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ABSTRACT 

Exact Spherical Wave Solutions to 

Maxwell's Equations with Applications 

Guy G. Silvestri 

Dissertation Advisor: Raj Solanki 

Electromagnetic radiation from bounded sources represent an important 

class of physical problems that can be solved for exactly. However, available 

texts on this subject almost always resort to approximate solution techniques 

that not only obscure the essential features of the problem but also restrict 

application to limited ranges of observation. 

This dissertation presents exact solutions for this important class of 

problems and demonstrates how these solutions can be applied to situations of 

genuine physical interest, in particular, the design of device structures with pre- 

specified emission characteristics. 

The strategy employed is to solve Maxwell's equations in the spherical 

coordinate system. In this system, fundamental parameters such as electric and 

magnetic multipole moments fall out quite naturally. Expressions for radiated 

power, force, and torque assume especially illuminating and simple forms when 

expressed in terms of these multipole moments. All solutions are derived 

a6 initio using first-principles arguments exclusively. Two operator-equations 

that receive particularly detailed treatment are the vector Helmholtz equation for 

the time-independent potential ii and the "covariant divergence" equation for 

vii 



the energy-momentum-stress tensor TFV. 

An application of classical formulas, as modified by the requirements of 

statistical mechanics, to the case of heated blackbodies leads to inquiries into the 

foundations of quantum mechanics and their relation to classical field theory. 

An application of formulas to various emission structures (sphericalIy-shaped 

antennas, surface diffraction gratings, collimated beams) provides a basis upon 

which to characterize these structures in an exact sense, and, ultimately, to elicit 

clues as to their optimum design. 

viii 



CHAPTER I 
INTRODUCTION 

Maxwell's equations for the electromagnetic field are of paramount 

importance in physics. This thesis explores exact solutions to these equations in 

charge-free regions of space surrounding a bounded source. Explicit expressions 

for various conserved quantities assume surprisingly simple forms when expressed 

in terms of these exact solutions. These explicit expressions provide insights into 

the character of the Maxwellian field, and some practical consequences are 

qualitatively explored. Some historical background might prove informative. 

Monochromatic electromagnetic fields of angular frequency o exterior to a 

radiating body must satisfy appropriate boundary conditions at  infinity. 

Specifically, the fields must assume the form of an outwardly-expanding spherical 

wave of radius ct, where c is the speed of light in vacuum and t is the time 

elapsed. Furthermore, to assure that the evolution of energy and momentum a t  

large distances from the source remain within physically allowable limits, the 

fields are required to be asymptotically proportional to l / r .  Any other radial 

dependence will lead to diverging energy expressions at  infinity or, what is 

equally undesirable, vanishing energy expressions at  infinity. Both the above 

requirements are subsumed in the mathematical statement that the radiating 

fields must approach c ' ( k r - o t ) / r  as r - m , where k ,  the wave number, equals 

o / c .  The familiar plane wave and cylindrical wave solutions, so familiar from 

cavity mode theory, are thus disallowed in this formulation. However, when 

Maxwell's equations are solved in spherical coordinates, electrodynamic fields 

with the desired asymptotic characteristics are automatically obtained. In 

addition, many features of Maxwell's electrodynamics that exist in a somewhat 



camoflouged state when expressed in the Cartesian system become pronouncedly 

obvious when expressed in the spherical system. Thus, the merits of using this 

system surpass one's initial expectations from it. A detailed discussion of this 

system, along with its generalization to four dimensions, provides the impetus for 

Chapters IV and V of this investigation. 

The primary task at hand is to obtain exact (spherical) solutions for the 

electric and magnetic fields in charge-free space. As is demonstrated in virtually 

every E & M textbook, this task is mathematically equivalent to solving the 

scalar and vector Helmholtz equations for the potentials @ and A, respectively. 

This equivalence, along with a full-blown exposition of a solution technique for 

the vector Helmholtz equation, comprises Chapters I1 and 111 of this dissertaion. 

The course of action outlined in Chapter I11 is by no means unique; investigators 

have occupied themselves with this problem for decades and various solution 

techniques have been devised A review of these approaches will provide 

some historical context. 

The spherical solutions for and 6 appear to have been completely worked 

out in the 1950's by several authors working independently. Two major schools 

of thought seem to have gained pre-eminence, namely, the method of vector 

spherical harmonics as championed by Blatt and weisskopfl,  ill^, and the 

Russian authors394, versus the method of Debye potentials as initially given by 

Bouwkamp and casimirs and developed further by  isb bet'. 

One cautionary note should be made about these earlier papers. The 

calculational techniques are not for the faint of heart, and typically become 

extraordinarily difficult to follow. The Russian authors in particular presume a 

thorough knowledge of the techniques of group theory and creation/annihilation 



operators, among other things. The path-breaking paper by Bouwkamp and 

Casimir presumes facility with Green's functions. The derivations can oftentimes 

become so abstract that it is not certain until only the last moment that 

something concrete is going to fall out from them. 

Nevertheless, the final fi and 6 expressions, regardless of solution technique, 

found their way into the textbooks of the time, notably, stratton' and Panofsky 

and phillips8. The presentation by Panofsky and Phillips is particularly 

recommended for its clear and readable exposition of the Debye potential 

method. These authors were most likely already familiar with the exact solutions 

and were thus in a position to devise a more succinct method of deriving them. 

(Elegant derivations are usually possible when one knows beforehand what the 

solution is going to be.) 

The ultimate solutions for monochromatic 2 and fi are given in upcoming 

equations (III.F.ll thru 16) of this dissertation. These solutions are derived 

ab initio in Chapter III for the benefit of those who have not seen or have not 

been able to follow their derivations elsewhere. The derivation utilized in this 

report relies solely on knowledge of standard solution techniques for partial 

differential equations and mathematical identities involving the spherical Hankel, 

associated Legendre, and trigonometric functions. These special-function 

identities are provided in tabular form in the Appendix for easy reference. 

The next major section of this report comprises Chapters IV and V, where 

the fundamental objects of mathematical physics, uiz., scalars, vectors, and 

tensors, are given their representation in the spherical coordinate system. 

Manipulation of tensor quantities in the spherical system is not always as 

simple-minded as it is in the Cartesian system, primarily because the spherical 
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unit vectors (r,8,<I»are themselves functions of position, and partial derivatives

of expressions containing these vectors must account for this fact. This point is

driven home repeatedly in these two math-intensive chapters. Consequences of

this state of affairs are explored extensively.

Differential identities such as divergence, gradient, and curl assume

somewhat complicated forms in the spherical system, and it is important to know

how to generate and handle them. In the language of tensor analysis, it is

possible to express the seemingly complicated formulas of the spherical system (or

any curvilinear system, for that matter) in an especially coherent manner. As

such, this formalism is utilized throughout. To make sure that all formulas are

fully understood, matrix quantities are written out in their entirety, even though

doing so makes many formulas unwieldy-looking. But my experience has been

that over-utilization of tensor shorthands, although providing for great notational

compactness, obscures many essential truths. Therefore, matrix expressions have

been written in full whenever necessary.

Other mathematical operations have not been treated so meticulously. The

majority of partial differentiations and matrix multiplications are not typed out

explicitly because it is felt that most readers can perform these operations for

themselves. There is no need to boggle the developments with long-winded

arithmetic if the essential results can be obtained without it.

There has been a conscientious attempt to adhere as closely as possible to

the notation and sign conventions of Jackson9, although this puts several

formulas at odds with authors such as ArfkenlO and others. The approach that

has been (independently) forwarded in this investigation strongly parallels that of

Beckerll, who covers the topic of tensors in Part A of his comprehensive text on



electromagnetics. Other good references are the previously mentioned Arfkenlo 

and the classic by Lovelock and ~ u n d ' ~ .  

The subject of tensor analysis is broad and every author seems to have his 

own way of doing it. Further, the subject seems to have undergone some 

evolution over the years. After committing all the expressions of this dissertaion 

to print, it was discovered that "old" definitions for vector and tensor had been 

utilized, so definitions (W.A.3) and (N.A.6) disagree with modern authors. The 

major point of departure is that the scale factors l /  r and 1 / r sin0 have been 

incorporated directly onto the 0- and +-components of the vector (or tensor) in 

this investigation, whereas modern authors would leave these factors inside the 

transformation matrix. (Refer to equations (IV.A.3) and (IV.A.6) for details: 

Contrast these equations with those of any modern author. The determinant. of 

the transformation matrix used in this report is 1; the determinant of other 

authors' transformation matrix would be 1 / r2sin0.) Rather than re-casting my 

old-style formulas into modern format, it was decided to let them stand as 

originally written because they make the transformation between Cartesian and 

spherical tensors simpler to comprehend and work with. The "modern" 

definitions for transformation matrix are directed with an eye towards 

applications in non-Euclidean spaces, a subject that is not ventured into in this 

investigation. 



Once the mathematical preliminaries have been taken care of, attention is 

re-focussed back onto the pertinent physics. The mathematical framework 

established in Chapters IV and V is used to derive conservation laws for the 

electromagnetic system. The conserved quantities examined in this investigation 

are those that can be expressed quadratically in the field variables. (There are 

also conserved quantities of non-quadratic order, but these seem not to possess 

physical significance.) The Maxwell energy-momentum-stress tensor is used as 

the vehicle from which to launch the discussion. The mathematical formulation 

of this tensor is included in most E & M It therefore merely suffices to 

quote the tensor directly rather than devote unnecessary text to it. The 

interested reader can refer to the aforementioned texts for further insights into 

this topic. 

Conservation laws in physics are of fundamental importance not only 

because they single out parameters that are of genuine physical interest (energy 

and momentum, for instance, rather than phlogiston or ether wind), but also 

because they guide one to "correct" formulations physical law (Newton's laws of 

motion versus Ptolemy's rotating epicycles, for instance). As such, conservation 

laws receive a great deal of emphasis in contemporary expositions of physical 

theory, and electrodynamics is no exception. 

The definitions of electromagnetic energy, momentum, and angular 

momentum seem to have been firmly established by the turn of this century, and 

appropriate conservation laws for each of the above seven quantities were in 

general usage by then1'. (Seuen quantities because momentum and angular 

momentum are vectors.) The existence of additional conserved quantities has 

been a concern of more recent authors, all using a variety of techniques to 

discover them. 
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The presently favored methods of deriving conservation laws are not always

intuitive, nor easy. Perhaps the most frequently-used approach 12 is to pre-

assume some sort of invariance property for the physical laws being investigated

(translation, rotation, or reflection invariance being typical), and then make use

of Noether's Theorem to derive conservation laws that correspond to each

invariance property (momentum, angular momentum, and parity being the

conserved quantities corresponding to the three forms of invariance listed above).

The difficulty with this approach is that all allowable invariance properties for

the laws under investigation are usually not easy to ascertain. The simplest

invariances are usually easy to spot, which explains why conservation laws for

energy, momentum, and angular momentum typically far precede conservation

laws for other parameters. More general, albeit more abstract, approaches are

often necessary to extract additional conservation laws.

The definitive work by Fulton13 and Rohrlich14 established that Maxwell's

equations in charge-free space display con! ormal invariance, that is to say that

angles between vectors are preserved under given transformations, and that

fifteen conserved quantities should be expected as a result. However, explicit

expressions for all fifteen quantities have not been given. A simpler derivation

technique outlined in Chapter V of this report provides independent verification

that fifteen conserved quantities are indeed obtained from the electromagnetic

energy-momentum-stress tensor. An added bonus is that explicit expressions for

each of the fifteen conserved quantities are obtained in a deductive, non-arbitrary

manner. No recourse whatsoever is made to the tools of Group Theory or

Conformal Invariants. No variational techniques are invoked, thus obviating the

need for Noether's Theorem. All that is required is familiarity with the partial

differential behavior of the spherical unit vectors (r ,8,<1» as given in Chapter V

and the ability to handle partial differential equations. The fifteen conserved
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quantities implied by the electromagnetic energy-momentum-stress tensor fall out

straightforwardly, with no initial guesswork required.

Chapter VI represents a synthesis of all previous chapters. The field

solutions of Chapter III are incorporated into the conservation laws of Chapter V

to obtain expressions for the radiated fluxes of energy, momentum, and angular

momentum in terms of the electric and magnetic multipole moments of the given

source. It should be stressed that these expressions are all exact, and fall out as

inevitable consequences of Maxwell's equations. If these derived energy or

momentum expressions are for some reason deemed unsuitable (due to some as-

yet undefined aspect that renders them incorrect from a theoretical or practical

viewpoint), it means that Maxwell's equations themselves require modification,

and not the attendant conservation laws. Since Maxwell's equations have so

valiantly withstood the test of time, it seems unlikely that they, or the derived

energy and momentum expressions of this investigation, will require any

modification at all. These formulas are versatile enough to even describe some

simple quantum phenomena, as in fact is done in Chapter VII.

One of the more interesting results of the derived formulas of Chapter VI is

the relationship between the total flux of electromagnetic energy and total flux of

z-component of angular momentum. The relationship is highly reminiscent of

the corresponding relation postulated in quantum mechanics. This relationship

between energy and z-component of angular momentum has not gone unnoticed

by other authors. Blatt and Weisskopf1, Rohrlich14, Heitler15, and Panofsky and

Phillips8 all make mention of the relationship to the degree that their individual

formalisms allow. In the exact formulation of Chapter VI, the relations is

demonstrated conclusively. No approximations have been made to derive any of

the formulas of this chapter; thus, the relation is shown to hold quite rigorously.
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This relation, in fact, is the germ that spawns the discussion of Chapter VII,

where Maxwellian expressions for radiated energy and angular momentum are

used in tandem with the formulas of classical statistical mechanics to explain the

emission characterics of radiating blackbodies. The fact that classical formulas

are even remotely applicable to this most prototypical of quantum systems is

something of a hint at the profundity of the Maxwellian expressions. These

expressions seemingly contain within them seeds for a comprehensive review of

quantized theories of the electromagnetic field.

The discussion of Chapter VII is very much in the spirit of Max Planck who,

although being the grandfather of quantum mechanics, never quite resigned

himself to its latter-day developments. Planck's semi-classical approach to the

blackbody problem, as supplemented by the electromagnetic formulas of Chapter

VI, is utilized throughout. His persistent belief that the energy quanta /iw

follows from classical considerations may yet be realized, even if only partially.

(This theoretical pursuit is not the purpose of this investigation; the topic will be

taken up elsewhere.)

The concluding Chapter VIII serves to demonstrate practical applications of

the formulas of Chapter VI. Three examples are used. The first example

involves a spherically-shaped antenna, a non-practical situation to be sure, but

one that lends itself readily to solution in the spherical coordinate system. This

worked example is included mainly for pedagogical purposes, it being a simple-

to-follow demonstration of how the energy, momentum, and angular momentum

formulas of the previous chapters are solved for and utilized.

The second example is a rough-hewn attempt at determining the shape of a

charge structure that radiates near-monochromatically (i.e., a surface diffraction



grating). The exact structure is not actually obtained because computer 

calculations and additional refinements to the theory are going to be required. 

But the preliminary mathematics are established. The material presented in this 

section should be considered as firstcut only. 

The third example is a qualitative discussion about modelling collimated 

beams spherically. The typical approach is to simply model the beam using 

plane waves. But recall that plane waves do not attenuate at infinity, and thus 

are disallowed as solutions for radiation modes. Although it must be conceded 

that plane waves are exceptionally well-suited as approximate solutions for 

electromagnetic waves close to the radiating source ("near field" solutions), 

extrapolating these plane wave solutions to distances far from the source is 

tantamount to inviting infinite energy and momentum fluxes, a clearly 

undesirable situation. If these infinite-energy solutions are to be avoided, a 

spherical solution that closely approximates plane waves must be utilized instead. 

This third and last section of Chapter VIII addresses this problem. 



CHAPTER n

REVIEW OF MAXWELL'S EQUATIONS

Radiative electromagnetic fields are best expressed in terms of spherical

coordinates (r ,8,<1» because boundary conditions at r - 00 are automatically

fulfilled for solutions expressed in this system.

The intent of these next few chapters is to demonstrate a solution technique

for Maxwell's equations in the homogeneous, monochromatic case. The solutions

obtained using spherical coordinates provide insights that are likely to overlooked

when using other coordinate systems.

By way of review, we have Maxwell's equations:

(11.1)

V.E = 41Tp (a)

(b)V.13 = 0

VXE + 1.. aB
c at = 0 (c)

v x 13 - 1.. aE - 41T-
c at - ~J (d)

and

- dpV.J + - = 0
at (II.2)

It is standard practice to decouple .Maxwell's Equations by defining scalar

and vector potentials (<1>,A) for which we obtain:

11



and 

The field vectors and 6 are recovered from the (0, A) potentials via the 

relations: 

- 1 a i i  E = -VQ - -- (11.6) 
c at  

6 = V X ~  (11.7) 

If solutions are to be restricted to the monochromatic case, e ' lWt  time 

dependencies are pre-imposed upon the various scalar and vector quantities as 

follows: 

The time-independent, complex-valued components Z , 6 ,  q , and 3 satisfy 

their own set of time independent Maxwell equations: 



V X Z  - ikd = o 

and 

v.3 - iwq = 0 

0 
where k = - 

c 

Decoupling is achieved as before by resorting to scalar and vector potentials: 

@ ( i ,  t )  = i ( ~ e - ' ~ '  + + * e i W t )  (11.14) 

i ( 2 ,  t )  = L ( g e - ' W '  
2 + p*e l o t  

(11.15) 

for which: 

and 



Also: 

- 
In source-free regions of space, (p, J ) = 0, and one obtains: 

v2+ + k2+ = 0 (11.21) 

v2ii + k2z = 0 (11.22) 

and 

+(? ) therefore satisfies the scalar Helmholtz equation and ii ( j 7  ) satisfies the 

vector Helmholtz equation. Expressed in spherical coordinates, the 

v2+ + k2+ = 0 equation becomes: 

& L + ~ & L + L & +  C O S ~  3 + fi + k2+ = o (11.24) 
d r r dr r2  do2 r2  sine a0 r2  sin20 a+' 

Standard separation-of-variables techniques lead to the well-documented 

solution: 

where el ,  = expansion coefficient 
(1) hi  (kr ) = Spherical Hankel Function of 1st Kind 

Py(cos0) = Associated Legendre Function of 1st Kind 

Also, see note be1ow.t 



Similarly, 8 satisfies the vector Helmholtz equation, v28 + k28 = 0, which 

expressed in spherical coordinates becomes: 

The forbidding appearance of this vector equation possibly explains why 

exact solutions are so infrequently found in the literature. 

A general solution of this equation will be derived in Chapter 111. 

Before embarking on solution techniques, it is essential that several 

mathematical identities be put at our immediate disposal. Hence, a compendium 

of relevant formulas is provided in the Appendix. 

t There are also "2nd Kind" spherical Hankel h(T1(kr) and associated Legendre 
Qlm(cose) solutions to the Va+ + k a +  = 0 equation, but the h ( / ) ( k r ) ~ ~ ~ ( c o s e )  solutions 
have been purposelly singled out because: 

* must behave as an outgoing spherical wave at r - w . This eliminates the 
h(p (kr ) solution. 

* + must be finite valued at cose = 1. This eliminates the Qlm(cosO) solution. 



