
Object-Oriented Database Support for 

Scientific Data Management: A System 

for Experimentat ion 

Hitomi Ohkawa 

B.S. in Physics, University of Tokyo, 1981 

M.S. in Physics, Massachusetts Institute of Technology, 1983 

A dissertation submitted to the faculty of the 

Oregon Graduate Institute of Science and Technology 
in partial fulfillment of the 

requirements for the degree 

Doctor of Philosophy 
in 

Computer Science and Engineering 

April 1993 



The dissertation "Object-Oriented Database Support for Scientific Data Management: 
A System for Experimentation" by Hitomi Ohkawa has been examined and approved by 
the following Examination Committee: 

David Maier 
Professor 
Thesis Research Adviser 

Jonathan wdpole ' 
Assistant Professor 

 odd Len 
Assistant Professor 

- 
T. Lougenia gderson 
Sequent 



Dedication 

This dissertation is dedicated to my husband, A. Remy Malan. 

iii 



Acknowledgements 

I would like to thank my advisor, Prof. David Maier, for his rigorous review on details of 
the dissertation. 

I would also like to thank Dr. Stephen Bryant at National Center for Biotechnolgy 
Information (NCBI) at National Institutes of Health and Dr. Daniel Heitjan at Center for 
Biostatistics and Epidemiology, Penn State University College of Medicine, for providing 
scientific data and applications to examine in the experiments. In particular, I was able to 
discover News, one of the software components used in the dissertation research, through 
Dr. Bryant's application, Protein Knowledge Base (PKB). Dr. Bryant also provided much 
support and encouragement throughout the dissertation research that often required me to - 
learn about the domain of computational biophysics. 



Contents 

Dedication iii 

Acknowledgements iv 

Abstract viii 

1 Introduction 1 

2 Data Support Requirements For Scientific Applications 6 
2.1 Scientific Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 
2.2 Traditional Database Support . . . . . . . . . . . . . . . . . . . . . . . . . .  12 
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

3 Potential of Object-Oriented Databases 16 
3.1 Current Approaches to Scientific Data Management . . . . . . . . . . . . .  16 

3.1.1 Customized Data Management Systems . . . . . . . . . . . . . . . .  16 
3.1.2 Standardized Data Formats . . . . . . . . . . . . . . . . . . . . . . .  18 
3.1.3 Persistent Languages . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

3.1.4 Traditional Database Systems . . . . . . . . . . . . . . . . . . . . . .  23 

3.2 Introduction of Object-Oriented Databases . . . . . . . . . . . . . . . . . .  24 

3.2.1 Object-Oriented Database Overview . . . . . . . . . . . . . . . . . .  24 
3.2.2 Potential of Object-Oriented Databases . . . . . . . . . . . . . . . .  28 

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

4 Criteria for an Experimental Platform 33 

5 Issues for Investigation on a Platform 36 
5.1 Support for Scientific Data Types . . . . . . . . . . . . . . . . . . . . . . . .  36 

5.1.1 Type Definition Facility . . . . . . . . . . . . . . . . . . . . . . . . .  36 

5.1.2 Implementation of Types . . . . . . . . . . . . . . . . . . . . . . . .  37 
5.1.3 Query on Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 
5.1.4 Other Data Type Support . . . . . . . . . . . . . . . . . . . . . . . .  39 

5.2 Execution of Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 
5.3 Data Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 



5.4 Traditional Database Support . . . . . . . . . . . . . . . . . . . . . . . . . .  41 
5.5 Dynamic Properties of Applications . . . . . . . . . . . . . . . . . . . . . .  41 

5.6 A Range of Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 

6 Introduction Of Experimental Platform: Gemstone-based News 43 
6.1 Object-Oriented Database Gemstone . . . . . . . . . . . . . . . . . . . . . .  44 

6.1.1 Gemstone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 

6.2 Scientific Persistent Language News . . . . . . . . . . . . . . . . . . . . . .  48 

6.2.1 News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

7 Gemstone-based News: Design And Implementation 60 
7.1 Changes Made to News . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 

7.1.1 Name-To-Object Binding . . . . . . . . . . . . . . . . . . . . . . . .  63 

7.1.2 Delegating Operations to Gemstone . . . . . . . . . . . . . . . . . .  64 
7.2 Design of a Gemstone Database for News . . . . . . . . . . . . . . . . . . .  66 

7.2.1 Representation of News Objects . . . . . . . . . . . . . . . . . . . .  66 

7.2.2 Representation of Operations . . . . . . . . . . . . . . . . . . . . . .  69 

7.2.3 Choice of NewS Functions Stored and Executed In the Database . . 73 
7.3 Specifications of the First Prototype . . . . . . . . . . . . . . . . . . . . . .  77 

7.4 Flexibility As Design Priority . . . . . . . . . . . . . . . . . . . . . . . . . .  78 

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 

8 Design Alternatives in the Gemstone-News Interface 83 
8.1 Computing Environment for the Experiments . . . . . . . . . . . . . . . . .  84 

8.2 GemStoneSchema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 

8.2.1 Different State Representations . . . . . . . . . . . . . . . . . . . . .  85 
8.2.2 Alternative OPAL Methods . . . . . . . . . . . . . . . . . . . . . . .  92 

8.3 Changes to News Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93 

8.3.1 Different Mechanisms For Delegation of Operations to GemStone . . 93 
8.3.2 Different GCI (Gemstone C Interface) Calls . . . . . . . . . . . . . .  95 
8.3.3 Caching Gemstone Information in News . . . . . . . . . . . . . . . .  98 

8.3.4 Interface to Existing Gemstone Facilities . . . . . . . . . . . . . . .  99 

8.4 Optimized Evaluation of News Expressions . . . . . . . . . . . . . . . . . .  101 

8.5 Different Collections of Objects and Functions Stored in Gemstone . . . . .  107 
8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 



9 Experiments with Health Surveys Data and Protein Knowledge Base 114 
9.1 NHANES Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116 

9.1.1 Data Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116 

9.1.2 Selected Operations for the Experiments . . . . . . . . . . . . . . . .  118 
9.1.3 Analysis of Experimental Results . . . . . . . . . . . . . . . . . . . .  121 

9.2 PKB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127 
9.2.1 PKB Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127 
9.2.2 PKB Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128 
9.2.3 PKB Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137 

9.2.4 Selected Operations for the Experiments . . . . . . . . . . . . . . . .  140 
9.2.5 Analysis of Experimental Results . . . . . . . . . . . . . . . . . . . .  142 

9.3 Summary of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159 

10 Ease of Experimentation with Gemstone-based News 161 
10.1 Experiment ation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162 
10.2 Examining Design Alternatives . . . . . . . . . . . . . . . . . . . . . . . . .  164 
10.3 Ease of Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167 

11 Conclusion and Future Work 
11.1 Evaluation of Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . .  

11.1.1 Evaluation of Gemstone-based News . . . . . . . . . . . . . . . . . .  
11 .1.2 Suitability for Various Investigations . . . . . . . . . . . . . . . . . .  
11.1.3 Evaluation of Gemstone Features . . . . . . . . . . . . . . . . . . . .  

11.2 Contributions of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
11.2.1 Scientific Data Types . . . . . . . . . . . . . . . . . . . . . . . . . .  
11 -2.2 Combination of Persistent Language and Object-Oriented Database 
11.2.3 Findings in Design and Implementation . . . . . . . . . . . . . . . .  
11.2.4 Evaluation of Our Approach . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11.3 Future Work 

Bibliography 192 

A Frequency of News Library Functions Used in PKB 198 

vii 



Abstract 

Ob ject-Oriented Database Support for Scientific Data Management: A 
System for Experimentation 

Hitorni Ohkawa, Ph.D. 
Oregon Graduate Institute of Science and Technology 

Supervising Professor: David Maier 

Scientific data management has recently become a critical research issue due to com- 
puterization and automation of scientific research procedures and the resulting explosion 

of electronic data. For proper management of scientific data, adequate data types must 
be provided for representing the semantics of scientific data directly. Issues such as large 
data volume and data evolution are common among scientific applications, so traditional 

database support, such as storage management, are also beneficial to them. Current a p  
proaches such as standardized data formats and adoption of traditional databases do not 
accommodate the data support requirements of existing scientific applications well. Object- 

oriented databases, on the other hand, seem to hold promise, by combining flexible data 

models with traditional database support. 

In this dissertation, we constructed an experimental platform for exploring the design 
space for a scientific data management system. With this experimental approach, we could 

dynamically examine possible architectures for data support against actual instances of 
scientific data and typical operations executed on them. As many of the dynamic features 
of existing scientific applications, such as data access patterns, are yet to be discovered, the 

platform also provides an opportunity to explore such features. 
Based on the observed potential of object-oriented databases for scientific data man- 

agement, the Gemstone object-oriented database management system was chosen for the 

baseline data management architecture of the platform. Among scientific applications where 
better data support is desired, a scientific persistent language and data analysis environment 
called News and applications using it were selected as a target for the study. Connecting 

viii 



NewS with Gemstone provided a cost-effective experimental platform where we could in- 
vestigate a variety of scientific applications with single implementation. We incorporated 

GemStone into the NewS environment in such a manner that we could use existing NewS 
applications without modifications for experiments. We describe the design and implemen- 
tation of our platform, GemSt one-based NewS, and experiments performed on the platform. 
At the end, we describe primary contributions of the work, and assess whether or not our 
approach was a productive initial step toward improved scientific data management. 



Chapter 1 

Introduction 

Scientific data management has become an important issue since computers started playing 

a major role as a research tool in a variety of scientific domains. Advanced lab technologies 

and computer simulation are producing massive datasets, and it is becoming increasingly 

difficult to manage them manually. Many scientific applications currently rely on a file ' 

system for data management, though there is ample evidence that most of them can benefit 

from some form of data support beyond the simple capabilities of a file system, such as 

data types, data evolution, memory management, and query languages. For example, a file 

system rarely provides a data model that accommodates scientific data types, so data must 

be mapped to files by each application. Since there are few standards for how the data are 

represented, the result is a variety of data formats for a given data type, with no uniformity 

and compatibility among them. A solution promoted by various scientific organizations 

(e.g., NASA, supercomputing centers) is standardized data formats. However, they still 

depend on the underlying file system with its basic data management capabilities, and do 

not provide efficient and safe access to the data. As most current approaches to scientific 

data management have major drawbacks, there is a need for a data management system 

capable of better supporting scientific data. 

This dissertation describes our experimental investigation of adequate data support for 



scientific applications. An experimental approach allowed us to dynamically investigate 

possible data support architectures against actual instances of scientific data and functions 

executed on them. We constructed a system called Gems t one-based News as an experimen- 

tal platform, and through the platform focused our attention on support provided by the 

Gemstone object-oriented database for applications implemented in a scientific persistent 

language and data analysis environment called NewS. 

We chose an object-oriented database for a baseline data support architecture because 

it combines a flexible data model with traditional database support. With Gemstone, we 

could support scientific data types directly using object-oriented concepts, and even have a 

variety of alternatives in doing so, without sacrificing traditional database features such as 

storage management and concurrency control. 

By connecting NewS with Gemstone, we could examine a variety of existing scientific 

applications in different domains with single implementation, since NewS is widely used as 

a statistical and graphical data analysis environment, e.g., in mathematics, physics, biology, 

and economics. Had we chosen to support individual applications written in conventional 

languages on Gemstone, we would have had to implement a connection to a database for 

each individually. 

Current News lacks robust data support as it relies on the file system for storing per- 

sistent data. Traditional databases, such as relational systems, do not support News well, 

as the hierarchical data structure and functional computation model of NewS are not a 

good match for their data models. An object-oriented database, on the other hand, seems 

a better alternative to improve data support of NewS applications as its flexible data model 



can capture NewS data and functions directly. NewS is a persistent language: NewS appli- 

cations can access typed, persistent data items by name. A switch in the underlying data 

store from files to Gemstone can be "hidden", so that existing NewS applications can still 

run on the platform without modifications. In contrast, an application in a non-persistent 

language such as C or FORTRAN would require extensive modification to run against a 

database. The mapping of data types to files is explicit in them and all the file reads and 

writes must be replaced by calls to Gemstone. Admittedly, focusing on NewS applications 

limited the range of scientific applications we could examine, but NewS seemed a good 

compromise between generality of targeted applications and ease of experimentation. 

In our investigation, we designed and implemented Gemstone-based NewS, on which 

we subsequently performed experiments with various NewS data and applications. We then 

assessed major contribution of our study and whether or not our approach was a good initial 

step toward improved scientific data management. Design of scientific data management 

systems is a relatively new research topic where most of the design space is yet to be 

investigated. With limited resources on hand, we still wanted to cover as much of the design 

space as possible, to identify parts worth detailed investigation later. We examined whether 

the choice of Gemstone and NewS provided good coverage of the design space, and assessed 

Gemstone-based NewS in terms of such criteria as cost-effectiveness in construction, a 

potential for scientific data management, flexibility to make its architecture customizable 

to each application, generality of targets, performance level, and ease of experimentation. 

We also looked at the kinds of issues we could examine on Gemstone-based NewS among 

potentially interesting design dimensions. 



The rest of the dissertation is organized as follows. Chapter 2 describes various data 

support requirements of existing scientific applications. We discuss direct support for sci- 

entific data types as well as traditional database features such as storage management and 

direct data query that could potentially benefit scientific applications. 

Chapter 3 describes the potential of an object-oriented database for scientific appli- 

cations by comparing it to various current approaches to scientific data management, e.g., 

standardized data formats and traditional databases. We list advantages and disadvantages 

in each case with respect to the requirements described in Chapter 2. 

Chapter 4 discusses our experimental approach, and proposes construction of a cost- 

effective platform that delivers maximal results with minimal effort. We describe criteria 

for the experimental platform under which the platform will be evaluated later, namely, 

cost-effectiveness in construction, productivity and flexibility of the architecture, generality 

of targeted applications, performance level, and ease of experimentation. 

Chapter 5 discusses design dimensions we would be interested in investigating on an 

experimental platform. We refer to the data support requirements identified in Chapter 2, 

since our objective is to investigate physical design supporting such high-level requirements. 

Chapter 6 introduces our experimental platform, Gemstone-based NewS. We focus our 

discussion on the two main components, i.e., Gemstone and NewS, and justification of their 

choice. 

Chapter 7 describes various design and implementation issues considered in constructing 

Gemstone-based NewS. We also discuss flexibility of the architecture as a design priority 

and how it affects easy execution of prospective experiments. 



Chapter 8 examines flexibility of the platform's architecture by investigating possible 

design alternatives over its baseline architecture. We discuss how such alternatives can be 

examined on the platform experimentally. In some cases, we conduct simple experiments 

to illustrate the point being made. 

Chapter 9 reports on more extensive experiments with two existing NewS applications, 

namely, National Health And Nutrition Examination Survey (NHANES) Data and Protein 

Knowledge Base (PKB). We describe those two applications and explain why we chose 

them. We then present the experimental results and analyze them with respect to their 

specific requirements and execution environment. 

Chapter 10 analyzes ease of experimentation with Gemstone-based NewS from our 

experience experimenting with the platform. Finally, Chapter 11 evaluates the platform 

and our approach as a whole, and describes what we consider major contributions of the 

study. We also discusses possible future work. 



Chapter 2 

Data Support Requirements For 

Scientific Applications 

This chapter investigates data support requirements for scientific applications. We first 

examine data types required by scientific applications. Our analysis is not confined to a 

particular domain, though many examples are drawn from molecular biology and chem- 

istry. Besides data types, we also discuss how traditional database features such as storage 

management can benefit scientific applications. 

2.1 Scientific Data Types 

Scientists view a physical system under study through a particular model. If data types that 

directly represent scientific models, which we will call scientific data types, are provided, 

scientists can deal with the relevant models directly in applications and do not have to fit 

the models into data structures provided by a particular language. 

One of the structural properties commonly seen in scientific models is hierarchical de- 

composition. Hence, nested structures need to be supported by scientific data types. For 

example, a macromolecular structure is hierarchically represented with different levels of 

detail. DNA structures are typically translated into sequences of various units. Such units 



include nucleotides, cleavage sites, ligand-binding sites, or "characteristic subwords" of nu- 

cleotides determined by linguistic methods, all of which have further substructure [Pon88]. 

The Delila (DEoxiribonucleic acid LIbrary LAnguage) system defines a schema for nucleic- 

acid sequences using a hierarchical model as shown in Figure 2.1. For example, l ibrary 

contains various organisms, each of which in turn includes one or more chromosomes. Each 

chromosome points to various pieces of sequences. 

Proteins are another example of hierarchically organized macromolecules [Cre84]. The 

primary sequence is a linear chain of amino acids, and it folds into various secondary struc- 

tures such as helices, sheets, and turns. Secondary structures are in turn grouped into super- 

secondary structures to form biochemjcally active sites. The tertiary structure describes 

the three-dimensional structure of the entire protein, and multiple proteins sometimes bind 

together to form a quaternary structure. Characteristics called motifs, templates, or 

f ingerprints are associated with different levels in this hierarchy. Motifs can represent a 

characteristic piece of sequence, sequence patterns associated with a specific structure, or 

structural characteristics. 

Many scientific theories offer "generic" models applicable to a variety of systems. For 

example, the contact potential model developed for representing protein conformation is 

specialization of a classical statistical mechanical model characterized by the Boltzmann 

statistics. Mean field theory is another example of a generic scientific model that has 

been applied to a variety of physical systems. A generic model provides a framework for 

representing a targeted system, but specifics are further provided in each case. For example, 

mean field theory provides a generic formula for a partition function, but a particular density 
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Figure 2.1 Part of Delila schema 



distribution and energy function are determined for each system modeled. Hence, providing 

a generic model as a data type is beneficial as the type can be reused for different systems, 

as long as it is possible to specialize the model in each case. 

As much as the same model may be used for different physical systems, it is also possible 

that the same physical system is viewed through different models. A solid may be modeled 

by its boundaries or recursive combinations of shapes. Proteins are sequences of amino acids 

to many mathematical biologists, but physicists examine its structure and activity at the 

atomic level. Among protein structural models, some represent a configuration of a main 

chain with positions of a carbons and torsion angles. Others, such as the contact potential 

model mentioned above, attempt to characterize the structure through potential energy 

that results from a specific conformation. In chemistry, a variety of models are available 

for a molecule. For example, in determining the structures of molecules by quantum- 

mechanical computation, various approximations are used for efficiency, yielding different 

models. Molecular mechanics (MM) ignores electrons, but the strength of bonds between 

atoms is adjusted according to experimental data. The semi-empirical molecular orbital 

(MO) model only considers outermost electrons in its computation. The ab initio model, 

on the other hand, takes into account all components of a molecule. The techniques above 

assume one molecule at OK in vacuum. Molecular Dynamics (MD), on the other hand, 

assumes temperatures higher than OK , and considers interaction with other molecules in 

the neighborhood. Hence, each data type is required to store different kinds of information 

depending of how a corresponding model characterizes the targeted system. 

The situation would be simple if each scientific application required a single model for 



the targeted system, but in some cases, different models must be accommodated by the 

same application. For example, one of the main objectives in protein research is to deduce 

correlation between amino acid sequences and structural motifs, therefore both sequence 

and structural models must be provided for the same protein. Rarely do computational 

chemists use only one model, and conversion from one model to another is often required. 

If scientific models are represented as data types, then there must be a way to combine 

multiple types in a coherent manner to accommodate different models for the same system. 

As mentioned at the beginning, direct representation of a scientific model as a data 

type serves as a layer between applications and physical data formats. For example, with 

the "Molecular Mechanics" type, scientists handle the MM model of a molecule directly in 

the applications and they do not have to deal with how the model is physically realized 

by specific data structures. Such a scientific data type also provides an opportunity to 

standardize representation of the model so that multiple applications can share data easily. 

For example, the Bravais lattice model that represents periodicity in the crystal structure 

is widely used in solid state analysis and X-ray diffraction analysis. Hence, development of 

a uniform data type for the Bravais model would benefit many applications in the domain 

and facilitate data exchange between them [Patgo]. 

Representing scientific models as data types, it would be beneficial to include in the types 

not only the actual data on the targeted physical system but also various meta-information 

that supplement the data, e.g., units for the values and relevant publications, to ensure 

accurate interpretation and better understanding of the data. 



With direct representation of scientific models, it also becomes possible to define arbi- 

trary operations on the models directly. For instance, the essence of many scientific data 

models is represented by a set of formulas, e.g., a linear formula that relates predictors and 

the response in the regression model. The application of such models to a specific system 

often means solving the associated formulas for that system. Hence, it would be useful if 

the corresponding data type provided operations to solve those formulas when requested. 

Those model-specific operations no longer have to be translated into equivalent functions 

on specific data structures, and in fact can be part of a scientific data type. Such extension 

of the type benefits many applications by providing a uniform, reusable definition of proper 

manipulation of the model. 

As in abstract data types, model-specific operations in a scientific data type can provide 

applications with an abstract interface for the model. Applications use a model only through 

its abstract interface, and changes in physical representation of the model do not affect the 

applications as long as that interface remains the same. In the NIH Genome Database, 

gene sequences are represented as such abstract data types [And89]. Their physical format 

changes frequently due to development of new techniques that generate data in new formats. 

However, since applications access gene sequences only through their abstract interface, it 

is not necessary to change applications as long as that interface is unchanged. 

Both type evolution and type extensibility are critical for scientists to merge new dis- 

coveries with existing knowledge. As scientific models evolve, it must be possible to modify 

the corresponding types. A related issue is type extensibility, namely, a capability to add 

an arbitrary type as a new model is formed in scientific research. 



When defined as a data type, a scientific model is available for multiple applications to 

share. It would further increase reusability if variations on a type all share the common part 

of the definition. Such variations occur when a model evolves or a set of related models are 

to be represented. Object-oriented databases support such reusability through inheritance 

of existing definition as described in Chapter 3. 

2.2 Traditional Database Support 

Combined with support for scientific data types, traditional database features such as stor- 

age management, an ad-hoc query facility, and data exchangeability greatly benefit scien- 

tific applications. Storage management, handling secondary memory and data I/O to/from 

main memory, can provide support for large data that must be handled often in scientific 

research. Advances in lab technology have started producing immense amounts of data, 

and it is becoming increasingly difficult to manage them manually. Computer simulation 

also generates a large amount of data. It is difficult to manage simulation results, correctly 

relating results from different runs. 

Traditionally information scientists acted as intermediaries for domain scientists and 

performed database searching for them. However, more and more domain scientists per- 

form data search themselves these days, and there is a need for an ad-hoc query facility 

that domain scientists can effectively use. Traditional databases such as relational systems 

offer only a fixed set of data structures and queries, and domain scientists must somehow 

translate operations on the models to equivalent queries on the provided structures. Such 



translation has proved to be a major stumbling block for domain scientists in using tradi- 

tional databases, since the translation is generally non-trivial and even impossible in some 

cases. For example, one of the typical queries executed for the protein contact potential 

model is to get a list of all the contacts of a specific chemical type within a given distance for 

homologous proteins and compute the potential energy from the obtained list of contacts. 

Such a query, containing arbitrary computation, is impossible to express in current rela- 

tional languages. If scientific models are supported as data types in a database, scientists 

can define arbitrary operations for directly querying the models. If a database supports an 

abstract data type, data access operations specific to the model can be defined in the type 

to be shared by scientists. With a model directly stored in a database, the database can 

also exploit the semantics of the model to optimize query processing. 

In reality, scientific data are often distributed among different hardware platforms. In 

such a heterogeneous environment, data are typically not exchangeable since they are stored 

in different physical formats on different platforms. Some databases mask such differences 

by providing automatic conversion of the format when the data are transferred between 

platforms. A related issue is how to unify the data stored in different kinds of data stores, 

e.g., files, relational databases and object-oriented databases. As mentioned later, an object- 

oriented paradigm is much more flexible than the data models provided by files or relational 

databases, and provides a potential as a framework for such unification. 

In scientific research, the same data are often analyzed from different angles, and as a 

result, they are accessed by multiple applications. Databases can support such a situation 

by providing a "view" of the data appropriate for each application. For example, Protein 
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Data Bank (PDB) files contain both a list of amino-acid residues and atomic coordinates

for proteins. Depending on whether sequential or structural motifs are being studied, one

of the datasets may be hidden as irrelevant while the other is provided to a tool as a view.

Finally, database functions such.as recovery,indexing, atomicity and concurrency control

make data storage safer and more secure in general. The need for concurrency control

depends on the application. Some scientific data are never updated, as is the case with

epidemiologic data, making concurrency control of little value. In contrast, concurrency

control is a critical requirement in an application like drug design carried out by a team of

medical chemists.

2.3 Summary

Through a number of examples, we recognized a need for scientific data types as well as

potential benefits of traditional database support for existing scientific applications. The

following is a list of the requirements identified in this chapter.

