THE BIOAGENCY
A Collaborative Agent System for the
Discovery of Biological Information

by

Felix. Munoz

A DISSERTATION

Presented to the
Division of Medical Informatics and Outcomes Research
and the Oregon Health Sciences University
School of Medicine
in partial fulfiliment of
the requirements for the degree of

Master of Science

May 1999

K17
Mw{i
(994 |

School of Medicine
Oregon Health Sciences University

CERTIFICATE OF APPROVAL

This is to certify that the M.S. thesis of

Felix Munoz

has been approved

Professor in charge of thesis /
Mem_ber__

Member

r. Christopher Dubay

Dr. Jingke Li

r. Kent Spackman

Member

Member

Associate Dean for Graduate Studies Dr. Richard Maurer

TABLE OF CONTENTS

TABLE OF CONTENTS I
ACKNOWLEDGEMENTS I
ABSTRACT 11
PREFACE v
I. INTRODUCTION 1
II. BACKGROUND - AGENT TECHNOLOGY 15
HI. SYSTEM ARCHITECTURE 19
IV. AGENT ARCHITECTURE 28
A THE COMMUNICATIONS ASPECTooov e e eeeeeeeeee e et 34

Lo "0 ORI o vy o w5 s e o o e 34

2 TRE VOCBIUIEY 1 1s1.v0m 0o sttt 59-wa gumfgtdmss ssam 588 15 s b 41

B. THE KNOWLEDGE MANAGEMENT ASPECT ..o iveeeeeeeeeeeeeeeeer oo oo 46
1. The Knowledge Representationo.coco.oeoeeeeeeeveeeeeeseeeeeeeeeeeeeesees 47

2. TheKnowledge Base....................cccococoovoiioiviieeeieeeooeeeeeeeeeeeeeeeeee et 50

C. THEPLANNINGASPECT ...ttt e ee et e 52
I Single-Agent PIARRInGcocococooivoviiiioiceioieieeeeoeeeeeeeee e 52

2. Multi-Aent PIARHIRGooooeieeeeeeeeeeeeeee e 54

V. LIMITATIONS 55
VL. IMPLEMENTATION 58
VII. CONCLUSION 62
APPENDIX 1 — THE PLANNING ALGORITHM 64
APPENDIX 2 - CLASS FAMILY 66
APPENDIX 3 — SAMPLE KNOWLEDGE.TXT 67
APPENDIX 4 — SAMPLE DICTIONARY.TXT 69
REFERENCES 70

ACKNOWLEDGEMENTS

I' would like to thank Dr. Christopher Dubay, my advisor, for providing me with the
freedom to pursue my own research interests and for providing me with the means to
increase my knowledge in the areas I considered were relevant of study. His advice and
support was priceless. I am very thankful. I would also like to thank Dr. William Hersh
for giving me a chance to be a student in the Division and for providing the economic
means to pursue my studies without worries. And finally, to my fellow members of the
Zonana lab, Dr. Jonathan Zonana and Dr. Betsy Ferguson, for their advice and support on

helping me realize my true calling. To them I am deeply indebted.

il

ABSTRACT

The research to be presented in this thesis addresses the topics of information
gathering, information extraction, and information filtering in the area of bioinformatics.
The thesis has two main goals. First, it will show the reader how the fluidity of the Web
has made it cumbersome for scientists to use tools to access, manage, and analyze
biological data. Second, it will show how collaborative agent technology can be used as a
tool to solve this problem. The latter will be accomplished by presenting the reader with a
software program developed specifically to provide bioinformaticians and scientists with
a mechanism to delegate tasks to agents that are experts are performing specific services

in behalf of the user.

iti

PREFACE

As I started my research in the field of bioinformatics in the middle of 1997, I thought
I had realized what it was that I could contribute to the field: user interfaces. By then
there certainly were a lot of free services provided through the Web to the field of
Medical Genetics. Many of them, however, were very obscure and quite difficult to use.
A good user interface, I thought, can make any service, as complicated it may be, usable

by a novice user.

With this is mind I began development of an application called “Research Team.”
The goal of the application was simple: to provide, through a single application, a set of
“Assistants,” each of which would be able provide the user with an easy to use user
interface to available services. After the development of the first Assistant, however, I

began to see problems with this approach.

As I began development of an Assistant that was complementary to the first Assistant,
I realized that, for the application to provide a better service, Assistants should be able to
exchange information. With the system architecture I was working with at the time, the
user would have to copy and paste information many times between the Assistants. A
more efficient system architecture would allow an Assistant to use the same information
the user had presented to another Assistant to perform its own tasks without requiring any

user manipulation.

iv

Another problem became apparent as I began development of the user interface for
the second Assistant. Each Assistant provided it's own user interface. At the rate of one
user interface per service, the user would be inundated with user interfaces when
attempting to perform complicated tasks. Additionally, there may be a learning curve that
would need to be considered, as the user would have to spend time getting used to the

new user interfaces. There had to be a better way.

An inspiration came one evening while watching “Star Trek: the Next Generation.” I
noticed the way that the crew interacted with their ship's main computer. “Computer,”
Captain Picard would say, “calculate the distance to the nearest solar system.” To which
the Computer promptly responded, “The distance to the nearest solar system is 2.3 light
years.” “Computer,” Doctor Crusher would ask, “monitor the status of this patient and
alert me when the pulse goes below normal.” The Computer beeped approvingly and later

woke her up with the alert.

This illustrates two completely different services performed without the need for
either user to define the application that had to be used to fulfill the service that was
needed. The ship's Computer provided the crew with a simple interface that allowed them
to simply let it know what it was that was needed and the Computer would then call up
the appropriate applications and fulfill the request. The convenience offered by this
model was very appealing and I began researching the possibility of applying it to my

“Research Team” system.

This thesis is a presentation of my attempt to provide the Medical Genetics
community with a system that provides a user with a single, very simple to use interface

for a set of services. I believe I have achieved my desired goals.

Felix Munoz

May 1999

[. Introduction

The research to be presented in this thesis addresses the topics of information
gathering, information extraction, and information filtering in the area of bioinformatics.
The thesis has two main goals. First, it will show the reader how the fluidity of the Web
has made it cumbersome for scientists to use tools to access, manage, and analyze
biological data. Second, it will show how collaborative agent technology can be used as a
tool to solve this problem. The latter will be accomplished by presenting the reader with a
software program developed specifically to provide bioinformaticians and scientists with
a mechanism to delegate tasks to agents that are experts are performing specific services

in behalf of the user.

The relevancy of this research becomes evident when one considers that is the nature
of the scientist to manipulate and analyze data in order to generate new data. If the
processes a scientist uses to access, manipulate, and analyze data become cumbersome,

the scientist’s ability to generate new data is slowed down.

Bioinformatics is an emerging interdisciplinary research area whose purpose is to
provide scientists with tools that facilitate their ability to access, manipulate, analyze and
share biological data. Because it deals with the management and analysis of a wide range
of biological information, whether it relates to genes and their products, whole
organisms, or even entire ecological systems, this field is viewed as an interface between

the sciences of biology and information.

St atnde OF LIy [BLASTY Satren] 7]

LUCES RATHP SRS 1859 bp =Rl »0 DN~ 1IRE

DEPINITION R leuesp : S#18 proceia type I (HFPi, cyps I
splice varlane] wPHA, partiai caa.

LCESAION RA2BIS

NIb WOSETE
PEYEORDS fipnrsf IBrOMATSSLS pEQtelin Typs 1.
SOURCE Rattas lewcopus (stradn Fisker) fetus Drale ci¥ik to »dgdA.
ORGANISE Eabras |surepus
Eukacy ; 1 Nondrizl euker : Ke a: Chord
Verttbrate:; Turberia; Rodestis: Hos Ba; Eydmcrpba; Sueidee:

Burinacs Smttas,
REFERENCE | (bazen t to 1089)
WTBOES Agriceis,a.P., Law,P.3.7., BoChiguki.B., Himbi,T., Lewin,¥.i. snd
Saya, B,
TITLE nftecentinl splicing of the ssursdibromstosis type 1 (NF1) geme in
Lays: HowglogoUN SPiice VOLINDKe b Doenn sre EXPTETITL LL AL
[335
JOTRMAL Unpublished (1993)
FEXTORES Locstivn/Quatifiers
PouCR 3. 0059
forganisew "RELTES Lavcopiue™
foteain*“Fishar”
Fdb_xrefercaxon: WLIEY
Fdey_stageemLacus®
feinane_type="Rrean”
ene 1..1058
Fgung=NFi*
(2. 1..1059
Fparvinl
/gunemvRy i
Frore“GaP-ralated dowmin (type I splire wariamnt) .=
Fondon gtezesy
fycoducte"neurof IDEMMMEASLN pEOtELn CYPe 17
fdb_xret="PllrgRRsET 4%
ftransiat 1one" FREVL TEILOOGTEPDTLAY TVL XDRF ERLVELVTERGDOSTLY
AL MNPLIUND ELARYLY TLF PIUFELL TQLL ENEF SREVELADENOTLY RGHIL,
ASEIRTFCT RVYGATYLARMLEPLLRT I ITSSIGGEVEIF DVDP TRLEPSEDLEERSNY
LLQNTENF PELL [ESERETTS0LBSVCBCL VOVVEDRT FONS FOCIVSE ANFLAT THE),
IVSPTEAGELLIP PR LERCLEL RS EVLOS TANEVL Y THEEHERPFRIFVIOINSDL A
RRY FLYTASPCPTBDAVHEILST [EDEVL AL HAL L MNCE T SO0 VL AN RNTEAVER
TPFRERATLLATLOPPEEK™
AASE COmY 9 = 2496 ¢ 282 g 9
ORIGIN
1 SECATOUIAY CEOLYRSEAN SRTISTRONN SARRERACHG BACUISATAL ACCTOOTORR
61 ¥ L e QLOUBACLOY LEACAAAt GUTNISOCEY
121 guagapaLte PLALAUULAt gQUUUohIgos SAtJragres CLUgTLotes gLugoatong
AL coggEnogag NTCEQUTONT gUGQUILOAT CCTOQEUALT CQUECTACCS GRUQUTOCGY
41 SREATOUELY CTAMGURGTT SUATULISUCA G BTge s tr oy
301 &FATTHPCSS JLAMMTEST JRIGTTOLGE TTCMMGULET ACYOTQUTes rtaccreacas
181 magotcrogy gt mcguatcatc cEgattggea guatghtags
&1 veogaagugg et CAQ QUEAQMG JegugiT TEGRIDAgLE JURagTReT
451 ctortUATA COREADRJSS GUOCTILCAY YOCALTATCA JLLSTTOCEC agAgTTUcEE
S41 vogoeg grsty greLy @9 LEaguCngcy toag
&0 B g gEgregragg sagtgeencg R g e
G5l CORCCOTALT MRJCATIFAT LLCEGRTAAL AQUUACTAC CUATORMTLON SSZIQUCTCY
T2l aAyTTHALYt CoARgUTOTt L Y EASTQLECAC ARMQUBGGag
£ e oree P8 & 3 L o gy
841 cragatatiy CATCRERLTY ae @ gERE CLOTLLOSED
FOL aQTUMCONCS ALYLOTELOE SLUGCATCRY CLOUSTIOPn- ALALLCHPYD QRENAKLQDS
P61 chy GeRRCEY DU FELHE E tt sguTasgLy
WL g ce WYUECCROCY Qe A

£

ﬂhmmﬁlmm E”fm '§£m

Figure 1. A sample DNA sequence record from the GenBank database. Notice
the additional information available in addition to the sequence.

