68 
NUMCMP,ALL 
! 



! Dragging towlrnattix x-sectional areas to form undulated volumes 
LGLUE,63,6 1 ,62,59,%,6O 
NUMCMP,ALL 
VDRAG, 1,38,39,40,,,61 
VGEN,2,9,12,1,0,0,-5*a/2.0,0,0.0 
VDRAG,44 ,,,,,, 60,70,69,58 
LDELE,58,61 , \ , I  
LDELE,69,70,1,1 
NUMCMP,ALL 
LPLOT 
! 
! Definition of fill matrix at inner boundary 
K,67,-a/2.0,b/2.0*vfJ*a 
K,68,a/2.0,b/2.0*vf,-2*a 
AGEN,2,63,,,0,0,0,0,0,0 
AGEN,2,85,,,0,0,0,0,0,0 
LSTR,74,68 
LSTR,73,67 
LSTR,67,72 
LSTR,68,7 1 
LSTR,67,68 
LGLUE, lJO,l36,l39.l34,l38 
PLL,l42,133,l36,146 
AL,141,144,134,147 
AL7137,141, M , l Q  
AL,l45, 143,135,144 
AGLUE,89,90,9 1,92,93,94 
VA,89,9 1,92,93,94,95 
LOCAL, 1 2,0.0,0,- 1.5*a 
CSYS, 12 
VSYMM,Z,2 1 ,,,0,0,0 
CSYS,O 
! 
! Modification of fill matrix at inner boundary 
WPOFFS,. l.S*a,O,-a 
VSB W,S,SEPO 
VSB W,8,S EPO 
WPOFFS,O,O,-a 
VSB W,24,SEPO 
VSB W,25,SEPO 
VDELE,26,27,1,1 



NUMCMP,ALL 
VPLOT 
AGEN,2,49,53,4,0,0,-a/2,0,0,0 
AINA, 74,114 
L,101,96 
LCOMB, 186,183,O 
LSTR,40,84 
LGLUE, 154,183,68 
AL, l85,186,68 
AL,68,79,S 1 
LGLUE,8 I ,  184,186 
AL,8 1,184,183 
LGLUE,79,185 
LGLUE, 184,185 
AL,79,ISJ, 187 
AGLUEJ 15,117,l l4,l I6  
VA,llS,119,114,120 
ADELE, 1 13,,, 1 
VSYMM,X,2S,,,O,O,O 
LOCAL, I3,O,O,O,- 1.5*a 
CSYS,13 
VSYMM,Z,Z5,,,O,I,O 
VOVLAP,ALL 
VDELE.28,30,1,1 
VSYMM,Z,37,,,0,1,0 
CSYS,O 
NUMCMP.ALL 
! 
! Manual repair of non-overlapped volume 
VDELE, 1 ,,,0 
ADELE, 1 ,,,O 
ADELE,l 1,13,1,O 
LSYMM,X,69,,,0, I ,O 
LGLUE, l67,75,78 
AL,75,7 1,78 
AL, 1,2,3 
AL,29,3,27 
AGLUE, I O4,ll, 12,l 
VA,1,13,i25,126 
BTOL, 1 E-03 
VGLUE,ALL 

! non-overlapped volume 



! Definition of inner crimp boundary fill matrix 
LOCAL, 14,0,0,-b/2.0,0 
VSYMM,Y,8,10,2,0,0,0 
LOCAL, 1 5,0,3*d2.0,0,-3*d2.09090,90 
CSYS,O 
VTRAN, 15,29,30,1,,, 1 
AGEN,2,136,,,1 .S*a,O,O,O, 1,O 
ASBA, 138,42 
ADELE, 140,,,0 
LDELE,190.191,1,1 
LGEN,2,177,,,a/2,0,0,0,1,0 
LCOMB, 195,193,O 
LCOMB, 195,194,O 
LDELE, 195,,, 1 
LGLUE, 104,189,lg 1 
AL, 195,196,104 
LGLUE,SO, 1 GJ,I9O, 1% 
AL,189,197,191,80 
AGLUE, 138,139 
AGLUE, l42,l4 1,l X,48,MO 
VA, lU ,  143,139,138,145 
LOCAL, l6,O,O,O,- 1S*a 
CSYS, 16 
VSYMM,X,3 1 ,,,O,l,O 
BTOL, 1 E-04 
VGLUE,3 1 ,32 
NUMCMP,ALL 
VSYMM.Z.3 1,32,1,0,1,0 
CSYS,O 
VDELE,29,30,1,1 
NUMCMP,ALL 
! 
! Reflecting and rotating tow plane about axis 
LOCAL, 17,0,0,-b/2.0,0 
VSYMM,Y,1,32,1,0,0,0 
LOCAL, 18,0,3*;1/2.0,0,-3*a/2.0,0,0,90 
CSYS,O 
VTRAN, l8,33,64,l,,, 1 
! 



! Definition of top crimp fill matrix 
LGEN,2,2 13,215,2,-a/Z,-b/2,0,0,1,O 
LGEN,2,213,215,2,dZ,-b/2,0,0,1,O 
LCOMB,383,384,0 
LCOMB,385,386,0 
LGLUE,Z, 1 15,383,385 
AL,2,115,384,386 
LSTR,58,158 
LSTR,56,136 
LSTR,56,58 
LGLUE, 158,383,384,385 
AL, 158,383,387,388 
LSTR,59, i 68 
LSTR,57,1 G 5  
LSTR,57,59 
LGLUE, 159,385,386,389 
AL, 1 S9,385,390,39 1 
AL,90,9 1,158,159 
AGLUE,92,123,287,288,289,290 
VA,92,123,287,290,29 1,292 
! 
! Reflecting and rotating top crimp fill matrix to bottom side 
LOCAL, 18,0,0,-b/2.0,0 
VSYMM,Y,65,O,O,O 
LOCAL, 19,0,3*a/2.0,0,-3*a/2.0,0,0,9~ 
CSY S,O 
VTRAN, 1 9,66,,,0,1,1 
! 
! Repair o f  areas within undulation 
VSEL,S,VOLU,,3 
VSEL,A,VOLU,,20.21,1 
VS EL,A,VOLU,,24,26,1 
VSEL,A,VOLU,,35 
VSEL,A,VOLU,,52,53,1 
VSEL,A,VOLU,,56,58,1 
VPLOT 
VDELE,35,52,17,1 
VDELE,3,20,17,1 
AL,S?,t 15,116 
AL,337,340,341 
AL,1,2,118 



AL,207,2 1 1,2 14 
LCOMB,82,116,0 
LCOMB,340,34 1 ,O 
LCOMB, 1,118,O 
LCOMB,2 1 1,2 l4,O 
LGLUE, 1 l5,86,?,84 
LGLUE,3,337,85,207 
AL,2,87,88,89 
AL,3,84,85,86 
AGLUE,29,39,42,107,108,155 
VA,29,109,152,153,154,156 
VGLUE,ALL 
VSEL,A,VOLU,, 1 1,12,1 
VS Ei,A,VOLU,,43,44, 1 
VGLUE, 1 l,l2,43.43 
VPLOT 
NUMCMP,ALL 
! 
! Meshing warp tows 
VSEL,S,VOLU,, 18 
VSEL,A,VOLU,,49 
VS EL,A,VOLU,,52,54,1 
VSEL,A,VOLU,,63 
VATT,l,1,1,0 
ESHAPE, I ,O 
ESIZE,(3*a)l12 
MAT, 1 
REAL, 1 
TYPE, 1 
ESYS.0 
VMESH,ALL 
ESLV,S, 1 
/COLOR,ELEM,RED 
/COLOR,VOLU,RED 
/COLOR,OUTL,BLAC 
ALLSEL 
! 
! Meshing fill tows 
LOCAL,11,0,0,0,0,0,0,-90 
VSEL,S,VOLU,, 19 
VS EL,A,VOLU,,22,23,1 