. Scientific data types as direct representation of scientific models. Scientific data types

should support the followingas potentially useful features for scientific applications.

1. nested structure

2. meta-information supplementini raw numbers

3. operations for such functions as customized data access and model specification,

especially as provided in abstract data types

4. unification of multiple types for the same physical system
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5. type evolution/extensibility

6. generalization hierarchy for generic data types

. Database support, which includes the following.

1. storage management and support for large data

2. ad-hoc query facility allowingdomain scientists to query data in an intuitive waJ

3. inter-operability between different hardware platforms and data stores

4. multiple views of data

5. recovery

6. structures for data search such as indexes

7. concurrency control

A database that supports scientific data types can store scientific models directly, mak.

ing persistent data available to scientists in a format they are accustomed to handling

without sacrificing traditional database support. In Chapter 3, we will discuss the potentia]
F

of object-oriented databases over current approaches to scientific data management with

respect to the requirements discussed in this chapter.

"

i"
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Chapter 3

Potential of Object-Oriented Databases

This chapter discusses the potential of object-oriented databases to support the require-

ments of scientific applications described in Chapter 2. We first examine some approaches

currently in use for managing scientific data and discuss advantages and disadvantages in

each case. We then compare an object-oriented database to those current approaches and

explore its potential advantages.

3.1 Current Approaches to Scientific Data Management

This section examines some approaches currently used for supporting scientific data. In

particular, we consider customized data management systems, standardized data formats,

persistent languages, and traditional database management systems.

3.1.1 Customized Data Management Systems

Customized data management systems limit attention to specific applications and imple-

ment data support customized to the needs of those targets. Though most such systems

do succeed in supporting the current n~ of the targeted applications, they are often not

extensible to accommodate new needs or targets. Most current scientific data management

systems are such "proprietary" systems, constructed as a need arises. Since traditional
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databases often do not match needs of scientific applications well, needed data manage-

ment functions are provided on top of a file system. Most approaches are ad-hoc individual

efforts, hence there is a lack of standards and compatibility among such systems.

For example, in molecular biology, there are a variety of data banks; n~cleic acid se-

quence data banks such as the GenBank Genetic SequenceData Bank [B+OO]and the EMBL

(European Molecular Biology Laboratory) Data Library [EMB91], protein sequence data

banks such as the Protein Identification Resource (PIR) at NBRF (National Biomedical

Research Foundation) [PIR91], protein crystallographic structure data banks such as the

Protein Data Bank (PDB) at Brookhaven National Laboratory [B+77, ABB+87], and other

specialty data banks such as the PROSITE protein sequence pattern data bank [PR090].

Most such data banks utilize a file system to manage data, though GenBank recently initi-

ated conversion to a relational database system. Each data bank formats the data differently,

and the format changes frequently to incorporate new demands from the field. In computa-

tional biology research, it is often necessary to combine the data from different data banks,

e.g., DNA sequence data from GenBank and protein structural data from PDB. In unifying
F

the data from different data banks, differences in the formats are often resolved manually

to create a consistent, non-redundant set of the data.

There are also various applications developed for analyzing the data obtained from the
~

data banks, e.g., Delila, P /FDM, PKB. Delila is a database for nucleotide sequence access

and analysis [SSHG82]. P /FDM is an integration of the logic programming language Pro-

log with the functional data model database (FDM) used for protein structural modeling
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[GPKF90). PKB (Protein Knowledge Base) is a NewS application for managing and ana-

lyzing protein structural data that will be described in detail later [Bry89). As with data

banks, each application stores the data in a different format, so the data must be converted

from one format to another if more than one app]ication are used to analyze them.

Standardized data formats described in the next section attempt to eliminate data

conversion between different systems by providing uniform data structures appropriate for

scientific data.

3.1.2 Standardized Data Formats

Standardized data formats are designed to provide generic data types customized for certain

classes of scientific data. Most formats offer limited type support, Le., their types are really

special "data structures" with fewassociated operations. Arbitrary structure is supported in

most cases, e.g.,"nested structures similar to the UNIX directory organization are supported

by the Hierarchical Data Format (HDF). The types are fixed in most cases, though some

extensibility is provided with HDF. Their database support is also weak, e.g., a primitive

data query facility, as described later. ,

Standardized data formats currently available include HDF, Data and Description Rule

(D&D), and the Network Common Data Form (netCDF). HDF [Nat89], produced by
,

the National Center for Supercomputing Applications (NCSA) at University of Illinois at

Urbana-Champaign, is designed for the transfer of graphical and scientific data between

various computer architectures, e.g, Cray, Sillicon Graphics, and Alliant. HDF supports

rectangular gridded arrays. HDF data structures for the rectangular arrays include not



~..,
.. ~,

~

19

only the base data but also information necessary to interpret the data, e.g., dimensions of

arrays, to make HDF datasets self-describing. All the types in HDF share the same array

structure, but they contain different annotation attributes that distinguish them from each

other. Therefore, it is possible to add a new HDF type by defining appropriate annota-

tion attributes as long as the data can be represented in an array form. Operations for

the data are provided separately from the HDF data structures. HDF currently provides

command-line utilities that operate directly on HDF files, and also calling interfaces to read

and write HDF files from within FORTRAN or C programs. As mentioned later, those

data I/O operations are fairly primitive. NCSA also offers a set of graphics visualization

programs utilizing data in HDF. Various scientific organizations, including NASA and all

of the supercomputer institutes, seem to be converging on HDF as a standard data format.

In Data and Description Rule (D&D), a dataset and its description are organized to-

gether to promote communication of data among statisticians [SST90b, SST90a). The

D&D supports relations and arrays as fundamental data structures. The data descriptions

include schema information on relations and dimensions of arrays, as well as miscellaneous,

information such as sampling methods used to collect the data.

The Network Common Data Form (netCDF) data access library was developed to repre-

sent scientific data in a self-describing and network-transparent format in order to support
i'

the creation, access, and sharing of the data [Fu189,RD90). Its data model supports prim-

itive types such as integer, character, and floating point numbers. A netCDF variable

represents a multidimensional array of values of the same type, and has a name, a shape

described by dimensions, and various attributes. Attributes may be attached to a netCDF
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variable or an entire netCDF file, and represent such miscellaneous information as units,

a valid range, and quality of the data. All data are represented in a machine-independent

form, and they are transferrable between different types of computers without explicit con-

version. A subset of data in a file can be aggregated to form a hyperslab and accessed as a

unit. Both C and FORTRAN interfaces are provided for netCDF data files.

Other scientific data formats include BUFR (Binary Universal Form for data Repre-

sentation) [ECM88], Candis [Ray88],and CDF [Gou88]. BUFR is a machine-independent

format for self-definingdata approved by a commission of the World Meteorological Organi-

zation as a standard for interchanging and transmitting meteorological and oceanographic

data. Unlike HDF, data types are not extensible in BUFR; it only supports a fixed set

of predefined data types in the centralized registry. Candis is a package of C software for

UNIX and accommodates self-describing scientific data. It adopts a ''pipes and filters" ap-

proach to data processing, and as a consequence, data access is inherently sequential; it is

inefficient to access small parts of large files. The NSSDC (National Space Science Data

Center) CDF is a FORTRAN library and supports multidimensional scientific data. It has
>iF

been used to archive many different kinds of data, and an extensive collection of analysis

and display applications is available for data in the CDF format.

Since each data format has its own advantages and scientificdata are distributed among,

J>

different formats, attempts have been made to develop converters between them to promote

data sharing.

As is clear from the examples above, standardized data formats attempt to accommodate

structures of scientific data directly. Most formats support a multidimensional array since
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it is a common structure for scientific data. In most formats, data types only define a

structural template, and operations for data access and commonly used computation are

provided for sharing as a library of programs separately from the formatted data. In most

cases, data access operations are basic and not customizable or extensible. F?r example,

selective data retrieval is not supported in HDF and everything in a dataset must be loaded

into a program even if only part of the data is actually needed. Their database support

is also weak, e.g., protection against accidental data loss, associative query, and storage

management are generally lacking.

3.1.3 Persistent Languages

Persistent programming languages are the result of efforts to incorporate persistent data

in a uniform, transparent fashion by providing a single language and data model for both

transient and persistent data. In contrast, most programming languages currently used in

scientific research are non-persistent, e.g., C or FORTRAN, and persistent data are provided

through an interface to a file system or a database system. As a result, programmers are

faced with two different data models: the programming language's type system and another

from the file or database system. Hence, persistent data reference requires explicit trans-

lation between transient and persistent qata. As scientific data typically exhibit complex

structure, scientific applications can devoje as much as 50% of the code to flattening and

reconstructing the structures of the data between the applications and a file system. With

the use of a persistent language, it is possible to eliminate the part of the applications that

explicitly interacts with a persistent storage system, making the code easier to understand
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and to maintain.

A disadvantage of using persistent languages is that the underlying data store is dedi-

cated to providing persistence to data represented in a particular language. Once persistent

data are created through a certain language, it is easy to access the data from that language,

but more difficult to browse the data directly or to use the data from other languages.

It is also the case that database support is generally weak in existing persistent lan-

guages. As many persistent languages were developed as an extension to a programming

language, their data types do not always support large collections of data items that are

typically encountered in databases. Such is the case with PS-Algol, Le., the programming

language Algol extended with persistence [ABC+83]. Persistent languages such as TAXIS

[MBW80]and Trellis/Owl [OBS86]provide support for database access, though their sup-

port is geared toward business data processing and data structures such as sets of records.

And as with standardized data formats, the data store underneath most persistent languages

does not provide a complete set of data management features.

NewS is a persistent language specifically designed for scientific data analysis applica-
,

tions. As a persistent language, NewSprovides transparent access to persistent data as well

as facilities customized for scientific applications, e.g., scientific types such as arrays and

time-series and a large library of functions for statistical and graphical data analysis. As

/"
such, NewS is widely used in various scientific domains and its advantage as a persistent

language is well-recognized,especially when its transparent access is compared to file access

in C or FORTRAN. On the other hand, NewS is weak in its data management, e.g., a lack

of robust support for large data (persistent or transient), and a need for improvement is
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widely recognized in the NewS community. We chose NewS applications as the target of

our experimental study, and a detailed description of NewS is provided later.

3.1.4 Traditional Database Systems

This section discusses storing scientific data in traditional database systems by fitting the

data into their data models. In particular, we focus our attention on relational database

systems, since they have proven to be successfulfor business applications and are a maturing

technology.

Some scientificdata repositories, e.g., the GenBank Genetic Sequence Data Bank [B+9O],

have started converting the data stored in ASCII files to the relational format. Some

tools used for analyzing scientific data are also interfaced with commercial databases. For

example, the statistical data analysis package SAS, widely used in biometry and social

science, is interfaced to the relational databases DB2 and ORACLE.

A drawback in adopting a relational database for scientific data is a lack of direct sup-

port for scientific data types. For example, a relational system does not support nested

structures directly, so such a structure must be mapped to a collection of flat relations.

Meta-information is often very difficult to express in a rigid relational model, since not ev-

erything can be expressed as numbers or s~ringsin relations. Storage of arbitrary operations
"

is also not supported. SQL, a query language for relation81databases, is not computation-1"

ally complete, so possible data manipulation is limited to simple data access, arithmetic

and aggregate operations. And such access operations muSt be expressed as SQL queries
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on relations, not a natural format for scientific data access. Many semantic concepts po-

tentially useful for scientific data, e.g., abstract data types and generalization, are also not

available in the relational model.

Traditional database features, e.g., storage management and concurrency control, are of

course provided by relational systems. However,it is not clear whether or not their partic-

ular functions, e.g., strict serializability for concurrency control, are suitable for managing

scientific data.

3.2 Introduction of Object-Oriented Databases

This section introduces object-oriented databases as a potentially more viable approach to

managing scientific data than those described in the previous section. We first describe

what an object-oriented database is, then discuss their potential advantages with respect

to the requirements in Chapter 2.

3.2.1 Object-Oriented Database Overview

As their name suggests, object-oriented database systems provide both object-oriented

and database features. Basic object-oriented concepts supported by most systems in-

clude objects, encapsulation, message~, methods, classes or types, inheritance, and
".

complex objects.
?

An object represents a discrete entity of an arbitrary kind. Each object is associated

with a unique identifier that distinguishes it from other objects independently of its value.

An object is usually encapsulated and interacts with the external world only through a
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well-defined protocol. Such a protocol typically consists of a set of messages that can be

sent to the associated object in order to perform some action. A method is a piece of code

that implements the desired action for a message. A class or type specifies a particular set

of objects as its "instances". The terms type and class are often used interchangeably, but

when used together, a type typically refers to a template for representation and actions of

its instances, whereas a class refers to a collection of all instances of the corresponding type.

In the following discussions, we will exclusivelyuse the term "class" unless both terms are

needed to distinguish a template from a collection.

Classes are typically arranged in a hierarchy, where a subclass inherits all the prop-

erties defined by its superclasses and may define additional properties of its own. There

are a variety of class hierarchies possible, depending on the kind of properties inherited

from superclasses to subclasses. In a specification hierarchy, an instance of a subclass

.can be substituted wherever an instance of its superclasses is expected. This concept of

"substitutability" puts restriction on how a method can be extended and modified from a

superclass to a subclass, since a method of a subclass must behave the same way as a cor-
F

responding method of its superclasses. A subclass in an implementation hierarchy inherits

and extends implementation, Le., representation and code for operations, of its superclass.

In a constraint hierarchy, a subclass inherits all the restri~tions on instances specified for its
i'

superclasses and may be further constrained. In an extent hierarchy, a class is a collection

of all instances of the corresponding type, and a subclass represents a specificsub-collection

of a superclass. It is possible for the same collections of objects to be organized differently

depending on the choice of hierarchy. Among a variety of different hierarchies described
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above, implementation hierarchy offers a practical advantage by encouraging "inheritance"

or reuse of existing code for easy implementation and maintenance of an application pro-

gram.

There is also a variation in the form of inheritan~e allowedin hierarchies; some systems

incorporate multiple inheritance, Le., a class may have multiple unrelated superclasses,

whereas others permit only single inheritance where there is only one direct superclass and

the hierarchy forms a tree. With multiple inheritance, a mechanism is necessary to resolve

conflicts in case properties (e.g., methods) of the same name are inherited from different

~ classes.

Many object-oriented database systems support the concept of complex objects by pro-

viding references or relationships between an assembly object and its component objects.

Besides direct assembly-component reference, additional properties are supported by some

systems. For example, a common value shared by an assembly object and its component

objects, e.g., color of paint for an entire car and its body parts, may be propagated from the

assembly object to its components. Or when an assembly object is deleted, all its compo-
~"

nents may be also deleted automatically. By allowing components to be arbitrary objects,

complex objects can directly represent hierarchically nested structures that are common in

engineering or scientific applications. :.

.~

Traditional database features include persistence, stora.ge management, concurrency

control, recovery, indexing, query, and schema. changes or versions. Data persistence

is fundamental to database systems, and in most object-oriented databases, objects of all
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kinds can be stored permanently for repeated access from applications. Storage manage-

ment typically handles management of secondary storage as well as in-core memory. Its

.0functionalities include data transfer between secondary storage and in-core memory, clus-

tering, and caching of data for efficient data access.

Concurrency control allows multiple users to access the same data while maintain-

ing data consistency. In many systems, concurrency control is provided through atomic

transactions, where a set of operations can be conunitted or aborted as a unit and locks

"reserve" data for various usages.

With a recovery mechanism, a system can restore some coherent state of the data after

yarious kinds of failures, e.g., software, disk or processor failure. And an index is a useful

mechanism for efficient value-based data access.

An ad-hoc query facility could be a query language or graphical interface that allows

.users to specify the data they want without progranuning. There is currently no single

object-oriented database query language that is accepted as widely as SQL in relational

databases, though various extensions to SQL that incorporate object-oriented concepts
"

have been proposed.

Schema changes or versions are supported to accommodate data update, though most

systems only support very simple changes in a class hierarchy, e.g., changes to leaf classes

only, or modification of methods.
t
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3.2.2 Potential of Object-Oriented Databases

An advantage of an object-oriented database for managing scientific data is its flexible

data model capable of supporting scientific data types. For example, nested structures

are directly accommodated in an object-oriented data model with recursive decomposition

of an object. A scientific data type can be represented as a class with both structural

and operational semantics defined in a uniform framework. Unlike many standardized

data formats, types are extensible with an object-oriented data model through definition of

arbitrary new classes. Generalization hierarchy supports specialization of a generic model

for different systems through subclassing. Multiple inheritance, though not provided in all

object-oriented data models, would directly accommodate unification of multiple types for

the same physical system. Generalization hierarchy and associated inheritance are often

considered by domain scientists as one of the most significant benefits of an object-oriented

data model, since it promotes reusable, modular design for efficient development and easy

maintenance of complex applications.

Advantages of an object-oriented data model have been recognized in various scientific.
domains and the model was adopted in some applications. APEX (A Physics Expert) is a

computer program built in an object-oriented programming environment (GLISP, A LISP-
"

based programming system with data abstraction) for solving physics problems in a model-
#'

based representational framework [KN91]. Many physics problems are initially presented

in terms of informal, real-world entities and relationships among them. The first step in a

problem-solving process is to translate those entities and relationships into formal, abstract
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models of physics. APEX assists physicists in obtaining such a formal representation of a

problem by providing two kinds of models; canonical physical objects and physical models.

,A canonical object class represents an idealized unit in physics such as a point mass and an

ideal rope. The conversion process of abstracting real-world entities as canonic~l physical

objects is represented as a view object. A physical model is an encapsulation of a single

principle or law of physics; each model class specifies canonical physical objects involved

in the model and constraints imposed by the represented law of physics either as a set of

equations or a specific environment for the objects. In a typical process of selecting an

appropriate physical model for a problem, a generic physical model class is specialized with

additional attributes for the particular case.

The Thermodynamics Workbench performs thermodynamic calculations, implemented

using an object-oriented paradigm in Common LISP [MK89}. Each Workbench object

corresponds to a thermodynamic subsystem or connection between subsystems. Such a

connection is represented by a wall object that regulates the flow of extensive quantities

between subsystems. Thermodynamic model classes are arranged in a hierarchy, with the
.<

most general class representing a basic thermodynamic model that defines such generic

properties as total entropy, enthalpy, and Gibbs energy. Since subsystems are represented

as encapsulated objects, it is possible to select different plodels for each subsystem. The
;-

Workbench is still able to find an equilibrium state among the subsystems as interaction

between them is abstracted out to their external access protocol.

StrateGene represents data from cloning experiments using objects, classes of objects,

and associated attributes for both as supported in the KEE frame system [CCM88}. The
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objects and classes are called unitsand the attributes are called slots. Object or classes

can have method slots that specify various operations. The subclass mechanism is used to

represent taxonomic hierarchies of biologicalmodels. For example, a general class called EN-

Z.YMESis defined with components such as MOLECULAR.WEIGHT and SUBSTRATE.

Subclasses of the ENZYME class such as PROTEASES and RESTRICTION.ENZYMES are

then defined with the components inherited from their superclass ENZYME as well as addi-

tional components such as RECOGNITION.SEQUENCE for RESTRICTION.ENZYMES.

P jFDM utilizes certain object-oriented features to represent protein structure data

[GPKF90]. In PjFDM, an object is a basic unit of data, and properties of objects and

relationships among them are represented as functions over object classes. Object classes

are organized in a specialization hierarchy where properties are inherited. As mentioned in

Chapter 2, the NIH Genome Database also utilizes some object-oriented concepts, represent-

ing gene sequences as abstract objects independent of their internal representation [And89].

Therefore, even though internal representation is modified due to changes in technology,

the external access protocol for gene objects remains invariant.
".

In all the examples above, scientific models in a variety of domains are directly sup-

ported as a class. An object represents an instance of a model, Le., a "view" of a physical

system through the model. Inheritance has successfully~n used to represent taxonomies
t

of models, with common properties among similar or related models defined once and effec-

tively reused. Encapsulation provides an advantage as in the Thermodynamic Workbench

and NIH Genome database, since an abstract view of a model is separated from internal

representation and changes in the representation of an individual object do not require
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modification to the rest of the system.

As object-oriented databases combine a flexible data model with traditional database

features, they can deliver direct support for scientific data types without compromising

database support needed by scienti.ficapplications. In contrast, current approaches such as

standardized data formats do not provide a complete set of database capabilities, whereas

traditional databases do not provide adequate type constructors for scientific data types.

3.3 Summary

This chapter examined current approaches to scientificdata management, and described the

potential advantages of object-oriented databases over other examined approaches. Cus-

tomized data management systems often serve their purpose with respect to the targeted

applications, but lack extensibility beyond that limited scope. A lack of standards among

them makes analysis of the same data by different applications difficult. Standardized data

formats attempt to provide uniform data structures customized for scientific applications,

but generally lack data management features such as direct data queries, storage man-
0<

agement, protection against loss of data and concurrency control over simultaneous data

update. Use of persistent languages would benefit scientific applications if their data types

are adequate for scientific data, but they are also limited in data management features.
?

Traditional database systems, in contrast, have data management capabilities, but their

data models are inadequate for scientific data.

Object-oriented database systems combine a flexibledata model with data management

capabilities to provide advantages over the current approaches to scientificdata management
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described above. An object-oriented data model can directly support scientific models as

a class as seen in various examples. Based on this analysis, we chose an object-oriented

database (GemStone) for a baseline data management architecture of the experimental

platform we.constructed, Le., GemStone-based NewS, which will be introduced later in the

dissertation.

.'-

"

f
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Chapter 4

Criteria for an Experimental Platform

Chapter 2 discussed data support requirements of scientific applications, identifying a need

for scientific data types and various traditional database features. In this study, we investi-

gated how to support such requirements. Our investigation centered on construction of an

experimental platform and experimentation on that platform.

We took an experimental approach since we wanted to examine possible data support

architecture against actual instances of scientific data and functions executed on them.

While it is possible to examine data structures or function definitions statically, informa-

tion on dynamic characteristics such as data access patterns are hard to obtain without.

actual execution, especially because very little has been documented on dynamic features

of existing scientific applications. We constructed an experimental platform so that we

can compare possible architectural alternatives against a variety of scientific applications

in the same environment. The platform also provides the possibility for exploring dynamic

characteristics of existing scientific applications as many of such characteristics are yet to
"

be discovered. j"

We tried to construct a cost-effectiveplatform that would deliver maximal information

with minimal effort. Hence, we put a priority on the followingcriteria.

1. Cost-effectiveness. Cost-effectivenessrefers to the amount of work required to put
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together the platform. For example, it minimizes cost to maximize reuse of existing

components in constructing a platform.

2. Productivity and Flexibility. We expect experimentation on the platform to

produce information on design and architecture leading to a.production system. To

make a good start toward that direction, the base architecture of a platform should

be potentially a good match for the requirements of the targeted applications. Also,

if the architecture is flexible, we can tllile it for targeted applications.

3. Generality. The platform should accommodate experimentation with a wide variety

of scientific applications and domains so that it is not necessary to implement a

separate platform for each.

4. Performance. There is a minimum level of performance needed to perform a sta-

tistically sufficient number of experiments with existing applications on a platform.

Ideally, a platform would evolve into a system with performance sufficientlyclose to a

production system so that the architecture of the platform can be tested in the field.
"

Such a field test will fine-tllile the architecture, eventually yielding a final production

system. In reality, such evolution of a platform would likely take multiple steps, and in

each step, we should be able to learn incrementally a,bout applications' requirements,

database design, and possible perfoIThanceimprovement.

5. Ease of Experimentation. Ease of experimentation indicates a preference for a

small amount of work required to set up and perform experiments. For example, a

platform that allowsfor reuse of existing applications "as is" is preferred to a platform



that requires major modification of the applications. 

Later in the dissertation, many of the design decisions for the platform will be discussed 

with respect to the criteria above. Through our experimentation, we will also examine if the 

constructed system has turned out to a good experimental platform based on those criteria. 



Chapter 5 

Issues for Investigation on a Platform 

The last chapter proposed experimental study on scientific data management and defined 

a set of criteria for a cost-effective experimental platform. This chapter discusses the kind 

of issues one might wish to examine with such a platform. Throughout the discussion, 

we refer to the data support requirements described in Chapter 2, since our objective is 

to investigate possible design dimensions in supporting the identified requirements. Note 

that any single architecture is unlikely to support investigation of all possible issues, and 

a particular platform we constructed is no exception. Later, we will evaluate suitability of 

our platform by the range of issues readily examined on the platform among those discussed 

here. 

5.1 Support for Scientific Data Types 

In order to support scientific data types effectively, we must consider issues such as a type 

definition facility, implementation of types, and possible queries on types. We provide a 

separate discussion on each issue below. 

5.1.1 Type Definition Fhcility 

One would like to explore possibilities in designing a facility for defining scientific data types. 

