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ABSTRACT
NUMERICAL ANALYSIS OF HERTZIAN AND

NON-HERTZIAN WHEEL-RAIL CONTACTS

Robert F. Harder
Oregon Graduate Institute of Science & Technology

Supervising Professor: Lemmy L. Meekisho

Improved rail car designs which can provide faster, safer and more economical

transportation, often require a significant amount of dynamic analysis and simulation. Of

the many important processes that simultaneously occur during the rolling of wheels on

rails, one of the most important is that of the contact mechanics at the wheel-rail interface.

The forces which develop within the contact patch are ultimately responsible for coupling

the dynamics of the rail car to the geometry of the rail. This work seeks to understand the

mechanics of wheel-rail contacts and to define the governing parameters in a generalized

format which can be used for dynamic rail car simulation. Emphasis is given to non-

Hertzian contact geometries and the tribologicalimplicationsof frictional work.

The mechanics of both Hertzian and non-Hertziancontacts were studied with the aid

of a variety of computational tools. A detailed parametric analysis was performed for a

136RE X AARI-B rail-wheel combination. Three different regimes of contact were

identified (assuming unworn profiles) between the rail crown and gauge comer. Two were

Hertzian and the other was non-Hertzian. Solution to the normal problem for each regime

of contact was obtained over a wide range of wheel loads. Using the results of the normal

problem, solutions to the tangential problem were obtained for each regime of contact for a

wide range of creepages. This was accomplished for the non-Hertzian contact by using

both a non-Hertzian algorithm as well as postulating the existence of an ellipticized non-

XXlll



Hertzian contact and treating it with classic Hertzian methods. This latter method showed

that the non-Hertzian nature of wheel-rail contacts does not significantly alter the classic

creep force - creepage behavior (for non-Hertziancontacts having a geometric distortion of

r ~ 64%).

Results of the parametric analysis also revealed a set of generalized surface equations

capable of approximating both longitudinal and lateral creep force as a function of the

creepages and patch aspect ratio. The form of these equations was found to be most

accurately represented by the hyperbolic tangent function. Speed and accuracy tests of the

approximating functions showed favorable results when compared to other codes that were

based on complete creep force - creepage theories.

Generalized approximating equations were also obtained which accurately

represented the behavior of global contact patch friction work. The distribution of local

patch friction work was also obtained for both Hertzian and non-Hertzian contacts. Due to

the asymmetry of traction and slip profiles for the non-Hertzian patch, a unique bi-modal

patch friction work profile was obtained.
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CHAPTER I

INTRODUCTION

1.1 Rail Car Dynamics

Rail car dynamics have long been identified as a major cause of train accidents. Over

the past several decades, derailments due to rail car dynamic instabilities have shown a

steadily upward trend in both the number of derailments and in the dollar damage resulting

from these derailments [1]. As the rail transportation industry seeks to increase market

potential in both freight and passenger transport, operational efficiency and safety will

become key factors in need of optimization. However, these two parameters are tightly

coupled, in that operating efficiency is a function of maximum rail car load capacity and

speed, while operational safety is dependent upon successful curve negotiation and

braking. Hence the need for improved rail car designs, which should be one of the natural

results of rail car dynamic modeling.

Numerous mathematical models for predicting the dynamic performance of rail cars

have been reported in the literature [2-17]. Methodologies including finite element, finite

difference as well as analog computer simulation techniques abound. Models range from a

single wheelset having three degrees of freedom [18], to complete rail car models (car

body, trucks, suspensions and wheelsets) on the order of 23 degrees of freedom [19], to

commercial codes such as NUCARS (New and Untried Car Analytic Regime Simulator)

[20,21], which provides dynamic modeling capability for multiple interconnected rail cars.

1
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Regardless of model methodology or complexity, the governing equations of rigid

body motion for multidimensional rail car dynamics are well understood and a variety of

general dynamic analysis packages (ie. ADAMS, ADINA, DYNA CODES-LLL) could be

adopted for the purposes of model development. However, if a reliable dynamic rail car

model is to be developed, an accurate physical understanding and quantitative prediction of

the wheel/rail contact forces must be achieved. These forces which act at the interface of

the wheel and rail are ultimatelywhat control incipientderailment [22].

Regarding derailment, several different modes have been identified as resulting from

excessive forces between the wheel and rail [23-25]. The three primary modes include:

gage widening derailment, track panel shift, and wheel climb derailment. All three modes

are a strong function of lateral contact force magnitude, which becomes especially severe

during curving.

When considering the governing equations of rail car dynamics, it can be shown [26]

that the wheel and rail interfacial forces only appear in the wheelset equations of motion

(Figure 1.1 and 1.2). These are indicated below in equations (1.1) and (1.2):

Jwl8wl + FclRwl + Kw(ewl - ewr) =0 (1.1)

( 1.2)

What is not indicated by these wheelset equations, is that the wheel/rail tractive forces

(Fcl) and spin moment which exist within the contact domain are a function of the wheelset

position and motion relative to the rails. They are also known to be a function of wheel

conicity and rail head geometry [ 27, 28]. Thus the contact forces are a function of the rail

car dynamics, and the rail car dynamics are dependent on the contact forces.
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1.2 Wheel-Rail Contact

When the surfaces of two perfectly rigid bodies are brought into contact with each

other, a mathematical point (or possibly a line) of contact exists between them. As these

non-deformable bodies are pressed together with an applied force, an infinite stress would

be created on the interfacial region of zero area. However, as a natural consequence of

material elasticity, the contact of real bodies results in an interfacial area of finite size,

which increases as the applied loading increases. This leads to finite magnitudes of contact

stress over the interface region (or contact patch).

An understanding and quantitative prediction of the forces which develop at the

interface between two bodies in contact requires some knowledge about the geometry of the

contact region over which the contact forces are distributed. Bodies which have dissimilar

profiles are said to be non-conforming. The area of contact between such bodies is

generally small compared with the dimensions of the bodies, and not greatly influenced by

the shape of the bodies at a distance from the contact patch [31]. One example of non-

conforming (or antiformal) contact is that which occurs between a new wheel and rail at a

location well removed from the flange. Bodies having similar profiles are classified as

conformal. Conformal contacts generally have contact patch dimensions which are not

small compared to the principal body dimensions and cannot be approximated by a plane

surface [32]. Such contacts are formed by bodies which "fit" closely together without

deformation. One example of a conformal contact is that of a rail comer within the throat of

a wheel flange. Other examples are a circular pin in a closely fitted hole, or a ball bearing

rolling within a conformal grove. Examples of non-conforming and conformal contacts are

shown in Figures 1-3aand 1-3b respectively.
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1 .3 Outline of the Dissertation

In this dissertation, a numerical investigation of wheel-rail contact is conducted.

Chapter 2 is a literature survey on wheel-rail contact mechanics and contact force modeling

techniques, along with relevant background about various computational algorithms for

analyzing the rolling contact behavior of elastic bodies. In Chapter 3, the numerical results

are outlined: counterformal Hertzian and non-Hetzian contacts (both normal and tangential

solutions), as well as the complete solution of the creep force-creepage behavior for a

136RE X AARI-B wheel-rail combination over a wide range of operating conditions. The

important results are discussed in Chapter 4, and the main conclusions obtained from this

study are listed in Chapter 5. Chapter 6 outlines possible future research direction with

regard to wheel-rail contact analysis.
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CHAPTER 2
BACKGROUND

2.1 The Normal Problem

As shown by Kalker [33] the problem of rolling contact may be separated into two

parts, the normal problem and the tangential problem. However, this is only valid for

contacting bodies having the same elastic constants [34], because only then will the

tangential tractions produce equal and opposite normal displacements on the two contacting

surfaces.

The goals of the normal problem are to determine the size and shape of the contact

region and the normal contact pressure distribution [35].

2 . 1. 1 Hertzian Contact Geometries

The work of Hertz [36] was the first reliable mathematical solution to the normal

problem. Hertz's theory is only valid for contacting surfaces which satisfy the following

conditions:

(1) The bodies are homogeneous,isotropic, obey Hooke's law, and experience

small strains and rotations (ie. the linear theory of elasticity applies).

(2) The contacting surfaces are frictionless.

(3) The dimensions of the deformed contact patch remain small compared to the

principal radii of curvature of the undeformed surfaces.

7
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(4) The defonnations are related to the stresses in the contact zones as predicted by

the linear theory of elasticity for half-spaces (Boussinesq's influence functions

are valid).

(5) The contacting surfaces are continuous, and may be represented by second

degree polynomial (quadraticsurfaces) prior to defonnation.

For the general case of compression between two elastic bodies having quadratic

surface curvatures, the surfaces near the point of contact (Figure 2.1) may be described by

equations 2.1 and 2.2.

zl =A tX2 + A2xy + A3y2 (2.1)

(2.2)

By adding these equations together and rearranging, the distance between any two such

points C and D may be obtained as a function of the general constants A and B.

(2.3)

Here the constants A and B depend on the magnitudes of the radii of curvature of the

surfaces in contact and the angle between the planes of principal curvature, such that:

As presented in [37], since (zl + z2) of equation (2.3) must be positive, then A and B
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must also be positive, and if the bodies are pressed together in a direction normal to the

tangent plane at 0, the surfacewill have an elliptical boundary such that:

(x/a)2 + (y/b)2 = 1 (2.6)

with semidiameters given by:

31t P (k1 + k2)
"""4 (A + B)

(2.7)

31t p(k1 + k2)

"""4 (A + B)
(2.8)

where k, and ~ are material constants for the respectivebodies.

(2.9)

(2.10)

The coefficients m and n are obtained depending on the ratio of (B-A) : (A + B) as

indicated in Table 2.1, where this ratio may be described by the term e.

1 [B - A]e = cos- A+B (2.11 )

As shown in Table 2.1 for values of e from 0 to 90°, the ratio of mln is identical to the

elliptical aspect ratio of the Hei1ziancontact patch aIb, which is reported extensively in the

literature as a means for characterizingcontact patch shape.

It has also been shown [52] that an alternative description for emay be defined as
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follows:

8 =COS-1[k2 (D' - C' ) / E']
(2.12)

where, D' , C' and E' are complete elliptic integrals of argument k2,

(2. 13a)

(2.13b)

(2.13c)

and,

(2.14)

These are listed in tabular form in [52], appendix E.

Hertz also showed the pressure distribution to be ellipsoidal, where the pressure at any

point (x, y) within the contact patch is described by:

(2.15)

where the magnitude of maximum pressure, Pmwhich was located at the center of the

contact patch was found to be 1 1/2 times the average pressure on the surface of the

contact.

3N
Pm=21tab (2.16)



11

2.1.2 Non-Hertzian Contact Geometries

When the contact conditions between a given pair of surfaces are found to violate any

one of the five Hertz conditions listed in section 2.1.1, a non-Hertzian contact results.

Such a contact will necessarily have a non-elliptical shape and non-ellipsoidal pressure

distribution [31].

For the general problem of wheel rail contact, conditions (1) and (4) will always apply,

provided that standard wheel and rail materials are being considered and that analysis is

limited to the elastic range. Condition (2) involves the resultant tangential tractions which

are generated due to the normal contact of curved surfaces. If the contacting materials are

dissimilar, the tangential displacements will be as well, and slip will take place. However

the elastic properties of most rail and wheel materials are similar enough so that the

resulting tangential tractions on each surface (due to normal loading only) will be

negligible. The result being a frictionless effect at the interface which would allow

condition (2) to be satisfied, as well as the decoupling of the normal and tangential

problems.

Conforming surfaces which are in contact, result in contact patch geometries which

occupy an appreciable fraction of the contacting bodies themselves. As a result, they may

not be regarded as elastic half spaces and therefore Hertz treatment becomes invalid (ie.

condition (3) is violated). Examples of conformal contacts would be a pin in a hole with

small clearance, or a ball in a spherical socket. In addition, it has been found that under

high flange wear conditions, both wheel and rail can wear to a similar matching profile

[119]. Such a conformal contact has been termed a "low stress" contact, as the load is

distributed over a relatively large area. These contacts occur between wheel and rail on the
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high leg of sharp curves or where there is relative rail and wheel flange contact at

discontinuities on straight track (Figure 1-3). Under the majority of tangent track

operations however, the contact area is quite small in comparison to the undeformed

surface curvatures, and therefore Hertz restriction (3) may be applied.

Regarding the specific geometric description of the contacting surfaces prior to

deformation, if they may be described by second order polynomials, then the resultant

patch geometry will be elliptical. However, if the surfaces are discontinuous at the location

of contact, or if higher order terms are necessary for describing the curvature, restriction

(5) must be relaxed. For actual wheel and rail surfaces, it is possible that a number of

different radii of curvature will be required in order to describe the surface geometry at any

axial station along the track, which would necessitate a number of different locations for

non-Hertzian contact patches.

As will be shown in section 3.2, non-Hertziancontact problems do no permit analytical

solutions in closed form. As a result, a number of numerical techniques have been

developed in order to predict contact patch geometry and pressure distribution.

2.2 The Tangential Problem

The tangential problem was first attempted by Reynolds [38] in a remarkable paper on

frictional rolling contact between two elastic bodies. He was the first to identify a limiting

region of adhesion within the contact patch, and recognized that as a consequence, regions

of both "stick" and "slip" existed within the contact patch. The first complete mathematical

treatment of the tangential problem was reported by Carter [39]. He provided a theoretical

description of the slip/stick zones for elastic cylinders under tractive rolling, as he qualified

the distribution of tangential forces (Figure 2.2) and surface strains within the contact

patch.
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Within the "locked" (or adhesion region) of the contact patch, the axial strain difference

between the wheel and rail was found to be a constant (for any particular set of rolling

conditions). Carter called this phenomena creepage. Specifically, in the axial (or rolling)

direction, the term longitudinal creepage is used. Johnson [31], later obtained a description

of lateral (or transverse) and spin creepages.

2 .2 .1 Creepage Kinematics

Creepage has kinematical significances. It is the relative mean slip velocity of the two

surfaces. The longitudinal creepage may specifically be described as a fraction of the

forward velocity of a rigid wheel rolling on a rigid surface [35]. For an elastic wheel

deformed due to loading, the resulting circumference of the rolling wheel in the deformed

state is larger than the undeformed (or rigid) wheel, by a percentage equal to the "creep

ratio" or longitudinal creepage. (Perfectly rigid wheels and rails would not experience this

effect). Lateral creepage, which occurs in the direction of the axle, may similarly be

described as "the ratio of lateral displacement per wheel revolution, to the circumference of

the wheel" [40]. Johnson [41-43] has performed numerous laboratory experiments using

this method and has accurately obtained creep curves for a variety of rolling elements and

surfaces.

Kalker [44] obtained a generalization of Carter's notion of creepage. He pointed out

that it was a rigid body motion in the plane of contact, where the corresponding velocity is

a translation and a rotation within the osculating plane. The rotation is taken about the

common normal at the center of the contact area. Kalker defined this rigid body motion as

given in equation (2.17) and called it the rigid slip.
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(2.17)

A physical description of equation (9) follows directly from the schematic of the

wheelset-track system shown in Figure 2.3. As indicated, (following the definitions of

Kalker [44]) the wheel set makes a yaw angle a with the rails, where the time rate-of-

change of yaw angle due to vehicle turning rate is given as a . The lateral component of

wheelset velocity is given as y, and the translational velocity as VT" At the origin of the

coordinate system shown, the wheelset has circumfrential velocity Vc' which can be

related to the wheel's angular velocity,evia rotational dynamics by,

(2.18)

where Rwis the rolling radius of the wheel.

2.2.1.1 Longitudinal Creepage

Due to the conical shape of railroad wheels, the difference in effective rolling radii at

any instant in time, gives rise to a longitudinal (x-direction) component of creepage, '\) x

(ie. the two conical frustrums are connected rigidly via a fixed shaft which ensures a high

degree of rotational compliance between them, as a result, any differences in rolling radii of

the wheels, produces an excessive elastic compliance or possible slip in the longitudinal

direction within the contact patch of one or the other rolling contacts.) Other contributions

to the longitudinal creep term may be physically associated with the tractive forces due to
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acceleration or braking couples, and as Kalker [44] points out "very importantly, through

the rotation a. of the yaw angle a., by which the left wheel moves with a different velocity

over the rail than the right wheel".

2 .2 . 1. 2 Lateral Creepage

The lateral creepage, \) is due in part to the time rate-of-change of wheelset y-y

coordinate position, ywhich could arise in steady curving, or from "hunting" (a guidance

instability which occurs within certain velocity regimes on tangent track, due to conicity) or

possibly transient load shifts. There is also a contribution to lateral creepage due to the

vectoral difference in wheelset translational velocity VT and wheel circumfrential velocity

Vc' which arises due to wheelset yaw (of angle a..). This velocity difference has a

component in the y-direction, which would not exist if the wheels were exactly aligned

with the track.

2.2.1.3 Spin Creepage

The spin creepage (or spin), may be described [11] by two separate terms as indicated

in equation (2.19).

<1>=~ + siny
Vo Rw

(2.19)

Physically, spin arises due to any net rotation (or twisting) of the contact interface
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about the z-direction. As shown in equation (2.19), the normalized yaw velocity has a

vectoral component orthogonal to the contact plane at any instant of time, which is

responsible for the first term in that equation. The second term is referred to as "camber

spin" in the automotive industry, and arises due to the fact that the "common normal at the

point of contact is tilted at the cone angle y to the axis of rotation, and the wheel therefore

has an angular velocity of spin (esin y)relative to the rail" [31].

2.2.2 Creepage Kinetics

Creepage also has kinetic significance. Carter [39] was the first to arrive at a

mathematical relationship between creep force and creepage. His analysis was concerned

with the effects of acceleration, braking and frictional losses for a locomotive drive wheel.

The results of Carter's creep-force/creepage law are shown in Figure 2.4, where the

abscissa is Carter's creepage coefficient and the ordinate is dimensionless creep (friction)

force. Although Carter's work was limited to two dimensional contacting bodies, the

general shape of his creep force - creepage curve was later verified by Vermeulen and

Johnson [45] for three dimensional contacting surfaces. As indicated, the curve has three

distinct regimes which correspond to three separate categories of rolling contact. These

may be described as follows: (1) Linear regime, (2) Non-linear regime, (3) Full slip

regime, and are shown in Figures 2.5 - 2.7 respectively, with the associated contact patch

areas of slip and stick.

2.2.2.1 Linear Creep Force Regime

Within the linear regime the coefficient of friction is sufficiently high, to preclude slip
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from occurring within the contact area. Therefore this region is one of pure rolling, and the

entire contact patch may be identified as being a "stick" region. Graphically, the upper limit

of this regime may be located where the creep force-creepagecurve begins to depart from a

linear asymptote as shown in Figure 2.5. The slope of the curve within this region is called

the "creepage coefficient", where any amount of creepage is due to material deformation

(ie. differences in surface strain) on the adjacent contacting bodies [46]. This gradient is

determined by the geometry of the contact area and the deformation properties of the

material, but not by the coefficient of sliding friction. The creepage coefficients are

constants of proportionality between the tractive force and relative surface velocity

(displacement). For Hertzian contacts, these coefficients (gradients) are constants which

are a function of: contact ellipse semi-diameters,Poission's ratio and shear modulus. This

regime is important in analyzing the linear stability of rail car motion on tangent track and

identifying "hunting" limits [47]. A number of linear theories have been developed based

on the work of Carter. The first was that of dePater [34], and later Kalker [33]. The linear

theory of Kalker has been the most popular. It assumes that the contact area is Hertzian

elliptic, and that rolling takes place in the direction of one of the axes of the contact ellipse.

Given that the ratio a/b of the elliptical axes and Poission's ratio are known a priori, the

creepage coefficients may be obtained in tabular form [11].

2.2.2.2 Nonlinear Creep Force Regime

The non-linear regime of the creep force-creepage curve begins at the end of the linear

region, and ends at the horizontal asymptote of the full slip (or saturation) regime. In

1958, Johnson generalized Carter's result to accommodate circular contacts with

longitudinal and lateral creepage without spin [48]. Later this theory was generalized for
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elliptical contacts, resulting in a third order creep-force law [45]. Within the non-linear

region, both adhesion and slip zones co-exist within the contact patch. The boundary

which separates them is called the "separatrix", which is coincident with the trailing edge of

the contact patch for the linear regime, but gradually proceeds towards the leading edge as

creepage increases (Figure 2.6) [40]. This behavior of the "slip" region was verified

experimentally by Haines and Ollerton, using a photoelastic technique known as the

"frozen stress method" [46]. The distribution of tractive forces over the contact patch is

shown in Figure 2.8, (results of Haines and Ollerton's experimental work). As indicated,

the traction increases over the patch, beginning with zero at the leading edge, and becoming

saturated at the Coulomb maximum value (~P(x)) from the separatrix to the trailing edge.

Quantitative information regarding creep force-creepage behavior within the non-linear

regime is important for predictingrail car curving behavior and non-linear stability analysis.

Although numerous analytical treatments have been applied, thus far only approximate

relationships have been reported [31].

2.2.2.3 Full Slip Regime

Within the full slip regime, gross sliding occurs between the two contacting bodies and

the separatrix becomes coincident with the leading edge of the contact patch. This regime

of contact is especially important for dynamic as well as tribological analysis of severe

curving and locomotive hill climb and start up accelerationconditions [49].

2.2.3 Complete Creep Force-Creepage Theories

A number of "complete theories" have been reported for predicting the creep force -
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creepage relationship over the entire regime of rolling contact between two elastic bodies.

Kalker [50] developed a full three dimensional theory based on the principle of virtual

work, valid for Hertzian contacts.

2.2.3. 1 Variational Methods

Using the variational principle developed by Duvant and Lions [51], Kalker's "Exact

Hertzian Theory" sought to maximize the complementary energy (an approach which is

mathematicallyand physicallyequivalentto minimizingthe total potential energy) within the

contact patch domain [52]. The result of this procedure is to obtain the location of the

separatrix. Once defined, the normal and tangential solutions are then carried out to predict

the appropriate pressure distribution and tractive forces for given values of creepage and/or

spin. The resulting computer program called "DUVOROL" was written in the ALGOL 60

computer language and was used to generate the British rail table book of creep force -

creepage values. This program was later converted to a FORTRAN code by Goree and

Law [53].

Kalker later [54, 55, 58] developed an approximate theory which treated the wheel and

rail as a set of elastic springs. The associated physical model is that of a very thin elastic

layer mounted on a rigid substrate. A schematic which depicts this is shown in Figure 2.9.

This "Simplified Theory" is valid only for Hertzian contacts with similar elastic constants.

By assuming similar values of Poission's ratio and shear moduli for the contacting bodies,

the stresses in the shear and normal directions become uncoupled. This allows for the

normal and tangential solutions to be obtained independent of each other, hence speeding

up the computations. In addition, with the simplified theory the surface displacement of

any given location within the contact patch depends only on the surface traction at the same
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point, whereas in Exact Hertzian Theory, the surface tractions at all points contribute to

the surface displacement. By introducing "flexibility parameters" a computer program

called "FASTS1M"was developed, which although widely used, may be as much as 15%

in error when compared to exact methods [44]. However, Goree [53] points out "for small

or large values of a/b the Simplified Theory frequently gives better results, as the Exact

Hertzian Theory (DUVOROL) often experiences numerical divergence difficulties for

extreme values of a/b. In no instance was a significant improvement noted with the Exact

Hertzian Theory."

Kalker also developed an "exact" code to predict creep force - creepage for the entire

regime which is valid for both Hertzian elliptic as well as non-Hertzian contact patches [52,

80]. Although about 400 times slower than FASTS1M, this exact code (called

"CONTACT") may be used for non-elliptic contacts. Its primary function is the validation

of other "approximate theories". The "Exact non-Hertzian Theory" of CONTACT is

identical to that of DUVOROL with the exceptionbeing that of accommodating non-elliptic

contact patches. In some cases non-Hertzian contact problems have been approximated as

"ellipticized" contacts and subsequentlytreated with Hertzian codes [52,56]. .Oneexample

is indicated in Figure 2.10, where eight different lateral stages of a wheelsetltrack system

are shown with corresponding contact geometries.

2 .2 .3 .2 Heuristic Models

Another complete theory for predicting creep force - creepage for elastic bodies in

rolling contact is due to Shen, Hendrick and Elkins (S.H.E.) [57]. Their "heuristic" model

was developed based on the approximate expression of Vermeulen and Johnson [45]. This

was done by implementing more accurate creep coefficients via Kalker's linear theory [44]
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and including a term to account for spin creepage. The basic methodology of the "Heuristic

Model" limits it to Hertzian contact problems. As inputs, the patch semi-diameters, elastic

constants, normal patch, load and creepages are required. The S.H.E. code (called "C

FORCE") first calculates the patch force based on the Kalker linear theory [33] (equations

(2.20) to (2.22) ).

Fx = abGC11,>x (2.20)

(2.21)

FR, = (F/ + F/)112 (2.22)

where C II' C22 and C23 are the Kalker creepage coefficients. The linear resultant force FR'

is then reduced to a non-linear value as per the third order law of Vermeulen-Johnson as in

equation (2.23).

FR =
(

~ [(:iJ- t(:if+ 17 (:in
~N ;

for F~ :>3~
)for FR ~ 3 ~

(2.23)

The non-linear creep forces which result are obtained by means of a reduction

parameter £ as in equations (2.24 to 2.26).

(2.24)
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(2.25)

(2.26)

The "Heuristic" model has.been used by a number of investigators for dynamic rail car

simulation due to its very high computational speed, minimal computer memory

requirements and reasonable accuracy. Kalker [44] reports the S.H.E. method to be 100

times faster than FASTSIM ("the very fast calculator of the Hertzian simplified theory").

Regarding accuracy, Figure 2.11 has been included as a comparison of three creep force

models: FASTSIM, DUVOROL and Heuristic Model, for a Hertzian contact of aJb=2.0.

Figure2.11(a) is for the case of lateralandlongitudinalcreepagewithsmall spin « 10%)

and 2. 11(b) for intermediate spin (>10%, <35%). As indicated, as the amount of spin

creepage is increased, so is the level of error in the Heuristic model.

By restricting comparisons to a range of steady state curving based on field results [59,

60], the maximum difference between DUVOROL and the Heuristic Model was 10.1%.

For this same range of motion, the differencesbetween DUVOROL and FASTSIM were as

much as 6.2%. Kalker duly points out, however, that under the conditions of pure spin

(lateral creepage =longitudinal creepage =0), "the S.H.E. model fails miserably the

moment it escapes the linear regime of the creep force - creepage curve" [44].