One of the branches of biology that has benefited tremendously from bioinformatics
research is the field of genetics, which deals with the heredity and variation of organisms.
By its nature, genetics researchers are forced to deal with the management and analysis of
biological information on a daily basis. Whether it is population measurements, DNA
sequences, lab outputs, etc., the genetics researcher is bombarded with biological
information. The nature of the information the genetics researcher has to deal with is
directly related to the type of research being performed. There are several types of
genetics research. This thesis will concentrate on a specific type: the identification of

gene function based on genetic sequence.

Any geneticist that has isolated a gene (or a fragment of one) is faced with the task of
defining a function for the protein it encodes. Two complementary approaches have
emerged to study gene function. Functional genomics emphasizes the roles of DNA and
RNA in the natural progression from information (DNA) to function (protein).

Proteomics, on the other hand, emphasizes the proteins themselves (William, 1997).

Because of the nature of the data required to define protein function using functional
genomics techniques, this approach has received a lot of attention from the field of
bioinformatics. While proteomics data is generally more graphical in nature (X-rays, 3D
renderings, etc.), functional genomics data is mostly text based. DNA sequences can be
represented as sequences of 4 possible letters. Proteins can be represented as sequences of

20 possible letters.

The emergence of the World Wide Web (WWW) provided bioinformatics
researchers with a platform on which to develop tools to facilitate the sharing of genomic
data. With these tools, genetics researchers had the ability to put their DNA and protein
sequences into large databases, making them accessible to colleagues around the world.
An example of such a database is GenBank, an annotated collection of all the publicly
available DNA sequences. As of December of 1998, GenBank contained approximately
2,162,000,000 bases in 3,044,000 sequence records (Benson, 1998). Each GenBank
record contains, in addition to the DNA sequence, information about the DNA fragment
represented:

e A series of IDs useful for recalling the same sequence in several other databases.
e The organism from which the sequence was obtained.
e A reference to the paper that first mentioned the sequence.

e The list of features found in this DNA sequence.

One of the most common types of searches performed on the GenBank database is
known as homology searching. In the following paragraphs, this bionformatic task will be
used as an example to help demonstrate how the current available tools, although

adequate for the task, require too much time and effort to be used to their fullest extent.

Homology searching falls into the functional genomic analysis approach previously
discussed. The general goal of performing a homology search on a DNA fragment is to
retrieve a list of known DNA fragment that are similar to the DNA fragment being
studied. The hope is that, by examining any functionality assigned to the proteins

encoded in these homologous DNA fragments, some of the functionality of the DNA

fragment used for the search can be determined. For example, if the DNA fragment bears
a lot of resemblance to a known DNA fragment that encodes a protein that breaks up
complex sugars, it is very likely that the protein encoded in the DNA fragment in
question may perform a similar function. Homology searching is usually the first step
taken when a scientist isolates a DNA fragment. DNA fragments can be isolated in many

different ways.

One of the attributes of a DNA fragment is its DNA sequence. A DNA fragment is
made up of nucleotides. The fragment’s DNA sequence represents the sequence of
nucleotides that make it up. In DNA, there are only 4 possible nucleotides, represented by
the letters A, C, G, and T. Therefore, it is customary to see a DNA sequence represented

by a sequence of these letters:

ATGCGATGCAGTGACTGAATTGCAGTGAACTG

If the DNA sequence belongs to a gene, it holds the code for the entirety or part of a
protein. It can be franslated to a sequence of amino acids (one amino acid for every 3

nucleotides), which is basically a representation of the protein.

Therefore, there are two general ways of doing homology searches when one has
access to a DNA sequence. First, one can search for homologous DNA sequences by
using the available DNA sequence directly. Second, one can search for homologous

protein sequences by translating the DNA sequence into the corresponding amino acid

sequence first. Each approach has different advantages and disadvantages. For the sake of

simplicity, however, we will concentrate in homology searches that use the available

DNA sequence directly.

One of the most commonly used Web-based tools to perform homology searches on a

DNA sequence is the “BCM Search Launcher”

(http://kiwi.imgen bem.tme.edu:8088/search-launcher/launcher. html). This tool is a

ﬂ BCM Search Launcher

Human Gemome Center, Bayior College of Medicine, Honston TX

The BCR Search Lumcher i an on-gowsg prowect o orgate mdscular biology-related search and andyzis tervces avadable
on the WWW by fsnon by promding & mmgle powd-of-eory for related searthes (o g, 8 siagls page for lanchung o sbem
ssquence sexrches usng standand paratetars)

Plyasy send suggeations for addiciony (o v poges ie: bearterBibem. e sl

The Search Lonnehes will be musvailable handsy, Feb. 8 1999, from %30 a.m. t § pan

Figure 2. A section of the BCM Search Launcher web page, illustrating the
variety of services provided by this site.

service provided by the Human Genome Center at the Baylor College of Medicine
(Houston, Texas). The BCM Search Launcher is an integrated set of WWW pages that
organize molecular biology-related search and analysis services available on the WWW
by function, and provide a single point of entry for related searches (Smith et al , 1996).
Of interest to us is the “Nucleic Acid Sequence Searches” set of services provided by the

BCM Search Launcher (http://dot.imgen bem.tmc.edu:933 1/seq-search/nucleic_acid-

search.html). As illustrated in Fig. 3, the Launcher provides access to a wide range of
such services. The web page that the user is presented with, however, is not very user
friendly. The names do not necessarily mean much to the novice user. In order to use this
web page alone properly the user will have to become quite knowledgeable about each
option available. We will concentrate our discussion on one of those services: the service
named “BLASTN / nr dna - Gapped BLASTN with RepeatMasker, Entrez & SRS links

(NCB/UW/BCM).”

To the new user, the name of this service does not mean very much. In order to use
this service, the user must first familiarize himself with several terms: “nr dna,”
“RepeatMasker,” “Gapped BLASTN,” etc. Certainly, this is not asking too much from
the user. After all, one needs to learn how to use an application if one intends to use it
properly. Expand, this, however, to the 100 or so services provided in the BCM Search
Launcher site alone. Admittedly, some of the knowledge gained from some services will
also be useful in making use of other services. However, the point to be made here is that
the user could be shielded from having to spend time learning a new user interface every

time the need to use a different service rises.

BCM Search Lamsscher: Nadele Add Sequence Seardhes

Cut end paste DINA stquence bere fraw cequencs ooy, mo header, mtr),
Mazemeom sequence length is TG00 bases

=

o

Chonve search methed | dstsbase
[HIQYPRE] = [H] Help/descrpticn, [O1Bl Options renrch; [P 2earch Parameters. [E] Exarmple soarch

& WU-BLASTX+BEAUTY / px protew - Wiren Gish's BLAST with gappied slgnments,

Repeathdagiesy, snd BEAUTT post-eocessng (WW/BCM) [H] [O1 (P) (5]
© BLASTXL4+BEAUTY ! g wruteln - BLASTX 14 witt Repesthacker snd BEAUTY post-

procerimg that adds sonotated deots mfsemanon (NCBIUWIBCM [H] (0] [F] 16
€ BLASTN ./ g dga - Gupped BLASTN with RepeatMachss, Batres & SRS bnks (NCEVUWBCHM) (K] (0] [P1 [
€ BLASTN | fhost - Gapped BLASTH with Repeathdacker, Eeaves & SRS ks (NCEUUWBCM) (H] (0] [P1(E)
© THLASTX . dbect - 6-frame ranciaion ve 6-Frama dbest

Capped TBLASTI with fepenthdagkss, Batrer & SRS babes (NCBITTWIDCM) (70 [Q] (7] 2]
© BLASTN | mopsh - Gapped BLASTN with RepnatMasker, Enorez & SES ks (NCBVOW/BEM [H] (O] [F] B
© BLASTN | gbstx - Gapped BLASTH with RepgatMackey, Eotrez & SRS lnks (NCBIYUW/BCAM) [H] () 1 [E]
© HEAUTY-X / CRSeqAmnot - Seq furedy mnd domsin ssftemanon added 1o BLASTX sasreh of BCM CRSeqAnns
@0) [O) R E]
L% Mnﬂ.mmmmnmmmm{mmlﬂ

Rodent Speciic Searches
€ BLASTN st monse - Gapped BLASTI wh RopaaMasker, Enves & SRS tmio (NCBUUW/EBCHM) [H] [0)]

Species Speadir Svarches

 BLASTN | Actinobacillns actinemporismoemitans grocows - BLASTH 1.4 (OU) [E] (O] (P [E)
* BLASTN Pangal (Aspergilins nidwians snd Nesrospora crozsa) gensmer - BLASTH LagOm HI2) R
© BLASTN | B, pabriliv - BLAST2 search of B subnds stram 163 (Pasvewr) [H] (2] [P] [E]
€ WU-BLASTN | € slegans genstaic - §-frame trandation va. genomic (Sanger) [H] [0 (] [5)
© M*Gdnﬂm-ﬁ-mw“wmﬁmmm@
© WU-TBLASTX ! C elegmns BT - f-frane translation v ranslated C. edrgans EST (Sanger) [H] (2] (71 [B)
© BLASTN | Crypiococons mesfurmuns gevome - BLASTH 14 (OF) [H110) (B1(5)
¢ BLASTN | Nelcseria gonarmkacat gruenss - BLASTH 1.4 0T (5] [O] [P](E]
¢ WU-BLASTN (S.orevisior Genoms « Warren Guch's BLAST snth gapped
abgrments (Stanford SGD) (H] (9] (2] [E)
' WU-BLASTN | & pomds genoms - W Gub's BLAST with gapped
shkgments (Sanger) [H] (O] [2) (E)
Ly M:WMW-WHWQQM
T BLASTN | Streptscocces grogemes genusor - BLASTH 1.4 ¢OU) [HI [(21 [(E)
© BLASTN ! Strapiocecons sutany gesamse - BLASTY 1.4 (G [H) (O} [[E)
€ BLASTN | Synachocystis sp. sermin PCC 6883 Genoms - (CyanoBase) (5] [0] (B (E
© WU-BLASTN | YoxgDH - WU-BLASTN search of the Temoptuema database of ehistered ESTs (UPENI) (] ¢

[E]
~ BLASTH | Torparosoms brtice] gonotns - BLASTN 1.4 seimch of Tevpanosoma brute BAC and P End (TIGR
[EIE

MM.MG%MMMMMF@MM

T v vmeskifin A Ty Thar 12 175930 00T 10080

Figure 3. The BCM Search Launcher page that provides the options for a
nucleotide sequence homology search. Notice the names of the options.