Note that this dimension only concerns external specification of the types, separate from 



their implementation. A definition facility should provide a set of constructs that directly 

supports such requirements as hierarchical structure, abstract data types, and generalization 

hierarchy identified earlier. Also included in this dimension is the design of syntax for type 

definition and a user interface aimed at maximal ease of use. Another possibility is to 

examine definition of data semantics apart from individual type definitions, e.g., relations 

over types such as specialization. 

5.1.2 Implementation of Types 

Having specified a collection of types, one needs to construct time- and space-efficient 

implementation for those types. As we identified that scientific data types should include 

not only data but also operations, we discuss implementation of both state and operations 

below. 

State 

To represent the state of a data type, one would like to experiment with various constructors 

for defining that state such as tuples, sets and arrays. Though not supported in traditional 

databases, arrays are one of the most common structures in scientific applications, and it is 

worth investigating their use for scientific data. For productive experimentation, a platform 

should provide a variety of constructors for representation, including arrays. Furthermore, 

an ability to augment a given set of constructors would be also useful. 

One can also consider different implementations for a given constructor. The same 

conceptual constructor can be represented as an encapsulated, first-class object complete 



with its unique identifier, or as a value without identity. Implementation can differ based 

on data size, for example, large arrays might have a different implementation from small 

arrays. 

Another possibility is to examine different ways to structure the state for a given type. 

The state of a scientific data type can be organized according to the structure of a cor- 

responding model to accommodate direct representation of the model, though variations 

are possible to customize the structure for individual needs. For example, in a hierarchi- 

cal decomposition, frequently-accessed information, regardless of its original position in the 

model, can be "cached" or duplicated at the top level for efficient access. 

Operations 

Implementation of operations depends on a programming language and associated paradigm 

of a choice, e.g., procedural, functional, or equational. The essence of many scientific models 

is expressed by a set of formulas, for which equational representation may be appropriate. 

On the other hand, operations such as customized data access are better represented pro- 

cedurally or "declaratively", i.e., by declaring the kind of data requested. Hence, in this 

dimension, one can first explore suitability of each programming language for the kind of 

operations executed in an application. Note that it is possible to consider mixing multiple 

languages as certain languages permit a call to routines written in other languages. Given 

a particular programming language (or its combination), one would like to consider alter- 

native implementations of the same operation based on a variety of criteria. For example, 

one can explore modular design for ease of development and maintenance, or attempt to 



optimize implementation for efficiency. 

5.1.3 Query on Types 

We mentioned in Chapter 2 a need for a query facility that allows domain scientists to access 

data in a way natural to them. Since scientific data types represent a conceptual framework 

used by scientists, it would be intuitive for them if queries can be expressed in t e r n  of those 

types. For such type-based queries, one would like to investigate a variety of design options 

for a query-definition facility such as appropriate language syntax. A use of a graphical 

interface may provide domain scientists a more intuitive alternative to programming in 

forming a query, though it must be still possible to incorporate programming if arbitrary 

computation is needed for the query. I6 would be also useful to explore a query-processing 

environment for such type-based queries and consider issues such as possible optimizations 

and necessary auxiliary access structures. Note that if we represent queries as type-specific 

operations, the issues discussed on implementation and execution of operations also become 

applicable to queries. 

5.1.4 Other Data Type Support 

It would be beneficial to examine other data type support such as unification of multiple 

types, a potential use of generalization hierarchy, type evolution as very little has been 

known about such requirements on scientific applications. For example, one can explore 

multiple inheritance or union as a means to merge multiple types for the same physical 

system; as discussed in Chapter 2, it is often necessary to accommodate multiple types 

simultaneously in scientific applications. A variety of properties can be inherited from a 



general model to a more specific version; we cited earlier an example of mean field theory 

where a concept and general structure of a partition function is reused in different examples. 

Hence, one can examine the kind of properties inherited in the taxonomy of the domain 

to determine an appropriate form of generalization. As for type evolution, one can ask 

whether specialization of existing types is sufficient, or more arbitrary changes need to be 

supported. 

5.2 Execution of Operat ions 

As operations are included in types, one would like to consider alternatives for their execu- 

tion scheme. If an application operates on data stored in a database, actual execution can 

take place either in the database or in an application's memory space. A variety of policies 

are conceivable for deciding a location of operation execution. Another possibility is to 

explore dynamic optimization of an operation as it is executed on various data instances. 

5.3 Data Movement 

An issue related to operation execution above is cost of data movement. As operation 

execution spans a database and an application, data transfer is incurred between them, and 

an execution scheme should be mindful of that cost. The location of an operation (or its 

subparts) can be varied to come up with minimal data transfer cost. 



5.4 Traditional Database Support 

One would like to examine required database support for scientific applications, e.g., neces- 

sary indexing structures and an adequate concurrency control scheme. For example, with 

concurrency control, it is yet to be determined whether existing transaction models are ade- 

quate for scientific applications, or a new model needs to be developed for them. As scientific 

applications encompass a variety of domains, a solution may well be domain-dependent. 

5.5 Dynamic Properties of Applications 

At the outset of this study, we were especially interested in using a platform to run appli- 

cations and examine their dynamic properties. Such "dynamic" examination would gather 

statistics on the actual numbers of each type of objects used, and the frequency and cost 

of operations executed on them. Design of database support such as storage management, 

query processing, and operation evaluation policy should also benefit from looking at such 

run-time properties as distribution of size of data instances and access patterns on data. 

5.6 A Range of Applications 

One of the criteria we discussed in the previous chapter was a generality of applications 

supported by a single platform. We would like to investigate any of the issues discussed 

above across a variety of applications to see how dependent it is on application specifics. 



5.7 Summary 

The following is a summary of design dimensions we would be interested in investigating 

on an experimental platform. 

Support for scientific data types 

1. type definition facility 

2. implementation of state 

3. implementation of operations 

4. queries on types 

5. other data type support such as inheritance and type evolution 

Execution of operations 

Data movement 

Traditional database support such as index and concurrency control 

Dynamic properties of applications 

Multiple applications 

The rest of the dissertation describes the design of an experimental platform we con- 

structed and investigation subsequently performed on the platform. As mentioned before, 

the platform does not support investigation of all the issues discussed in this chapter. We 

will later assess suitability of the constructed platform for our study based on the kind of 

issues one can easily investigate with its architecture. 



Chapter 6 

Introduction Of Experimental Platform: 

Gemstone-based NewS 

This chapter introduces an experimental platform we constructed, Gemstone-based NewS. 

In designing the platform, we chose to interface a scientific persistent language News to 

the Gemstone object-oriented database. Chapter 3 motivated the use of an object-oriented 

database for scientific data management and our choice of Gemstone. NewS provided us 

with an entry point into a variety of scientific domains, e.g., statistical research, computa- 

tional biology, epidemiology, economic analysis, where its statistical and graphical analysis 

capabilities are extensively used. As current NewS relies on files for persistent data store, 

many NewS applications suffer from a lack of robust data support. By interfacing Gem- 

Stone with NewS, we could examine object-oriented database support, i.e., a potentially 

better alternative to files, for different NewS application areas on a single platform. NewS 

also provided us with an opportunity to reuse existing application programs as is. 

In this chapter, we discuss why we chose two main components of the platform, i.e., an 

object-oriented database and a scientific persistent language, with respect to the criteria 

presented in Chapter 4. We also describe specific systems we chose for those components, 

namely, Gemstone and NewS, and justify their choice. 



6.1 Object-Oriented Database Gemstone 

The potential of object-oriented databases described in Chapter 3 was a main motivation 

for us to choose an object-oriented database as a baseline architecture for our experimental 

platform. As mentioned before, an object-oriented database combines a flexible data model 

that can accommodate scientific data types with traditional database support, providing a 

good starting point toward productive experimentation. An object-oriented database is a 

generic system that can be adapted to a variety of scientific applications, so it provides a 

cost-effective, reusable approach compared to customized data stores developed separately 

for each application. Flexibility of an object-oriented database architecture renders a variety 

of design alternatives, and it is possible to tune the architecture for targeted applications. 

We chose the commercial object-oriented database Gemstone for our experimental plat- 

form. As a commercial system, Gemstone delivers a robust implementation of object- 

oriented data modeling concepts and various database features, so we did not have to 

implement those features from scratch or to spend much time augmenting them. Instead, 

we could concentrate on examining possible variations in utilizing such features. Therefore, 

considering criteria for the experimental platform discussed in Chapter 4, Gemstone seemed 

a good choice in terms of cost-effectiveness, productivity, and flexibility. 

Note that there exist a variety of commercial object-oriented databases besides Gem- 

Stone, each with a different architecture, and we did not necessarily conclude that the Gem- 

Stone architecture is the best choice for scientific applications. When this study started, 

there were very few object-oriented databases available, especially a commercial product, 



so the choice of Gemstone was mainly due to its availability for our study. In our experi- 

ments, we used GemStone features as "references", examining what features work well with 

scientific applications and what features are inappropriate or lacking. The following section 

provides a description of Gemstone. 

6.1.1 Gemstone 

Gemstone is an object-oriented database system available from Servio Corporation. It 

provides basic object-oriented concepts such as objects, messages, methods, classes, and 

inheritance, essentially through Smalltalk semantics. Its data language OPAL closely follows 

the syntax and semantics of Smalltalk. A simple example of OPAL program for class and 

method definitions is shown below. . 

Vector subclass: 'Sclass' 

inst VarNames: #('data' 'names') 

classVars: #('subclasses') 

pool Dictionaries: #[ ] 

inDidionary : Sde f 

constraints: #[ ] 

islnvariant: false 

method: Sclass 

f 00 

"Returns the value of an element called ' f oo'." 



I idx I 

idx := names indezO f Value: ' f 00'. 

(idx > 0) 

if True: [  data at: idx) ] 

i f  False: [ And ] 

Gemstone represents many constructs in the system as objects, including class and 

method definitions. 

Gemstone is implemented as a set of two communicating processes. The Stone pro- 

cess is responsible for most database functionality, e.g., object management, authorization, 

concurrency control, transactions, and recovery, and communicates with the underlying file 

system to perform those tasks. 

The other process, Gem, is layered on top of Stone, and provides the virtual image that 

consists of various kernel classes such as Numbers, Strings, Arrays, Sets, Bags, Collec- 

tions, and Dictionaries. Gem also includes a compiler that translates OPAL programs into 

bytecodes and an interpreter to execute those bytecodes. 

As a database, GemStone provides such traditional database functionalities as data 

persistence, storage management and efficient support for large objects, query capabilities, 

concurrency control and recovery, indexing, and constraints. In GemStone, all objects are 

persistent, and they are referenced by object-oriented pointers (OOP's). An Object Table 

maps OOP's to the physical locations of object state. A complex object is represented 

by a collection of OOP's for its subcomponents. The state of a subcomponent cannot be 



stored directly within the state of its parent object, but the subcomponents can be clus- 

tered together. Indirection through OOP's allows Gemstone to freely change the physical 

locations of objects without affecting applications. Multiple complex objects can share a 

common component through the OOP of the component object. Such indirection, however, 

contributes to the storage overhead associated with GemStone objects. 

GemStone stores large arrays as a tree structure. When a particular element is accessed, 

GemStone only loads the portion of the tree needed to locate the element. GemStone also 

caches accessed data objects for efficient subsequent access. 

GemStone allows queries to be specified over the hierarchical structure of an object. 

A sequence of instance variable names are used to specify a particular path to be queried 

in the object structure. This extension, though common in database queries for complex 

objects, conflicts with Smalltalk semantics. A Smalltalk object is accessible only through a 

fixed set of messages defined in its external interface, and the representation of an object, 

i.e., its instance variables, is not directly accessible to external programs. 

GemStone provides both optimistic and pessimistic concurrency control. With the o p  

tirnistic approach, each user freely accesses objects, but the changes are committed only 

when there is no conflict between users. With the pessimistic approach, users put locks on 

the data ahead of time to make sure all the work will be committed. 

GemStone version 2.0, which was used in our study, provides an application program- 

ming interface to Smalltalk and also to C. An integrated, windowed Smalltalk environment 

is the typical way to access and to create GemStone objects and classes. Alternatively, 

users can use an interactive, command line interface TOPAZ for more limited forms of 



object access. Later versions of Gemstone also provide an interface to C++ applications. 

6.2 Scientific Persistent Language NewS 

For scientific applications in our study, we chose a generic persistent language and program- 

ming environment for statistical data analysis and graphical operations, namely, NewS, in- 

stead of particular scientific applications or domains. Since statistical models are widely 

used in different scientific domains, a variety of NewS applications from multiple domains 

were available for our study. The number and range of existing NewS applications are 

admittedly more limited than scientific applications implemented in languages like C or 

FORTRAN. However, unlike C or FORTRAN, News is a persistent language with a uni- 

form data model for both transient and persistent data. Whether a NewS vector resides in 

memory or in a file, users can access it simply by giving its name. The NewS interpreter 

looks for the accessed vector among in-memory lists of objects called frames as well as in 

the file system data directories specified in a search list. Therefore, specifics of the underly- 

ing data store are not visible to NewS applications, and they can be made to access data in 

Gemstone without modification. In contras t , C or FORTRAN applications contain explicit 

file reads and writes, and such file operations must be replaced with data access operations 

supported by a database to use them in experimentation. Therefore, the choice of NewS 

was a result of trading off generality and ease of experimentation. The following section 

describes NewS in detail. 



6.2.1 NewS 

NewS is a language and interactive programming environment from AT&T Bell Laboratories 

with functional computation model [BCW88]. NewS is designed for statistical and graphical 

data analysis, and provides many data management operations, computational techniques, 

and graphical operations as library functions. NewS supports a variety of scientific models 

as data types by providing constructors for the types as library functions. For example, 

the l s f  it function is a constructor for the linear model type and creates an instance of 

the type. The collection of NewS types is also extensible, namely, it is possible to define a 

new constructor for an arbitrary scientific model in the NewS language. As we identified 

requirements of scientific applications in terms of data type support and traditional database 

support in Chapter 2, the following sections describe NewS in those two aspects, i.e., the 

NewS data model and data support for NewS. 

NewS Data Model 

All the data in NewS are called objects; they can be simple objects, or vectors, of various 

modes or instances of certain predefined classes. Both modes and classes define a template 

for objects, therefore, they are synonymous with data types. A vector consists of ordered 

elements or components that may optionally have associated names. (The terms "element" 

and "component" are used synonymously for the data values of NewS vectors.) If none of 

its elements contains another object, a vector is called atomic. Vectors that include other 

objects as elements are called recursive. Recognized modes for atomic vectors in NewS 

include null for the empty object, logical for a vector of boolean values, numeric for a 



vector of numeric values, complex for a vector of complex numbers, and character for a 

vector of character strings. There are many recursive modes; three that can be used in a 

general way are l ist ,  graphics, and expression. As with the expression mode, some 

modes are defined for representing NewS language constructs, as many such constructs, e.g., 

expressions and function definitions, are treated as objects. Therefore, NewS expressions 

and functions can be passed as parameters to functions, or operated upon as data. 

Predefined classes in NewS are matrix, array, category, and time-series. They 

possess not only a vector that contains data values but also attributes that describe various 

aspects of the objects. For example, data values of a matrix object are specified column 

by column in its data vector, but a matrix object also has an associated dim attribute 

specifying dimensions of the matrix. A category is an object used to represent data that 

are discrete-valued and the values fall into one of a set of possible ranges specified by a 

levels  attribute. 

Computation in NewS is based on the functional model; the basic unit of computation 

is a function. Most operations in NewS, including arithmetic operators, are provided as 

functions. Many News functions are "polymorphic", i.e., they accept arguments of different 

types. For example, various trigonometric functions in the NewS library can accept both 

numerical value and complex value as arguments. The functions distinguish those cases and 

perform an appropriate computation accordingly. 

In the NewS environment, users type arbitrary expressions that are interpreted and 

evaluated by the NewS interpreter. Expressions are made up by combining constants, o p  

erators, functions, and named data. Expressions may have a nested, hierarchical structure. 



The following are some examples of NewS expressions that illustrate NewS syntax for vari- 

ous operations, e.g., assignment, application of a function to a vector, implicit and explicit 

iteration, and data access ( [I for subset extraction and $ for component access). 

> small .primes + c(2,3,5,7,11) 

# assigning a vector of 2, 3, 5, 7, 11 to a name "small.primes" . 

# "." in "small.primes" is part of vector name. 

# "c" is a vector constructor function in the NewS library. 

> mean(smal1 .primes) 

# the mean value of small.primes, represented as a one-element vector. 

> i f  (data.ok == TRUE) sum(small.primes) 

# sums up all the values in "small.primes" if they are OK 

> for ( s n  in state$name) income[sn]/population[sn] 

# for each state, get the average income. 

# Vectors "income" and "population" are indexed by sn (state name). 

> small.primes[l : 31 

# the first, second, and third elements of the small . primes vector 

> small .primes[-21 

# all but the second element 

> small.primes[extract == "yes"] 

# a subset of the small .primes vector is specified by the positions of elements 

# with the "yes" value in the extract vector 



An assignment performed at the top level of a NewS session, as in the first example above, 

creates a persistent object of the name on the left-hand side. The value of such a persistent 

object is stored in a UNIX file. Assignments within an expression, e.g., those included in 

a function definition, create temporary objects. To perform a permanent assignment from 

an arbitrary scope, a double arrow <<- must be used. 

Most NewS functions operate on an object as unit with implicit iteration over its ele- 

ments. In the second example expression above, small .primes represents a vector, and the 

mean value over all its elements is calculated by a simple expression mean(smal1 .primes). 

As shown in the fourth example, NewS does provide constructs for explicit iteration such as 

for  and while, but treating an object as a unit is characteristic of all the classes provided 

in NewS. 

Users can define new functions in the NewS language. A NewS function definition 

consists of a name, formal arguments, and a body. The body of a NewS function is any 

legal NewS expression. The following example illustrates syntax of the NewS language for 

a function definition with the square function that squares the argument. 

> square + f undion(z) {z A 2) 

Like many NewS functions, square is polymorphic and applies to a variety of modes 

and classes, e.g., numeric and complex. 

Interfaces to C and FORTRAN are provided so that a user can choose an appropriate 

language for performing external operations. NewS is a computationally-complete language, 



but some operations may be performed better in languages like C or FORTRAN, especially 

if the operations are computationally-intensive or for which there already exists some C or 

FORTRAN program. 

An object-oriented flavor has been implicitly incorporated into NewS. As mentioned 

before, data in NewS are called objects and treated as a unit rather than on an element- 

by-element basis by most NewS functions. Object-oriented terminology such as classes, 

inheritance, and methods are used to describe NewS semantics, though unlike languages 

like C++ or Smalltalk, there is no explicit syntax for those features in the language. For 

example, a "class" is created in NewS by defining a function that creates class instances. 

The following lsf it function implicitly defines the lsf it class for the regression model by 

creating its instance with specified elements. 

> 1s f i t  + function(x, y){ 

list(coe f = qr.we f (xqr, y), 

residuals = qr.resid(xqr, y), 

qr = xqr) 

After performing the QR decomposition of input x, i.e., a numerical technique for linear 

least-squares computation, the lsf it function creates a list of components that represent 

the results of the decomposition, such as the coefficients and residuals, using the NewS 

library function for creating a list, list. 



NewS users can "inherit" an existing class in defining a new class. In the following 

example, the extended. lsf it class is defined as a "subclass" of lsf it, 

where one of the elements contains a lsf it object and various other elements are also 

added. 

The August 91 release version of NewS, later than the June 89 release used in our study, 

incorporates the concept of a "method" as a function with arguments of specific modes or 

classes. As indicated earlier, many NewS functions are generic and accept actual arguments 

of different modes. Such a function is now implemented by delegating an operation to an 

appropriate method, depending on the mode or class of actual arguments. While generic 

functions needed to know all possible modes of their arguments in advance and have an 

appropriate operation for each mode, addition of methods makes it possible to accommodate 

arguments of new modes simply by adding appropriate methods at any time. 

Data Support in News 

In selecting NewS applications for our study, one of the questions we had was whether or 

not they need traditional database support at all beyond file functions. Though a need for 



improved scientific data management has been recognized in general, scientific applications 

encompass a variety of domains, and for some applications, with their limited requirements, 

files provide a satisfactory solution. So we first examined current data support in NewS 

and a need for improvement, to make sure that a switch from files to a database in NewS 

is validated effort aimed at improved scientific data management. 

As mentioned before, persistent data in NewS are currently stored in the underlying 

operating system's files. As files provide very limited data management capabilities, NewS as 

an application is mainly responsible for proper representation and management of persistent 

data. Some data management functions have been incorporated into the current NewS 

interpreter; for example, evaluation of each expression is treated as a "transaction" at the 

implementation level, and all the assignments within the expression are committed to files 

as an atomic unit only on successful completion of the evaluation. However, current NewS 

lacks robustness in certain areas of data management. For example, it does not support 

very large data efficiently, nor does it cache accessed objects for later use. 

Adopting a database system for storing persistent NewS data can certainly improve 

data support. For example, a database is traditionally strong in storage management and 

support for large data, and it can often avoid looking at the entire collection by utilizing 

mechanisms such as an index for the selection process. In contrast, current NewS processes 

an object as an indivisible storage unit. When a function is executed, each argument is 

fetched in its entirety, even if only part of it is actually needed in the computation. General- 

purpose query capabilities in a database would allow users to examine data directly instead 

of through NewS sessions. Currently, persistent NewS data are stored in files in a binary 



format, and direct examination of the content is not possible. With a database, a schema 

can be defined and stored for the description of the data format. In current NewS, there is 

no facility to define a schema. The only way to check the format of an object is to display its 

contents. A database can also provide more sophisticated concurrency and access control 

for data sharing than what are usually provided with files. When multiple applications 

access the same data, which is a likely situation with NewS data, a database can support 

data access by each application by providing an appropriate "vieww" of the data. 

The need for database features above, e.g., support for large data and concurrency 

control, has been recognized by NewS users. For example, time-series data are often accu- 

mulated over years, amounting to gigabytes, which the current NewS has trouble handling. 

A need for concurrency control on stored functions has been discussed, i.e., a need to "lock" 

the debugged, released functions to control their access, especially from novice users. 

With a benefit of database support recognized for NewS as above, the next question we 

had was what kind of database would be the best choice for NewS data support. 

Compared to other types of databases, an object-oriented database provides advantages 

for supporting NewS, since its data model is a good match for the NewS data model. NewS 

data are already called "objects" and operated upon functionally as an encapsulated unit. 

Unlike relational databases that support only relations (sets) and tuples, object-oriented 

databases provide a rich set of structural constructs. Gemstone has direct support for ar- 

rays, which can be used to represent an ordered collection of elements in NewS vectors. The 

hierarchical structure of recursive NewS objects can be directly represented with Gemstone 

objects since "instance variables" or components of Gemstone objects can recursively refer 



to other objects. In contrast, hierarchical structure is not supported in relational databases, 

and recursive objects must be decomposed into multiple relations. Some relational database 

interfaces for NewS have been developed and are currently in use as the NewS data are often 

stored in relational databases. However, retrieval of recursive NewS objects from relational 

databases through such interfaces has turned out to be very expensive as it requires joins 

of relevant relations. 

With object-oriented databases, arbitrary operations can be represented as "methods". 

Therefore, various data access operations for NewS objects, e.g., NewS subscript functions 

[ j, [[ I], $, can be directly executed on the objects in a database as a method, and transparent 

data access of NewS is easily maintained. This flexibility provides advantages over relational 

systems where queries must be issued in a specific format (i.e., SQL) and therefore either 

a user or the evaluator must somehow translate access to NewS objects into an equivalent 

query in such a format. In general, not just data access functions but any NewS functions 

can be stored as a method. 

Though we identified benefits of database support for NewS, especially with object- 

oriented databases, additional data management capabilities of database systems do not 

come without cost. Access to a general-purpose database usually incurs performance over- 

head compared with file access, and trade-offs between additional data management ca- 

pabilities and performance overhead must be carefully considered in order to choose data 

support appropriate for each user, application, or environment. 



6.3 Summary 

This chapter introduced our experimental platform, Gemstone-based NewS. We described 

two main components of the platform, Gemstone and NewS, and justified our choice. As 

we identified the potential of object-oriented database support for scientific applications 

compared with other possibilities such as relational databases and files, we chose a commer- 

cial object-oriented database for data support for the experimental platform. We did not 

construct our own data store since the objective of our study was to explore possible design 

alternatives in utilizing object-oriented database features for supporting scientific applica- 

tions, rather than to construct a customized architecture for a specific application. With the 

flexible features of an object-oriented database, we anticipated productive experimentation 

with many design alternatives to explore. 