! warp tow color separation 



VSEL,A,VOLU,,33 
VSEL,A,VOLU,,48 
VATT,1,1,1,11 
ESHAPE, 1 ,O 
ESIZE,(3*a)/lZ 
MAT, 1 
REAL, 1 
TYPE, 1 
ESYS,l 1 
VMESH,ALL 
CSYS,O 
ESLV,S, 1 
/COLOR,ELEM,DGRA 
/COLOR,VOLU,DGRA 
/COLOR,OUTL,BLAC 
ALLSEL 
! 
! Meshing tow undulation 
VSEL,S,VOLU,,3 
VATT,2,2,2,0 
ESHAPE, 1 ,O 
ESIZE,(3*a)l12 
MATJ 
REAL,2 
TY PE,2 
ESY S,O 
VMESH,ALL 
ESLV,S, 1 
/COLOR,ELEM,RED 
/COLOR,VOLU,RED 
/COLOR,OUTL,BLAC 
ALLSEL 
EPLOT 
! 
! Meshing matrix 
VS EL,S,VOLU,,3 
VSEL,A,VOLU,, 18,19,1 
VS EL,A,VOLU,,22,24,1 
VSEL,A,VOLU,,33 
VSEL,A,VOLU,,48,@, 1 
VSEL,A,VOLU,,52,54,1 

! fill tow color separation 



! matrix color separation 

VSEL,A,VOLU,,63 
VSEL,R\NE 
vpmr  
VGLUE,G, 1 1,6 l,26,7 
VGLUE,37,56,62,4 1,36 
VATT,3,3,3,0 
ESHAPE, 1 ,O 
ESIZE,(3*a)/ 12 
MAT,3 
REAL,3 
TYPE,3 
ESYS.0 
VMESH,ALL 
ESLV,S, 1 
/COLOR,ELEM,YELL 
/COLOR,VOLU,YELL 
/COLOR,OUTL,BLAC 
ALLSEL 
EPLOT 
NUMCMP,ALL 
NUMMRG,ALL 
CPINTF,ALL 
FlhTISH 
ISOLU 
DISP=5 .O 
! 
! Definition of the analysis type and analysis options 
ANTYP,STAT,NEW 
NROPT. 1 ,,ON 
EQSLV-FRONT 
1 

! Definition of boundary conditions 
ASEL,S,AREA,, 199,2 19,20 ! x = -(sqrt(8)*a)/2 
ASEL,&AREA,, 1 78,25 1,73 
ASEL,A,AREA,,203,2 13,10 
ASEL,A,AREA,, l58,l92,34 
ASEL,A,AREA,,237,249,12 
ASEL,A,mA, ,  1 63,258,% 
ASEL,A,AREA,, l4,22,8 
NSLA,S, 1 
D,ALL,UX,O 



! D,ALL,UY,O 
!D,ALL,UZ,O 
NSEL,ALL 
ASEL,ALL 
ASEL,S,AREA,,202,2 12,lO 
ASEL.A,AREA,, 17 1 ,X3,72 
ASEL,A,AREA,, 198,2 18.20 
ASEL,A,AREA,, l62,190,28 
ASEL,A,AREA,, 1 5 1,246,95 
ASEL,A,AREA,, 157,183,26 
AS EL,A,AREA,, t 6,2O,4 
NSLA,S, 1 
D,ALL,UX,DISP 
! D,ALL,UY,O 
!D,ALL,UZ,O 
NSEL,ALL 
AS EL,ALL 
ASEL,S,AREA,, I ,8,1 
AS EL,A,AREA,,34,43,9 
ASEL,A,AREA,,49,62,13 
ASEL,A,AREA,, l64,2 1733 
NS LA,S, 1 
! D,ALL,UX,O 
! D,ALL,UY,O 
! D,ALL,UZ,O 
NSEL,ALL 
ASEL,ALL 
ASEL,SIAREA,,9, l2,3 
AS EL,A,MEA,, l3,2 1,2 
AS EL,A,AREA,,3 7,83,3d 
ASEL,A,AREA,,52,55,3 
ASEL,A,AREA,,66,160,94 
ASEL,A,AREA,,220 
NS LA,S, 1 
! D,ALL,UX,O 
! D,ALL,LJY,O 
! D,ALL,UZ,O 
NSEL,ALL 
AS EL,ALL 
SAVE 
SOLVE 



SAVE 
FINISH 
/POST 1 
SET,LAST 
! 
! Determination OF equivalent force (P) normal to Y-Z PLANE 
ASEL,S,AREA,,202,212,10 
AS EL,A,AREA,, 1 7 I ,243,72 
ASEL,A,AREA,, l98,2 l8,ZO 
AS EL,A,AREA,, l62,190,28 
AS EL,A,AREA,, 15 l,N6,9S 
AS EL,A,AREA,, t 57,183,26 
ASEL,A,AREA,, 16,20,4 
NS LA,S, 1 
/OUTPUT,FORCES,DAT 
NFOR 
/OUTPUT 
ALLSEL 
h=2*((( 1393.6*a~mod)/(8.3*2.0))*vf)+2*((1393.6*a~mod)/(8.3*2.0)) 
w=(3 *a)*a-mod 
/OUTPUT,AREA,DAT 
area=h*w 
/OUTPUT 
! 
! Determination of NU12 
!PRNSOL,EPEL,COMP 
! 
FINISH 
/PREP7 
! 
! Definition of through-thickness cutting planes 
! PLANE # t  
*GET,MAX-Y,NODE,,MXLOC,Y 
*GET,MIN-Y,NODE,,MNLOC,Y 
inc=(( M AX-Y)-(MIN-Y))/9 
*GET,MAX-Z,NODE,,MNLOC,Z 
N, 10000,O,MAX-Y ,O 
N. 1000 1 ,O.MAX-Y,MAX-UZ 
N, 10002,O,IMAX-Y-inc,O 
N, 1 0003,O,MAX-Y-inc,MAX-U2 
N, 10004,O.MAX~Y-(inc*2),0 

! sweep line # 1 

! sweep line #2 

! sweep line #3 



N, 10005 ,O,MAX-Y-(inc*2),MAXAXZ/2 
N, 1 0006,O,MAX-Y-(inc*3),O 
N, 1 0007,O,MAX-Y-(inc*3),MAXAXU2 
N. 1 OOO8,O.MAX-Y -(inc*4),0 
N, 10009,O,MAX-Y-(inc*4),MAX-Z/2 
N, 100 1 O,O,MAX-Y -(inc25),0 
N, 100 1 1 ,O.MAX-Y-(inc*S),MAX-U2 
N, 100 1 Z,O,MAX-Y-(inc*6),0 
N, 100 1 3,O,MAX-Y-(inc*6),MAXAXZ/2 
N, 100 14,0,MAX-Y-(inc*7),0 
N, 100 1 5 ,O,MAX-Y-(inc*7),MAXAXZ/2 
N. 100 16,0,MAX-Y-(inc*8),0 
N, 1 00 1 7,O,MAX-Y-(inc*8),MAX-U2 
N, 100 l8,0,MAX-Y-(inc*9),0 
N, 1 00 1 9.0,MAX-Y-(inc*9),MAX_Z/Z 
FINISH 
/POST1 
LPATH, I0000,1000 1 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE 1 ,DAT 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH, 10002,10003 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE 1 ,DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH, lOOO4,lOOOS 
PDEF,SXZ,S,XZ 
PDEF,SY.S,Y 
/OUTPUT,PLANE 1 ,DAT,,APPEMI 
PRPATH,SXZ,SY 
;OUTPUT 
LPATH, 10006,10007 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE I ,DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 

! sweep 

! sweep 

line #4 

line #5 

! sweep line #6 

! sweep line #7 

! sweep line #8 

! sweep line #9 

! sweep line #lo 



LPATH, lOOO8,lOOO9 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE 1,DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH,l0020,l00ll 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE 1 ,DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH,10012,10013 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE I ,DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH,10014,10015 
PDEF,SXZ,S,XZ 
PDEF,SY ,S,Y 
/OUTPUT.PLANE 1 ,DAT,,APPEND 
PRPATH,SXZ,SY 
!OUTPUT 
LPATH,10016,10017 
PDEF,SXZ,S,,W 
PDEF,SY,S,Y 
/OUTPUT,PLANE 1 ,DAT,,APPEND 
PRPATH,SXZ.SY 
/OUTPUT 
LPATH,10018,10019 
PDEF,SXZ,S,XZ 
PDEF.SY,S,Y 
/OUTPUT,PLANE I ,DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
FINISH 
PREP7 
! 
! PLANE #2 
N, 1 0000,a/2,MAX - Y,O ! sweep line #l 