2.2.3.3 Iterative Techniques

A final theory to be considered for predicting the creep force - creepage relationship

between three dimensional elastic bodies in contact is due to Paul [32,49, 61- 77]. By

utilizing a form of the strip theory developed by Haines and Ollerton [46] and expounded

on by Kalker [33]. Paul developed a complete theory valid within all three regimes of
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rolling contact. The earlier work of Paul focussed on obtaining a solution to the normal

problem (contact patch geometry, pressure distribution and total force) for both Hertzian

and non-Hertzian counterformal contacts, as well as conformal (closely fitting) surface

geometries [64, 65, 67]. Computer programs corresponding to each of these normal

problems (written in FORTRAN 77) are: COUNTAC2 (two axis of symmetry) for

Hertzian contacts, COUNTAC1 (one axis of symmetry) for non-Hertzian contacts and

CONFORM for conformal contact problems.

After obtaining solution methodologies for all possible categories of normal contacts

for wheel/rail systems, Paul sought a solution technique for the tangential problem. A

modified strip theory was adopted for this purpose, primarily because it was well suited for

determining the separatrix location (Figures 2.12 and 2.13) for arbitrary contact patch

geometries [78]. The resulting tangential code called ROLCREEP and subsequently

SLIDFORCE were developed by Liu and Paul [49] in 1988.

ROLCREEP is a "complete" code in that it is valid for all three rolling regimes.

SLIDFORCE, however, was specifically designed for analyzing the problem of gross

sliding contacts only. Results obtained for a Hertzian contact using both ROLCREEP and

FASTSIM (Kalker Simplified) and DUVOROL (Kalker Non-Linear) are shown in Figure

2.14. As indicated, there is excellent agreement between them. Similar agreement is

indicated by the traction distribution of Figure 2.15.

For non-Hertzian contacts Paul was unable to validate his work, as there are no known

experimental results published for non-Hertzian situations. Kalker [79] has generated

some "preliminary" geometry predictions along with the separatrix locations (via

CONTACT). However "a crude approximation of the creepages was used". For the non-

Hertzian patch geometry of Paul and Hashemi [64] shown in Figure 2.16(a), and pressure
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distribution of Figure 2.16(b), COUNTACI was utilized for the non-Hertzian normal

problem, while the tangential solution was obtained via ROLCREEP. These are the first

known complete solutions for non-Hertziancontact geometries.

The work of Paul appears to be quite general and well documented, however a

fundamental problem exists when moderate to large values of spin creepage are

encountered. Since an iterative technique (Newton-Raphson) is utilized for locating the

separatrix, a suitable initial guess is crucial for successful convergence. However the initial

traction distribution assumed within the slipped region corresponds to one of pure rigid

body translation (without rotation). Therefore, as long as <I>is small (Liu reports A ~ 0.1

for non-Hertzian patches) ROLCREEP will achieve convergence, where A is defined in

equation (19) [35].

A= a3E <I>
/IN (I - \}2)

(2.27)

Liu suggested that this limitation may be overcome by allowing ROLCREEP to begin with

an acceptable value of small spin and the desired creepage values and divide the problem

into a series of steps. With each step the solutions of the previous step would be used as

initial guesses, where the creepages would remain constant, but the spin gradually

increased. The problem would be repeated until the desired value of spin was achieved.

Such a modification to ROLCREEP may become necessary when flange contact situations

are encountered, where spin values as high as 80% have been reported during severe

flanging [57].

The major features of each theory previously reviewed have been summarized in

Table 2.2.
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2.3 Rough and Inelastic Surfaces

With regards to the technical nature of three-dimensionalsurfaces encountered in actual

rolling contact situations, several of the simplifying assumptions (common to all of the

previously reviewed theories) have been addressed in the literature and are worth noting.

The first is that of surface roughness, and the effects of assuming the contacting surfaces to

be "smooth".

2.3.1 Surface Roughness

"Real surfaces are always rough, with a vertical scale which can be almost anything,

but with one universal feature - some of the roughnesses are higher than others" [81]. For

the problem of wheel/rail contact, consideration should be given to the special case of

elastic contact between rough curved surfaces. In qualitative terms, the surface asperities

provide a much more compliant base, so under normal loading conditions the load is spread

out over a wider area than that predicted by Hertz. Johnson [31] refers to this as the "real"

area of contact. Since the "real" contact area is larger than the Hertz predicted area under

these conditions, the peak pressure would be less. Figure 2.18(a) indicates this to be true

under "light" loading conditions, however at higher loads (Figure 2.18(b» Hertzian values

of both pressure and contact area are essentially the same [82]. A generalization of these

results is included in Figure 2.19(a) and (b) where parameters a. and J.L are defined by

equations (2.28) and (2.29)

_ as _
[

16 RE*2
]

113

a = 0- - as 2o 9N
(2.28)
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(2.29)

As shown, "the Hertz theory for smooth surfaces can be used with only a few percent

error provided the parameter ex.is less than about 0.05" [31].

With respect to the tangential forces transmitted across a "rough" surface interface,

O'Conner and Johnson [83] found roughness to have a negligible effect under sliding

conditions. In rolling contact, Johnson [31] reports the influence of roughness on creep to

be small. This is also supported by Krause and Poll [84] where for the conditions of their

test rig (surface pressure =500N/mm2), "an increase in creep caused by greater surface

roughness was not evident".

2 .3 .2 Surface Contamination

Real surfaces are in mutual contact at discrete asperities and thus interfacial materials

are also expected to be present. When considering the wheel/rail system, contamination of

the contact surfaces may result from oxidation, foreign matter (oil, sand), environmental

conditions (rain, snow, ice, temperature-humidity effects), and trackside or on-board

lubrication (grease-sand mixtures) [84, 88]. In general, the presence of contaminants

within the contact region has been found to cause a reduction in the coefficient of sliding

friction [84, 85], however, initial gradients of the traction-creep relationships remained

unchanged [84, 86]. This is a confirmation of Kalker's [33] theory, in that creep

relationships and the coefficients of sliding friction are independent quantities. Two

reported contradictions to this are cited [87, 88]. In each of these cases the authors

conclude that creep coefficients in the vanishingly small creepage regime can be decreased

due to contaminants.
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2 .3 .3 Plasticity Effects

During repeated rolling contact the elastic limit of the material is likely to be exceeded

(initially at least) leading to plastic flow and residual stresses. The material is therefore

subjected to a combination of the contact stresses due to the current load together with the

residual stresses introduced during previous passes of the load [102]. Although in the

early stages of the loading history plastic deformation may occur, it is possible for the

steady state stresses to be entirely within the elastic limit. This process in known as

"shakedown" [31].

Three separate effects contributing to the shakedown process in rolling contact as

outlined by Johnson [105] are:

1) Residual stresses introduced during the early passes are protective and make plastic

deformation less likely during subsequent passes.

2) Plastic deformation in the early passes may cause the material to strain-harden,

thereby raising the elastic limit.

3) Plastic deformation may make the surface profiles more conforming so that, even

under a constant load, the intensity of the contact stress is reduced.

He does note however, that the influence of plastic deformation (effect (3) ) on the

contact area and resultant contact pressure distribution, would be "difficult to calculate

precisely but is certainly not large" [103].

Although the concept of material shakedown has been verified for a variety of materials

under laboratory conditions, analytical techniques for accurately predicting such behavior

are still under development [104]. This is due in part because both the shakedown limit as

well as the nature of deformation which takes place when the load exceeds the shakedown

limit, are dependent upon the strain hardening characteristics of the material and how
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accurately then may be modelled (i.e. elastic - perfectly plastic, linear kinematic

hardening, non-linear kinematic hardening, etc.). With respect to field conditions and

practical applications, Kalousek et. al. [106] reports that an "open system" of wheel/rail

contact which results due to wheels of different cross-sectional profiles and diameters

yields a wide range of contact geometries (Figure 2.20). Moreover, when this is

"combined with a wide range of contact forces occurring on high capacity railway lines, it

does not permit the shakedown state to be satisfied, thereby causing severe plastic

deformation and wear" [106].

A large body of literature currently exists which deals with inelastic material response

under rolling contact conditions. Much of the pioneering effort is due to Johnson and his

colleagues at Cambridge University [31, 103-105]. Most of the inelastic contact research

being done has been motivated by the need to understand wheel/rail wear and failure

mechanisms.

Regarding the influence of plastic deformations on the traction-creep relationships for

rolling contact, very little work has been reported. Krause and Poll [84] was the only

reference located which specifically addressed the issue. In their work, two rolling/sliding

friction test rigs were used for comparing the creep force/creepage relationships (within the

linear regime) of a 16 Mn Cr 5 steel in a non-hardened (HV =213) and case hardened

(HV =802) condition. Their conclusion was that "an influence of plastic deformation

could not be determined from the comparison between hardened and unhardened rolling

bodies at a maximum surface pressure of 500 N/mm2." It is unknown whether or not the

effects of plastic flow influence the creep force - creepage behavior outside the linear

regime. However, it would seem reasonable that if plastic creep occurred, it would lead to

higher values of creepage for a given friction force than would theoretically be calculated.
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All of the creep force -creepage algorithms to date treat both contacting materials as linear

elastic.

2.4 Contact Patch Friction Work

According to Johnson [92], "micro-slip is an irreversible process". The implications

of this are that frictional energy, (or work) is lost during the rolling process. The "heat" or

thermal energy which is dissipated within the slip region of the contact patch has been

primarily attributed to plastic deformation of near-surface regions of the two contacting

bodies [126]. As a result of thermal resistance the local temperature would increase,

possibly influencing both the friction as well as the wear rate [93-102]. In addition, the

thermal energy expended due to sliding contact results in some degree of thermal

deformation of the surface (within the immediate vicinity of the contact) and may indeed

alter the contact patch geometry and separatrixlocation (in comparison to that predicted by a

purely mechanical analysis) [99, 107].

2.4.1 Global Work

In the analysis of rail car dynamics, the magnitude of contact patch work has been used

as a principal curing performance index (ie. indicator for the onset of derailment) [17].

The contact patch work has been defined as the dot product of creep force and creepage

vectors (2.30),

W = f F ·dr = Vo~tf F · d~
(2.30)

where the resultant creep force vector is defined in equation (2.31), and the creepage vector

by equation (2.32).
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(2.31)

(2.32)

Taking into account the effects of spin moment and recognizing the Vo.1ttenn in equation

(2.30) to be equal to the distance rolled, then the global contact patch friction work per

distance rolled may be described by equation (2.33) and has units of work per unit

distance, or force.

(2.33)

When summed over all contact patches, this index represents the additional work per unit

distance rolled along the track required for the vehicle to negotiate a curve.

The index of global work has also been used by investigators interested in the wear of

wheels and rails. Although comprehensive verification of wear indices has been limited,

tests by British Rail have shown that under certain wear regimes, wear rate is proportional

to the work done in the contact patch [109, 127].

2.4.2 Local Work Distribution

The index of global patch work is an overall, or integrated measure of wear in the

contact patch, however, there has been strong interest by several investigators to obtain a

measure of the wear distribution over the contact patch [89,90]. Under slip-stick rolling

condition, no relative motion occurs in the adhesion region of the patch and therefore no

energy is dissipated there either. Thus the distribution of wear within the contact patch

becomes a function of separatrix location, and size of slip domain.
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For a contact patch with regions of both slip and stick, the local surface shear traction

distribution (shear stress) is known to vary in a manner characteristic of that shown in

Figure 2.21. As indicated, it reaches a local maximum at the separatrix and falls in

accordance with JlP(x,y) (Coulomb saturation) from the separatrix to the trailing edge.

Then for a contact domain Q identified by the elliptic "footprint" of Figure 2.22, with

discrete cell locations identified by indices i and j in the longitudinal and lateral directions

respectively, the local shear traction vector T ij and slip vector s ij are defined by

equations (2.34) and (2.35),

Tij = (T)' + Tyj )ij

sij = (sxi + Syj )ij

(2.34)

(2.35)

where T has units of force per unit area and s is dimensionless.

The local work per unit distance rolled at the cell ij then becomes:

(2.36)

which would provide a local work map or distribution when computed for all cells within

Q, where by definition Wij =0 in the adhesion region, since the slippage, s =0 there.

If the local work values for each cell are summed over the entire contact (2.37), a

measure of total (or integrated) contact patch work would be obtained, which would be

similar (but, not in all cases identical) to the Wg' global work term of section 2.4.1.
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, n~tal
(
_

WLocal sum = o~ Tjj. Sij) Acell ij
~"Shp

(2.37)

2 .4 .3 Local Heat Flux

In order to quantify the thermal effects of contact patch work on wear, potential phase

transformations and material properties, the heat flux distribution resulting from the

rolling/sliding process must be understood [110-119]. Recall that power may be defined

by:

(2.38)

where thermal power per unit area is defined as heat flux (2.39).

" p
q = A (2.39)

Since non-conservative work (friction work) dissipated per unit time equals thermal power,

the local heat flux distribution may be obtained from equation (2.40)

q;j =
[
W;j

( A 1 .. )]
Vo

cellIJ
(2.40)

which may be re-arranged into the following equation by using (2.36).
"

(
- -+

)q.. = T · s .. V
D D 0 (2.41)

where V0 in each case is the rolling velocity. Thus by having the traction and slip

distributions available, the heat flux distribution may be predicted. For problems where a
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uniform heat source moving at velocity V0 is assumed, there would be no need to use

equation (2.41). However, for non-uniform heat sources (ie. non-Hertzian contacts), the

temperature maps cannot be accurately obtained without the application of equation (2.41).
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Table 2.1 Coefficients In and n For Different Values of e

e :IY 35° 400 45° 55° (f:f 65° 7(1' 75° goo 85° rn

In 2.73 2.39 2.13 1.92 1.75 1.61 1.48 1.37 1.2.8 1.20 1.12 1.06 1.00

n 0.49 0.53 0.56 0.60 0.64 0.67 0.71 0.75 0.80 0.84 0.89 0.94 1.00

a/b 5.53 4.52 3.76 3.18 2.73 2.37 2.07 1.81 1.60 1.42 1.26 1.12 1.00
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Table 2.2. Overview of Computer Codes

.elease Creepage ISurface IContact
Author Date Program Regime Geometry Geometry I Comments
Kalker 1967 LINEAR LINEAR COUNTER

HER1ZIANkOlc-up TABLE[33] FORMAL ORMAT

[33,44]
Kalker

11970 I DUVOROL IComplete I COUNTERHERlZIANOk-UP TABLE[50] FORMAL ORMAT - B.R.
ook. FORTRAN

ISourceCode
[50, 53]

Kalker 1973 FASTSIM Complete COUNTERHERTZIANORTRAN Source
[54] FORMAL ode [54, 55, 58]
Kalker 1982 CONTACT Complete COUNTER NON- eneral,
[52, 79] FORMAL HER1ZIAN omputationally

tensive. Code
!Sold
y Kalker.

Shen, 1983 C FORCE Complete COUNTER HER1ZIAN ery Fast. Easily
Hendrick FORMAL ogrammed via
& Elkins able [33,44].

[57] Small Spin Only
Paul and 1977 OUNTAC N/A COUNTER HER1ZIAN olves the Normal
Hashemi -2 FORMAL roblem Only. 2

[63] xes
fsymmetry

Paul and

1978 fomyAI

N/A

COUNTER1 NON- olves the Normal
Hashemi

FORMAL HER1ZIAN r?blem Only. 1[64] axIS
fsymmetry

Uu and 1988

ROLCREEP Complete COUNTER1HER1Z1AN ery General.

Paul FORMAL and imited to Small
[35] and NON- pin.

CON- HERTZIAN
FORMAL

Liu and

1988 fLIDFORC1Saturati0l COUNTER1HERTZIANSigned for Gross
Paul

Only FORMAL and liding Problems.
[49] NON-

HER1ZIAN
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Figure 2.1 Two elastic bodies in frictional rolling contact.
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Figure 2.2 Tractive rolling with slip and stick zones indicated [40].
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Figure 2.3 The creepages: (a) a wheelset on a track; and (b) illustration of camber spin
[44].
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Figure 2.4 Creep force - creepage diagram according to Carter [39].
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Figure 2.5 Creep force - creepage diagram and contact ellipse for the linear regime.
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Figure 2.6 Creep force - creepage diagram and contact ellipse for the non-linear regime.
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Figure 2.9 The idea of the simplified theory [44].
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Figure 2.12 Non-Hertzian wheel - rail contact patch [75].
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Figure 2.13 Longitudinal traction distribution for non-Hertzian patch. 1>x=0.0003, N =
F

1400 pounds, J.lN=0.6 J.l= 0.2 [75].
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o Kalker's nonlinear theory

/). Kalker's simplified theory

o Paul and Liu

Figure 2.14 Longitudinalcreepage curve for elastically similar bodies with elliptic contact.

(a/b =2.89, v =0.28, uy =<1> = 0) [35].
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Figure 2.15 Longitudinal traction along x-axis for rolling contact of elliptic patch, (circle
Kalker's nonlinear theory; square -Paul and Liu [35]). (a) 11 = 0.3, andx
(b) TJ = 0.6.x
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Figure 2.16 Shape of a non-Hertzian contact patch [64].
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Figure 2.17 Pressurealong y-axis for the contact patch of Figure 2.16 [64].
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Figure 2.18 Nondimensional contact pressure p* versus nondimensional radial coordinate
p. (a) light load; "and(b) heavy load (note change in scales) [82].
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CHAPTER 3

PROCEDURES AND RESULTS

3. 1 Counterformal Hertzian Contacts

In developing a complete solution to the problem of creep-force I creepage behavior

of wheel/rail contacts, consideration must be given to both counterformal Hertzian, as

well as non-Hertzian contacts. However, most dynamic rail car models currently require

inputs of wheel-rail contact geometry which are elliptical, a characteristic unique to

counterformal Hertzian contacts.

3. 1.1. Closed Form Solution to Patch Geometry

Contact patch geometry is understood to be a function of wheel and rail surface

curvatures at the location of contact between the bodies, as well as material properties of

both wheel and rail, and normal load [37]. A procedure for obtaining a closed form

solution to contact patch geometry (and hence pressure distribution) is outlined below:

(1) Obtain the principal radii of curvature for wheel (R1R'I) and rail (R2 R' 2) at

the location of contact, as in Figure 3.1.

(2) Compute (A + B) and (B - A) terms from equations (2.4) and (2.5),

(where 'II= 1C/2for most rolling contact problems [52]).

(3) Obtain e from equation (2.11).

56
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(4) Use this value of e and interpolate on Table 2.1 to obtain m and n, as well as

a/b.

(5) Compute the elastic constants k1, k2 from equation (2.9) and (2.10).

(6) Calculate semidiameters a and b from equations (2.7) and (2.8).

(7) Substituting these into the elliptical formula of (2.6) the patch geometry is

obtained where semidiameter a is along the x -axis, in the direction of rolling.

(8) At this point the maximum Hertzian pressure may be obtained from equation

(2.16), and the ellipsoidal pressure distribution from equation (2.15)

3.1.2. Interative Solution for Two Axis of Symmetry - COUNT AC2

The program COUNTAC2 was developed by Paul and Hashemi [63] for the

purpose of obtaining an iterative method for computing the contact patch geometry,

pressure distribution and total load for various wheel and rail geometries, under a given

rigid body approach. The program was written in FORTRAN 77 and is based on the

modified simply discretized method [68]. Although the output generated includes the same

parameters which can be predicted via the closed form procedure of 3.1.1, obtaining

Hertzian results was not the primary goal for developing COUNTAC2. The main

motivation was to develop the iterative solution method which could be compared to an

acceptable standard (closed form Hertz analysis), and which could be extended to handle

non-Hertzian contact problems.
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3.1.2.1 Code Implementation

The FORTRAN source code for COUNTAC2 is available in the open literature [64].

After contacting the author, however, a diskette of the source code was obtained [120]. The

source code was compiled on a 486 ffiM compatible computer using a Microsoft

FORTRAN 5.1 optimizing compiler.

Since the source code was originally written in the late 1970's, it was set up for

running in a batch mode, and the input format was designed for use with a card reader. In

addition, the large mainframe computer it was developed to run on (ffiM 370/168) had

been equipped with a library of IMSL scientific subroutines, which the source code was

dependant on for operation [21].

The first modification which was made to the code was that of incorporating I/O

changes which allowed for reading and writing to and from the program via data files. An

additional code modification was necessary before COUNTAC2 could be compiled. This

modification required obtaining a copy of the IMSL math library subroutines in order to

provide the linear systems equation solver that the source code called for. Once the IMSL

libraries were obtained, however, it was discovered that the subroutine LEQTIF (called for

by COUNTAC2) had been discontinued. After studying the various linear systems solvers

available, it was decided that an equivalent call could be made to the two IMSL double

precision algorithms, DL2TRG and DLFSRG, which perform the complete LV (lower

triangular / upper triangular) factorization of a real general matrix, and provide the solution

to a real general system of linear equations (given the LV factorization of the coefficient

matrix), respectively [121]. A copy of the modified COUNTAC2 is included in Appendix

A.
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3. 1.2. 2. Code Verification

In order to verify that the modified source code for the "PC Version" of

COUNT AC2 was an accurate and reliable tool for predicting Hertzian contact patch

geometry and press,-re distribution, a comparison of the theoretical results (via Hertz

analysis) and those obtained with COUNTAC2 was made. These are indicated in Table

3.1.

It should be noted that the inputs to COUNTAC2 include the rigid body approach 0,

the coefficients A and B (as obtained from equations (2.4) and (2.5) ) for use in the

subroutine INSEP, as well as the candidate contact region plus the desired initial mesh

arrangement. The candidate contact region is obtainedby solving the equation

f(x,y) = 0 = Ax2 + By2 (3.1)

for a locus of points (xi' yj) at i, j =1 to n, given A, B, and 0 are known. Generatingan

initial mesh arrangement is described in detail in [64], and basically involves plotting one

quarter symmetry of the candidate contact region (interpenetration curve) and dividing it

into a series of segments and further subdividing each segment into a group of cells. Once

completed, the cell locations (field points) which are identified by their (x,y) orientation are

tabulated and read into COUNTAC2 as input. Figures 3.2a and 3.2b show a sample of

mesh development and convergence of contact boundary. Figure 3.3 and 3.4 show

resultant patch geometry and pressure distribution comparisons between theory and

COUNT AC2.
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3.1.3 Creep Force . Creepage Algorithms

Several different creep force - creepage algorithms exist (as outlined in 2.2.3) which

have been utilized for the complete creepage regime of Hertzian contacts. The fastest of

these is the Heuristic model of [57]. Based on a description of the main components of the

algorithm [57], a FORTRAN source code was written for the purpose of obtaining bench

mark results for the fastest method of creep force prediction, which could be used at a later

time for comparison. A copy of the FORTRAN source code generated (SHE.FOR) is

located in Appendix B.

The most complete, widely accepted code for Hertzian creepage predictions is the

"exact nonlinear theory" of Kalker [33]. Besides providing creep forces and spin moment,

the algorithm based on this theory (DUVOROL) also predicts the details of separatrix

location, slip and stick regions, and surface normal and shear stress distributions. As

inputs, the program requires dimensionless values of contact ellipse semidiameters,

creepages, and Poission's ratio.

3.1.3.1 Code Implementation

The original DUVOROL source code written in the ALGOL 60 computer language,

was converted to FORTRAN by Goree [53]. This source code (l082 lines) was obtained

from the literature, and entered into a 486 IBM compatible computer via a standard DOS

editor and compiled using a Microsoft FORTRAN 5.1 optimizing compiler.

The code conversion work of Goree [53] which was performed in the late 70's,

provided a FORTRAN version of Kalker's commercially available computer code

(DUVOROL) was developed to run on an IBM-370/3165 - II mainframe computer. Again,



61

this posed several problems when attempting to compile and execute it on a 486.

The first modification necessary, was that of converting the code from a card

reader/line printer input-output format, to that of data file I/O. An additional modification

which was required before DUVOROL could be compiled, was that of obtaining the

appropriate subroutines called by the main program. As was discovered, although the

user's manual indicated that only two subprograms (SIGN and CONST) were needed,

DUVOROL could not be compiled until three additional subroutines internal to the

mainframe operating system were obtained [53].

The three intrinsic subroutines were vital to DUVOROL, in that they were responsible

for the matrix operations which had to be performed on a large system of tangential

displacement equations. Two of these routines (ARRAY and GMPRD) were obtained

readily in the exact format necessary from an IBM system scientific library archive at

Portland State University [122]. The remaining routine (GELG), which performed the

actual solution to a system of general simultaneous linear equations via Gaussian

elimination, however, was part of a different scientific software library and could not be

located.

3.1.3.2 Sparse Matrix Solution

In order to complete the final modification necessary for running the creep-force

creepage code DUVOROL, the program architecture (as well as syntax) needed to be

analyzed, and an equivalent replacement algorithm for GELG needed to be developed.

Since GELG was based on a direct method for solving a system of linear equations,

namely the systematic reduction procedure of Gaussian elimination, it seemed reasonable to

replace it with a similar algorithm. However, difficulties in obtaining convergence, as well
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as incomplete solutions due to singularities were realized. Goree [53] mentioned a similar

behavior for certain aspect ratios of contact ellipse semi-diameter. After inspection of the

coefficient matrix, it became apparent that in many cases, a large number of randomly

located zero entries existed, which explained the convergence difficulties encountered using

a direct method.

Based on the aforementioned experience, it was decided that GELG would best be

replaced by an iterative (rather than direct) linear equation solver. Although these methods

are unable to return the exact solution even if all of the calculations could be performed

using exact arithmetic, in many instances they are more effective than direct methods since

they require far less computational effort as well round-off error is reduced [123].

Of the classic iterative techniques, the two most popular are the Jacobi method and

Gauss-Seidel method. A relatively new extension to these techniques, however, is that of

the Successive over-relaxation (SOR) method [124]. The SOR method is similar to both

the Jacobi and Gauss-Seidel methods, but it uses a scaling factor in order to provide for a

rapid reduction of the approximation error.

The Jacobi and Gauss-Seidel methods both involve a process that converts a system of
- -

(n x n) equations of the form A x =b into an equivalent form x =T x + c, for some

(n x n) matrix T and vector C [123]. After the initial vector x(o) is selected, the sequence

of approximate solution vectors is generated by computing

x(k) = Tx(k-l) + c (3.2)

for each k =1, 2, 3, ..., where the exact form of equation (3.2) varies with the method

chosen. The SOR method is one class of relaxation methods that computes the

approximations x(k) by
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where 0> is a scaling factor, which is used to speed up convergence. For 0> within (0,

1), the procedure is called an under-relaxation method, while for 0>>1, an over-relaxation

procedure results. For accelerating the convergence of DUVOROL, a value of 0>between

1.25 and 1.8 was found to be optimal.