CHAPTER III 
SOLUTION OF THE VECTOR HELMHOLTZ EQUATION 

IN SPHERICAL COORDINATES 

A.) Initial Statement of Problem and Equivalent Formulation 

Recall from Chapter I1 the vector equation of interest: 

v2a + k2s = o 

subject to 

v-a = ik+ 

where 

JI = c,,,, hl(l)(kr) Pficose) eim4 

The vector operation v2s is defined from the identity: 

v2f = V ( V . f )  - VXVXH 

where from (App.A.11) we have: 



Take the dot product and cross product of the above relation with 7 to 

obtain: 

Since it is required that: 

v25 = -k2f 

v.5 = ; k ~  

one obtains the equivalent formulation of the vector Helmholtz problem: 



B.) Two "particular" solutions for a, 

To determine the component a,, utilize the first relation (III.A.8): 

Consider a, to be of the form: 

a, = arm. h!) (kr ) P$ (cos0) e "' (III.B.2) 

Use equations (App.B2.1) and (App.CZ.1) on this pre-assumed form for a, to 

obtain: 



Plugging (III.B.3) into (III.B.l) leads to: 

2 ik elm hy) (kr ) Pr(cos0) e 'mm = (I11 .B .4) 

1' (11 + 1) - p' (p' + 1) + q '2  - - m1 
- a r m 1  ( r ) h!)(kr) P$(COSB) e imp + 

r sin20 

Since the above relation must hold identically, we require strict equality of 

indices among all Pr and e lmm terms. Hence: 

The Pr and ehm terms therefore cancel and one is left with: 

2ikclm hY1(kr) = arm( 1'(lf + I )  - l ( l + l )  
r )hF1(kr) + 

Utilize equations (App.B2.8) or (App.B2.7) to replace the terms enclosed in 

the second set of parantheses: 



To force equality in the first case, set: 

l' = 1-1 

To force equality in the second case, set: 

I' = 1+1 

These choices for I' in turn force: 

2 ikc lmh~)(kr )  = ' 

- c (First Case) (III.B.7) 

iclm (Second Case) (III.B.8) 

1' (1' + 1) - l(1 + 1) 
arm ( r )hV1(kr) + 

+ 2arm ((1' + 1) 
h$' (k r l  - khit)+l(kr)) 

r 

or: 

Thus, two independent ccparticular" solutions to the inhomogeneous equation 
(1) (v2 + k2)(ra,) = 2ikclm h l  (kr ) Pr(cos0) e "' have been derived, namely: 

- iclm h jl) (kr ) Pr(cos0) e imm (III.B.9) 

iclm hi: 1 (kr ) Pr(cos0) e'mm (III.B.lO) 



C.) Two "particular" solutions for a+ and a- 

To determine the components ae and am, utilize the second relation 

(III.A.9): 

Use equation (App.A.2) on the L.H.S. and (App.A.8) on the R.H.S. to 

obtain: 

Equate coefficients of 8 and 6 ,  divide through by r ,  and make use of 



relation (App.A.7) to obtain: 

Multiply the first equation by i and add and subtract to the second equation 

to obtain: 

and: 

where a+ = a,  + ia+ 

- 
a = a,  - iab 

Define tilde-functions independent of m : 

- im+ a, = a, e 

a, = B,eimm 

6 , i m h  
am= , 



The pair of equations (III.C.3) and (III.C.4) become: 

From (III.B.9) and (III.B.lO), two options for 6, are available. We restrict 

attention exclusively to the second of these two options for the developments that 

follow: 



As with the a, component, two independent "particular" solutions for ii+ 

and G- will be derived. The first of the two G+ solutions is derived as follows: 

Collect equations (III.C.12) and (III.C.14) and then operate on the R.H.S. 

using equation (App.C2.13): 

Assume a solution of the form 

ii+ = i ~ ~ , h l ~ ~ ( k r )  [ a l ~ ; " , ~ 1 ( ~ o s ~ ) + a 2 ~ ; " ' 1 ( ~ o s 0 ) ]  

where the constants a l  and a ,  are to be determined. 

Plug this assumed form for 6+ into the L.H.S. of (III.C.15), and use 

equations (App.Ba.1) and (App.Ca.1) to calculate the effect of the v2 operation: 



(1) 
m + 1 = 2ic,,+( l-c:sO ) [ a l r n ~ l + l  (case) + 

sin 8 

Use equation (App.C2.4) on the third term inside the brackets and pull out 

the (21+1) term that gets introduced into the denominator: 



Equate the above expression to the R.H.S. of (III.C.15) to obtain coefficient 

matching conditions for al  and a2: 

Solutions to the above trio of equations work out to be: 

From which one obtains: 

- iclm a+ = h j ~ l ( k r ) [ ~ l + ,  m + l  (coa8) + ~ ~ ~ + ' ( c o s 8 ) ]  (III.C.18) 
( l + m + l )  



The second of the two 6+ solutions is derived in close analogy with the first. 

Once again, collect equations (III.C.12) and (III.C.14)) but this time operate 

on the R.H.S. using equation (App.C2.14): 

Assume a solution of the form 

i+ = jc I, h(') r + 1 (kr ) [ b  , PE; ' (cos0) + b P;"-'(COSO)] 

where the constants bl  and b Z  are to be determined. 

Plug this assumed form for ii+ into the L.H.S. of (III.C.19), and use 

equations (App.BP.1) and (App.Ca.1) to calculate the effect of the vZ operation: 



h") 1 + cos8 
= - i (  )[blmp~<'(cosO) - 

r sin 8 

Use equation (App.C2.4) on the third term inside the brackets and pull out 

the (21+1) term that gets introduced into the denominator: 



Equate the above expression to the R.H.S. of (III.C.19) to obtain coefficient 

matching conditions for b l  and b 2 :  

Solutions to the above trio of equations work out to be: 

b 2  = ( I + m )  (III. C .20) 

b l  = - ( l - m + 2 )  (111.C.21) 

From which one obtains: 

c i + = i c ~ m h ~ ~ l ( k r ) [ - ( l - m + 2 ) ~ ; D , ~ 1 ( c o s 0 ) + ( l + m ) ~ ~ f 1 ( c o s ~ ) ]  (IILC.22) 



A completely parallel development for the ci- component proceeds as 

follows: 

Collect equations (III.C.13) and (III.C.14) and then operate on the R.H.S. 

using equation (App.C2.15): 

' 2  e m = - ( - + - ) ( ich h j'i (kr ) ~ r ( c o s 0 ) )  
r 30 sin0 

Assume a solution of the form 

where the constants al  and a2 are to be determined. 

Plug this assumed form for a- into the L.H.S. of (III.C.23), and use 

equations (App.Ba.1) and (App.Ca.1) to calculate the effect of the v2 operation: 



( 1 + 1 ) ( 1 + 2 ) - l ( l + l )  
+ 

2 m  ( 1  + cos0) ] h( l )  
I + ( k r  ) P? + '(cos0) 

r r2 sin20 

m + l  = 2 ; ~ , , , ,  ( + ) [a + ( cos~)  + 
r sin 0 

Use equation (App.C2.4) on the third term inside the brackets and pull out 

the (21+1) term that gets introduced into the denominator: 



Equate the above expression to the R.H.S. of (III.C.23) to obtain coefficient 

matching conditions for a l  and az: 

Solutions to the above trio of equations work out to be: 

-1 a2 = 
( l + m + l )  

(III.C.24) 

a, = 
1 

( l + m + l )  
(1II.C .25) 

From which one obtains: 

- a- = '''m h \ 2 1 ( k r )  [pi+, m + l  (cost)) - P;"+~(COSO)] (III.C.26) 
( l + m + l )  



Similarly, the second of the two 6- solutions is derived as follows: 

Collect equations (III.C.13) and (III.C.14), and operate on the R.H.S. using 

equation (App.C2.16): 

2 a m = - - ( - + - ) ( i c ,  hi! 1 (kr ) ~ ~ ( e o s ~ ) )  
r2  a0 sin0 

Assume a solution of the form 

6- = i e , m h ~ ~ l ( k r )  [ b , ~ ~ ; ' ( c o s ~ ) +  b2~,"-'(eos~)] 

where the constants b l  and b 2  are to be determined. 

Plug this assumed form for ii- into the L.H.S. of (III.C.27), and use 

equations (App.BZ.1) and (App.Ca.1) to calculate the effect of the v2 operation: 



1 - cose 
= c m (  r sin 0 ) [ - b , m ~ ~ ; l ( c o s e )  + 

Use equation (App.C2.4) on the third term inside the brackets and pull out 

the (21+1) term that gets introduced into the denominator: 



Equate the above expression to the R.H.S. of (III.C.27) to obtain coefficient 

matching conditions for b l  and b 2 :  

Solutions to the above trio of equations work out to be: 

b 2  = ( I + m )  (III.C.28) 

b ,  = (1-m+2) (III.C.29) 

From which one obtains: 

c i - = i c , m h ~ l ( k r ) [ ( l - m + 2 ) ~ ; l , ~ 1 ( c ~ s 0 ) + ( l + m ) ~ ; i - 1 ( c o s 0 ) ]  (III.C.30) 



D.) "General" aolutions for $) ar, ae, and a* 

Two "particular" solutions for the i+ equation have been derived, namely 

(III.C.18) and (III.C.22). General solutions are always obtainable from the set of 

particular solutions by combining them linearly in such a way that the sum of 

the expansion coefficients equals 1. In the case at  hand, one would have: 

+ qlm [;elm hFil(kr)  [-(l-~+~)P;",;'(COSO) + (I+rn)Pp- '(cos~)]]  

(1II.D. 1) 

where plm and qlm are any two constants such that: 

Plm + 91, = 1 

A convenient choice for pl, and qlm works out to be: 

where rlm is an arbitrary constant. (The motivation behind the above choice of 

plm and qlm will be made clear in what follows.) 



37 

Plug these values of plm and 91, into the (III.D.l) equation to obtain: 

hi? 1 (kr ) (PK;' (costi) + P?+ '(case)) + 
2 (1+1) 

hi? (kr) (PET' ( ~ 0 ~ 8 )  + P;O+ '(COSB)) + 

Collect common factors and re-arrange terms within the brackets to obtain: 

a+ = --- "" h~~l (kr ) ( (Pr+l (cos t i )  - (1 -m+l ) ( l+m)p?- ' (cos t i ) )  + 
2 (1+1) 

+ (PET' ( ~ 0 ~ 0 )  + (1 - m + l)( l  - m + 2) PC; ' (cos0)) 

i r ~ m  Clm + h j l~  (rr ) ( ( P ~ :  (COSO) - (1 + m + l)(i - m + 2)~:; I (COSO)) + 
( l + m + l )  

+ (P;+~(cosQ) + (1 + rn + l)(i + m)Prl(rosti))} 



Define new expansion coefficients: 

Then make use of the Legendre polynomial identities (App.C2.8,9 and 12) to 

obtain: 

Adjust the index ( 1  + 1) - 1  on the second term to obtain: 



The general solution for the ii- equation proceeds analogously. Recall that 

two "particular" solutions for 6- as given by (III.C.26) and (III.C.30) have been 

derived. The appropriate linear combination of "particular" solutions would be: 

+ plm [ i c l m h ~ ~ l ( k r ) [ ( l - m + 2 ) ~ ~ ~ 1 ( c o s ~ )  + (l+m)P;"-'(cos~)]] 

(1II.D .5) 

where plm and qlm are any two constants such that: 

P r m + q l m  = 1 

The development from this point onward mimics the development for the 

a+ solution provided in the previous paragraphs. Suffice it to simply state the 

final solution: 

dPfn(cos0) 
- idlrn hy) (kr ) ( m + - ~fn(cos8)) 

d8 sin 8 



Thus, general solutions for 6+ and 6- have been derived. These solutions 

may now be employed to determine the components Be and 6+: 

Recall from (1II.C. lo), (III.C.ll): 

Utilizing (III.D.4) and (III.D.6), the ie and 6& components become: 

d P;"(cos0) rn 
ire = ig imh\yl(kr)  + idl,,, hj" (kr ) sinB PY(cos0) 

d0 

m (1) dP;"(cos0) ii+ = - g h h j ~ l ( k r ) - ~ ~ ( c o s O )  - dlmhi (kr) 
sin0 d0 



Recalling (III.A.3), (III.C.7,8, and 14), and (III.D.2), one obtains general 

Helmholtz solutions: 

h") (kr) 
dPflcos0) imd 

= z9 im 1+1  e de 

m + idlm h?' (kr ) sinK P;~(COSB) e im4 

dPficos9) im4 
- dlm hy) (kr ) e 

de  

Note the two independent expansion coefficients 91, and dl,. 

The complete Helmholtz solution would be obtained by summing the above 

expressions over the range 1 = (0 to oo) and m = (- 1 to + I )  . 
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E.) Coulomb Gauge 

For problems of this sort, namely, in those regions of space where (p, 1 )  = 0, 

it is convenient to work in the Coulomb gauge where V . 8  = 0. 

This entails dividing I up into two separate components: 

g = g(L) + g(T) (1II.E. 1) 

where 3(L) and are the "longitudinal" and "transverse" components of I ,  

respectively. 

We require the divergence of and the curl of I(L) of equal zero. 

Specifically: 

V.g(L) = ik$ 

V x StL) = Zero 

V-ii(T) = Zero 

Vxg(T)  = 6 

The objective is to define these transverse and longintudinal components of 

I such that the vector Helmholtz equation is still satisfied by each component 

individually: 

(v2+ k 2 ) P )  = Zero 

(v2+ k 2 ) $ ~ 1  = Zero 



This requirement can be achieved as follows: 

(v2+ k 2 ) P )  = Zero 

v(v.I(L)) - V x V X  I ( L )  + k 2 P )  = Zero 

~ ( i k  I)) - V X  (Zero) + k 2 P )  = Zero 

k2$L) = - ikV$ 

Hence, given a general Helmholtzian (I),&), one can obtain I ( L )  and I ( * )  as 

follows: 

Notice: 

t t I 
v . ~ ( L )  = V. (- :v+) = - -v2+ = - -(-k21)) = ikI) (III.E.10) 

k k 

And from (III.E.8): 

V X  SfL) = Zero 

;k I'L' = v JI 



Thus: 

Hence, B and 6 are independent of the 5(L) component. The physics can be 

formulated entirely in terms of ZfT). In this situation, one is working in the 

"Coulomb" gauge because V- zifT) = 0 . 

Specifically: 

(v2+ k2)zi(T) = Zero 

V- = Zero 

- e = ikg(T) 

i; = VxgcT) 

The objective now is to extract the transverse components from the 

Helmholtzian (+, 5 )  solutions given by (III.D.9 thru 12) using the formulas 

(III.E.8) and (III.E.9). 



One obtains Coulomb gauge solutions 

= - i q l m l ( l + l )  hy) (kr ) 
~ f i e o s ~ )  e "+ 

k t  

m + idlm hy' (kr ) sinK P ~ ( c o s 0 )  e "' 

am = i - d$ + krsin0 a+ 

= - qlm (hi: (kr )  - ( 1  + l )h ( ; ) (k r ) )  pficos0) 
sin0 

dP/'ycosR) im* 
- dlm hy' (kr ) e 

d0 

( d h ( ; ) ( k r )  hy'(kr) m 
= glm ) - ~ y ( c o s 0 )  e "+ 

d(kr)  kr sin0 

- d h(') dpflcos') ,m + 
I 1 ( k r )  de 



Spherical Hankel identities (App.B2.14) and (App.B2.8) were utilized to re- 

express terms enclosed in the large parantheses in the above relations. 

NOTE: 

Early in this derivation, an optional expression was provided for a,, namely 

equation (III.B.9): 

a, = - ich hil) l(kr) ~ r ( c o s 0 )  cim+ 

This option was then seemingly ignored. 

As a matter of fact, had this option been selected, and then developed 

according to the program outlined in the Sections leading up to this one, ti(=) 

solutions identical to the one given above would have been obtained. It was 

therefore decided to forego reporting this parallel development. 



F.) Maxwellian E and B solutions 

One is now in a position to obtain expressions for 6 ,  and 6 .  From (III.E.13): 

6 = ; k p '  

and from (III.E.19 thru 21), one has: 

( dhy) (kr ) + h y  (kr ) dp;I(cos') imb 
e0 = glm > d0 

e 
dr r 

rn 
- kd, h:" (kr ) sinB P ~ ( C O S O )  e lmm 

dhy)(kr) hyl(kr) rn 
= ( dr r ) BinB ~ ~ ( e o s ~ )  c lm+ (III.F .3) 

dPflcos0) im+ 
- ikdlm hy) (kr ) e 

de 



Likewise, from (III.E.14): 

= Vxf'T' 

and from (III.E.19 thru 21), one has: 

- qm dhy) (kr ) hY1(kr) - C O S ~  

- I( d(kr) 
P;n(cos0) + 

kr sin20 

m C O S ~  m dPr(cos0) ) im+ 
P;"(cos0) - - 

+ sin28 sin0 d0 

d2Pr(cos8) cosO dPr(cos0) m 2 + -  - -  ~;n(cose)) 
r d €I2 sin0 d0 sin20 

= d,ml(l+l)  
h?) (kr ) 

Pficos0) c 'mO 
r 



dh(:) ( k r )  : h(:) (kr  ) ) dP?(cose) im+ 
= d m (  dr r d ~ )  e 

m + kglm hy) (kr  ) SinB ~ y ( c o s 0 )  e '"$ 



Note the symmetry between the t and 1; solutions. The functional depen- 

dence upon ( r  , 0  , d > )  is the same for both vectors, the difference being that wher- 

ever expansion coefficients (g,, , dl,) appear in the t solution, (dl,, - glm ) appear 

in the 6 solution. 

These glm and dl, coefficients are (to within multiplicative constants) noth- 

ing other than the transverse electric and magnetic multipole moments, respec- 

tively, for the given system. 

Also note that even though the above solutions have been derived in 

Coulomb gauge, the scalar potential Jr as given by (III.D.9) is not zero, despite 

frequently invoked claims to the contrary. The argument typically runs as fol- 

lows. Since V - i i  = ik Jr, and since in Coulomb gauge equals zero by 

definition, then it "necessarily" follows that Jr is zero in this gauge. 

The fallacy here is that # 5.  (See equation III.E.9) The only restriction 

placed upon $ is that it simultaneously satisfy the scalar Helmholtz equation 

(11.24) and the time-independent Lorentz condition (11.23). 

The fact that 4 assumes non-zero values over space and time not only seems 

reasonable on intuitive grounds, but has ramifications in both theoretical and 

practical applications. Many problems of genuine physical interest cannot be 

properly solved if the scalar potential $ is not utilized. 



Using equations (II.8,9,14,15), (III.D.9 thru 12), and (III.F.l thru 6), one 

obtains the final formulas for @(%,t), A ( r ,  t) ,  fi (3, t ) ,  (r, t): 

w 1 
(II1.F .7) @ = x x - glm (I  + 1) hj') (kr ) ~ r ( c o s 8 )  e im4 e -'mi + C.C. 

1=0 m=-1 

c.0 1 
(1II.F .8) A, = 2 2 -f glm(l+l)h~~l(kr)~~(cose)eimbe-imt + C . C .  

1=0 m=-1 

m + i d l m  2 h~)(kr)sinB~flcos0)eim4e-i0t + C . C .  

1 d h(l) dpflcos') im+ -iot 
- - lm 1 (kr) e e + C.C. 2 

c.0 1 
(III.F.ll) E , =  2 2 f g l m l ( i + l )  

hy) (kr ) 
Pr(cos0) e '"+ e - iWt  + C . C .  

1=0 m=-1 r 

1 
(III.F.12) E, = 2 2 f glm ( dr 

1=0 m=-1 r 

m 
- 'kdlm h ~ ) ( k r ) - ~ ~ ( c o s ~ ) e ' " ~ e - ' ~ ~  + C.C.  

