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Supervising Professor: Ronald A. Cole, Professor 

Automatic language identification is the problem of identifying the language being 

spoken from a sample of speech by an unknown speaker. A segmental approach to 

automatic language identification is based on the assumption that the acoustic structure 

of languages can be estimated by segmenting speech into phonetic categories. Language 

identification can then be achieved by computing features within and across segments 

that describe the phonetic and prosodic characteristics of individual languages, and using 

these feature measurements to train a classifier to distinguish between the languages. 

Recognizing the difficulties involved in the development of a phonetically labeled corpus 

of speech, we have applied this approach using broad phonetic categories. 

This dissertation addresses the following questions: What acoustic, broad phonetic 

and prosodic information is needed to achieve automatic identification of languages? 

What is the best way to present this information to neural network classifiers? What is 

the level of language identification possible given only this information? 

In preliminary research, this broad phonetic approach was applied to a four-language 

(English, Japanese, Mandarin and Tamil) corpus of high quality speech. The results of 



this research were sufficiently promising to merit further investigation of the approach 

with a ten-language corpus of telephone speech consisting of mostly fluent speech from 90 

speakers each of English, Farsi, French, German, Japanese, Korean, Mandarin, Spanish, 

Tamil and Vietnamese. 

Several features based on pairs and triples of broad phonetic categories were eval- 

uated. Pitch-based features were found to perform the worst, while features based on 

pairs of broad phonetic categories performed the best. 

Perceptual experiments were also conducted, in which trained listeners identified 

excerpts of speech of one-, two-, four-, and six-second durations as one of the ten lan- 

guages. The results revealed that for some languages like Korean, Farsi and Vietnamese, 

identification performance was poor regardless of the duration of the excerpts. 

The automatic identification results indicate that while broad phonetic categories 

do possess language discriminatory information, the level of identification performance 

possible with broad phonetic information alone leaves much to be desired. Information 

at the phonemic or phonetic level might be required to distinguish between languages 

with greater accuracy. 



Chapter 1 

Introduction 

1.1 The Problem 

Automatic language identification is the problem of identifying the language being spoken 

from a sample of speech by an unknown speaker. As with speech recognition, humans are 

the most accurate language identification systems in the world today. Within seconds of 

hearing speech, people are able to determine whether it is a language they know. If it is a 

language with which they are not familiar, they often can make subjective judgments as 

to  its similarity to  a language they know, e.g., "sounds like German". This determination 

is made so quickly that it is likely that phonological characteristics, as opposed to  word 

or phrase recognition, are the basis for the decision. 

It is well known that languages have characteristic sound patterns. Languages have 

been described subjectively as "singsongn, "rhythmic", "guttural", "nasal" etc. Lan- 

guages differ in the inventory of phonological units used to produce words, in their 

frequency of occurrence, and the order in which they occur in words. The presence of 

individual sounds, such as the "clicksn found in some sub-Saharan African languages, 

or the velar fricatives found in Arabic, are readily apparent to speakers of languages 

that do not contain these phonemes. Less obvious acoustic patterns are also observed. 

Mandarin Chinese has a higher frequency of occurrence of nasals than English. Hawaiian 

is known for its very limited consonant inventory. Prosodic patterns also differ signifi- 

cantly between languages. For example, it has been shown that fundamental frequency 

(Fo) patterns of continuous speech display different characteristics in Mandarin Chinese 



(a tone language) and American English (a stress language) [Ead82]. The key to solving 

the problem of automatic language identification then, is the detection and exploitation 

of such differences between languages. 

1.2 Motivation 

The Workshop on Spoken Language Understanding sponsored by the National Science 

Foundation [C+92] has identified multi-lingual systems as one of the key research areas 

in the field of spoken language systems. Stressing the need to move towards multi-lingual 

speech research in an increasingly global economy, the workshop report lists automatic 

language identification as one of the challenges: 

As an independent capability or as part of a multi-lingual spoken language 

system, techniques are needed to identify language and/or dialect in order 

to route the user to the appropriate human (e.g., human telecommunications 

operator) or automatic system (e.g., spoken language data retrieval system). 