3.1.3.3 Code Verification

Mter the SOR subroutine was linked to DUVOROL, the code was tested for a number

of different "base-line" data to insure its accuracy. The results of lateral creep force as

predicted by the modified DUVOROL are compared with Kalker's original code predictions

[53] and the experimental results of Brickle [22] as shown in Figure 3.5, for the case of

lateral creepage values of -1.4 to 0.8, A!B=6.75. Additional results for a circular contact

patch with pure longitudinal creepage is shown in Figure 3.6 where the separatrix locations

are compared with those of Liu [35].

3.2 Counterformal Non-Hertzian Contacts

Contact stress problems with load-dependent contact regions are classified as

counterformal problems. When wheel-rail contact occurs at a surface location which is

discontinuous (ie. at a surface point common to two different radii of curvature) the contact

patch geometry will be non-Hertzian. Most dynamic rail car models assume the existence
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of Hertzian contact geometries. This is not usually because wheel-rail contact necessarily

results in a elliptical patch, but often times due to the relative simplicity of solution methods

for Hertzian problems and the difficulty encountered in attempting to solve non-Hertzian

ones [52].

3.2.1 Iterative Solution for One Axis of Symmetry - COUNTACI

For contacting bodies with similar elastic constants, Hertz's second assumption

remains valid and allows for a de-coupling of the normal and tangential analysis.

However, obtaining a normal solution (ie. patch geometry and pressure distribution)

cannot be achieved in closed form and requires an iterative approach [69]. The primary

reason for this is that the elastic displacement field w and the pressure field p within the

contact region 0, are related by integrating the Boussinesq solution (influence of a normal

point load at location x', y' on the elastic displacement at a point x, y) [37],

(1 - v.2)

Ii
p (x', y') dx'dy'

Wi(x, y) = 1tE/ Q [(x _ x')2 + (y _ y')2rl2
(i = 1,2) (3.4)

where the domain of integration (0) cannot be know a priori (since it is a function of

load).

The iterative scheme of COUNTAC1 (similar to COUNTAC2) utilizes the concept of a

family of "interpenetration curves", as an aid in establishing the contact boundary for a

given pair of surfaces. By definition, the interpenetration curve is "the intersection of two

(undeformed) surfaces if the vertex of body 1 is moved along axis z2 through an arbitrary

distance 0" [69], (see Figure 2.1). This family of interpenetration curves becomes
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potential candidate contact patch boundaries associatedwith some family of applied loads.

In order to develop the FORTRAN computer code of COUNTAC1, the simply

discretized method was again employed which allowed equation (3.4) to be solved over a

summation of small rectangularcells within the candidate patch Q. The inputs required for

execution include: interpenetration distance, wheel and rail curvatures at the location of

contact, initial mesh configuration and elastic constants. The program outputs: total wheel

load, peak pressure, pressure distribution and contact patch geometry.

3. 2. 1. 1. Code Implementationand Verification

The FORTRAN source code for COUNTACI is available in the open literature [64].

After contacting the author, however, a diskette of the source code was obtained [120].

The source code was compiled on a 486 IBM compatible computer using Microsoft

FORTRAN 5.1 optimizing compiler.

Similar to the code COUNTAC2, COUNTAC1 required I/O charges which allowed for

reading and writing from data files, as well as the same IMSL subroutines for efficient

solution to the system of linear equations (see section 3.1.2.1). A copy of the modified

COUNTAC1 is included in Appendix D.

In order to verify that the modification to COUNTAC1 did not alter the accuracy of its

predictive capabilities, a sample problem cited in [78] was attempted. Figure 3.7 shows the

location of contact for the wheel-rail combination, where the normal wheel load was

34,000 pounds. As indicated at the location of contact (0), the rail head radius of curvature

changes from 10 to 1.25 inches, a discontinuity causing non-Hertzian behavior. The rail

is a 140RE and the wheel is that of a SIG (Schweitzerische Industril-Gesellschaft)
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Metroliner. The resulting non-Hertzian patch geometry and pressure distribution were in

exact agreement with those reported in the literature [78].

3.2.2 Creep Force - Creepage Algorithms - ROLCREEP

Solution to the tangential problem of wheel-rail contact results in the prediction of

longitudinal and lateral components of creep (tangential) force, resultant creep force, spin

moment and separatrix location (ie. regions of slip and stick). For non-Hertzian contacts,

only two codes exist which can accurately treat the tangential problem. These are the code

CONTACT of Kalker [79] and ROLCREEP by Paul and Liu [35]. The cost of acquiring

CONTACT was prohibitive and as a result, the code ROLCREEP was decided upon as the

only realistic choice for a non-Hertzian study.

3.2.3. Code Implementation and Verification

The FORTRAN source code for the program ROLCREEP was obtained from

Professor B. Paul at the University of Pennsylvania in diskette form [120]. .The program

consisted of 1823 lines of FORTRAN code, which included 23 subroutines for execution.

One primary problem, however, was that no instructions on how to use the code had ever

been recorded. Given the length and complexity of the code, it was assumed to be

unusable without the aid of some form of user's manual. Initial contact with Dr. C. Liu

(code author) at Tamkang University, Taiwan, was made and he indicated that a brief

user's manual for ROLCREEP could be developed and made available. After several

months the user's manual became available, and it provided much of the necessary

information regarding the architectureand viable definitions for ROLCREEP.

o
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When the sample problem included in the user's manual was attempted, however, a

"divide by zero" error was encountered. This was a major set back which took several

weeks to resolve. The nature of the error was also complicated by the fact that this was the

first application in which ROLCREEP was run on a machine other than a main frame

computer. This hurdle was finally overcome when the details of matrix manipulation and

transfer to and from various subroutines were studied in sufficient detail so as to discern

that a certain coefficient matrix was apparently being "rearranged" after it was passed to a

subroutine, but prior to its arrival in the subroutine. Further investigation revealed that the

subroutine was exceeding the 640 K DOS operating limit. This problem was finally

solved by including the IMW option at compilation time, and executing the program under

the Microsoft Windows operating system.

In order to verify that the modifications to ROLCREEP did not alter the accuracy of its

predictive capabilities, a sample Hertzian problem was run and compared to the results of

DUVOROL. In addition, the non-Hertzian contact patch of Figure 2.16 and 2.17 was

analyzed under a variety of creepage conditions and the separatrix locations were found to

be in excellent agreement with the results of Liu [35].

3.3 Wheel-Rail Model - 136RE x AARI-B

Having developed sufficient confidence in, and competence with, the four primary

numerical tools for wheel-rail contact analysis (COUNTAC2, DUVOROL, COUTAC1,

ROLCREEP), the modeling of an actual wheel-rail system was undertaken. The objective

of this analysis was to obtain a better understanding of the creep force -creepage behavior

throughoutthe full range of counterformalcontactof a standardwheel-railcombination

undertypicalloadconditions.
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3.3.1. Wheel-Rail Surface Geometries

The specific wheel-rail combination used in this study was suggested by the project

sponsor as a "popular combination relevant to their industry" [91]. The rail was a 136RE

(136 pounds per yard) and the wheel, an AAR I-B (American Association of Railways)

wide flange wheel. The geometries of each were obtained from the AREA Manual for

Railway Engineering [129] and are included in Figures 3.8 and 3.9 respectively. Although

these are "new" unworn profiles, an analysis could be carried out in a similar fashion if the

surface curvatures of worn profiles were made available. It has been assumed that the

surfaces are elastic, clean and dry.

3.3.2 Three Regimes of Contact

Given the constant taper of the AARI-B for locationsother than the flange root (Figure

3.9), and that the 136REhas two different radii of curvature between the gauge corner and

rail crown centerline (Figure 3.8), there will be three distinct counterformal contact

geometries (each of which will vary with load). Of these three geometries, two will be

Hertzian and one non-Hertzian. Figure 3.10 shows the locations of each separate regime

of contact, where patch #1 and #3 are elliptic (due to a continuous radius of curvature

throughout) and patch #2 is at a location shared by two separate radii of curvature and

therefore is non-Hertzian by definition. Under normal tangent track operating conditions,

this wheel-rail combination would experience the contact conditions associated with patch

#1, #2 or #3, at any given time depending on the lateral alignment of the wheelset with

respect to the track.
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3.3.3 Centralized Rail Crown Contact (Position #1)

As indicated in Figures 3.8 and 3.9, the radii of curvature of rail and wheel in the

lateral direction are 14 inchesand 00, respectively. In the longitudinal direction they are -00

for the rail and 19 inches for the wheel. Given these curvatures, the elastic properties, and

any value of wheel load, the normal problem for contact patch geometry, peak pressure and

pressure distribution could be obtained.

3.3.3.1 Normal Hertzian Solution

In order to evaluate the creep force behavior for a realistic range of wheel loads the

sponsor was again consulted. It was recommended that a wheel load range from 6000 to

36,000 pounds be considered so as to cover all reasonable conditions from empty flat cars

to fully loaded double stack designs. Since contact patch geometry is load dependent, this

necessitated that a separate normal solution be computed for each wheel load condition.

This analysis was carried out using the procedure of 3.1.1. The results are shown in

Figure 3.11. As indicated, the contact ellipse semi-diameter in the longitudinal (rolling)

direction "a" grows at a faster rate than its lateral counterpart "b". Of special interest is the

range on the magnitude of the parameter "c" as this will be necessary for normalizing both

the ellipse diameters as well as the lateral and longitudinal creepage and spin inputs for the

tangential code DUVOROL.

3.3.3.2 Tangential Hertzian Solution

After obtaining the full range of geometricparameters from the normal contact solution,
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the corresponding tangential results were sought. The normal results were used as inputs

for the Hertzian code DUVOROL, (A =alc, B =b/c), along with the elastic properties.

However, for any given normal condition, a wide variety of creepage combinations could

exist and thus effect the creep force magnitude and separatrix location (depending on the

rail car dynamics).

The creepage inputs for DUVOROL appear in the dimensionless form given by (3.5)

and (3.6), for longitudinal and lateral directions respectively.

Here c is the parameter fiib, Jl is the coefficient of friction, p is the effective rolling

radius (3.7), and 'Uxand 'Uy are creepages.

(3.7)

In order to study an appropriate range of creepage ('U , 'Uy )' a corresponding range of 11x x

and 11yneeded to be determined. As indicated by equation (3.7), for given location of

contact p becomes fixed. For position #1, this value was 32.24 inches. As shown in

Figure 3.15, for a given contact location between a fixed set of surfaces, the parameter c

increases in a nonlinear fashion with respect to load from 0.128 inches at 5000 pounds, to

0.245 inches at 35,000 pounds A coefficient of friction of J.L=0.3 was selected as one

representing an average of values cited in the literature for dry conditions, and the range on

11 - 'UxP (3.5)x-Jlc

'UyP
11y= Jlc (3.6a)

X = <j>p (3. 6b )Z Jl
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'Ux and 'Uywas chosen to have an upper limit for tangentoperationsof 0.5% [44, 89].

Using these values, an appropriate range on 11 and 11 for position #1 was determinedx y

to be: 11 (0, 5.0) and 11 (-5.0, 5.0), where the -5.0 lower limit on 11 results from-
x y y

'Uy values associatedwith a negative angle of attack (exin Figure 2.3). After a test matrix

was developed to systematically exerciseDUVOROL over the range of load, geometry and

creepage parameters selected, the resultant dimensionlesscreep force values were computed

(FXN = F/J.1N, FYN = F1J.1N).The longitudinal creep forces are shown as dots in the

three dimensional plot of Figure 3.12. The mesh represents a creep-force creepage surface

(CFCS) for position #1. The surface fit was achieved by using a least squares surface

fitting algorithm with automatic singular value decomposition (SVD) [125]. The resulting

surfaceequationis givenin (3.8)wheretheconstantsare listedin Table3.2

FXN = aotanh (11xexp (a 1111y 0)

{( a2111y 13.5- a3111y f'O - a~ 11y 1+ as) (exp 011 y I~) exp (a~l-11x)))}

(3.8)

A similar surface plot of the lateral creep force variation and associated CFCS is shown in

Figure 3.13. The resulting surface equation is given in » where the constants are also

listed in Table 3.2,

and where 11 and 11 are defined by equations (3.5) and (3.6).x y
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3.3.4 Gauge-side Rail Head Contact (Position #3)

Wheel-rail contact geometries located at position #3 are characterized by the radii of

curvatures within that regime. As indicated in Figures 3.8 and 3.9, the radii of curvature of

rail and wheel in the lateral direction are 1.25 inches and 00, respectively. In the

longitudinal direction they are - 00 for the rail and 19 inches for the wheel.

3.3.4.1 Normal Hertzian Solution

For the same reasons identified in section 3.3.3.1, the normal problem was solved for

position #3. Using the analysis method of section 3.1.1 for a range of 6000 to 36,000

pounds of wheel load, the trends for contact patch geometry and pressure were obtained

and plotted in Figure 3.14. These results were used to compute the necessary range of

input values for the tangentialcode DUVOROL.

3.3.4.2 Tangential Hertzian Solution

In order to study an identical range of operating conditions (ie. wheel load and

creepage), the dimensionless inputs of DUVOROL needed to be determined. For position

#3, the effective rolling radius (p) was found to be equal to 4.69 inches. From Figure

3.14, the range on c was shown to be 0.0779 inches at 5000 pounds and 0.149 inches at

35,000 pounds Combining these with a creepage range identical to that of position #1, a

range of 11xand \ was determined for the dimensionless creepage values from equations

(3.5) and (3.6), 11 (0, 2.0) and 11 (-2.0, 2.0). Figures 3.15 and 3.16 show the results ofx y
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the parametric analysis as well as the corresponding surface fits. The equations which

approximate the CFCS indicated by the mesh in each plot, are described by equations

which have the exact form of (3.8) and (3.9) for the longitudinal and lateral directions

respectively. The constants for each equation are found in Table 3.3.
,

3.3.5 Transition Zone Contact (Position #2)

The 14 inch radius of curvature of the centralized rail crown of Figure 3.8, transitions

to a 1.25 inch radius at a location identified as position #2 on Figure 3.10. At this location

the radius of curvature is discontinuous and the contacting wheel surface encounters a

portion of each of the two different rail curvatures simultaneously. The geometry of the

resulting non-Hertzian contact patch is a function of both of these radii, as well as the

wheel load and elastic properties of the surfaces.

3.3.5.1 Non-Hertzian Solution to the Normal Problem

The solution method for the normal part of the non-Hertzian contact problem, as

outlined in section 3.2.1, was accomplished by using COUNTAC1. In order to analyze

the full range of possible wheel loads, four different values of rigid body approach (0)

were selected. The results ofCOUNTACI for the load range of 5000 to 35,000 pounds

are shown in Figure 3.17. The parameters a and b are the maximum values of half

length and patch width of the non-Hertzian contact in the longitudinal (rolling) and lateral

directions respectively. A detailed plot of the load-dependent contact patch geometries is

shown in Figure 3.18, where the axis for half symmetry is the abscissa of the graph, which

would be in the lateral direction. As indicated, the general shape of the contact patch is
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preserved as the load is increased, however, a marked increase in patch area is observed.

The non-Hertzian pressure distributions associated with each of the four contact

patches were found to be significantly non-ellipsoidal, yet they continued to display the

half-symmetry which was characteristic of the geometries of Figure 3.18. The details of

the pressure distributions for 12,342 and 26,535 pound patches are shown in Figures 3.19

and 3.20, in three and two dimensions respectively. Both plots have been constructed with

the coordinate system origin located at the centroid of pressure for the patch.

3.3.5.2 Non-Hertzian Solution to the Tangential Problem

The non-Hertzian Solution to the tangential problem, outlined in section 3.2.2, was

handled using the predictive capabilities of the computer code ROLCREEP. As input, the

COUNTACI output data was required (in a modified format). This included the complete

(x, y) description of the contact geometry, as well as the entire pressure field. In each case

the patch was subdivided into 81 cell locations, each identified by an xj and yj field point

location and a corresponding local pressure value Pij .

Obtaining a converged solution to ROLCREEP for the load-dependent contact

geometries of Position #2 (Figure 3.17), under the creepage conditions selected for

positions #1 and #3 (ie. 'Ux(0, 0.5%), 'Uy(-0.5%, 0.5%)) proved to be a time consuming

endeavor. For certain combinations of load and creepage, ROLCREEP took on the order

of several days to converge to the tangential solution.

Results of separatrix location and corresponding regions of slip and stick for a 12,342

pound wheel load are shown in Figures 3.21 and 3.22 for pure longitudinal creepage

values of 0.15% and 0.35%, respectively. In each case, the positive x coordinate is in the
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direction of rolling. As the creepage is increased, the separatrix proceeds from a location

nearer to the trailing edge of the contact, toward that of the leading edge. In addition, the

corresponding region of slip grows while that of adhesion diminishes. The geometric

growth of the slip region, as well as the magnitude of the local slippage distribution are

shown in the three dimensional surface plot of Figure 3.23. The detailed information

regarding local slip distribution is interesting not only from a contact dynamics perspective

but also from a tribological one, as will be discussed in section 3.4. Figure 3.24 is

included to give insight into the magnitude of local surface shear stress distribution. A two

dimensional "slice" at any lateral (y-coordinate) location showed good agreement with the

characteristic shape of shear stress as reported in the photoelastic studies of Haines and

Ollerton [46] (and included in Figure 2.9).

3.3.5.3 Ellipticizing Non-Hertzian Contacts

After giving serious consideration to the length of time necessary for ROLCREEP

convergence of ROLCREEP, as well as the amount of effort necessary for preparing the

geometry and pressure fields needed as input data, the incompatibility of ROLCREEP as a

non-Hertzian contact mechanics subprogram for a "real time" rail car dynamics simulation

algorithm became very apparent. However, this did not minimize the sponsor's need for a

rail-wheel contact model capable of handling the non-Hertzian nature of discontinuous

surface geometries. It was therefore proposed, that a systematic method be developed to

ellipticize (that is to reconstruct as elliptical) non-Hertzian contacts similar to that of Hung

[56]. A comparison between the actual non-Hertzian results and those obtained after the

contact was ellipticized, would provide insight into the feasibility of such a proposal.

The method developed for ellipticizing non-Hertzian contact geometries was based on
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two principles of similitude, which were necessary for retaining the key features of the

contact patch. These were: (1) the area of the ellipticized contact patch will be equivalent

to that of the original non-Hertzian contact geometry, (2) the centroid of pressure (location

of maximum surface pressure) on both the ellipticized contact, as well as the actual non-

Hertzian geometry, should be coincident.

This procedure was fIrst carried out on the 12,342pound contact patch of Figure 3.18.

In order to realize condition (1), the actual non-Hertzian patch area needed to be obtained.

This was initially accomplished by plotting the half symmetry "footprint" (Figure 3.25) of

the contact patch on fine mesh graph paper and adding up the total number of rectangular

cells as indicated in Figure 3.26. The area of an ellipse is given by equation

(3.10).

(3.10)

By equating this area to that measured in Figure 3.26 (~ = area of non-Hertzian patch),

a single equation with two unknowns a and b, is obtained (3.11).

A h = A = nabn e (3.11)

By invoking the second condition of similitude, the elliptical semi-diameter "a" is set equal

to the maximum half-length of the actual non-Hertzian contact in the rolling direction ( a

of Figure 3.26). This fIxed the location of peak pressure common for both contacts. The

resulting lateral semi-diameterof the ellipticizedpatch could then be obtained from equation

(3.12).

(3.12)
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A plot of the contact patch geometry for both the actual non-Hertzian as well as the

ellipticized contact is show in Figure 3.31. Using the ellipticized semi-diameters and

equation (2.15), a corresponding ellipsoidal pressure distribution was computed. A

comparison of this with the actual non-Hertzian pressure distribution is shown in Figure

3.28 for a lateral section at y =constant =0.0 (ordinate through the centroid of pressure).

The method for estimating non-Hertzian contact patch area was not only time

consuming, but also subject to significant interpretation due to the approximation of partial

cells. In order to streamline this process and also obtain a more accurate area estimate, the

non-Hertzian contact patch geometries were curve-fit using ninth order polynomials. These

are show in Figure 3.29, for each of the four non-Hertzian patches of position #2. The

best fit equations are listed in (3.13) to (3.16), for wheel-loads of 6714, 12,342, 26,535

and 34,855 pounds respectively.

y = -4405623x7 - 2815684x6 -638948x5 -63071x4 -2430x3

-lOx2+O.964x+0.211 (3.13)

y =-1187614x7 -866051x6 -232361x5 -27972x4 -1400x3

-15.8x2+O.632x+0.261 (3.14)

y= -10093043x9-9568645x8-3495835x7 -625712x6-61031x5

-4467x4 -380x3 -24x2 -0.311x + 0.336 (3.15)

y= -1053497x8-975802x7 -35620x6-66482xs-6376x4

-0297x3 -9.3x2 -0.181x + 0.359 (3.16)

Numerical integration of these equations was performed in order to obtain the desired half-
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patch areas. This was accomplished by writing an algorithm which implemented Romberg

integration by application of the composite trapezoidal rule with Richardson extrapolation

[123]. A copy of the FORTRAN source code for this algorithm is included in Appendix E.

3.3.5.4 Non-Hertzian vs. Ellipticized - Normal Results

Having developed a systematic approach to ellipticizing non-Hertziancontacts, the next

step was to investigate the behavior of the normal solution for the ellipticized contact and

contrast it with the actual non-Hertzian normal solution. A summary of these results is

included in Figures 3.30 and 3.31. Of specific interest are the maximum and minimum

values of c (for normalizing DUVOROL creepage inputs), the ellipticized contact patch

aspect ratio (aIb), and the peak pressure ratio (Pnh/Ph). As indicated, both the ellipticized

aspect ratio and peak pressure ratio are independent of load. The significance of a load

independent patch aspect ratio, was that the ratios of ale and ble (A and B DUVOROL

inputs) were also independent of wheel load at position #2. Thus, similar to the results of

Figures 3.15 and 3.16, which were valid throughout the entire load range, the ellipticized

contact geometries could be conveniently handled with the Hertzian tangential code,

DUVOROL.

3.3.5.5 Ellipticized Solution to the Tangential Problem

Using the results of c from Figure 3.30 and an effective rolling radius p via equation

(3.7) (where an average curvature of 7.625 inches was used for R1), the range of

dimensionless longitudinal and lateral creepage (llx' \) was computed to be (0, 3.0) and
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(-3.0, 3.0) respectively. Similar to positions #1 and #3, the range of wheel load and

creepage (ux (0,0.5%), uy (-0.5%, 0.5%) ), as well as Jl =0.3 and identical elastic

parameters, were used for obtaining the necessary inputs for DUVOROL to perform the

Hertzian tangential analysison the ellipticizedcontacts.

The results of this parametric analysis are displayed by the creep force - creepage

surfaces (CFCS) plotted in Figures 3.32 and 3.33. Of specific (and most important)

interest is that the shapes of these surfaces strongly resemble the CFCS' s for the Hertzian

contacts of positions #1 and #3. In addition to this, the same form of surface equations

(3.8) and (3.9) were found to provide quantitative description of the creep force -creepage

phenomenon for the longitudinal and lateral directions, respectively.

The equation constants are listed in Table 3.4.

3.3.5.6 Non-Hertzian vs. Ellipticized Tangential Results

In order to determine if the tangential solution for an ellipticized non-Hertzian contact

could provide an accurate description of the actual non-Hertzian creep force - creepage

behavior, a comparison was made between creep force - creepage results obtained via

equation (3.8) and ROLCREEP predictions. This was done for the geometry of contact

position #2 at a wheel load of 26,535 pounds, for pure longitudinal creepage values of Ux

(0, 1.0%). The results are shown in Figure 3.34.

3.4 Contact Patch Friction Work

The general procedure for computing global and local distributions of contact patch
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friction work have been outlined in sections 2.4.1 and 2.4.2. In order to quantify the

behavior of contact patch friction work for dynamic and tribological purposes, a detailed

parametric analysis was conducted utilizing the computational tools of COUNTAC1 and 2,

DUVOROL and ROLCREEP, discussed previously. Of specific interest was a comparison

between the magnitudes of global work for Hertzian and non-Hertzian contacts, as well as

a comparison between their respective local work distributions.

3.4.1 Global Patch Work

The computation of global patch friction work was accomplished for Hertzian contacts

by modifying the DUVOROL algorithm to perform the dot product of resultant creep force

values and creepages. Using the dimensionless values of equations (3.5) and (3.6), a

dimensionless friction work equation was obtained (3.21) which was similar to equation

(2.33).

(3.21)

3.4.1.1 Friction Work Surfaces

In order to understand the influence of the primary contact parameters on the behavior

of global friction work, two Hertzian contacts were studied. The range of input parameters

for each is given in Table 3.5. By running DUVOROL for a test matrix which included

combinations of contact patch aspect ratio, creepage and spin, enough data was obtained to

qualify the general behavior of contact patch friction work. The results of this series of

computations are included in the three dimensional surface plots of Figures 3.35 - 3.38.

Figures 3.35 to 3.37 show the variation in friction work behavior with respect to increasing
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values of spin, while Figure 3.38 contrasts with Figure 3.36 the effect of contact patch

aspect ratio (AIB) on friction work (all else equal).

3.4.1.2 Surface Equations

Given that the qualitative behavior of the contact p~tch friction work surfaces had a

characteristic shape which was similar for each of the test cases studied, it seemed

reasonable to attempt to quantify this behavior. This was achieved by using a surface data

fitting algorithm similar to that described in section 3.3.3.2. From the form of the

governing equation for friction work (2.44) it became clear that for a given contact patch

(ie. curvatures and load) the independent parameters were 'Ux' 'Uy'and cp, thus:

(3.22)

Using the dimensionless parameters of equations (3.5) and (3.6), a dimensionless work

function of the form (3.23) would be expected.

(3.23)

The results of the surface fitting procedure for dimensionless friction work are shown in

Figure 3.39. This data was for the rail-wheel combination 136RE X AAR1-B at position

#1. The approximating equation which generated the "mesh" in this figure, is described by

equation (3.24),

(3.24)

where the coefficients for this equation are listed in Table 3.6.
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Equation (3.24 was also applied to the global friction work results for the non-Hertzian

ellipticized contact patch of position #2, as well as to position #3 for the same wheel-rail

combination. The surface approximations to these data are shown in Figures (3.40) and

(3.41) respectively, where the coefficients of equation (3.24) for each of these fits and are

included in Tables 3.7 and 3.8.