2 sine 

. ( d h y 1 ( k r ) ~ + h y ) ( k r )  m 
(III.F.I~) E+ = 2 2 gIm ) s i n B ~ ~ ( c o s e )  e i m + e  -iwi 

1=0 m=-I dr r 

- 'kdlm hy'(kr) 
dPr(cos') im+, - iwt + C.C.  

2 de  



(III-F.11) Br = 2 ' d i m  , ( ! + I )  
hy) (kr  ) 

2 
P;"(cos~)  e  '"+ e - I W t  + C . C .  

1=0 m=-1 r  

m imh - iw t  + f k g l m h ~ ) ( k r ) - ~ ~ ( c o s ~ ) e  e  + C . C .  
sin0 

+ $kslm h y l ( k r )  d P 8 c o s ' )  e imhe- iw t  + C . C .  
d e  



CHAPTER IV 
SCALARS, VECTORS, TENSORS 

A.) Transformation of Scalars, Vectors, and Tensors 

The conversion from Cartesian components to spherical components is 

acheived via the transformation: 

Using the notational aid of matrix multiplication, the familiar chain rule of 

partial differentiation for the operators d / d z ,  N a y ,  and 8/82  can be stated in the 

succinct form: 

Using (IV.A.l) as a basis for calculation, and pulling common l / r  and 
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f \ 

a!. 
a x  
i?!k 
a y  
d3r - 
a z 

= 



l/rsine terms out from the matrix and into the R.H.S. columnn vector, one 

obtains: 

' sinOcos+ cosecos+ -sin+ 

sinesin+ cosesin+ cos+ 

, cose - sine 0 

The spherical-to-Cartesian transformation matrix given on the R.H.S. of 

(IV.A.3) is pivotal. Note that the transpose of the given matrix is also its 

inverse. It completely characterizes the relationship between Cartesian and 

spherical quantities, and as such, will appear repeatedly in upcoming discussion. 

The tensor character of any quantity is uniquely determined by the number of 

times that this matrix (or its inverse) has to be used to to transform the given 

quantity from Cartesian coordinates to spherical coordinates. Scalar quantities do 

not require this matrix (or its inverse) in their transformation formulas (zeroth- 

order dependence). Vector quantities require its use one time in their transforma- 

tion formulas (first-order dependence). Tensor quantitiies require its use two 

times in their transformation formulas (second-order dependence). 

Specifically, a scalar is any quantity that transforms without the need of a 

transformation matrix: 



A vector is any ordered-combination of three quantities (Vz, Vy , VE) that 

require the use of one matrix in their transformation formulas: 

A tensor is any ordered-combination of nine quantities that require the use 

of two matrices in their transformation formulas: 



Scalar functions can be created from suitably-combined vector and tensor 

functions. A primary example is given by the dot product of two vectors 

(Vz,Vy,V,) and (Ir,,Uy,U,) : 

In particular, if the vector fi is taken equal to ?, the above would represent 

an expression for the squared-norm of ? . 

Another important example of a scalar function is given by the sum of 

diagonal elements of any tensor. When the appropriate terms of (IV.A.6) are 

multiplied out and added, it is found that this combination of terms transforms 

without the need of a transformation matrix: 

The above scalar quantity is denoted as the trace of any given tensor. 

Similarly, vector functions can be constructed from scalar, vector, and tensor 

functions. An important example is the vector function constructed from the 

partial derivatives of a scalar function, (IV.A.3). 



Another example is the vector function constructed from two other vector 

functions ( V,, Vy , Vz) and ( U2 , Uy , Uz): 

(IV.A.9) 

The above represents the vector cross product of two vectors. 

Another example of a vector function is given by the subtracted combination 

of a tensor and its transpose. When the appropriate terms are subtracted, it is 

found that three independent components are obtained. When arrayed into a 

column and transformed according to the rules of (IV.A.6), it is found that these 

three components transform not as tensor, but rather as a vector: 

The above relation underscores the basic vector nature of the anti-symmetric 

part of any tensor. 



And lastly, tensor functions can be constructed from appropriately processed 

scalar and vector functions. The simplest example of a tensor constructed from a 

scalar would be: 

(W.A. 11) 

In particular, the above relation holds true for + = 6.q or for 

+ = Trace ( ~ ' j ) .  This particular configuration is denoted the diagonal tensor. 

Likewise, from the general vector (W.A.5), one obtains: 

(W.A. 12) 

The above is denoted the anti-symmetric tensor. 



An example of a tensor function that can be constructed from two vectors 

(VZ,VY,VZ) and (Uz,Uy,Uz) is: 

The above is denoted the dyadic tensor. 



One final word about tensors before proceeding to the next topic. From 

(IV.A.8), one observes that a one-element scalar component can always be 

extracted from a nine-element tensor array. From (N.A.10), one observes that a 

three-element vector component can also be extracted. Thus, by elimination, 

only five elements remain to form the residual tensor once the scalar and vector 

components have been extracted. It is therefore possible to decompose the 

original nine-element tensor array into its one-element scalar, three-element 

vector, and five-element tensor components as follows: 

(W.A. 14) 



Although it may at  first appear that there are six independent components 

in the third matrix (three on-diagonal elements and three independent off- 

diagonal elements), there are actually only five since the trace of the matrix is 

identically zero. Hence, the three elements along the diagonal are linear 

combinations of only two independent elements. There is some flexibility as to 

which two elements of the diagonal are to be taken as independent and which is 

to be dependent. With a view to upcoming applications in the spherical 

coordinate system, the following two terms are going to be assigned as the 

independent elements: 

(TI1- T ~ ~ )  and (T2'- T ~ ~ )  

In terms of these two components, the symmeteric-traceless component of 

the original tensor array assumes the form: 

Other investigators might devise different but equivalent forms for this 

matrix. But the one given above serves well in spherical coordinate applications, 

as will be demonstrated in upcoming sections of this report. 



The tensor character of partial derivatives of vectors needs to be reviewed. 

Recall from earlier discussion that the ordered set of partial derivatives a/ar, 

(l/r)d/a0, and (l/rsine)a/a+ operating on a scalar function tj yields a vector, as 

verified by the transformation law (IV.A.3). Since partial derivatives of a scalar 

produce a vector, it would be straightforward to assume that partial derivatives 

of a vector produce a tensor. Unfortunatey, things are not quite so simple in 

non-Cartesian coordinate systems. The curvilinear vector (V,., Ve ,  V+) contains 

coordinate-dependent pre-factors as stipulated by equation (IV.A.5). These pre- 

factors have to be included in the overall partial differentiations, and as such, 

complicate the final expressions. Utilizing (IV.A.2) and (IV.A.5), one quickly 

obtains: 

/ \ 

a vr - a vo - av, 
a r d r a r 

---- l a v r  1 vo ' 5 + L V ,  1 av, -- 
r a0 r r a0 r r a0 

1 a v r  1 ---- 1 avo C O S ~  1 a %  1 C O S ~  

V* rain8T-raine v, -- +-vr+-ve 
r sine a+ r rsintl a+ r rsln0 , 



Note the appearance of extraneous terms alongside most of the spherical 

derivatives. Those familiar with tensor analysis will recognize these expressions 

as the "covariant derivatives" for the spherical system, frequently denoted 

a vmlaqn - I'kn Vp , where the indices (m , n , p  ) can assume values ( r  ,0 ,+) and 

where summation over the index p is implied. 

Extracting the trace of both sides of (IV.A.16) yields an expression for the 

scalar Divergence operation: 

a v, a v, a v, +- +- = - avr 2 l ave  cose + -v, + -- + -  1 av, 
a x  a y  az a r r r ae r sine V O +  rsin~? 

Extracting the anti-symmetric part of both sides and re-arranging terms into 

a column yields an expression for the vector Curl operation: 

. 

I 1  av, cose -- I a ~ , '  + -  
r ae r sine V m -  ~ s i n ~ a ~  

1 avr  a v, -- - - - 1 
rsine a& a r - vcb r 

avo 1 1 avr +-v, - -- 
t ar r r ao I 



Extracting the symmetric-traceless part of both sides yields a tensor 

comprised of five independent elements. Because of the large size of the matrices 

involved, the full equation will not fit onto one page. 

a v, a v, 
(du+dz) 

a vz "y )+;(--- -"(--- 
3 a~ a~ avy a y  av2 )  a~ 

av, av, (x+z) 





B.) Transformation of Unit Vectors 

The Cartesian unit vectors (i , j ,c) and the spherical unit vectors (i,6,4) are 

defined so as to linearly combine with vector functions such that the following 

equality is guaranteed: 

Plugging (IV.A.5) into the R.H.S. yields: 

From which one obtains: 

Taking the transpose of the above and multiplying through by the appropri- 

ate inverse matrix puts it into (IV.A.5) format, thereby indicating that the 

ordered sets (i , j  ,];) and (i , b ,&) transform as vectors, as indeed they should. The 

inaugural statement for these unit vectors, (N.B.l), is an example of (lV.A.7). 



Partial derivatives of unit vectors play pivotal roles in many calculations. 

Since these derivatives are so fundamentally important in non-Cartesian 

formulations, it is beneficial to derive them in detail for the spherical system. 

Because there are three coordinates to consider, calculations will be done in 

stages and then consolidated at  the end into one grand matrix. 

First, one differentiates (IV.B.3) with respect to r :  

Then one differentiates (IV.B.3) with respect to 0: 

cosflcos+ - sinOcos+ 

= (; c) [ cosOsin+ - sinesin+ 

-sine - C O S ~  

sinOcos+ sinesin+ C O S ~ ]  [cosecos+ - sin0cos+ 

cos0sin+ -sine cosesin+ -sinesin+ 

cos$ 0 - sin0 - cose 



Lastly, one differentiates (IV.B.3) with respect to +: 



These last three relations are incorporated into a single matrix expression: 

Note an interesting thing here. If the vector (f , i f , & )  is identified with the 

(V,, Ve, V*) of the R.H.S. of equation (IV.A.16), it is noted all nine elements of 

the (IV.A.16) array go to zero. Thus, all "covariant derivatives" of unit vectors 

vanish identically. This interesting property is exploited frequently in calcula- 

tions involving vectors. It also serves as an alternate (and usually quicker) 

method of calculating covariant derivatives. 

I t  only stands to reason that the R.H.S. matrix of (IV.A.16) should equal 

zero because the L.H.S. of this equation is nothing other than the statement that: 



a x  ax a x  
0 0 0 

al aj" a2 
a y  a y  a y  

a f  aj" al; - - -  

These last two matrix relations epitomize the difference between the Carte- 

sian and spherical coordinate systems. The non-zero behavior of the d f i / a q ,  

terms in the spherical case has profound effects whenever working in this system. 

Consequences of this state of affairs are amply demonstrated in Chapter V. 



C.) Transformation of Differential Operatore 

As was demonstrated in the previous section, the divergence operation can 

be expressed in covariant form: 

(rv.C.l) 

v . 3  = 

a a a  - a 2 l a  C O S ~  - 
' (TZ+X) ) (xz 

Mindful of relations (IV.B.7) and (N.B.8), the gradient and curl operations 

can also be expressed in covariant form. Each of these vector operations will be 

expressed in their covariant form (in both Cartesian and spherical systems), fol- 

lowed by their more familiar representation in component form (spherical system 

only). 

The gradient is calculated using the diagonal tensor of (IV.A.ll): 



The curl is calculated using the anti-symmetric tensor of (IV.A.12): 

The generalization of these formulas to arbitrary curvilinear coordinate sys- 

tems should be obvious. (Simply replace subscripts and unit vectors as appropri- 

ate in the square-bracketted portions of the above.) 

An important covariant differential operation involving the dyadic tensor 

(N.A.13) is to come later, namely, (N.C.8). 



At this point, it becomes somewhat of a game to create covariant expressions 

for higher-order operations. For instance, the scalar Laplacian is given as: 

(rv.C.4) 

One can expand on the above by noting that fi *T is a scalar and can there- 

fore replace + wherever it appears in the formula: 



Then, one lets = (i ,6 ,& ) and 9 = (Vr, Ve, Vb) to obtain: 

Utilizing (IV.B.7), one obtains an explicit expression for the vector Laplacian 

in component form: 

(rV.C.7) 

1 2 - avr + 2 coso a v0 + 6(v2v+ - 
r sin20 Vh + r2sin20 a4 r2sin20 -) a+ 



Similar strategies can be used to obtain other covariant derivative 

expressions. One important example involves a symmetrized version of the 

dyadic tensor (IV.A.13). The particular expression given below, although not 

traceless, appears frequently in Chapter V of this report. 



Corollory : 



D.) Extension to 4-D Space 

To fully exploit the covariant formalism, it is necessary to extend the 

mathematics of the previous sections to four dimensions. The unit vector f ,  in 

the "time-direction" is considered independent of the spatial coordinates. 

Conversely, the spatial unit vectors (i , j  ,$) are considered independent of the 

time coordinate. 

One obtains natural extensions of Equations (IV.B.3,7,and 8) : 

For Cartesian unit vectors: 

I 

1 at 1 aE 1 a j  1 al; -- -- -- -- 
c at c at c at c at 

a2 ai aj" al; - - - - 
a x  ax a x  a x  

at ai aj" al; - - - - 
a y  a y  a y  a y  

at al aj" al; - - - - 
a z  a~ a~ a z  

i 



For spherical unit vectors: 



The transformation laws for 4-scalars, 4-vectors, and 4-tensors are 

straightforward extensions of equations (IV.A.4), (IV.A.5) and (IV.A.6) : 

Scalars: 

Vectors: 

Tensors: 



An important distinction between 3-D and 4-D formulations involves vector 

length. In the 4-D formalism, one no longer works with a Euclidean metric, but 

rather with a Minkowskian metric. The dot product of two vectors is not a 

simple-minded extension of (N.A.7), but is instead given as: 

The squared-norm of a vector in Minkowskian space would correspondingly 

be given as: 



Summation over the index i on the L.H.S. of the above two equations is 

understood. But note that this summation contains minus signs as indicated by 

the expressions on the R.H.S.'s. Without this particular selection of signs, the 

dot product of two Cvectors does not properly contract down to a scalar invari- 

ant. A prime example of such an invariant is the squared-norm of the event 

2 coordinate (ct ,x, y ,z) , namely, c2t2- x2- y2- z . 

The norm of a 4-vector in Minkowskian space is analogous to the length of a 

3-vector in Euclidean space. In Euclidean space, one has the situation of a vector 

having components (x, y , z )  in one system, and components (x' , y' ,z' ) in another. 

Whatever system is chosen, the squared-length of the vector remains the same: 

s2+ y2 + z2 = s' '+ y' '+ z' '. Likewise, in the 4-D case, one would have that 

c2 t2 -x2-y2-z2  = C2t'2-s'2-y'2- Z .  ' 2  

The diagonal matrix appearing in the R.H.S.'s of (IV.D.7) and (IV.D.8) is the 

Minkowskian metric and is denoted q,,. This matrix must be utilized when con- 

tracting on any pair of vector or tensor indices. 

The cumbersome effects of having to include matrix s(,, in formulas can be 

relieved somewhat by defining contravariant and covariant vectors. Define the 

vector of (N.D.5) as covariant. Note that the notation convention is to use sub- 

scripts on components of a covariant vector. The corresponding contravariant 

vector, whose components will be denoted with superscripts, is obtained by tran- 

sposing the covariant vector from column to row format and multiplying through 

by the metric tensor qFv: 
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Renee:

(00 01 02 03 ) =, , ,

1

0

(00,01,02,03) 10

0

000

-1 0 0

0 -1 0

0 0-1

(IV.D.9)

= (00, -01, -02, -03)

Thus, the subscript-superscript notation used on the L.R.S.'s of (IV.D.7) and

(IV.D.8) is now explained:

ylO. =
I

°0
°1

(yO y1 y2 y3 ) 1' " °2
°3

=

°0
°1

(YO,-Y1,-Y2,-Y3) 102

°3

= YoOo - Y101 - Y202 - Y303 (IV.D.lO)

This covariant-contravariant distinction also extends to 4-tensors. Consider

the (IV.D.6) tensor to be doubly-covariant. Note that two sets of subscripts are

used to describe the sixteen components. The corresponding co-contra, contra-

co, and doubly-contravariant tensors work out to be:
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(IV.D.ll)

Likewise:

(IV.D.12)

Finally,

Of the above four tensor types, it is only the two mixed-component tensors,

(IV.D.ll and 12) whose traces form scalar invariants. The rule-of-thumb here is

that contraction must always be performed over one contravariant index (notated

000 001 002 003 000 001 002 003 1 a a a
010 0/ 012 013 010 011 012 013 a -1 a a
020 021 022 023

=
020 021 022 023 aa 0 -1

030 0/ 02 033 030 031 032 033
a a 0 -1

3

000 001 002 003 1 a a a 000 001 002 003

010 011 012 013 a -1 a a 010 011 012 013

020 021 022 023

=
020 021 022 023a a -1 a

030 031 032 033
a a a -1

030 031 032 033

000 001 002 003 1 a a a 000 001 002 003 1 a a a
010 011 012 013 a -1 a a 010 011 012 013 a -1 a a

o 1 2 3 =
020 021 022 023 a a -1 aa a -1 a

eJ° 031 eJ2 eJ3 a a a -1 030 031 032 033 a a 0 -1

(IV.D.13)
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as a supersript) and one covariant index (notated as a subscript). This combina-

tion of sub- and super- scripts occurs only in the two mixed-type tensors.

However, it is a very simple matter to obtain invariant scalars from the

doubly-co and doubly-contra tensors. Simply extract a trace in the Minkowskian

sense:

Trace {TfLV} = TOO- Tll- T22 - T33 (IV.D.14)

Since only the two unmixed-type tensors are used throughout the remainder

of this report, it must be remembered that any "trace" calculation should be

done in the above Minkowskian sense, that is, with one plus sign and three minus

signs, to obtain a scalar quantity.

One final note about notation. In the 3-D formalism, there is no need to dis-

tinguish between covarian t and contravariant components; hence, the

subscript/superscript distinction holds no significance. Therefore, it will be my

practice to simply continue using subscripts on 3-D vectors, regardless of their

application. For example, (Vp Va, V4» notation will be used even if this 3-vector

is incorporated as part of a contravariant expression. Likewise for 3-tensors.
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E.) Differential Operators in 4-D Space

The 4-D analog of the divergence operation is nothing more than an

augmented version of equation (IV.C.l) :

°t

D.n = (.l1- a a a )
I

-Ox

ex c at ' a; , a; 'a; -Oy

-0 z

(IV.E.l)

°t
-.0

= (.l1- (~+ ~) (.l ~ + cosS) ( 1 ~ ))
r

C at' ar r ' r as rsinS ' rsinS a<t> -ne

-O<j>

1 aOt - yr'D
- c at

where the covariant 4-vector nex is taken to be of the form (00,01, O2,.03) =

(flt,D), where °t and D are, respectively, a scalar and a vector in the 3-D sense.

Note also the appearance of minus signs on the last three terms of the above

covariant column vector. If a contravariant vector had been selected, and

notated with superscripts rather than subscripts, there would be no need for

minus signs on the last three components.



Equations (N.A.11), (N.A.12), and (N.A.13), represent the diagonal, anti- 

symmetric, and dyadic tensors, respectively. Four dimensional analogs of these 

three tensor types that properly account for the Minkowskian nature of 4-space 

are easily constructed and then used to define the 4-D gradient, curl, and an 

operation that mimics equation (N.C.8) . 