What does this search do? BLASTN is an algorithm that compares a nucleotide query
sequence against a nucleotide sequence database. The BLAST (Basic Local Alignment
Search Tool) family of programs, of which BLASTN is part of; is a set of similarity
search programs designed to explore all of the available sequence databases regardless of
whether the query sequence is an amino acid sequence or a nucleotide sequence. The
BLAST programs have been designed for speed, with a minimal sacrifice of sensitivity to
distant sequence relationships. The scores assigned in a BLAST search have a well-
defined statistical interpretation, making real matches easier to distinguish from random
background hits. BLAST uses a heuristic algorithm which seeks local as opposed to
global alignments and is therefore able to detect relationships among sequences which
share only isolated regions of similarity (Altschul et al., 1990). For a discussion of basic
issues in similarity searching of sequence databases, see Altschul et al. (1994). The
Gapped BLAST algorithm is an extension of the original algorithm and it allows gaps
(deletions and insertions) to be introduced into the alignments that are returned. Allowing
gaps means that similar regions are not broken into several segments. This was one of the
major shortcomings of the older BLAST algorithm. If two sequences had many non-
neighbor homologous regions, the BLAST algorithm would report each region as a
separate hit, leaving it to the user to piece the puzzle together. The new algorithm allows
the presentation of these homologous regions as gapped alignments. The scoring of these
gapped alignments tends to reflect biological relationships more closely (Altschul et al.,
1997). To reduce the chances that the BLASTN algorithm reports homologies over one of
the many repeats regions found in the human genome, the option we are using here uses

RepeatMasker. This is a program that screens DNA sequences for interspersed repeats

NCBI BLAST Search with Entrrez and SRS Links

BLAST renrch performed unag the Mational Cester for Brotechaology Information’s BLAST WWW Serces

Lasiks b0 Ezres 1o the Ssourace Rameval Svaem (SES) md to fepeglacksy provded by the Hivown Geoome Center,
Bandor College of Medicionn

Chaste & progran fo ase and detabace ta search:

Eropran [bhstn Bl pusbase[w— 81 I Perform mgepped slgemen

The query thquense i Brered for fowr compleniy regpons by defindt
Euter the roquence bene m FASTA format-

A

L
:- -_.' kS _'.-":‘;-‘ -'.'- ;pl'l: = .;+_.I.-—_-’ i r.':.:-i'“ :1‘. By -.: _:'.:* '.;"_. = 'I-Iﬂ'l'.'“'.'-'.'-r- At i _-:-.-I o 15:’£
b o gl A S T TEER T SRS e]| R bl S et it bl b Lo] a
Advanced eptons for the BLAST serves:
T L |
Choose an arganins from the WMH kot wour BLAST search
[z
Mzt with G expsteocs ot sud Per ceaidie ap cost dnd Lapbida raso [0S 11 1085 5]

T s T e

Segmence Filtering:

DNA Fer [Ropeacasker - piwnases 5
Mare Optlonr:

Mon Jow 36 § 50087 CET 1993
Credits 1o Tom Madden (madden@nebl tim i gov). Sergn B. S (shavmni@ncti nmnds gow, and Jmgins Zhang

EjtngEnchbs o ath gow)
BOM Post-peocessing g Worlew and Sam Culberper

Figure 4. BLASTN options.

10

known to exist in mammalian genomes as well as for low complexity DNA sequences.

The output of the program is a detailed annotation of the repeats that are present in the

EJEARE 0 agl !

Figure 5. Zoomed out view
of a sample result set
returned from a BLASTN

search.

query sequence as well as a modified version of the query
sequence in which all the annotated repeats have been
masked (replaced by Ns). This modified version of the
sequence is then used in the BLASTN algorithm. On
average, over 40% of a human genomic DNA sequence is
masked by the program (Smit AFA & Green P, University

of Washington, unpublished data).

As we can see from Figure 4., BLASTN offers a
variety of other parameters that can be defined by the user.
For a description of each of these parameters, please refer
to BLAST help page
(http://www.ncbi.nlm.nih.gov/BLAST/blast_help.html).
The BCM Search Launcher site provides two ways of
performing a DNA sequence homology search: a default
way and an advanced way. The default way simply

requires the user to input the query DNA sequence in the

input box and to select a search method. The Launcher then performs the search using the

default values for the parameters in Figure 4. The advanced way, on the other hand,

presents the user with a way to modify the values for the search. Manipulation of these

values should help the user to configure the application better for the specific type of

11

search that is being performed. This, however, is not necessarily an easy task. A lot of
research needs to be done in order to understand what each parameter is and how it may
affect the outcome. Given this, most researchers perform homology searches using the

default values.

Emg Q1|332996|gb | B2UZ19| PPB2CSE Boviue papillomavirus type 2, complete genowe.

Length = 7937

Score = 346.2 bhita (18), Expect = 2.2
Identitiss = 18718 [(100%), Positives = 18/18 [100%)

Quervy: 32 angoatgoactgrasarg 49

FERERLTRE el
Sbjct: 738 atgoatgoactgeasstg 7221

Figure 6. A homology from the result set returned after a BLASTN search.

Once a user has submitted a search, the returned result set is basically a long list of
matches (see Figure 5). The number of matches reported can be very long (> 100
sometimes). From this result set the user can began the process of determining which of
the matches may hold information relevant to the DNA fragment being studied. Most
commonly, this is done by investigating the information related to the DNA fragment
from which the homologous DNA sequence was obtained. The BCM Search Launcher
does provide a series of features that make this task easy. Figure 6 shows a sample
homology, taken directly from the result set in Figure 5. As we can see, there are a lot of
links available to the user. Both the “E” link and the link right next to the name of the
DNA sequence take the user to the GenBank report of the DNA sequence, similar to the

one in Figure 1. With this information one of the things the user can determine is if there

12

is any information related to the area of the sequence found to be homologous to the

query sequence. From Figure 6, we can tell that the homology occurs over the area from

nucleotide number 7221 through the nucleotide 7238. By looking at the “Features”

section of the GenBank report, the user can see if there are any functionalities assigned to

that region. If there is any, the user may have a lead to the possible functionality of the

homologous area of the query sequence.

Figure 7. The “R”
link.

Several other pieces of information can be gathered from the
homology in Figure 6. The “R” link directs the user to a series
of pages containing related sequences to the homologous
sequence Figure 7 is one of such pages. Each of section of this
page contains what is called a neighbor sequence, a sequence
that shares a lot of similarities, sequence wise, to the
homologous sequence. If neighbor sequences are very similar to
the homologous sequence, it stands to reason that these
sequences too may contain information useful to determining
the function of the amino acid sequence (or protein) encoded in
the query DNA sequence. Figure 7 shows one of these related
sequences that come up from clicking on the “R” link. As one
can see, there are several links the user can take to study this

particular DNA sequence.

13

So, as we can see, there is quite a lot of information available to the user when
performing a single homology search. There are several problems that can be identified
from this description:
© The amount of the information. The number of homologous sequences can sometimes

be quite large. Although usually the user limits himself or herself to analyze the best

candidates (usually the top 10 homologous sequences), I believe this to be
disadvantageous at certain times as they could be a very relevant homology that,
because is too low in the ranking, is not even considered for examination.

o The spread of the information. As the user clicks on the links provided, the user is
taken to the many sites that hold the information. Although this is not necessarily a
bad thing, it does require more work from the user in learning how the user interface
of each site works, what the vocabulary used in each site is, etc.

The dynamic nature of the information. As more and more sequences are added to the
databases, the homology search done today may be outdated tomorrow. New
sequences may be added to the databases that may hold the key to discovering the
function of the DNA fragment being studied. Furthermore, not only the information is
dynamic, but its container is dynamic as well. Web sites with new services appear,
disappear, and change routinely on the Web.

This list of problems drive to the conclusion that explosion of the Web has made it

cumbersome for the scientist to access, analyze, and manipulate biological data. In order

to solve this problem, new techniques for data management will need to be developed

and implemented,

14

The rest of the thesis will discuss the use of collaborative agent technology as a tool
to solve these problems. Section II of the thesis will first present the reader with an
introduction to the field of agent and collaborative agent technology to familiarize the
reader with the previous work done in this field. Section III will present the reader with
the general architecture of the system developed. Section IV will discuss the inner
workings of the agents that inhabit the system. And finally, Section V will address some

of the limitations of the system.

II. Backeround — Agent Technology

Intelligent agents have been the subject of a great deal of speculation and controversy
in the last few years. This has come to be because of two reasons: the growth of the

Internet ad the maturing of artificial intelligence (AI) research.

As the Internet has grown in the last few years, the need for mechanism to save
people time by providing them with ways to delegate Web searches to software programs
has become quite apparent. Agents are seen as user representatives that basically know,
either by being told or by predicting, what it is that the user needs at any time and then

providing that something to the user without the user having to be present.

The Al community’s interest in agent technology is not necessarily linked to the Web.
As the 1970°s and 1980°s came and went, the Al community has been trying to find the
“killer app” to the Al techniques developed through several years of research in the

computer science departments of universities. Techniques such as neural networks,

15

evolutionary programming, genetic algorithms, learning algorithms, etc. have matured in
the Al research community but have failed to find a niche in mainstream computer
environments. Agent technology has provided an opportunity for these techniques to be
tried in a technology that has the potential of entering mainstream computer

environments.

The concept of a software agent has been refined over the years. From HAL in
Stanley Kubrik’s 2001: A Space Odyssey to the Computer in television’s Star Trek: The
Next Generation, the idea of a computer allowing us to ask it direct questions and
obtaining an answer without the user having to perform the tasks themselves has

fascinated people all over the world.

The Webster’s New World Dictionary definition of an agent is “a person or thing that
acts or is capable of, or is empowered to act, for another. This definition of agent is quite
useful because of two reasons. First, it gives as a general understanding of what it is that
an everyday person thinks what an agent is. It gives us a concept of what it is that a user
expects when confronted with the term “agent.” Second, it defines the two basic
attributes of an agent: an agent does things, and an agent acts in behalf of someone or

something. Translating this into computer terms, a software agent can be defined as:

A computer entity that performs user or another agent’s delegated tasks autonomously

16

With this definition, let’s review some of the previous research performed on the field of
agent technology.

Perhaps one of the most well-known agents today, and arguably one of the most hated

o e o S
u e N TR SO N O YY) i

SO R bl o oS L

Figure 8. The Microsoft Office Assistant

ones, is the Microsoft Office Assistant (see Figure 8). This agent provides the user of the
application with context-sensitive advice on how to perform certain tasks in the
application. Unfortunately, one of its biggest flaws is that the agent provides this help
without being requested by the user and it does so by interrupting the user from whatever
it is doing and taking control of the application window. This behavior disturbs the
interaction of the user with the application, and results in the user developing negative

feelings against the agent.

17

Microsofi’s Office Assistant represents the single-agent approach of agent
technology. These agents are usually wizards that provide the user with a single service
and perform these services much like a human expert might. These agents encapsulate

knowledge.