We chose NewS for generality and ease of experimentation. As a language and environ- 

ment for statistical and graphical data analysis, NewS provides features such as hierarchical 

decomposition and statistical models that can be used to construct data types for scientific 

domains. As NewS is a persistent language, we could reuse existing NewS applications 

without modifications in our study; the evaluator was modified to look for the objects in 

a database as well as in files. News applications indeed benefit from database support, as 

file-based data management in current NewS lacks robustness. To provided much needed 

database support, an object-oriented database seemed a good choice for NewS due to a 

matching data model. 





Chapter 7 

Gemstone-based NewS: Design And 
Implement at ion 

This chapter discusses the design and implementation of the first prototype of GemStone- 

based NewS. As illustrated in Figure 7.1, we incorporated a GemStone interface into the 

current News architecture as a "switch" added to the existing file interface. Such an ar- 

chitectural modification entailed changes in both NewS and GemStone as described in this 

chapter. By letting News access both files and GemStone objects, all the predefined NewS 

data and functions in files were readily available for our experiments. 

The rest of this chapter is organized as follows. Section 7.1 summarizes changes made 

to NewS. More detailed descriptions are given elsewhere [Kengl]. Section 7.2 discusses 

the design of a GemStone database for NewS. Representation of NewS objects and opera- 

tions are described, including possible alternatives and justification for the chosen design. 

Since GemStone is capable of executing operations, we also discuss what NewS operations 

potentially benefit from execution inside GemStone. 

Section 7.3 provides physical specifics of our prototype such as versions of Gemstone 

and NewS used and how both systems are combined. 

Section 7.4 gives the priorities during the design process, i.e., flexibility of the overall 

design versus performance optimality. We provide some examples of experiments to be 
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conducted with Gemstone-based NewS, and discuss how flexible features of the system 

accommodate easy execution of such experiments. Finally, Section 7.5 summarizes our 

design decisions with respect to the criteria in Chapter 4. 

While the initial concept of the News-GemStone architecture as a vehicle for investi- 

gating object-oriented database support for scientific applications was our own, the actual 

construction of Gemstone-based NewS was a joint research project. The work of our col- 

laborator, Brian Kennedy, is reported elsewhere [Ken911 . Items that resulted from the work 

represented by this dissertation include representation of News objects, determination of 

candidate News functions for storage and execution in GemStone, and implementation of 

basic functions for data transfer between News and GemStone. Representation of News 

operations in GemStone is joint work with Kennedy. The changes to News were mostly car- 

ried out by Kennedy, though there was collaboration on the design, particularly regarding 

the interface to GemStone. We also investigated the base architecture of the constructed 

platform and its possible variations against sample NewS applications, including Protein 

Knowledge Base, as described later in this dissertation. 

7.1 Changes Made to NewS 

This section describes changes made to News to incorporate the Gemstone interface. Since 

Gemstone-based News has multiple places to look for an object, we describe the mechanism 

for object location. We discuss the particular mechanism chosen for News for deciding where 

an operation is executed, i.e., in News or in GemStone. Other issues considered include 

possible ways of incorporating transaction mechanisms of GemStone into News and partial 



loading of object state from GemStone to NewS. These and other issues are described in 

detail elsewhere [Ken9 11 . 

In incorporating the GernStone interface into NewS, we tried to preserve the syntax 

and semantics of News so that we could reuse existing News applications with minimal 

modifications. For example, the location of operation execution was kept transparent to 

applications to preserve the syntax for calling functions. GemStone transactions were in- 

corporated into News as a set of News-callable functions for committing and aborting a 

transaction, for setting locks on objects, and so on. No extension was made to the language 

itself in order to incorporate transactions. 

7.1.1 Name-To-Object Binding 

News binds names to objects by following a set of search rules, namely, first looking in 

local data frames and then searching the UNIX file system via a search list of directories. 

The NewS search list contains a user's working data directory along with other directories 

that contain News system objects. The user can add to, or change the order of, directories 

in the search list. Gemstone has an ordered list of dictionaries for organizing objects and 

resolving their names. 

In order to combine object access in different places (files and Gemstone) smoothly, 

we added to News the capability of allowing a name of a Gemstone dictionary to be used 

within the News search list, along with the UNIX directory names. The search path that 

News takes to look for an object will then be able to include any arbitrary combination of 

GernStone dictionaries and UNIX directories. This approach gives a user access to arbitrary 



GemStone dictionaries while preserving the object search paradigm of UNIX-based NewS. 

(For the rest of the dissertation, we designate the original NewS as "UNIX-based NewS" 

when contrasted to our platform, Gemstone-based NewS.) 

7.1.2 Delegating Operations to GemStone 

With Gemstone-based NewS, objects can be stored in Gemstone, and we speculate that in 

certain cases it is advantageous to perform some of the operations on the objects within the 

database. For example, a database system usually provides efficient support for access to 

large data including indexing and incremental loading of objects. Therefore, it is potentially 

more efficient to extract the desired part of a large object inside the database (if the object 

is stored there), and to move only the selected part to NewS, thereby reducing 110 and 

transfer cost. 

In order for NewS to execute operations in GemStone, a mechanism is necessary for 

selectively replacing NewS expressions or their subparts with GemStone operations. Most 

NewS expressions are represented as nested function calls. Hence, we'chose an individual 

function call as the unit of action delegated from NewS to GemStone and added the ability 

to replace any NewS function call with the activation of an appropriate GemStone method. 

Once a function call is dispatched to GemStone, all the work is done inside the database until 

the result is obtained and returned to NewS. GemStone does not initiate communication 

with NewS. 

With this approach, it is possible to have the same functionality both in NewS and in 

Gemstone, so that the corresponding operation can be executed in either place depending 



on where the data are. The following mechanism was added to NewS to determine where 

to execute a function. 

Gemstone-based News decides the location of function execution by examining the 

types (NewS object or Gemstone object) and sizes of the actual arguments before they 

are evaluated. Arguments to function calls can be literal constants, variables, or arbitrary 

expressions. In case of expressions, Gemstonebased NewS estimates the type and size 

of the result before evaluation. When an argument is a function call with only a NewS 

implementation, the result is assumed to be a NewS object. Similarly, a function call with 

only a Gemstone implementation represents one GemStone object. A call to a function with 

both NewS and Gemstone implementations is treated recursively and its actual arguments 

are examined in the same way. The size of the object returned from a function call is 

unknown before evaluation, so a fixed value is used as an estimate. When arguments to a 

function call are of mixed types, it is necessary to convert some arguments from the original 

type to equivalent representation of the other type to execute a function in one place. 

The sum of the sizes for each type is considered as the estimated cost of such argument 

conversion, e.g., the total sizes of file argument objects is an estimated cost for converting 

them to equivalent GemStone objects. The version of a function that requires the least 

amount of data conversion is then called. This particular mechanism is applied to various 

examples and compared to other possible algorithms elsewhere [Kengl]. 



7.2 Design of a GemStone Database for NewS 

This section discusses the design of a Gemstone database for NewS. We describe represen- 

tation of both NewS objects and operations. We also discuss the kinds of operations that 

could benefit from being executed in Gemstone, and list potential candidates for database 

execution. 

7.2.1 Representation of NewS Objects 

NewS currently uses a single C structure called vector to represent a vector of any mode 

(note that NewS simple objects and a C structure that implements them have the same 

name, "vector") or an object of any class. For representing NewS objects in GemStone, we 

simply created a mirror image of vector as a GemStone class. This approach is possible 

since GemStone is able to represent recursive C-like structures directly. All the fields of 

the C structure vector that store persistent values are incorporated in the Vector class 

in GemStone either as methods for computing the values or instance variables with access 

and update methods. NewS objects of most modes and classes are stored in GemStone as 

instances of the Vector class or its subclasses. 

This baseline approach was chosen to minimize differences between the C structure for 

NewS objects and its GemStone representation so as to decrease conversion cost between 

them. NewS is an interactive language, and an object must be brought into memory from 

persistent data storage as a user references it. No preloading of objects can be incorporated 

into such interactive data access, and it is crucial to minimize data transfer cost, including 

conversion cost between C and GemStone representations. 



Figure 7.2 shows the GemStone class hierarchy for NewS objects. In general, a subclass 

of the Vector class was created for each distinctive NewS mode or class so that the NewS 

evaluator can distinguish the NewS mode or class of an object simply by looking at its 

GemStone class. With this design, it is also possible to have different implementations for 

different NewS modes or classes. Subclasses of the Atomic abstract class represent atomic 

vectors of various modes, i.e., null ,  logical, double, single, integer, complex, and 

character. The Data class under the Recursive class represents objects of recursive mode, 

including list.  The Sclass class and its subclasses are for various predefined classes in 

NewS such as time-series and array. Other classes illustrated there, including subclasses 

of the Language class and the LangAtomic class, represent system objects and their modes, 

e.g., Token for an atomic language token and For for a recursive language token representing 

iteration. Those classes are used for storing language constructs such as expressions as data. 

Note that function definitions are stored in GemStone as lexical structures. They can be 

retrieved to NewS and parsed and executed by the NewS evaluator, but they cannot be 

executed in Gemstone. In contrast, NewS operations delegated to GemStone for execution 

are implemented as OPAL methods as described in the next section. 

Note that various GemStone abstract classes shown in Figure 7.2 do not have instances; 

they are used to represent common concepts or characteristics among different NewS modes 

or classes. Note also that the particular hierarchy shown in the figure was designed after 

close examination of NewS source code to determine how objects of each mode and class are 

actually implemented. For example, vectors of the mode any or objects of various predefined 

NewS classes are actually represented by the same C structure as atdmic vectors. Therefore, 
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the Vector class was defined first in GemStone, and other GemStone classes such as Atomic 

(for atomic vectors), Any and Sclass were derived as its subclasses, inheriting the structure 

and behavior of Vector. 

All the NewS objects stored in GemStone, namely, all the instances of the classes shown 

in Figure 7.2, are currently stored in one GemStone dictionary called S. 

7.2.2 Representation of Operations 

NewS and GemStone adopt different computation models. NewS is a functional language. 

The basic unit of computation is a function that may take objects of different modes and 

, classes as arguments. In contrast, GemStone models behaviors as methods of particular 

classes that the receiving object belongs to. We considered the following two alternative 

representations of NewS functions in GemStone. 

The first approach is to preserve the GemStone model, and implement NewS generic 

functions as a collection of OPAL methods for all possible arguments. For many functions, 

one of their arguments can be identified as the primary data object, and whenever such a 

function is called, a message is sent to its primary data object along with other argument 

values. For example, a function call, 

computes mean value of sample, which is a vector of numerical values. The argument t r i m  

represents the fraction of values to be trimmed off each end of sample. In this case, sample 

can be chosen as the primary data object. For the function call above, the message below 

is sent to sample in order to obtain an equivalent result. 



sample meanWithTrim:1.5 

For some NewS functions, however, it is not clear which argument should be chosen as 

primary. An example is the min function, which takes any number of numeric arguments 

and returns the single minimum value among all the arguments. In this case, all arguments 

are equal and there is no obvious reason to choose any one of them as primary. 

The second approach to representing a NewS operation in GemStone adopts the NewS 

functional model and creates a separate GemStone object for each function. Such an object 

is responsible for implementing the behaviors of the function, either by executing its own 

methods or sending messages to argument objects. This approach, compared to the first 

one, adds an extra level of indirection from the NewS point of view. In order to execute a 

function in GemStone, all NewS must do is to send a message to the corresponding function 

object. It does not have to know how such a function is actually represented in GemStone, 

and the implementation can freely change there. For example, the example function call 

above: 

can be translated into a message sent to the mean function object in GemStone where each 

keyword specifies an actual argument: 

mean x:sample trim:1.5. 

This approach also allows the NewS interpreter to determine whether a certain function 

has a GemStone implementation simply by querying for a corresponding function object in 



the database. In contrast, in the first adproach, functions are implemented as a collection of 
I 

methods in various Gemstone classes th I t correspond to the modes and classes of arguments. 

Therefore, information on whether or n b t a certain function is supported in the database is 

not available in a single place, but spr $, d among several Gemstone class-defining objects. 

Also, with a function object independent of any argument, it is possible to represent NewS 

functions with no arguments. The first approach cannot support such functions. 

Based on the above analysis, we preserved the News functional model and adopted the 

second approach in the design. Figure 7.3 shows the Gemstone class hierarchy for function 

objects. For each NewS function, a subclass of the Sfun class is created and the behavior of 

the function is implemented as its sole method. Such a subclass has only one instance, which 

performs the operations of the corresponding function. As mentioned before, a Gemstone 

function object can either execute the operations itself or send a message to the argument 

objects to accomplish the task. The latter preserves the modular approach to implementa- 

tion promoted by an object-oriented paradigm and will probably make maintenance of the 

code more manageable than the former. 

There are various differences between NewS functions and GemStone methods, besides 

what is described above, that require careful mapping. For example, some arguments of 

NewS functions have default values, and a function may be called without explicitly giving 

a value to such arguments. The function above, mean, can be called with or without a value 

for t r i m ,  namely, both the forms mean(x=sample) and mean(x=sample , trim=l. 5) are 

possible. In the former case, t r i m  assumes the default value of 0. Therefore, the class of 

the mean function object, i.e., the Mean class, must provide messages for both argument 
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patterns, i.e., mean x :sample and mean x : sample trim: 1.5.  Another solution is to define 

only one method x:trim: for the Mean class, and to provide a special object denoting a 

"missing" argument that the x : trim : method replaces with the appropriate default value. 

Certain arguments in NewS function definition are denoted with the token "...", and may 

be given a variable number of of argument values. One way to handle such a collection of 

arguments is to group them into one array object and to pass it from NewS to Gemstone as 

a unit in all cases. Various features of NewS functions and how they affect the GemStone 

representation are discussed in detail elsewhere (Ken91, BCW881. 

7.2.3 Choice of NewS Functions Stored and Executed In the Database 

With functions stored in GemStone, the NewS evaluator can delegate function execution to 

the database. In choosing the functions for the database in our first prototype, we looked 

at each function in isolation and examined whether the function is suitable for execution in 

GemStone or NewS. This section first discusses what kind of operations potentially benefit 

from execution in NewS and GemStone, respectively, and selects candidate functions from 

NewS to be stored and executed in GemStone. Since each NewS function is represented 

by a corresponding GemStone function object, it is easy to add or to delete functions in 

GemStone to experiment with different criteria for choosing functions stored in the database. 

Note also that even if a certain function is available in Gemstone, it is not always the version 

executed. The NewS evaluator still has a choice of the original NewS version. 



Functions in NewS 

Below are our observations on implementing and executing functions in NewS. 

Operations that deal with 1/0 functions for the user interface should be performed in 

applications. GemStone v.2.0 does not provide user interface capability (though it is 

scheduled to be added in later releases). 

NewS specializes in statistical and graphical operations, giving them a better support 

than OPAL. Many predefined functions are readily available in the NewS library for 

such operations. Using a NewS version of those functions would save time for re- 

implementing the function in Gemstone, and likely yield more efficient performance 

than executing a GemStone version. 

When a data item is stored in GemStone as an object, there is a certain storage 

overhead (e.g., entries in the Object Table), since a GemStone object is internally 

represented by a logical identifier, separate from its state. If a function creates many 

temporary objects during execution, such storage overhead may cancel benefits of 

GemStone storage management. In such a case, it could be better to execute a 

function in NewS even if the input data are originally stored in the database. 

Fbnctions in GemStone 

Similarly, the following are observations on storing and executing functions in GemStone. 

When functions are stored in GemStone, it is possible for multiple tools to share 

them. This capability is a nice feature if we extend the architecture of Gemstone- 

based NewS, having NewS communicate and share data and functions with other tools 



that manipulate similar kinds of data. Among different kinds of functions, functions 

such as generic data access would be shared by more tools than application-specific 

data analysis functions. 

It is possible to perform operations on data in GemStone in order to reduce overhead 

of data transfer from GemStone to NewS. For example, when a part of a dataset 

stored in GemStone is needed, selection can be performed in GemStone, and only a 

desired subset is brought into NewS. In contrast, with subset selection implemented 

as a function in the current NewS, the whole data item must be brought into memory 

first. This observation applies not only to subset selection but also to any NewS 

function that produces an output expected to be smaller than its input, e.g., min and 

sum. 

A database has a better strategy for space management than most applications, so it is 

usually better to manipulate very large data items in GemStone. The previous chapter 

described a tree representation of large arrays in GemStone that allows incremental 

loading of the elements. In contrast, current NewS does not deal with large datasets 

gracefully, and it often crashes when users try to read them in. Yet, NewS users often 

want to perform operations on large data items. Therefore, it makes computation on 

large data more manageable to handle large data as much as possible inside Gemstone. 

Those operations that only require part of the data at a time especially can benefit 

from incremental loading in GemStone. 

Certain predefined classes in GemStone, e.g., Array, are useful for representing NewS 



data directly. Associated with such classes are basic access and update methods as well 

as certain arithmetic and logical operations. Therefore, GemStone versions of those 

NewS functions that handle data access and update, simple arithmetic, aggregate, 

logical operations are relatively easy to implement in OPAL using predefined methods. 

Candidate NewS Functions to be Stored and Executed in Gemstone 

Based on the discussions presented above, we considered the following NewS functions 

as possible candidates for Gemstone implementation. 

Arithmetic, aggregate, and logical functions. Arithmetic functions are one of 

+ , - , * , / , A (exponent), %/% (integer divide), or %% (mod). 

Aggregate functions include 

min, max, mean, median, range, sum, and prod. 

NewS logical functions are such operations as 

& (binary AND), 1 (binary OR), ! (not), xor, i fe l se  (conditional data 

selection), a l l  (AND of all the elements of all the arguments), any (OR of 

all the elements of all the arguments). 

The functions above are easily implementable using existing OPAL methods with 

little or no additional programming. They are also efficient to execute in Gemstone. 

Since those functions operate on vectors and only need part of the data at a time, 

GernStonels localized access in large vectors would be potentially advantageous. 



General data access and update functions. They include functions that access at- 

tributes of NewS classes such as 

- a t t r ,  a t t r ibutes ,  length, mode, names 

- col, row, ncol, mow, dim, dimnames (matrices or arrays) 

- levels (category data) 

- tsp, s t a r t ,  end, frequency (time-series data) 

These functions extract specific attributes actually needed in computation, so it re- 

duces the amount of data transferred to NewS to execute them in GemStone. The 

subscript function, [: I ,  which selects a subset of data elements, is also considered 

for the same reason. These functions are generic and widely used for different kinds 

of analysis. It would be useful to include them in GemStone, allowing multiple tools 

to access them. 

Among the candidates discussed above, we actually stored and executed in GemStone 

those functions used in the sample applications selected for the experiments. They are 

described later in the dissertation. 

7.3 Specifications of the First Prototype 

This section describes various specifics of the first prototype of GemStonebased NewS 

constructed for the study. Both NewS and GemStone are commercial products; NewS is 

provided by the statistical department of AT&T Bell Laboratories, and GemStone is p r e  

vided by Servio Corporation. The June 89 Release of NewS and GemStone version 2.0 



were used for the first prototype. Since both NewS and GemStone are running on the same 

workstation, a DECstation 2100, NewS was linked directly into the Gem process that man- 

ages a GemStone session for efficient communication between the two systems. Because the 

Gem and NewS processes are linked, though, the physical size of the Gemstone-based News 

executable is significantly larger than UNIX-based NewS: 3.9 Mbytes versus 2.3 Mbytes. 

Effects of the size of an executable on its performance is not well-documented except for 

the large overhead in initial loading, but they certainly make direct performance compar- 

isons between UNIX-based NewS and Gemstone-based NewS a little difficult. This point 

is revisited when the performance characteristics of Gemstone-based NewS are discussed in 

Chapter 9. Note that both NewS and GemStone have more recent versions than the ones 

available in our study. Later, we discuss the possible effects of using the new versions of 

Gemstone and NewS in Gemstone-based NewS, in particular performance changes. 

7.4 Flexibility As Design Priority 

For the first prototype of Gemstone-based NewS, we put priority on flexibility of the overall 

design rather than performance optimality so that the architecture can be easily modified 

to examine a large number of design alternatives. Design alternatives we considered include 

different GemStone representations of NewS objects, optimization of NewS functions, load- 

ing partial objects, such as certain attributes or components only, from GemStone to NewS, 

different mechanisms for deciding where an operation is executed, and different choices of 

NewS objects stored in GemStone. 

We adopted an "object-oriented approach" in the design of Gemstone-based News to 



encapsulate details of NewS and GemStone from each other and to facilitate easy, inde- 

pendent modifications of each system. The News evaluator does not make any assumption 

about what is in the database, and it asks GemStone for all the necessary information 

through a well-defined interface. On the GemStone side, objects respond to the request 

from NewS and deliver an appropriate answer through the same interface. GemStone does 

not know anything about the News evaluator except for the information communicated 

through the interface. 

Since NewS is implemented mostly in C, in particular the part for persistent data I/O, 

the Gemstone-C application interface (GCI) was used for communication between News 

and Gemstone. GCI has two options for database access. One option allows NewS to 

access and to update the internal representation of GemStone objects directly, somewhat 

violating encapsulation at the object level. The other option preserves encapsulation, only 

allowing access to GemStone objects by sending messages to them. Due to the emphasis 

on a flexible design, the latter approach was taken, that is, GemStone object encapsulation 

was respected. 

With this design, the representation of each system can be modified without affecting 

the other as long as the same interface between News and GemStone is maintained. This 

feature facilitates easy execution of many of the experiments discussed in later chapters, 

since they require modifications either in Gemstone or in NewS, but such modifications 

do not propagate beyond the boundary of each system. Among examples of experiments 

listed above, different GemStone representations of News objects and optimization of News 

functions can be tested with modifications inside GemStone only. Different mechanisms for 



delegating operations from NewS to GernStone can be tested by modifying NewS without 

affecting representation on the GemStone side. 

One piece of information NewS needs to know is the kind of objects and operations 

stored in GemStone. NewS does not hard-code such information, and simply inquires of 

Gemstone whether a certain data object or function is stored in the database as needed. 

Therefore, to add a GernStone version of a certain NewS function, a corresponding object 

for the function needs to be created in GemStone, but no modification is necessary on 

the NewS evaluator. For example, if only desired attributes of objects are to be brought 

into NewS from GemStone, one only needs an implementation of the a t t r  function in 

GemStone. NewS notices that both the object and a t t r  are in GemStone, and extracts the 

desired attributes inside GemStone and brings only those attributes into NewS. If, on the 

other hand, no attribute access function is stored in GemStone, then the object is brought 

into NewS and attribute extraction is executed there. In order to see if it is beneficial to 

execute attribute access in GemStone, the appropriate functions can be simply added or 

deleted (or renamed), observing the differences. 

Neither NewS nor GernStone "remembers" information obtained from the other through 

the GCI, so it is possible to reorganize one system even during the same execution without 

triggering changes in the other. 

We also minimized the amount of information exchanged between GemStone and NewS. 

For example, when an operation is executed inside GemStone, an OOP of the result object 

is returned to NewS. Only when the NewS evaluator decides that the state of that object is 

needed in NewS memory does the evaluator load the actual state of the object into NewS. 



7.5 Summary 

This chapter described various issues considered in designing and implementing Gemstone- 

based NewS. Many decisions were made according to the criteria in Chapter 4; a priority 

was placed on acceptable performance and productivity of resulting architecture as an 

experiment a1 platform. In some situations, however, those two criteria were in conflict. 

For productive experimentation, Gemstone-based NewS should provide flexibility and a 

wide coverage of the design space. Modular design and encapsulation together facilitate 

easy modification of various parts of architecture; modifications can often be made locally 

without affecting the whole architecture. On the other hand, such a "modular" architecture 

and the information hiding that goes with it sometimes imposes a performance penalty due 

to communication overhead between modules. 

When in conflict, flexibility was favored over performance. Had performance been given 

absolute priority, the resulting architecture would likely be very rigid and difficult to modify. 

As a result, even if excellent performance were obtained from GemStone-based NewS, it 

would be very difficult to experiment with multiple design alternatives on the platform, 

defeating much of its purpose. On the other hand, if Gemstone-based NewS is left flexible, 

there are still possibilities for improving its performance, e.g., by changing hardware and 

software components used. The modular architecture facilitates an easy switch to new, 

improved versions of Gemstone or NewS in the future. 

As for cost-effectiveness, we tried to reuse existing capabilities of both Gemstone and 

NewS as much as possible in designing and constructing the platform, keeping additions, 



modifications minimal. 

For the rest of the dissertation, we describe possible design variations we investigated 

and the experiments we performed to evaluate the design against sample NewS applica- 

tions. We also evaluate Gemstone-based NewS as an experimental platform through such 

investigation. 



Chapter 8 

Design Alternatives in the 
Gemstone-News Interface 

Earlier we discussed requirements for scientific data management and advantages offered by 

object-oriented databases over traditional approaches such as files or relational databases. 