3.4.2 Local Patch Work Computations

Computation of local friction work was accomplished using a procedure which

combined either COUNTAC2 or COUNTACI (depending on whether the patch was

Hertzian or non-Hertzian) with a modified version of ROLCREEP. The modifications

necessary for local work computations in the ROLCREEP algorithm primarily involved the

implementation of equations (2.36). As indicated by this equation, the local work per

distance travelled at any cell location within the contact patch is dependent upon the dot

product of the local value of surface shear traction T and slippage s multiplied b y the

discretized area of the cell.

3.4.3 Friction Work Distribution

Given that the local work distribution should be a function of both T and s , it

seemed reasonable to first obtain a physical understanding of these two phenomenon before

computing work. Two contact geometries were considered for this purpose. One was a

fully non-Hertzian patch and the other an ellipticized non-Hertzian geometry. Both were

obtained from the 136RE x AARI-B rail-wheel combination for a contact location of

position #2 (Figure 3.10). The wheel load was fixed at 26,535 pounds and a pure
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longitudinal creepage of 1) =0.6% was imposed. The results of surface traction and localx

slippage distribution for the ellipticized patch are shown in Figures 3.42 and 3.43. Similar

results for the non-Hertzian geometry are given in Figures 3.33 and 3.45. Of specific

interest here is the asymmetry of the non-Hertzian distributions. It should also be noted

that the distance used for normalizing the coordinates (xnorm) was 0.3360 inches for the

ellipticized case, and only 0.3088 inches for the non-Hertzian plots. The resultant effect ofo

this is, that the physical patch areas appear to have unequal magnitudes (ie. non-Hertzian

area appears to be slightly larger than the ellipticized area). However, the dimensional

areas are indeed equivalent between the two geometries, as this was the first condition of

similitude imposed in section 3.3.5.3.

After the results of the T and s distribution for each patch had been obtained, the dot

product algorithm was utilized in order to obtain the resultant local friction work profiles

over the contact domain. These are shown in Figures 3.46 and 3.47 for the ellipticized and

true non-Hertzian patches, respectively.
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Table 3.1 Comparison of Contact Parameters Resulting from COUNTAC2 with Hertz

Theory

Quantity Hertz Theory COUNTAC2 % Error

N (lbs) 1006.6 1006.6 0

Pm (psi) 0.3924 X 105 0.3941 X 105 0.43

a (inches) 0.15035 0.1620 1.66

b (inches 0.07678 0.0767 0.2
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Table 3.2 Coefficients For The Longitudinaland Lateral Creep Force -Creepage Surface
Equations of Position #1

Table 3.3 Coefficients For The Longitudinal and Lateral Creep Force -Creepage Surface
Equations of Position #2

ao al a2 a3 a4 a5 a6 r2

.0353 -0.717 -0.121 -3.834 17.052 28.044 0.817 0.100 0.964

bo bl b2 b3 b4 b5 b6 r2

0.019 0.558 -0.310 -4.784 26.808 56.856 2.384 0.989

ao al a2 a3 a4 a5 a6 r2

0.0618 -0.537 -0.216 -4.394 15.896 19.304 1.067 0.139 0.994

bo bl b2 b3 b4 b5 b6 r2

0.080 0.881 -0.366 -3.318 10.849 13.291 1.321 0.991
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Table 3.4 Coefficients For The Longitudinaland Lateral Creep Force - Creepage Surface
Equations of Position #3

Table 3.5 Range of Input Parameters for Global Friction Work Parametric Study

ao al a2 a3 a4 as a6 r2

.075 -1.053 -0.474 -5.095 13.081 18.660 0.951 0.414 0.971

bo bi b2 b3 b4 bs b6 r2

0.207 1.598 0.271 0.692 1.018 5.205 75.544 0.984

A/B
llx lly Xz

1.0 0.2, 0.8, 6.5

6.75 0.0 - 1.4 (-)1.4 - 1.4 0.8
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Table 3.6 Coefficients for the Global Friction Work Surface Equation of Position #1

Table 3.7 Coefficients for the Global Friction Work Surface Equation of Position #2

Table 3.8 Coefficients for the Global Friction Work Surface Equation of Position #3

c1 c2 c3 c4 Cs c6 r2

0.3939 0.1414 0.0411 0.0095 0.2187 -0.0175 0.989

c1 c2 c3 c4 Cs c6 r2

0.8373 0.4280 -4.0E-7 -0.3086 0.1713 0.0108 0.986

c1 c2 c3 c4 Cs c6 r2

1.6417 0.9834 -11.8643 12.3277 0.4078 -0.0348 .986
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x

Figure 3.1 Wheel and rail radii of curvatures.
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Figure 3.7 Rail and wheel profiles for a 140 RE X SIG (Schweitzerische Industril-
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136 RE:

Figure 3.8 Profile of a new 136RE (136 pound per yard) rail.
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Figure 3.10 Three regimes of contact (positions #1, #2, #3) for a new 136RE X AARI-B
rail wheel combination.
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Figure 3.14 Results of the normal Hertzian solution as a function of wheel load for contact position
#3.
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Figure 3.19 Non-Hertzian contactpatch pressuredistribution (3-D) for a 12,342pound wheel load
at position #2 (pmax =0.255 * 106psi, xnorm =0.2591in.).
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Figure 3.20 Non-Hertzian contact patch pressure distribution (2-D) for a 26,535 pound
wheel load at position #2 (xnorm =.3038 inches, legend signifies variation inp
pmax).
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Figure 3.23 Longitudinal slippage distributionfor non-Hertziancontact of position #2
with a wheel load of 12,342 pounds ('Ox=0.35%, '0 = cp =0.0, xnorrn =
2591 inches, f=O.3, psi=O.0035). y
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Figure 3.24 Longitudinal surface shear traction distributionfor non-Hertzian contact of
position#2 with a wheelloadof 12,342pounds ('Ux=0.15%, 'U = cj> =y

0.0, xnOli11=0.2591 inches, f=O.3,pmax = .255 * 106psi).
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Figure 3.25 Non-Hertziancontactpatchgeometryfora wheel load of 12,342 poundsat
position#2 - half symmetrywithgrid.
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Figure 3.26 Non-Hertziancontactpatchgeometryfora wheel load of 12,342 poundsat
position#2 - half symmetryshowingactualarea.
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Effect of wheel load on non-Hertzian contact patch pressure for position #2.
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Figure 3.35 Global friction work surface plot (a/b = 1.0, Xz= 0.2, longitudinal

creepage = llx' lateral creepage = lly' friction work = W~d (JIM)).



Figure 3.36 Global friction work surface plot (a/b = 1.0, Xz= 0.8, longitudinal

creepage= llx' lateralcreepage= lly' frictionwork= W~d(JIM).
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Figure 3.37 Global friction work surface plot (alb = 1.0, Xz= 6.5, longitudinal

creepage= llx' lateralcreepage=lly' friction work = W~d(JIM).
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Figure 3.38 Global friction work surface plot (alb =6.75, Xz=0.8, longitudinal

creepage =l1x' lateral creepage =l1y' friction work =W~d (JIM)).
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Figure 3.44 Local traction distribution for non-Hertziancontact of position #2 (load =
26,535pounds,'Ux=0.6%, 'Uy=cI> =0.0, xnorm=0.3038inches, legend
signifies variations in local traction Tx),
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CHAPTER 4

DISCUSSIONS

4.1 Generalized Creep Force . Creepage Behavior

Numerical simulation of the nonlinear dynamics of railway vehicles requires the

evaluation of the contact patch creep forcesbetween the wheel and rail at every time step of

integration. As summarized in Table 2.2, a variety of attempts have been made to develop

complete creep force - creepage algorithms for this purpose. To date however, even the

most advanced dynamic simulation codes commercially available remain limited in their

application due primarily to the disproportionate amount of time required to compute the

wheel-rail creep forces. One of the most successful of these codes (NDCARS) , alleviates

the need for excessive creep force computational effort by calling on a look-up table of

creep force - creepage values which was developed by British Rail using Kalker's exact

theory [50].

Interpolating within a look-up table was a novel approach that greatly reduced the

time required to obtain values of creep force. It did however, necessitate excessive

amounts of computer storage. Granted that the current cost of computer memory is only a

fraction of what it was twenty years ago, the expectations of the dynamic simulation

community have nonetheless seemed to increase by an inverse proportion. It was precisely

these expectations (in light of the speed and simplicity of the look-up table approach) which

provided the motivation to initiate a parametric investigationinto the general nature of creep

force -creepage behavior.

135
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By studying the theory of Kalker and the trends of numerous two - dimensional

creep force -creepage plots available in the literature, several general observations could be

made.

1. The dimensionless creep forces FXN and FYN are defined from theory as being

dependent only upon the dimensionless creepages, spin, and patch aspect ratio.

FXN= f(l1, 11,X, a/b)x y z (4.1)

FYN = g (11, 11 , X , a/b)x y z (4.2)

2. For conditions of vanishing spin, the dimensionless creep forces FXN and FYN

may be described by very similar functions, where 111and Tb are permuted

(Figure 4.1 a, b)

3. The dimensionless creep force functionsare antisymmetric to the line FXN (0, 112)

=0 for longitudinal creep force and to FYN (111'0) =0 for the lateral forces.

4. The influence of patch aspect ratio is such that as a/b decreases the dimensionless

creep force functions tend to become more linear with reduced slopes. (Figure

4.2)

5. The influence of dimensionless spin creepage is such that as Xz increases the

dimensionless creep force functions tend to become more linear with reduced

slopes. (Figure 4.3).

Based on the above observations, it was proposed that a set of analytic functions be

sought which could be combined in such a way that they describe the observed creep force

- creepage behavior. By exercising the computer models of DUVOROL, COUNTAC 1
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and 2, and ROLCREEP for the geometries, loads and creepage conditions of section 3.3,

longitudinal and lateral creep force data were obtained. These data appear as the dots in the

surface plots of Figures 3.12, 3.13, 3.15, 3.16 and 3.32 and 3.33.

Given the regularity and repeatability of the "shape" of the surface data for the variety

of operating conditions (1.22 ~ (a/b) ~ 5.88), several characteristic trends were identified

which provided the necessary insight into the choice of analytic function to be used for

approximation purposes. The first trend common to both creep force functions was that as

the creepage in a given direction increased above zero, the creep force function for that

direction tended toward +1. A similar trend was observed for the opposite situation, that as

the creepage in a given direction was decreased below zero, the creep force function tended

toward -1. These trends are known to be characteristic of the hyperbolic tangent function

and it was therefore selected as the primary shape function for each creepage direction as

indicated in equations (4.3) and (4.4) [131].

FXN = f (tanh (llx)' lly' XZ'a/b) (4.3)

FYN = g (tanh (lly)' llx' Xz' a/b) (4.4 )

Additional trends which were identified as the result of the parametric analysis were

that the lateral creep force appeared to be dependent upon some polynomial function of

longitudinal creepage and in a similar way the longitudinal creep force appeared to be some

polynomial function of the lateral creepage. There appeared as well to be some "crossover"

effects which were exponential in nature, providing a nonlinear "growth" of lateral creep

force due to increasing longitudinal creepage and visa-versa.

By selecting the additional analytic functions (polynomials, exponentials and power

functions) in a sufficientlygeneral manner, and subjectingthem to the parametric data along
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with the surface fitting algorithm of section 3.3.3.2, the approximating functions of

equations (3.8) and (3.9) were obtained. As indicated by the magnitudes and polarities of

the coefficients ao to ~ and bo to b6listed in Tables 3.2 through 3.4, although the general

form of the functions (3.8) and (3.9) fit all of the parametric surface data quite well

(average r2 =0.9827), the specific coefficients necessary for each of these fits differed.

The coefficients are listed by patch aspect ratio in Tables 4.1 and 4.2 for the purposes

of comparison. Since it was postulated in equations (4.1) and (4.2) that the patch aspect

ratio also was an independent parameter in the creep force functions, along with 11 and 11x y

it should be expected that the coefficients responsible for fitting the data to a given

functional format in terms 11 and 11 , would depend on the a/b ratio alone, (since thex y

parametric analysis was performed for the case of vanishing spin).

This trend can be observed by considering the manner in which any given coefficient

changes with respect to increasing a/b. For the longitudinal creep force function of

equation (3.8), it appears that coefficients ao' az, a3, and ~ are increasing in some direct

proportion to a/b, while coefficients a4 and as are inversely proportional, and the trend for

a} and a6 appears unclear. Trends of some direct proportion exist for the coefficients b 0

and bi and there exists an inverse relationship for coefficients b4 and bs, of the lateral creep

force approximating function (3.9). In order to obtain the exact functional relationships

between each of the coefficients and a/b, additional contacts would need to be analyzed

over a wider range of a/b, and then the resultant coefficient trends with respect to patch

aspect ratio could be approximated with a higher degree of confidence. The result would
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be a pair of fully generalized creep force - creepage approximating f~nctions valid over a

wide range of a/b and creepages for the longitudinal and lateral directions.

The possibility of obtaining generalizedcreep force - creepage approximating functions

has been demonstrated for both true Hertzian and ellipticizednon-Hertziancontact patches.

Although a completely general function set was not obtained in this study, it has been

. shown clearly that the characteristic shape is hyperbolic tangent in form, and that for the

range of operating conditions studied, an excellent approximation to the model results of

Kalker can be achieved. As a final considerationregarding the utility of a generalized creep

force function, the ellipticized contact of position #2 was analyzed. The speed and

accuracy of the approximating function was tested against the fastest creep force code

available (SHE.FOR) as well as the exact code DUVOROL. Results are shown in Table

4.3 for the following input conditions: a/b = 2.16, llx =2.0, lly =2.5, and a normal

wheel load of 26,535 pounds. As indicated the approximating functions are about 8.5

times faster than the SHE code and provide an accuracy (with respect to DUVOROL) of

about 8%.

4.2 Ellipticized Non-Hertzian Contacts

When consideration is given to the different rail and wheel design profiles available, the

variety of rail grinding procedures employed, and the myriad of rail and wheel wear

patterns which develop under various payload and traffic conditions, the possibility of

contact patch geometries which frequently envelope two different radii of curvature at any

one location would seem inevitable. Although much of the literature appeared to be in

agreement with this statement (to some degree), no quantitative work has been reported
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which addresses the question: "How much difference is there between the actual non-

Hertzian creep forces which develop within a non-Hertzian contact patch and the Hertzian

creep forces which are typically assumed to exist there?"

In an attempt to answer this question, the possibility of representing a non-Hertzian

contact with an equivalent "ellipticized" patch was considered. The assumptions and

methodology necessary for ellipticizing a non-Hertzian contact patch have been outlined in

section 3.3.5.3. Regarding the normal results, it has been shown in Figure 3.30 that the

aspect ratio of the ellipticized contact is independent of load. This is significant for two

reasons; the first being more fundamental in nature and the second, more a matter of

convenience. The first reason is that a similar result was shown in Figure 3.17 for true

non-Hertzian geometries. Thus for the sake of continuity between the two "equivalent"

patch representations, this result provides supporting evidence that similitude is being

preserved. Of additional interest, was that a load - independent patch aspect ratio would

allow for a more convenient tangential analysis using dimensionless input parameters.

Another important result of the normal analysis is shown quite dramatically in Figure

3.28. As might be expected, the pressure experienced by a non-Hertzian contact geometry

is distributed in an asymmetric manner over the patch domain, and has a peak value which

is significantly higher than its ellipsoidal counterpart. Although this result did not seem

problematic in and of itself, there was some concern that if variations in the peak pressure

ratios for patches of different wheel loads were realized, then the validity of the similitude

approach could come into question. After completing the normal analysis for the four non-

Hertzian as well as ellipticized contacts for position #2, this concern was alleviated. As

indicated in Figure 3.31, the peak pressure ratio (non-Hertzian / Hertzian) was found to be

constant with a magnitude of 1.333. This is shown in equation (4.5).
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(4.5)

This relationship is also significant in that it provides a convenient way to approximate the

peak non-Hertzian pressure that could exist at any given location, provided wheel load and

the Hertzian elliptic semi-diameters a and b are known, as shown by equation (4.6)

(where the relationship for Phwas given in equation (2.16».

Pnh = 4/3 {(3/2) (Load /1tab)} = 2 (Load /1tab) (4.6)

This result implies that the peak non-Hertzian pressure would simply be twice the average

Hertzian pressure.

In order to answer the question regarding creep forces, which had been posed earlier in

this section, the tangential analysis of both the ellipticized non-Hertzian as well as the true

non-Hertzian contact geometries was performed with the aid of the normal results. The

ellipticized contact was analyzed using the Hertzian code DUVOROL, while the non-

Hertzian geometry was modeled via COUNTACI and ROLCREEP. The results are shown

in Figure 3.34. As indicated, excellent agreement exists between these two methods, with

a possible exception being taken for the data presented within the full slip regime.

Nonetheless, as there have been no other comparative analysis reported in the literature,

these results are indeed significant, for they imply that the creep forces which develop

within a non-Hertzian contact patch may be predicted with the same degree of reliability by

simply ellipticizing the patch and treating it with classical Hertzian analysis.

Having resolved what appeared to be an important, yet unanswered question, it became

apparent that the agreementbetween the ellipticizedcreep force behavior and that of its non-

Hertzian counterpart may be dependent upon the "degree of conformity" or "geometric

agreement" between the two contact domains. In other words, it is possible that there may
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be some limit to the geometric distortion of a given non-Hertzian patch, beyond which the

physics of the problem may defy the imposed similitude conditions, such that the

ellipticized patches although similar to the non-Hertzian ones in a geometric sense (ie.

equivalent areas, a = a), no longer display an equivalent creep force behavior.

Although this consideration was not fully explored, a parameter which could be used

for such a study was developed. The geometric distortion parameter (n was designed to

provide a quantitative measure of "included area" between an ellipticized contact geometry

and a non-Hertzian (non-elliptic)one. Two such geometries which have been subject to the

similitude conditions of section 3.3.5.3 are shown in Figure 4.4. If the area of the

ellipticized contact geometry is defined by the term AE, and the total area which is not

included within both geometries is defined by the term ANI, then the geometric distortion

parameter may be described by equation (4.7).

(4.7)

As indicated from the equation, when both geometries of area A =AE completely conform,

then ANI =0 andr =0%, in other words there is no distortion with respect to the ellipse.

As suspected, when the original non-Hertzian contact becomes less elliptical and has a

highly asymmetric pressure distribution, then ANI increases significantly, resulting in large

valuesof r.

In order to obtain a measure of the geometric distortion for the results of Figure 3.34,

the non-Hertzian and ellipticized geometries were plotted in Figure 4.5. The area of the

ellipticized patch was obtained from Figure 3.30 (AE =0.1635 square inches) and the
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amount of "area-not-included" ANI, was obtained by approximating the patch geometries

(note half symmetry) with polynomial expressions and integrating them via the Romberg

integration algorithm of Appendix E. The four segments of area which account for ANI/2

(AI, A2, A3, A4) are shown in Figure 4.6, where ANI =0.1053 square inches. The

resulting value for r was 64.4%, and as a consequence, it may be stated that the creep

force behavior for non-Hertzian contacts may be accurately predicted by an ellipticized

contact treated with classical Hertzian techniques, provided that r ~ 64.4%.

4.3 Contact Patch Friction Work

Interest in the behavior of contact patch friction work and the ability to describe it

quantitatively, has been motivated both by vehicle dynamicists who use it for predicting

curving performance and derailments, as well as by tribologists who have experimentally

found it to be a reliable wear index under certain operating conditions [17, 109, 132].

Since the wear process alters rail and wheel profiles, it thus modifies the patch geometry

and resultant creep forces. These in turn have a strong influence on the rail car - track

dynamics, and so the two effects become a coupled phenomenon.

In an attempt to better understand the behavior of contact patch friction work, an

algorithm for predicting the dot product of the creep force and creepage vectors was

developed and integrated into each of the computational tools which were used for Hertzian

and non-Hertzian contact patch analysis. The details of this procedure have been outlined

in section 3.4 for both global and local distributions of frictional work.

The surface plots of global patch work shown in Figures 3.35 through 3.38,

demonstrate an interesting series of results from this study. For the circular contact
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geometry of Figures 3.35 to 3.37, several general observations can be made. The first

observation is with regard to the "dished shape" characteristic of the work surfaces.

Although such a shape might have been expected if a term-wise multiplication of creepage

and creep force were carried out for the coordinates along a classic two dimensional creep

force -creepage curve, a complete picture of the global friction work behavior is difficult to

envisage without the aid of the third dimension. Since friction work is the result of non-

conservative forces, it is by definition equal to the charge in the total mechanical energy of

the system. If one considers the contact patch and the adjoining materials to be the system,

then these plots provide a qualitativepicture of potential materialdamage.

With regards to the spin parameter (Xz) it was observed that as Xzwas increased it

tended to "lift" the entire work surface. This seemed reasonable in light of equation (3.22),

which indicated that the only independent parameter which was changing from Figures

3.35 to 3.37 was the spin. In addition, it was reasoned that for Tlx=T1y=0 the only slip

zone generated should be that due to spin, and as the spin is reduced to zero so was the

surface plot minima. As indicated in Figure 3.37, at extreme values of spin, the friction

work became basically independent of creepage for the range of Tlxand Tlyconsidered.

Presumably this was just an "order of magnitude" effect, in that if Tlxand Tlywere also

drastically increased, then the characteristic shape would be regained.

When the results of Figure 3.36 and 3.38 were compared, the effect of contact patch

aspect ratio on friction work behavior could be discerned, as a/b was the only independent

parameter that was changed. As indicated, an increase in the aspect ratio from 1.0 to 6.75

tended to raise the surface minima from a dimensionless work value of about 1.8 to almost
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6.0, with only a slight alteration in the surface plot perimeter values. This effect might best

be explained in light of Figure 4.2, which displayed the trend of increasing creep force -

creepage slope with increasing a/b values. The consequence of this world be that for a

given creepage, the steeper slope provides a higher creep force value, and thus a larger

creep force * creepage product term. This effect is most dramatic for the vanishing

creepage regime and becomes almost negligible under full slip conditions.

The global work surface data for the 136RE X AA1-B rail - wheel combination was

shown for contact regimes #1 - #3 in Figures 3.39 - 3.41. As indicated, since the surface

minima drops to zero at llx =TIy =0, these were analyzed for conditions of vanishing spin

(Xz =0). The approximating equation responsible for the "mesh" in these figures (equation

3.24) was fit to the data with an average coefficient of determination (r2) equal to 0.987

(where r2 =1 is a perfect fit). Other than the fact that this approximating equation appears

to be some type of a modified ellipsoid (which should stand to reason since the contact

domain was elliptical and the pressure distribution was ellipsoidal) the functional "form"

does not seem to carry any physical meaning. With the spin set to zero, the equation

parameters identified in (3.22) for a global work function should be llx' lly and a/b. Since

the only parameters in the approximating equation (3.24) were llx and TIy,it seemed

reasonable therefore, that the specific coefficients responsible for the "fit" of each data set,

would be dependent upon a/b. By studying the data of Tables 3.6 through 3.8, it became

clear that the coefficients c 1 and c2 are in some direct proportion to a/b, while c5 relates in

an inverse fashion (recall a/b increases from 1.22 at position #1, to 5.88 at position #3). It

is unclear how c3, c4 and c6 relate to patch aspect ratio. In order to determine the exact
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relationships of these coefficients to a/b, additional contact geometries would need to be

analyzed. The result would be a fully general global work approximating function valid for

a wide range of a/b and creepages in the lateral and longitudinaldirections.

The possibility of obtaining a generalized global work approximating function has been

demonstrated for both true Hertzian and ellipticized non-Hertzian contact patches.

Although a completely general function was not obtained in this study, it has been shown

(with sufficient generality) that a strong possibility for this exists by utilizing the functional

form of equation (3.24) derived in this work. The utility of such a generalized function

could be realized by those interested in curving performance and incipient derailment, in

that for any set of creepages and wheel- rail contact location (a/b) they could have virtually

instantaneous feedback regarding the work index. For those interested in wheel - rail

profile design, such a generalized function could increase design efficiency if they are

concerned with the Type II wear regime, (wherein the wear rate can be estimated as a direct

proportion to contact patch work).

The final study regarding contact patch friction work focused on the local behavior of

work distribution within the contact domain. This necessitated using the contact algorithm

ROLCREEP for both Hertzian and non-Hertzian contact geometries, due to the finer

discretization which was available. There were two primary motivations for this study,

both of which were related to the asymmetry of non-Hertzian geometries. The first was to

provide data on a non-Hertzian work distribution for those involved in wear modeling, as

often times either a uniform or parabolic work profile has been assumed over the contact

domain [89,90]. The other motivation stemmed from an interest in tribo-energetics (the

study of thermal - mechanical rubbing), where the local work distribution is related to the

non-uniform heat flux boundary condition (section 2.4.3) of a moving heat source having a
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velocityV0 [93-102].

The contact geometry chosen for this work was one resulting from a 26,535 pound

wheel load at position #2. Both an ellipticized patch (a/b =2.16) and the true non-Hertzian

one were analyzed using the modified ROLCREEP. In order to check the accuracy of the

computational algorithm which was developed for predicting local work distribution,

equation (2.37) was employed. It seemed reasonable that the equality of the global contact

patch work and the summation of the local work for all contact domain locations should

prevail. It became apparent, however, that at times this was true (for certain rolling

conditions) and under other conditions for the same patch, an inequality existed. In an

attempt to resolve this issue the contact patch of position #2 was analyzed for a wide range

of longitudinal creepage values. After the results had been plotted (Figure 4.7) a trend of

the work ratio (k =global/local sum) revealed the nature of the inequality. As indicated,

the work ratio (a measure of the equality of equation (2.37)) quickly approached unity

within the first 0.25% creepage, but did not appear to fully achieve a constant value until

about 0.5% creepage. Since the slip region increases with increasing creepage, and it is

only the slip region which contributes to frictional work, it became apparenuhat the exact

behavior of the slipped area should be investigated. The results are included in Figure 4.8.

As shown, a direct correlation exists between the percent slipped area and number of

slipped cells within the contact domain, as would be expected. What was more interesting,

however, was that the work ratio became entirely constant at the same creepage value ('U x

=0.6%) where full slip was achieved. It is suspected that this effect is purely a function of

the discretization of the contact domain, which was similar to work reported for a Hertzian

analysis [89]. The resultant local traction and slip distributions are shown in Figures 3.42

and 3.43 for the ellipticized contact, and in 3.44 and 3.45 for the non-Hertzian patch for a
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pure longitudinal creeping of 0.6%. As might be expected, the uniform slip distribution of

Figure 3.43 tended to "push" the traction distribution peak of Figure 3.42 back toward the

trailing edge of the ellipticized contact as shown in Figure 3.46. However, it is interesting

to note how the asymmetric slip of Figure 3.45 influenced the very non-uniform traction

distribution of Figure 3.44, causing the bi-modal friction work distribution of Figure 3.47

for the non-Hertzian case.