N, 1000 1 ,aE,MAX-Y,MAX-ZI2 
N, 10002.a/2,MAX-Y-inc,O 
N, 1 0003,a/2,MAX-Y-inc,MAX-Z/2 
N, 10004,a/Z,MAX-Y-(inc*2),0 
N. 1 0005 ,a/Z,MAX-Y-(inc*Z),MAXMAXZ12 
N, 10006,d2,MAX-Y-(inc*3),0 
N, lOOO7, J2,MAX_Y-(inc*3),MAX_Z/Z 
N, I 0008 ,a/2,MAX-Y-(inc*4),0 
N, I 0009,a/2,MAX-Y-(inc*4),MAXMAXZ12 
N. 100 1 O,a/Z,MAX-Y-(inc*5),O 
N. 1 00 1 1 ,a/',MAX-Y-(incfS),MAX - UZ 
N, 100 12.dl.MAX-Y-(inc*6),0 
N. 100 13,a/2,MAX_Y-(inc*6),MAX_DZ 
N, 100 14,a/Z,MAX-Y-(inc*7),0 
N, 1 00 1 5 ,a/2,MAX-Y -(inc* 7).MAXdZ/2 
N, 100 16,a/2,MAX_Y-(inc*8),0 
N, I00 1 7,d2,MAX-Y-(inc*8),MAXAXZ12 
N, 1 00 18.J2,MAX-Y -(inc*9),0 
N, 100 19.a/2,MAX-Y-(inc*9),MM-U2 
FINISH 
/POST 1 
LPATH, 10000,1000 1 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
iOUTPUT,PLANE2,DAT 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH, 10002,10003 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE2,DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH, lOOO4,lOOOS 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE2,DAT.,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH, lOOO6,LOOO7 
PDEF,S,YZ,S,XZ 

! sweep line #2 

! sweep line #3 

! sweep line #4 

! sweep line #5 

! sweep line #6 

! sweep line #7 

! sweep line #8 

! sweep line #9 

! sweep line # l 0  



PDEF,SY,S,Y 
IOUTPUT,PLANE2,DAT.,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH, 10008,10009 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE2,DAT,,ApPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH,10010,10011 
PD EF,SXZ,S,XZ 
PDEF,SY,S,Y 
IOUTPUT,PLANE2,DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH,10012,10013 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANEZ.DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH,10014,10015 
PDEF,SXZ,S,XZ 
PDEF,SY ,S,Y 
/OUTPUT,PLANE2,DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH,10016,10017 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE2,DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH,10018,10019 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANEZ,DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
FINISH 



/PREP7 
! 
! PLANE #3 
N, 1 OOOO,a,MAX-Y,O 
N, 10001 ,a,MAX-Y,MAX-U2 
N, 10002,a.MkY-Y-inc,0 
N, 10003,a,MAX-Y-inc,MAX-UZ 
N. 10004,a,MAX-Y-(inc*2),0 
N, 10005,a,MAX-Y-(inc*Z),MAX-U2 
N, 1 0006,a.MAX-Y -(inc*3),0 
N, 1 0007,a,MAX-Y-(inc*3),MAXAXZ/2 
N, 1 0008,a.MAX-Y-(inc*4),0 
N, 10009,a,MAX_Y-(inc*4),MAX_U2 
N, 100 1 O,a,MAX-Y-(inc*S),O 
N, 100 1 1 ,a,MAX-Y-(inc*S),MAX-a2 
N. I00 t Z,a,MAX-Y-(inc*6),0 
N, 100 13,a,MAX-Y-(inc*6),MAX-Z/2 
N, 100 14,a,MAX-Y-(inc*7),0 
N, 1 00 1 S,a,MAX-Y-(inc*7),MAXAXZ/2 
N, 100 l6,a,MAX-Y-(inc*8),0 
N. i 00 17,a.MAX-Y-(inc*8),MAX_Z/Z 
N, 100 1 8,a,MAX-Y-(inc*9),0 
N, 100 19,a.MAX-Y-(inc*9),MAX - Z/Z 
F N S H  
/POST1 
LPATH, 10000,1000 1 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE3,DAT 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH, t 0002,10003 
PDEF,SXZ,S,XZ 
PDEF,SY ,S,Y 
/OUTPUT,PLANE3,DAT,,APPEND 
PRP.ATH,SXZ,SY 
/OUTPUT 
LPATH, 10004,10005 
PD EF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT.PLANE3,DAT,,APPEND 

! sweep line #I  

! sweep line #2 

! sweep line #3 

! sweep line #4 

! sweep line #5 

! sweep line #6 

! sweep 

! sweep 

! sweep 

line #7 

line #8 

line #9 

! sweep line # I0  



PRPATH,SXZ,SY 
/OUTPUT 
LPATH, 10006,10007 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE3,DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH, lOOO8,lOOO9 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE3,DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH, 100 10,100 1 1 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE3,DAT,,APPEM> 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH, 1001 2,100 13 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE3,DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH,10014.10015 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE3,DAT9,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH,10016,10017 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 
/OUTPUT,PLANE3,DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
LPATH,Z0018,10019 
PDEF,SXZ,S,XZ 
PDEF,SY,S,Y 



/OUTPUT,PLANE3,DAT,,APPEND 
PRPATH,SXZ,SY 
/OUTPUT 
FINISH 
SAVE 
/EXIT,ALL 



APPENDIX C 

C.1. ANSYS User Files - Validatioa of Experimental Biaxial Shear Tests 

In C. 1.1. of this appendix, a user input file is presented in ANSYS 5.3 format for evaluating 

the shear dominated, biaxial response of woven graphite fiber reinforced, polyimide 

composite materials, specifically graphite-PMR15. The fixtures assumed in these numerical 

analyses are the biavial Iosipescu fixture, i.e. shon loading blocks and the modified biavial 

Iosipescu fixture, i.e. ASTM specified blocks. These analyses are nonlinear and include the 

capabilities to model geometric (large strain and rotation) and boundary contact (friction) 

nonlinrarites. Fixture displacements are from 0.1 mm (3.9 x 10" in) to +3.0 mm (+1.2 x 10" 

in) and friction coefficients range From 0.1 to 0.8. The user file for the modified biavial test 

is excluded, however the format is identical with the exception of lines specified for loading 

block geometry. 

In C. 1.2. of this appendix, a user input file is presented in ANSYS 5.3 format for 

evaluating the effects of eccentric load conditions on the biaxial shear behavior of the same 

composite as in C .  1. I .  The finite element analyses employ layered, 6 DOF elements which 

model the correct number of plies and interfaces within the composite material. These 3-D 

analyses are also nonlinear, including the capabilities to model geometric and boundary 

contact nonlinearities. As with the 2-D cases, the file for the modified biaxial test is excluded 

to avoid redundancy. 

[n C. 1.3. of this appendix, capabilities of the 3-D Iosipescu models are extended to 

study the effects of anisotropic plasticity and progressive damage, separately and 

cumulatively. The key revision at this point is the change to an element type which supports 

plasticity and element birth and death scenarios of which the layered element does not 



support. The focus with piasticity and progressive damage is twofold: I ) to determine which 

is more of a contribution towards the significant nonlinear behavior experimentally observed 

in the 8HS woven fabric composites, and 2) to evaluate which ofthe element death scenarios 

more closely represents the volume of damage generated by reconstruction of serial sections. 

Element death is controlled by any one of several well-known failure criteria to see which 

if any are applicable to the given stresdstrain conditions in the Iosipescu specimens. 