Compared to traditional data models, an object-oriented data model simplifies schema 

design by allowing direct representation of scientific models. However, the flexibility of the 

object-oriented model does create many alternatives to compare in designing the schema. 

There are also different ways applications can make use of the support provided by object- 

oriented databases. 

This chapter explores possible alternatives in designing Gemstone support for NewS a p  

plications. We describe possible design dimensions in creating the GemStone schema and in 

modifying the current News source. We discuss various alternatives within each dimension, 

and how such alternatives can be examined on Gemstone-based NewS experimentally. For 

running News application on the platform, some optimizations are possible in evaluating 

NewS expressions. We discuss such optimization strategies and how we can experiment 

with them with changes in Gemstone only. It is also possible to change the kind of objects 

and functions stored in GemStone to adjust the platform to individual cases. 

In some cases, we actually conducted simple experiments to illustrate the point being 



made, and the results from such experiments are presented as numbers or graphs. As this is 

the first chapter to present our experimental results, we specify the computing environment 

and the way we conducted the experiments below. In all figures presenting the experimental 

results, lines were drawn using the smoothing technique for scatter plots based on robust 

locally weighted regression, which is available in the News library. 

8.1 Computing Environment for the Experiments 

All the experiments described in this dissertation were conducted on a DECstation 2100 

running the Ultrix operating system version 4.1 with 16.78 Mbytes of real memory and one 

each of a 104 Mbyte DEC RZ23 disk and a 600 Mbyte CDC Wren V disk. To make the 

environment relatively uniform, we ran all the test cases on the system when no other user 

processes were running and the system was not being backed up. A system can exhibit slow 

performance initially since all the necessary data are to be fetched from disk into memory. 

The performance can also vary due to changes in system load. To eliminate such short- 

time fluctuations of performance, we executed the test cases several tjmes before we started 

measurement, and repeated the tests by 10 times to obtain their average. (When the test 

cases took longer than 15 minutes, we took an average of 5 repetitions.) 

8.2 Gemstone Schema 

As mentioned before, a flexible object-oriented data model yields many design alternatives 

to consider in schema design. This section explores possibilities in representing News objects 

in Gemstone, i.e., different representations for their states and methods. 



8.2.1 Different State Representations 

As described in Chapter 7, we designed the initial GemStone representation of NewS ob- 

jects as a ''mirror" image of the NewS internal representation for efficient data transfer 

between NewS and Gemstone. However, it is possible to customize the representation to 

accommodate needs of a particular NewS mode or class. For example, if NewS frequently 

requests specific information from Gemstone, it would be advantageous to have it available 

by a single call, with a method that delivers that information directly. The following exper- 

iment shows an example case for such customization of the representation and the resulting 

benefits. 

We created a database of lists; the number of components in the lists ranges from 

25 to 1000. In the current architecture of Gemstone-based NewS, NewS lists are stored 

in GemStone as parallel arrays of values and names, held in instance variables data and 

names. To look up a component by name, the value of the name instance variable is linearly 

searched for the position of the name, which is used as an index into the data array. 

(Component access by name is implemented in this manner in current UNIX-based NewS.) 

As an alternative, frequently accessed components can be held directly in the topmost part 

of the object under an instance variable of the same name, as shown in Figure 8.1. In the 

experiment, pairs of lists were created with identical component values. One of the pair uses 

the current implementation. The other, in addition to data and names, has the value of the 

last component replicated under the instance variable of its name. Figure 8.2 compares the 

performance of Gemstone-based NewS in accessing the last component of the lists using 
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Figure 8.1 
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the two representations. As the number of components increases, the execution time for the 

lists without caching increases. This behavior is to be expected, since the entire array for 

component names must be searched before the position of the last name is found, and the 

number of component names increases with the size of the lists. In contrast, the execution 

time of those list with caching remains about the same, i.e., around 0.4 second, since the 

accessed component is readily available as a value of a toplevel instance variable. 

Another possible modification for efficient search of a particular component is to sort 

component names in names to make a binary search possible, more efficient than a linear 

search in the original design. Note, however, that if sorting and binary search are to be 

used, we actually need to store (name-position) pairs instead of name strings in names to 

retain the original position of component names. In the original design, components of 

names and data assume the same order, and the position of the name is used to access the 

corresponding value in data. 

Besides structural variations of object state such as above, we can also try different 

encodings of values. Some encodings render more compact representation than others, 

resulting in fewer pages to read for data retrieval and therefore more efficient performance. 

For example, in Gemstone, floating-point numbers are stored as objects, and a mapping 

between their object identifiers (OOP's) and locations of values are provided through an 

Object Table. In contrast, integers are stored directly as sequences of bytes, and no deref- 

erencing is necessary to obtain their values. Therefore, floating-point numbers not only 

require more space, e.g., entries in an Object Table, but also extra indirection through their 

OOP's to get their values. The following simple experiment tried to assess the effect of the 



size differences of representation. 

One of the vectors from National Health and Nutrition Examination Surveys (NHANES) 

data, an example NewS data we experimented with and described in detail in the next 

chapter, is sbp, a collection of blood pressure values. The sbp is stored as a vector of 

floating-point numbers even though the data values are actually integers, since the elements 

are expected to be converted to floating-point numbers in regression analysis. We created 

a vector intsbp identical to sbp except that the data values are integers. Subsets of sbp 

and intsbp of various sizes were accessed. As shown in Figure 8.3, somewhat surprisingly, 

no large gain is observed with intsbp over sbp. Only about 9% of execution time is saved 

for the largest extracted subset of 20000 elements. 

Since Gemstone supports a byte object whose value is encoded in bytes, it is possible 

to encode floating-point values directly in an array instead of using a Gemstone floating- 

point object. Though not supported in Gemstone, the concept of structured value without 

identity would also be useful in representing hierarchical structure of NewS objects without 

indirection through OOP's at each level. 

Defining appropriate indices for the representation is another way to make object access 

more efficient. Current Gemstone only provides indices for non-sequenceable collections 

(sets and bags). As a NewS object is essentially an ordered collection that allows for value- 

based access, indices for sequenceable collections would be a useful addition for them. 

In trying out different representations for a particular News mode or class, we can evolve 

GemStone schema to examine one representation at a time. It is also possible to define them 

in Gemstone as a set of subclasses of a common superclass. In that case, 
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the superclass defines properties common to that NewS mode or class. For example, if 

we want to try caching various components of an object of the mode list, we can inherit 

the corresponding Gemstone class L i s t  whose state does not cache any components, and 

create subclasses with additional instance variables for cached components. Each subclass 

incorporates methods specific to cached components, e.g., access and update operations, but 

general operations for the L i s t  class are still available. If different representations actually 

assume very different states or operations, their superclass would be mostly "empty" as 

the states or operations must be defined separately for each subclass. Even so, it is still 

advantageous to have a common Gemstone superclass for all the variations rather than to 

represent them as completely disjoint classes as the NewS evaluator can check their common 

mode or class simply by looking up their superclass. 

With different Gemstone classes for different representations, we need to specify a par- 

ticular class for an appropriate representation when an object is created. We would make all 

the representations for the mode or class visible through a NewS session. That design would 

change NewS semantics, as NewS users would now be faced with a set of representation 

variations for a mode or class. We might encode what representation to choose as "rules" 

in the NewS evaluator, but it would be difficult to define a complete set of such rules that 

covers all possible cases. In our experiments, we created objects of different representations 

(subclasses) directly in Gemstone. 

Once objects are created, their mode or class can be identified simply by checking their 

membership of certain Gemstone classes. Objects of all the different representations for 

the same mode or class can be treated uniformly by the NewS evaluator as they belong 



to a common Gemstone superclass, and we can compare them in the same operational 

environment. 

8.2.2 Alternative OPAL Methods 

With encapsulation at the object level, the code for a method can be varied for the same 

message. Therefore, we can try various strategies at the method level to make execution 

of Gemstone-based NewS suitable for individual cases. For some NewS functions, certain 

optimizations are possible. For example, in processing NewS logical functions such as a l l  

and o r ,  it is not always necessary to evaluate all the arguments. For a l l ,  which performs 

"logical-and" of all the elements of all the arguments, if one of the elements turns out to be 

FALSE, the result is also FALSE and other elements can be left unevaluated. 

Some strategies are designed to accommodate large datasets. For example, when a 

large array is created, we can preallocate a certain amount of space instead of allocating 

space element-by-element. Savings can also result from elimination of unnecessary copying 

of objects as performed by current NewS. Instead of eagerly copying objects when update 

may be possible, we can adopt the "copy-on-write" strategy, i.e., only copy those parts of 

the objects modified. 

As with different representations of News objects, the most obvious way to compare 

alternative programs for a method is to test one program at a time, altering the code 

after each test. While it is not possible to compare different possibilities side by side with 

this approach, we can reuse the same test expressions for all the different programs as 

they respond to the same message. Alternatively, for each different program we want to 



examine, we can inherit a class (and the name of the method) and define its subclass with 

a different definition for the method. The News mode of the objects is still recognized by 

their common superclass, but the actual code executed for the sent message depends on 

what subclass they actually belong to. 

8.3 Changes to NewS Source 

With Gemstone as persistent data storage in addition to files, NewS as an application 

must be modified to incorporate communication with Gemstone. There are various design 

alternatives we must consider in such modifications. This section explores some of such 

alternatives. Below we discuss different mechanisms for processing function calls, different 

GCI calls made to accomplish the same communication, caching of various information on 

GemStone objects in NewS, and different ways of incorporating GemStone capabilities into 

NewS. 

8.3.1 Different Mechanisms For Delegation of Operations to Gemstone 

In the previous chapter, we described a mechanism we incorporated into NewS for delegating 

operations to Gemstone. In choosing the delegation mechanism, we actually considered two 

alternatives. Both mechanisms examine unevaluated actual arguments to a function call. 

In one scheme, the number of arguments of each location type (Gemstone or NewS) is 

counted; the other scheme estimates the total size of arguments of each location type. The 

quantities are used to estimate the cost when arguments are moved to the other location, 

and the version of the operation with the smaller expected conversion cost is chosen. Our 



investigation showed that the scheme that considers the size of the arguments works better 

in general, so we incorporated that scheme into the platform. 

A variety of other mechanisms are also possible. Current Gemstone-based NewS ex- 

amines unevaluated arguments. Therefore, when arguments are expressions, the result size 

must be estimated. Though a fixed value is currently assigned to the size of the returned 

object in such a case, more sophisticated strategies for size estimation are possible. It is 

also possible to consider not just the cost for moving objects but the total execution cost. 

We can also take into account not only the arguments but also where a result of a function 

call will be used in subsequent computation. 

As with any changes to the NewS evaluator, it requires modification of the source code 

and recompilation of NewS to incorporate such schemes as above into the evaluator. Though 

current Gemstone-based NewS makes a decision at the beginning of an evaluation cycle 

by looking at unevaluated arguments, different schemes require a decision-making process 

to take place in different places. For example, if we are to examine the size of evaluated 

arguments, then we need to identify the point in an evaluation cycle where all the arguments 

have been evaluated to modify the evaluator appropriately. Since expressions are typically 

nested, recursion is used to implement expression evaluation, so for those schemes requiring 

the evaluator to make decisions in the middle of an evaluation cycle, we must make sure 

that a decision is made at the right moment in the recursive iterations. 



8.3.2 Different GCI (Gemstone C Interface) Calls 

There are a variety of GCI functions available in GemStone v.2.0 for communication be- 

tween News and Gemstone. Using different functions, we can experiment with different 

mechanisms for communication. For example, we compared two different granularities for 

communicating the same information between News and GemStone as follows. In one case, 

multiple OPAL statements were executed by a single GCI call, given to a GCI function 

GciExecuteStr as a single string. In the other case, each statement was executed by a 

separate call, resulting in as many GCI function calls as the number of the statements. 

We investigated the difference between the two cases above by executing the following 

OPAL program from a C program through GCI. 

a := Array New. 

a add: 1. 

a add: 2. 

a add: 3. 

a add: 100. 

In the first case, an array of 100 integer elements was created using one GCI call, putting 

all the above OPAL statements into one large string. In the second case, the same operation 

was executed using multiple GCI function calls: one call for array creation plus a call to  add 

each element, a total of 101 calls. The execution time of the first case was 14.96 seconds, 

whereas the second case 16.96 seconds, so there was about a 12 % savings for the first case 



over the second case. 

Another example of different communication mechanisms possible with GCI is pre- 

compilation of OPAL statements into a method in advance. If, as above, an OPAL state- 

ment is passed as a string to GciExecuteStr, it is first parsed and compiled by the OPAL 

interpreter before execution. A compiled method is represented as an object in Gemstone, 

so such a compilation process actually invokes object creation. Alternatively, the operation 

can be pre-compiled as a method in Gemstone to avoid an overhead of parsing and com- 

piling. Therefore, by executing the same message using these alternative mechanisms, it is 

possible to estimate overhead of parsing and compiling. The array-building example above 

was again used for experimentation. As mentioned before, when the collection of state- 

ments was given as one string to GciExecuteStr, the execution took 14.96 seconds. With 

the same statements already compiled as a method and executed by calling GciPerform, 

the execution time was 12.56 seconds. Hence about 16 % of the time was saved for not 

having to parse and compile the string first. In general, it is beneficial to define a method 

for the operation frequently performed or the information often asked in advance so that a 

desired result is obtained by a single GCI function call. 

We said earlier that communication between NewS and GemStone is handled only 

through message passing in the first prototype, in order to maintain encapsulation be- 

tween the two systems. However, structural access to Gemstone objects is also possible 

through the GCI. The structural interface tends to deliver efficient performance compared 

to message passing, but the state of objects is directly accessed and updated by NewS and 

encapsulation at the object level is broken in Gemstone. Hence, switching from message 



passing to structural access would make it harder to experiment with different representa- 

tions of GemStone objects as such differences would be visible to NewS and the evaluator 

must be modified to access each representation. 

In the experiments above, instead of the News evaluator, we used a simple C program 

whose only task was to make specific GCI calls to examine each design dimension, e.g., 

a granularity of communication, in isolation. The News evaluator makes a series of GCI 

function calls over an evaluation cycle. In current Gemstone-based NewS, the evaluator 

issues a separate GCI function call whenever a specific piece of information is needed from 

Gemstone. The obtained information is immediately used and discarded. As the kind of 

information needed for evaluation is fixed, e.g., classes of arguments, the GCI call strat- 

egy can be varied by changing when and how each piece of information is obtained from 

GemStone during an evaluation cycle. It is relatively easy to change the communication 

mechanism while maintaining the same positions of calls, as it simply requires replacing one 

set of GCI calls with another in those positions. It is more tricky to change the positions 

of the calls, as we must make sure all the information is available before it is needed. For 

example, if we want to consolidate multiple GCI calls made in different places into a single 

call to obtain all the necessary information at once, it is likely some pieces of information 

are obtained in a different place from where they are actually used. Therefore, the evalu- 

ator must "remember" such information until it is actually used, i.e., a diversion from the 

current GCI call strategy. 

To see how different communication schemes would affect the behavior of the platform, 

we would also need to examine dynamic patterns of commu~cation between Gemstone and 



NewS. Those sequences of GCI function calls made frequently by the evaluator are a good 

candidate for testing different communication mechanisms for potential optimization, as 

improving them would have a large effect on the overall performance of the platform. We 

gave Gemstone-based News the capability to monitor the GCI function calls made by the 

evaluator. We used an array-creating example in the experiments above because monitoring 

GCI calls issued by the evaluator revealed that such operations are performed often. 

In most cases, the change in the GCI call strategy only requires modification of the NewS 

evaluator and does affect GemStone. However, some of the communication mechanisms 

discussed above require that certain methods exist on the GemStone side in advance, e.g., 

encoding of frequently-asked information as a method. Also, as mentioned above, structural 

access breaks encapsulation of GemStone objects, and changes in object representation 

would require modification of the evaluator. 

8.3.3 Caching GemStone Information in NewS 

Gemstone-based NewS needs to know about various properties of GemStone objects, e.g., 

their classes, in order to process them properly. As mentioned before, currently, once 

such information is obtained from GemStone by the evaluator, it is used and immediately 

discarded. Consequently, the NewS evaluator may request the same information over and 

over again during a single session. For example, when a data item named foo is accessed, 

the NewS evaluator first checks its location. When f oo is located in GemStone, its OOP is 

returned to the evaluator. The evaluator then asks for foo's class by sending the message 

class to the obtained OOP. However, the News evaluator does not remember foo's class, 



and every time foo is referenced, the evaluator repeats the same communication process. 

It is therefore possible for Gemstone-based NewS to cache certain information in order 

to reduce the communication cost. As with any caching strategy, the effectiveness of this 

scheme depends on identification of information that is repeatedly used, therefore worth 

being cached. We can examine profiles of interaction between GemStone and NewS to 

identify candidates for caching. 

To incorporate the caching strategy as described above, the evaluator must be modified 

to look for the needed information in its cache first before issuing a GCI call. It is also 

necessary to maintain consistency between cached information and actual state of Gem- 

Stone. However, most information sought by the NewS evaluator remains stable during a 

session, e.g., classes of objects, OID's of class definition objects and existence of GemStone 

implementation for NewS functions, which would simplify consistency maintenance. 

8.3.4 Interface to Existing GemStone Facilities 

GemStone provides many built-in database facilities such as explicit locking, indexing, and 

transaction management. Just as current News provides a mechanism to execute com- 

mands in the underlying operating system from within a session, it is possible to provide an 

interface in NewS to access built-in capabilities of GemStone to see if such features benefit 

existing applications. Incorporating the transaction and concurrency control mechanism of 

GemStone into NewS would extend features of NewS as a persistent language. Some possi- 

ble mechanisms have been considered on how a transaction management may be introduced 

into NewS, as summarized below. 



Currently, UNIX-based NewS provides a limited form of atomicity. It will not write the 

results of any assignments within a toplevel expression to a file unless the whole expression 

evaluates without error. Similarly, when processing a file of NewS commands, none of the 

assignments are permanent unless all the expressions in the file are evaluated successfully. 

When NewS writes to a file, it actually writes to a temporary file, and when the enclosing 

expression completes successfully, it renames the file to the actual object name. However, 

no concurrency control is provided along with such "transactions". Multiple NewS users 

can overwrite each other's updates without knowledge, and the last writer wins. 

One approach for incorporating the Gemstone transaction mechanism into NewS is to 

preserve the atomic behavior of UNIX-based NewS as much as possible and to execute 

Gemstone commits (ending one transaction, and starting another) at the same places that 

NewS would normally write to the file system. With this scheme, when multiple users 

access the same Gemstone objects concurrently, certain expressions may not execute due 

to a conflict, but the users will know of a conflict due to a failure of commit. 

Another approach is to let users control transactions explicitly. Since Gemstone provides 

the transaction and concurrency control capabilities as predefined methods, this scheme 

can be easily implemented by providing a set of NewS callable functions that execute those 

methods through the GCI. This way, a user can control the length of each transaction 

explicitly. This approach of user-controlled transactions appears to be useful to many NewS 

applications and users, and is scheduled for the next version (after August 91 Release) of 

NewS. 



Note that GemStone facilities are directly available only on NewS objects stored in Gem- 

Stone. It is of course possible to transfer any NewS objects to GemStone if the GemStone 

facilities prove to be useful for them. 

As with transactions and concurrency control, all GemStone features are accessible 

through the GCI, and they can be incorporated into NewS by making appropriate GCI 

function calls to initiate desired actions in GemStone. We can have the NewS evaluator 

make the calls, or create separate NewS functions for them. 

8.4 Optimized Evaluation of NewS Expressions 

In considering possible optimizations in evaluating NewS expressions, we turned to those 

strategies for relational databases as there are certain similarities between relational queries 

and NewS expressions. For example, NewS objects are actually collections of elements, but 

many NewS functions operate on an object as a single entity rather than on an element-by- 

element basis, just as relational queries treat a relation as a whole. Examples of optimiza- 

tions used in relational databases are "pushing down" or applying selection or projection as 

soon as possible to minimize the size of data for further processing and reordering arguments 

to groups of binary operators such as joins to reduce the size of intermediate results. 

One way to apply "pushing down selection" to News is as follows. NewS has the 

subscript function for extracting a subset. As shown in Figure 8.4, when subscript is 

combined with iteration functions such as lapply that apply a function f to each element of 

input data D, it is possible to apply subscript to D first to reduce the number of elements 

in D to which f is applied. More generally, if a function and subscript commute as shown 
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in, Figure 8.5, it is possible to "push down" and apply subscript before the function. 

Another example of a possible News optimization, also involving selection, is to merge 

successive selections into a single operation to eliminate costly creation of intermediate 

results. A series of calls to the subscript function, such as 

(a[lOOO : 2000])[200 : 5001 

# Select the 1000th-2000th elements of "a" first followed by 

# further extraction of the 200th-500th elements from the intermediate result. 

can be combined into a single call: 

One example of where such successive subset extractions could occur is with the following 

function foo that contains a subset extraction, i.e., 

> foo + function(x, ...)( 

+ ...... 

+y+-x[2:500] 

+ ...... 

1 

and when f oo is called with an actual argument that is itself a subset extraction, e.g., 

foo(a[400 : 14001, ...). In such a case, the expression in the function body, y t 4 2  : 5001, 

is instantiated to y + (a[400 : 1400])[2 : 5001, and subset extraction is to be applied to a 



twice successively. (We used this example of successive subset extractions in experimenting 

with optimization of expression evaluation on the platform as described below.) 

There are also certain differences between NewS and relational databases that make 

some relational optimizations inapplicable in NewS. For example, with NewS objects being 

ordered collections, that order is utilized in certain operations. Hence, for such operations, 

optimizations that involve reordering of the data are not applicable. However, not all NewS 

functions require preservation of the order, e.g., for the mean function, the order of the 

elements is irrelevant and therefore the order can be freely changed in an optimization 

process. In any case, we decided to investigate database-like optimizations applicable to 

NewS on the platform. 

In general, database-style optimizations require examination and modification of ex- 

pressions as a whole. In the first prototype of Gemstone-based NewS, the NewS evaluator 

interprets expressions and delegates operations to GemStone one function at a time. Hence, 

it might seem that fundamental changes in the NewS evaluator would be required, to pass 

whole expressions to GemStone, in order to experiment with optimizations in GemStone. 

However, without changing the basic architecture of the platform, we were actually able to 

examine the effect of optimization performed by Gemstone via modifications to GemStone 

objects and classes as described below. 

When individual function calls are delegated to GemStone, in some cases the successive 

function calls are accumulated to reconstruct the expressions on the GemStone side instead 

of immediately being evaluated. This 'lazy" evaluation scheme makes whole expressions 



available for Gemstone to optimize. Note that Gemstone dynamically reconstructs expres- 

sions as actually evaluated, so it can sometimes find optirnizable cases that are not obvious 

from static inspection of the source code. For example, in the case of successive subscripts 

in a function call above, i.e., foo(a(400 : 14001, ...), an optirnizable case is hard to detect 

from static inspection since we cannot tell what an actual argument x would be to foo. 

We must also trace actual execution of a function to identify that 212 : 5001 in the body 

of f oo actually yields optimizable successive subscripts (a1400 : 1400)) [2 : 5001 as those two 

subscripts are temporally apart with intervening expressions possibly operating on other 

datasets. 

We conducted the following optimization experiment to illustrate the expression recon- 

struction technique above using the example of successive subscript's described previously. 

Two functions, subrange and materialize, were defined and given Gemstone implemen- 

tations. The subrange function is much like a simplified version of the subscript function, 

except that it does not immediately compute the result. It instead creates a Gemstone 

object that represents the requested subset extraction and stores information necessary 

for carrying out the operation later. We will call such an object a delayed operation 

object. An argument to subrange can be a delayed operation object created by an- 

other subrange, in which case a new delayed operation object is created that represents 

multiple subset extractions. The materialize function demands an actual result, thereby 

initiating computation. With a delayed operation object as its argument, the function 

tries to perform optimization over the represented operation before evaluation. Therefore, 



the expression materialize(subrange( ...)) actually evaluates and returns an extracted sub- 

set, whereas subrange( ...) just creates a delayed operat ion object, returning its OOP 

to the News evaluator. 

In the experiment, we examined the execution time of the following two expressions, 

materialize(subrange(subrange(< vedor >, < beginl >, < end1 >), 

< begin2 >, < end2 >)) 

and 

materialiae(subrange(materialize(subrange(< vedor >, 

< beginl >, < end1 >)), < begin2 >, < end2 >)) 

In the first expression, two subrange operations result in a delayed operation object 

for the whole operation. An intermediate result from the first subrange is not created as 

execution of subset extraction is delayed with a delayed operation object passed from 

the first subrange to the second subrange. The materialize function recognizes two 

successive applications of subset extraction and optimizes them into one subset extraction 

before evaluating the result. 