What makes this problem so challenging and interesting? In mono-lingual spoken 

language systems, the objective is to determine the content of the speech, i.e., phoneme 

recognition followed by word recognition, followed by sentence recognition. This requires 

that researchers cue in on small portions of the speech-frames, phonemes, syllables, 

sub-word units, and so on, to determine what the speaker said. In contrast, in text- 

independent language identification, phonemes and other sub-word units alone are not 

sufficient cues, since several phonemes and syllables and even words are common across 

different languages. One also needs to examine the sentence as a whole to determine the 

"acoustic signature" of the language, the unique characteristics that make one language 

sound distinct from another. The fact that humans are so adept at this task illustrates 

the considerable gap between our perceptual capabilities and our attempts at automating 

them. 

Aside from the fact that it is a challenging area of research, there are several impor- 

tant applications for automatic language identification. Much of the past funding for 



research in this area has been provided by government agencies interested in commu- 

nications monitoring for national security purposes. However, there are also important 

commercial demands. As the global economic community expands, there is an increasing 

need for automatic spoken language identification services. For example, checking into a 

hot el, arranging a meeting or making travel arrangements can be difficult for non-native 

speakers. Telephone companies will be better equipped to handle foreign language calls if 

an automatic language identification system can be used to route the call to an operator 

fluent in that language. 

Rapid language identification and translation can even save lives. There are many 

reported cases of 911 operators being unable to understand the language of a distressed 

caller. In response to these needs, AT&T recently introduced its Language Line In- 

terpreter Service to serve business, the general public and police departments handling 

911 emergencies. The service uses trained human interpreters, handles 140 languages 

and satisfies an important need in our increasingly cosmopolitan communities. However, 

tremendous responsibility is placed on the human operator who must route the call to 

the appropriate interpreter. A call to the Language Line Service by the author, who 

spoke only in Tamil, resulted in a 3 minute delay before the language was identified 

and a Tamil interpreter was brought on-line. The delay was caused by the operator 

unsuccessfully trying out three South-East Asian interpreters and playing recordings of 

greetings in other languages. The delay would have been longer if the author had not 

relented and spoken the name 'Tamil' in English rather than in Tamil! This anecdote 

emphasizes the point that if automatic language identification could be made sufficiently 

fast and accurate, it could aid human operators. 

An automatic language identification system could also serve as a front-end for a 

multi-language translation system in which the input speech can be in one of several 

languages. The input language needs to be quickly identified before translation to the 

target language(s) can begin. 



1.3 A Segmental Approach 

The workshop report goes on to identify several fundamental scientific issues that need to 

be addressed to meet the challenge of multi-lingual speech systems. Two issues relevant 

to  language identification are worth quoting: 

1. The general question of what are the fundamental acoustic, perceptual, 

and linguistic differences among languages that should be investigated, with 

a view toward accommodating these differences in multi-lingual systems. 

2. An investigation should be undertaken of language-specific versus 

language-independent properties across languages. . . . 

It is safe to say that any approach to solving the language identification problem 

should address both of the issues outlined above to be assured of any success at all. 

In the next few paragraphs, I describe a segmental approach that examines differences 

between languages at the broad phonetic and prosodic level. 

A segmental approach to automatic language identification assumes that each lan- 

guage has a unique acoustic signature, and that this signature can be defined in terms of 

segmental and prosodic features of speech. Segmental features include the inventory of 

broad phonetic segments such as vowels, fricatives, stops, nasals and closures, and their 

frequency of occurrence and co-occurrence in speech. Prosodic information consists of 

the relative durations and amplitudes of sonorant (vowel-like) segments, their spacing in 

time, and patterns of pitch change within and across these segments. 

To the extent that these assumptions are valid, languages can be identified automat- 

i c d y  by segmenting speech into broad phonetic categories, computing segment-based 

features that capture the relevant phonetic and prosodic structure, and training a classi- 

fier to associate the feature measurements with the spoken language. The segment-based 

features need to be linguistically motivated, i.e., based on an analysis of the language- 

specific and language-universal properties of the broad phonetic sequences. In addition, 

the use of segments as anchors for prosodic analysis of speech should augment the power 

of this approach. 