The 4-D gradient is defined using the diagonal 4-tensor: 



The 4-D curl is defined using the anti-symmetric Ctensor: 



fie ' ze ?e 3 
( -L-) e er 



Corollory: 

In the previous formula, let : 

B = - ( k + i G )  

ii = ( E - i G )  

w =   EX^) 

~t = % ( E ~ + B ~ )  

After the above plug-ins are made, the new matrices get unmanageably 

large. They therefore need to be split into two separate halves to fit onto a sin- 

gle page. The full equation, including both the Cartesian and spherical matrices 

and the final differential operator, extends onto the next two pages: 





The use of a few vector identities on the above expression yields: 

Collecting terms yields: 

1 a t )  - B(v.6) - 6(v .6 )  + + ~ ( v x f t  +Ld) + 6 ~ ( 8 x 6  --- 
c at c at  

Recognizing that all terms enclosed in smaller-sized parantheses are expressi- 

ble in terms of p and 5 by virtue of Maxwell's equations (II.l), one final equality 

may be made: 



To conclude this section, it is necessary to augment the 3-D formulas 

(IV.A.14) through (IV.A.19). First, we have the 4-D equivalent of (IV.A.14/15). 

It will be shown below that the sixteen-element doubly-covariant 4-tensor can be 

decomposed into a one-element scalar part, a six-element vector part, and a 

nine-element tensor part. Since all work is done in a Minkowskian Cspace, the 

signature combination of one positive and three negative terms in trace 

expressions will be recurrently observed. 

Also of note here is the particular linear combination of terms used to 

construct the on-diagonal elements of the nine-element tensor part. These three 

elements are never uniquely defined, but whatever the choice, they must 

identically form a Minkowskian sum of zero. My own selection is presented in 

the third matrix of the upcoming equation; others might devise different 

combinations. My particular choice happens to have advantages when the tensor 

is transformed to spherical coordinates, as will be demonstrated later. 

The full equation extends over two pages. We have: 



' ( Too - T11- T22 - T33) 0 

- 1 - - 
4 

0 0 
\ 

0 0 
0 -(Too- T11- T22- T 3 3 )  

0 - ( Too - T11- T22 - 7'33) 

0 0 

+ 

\ 0 0 

0 - ( Too- T I ,  - T22- 7'33). 





Next, we have the 4-D equivalent of (IV.A.16): 

I 1 an, -- 1 an, -- 1 a% -- 
c at e at c at 

8 0 ,  - anr - an0 - 
a~ a T a T 

/ \ 

1 ant 1 an, 1 an, 1 an* -- -- -- -- 
c a t  c at c a t  c at 
an, an, an, 8% - - - -  
a~ a~ a~ a~ 
an, an, an, an, - - - -  
8 Y a Y 8 v a~ 
an, an, an, an* - - - -  , a~ a~ a z a~ , 

1 8% 1 ---- 1 an, cose 1 a, ---- n, + + - o r  rsine r r sine a+ rain0 rsine a+ r 

f \ 

- - 

,o cos0 - sin0 0 ,, 

1 0 0 0 

0 sin0cos+ cos0cos+ -sin+ 

0 sinesin+ cosesin+ cos+ 



It will prove informative to decompose (IV.E.7) according to the prescrip- 

tions of (IV.E.6). Because of space limitations, this will be done only for the 

spherical side of the equation. Thus, the sixteen-element array on the R.H.S. of 

(IV.E.7) may be re-expressed: 

c at rsin0 a+ a,) 
rain0 8 4  ar r 

1 8% + C O S ~  

- ( T ~ B  r ~ i n e  
a,--- anel 

r sine a+ 





There is only one independent element in the first matrix, namely, the scalar 

4-divergence as given by (IV.E.l): 

There are six independent elements in the second matrix, arrayed so as to 

form an anti-symmetric 4x4. There is a one-to-one correspondence between the 

six elements of this second matrix and the general antisymmetric matrix as given 

in the bracketted portion of (IV.E.3). From this correspondence, it is easy to see 

that two 3-vectors are extractable from this anti-symmetric matrix: 

And: 

----- I a: s i n  a+ I 
The first of the above vectors should be recognized as the spherical 



representation of the 3-D curl as specified in (IV.C.3). The second of the two 

i a i i  
vectors should be recognized as -- - Vln, . Contrast this expression with 

c a t  

There are nine independent elements in the third matrix, arrayed so as to 

form a symmetric-traceless 4x4. ("Traceless" taken in the Minkowskian sense, 

IV.D.14). The six off-diagonal elements are unambiguously defined from the ori- 

ginal tensor, (IV.E.7). The three on-diagonal elements are not uniquely defined, 

as has been discussed previously. The particular selection utilized here assures 

that each of the three on-diagonal elements contains two, and only two, spherical 

components lni and Rj. This maneuver allows for some mathematical 

simplifications later on. 



CHAPTER V 

DERIVATION OF CONSERVED 

ELECTROMAGNETIC QUANTITIES 

A.) Electrodynamics in 4-D Covariant Form 

Now that the 4-D formalism has been developed, it is a straightforward 

exercise to apply it to Maxwellian electrodynamics. 

The first 4-vector quantity that we have a t  our disposal is the 4-D charge- 

current density : 

The continuity equation for electric charge, equation (I.2), tells us that the 

4-Divergence of the above contravariant quantity is zero: 



Any vector whose divergence is zero must be expressible as a curl. In the 4- 

D case, this means: 

1 air v x T  = -iv.ir + -- - 
c a t  

Comparison of the above curl formula with the two inhomogeneous Maxwell 

equations, (1I.la) and (II.ld), reveals immediately the identity of the vectors 0 
and 9 : 

Hence, the two inhomogeneous Maxwell equations expressed in the 4-D for- 

malism become: 



What is interesting here is that (V.A.2) forces the existence of an equation 

of the form (V.A.4) . There is no arbitrariness in the form of the two inhomo- 

geneous Maxwell equations. 

The two homogenous Maxwell equations, (1I.lb) and (11.1~)' fall out analo- 

gously: 



Attention is next turned to the electromagnetic quantities u , g' and G , the 

(scalar) energy, (vector) momentum, and (tensor) stress densities, respectively. 

The equations governing these densities are almost as important as Maxwell's 

equations themselves. 

Definitions of these densities in terms of the electric and magnetic fields are 

provided in virtually all E&M texts: 

The tensor-differential equation that inter-relates all three of these elec- 

tromagnetic densities is (lV.E.5). After multiplying through by 1 / 4 ~ ,  

identification of the various terms in the two tensor arrays becomes obvious. 



For those source-free regions of space where (cp ,  j) = 0, the L.H.S.'s of 

equations (V.A.4) and (V.A.5) and the R.H.S. of equation (V.A.9) equal zero. In 

this special case, certain mathematical properties become operative, consequences 

of which are explored in the upcoming section. 

- 1  a a 2 1  a case - ' (sr+;) 7 (-- 1 8 .  +-I r do rsine 

. 

- - 
/ \ 

u cgr cge cgd, 

CSr u r r  are ur+ - - 

- 



B.) Extracting Divergenceless Quantities from Covariant Expressions 

From the previous section, it is clear that the equations of electrodynamics 

in source-free space repeatedly reduce to tensor relations of the form: 

Expanding the above expression, one obtains: 

Zero = L L ( i T t t  + iTt '+6  Tte+$ Ttd)  
c at  

(V.B. 2) 

Mindful that partial derivatives of non-Cartesian unit vectors are not 

necessarily zero, the above expression must be expanded out according to the 

prescriptions of (IV.D.3). Then, by setting the coefficients of the four t , i , 6  ,6 
components to zero, one obtains: 



-- a 2 1 a C O S ~  1 a ) ~ &  = aTtt + (-+;)Td + (--+-)TOt + (-- 
c at  a r r a0 rs1n0 rsin0 a+ 

= Zero (V.B.3) 

Any differential relation of the form: 

-- a 2 1 a C O S ~  
aaO +(-+ l)a1+(--+-)a2+(-- ) a 3  = zero 

c at ar r 80 rs1n0 rsin0 a$ 

represents a conservation law for the quantity $aodv. Of the four equations 

given above, only (V.B.3) falls into this special category. 
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The objective therefore is to extract more conservation laws by converting

the above system of inhomogeneous P.D.E.'s into an equivalent set of

homogeneous P.D.E.'s. The method is to linearly combine the four equations in

appropriate ways such that the residual terms on the R.H.S.'s of the above

equations exactly cancel one another out.

Mathematically, we seek four functions:

F = F(t,r,e,<I»

G = G(t,r,e,<I»

H = H(t,r,e,<I»

I = I(t,r,e,<I»

(V.B.7)

such that:

Zero = (1-1... (~+~ ) (1--L+ COSe ) (
1 a

)) .
c at' ar r ' r ae rsine ' rsine a<l>

(V.B.8)

=
1-1...( F Ttt + GTtr + HTte + ITtq,)c at

+ (~+ ~ )(FTrt + GTrr+ HTre+ ITrq,)ar r

+ (1-~+ c~se )(FTet+GTer+HTee+ITeq,)r ae rsme

+ ( ~ -L)( FTq,t + GTq,r + HTq,e+ I Tq,q,)r sme a<l>

Ttt Ttr Tte Ttq, F

Trt Trr Tre Trq, G

Tet Ter Tee Ted! H

Tq,t Tq,r Tq,e Tq,q, I



Invoking equations (V.B.3) through (V.B.6), one obtains: 

Zero = F [zero] 

1 cose + H [ - - T e r + - T m 4 ]  r r sin0 

1 cose + I [- - Td" - - Tie] 
r r sin0 

1 1 1 i ar + T+i [- z] + T$r [-El + T" [-%I + Tb4 [= 
rsin0 ad, rsin0 ad, rsin0 ad, 



Collect terms to obtain: 

tt 1 aF t e  1 aH t+  1 Zero = T c a t  [ - - ] + T ~ ~ [ ~ ~ ] + T  c a t  [ c a t  ] + T  [---;I 
a r 

O f  1 aF 1 aG 1 88 i d H + - G ]  1 + T O ~ [ l c ]  + T [--I + T O ' [ - - - - H I  + T [ 
r a0 r a0 r r a0 r r a0 

1 + T ~ [ - " F ]  + T+r[---- 
rsine a$ rsine a4 r rsine d<b rsine 

1 ar 1 + T@~[-- + - G + y  (V.B.lO) 
rsin0 r r sin0 

Since the above relation must hold identically, and since there is no a priori 

knowledge of linear relationships among the various T P V  terms, it is required 

that each bracketted expression must itself equal zero. We thus are confronted 

with sixteen coupled partial differential equations whose solutions must be 

determined. Fortunately, the solution techniques are straightforward and need 

not be reproduced here. Suffice it to say that there are four linearly independent 

solutions which, for the sake of notational brevity, are listed in columnar format 

below: 



However, if the TCLV matrix displays any a priori symmetries, the 

requirement that all sixteen bracketted expressions must themselves be 

individually set to zero can be relaxed, thus opening the options for more 

solutions. 

Two TCLv symmetries of frequent appearance in electrodynamics are the 

following: 

* Symmetric-Tracelesst TFV 

* Antisymmetric TCLV 

The premier example of the first type of symmetry is the electromagnetic 

energy-momentum-stress tensor in source-free space. Specifically, this is equation 

(V.A.9), or when written out in terms of its electric and magnetic field 

components, equation (IV.E.5) divided through by 1/4.rr, with the R.H.S.'s of 

both equations set to zero. 

The premier example of the second type of symmetry is the homogeneous 

pair of Maxwell equations, (V.A.5) . 

Both these symmetry types will be examined in turn. 

t Traceless in the Minkowskian sense, T~~ - Trr  - Tee- T'' = 0 . 



Examine first the case of symmetric-traceless Tp" . 

In this case, we have equation (V.B.9) as always, but with the additional 

a priori knowledge that Tee = Ttt - T"- T+$ and that Tpv = Tvp.  These 

relations can be used to eliminate the Tee term as well as the six Tp" terms 

below the diagonal. After combining terms appropriately, equation (V.B.9) 

reduces to: 

1 tt idF+-G+-- Zero = T [ c  a t  
r r a H I  ae 

+ [z+;x a F  a G l  
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Since we require (V.B.12) to hold identically, all the bracketted expressions

must individually be set to zero.

(V.B.13)

1..aF + 1..G+ 1..aH = 0
c at r r ae (a)

aF + 1.. aG = 0
ar c at (b)

1..aF + 1..aH = 0
r ae c at (c)

L aF+1..al = 0
r sine a<l> c at

(d)

aG -1..G-1.. aH = 0
ar r r ae (e)

1.. aG + aH-1..H = 0
r ae ar r (f)

L aG+ al -1..1 = 0
r sine a<l> ar r

(g)

L aH+ 1.. al - cose 1 = 0
r sine a<l> r ae r sine

(h)

-1.. aH + cose H + 1 al = 0
r ae r sine r sine a<l>

(i)

Plug equation (e) into (a) and re-arrange terms to obtain:



Although these nine coupled partial differential equations are a bit more 

challenging to solve than the sixteen equations of the previous case, the solution 

techniques are much the same and need not be reproduced here. Sixteen linearly 

independent solutions (including one "trivial" solution) are obtained. 

The sixteen solutions, including the trivial solution (F ,G,H, I )  = (0,0,0,0), 

are intentionally grouped into four groups of four, the significance of which shall 

be made clear later on. In columnar format, these four groups of solutions are: 





For any of these sixteen solutions (F ,G,H,I) ,  we have that: 

We have thus extracted sixteen conserved quantities (including a trivial 

quantity "Zero" ) from the symmetric-traceless tensor T p v  . 

- 

~ ' t  T" ~ ' 0  T'+ G . 
TO$ H 

,~+"d" 7'40 ~ 6 6  .. - 

In the case where TpV is specifically identified with the energy-momentum 

tensor, the conserved quantities assume actual physical significance, as will be 

discussed in the upcoming section. 

= Zero 

But first, let us turn attention to the other case of physical interest, namely, 

antisymmetric T p v .  

The derivations for the antisymmetric TFv case proceed in exact analogy to 

the symmetric case. To avoid confusion between the two cases, the auxiliary 

functions (F, G ,H, I) will be renamed (P, Q,R ,S). Thus, for the antisymmetric 

case, in place of (V.B.7), we have: 

such that: 



In this instance, however, it is known a prior; that T p v  = - T V p ,  implying 

also that diagonal terms T p p  are identically zero. 

We have equation (V.B.9) at  our disposal just as before but with ( F , G , H , I )  

replaced with (P, Q ,R ,S), respectively. This time the various bracketted terms 

combine linearly to give: 

Once again, since we require identicality, each bracketted coefficient must 

equal zero. 



After a little manipulation, one obtains: 



The above system is underdetermined, meaning that there are not enough 

equations to specify unique solutions. So, instead of obtaining a finite number 

discrete solutions as in the previous cases, the above system admits an infinite 

family of solutions interrelated as indicated below: 

where Z = Z(ct, r,0,+) 

Thus, the 4-vector (P,Q,R ,S) is a 4-gradient of an arbitrary function 

Z(ct, r,e,+). 

One is now in a position to assess the above three solution types a bit more 

carefully. Recall that (V.B.lO) is the necessary and sufficient condition to 

guarantee the conservation relation (V.B.8) for the case of TwV having no 

particular symmetry properties. There are sixteen requirements imposed upon 

the functions (F,G,H,I), namely that the sixteen bracketted coefficients of 

(V.B.lO) be identically set equal to zero. There is a strong parallelis@ between 

these sixteen requirements and the formulas of Section (1V.E) of this report. 

First, identify the functions (F, G ,H, I) with the generic covariant vector 

(Q, , Q, , a,, a+). Then observe that the sixteen bracketted expressions of (V.B.lO) 



are identical to the the sixteen elements of the "covariant derivative matrix" of 

(IV.E.7). Thus, the original objective of this section could have been restated as 

follows: 

Given a doubly-contravariant tensor Tp" that satisfies relation (V.B.l), the 

set of covariant vectors (at, R,, ne, a,) that would be necessary to guarantee the 

conservation relation (V.B.8) are those whose sixteen "covariant derivatives" are 

all equal to zero. These vectors are the curvilinear analogs of constant or 

"straight" vectors in Cartesian systems. The full solution set is given in 

(V.B.ll). 

Next, focus attention on the conditions necessary to guarantee the 

conservation relation (V.B.8) for symmetric-traceless TCLv. In this case, nine 

requirements are imposed on the functions (F,G,H, I), as given by the nine 

equations of (V.B.14). Upon making the identification (F, G,H, I) = 

(at, R,, Re, a*), it is found that these nine requirements are identically equivalent 

to setting the nine elements of the symmetric-traceless part of equation (IV.E.7) 

to zero. These nine elements are arrayed out explicitly in the third matrix of 

(N.E. 8). 

Thus, stated in covariant language, one would say that given a symmetric- 

traceless doubly-contravariant tensor TpV that satisfies relation (V.B.l), the set of 

covariant vectors (at, R,, Re, R*) that would be necessary to guarantee the 

conservation relation (V.B.8) are those whose nine symmetrized, traceless 

"covariant derivatives" are all equal to zero. The full solution set is given in 

(V.B.15 thru 18). 

Lastly, attention is turned to the case of anti-symmetric TpV.  In this case, 



six requirements are imposed on the functions (P,Q,R ,S), as given by the six 

equations of (V.B.23). Upon making the identification (P, Q, R ,S) = 

(Ot,  a,, Ste, a+), it is found that these six requirements are identically equivalent 

to setting the six elements of the anti-symmetric part of equation (IV.E.7) to 

zero. These six elements are arrayed out explicitly in the second matrix of 

(IV.E.8) and presented again in equations (IV.E.lO) and (TV.E.11). 

Stated in covariant language, one would say that given an anti-symmetric 

doubly-contravariant tensor TPV that satisfies the relation (V.B.l), the set of 

covariant vectors (fit, a , ,  Re, a+) that would be necessary to guarantee the 

conservation relation (V.B.8) are those whose six anti-symmetrized "covariant 

derivatives" are equal to zero. The full solution set is embodied by the 

requirement that these vectors be 4-gradients. Refer specifically to (V.B.25). 

Although not explicity examined in the previous parts of this section, it 

should not be too large a'leap to consider the case of scalar-diagonal TI*". The 

covariant vectors that would be necessary to guarantee the conservation relation 

(V.B.8) in this case would be those whose diagonalized component of "covariant 

derivatives" is set equal to zero. Specifically, this is equivalent to setting the first 

matrix of (IV.E.8) to zero. In this case, the required (at ,a,, flO,S1+) would have 

to be expressible as a 4-curl. Maxwell's equations (V.A.3) provide good examples 

of such vectors. 



A note about continuity relations. 

It has been previously mentioned that any relation of the form 

1 aao - -  = a 2 1 a coso 1 a 
(dr+T)al  + (--+-)a2 + (-- 

c a t  r a~ rslnO rsino ad Ia3 
implies a conservation law for the quantity J a o d v ,  or, alternatively, that a 

continuity relation exists for a'. Both these expressions are explained below. 

Integrate the above continuity equation over a volume V: 

Use Gauss's Divergence Theorem on the R.H.S. to obtain: 

where 

A' = $ a O d v  

S = closed surface that bounds volume V 

fi = outward -directed unit-normal to surface S 

The above is the mathematical statement that the rate a t  which a quantity 

A' decreases within a volume V (L.H.S. of equation) equals the total amount 

expelled from that volume through bounding surface S (R.H.S. of equation). 



Overall, no A' is lost or gained; hence, conservation of A'. Similarly, there is no 

"tele-transport" of quantity A' from volume V1 to volume V2 without passing 

through intervening surface S; hence, continuity of A'. 