C. I. 1. 2-D Biaxial Iosipescu Model (geometric and boundary contact) 

! Definition of friction coefficients 

/FILNAM,CGP-M%FC%-YG 
/TITLE.Nonl inear Analysis, M. Cambridge Research Model(PMR- 1 5)-rnu=%ho/o/YG 
/STITLE,Z.Loading angles (alpha) = -40 SIT to +40 S/T 
/UNITS,SI 
iPREP7 
1 

! This ANSYS 5.0a analysis pertains to biavial loading of graphite polyirnide Iosipescu 
! specimens. The fixture used is the modified Cambridge design biaxial Iosipescu fixture. 
! 
I 

! Test Conditions: 
! sliding (mu = 0.1 - 0.8) 
! prescribed displacements (d = 0.0 - +3.0) 

with geometric nonlinearities 

! Material Properties: 
! E l l  =E22 =79GPa 
I GI2 = 7.50 GPa 

! Input units are consistently = MPa 



ET, 1 ,PLANE82 
ET,2,PLANE82 
ET,3,CONTAC48,, 1,1,,,, 1 
R*L 
R.2, 
R,3,79e3,79e3/100,0. I,, 1 
MP,EX, 1,79e3 
MP,EY, 1,79e3 
MP,GXY, 1,7.5e3 
MP,NUXY, 1,O. 15 
MP,EX,2,400e3 
MP,GXY ,2,4OOe3/2*( 1 +O.30) 
MP,MU,3,h 
! 
! Definition of keypoints around specimen boundary 
K, 1,30,10,0 
K.2,14,10,0 
K,3,4,10,0 
K,4,0,6,0 
K,S,-4,10,0 
K,6,-30,10,0 
K,7,-SO, 10,O 
K,8,-40,0,0 
K,9,-30,- 10,O 
K, 10,- 14,- 10.0 
K, 1 1 ,-4.- 10,o 
K, 12.0,-6,O 
K, 1 3.4,- 10.0 
K, l4,3O,- 10.0 
K, 1 5 ,JO,- 1 0,O 
K, 1 G,4010,0 
! 
! Definition of keypoints within specimen interior 
K, 17,4,0,0 
K, 18,1.075,0,0 
K, 19,- 1.075,0,0 
K,ZO,-4,0,0 
K,2 1,0,1.075,0 
K,22,0,- 1.075,O 
I 

! Definition of keypoints for loading blocks 



! Definition of contact keypoints 
K,3 1 ,-40,10+.000 1,O 
K,32,-3O,lO+.OOO 1 ,O 
K,33,-14,-10-.0001,O 
K134,-4,- 1 0-,000 1.0 
K13 5,4,10+.000 1,O 
K,36,14,10+.000 1,O 
K,37,30,-10-.0001,0 
K,38,40,-10-,000 1 ,O 
KPLOT 
! 
! Definition of lines with respect to keypoints 
L,32,23 ! line 1 
L,23,24 ! h e  2 
1,,24,3 1 ! line 3 
L.3 1.32 ! line 4 
L,26,34 ! line 5 
L.3433 ! line 6 
L,33,25 ! line 7 
L,25,26 ! line 8 
L,36,29 ! line 9 
L,29,30 ! line 10 
L,30,35 ! line 11 
L,35,36 ! line 12 
L,28,38 ! line 13 
L,38,37 ! line 14 
L.37.27 ! line 15 
L,27,28 ! line 16 
L,20,5 ! line 17 
L,5,6 ! line t 8 
L.67 ! line 19 
L 7 , S  ! line 20 



L,8,20 ! line 2 1 
L, 1 1,20 ! line 22 
L,8,9 ! line 23 
L,9,10 ! line 24 
L,10,11 ! line 25 
L,16,1 ! line 26 
L, 1,2 ! line 27 
L,2,3 ! line 28 
L,3,17 ! line 29 
L,17,16 ! line 30 
L,15,16 ! line 3 1 
L.17,13 ! line 32 
LJ3.14 ! line 33 
L,14,15 ! line 34 
L, J,5 ! line 35 top notch 
L.3.4 ! line 36 
1 

! Definition of top notch root radius = 0.45 mm 
LFILLT,3 5,36,0.45,100 ! line 37 
L.2 I ,  100 ! line 38 
LCS ~ , 3  7,3 8 ! line 38 becomes line 39 
! ! radius left is line 40 
! ! radius right is line 41 
! ! removed line is line 42 
LDELE,42 
KDELE, 100 
KDELE,4 
L,20, 19 ! line 37 
L, 19,2 1 ! line 38 
L,17,18 ! line 42 
L,18,21 ! line 43 
L,12,11 ! line 44 bottom notch 
L,12,13 ! line 45 
! 
! Definition of bottom notch root radius = 0.45 mm 
LFILLT,44,45,0.45,100 ! line 46 
L,22,100 ! line 47 
LCS L,46,47 ! line 47 becomes line 48 
! ! radius left is line 49 
! ! radius right is line 50 
! ! removed line is line 5 1 



LDELE,5 1 
KDELE, 100 

! Definition of areas from existing lines 
AL, 1,2,3,4 
AL,j,6,7,8 

AL, 17,18,19,20,2 1 
AL,22,2 1,23,24,25 
AL,26,27,28,29,30 
AL,3 1,30,32,33,31 
! 
AL, 17,37,38,39,40,35 

APLOT 
! 
! Shaping and meshing areas 
AATT,2,2,2,0 
ESHAPE,3,0 
ESEZE, 1.0 
MAT.2 
REAL,2 
TYPE,2 
ESY S,O 
M E S H ,  1,4 
AATTJ,l,l,O 
ESHAPE,3,0 
ES IZE, 1 .O 
MAT, 1 
REAL, 1 

! line 46 
! line 47 

! area 1 
! area 2 loading blocks 
! area 3 
! area 4 

! area 5 
! area 6 specimen body 
! area 7 
! area 8 

! area 9 
! area 10 upper notch region 

! area I I 
! area 12 lower notch region 

! area 13 strain gage grid 



TYPE, 1 
ESYS,O 
AMESH,5,8 
AATT,1,1,1.0 
ESHAPE,3,0 
ESIZE,0.5 
MAT, 1 
REAL, 1 
TYPE, I 
ESYS,O 
AMES H,9,13 
MAT.3 
TYPE.3 
LSEL,S,LINE,, I9 
NSLL,S, 1 
CM,TARlg,NODE 
NSEL,ALL 
LSEL-ALL 
LS EL,S,LINE,,3 
NSLL,S, I 
CM.CON4,NODE 
NSEL-ALL 
LSEL,ALL 
REAL,3 
GCGEN7CON4,TAR19 
LSEL,S,LINE,,ZS 
NSLL,S, 1 
CM,TAR25,NODE 
NS EL,ALL 
LSEL,ALL 
LSEL,S,LiNE,,6 
NSLL,S, 1 
CM,CONG,NODE 
NSEL,ALL 
LSEL,ALL 
REAL,3 
GCGEN7CON6,TAR25 
LSEL,S,LNE,,28 
NS LL,S, 1 
CM,TAR28,NODE 
NSEL,ALL 

! Select logic for contact lines 

! Select logic for contact lines 

! Select logic for contact lines 



! Select logic for contact lines 

LSEL,ALL 
LSEL,S,L[NE,, 12 
NSLL,S, 1 
CM,CON 12,NODE 
NSEL,ALL 
LSEL,ALL 
REAL,3 
GCGEN,CON12,TAR28 
LSEL,S,LINE,,34 
NSLL,S. 1 
CM,TAR34,NODE 
NSEL,ALL 
LSEL,ALL 
LSEL,S,LWE,, 14 
NSLL,S, 1 
CM,CON 14,NODE 
NSEL,ALL 
LSELALL 
lXEAL,3 
GCGEN,CON I4TAR34 
lCOLOR,ELEM,MAGE, 1963,1978 
EPLOT 
FINISH 
! 
! Definition of loading angle options For biaxiality 
! *DO,ALPHA,-40,40,10 
ALPHA=O 
ISOLU 
!OUTPR,BASI,LAST 
!OUTRES,BASI,LAST 
! 
! Definition o F the analysis type and analysis options 
ANTY P.STAT,NEW 
NLGEOM,ON 
SSTIF,ON 
NROPT, t ,,ON 
EQSLV,FRONT 
I 

! Definition of the load step options 
*DO,i,O.l,3.6,0.1 
DDELE,ALL,ALL 



FDELE,ALL,ALL 
PI=ACOS(- 1 ) 
ALPH=ALPHA/ 10 
ALPHA=ALPHA*(- 1 ) 
DISPY =i/2 
DISPX=DISPY *TAN(ALPHA*PVL 80) 
! 
! General options 
AUTOTS,ON 
NSUBST, I00,1000,10 
I 