Otoers Qe [l
Personalized
Artificial Intelligence
D SR SRR o
fort by olioking on a2 haading balove. fatings wre submitted by ofioking o tab or & bulton beleww
UKEI(E |
i S S -
C O C 8 | colbnletmual C aicle: f98.32-1997 q!
C 0 € 0B el i da Elisabeth Andre .
C O C 8 9 wwwoesam FAQ: Outsider's Guide to Al
C € 8 | papemformaticrmusachen de Gerhard Wei - Home Page “
€00 B a4 wwwercatinedae JInternet robat will get you, the best deal !
C 0 8 | bugpdatldoupsncdu ives -- 1997, week 2 (#8! E
C 0 C 8 15 omegagudde MI-Research-Databaze |
CCC R 12 forumswathmoe edu achi ing in Games t
C M C 8 1 ewwogsikhad ing Li :
Figure 9. Multi-Agent System Example

This single service per agent model of single-agent technology, however, is a
drawback for certain context. There are situations in which it would be preferable for
agents to interact with each other in order to increase the quality of the output of the tasks
they perform. This approach is called the multi-agent approach of agent technology. As
an example of this technology, WiseWire is a company that has a Web-based product
(see Figure 9) in which the user, after setting up its preferences, is able to have its

personal agent select Web pages for the user to read that the user should find of interest.

18

The agent searches the Web basing its decisions on the likes and dislikes of the user and
reports to the user only those pages that match the profile. However, the twist in this
product is that personal agents from different users are allowed to “talk” to each other.
While conversing, agents that have users with similar likes and dislikes are able to define
sets of Web pages that another user has found interesting that another agent’s user may
also find interesting because of their similar profile. This is an example of collaborating
agents. Collaborating agents offer a very powerful mechanism by which the knowledge
gathered by other agents can be used as a resource by other agent’s in the community that

may have the need for the data but may not have the capabilities of accessing it.

This section has given a very broad overview of agent technology. For a very good
reference of this exciting technology the reader is referred to the “Agent Sourcebook”
(Caglayan, 1997). The next sections will introduce the reader to a system developed
using collaborative multi-agent technology to facilitate the access of biological data and

services to geneticists.

III. System Architecture

This section of the thesis will present the architecture that was constructed to support

the design requirements presented previously.

During development of the system architecture, the primary design goal was to
present the user with a very intuitive paradigm that was easy to relate to. The approach

taken to achieve this was to base the system architecture on a real-life object. Since the

19

system involves agents, the metaphor of a travel agency seemed appropriate, since most
people have had to deal with a travel agency and a travel agent at some point of their
lives. This metaphor will be used in this section to shed some light into the reasons
behind the system architecture developed. The architecture of the system will be
presented by first defining the way in which a client would interact with a travel agency
in order to purchase airline tickets, and then presenting the way in which a user would
interact with the system in order to get the homologous DNA sequences of a given DNA
sequence. By paralleling the way in which a person interacts with the travel agent and the
way in which a user interacts with the system developed it should be simpler for the

reader to understand how the system is supposed to work.

Before proceeding, let’s first define the basic assumptions taken when designing the
system. At the moment in which the user decides to use the system, the decision has
already been made that the user would like to delegate a specific task to an agent. This
defines two basic assumptions. First, the user has already formalized a task that needs to
be delegated. Second, the user has formalized a set of information to be used to perform
that task. In our examples, the tasks that need to be delegated are “purchase an airline
ticket” and “get the homologous DNA sequences of a DNA sequence.” The pieces of
information related to the first task would be the date and the destination of the desired
flight, while the piece of information related to the second task would be the sequence of
the DNA sequence for which homologous DNA sequences. After establishing these two

basic assumptions, the starting point for the user interaction with the system was defined.

20

When the task that needs to be delegated is to “purchase an airline ticket” one first
calls the travel agency. Similarly, when the user wants to delegate the “get the
homologous DNA sequences of a DNA sequence” to an agent, the user will first “call,”
or startup, the Agency. As a side note, one of the benefits of working with agent
technology (and object technology) is that it allows the developer the ability to give
software components names that are easy to understand. In this case, for example, there is

a piece of software actually called “Agency.”

Conceptually, one understands that an agency is where agents work. Furthermore,
there are specific types of agencies, and hence specific types of agents that offer specific
services. A travel agency is where one expects to find travel agents and, therefore,
services related to traveling. A car insurance agency is where one expects to find car
insurance agents and, therefore, services related to car insurance. In a similar manner, the
system supports several types of Agencies. The Agency developed for this thesis is called
the “BioAgency” and contains agents that provide biological services. There could be a
second Agency, the “MedAgency,” which the user would expect to contain agents that

offer services related to the medical field.

Once a person has called the travel agency, a receptionist usually answers the call.
The receptionist’s job is to ask the person for his or her name, refer the person to a travel
agent, and maybe keep track of whom the travel agents are handling. The receptionist,
however, is not an agent. It represents a service of the travel agency. Within the system

developed, this task is handled by a software component named “Receptionist.” This

21

software component, as discussed, is not an Agent. It is a service provided by the
“Agency” software component. Its tasks constitute the user session management tasks of
the system. When the user wants to initiate a session after starting up the Agency, the
Agency initializes the Receptionist, which then takes the user’s name via a dialog box.
The Receptionist then starts up a “User Agent,” and tells the User Agent the name of the
user the Agent will be taking care of. The User Agent takes over the interaction with the
user and, from the user’s point of view, the job of the Receptionist is completed. In the
background, the Receptionist is also tasked with keeping track of the sessions that are
currently active in the Agency, logging in the name of the user and the ID of the user’s
User Agent. Whenever a user ends a session with the assigned User Agent, the User
Agent notifies this action to the Receptionist, who removes the session from its active

session list and either terminates the User Agent or defines the User Agent as available.

In a travel agency, if the customer is a repeat customer, the agency will more than
likely have his profile. This profile should contain information about the customer, such
as his name, address, phone number, previous travels, traveling preferences, etc. All of
this information is retained in order to save the customer time by not requiring him to
have to provide that information every time he calls the travel agency. If a profile does
not exist, however, the travel agent would create a new profile for the customer. In a
similar manner, in the Agency the User Agent has access to a User Profiles Database,
where it keeps relevant information about every user that enters the Agency. This profile

serves a purpose similar to the one kept in a travel agency. If a profile can not be found

22

for the user, the User Agent assumes the user is a new user and proceeds to create a new

profile, which is then added to the database.

The travel agent is the person that should be able to take care of the client’s request.
Even though the task of purchasing airline tickets involves dealing with the billing
department, a life insurance agent, etc., the customer does not expect to be referred to do
all of these tasks. The travel agent is a one-point stop for all of the customer’s needs.
Furthermore, the travel agent’s job is to find a way to satisfy the customer requests asking
the customer as few questions as possible. The travel agent interacts with the necessary
databases, talks with the billing agent to obtain a bill for the customer, talks to the
insurance agent to set up life insurance for the flight, etc. In the system developed here,
the User Agent has a similar job. After the login process is completed, the user interacts
only with the User Agent. This way the user is completely shielded from what is going on
in the background. The User Agent might make use of other Agents, of Web services, or
other resources to fulfill the user’s request. The only thing the user sees is the response to
his request. The User Agent will attempt to find a way to fulfill the user’s request and, if
it is not possible to fulfill it, it will return an error message to the user with the reason

why the request could not be fulfilled.

A travel agency usually has more than one travel agent. If a travel agent gets stuck
trying to find out something for the customer, the other travel agents in the agency
become resources. Different travel agents may have access to different resources. In the

system developed, there are agents called, “Support Agents.” These are Agents that

23

provide services that are helpful for fulfilling user requests. The OMIM Agent, for
example, may provide access to information from the Online Mendelian Inheritance in
Man (OMIM) database (NCBI, 1998). The Entrez Agent may provide access to
information from the databases supported by the Entrez mega-database. In the present
system, these agents do not interact directly with the user. The user makes use of their
services by making requests to the user Agent, who then is tasked to forward those
requests to the appropriate agent and to forward their responses to the user. This,
however, is not a closed argument. Future user interfaces developed to access the Agency
may permit the user to request tasks directly from specific agents. There is nothing in the

system that prohibits this from happening,

Let’s imagine now that the travel agency we have been talking about is a very big
agency. The travel agents would probably not know each other, or if they do, they may
not be familiar with what the other travel agents know. In this situation, when a travel
agent needs information he doesn't have, he probably would not go from agent to agent
soliciting information. He would probably first go to the one person in the travel agency
that knows the most, or that at least has access to information about the agents working in
the agency. This person would be the manager. Similarly, in the system developed, a
User Agent does not need to know the names of all the support Agents available and the
services they provide. This task is given to the Management Agent, also called the
Manager. When an Agent begins its life in the Agency, it tells the Manager its name and
describes the services it provides. With this information, the Manager can help other

agents in the agency to find agents that fulfill specific services that the requesting agent

24

needs to fulfill a request. Let’s say, for example, that the user wants to get the diseases
related to a gene that has been found to be homologous to a DNA sequence. To do this
the user provides the User Agent the name of the DNA sequence, which is all the
information the user knows about the specific DNA sequence for which homologous
DNA sequences are needed. After providing this information to the User Agent, the User
Agent finds out that it alone can not fulfill the request. Therefore, it asks the Manager to
provide a plan to fulfill the request. The Manager, knowing what every agent can do, is
able to create a plan for the agent, which basically involves asking the appropriate agents
specific requests that can be used to fulfill the request. In this case, the Manager
determines that the BCM Agent is able to obtain the homologous DNA sequences of a
DNA sequence. However, the BCM Agent needs the actual DNA sequence, not just the
name. The Manager then looks if there is an agent that can provide the DNA sequence
given its name and finds him (let’s say the DNA Agent). Hence, the plan basically
involves first asking the DNA Agent to get the actual DNA sequence of a DNA sequence
given its name and then asking the BCM Agent to get the homologous DNA sequences of

the given DNA sequence.

25

User
Profiles <:>
Database @ User
s Agent

~ =~ Management

Agent | |17 <:>

Figure 10. System architecture.

During the design of this architecture, the question came up whether agents should be
able to remember the names of agents that provide specific services. Ideally, this would
result in Agents not having to ask the Manager for Agent names every time the same
request comes through. This ability, however, would severely limit the extensibility of
the system. An example will help clarify this. Imagine that the User Agent has already
asked the BCM Agent mentioned above for the homologous DNA sequences of a DNA
sequence. It remembers that the BCM Agent can get this information, and that the DNA
Agent can get the DNA sequence that the BCM Agent needs by providing it with the
name of the DNA sequence. The next time that a similar user request comes in, the User
Agent will no longer need to ask the Manager and will ask directly to the DNA Agent for
the DNA sequence and pass this over to the BCM Agent which would then return the
desired homologous sequences. What happens if the BCM-DNA Agent is introduced into
the system? This agent is better than the BCM Agent or the DNA Agent alone, it has
faster algorithms, and asking it the same question no longer requires two steps. Given that
the User Agent is now circumventing the help from the Manager, the User Agent will

never benefit again from the new Agent.

The system architecture presented here fulfills the system requirements presented in
the introduction:
o It is easily extensible: the services provided by the system can be easily extended by
simply adding new Agents into the system. The system would take care of facilitating
the discovery of the services provided by the new Agents by centralizing the list of

services in the Manager.