The Cvector formalism is such that for any ( a 0 ,  a', a', as )  satisfying the con- 

tinuity equation (V.B.26), it is always the lead component a0 that is the con- 

served density. The other three components are flux densities that account for 

passage through the bounding surface S. 

Since attention usually focusses on the conserved physical quantities, it is 

typical to emphasize the lead component a' a t  the expense of the other three. 

Therefore, the quantities of interest in equations (V.B.19) are: 

This practice of considering only the first row of the core T p v  matrix is util- 

ized frequently in the upcoming section, where emphasis is placed on the con- 

served quantities themselves, and not the attendant flux terms. 



C.) Conserved Electromagnetic Quantities 

Although divergenceless 4-vectors have been established for various tensor 

types, those associated with the symmetric-traceless energy-momentum tensor 

(V.A.9) are the most compelling physically. The sixteen 4-vectors associated with 

this tensor, as catalogued in equations (V.B.15) through (V.B.18), have familiar 

physical interpretations. 

These interpretations become clear when a transformation to the Cartesian 

coordinate system is performed. The transformation law, (IV.D.6), re-cast in a 

form more suitable to our purposes is: 

Consider the first set of divergenceless quantities, namely, those to be 

constructed from the TFV tensor and the four column vectors of (V.B.15), and 

transform them as prescribed to obtain: 





In the spirit of equation (V.B.28), restrict attention to only the first row of 

the above matrix equation. This is adequate since it is only the conserved 

quantities that interest us here, and not the attendant flux terms. 

One obtains for the first set of conserved quantities: 

From the discussion that follows equation (V.B.27), it is evident that the 

first set of conserved quantities, that is, those constructed from TCLV and the four 

column vectors of (V.B.15), are going to be: 

The above quantities represent electromagnetic energy and the three 

Cartesian components of electromagnetic momentum (multiplied by the speed of 

light, c). 



Proceeding in exactly the same manner for the second set of divergenceless 

quantities, that is, those constructed from TpV and the four column vectors of 

(V.B.16), one obtains: 



Once again, we need only concern ourselves with the top row of the above 

matrix equation. We obtain our second set of conserved quantities: 

\ 

'O 0 0 0 ' 
0 0 kz -ky 
0 -kz 0 kx 
,O ky -kz 0, 

u cgz cgy cgz 

CSz ~ Z Z  uu 

cgy uw uyy uyz 

cgz a, uzy 0, 

/ 
1 0 0 0 ' 

- - 0 sin0cos+ sinesin+ cos0 

0 cos0cos+ cos0sin+ -sin0 

o -sin+ cos+ O 1 



\ 

0 0 0  0 

- [u cgz CQ c l ,  [ 0 0 kz -ky 
- 

0 -kz 0 kx 
0 ky -kz O , ,  

Therefore it follows that the second set of conserved quantities, that is, those 

constructed from T p v  and the four column vectors of (V.B.16), are going to be: 

The above represent the "trivial" conserved quantity (Zero) and the three 

Cartesian components of angular momentum (multiplied by angular frequency 

0). 

It is interesting to note that this is the second time that mathematical 

developments have yielded conservation laws for Cartesian components of select 

vector quantities. Cartesian components are somehow singled out in Maxwellian 

electrodynamics, even when working in "impartial" non-cartesian systems such 

as the one used here. This trend, in fact, holds globally, as will be demonstrated 

in the remaining portions of this section. 



Now that the general scheme of calculation has been outlined, it should not 

be necessary to have to repeat the calculations for the remaining two expressions 

(V.B.17) and (V.B.18), but rather merely quote the results. The derivations 

proceed exactly as they did in the previous two cases. 

For the four divergenceless expressions of (V.B.17), one obtains the following 

four conserved quantities: 

oNt  = w s  (tu - i - ~ ) d v  v (V.C.14) 

(V.C.15) 

The above four quantities have no mechanical analog such as "Energy" or 

"Angular Momentum" from which to borrow terminology and notation. How- 

ever, they possess somewhat the same mathematical form as mechanical Action: 

I = i t ' ~ d t  I = ~ : ' ( ~ ~ & - ~ ) d t  

The nomenclature (Ni , N,, Ny , N,) is purely arbitrary. 



For the divergenceless quantities constructed from T*' and the four column 

vectors of (V.B.18), one obtains: 

These last four conserved quantities are purely electromagnetic in origin, 

having no analog in mechanical systems. 



D.) Sixteen Conservation Laws 

One can now proceed with the explicit conservation laws as specified by 

(V.B.26). It will no longer be adequate to "retain the first row only" when 

constructing these laws; rather, all four terms of the relevant continuity relation 

must be utilized. Each divergenceless quantity will be examined in turn; no more 

combining them into related sets of four. 

The general form of the conservation law is: 

(V.D. 1) 

Written out explicitly and integrated over a volume V, one has that: 

- .. 
\ 

C S r  r o r e  Orcb 
= Zero 

CSd, ad,, a+e ubm, 
L 



Applying Gauss's Divergence Theorem on the R.H.S. yields: 

The objective now is to insert allowed (F,G,H, I) solutions into the above 

relation to obtain spherical-coordinate representations of conservation laws. The 

physical quantity being conserved for each law has been tagged and identified in 

the previous section. Recall that these quantities are electromagnetic energy, 

momentum, angular-momentum, and so forth. It will prove informative to 

examine each conserved quantity in turn. 



1  

For the case that: 0 
H 0 

one has, after reviewing (V.C.3) and (V.C.4), a conservation law for electromag- 

netic energy, U, times l / c .  The time derivative on the L.H.S. of (V.D.3) for this 

choice of (F ,G,H, I )  is the rate (Watt) at  which electromagnetic energy is 

decreasing within volume V, multiplied by l l c .  The surface integral on the 

R.H.S. of (V.D.3) is the rate at  which electromagnetic energy is ejected through 

bounding surface S multiplied by l l c .  c  is the speed of light in vacuum. 

one has, after reviewing (V.C.3) and (V.C.5), a conservation law for s-component 

of electromagnetic momentum, G,. The time derivative on the L.H.S. of (V.D.3) 

for this choice of (F,G,H,I)  is the rate (Newton) at  which s-component of elec- 

tromagnetic momentum is decreasing within volume V. The surface integral on 

the R.H.S. of (V.D.3) is the rate a t  which s-component of electromagnetic 

momentum is ejected through bounding surface S .  

/ F  
\ / \ 

For the case that: 
G 
H 

,I 

- - 

0 
sinecosd, 

cosOcos+ 

\ -sin+ , 



one has, after reviewing (V.C.3) and (V.C.6), a conservation law for y-component 

of electromagnetic momentum, Gy. The time derivative on the L.H.S. of (V.D.3) 

for this choice of (F,G,H, I) is the rate (Newton) at  which y-component of elec- 

tromagnetic momentum is decreasing within volume V. The surface integral on 

the R.H.S. of (V.D.3) is the rate at  which y-component of electromagnetic 

momentum is ejected through bounding surface S. 

/F 
\ f \ 

one has, after reviewing (V.C.3) and (V.C.7), a conservation law for z-component 

of electromagnetic momentum, G,. The time derivative on the L.H.S. of (V.D.3) 

for this choice of (F,G,H,I)  is the rate (Newton) a t  which z-component of elec- 

tromagnetic momentum is decreasing within volume V. The surface integral on 

the R.H.S. of (V.D.3) is the rate at  which z-component of electromagnetic 

momentum is ejected through bounding surface S. 

For the case that: 

\ I  cos+ , 

G 
H 

- - 

0 
sin0sin+ 

cosOsin+ 



one has the "trivial" identity. Although seemingly not of mathematical interest, 

this solution does have its place in the scheme of things. But this issue shall not 

be pursued here; it will be deferred to a subsequent report. 

one has, after reviewing (V.C.9) and (V.C.11), a conservation law for x -  

component of electromagnetic angular momentum, M,, multiplied by wave 

number k = o / c .  The time derivative on the L.H.S. of (V.D.3) for this choice of 

(F, G , H, I) is the rate a t  which x-component of electromagnetic angular momen- 

tum is decreasing within volume V, multiplied by wave number k.  The surface 

integral on the R.H.S. of (V.D.3) is the rate at  which x-component of electromag- 

netic angular momentum is ejected through bounding surface S, multiplied by 

wave number k .  



one has, after reviewing (V.C.9) and (V.C.12), a conservation law for y- 

component of electromagnetic angular momentum, My, multiplied by wave 

number k = w/c. The time derivative on the L.H.S. of (V.D.3) for this choice of 

(F,G,H, I) is the rate at  which y-component of electromagnetic angular momen- 

tum is decreasing within volume V, multipled by wave number k .  The surface 

integral on the R.H.S. of (V.D.3)is the rate at which y-component of electromag- 

netic angular momentum is ejected through bounding surface S, multipled by 

wave number k .  

one has, after reviewing (V.C.9) and (V.C.13), a conservation law for z- 

component of electromagnetic angular momentum, M,, multiplied by wave 

number k = w/c.  The time derivative on the L.H.S. of (V.D.3) for this choice 

of (F,G,H,I)  is the rate at  which z-component of electromagnetic angular 

momentum is decreasing within volume V, multipled by wave number k .  The 

surface integral on the R.H.S. of (V.D.3) is the rate at  which z-component of 

electromagnetic angular momentum is ejected through bounding surface S, mul- 

tipled by wave number k .  



Similarly:

For the cases that:

F

G

H

I

F

G

H

I

F

G

H

I

F

G

H

I
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=

wt

-kr

0

0

(V.D.12)

=

kr sinOcoscf>

- w t sinOcoscf>

- w t cosOcoscf>

w t sincf>

(V.D.13)

=

kr sinOsincf>

- w t sinOsincf>

- w t cosOsincf>

- w t coscf>

(V.D.14)

=

kr cosO

- w t cosO

w t sinO

0

(V.D.15)

one has conservation laws for the electromagnetic quantities that were denoted

Nt,Nx,Ny,Nz in equations (V.C.14 thru 17), multiplied by wave number k.
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And similarly for the last four allowed vectors:

F

G

H

I

F

G

H

I

F

G

H

I

F

G

H

I

=

(k2r2+w2t2)

-2(kr)(wt)
0

0

(V.D.16)

=

2( kr )( w t )sinecos<!>

- (k2r2 + w2t2)sinecos<!>

(k2r2 - w2t2)cos8cos<!>

- (k2r2 - w2t2)sin<!>

(V.D.17)

=

2(kr )( w t )sinesin<!>

- (k2r2 + w2t2)sinesin<!>

(k2r2 - w2t2)cosesin<!>

(k2r2 - w2t2)cos<!>

(V.D.18)

=

2(kr )(wt)cose

- (k2r2+w2t2)cose

- (k2r2- w2t2)sine
0

(V.D.19)

(V.C.18 thru 21).

one has conservation laws for the electromagnetic quantities given in equations

Thus, fifteen non-trivial conservation laws have been extracted from the

electromagnetic energy-momentum-stress tensor Tflv.



CHAPTER VI

DISCRETE SUM EXPRESSIONS FOR

CONSERVED ELECTROMAGNETIC QUANTITIES

Fifteen conservation laws for various electrodynamic quantities have been

presented in the previous chapter, of which seven will be investigated in this

chapter. Recall that the tactic behind these laws is to isolate the time derivative

of the conserved quantity on the L.H.S. of a continuity equation and to supply an

appropriate surface integral on the R.H.S. Equation (V.D.3) is the applicable

template for laws expressed in this in this form. Various functional choices for

the column vector (F,G,H,I) as given in equations (V.DA thru 19) infer different

conservation laws. It is incumbent upon us to convert these generic conservation

laws into explicit expressions involving known aspects of the radiating system.

This is achieved by defining a suitable boundary surface S for equation (V.D.3),

replacing all u, g, and {j- terms in the (V.D.3) surface integrand with their

(V.A.6 thru 8) expansions in terms of E and B, and then replacing all E and B
terms with their Maxwellian solutions (IILF.ll thru 16) so as to perform the

relevant surface integrations.

It is at this point that the recursion and orthogonality relations of Appendix

Sections B, C, and D become indispensible.

It is my intent to reproduce calculations for the first conserved quantity

only, i.e., the quantity inferred by (V.D.3)j(V.DA). In the interest of space, the

calculations for the remaining six quantities will be side-stepped so that final

results can be presented with no undue delay. The calculations asociated with

the first conserved quantity should suffice to demonstrate the methodology for

139
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the other conserved quantities.

For the general situation of finitely-sized radiating objects, the relevant

boundary surface is a pair of concentric spherest of inner and outer radius R 1

and R 2.

Recall the general form for the seven conservation laws:

-1. aAo = p (ral + 8a2 + <i>a3).ndS
c at 5

(VI.1)

For the particular geometry selected, the element of differential surface area

becomes:

dS = r2sin8d8d<l> (VI.2)

and the outwardly-directed unit-normals become:

n = +r (VI.3)

on the outer r = R 2 sphere, and

n = -r (VIA)

on the inner r = R 1 sphere.

t The particular merits of this choice of S will be made clear in the discussion that
concludes this section.



For this geometry, the conservation law of (V.D.3) reduces to: 

That is to say, the surface integration is performed over the full range of 0 

and + on the two surfaces r = R 2  and r  = R 1 .  These results are then subtracted 

because ii.?=+l on the r = R 2  surface and fi.P=-l on the r = R 1  surface. 

The corresponding flux quantity, denoted WA0, is defined as: 

It is these flux quantities that will be derived in the developments that fol- 

low. 

The actual - 8 ~ O l d t  value can be evaluated from the WA0 quantity very 

simply by noting that: 



For electromagnetic energy, we have (1.32)/(1.33): 

2ll ll R2 
= [& & cg, r2sin0d0d+] 

R, 

The corresponding energy flux Wu is given as: 

Use equation (1.19) to express cg, in terms of Ei, B,: 



U s e  e q u a t i o n s  (III.F.12, 13, 1 5 ,  1 6 )  to e x p r e s s  Ei and B, as f u n c t i o n s  of  

( r  ,o,+): 

dh(l) h(l) d P Y  

[(i: I=O m=-I $ 9h(++i)- r 
d o  eim+e - iw t  - k d  h(l) .m p y e i m + e - i w t  

Im s l n o  

-im+,iwf - kd*  h(2) m 
lm 1 s in0 

+ i k g r m ,  
d ~ ? '  ( 5 ti idrml h(1) eim'+e-iwt 

lf=urn =-1' dr I f  d o  

dh(2) h(2)  
( 2 )  dp?' - ,mp 6 iot * (L+l I p r ' e - i " + e i o t  - ikgp*,, hlf  - idrm' e 

dr  r ) s in0 d o  



Combine terms and use equation (App.Dl.1) to obtain: 

+ C.C. 1 





Use equations (App.C2.3) and (App.C3.3 and 4) to obtain: 

1 -w, - 
C 

[ zem1e-2 iwt  
' ( - igim dr (-m)(  dr 

(1) 21(1+ 1) ( +  h [ (- i)m8,]e -2iwt  + gr (- m) dr  r 21+1 

-2iwt  
+ 21+1 

(1) (1) 
- ;k2d1m gr(-m) hr hr [ ~ e r o ] c - ~ ' ~ '  

21(1+ 1) (1 + m)! - gFm dr  21+1 (1-m)! 

+ C.C.  ) 



Perform the indicated summation over I' to obtain: 

Combine terms: 

1 -w, = 
C (- 1Im (!Jim 9i(- m )  dim dl(- m ) )  ' 

d r 



Use equations (App.B2.8) and (App.B2.6): 

H," 
r 2 d ; ) ( ( i +  I)- - kd;il) -2iwt + C . C .  

r 

Re-arrange terms to obtain: 

+ C.C. 

+ C.C. 



In actual applications, the two frequency-dependent terms in the above 

expression are generally not of interest. The essential physical content of the 

problem lies exclusively in the dc component, i.e., the third term. Therefore, it 

is typical to calculate the time-averaged energy flux. From the above, one would 

obtain: 

Time-Averaged Electromagnetic Energy Flux: 

l(l+l)(l+ ) '(wu) C = 2 j ( s l m  s:, + dlm d;,) 
2 1=Om=-/ (21 + 1 )  ( 1  - m). 

Note the positive-definite nature of this expression. Note also the complete 

absence of cross-terms within it; the only paired-combination of gIm and dl, 

coefficients to appear are those in which the term multiplies itself, and no other. 

The initial objective to express radiated energy flux entirely in terms of 

known system parameters has thus been accomplished. The "known" parame- 

ters in this case are the system electric and magnetic multipole moments, g,, and 

dl,, respectively. 

Similar calculations can be performed for the other conserved quantities. 

The results will be merely quoted, the derivations being too lengthy to include 

here. The relevant fluxes are given in their time-averaged form. Note that for 

the most part, a small number of cross-terms appear in each expression, but 

never more than a few. The overwhelming majority of cross terms integrate out 

of the final expression as a result of orthogonality properties among the two sets 

of angular functions. 



Electromagnetic Momentum Flux (s-component): 

150 

(VI. 11) 

Electromagnetic Momentum Flux ( y -component): 



Electromagnetic Momentum Flux (2-component): 

151 

(VI. 13) 



Electromagnetic Angular Momentum Flux (x-component): 

Electromagnetic Angular Momentum Flux (y-component): 

* l ( l + l )  ( i+m)!  
~ ( w W )  = - $ C C 

1=0 (21 + 1) ( I  - m)! 

Electromagnetic Angular Momentum Flux (2-component): 

k ( w M Z )  = 
1 2  l ( l+1)  ( I + m ) !  
2 /=am=-, (21 + 1) ( 1  - m)! 

m (91, 91, * + dim d;,) 



Before proceeding, it is beneficial to examine the above seven expressions in 

somewhat greater detail. 

It was mentioned earlier that the particular geometry used to calculate the 

above flux quantities, namely two concentric spheres of inner and outer radius R 

and R2, was actually more comprehensive than might be initially supposed. Just 

how generic this particular choice of geometry actually is for problems of this 

sort will be made clear in what follows. 

Recall once again the general derivation of conservation laws. We start with 

a relation of the form: 

Integrate over a suitable volume V: 

Use Gauss's Divergence Theorem on the R.H.S.: 

For any volume V subtended by inner Gaussian surface S1 (not necessarily a 

sphere) and outer Gaussian surface S2 (also not necessarily a sphere), we have: 



NOTE: By "Gaussian surface", one means any closed, bounded, simply- 

connected 2-D surface. (Tori and other multiply-connected domains do 

not qualify.) 

Take time-averages of the above quantities: 

( -  = ( $ 2 S d d S I )  - ( $ 1 5 - f i d S I )  (VI. 17) 

We are now in a position to exploit the particular properties of the mono- 

chromatic solution, (III.F.7 thru 16). 

-C ioi The i?; and f3 quantities display a first order time dependence on e . 
The seven conserved quantities of (VI.10 thru 16) all depend quadratically on 

and 6 ,  cf., (V.A.6 thru 8). They therefore display a second-order dependence on 

e *iwt of the form: 

A" = A,~-*'Y'  + + A~~~~~~ (VI. 18) 

where the A,, Adc, and A,, terms are time-independent double-summations over 

the indices 1 and m . (If any of the four terms of the auxiliary vector (F, G ,  H, I) 

had contained time-dependent terms, (see equations V.D.4 thru V.D.ll) we would 

not be able to assert that the A,, Adc, and Ap are, in fact, time-indpendent.) 

The explicit expressions for A,, Adc, and Ap have been presented in equations 

(VI.10 thru 16) and need not concern us here. Merely knowing that they are 

time-independent is sufficient to complete this discussion. 