There have been no results published before for non-Hertzian frictional work

distribution. Although a complete understanding of all of the possible consequences related

to the bi-modal results of a non-Hertzian work profile are not clear at this time, it would

seem reasonable that they could influence certain applications of Type II wear models, as

well as the transient temperature distributions predicted for some thermal-mechanical

rolling/sliding systems.
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Table 4.1 Coefficients for the Longitudinal Creep Force Approximating Function of
Equation (3.8)

Table 4.2 Coefficients for the Lateral Creep Force ApproximatingFunction of Equation
(3.9)

Position
# a/b a6

r2
ao at a2 a3 a4 as

1 1.22 .0353 -0.717 -0.121 -3.834 17.052 28.044 0.817 0.100 0.964

2 2.16 .0618 -0.537 -0.216 -4.394 15.896 19.304 1.067 0.139 0.994

3 5.88 .075 -1.053 -0.474 -5.095 13.081 18.660 0.951 0.414 0.971

Position
a/b bo bi b2 b3 b4 bs b6 r2#

1 1.22 0.019 0.558 -0.310 -4.784 26.808 56.856 2.384 0.989

2 2.16 0.080 0.881 -0.366 -3.31 10.849 13.291 1.321 0.991

3 5.88 0.207 1.598 0.271 0.692 1.018 5.205 75.544 0.984
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Table 4.3 Speed and AccuracyTest Data for Computer Codes

* as compared to DUVOROL

Execution

Code time (sec.) FXN FYN *
(% error) avg'

SHE 0.06 .7931 .6090 26.1

Equations

(3.8) and (3.9) 0.007 .6189 .6950 7.7

DUVOROL 1200 .6109 .7533 0
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CHAPTER 5

CONCLUSIONS

In this study, a numerical investigationof wheel-railcontact behavior was carried out.

The numerical study of both Hertzian and non-Hertziancontact geometries, can be broadly

divided into three main parts: generalizedcreep force - creepage behavior; ellipticized non-

Hertzian contacts; and global and local contact patch friction work distributions. The

results obtained in this study lead to the following conclusions:

(1) Generalized creep force -creepage functions which were predominantly hyperbolic

tangent in form provided a good approximation of creep force - creepage behavior

over a wide range of tangent track operating conditions.

(2) Computations of creep force using the generalized approximating functions were on

the order of 8 times faster than those predicted by using the "very fast" algorithm of

Shen, Hendrick and Elkins [57].

(3) Computations of creep force using the generalized approximating functions were

within 8% of those predicted using the "exact" theory of Kalker.

(4) The ratio of peak pressures between non-Hertzian and ellipticized contacts was found

to be independent of wheel load and equal to a value of 1.3 for the new 136RE X

AARI-B geometry.

(5) The ellipticized non-Hertzian contact patch aspect ratio was found to be load

independent.
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(6) The creep force behavior for non-Hertziancontacts may be accurately predicted by an

ellipticized contact treated with classical Hertziananalysis, provided that the geometric

distortion (n is below 64.4%.

(7) A generalized global contact patch friction work function was developed which

provided a good approximation of the friction work -creepage behavior over a wide

range of tangent track operating conditions.

(8) Global values of contact patch friction work approach those of the local work

summation as creepage values were increased.

(9) The distribution of shear traction and slippage within a non-Hertzian contact were

found to be very non-uniform.

(10) The local contact patch friction work within non-Hertzian contacts was found to be

very non-uniform and was shown to result in a bi-modal work distribution.
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CHAPTER 6

SUGGESTIONS FOR FUTURE WORK

This investigation has raised several interesting questions regarding the behavior of

Hertzian and non-Hertzian wheel - rail contacts. Some of the subject areas that could be

explored in future research -studies are as follows:

(1) Attempt to obtain a completelygeneralizedset of creep force -creepage approximating

functions. This could be realized by extending the current analysis procedures for a

larger range of aJbratio in order to describe adequately the coefficient dependence on

patch aspect ratio, and by accounting for the influence of spin parameter Xzutilizing a

similar process.

(2) Perform an experimental investigation into the geometric behavior of non-Hertzian

contacts in order to verify the predictive capabilities of COUNTAC 1. This could be

accomplished under the static conditions using different scale models of wheel - rail

profiles with known curvatures, and by utilizing prescaled color encapsulated

pressure sensitive film. An alternative approach would be to use an electronic tactile

pressuredetectingsystemsuchas theTekscanTMdevice.

(3) Obtain a wide variety of non-Hertzian contact patch geometries for both new and

worn wheel-rail profiles and test the applicability of using the ellipticized tangential

results in place of the true non-Hertziansolution over a wider range of r. In

addition, test the peak pressure ratio of non-Hertzian to ellipticized in order to check

the generality of the constant value of 4/3 obtained in this study.
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(4) Locomotive wheel slip and correction systems are basically designed to minimize

wheel slip. Unless wheel slip is detected and corrected immediately, the wheels

would accelerate and spin out of control [133]. The control system necessary for

this balanced operation utilizes inputs from both the adhesion -creepage as well as

creepage -velocity curves. It is suspected that in both the modeling of this process,

as well as during its real time operation, the generalized creep force - creepage

approximations as well as percent slipped area data for different patches resulting

from various wheel-rail geometries would prove beneficial and their utility in this

regard should be explored.

(5) Attempt to obtain a completely generalized global friction work approximating

function by extending the parameter range of the current study to include a wider

range of aspect ratio, as well as the "lifting" behavior of the spin parameter Xz.

(6) In order to better understand the development of worn wheel -rail profiles and the

influence of various rail grinding practices on surface degradation, local contact patch

work distributions for different sets of typical curvatures could be systematically

computed and analyzed. For certain regimes of contact this could necessitate the need

to revive the CONFORM algorithm of B. Paul [75], as the contacts would no longer

be counterformal.

(7) Significant effort has been invested into the study of white etching layer (WEL) in

rolling - sliding systems, however the basic questions regarding the mechanisms

responsible for its development remain unanswered. Of specific dispute, is the

existence of a thermal phase transformation process [31, 110-113]. By using the

frictional work distributions for Hertzian and non-Hertzian contact geometries as heat

flux boundary conditions, a thermal - mechanical finite element analysis is
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recommended. This approach is expected to provide temperature profile data useful

for helping resolve the role of thermal transformations under certain rolling - sliding

conditions.

(8) By incorporating the non-Hertziancontact patch pressure and traction distributions as

boundary conditions into an elastic-plastic finite element analysis near the rail gauge

corner, subsurface stress distributions can be obtained which would assist in

understanding the development of rail shells (subsurface stress concentrations). To

date only rectangular or "equivalent" Hertzian contact patch areas have been assumed

in this type of PEA work [116].
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APPENDIX A

Fortran Source Code for Modified COUNT AC2

C PROGRAM COUNTACT-2
C BY J. HASHEMI, JULY 1977, MODIFIED BY R.F. HARDER, JUNE 1993
C FOR BATCH MODE OPERATIONWITH IMSL SUBROUTINES DL2TRG AND
DLFSRG
C REPLACING LEQTIF FOR ffiM 486 OPERATION.
C FOR STRESS ANALYSIS OF COUNTERFORMALCONTACT OF TWO BODIES
HAVING
C TWO AXIS OF SYMMETRY IN CONTACT PATCH.
C FOR UP TO 50 EQUATIONS (FIELD POINTS).
C PROGRAM REQIRES THE FOLLOWING USER-SUPPLIED SUBROUTINE.
cc ***********************************
cc *** good for hertzian contacts! ***
cc ***********************************
CC
CC **************************************************************
CC *** NOTICE! BE SURE TO ADJUST A AND B IN INSEP SUBROUTINE! ***
CC **************************************************************

IMPLICIT REAL*8 (A-H,O-Z)
CC character*4 ipfn,opfn

DIMENSION B(100,100),F(100,1),WKAREA(l00),XSX( 100),YSY(100)
DIMENSION P(20,5),XB(20),YB(20),HX(20),HY(20),XBN(20),YBN(20)

DIMENSION AR(20)
DIMENSION TITLE(20)

CC EXTERNALLSLRG
cc write(*,38)
cc read(*,*)ipfn
cc write(*,39)
cc read(*,*)opfn

open(unit=5,file='count2.dat' ,status='old')
open(unit=6,file=' count2.out' ,status='old')

READ (5,226) TITLE
READ (5,225) IAI,IDGT,ITM,NC
READ (5,218) El,ANUl,E2,ANU2
READ (5,225) MXl,MX2,MX3,MX4
READ (5,225) MX,MY
READ(5,218) XX1,XX2,XX3,XX4
READ (5,218) (XB(I),YB(I),I=l,MX)
READ (5,218) EPS,SB
READ (5,218) D

C *** WRITE INPUT DATA.
******************************************************

WRITE (6,227) (TITLE(I),I=1,20)
WRITE (6,219) IAI,IDGT,ITM,NC,eps
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WRITE (6,212) El,ANUl,E2,ANU2
WRITE (6,220) MXl,MX2,MX3,MX4
WRITE (6,224) XXl,XX2,XX3,XX4

WRITE (6,229) MX,MY,d
PI=3.141592654
CK=( 1.-ANU1**2)/(PI*E1)+( 1.-ANU2**2)/(PI*E2)
IT=1
DO 4 1=I,MX

4 HY(I)=YB(I)/(MY-.5)
H=XXlI(MXl-.5)
DO 7 1=I,MXl

7 HX(I)=H
IF (MX2.EQ.0) GO TO 15
I=MXl+l
MXI2=MXl+MX2
H=XX21MX2
DO 9 J=I,MXI2

9 HX(J)=H
IF (MX3.EQ.0) GO TO 15
J=MXI2+1
H=XX31MX3
MXI23=MXI2+MX3
DO 11 I=J,MXI23

11 HX(I)=H
IF (MX4.EQ.0) GO TO 15
I=MXI23+1
H=XX41MX4
DO 13 J=I,MX

13 HX(J)=H
15 WRITE (6,223) IT

WRITE (6,213)
WRITE (6,214)
WRITE (6,222) (XB(I),YB(I),I=I,MX)
J=O
DO 100 IS=I,MX
XS=XB(IS)
HXS=HX(IS)
HYS=HY(IS)
AR(IS)=HYS*HXS
DO 100 JS=I,MY
YS=HYS*(JS-l )
J=J+ 1
XSX(J)=XS
YSY(J)=YS
CALL INSEP (XS,YS,FZ)
F(J, 1)=(D-FZ)/CK
1=0
DO 100 IFF= 1,MX
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XF=XB(IFF)
DO 100JF=l,MY
YF=HY(IFF)*(JF-1)
1=1+1
IF (J.EQ.1) GO TO 30
IF (IS.EQ.1) GO TO 50
IF (JS.EQ.1) GO TO 70
B(I,J)=DAOR(XF, YF,XS,YS,HXS,HYS)+DAOR(XF,YF ,XS,-YS,HXS,HYS)+
1DAOR(XF,YF,-XS,YS,HXS,HYS)+DAOR(XF, YF,-XS,-YS,HXS,HYS)

GO TO 100
30 B(I,J)=DAOR(XF,YF,XS,YS,HXS,HYS)
GO TO 100

50 B(I,J)=DAOR(XF,YF,XS,YS,HXS,HYS)+DAOR(XF,YF,XS,- YS,HXS,HYS)
GO TO 100

70 B(I,J)=DAOR(XF, YF,XS,YS,HXS,HYS)+DAOR(XF,YF,-XS,YS,HXS,HYS)
100 CONTINUE

C SOLVE THE SYSTEM OF LINEAR EQUATIONS
N=J
CALL DL2TRG(N,B,IAI,B,IAI,FPVT,WKAREA)
CALL DLFSRG(N,B,IAI,FPVT,F, 1,F)

C WRITE THE SOLUTION (PRESSURE DISTRffiUTION).
WRITE (6,211)
WRITE (6,215) (I,XSX(I),YSY(I),F(I,l),I=l,N)

RY=YB(NC)
C CHECK FOR PRESSURS TO BE ALL POSSITIVE AND FIND NEW
BOUNDARY OF CONTACf
C AND PROPER LOAD CONDITION.

IFP=O
D=O
DO 180l=l,MX
DO 150J=l,MY
D=D+1
P(I,J)=F(D, 1)
IF (P(I,J).LT.O.O)GO TO 160

150 CONTINUE
Y1=YSY(D)
F1=F(D,1)
D1=D-1
Y2=YSY(D1)
F2=F(Ul,l)
D2=D-2
Y3=YSY(D2)
F3=F(D2,1)
YB(I)=PARAB(Y1,Y2,F1,F2)
GO TO 180

160 IF (J.EQ.1) GO TO 200
D1=D-1
YB(I)=(F(D, 1)*YSY(D1)-F(U 1,1)*YSY(IJ))/(F(U, 1)-F(U1,1))
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U=I*MY
180 CONTINUE

IFP= 1
I1=MX-l
F1=P(MX,I)
F2=P(ll,l)
X1=XB(MX)
X2=XB(11)
12=11-1
X3=XB(12)
F3=P(12, 1)
if(f2.gt.f1) then

XBR=PARAB(X 1,X2,Fl ,F2)
else

if(f3.gt.f2) then
XBR=PARAB(X2,X3,F2,F3)

else
go to 470

end if
end if
I1=MX+l
XB(ll)=XBR
YB(11)=0.0
IF (IFP.EQ.O)GO TO 340

C START CALCULATINGTOTOA FORCE AND MOMENT.
Ff=O.O
DO 199 1=1,MX
DO 199 J=I,MY
IF (J.EQ.l) GO TO 196
IF (LEQ.1) GO TO 196
C=I.
GO TO 198

196 C=.5
198 FIT=P(I,J)*AR(I)*C

Ff=Ff +FIT
199 CONTINUE

Ff=4. *Ff -F( 1,1)*AR(1)
C WRITE THE LOADING SITUATION.

WRITE (6,216) Ff
GO TO 340

200 11=1-1
XBR=(P(I,J)*XB(I 1)-P(11,J)*XB(I))/(P(I,J)-P(I 1,J»

YB(I)=O.O
XB(I)=XBR

340 WRITE (6,221) XBR,D
C LOOK FOR CONVERGENCE.

IF (DABS(l.-RYIYB(NC».LE.EPS) GO TO 450
IF (IT.GT.ITM) GO TO 450
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IT=IT+1
C START TO GENERATE NEW MESH LAYOUT.

IF (XBR.GT.xX1) GO TO 402
401 H=XBRJ(MX1-.5)

MM=1
MMM=MX1
X=O.O
Ill..=1
GO TO 430

402 IF (MX2.EQ.0) GO TO 401
XX 12=XX1+XX2
IF (XBR.GT.xX12) GO TO 405

403 MM=MX1+1
MMM=MX12
H=(XBR-XX1)/MX2
DO 404 I=1,MX1

404 HY(I)=YB(I)/(MY-.5)
X=XB(MX1)+W2.
Ill..=MM
GO TO 430

405 IF (MX3.EQ.0) GO TO 403
XX123=XX1+XX2+XX3
IF (XBR.GT.xX123) GO TO 408

406 MM=MX12+1
MMM=MX123
H=(XBR-XX12)/MX3
DO 407 I=1,MX12

407 HY(I)=YB(I)/(MY-.5)
X=XB(MX12)+W2.
Ill...=MM
GO TO 430

408 IF (MX4.EQ.0) GO TO 406
H=(XBR-XX123)/MX4
MM=MX123+1
MMM=MX
DO 409 I=1,MX123

409 HY(I)=YB(I)/(MY-.5)
430 DO 440 I=MM,MMM

HX(I)=H
431 IF(X-XB(IIL))433,434,432
432 IIL=IIL+ 1

GOT0431
433 J=IIL-1

YB~(I)=(YB(J)-YB(IIL))*(X-XB(J))/(XB(J)-XB(IIL))+YB(J)
HY(I)=YB~(I)/(MY -.5)
XB~(I)=X .

X=X+H
Ill..=J
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GO TO 440
434 XBN(I)=X

YBN(I)=YB(IIL)
HY(1)=YBN(I)/(MY-.5)
X=X+H

440 CONTINUE
DO 441 I=MM,MMM
YB(I)=YBN(I)

441 XB(I)=XBN(I)
MX=MMM
GO TO 15

450 WRITE (6,214)
WRITE (6,222) (XB(I),YB(I),I=I,MX)
GO TO 500

470 WRITE (6,228)
C FORMAT STATEMENTS.

211 FORMAT (//(25X,'N 0 DE', 11X,'X', 17X,'Y',17X,'P'))
212 FORMAT(20X,'El=' ,E13.7 ,2X,'ANU 1=',F5.3,2X,'E2=' ,E13.7 ,2X,'ANU2=',
IF5.3)

213 FORMAT (//(40X,'BOUNDARY OF CONTACT REGION'))
214 FORMAT (/(19X,'X', 14X,'Y', 14X,'X', 14X,'Y', 14X,'X', 14X,'Y'))

215 FORMAT (/(25X,15,3EI8.7))
216 FORMAT(//(46X,'FORCE=',FlO.3))
218 FORMAT (8FlO.0)
219 FORMAT (20X,'IAI=' ,13,2X,'IDGT=' ,13,2X,'ITM=' ,13,2X,'NC=' ,13,

&2x,'EPS=' ,e11.4)
220 FORMAT (20X,'MXl=',13,2X,'MX2=',13,2X,'MX3=',13,2X,'MX4=',13,2X,'

IMY=',13)
221 FORMAT (/(28X,'RIGHT X-BOUNDARY=',FlO.7,5X,' APPROACH=', FI0.8))
222 FORMAT (/(lOX,6EI5.7))
223 FORMAT(///(46X,'ITERATION=',12)) .

224 FORMAT (20X,'XX 1=',F7.5,3X,'XX2=' ,F7.5,3X,'XX3=' ,F7.5,3X,'XX4=',
IF7.5)

225 FORMAT(l615)
226 FORMAT (20A4)
227 FORMAT (lHl,20A4/1)
228 FORMAT (20X,'ERROR DUE TO F2<Fl')
229 FORMAT (20X,'MX=' ,13,15X,'MY=',13,15x,'approach=',e 11.4)

500 STOP
cc 38 format('Please enter input file name and then hit return')
cc 39 format('Please enter output file name and then hit return')

END
C PROFll...EFUNCTION OF RAIL & WHEEL COUNTERFORMAL CONTACT
STRESSES.

SUBROUTINE INSEP(X,Y,FZ)
IMPLICIT REAL*8 (A-H,O-Z)
A=.00948
B=.02769
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FZ=A*X**2+B*Y**2
50 RETURN

END
DOUBLE PRECISION FUNCTION DAOR(XF,YF,XS,YS,HXS,HYS)

C
C-----------------------------------------------------------------------

C FUNCTION DAOR(XF,YF,XS,YS,HXS,HYS)
C
C PURPOSE.....
C TO CALCULATE INTEGRALOF DA OVER R.
C
C
C
C
C
C
C
C DESCRIPTION OF ARGUMENT VARIABLES....
C XF,YF COORDINATES OF THE FIELD POINT
C XS,YS COORDINATES OF THE SOURCE POINT
C DAOR VALUE FOR THE FUNCTION TO BE RETURNED
C-----------------------------------------------------------------------
C

METHOD.....
BY USING LURE,S FORMULA APPLIED TO A RECTANGLE CELL WHEN

THE DISTANCE BETWEEN THE SOURCE AND FIELD POINT IS LESS THAN
1.5TIMES THE MAXIMUM DIMENSIONOF CELL, AND APPROXIMATELY
AS DA/R , OTHERWISE.

IMPLICIT REAL*8 (A-H,O-Z)
EPS=I.E-I0
PI=3.141592654
C=I.
YYSF= YS- YF

R=DSQRT((XF-XS)**2+YYSF**2)
IF (HXS-HYS) 1,1,2

1 H=HYS
GO TO 3

2 H=HXS
3 IF (R-1.5*H) 6,6,4
4 DAOR=HXS*HYS/R
GO TO 50

6 Hl=YYSF+.5*HYS
IF (DABS(Hl)-EPS) 10,10,5

5 H4=HI-HYS
IF (DABS(H4)-EPS) 10,10,20

10 C=.5
Hl=HYS
H4=-HYS

20 H2=XS-XF+.5*HXS
H3=H2-HXS
T1=DATAN(H21H1)
Bl=DATAN(H31H1)
T2=DATAN(H I1H2)
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B2=DATAN(H4/H2)
T3=DATAN(H1/H3)
B3=DATAN(H4/H3)
T4=DATAN(H2/H4)
B4=DATAN(H3/H4)
AT1=DABS(T1)
AT2=DABS(T2)
AT3=DABS(T3)
AT4=DABS(T4)
AB 1=DABS(B 1)
AB2=DABS(B2)
AB3=DABS(B3)
AB4=DABS(B4)
C11=DLOG(DTAN(PI/4.+AT1/2.»
C 12=DLOG(DTAN(PI/4.+AB1/2.»
C21=DLOG(DTAN(PI/4.+AT2/2.»
C22=DLOG(DTAN(PI/4.+AB2/2.»
C31=DLOG(DTAN(PI/4.+AT3/2.»
C32=DLOG(DTAN(PI/4.+AB3/2.»
C41=DLOG(DTAN(PI/4.+AT4/2.»
C42=DLOG(DTAN(PI/4.+AB4/2.»
C1=T1/AT1*C11-B1/AB1*C12
C2=T2/AT2*C21-B2/AB2*C22
C3=T3/AT3*C31-B3/AB3*C32
C4=T4/AT4*C41-B4/AB4*C42
DAOR=DABS(DABS(H1)*C1+DABS(H2)*C2-DABS(H3)*C3-DABS(H4)*C4)*C

50 RETURN
END
DOUBLE PRECISION FUNCTION PARAB(SM,SL,PM,PL)

***********************************************************************
***

***subroutine parab3 is missing in the original program,
****this subroutine is parab taken from program COUNTACT-1***********************************************************************
***

C PARAB(SM,SL,PM,PL)
C-----------------------------------------------------------------------
C
C
C
C
C
C
C
C
C
C
C

PURPOSE.....
TO EXTRAPOLATE BETWEENTWO POINTS AND FIND ORDINATE

WHEN ABSESSIA IS ZERO

METHOD......
PARABOLIC EXTRAPOLATIONBETWEEN THE TWO POINTS AND

DESCRIPTION OF ARGUMENTS......
(SM,PM) COORDINATES OF POINT M
(SL,PL) COORDINATES OF POINT L



C PARAB VALUE OF THE ORDINATETO BE RETURNED TO THE
C CALLING PROGRAM.
C-----------------------------------------------------------------------
C

IMPLICIT REAL*8 (A-H,O-Z)
PARAB=(PL**2*SM-PM**2*SL)/(PL**2-PM**2)
RETURN
END
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APPENDIX B

Fortran Source Code for SHE Model

C**********************************************************************
C***** THIS PROGRAM HAS BEEN DESIGNEDTO IMPLEMENT THE CREEP-
*******
C***** FORCE / CREEPAGE RELATIONSHIPAS DEVELOPED BY SHEN,
*******
C***** HENDERICK AND ELKINS. KALKER'S LINEAR TABLE IS USED.
*******

C***** PROGRAM WRITTEN BY R.F. HARDER, MARCH 1993 *******
C**********************************************************************
C
C
C

DIMENSION C11(20), C22(20), C23(20), AR(20), E(20,4)
OPEN(UNIT=7 ,FILE='LINTABL.DAT',STATUS='OLD')

C
C**********************************************************************
C****** NOMENCLATURE -CONSTANT DEFINITION *******
C**********************************************************************
C XN = NORMAL FORCE (WHEEL LOAD) ( Newtons) *
C PHI = SPIN CREEPAGE ( 1/ mm ) *
C YNU = LATERAL CREEPAGE non-dimensiona1*
C XNU = LONGITUDINAL CREEPAGE non-dimensiona1*
C RMU = POISSION'S RATIO non-dimensiona1*
C FMU = COEFFICIENT OF SLIDING FRICTION *
C A = CONTACT ELLIPSE SEMI-DIAMETER(ROLLING DIR.) .(mm)*
C B = CONTACT ELLIPSE SEMI-DIAMETER (TRANSVERSE DIR.) (mm)*
C GG = MODULUS OF RIGIDITY (SHEAR MODULUS) (Newtons/mm2)*
C C11 = LONGITUDINAL CREEP COEFF. - KALKER non-dimensiona1*
C C22 = LATERAL CREEP COEFF. - KALKER non-dimensiona1*
C C23 = SPIN CREEP COEFF. - KALKER non-dimensiona1*
C FX = LONGETUDINAL CREEP FORCE - KALKER (Newtons) *
C FY = LATERAL CREEP FORCE -KALKER (Newtons) *
C FRPRIME =RESULTANT LINEAR CREEP FORCE (Newtons) *
C FR = RESULTANT NON-LINEAR CREEP FORCE (Newtons) *
C EPS = REDUCTION COEFFICIENT non-dimensiona1*
C FXNL = LONGITUDINAL NON-LINEAR CREEP FORCE (Newtons) *
C FYNL = LATERAL NON-LINEAR CREEP FORCE (Newtons) *
C FNORM = NORMALIZED RESULTANT CREEP FORCE non-dimensiona1*
C TAU = NORMALIZED CREEPAGE FACTOR non-dimensiona1*
C ALPHA = NORMALIZED SPIN FACTOR (%) non-dimensiona1*
C**********************************************************************
C
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C ** INPUT CONTACT DATA **
C

XN=55000.0
PHI=0.OO2
YNU=0.OOO3
XNU=0.OO5
RMU=0.300
FMU=0.300
A=4.00
B=2.00
00=82733.0
SG=A/B

C
C ** READ IN THE CREEPAGE COEFFICIENTS OF KALKER'S LINEAR THEORY**
C

DO 60 1=1,19
60 READ(7,*)(E(I,J),J=I,4)

DO 65 1=1,19
AR(I)=E(I, 1)
C 11(1)=E(I,2)
C22(1)=E(I,3 )

65 C23(1)=E(I,4)
DO 70 1=1,19
IF(SG.LE.AR(I)) GO TO 80

70 CONTINUE
GO TO 85

C
C ** PERFORM LINEAR INTERPOLATION ON CREEPAGE COEFFICIENTS **
C

80 CCll=Cll(l-l)+(Cll(I)-Cll(l-l))*«SG-AR(I-l))/(AR(I)-AR(1-1)))
CC22=C22(1-1)+(C22(1)-C22(I-l))*((SG-AR(I-1))/(AR(I)-AR(I-1)))
CC23=C23(I-l )+(C23(1)-C23(I-l))*«SG-AR(I-l ))/(AR(I)-AR(I-l)))