27

o [t is easily adaptable: if the structure of the Web page an agent uses as a resource
suddenly changes, the user needs only to upgrade the affected agent to a version that
is aware of the page structure changes. The whole system does not become obsolete.

o [t limits the number of user interfaces the user must interact with: the user will only
need to interact with the user interface presented to him by the User Agent assigned
to him.

o [tis customizable: by allowing the User Agent to maintain a user profile of the user,
the system is able to customize the user experience. At this point the only two things
that are customizable are the type of user interface the user prefers to use and the user
information the Agent can use when executing tasks in behalf of the user (the name,

e-mail address, etc.).
This concludes this section of the thesis. Given the system architecture presented in

this section, the Agents that inhabit this system will need to fulfill certain requirements.

The next section will discuss the Agent Architecture.

IV. Agent Architecture

This section of the thesis will introduce the reader to the internal make up of an agent.
After reading this section the reader will be able to understand the basic behavior of an

Agent and the mechanisms that it uses to help fulfill user requests.

As presented in the previous section, an Agent is basically an entity that provides

itself and other agents with services that help fulfill user requests. These services are

28

presented to the community of agents through the Manager, which keeps a record of the
services that each agent can do and provides agents with plans of action for specific

requests.

As presented in the introduction, one of the primary system requirements was that it
had to be easily extensible. Ease of extensibility, however, can be viewed in two ways.
The first way is ease of extensibility as viewed by the user of the system which, as shown
in the previous section, is fulfilled by the system architecture. The second way is ease of
extensibility as viewed by a software developer. The system architecture provides the
developer with a mechanism to easily deploy new agents and extend the Agency’s

capabilities but it does not provide with a mechanism to easily develop new Agents.

Before proceeding any further, it is important for the reader to understand the concept
of inheritance as used in object-oriented (O0) programming. Inheritance, in this
situation, refers to an object’s ability to inherit attributes and methods (abilities) of
another object. In its simplest form, inheritance in OO programming is achieved by
extending existing objects. Let’s say, for example, that a developer has programmed an
object called Person. The developer has programmed into this object the ability to give
its name, give its e-mail address, and give its telephone number. If the developer wants to
create a new object, such as Doctor, that not only has the same abilities the Person object
has but it also has the ability to give a diagnosis, the developer may decide to rewrite
code to give a Doctor object to give its name, or extend the Person object. If the

developer decides to extend the Person object, the Doctor object will have the same

29

attributes and abilities as the Person object by default and all the developer will need to
program into the Doctor object is the ability to diagnose. This is clearly a very efficient

way to reuse pre-existing code and saves the developer time.

The system presented here is written in a language called Java (Kramer, 1996). This
language is an object-oriented language and, hence, provides developers with an
inheritance mechanism. Given this, an approach to provide the developer with an easily
extensible system was possible. All that is needed is to create a Basic Agent with the
basic capabilities that every Agent in the Agency should have in order to interact with
other agents and to perform their services. This would allow the developer of a new
Agent to simply extend this Basic Agent and concentrate in programming the abilities

needed to provide the services that the new Agent will offer.

With this as a general goal, it was necessary to define what exactly it was that the
basic Agent should be able to do. Given the specific types of tasks the agents to be
developed would be doing (i.e. homology searches) a specific set of requirements became
apparent:

o Agents must be able to dynamically communicate with each other.
Agents should be able to advertise their services, request other Agents to perform
services for them, and reply to request submitted by other Agents. Communication of
this type, also called dynamic communication, allows the development of software
where the software components do not have predefined communication behaviors.

Most OO software allows communication between software components, but this

30

communication is, in essence, hard-coded communication between the components.
For example, if there is Object A and Object B, the developer may define
communication between these components by coding into Object A something like
“ask Object B for the homologous DNA sequence of the DNA sequence.” This is
called hard-coded communication because Object A can only ask to for the
homologous DNA sequence of a DNA sequence from Object B. By using dynamic
communication, however, Agents are able to do two things. First, they are able to
change, on the run, who it is that they request services from. They may decide not to
ask a specific Agent because it is too busy or because its results are not very reliable.
Second, they are able to discover, on the run, new services added to the Agency by
the addition of new Agents. Whenever a relevant service shows up on the Web all
that needs to be done is to create an Agent that makes use of the new service, put it
into the Agency, and the other Agents in the Agency will immediately be able to use
this new service, without ever having to change one line of code on the older Agents.

o Agents must be able to deal with conceplts.

o A Nucleotide Sequence Homology Search is a concept. It does not exist until one is
actually performed. Concepts allow agents to communicate abstractly about services
and the type of information they need to perform those services. For example, a BCM
Search Launcher Agent can say that it can “get the Homologous Nucleotide
Sequences of a Nucleotide Sequence given its Value.” The use of concepts also allows
agents to resolve concept definitions by making use of IS-A relationships. Let’s
assume, for example, that the BCM Launcher Agent has been requested to get the

homologous nucleotide sequences of a DNA Sequence. However, in its service list the

31

Agent finds out that it can only get the homologous nucleotide sequences of a
Nucleotide Sequence. The agent needs to be able to figure out, on its own, that a DNA
Sequence is a Nucleotide Sequence and, therefore it is valid to use the provided DNA
Sequence to perform the requested service.

Agents must be able to understand that a concept may have a set of related concepts.
All instances of the Nucleotide Sequence Homology Search concept contain an
instance of the Parameters Set concept and an instance of the Result Set concept.
Let’s concentrate for a second around the Result Set concept. Figure 5 is the Web
page that results from performing a Nucleotide Sequence Homology Search on the

sequence:

AATCCGTAAGCTTTCATCGATCGATGGCATGATGCATGCACTGCARATGGCCTAAGTCCATTGCAAAT
TGGAATTGAACCGGTTTTAACCCTGAATTGACAAAGTCCAAAGTGGAACCTAAAGGTAAGTTGAACGG

TTAACTGGGTAACGGT CAAAT GAAACCTGGAACGTAAGT TGGGAATTGAACTGCAAAATTGCA

This Web page contains the Result Set of the homology search. Disregarding the
heading and the footer of the page, the main body of the Web page contains a series

of very similar elements.

32

511337006 gb| M202 19| PPBACG Bovine papillomavirus type 2, complete g=nom

Length = 7937

Gcore = 36.2 bics (18], Expect = 2.2
Identities = 18/18 (100%), Pogitives = 18/18 (100%)

Query: 32 atgoatyoantgrasatyg 49

LErErr el

Sbijgc: T30 stgoatgcactgoasatg T221

Figure 11 A sample homology resulting from performing a homology search.

Figure 11 shows a section of the results from a search for nucleotide homology using
the BCM Search Launcher. The item shown in Figure 11 is an instance of the
Homology concept. Every instance of a Homology has the following related concept
instances:

e An instance of the Homologous Sequence concept.

e An instance of the Expect Value concept.

e An instance of the 7ext Representation concept.

e An instance of the Homologous Region concept.

Agents must be able to deal with concept instances.

“AATCCGT...TTGA” is an instance of the DNA Sequence concept. It is an instance
simply because things can be done to it, such as a Nucleotide Sequence Homology
Search. Agents need to be able to distinguish what is a concept and what is the
instance of a concept.

Agents must be able to remember concept instances.

A homology search usually is not a one-time-only process. As more and more

sequences are added to the genetic sequence databases, the homology search

33

performed today will need to be repeated tomorrow, or a few days from now. If the

user wants an agent to repeat the homology search at a later date, the agent will need

to remember two things: the Parameter Set used during the user-defined search, and

the Result Set obtained from the previous searches. With the Parameter Set the agent

can recreate the user-defined search, and with the Result Set the agent can determine

which of the resulting Homologies, if any, are new and worth reporting to the user.
Given the above list of requirements, most of the basic services that an agent should be
able to provide can be divided into three aspects: the communications aspect, the

knowledge management aspect, and the planning aspect.

A. The Communications Aspect

While designing the mechanism by which an Agent communicates with other Agents,
the goal was to provide the mechanism with an intuitive design. This becomes important
also for the user because the User Agent interacts with the user in much the same way as
it interacts with other Agents. Since most people have been exposed to e-mail messaging,
this metaphor was extended to develop the communications aspect of the Agents. Hence,
the communication unit in a conversation between two agents is the message. As it will
be shown later, if the user will be allowed to communicate with Agents directly, the
communication process will have the need for a vocabulary. This section will present the

reader with these two basic components of the communication process.

1. The Message

In an e-mail message contains two clearly defined sections: the metadata of the e-mail

message, and the content of the e-mail message.

34

a. The Metadata

The metadata section of an e-mail message consists of the set of information units
that describes the message itself. It contains, among other data that we do not need to
discuss here, three very important pieces of information: the sender’s e-mail address, the

receiver’s e-mail address, and the title of the message.

While the e-mail address of the receiver is used to facilitate the routing of the
message to its destination, the e-mail address of the sender of an e-mail message provides
the receiver of the message with the information of who sent the message. With this
information the receiver may apply qualitative data to the message (it is junk mail, it is
important, etc.) or the receiver can user this information to reply to the e-mail message.

Let’s look at what this piece of information looks like:
munozf@ohsu.edu

An e-mail address is composed of two information units: the name of the user (“munozf”)
and the name of the e-mail server that takes care of receiving and sending e-mail
messages for the user (“ohsu.edu”). The multi-agent system presented here has the need
for an “e-mail address” of sorts to be setup for each agent. The Address of an Agent loéks

like this:

OMIMAgent@BioAgency

35

In the current implementation there is not really a need for the Address to include the
name of the Agency in which the Agent resides. This feature of the Address has been
added for future developments. One possible future development may be multiple
agencies running within the same computer. Agents within each agency have their own
IDs and each Agency can be recognized by a name. With an agent address such as the
one presented, inter-agency communication would be possible. For example, one of the
agents in the MedAgency, the Disease Agent, needs to get the OMIM ID of a disease.
The Manager of the Med Agency, aware of the services provided by the Agents within its
Agency, determines that there is no agent within its own Agency that is able to provide
the OMIM ID of a disease. Before sending an error message, however, the Manager
sends a request to the Managers in the other Agencies residing in the computer. The
Manager in the BioAgency receives the request, determines that indeed there is an Agent
within its Agency with the requested service (the OMIM agent), and sends this

information over to the Manager in the Med Agency (“OMIMAgent@BioAgency).

The title of an e-mail message serves the purpose of an ID. It helps the people
involved in the e-mail dialogue to recognize a thread of communication. For example,
when an e-mail message is send titled “My request”, the sender of the message can check

for a reply by looking for a message in the inbox with the title “Re: My Request.”

36

b. The Content

When one looks at an e-mail inbox, the e-mails there can be classified as belonging to
one of three categories: a request, a reply, and junk mail. Junk mail is commonly ignored
so it will not be addressed here. That leaves us with request-type messages and reply-type

messages. Each of these types of messages has a very different type of content.

The Request Content

Request-type e-mail messages serve the purpose of informing the receiver of a task
that the sender would like the receiver to perform. A requested task may look like “Can
you please tell me the URL of that homology search site you found?” or “Can you please
get the DNA sequence of the EDA gene?” Hence, the content of every request is a

Requested Task.