We easily calculate from (VI.18) that: 

1 ~ A O  __- - - 2 jkA, -"Y' - 2 ikA, e2 'Yt  
c a t  

Since: 

We derive that: 

Thus, the time-averaged A' behavior is steady-state, as it intuitively should 

be for conserved quantities. 

Consequently, we have: 

The above is the time-averaged equivalent of the law claimed for the concen- 

tric sphere case, (VI.7): 

but generalized to arbitrary Gaussian surfaces (subject to one modest constraint 

to be mentioned below). 



This remarkable generalization to arbitrarily-shaped surfaces follows 

inexorably from the simplest of properties of the monochromatic Maxwell 

solutions, namely, (VI.18). It allows one to calcuIate outward fluxes from 

radiation sources whose surfaces are seemingly much be too complicated to treat 

mathematically. The flux calculation from some vilely deformed Gaussian 

surface S1 becomes entirely possible by calculating it instead on some "simple" 

surface S2 that completely encloses surface S1. 

In practical terms, the method would work out as follows. Calculate the 

general flux expression in terms of the field expansion coefficients 91, and dl, on 

the outlying "simple" surface S2. (This has already been done done in equations 

(VI.10 thru 16) ). Then use boundary conditions imposed on the problem by the 

deformed inner surface S1 to determine the specific analytical expressions for g,, 

and dl,. Thus, the problem is solved completely, without recourse to surface 

integration over the "difficult" surface S1. 

I t  is precisely this property that is to be exploited in applications to be 

discussed in a separate report. This delightful feature of Maxwellian 

electrodynamics would have gone entirely unnoticed if the original radiation 

problem had been solved in Cartesian coordinates. Spherical coordinates 

highlight many such hidden features of the Maxwellian formulation. 

It was mentioned above that there was one minor constraint on the selection 

of inner Gaussian surface SI. It turns out that the and 6 solutions given in 

Chapter I11 of this report are singular at  the origin. (The spherical Hankel 

functions "blow-up" at the point r=O.) Therefore, for all the mathematical 

steps to hold, we require that the Gaussian surfaces S1 and S2 both enclose the 



origin. This represents only a minor restriction in actual applications, but it is 

an aspect that should not be overlooked when setting up problems of this sort. 

Stated in full generality, with all the attendant provisos and restrictions, we 

say that the steady-state flux of conserved electromagnetic quantities from 

monochromatic sources, into and out of source-free regions of space subtended by 

Gaussian surfaces S1 and S2 that both enclose the origin, must be equal. 

"Source-free" implies that (cp, j) = 0 within the volume V; hence, the present 

formulation would not be suitable for rf-plasmas. Also, the monochromatic 

solution is inherently steady-state; thus, we do not consider system transients or 

propagation delays in this formulation. Lastly, "into" volume V means 

propagation inward through inner Gaussian surface S1; "out of" volume V 

means propagation outward through outer Gaussian surface S2. 

The intuitive notion underlying all this mathematics is the following. The 

transport of the seven quantities examined above can be compared to a steady- 

state fluid flow of incompressible fluid from a point source. For a source-free, 

sink-free volume V that is bounded on the inside by Gaussian surfce S1 and on 

the outside by Gaussian surface S2, both of which enclose the point source, the 

amount of incoming flow through S1 must exactly equal the amount of outgoing 

flow through S2. The fluid can be neither compressed, consumed, or generated 

within volume V. 

These flux flow relations also serve as the 3-D equivalent of Cauchy's line 

integral theorem of complex analysis. In the 2-D case of complex functions, 

certain conditions on the function F ( z )  assure that the integral of F ( z )  on a 

closed 2-D path will be independent of the path chosen. The analogy to the 3-D 
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case is embodied in formula (VI.22). Schematically, we would have Figure 1.

It should also be mentioned that the flux law, especially as stated in the

form immediately preceding equation (VI.17), is the 3-D analog of the

Fundamental Theorem of (one-dimensional) Calculus, namely,

I v. adV = ~ a' ndS2 - ~ a' ndS1
V 8. 8,

(VI.23)

versus

I %. j£ dx = [F ] - [F]
% ax X2 Xl,

(VI.24)

Both the above laws express the fact that an integral over a selected region

of N-dimensional space can be expressed in terms of integrals over the (N-1)-

dimensional subspaces that bound the original N-dimensional space.



2-DCase:

. Jordan contours r l' r 2 simply-connected

. No polesin regionboundedby r1 and r2

. Cauchy-Riemann equations for u, v, where f = u + iv

Then:

P. f (z ) dz1 = P. f (z ) dz2
f] f2

3-D Case:

. Gaussian Surfaces 81 and 82 simply-connected

. No sources, sinks in region bounded by 81 and 82

. Divergeneceless vector a

Then:

~ a' i1 dB 1 = ~ a' i1 dB 2
5, 52

FIGURE 1

A Comparison of Flux Integrals in Two and Three dimensions
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CHAPTER VII

QUANTUM ASPECTS

Consider the time-averaged fluxes for energy and z-component of angular

momentum:

( ) - .£ ~ ~ l.U2.!l (l + m )! (
* *

)
Wu - 2/f:o m~.1 (2/+1) (l-m)! glmglm + dim dim

(VII.1)

(w ) - 1 ~ I 1(1+1) (l+m)! (
* *

Mz - 2kIf:o)2.1 (21+ 1) "(1- m )1m glm glm + dimdim)
(VII.2)

For the moment, disregard the two summations over 1 and m in order to

key in on the energy and z-component of angular momentum for a single mode:

(w ) -.£ 1(1+1) (1+m)! * *
U 1m - 2 (21+1f-(1-m)! (glmglm + dimdim)

(VII.3)

( ) 1 lfl+1\ (1+m)!
(

* d d *
)w = -~. -m glmglm + 1m 1m

Mz 1m 2k (21+ 1) (1- m )!
(VIlA)

At this point, invoke Planck's energy formula for single-mode radiation as

inferred from his analysis of black body emission spectra:

(u) = (Wu) ~T = fiw1m . 1m
(VII.5)
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AT is a constant with units of time. It can be shown to be equal to (2w)-l, 

but rather than committing several additional paragraphs to demonstrate this, I 

prefer instead to leave it in the raw form AT and advance on to the essential 

points of this discussion. 

If this formula for single-mode energy is true, it forces the radiated z- 

component of angular momentum to be: 

as can be quickly ascertained by plugging (VII.3) into (VII.4). 

This, it turns out, is a familiar formula from quantum mechanics, but rarely 

is it demonstrated how it follows from classical principles. One consequence is 

that it allows one to treat the single radiation mode as an entity with well- 

defined energy and z-component of angular momentum. 

But this is not all. The general formulas for WU and WMz, (VII.l & 2), 

contain no cross terms in them, the summations being over gl, and dl, terms 

times their own complex conjugates (and none other). Thus, from an energy or 

z-angular momentum standpoint, there is nothing to prevent treating the full 

radiation field as an ensemble of individual particles, each with its own charac- 

teristic energy and z-angular momentum. The particle nature of the ensemble is 

embodied in the fact that the energy of one lm mode in no way depends on the 

energy of some other mode. There is no wave-like "interference" among ele- 

ments of this ensemble. 

This characteristic, in fact, is what might have prompted Einstein to postu- 

late the photon concept in the first place. 



One of the more interesting consequences of (VII.3 and 4) is the following. 

The lm-mode can be considered as a sub-species of the more generic I-mode. 

The energy and z-angular momentum of the I-mode are obtained by summing 

(VII.3) and (VII.4) over the index m, leaving 1 fixed. The ensemble of I-modes is 

interesting in its own right, as will be demonstrated subsequently. 

In a thermodynamically equilibrated ensemble of 1-modes, one would expect 

an equipartition of energy among them. In line with "classical" thermodynamic 

reasoning, one would consider this equipartitioned amount of energy to be pro- 

portional to temperature. In terms of Boltzmann's constant kB, one would stipu- 

late the I-mode micro-state energy to be: 

c 1(1+1) (I+m)! - (g~mg,', + d ~ m d & ) ~ ~  = ~ B T  (VII.7) 
m=-l 2 (21 + 1) (1 - m)! 

However, in the context of monochromatic waves, which is what is being 

examined here, this microstate energy would be better stipulated as being 

equipartioned among the sub-specie lm-modes and proportional to frequency 

rather than temperature. Hence, in keeping with the experimental observations 

of Planck, one would have: 

c 1(1+1) ( l+m)!  - W d* AT = +no (W.8) 
2 (21 + 1) (1 - m)! g ' m g ' * " * ~  = (21+ 1) (1- ml! Im Im 

The pre-factor of 114 is selected with foreknowledge of the final outcome. 

Final formulas become slightly inconvenient with this factor missing at  this stage 

of the derivation. The primary proportionality constant, K, is simply Planck's 

constant h divided by 27~. 



Thus, from (VII.3): 

From which one obtains for the I-mode: 

This is the familiar energy formula for the linear harmonic oscillator of 

quantum mechanics, a pivotal quantity in the Schrodinger explanation of the 

blackbody emission spectrum. 

The corresponding I-mode z-angular momentum is: 

(VII. 11) 



Thus the I-mode "particle" carries with it an energy given by (VII.lO) and a 

z-component of angular momentum of zero, as given by (VII.ll). 

One now has in hand enough knowledge about radiative I-modes to embark 

on a full-blown re-derivation of Planck's radiation law within the framework of 

the electrodynamic formalism. The discussion from this point onward relies 

heavily on the methods of statistical mechanics. Many applicable formulas will 

be invoked without prior derivation. A familiarity with the statistical 

mechanical approach is therefore assumed of the reader for the remaining 

portions of this report. 

Recall that each I-mode microstate, when present, would possess (l+%)fiw 

units of energy. The total energy of the ensemble would be the sum of these 

individual microstate energies. However, not all microstates of the ensemble are 

"active". Hence, the total energy is not a simple sum over I-mode energies but 

rather a weighted sum, the weight-factors indicating which percentage of the 1- 

mode microstates are "active" and which are "dormant". Imposition of 

macroscopic (thermodynamic) constraints on the system are sufficient to 

completely determine the appropriate weight-factors for each microstate. The 

thermodynamic requirement that the total energy of the system be a fixed 

constant forces the weight-factors to assume the familiar Boltzmann form, 

exp(-El/kBT), where El is the energy associated with the I-microstate, T is the 

temperature, and kg is Boltzmann's constant. For the 1 -mode described above, 

this works out to be exp(-(l+%)fio/kBT). 

The average energy per radiation mode would be calculated according to 

familiar statistical rules: 



( E )  = 
average energy per 1 -mode 

Sum o f  active I -mode energies 

= [ Sum 0 active l-modes 

(VII. 12) 

Note an interesting thing here. In the limit that 6 approaches zero, the 

above average-energy expression approaches kBT, the very value that would have 

been stipulated in the "classical" formulation, cf. (VII.7). Therefore, it is evident 

that Planck's quantum formulation properly reduces down to the classical formu- 

lation in the limit that ti approaches zero, as indeed any quantum theory is 

required to. 

With thermally-dependent weight-factors properly accounted for, one 

obtains alternate expressions for the expansion coefficients g ~ ,  and dl,. In place 

of (VII.8), one requires: 



The essential thing to note here is the form of the weighting function for the 

lm-microstate energy. Multiplying the basic energy quantum of equation (VII.8) 

with the bracketted function of T in (VTI.13) assures that the upcoming deriva- 

tion of emission characteristics from the radiating black body will work out prop- 

erly. The weighting function advocated by equation (VII.13) is neither the 

Boltzmann . function exp( - El l kBT), nor the Bose-Einstein function 

( ( ~ X ~ ( E ~ / ~ ~ T )  ) - I)-', but rather somethi& that falls midway between these 

two choices. The merits of this particular weighting function will be made clear 

in the developments of (VII.14). 

All this aside, it is important to note what has been accomplished here. 

Except for the non-specification of AT, an analytical expression for the magnitude 

of each expansion coefficient glm and dim has been supplied. These analytical 

expressions are then inserted into the general formulas for k and 6 as given in 

equations (1.23 thru 28). Since Maxwell's equations provide no restrictions on the 

analytical content of the expansion coefficients glm and dl, other than their pros- 

cription against any dependence on position or time, i .e . ,  that they are forbidden 

to be functions of ( r ,B ,+ , t ) ,  and since the proposed analytical expressions of 

(VII.13) are functions solely of non-geometric parameters such as angular fre- 

quency w and temperature T, they are perfectly acceptable candidates for solu- 

tion. The consequent electric and magnetic fields yield energy fluxes that 

correspond to blackbody emission spectra, as will be demonstrated in the upcom- 

ing calculation of (VII.14). These thermally-dependent expansion coefficients for 



@ and 6 indicate that Maxwellian electrodynamics can assume thermodynamic 

character when the physical situation calls for it, and indicate exactly where the 

thermodynamic aspects must enter the theory. They also demonstrate that vec- 

tor wave-functions can be invoked to explain blackbody emission spectra. These 

vector wave functions satisfy Maxwell's equations. (Scalar wave-functions would 

satisfy Schrodinger 's equation.) 

Enough groundwork has thus been established to perform actual calcula- 

tions. The approach used here employs techniques that were developed after 

Planck's time; however, they rely heavily on his ingenious use of statistical prin- 

ciples and follow his example at  all the key steps. 

The energy density associated with an ensemble of radiating I-modes is given 

as the normalized six-dimensional integral over phase-space: 

J E ( ~ , T )  dv = LJJJ [JJJ$h?d~dyd~ dp,dp,dp, (~11.14) 
v h3 p-space r-space I 

where h3 = unit-cell volume in plase space 

u = electromagnetic energy density 

Convert the integration to spherical coordinates: 

= l sss  [12=l'SRzf AT r2sin0 drd 0d+ ,'sin0 dpd 0d+ . 
h R ,  I p-space 

Utilize equations (VI.9 and 10) for the energy density to obtain: 



= Lssr [&i2' i ' (EBB+- E + ~ ~ ) ~ i r ~ s i n 0 d r d 0 d +  p2sin0dPd0d+ 
h3 p-space I 

l ( l + l )  ( I +  ) 
h3 

rn ! (g lm g k  + dlm d:) AT p2sin0 dpd odd 
p-epace l=om=-r (21+1) (I-m)! I 

The integration over p-space needs to converted to an integration over v- 

space: 

= !i3k2 sin0 dkd 8 d & 

When this replacement is made in equation (VII.14), one obtains: 



Perform the integration over angles: 

l ( l + l ) ( l +  ) 
= J:[:E /=om=-/ x (21 + 1) (1 - m)! ( g i m g ~  + d r m d & ) ~ 7 ]  v 2 d v  

Invoke the (VII.13) relation: 

Perform the summation over m: 

Re-expand the 2sinh(fiw/2kB~) term as an infinite sum, cf., (V11.13): 

Re-perform the summations of (VII.12): 



Consider the integrand: 

The first term is Planck's analytical expression for blackbody emission as 

ascertained from experimental data collected by Lummer and pringsheim16, 

among others. It expresses the spectral energy density (Energy per volume per 

Hz) from a heated blackbody as a function of light frequency v and temperature 

T. The second term is the so-called zero-point energy term, which represents the 

residual energy possessed by bodies at  absolute zero. This term has interesting 

consequences in certain theoretical discussions, but in the context of blackbody 

radiation, is not important since it represents that portion of the energy reservoir 

that does not interact with the radiating modes. 

The first term in (VII.16) is what is observed experimentally. It is impera- 

tive that any postulated configuration for the micro-states eventually infer this 

spectral distribution for the macro-state. Since the microstates as specified in 

(VII.13) lead to the required E(v, T)  formula, we can confidently assert that they 

are the correct choices for this physical situation. Note that Maxwell's equations 

are fully operative in this so-called "quantum regime". No inconsistency exists 

between the Maxwell energy expression and the experimentally obseved spectra 

of Planck, provided that the electromagnetic expansion coefficients gl, and dl, 

are selected according to the thermodynamic requirements of (VII.13). This runs 

counter to the frequently voiced opinion that the Planck hypothesis is incompati- 

ble with classical formulas. The Maxwell expressions for 1-mode energy and z-  

angular momentum, as supplemented by Planck's hypothesis, (VII.5), and ther- 

modynamic considerations, are perfectly adequate to explain the observed black- 

body radiation characteristics. 
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The electrodynamic formulation also has the potential of providing a first-

principles explanation for the Planck hypothesis, (VII.5). Preliminary mathemati-

cal investigations indicate that (Wu) is required to go as w2 to lowest order in w.

This in turn forces (U) to go as w, which conforms nicely with Planck's "fiw"

Energy Law. This aspect will be pursued in a future paper.

Planck's second hypothesis that energy transitions can only occur in quan-

tized jumps of magnitude lfiw follows as a natural consequence of the electro-

dynamic formulation. Radiative emission occurs when a I-microstate transits to

a l' -microstate, with microstate energies given by (VII.10). Since boundary con-

ditions force the index / to be an integer, the "quantum jump" phenomenon is

thus explained. There are no fractional-order multipole moments to transit to,

the smallest separation between multipole states being characterized by the

requirement that 11/ equal one.

It might be argued that the scalar wave-states associated with the quantum

harmonic oscillator also possess this property, and therefore eclipse the need to

investigate vector (electrodynamic) solutions to the same problem. But the elec-

trodynamic formulation has a conceptual advantage in that no need arises to

invoke artificial boundary conditions to get the problem to solve out properly.

When solving the problem using harmonic oscillators, it is necessary to stipulate

periodic boundary conditions on some fictional surface of dimension L 3 located

far from the source. The electrodynamic formulation precludes this need. The

electrodynamic boundary conditions conform to the actual contours of the radia-

tion source.



CHAPTER VIII
APPLICATIONS

A.) Simple Example

The formulas of the previous sections represent the culmination of much

mathematical labor, and once in hand, provide information about several aspects

of the electromagnetic radiation field. Applying them to actual device structures

is the best way to illustrate their utility. Three cases of practical interest are to

be discussed in this final chapter of the report. In the initial section, a

particularly simple geometry is used in order to best demonstrate the

methodology.

Consider two halves of a thick spherical metal shell of radius R and infinite

conductivity subjected to alternating potentials :t V coswt. Determine the total

power, force, and torque radiated from the sphere.

+ Vcoswt

- V COSClJt

FIGURE 2

Spherically-shaped Antenna
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Since the time-dependence is stipulated to be of monochromatic form,

J.e., e-iwt, all the mathematical machinery of the previous two chapters is

operable, in particular equation (IILF.7) for electromagnetic potential, equations

(IILF.11 thru 16) for electromagnetic fields, and equations (VI.10 thru 16) for

total radiated fluxes of energy, momentum, and angular momentum.

The expansion coefficients 9im in the above formulas are determined from

knowledge of \jJIr =R .

The expansion coefficients dim in the above formulas are determined from

knowledge of EIr=R'

We have been provided enough information to solve this problem in its

entirety. Since E is zero inside the thick conductor, and since the tangential

components of E must be continuous across the spherical boundary, one is forced

to require that ee = e<I> = a at r = R.