! Dynamic options 
TIMINT,OFF 
! 
! Definition of nonlinear options 
NEQIT,2500 
PRED,ON,,ON 
CSYS.0 
! 
! Definition of tile output variables 
FRICTION=FC 
D,62 19,ALL,O 
! 
LSEL,S,LNE,.2 
NSLL,S, 1 
D,ALL,UX,-DISPX 
D,ALL,UY,DISPY 
NSEL,ALL 
LSEL,ALL 
LS EL,S,LNE,,8 
NSLL,S, 1 
D,ALL,UX,-DISPX 
D,ALL,UY,DISPY 
NSEL,ALL 
LSEL,ALL 
LSEL,S,LINE,, I 0  
NSLL,S, 1 
D,ALL,UX,DISPX 
D,ALL,UY,-DISPY 
NSEL-ALL 
LSEL,ALL 

! Auto time-steppingiprediction 
! Default coordinate system 

! Applied friction coefficient 
! Center restraint 

! Block restraints 



LSEL,S,LNE,, 16 
NSLL,S, 1 
D,ALL,UX,DISPX 
D,ALL,UY,-DISPY 
NSEL,ALL 
LS EL,ALL 
CS, l5,O,62 l9,5348,jO39 
CSYS, 15 
SAVE 
SOLVE 
*ENDDO 
SAVE 
FINISH 
P O S T  1 
* D O j ,  1,36,l 
S E T j  
LS =j 
CSYS,O 
! 
! Definition of select path logic for integration along notch root axis 
! 
LPATH,5037,5629 
PDEF,SX,S,X 
PDEF,SY,S,Y 
PDEF,SXY,S,XY 
PDEF,EX,EPTO,X 
PDEF,EY,EPTO,Y 
PDEF,EXY,EPTO,XY 
PCALC,NTG,MTA,SXY,S 
PCALC, WTG,INTB,EXY,S 
/OUTPUT,INTG%ALPH%%FRICTION%%LS%,DAT 
PRPATH,INTA,INTB 
/OUTPUT,NSTS%ALPH%%FRICTION%%LS%,DAT 
PRPATH,SX,SY,SXY 
/OUTPUT,NSTN%ALPH%%FRICTION%%LS%,DAT 
PRPATH,EX,EY,EXY 
/OUTPUT 
! 
! Definition of select path logic for stresses/strains along top notch 
LPATH,470,50 1 5,5038,5037:5353,5352,28 15 
PDEF,SX,S,X 



PDEF,SY,S,Y 
PDEF,SXY,S,XY 
PDEF,EX,EPTO,X 
PDEF,EY,EPTO,Y 
PDEF,EXY,EPTO,XY 
/OUTPUT,VSTS%ALPH%%FRICTION%%LS%,DAT 
PRPATH,SX,SY,SXY 
/OUTPUT,VSTN%ALPH%%FR.ICTION%%LS%,DAT 
PRPATH,EX,EY,EXY 
/OUTPUT 
! 
! Definition of select logic for moment summations 
LSEL,S,LENE,, 10 
NSLL,S, 1 
/OUTPUT,M 1 %ALPH%%FRICTION?/o%LS%,DAT 
NFOR 
/OUTPUT 
NSEL,ALL 
LSEL,ALL 
LSEL,S,LINE,, 16 
NSLL,S, 1 
/OL:TPUT,M2%ALPH%%FRICTION%%LS%,DAT 
NFOR 
/OUTPUT 
NSEL,ALL 
LSEL,ALL 
! 
! Definition of select logic for strain gage grid 
ASEL,S,,, 13 
ESLA,S 
! 
! Definition of element centroids 
ETABLE,LOCX,CENT,X 
ETABLE,LOCY,C€NT,Y 
/OUTPUT,LOC%ALPH%%FRICTION%%LS%,DAT 
PRETAB,LOCX,LOCY 
/OUTPUT 
CSYS,15 
RSYS, I5 
PLNSOL,EPTO,X 
! 



! Definition of element average strains 
ETABLE,STRARNX,EPTO,X 
ETABLE,STRAINY,EPTO,Y 
/OUTPUT,STRN%ALPH%%FRlCTION%%LS%,DAT 
PRETAB,STRAZNX,STlUDX 
RSY S,O 
IOUTPUT,STRS%ALPH%%FR[CTION%%LS%,DAT 
PRNSOL,S,COMP 
/OUTPUT 
ASEL,ALL 
ES EL,ALL 
*ENDDO 
! 
FINISH 
!*ENDDO 
SAVE 
!/CLEAR,START 
*ENDDO 
SAVE 
/ EXIT,ALL 

C. 1.2. 3-D Biaxial losipescu Model (load eccentricities) 

FC=0.3 
1FILNAM.B-3D-%FC% 
ITITLE,3 D Nonlinear Analysis, Biaxial Research Model(PMR- 1 5)-mu=O/oFC% 
lSTITLE,2,Loading angles (alpha) = -30 S/T to +30 SIT 
/WNITS,SI 
/PREP7 
/PLOPTS,VERS, 1 
1 

! This ANSY S 5.3 analysis pertains to biavial loading of graphite polyimide losipescu 
! specimens. The fixture used is the modified Cambridge design biaxial Iosipescu fixture 
! with short blocks. The model uses layered solid elements (SOLID46) and incorporates the 
! following failure criteria: 
! 
! Maximum Stress or Tsai-Wu Failure Criterion 
! 
! 



! Test Conditions: 
! sliding (mu = 0.3)-boundary contact nonlinearities 
! prescribed displacements (d = 0.0 - 0.3) 
! with geometric nonlinearities 
! 
! Material Properties: 
! E 1 1 (C) = E22(C) = 70.0 GPa 

E33(C) = 1 1.3 GPa 
G12(C) = 7.0 GPa 
G13(C) = 4.9 GPa 
G23(C) = 5.1 GPa 
v12(C) = 0.10 
v 1 3(C) = 0.25 

v23(C) = 0.27 

E 1 1 (M) = E22(M) = E3 
v 1 Z(M) = 0.35 

3(M) = 4.0 GPa 

! Composite Layer Characteristics: 
! Laminae (0/90)8s - t = 2 8 9 . 0 ~  = 0.289mm 
t Matrix Interfaces - t = 2 5 . 0 ~  = .025rnm 
! Total Layers = 3 1 
I 

! Input units are consistently = MPa 
! 
! 
MOPT,AMESH,RVS t 
ET, l,SOLID46,,,4,,2,1 
KEYOPT, 1,8,1 
KEYOPT, 1,9,1 
KEY OPT, 1,10,0 
ET,2,SOLID45 
ET,S,CONTAC49,, 1,l 
KEYOPT,3,7,1 
1 

! Definition of composite layer orientations and thicknesses 
R.1, 
RMODIF, 1,1,3 1 
RMODIF, 1,7,0 
RMODF. 1,13,1,0,0.289,4,0,0.025, 





TBDATA,2, 1 
TBTEMP,78 
TBDATA, 10,l e3,-OSe3, I e3,-0.5e3,.05e3,-0.2e3 
TBDATA, 16,O. 1e3,0.03e3,0.03e3 
TBLIST 
! 
! Definition of Iosipescu specimen volume 
/VIEW,l, l , l , l  
RECTNG,-40,40,- 10,lO 
K,5,0,6 
K,6,-4,10 
K,7,4,10 
LSTR,5,6 
LSTR,5,7 
LFILLT,5,6,0.45 
LS EL,S,LNE,,5,7,1 
LCOMB,ALL 
ALLSEL 
LSYMM,Y,S 
ASBL, 1 ,S,SEPO,DELETE,DELETE 
ASBL,3,6,SEPO,DELETE,DELETE 
ADELE,l,2,1,I 
WPROTA,,,90 
WPOFFS,O,O, 1 
ASBW.4 
WPOFFS.0,0,3 
ASBW,l 
WPOFFS,O,O,5 
ASBW,4 
WPOFFS,O,O,- 10 
ASBW.2 
WPOFFS,O,O,-3 
ASBW,6 
WPOFFS,O,O,-5 
ASBW,2 
WPOFFS,0,0,9 
WPROTA,,,-90 
AGLUE,ALL 
! 
! Mapped meshing of Iosipescu volume 
ET,4,PLANE82 ! Dummy elements 