One of the goals when developing the communications aspect of the agents in this
system was to endow the agents with the ability to exchange messages that are readable
by the user. Even though the user may never need to see communication exchanges
between Agents, it would be nice to provide the user with a user interface to the Agency
which would allow the user to see the Agents in the Agency and see the messages that are
being exchanged between them. Another reason was to allow the user to interact with the
User Agent as if the user was an Agent. By allowing the request content to be written in a
very dialog-like manner, the user would be able to send requests in the same way the

Agents communicate. In order to achieve this, a very simple grammar had to be created.

37

Most tasks that are requested have a similar structure (or grammar). For example,

taking the required niceties off the requested task,

Can you please get the DNA sequence of the EDA gene?

the stripped-down requested task looks something like:

Get the DNA sequence of the EDA gene

Studying the tasks that would Agents would need to perform in the BioAgency, a basic

set of components became apparent:

® The Requested Action: this component defines the specific action that is expected
from the Agent. In the above example that action would be “get.”

® The Focus Attribute: every action has a subject upon which the action will be
performed. The focus attribute in the above example would be “DNA sequence”

o The Focus Attribute Owner: an attribute, by definition, belongs to something. In the
above example the owner of the “DNA sequence” would be “EDA gene.” The “EDA
gene” however, is an instance of the Gene concept. “EDA” is an instance of the
Name concept, which is also an attribute of the Gene concept. Hence, a different way
of saying “EDA gene” is “the gene with the name of ‘EDA.’” This is important,
because the grammar should allow the Agent to define the concept the focus property

owner belongs to and the values of the attributes that can be used to specify which

38

instance of that concept is being referred to. Hence, a grammar to define the focus

attribute owner would look like:

THE + Concept Name + WITH THE + Attribute Name + OF + Attribute Value

Or, for example:

the gene with the name of “EDA”

The grammar of the focus attribute owner allows for multiple attributes:

the gene with the name of “EDA”, the Entrez UID of “N12347, and the OMIM ID of

“MIM6768”

With all these three components defined, the request grammar can be defined in the

following way:

Requested Action + THE + Focus Attribute + OF THE + Focus Attribute Owner

For example:

Get the DNA sequence of the gene with the name of “EDA”

39

With a grammar like this, a variety of the requests that agents would be exposed to are

relatively easy to define:

® Memorize the DNA sequence with the name of “DNA-1” and the value of
“AATCCGTAAGCTTTCATCGATCGATGGCATGATGCATGCACTGCAAATGG
CCTAAGTCCATTGCAAATTGGAATTGAACCGGTTTTAACCCTGAATTGAC
AAAGTCCAAAGTGGAACCTAAAGGTAAGTTGAACGGTTAACTGGGTAAC
GGTCAAATGAAACCTGGAACGTAAGTTGGGAATTGAACTGGAAAATTGA”

e Get the homologous DNA sequences of the DNA sequence with the name of “DNA-
17

® Memorize the name of the agent with the name of “User Agent”

e etc.

The Reply Content

When sending a reply to a request, the basic piece of information that needs to be
transferred is what the request sender is expecting as a response. However, there are
situations where you may not know the answer to the request and the reply simply
contains a simple “Sorry, I don’t know that” or “Sorry, I don’t know how to do that.”

Therefore, there are two types of replies: a “successful” reply and a “error” reply.

The successful reply does not need to contain anything else than the value that is
expected by the request sender. If a person requests the name of a person in an e-mail
message and the reply contains the string “Felix Munoz,” the person that has send the

message knows that the string is the name of the person that was asked for. In the system,

40

the successful reply content contains only the values that were requested, although it does
provide the receiver of the reply message with information as to what type of data s
contained in the message. This way, the receiver of the reply message can verify if the
data type of the reply message is the same as the expected data type.

The error reply contains only information about why the request could not be
fulfilled. In the current implementation the error is not handled by the Agents in the
system. The error is simply a developer-defined string such as “Could not find OMIM
ID.” This information is simply send back to the request sender, which ultimately is

presented to the user, which can then take action to resolve the error.

2. The Vocabulary

In order to not restrict the user to a predefined vocabulary, it became necessary to
develop a mechanism for Agents to map terms that the user may prefer to use to refer to
certain concepts to the preferred concept names that the Agents are able to deal with.
There are two types of relationships that need to be supported by this mechanism:

synonyms and plurals.

The use of synonyms is very common in genetic research. For example, “DNA
sequence” can be referred to as “genetic sequence” or “nucleic acid sequence.” Hence, a
requested task may take many different forms:

o Get the DNA sequence of the gene with the name of “EDA”
e Get the genetic sequence of the gene with the name of “EDA”

e Get the nucleic acid sequence of the gene with the name of “EDA”

41

To make things simpler for the Agents, it was decided to make use of a concept learned
from the Unified Medical Language System (UMLS) (Selden, 1996). For each medical
concept, UMLS defines a “preferred name.” Tt also defines “alternate names” for each

concept, if they exist. Hence, an application that makes use of UMLS should be able to

map alternate names to preferred names and create rules based only on preferred names.

In this system there is the concept of the “preferred name” and the concept of the
“alternate name.” A synonym is an alternate name. Whenever the requested task contains

a synonym:

Get the nucleic acid sequence of the gene with the name of “EDA”

the requested task can be transformed by the Agent into an standardized form previous to

further processing:

Get the DNA sequence of the gene with the name of “EDA”

Allowing the use of plural forms of a concept name allows the construction of user-

friendlier requested tasks. For example, the following sentence is well written:

Get the homologous DNA sequence of the DNA sequence with the name of DNA-1

42

The sentence, however, is not what a user would write to another person, as it is known
that, more than likely, a DNA sequence has more than one homologous DNA sequence.

A user would be more comfortable writing:

Get the homologous DNA sequences of the DNA sequence with the name of DNA-1

To the agent, however, the fact that the user is requesting “sequences” rather than
“sequence” should not matter. The agent will report whatever homologous DNA
sequences are found after performing the service with the given data, whether it is just
one or many of them. Hence, as with the approach taken with synonyms, a plural is
considered by agents an alternate name and a requested task that includes plurals will be
converted to a standardized form containing the singular form of the preferred concept

name.

A question that came up during development of this approach was whether to give
this vocabulary ability only to User Agent, since it is the only one interacting with the
user directly, and hence will be the only one being exposed to synonyms and plurals. It
was decided against it, however. All the Agents in the Agency should have this ability in
case a user interface is ever needed to be developed at a later time that would allow the

user to interact with all the Agents in the Agency.

An Agent does not use the Vocabulary until it does not understand one of the concept

names used in the query. Therefore, there should not be a runtime performance penalty

43

for having the Vocabulary in all the Agents. There is, however, a penalty during startup,
since each Agent loaded into the Agency will need to load the Vocabulary during

initialization.

The Vocabulary to be developed to support these two types of relationships in the
agent system had to be easily extensible. A simple way to achieve this is to have the
vocabulary stored in a plain text file. In order to increase the agent’s vocabulary, the user
needs only to add lines to this file. This could be done in any plain text editor, such as
Notepad in Windows 95 systems, or SimpleText in Mac systems. Alternatively, new
concept names, synonyms and plurals could be added programmatically through a user

interface provided to the user for this purpose.

To make it easy for the user to add new alternate names to the Vocabulary, especially
through any user interface that attempts to simulate a conversation with the User Agent,
the grammar used in this text file had to be quite simple and very human readable. The

following grammar was decided upon:

“(Related Concept Name)” + (Relation) + “(Preferred Concept Name)”

If a user wants to add synonyms or plurals to the Agents’ vocabulary, all that needs to be

done, before starting the Agency, is add lines such as the following to the

“Vocabulary.txt” file:

44

“genetic sequence” is a synonym of “DNA sequence”

“genetic sequences” is the plural of “genetic sequence”

Adding definitions while the system is running poses a different challenge. Imagine the

user has asked the User Agent:

Get the genetic sequence of the gene with the name of “EDA”

The User Agent would first attempt to identify the concept name “genetic sequence.” Not
finding it in its knowledge, it assumes that the term is not a standardized name and hence
looks in its Vocabulary. Not finding it there either, it sends the user the following error

message:

I do not know what “genetic sequence” is.

The goal here, then, is to be able to tell the User Agent that the term “genetic sequence”
is a synonym of “DNA sequence.” Since the user can communicate with the User Agent
only through the use of requests, the idea is now to create a requested task that will allow
the user to define what a “genetic sequence” is. The following example illustrates the

request structure that was decided upon:

Remember the definition of the term with the name of “genetic sequence” and the

299%

definition of “is a synonym of “DNA sequence

45

This sentence can be parsed and added to the Agent’s runtime vocabulary and to the
Vocabulary file. The user would, of course, have to repeat the initial request, but this time
the User Agent would be able to map the term to a preferred concept name and transform

the requested task in a standardized way.

B. The Knowledge Management Aspect

In order to support the knowledge services required by an agent, such as the ones
described during the agent design portion of this section, an agent should be able to do
the following:

e Load concepts

¢ Add and remove concepts

e Load concept instances

e Add, edit, and remove concept instances

e Define if a concept is a child of another concept. For example, define if the concept

“DNA sequence” is a child of the concept “sequence.”

e Define if a concept is a parent of another concept. For example, define if the concept

“sequence” is a parent of the concept “DNA sequence.”
¢ Define if a concept has a given attribute.
 Define if a concept instance with a given ID already exists in the knowledge base.
Hence, there are two separate aspects of knowledge management in an Agent: concept

management and concept instance management. There are two complementary data

46

constructs that support these two aspects: the knowledge representation and the

knowledge base.

1. The Knowledge Representation

A knowledge representation is a concise and unambiguous description of what
principal entities are relevant in an application domain and how they can relate to each
other. This set of entities is not a collection of facts that arise from an actual specific
situation (as we will see later, this is what a knowledge base is), but it defines and
provides all semantic entities and their potential interactions necessary to completely
describe that situation (Schulze-Kremer, 1998). The entities described in a knowledge
representation can be anything that the application has to deal with, such as objects,

processes, functions, etc.

There is a set of constraints that a knowledge representation developer must follow
(Schulze-Kremer, 1997):
e Each concept must be explicitly defined
e Each concept must be unambiguously accessible within the representation

o Each concept must be connected to one another by one or more relation links

The approach taken to provide all Agents with a knowledge representation ontology
was very similar to the one taken to provide a vocabulary to them. There is a text file that
contains the knowledge representation. This text file, like the one for the vocabulary, is

easily updateable and can be modified during runtime.

47

The grammar used in this knowledge representation had the same objectives as the
one developed for the vocabulary. It had to be human-readable and the parsing of it had

to be unambiguous for the Agent.

The following is an example on how homologous DNA sequences are defined in the

knowledge representation:;

A sequence is a basic concept

A sequence has a name

A sequence has a value

A nucleotide sequence is a sequence

An RNA sequence is a nucleotide sequence

A DNA sequence is a nucleotide sequence

A DNA sequence may have one or more homologous DNA sequences

A homologous sequence is a sequence

A homologous DNA sequence is a homologous sequence

As we can see, there are several types of relationships that are used to describe a concept:
® 1S A - used when defining that a concept is a child concept of another concept. This
provides the system with an inheritance inheritance mechanism similar to the one

previously discussed. The child concept “inherits” all of the attributes of the parent

48

concept, so these attributes do not need to be redefined for the child concept. For
example, let’s take “A DNA sequence is a sequence.” Since we have already defined
that a “Sequence has a name” there is no longer a need to define that “A DNA
sequence has a name.” This attribute is inherited from the sequence concept.