In the second expression, each subset extraction is evaluated separately, actually creating 

an intermediate result. 

The beginl and end1 determine the size of extracted subset from the first subrange; 

the values are given in the experiments so that 90% of an input vector is accessed here. 

The begin2 and end2 are given to form a final subset from the second subrange with 10 



elements in the middle of an input vector. The size of input is varied from 200 to 17500. As 

shown in Figure 8.6, savings from this optimization increase as the size of an input vector 

increases. In the optimized case, the intermediate result from the first subrange is not 

computed, saving much time, especially for large input vectors. 

In order to examine possible optimizations on Gemstone-based News, we can incorpo- 

rate lazy evaluation into those functions that are possibly included in optimizable expres- 

sions such as subrange above. Each such function produces its own delayed operation 

object that represents a corresponding operation. The materialize function above only 

performed specific optimization for successive subset extractions, but it can be generalized 

to handle different kinds of delayed operation objects and to perform optimizations 

appropriate for each case. Therefore, we can examine different expressions for possible o p  

timization by adjusting what functions are lazily evaluated. Static optimization, on the 

other hand, would require inspection and modification of the source code. 

8.5 Different Collections of Objects and Functions Stored 

in Gemstone 

Chapter 7 discussed candidate functions to execute in Gemstone. However, we expect the 

optimal selection of functions for Gemstone execution to vary from application to appli- 

cation. For the experiments we performed, those expressions actually tested determined 

which functions to store in Gemstone. 

The collection of objects in the database can also be changed according to various 

criteria. Generally, large objects shared among different users and applications are good 
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candidates for GemStone storage. On the other hand, file storage may be better for objects 

that must be accessed efficiently during a session but do not survive between sessions. Also, 

as with functions, the selection of objects will likely depend on the application. 

Since we preserved the object access paradigm of current NewS, objects can be created 

or destroyed in GemStone the same way as in files. We just have to adjust the entries 

of the NewS search list to incorporate GemStone dictionaries where object creation or 

removal should occur. GemStone classes for NewS objects were created for the platform as 

described in Chapter 7, and the evaluator creates a GemStone representation of an object 

by instantiating those classes through the GCI and inserts it into a specified GemStone 

dictionary. When an object is removed with the rm function, the evaluator looks up its 

name in the dictionary to see if the object exists in GemStone. (Any discrepancy in naming 

convention between NewS and GemStone is resolved by the evaluator automatically.) If the 

object is found in the database, it is removed from the dictionary. 

As for functions, we represented each function with a separate GemStone class that 

has a single instance for the function. Therefore, to store a function in GemStone, we 

first create a GemStone class for it by inheriting the Sfun class. We described in Chapter 

7 various issues that need to be considered in representing News functions in Gemstone. 

For example, most NewS functions are generic that accept arguments of different modes 

and classes. For such generic functions, we had COI-responding GemStone function classes 

identify the News class or mode of the argument and send an appropriate message to 

the argument. Therefore, actual operations are carried out by the methods defined in the 

GemStone classes of the arguments. Such "modular" implementation, made possible by the 



object-oriented paradigm, facilitated efficient implementation of Gemstone representation 

for NewS functions. For missing arguments that are to be replaced by default values, we 

created a special object Missing to denote the missing value, which a GemStone function 

object recognizes and replaces with an appropriate value. When a NewS function accepts 

a variable number of arguments, such arguments are put into one array object so that a 

GemStone function object can expect a single object for that set of arguments in all cases. 

Once a GemStone class for a particular function was created, we instantiated it directly 

in GemStone to create a GemStone implementation of the function. Such an instance was 

inserted into the GemStone dictionary specified by the search list. As mentioned before, 

functions are represented as News objects and handled the same way as data. Extending 

the uniform paradigm to GemStone, a function object is looked up by the evaluator in the 

dictionary just as a data object. The removal of the function object from GemStone is also 

handled the same way as data objects. 

One of the experiments we can perform by changing objects and functions in GemStone 

is to vary the amount of data transfer from GemStone to NewS for possible performance 

improvement. For example, NewS functions such as subscript for subset extraction, $ for 

component access, mean for computation of the mean value all produce the result smaller 

than the input. Therefore, when the data are in GemStone, it would be potentially advan- 

tageous to have GemStone implementation of such functions and to execute them inside 

GemStone to reduce the size of the result transferred to NewS. In the next chapter, we will 

examine the effect of such reduction of data transfer with sample NewS data and applica- 

t ions. 



8.6 Summary 

This chapter examined various design dimensions in providing GemStone support for NewS 

applications. Dimensions examined include the following. 

classes and methods created for storage of NewS objects and functions 

different mechanisms for delegation of operations to Gemstone 

different GCI calls 

caching of GemStone information in NewS 

interface to GemStone facilities 

optimized evaluation of NewS operations 

which objects and functions are stored in Gemstone 

We explored alternatives in each dimension, and explained how such alternatives can be 

examined on Gemstone-based NewS experimentally. 

Alternative Gemstone schemas for NewS objects and functions can be examined using 

inheritance. Inheritance is especially effective when the alternatives are variations of a 

common base design since their base design is defined once in the common superclass and 

inherited by all the subclasses. We experimented with alternative structures of state by 

caching an element of a list at a top level and comparing different representations of integers 

and floating-point numbers, effectively using inheritance in both cases. 



Changes to NewS source included modifying the current News source code, i.e, the 

NewS evaluator and existing functions, to find better ways to communicate with GemStone 

as well as adding new functions to introduce GemStone capabilities into NewS. We exam- 

ined some of the alternatives provided by the GCI, e.g., different granularities of statements 

communicated by a single call and precompilation vs. postcompilation of statements. Ex- 

periments that investigated different mechanisms for delegating operations to Gemstone 

and introduction of GemStone concurrency control into NewS are reported in detail else- 

where [Ken911 . 

It is possible to examine optimization strategies for evaluating NewS expressions with 

changes to GemStone only. In our experiment using an example of successive subscript's, 

GemStone function objects, potentially part of optimizable expressions, accumulated func- 

tion calls to reconstruct expressions to be optimized. 

Since we preserved the object access paradigm of current NewS as much as possible, data 

objects can be created or removed in GemStone simply by inserting an appropriate Gem- 

Stone dictionary into the search list. Storing a function in GemStone involves more efforts 

since a GemStone class for the function must be created and instantiated in GemStone first. 

Once created, though, a function can be looked up and removed from the GemStone d i c t i ~  

nary transparently, just as data objects. The next chapter describes our experiments with 

various scientific data, with associated access functions stored and executed in a database. 

As this study is an initial attempt at investigating scientific data management by means 

of an experimental platform, the architectural variations and experimental means for investi- 

gating them discussed in this chapter would pave a way to the next stage of the investigation, 



i.e., more extensive experimentation. 

The next chapter describes the experiments we conducted with sample NewS applica- 

tions. We store and execute various data and functions in Gemstone in each case, and 

examine the effect. We also discuss further our experience in exploring design alternatives 

on Gemstone-based NewS when we evaluate ease of experimentation in Chapter 10. 



Chapter 9 

Experiments with Health Surveys Data 

and Protein Knowledge Base 

This chapter describes the experiments we conducted with example NewS data and opera- 

tions, i.e., National Health And Nutrition Examination Surveys (NHANES) data and the 

Protein Knowledge Base (PKB). The NHANES data are various data items obtained from 

national health surveys on blood pressure, e.g., blood pressure values and age of sampled 

subjects. Each data item is represented as a large vector of numerical values. The data are 

to be analyzed to identify the correlation between blood pressure and such factors as age 

and income. 

PKB is an application for protein structural analysis. Each protein is represented as an 

object, with operations such as component access, statistical analysis and structural display 

implemented as library functions. 

Working with real NewS data presented us an opportunity to examine representation of 

scientific data as objects, e.g., their size and performance for data access, as well as to try 

some of the design alternatives discussed in the previous chapter on the real data. We were 

interested in NHANES data since the data exposed weakness of the storage management in 

current NewS. Current NewS tends to copy data whenever there is a possibility of update. 

The NHANES data vectors have often crashed the system due to such a copying scheme, 



and seemed a good example to test support for large data in Gemstone against. With 

NHANES, we could also examine one of the most common data structures in scientific 

applications, i.e., an ordered collection of numerical values. As with many other News 

data, multiple applications are applied to NHANES data, e.g., News and SAS. Therefore, 

it would be advantageous to store NHANES data in a database to accommodate access 

from different applications in a single place, eliminating explicit data conversion between 

different formats by users. 

PKB provided us with an opportunity to examine protein data and operations within 

an object-oriented framework. Proteins with their hierarchical structure cannot be directly 

represented in traditional systems such as files and relational databases, resulting in awk- 

ward data manipulation. In contrast, an object-oriented database is capable of representing 

protein models directly. As protein research is statistical analysis of common characteris- 

tics among a large volume of data, design of an adequate database is critical for its success. 

And recent development such as the human genome project has started producing the large 

amount of protein data at a rapid rate, making a need for a database even more urgent. 

NHANES data and PKB data together also presented very different data types to exam- 

ine in our experiments, i.e., a large flat vector of numbers and deeply-nested tree structure, 

both common in scientific applications. Unlike NHANES data, PKB is a complete appli- 

cation that includes not only data but also a set of library functions. As PKB has been 

actively used in state-of-the-art research on protein structure, we were able to examine the 

dynamic characteristics of protein analysis such as typical data access patterns 

and the time frame of the the performance of GemStone-based 



News within a context of typical PKB analysis. 

The rest of this chapter describes the two applications, a set of operations selected for 

the experiments, and the results of the experiments and their analysis. 

9.1 NHANES Data 

The NHANES data are combined results from three national health surveys conducted 

by the National Center for Health Statistics in order to examine trends in blood pressure. 

Those surveys are Health Examination Survey I (HES I) conducted in 1960, National Health 

And Nutrition Examination Survey I (NHANES I) conducted around 1970, and NHANES I1 

conducted around 1974. The following subsections describe data vectors, selected operations 

for the experiments, and analysis of the experimental results. 

9.1.1 Data Vectors 

The NHANES data are a collection of 20 items including sex, age, blood pressure and 

treatment status from 22975 sampled subjects. Values of all the items are encoded in 

numeric values and stored in a table of 22975 rows by 20 columns. Each row is a sampled 

subject and a column represents a specific item from the subjects. An atomic vector of 

22975 numeric values is created from each column so that correlations between columns 

may be studied in later analysis. Therefore, the database consists of 20 atomic vectors of 

22975 numeric values, each vector named after the item it represents. Brief description on 

each vector is given below. 

1. survey: 1 indicates subjects from HES I, 2 is NHANES 1, 3 is NHANES 11. 



2. sex: 0 indicates female subjects, 1 is male subjects. 

3. sbp: systolic blood pressure. 

4. dbp: diastolic blood pressure. 

5. sbprx: sbp value if treated; otherwise missing. 

6. dbprx: dbp value if treated; otherwise missing. 

7. sbpnorx: sbp value if untreated; otherwise missing. 

8. dbpnorx: dbp value if untreated; otherwise missing. 

9. agel: (actual age) - 50. 

10. age2: (agel)**2. 

11. bmi: BMI (Body Mass Index) - 26. 

12. educ: 0 indicates subjects who didn't finish high school, 1 is those who finished high 

school. 

13. income: 0 indicates subjects at the middle or low income level, 1 indicates high income 

level. 

14. race: 0 indicates white subjects, 1 is black subjects. 

15. rx: 0 indicates subjects whose blood pressure problem has not been treated, 1 is those 

who have been treated, otherwise missing. 



16. stratum: sampling stratum. 

17. ppsu: pseudo-primary sampling unit. 

18. subsetl: the same as survey. 

19. subset2: 2 * survey + sex - 1. Computed from other vectors to represent a subset 

to be used in analysis. 

20. id:  serial values (starting with 1) for identifying each subject. 

BMI (Body Mass Index) used to compute the 11th column is weight (in kg) divided by 

height squared (in meters**2). The 17th column (ppsu), a pseudeprimary sampling unit, is 

a technical indicator of how the data should be analyzed if one wants to account properly for 

the sampling design. The 18th and 19th columns, subset 1 and subset2, specify sex and 

survey subgroups to be used in further analyses. (Even if subset1 is identical to survey, a 

separate vector is provided to represent a concept of a specific subgroup separately from the 

information on surveys.) Missing data are coded as '-99' for reasons related to the planned 

analyses. Vectors such as age2 and subset2 are precomputed from other vectors since they 

are expected to be used frequently in various computations. Note that such vectors can be 

stored as an OPAL method on original vectors, if these vectors are stored in Gemstone. 

9.1.2 Selected Operations for the Experiments 

The objective of NHANES data analysis is to find trends in blood pressure, especially 

with respect to other factors such as age and income. Therefore, in the analysis, we expect 

frequent access to blood pressure values as well as examination of correlation between blood 



pressure and other data items. Hence, we chose access to sbp, the data vector for systolic 

blood pressure, based on index as well as values of other vectors, as a ''representative" 

example for our experiments. Individual test cases are described below. The size of output 

is listed when a subset of sbp is extracted based on element value. 

1. sbp[11487 - i : 11487 + i] where 0 <= i <= 500 

2. sbp[sbp == -99): output size 2246 

i = 1: output size 4181 

i = 2: output size 10762 

i = 3: output size 8032 

4. mean(sbp[survey == i]) 

i = 1,2,3: output size 1 

i = 0: output size 12625 

i = 1: output size 10350 

i = 0,l: output size 1 



i = 0: output size 19909 

i = 1: output size 3066 

i = 0 , l :  output size 1 

i = 0: output size 17258 

i = 1: output size 3471 

i = -99: output size 2246 

i = 0,1, -99: output size 1 

i = 1: output size 2229 

i = 2: output size 1952 

i = 3: output size 6142 

i = 4: output size 4620 

i = 5: output size 4254 

i = 6: output size 3778 



i = 1,2,3,4,5,6: output size 1 

The first case represents direct examination of elements of sbp specified by their index. 

The value of i is adjusted between 0 and 500 so that the size of the index range varies from 1 

to 1000 around the middle position. The second operation identifies cases of a missing value 

in sbp before the number of such cases is counted in the analysis. The rest of the operations 

represent preliminary examination of correlation between sbp and other data vectors, and 

each extracts a subset of sbp specified by values of others. For example, in evaluating 

sbp[survey == 11, survey == 1 is evaluated first and a logical vector is computed based on 

the predicate. The logical vector is then used to extract the subset of sbp where the logical 

vector contains TRUE. As indicated in the size of output, extracted subsets vary in size. 

The mean function is also applied to the extracted subsets of sbp. Note that in all cases, 

applying the mean function reduces the output size to 1. 

We stored all the vectors in the selected expressions, i.e., sbp, survey, sex, race, rx, 

subset2, in GemStone as objects. All the functions in the expressions above ( [ I ,  ==, 

mean) were also provided with GemStone implementations. For the vectors in Gemstone, 

the whole expressions were executed in the database, and only the results were brought into 

News. On the other hand, with the vectors in files, the News implementation was selected 

for all the functions. 

9.1.3 Analysis of Experimental Results 

Figure 9.1, 9.2, and 9.3 summarize the results obtained from running the selected operations 

on the NHANES data described in the previous section. Figure 9.1 shows the performance 
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of Gemstone-based NewS when a subset of the sbp vector is accessed using an index range 

of various sizes, that is, 

sbp[11487 - i : 11487 + i] where 0 <= i <= 500. 

The size of an accessed subset varies from 1 to 1000. As the size of the accessed subset 

increases, the execution time of GemStone-based NewS also increases. In Gemstone-based 

NewS, the subscript function has a Gemstone implementation and in this case is executed 

inside Gemstone. The OID of the result is then returned from subscript to the NewS 

evaluator. At this point, an implicit print function is executed for writing out the content . 

of the result on the screen, which prompts retrieval of all the values in the accessed subset 

into memory. Therefore, the cost of data transfer increases with the size of the accessed 

subset, resulting in larger execution time. 

As a reference, the performance of UNIX-based NewS for the same operation is also 

shown in Figure 9.1. There is a large difference between performance of UNIX-based NewS 

(around 0.2 second on average) and that of Gemstone-based NewS (around 8 seconds on 

average), indicating a large overhead for accessing Gemstone objects over file access. UNIX- 

based NewS also exhibits different patterns of performance from Gemstone-based NewS 

with respect to the size of the accessed subset. Namely, the execution time remains about 

the same regardless of the size of the accessed subset. In UNIX-based NewS, the entire sbp 

vector is loaded into memory as an actual argument to the subscript function. That cost 

of transferring the argument vector into memory is uniform in all the test cases, dominating 

the execution time and yielding approximately the same performance throughout. 



Figure 9.2 and 9.3 show the results from test cases 2 to 12 described in Section 9.1.2, 

i.e., extraction of subsets of sbp with respect to values of other vectors. Figure 9.2 shows 

that the performance of Gemstone-based NewS is somewhat influenced by output size in 

computing sbp[< column >==< value >], more than doubling from 373 seconds to 855 

seconds as output size grows from 1952 to 19909. Again retrieval of all the values in the 

accessed subset for an implicit print function seems to dominate the execution time. 

In contrast, as illustrated in Figure 9.3, the execution time of UNIX-based NewS does 

not vary much as output size increases, ranging from 0.77 to 0.99 second. In executing 

sbp[< column >==< value >I ,  two large numeric vectors, sbp and another vector for 

value reference, are loaded into memory in their entirety as arguments to the == function. 

As with the previous case, transfer of large input vectors executed universally in all the test 

cases yields approximately the same execution time. 

Figure 9.2 and 9.3 also shows the results from calculating the mean values of such 

extracted subsets. With Gemstone-based NewS, in evaluating mean(sbp[< column >== 

< value >I) ,  the OID of the result from sbp is returned to the NewS evaluator, which 

finds that the mean function has a Gemstone implementation and hands back the returned 

OID to execute mean on the result inside Gemstone. The size of the result of the whole 

expression remains 1 in all cases, and the implicit print has to fetch only one value. As 

shown in Figure 9.2, it reduces execution time to apply the mean function to an extracted 

subset of sbp inside Gemstone as it reduces the size of the transferred result. In contrast, 

with UNIX-based NewS, adding calculation of mean values to subset extraction does not 

change the performance drastically, as shown in Figure 9.3, since transfer of input vectors 



still dominates the total execution time. 

Storing and executing functions in GemStone was discussed as one of the design alterna- 

tives in the previous chapter. Having functions such as subscript and mean in GemStone 

was advantageous in the experiments, especially if the size of the result transferred to NewS 

was reduced. However, compared to file access, we generally observed a large overhead in 

accessing GernStone objects, i.e., about 1 to 3 orders of magnitude. 

We noted before that the size of NHANES data has caused problems with UNIX-based 

NewS due to over-copying. UNIX-based NewS tends to use up available memory very 

quickly when large data are handled. With the NHANES vectors stored in GernStone and 

accessed there in the experiments, we observed much fewer crashes and more stable system 

activities in general. 

9.2 PKB 

PKB is an NewS application that combines a database of three-dimensional protein struc- 

tures with a series of algorithms for pattern recognition, data analysis, and graphics [Bry89]. 

The following sections describe the data schema and implemented algorithms in the PKB 

library. We also discuss typical PKB analysis, selected operations for the experiments as 

likely operations in such analysis, and the results of the experiments. 

9.2.1 PKB Data 

The PKB database contains one NewS list for each protein registered in the Brookhaven 

Protein Data Bank. These lists are named according to the identification code of the entry 



in the Data Bank, and various information on each protein structure is encoded as a named 

component of the list. Figure 9.4 shows the deeply-nested hierarchical structure of the PKB 

protein structure lists. The depth of the list ranges from 3 to 5. 

Among various components, PEPTIDE represents a protein's structural data. Proteins 

consist of amino-acid residues each of which in turn includes a number of atoms. PKB 

models protein structure somewhat differently, and PEPTIDE has both the ATOM and 

RESIDUE components; ATOM has a subcomponent pointing to an associated RESIDUE. 

This organization permits efficient access to the ATOM component. Note that if both 

ATOM and RESIDUE were represented as Gemstone objects with associated OOP's, it 

would be very easy to represent a logical reference from ATOM to RESIDUE using the 

OOP of RESIDUE. The HETEROGEN component contains information on groups of atoms 

outside amineacid residues. The CRYSTAL component represents various crystallographic 

data. As X-ray crystallography is used to obtain the structural data in the PEPTIDE 

component, CRYSTAL is a sort of "meta" data that supplement data values in PEPTIDE. 

9.2.2 PKB Functions 

PKB extends the News library with its own functions for maintaining the database, for 

querying the database based on sequential and conformational motifs, and for analyzing 

the data based on a number of different structural parameters. Figure 9.5 shows a complete 

list of PKB functions and brief description of what each function accomplishes. The PKB 

functions can be classified into the following seven categories based on the pattern of data 

access and manipulation that take place. Note that biological semantics of functions'are 
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ACXP 

ADDM 

ADXP 

ALPHA.CARBONS 

ANGLE.PLOT 

ATOM.COORDINATE 

ATOM.RESIDUE 

ATOM.TY P E 

ATOMS 

ATOMS.PLOT 

BDAN 

BDLN 

BETA.CARBONS 

BOND.ANGLES 

BONDS 

BONDS.PLOT 

CHAINS 

CONTOUR.MATRIX 

CTSN 

Atom contact pairs from coordinates 

Dimer atom distance matrix from coordinat- 

Dimer atom contact pairs from coordinates 

Carbon-alpha coordinates from PKB protein object 

Axes for scatterplot of angular data 

Polypeptide coordinates from PKB protein object 

Residue pointers by atom from PKB protein object 

Atom type labels from PKB protein object 

Selected atom coordinates by residue 

Stick drawing of atomic coordinates 

Bond angles from selected atom triplets 

Bond lengths from selected atom pairs 

Beta-carbon coordinate matrix 

Standard bond angles for PKB protein object 

Standard covalent bonds for PKB protein object 

Stick drawing from l i t  of bonds 

Chain numbers by residue from PKB protein object 

Contour plot of distance or contact matrix 

Convert spherical polar to Cartesian coordinates 

Figure 9.5 (1) PKB Functions 





LKBD 

LKTO 

N ACX 

NRCX 

PDB.FILE 

PDBF 

PDMQ 

PEPTIDE.BONDS 

RAMACHANDRAN.PLOT 

RCXM 

RDXM 

RESIDUE.CHAIN 

RESIDUE.CONTACT.MATRIX 

RESIDUE.CONTACT.NUMBER 

RESIDUE.NAME 

RESIDUE.TYPE 

RESIDUES 

RTAT 

SCCN 

Bonded atom pairs using a bond dictionary 

Bonded atom quartets using a dihedral dictionary 

Atomic contact wunt by atom 

Atomic contact count by residue 

Write PDB file from PKB protein object 

Write PDB file from coordinate matrix 

Partitioned distance matrix query 

Main-chain peptide bonds by distance calculation 

Ramachandran diagram from PKB protein object 

Atomic contacts by residue pair 

Dimer atomic contacts by residue pair 

Polypeptide chain number by residue 

Residue contact matrix from PKB protein object 

Residue contact number from PKB protein object 

Conventional residue numbers by residue 

Polypeptide residue type by residue 

Polypeptide residue type in standard codes 

Rotate atomic coordinates about x, y, or z 

Side chain centroid from atomic mdinates 

Figure 9.5 (3) PKB Functions 



SECONDARY .STRUCTURE 

SEQUENCE.MOTIF 

SIDE.CHAIN.CENTR0ID 

SPLR 

SSQ 

SUPR 

VABS 

VCRs 

VDOT 

VIRTUALBETA.CARB0NS 

VIRTUAL.BONDS 

VNRM 

secondary structure Rags by residue 

Instances of a subsequence in PKB protein object 

Side chain centroid from PKB protein object 

Convert Cartesian to spherical polar coordinates 

lnstances of subsequence from residue type vector 

Optimal superposition of hHo coordinate matrices 

Lengths of 3-D vectors stored as n by 3 matrix 

Vector products of 3-D vectors as n by 3 matrices 

Scalar products of 3-D vectors as n by 3 matrices 

Betacarbon coordinates m p u t e d  from main chain 

Alpha-carbon to alpha-carbon virtual bonds 

Normalize 3-0 vectors stored as n by 3 matrix 

Figure 9.5 (4) PKB Functions 



not considered, i.e., functions in each category do not necessarily perform biologically similar 

computations. 