AATT,4,4,4,0 
ESHAPE,2,0 
ESIZE,, 10 
AMESH,4 
AMESH-3 
AMESH.7 
ESIZE,,8 
AMESH, 1 
hblESH,6 
ESIZE,,8 
AMESH.5 
AMESH,8 
VATT,1,1,1,0 
ESHAPE,Z,O 
ESIZE,, 1 
MAT, 1 
REAL, 1 
TYPE, 1 
ESYS.0 
VEXT,ALL,,,O,O,-5 
ACLEAR, I 
ACLEAR,3,8,1 
! 
! Definition of short loading blocks 
BLOCK,4,14,10,12.5,2.5,-7.5 
BLOCK,30,40,-10,-12.5,2.5,-7.5 
BLOCK,-4,-14,-10,-12.5,2.5,-7.5 
BLOCK,-30,-40,10,12.5,2.5,-7.5 
1 

! Meshing of short loading blocks 
VATT,2,2,2,0 
ESHAPE,Z,O 
ESIZEJ.5 
MAT,2 
REAL.2 
TYPE,:! 
ESYS,O 
VMESH,8,11,2 
! 
! Definition of boundary contact between blocks and specimen 
lMAT.3 



TYPE,3 
ASEL,S,AREA,,39 
NSLA,S, 1 
CM,CONl ,NODE 
ALLSEL 
ASEL,S,AREA,, 1 1 
ASEL,A,AREA,,24 
NS LA,S, 1 
CM,TARl ,NODE 
ALLSEL 
REAL,3 
GCGEN,CON 1 ,TAR1 
REAL,3 
GCGEN,TAR 1 ,CON1 
! 
AS E L,S,AREA,,46 
NSLA,S, 1 
CM,CON2,NODE 
ALLSEL 
AS EL,S,AREA,.9 
NSLA,S, 1 
CM,TAFU,NODE 
ALLSEL 
REAL,3 
GCGEN,CON2,TAR2 
REAL.3 
GCGEN,TAM,CON2 
! 
ASEL,S,AREA,,jZ 
NSLA,S, 1 
CM,CON3,NODE 
ALLSEL 
AS EL,S,AREA,,26 
ASEL,A,AREA,,3 5 
NSLA,S, 1 
CM,TAR3,NODE 
ALLSEL 
REAL.3 
GCGEN,CON3,TAR3 
REAL,3 
GCGEN,TAR3 ,CON3 



! 
ASEL,S,AREA,,S 7 
NSLA,S, 1 
CM,CON4,NODE 
ALLSEL 
AS EL,S,AREA,,Z8 
NSLA,S, I 
CM,TAR4,NODE 
ALLSEL 
REAL,3 
GCGEN,CON4,TARJ 
REAL,3 
GCGEN,TAR3,CON4 
IESHAPE, 1 
NUMCMP,ALL 
EPLOT 
FINISH 
! 
! Definition of loading angle for biaviality 
ALPHA=O 
/SOLU 
!OUTPR,BASI,LAST 
!OUTRES,BASI,LAST 
! 
! Definition of the analysis type and analysis options 
ANTYP,STAT,NEW 
NLGEOM,ON 
SSTIF,ON 
NROPT, 1 ,,ON 
EQSLV,FRONT 
! 
! Definition of the load step options 
* D0,i  ,O.OS ,O.OS 
DDELE,ALL,ALL 
FDELE,ALL,ALL 
PI=ACOS(- 1) 
ALPH=ALPHNlO 
ALPHA=ALPHA*(- 1) 
DISPY=i/2 
DISPX=DISPY*TAN(ALPHA*PV180) 
! 



! General options 
AUTOTS,ON 
NSUBST, l00,1000,10 
! 
! Dynamic options 
TIMINT,OFF 
! 
! Definition of nonlinear options 
NEQIT,SOO 
PRED,ON,,ON ! Auto time-stepping/prediction 
CSYS,O ! Defadt coordinate system 
! 
! Definition of file output variables 
FRICTION=FC* 10 ! Applied Friction coefficient 
! 
AS EL,S,AFEA,,58 ! Block restraints 
NSLA,S, 1 
D,ALL,UX,-DISPX 
D,ALL,UY ,DISPY 
D,ALL,UZ,O 
NSEL,ALL 
ASEL,ALL 
ASEL,S,AREA,,S 1 
NSLA,S, 1 
D,ALL,UX,-DISPX 
D,ALL,LTY,DISPY 
D,ALL,UZ,O 
NSEL,ALL 
ASEL,ALL 
ASEL,S,AREA,,45 
NSLA.S, 1 
D,ALL,UX,DISPX 
D,ALL,UY,-DISPY 
D,ALL,UZ,O 
NSEL,ALL 
ASEL,ALL 
ASEL,S,AREA,,40 
NSLA,S, 1 
D,ALL,UX,DISPX 
D,.LU,L,UY,-DISPY 
D,ALL,UZ,O 



NSEL,ALL 
ASEL,ALL 
SAVE 
SOLVE 
*ENDDO 
SAVE 
FINISH 
/POST1 
*Do~,l,l 
SET j 
LS=j 
CSYS,O 
! 
! Definition of node selection along notch root axis for extraction 
! of ply and interface properties 
! 
NSEL,S,NODE,, 12 
NSEL,A,NODE,,203,2 19,2 
NSEL,A,NODE,,5Z 
*DO,k, 17.3 1,2 
LAY ER,k 
iOUTPUT,PLYR%k%,DAT 
PRNSOL,S,COMP 
iOUTPUT 
*ENDDO 
! 
* D 0 , k  1 6,3O,2 
LAYER,k 
/OUTPUT,MLYR%k%,DAT 
PRNSOL,S,COMP 
/OUTPUT 
*ENDDO 
ALLSEL 
LAYER,ALL 
! 
! Definition of select path logic for integration along front surface 
! 
LPATH,52,12 
PDEF,SX,S,X 
PDEF,SY,S,Y 
PDEF,SZ,S,Z 

! plies 

! interfaces 



PDEF,SXY,S,XY 
PDEF,SXZ,S,XZ 
PDEF,SYZ,S,YZ 
PDEF,EX,EPTO,X 
PDEF,EY,EPTO,Y 
PDEF,EZ,EPTO,Z 
PDEF,EXY,EPTO,XY 
PDEF,EXZ,EPTO,XZ 
PDEF,EYZ,EPTO,YZ 
PCALC,INTG,INTA,SXY,S 
PCALC,INTG,INTB,EXY,S 
/OUTPUT,FITG%ALPH%%FRICTION%%LS%,DAT 
PRPATH,INTA,INTB 
/OUTPUT,FSTS%ALPH%%FRICTION%%LS%,DAT 
PRPATH,SX,SY,SZ*SXY*SXZ,SYZ 
/OUTPUT,FSTN%ALPH%%FRICTION%%LS%,DAT 
PRPATH,EX,EY,EZ,EXY,EXZ,EYZ 
/OUTPUT 
! 
! Definition of select path logic for integration along back surface 
! 
LPATH,ZS50,2530 
PDEF,SX,S,X 
PDEF,SY,S,Y 
PDEF,SZ,S,Z 
PDEF,SXY,S,XY 
PDEF,SXZ,S,XZ 
PDEF,SYZ,S,YZ 
PDEF,EX,EPTO,X 
PDEF,EY,EPTO,Y 
PDEF,EZ,EPTO,Z 
PDEF,EXY,EPTO,XY 
PDEF,EXZ,EPTO,XZ 
PDEF,EYZ,EPTO,YZ 
PCALC,INTG,INTA,SXY,S 
PCALC,TT\('TG,INTB,EXY,S 
/OUTPUT,BITG%ALPH%%FRICTION%%LS%,DAT 
PRPATH,[NTA,INTB 
!OUTPUT,BSTS%ALPH%%FRICTION%%LS%,DAT 
PRPATH,SX,SY,SZ,SXY,SXZ,SYZ 
/OUTPUT,BSTN%ALPH%%FRICTION%%LS%,DAT 



PRPATH,EX,EY,EZ,EXY,EXZ,EYZ 
/OUTPUT 
! 
! Definition of output for moment summation 
S POINT,O,O,O,-2.5 
ASEL,S,AREA,,S 1 
AS EL,A,AREA,,58 
NSLA,S, 1 
/OUTPUT,ML%ALPH%%FRICTION%%LS%,DAT 
NFOR 
/OUTPUT 
ALLSEL 
ASEL,S,AREA,,JO 
ASEL,A,AREA,,SS 
NS LA,S, I 
/OUTPUT,MR%ALPH%%FRICTION%O/ 
NFOR 
/OUTPUT 
ALLSEL 
! 
! Definition of output for maximum lateral displacements 
/OUTPUT,DISP%ALPH%%FRICTION%%LS%.DAT 
PRNSOL,U,Z 
/OUTPUT 
*ENDDO 
FINISH 
/EXIT,ALL 

C. 1.3.3-D Biaxial Iosipescu Model (anisotropic plasticity and progressive damage) 

FC =O. 3 
I'F~LNAM,PDAMAGE-3D%FC% 
/TITLE,3 D Nonlinear Analysis, Biaxial Research Model(PMR- 1 5)-mu=%FC% 
/STITLE,Z,Loading angle (alpha) = 0 
/UNITS,SI 
PREP7 
/PLOPTS,VERS, 1 
/NERR, 1 OOO,5OOOO 
! 