C
C ** COMPUTE CREEP FORCES AS PER KALKER LINEAR CODE **
C

85 FX=-A*B*GG*CCl1*XNU
FY =-A *B *GG*( (CC22*YNU)+( «A *B)* *0.5) *CC23 *PHI) )
FRPRlME=(FX**2.0+FY**2.0)* *0.5
PAR=3.0*FMU*XN
IF(FRPRIME.GT.PAR) GO TO 100

C
C ** REDUCE LINEAR RESULT TO THE NON-LINEARVIA VERMEULEN-
JOHNSON **
C

RATIO=(FRPRIME/(FMU*XN))
FR=(FMU*XN)*(RATIO-(0.333*(RATIO**2.0))+(0.037037*(RATIO**3.0)))
GO TO 150
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100 FR=FMU*XN
150 EPS=FR/FRPRIME

FXNL=FX*EPS
FYNL=FY*EPS
FNORM=FR/(FMU*XN)

C
C ** COMPUTE NORMALIZED CREEPAGEAND SPIN FACTORS **
C

TAU=((A*B*GG)/PAR)*((CCII *XNU)**2.0+((CC22*YNU)+(CC23*(A*
.B)**0.5)*PHI)**2.0)**0.5
ALPHA=(ABS(CC23*SQRT(A*B)*PHI)/((CC11*XNU)**2.0+(CC22
.YNU)**2.0+(CC23*SQRT(A*B)*PHI)**2.0)**0.5)*100.0

WRITE(*, *) 'FXNL=' ,FXNL,' ','FYNL=',FYNL
WRITE(*,*) 'FR/MUN=',FNORM,' ','TAU=',TAU,' ','ALPHA=',ALPHA
WRITE(*,*) 'Cll=',CCll,' ','C22="CC22,' ','C23="CC23

CLOSE(7)
STOP
END



APPENDIX C

Fortran Source Code for Modified DUVOROL Code

C DUVOROL Keyed in by D. G. Pringle for R: F. Harder's PhD
c thesis research studies. For use on fortran 77 and modified
c so that data can be read in batch mode.
c
c See " on the rolling contact oftwo elastic bodies in the
c presence of dry griction, " by J.1. Kalker, PhD thesis,
c Delft University (1967). The program is an improvement on
c method described in the above thesis and is presented in
c rolling. I, description," by J.J. Kalker and" II,
c programme description, " by H. Goedings (1972).
c unpublished, obtained from professor Kalker in private
c communication.
c
c
c The input is described in the following section
c
c
c Data #1 NVI
C TYPICAL: 1
C
c NVI (solves nvl complete problems), integer
c
c Data #2 A,B,NU,LXN,LYN,KAPPA
c TYPICAL: 2.5980 0.3849 0.28 0.00 0.00 0.00
C
C ( A and B are the normalizedcontact ellipse
c dimensions, where if Al nad Bl are the actual
c dimensions then A=Al/sqrt(A 1*B1) and
c B=BlIsqrt(AI *Bl). note AIB >= 0.1
C NU IS THE COMBINED POISSON'S RATIO. WHERE
C NU =G/2*(NU+/G+ + NU-/G-), WHERE THE + AND
C - SIGNS REFER TO POISSON'S RATIO AND THE
C SHEAR MODULUS FOR THE LOWER AND UPPER
C REGION FESPECTIVELY. THE CONSTANT G IS THE
C COMPBINED MODULUS, lIG= 1I2*l/G+ + lIG-).
C THE BALUES OF A,B,NU PROVIDE THE NECESSARY
C INFORMATIONNEEDEDTO COMPUTE (INTERNALLY) FROM
C SUBROUTINE CONST ), THE NORMALIZED MODULUS, GS
C THE CONSTATN GS= G*(C***3)/(RHO*N), WHERE C =
C SQRT(AI *Bl), I/RHO=1/4*Rl+ + l/Rl- + llR2+ +
C 1/R2-), AND N=RESULTANT NORMAL FORCE.
C LXN AND LYN ARE NOMALIZED INVERSE STIFFNESSES
C OF A THIN ELASTIC LAYER COVERING THE SURFACE.

187
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C
C
C
C
C
C DATA #3 N1,M1,NS
C TYPICAL: 12,6,2
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

.xN=LX*RHO*N/C**4, LYN=L Y*RHO*N/C**4.
FOR NO LAYER TAKE LXN=L YN=O.O
KAPPA IS THE ELASTIC DIFFERENCE PARAMETER
KAPP A=G/4*( 1-2*NU+ )/G+-( 1-2*NU- )/G-).

N1,M1 (LATTICE POINTS IN CONTACT REAGION,
NS (TO PRINT OUTPUT ON THE CONTACT REGION, NS=1,
TO DUPPRESS ALL OUTPUT EXCEPT THE RESULTANT
FORCES AND MOMENT, TAKE NX=2), INTEGER
FOTE: FXN=FXI(MU*N), FYN=FYIMU*N),
MZN=MZ*CIMU*N),WHERE N IS THE RESULTANT NORMAL
FORCE AND MU IS THE COEFFICIENT OF FRICTION

DATA#4 NV2
TYPICAL: 1

SOLVES NV2 PROBLEMS FOR DISTINCT VALVES OF
CREEPAGE AND SPIN GIVEN ON NV2 DATA #5), INTEGER

DATA#5 UXN,UYN,PHN
TYPICAL: 0.0 2.0 0.4

UXN AND UYN ARE NORMALIXED CREEPAGES, PHN
IS THE NORMALIZED SPIN), REAL
UXN=UX*RHO/(MU*C), UYN=UY*RHO/(MU*C),
PHN=PH*RHOIMU

***** NOTE: ALL VARIABLESHABE BEEN NORMALIXED SUCH
***** THAT THE COEFFICIENT OF FRICTION, MU, DOES NOT
***** APPEAR EXPLICITLY.

DIMENSION XS(38),XT(400),YT(400),ZT(400),XU(400),YU(400),ZU(400)
DIMENSION RZT( 120,1),RZU(120,1),F 1(60,60),F2(60,60),F3(60,60)
DIMENSION S(60),U1(1,120),U2(120,120),FDACC(120,120),FACC(1,120)

REAL KAPPA
INTEGER C(38),C1(9),C2(9),TMA(200)
INTEGER PMA,QMA,FAC1,FAC2
DIMENSION XTU(60),YTU(60)
DIMENSION ARR(120, 120),T(120,1),U(120,1),RT(120),TT( 120),P(120)
DIMENSION RU(120)
REAL MU,KPG,K1,K2,K3,MZS,LXN,L YN

INTEGER FAC1P,FAC2P,WP
REAL MZ
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EXTERNAL SIGN
REALK
REAL NU

DATA Cl/1 ,0,-1,-2,0,2, 1,0,-1I,C2/1,-2,1,-2,4,-2,1,-2,1/
DATA PI/3.14159/

OPEN(UNIT=3,FILE='DUVO.OUT',ST ATUS='OLD')
OPEN(UNIT=9,FILE='DEBUG.OUT',ST ATUS='OLD')
OPEN(UNIT=4,FILE='FDACC.OUT',ST ATUS='OLD')
OPEN(UNIT=5,FILE='SHEAR.OUT',ST ATUS='OLD')
OPEN(UNIT=6,FILE='F ACC2.0UT' ,STATUS='OLD')
OPEN(UNIT=7 ,FILE='TIJ.OUT',STATUS='OLD')
OPEN(UNIT= 15,FILE='SLIP.OUT',STATUS='OLD')

CC OPEN(UNIT=17,FILE='TX.OUT',STATUS='OLD')
CC READ(1,*)NV1

IKKKK=O
NV 1=1
DO 999 IIl=l,NVl

C

C
CC READ(1,*)A,B,NU,LXN,LYN,KAPPA
CC READ(1,*)Nl,Ml,NS
CC A=2.4257
CC B=0.41229
CC A=1.0
CC B=1.0

A=1.47
B=0.68
NU=O.28
LXN=O.OO
L YN=O.OO
KAPP A=O.OO
Nl=8
Ml=8
NS=l

SX=LXN
SY=LYN
IF(NB.LT.O.l) GO TO 998

C
C
C SUBROUTINE CONST COMPUTES THE NORMALIZED MODULUS
C FROM KALKER'S TABLES AND ASYMPTOTIC EXPANSIONS.
C VALID FOR NB EQUAL TO OR GRATER THEN 0.1.
C
C

CALL CONST(A,B,NU,GS)
G=GS
SIGMA=NU
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F00=3.0/(2.0*PI)
MU=1.0
H= A/FLOAT(N1)
K= (2.0*B)/FLOAT(Ml)
WRITE(3,968)
N=O
M=O
AA=A*A
Y=B
MM=M1/2
L3=0
L4=0
DO 100I=l,MM
L1=0
L2=0
Y=B-I*K
YB=(Y*Y)/(B*B)
XS(M1-I)=-A*SQRT(1.0-YB)
XS(I)=XS(M 1-I)
X=-XS(I)/(2*H)
J=X
IF« -2.*J*H-XS(I»/H.LE.0.02) J=J-1

L=2*J+1
X=-L*H
IF(X.LT.xS(I) )GO TO 50
M=M+1
L2=1
XU(M)=X
YU(L+M)=Y
YU(M)=Y
ZU(L+M)=Foo*SQRT( 1.0-(X*X)/AA-YB)
ZU(M)=ZU(L+M)
XU(L+M)=-X

50 N=N+ 1
X=X+H
IF(X.LE.-.1 *H) GO TO 200
X=O.O
XT(N)=O.O
YT(N)=Y
ZT(N)=Foo*SQRT( 1.0-YB)
GO TO 60

200 L=N+2*(J-L1)
ZT(L)=Foo*SQRT( 1.0-(X*X)/AA-YB)
ZT(N)=ZT(L)
XT(N)=X
XT(L)=-X
YT(L)=Y
YT(N)=Y



191

X=X+H
M=M+1
L=M+2*(J-Ll)-1
XU(M)=X
XU(L)=-X
YU(M)=Y
YU(L)=Y
ZU(M)=FOO*SQRT(1.0-(X*X)/AA-YB)
ZU(L)=ZU(M)
Ll=Ll+l
GO TO 50

60 N=N+J
M=M+J+L2
C(2*I-l)=N-L3
C(2*I)=M-L4
L3=N
L4=M

100 CONTINUE
NN=N+ 1
MM=M+1
L=O
N=2*N-Nl+1
M=2*M-Nl
I=N

301 L=L+l
XT(I)=-XT(L)
~(I)=-YT(L)
~(I)=~(L)
1=1-1
IF(I.GE.NN) GO TO 301
L=O
I=M

401 L=L+l
XU(I)=-XU(L)
YU(I)=-YU(L)
ZU(I)=ZU(L)
1=1-1
IF(I.GE.MM) GO TO 401
L=3
H=2.*H
1START=M 1/2+ 1
IEND=M 1-1
DO 500 I=IST ART, lEND
IF(ISTART.GT.IEND)GO TO 500
C(2*I-l)=C(Ml-L)
C(2 *I)=C(M 1-L+ 1)

500 L=L+2
WRITE(3,90l)
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901 FORMAT(1Hl)
WRITE(3,969)
WRITE(3,970)A,B,NU,LXN,L YN,KAPPA
WRITE(3,972)N 1,M1,NS
WRITE(3,973)GS,N ,M
MAX=M
IF(N.GT.M) MAX=N

C
C IN-LINE MRZ
C
C F4=F1, F5=F2, RZ=RZU, CMRZ=0.5

MN=M
DO 8110 I=l,M
XTU(I)=XU(I)
RZU(2*1-1,1)=0.0
RZU(2*I,1)=0.0

8110 YTU(I)=YU(I)
8130 DO 8140 I=l,MN

DO 8140 J=l,N
L=O
P4=0.0
P5=0.0
Q4=0.0
Q5=0.0
X1=XT(J)-XTU(I)
Y1=YT(J)-YTU(I)
X=X1-H

8131 Y=Y1-K
8132 L=L+1

T1=ALOG(X*X+y*y +H*l.E-lO)
T2=X* AT AN(Y I(X +H* 1.E-1 0))
T3=Y*ATAN(X/(Y+K*l.E-lO))
P4=P4+C1(L)*(.5*Y*T1+T2)
P5=P5+C1(L)*(.5*X*T1 +T3)
Q4=Q4+C2(L)*«X*X+ Y*Y)*(T1-1)-(.5*Y*T1+T2)*Y1*4.0)
Q5=Q5+C2(L)*(X*Y+Y*T3-X*T2-(.5*X*T1+T3)*Y1*2.0)
Y=Y+K
IF(Y.LE.Y1+K+.5*K) GO TO 8132
X=X+H
IF(X.LE.X1+H+.5*H) GO TO 8131
F 1(I,J)=P41H +Q4/H1K/4.0
F2(I,J)=P51H+Q5/H1K/2.0

8140 CONTINUE
LEND=2*MN-1
DO 8150 1=1,LEND,2
DO 8150 J=l,N
RZU (1,1 )=RZU (1,1 )+F 1«1+1 )/2,1) *ZT( J)

8150 RZU(I+ 1,1)=RZU(I+1,1)+F2«1+1)/2,J)*ZT(J)
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C IN-LINE MRZ
C F4=Fl, F5=F2, RZ=RZT, CMRZ=.E-5
8220 MN=N

DO 8225 J= l,N
XTU(J)=XT(J)
RZT(2*J-l,I)=0
RZT(2*J,1)=0.0

8225 YTU(J)=YT(J)
8230 DO 8240 1=I,MN

DO 8240 J=I,N
L=O
P4=0.0
P5=0.0
Q4=0.0
Q5=0.0
XI =XT(J)-XTU(I)
Y 1=YT(J)- YTU (I)
X=XI-H

8231 Y=YI-K
8232 L=L+ 1

Tl=ALOG(X*X+ y*y +H*l.E-lO)
T2=X*ATAN(Y/(X+H*I.E-l 0»
T3=y* ATAN(X/(Y+K*l.E-lO»
P4=P4+Cl(L)*(.5*Y*Tl +T2)
P5=P5+Cl(L)*(.5*X*Tl +T3)
Q4=Q4+C2(L)*((X*X+Y*Y)*(Tl-l)-(.5*Y*Tl +T2)*Yl *4.0)
Q5=Q5+C2(L )*(X*Y + Y*T3- X*T2-( .5*X*T 1+T3)*Y 1*2.0)
Y=Y+K
IF(Y.LE.Yl+K+.5*K) GO TO 8232
X=X+H
IF(X.LE.xl+H+.5*H) GO TO 8231
Fl (1,J)=P4/H+Q4/H/K/4.0
F2(1,J)=P5/H+Q5/H/K/2.0

8240 CONTINUE
LEND=2*MN-l
DO 8250 1=I,LEND,2
DO 8250 J=I,N
RZT(I, 1)=RZT(I, 1)+Fl ((1+1)/2,J)*ZT(J)

8250 RZT(I+ 1,l)=RZT(I+ 1,1)+F2((I+1)/2,J)*ZT(J)
DO 83100 I =I,M
DO 83100 J=I,N
L=O
Pl=O
P2=0
P3=0
Ql=O
Q2=0
Q3=0
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X1=XT(J)-XU(I)
Y1=YT(J)-YU(I)
Y1END=Y1+K+.5*K
X1END=Xl+H+.5*H
X=X 1-H

8310 Y=Y1-K
8320 L=L+ 1

R=ABS(X/(Y+K* 1.E-1O))
SS=ABS(YI(X+H*I.E-l 0))
T1=SIGN(X)*Y*ALOG(R+SQRT(l.+R *R»
T3=SIGN(Y)*X*ALOG(SS+SQRT(1.+SS*SS»
T2=SQRT(X*X+Y*Y+H*K*I.E-20)
P1=Pl+C1(L)*(Tl+ T3)
P2=P2-C 1(L )*T2
P3=P3+C 1(L)*T 1
Ql=Ql+C2(L)*(Y*Tl+X*T2-(Tl+ T3)*Yl *2.)
Q2=Q2+C2(L)*(X*T3-Y*T2+T2*Yl *2.)
Q3=Q3+C2(L)*(Y*Tl-X*T2-T1 *Yl *2.)
Y=Y+K
IF(Y.LE.YIEND) GO TO 8320
X=X+H
IF(X.LE.X1END) GO TO 8310
F1(I,J)=P1/H+Ql/H/K/2.
F2(I,J)=P2/H+Q2/H/K/2.
F3(I,J)=P3/H+Q3/H/K/2.

83100 CONTINUE
C
C
CC READ(1,*)NV2

NV2=21
cc NV2=1

UYN=-3.30
WRITE(3,974) NV2
DO 997 L2K= 1,NV2

CC READ(1,*,END=9999)UXN,UYN,PHN
UXN=-3.0
UYN=UYN+0.30
PHN=O.O

UX=UXN
UY=UYN
PHI=PHN
WRITE(3,975)UXN ,UYN,PHN

L3=0
L4=N
L5=M
IF(ABS(UX).LT.1.E-8.AND.ABS(KAPPA).LT.1.E-8) L3=1
IF(ABS(UY).LT.1.E-8.AND.ABS(PHI).LT.1.E-8) L3=2
IF(L3.EQ.0) GO TO 8410
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C IN-LINE KAPAF
N=O
M=O
J=M1I2
DO 84201=1,1
M=M+C(2*1)
N=N+C(2*1-1)

8420 CONTINUE
8410 CONTINUE
C
C
C

*************

IN-LINE MA ************
PMA=2*M-1
QMA=2*N-1
PIG=PI*G
IF(L3)8520,8510,8520

8510 DO 8515 J=1,QMA,2
DO 8515 1=1,PMA,2
11=(1+1)/2
11=(1+1)/2
ARR(I,J)=(( 1.-SIGMA)*F1(11,11)+SIGMA*F3(11,11))/PIG
ARR(I,J+ 1)=(SIGMA*F2(11,11))/PIG
ARR(I+ l,1)=ARR(I,J+ 1)

8515 ARR(I+ 1,J+1)=(2.-SIGMA)*F1(11,J1)/PIG-ARR(I,J)
GO TO 85100

8520 TMA(l)= 1
LEND=Ml-2
DO 8530 l=l,LEND

8530 TMA(I+1)=TMA(I)+C(2*1-1)*2
IF(L3.NE.1)GO TO 8540
FAC1=-1
FAC2=1

8540 IF(L3.NE.2) GO TO 8550
FAC1=1
FAC2=-1

8550 DO 8560 J=1,QMA,2
11=(1+ 1)/2
IF(J.GE.TMA(M1/2)) GO TO 85200
1=2

8552 IF(1.LT.TMA(I))GO TO 85301
1=1+1
IF(I.LE.M 1/2)GO TO 8552

85301 J2=(TMA(M1-1+1)+J-TMA(I-1)+1)/2
DO 85400 1=1,PMA,2
11=(1+ 1)/2
ARR(I,J)=(( 1.-SIGMA)*(F1(I1,J1)+FAC 1*F1(11,J2))

$+SIGMA*(F3(11,J1)+FAC1 *F3(11,J2)))/PIG
ARR(I+ 1,J)=(SIGMA *(F2(11,J1)+FAC 1*F2(11,J2)))/PIG
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ARR(I,1+1)=(SIGMA*(F2(1l,11)+FAC2*F2(Il ,J2)))/PIG
ARR(I+ 1,1+1)=(Fl(Il,11)+Fl(Il,12)*FAC2-SIGMA *(F3(Il,1 1)

$+F3(Il ,J2)*FAC2))/PIG
85400 CONTINUE

GO TO 8560
85200 DO 8559 1=I,PMA,2

11=(1+1)/2
ARR(I,J)=(( 1.-SIGMA)*Fl (I1,11)+SIGMA*F3(11,11))/PIG
ARR(I,J+ 1)=(SIGMA*F2(1l,11))/PIG
ARR(I+ I,J)=ARR(I,1+1)

8559 ARR(I+ 1,J+1)=(2.-SIGMA)*Fl (11,11)/PIG-ARR(I,J)
8560 CONTINUE
85100 CONTINUE
C
C

IF(ABS(SX).GT.l.E-4.0R.ABS(SY).GT.l.E-4) GO TO 86111
GO TO 86100

C
C IN-LINE ADS **************
86111 M2=Ml-l

J=1
1=1
NN=O
SXH=LXNIH
SYH=LYNIH
IF(L3.NE.0)M2=M1/2
DO 87100 11=I,M2
Ll=2*11-1
L=O
L2=Ll+l
IF(C(Ll).GE.C(L2))GO TO 8710
L=1
ARR(I,J)=ARR(I,1)+SXH
ARR(I+ 1,1+1)=ARR(I+1,1+1)+SYH
II=I+C(Ll)*2
JJ=J+(C(Ll)-I)*2
ARR(II,1J)=ARR(II,1J)-SXH
ARR(II+ 1,JJ+ 1)=ARR(II+ 1,JJ+ 1)-SYH

8710 MM=L+NN+l
NN=NN+C(L2)-L
IF(MM.GE.NN)GO TO 8730
DO 8729 12=MM,NN
IF(MM.GT .NN)GO TO 8729
13=2*12-1
14=13+1
ARR(13,1)=ARR(13,J)-SXH
ARR(13,J+2)=ARR(13,1+2)+SXH
ARR(I4,1+1)=ARR(I4,J+1)-SYH
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ARR(14,J+3)=ARR(l4,J+3)+SYH
8729 J=J+2
8730 CONTINUE
87100 CONTINUE
C
86100 KPG=KAPPA/PI/G

WRITE(3,901)
IEND=2*M-l
DO 86110 1=I,IEND,2
L=(I+1)/2
RU(I)=UX-PHI*YU(L)+KPG*RZU(I, 1)
RU(I+l)=UY +PHI*XU(L)+KPG*RZU(I+ 1,1)

86110 CONTINUE
JEND=2*N-l
DO 86120 J=I,JEND,2
L=(J+ 1)/2
RT(J)=UX-PHI*YT(L)+KPG*RZT(J,1)
RT(J+ 1)=UY+PHI*XT(L)+KPG*RZT(J+ 1,1)

86120 CONTINUE
IF(L3.EQ.0) GO TO 86130
L=O
J=O
IEND=IFIX(FLOAT(M 1)/2.0-0.9)
DO 86129 1=1,lEND
J=J+C(2*I-l )*2
L=L+C(2*1)

86129 CONTINUE
DO 86128 1=I,J

86128 RT(I)=RT(I)*2
DO 86127 1=I,L

86127 ZU(I)=ZU(I)*2
86130 JEND=2*N

DO 86140 J=I,JEND
86140 T(J,I)=O

RE=.2
RB=.2
MM=O
B=1.0
E=.5

86150 JEND=2*N
DO 86155 J=I, JEND

86155 TT(J)=T(J,l)
MM=MM+l
Ll=O

86160 NN=O
C DX=1.0, EX=E, PX=P, T=T, MU=MU
C
86170 DXP=1.0
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DO 8799 1=1,N
GX=MU*MU*ZT(I)*ZT(I)-T(2*1-1,1)*T(2*1-1,1)-T(2*1,1)*T(2*1,1)
IF(GX)8703,8702,8702

8702 P(2*1-1)=-2*E/(GX+DXP*E)
P(2*1)=4.*E/((GX+DXP*E)*(GX+DXP*E))
GO TO 8799

8703 P(2*I-l)=-2./DXP+2. *GX/(DXP*DXP*E)
P(2*1)=4.1(DXP*DXP*E)

8799 CONTINUE
C
C

JEND=2*N-l
DO 86175 J=I,JEND,2
IF (P(J).LT.-1.ElO)GO TO 86180

86175 CONTINUE
GO TO 86190

CPVV3: *********
86180 IF(L 1.NE.l )GO TO 86200

VVRITE(3,904 )
904 FORMAT('PROCESS INTERRUPTED, RESULTS MIGHT NOT BE
SIGNIFICANT')
C

IPCODE=O
C IN-LINE PRINT ********************
4145 LL=L3
9001 IF(NS.GT.l) GO TO 499

VVRITE(3,9004)
9004 FORMAT(I/,20X,'***** CONTACT REGION FOLLOVVS*****',!,

$lOx,'X AND Y ARE NORMALIZED COORDINATES, X IN THE ROLLING',!,
$lOX,'DIRECTION, X,Y=Xl/Cl,Yl/Cl VVHEREXl,Y1 ARE DIM. COORD.',!,
$lOX,'TZH=HERTZ STRESS =3/(2*PI)*SQRT(1.0-X*X/(A*A)-Y*Y/(B*B))'
$,!,lOX,'TX AND TY ARE NORMALIZED SHEAR STRESSES',!,lOX,'TX=-

TAUXZ*
$C**3/(RHO*N), TY=-TAUYZ*C**3/(RHO*N)',!,
$lOX,'ABS(TX,TY) LESS THEN TZH FOR NO SLIP, EQUAL TO TZH FOR

SLIP',
$/,lOX,'VX,BY ARE NORMALIXED SLIP COMPONENTS,

VX=VX IN*FHO/(MU*C)',
$/, lOX,'VY=VYIN*RHO/(MU*C), VVHEREVX1,VX2=REL. VEL.