One might argue that a fine phonetic approach to automatic language identification 

is likely to yield better identification accuracy. As indicated earlier, informal evidence 

suggests that human listeners cue in on specific sound units or phonemes unique to 

a language in making their recognition decision. However, a fine phonetic approach 

to text-independent automatic language identification has two major problems. First, 

accurate phoneme recognition from continuous speech is a difficult task, due to coartic- 

ulation effects that result in widely different articulatory and acoustic realizations of the 

same phoneme. The current state-of-the-art in speaker-independent phonetic recogni- 

tion of American English is 78.0% for 39 phones [CL92] and 70.0% when all 61 TIMIT 

[LKS86, FDGM861 phones are considered [RF91]. Secondly, since languages differ in 

their phonetic inventories, a multi-language fine phonetic recognizer is essential to pro- 

cess speech from more than one language. Such a recognizer would have to be trained on 

a multi-language phonetic alphabet. While the International Phonetic Alphabet (IPA) 

[Ass891 might serve our purpose, human transcriptions or correction of the fine phonetic 

labels produced by automatic labeling algorithms are error-prone and time-consuming 

tasks, beyond the reach of our current resources. 

On the other hand, it is clear that broad phonetic category information can be utilized 

to distinguish between languages [HN77, LE801, dowing us to circumvent the cumber- 

some and difficult task of h e  phonetic recognition. An additional advantage is that 

broad phonetic categories such as vowels, obstruents and nasals are relatively invariant 

across languages, eliminating the need for language-specific phonetic or phonemic alpha- 

bets. Three questions then arise: what are the kinds of acoustic, broad phonetic and 

prosodic information that are needed to achieve automatic identification of languages? 

What is the best way to present this information to neural network classifiers? What is 

the level of language identification accuracy possible given only this information? This 

dissertation addresses just these questions. 



1.4 Dissertation Overview 

Chapter 2 surveys the surprisingly small amount of literature in automatic language 

identification and examines the reasons for the lack of published research. Chapter 3 

describes the in-house collection and development of two multi-language speech corpuses 

that enabled the research for this dissertation. Chapter 4 describes a feasibility study: 

the development of a four-language automatic language identification system using high- 

quality (laboratory microphone) speech. The signal representations used, neural network 

architecture and details of two broad phonetic feature-based approaches are presented. 

Chapter 5 describes research on a ten-language automatic language identification system 

using speech recorded over commercial telephone lines. Experiments with broad pho- 

netic, spectral and pitch features merit separate sections, each with its own discussion 

of the results of that feature set. The chapter ends with an analysis of the classifier 

performance on the combined feature set. Chapter 6 summarizes the findings of this 

dissertation and outlines directions for future research. 



Chapter 2 

Literature Review 

While the past two decades have witnessed tremendous advances in automatic speech 

recognition with thousands of published papers, there have been only fourteen published 

papers in English in automatic language identification that the author is aware of. This 

chapter provides brief descriptions of these studies and critiques them. The last section 

points out the problems associated with the general trend of research in this area and 

proposes a two-pronged research strategy. 

2.1 Previous Work 

This literature review is confined to studies that were done before the start of the research 

reported in this dissertation. As a result, the review does not contain any mention 

of the author's published work on automatic language identification using high-quality 

speech [MC92a] or telephone speech [MC92b]. These are described in chapters 4 and 5 

respectively. Marc Zissman's work [Zis93] and Hazen and Zue's work [HZ931 using the 

OGI Multi-language Telephone Speech Corpus ([MC092] and Chapter 3) are described 

in Chapter 6. Also, since the focus of this review is on studies in automatic language 

identification, Atkinson's work on human listening experiments with English and Spanish 

[Atk68] is excluded. 

The studies were reviewed keeping in mind the following variables of importance: 

number and confusability of languages: the fewer the number of languages to iden- 

tify, the easier the problem 



content independence: whether the vocabulary of the speech was fixed or unre- 

stricted 

speaker-independence: whether there was any overlap between the training and 

test speakers 

speech corpuses used, including recording conditions, type of speech (read or spon- 

taneous), sampling rate, signal-to-noise ratio, and number and background of 

speakers (i.e., native or non-native) 

primary methodology: HMMs, neural networks, expert systems, clustering, etc. 

granularity of feature measurement: global features or a moving analysis window? 

amount of speech needed for the stated identification accuracy 

gender-specificity of the results: whether the algorithms were trained and evaluated 

on both male and female speakers 

Table 2.1 summarizes the salient features of the studies. The reader is directed to  

the references for further details. 