! This ANSYS 5.3 analysis pertains to biaxial loading of graphite polyirnide fosipescu 
! specimens. The fixture used is the modified Cambridge design biaxial Iosipescu fixture 
! with short blocks. The model uses 20-node solid elements (SOLIDBS) and incorporates 
! 3-D anisotropic plasticity (Hill's formulation). The model also incorporates progressive 
! damage according to a criterion based on the ratios of elastic strain energy densities. 
! 
! 
! 
! Test Conditions: 
! sliding (mu = 0.3)-boundary contact nonlinearities 
! prescribed displacements (d = 0.0 - 1 .O) 
! with geometric nonlinearities 
! 
! Material Properties: 
! Exx(C) = Eyy(C) = 70.0 GPa 
! Ezz(C) = 1 1.3 GPa 
! Gxy(C) = 7.0 GPa 
! Gxz(C) = 4.9 GPa 
! Gyz(C) = 5.1 GPa 
! vxy(C) = 0.10 
t vxz(C) = 0.25 

! vyz(C) = 0.27 
! 
! Anisotropic Plasticity Data: 
! 
! Yield Stresses 
! 
! Xt = 990 MPa Yt = 990 MPa Zt = 497 MPa 
! Xc = 990 MPa Yc = 990 MPa Zc = 497 Mf a 
1 XY = 95 MPa YZ = 53 MPa XZ = 53 MPa 
! 
! Tangent Moduli 
! 
1 

! 
! 
! 
! Critical 
! 
! 
! 

Exx-tan(t,c) = Eyy_tan(t,c) = 0.0 1 *Exx(yy) 
Ezz-tan(t,c) = 0.0064. Ezz 
Gxy-tan = Gyz-tan = Gxz-tan = 0 

Strain Energies 
SxEx-c = 6.261 8 MJ/mmA3 SyEy-c = 6.26 1 8 MJ/rnmA3 
SzEz-c = .0013 MJ/mmA3 SxyExy-c = .0345 MJ/mmA3 
SxzExz-c = .0400 MJ/mmA3 SyzEyz-c = .0400 MJ/mmA3 



! 
! Input units are consistently = MPa 
1 

I 

MOPT,AMESH,RVS 1 
ET, 1 ,SOLID95 
KEYOPT, 1,5,2 
ET,2,SOLID45 
ET,3,CONTAC39,, 1,l 
KEYOPT,3,7,1 
! 
! Definition of composite layer orientations and thicknesses 
R,L 
R 2 ,  
R,3 ,7Oe3,7Oe3/ 100.0.1 ., 1 
R.4 
! 
! Definition of material properties 
MP,EX, 1,70.0e3 
MP,EY, 1 JO.Oe3 
MP,EZ, 1.1 1.3e3 
MP,GXY, 1,7.0e3 
MP,GXZ, 1,4.9e3 
MP,GYZ,1,5.1e3 
MP,NUXY, 1 ,o. 10 
MP,NUXZ, 1,025 
MP,NUYZ, 1 , O X  
! 
! Definition of damage properties 
MP,EX,4.70.0e3*0.50 
MP,EY,4,70.0e3*0.50 
MP,EZ,4, 1 1.3e3*0.50 
MP,GXY,4,7.0e3*0.50 
MP,GXZ,3,4.9e3*0.50 
MP,GYZ,4,5. l e3*OSO 
MP,NUXYT4,0. 10 
MP,NUXZ.4,0.25 
M P , W Z , 4 , 0 . 2 7  
! 
MP,EX,2,400e3 
MPTGXY,2,400e3/(2*(1 +O.30)) 



! 
MP,MU,3,0.3 
! 
! Definition o f  plasticity criteria - anisotropic 
TB,ANISO, 1 
TBMODIF, 1,l ,O.WOe3 
TBMODIF, 1,2,0.990e3 
TBMODIF, 1,3,0.497e3 
TBMODIFJ, 1,70.0e3-(0.01*70.0e3) 
TBMODIF,2,2,70.0e3-(0.0 1 *70.0e3) 
TBMODIF,2,3,11.3e3-(0.0064* 1 1.3e3) 
TBMOD tF,3,1,0.990e3 
TBMOD tF,3,2,0.990e3 
TBMODIF,3,3,0.497e3 
TBMODIF,4,1,70,0e3-(0.0 1 *70.0e3) 
TBMODIF,4,2,70.0e3-(0.0 1 *70.0e3) 
TBMODIF,4,3,11.3e3-(0.0064* 1 1.3e3) 
!TBMODIF,5, 1,0.095e3 
!TBMODTF,5,2,0,053e3 
!TBMODIF,5,3,0,053e3 
TBMODIF.5,1,0.023e3 
TBMODF,S,Z,O.O 15e3 
TBMODF,5,3,0.0 15e3 
TBMODIF,6,1,7.0e3-(0.17*7.0e3) 
TBMODIF,6,2,5.1 e3-(0.25*5.le3) 
TBMODIF,6,3,4.9e3-(0.25*4.9e3) 
! 
! Definition o f  Iosipescu specimen volume 
/VtEW,l,l,t,I 
RECTNG,-40,4O,- 10,lO 
K.5,0,6 
K,6,-4, I0 
K,7,4,10 
LSTR,5,6 
LSTR,5,7 
LFILLT,5,6,0.45 
LSEL,S,LN,,5,7,1 
LCOMB,ALL 
ALLSEL 
LSYMM,Y ,5 
ASBL, 1,5,SEP O,DELETE,DELETE 



ASBL,3,6,SEPO,DELETE,DELETE 
ADELE, 1,2,1,1 
WPROTA,,,90 
WPOFFS,O,O, 1 
ASBW,4 
WPOFFS,0,0,3 
ASBW,I 
WPOFFS,O,O,S 
ASBW.4 
WPOFFS,O,O,- 10 
ASBW,2 
WPOFFS,O,O,-3 
ASBW,6 
WPOFFS,O,O,-5 
ASBW,Z 
WPOFFS,0,0,9 
WPROTA,,,-90 
AGLUE,ALL 
1 

! Mapped meshing of losipescu volume 
ET,4,PLANE82 ! Dummy elements 
AATT,4,3,4,0 
ESHAPE,Z,O 
ESIZE,, 14 
AMESH,4 
AMESH,3 
AMESH,7 
ESIZE,,6 
AiiESH, 1 
AMESH,6 
ESIZE,, 12 
AMESH,S 
AMESH,8 
VATT,1,1,1,0 
ESHAPE,2,0 
ESIZE,, I 
MAT, 1 
REAL, 1 
TYPE, 1 
ESYS,O 
VEXT,ALL,,,O,O,-5 