1. Functions that retrieve the data from the database, derive quantities based on them, 

and call FORTRAN subroutines using derived data as actual parameters. There are 

21 such functions: 

ACXP ADDM ADXP BDAN BDLN CTSN 

D2F DIAN LDP NACX NRCX PDMQ 

RCXM RDXM SCCN SPLR SUPR VABS 

VCRs VDOT VNRM 

For example, ACXP retrieves coordinates of atoms and computes atom contact pairs 

from them using a FORTRAN routine. 

2. Functions similar to those in 1, but calling C subroutines. There are 8 such functions: 

GPAN GPBD GPTO LKAN LKBD LKTO 

PDBF SSQ 

For example, GPAN computes bonded atom triplets by matching protein data to a 

bond angle dictionary. 

3. Functions that retrieve components of protein structural data. There are 7 such 

functions, and they are frequently called in other PKB functions: 



ATOM.COORDINATE 

CHAINS 

HETEROGEN. ATOM.GROUP 

RESIDUE.NAME 

4. Functions that access protein structural data and perform simple manipulations: 

There are 6 such functions: 

ATOM .TYPE HETEROGEN.ATOM.TYPE 

HETEROGEN.GROUP.CHAIN HETEROGEN.GROUP.TYPE 

RESIDUE.CHAIN RESIDUE.TYPE 

5. PKB plotting functions that utilize the graphical capabilities of News. There are 5 

such functions: 

ANGLE.PLOT ATOMS.PLOT 

BONDS.PLOT COUNTOUR.MATRIX 

RAMACHANDRAN-PLOT 

6. Functions that build the PKB database. They read ASCII files from the Brookhaven 

Protein Data Bank and build News lists containing various data in their components. 

There are 13 such functions: 

LOAD LOADHEAD LOADCRYS 



LOADSCAL LOADMTRI LOAD ATOM 

LOADSSBO LOADHELI LOADSHEE 

LOADTURN LOADHETA LOADDOCS 

LOADRESO 

7. All other PKB functions that consist of News expressions. There are 22 of them: 

ALPHA.CARBONS 

BETA.CARBONS 

BONDS 

DIMER.RESIDUE.CONTACT.MATRIX 

FOR.PROTEINS 

HYDROGEN.BONDS 

PEPTIDE.BONDS 

RESIDUE.CONTACT.NUMBER 

RTAT 

SEQUENCE.MOTIF 

VIEYI'UAL.BETA.CARBONS 

ATOMS 

BOND.ANGLES 

DIHEDRAL.ANGLES 

DISULFIDE.BONDS 

HETEROGEN.BONDS 

PDB.FILE 

RES1DUE.CONTACT.MATRIX 

RESIDUES 

SECONDARY.STRUCTURE 

SIDE.CHAIN.CENTRO1D 

VrnUAL.BONDS 

As evident from the above, many operations are actually performed in FORTRAN or 

C, especially such computationally intensive operations as pattern recognition. News is 

mainly used for accessing and managing protein objects as well as graphically displaying 

analysis results. In the PKB library, there are 82 functions implemented in News and 53 



subroutines implemented in FORTRAN, RATFOR, or C. 

9.2.3 PKB Analysis 

Without looking into dynamic examples, static examination of the PKB library reveals 

patterns of function execution and data access in PKB analysis to some extent. For example, 

Figure 9.6 shows the 20 News library functions that are most frequently used in the PKB 

library. The figure shows the heavy usage of the $ function in the PKB library for accessing 

protein components. (The complete list of frequencies of News library functions used in 

the PKB library is found in Appendix A.) 

Figure 9.7 shows all the expressions containing get (p r t ) ,  i.e., a function call for access- 

ing a protein object in a database, that appear in the PKB library. All such expressions 

involve access to a particular subcomponent of a protein structure list using a series of a p  

plications of the component access function ($). We also indicate what function each such 

expression is contained in, and how frequently the function appears in the PKB library. The 

figure indicates that access to atomic coordinates and amino-acid residues are frequently 

performed in the PKB library. 

As PKB is actually being used in state-of-the-art protein structural analysis, we could 

also examine real examples of the analysis to deduce typical scenarios and data access 

patterns. The objective of protein structural analysis is to find correlation between amino- 

acid sequences and structural motifs. Among published examples of PKB analysis are study 

of conformations of Arg-Gly-Asp sequences and sequences of P@ substructures [Bry89]. In 

most PKB analyses, a database is initially searched to extract a subset of proteins that 
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get(prt)$PEPllDE$ATOM$C90RDlNATE 

geyprt)$PEPnDEUTOMSRESlWE 

levds(get(prt)$PEPTIDE$ATOM$TYPE)[get(prt)$PEPTIDE$ATOM$TYPE] 

ac-match(atm, levels(get(prt)$PEPTIDE$ATOMfTYPE)) 

an_get(prt)$PEPTIDE$ATOM$TYPE-ac 
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Figure 9.7 



share certain characteristics, e.g., a common axnineacid sequence or conformational motif. 

Such a subset is then statistically analyzed to identify the trends among its members, e.g., 

whether all the proteins with a common sequence share the same structural features. The 

result of the analysis is then graphically displayed at the end. Note that even if News 

generally promotes interactive data access, most PKB analyses load all the necessary data 

into memory in batches at the beginning. This is because the statistical analysis is very 

computationally intensive and time-consuming, spanning days, weeks or even months. In 

order to facilitate initial batch loading of the data for efficient analysis, PKB typically 

runs on a workstation with large memory space. For example, at National Center For 

Biotechnology Information (NCBI) at National Institutes of Health, PKB is running on the 

SGI 4D-35 with 128 Mbytes of memory all dedicated to PKB analysis. 

9.2.4 Selected Operations for the Experiments 

As Figure 9.7 shows, access to the ATOM and RESIDUE component of proteins appears 

frequently in the PKB library. Therefore, we selected the following expressions that access 

properties of those components for the experiments. 

in the ATOM.COORDINATE function 

(number of appearance in the PKB library for ATOM.COORDINATE: 33) 



in the ATOM.TYPE function 

(number of appearance in the PKB library'for ATOM.TYPE: 15) 

in the CHAINS function 

(number of appearance in the PKB library for CHAINS: 13) 

in the RESIDUE.TYPE function 

(number of appearance in the PKB library for RES1DUE.TYPE: 7) 

Since the $ function has Gemstone implementation, all component access in cascaded 

$'s is executed inside Gemstone when protein objects are stored there, and only the accessed 

component is retrieved into News. 

The second and fourth expressions include some manipulation of accessed components. 

In those expressions, the accessed component, TYPE, is a category object; its levels 

attribute specifies possible residue or atom type names, and its data is a collection of 

indices into the possible names in the l eve l  attribute. When the expression 

is evaluated, 



is evaluated first, returning the levels  attribute that consists of all possible atom type 

names. The expression 

evaluates to the collection of indices into the value of the levels  attribute, i.e., all possible 

atom type names, so as a whole, the expression above delivers a collection of actual atom 

type names contained in a protein. 

In contrast to various component access, entire protein structures are also accessed at 

once for display in the experiments. 

Due to the limited disk space, we did not create all the entries in the Brookhaven 

Protein Data Bank (over 600) as GemStone objects. Figure 9.8 lists the 11 proteins we 

stored in Gemstone for the experiments. Those proteins were chosen based on their sizes 

in terms of the number of amino-acid residues, and they contain a range of numbers of 

residues. Therefore, the properties of their ATOM and RESIDUE components accessed in 

the experiments exhibited a range of sizes as well. As there is no mechanism in GemStone 

to report the physical size (in terms of bytes) of objects, it was impossible to determine 

what collection of proteins could be safely stored as GemStone objects in a given amount 

disk space. Therefore, after we successfully created those 11 proteins, we did not attempt 

to increase the size of the database. 

9.2.5 Analysis of Experimental Results 

The series of diagrams Figure 9.9 to 9.20 shows the results from running the selected PKB 

expressions described in the previous section. 
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Figure 9.1 1 Gemstone-based News 
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Figure 9.1 9 Gemstone-based NewS vs. UNIX-based NewS 
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Figure 9.9 shows the performance of Gemstone-based NewS when the whole protein 

is retrieved into memory. For a reference, the performance of UNIX-based NewS for the 

same operation is shown in Figure 9.10. As with NHANES data, there is a large overhead 

for accessing GemStone objects over file access, especially when the size of the retrieved 

objects is large. Note that in both figures, the access time is proportional not to the 

number of residues but to the size of the whole data. As some Brookhaven entries contain 

much miscellaneous information besides the residue data, the number of residues does not 

necessarily indicate the size of the whole data file. 

Figure 9.1 1, 9.13, 9.15, and 9.17 show the results from accessing components of proteins 

for Gemstone-based NewS. In evaluating an expression 

with proteins in Gemstone, each call to $ in Gemstone returns to News an OID of the cor- 

responding component. For example, GemStone returns to NewS the OID of the PEPTIDE 

component selected from the whole protein, which NewS subsequently hands back to Gem- 

Stone for further processing of $'s in a database. After the OID of 

is obtained in Gemstone, its data values, i.e., x, y, and z coordinates of all atoms, are 

actually transferred to NewS for displaying the results. (The NewS evaluator makes one 

GCI function call per each value transferred.) The number of transferred values in this case 

ranges from 0 to 3290, depending on the accessed protein. The performance in all cases 



is approximately proportional to the size of the accessed components, which indicates that 

the transfer of actual data values at the end dominates the execution time. 

Figure 9.11 shows the case where coordinates of atoms in a protein are accessed; the 

returned result therefore contains three numerical values per atom for x, y, and z coordinates. 

In contrast, the case illustrated in Figure 9.13 accesses the type names of atoms, and the 

returned result includes one string for a name of each atom. As each number and string are 

both retrieved by a single call in Gemstone-based NewS, the performance of GemStone- 

based NewS in Figure 9.13 is about an order of magnitude faster than that shown in Figure 

9.11 due to a smaller number of calls required for the data transfer. Figures 9.15 and 9.17 

show the cases where various properties of residues in a protein are accessed. Each residue 

consists of a number of atoms and consequently, the number of residues in a protein is 

smaller than the number of atoms. Therefore, the performance of Gemstone-based NewS 

in these cases is faster than Figure 9.11 or 9.13. 

Figure 9.12, 9.14, 9.16, and 9.18 show the results of accessing protein components for 

UNIX-based NewS. All the test cases shown there exhibit very similar execution time, an 

average being somewhere between 0.1 second and 0.2 second, and very similar patterns 

of performance across different proteins. Whenever any protein component is accessed in 

UNIX-based NewS, the whole protein is brought into memory as an actual argument to 

$, which explains the similar value and pattern in the execution time. In fact, the same 

pattern of execution time is observed in Figure 9.10, i.e., the retrieval of the whole protein 

for Gemstone-based NewS. 

The obtained results in general illustrate advantages of processing component access 
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inside the database; the smaller the accessed component is with respect to the whole protein,

the more time is saved by eliminating unnecessary data transfer. Comparison of Figures

9.11, 9.13, 9.15, 9.17 to Figure 9.9 illustrates a range of the time saved from accessing

protein components in GemStone, from about 50% reduction to difference by a couple of

orders of magnitude. As large data benefit from local, segment-based access in GemStone,

execution of component access in GemStone eliminates unnecessary access to those pages

that do not contain accessed component.

However, as with NHANES data, experiments with PKB in general revealed a large

overhead for accessing GemStone objects when compared to file access, especially when the

accessed objects are large. Figure 9.19 and 9.20 compare the performance of UNIX-based

NewS and GemStone-based NewS to indicate the overhead explicitly. It was slower by 1 to

3 orders of magnitudes to access protein objects in GemStone than in files, as was the case

with the NHANES data.

We compared the performance of GemStone-based NewS to UNIX-based NewS since

the comparison gave us concrete numbers to discuss. However, the performance would

be best interpreted when discussed with respect to each application's requirements. As

PKB is being used actively in protein structural analysis, we could examine its execution

environment and assess the performance in that context as follows.

Note that data access are performed initially in batches in PKB analysis, so performance

requirements are less stringent than other NewS applications that require interactive access

to a database. A typical time frame of PKB analysis spans days, weeks, or even months, so

in terms of numbers, the performance of GemStone-based NewS reported in this chapter is
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not far off from that range. According to Figures 9.15 and 9.17, time to access a property of

the residuecomponent averages around 5 seconds for GemStone-based NewS. Therefore,

it would take the platform 50 minutes to iterate over 600 proteins. More complex PKB

queries would likely take several hours to days with the data in GemStone.

9.3 Summary of Analysis

This chapter described the experiments we performed with two sample NewS applications,

NHANES data and PKB. The experiments gave us an opportunity to examine one of the

design alternatives discussed in the previous chapter, Le., storing and executing functions

in GemStone to control the amount of data transfer from GemStone to NewS. With both

applications, having a GemStone implementation of such functions as subscript ([J), mean,

and component access ($) resulted in reduced execution time, especially when it eliminated

a large amount of unnecessary data transfer.

The performance of GemStone-based NewS, when compared to UNIX-based NewS,

showed a large overhead for accessing GemStone objects over file access. Throughout the

experiments, GemStone-based NewS was slower than UNIX-based NewS by 1 to 3 orders

of magnitude. One of the possible causes for the slow performance is the space overhead

for object representation. Namely, when NewS objects are stored in GemStone, they seem

to take up much more storage space than the equivalent file objects in UNIX-based NewS.

Since there is no facility for monitoring physical space occupied by objects in GemStone, it

was difficult for us to find out such storage overhead exactly. However, we once observed

from a difference in used disk space before and after object creation that an NHANES data
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vector, 0.046 Mbytes in file, was expanded to 1.4 Mbytes when converted to a GemStone

object. Therefore, more data pages must be accessed by GemStone-based NewS to read an

object, clearly a disadvantage in terms of performance.

We were also concerned with the difference in the size of the executables. Since NewS

was directly linked into the Gem process that manages a GemStone session for efficient

communication between the two systems, the physical size of GemStone-based NewS was

significantly larger than UNIX-based NewS, Le., 3.9 Mbytes (GemStone-based NewS) vs. 2.3

Mbytes (UNIX-based NewS). However, we observed no apparent effect of the size difference.

During the experiments, we did not observe swapping activities particular to GemStone-

based NewS. More page-ins and page-outs were initiated by GemStone-based NewS than

UNIX-based NewS, though it is not clear how much of it was due to large object size in

GemStone and how much to different sizes of executables.

PKB presented us with an example where storing the data in a database rather than as

NewS file objects is clearly advantageous, even with the performance overhead. At NCBI,

there is currently an attempt to unify PKB data and genetic sequence data, which are

currently stored separately in different formats, in a common database. Such an effort

would facilitate easy access to all kinds of biological data by multiple applications and

expand the scope of individual analyses, e.g., PKB can now incorporate DNA sequence data

in the analysis or even combine its functions with operations available in other applications

through a database. As a relational database (SYBASE) has not served well as such a

common data repository, object-oriented databases are being considered as a potentially

better alternative.



Chapter 10 

Ease of Experimentation with 

Gemstone-based NewS 

In the previous two chapters, we described the experiments we performed on GemStone- 

based NewS. This chapter discusses our experience experimenting with Gemstone-based 

NewS and evaluates ease of experimentation with it. As mentioned before, the purpose of 

Gemstone-based NewS was to explore possibilities in designing object-oriented database 

support for scientific applications, and the platform was designed to make such exploration 

as easy as possible. 

Section 10.1 describes the experimentation process of creating objects in Gemstone and 

performing operations on them. Section 10.2 then discusses modifying the baseline architec- 

ture to examine architectural alternatives as described in Chapter 8. Finally, Section 10.3 

assesses ease of experimentation based on our experience. Though ease of experimentation 

is a somewhat subjective criterion, we attempt to identify those architectural features of 

Gemstone-based NewS that contributed to a reduced amount of work in comparison to 

what we would expect with other approaches. 



10.1 Experimentation Process 

As mentioned before, object creation in GemStone for the experiments was simplified by 

preserving the object access paradigm of current NewS. We just had to include an appropri- 

ate GemStone dictionary as the first entry in the search list, and an object was created in 

GemStone by a permanent assignment, just as in files. (In order to distinguish UNIX direc- 

tory names from GemStone dictionary names in the search list, we attached a prefix "/db" 

to the latter.) For both applications tested, i.e., NHANES Data Analysis and PKB, input 

data were initially contained in ASCII files. The applications included functions for reading 

data from ASCII files and creating NewS objects from them using permanent assignments. 

We reused such functions for creating objects in GemStone for those applications. Actual 

work for object creation, e.g., conversion of NewS objects to GernStone representation, 

mapping of NewS names to equivalent GemStone names, was automatically performed by 

the evaluator. 

Creating functions in GernStone involved more effort as it required creation of a Gem- 

Stone class for the function with the definition of its operation, and instantiation of the 

class. We described various issues in mapping a News function to an equivalent GernStone 

function object in Chapter 7. 

In many cases, we compared file access and GemStone access for the same operation, 

and objects were duplicated in files and GemStone. The first entry in the search list was 

adjusted to either a file directory or a Gemstone dictionary to duplicate objects in both 

places. In order to distinguish a pair of objects representing the same data, we named the 



GemStone version "db<object name>" where <object name> was a name of a file object. 

GemStone implementations of NewS library functions such as subscript, $ were created 

so that different versions were executed depending on where the data were stored. 

Once objects and functions were created for the experiments, we had a uniform, trans- 

parent access to them regardless of their locations. All the entries in the search list, in- 

cluding file directories and GemStone dictionaries, were searched to locate objects. In the 

case objects resided in GemStone, conversion of object name and structure from GemStone 

to NewS was automated in the evaluator. As a result, we could reuse on Gemstone-based 

NewS not only those functions for creating objects but also any existing NewS functions 

that access NewS objects without modifications, and all the test cases in the experiments 

were essentially NewS expressions. 

With the test cases being NewS expressions, we could apply the unix.time function 

provided in the NewS library to them to time their evaluation. In case of GemStone access, 

the result from unix .time included time required for execution of NewS and GemStone as 

well as communication between them. Since NewS is implemented mostly in C, we could 

also use the UNIX command getrusage to monitor resource utilization during computation 

of arbitrary subparts of an expression by inserting the command in appropriate places of 

the source code. 

To expedite the experimentation process with repeated runs, we wrote a shell script 

that automated a testing process for multiple expressions. The script automatically started 

up a NewS session, logged into GemStone, executed a collection of test expressions, and 

recorded the results from mix. time and getrusage. 



10.2 Examining Design Alternatives 

Chapter 8 described possible architectural alternatives in designing Gemstone support for 

NewS applications. We investigated how to examine such alternatives on Gemstone-based 

NewS, i.e., how to alter architecture of the platform to realize a set of alternatives so 

that we can examine how the same function behaves differently against them. Figure 10.1 

summarizes a set of design alternatives we examined and the required modifications for 

them. As we retained encapsulation of GemStone and NewS in constructing the platform, 

most modifications were local to one system or the other, making it simple to set up the 

alternatives. 

Setting up and comparing the alternatives required direct interaction with Gemstone. 

For example, as mentioned before, an alternative Gemstone schema was represented as a set 

of subclasses, and rather than introducing such variations into the NewS environment, e.g., 

"cached" lists for the list mode, we directly instantiated those subclasses in Gemstone. 

Unlike the file system that is hidden under NewS, GemStone provided an interface for 

direct object access, which served well for our experiments. In some cases, we monitored 

GemStone operations directly for preliminary assessment. For such monitoring, GemStone 

provided several methods for keeping track of the Gem process such as gemstatistics and 

millisecondsToRun : CaBlock>. However, information on the Stone process that handles 

most physical data access was only available through a special method stonestatistics 

and only to a privileged user, making it somewhat difficult to obtain an overall picture of 
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GemStone activities. 

10.3 Ease of Experimentation 

In executing the experiments, our decision to preserve transparent object access of NewS 

contributed to ease of experimentation on Gemstone-based NewS by increasing reuse of 

existing NewS functions. Changes to the NewS environment were kept minimal, and Gem- 

Stone was presented to users as a set of "dictionaries", i.e., "containers" of persistent data 

synonymous to file directories. Objects were created in GemStone the same way as in files 

by including such a GemStone dictionary in the search list. Most effort was actually spent ' 

on initial creation of functions in Gemstone as it required implementation of an equiva- 

lent operation as GemStone methods. Once a database was prepared, we could run NewS 

expressions against objects stored in GemStone, and reuse existing functions for the experi- 

ments. Had we chosen C or FORTRAN applications instead, we would have had to modify 

the applications extensively due to a lack of transparent access to a database; all the file 

reads and writes would have had to be replaced by GCI calls. 

To examine design alternatives of the platform, its modular, encapsulated architecture 

made most of the required changes for investigating such alternatives local to either NewS 

or Gemstone. As one of the most difficult aspects of making changes is their complete prop 

agation to ensure consistency of the code, the modular architecture and resulting localized 

changes had a large effect on overall ease of experimentation. 



Chapter 11 

Conclusion and Future Work 

As mentioned at the beginning, an objective of our work was to explore how to improve 

scientific data management through experimentation on a platform. At this point, we assess 

whether or not our approach was effective for the purpose, and describe what we consider 

primary contributions of this study. We also discuss possible future work. 

11.1 Evaluation of Our Approach 

In assessing our approach, we first examine how our platform, Gemstone-based News, 

measures up to the criteria discussed in Chapter 4. We also look at suitability of the 

platform for investigating a range of issues described in Chapter 5. Finally, we evaluate 

Gemstone features for supporting NewS applications. As we adopted Gemstone mainly 

due to its availability, our intention was to use Gemstone features as a "reference" and 

examine their suitability for NewS. 

11.1.1 Evaluation of Gemstone-based NewS 

In Chapter 4, we discussed criteria for an experimental platform, namely, cost-effectiveness 

in construction, productivity and flexibility of the architecture, generality of the targeted 

applications, performance level, and ease of experimentation. 

A choice of News as a target gave generality in scientific applications examined, where 
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better data support is desired. Data support requirements of NewS are a union of those

found in many scientific applications. We examined two sample NewS applications, NHANES

Data Analysis and PKB, that use very different data types.

A choice of an object-oriented database contributed to productivity and flexibility of

the platform's architecture. Unlike files or relational databases, an object-oriented database

has both a flexible data model and traditional database support. Hence, we could directly

represent NewS data and functions while examining the potential of storage management

for large NewS datasets or contemplating how GemStone concurrency control could benefit

certain NewS execution environments. Chapter 8 illustrated flexibility of the platform's

architecture with possible variations in GemStone schema, communication with GemStone,

introduction of GemStone capabilities, optimization of NewS expression evaluation, and

NewS objects and functions stored in GemStone.

Adoption of NewS and GemStone also amounted to a cost-effective platform. By using

a commercial object-oriented database GemStone, all the object-oriented database features

were readily available, so we could concentrate on how to best adapt such features. In

adopting NewS, we minimized changes to the NewS semantics and environment, and reused

existing functionality as much as possible.

Chapter 10 discussed ease of experimentation in detail. In executing the experiments,

the transparent data access of NewS that we preserved contributed to easy experimentation,

especially after a database was prepared, since we could reuse existing NewS applications

as is. For modifying the architecture to examine possible design alternatives, a modular,

encapsulated architecture of the platform keeps required modifications local and easy to
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As for performance level, we said earlier that there is a minimum level of performance 

necessary for repeated experimentation. Our first prototype of Gemstone-based NewS pro- 

vided performance fast enough to execute those experiments reported in this dissertation. 

Many existing NewS applications would actually benefit from the Gemstone-News archi- 

tecture, even with the kind of performance reported in this dissertation, since their primary 

requirement is transparent access to a database from an application for ease of use; such 

transparency is readily supported by Gemstone-based NewS. For such applications, perfor- 

mance is not as critical as transparency because batch-oriented data access is often sufficient. 

However, for the platform to evolve into a "field-testable" system with a performance close 

to a production system, performance improvement is definitely needed. 

In summary, Gemstone-based NewS was evaluated favorably in all of the criteria except 

for performance level. There is a lot to be desired on its performance, though we contend 

that our first prototype provided reasonable performance for an initial attempt; with PKB 

data, the access time was not far off from a time frame of typical analysis. We will discuss 

possible performance improvements later as part of future work. 

11.1.2 Suitability for Various Investigations 

Chapter 5 identified design dimensions we would be interested in investigating on an exper- 

imental platform. This section analyzes how suitable Gemstonebased NewS is for investi- 

gations in each of these areas. 



Type Definition Facility 

With Gemstone-based NewS, the type definition facility is essentially that of the current 

NewS due to our decision to preserve the NewS environment and existing NewS applications. 