HAS A — used when the concept has one and only one of the related concepts. These
related concepts are usually attributes of the concept.

HAS ONE OR MORE - used when a concept has multiple values for the same
attribute. This relationship was added to provide the user with a more realistic way of
representing attributes that have multiple values. It is much more natural for the user
to write “A nucleotide sequence has one or more nucleotides” than “A nucleotide
sequence has a nucleotide.” One of the disadvantages of this approach, however, is
that when the knowledge representation is being loaded and the string “may have one
or more” is found in the sentence, the Agent is required to look at its Vocabulary to
define the singular form of the concept name. However, this should not create a
serious performance problem. As before, if a performance penalty exists, it will occur
during startup of the application and not during runtime.

MAY HAVE A —used when the related concept is optional in the concept. For
example “A gene may have an OMIM ID.”

MAY HAVE ONE OR MORE - used when the concept has multiple optional
attributes. The reasoning for this relationship is the same as the one for the “has one

or more” relationship.”

49

Most knowledge representation developers suggest that the concepts in an ontology
should be shown in a tree pattern with their parent concepts (Schulze-Kremer, 1997).
That is, for each concept there is one and only one parent concept. However, I believe
this can be restrictive. There are several concepts that, depending on the context in which
they are used, can be viewed as having different parent concepts. Let’s take the concept
of a “query sequence.” To the “Sequence Agent,” whose job may be to keep tabs on all
the sequences that come through the Agency, a query sequence that was presented to the
system by the user may be seen as a Sequence. To the “BCM Launcher Agent” the query
sequence may be seen as a Parameter that can be used when performing a homology
search. Hence, “query sequence” is a child of those two concepts. This is not a new idea,
however. SNOMED RT allows multiple hierarchies for each concept

(http://www.snomed.org/rt2/sd004. htm).

2. The Knowledge Base

If a knowledge representation describes concepts an Agent knows about, a knowledge
base describes a list of concept instances an agent knows about. Within the knowledge
base the Agent has access to a list of concept instances and the attributes that have

already been defined for that instance.

The benefit of a mechanism such as this is that it allows Agents to “remember.” A
DNA sequence may have homologous DNA sequences. After a homology search, the
current set of homologous DNA sequences can be remembered by the Agent so that, next

time the homology search is performed, the list of new homologous DNA sequences can

50

be defined and post-processing can be performed only on these new sequences, saving

the Agent valuable time.

As presented in the requirement list, Agents should be able to add, remove, and edit
knowledge. An approach similar to the one taken with the vocabulary and the knowledge
representation was taken. A text file, called “KnowledgeBase.txt” contains the list of
instances all Agents should be aware of. As before, the grammar designed to add concept
instances to this file is also human readable, making the knowledge base easily
extensible. In order to refer to any concept instance, the Agent makes use of an ID that is

defined for each concept instance.

The DNA sequence with the name of “EDA” has an OMIM ID of “OMIM1234”, a value

of “AATGACTGAT... AGCTACCTAG” and an Entrez ID of “E557”

If the user wants to define another attribute for this DNA sequence, the user may modify
this sentence or, alternatively, a new sentence may be added to the file, either by using a

text editor before the application is started or by adding it programmatically:

The DNA sequence with the name of “EDA” has a GenBank ID of “GB7890”

With this approach, the Agents are able to remember concept instances they encounter or

are requested to remember by the user or another Agent In the current implementation, all

Agents share this knowledge base. In a future implementation a possible improvement to

51

this setup is to allow individual Agents to handle their own “personal” knowledge bases.
This approach would allow Agents to be pulled out of the Agency and transferred to
another Agency either in the same computer or in a different one while letting the Agent

remember those concept instances it has added to its knowledge base.

C. The Planning Aspect

Requests sent to Agents will not always be sent in a form that can be directly
executed. Requests may need to be processed and broken down into subtasks, and a
mechanism needs to be implemented to allow the Agent to perform these steps non-
redundantly.

In this system, there are two types of planning possible: single agent planning and

multi-agent planning,

1. Single-Agent Planning

Single-agent planning in this system refers to the Agent’s ability to break up a task
into subtasks it is capable of performing without help from other Agents in the system.
This is the very first thing an Agent will attempt to do when presented with a request. For
example, let’s imagine that the following two services are provided by the “OMIM
Agent”:
e Get the OMIM ID of a gene given its name
e Get the DNA sequence of a gene given its OMIM ID

Given these two services, this agent should be capable of answering the request:

52

Get the DNA sequence of the gene with the name of “EDA”

Notice, however, that none of the two services can actually fulfill the request directly.

The Agent should be able to break up this task into the subtasks:

Get the OMIM ID of the gene with the name of “EDA”

Get the DNA sequence of the gene with the OMIM ID of “Step 17

In order for this to be possible, the agent goes through the following analysis of its own

services while defining a plan to resolve the request:

Do any of my services provide the DNA sequence of a gene as a result? In this case
the answer is yes.

The Agent initializes a plan for the request and adds that service as a required step. If
more than one service can provide the DNA sequence of a gene, then the Agent
would initialize multiple plans, one for each service, and go through the present
process with each of them. In this example, however, there is a single plan with the
final step of “Get the DNA sequence of the gene with the OMIM ID of “Step 17
What information does this service need to be able to obtain the “DNA sequence of a
gene”? In this case, the single service needs the “OMIM ID of a gene.”

Does the request or any of the existing steps in the plan provide the OMIM ID of the
gene? At this point the answer is no.

Do any of my services provide the “OMIM ID of a gene” as a result? The answer is
yes.

The Agent adds the step to the current plan.

33

e What information does this service need to be able to obtain the OMIM ID of a gene?
The service needs the name of a gene.

e Does the request or any of the steps in the current plan provides the name of a gene?
Since the request does provide the name of the gene, the answer is yes.

e The plan is complete.

More often than not, there will be multiple ways in which the Agent will be able to fulfill

a request. This means that there is the possibility of Agents being able to generate more

than one plan. When the Agent is presented with this situation, the Agent must decide

which of the available plans is most appropriate to pursue. In the current implementation

this is done by simply selecting the plan with the less number of steps. In future

implementations the Agent may have the capability of deciding on the plan based on the

approximate time each of the steps takes to be performed.

2. Multi-Agent Planning
One of the most powerful strengths of the system is the capability of Agents
discovering services that other Agents have advertised in order to fulfill a request. This

ability makes the request fulfillment process a very dynamic and powerful mechanism.

Every Agent in the Agency does not perform multi-agent planning. This is a
specialized service provided by a single Agent, the Manager. As explained in the
description of the system architecture, the Manager serves as a repository to all the
services provided by all the agents. The Manager has direct access to this information and

hence is the perfect candidate to perform this service.

54

Multi-agent planning does not differ too much from single-agent planning. As
explained, in single-agent planning the Agent looks at the list of its own services and
defines a plan of action based just on those plans. When the Manager is researching a
plan of action, the set of services it looks into for services that fulfill the desired criteria is

the list of services of all the Agents in the system.

In the case of multiple plans, future implementations will make use of this Agent’s
ability by allowing it to select plans in which multiple communications steps are not
required (for example selecting those plans where the plan performer can fulfill most of
the steps), or by allowing the Manager to make use of qualitative data about the Agents
when recommending one in the plan. A plan provided by the Manager would look like
this:

e Ask the ID Agent to get the OMIM ID of a gene given its name

e Ask the OMIM Agent to get the sequence of a gene given its OMIM ID

With this information, the Agent that requested the plan can start to perform the plan by
sending out requests to the appropriate Agents. It is be the responsibility of the Agent that
performs the plan to provide the performer of each step with the set of information the

performer needs to fulfill the requests.

V. Limitations

At this point it is appropriate to define the set of limitations encountered during

development:

55

The request grammar is not entirely flexible. It requires the user to define a focus
attribute for every action. There are requested tasks that may not have a need for a
focus attribute. For example, when asking the Manager to load an Agent, the request
would be a lot more natural if it was written as “Load the agent with the name of
“OMIM Agent”.” However, at this point, the request has to be written as “Load the
instance of the agent with the name of “OMIM Agent”.”

The system needs to be able to use aliases for referring to Agents. This problem now
occurs if two Agents of the same type need to be loaded at the same time. For
example, a future version of the system may create instances of a specific Agent if the
Agent is observed to be a very busy and its request queue is large. The system in this
case would benefit from allowing the system to detect this and spawn another Agent
of the same type. The reference to this Agent, however, cannot be the same as the
Agent already in the Agency. Either a unique ID or an alias needs to be set for each
Agent that loads into the Agency.

If the Manager list of services of the loaded Agents is large, the process of defining a
multi-agent plan has the potential of being very slow. The current implementation
basically runs through an array of services looking for an appropriate service and
does this as many times as it needs to complete the plan. This is wasteful, time wise.
The Manager should be able to have a faster algorithm that will allow it to reject
plans that do not have a hope of being completed earlier in the plan development
process.

The request syntax does not allow the description of two concepts in the same

request. For example, it is not possible right now to say “Get the DNA sequence of

56

the gene with the disease named “EDA”. There are two concepts being described
here and the request syntax does not allow this.

The fact that the Manager is the only Agent in the system capable of developing
multi-agent plans can become a performance bottleneck in a system where every
agent needs a plan defined. This has the potential of hindering performance
substantially. Another model that could be considered in a future implementation is a
model in which, whenever an Agent needs an specific service, it broadcasts the need
to all the Agents in the community and receives messages back from those that are
able to offer the service.

The Agents are highly dependent upon the Manager Agent. If this Agent crashes, the
system will fail to perform any tasks that the User Agent is not capable of doing
alone.

The system does not deal with dead Agents. If an Agent crashes, it does not have a
mechanism for telling the Manager to remove its services from the service list. The
Manager will still have these services and will be recommending a dead Agent as a
performer of a plan step.

All Agents need to be on all the time. This is not a good approach if the computer
where the system is running in is low in memory resources. A better approach is to
provide the system with a way of allowing Agents to only be instantiated when they
are needed and then go to sleep and release their memory once they have completed
their designated task.

User interfaces at this point are limited to simulations of the request-reply model of

communication. Studies need to be done, , to evaluate other forms of user interaction,

57

and the underlying communication mechanism may need to be modified based on the
results. One possible limitation of current user interfaces is that they are text based.
Presentation of multimedia data has not been considered in this study. As the goal of
this system was to provide a single, simple to use user interface, studies need to be

done to demonstrate that added richness for user interactions are needed.

V1. Implementation

This section of the thesis will describe the current implementation of the system

described in the previous two sections. It will also discuss some of the implementation

issues discovered during development.