BETVVEEN',/,10X
$,'ADJACENT POINTS AND V=ROLOLING VEL.',!///)

499 CONTINUE
LU=1
LT=1
11=1
FACIP=l
FAC2P=1
VVP=O
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J=M1I2
IF(LL.EQ.0)J=M1-1

C V2: **********
8802 DO 8801 1=11,J

IF(J1.GT.J)GO TO 8801
MAX=C(2*1-1)
L3P=2
IF(C(2*1-1).GE.C(2*1))GO TO 8803
MAX=C(2*1)
L3P=1

8803 CONTINUE
909 FORMAT(/)

IF(WP.NE.1)GO TO 8804
LU=LU-C(2*1-2)-C(2*1)
LT=L T-C(2*1-3)-C(2*1-1)

8804 FIX1=YT(LT)*FAC1P*FAC2P
ffiLANK=O
DO 8801 I1=l,MAX
IF(L3P.EQ.2)GO TO 8812

C SSl: ************
8800 TX=U(2*LU-1,1)*FAC1P

TY=U(2*LU,1)*FAC2P
FIX3=SQRT(TX*TX+TY*TY)
IF(ABS(U(2*LU-1, l)).LT.1.E-20)TX=1.E-20
FIX2=180./PI* ATAN(TYrrX)+( 1.0-SIGN(TX))*90.
IF(NS.GT.1) GO TO 501
IF(ffiLANK.EQ.O)WRITE(3,9006)FIX 1
IF(ffiLANK.EQ.O) WRITE(3,9009)
WRlTE(3,9008) XU(LU),FIX3,FIX2
WRlTE(15,9112) UYN,FIX1,FIX1A,TX,TY

9112 FORMAT(1X,'UYN=',F6.2,4X,'Y=',F11.4,4X,'X=',F11.4,4X,'VX=',F11.4
$,4X,'VY=',F11.4)

9008 FORMAT(1X,lF11.4,33X,2F11.4)
501 CONTINUE

ffiLANK=l
LU=LU+ 1
IF(MAX.EQ.C(2*1).AND.I1.EQ.MAX)GO TO 8813

C SS2: *************
8812 FIX1A=XT(LT)

TX=T(2*LT-1,1)*FAC1P
TY=T(2*LT,1)*FAC2P
FIX2=TX
FIX3=TY

CC WRITE(17,*) 'XU=',XU(LU),'XT=',XT(LT),'TX=',TX,'TY=',TY
FIX4=SQRT(TX*TX+TY*TY)
IF(ABS(T(2*LT-1, l)).LT.1.E-20)TX=1.E-20
FIX5=180./PI* ATAN(TYrrX)+( 1.-SIGN(TX))*90.
FIX6=MU*ZT(LT)
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TXX=(COS(FIX5))*FIX4
TYY=(SIN(FIX5))*FIX4
IF(NS.GT.l) GO TO 502
IF(IBLANK.EQ.0)WRITE(3,9OO6)FIX1
IF(IBLANK.EQ.O)WRITE(3,9009)
WRITE(3,9011) FIXIA,FIX6,FIX4,FIX5
WRITE(5,9111) UYN,FIXl,FIXIA,TX,TY

9111 FORMAT(lX,'UYN=',F6.2,4X,'Y=',Fl1.4,4X,'X=',Fl1.4,4X,'TX=',Fll.4
$,4X,'TY=',Fl1.4)

9011 FORMAT(1X,4F11.4)
502 CONTINUE

IBLANK=1
LT=LT+l
L3P=1

C SS3: ***********
8813 CONTINUE
8801 CONTINUE

IF(LL.EQ.1.AND.WP.EQ.O) GO TO 8859
GO TO 8850

8859 FACIP=-1
WP=1
H=M1I2+1
J=Ml-l
GO TO 8802

8850 IF(LL.EQ.2.AND.WP.EQ.0)GO TO 5188
GO TO 8851

5188 FAC2P=-1
WP=1
H=M1I2+1
J=Ml-l
GO TO 8802

8851 MZ=O
TX=O
TY=O
IF(LL.NE.O)GOTO 8852
JLAST=2*N-l
DO 8853 J=I,JLAST,2
TX=TX+T(J,l)
TY=TY+T(J+l,l)
MZ=MZ+XT«(J+1)/2)*T(J+1,1)-YT«(J+1)12)*T(J,I)

8853 CONTINUE
GO TO 8855

8852 LT=1
ILAST=FLOAT(Ml)/2.0-0.9
DO 8856 I=I,ILAST
JLAST=2*C(2*I-l)
DO 8856 J=I,JLAST,2
TX=TX+( 1+FACIP)*T(LT,1)
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TY =TY +( 1+FAC2P)*T(L T+ 1,1)
MZ=MZ+XT«LT +1)/2)*T(LT+1,1)*(FAC2P+1)-YT«LT+1)/2)*
$T(LT,1)*(-FAC1P+ 1)
LT=LT+2

8856 CONTINUE
JLAST=2*C(M1-1)
DO 8858 J=1,JLAST,2
TX=TX+T(LT,1)
TY=TY+T(LT+1,1)
MZ=MZ+XT«L T+1)/2)*T(LT+1,1)-YT«LT+1)/2)*T(LT,1)
LT=LT+2

8858 CONTINUE
8855 TX=TX*H*K

TY=TY*H*K
MZ=MZ*H*K
RES=SQRT(TX**2+TY**2)
WRITE(3,905)

905 FORMAT(//I)
WORK=(TX*UXN)+(TY*UYN)+(MZ*PHN)
WRITE(3,977)TX,TY,RES,WORK
WRITE(3,978)MZ .

IF(IPCODE.EQ.1)GO TO 6470
GO TO 9999

86200 L1=1
JLAST=2*N
DO 7110 J=1,JLAST

7110 T(J,1)=TT(J)
RB=SQRT(RB)
RE=SQRT(RE)
B=BIRB
E=E/RE
GO TO 86160

86190MM=2*M-1
NNN=2*N-1
N2=NNN+ 1
EPS= l.E-7

CALL ARRAY(2,2*M,2*N,120,120,ARR,ARR)
CALL ARRAY(2,2*N,1,120,1,T,T)
CALL GMPRD(ARR,T,U,2*M,2*N,1)
CALL ARRAY(1,2*M,2*N,120,120,ARR,ARR)
CALL ARRAY(1,2*N,1,120,1,T,T)
CALL ARRAY(1,2*M,1,120,1,U,U)

C ABOVE IS EQUIVALENT TO ALL TO MATVER(A,T,U) ******
DO 6910 1=1,MM,2
11=(1+ 1)/2
U(I, 1)=U(I, 1)+RU(I)
U(I+ 1,1)=U(I+ 1,1)+RU(I+ 1)

C
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S(II)=SQRT(U(I+ I, I)*U(I+ I, 1)+U(I, I)*U(I, 1)+B)
U 1( 1,I)=(MU*ZU (II) *U(1,1))/S(II)
U I( 1,1+I)=(MU*ZU(II)*U(I+ I, 1)/S(II)

6910 CONTINUE
C

CALL ARRAY(2,1,2*M,I,120,Ul,Ul)
CALL ARRAY(2,2*M,2*N,120,120,ARR,ARR)
CALL GMPRD(UI,ARR,FACC,I,2*M,2*N)
CALL ARRAY(1,1,2*M,I,120,UI,UI)
CALL ARRAY(1,2*M,2*N,120,120,ARR,ARR)
CALL ARRAY(1,1,2*N,1,120,FACC,FACC)

C ABOVE IS EQUIVALENT OT MATVER(UI,A,FACC)
DO 6920 J= 1,NNN,2
FACC( I,J)=-FACC( I,J)+RT(J)+P(J)*T(J, I)
FACC(1,J+ 1)=-FACC(1,J+I)+RT(J+ I)+P(J)*T(J+ 1,1)

6920 CONTINUE
DO 6940 1=I,M
12=2*1
11=12-1
SS=S(I)*S(I)
MZS=(MU+ZU(I))/S(I)
Kl=MZS*( l-U(I1, 1)*U(11,I)/SS)
K2=-MZS*U(Il, 1)*U(12,I)/SS
K3=MZS*( l-U(12,1)*U(12,1)/SS)
DO 6930 J= 1,N2
U2(J,Il)=KI *ARR(Il,J)+K2*ARR(12,J)
U2(J,12)=K2*ARR(Il ,J)+K3*ARR(12,J)

6930 CONTINUE
6940 CONTINUE

CALL ARRAY(2,2*N,2*M,120,120,U2,U2)
CALL ARRAY(2,2*M,2*N,120,120,ARR,ARR)
CALL GMPRD(U2,ARR,FDACC,2*N,2*M,2*N)
CALL ARRAY(1,2*N,2*M,120,120,U2,U2)
CALL ARRAY(1,2*M,2*N,120,120,ARR,ARR)
CALL ARRAY(1,2*N,2*N,120,120,FDACC,FDACC)

C ABOVE IS EQUIVALENTTO MATVER(U2,A,FDACC)
DO 6950 1=I,NNN,2
FDACC(I,I)=FDACC(I,I)-P(I)+P(I+ 1)*T(I,1)*T(I, I)
TEMP=FDACC(I,I+ 1)+P(I+1)*T(I,I)*T(I+ I, I)
FDACC(I,I+I)=TEMP
FDACC(I+ 1,I)=TEMP
FDACC(I+ 1,1+1)=FDACC(I+1,1+I)-P(I)+P(I+ l)*T(I+ 1,I)*T(I+ 1,I)

6950 CONTINUE
IF (L3.EQ.0) GO TO 6960
J=1
ILAST=FLOAT(Ml)/2.0-0.9
DO 6980 1=1,ILAST

6980 J=J+C(2*I-l)*2
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IF(L3.EQ.l)12=0
IFIRST=J+12
ll..AST=J+C(M1-1)*2-1
DO 6970 I=IFIRST,ll..AST,2
IF(IFIRST.GT.ILAST)GO TO 6970
F ACC( 1,1)=0
DO 6970 Il=I,N2
FDACC(I,Il)=O
FDACC(Il ,1)=0
FDACC(I,I)= 1

6970 CONTINUE
C PAS: *******
6960 CONTINUE

CALL ARRAY(2,1,2*N,I,120,FACC,FACC)
CC CALL ARRAY(2,2*N,2*N,120,120,FDACC,FDACC)
CC CALL GELG(FACC,FDACC,N2,I,EPS,IER)
CC CALL ARRAY(1,1,2*N,I,120,FACC,FACC)
CC CALL ARRAY(1,2*N,2*N,120,120,FDACC,FDACC)
CC do 5171p=I,N2
CC write(4,*) (FDACC(LP,KO), KO=I,N2)
CC WRITE(5,*) FACC(LP,l)
CC 517 CONTINUE
CC WRITE(5,*) 'N2=',N2,'N=',N,'M=',M

IKKKK=IKKKK+ 1
CALL SORR(FDACC,FACC,N2,EPS,IKKKK,UYN)

CC DO 518 LZ=I,N2
CC WRITE(6,*) FACC(LZ,I)
CC 518 CONTINUE

CALL ARRAY(1,1,2*N,I,120,FACC,FACC)
C ABOVE IS EQUIVALENT TO ADGELG(FACC,FDACC,N2,1,EPS,IER)

IER=O
IF(IER) 6989,6990,6989

6989 WRITE(3,6901)
6901 FORMAT(I/' SINGULAR MATRIX, NO RESULTS'//)

GO TO 9999
6990 DO 6999 J=1,N2

WRITE(7, *) 'J=',J,'T(J, 1)=',T(J,I),'FACC( 1,J)=',FACC( 1,1)
T(J, 1)=T(J, 1)+F ACC( 1,1)
L=1
DO 6999 1= 1,N2
IF(ABS(FACC(I,I».GE.l.E-4) L=O

6999 CONTINUE
C END OF NEWTON ***************
C

NN=NN+l
IF(NN.LT.20) GO TO 86191
GO TO 86180
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86191 IF(L.EQ.O)GO TO 86170
IF(B.LT.l.E-8.AND.E.LT.l.E-8)GO TO 29168
GO TO 86192

29168 IPCODE=1
GO TO 4145

6470 CONTINUE
GO TO 9999

86192 IF(B.GT.l.E-8)B=B*RB
IF(E.GT.1.E-8)E=E*RE
GO TO 86150

C VOLG: *************
9999 L6=L3

IF(L3.EQ.0)GO TO 9991
L=O
J=O
ILAST=FLOAT(M1)/2.-.9
DO 9990 1=1,ILAST
J=J+C(2*1-1)*2
L=L+C(2*1)

9990 CONTINUE
DO 9992 1=1,J

9992 RT(I)=RT(I)*.5
DO 9993 1=1,L

9993 ZU(I)=ZU(I)* .5
9991 CONTINUE

N=L4
M=L5

997 CONTINUE
GO TO 999

998 WRITE(3,979)
999 CONTINUE
9006 FORMAT(l3X,'*** Y=',1F11.4)

9009 FORMAT( 7X,'X',lOX,'TZH', 5X,'ABS(TX,TY)',1X,'ARG(TX,TY)',
$ 1X,'ABS(VX,VY)',1X,'ARG(VX,VY)')

968 FORMATC1',!//,T63,'PROGRAM WISK-SRT',/,T54,'GENERAL THEORY OF
$ROLLING CONTACT',/,T64,'BY J.1. KALKER',!,T66,'CLEMSON, SC',/I)

969 FORMAT(I///,58X,'***** INPUT PARAMETERS ****''!I)
970 FORMAT(16X,'NORMALIZED CONTACT DIMENSIONS A=',1PE11.4,10X,'(

$ A=Al/C1, B=Bl/C1, WHERE C1=SQRT(A1*B1),',!,32X,'(DATA #2)'
$, llX,'B=', 1PE11.4,lOX,'( A1,B1 ARE ACTUAL CONTACT DIMENSIONS',!/,
$19X,' COMBINED POISSON S RATIO NU=',1PE11.4,!,33X/'(DATA #2)
$',//,28X,'LA YER STIFFNESSES LXN=',1PE11.4,/,33X,'(DATA #2)',
$ 8X,'LYN=',1PE11.4,/,21X,' ELASTIC DIFFERENCE KAPPA=',1PE11
$.4,!,33X'(DATA #2)',1)

972 FORMAT( 26X,'NUMERICAL CONSTANTS N1=',I3,/,31X,'(DATA $3)',
$11X,'M1=',I3,!,51X,'NS=',I3,//)

973 FORMAT(47X,'***** PARAMETERS COMPUTED AND USED IN PROGRAM
****'
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$,!I, 21X,'NORMALIZED SHEAR MODULUS GS=',IPEl1.4,!,22X,'(CO
$MBINED)',!1,52X,'N=',I3,5X,'N=NUMBER OF TRACTION POINTS',!,
$52X,'M=',I3,5X,'M=NUMBER OF SLIP POINTS',!/)

974 FORMAT(42X,'***** NV2=',I2,' DISTINCT PROBLEMS FOLLOW FOR
DIFFEREN

$T *****',1,45X,'*****VALUES OF NORMALIZED CREEPAGE AND SPIN
*****

$',!/)
975 FORMAT(//,17X,'NORMALIXED CREPAGE AND SPIN UXN=',IPEl1.4,!,

$23X,'(INPUT ON DATA #5)',
$ 9X,'UYN=',IPEl1.4,!,50X,'PHN=',IPEIIA,!I)

977 FORMAT( 24X,'NOMALIZED FORCES ARE FXN=',IPEl1.4,1,29X,
$'(COMPUTED)',IIX,'FYN=',IPEl1.4,!1,24X,'RESULTANT FORCE
$RES=', IPE 1104,1,14X,'(RES=SQRT(FXN**2+FYN**2))','WRK=', IPEIIA,!/)

978 FORMAT( 25X,'NORMALIZED MOMENT IS MZN=',IPEIIA,!,
$30X,'(COMPUTED)' ,!I)

979 FORMAT(//,58X,'***** AIB LESS THEN 0.1 *****',!,
$58X,'***** WORK NEXT PROBLEM *****',//)
CLOSE(3)
REWIND(3)
CLOSE(9)
REWIND(9)
REWIND(4)
REWIND(5)
REWIND(15)
CLOSE(4)
CLOSE(5)
CLOSE(15)
STOP
END

C *********** FUNCTION SIGN **************
FUNCTION SIGN(X)
IF(X) 10,20,30

10 SIGN=-l.O
RETURN

20 SIGN=O
RETURN

30 SIGN= 1.0
RETURN
END

C *********** SUBROUTINE CONST ****************

SUBROUTINE CONST(A,B,NU,GS)
DIMENSION D(3),E(3,20),AR(20)

C ***** DATA E(I,J) GIVES THE VALUES OF GS FROM
C ***** KALKER'S TABLE, VALID FOR AIBEQUAL TO OR GREATER THEN
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0.1
REAL NU
DATAFI
$ 0.7670, 0.5752, 0.3835, 0.5608, 0.4206, 0.2804, 0.4779, 0.3584,
$ 0.2390, 0.4343, 0.3257, 0.2172, 0.4089, 0.3066, 0.2044, 0.3934,
$ 0.2950, 0.1967, 0.3840, 0.2880, 0.1920, 0.3785, 0.2839, 0.1892,
$ 0.3758, 0.2818, 0.1879, 0.3750, 0.2812, 0.1875, 0.3758, 0.2818,
$ 0.1879, 0.3785, 0.2839, 0.1892, 0.3840, 0.2880, 0.1920, 0.3934,
$ 0.2950, 0.1967, 0.4089, 0.3066, 0.2044, 0.4343, 0.3257, 0.2172,
$ 0.4779, 0.3584, 0.2390, 0.5608, 0.4206, 0.2804, 0.7670, 0.5752,
$ 0.3835, 0.7918, 0.5938, 0.39591

DATA AR 1 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.111111,
$1.25,1.428571,1.666667,2.0,2.5,3.333333,5.0,10.0,11.01

PI=3.14159
RG=AIB
IF(RG.GT.AR(20» GO TO 14
GO TO 15

14 SG=B/A
GS=3.0*(1.0-NU)/(4.0*PI*SQRT(SG»

GO TO 80
15 DO 20 1=2,20

IF(RG.LE.AR(I» GO TO 25
20 CONTINUE
25 J=I

DO 301=1,3
30 D(I)=E(I,J-l)+(E(I,J)-E(I,J-1 »*(RG-AR(J-1»/(AR(J)-AR(J-l)

AL=8.0*(D(3)-2.0*D(2)+D(1»
BE=2.0*(-D(3)+4.0*D(2)-3.0*D( 1»
GS=AL*NU**2+BE*NU+D(1)

80 CONTINUE
RETURN
END

C
C ******************** SUBROUTINE ARRAY ************************
C

SUBROUTINE ARRAY(MODE,I,J,N,M,S,D)
DIMENSION S(1), D(1)

cc DOUBLE PRECISION S(120),D(120)
NI=N-I

C TEST TYPE OF CONVERSION
IF(MODE-1) 100, 100, 120

C CONVERT FROM SINGLETO DOUBLE DIMENSION
100 IJ=I*J+1

NM=N*J+1
DO 110 K=l,J
NM=NM-NI
DO 110 L=l,I
IJ=IJ-1



NM=NM-l
110 D(NM)=S(I1)

GO TO 140
C CONVERT FROM DOUBLE TO SINGLE DIMENSION

120 11=0
NM=O
DO 130 K=I,J
DO 125 L=I,I
11=11+1
NM=NM+ 1

125 S(I1)=D(NM)
130 NM=NM+NI
140 RETURN

END
C
C *****************SUBROUTINE GMPRD***********************
C

SUBROUTINE GMPRD(A,B,R,N,M,L)
DIMENSION A(I), B(l), R(l)

cc DOUBLE PRECISION A(l20),B(l20),R(l20)
IR=O
IK=-M
DO 10 K=I,L
IK=IK+M
DO 10J=I,N
IR=IR+l
JI=J-N
IB=IK
R(IR)=O
DO 10 I=I,M
JI=JI+N
IB=IB+1 .

10 R(IR)=R(IR)+A(JI)*B(IB)
RETURN
END

C**********************************************************
SUBROUTINE SORR(A,B,N,EPS,IKKKK,UYN)
DIMENSION A(l20,120), B(l20), X(l20),XN(l20),ERR(120)

C**********************************************************
cc Note omega =1.35 provides fast convergence on + creeps
cc better convergence on -creeps with omega =1.08
cc OMGA=1.35
cc ****************

OMGA=1.08
SUMAX 1=0.0
SUMAX2=0.0
ITMAX=30000

207
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IF(IKKKK.EQ.1) THEN
DO 100 NN=l,N
X(NN)=1.00

100 CONTINUE
ELSE

CC DO 105 NR=l,N
CC X(NR)=X(NR)+B(NR)
CC 105 CONTINUE

ENDIF
K=l

101 IF(K.GT.ITMAX) GO TO 200
DO 150 l=l,N
DO 125 J=1,1-1
SUMAX l=A(I,J)*X(J)+SUMAX 1

125 CONTINUE
DO 130 JJ=I+1,N
SUMAX2=A(I,JJ)*X(JJ)+SUMAX2

130 CONTINUE
XN(1)=((1.-0MGA)*X(I) )+((OMGN A(I,I))*(B(I)-SUMAX1-SUMAX2))
SUMAX1=0.0
SUMAX2=0.0
ERR(I)=ABS(X(I)-XN(I))
X(I)=XN(I)

150 CONTINUE
11=1

160 IF(ERR(I1).LE.EPS) THEN
11=11+1
GO TO 170
ELSE
K=K+ 1
GO TO 101
ENDIF

170 IF(I1.NE.N) GO TO 160
WRITE(*,*)'UYN=',UYN,'SOLN. WITHIN TOL., IKKKK=',IKKKK,'K=',K

GO TO 250
200 WRITE(*,*) , MAX. ITERATIONS EXCEEDED, QUESTIONABLE

ACCURACY'
250 DO 255 KP=1,N

B(KP)=X(KP)
255 CONTINUE

RETURN
END
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APPENDIX D

Fortran Source Code for Modified COUTAC1 Code

Source Code
C
C-----------------------------------------------------------------------
C PROGRAM COUNTACT-1
C BY B. PAUL AND J. HASHEMI, MODIFIED BY R.F. HARDER, DECEMBER
1993
C TO ACCOUNT FOR BATCH MODE OPERATION WITH IMSL SUBROUTINES
C DL2TRG AND DLFSRG REPLACING THE ORIGINAL LEQT1F, FOR IBM 486
C OPERATION.
* This program has modified section of mesh generation
C
C PURPOSE.....
C TO SOLVE FOR PRESSURE DISTRIBUTION,BOUNDARYOF CONTACT
PATCH,
C AND LOAD WHEN THE TWO BODIES IN COUNTERFORMALCONTACT
UNDERGO
C A RIGID BODY APPROACHDELTA.
C
C METHOD.....
C THE MODIFIED SIMPLY DISCRITIZEDMETHOD OF CONTACT PATCH IS
C USED TO SOLVE THE GOVERNING INTEGRAL EQUATIONS. FOR MORE
C DETAILS SEE "AN IMPROVEDNUMERICALMETHOD FOR
COUNTERFORMAL
C CONTACT PROBLEMS" BY B. PAUL AND J. HASHEMI.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

STANDARD SUBPROGRAMS.......
SUBFUNCTION DAOR (XF,YF,XS,YS,HXS,HYS)
SUBFUNCTION PARAB (SM,SL,SK,PM,PL,PK)

INPUT VARIABLES.....
TITLE ANY TITLE DESCRIBING PROBLEM (UP TO 80 CHARACTERS)
IAI MAX. DIMENSION USED FOR B AND F
IDGT A PARAMETER USED IN IMSL SUROUTINE LEQT1F
ITM MAXIMUM NO. OF ITERATIONS
NC THE STRIP NO. THAT CONTROLS THE CONVERGENCE
E1,ANU1 ELASTIC PROPERTIES OF BODY 1
E2,ANU2 ELASTIC PROPERTIES OF BODY 2
MX1,MX2,MX3 NO. OF STRIPS IN FIRST,SECOND,THIRD
MX4,MX5 FOTH AND FIFTH SEGMENTS
MX,MY TOTAL NO. OF STRIPS AND NO. OF CELLS

IN EACH STRIP
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C
C
C
C
C
C
C INPUT ARRANGEMENTS.....
C CARD ID FORMAT VARIABLES
C A (20A4) TITLE
C B (415) IAI,IDGT,ITM,NC
C C (4FlO.0)El,ANU1,E2,ANU2
C Dl (515) MXl,MX2,MX3,MX4,MX5
C D2 (215) MX,MY
C D3 (5FlO.0)XXl,XX2,XX3,XX4,XX5
C E (8FlO.0)XB(I,YB(I) 1=I,MX
C F (FlO.O)EPS
C G (FlO.O)D
C-----------------------------------------------------------------------
C

XX1,XX2,XX3 LENGTH OF FIRST,SECOND,THIRD
XX4,XX5 FORTH AND FIFTH SEGMENT
XB(I),YB(I) COORDINATES OF THE POINTS ON THE BOUND. CURVE
EPS ANO. TO CONTROL THE TOLERANCE
D RIGID BODY APPROACH

IMPLICIT REAL *8 (A-H,O-Z)
character*4 cnverg
DIMENSION B( 100, 1OO),F( 100,1 ),WKAREA( 1OO),XSX( 100), YS Y(1 00)
DIMENSION P(20,5),XB(20),YB(20),HX(20),HY(20),XBN(20),YBN(20)

DIMENSION YBM(20),AR(20)
DIMENSION TITLE(20)
dimension yy(10,1O),pp(10,1O)
OPEN(UNIT=5,FILE='NHZI364.DA T',STATUS='OLD')
OPEN(UNIT=6,FILE='NHI36TT.OUT',ST ATUS='OLD')
open(unit=7,file='rcpnip2.dat' ,status='old')

C
C INPUT DATA

1 READ (5,226,END=999) TITLE
READ (5,225) IAI,IDGT,ITM,NC
READ (5,218) El,ANU1,E2,ANU2
READ (5,225) MXl,MX2,MX3,MX4,MX5
READ (5,225) MX,MY
READ (5,218) XX1,XX2,XX3,XX4,XX5
READ (5,218) (XB(I),YB(I),I=I,MX)
READ (5,218) EPS
READ (5,218) D

C
C PRINT OUT INPUT DATA

WRITE (6,227) (TITLE(I),I=I,20)
WRITE (6,219) IAI,IDGT,ITM,NC,EPS
WRITE (6,212) El,ANU1,E2,ANU2
WRITE (6,220) MX1,MX2,MX3,MX4,MX5
WRITE (6,224) XXl,XX2,XX3,XX4,XX5

WRITE (6,229) MX,MY,D
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C
c CALCULATE SOME OF THE CONSTANT VARIABLES

N=MX*MY
PI=3.141592654
CK=( I.-ANU 1**2)/(PI*EI)+( 1.-ANU2**2)/(PI*E2)
IT=1

C
do 2 i=l,rnx

2 ybm(i)=yb(i)
xtot=xxi +xx2+xx3+xx4+xx5
do 3 i=I,5
rxxl=xxl/xtot
rxx2=xx2/xtot
rxx3=xx3/xtot
rxx4=xx4/xtot
rxx5=xx5/xtot

3 continue
c CALCULATE AND STORE HY(I)

DO 4 1=I,MX
4 HY(I)=YB(I)/(MY-.5)

1=1
IF (MXl.EQ.O) GO TO 7
H=XX IIMX I

C
C CALCULATE AND STORE HX(I) FOR FIRST STRIP

DO 61=I,MXl
6 HX(I)=H
I=MXI+I

7 MXI2=MXI+MX2
H=XX2IMX2

C
c CALCULATE AND STORE HX(I) FOR SECOND STRIP

DO 8 J=I,MXI2
8 HX(J)=H
J=MXI2+1
H=XX3IMX3
MX I23=MX 12+MX3

C
c CALCULATE AND STORE HX(I) FOR THIRD STRIP

DO 9 I=J,MXI23
9 HX(I)=H
I=MXI23+I
MX I234=MX 123+MX4
H=XX4IMX4

C
c CALCULATE AND STORE HX(I) FOR FOURTH STRIP

DO 10 J=I,MXI234
IO HX(J)=H
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IF (MXS.EQ.O) GO TO 14
H=XXSIMXS
J=MX1234+1

C
C CALCULATE AND STORE HX(I) FOR FIFTH STRIP

DO 12 I=J,MX
12 HX(I)=H
14 xblm=xb( 1)-hx(1)/2.0

xbrm=xb(mx)+hx(mx)/2.0
xbr=xbrm
xbl=xblm

C
C SOURCE POINT DO-LOOP

IS J=O
cnverg='yes'
DO 100IS=1,MX
XS=XB(IS)
HXS=HX(IS)
HYS=HY(IS)
AR(IS)=HXS*HYS
DO 100 JS=l,MY
J=J+ 1

C
C FIELD POINT DO LOOP

1=0
DO 100 IFF= I,MX
XF=XB(IFF)
DO 100JF=1,MY
1=1+1
IF (J.GT.1) GO TO 60
XSX(I)=XB(IFF) .