A type-definition facility of an underlying object-oriented database is not accessible from 

users. That design decision was based on our initial interests in characteristics of existing 

scientific applications rather than a definition facility for scientific data types. In NewS, 

a fixed set of types is provided as a constructor, e.g., a vector, an array, and one can use 

them to construct arbitrary application types. It is conceivable to change the NewS type 

definition facility without disrupting existing applications, e.g., adding new constructor 

types. However, existing generic NewS functions, e.g., print ,  which consist of a list of 

case statements for all possible argument types, must be modified to work on newly added 

types. (Note that with the later version of NewS, addition of a new constructor type is 

much easier since one only needs to add a new method for it.) Hence, the platform is fairly 

limited in a way a type-definition facility is varied. In order to explore an adequate type 

definition facility, one needs a platform constructed with a different design principle. For 

example, one can construct a type definition facility from a scratch, experimenting with 

different constructor types. Another, more manageable approach is to introduce object- 

oriented features provided in an underlying database to the type definition facility of the 

language, e.g., an explicit syntax for class definition and inheritance. 



Implementation of State 

As mentioned before, application data types are defined with a fixed set of "constructor" 

types provided in News. (One consequence of this design is that there is no need to modify 

existing NewS applications to run on the platform.) We designed GemStone classes that 

represent the NewS constructor types. GemStone schema for NewS includes a class for a 

generic vector, but each mode is represented by a separate subclass of the generic vector 

class, making it possible to customize representation for each mode. Hence, NewS data 

types are represented in GemStone according to how they are defined with the constructor 

types. It is relatively easy to vary GemStone representation for the NewS constructors. 

Instead of modifying GemStone classes, we can use inheritance to represent such different 

representations as subclasses of a common superclass, an approach particularly useful when 

different representations are variations of a common basic design. It is more difficult to 

differentiate a representation for NewS data types that are constructed the same way. For 

example, it would be difficult to represent type TI, which is an array of arrays of integers, 

with one GemStone class C1 and represent type T2 of the same structure with another 

GemStone class C2 simultaneously. 

Possible implementation for each NewS constructor is constrained by a set of representa- 

tion structures provided in Gemstone. Gemstone represents most constructs as an object. 

It is conceivable to encode arbitrary values in bytes as byte objects are provided in Gem- 

Stone, though with such a user-defined representation of the values, one must also provide 



173

all the linguistic support expected with those values explicitly. Note that other object-

oriented databases provide more flexibility in terms of representation structures) e.g.) an

arbitrary-structured ''value'' without an identity separate from an object in 02.

Structural variations in organizing state) e.g.) different choices of top-level instance vari-

abIes) are easy to investigate with GemStone-based NewS) as GemStone does not dictate

how object state should be structured) leaving the decision up to each designer.

Implementation of Operations

A programming paradigm used to represent S functions is the OPAL semantics provided by

GemStone. Since OPAL is a computationally-complete language) it is possible to implement

the same behavior in different ways. With one-to-one mapping between a NewS function

and a GemStone function class) variations in implementation of a NewS function are di-

rectly represented through differentiation of a corresponding GemStone function class. As

with different representations of state) inheritance can be effectively used to represent such

variations as a set of GemStone subclasses. Each implementation of a function requires cre-

ation of a new GemStone class) with understanding of GemStone representation for NewS

objects and operational semantics of the function. However) it is not necessary to modify

applications or to re-compile the NewS interpreter to examine different database implemen-

tations of the same function) since difference in implementation is effectively encapsulated

in GemStone objects.



Queries on Types 

With Gemstone-based NewS, a query definition facility is provided by NewS, and queries 

are essentially NewS expressions. Though all the NewS applications, regardless of their 

domains, share the same query syntax, it is possible to semantically tailor the queries 

by providing domain-specific functions. Provision of domain-specific query syntax would 

require modification or extension of the NewS language. NewS also encourages object-at-a- 

time computation as opposed to explicit iteration through its elements. Hence, queries are 

expressed at a large granularity in NewS and easy to translate into equivalent queries on 

underlying database structures. 

The current architecture of Gemstone-based News allows for investigation on query 

processing to some extent. As shown earlier, dynamic query optimizations can be explored 

by having Gemstone methods accumulate function calls and perform optimization on the 

accumulated calls. Auxiliary access structures such as index can be also explored, though 

with some effort. Gemstone does not provide index for ordered collections, so the use 

of indexes requires implementation of index as a user-defined class, or encoding of arrays 

into sets, for which index is currently available. Note that the general architecture of the 

platform, i.e., a combination of a persistent programming language and an object-oriented 

database with a well-defined interface between them, offers a potential as a vehicle for 

investigation of query processing, by having whole query expressions transferred from the 

language to be processed in a database. 



Other Data Type Support 

Investigation of other data type support, such as a use of generalization hierarchy and type 

evolution, is limited on GemStone-based NewS due to indirection between scientific data 

types and database support. Inheritance is not directly available in the version of NewS used 

in our study for representing a taxonomy of scientific data types, and we did not introduce 

Gemstone-like generalization explicitly to investigate its potential for NewS data types. 

(The generalization hierarchy of Gemstone was used instead to come up with modular, 

reusable designs of Gemstone classes for NewS data types.) As NewS is in a process of 

incorporating more object-oriented features, there is a potential for explicit inheritance in 

the future version of NewS. 

GemStone-based NewS supports type evolution as much as permitted in NewS, i.e., 

through modification and extension of NewS objects and functions. With Gemstone repre- 

sentation for NewS type constructors, any modification and extension of application data 

types possible in the language are automatically supported on the database side without 

modifying or extending the GemStone classes for NewS. However, schema changes possible 

in Gemstone cannot be easily used to support such type evolution. 

As for possible unification of multiple types, merging multiple types on the platform 

is essentially programming effort that attempts to combine behaviors of multiple functions 

consistently as NewS types are implicitly represented by constructor functions of their 

instances. Hence, without modifying News semantics, the platform does not allow for 

investigation of more formal options for unifying types such as union or multiple inheritance. 



Note also that multiple inheritance is not directly supported in GemStone. Hence, other 

object-oriented databases that provide multiple inheritance explicitly are a better choice 

for its investigation. 

Execution of Operations 

It is relatively straightforward to adjust the location of operation execution within GemStone- 

based NewS. When both data and a function definition are stored in Gemstone, the func- 

tion can be executed on the data in a database by sending a message to the appropriate 

Gemstone function object from NewS through the GCI. Alternatively, the data can be 

transferred to NewS and converted into an in-memory representation, and any NewS func- 

tion can subsequently operate on them there. Arbitrary policies for choosing the location 

of operation execution can be encoded into the NewS interpreter as a set of rules, based on 

which the interpreter decides whether to call a GemStone function object or trigger data 

transfer to NewS for in-memory computation. 

Note also that the discussion provided earlier on query optimization also applies to 

arbitrary operation execution, i.e., possible dynamic optimizations can be explored not just 

with queries but in a more general context on the platform. 

Data Movement 

Various schemes are possible to adjust data loading with Gemstone-based NewS. For ex- 

ample, by storing and executing NewS data access functions in GemStone, it is possible 

to reduce the amount of data transfer from Gemstone to NewS. Loading only attributes 



of NewS data requires minor, localized changes to the NewS interpreter to create a special 

mode for "attribute-only" objects [Kengl]. GCI also allows certain variations in imple- 

menting data transfer, e.g., different granularities of information communicated by a single 

function call. 

Traditional Database Support 

With Gemstone-based NewS, available database support we can examine is constrained 

by capabilities provided by GemStone. Though such support as storage management can- 

not be varied without modifying Gemstone internals, some capabilities, e.g., transactions 

and locks, are provided as predefined GemStone methods, which News can trigger through 

the GCI. Hence, in some cases, it is possible to customize database support by varying 

the way provided methods are called from NewS or modifying the methods in Gemstone. 

For example, one can customize a transaction scheme for an application by varying posi- 

tions of commits and the way locks are provided, by choosing between implicit and explicit 

transactions, and so on. Earlier, we presented alternative designs in introducing GemStone 

concurrency control into NewS, i.e., definition of NewS functions for locking and modifica- 

tion of the NewS interpreter for automatic execution of transactions. 

As for providing data views to support multiple applications, Gemstone-based NewS 

provides much more potential than current, file-based NewS where no functionalities are 

provided for other applications to access News objects. Our schema stores basic values in 

generic arrays, having GemStone classes for NewS refer to them. The design can be easily 

extended to include GemStone classes for other applications that refer to the same arrays 



for actual values. Operations on the types can be incorporated in Gemstone classes for 

each application, as done for NewS in our study, or if multiple applications share certain 

operations, those operations can be incorporated as methods of the array class for the 

values. 

Dynamic Properties of Applications 

Gemstone-based NewS provides much potential for examining dynamic properties of appli- 

cations. Modular, structured design of the NewS source isolates persistent data access to a 

few procedures, and it is easy to profile the communication between NewS and Gemstone 

by monitoring GCI function calls made by the NewS interpreter and examine database 

operations separately from in-memory computation. However, for extensive investigation, 

e.g., repeated runs of entire interactive sessions, the performance of the platform needs to be 

improved. As mentioned later, performance improvement is possible without major archi- 

tectural modifications, i.e., through adopting new versions of software and a more powerful 

hardware platform. Another possibility is to tune the architecture to gain performance at 

the cost of less modularity. 

A Range of Applications 

Gemstone-based NewS allows for examination of a wide range of existing NewS applications 

due to a diverse use of NewS in a variety of scientific domains. Besides epidemiology and 

computational biology examined in this dissertation, NewS is also used in domains such as 

financial analysis, statis tics research, cartography, geology, physics, and social science. 



In summary, Gemstone-based NewS provides much potential for investigating a wide 

range of scientific applications and their dynamic properties. The combination of a persis- 

tent language and an object-oriented database with a well-defined interface between them 

makes it easy to observe communication between an application and a database, and o p  

erations in a database can be investigated separately from in-memory computation for 

looking at query processing and potential optimizations in a database. Operation execution 

schemes with varying locations of execution, possible data movement patterns between an 

application and a database are also easy to investigate on the platform for the same reason. 

The limitations of the platform are largely due to the priority initially put on access to a 

wide range of existing scientific applications and a use of existing systems such as NewS and 

GemStone for cost-effectiveness. For example, a desire to use an existing application as is has 

led to preservation of NewS data types for the platform, so very little can be varied in terms 

of application type definition, query definition syntax, etc. Available database support is 

also constrained to some extent by the capabilities provided by GemStone. Representation 

structures provided in GemStone restrict database implementation of state of NewS type 

constructors, and only structural variations can be extensively explored. GemStone data 

language, OPAL, fixes the programming paradigm for GemStone implementation of a NewS 

function. However, its computational completeness allows for different implementations of 

the same behavior to be explored. GemStone database support such as storage management 

cannot be modified, though some variations are possible with features such as transactions 

and views. Our decision to have GemStone support NewS type constructors constrains 

GemStone representation of a NewS data type according to how the type is defined with 



NewS constructors, and prevents such data type issues as a use of generalization and type 

evolution from being examined directly. 

We justify our platform since its advantages meet our priority, i.e., an access to a wide 

range of scientific applications and domains. For a fixed data model, NewS seems to offer 

a reasonable choice with its flexible support for scientific data types; a wide usage and 

acceptance of NewS in scientific communities partially validate our choice. Gemstone was 

used mainly as a "reference" object-oriented database to judge adequacy of its capabilities 

for scientific data, and served its purpose in that sense. In order to explore such dimensions 

as type-definition facility and traditional database support more extensively, one needs 

different kinds of platform, with a different design principle and priority. For example, one 

can conceivably construct a new language and a database from a scratch for the platform. 

Another possibility is to modify the language and database internals extensively within the 

platform. Both approaches are more costly than our platform, and given a fixed amount of 

resources, a range of applications may be limited for which design variations are explored. 

11.1.3 Evaluation of Gemstone Features 

Earlier, we discussed in detail advantages of the GemStone data model for flexibility and 

encapsulation at the object level and resulting easy experimentation. We also noted a lack of 

desired performance in GemStone access. Such features as structured values for representing 

recursive NewS objects without indirection and indexing for arrays were also recognized 

as desirable additions. Below, we describe other GemStone features that influenced our 

investigation. 



Though GemStone schema changes were not used to support type evolution with Gemstone- 

based NewS, we used them extensively as the design of the platform evolved. And we have 

found that with Gemstone, schema change is a little awkward. When a class is modified, 

there is no way to explicitly initiate recompilation of its subclasses. More flexible schema 

changes, with recompilation of classes and migration of the instances when possible, would 

be a useful addition. 

Gemstone also lacks facilities for providing information on size of physical space occupied 

by an object. Scientific applications are often associated with very large data, and it is 

important for users as well as database administrators to be able to know how much space 

is physically occupied by particular datasets. 

In comparing the performance of GemStone-based NewS and UNIX-based NewS, we 

noted large difference in the size of executables and questioned its impact on the perfor- 

mance. Current GCI functions are provided to Gemstone users as object modules, i.e., 

*.o files. With an object module, the entire library is linked into NewS even when only a 

few functions are actually used. It would help to provide GemStone-C Interface as library 

modules, i.e., *.a files. When a library module is linked, only the functions actually called 

by the application are bound, resulting in an executable of much smaller size. 

11.2 Contributions of the Work 

The main contributions of this work lie in a collection of various findings described in this 

dissertation. Among those findings, we consider the following as most significant. 



11.2.1 Scientific Data Types 

Through an extensive survey of existing applications in various scientific domains, we identi- 

fied a list of data support requirements for scientific applications. In particular, we claimed 

that data types should directly represent scientific models, and examined necessary support 

for such scientific data types, e.g., representation of static and dynamic properties of each 

type, inter-type relations such as specialization, type-based queries, and evolution of types 

over time. 

11.2.2 Combination of Persistent Language and Object-Oriented Database 

Through an extensive use of News in a variety of scientific domains, we found that a concept 

of a persistent language is well-accepted in scientific communities as a conceptual framework 

for defining and manipulating persistent data, as long as data type support adequate for 

scientific applications is provided in the language. However, file-based implementation that 

most current persistent languages are based on showed a lack of robustness and flexibility 

in manipulation of scientific data. 

By replacing files with an object-oriented database, we strengthened data support pro- 

vided by a persistent language with compatible data model, robust storage management, 

sophisticated concurrency control, recovery, and so on. Our decision to have an object- 

oriented database support a language instead of individual applications proved to be cost- 

effective as a single design and implementation of database classes provided support for a 

variety of applications, as contrasted to the need for new database classes for each applica- 

tion. This approach also incurred very little disruption at the conceptual level for domain 



scientists as it preserved the data model of the language and existing applications, and ben- 

efits of object-oriented database were provided indirectly through a conceptual framework 

familiar to the scientists. Storing data in a database instead of files allowed for flexible, 

customized design of data representation, direct data query, and a potential for supporting 

multiple applications. And compared to traditional databases such as relational systems, 

an object-oriented database offered an advantage due to a flexible data model that provided 

a direct support for scientific data types through their constructors. 

Our study indicated the state of the commercial object-oriented database technology 

and its use for scientific applications. If the technology is adequate, domain scientists 

would rather simply adopt an existing database for managing data so that their effort can 

be focused on algorithmic and computational issues. An object-oriented database showed 

much promise for scientific applications, in particular its flexible data model, though the 

technology is not mature yet and there exists a need for improvement, e.g., its performance. 

Note that most commercial object-oriented databases currently support transparent manip 

ulation of persistent data through its application programming interface (API). However, 

unlike our architecture, their API's are based on non-persistent languages, e.g., C++. Each 

system extends the languages differently to come up with their "persistent" version, e.g., 

the added C++ Collection classes in Objectstore. Such a lack of standardization results 

in disparate API's, even if they are based on the same language, and increased effort in 

porting applications between systems. 



11.2.3 Findings in Design and Implementation 

In our study, we not only conceived the architecture of a persistent language supported by an 

object-oriented database but also validated the conceived architecture through construction 

of a workable prototype. The following are various findings from our experience in designing 

and implementing the first prototype of Gemstone-based News. 

Direct Support for Different Fhnctional Semantics 

Our study illustrated that an object-oriented paradigm is flexible enough to provide rel- 

atively direct support for a language with a different computation model. In our design, 

a polymorphic function was represented as an independent "function" object. Such one- 

tu-one mapping simplified the design, while it was still possible to maintain modularity at 

the cost of indirection, i.e., actual operations were implemented as methods of argument 

objects and function objects delegated operations to appropriate methods. 

Representation of Data Type Constructors 

Our design provided object-oriented database representation for data type constructors of a 

persistent programming language. Hence, any data type defined in the language automati- 

cally had a database representation structured according to how it was defined with provided 

constructors. This approach was cost-effective with single schema supporting a variety of 

scientific data types, though it was still possible to customize representation through further 

subclassing. For example, we defined a class for a generic vector but actually represented 

different modes as separate subclasses for the generic vector class. This approach allowed 



us to customize representation for each mode, e.g., inclusion of those functions specific to 

the mode as methods. 

Modularity of the Design 

As we intended to experiment with architectural variations of the platform, its baseline 

architecture was left very modular, making most subsequent changes local to either the 

object-oriented database or persistent programming language. We performed a variety of 

experiments to demonstrate that indeed many kinds of architectural changes can be made 

locally without affecting other parts of the platform. Such an extreme modularity makes 

it easy to tune the architecture, though it also impedes efficient performance somewhat. 

We identified various opportunities where we can trade in a little modularity for improved 

performance, e.g., caching of certain database information on the language side. 

11.2.4 Evaluation of Our Approach 

In order to assess whether our study was a productive initial step toward improved scientific 

data management, we evaluated our platform-based approach at the end. We examined a 

process from design, implementation of the platform to investigation on the constructed 

prototype to see whether the platform satisfied desired criteria such as cost-effectiveness 

and ease of experimentation. We also assessed the suitability of the platform according to 

how easy it is to investigate a variety of data support issues with its architecture. Such 

assessment helped us identify the constributions of the work and validated our approach. 



11.3 Future Work 

The work presented in this dissertation serves as an initial attempt at improving scien- 

tific data management rather than a complete solution. Hence, the work is open-ended 

with a number of possible future directions. For example, we can continue experimenta- 

tion on Gemstone-based NewS, e.g., with different design alternatives and different NewS 

applications. For extensive experimentation, though, the platform needs to be improved, 

especially its performance. It is also conceivable to come up with different platforms that 

cover different parts of the design space. 

As the platform illustrated with NHANES data, Gemstone seemed to provide better 

support for large datasets than current NewS. Hence, one of the possible further experiments 

is to focus on support for very large data. To get an idea of advantages provided by Gem- 

Stone storage management, we compared the performance of Gemstone-based NewS and 

UNIX-based NewS when the middle element of an array of integers was accessed [Kengl]. 

The result from that experiment is shown in Figure 11.1. As shown in the figure, the access 

time for Gemstone-based N e d  remains about the same regardless of the size of an array, 

i.e. about 10 seconds, and when the size of the array exceeds about lo5, data access becomes 

more efficient than in UNIX-based NewS. 

To improve the performance of the platform, one of the simplest options is to adopt 

better hardware and software. For example, Gemstone version 2.5, a later version than 

version 2.0 we used, provides improved performance and GCI. Since Servio Corporation 

discontinued support for DECstations after version 2.0, adoption of version 2.5 also creates 



Figure 1 1.1 Localized Access to Integer Array 

Array Size (log scale) 



an opportunity to port the platform to more powerful hardware, e.g., a Sun SPARCstation. 

We ran the following OPAL program for array creation and access to get a rough idea of 

difference in performance between Gemstone version 2.0 running on a DECstation 2100 

and version 2.5 running on a Sun SPARCstation2. 

a := Array new: 100. 

a at: 1 put: 1. 

a at: 2 put: 2. 

,.. 

a at: 100 put: 100. 

a at: 1. 

a at: 2. 

... 

a at: 100. 

The program creates an array of 100 elements and initializes value of each element in turn. 

After the initialization, each element is then accessed in turn. It took Gemstone version 

2.0 on a DECstation 2100 291 milliseconds to execute the program, whereas it took version 

2.5 on a Sun SPARCstation2 62 milliseconds, a little less than 5 times as fast. The Sun 

SPARCstation2 was running SunOS 4.1.lb with 48 Mbytes of real memory, and it had 2 

CDC Wren V disks with total of 1110 Mbytes of available space. The configuration for a 

DECstation was described in Section 8.1. 



Gemstone version 2.5 also provides a new and expanded set of GCI functions. For 

example, current Gemstone-based NewS makes one GCI function call for accessing each 

component of a News object. We chose this design because in version 2.0, the facility for 

simultaneous multiple-component access was not usable due to poor interface and docu- 

mentation. Version 2.5 provides better facilities for accessing multiple components at a 

time. Even if each GCI function call is essentially a machine-instruction procedure call 

with the overhead on the order of milliseconds (since we linked NewS directly into the Gem 

process), it could still save time to reduce the number of calls by accessing multiple compo- 

nents simultaneously. There is always a possibility of swapping pages between calls, and the 

number of calls could influence the amount of communication between two heavy-weight 

processes, i.e., Gem and Stone. Gemstone version 2.5 also provides better functions for 

creation of objects with multiple components. 

A new version of NewS, i.e., an August 91 Release, is also available on a Sun SPARCsta- 

tion. The new version incorporates better memory management and more object-oriented 

features such as methods in the language, making its data model even more compatible to 

the Gemstone data model. 

It should be relatively painless to change to a new version of either Gemstone or NewS 

in upgrading GemStone-based NewS. The GCI of GemStone version 2.5 is a superset of 

version 2.0, so most of the implementation of the first prototype can be reused. The NewS 

data access paradigm for persistent data remains the same in the August 91 Release, so we 

can also reuse the changes made to UNIX-based NewS. 

So far, our work has motivated interests in object-oriented database support in the NewS 



community, particularly in the environments where a need for better data support is recog- 

nized. We described earlier the environment at NCBI where an object-oriented database is 

being considered for consolidating all kinds of biological data currently distributed among 

different systems. In particular, Objectstore is being used on a "trial" basis to explore a 

potential of object-oriented databases, not unlike our experimental approach with Gem- 

Stone. Even if it turns out to be impractical to migrate all the data to a single system, an 

object-oriented database still provides a potential framework for unifying different systems, 

since its data model is more general than those provided in files or relational databases. 

An object-oriented database can also customize a view of the data for individual appli- 

cations with its methods. This case presents an example where advantages of database 

support, especially from object-oriented databases, likely outweighs performance overhead 

generally incurred by database access, especially since data can be batch-loaded initially 

from a database for most applications. 

Financial analysis is another example where batch loading of the data is sufficient. A 

critical data support requirement there is that a database be able to store all the relevant 

information, from time-series data to mathematical models for the analysis, and to support 

their efficient access, for which an object-oriented database provides a potential. Much 

information is corporate data currently distributed among different systems, which must be 

somehow consolidated. At Celeritas Corporation, a prototype is being built for a financial 

analysis application that incorporates object-oriented databases and News. 

Other example cases include a research group at the AT&T Bell Laboratories that is 

looking into Gemstone for storing their Computer-Aided-Manufacturing data to be accessed 



from News. 

In general, we have found that the approach we took of adapting existing components 

has a strong appeal to domain scientists. If at all possible, they would rather use off-the- 

shelf components for such tasks as data management so that they can concentrate on their 

main research interests such as designing alignment algorithms for homologous proteins and 

building mathematical models for financial forecast. We expect interests in object-oriented 

databases and their actual use for scientific data management to continue to grow, especially 

with the improving and evolving technology. 
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Appendix A 

Frequency of News Library Functions 

Used in PKB 



NewS function 

! = 

t 
& 

&& 
* 
+ 
- 

< 
<= 
-- -- 

> 

A 

abs 

all 

any 

apply 
array 

as. character 

=.double 

%.integer 

=.null 

=.single 

assign 

attr 

C 

cat 

category 

cbind 

contour 

0 s  

cumsum 

encode 

get 

frequency 

147 

108 

627 

9 

3 

21 

11 

18 

14 

41 

7 

59 

36 

326 

1 

1 

6 

83 

14 

3 

67 

55 

178 

3 

54 

11 

15 

91 

11 

13 

17 

1 

1 

1 

3 

45 

NewS function 

ifelse 

invisible 

is.atomic 

is.character 

is.list 

ismatrix 

is.na 

is.null 

is.numeric 

len 

levels 

lines 

list 

match 

matrix 

max 
menu 

min 

missing 

names 

ncol 

nrow 

order 

Par 
paste 

plot 

points 

print 

range 

rbind 

rep 
row 

scan 

segments 

seq 
sin 

frequency 

1 

22 

19 

19 

3 

45 

62 

27 

8 

218 

20 

7 

51 

49 

31 

6 

2 

2 

16 



News function 

source 

sum 

sweep 

switch 

text 

unique 

unix 

vector 

I 
I I 

frequency 

1 

1 
145 

17 

1 

5 

10 

2 
18 

49 

61 

13 

144 
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