One of the first implementation issues encountered was the decision on the

programming language that was to be used for development of the system. The

programming language called Java was selected. There are several reasons for this

decision:

A program developed in Java (and following certain programming policies) should be
able to run on any platform that supports the language without any modification. This
has been one of the most powerful features of Java, and has helped the language in
becoming one of the most popular languages in the Internet age. This feature is also
required in the bio-agency. As in most environments that make use of computers on a
day to day basis, the operating systems used in genetics laboratories are varied. With
the system written in Java it can be used in the Windows 95/NT, Macintosh, and

UNIX-Solaris computers commonly found in laboratories. Agents that are developed

58

in Windows 95 computers can be delivered to a user using the system on a Macintosh
computer. This allows the deployment of the system in a larger user base.

e A program developed in Java can be developed to benefit from object-oriented
programming techniques. Object-oriented programming allows for faster design and
development, as the roles for Objects defined during design, such as Manager or User
Agent, can be represented in the programming language, each contained within a
single code module. The inheritance model provided by object-oriented
programming languages such as Java saves the developer time by allowing the
encapsulation of common methods in a single object that can then be extended
multiple times into objects that share those methods without requiring the developer
to have to implement those methods in every new object that is programmed.

e Java allows encapsulation of methods within objects. This feature allows Agents
developed to be mobilized, either by floppy-disk or other network delivery methods,
without requiring the user to do much other than find the file named the same as the
object that needs to be transferred (such as “OMIMAgent.class”), put this file on a
floppy, transfer it to another computer with the Agency system running, and load the

Agent in the new system.

The Agency application presents the user with a user interface that attempts to
provide an intuitive mechanism for logging in and starting sessions. The system supports
multiple concurrent user sessions. At this point security mechanisms have not been

established to allow different users to keep information away from other users of the

59

system. Future implementations should take this into consideration, as users may desire

to keep certain information private.

Figure 12. Agency User Interface

Another decision to be made was the type of user interface that needed to be
developed to allow the user to have interaction with the User Agent. Given the metaphor
being used, the most intuitive user interface was thought to be a chat-like interface. Such
an interface allows the user to feel as if they are maintaining an ongoing conversation
with another person who is able to perform the tasks that the user needs to be done.
However, the system is not limited to this interface. The communication mechanism in
the Agents does support e-mail like dialogues, where the user would have an inbox and
an outbox, and the user would be able to send requests over to the User Agent via the

outbox and receive replies via the inbox. The system does support multiple interfaces.

60

This allows the user to customize the system to use the type of interface that feels most
comfortable. The User Agent can read this user preference from the user profile and
present the appropriate user interface to the user.

Each Agent in the system runs as a separate thread. What this means is that each
Agent does not have to wait for other Agents to answer to them to be able to reply to

multiple requests. The Agents send requests to other Agents and, instead stopping their

NSiEE

s R LR (S Eeeetesensiili]

o b e e

[Liser Agent: Hello Felix What can | do for you today?

|ILiser Get the sewvices of the agent with the name af *UsesAgent”

Liser Agent: The answer to "Get the services of the agent with the name of"UserAgent™ is
iI* Getthe preferred name of a user given its name

i Gethe services of the agert with the name of “UserAgent’

Gtsequencﬂhe gane with the name of"EDA”

Figure 13. Chat User Interface

thread and waiting for a response, they proceed to process other requests while the other

Agents, at the same time, are working on solving the request.

The Bioagency is basically an implementation of the system and agent architectures
presented in previous sections. The system implementation fulfills the set of requirements

presented previously. It also suffers from the described limitations of the architectures.

61

VII. Conclusion

This thesis has presented a system developed to make it easier for a scientist to access
biological and other data available through the Internet. A system such as this presents
the user with a single interface from which to perform a variety of data retrieval tasks that
would take significantly more work for the user to perform using the user interfaces

presented by many Web sites.

The system is based on an agent paradigm. Because this paradigm is implemented in
an object-oriented fashion, the architecture of the system is very easily extensible. Its
service self-discovery mechanism allows multiple developers to develop new agents for
the system concurrently, without requiring them to know in advance ways in which to
have agents interact. The system provides the agents with ways in which to advertise

their services, to request services to be performed, and to reply to those services.

Communication between agents is not hard-coded but dynamic. In future
implementations agents can be given freedom to choose who they communicate with,

perhaps based on qualitative data on performance in previous interactions.

Much is left to be done. The limitations presented in the limitations section of this paper
addresses some of the issues that still need to be solved in order for this system to
become more useful, and to improve its usability. The work presented in this thesis,

however, does accomplish the goal of presenting a proof-of-concept for the use of a

62

multi-agent technology approach to solve the problem of information overload in the

Internet age.

63

Appendix 1 — The Planning Algorithm

Given a request and a list of knowledge units related to the request
Given an empty plan list

For each service in the agent’s service list
If the focus attribute of the service equals that of the request AND if the action of the
service equals that of the request
Add a new plan to the plan list with the service as a defined step
Else if the focus attribute of the service is a child of the focus attribute of the request
AND if the action of the service equals that of the request
Add a new plan to the plan list with the service as a defined step

Set “Compiling plans” to true
While “Compiling plans” is true
Set “Finished compiling” to true
If there is at least one plan in the plan list
For each plan in the plan list
If the plan is considered to be “Undefined”
Set “Finished compiling” to false
For each knowledge unit provided in the request
Add the knowledge unit to the list of provided knowledge units
For each step in the plan
For each knowledge unit required by the step
Add the knowledge unit to the list of required knowledge units
If the action of service of the step is “Get”
Add the knowledge unit to the list of provided knowledge units
For each required knowledge unit
Set “Required attribute is provided” to false
Set “Required knowledge unit is defined” to false
For each provided knowledge unit
If the attribute of the required knowledge unit equals the
attribute of the provided knowledge unit
If the current knowledge unit is defined
Set “Required knowledge units is defined to true
If the provided value equals the required value
Set “Required attribute is provided” is true
Else
Set “Required attribute is provided” is true
Else
If the provided attribute is a child of the required
attribute
If the current knowledge unit is defined
Set “Required knowledge units is defined” to
true
If the provided value equals the required value

64

Set “Required attribute is provided” is true
Else
Set “Required attribute is provided” is true
If the required attribute is not provided
If the required is defined
Set the current plan as “Impossible”
Else
Add current knowledge unit to the list of needed
knowledge units
If the current plan is considered to be “Undefined”
If the plan does not need any knowledge units
Set the current plan as “Defined”
Else
For each needed knowledge unit
For each service on the agent’s service least
If the service is a “Get” service AND the service’s
focus attribute equals that of the needed knowledge unit
Add the service to the list of relevant services
If the number of relevant services is 0
Set the plan as “Impossible”
Else if the number of relevant services is 1
Add the step to the plan
Else if the number of relevant services is more than 1
Add the first service to the current plan and create a
new plan for each of the other services in the list of
relevant services

If the current plan is considered “Impossible”
Remove the current plan from the plan list
If “Finished compiling” is true
“Finished compiling” is false
Select the shorted plan

65

Appendix 2 — Class Family

New agents can be created by extending a single abstract Java class that provides all
of the basic agent behavior.
Agent.java

This is the basic abstract agent. It provides behaviors such as:

Handle request

e Handle reply

e Send message

e Receive message
e Define a plan

e Perform a plan

Verify if a concept is a child of another concept

HTMILAgent.java

This is another abstract class that extends the basic Agent class. This class was created to
provide a common set of methods that agent designers could use to be able to extract
information from an HTML document. Methods in this class include:

e Get HTML document

e Get content between tags

e Get tag attribute value

EntrezAgent.java, BCMSearchLauncherAgent.java and MedlineAgent all extend the
HTMLAgent class. This way, the developer needs only to worry on developing the

methods that will provide the services the agent claims it can do.

66

Appendix 3 — Sample Knowledge.txt

A sequence is a basic concept

A sequence has a name

A sequence has a value

A nucleotide sequence is a sequence

An RNA sequence is a nucleotide sequence

A DNA sequence is a nucleotide sequence

A DNA sequence may have one or more homologous DNA sequences
A homologous sequence is a sequence

A homologous DNA sequence is a homologous sequence
An amino acid sequence 1s a sequence

A parameter is a basic concept

A process is a basic concept

A process may have one or more parameters

A homology search is a process

A query sequence is a sequence

A query sequence is a parameter

A value is a basic concept

A measurement is a basic concept

A measurement has a value

A statistical measurement is a measurement

67

An EXPECT value is a statistical measurement
A representation is a basic concept

A text representation is a representation

A homology is a basic concept

A homology has a homologous sequence

A homology has an EXPECT value

A homology has a text representation

A BLAST search is a homology search

68

Appendix 4 — Sample Dictionary.txt

"Recommend" is a synonym of "Get"

"Retrieve" is a synonym of "Get"

"Show me" is a synonym of "Get"

"GenBank ID" is a synonym of "GenBank accession number"
“genetic sequence” is a synonym of “DNA sequence”

“genetic sequences” is the plural of “genetic sequence”

“nucleic acid sequence” is a synonym of “DNA sequence”
“nucleic acid sequences” is the plural of “nucleic acid sequence”
“DNA sequences” is the plural of “DNA sequence”

“homologous DNA sequences” is the plural of “homologous DNA sequence”

69

REFERENCES

Altschul SF, Gish W, Miller W, Myers EW, and Lipman DJ (1990) “Basic Local
Alignment Search Tool” Journal of Molecular Biology 215 (3): 403-10.

Altschul, SF, Boguski MS, Gish W, and Wootton JC (1994) “Issues in searching
molecular sequence databases” Nature Genetics 6: 119-129.

Altschul SF, Madden TL, Schiffer AA, Zhang J, Zhang Z, Miller W, and Lipman DJ
(1997) "Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs" Nucleic Acids Research 25: 3389-402.

Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BF (1998) “GenBank”
Nucleic Acids Research 26 (1): 1-7

Caglayan A, Harrison C (1997) “Agent Sourcebook” Wiley Computer Publishing
Kramer D (1996) “The Java Platform” Sun Microsystems White Paper World Wide
Web URL: http://www javasoft.com/docs/white/platform/javaplatformTOC.doc.html
Online Mendelian Inheritance in Man, OMIM (TM). Center for Medical Genetics,
Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology
Information, National Library of Medicine (Bethesda, MD), 1998. World Wide Web
URL: http://www.ncbi.nlm.nih.gov/omim/

Schulze-Kremer S (1997) “Adding Semantics to Genome Databases: Towards an
Ontology for Molecular Biology” Proceedings of the Fifth International Conference

on Intelligent Systems for Molecular Biology 272-5.

70

Schulze-Kremer S (1998) “ISMB-98 Ontology Tutorial: Why Ontologies for
Molecular Biology” Ontologies for Molecular Biology Tutorial at the Sixth
International Conference on Intelligent Systems for Molecular Biology 1-16
Selden CR, Humphreys BL (1996) “Unified Medical Language System (UMLS)”
Current Bibliographies in Medicine 96-8, National Library of Medicine
Smith RF, Wiese BA, Wojzynski MK, Davison DB, and Worley KC (1996) “BCM
Search Launcher-An Integrated Interface to Molecular Biology Data Base Search and
Analysis Services Available on the World Wide Web” Genome Research 6:454-62

Williams KL (1997) “Functional Genomics” Bio-Radiations 99:4-6

71