Consequently, the following linear combination of ee and e<I>at r = R must

also equal zero:

a = (ee + ie<l»r=R (VIlLA.1)

= ( dh?) (kr) + h)l)(kr) ) ( dPim(COSe)--;::'-pt(cose) )eimd>
9im dr r r=R de sme

+ kdim h)l)(kR) (
dPt(cose)

de
m

sine Pim(cose) )e imd>
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Use equations (App.B2.2) and (App.B2.3) to obtain:

(l+1)h)1~dkR)-lh?l1(kR)
) + dlmh~1)(kR)).0 = k(g1m( (21+ 1)

. ( dPt(cose) - --!!!'-Plm(Cose))eimcl>
de sme

Solve the above for dim:

(1) (1)

d - (
1h t + 1 ( kR ) - (I + 1) h t -1 (kR)

)1m - glm (1)
(21 + 1) h t (kR )

(VIII.A.2)

Thus,

glm g7m + dim d/~ = (VIII.A.3)

( (1) (1) )( (2) (2) )- * (
Iht+1-(l+1)ht-1 ht+1-(/+1)ht-1

)- glm glm 1 + ( ) ( )
(2/+1)h/ ht2 r=R

where the argument x = kR is understood for all h~fl)functions.
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Examine the numerator of the second term within the large parantheses:

(
(1) (1)

)(
(2) (2)

)Ihl+l - (1+1)hl-1 hl+l - (1+1)hl-1 = (VTII.AA)

2 (1) (2) (
(1) (2) (1) (2»

) 2 (1) (2)
= 1 hl+lhl+l - 1(/+1) hl+1hl-1 + hl-1hl+1 + (1+1) hl-1hl-1

Use equation (AppI.B2.15) on the center term:

2 (1) (2) (
(1) (2) (1) (2) 2 1 (1) (2»

)= 1 hl+lhl+l + 1(/+1) hl-1hl-1 + hl+lhl+l - (2/+1) 22hl hl +k r

2 (1) (2)
+ (1+1) hl-1hl-1

[
(1) (2) (1) (2) 1 (1) (2)

]= (2/+1) Ihl+lhl+l + (/+l)hl-1hl-1 - (2/+1) k2r2 hl hl

Plug (VTII.AA) back into (VTII.A.3)to obtain:

glm g7m + dim dtm = (VIII.A.5)

(1) (2) (1) (1) (1) (1)
- * (

(/+l)hl-1hl-1 + (2/+1)hl hi + Ihl+lhl+l
- glm glm

h(l) h(2)
(2/+1) I I

- 1(1+1) k;r2 )r=R
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Hence, for the frequent boundary condition that e 9 = e<I> = 0

one has that:

at r = R,

w - cool 1(/+1) Jl+m)! *.
U - 2" 2: 2: In', ~ \ I' \I g1mg1m1=0 m=-l

(1) (2) (1) (1) (1) (1). (
(l+1)h1-1h1-1 + (21+1)h1 hi + lhl+1hl+1

(21+1)h~1) h~2)

(VIII.A.6)

- l(l + 1) k21r2),=R

The above formula, although exact and perfectly well-suited for computer

manipulation, is a bit complicated for analytical discussion. Therefore, in an

attempt to simplify things for this section of the report, asymptotic limits of the

above expression will be taken in the two opposing cases where kR is small and

where kR is large. In both these instances, relatively simple asymptotic expres-

sions for (VIII.A.6) can be obtained using (App.B3.8) and (App.B3.9).

For the limitting case that kR is small, one obtains:

(1) (2) (1) (1) (1) (1)
.

(
(l+1)h1-1(X)h1-dx) + (21+1)hl (x)h1 (x) + lh1+1(X)hl+1(x)

hm (1) (2)
:c...small (21+ 1)h1 (X) hi (X)

- 1{l+1)-L ) = ~
x2 2X

(VIILA.7)

Plugging the above into (VIII.A.6) yields the following asymptotic value for

wu:

w ) ~ ~ ~ 1(/+1) (l+m)! 12 *
U kR< 0.1 2 l~ ';;:-1 (21+1) (l-m)! (kR)2 glmglm

(VIII.A.8)



In the opposing case that kR is large, one has: 

( + ) h 1 ( x ) h l ( x )  + (2l+l)hy)(z)hy)(x) + ~ h \ ~ ~ ( x ) h p ~ ~ ( z )  
lim ( 

z -+ large (21 + I) hy) (z) hy) (x)  

In this situation, one has the asymptotic value for WU: 

The expansion coefficients glm are determined from knowledge of Jr at 

r = R .  In the geometry that we are dealing with here, this works out to be a 

simple calculation. 

We have from (III.F.7) that: 

1 

9 = 2 - glm (1 + 1) hy) (kr ) P?(COSB) e im+ 
1=0 m=-1 

Since the geometry being considered in this case displays polar symmetry, it 

can be inferred from the outset that Jr will contain no b> dependence. Hence, 

only the m = O  terms in the Jr-summation need be considered. The associated 

Legendre polynomials Pr(cos0) reduce down to the simple Legendre polynomials 

Pl (cose) and one obtains: 
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JI = - glo (1 + 1) h(:) (kr ) pl (cos0) (VII1.A. 11) 
1=0 

Because of the simple boundary condition at r = R ,  the + solution can be 

evaluated straightforwardly: 

+ V  for010<x  
2 

1 1 r = ~  = ( IT 
- V for - < 0 1 7 ~  

2 

Thus: 

CQ 
+ V  for 0 s 0 < $  

- g l o ( l + l ) h ~ ) ( k ~ ) ~ l ( c o s O )  = IT (VIII.A.13) 
1=0 - V for -<017r 2 

Multiply through by Pr(cosO)sinO de and integrate over 0 noting that: 

Therefore: 



Utilizing the orthogonality relation (VIII.A.14) on the L.H.S. and (App.C4.4 

and 5) on the R.H.S., one obtains: 

f 0 for 1 =even 

= 2vi 1-1 (-+IT (1  - I)! 
for I=odd 

(1 + 1) [( y-)!] 

After some algebraic manipulation, one obtains: 

r 0 for l=even 

(VIII.A.17) 

' I 0  = i 1-1 (21 + 1) (1 - I)! 
- -  2 V for 1 =odd 



Plugging these glo values into the general expression for the total radiated 

power (VIII.A.6) yields: 

v2 
hl. l)(k~ h Y ) ( k ~  ) 

only 

v2 
h"(kR)""(kR) 

only 

The above formula is an exact analytical expression for the total radiated 

power from the adjoined pair of oscillating hemispheres as depicted in Figure 2. 

But such an expression is too complicated to continue handling analytically. It is 

best handled by reducing it to its small-kR and large-kR asymptotic limits. 

First consider the case that kR is small. In this case, one has the (VIII.A.8) 

relation at  one's disposal. Plugging in the (VIII.A.17) values for glo yields: 

L. 2 l ( l + l )  l2 1 ,-1(21+1)~ [(1-1)!12 v2 wu - -(-) uc < 0.1 2 k o d d  (2 l+l )  ( k ~ ) ~  4 (1+1)~ [(y)!14 h y ) ( k ~ ) h y ) ( k ~ )  
only 



2  
I - 1 3 2 1 + 1  - 1  1 v2 

wu - " c. (TI 
kR < 0.1 2 

only (1+lI3 [(?)!l4 (kW2 h j l ) ( k ~ ) h : 1 ) ( ~ ~ )  

Using the small-kR asymptotic value (App.B3.8) for the conjuncted pair of 

spherical Hankel functions in the denominator, one obtains: 

2  - I - 2 + 1) I 1 v2 
= 2 k o d d  2 (7)  (1+1)3 4 ( )  [ 2 1 - 1 ) 2 ( 2 1 - 3 ) 2  3%12 

only ( k ~ ) ~ l + %  I 
2 - 1-113(21+1) [( l - l ) ! ]  v2 ( ~ R ) I '  

= ' I=odd z (7)  ( l +  iI3 4 [ ( 2 - 1 ) 2 ( 2 - 3 2  . ~ ~ 1 ' 1  
only 

Since kR is taken to be small, only the lowest-order term in the above series 

need concern us. Hence: 

c ( 1 ) ~ ( 3 )  [0! l2  v ' ( ~ R ) ~  
lim WU = - 

k ~  - small 2 [0!14 (1)' 



Next, consider the case that kR is large. In this case, one has the 

(VIII.A.10) relation at  one's disposal. Plugging the (VIII.A.17) values for g,, into 

(VII1.A. 10) yields: 

E 1(1+ 1) 1 , 2 1  + 1 [(I - 1)!12 
(-1 v2 wu - k~ > 10 (21+1) 4 ( 1 + q 4  [(y)!14 h j ' ) ( k ~ ) h e ) ( k ~ )  

only 

" 1 1 ( 2 + 1 )  [(l-1)!12 v2 (VIII.A.21) 

= 1=0dd (" ( ~ 1 ) ~  [(?)!14 h y ( k ~ ) h ' : ) ( k ~ )  
only 

Using the large-kR asymptotic value (App.B3.9) for the conjuncted pair of 

spherical Hankel functions in the denominator, one obtains: 

only 

2 2  2 " 1 I-11(21+l) [(l-1)!12 
= c V k R  2 (:) 

l=odd 
only 



Hence, for large kR, one obtains: 

2 
v2 w R 1 1-1 1(21+1) [(l-l)!] 

lim WU = 
kR - large 2 

C l=odd 
only 

- - v2w2 R 
[convergent Series in I] 

C 

Note that in both asymptotic limits, the power transfer characteristic goes as 

w2, implying that glm goes as w. 

Also, it is important to note that the above behavior is the radiative 

equivalent of a high-pass filter. The radiating source readily transmits high-w 

signals, but suppresses low-w signals, the transfer characteristic being quadratic 

in w. 

If a radiative transfer characteristic that is not high-pass is desired, it is 

obvious that ( g l m ,  dl,) should not display a linear dependence on w, but rather, 

some other more desirable dependence. This aspect will be explored in the fol- 

lowing section of this report. But for now, it is necessary to complete this section 

by examining the values for radiated force and torque. 

Since the even-1 and non-zero-rn glm and dl, expansion coefficients are 

identically zero for this particular structure, the time-averaged momentum and 

angular momentum flux expressions (VI.7 thru 16) vanish. Hence, for this partic- 

ular high-symmetry geometry, i .e .  , one that manifests odd symmetry in 0 and no 



dependence at all on 4, no net force or angular momentum is radiated. The only 

medium through which this object makes itself known to the external world is 

through its transfer of power. It can therefore increase the heat content of its 

environment or induce a transition in some photon-detecting device, but no 

external "winds" or "whirpools" are going to be generated. 

Because no net force or torque is radiated away, it is clear that the given 

boundary conditions for this object disallow electromotively-induced rotation, 

translation, or pulsation of it. Less symmetric boundary conditions would relax 

these constraints, but also make the problem more difficult to solve analytically. 



B.) Radiative Bandpass Structure 

In Section A, a particular electromagnetic structure was given, for which it 

was necessary to determine multipole moments glm and dl,. The converse 

problem, where multipole moments gl, and dl, are assumed given, but 

determination of the inferred electromagnetic structure is required, is the main 

objecive of this section. Besides being an interesting problem in its own right, it 

represents a novel application of the formulas of Chapters III and VI. 

For the adjoined hemispheres of Section A, it was ultimately determined 

that expansion coefficients gl, and dl, terms were linear in o. But this w- 

dependence may not be desirable for many applications. The challenge before us 

is to utilize expansion coefficients with some desired property, and then work 

from there to determine the boundary surface S that generates these coefficients 

electromagnetically. 

For example, consider the "clever" choice of 91,: 

Recall from (VI.lO) that the energy flux is given as: 

1 

W,= -7 (g,m g& + dlm d:) 2 n=-l (21 + 1) ( 1  - m). 

which in our case becomes: 



= resonant at w, 

This should be contrasted with the results of the previous section, where it 

was determined that WU was quadratic in o ;  the hemispheres thus behaving as a 

high-pass filter for the emitted radiation. In contrast, the WU of (VIII.B.2) is a 

strongly peaked function of w at o,, thus behaving as a radiative bandpass filter 

centered at oo. The device designer has freedom to select o, for optimized emis- 

sion at  1.55pm or 10.6pm, for instance. Essentially, a monochromatic diffraction 

grating has been concocted. Clearly, the merits of such a choice for gl, are obvi- 

ous; the problem arises as to how to achieve such a set of glm values. 

This is where the IJJ expression of (III.F.7) becomes so valuable: 

I 
JI = 2 2 - glm ( 1  + 1) h(:) (kr ) P,'"(COSB) c "' 

Since all the gl,'s are known, $ is completely specified for all regions of 

space. Surfaces of constant IJJ, i . e . ,  equipotential surfaces, represent the candi- 

date topologies for boundary surface S. 



The tactic to employ here is to generate surfaces of constant potential $ 

using equations (III.F.7) and (VIII.B.l) as guides, or alternatively to calculate the 

three components of electric field (III.F.ll thru 13) at  any given point to 

determine the vector normals of the equipotential surfaces. In actual practice, the 

second of the above techniques will most likely be the easier one to implement. 

Since $ and 2 are such complicated functions of ( r , 0 , 4 )  and w,, it is clear that 

computer aided calculations are going to be necessary. This portion of the 

project is not done here, but instead reserved for a separate report later. 

Some qualitiative features can be discussed however. For the proposed gl,'s 

of (VIII.B.l), the parameter T acts as an inverse measure of frequency bandwidth. 

Large T corresponds to a sharply-peaked, narrow-range bandpass filter. Small T 

corresponds to a smaller-peaked, broader-range filter. In actual applications, 

some intermediate T value will probably be called for because "tuning" an 

extremely narrow-band grating will be difficult on the micron-scale. Further, 

there is the danger of mistuning the grating such that it chops out the desired 

signal portion of the spectrum. Thus, perfect tuning is probably not altogether 

desirable. Intermediate T will perhaps be best, even though it entails pass- 

banding portions of the frequency spectrum closely adjoining the 1.55pm or 

10.6pm carrier. Nevertheless, the vast majority of unuseful portions of the 

frequency spectrum do get properly suppressed. An enhanced signal-to-noise 

ratio should be the beneficial consequence. 

Because of the sinusoid nature of the proposed gl, coefficients, it can be 

safely pre-assumed that the boundary surface S is going to be corrugated, in 

keeping with diffraction grating structures in general. The equipotential surfaces 

traced out by (III.F.7) will be quite intricate, but due to Gauss's Divergence 

Theorem, all the formulas of Chapter VI will still hold, provided that the 



"deformed" surface S is topologically equivalent to a simply-connected sphere, 

and that the origin of the coordinate system used to define the spherical Hankel 

functions lies inside the simply-connected surface. Thus, all the mathematical 

machinery of Chapter VI remains completely valid, even for surfaces that a t  first 

glance would not appear amenable to exact analysis in spherical coordinates. In 

particular, parallelopieds and cyliners would qualify as suitable structures since 

they are simply-connected. Corrugated versions of these structures would also 

qualify. Tori and other such non-simply connected surfaces would not qualify, 

however. Neither would infinite planes or any 2-D surface that does not close 

back on itself. 

The particular choice of sinc(x) functions in (VIII.B.l) was strictly for 

convenience and for purposes of illustrating the basic approach. In fact, any set 

of functions that display a strong local maximum at some given o, would have 

served just as well. Examples would be Gaussian functions, complemetary error 

functions, (1 + (~ -o , )~ ) ) - l  type functions, or any combination of such 

functions. The philosophy here is to judiciously select an infinite set of such 

functions, shifted such that their local maxima are all centered on the desired o,, 

and multiplied with an appropriate amplitude factor in order to properly exploit 

the energy flux formula of (VI.10). (In the example of VIII.B.l, this amplitude 

factor was selected as ((21 + 1)/1(1+ 1))' ). These terms can then be used as g,, 

coefficients in the multipole expansion of the electromagnetic field; provided, of 

course, that they are not functions of ( t  , r , 8 ,4 ) ,  which would incur a violation of 

Maxwell's equations. 

What has been accomplished here is the simultaneous utilization of the 

entire set of multipole moments to achieve a particular end. This is in contrast 

to the more typical case where one restricts attention to only the lowest-order 



term in an attempt to achieve the same end. It behooves one to utilize the full 

gamut of available resources when optimizing some desired performance 

characteristic. The above methods do this, and thus provide for greater power 

and flexibility in device design. 

Refinements to these "crude stroke" ideas are clearly possible and will be 

pursued in a separate report. 



C .) Collimated Beams 

This section discusses the phenomenon of collimated electromagnetic beams. 

Such phenomena are clearly important. They are routinely observed under a 

variety of test conditions both inside and outside the laboratory, especially in the 

optical regime, where the entire subject of geometrical optics is based on the 

phenomenon. A correct description of such entities seems to be warranted. 

It would at  first appear that the Cartesian or cylindrical systems would serve 

as the correct framework with which to describe the phenomenon because 

attenuation along the direction of propagation, viz . ,  the z-axis, is postulated to 

be either non-existant or, in the case of evanescent modes, exponentially 

dependent upon z .  The Cartesian and cylindrical coordinate systems single out 

this axis, thus any distinctive properties associated with it would be inherently 

easy to handle. 

But it is precisely this under- or over-attenuation along the beam-axis that 

leads to infinite (or zero) energy and momentum fluxes far from the source, thus 

rendering the Maxwellian formalism of Chapter VI completely unusable. Since 

energy and momentum fluxes are quantities that typically need to be evaluated 

rather than discarded in problems of this sort, one is better served by working in 

a system that allows their usage. The spherical system is clearly what is called 

for as it automatically provides for 6 and f3 solutions that properly attenuate 

along the propagation axis of the beam. The objective is to devise spherical 

solutions that best approximate a true collimated beam, and utilize these 

spherical solutions in lieu of the overly-simplistic beams postulated earlier. 

As will be made clear in the discussion ahead, the solution that is going to 



be presented in this section is, in a thermodynamic sense, the exact opposite to 

that examined in Chapter VII. In Chapter VII, an equipartition of energy was 

stipulated among all available radiation modes. In this section, the energy is 

postulated to reside exclusively in only one or two radiation modes, all other 

modes being suppressed. This situation represents the most extreme deviation 

from thermal equilibrium possible, and hence is induced under "extraordinary" 

circumstances, such as would be the case at the emission port of a laser cavity or 

in the cryogenically-cooled interior of a superconductor. In both these quoted 

examples, one or two quantum states are somehow induced to become populated 

to macroscopic levels, with an attendant display of quantum properties that 

would not be accessible under classical circumstances. 

Since the topic discussed in this section is collimated beams, the 

electromagnetic emission from the laser cavity would be the more appropriate 

example to focus upon. 

To begin the discussion, the time-independent vector amplitudes G and i; as 

derived in equations (III.F.l thru 6) are re-examined: 



er = qim 1(1+1) 
hy) (kr  ) 

P;"(cos0) e im+ 
r 

- k dr h:) (kr  ) p y 1 ( c o s ~ )  e imf + 
sin0 

(1) d ~ y ' ( c o s 0 )  
- ikdrmt hl! ( k r )  e 

d 0  

b, = drml 1' (1' + 1)  
hy) (kr  ) 

~ ~ ' ( c o s e )  e iml + 
r 

b ,  = drm1 

( d h v )  (kr ) hv) (kr  1) d p ~ ' ( c 0 " )  iml 4 
e 

dr r  d 0  

(VIII. C .2) 

m + kgim h?) (kr  ) - P;"(COSB) c " 4  
sin0 

b+ = idllml 

( d h Y 1 ( k r )  h y l ( k r )  ) L ~ , r ' ( c o s e )  e iml + (VIII.C.6) 
dr r  sin0 

dPf icos0)  imm + i k s rmhj"(kr )  e 



In the situation being investigated, it is assumed from the start that the 

radiated energy is contained entirely in just two radiation modes, namely, the 

electric multipole moment lm and the magnetic multipole moment I'm'. This 

condensation of energy into only a small packet of available modes is the 

essential feature of laser action, and as such, forms the mathematical backdrop 

for the remainder of this section. 