YSY(I)=HY(IFF)*(JF-1)
YY=YSY(I)
XX=XSX(I)

C
C CALCULATE THE INITIAL SEPARATION AND THE RIGHT HAND SIDE OF
EQ.

CALL INSEP(XX,YY,FZ)
F(I, 1)=(D-FZ)/CK

60 IF (LGT.1) GO TO 6S
HXS=HX(IS)
YS=YSY(J)

65 YF=YSY(I)
IF (JS.EQ.1) GO TO 80

C
C FIND B(I,J) FOR CELLS AWAY FROM THE X-AXIS

B(I,J)=DAOR(XF, YF,XS,YS,HXS,HYS)+DAOR(XF,YF ,XS,-YS,HXS,HYS)
GO TO 100



213

C
C FIND B(I,J) FOR CELLS ON THE X-AXIS

80 B(I,J)=DAOR(XF,YF,XS,YS,HXS,HYS)
100 CONTINUE

C
C SOLVE SYSTEM OF LINEAR EQUATIONS
CC CALL LEQTIF(B,I,N,IAI,F,IDGT,WKAREA,IER)

CALL DL2TRG(N,B,IAI,B,IAI,FPVT,WKAREA)
CALL DLFSRG(N,B,IAI,FPVT,F,1,F)

C
C PRINT OUT ITERATIONS WITH POINTS ON THE BOUND. CURVE

WRITE (6,223) IT
WRITE (6,213)
WRITE (6,214)
WRITE (6,222) (XB(I),YB(I),I=I,MX)
WRITE (6,211)
WRITE (6,215) (I,XSX(I),YSY(I),F(I,I),I=I,N)
WRITE (6,221) XBL,XBR
RY=YB(NC)

C
C TEST FOR ALL PRESSURES TO BE POSITIVE

IFP=O
IL=O
11=0
DO 180 1=I,MX
DO 150 J=I,MY
11=11+1
P(I,J)=F(I1,1)
IF (P(I,J).LT.O.G)then

cnverg='no'
go to 160

else
end if
IF (IL.NE.l) GO TO 150
11=1-1
XBL=(P(I,J)*XB(II )-P(II ,J)*XB(I))/(P(I,J)-P(I 1,1)

XB(ll)=XBL
YB(ll)=O.O
1L=2

150 CONTINUE
C
C LOCATE THE CELLS FOR EXTRAPOLATION TO GET THE NEW YB(I)

Fl=F(I1,1)
111=11-1
F2=F(111,1)
F3=F(111-1,1)
Yl=YSY(I1)
Y2=YSY(111)



Y3=YSY(Ul-l)
C
C FIND YB(I) BY PARABOLIC EXTRAPOLATION

if(f2.gt.f1) then
YBN(I)=PARAB (Yl,Y2,Fl,F2)

else
cnverg='no'
if(f3.gt.f2)then

ybn(i)=parab(y2,y3,f2,f3)
else

go to 155
end if

end if
IF (YBN(I).LE.YBM(I)) GO TO 180
if(ybm(i).eq.O.O)go to 180

155 YBN(I)=(YBn(I)+YBM(I))I2.
GO TO 180

160 IF (J.GT.l) GO TO 170
IF (XB(I).GT.O.O)GO TO 200
IL=I
IlL=I
GO TO 179

170 Yl=YSY(U)
Ul=U-l
Y2=YSY(Ul)

C
C FIND YB(I) WHEN PRESSURE CHANGES SIGN

YBN(I)=(F(IJ, 1)*Y2-F(IJ 1,1)*Yl)/(F(IJ, 1)-F(IJ1,1))
YBM(I)=Yl

179 IJ=I*MY
IFP= 1

180 CONTINUE
IIL=1
IF (IL.EQ.2) GO TO 183

C FIND THE LEFT X-BOUNDARY BY PARABOLIC EXTRAPLATION
Fl=P(1,I)
F2=P(2, 1)
F3=P(3,1)
Xl=XB(1)
X2=XB(2)
X3=XB(3)
if(f2.gt.f1) then

XBLN=PARAB(X 1,X2,Fl ,F2)
else

cnverg='no'
if(f3.gt.f2) then

xbln=parab(x2,x3,f2,f3)
else
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go to 182
end if

end if
C

IF (XBLN.LTXBLM) GO TO 182
XBL=XBLN
GO TO 183

182 XBL=(XBL+XBLM)/2.
C FIND THE RIGHT X-BOUNDARY BY PARABOLIC EXTRAPOLATION

183 Il=MX-l
Fl=P(MX,I)
F2=P(Il,I)
F3=P(Il-l, 1)
Xl=XB(MX)
X2=XB(Il )
X3=XB(Il-l)
if(f2.gt.f1) then

XBRN=PARAB(X 1,X2,Fl ,F2)
else

cnverg='no'
if(f3.gt.f2) then

xbm=parab( x2,x3,f2,f3)
else

go to 185
end if

end if
C

IF (XBRN.GT.XBRM) GO TO 185
XBR=XBRN
GO TO 186

185 XBR=(XBR+XBRM)/2.
186 Il=MX+l

XB(Il)=XBR
YBN(Il)=O.O
IF (IFP.EQ.l) GO TO 340

C
C INITIALIZE SOME OF THE VARIABLES

FT=O.O
TORK=O.O
DO 199 I=I,MX
DO 199 J=I,MY
IF (J.EQ.l) GO TO 196
C=I.
GO TO 198

196 C=.5
C
C FIND THE LOAD.

198 FTT=P(I,J)*AR(I)*C
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FT=FT+FfT
TORK=TORK+FfT*XB(I)

199 CONTINUE
FT=2.*FT
TORK=2.*TORK
WRITE (6,216) FT,TORK,D
GO TO 340

20011=1-1
XBR=(P(I,J)*XB(I 1)-P(I 1,J)*XB(I))/(P(I,J)-P(I1,1))

YBN(I)=O.O
XB(I)=XBR
if (il.eq.2) go to 340
IIL=2
Fl=P(1,I)
F2=P(2,1)
F3=P(3, 1)
Xl=XB(1)
X2=XB(2)
X3=XB(3)

C
C FIND THE X-LEFT BOUND WHEN ALL PRESSURES ARE +VE.

if(f2.gt.f1) then
XBLN=PARAB(X 1,X2,Fl,F2)

else
cnverg='no'
if(f3.gt.f2) then

xbln=parab(x2,x3,f2,f3)
else

go to 250
end if

end if
IF (XBLN.LTXBLM) GO TO 250
XBL=XBLN
GO TO 340

250 XBL=(XBL+XBLM)/2.
340 IF(DABS(l.-RY/YBN(NC)).LE.EPS.and.cnverg.eq.'yes')GO TO 450

IF (IT.GT.ITM) GO TO 450
IT=IT+l
xtot=xbr-xbl
xbl=xbl

* mesh generation of first strip
if(mxl.eq.O)then

xx1=0.0
else

xx 1=xtot*rxx 1
h=xx lIrea1(mx 1)
do 400 i=l,mxl
hx(i)=h

216
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xbn(i)=xbl+(rea1(i)-O.5)*h
400 continue

end if
xbl=xbl+xxl
jl=mxl+l
j2=mxl+mx2

* mesh generation of second strip
if(mx2.eq.O)then

xx2=O.0
else

xx2=xtot*rxx2
h=xx2/rea1(mx2)
do 405 i=j l,j2
hx(i)=h
xbn(i)=xbl +(real(i-j1+1)-0.5)*h

405 continue
end if
xbl=xbl+xx2
j l=j 1+mx2
j2=j2+mx3

* mesh generation of third strip
if(mx3.eq.0)then

xx3=0.0
else

xx3=xtot*rxx3
h=xx3/rea1(mx3)
do 410 i=jl,j2
hx(i)=h
xbn(i)=xb 1+(rea1(i-j1+1)-0.5)*h

410 continue
end if
xbl=xbl+xx3
j l=j 1+mx3
j2=j2+mx4

* mesh generation of fourth strip
if(mx4.eq.0)then

xx4=O.0
else

xx4=xtot*rxx4
h=xx4/rea1(mx4)
do 415 i=j l,j2
hx(i)=h
xbn(i)=xb I+(rea1(i-j1+1)-0.5)*h

415 continue
end if
xbl=xbl+xx4
jl=jl+mx4
j2=j2+mx5
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* mesh generation of fifth strip
if(rnx5.eq.0)then

xx5=O.0
else

xx5=xtot*rxx5
h=xx5/real(mx5)
do 420 i=jl,j2
hx(i)=h
xbn(i)=xbl +(real(i-j1+1)-0.5)*h

420 continue
end if

* interpolate new yb when xb are known
do 435 i=l,rnx
xarg=xbn(i)
xbl=xb(1)
xbrnx=xb(rnx)
if(xarg.1t.xb1) then

yb(i)=O.O+(xarg-xbl)/(xbl-xbl)*(ybn( 1)-0.0)
else if(xarg.gt.xbrnx) then

yb( i)=0.0+( xbr -xarg)/( xbr- xbrnx )*(ybn( rnx)-O .0)
else

do 430 j=l,rnx-l
if(xarg.1t.xb(j))go to 430
yb(i)=ybn(j)+(xarg-xb(j))/(xb(j+1)-xb(j))*(ybn(j+1)-ybn(j))

430 continue
end if

435 continue
* calculate hy

do 440 i= l,rnx
xb(i)=xbn(i)
hy(i)=yb(i)/(real(my)-0.5)

440 continue
C
C REPEAT THIS PROCESS AS MANY TIMES AS REQIRED.

GO TO 15
450 WRITE (6,214)

WRITE (6,222) (XB(I),YB(I),I=I,MX)
C SOLVE THE NEXT PROBLEM IF ANY.

GO TO 1
460 WRITE (6,230)

GO TO 1
999 WRITE (6,1000)

cc
***********************************************************************

cc **add logic for writing the ycoord and pressures in a rolcrepn format**
cc
***********************************************************************

NI=5
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GK= 1.0
DO 4200 NN=I,9
KT=2
DO 4290 MM=I,9
IF(MM.LT.5) GK=-1.0
IF(MM.EQ.5) GO TO 4280
IF(MM.GT.5) GO TO 4285
YY(NN,MM)=GK*YSY«NN*NI)+ I-MM)
PP(NN,MM)=F«(NN*NI)+ I-MM), 1)
GO TO 4287

4280 YY(NN,MM)=O.O
PP(NN,MM)=F(«NN*NI)+ 1-MM),1)
GO TO 4287

4285 YY(NN,MM)=-(YY(NN,MM-KT»
PP(NN,MM)=PP(NN,MM- KT)
KT=KT+2

4287 GK=1.0
4290 CONTINUE
4200 CONTINUE

DO 4300 IW=I,9
WRITE(7,4299)(YY(IW,IV),IV=1,9)

4299 FORMAT(1X,9(F8.6,','»
4300 CONTINUE

DO 4301 IQ=I,9
WRITE(7 ,4302)(PP(IQ,IA),IA=1,9)

4302 FORMAT(1X,9(F8.1,','»
4301 CONTINUE
C
***********************************************************************
****

500 STOP
211 FORMAT (//(25X,'NODE',llX,'X',17X,'Y',17X,'P'»
212 FORMAT(20X,'El=',E13.7 ,2X,'ANU 1=',F5.3,2X,'E2=',E13.7 ,2X,'ANU2=',
$F5.3)

213 FORMAT (//(40X,'BOUNDARY OF CONTACT REGION'»
214 FORMAT (/(19X,'X', 14X,'Y', 14X,'X', 14X,'Y', 14X,'X', 14X,'Y'»

215 FORMAT (/(25X,I5,3EI8.7»
216 FORMAT

(//(25X, 'FORCE=' ,Fl 0.3,5X,'MOMENT=',F 10.3 ,5X,'APPROACH=',E 1
$2.7))

219 FORMAT (20X, 'IAI=' ,13,2X,'IDGT=',13,2X,'ITM=',13,2X,'NC=',13
&,2X,'EPS=',E 11.4)

220 FORMAT (20X,'MXl=',13,2X,'MX2=',13,2X,'MX3=',13,2X,'MX4=',13,2X,'
$MX5=',13)

218 FORMAT (8FlO.0)
221 FORMAT (/(28X,'LEFT X-BOUNDARY=',FlO.7,5X,'RIGHT X-

BOUNDARY=',FI0.
$7»
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222 FORMAT (/(lOX,6E15.7»
223 FORMAT (///(46X,'ITERATION =',12»

224 FORMAT (20X,'XX 1=',F7.5,3X,'XX2=' ,F7.5,3X,'XX3=' ,F7.5,3X,'XX4=',
$F7.5 ,3X,'XX5=' ,F7.5)

225 FORMAT(l615)
226 FORMAT (20A4)
227 FORMAT (lHl,20X,20A4/1)
228 FORMAT (20X,'ERROR DUE TO F2<F 1')
229 FORMAT (20x,'MX=',I3,lOx,'MY=',I3,lOx,'APPROACH=',ell.4)

230 FORMAT( lOX,'ERRORIN MESH LAYOUT OVER THE CONTACT PATCH.')
1000 FORMAT (lHl)

END
SUBROUTINE INSEP(X,Y,FZ)
IMPLICIT REAL*8 (A-H,O-Z)
B=0.026315
IF(X.GT.O.O)GOTO 10
A=0.035714
GO TO 30

10 A=0.400
30 fz=a*x**2+b*y**2

return
end
DOUBLE PRECISION FUNCTION DAOR(XF,YF,XS,YS,HXS,HYS)

C
C-----------------------------------------------------------------------
C FUNCTION DAOR(XF,YF,XS,YS,HXS,HYS)
C
C PURPOSE.....
C TO CALCULATE INTEGRALOF DA OVER R.
C
C
C
C
C
C
C
C DESCRIPTION OF ARGUMENT VARIABLES....
C XF,YF COORDINATES OF THE FIELD POINT
C XS,YS COORDINATES OF THE SOURCE POINT
C DAOR VALUE FOR THE FUNCTION TO BE RETURNED
C-----------------------------------------------------------------------
C

METHOD .

BY USING LURE,S FORMULA APPLIED TO A RECTANGLE CELL WHEN
THE DISTANCE BETWEEN THE SOURCE AND FIELD POINT IS LESS THAN
1.5TIMES THE MAXIMUM DIMENSION OF CELL, AND APPROXIMATELY
AS DA/R , OTHERWISE.

IMPLICIT REAL*8 (A-H,O-Z)
EPS=1.E-I0
PI=3.141592654
C=1.
YYSF= YS- YF

R=DSQRT((XF-XS)**2+ YYSF**2)
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IF (HXS-HYS) 1,1,2
1 H=HYS
GOT03

2 H=HXS
3 IF (R-1.5*H) 6,6,4
4 DAOR=HXS*HYS/R
GO TO 50

6 Hl=YYSF+.5*HYS
IF (DABS(Hl)-EPS) 10,10,5

5 H4=HI-HYS
IF (DABS(H4)-EPS) 10,10,20

10 C=.5
Hl=HYS
H4=-HYS

20 H2=XS-XF+.5*HXS
H3=H2-HXS
Tl=DATAN(H2/Hl)
Bl=DATAN(H3/Hl)
T2=DATAN(H1/H2)
B2=DATAN(H4/H2)
T3=DATAN(Hl/H3)
B3=ATAN(H4/H3)
T4=DATAN(H2/H4)
B4=DATAN(H3/H4)
ATl=DABS(T1)
AT2=DABS(T2)
AT3=DABS(T3)
AT4=DABS(T4)
ABl=DABS(Bl)
AB2=DABS(B2)
AB3=DABS(B3)
AB4=DABS(B4)
Cll=DLOG(DT AN(PI/4.+ATl/2.))
C12=DLOG(DTAN(PI/4.+AB1/2.))
C21=DLOG(DTAN(PI/4.+AT2/2.))
C22=DLOG(DTAN(PI/4.+AB2/2.))
C31=DLOG(DTAN(PI/4.+AT312.))
C32=LOG(DTAN(PI/4.+AB3/2.))
C41=DLOG(DTAN(PI/4.+AT4/2.))
C42=DLOG(DTAN(PI/4.+AB412.))
Cl=Tl/ATl *C11-B1/ABl*C12
C2=T2/AT2*C21-B2/AB2*C22
C3=T3/AT3*C31-B3/AB3*C32
C4=T4/AT4*C41-B4/AB4*C42
DAOR=DABS(DABS(HI )*C1+DABS(H2)*C2-DABS(H3)*C3-DABS(H4)*C4)*C

50 RETURN
END
DOUBLE PRECISION FUNCTION PARAB(SM,SL,PM,PL)
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C PARAB(SM,SL,PM,PL)
C-----------------------------------------------------------------------
C
C
C
C
C
C
C
C
C DESCRIPTIONOF ARGUMENTS......
C (SM,PM) COORDINATESOFPOINTM
C (SL,PL) COORDINATESOFPOINTL
C PARAB VALUE OFTHE ORDINATETO BE RETURNEDTOTHE
C CALLING PROGRAM.
C-----------------------------------------------------------------------
C

IMPLICIT REAL*8 (A-H,O-Z)
PARAB=(PL**2*SM-PM**2*SL)/(PL **2-PM**2)
RETURN
END

PURPOSE.....
TO EXTRAPOLATE BETWEEN TWO POINTS AND FIND ORDINATE

WHEN ABSESSIA IS ZERO

METHOD......
PARABOLICEXTRAPOLATIONBETWEENTHETWO POINTSAND
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APPENDIX E

Fortran Source Code for Romberg Integration Algorithm

********************************************************************
**************ROMBRG.FOR PERFORMS ROMBERG
INnnEGRAT10N***************
*********FOR A GENERAL FUNCTION F(X) BETWEEN LIMITS A &
B***********
********************************************************************
CC
*-- ROMBERG.FOR was obtained from "NUMERICALMETHODS" by Faries &
*-- Burden. It integrates the function f(x) from x=a to x=b. The
*--elements of the Romberg table are stored in T(K,M), where K denotes
*--the order and M labels the level of the approximation,Le.the
*-- number of panels, n =2**k, while M=O=> trapezoidal rule, M=l =>
*-- Simpson's rule, etc. The calculation is tenninated successfully
*--when successive diagonal elements differ by less than the user
*--supplied tolerance EPS. Round-off error is monitored by compu-
*-- ting the quantity R(K) which should be close to one. If signi-
*-- ficantly diffenent from one, the calculation is halted, a mes-
*-- sage printed, and the most recent value returned. The calcula-
*-- tion is continued through a maximum user supplied order KMX. If
*-- the desired accuracy is not achieved after order KMX, a diag-
*-- nostic message is printed and the latest, most accurate, value
*--is returned. If IPRNT=I, the complete Romberg table is printed
*--before any return. If IFAIL =1, the proceedure has failed.
*============================================================
------------
* Variables
*--

DOUBLE PRECISION T(O:15,0:15),R(0:15)
CHARACTER FLAG*3
INTEGER K,M,NPTS,KMX,IPRINT
REAL DX,A,B,EPS,SUM,FRACT

CC F(X)=2. *X
c F(XZ)= -4405623.97*XZ**7-2815684.08*XZ**6-638948.149*XZ**5
c $-63071.45*XZ**4-2430.308*XZ**3-1 0.164*XZ**2+0.964*XZ+O.211
c F(X)=(-10093043.759*X**9-9568645.284*X**8-3495835.187*X**7
c $-625712.645*X**6-61031.681 *X**5-4467.105*X**4-380.101 *X**3
c $-24.632*X**2-0.311 *X+O.336)
c F(X)=(-10093043.759*X**9-9568645.284*X**8-3495835.187*X**7
c $-625712.645*X**6-61031.681 *X**5-4467.105*X**4-380.101 *X**3
c $-24.632*X**2-0.311 *X+O.336)-(-1405435.799*x**8+36976.952*x**6
c $-404.579*x**4-6.121 *x**2+0.336)
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c
c
c
c
*--
*-- A,B -- The integrationinterval [INPUT]
*-- EPS -- Convergence tolerance [INPUT]
*-- KMX -- Themaximum order of the calc. [INPUT]
*-- IPRNT -- Print flag, if 1print tables [INPUT]
*-- T(,) --The elements of the Romberg table
*-- R(,) --Table of round-off error flags
*-- K -- The current order of the calculation
*-- M --The current level of the calculation
*-- NPTS -- Current number of sampling points
*-- SUM --Sum of interior function values
*-- FRACT -- The fractional change in diagonal elements
*-- IFAll.. -- If zero, no errors detected
*------------------------------------------------------------------
* First compute the zero-th order/one panel trapezopidalrule value
* BE SURE TO USE THE NEW LIMITS OF A AND B FOR THE FUNCTION USED**

f(x)=( -1405435.799*x**8+36976.952*x**6-404.579*x**4-6.121 *x**2
$+0.336)-( -10093043.759*X**9-9568645.284*X**8-3495835.187*X**7
$-625712.645*X**6-61031.681 *X**5-4467 .105*X**4-380. 101*X**3
$-24.632*X**2-0.311 *X+0.336)

f(x)=-29852179 .6*x**8-19677576.5*x * *7-4968358.9*x **6-589159 .6*x**5
$-31182.2*x **4-421.421 *x**3+ 7.137*x **2+0.027*x+O.255
f(x)=-213144280.22*x**8-112525458.477*x**7-22685827.124*x**6
$-2118216.158*x**5-82207.8*x**4-119.306*x**3+46.6*x**2+.176*x+.202

KMX=20
EPS=O.OOOO 1

IPRNT=1
A=O.O
B=.07
DX = (B-A)
T(O,O)= 0.5*DX*(F(A) + F(B»
R(O) = 1.
R(1) = 1.
IF(IPRNT .EQ. I)THEN

WRITE(* ,1O)(I,I=O,KMX)
WRITE(*,II)' Order',(' I',I=O,KMX)

WRITE(*,12)0,T(0,0)
WRITE(* ,'(T7 ,"1 1")')

ENDIF
*
*
* Next, for order K = 1 through KMX

DO 5 K= I,KMX*
*
*
*

Compute the next order trapezoid rule value, i.e. step
down the I-st co!. of the table by halving the intervals
and doubling the number of sampling points.
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*
NPTS =2**K
DX =DX/2.

*
*
*
*

Sum the function at all odd points, i.e., the midpoints of
the previous intervals.

SUM =0.0
DO 2 1= 1, NPTS-l, 2

SUM = SUM + F(A+I*DX)
CONTINUE2

*
*
* The next order trapezoid rule is given by

T(K,O) =T(K-l,0)/2 + DX*SUM*
*
* Next step across the table, M =1,2, ..., K

KSTOP =K
D03M=0,K-l

T(K,M+l) = T(K,M) + (T(K,M)-T(K-l,M»/(4.**(M+l)-1)
3 CONTINUE

ROMBRG =T(K,K)
IF(IPRNT .EQ. I)THEN

WRITE(*,12)K,(T(K,M),M=0,K)
WRITE(* ,11)' ',(' 1',I=O,K)

ENDIF
*
*
* Test for errors or success in this pass

IFAIL =0
IF(K .GE. 2)THEN

FRACT =(T(K,K) - T(K-l,K-l»/T(K,K)
IF(ABS(FRACT) .GT. EPS)THEN

R(K) = (T(K-l,K-2)- T(K-2,K-2»/
+ (T(K ,K-2) - T(K-l,K-2»/(4.**(K-l»

IF(ABS(LOG(ABS(R(K»» .GT. 2.)THEN
WRITE(*,13)K,R(K),FRACT,T(K,K)
IFAIL =1

CC RETURN
GOTO 1000

ENDIF
ELSE

CC RETURN
GOTO 1000

ENDIF
ENDIF

5 CONTINUE
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*

* In KMX passes, the calculation has failed to obtain a
* sufficiently accurate value. Print a warning.*

WRITE(*, 14)KMX,FRACT,ROMBRG
IFAIL =1

CC RETURN
GOT01000

* ----------------------------------------------------------------
* Formats
*--

10 FORMAT(/,T5,'The Romberg table',//,
+ T9,'Level =>',/,
+ T7,'I',7(3X,12,4X,'I'))

*--

11 FORMAT(A6,'1',7AIO)*--
12 FORMAT(2X,12,T7,'I',7(F9.6,'I'))

*--
13 FORMAT(/,

+ T5,'*============ERROR in ROMBERG================*',/,
+ T5,'1In pass ',12,' the calculation was halted ',T50,'1',/
+ ,T5,'1due to round-off error. The round-off errorl',/,
+ T5,'1flag is ',E7.1,'. The latest fractional',T50,'1',/,
+ T5,'1change in diagonal terms =',E7.1,T50,'1',/,
+ T5,'1The value returned =',FI2.8,T50,'1',/,
+ T5 '* IFAIL - 1 *'), - --------------------

14 FORMAT(/,
+ T5,'*=============ERROR in ROMBERG=================*',/,
+ T5,'1ROMBRG has failed due to excessive iterations*',/,
+ T5,'1After ',12,'passes, sufficient accruacy was not 1',/
+ ,T5,'1acheived. The latest fractional change was 1',/,
+ T5,'1R =',E7.1,T52,'I',/,
+ T5,'1The value returned was ',FI2.8,T52,'I',/,
+ T5 '* IFAIL - 1 *'), - --------------------

1000 STOP
END
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