ACLEAR, 1 
ACLEAR,3,8,1 
! 
! Definition of short loading blocks 
BLOCK,J,I4,10,12.5,2.5,-7.5 
BLOCK,30,40,-10,-12.5,2.5,-7.5 
BLOCK,-3,-14,-10,-12.5,2.5,-7.5 
BLOCK,-30,-40,10,12.5,2.5,-7.5 
! 
! Meshing of short loading blocks 
VATT,2,2,2,0 
ESHAPE,2,0 
ES IZE,?S 
MAT,2 
REAL,Z 
TYPE,Z 
ESYS.0 
VMESH.8.1 I ,  1 
! 
! Definition o f  boundary contact between blocks and specimen 
MAT-3 
TYPE,3 
ASEL,S,AREA,,39 
NSLA,S, 1 
CM,CON 1 ,NODE 
ALLSEL 
ASEL,S,AREA,, 1 1 
ASEL,A,AREA,,24 
NSLA,S, I 
CM,TAR 1 ,NODE 
ALLSEL 
REAL,3 
GCGEN,CON 1 ,TAR1 
REAL.3 
GCGEN,TM 1 ,CON t 
! 
AS EL,S,AREA,,46 
NSLA,S, 1 
CM,CON?,NODE 
ALLSEL 
AS EL,S,AREA,,9 



NSLA,S, 1 
CM,TAR2,NODE 
ALLSEL 
REAL-3 
GCGEN,CON2,TAR2 
REAL-3 
GCGEN,TAIQ,CON2 
! 
ASEL,S,AREA,,52 
NSLA,S, 1 
CM,CON3,NODE 
ALLSEL 
ASEL,S,AREA,,X 
ASEL,A,AREA,,35 
NSLA,S, I 
CM-TAR3,NODE 
ALLSEL 
REAL.3 
GCGEN,CON3,TAR3 
REAL-3 
GCGEN,TAR3,CON3 
I 

ASEL.S.AREA,,57 
NSLA,S, 1 
CM,CON4,NODE 
ALLSEL 
ASEL,S,AREA,,ZS 
NS LA,S, 1 
CM,TAR4,NODE 
ALLSEL 
REAL-3 
GCGEN,CON4,TAR4 
REAL,3 
GCGEN,TAR4,CON4 
/ESHAPE, 1 
NUMCMP,ALL 
EPLOT 
FNISH 
! 
! Definition of loading angle for biaxiality 
ALPHA=O 



ANTYPE,STAT,NE W 
NLGEOM,ON 
SSTIF,ON 
NROPT, 1 ,,ON 
EQSLV,FRONT 
! 
! Definition of the load step options 
*DO,i,O.Ol25,0.250,0.0125 
/GO 
DDELE,ALL,ALL 
FDELE,ALL,ALL 
P[=ACOS(- 1 ) 
ALPH=ALPHA/ 10 
ALPHA=ALPHA*(- I ) 
D IS PY =I12 
DISPX=DISPY *TAN(ALPHA*PY 180) 
! 
! General options 
AUTOTS,ON 
NSUBST,200,1000,10 
! 
! Dynamic options 
TIMINT,OFF 
! 
! Definition of nonlinear options 
NEQ tT,SOO 
PRED,ON,,ON ! 
CSYS,O ! 
! 
! Definition of file output variables 
FRICTION=FC* t 0 ! 
! 
CENTER=NODE(O,O,-2.5) 
D,CENTER,ALL,O 
ASEL,S,AREA,,58 
NSLA,S, 1 

/SOLU 
! OUTPR,BASIC,ALL 
!OUTRES,BAS[C,ALL 
! 
! Definition of the analysis type and analysis options 

Auto time-stepping/prediction 
Default coordinate system 

Applied friction coefficient 

! Block restraints 



D,ALL,UX,-DISPX 
D,ALL,UY,DISPY 
D,ALL,UZ,O 
NSEL,ALL 
ASEL,ALL 
ASEL,S,AREA,,S 1 
NSLA,S, 1 
D,ALL,UX,-DISPX 
D,ALL,UY,DISPY 
D,ALL,UZ,O 
NSEL,ALL 
ASEL,ALL 
AS EL,S,AREA,,45 
NSLA,S, 1 
D,ALL,UX,DISPX 
D,ALL,LJY,-DISPY 
D,ALL,UZ,O 
NSEL,ALL 
ASEL,ALL 
AS EL,S,AREA,,40 
NSLA,S, 1 
D,ALL,UX,DISPX 
D,ALL,UY,-DISPY 
D,ALL,UZ,O 
NSEL,ALL 
ASEL,ALL 
SAVE 
SOLVE 
SAVE 
FINISH 
! 
! Begin progressive element death scenario according to failure criterion 
! of critical elastic stnin energy density ratios 
P O S T  1 
SET,LAST 
SXEX-C=6.26 18 
SY EY-C=6.26 18 
SZEZ-C=.00 13 
SXY EXY-C=.0345 
SXZEXZ-C=.0400 
SYZEYZ-C=.0400 



! Strain Energy Ratio (x-component) 

! Strain Energy Ratio (y-component) 

! Strain Energy Ratio (z-component) 

ETABLE,EY,EPEL,Y 
SMULT,SYEY,SY,EY,O.5, l/SYEYYC 
! 
ETABLE,SZ,S,Z 
ETABLE,EZ,EPEL,Z 
SMULT,SZEZ,SZ,EZ,OS, IISZEZ-C 
! 
ETABLE,SXY ,S,XY ! Strain Energy Ratio (xy-component) 
ETABLE,EXY,EPEL,XY 
SMULT,SXYEXY,SXY,EXY,OS, l/SXYEXY-C 
! 
ETABLE,SXZ,S,XZ ! Strain Energy Ratio (xz-component) 
ETABLE,EXZ,EPEL,XZ 
SMULT,SXZEXZ,SXZ,EXZ,OS, 1 /SXZEXZ-C 
! 
ETABLE,SYZ,S,YZ ! Strain Energy Ratio (yz-component) 
ETABLE,EYZ,EPEL,YZ 
SMULT,SYZEYZ,SYZ,EYZ,O.S, IISYZEYZ-C 
! 
! Begin calculation of failure criterion based on the ratios of the 
! elastic strain energy density ratios 
SADD,RATIOl,SXEX,SYEY,l,l 
SPLDD,RATI02,SZEZ,SXYEXY, 1,l  
SADD,RATI03 ,SXZEXZ,SYZEYZ, 1,1 
SADD,RSUMl ,RATIOl,RAT102,1,1 
SADD,RSUM2,RSUMl ,RATI03,1,1 
ESEL,S,ETAB,RSUM2, I 
*GET,LS,ACTIVE,,SET,LSTP 
CM,DV%LS%,ELEM 
SAVE 
FINISH 
/SOLU 
ANTYPE,,REST 
MPCHG,4,ALL 
ESEL,ALL 
*ENDDO 

! Select elements which satisfy 

! Assemblies of damage volumes 

! Change to damage properties 



SAVE 
F N S H  
POST 1 
*DO j, 1,20,1 
SETj 
LS =j 
CSY S,O 
! 
! Definition of select path logic for stress-strain data along specimen 
! notch root axis 
LPATH,4978,499 1 
PDEF,SX,S,X 
PDEF,SY,S,Y 
PDEF,SZ,S,Z 
PDEF,SXY ,S,XY 
PDEF,SXZ,S,XZ 
PDEF,SYZ,S,YZ 
PDEF,EX,EPTO,X 
PDEF,EY,EPTO,Y 
PDEF,EZ,EPTO,Z 
PDEF,EXY,EPTO,XY 
PDEF,EXZ,EPTO,XZ 
PDEF,EYZ,EPTO,YZ 
/OUTPUT,STS%ALPH%%FRtCTION%%LS%,DAT 
PRPATH,SX,SY,SZ,SXY,SXZ,SYZ 
/OUTPUT,STN%ALPH%%FRICTION%?6LS%,DAT 
PRPATH.EX,EY,EZ,EXY,EXZ,EYZ 
/OUTPUT 
*ENDDO 
FINISH 
iEXIT,ALL 



APPENDIX D 

D. 1. Mechanical Design: Modified Loading Block Geometry 



A 
I 

critical 32.79" 
I 

\ 2 x 4.00 DIA NOW 
2 x 7.00 DIA 

r *  - - - - - - - -  - 

I l l  I I l l  I 

Notes: 
all dimensions in (mm) unless noted 
angular measurements in (deg) 
all dim. BASIC; hold min. tolerances 

I where noted (rad), no sharp corner 

i Material: Stainless Steel (nom.) 





30.00 min. surface roughness 

Notes: 
all dimens~ons in (mm) unless noted 
angular measurements in (deg) 
all dim. BASIC; hold min. tolerances 
where noted (rad), no sharp comer 
treat all holes and C.S. the same 

Material: Stainless Steel (nom.) 
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