No summations over the indices I and m are to be taken in the expressions 

(VIII.C.l thru 6) since the two modes indicated are the only ones that are 

operative. The goal here is two select the two modes such that the virtually all 

the energy is concentrated in a cone of very small angle about the z-axis. In 

spherical terms, this means that the Poynting vector 1 /87r(~  XS*) is constrained 

to assume finite values only in regions of space where 8 is very close to zero. 

Furthermore, since the emitted laser light is typically linearly polarized, the G 

vector is itself constrained to assume finite values only in regions of space where 

+ is zero or 180". (Refer to Figure 3 for visual representation of angles 8 and <b.) 

Both these constraints can be satisfied by proper choice of Im- and I'm1-modes, 

but before making this selection, a discussion of the relative magnitudes of the 

various terms in the G and 6 expressions of (VIII.C.l thru 6) will prove helpful. 

(1) (1) For those frequencies where kr >>l ,  the hl / r  and dhl /dr terms in the e, 
(1) and b,  expressions are overwhelmed by the khr terms and can thus be safely 

discarded. Useful approximate expressions for the external electric and magnetic 

fields in these regimes are thus obtained by simply eliminating these small-order 

terms. Note that if r is to be taken on the scale of centimeters, the requirement 

that kr >> l  forces k = o / c  to be in the infrared or visible regime. Thus, the 

truncated expressions obtained above would present no critical drawback in laser 

applications, but would pose serious contradictions in microwave or low- 



frequency applications. 

Specifically, asymptotic expressions for Z and i; in the limit that kr >> 1 are 

given as: 

e ,  - Zero 

(1) m ' 
e, - - kdrmthlf (kr)-~y'(cos0)e ;ml 6 

sin0 

(1, d ~ ~ ' ( c o s 0 )  
e ,  - - ikdrmlhlf (kr)  e 

do 

b, - Zero 

m 
b, - + kg, hy' (kr ) - ~ ~ ( c o s 0 )  e imm 

sin0 

dP;(cosR) ,m+ 
b ,  - + ikghhfl(kr) e 

d0 

(VIII. C.9) 
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In this approximation, the time-independent Poynting vector would go as: 

d ~ y '  (1) (2) m plm = I ( i k 2 d r m t g , * , h l f  87 hl sine + 
do 

(1) (2) m' + ik2dpmp hl f  hl -P?'- 
sin0 

dpr)  + C.C.  
d0 

Since it was earlier stipulated that the emitted beam must be linearly polar- 

ized, the indices m and m' are forced to be 1 or -1. Any other values would lead 

to roseate patterns for the transverse electric and magnetic fields. For conveni- 

ence' sake, both these indices shall be set equal to 1. 

It should also be noted that boundary conditions typically force the azimu- 

thal indices 1 and 1' to  be equal. (The physical properties of the radiating source 

do not permit the electric and magnetic multipoles to possess different azimuthal 

symmetries.) Since this is the case, they will be taken equal for the remainder of 

this discussion. 



With all these stipulations in mind, the Poynting vector simplifies to: 

where the index m equals 1 in the above formulas. 

The dominant term of the associated Legendre polynomial of order 1 and 

index m = 1 displays a 0 dependence given by sin0(cos0)'-'. Neglecting for the 

moment the remaining lower-order terms in the P;"(cos0) expression, one has: 

m dPi"' - m- m d 
Pi d0 

- -(sine (cos0)'- ')(=(sin0 (eos0)'- I ) )  (VIII. C. 15) 
sine sin0 



Plugging this last expression into the Poynting vector expression of 

(VI1I.C. 14) yields: 

Since it is desired that the above function display delta-function-like 

behavior in 0, it is clear that the index I must be of v e r y  high order, viz . ,  1000 

or more. (Refer to Figure 4 for graphical representation of this high-order 

behavior.) With this last bit of knowledge, the program of proper mode determi- 

nation is complete; the pair of electric and magnetic multipole moments that best 

simulate a collimated beam are those that have index m equal to 1 (or -1) and 1 

of extremely high value. The emission characteristic of such an lm-mode is 

highly collimated (near the source), linearly-polarized, yet asymptotically zero a t  

infinity. The attenuation characteritic is of the desired l l r 2  form to assure 

finite-valued energy and momentum fluxes. 

A practitioner in the field might be aghast a t  the prospect of having to deal 

with a 1000th-order radiation mode, but such apprehensions are actually ground- 

less when it is remembered that 1000th-order spherical Hankel and associated 

Legendre functions need not be calculated in order to determine total radiated 

power, force, and torque from such an object. General formulas derived in 

Chapter VI provide exact values for these quantities that do not require detailed 

knowledge of the field configuration. Knowledge of the multipole expansion 

coefficients gl ,  and dim as determined from boundary conditions are sufficient to 

to completely determine radiated fluxes. For instance, from (VI.10), one has for 

the time-averaged energy flux: 



In the above formula, the two summations extend over only one term, 

namely, m equal to 1 and 1 equal to 1000. Plug in the appropriate values for gl,  

and dl, to obtain an exact expression for the radiated energy flux. Perform 

similar simple calculations for the other radiated quantities to complete the phy- 

sical description of the radiating object. 

FIGURE 3 

Configuration of Coordinate Axes in Discussion of Collimated Beams 
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CHAPTER IX 
CONCLUSION 

The previous chapters have been devoted to the topic of electromagnetic 

fields in charge-free space. It has been shown that radiation fields emitted from 

stationary Gaussian surfaces find their natural expression in the spherical 

coordinate system. Treating partial differentiation as a tensor operation allows 

one to conveniently re-cast various differential identities such as divergence, 

gradient, and curl into the spherical system. Tensor-based arguments have thus 

been used to re-formulate Maxwell's equations into spherical form. A method of 

solving the homogeneous vector Helmholtz equation in the spherical system has 

been presented. 

It has been noted that divergenceless functions of space and time possess 

many remarkable conservation properties. These conservation laws assumed 

especially cogent forms when expressed in the spherical system, and 

identifications of several electrodynamic quantities such as 1 /8a ( E ~ +  B ~ )  to 

quantities already familiar to us from fluid mechanics, such as power density, 

have been discussed. The material objects of mechanical physics (point masses, 

fluids, and so forth) are the tangible agents of energy and momentum transport; 

eiectromagnetic fields are the intangible agents of such transport. 

It has also been demonstrated that a radiating Gaussian source is in a sense 

entirely characterized by its Maxwellian "DNA code", i . e . ,  its infinite set of 

electric and magnetic multipole moments. First-order combinations of these 

moments with their respective Maxwellian space-time function describe the 

electromagnetic properties of the external fields. Various quadratic combinations 



of these multipole moments describe the mechanical properties (power, force, and 

torque) radiated by these fields. This interplay between mechanical and 

electromagnetic properties indicates that "particle theories" (such as relativistic 

dynamics) are extractable from "wave theories" (Maxwellian electrodynamics) 

and vice versa. This duality between wave and particle theories has been a pre- 

occupation of physicists since the time of Hamilton. This concept has not been 

exploited in the present investigation, but should certainly provide impetus to 

develop the theory further. 

Another aspect explored in this investigation is the fruitful fusion of 

statistical mechanics and electrodynamics in explaining the emission spectra of 

radiating blackbodies. The electromagnetic formulas for energy and z- 

component of angular momentum are shown to be strongly reminiscent of their 

quantum mechanical analogs. Subjecting the individual energy components to 

the quantum hypothesis of Planck, and then developing the mathematics 

according to the dictates of statistical mechanics leads to a re-derivation of the 

blackbody emission spectrum. (The quantum of energy, Kw, must still enter the 

theory as an ad hoc hypothesis, however. The classical formulas do not yet 

supplant Schrodinger's or Heisenberg's first-principles approach.) 

The interesting lesson gleaned from this exercise is that the classical ( i . e . ,  

Maxwellian) formulation contains the quantum solution as a special case. Once 

the electric and magnetic multipole moments are set equal to 

thermodynamically-determined functions of temperature and angular frequency, 

the blackbody emission formula falls out readily. This state of affairs upsets 

familiar notions about the hierarchy of physical theories. Typically, classical 

formulas are considered as a sort of sub-species of the more comprehensive 

quantum formulas. (Specifically, if K is allowed to approach zero in a quantum 



formula, the corresponding classical formula is recovered.) However, when 

classical formulas are supplemented with electromagnetic fields, the above 

hierarchy is likely to be reversed. It is possible that the classical theory forms 

the covering set for the corresponding quantum theory, and not the other way 

around. In order to explore this possibility to its fullest, it is necessary to expand 

the present formulation to include the case of non-zero ( p, j ). This augmentation 

to regions of charged space should provide additional impetus to develop the 

theory further. 

This is perhaps an opportune moment to mention a rough analogy between 

the E & M formulation and the two familiar versions of quantum mechanics, 

namely, the Schrodinger and the Heisenberg models. In the Schrodinger 

formulation, the physical content of any problem is entirely contained within a 

(scalar) wave function I) that is itself a function of space and time. To obtain 

physical information from the J, function, it must be acted on by some 

mathematical operator, then multiplied by its complex conjugate, and finally 

integrated over space to obtain a numerical value for the given mechanical 

quantity. Schrodinger's I) function therefore acts as a half-density, that is, a 

function that must be multiplied by an altered version of itself before forming a 

true density that can then be integrated over space to provide the sought-for 

parametric value. This is directly analogous to Maxwell's t and 6 functions, 

which also must be combined quadratically before being integrated over space to 

obtain a numerical value for some given mechanical quantity. 

Contrast this with the Heisenberg formulation where physical quantities are 

represented as infinitely-extended matrices with components plm.  These matrices 

are then multiplied with other matrices to obtain relations such as 

5@ - 235 = in. Heisenberg's matrix elements pi, correspond to Maxwell's gIm 



and dl,, the electric and magnetic multipole moments. The energy, momentum, 

and angular momentum formulas of Chapter VI are somewhat akin to matrix- 

multiplications. The major difference to be aware of is that Heisenberg's 

matrices are square N X  N's whereas the lm-multipole matrices are triangular, 

with 21 + 1 elements in each row I .  Otherwise, the mathematical analogy holds 

fairly well. 

Lastly, practical applications of the general formulas of earlier chapters are 

considered. Spherically-shaped antennas, surface diffraction gratings, and 

collimated beams are treated in the spherical formalism. Clearly, these 

treatments are rudimentary; more thorough-going analyses will be required to 

generate truly operational models. 
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APPENDIX 

MATHEMATICAL FORMULAE 

A.) Vector Differential Operators in Spherical Coordinates 

1 2 avr  + 2cose a ve + &(v2vm - 
r sin2e V' + r2sin2~ ad, r2sin20 -1 a9 



Several expressions that prove useful in Chapter I11 are provided below. 

Utilize (App.A.4) on the dot product ( i s ? )  and multiply the whole 

expression by i : 

Multiply (App.A. 1) by i : 

a vr 
i(v-V) = ; ( r -  

ave cose + 2vr  + - + -  1 av, 
a r  ae sine Ve + sinR% ) (App.A.7) 

Utilize (App.A.5) on the cross product (i x?): 

v 2 ( i x V )  = ~ ~ [ 6 ( - r ~ ~ ) + & ( r v , ) ]  

2 a v ,  2cose + -  
r sine 



Take the cross product of (App.A.8) with ?: 

Take the cross product of (App.A.3) with i t :  

Multiply equations (App.A.6), (App.A.7), (App.A.9), and (App.A.10) by 1 / r 2  

and combine linearly to obtain: 



B.) Spherical Hankel Functions 

1.) Table of Lowest-Order Functions 

Functions of First Kind: 

In general: 



Functions of Second Kind: 

e - i z  

(App.Bl.8) hE1(x) = i - 
x 

e - iz  

(App.Bl.9) hy) (x) = - 
- i) z 

(2) 
- i z  . e 

(App.Bl.10) h z  (x) = - 8  -(I- z 
2 z2 

(2) e 
- i z  

(App.BI.11) h 3  (x) = -(I---- z 

- iz  . e 10; 45 105i 2 0 5  ) (App.Bl.12) h!)(x) = , -(i---- x z z 2 + 7  

(2) e 15; 105 420i (App.Bl.13) h 5  (2) = -- 1 ------ +--- 
2 

5 x2 x3 x4 x 

In general: 

h(2) l ( l + l )  - i - 1 - 1 ) ( + 1 ) ( + 2 )  1 , (x) = - 
z 2 x 2.4 z 



B.) Spherical Hankel Functions 

2 .) Recursion Relations, Wronskian Relations, 0 ther Identities 

Throughout this section, paranthesized superscripts (a) and (P) are 

used. These superscripts may assume the values 1 or 2. Therefore, the 
(a) expression h l  (kr ) assumes one of two forms: 

(1) h l  (kr) = Spherical Hankel Function of 1st Kind 

(App.BP.0) hy)(kr) = Spherical Hankel Function of 2nd Kind = (hT)(kr))* 

(App.B2.2) 
dhy) (kr ) 1 

= - [lhj"!, (kr) - ( l+l)hj" i l  (kr)] 
d ( k 4  21+1 

hy) (kr ) = -  I [hj"ll(kr) + hj"il(kr)] 
kr 21 + 1 

2 i 
(App .B2.4) h ~ ' ( k r ) h ~ ~ l ( k r )  - hj;l(kr)hy'(kr) = - 

k2r2 

(2) 2 i (App.B2.5) h P l ( k r ) h  j$l(kr) - h \ ~ l ( k r ) h l - l ( k r )  = (21 +I)- 
k3r3 

(App.B2.6) 
dhY1(kr) (2) h, (kr) - hyl(kr) 

r - 2i - -  
dr dr kr 



For the relations that follow, the argument ( k r )  of the function hY1(kr) 

is understood. Hence, h y )  hY1(kr) . 

1+2 (a )  - + h i + ,  
r 



B.) Spherical Hankel Functions 

3.) Conjuncted Forms 

(1) (2) The conjuncted pair of spherical Hankel functions h p  ( x ) h q  ( x )  occurs so 

frequently in electromagnetic formulas that it warrants its own discussion. A 

new function DpQ(z) is defined as follows: 

DpQ(z) = x2hf  ' ( I )  he'(x) (App .B3.1) 

Although not derived here, it can be shown that the D;(x)  function satisfies 

its own fourth-order differential equation: 



From (App.B3.2), it is a quickly ascertained that: 

(App .B3.3) 

(1) (2) After plugging in any pair of h p  (x) and hq (x) functions into the above D; 

expression, it is found that the amplitudes al  and b l  are given as: 



For the special case that p = q = I, one obtains: 

Some low-order values for the D ; ( X )  function are: 

In the two interesting limits of small x  and large x ,  one obtains the asymp- 

totic forms for D,'(x) = x 2  h y ) ( x )  hY1(x) : 

(21 - 1)'(21 -3 )2  . . . 3'12 
lim x2 h y ) ( x )  h y ) ( x )  = 

x  2 1 z- small 

lim x2hY)(x)  h?)(x)  = 1  
z -  large 



C.) Associated Legendre Functions 

1.) Table of Lowest-Order Functions 

NOTE: The definition of Associated Legendre Polynomial P;"(cos0) for 

non-negative m in terms of the simple Legendre Polynomial Pl(cosO) as used 

in this report is given as: 

d rn PI ( C O S ~ )  
Pr(cos0) = ( - llrn (Magnus-Oberhettinger phase) 

(d  c 0 s 0 ) ~  

Beware that some authors omit the (-l)rn factor in their definition of 

P;"(cosO), and consequently, minus signs that appear in the odd-parity 

expressions below will not appear in these authors' tables of the same func- 

tions. 

This sign discrepancy also impacts recursion and integral formulas of 

upcoming sections. Any odd-parity Pr(cos0) term in formulas of subsequent 

sections must be preceded with a minus sign if the Magnus-Oberhettinger 

phase is not used. (Ref. 17) 





P:(COS~) = -15sin30 

P: (cos0) = 15sin28cos0 

3 P: (cos0) = - -sin0 (5 cos28 - 1) 
2 

1 P: (cose) = -(5cos30 - 3cose) 
2 

1 P3-' (cost)) = -sin0 (5cos28 - I)  
8 

1 P ~ - ~  (cose) = -sin20 C O S ~  
8 

1 3  P ~ - ~  (cos0) = -sin 8 
48 



C.) Associated Legendre Functions 

2.) Recursion Relations, Other Identities 

m2 ) ~;.(cose) = [ - 1(1+  1 )  + p;n(cOse) 
sin 8 

(App.C2.2) P!!,-, (cose) = P;n(cosO) 

(App.C2.3) PI- m(cosO) = (- k!!cL ~ ~ ( c o s H )  
( 1  + m)! 

(App.CZ.4) 
1 

cose ~ r ( c o s 0 )  = - [ ( I  - m + 1)  P K ~  (case) + ( 1  + m )  pp l  (case)] 
21 + 1 

(App.C2.5) 
1 m + l  m+l 

sin0 P;l(cose) = --- [pl  - (cos0) - P + ( C O S R ) ]  
21 + 1 

(App.C2.6) 
1 

sin0 P;l(cosO) = - [ ( l  - m + l ) ( l  - m + 2 )  PK;' (cos0) - 
21+1 

- ( l + m ) ( l + m - ~ ) ~ , ' ! ! ; ~ ( c o s ~ ) ]  

(App.CZ.7) 
coso 

~ ~ - P ; ~ ( c o s o )  = - [ P ; ~ + ' ( c o s ~ )  + ( I + ~ ) ( ~ - ~ + I ) P ~ - ~ ( C O S ~ ) ]  
s1n0 

(App.C2.8) 
1 

2m- P;i(cose) = - [PET' (coa0) + ( I  - m + l ) ( l  - m + 2 )  PET ( C O S A ) ]  
sln0 

(App.C2.9) 
1 m f l  m - 1 

2m- P;l(cos0) = - (cos0) + ( 1  + m ) ( l  + m - 1 )  P I -  ( c o s ~ ) ]  
sln0 



dPr(cos0)  
(App.C2.10) - - m- COSe Pr(cos0)  + PY + ' ( c o s ~ )  

do  sine 

dPr(cos0)  cos0 
(App.CZ.11) = - m -  Pr(cos0)  - ( l + m ) ( l - m + l ) ~ r - ~ ( c o s 0 )  

do sin0 

dPy(cosfl)  1 
(App.C2.12)  = ~ p ; " + ' ( c o s ~ )  - - ( l + m ) ( l - r n + l ) ~ r - ' ( c o s 0 )  

d e  2 2 



For the relations that follow, the argument (cos0) of the function P,"'(cosO) is 

understood. Hence, Py = PT(cos0) . 

(App. C2.14) 

dPfn - - -  1+cose 1 py = ( . )21+1[1(1-m+l)(1-m+2)~;",; '  
d0 sin0 sin tf 

dp/" m I -COS~ 1 + -  
Sine ',"' = ( ,in2e ) K [- l(1-rn+l)(l-rn+2)P;",i1 

de  



C.) Associated Legendre Functions 

3.) Definite Integrals 



C.) Associated Legendre Functions 

4.) Indefinite Integrals 

A sub-case of (App.C4.1) that proves useful in Chapter VIII is the instance 

1' = m' = 0,  for which one obtains: 

Utilize the explicit (App.Cl.1) expression for P; to obtain: 

= [ - sine- 
dpfn  le2 el 

Make use of (App.CfL.11) to re-state the R.H.S. as: 



Consider further that m = 0: 

Implying: 

In particular: 

And: 



D.) Complex Exponentials 

1.) Definite Integrals 
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