2.1.1 The 'Texas Instruments Effort 

The first sustained effort in automatic language identification was carried out between 

1973 and 1980 at Texas Instruments (TI), and is documented in a series of four reports 

[LD74, LD75, LD78, Leo801. 

The basic philosophy underlying the TI approach was that languages differ by the 

frequency of occurrence of certain reference sounds or sound sequences. The sounds or 

sound sequences characteristic of a language occur more often in that language than 

in any other language under consideration. Therefore, the likelihoods of the languages, 

given these sequences, could be computed and used to make decisions in reasonably short 

times. 



Table 2.1: Studies in Automatic Language Identification 
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Study 1. The first study [LD74] concentrated on single reference sounds. The data 

consisted of read text from 100 adult male speakers of 5 languages, referred to simply as 

L1, La, L3, L4, and L5. The training data consisted of 90-second segments of speech from 

each of 10 speakers of each of the five languages. The test data consisted of 90-second 

segments from: 10 speakers of L1, Lt, and L5; 6 speakers of L2; and 14 speakers of Lq. 

The recording conditions and sampling frequency were not specified. 

The first step in this approach was automatic segmentation of the digitized speech 

based on a measure of dynamic spectral change T called "transitionitivity". Transition- 

itivity T was defined as the squared error between two sound segments displaced from 

each other by 3 time intervals, with the displacement being determined experimentally. 

Reference files of sound segments potentially useful for language discrimination were 

automaticdy generated from the training data, using an "intersegment distance" mea- 

sure. This technique dowed a segment to be added to a file only if it was sufficiently 

different from each segment already in the file. These reference files were then "purged", 

either to  actually eliminate infrequently occurring segments, or to retain the segments 

in the file, but to  use them only for partitioning the data. One form of purging was to 

set a predetermined threshold for the number of occurrences of each segment, and delete 

segments that fell below this threshold. 

The frequency of occurrence of the remaining reference segments in the files was 

determined and the time-averaged log-likelihood of the languages was computed (i.e., 

for each language L and reference segment R, the computation yielded the likelihood 

that language L was spoken, given that segment R had occurred). In one experiment, 

decision functions were computed for each pair of languages for each of the 50 test 

speakers. The decision strategy was to choose the language with the smallest negative 

average log-likelihood. Pairwise identification accuracy of the 10 language pairs ranged 

from 60% to  100%. Overall accuracy was 64% with a nearest neighbor decision rule 

using the pairwise identification results. The identification decision was made using 60 

seconds of speech. 



Study 2. The second phase of the study [LD75] used the same data as above, but used 

sequences of several phoneme-like segments for classification. Another improvement was 

the use of a time-frequency scanning error measure to accept or reject hypothesized oc- 

currences of component sound segments. The scanning error was a measure of spectral 

similarity between the input speech data and scanning patterns representing each candi- 

date reference segment. Two measures were introduced to help prune the file of reference 

sequences: (i) an information-theoretic measure called "entropy thresholdn guided the 

selection of reference sequences with sufficient language specificity, and (ii) an accep- 

tance level for hypothesized sequences, that rejected sequences that did not occur often 

enough to  merit inclusion. The entropy threshold was used to determine the language 

specificity of sequences by considering the average information remaining (uncertainty, 

entropy) after the detection of a reference sequence in the training data. The lower this 

uncertainty, the better the language discrimination capability of that sequence. 

Classification was based on the summed logarithms of the language likelihood esti- 

mates, given the occurrences of the reference sound sequences. 

Experiments were performed with sound sequences of different lengths. It was found 

that sequences of length 4 performed best on the training data: 88% correct classification 

of the 5 languages with an entropy threshold of 2.3 and acceptance level of 12.5%. A 

decision rule using sequences of length 5 in combination with sequences of length 1 

yielded 70% accuracy on the test data, with the same threshold values as above. 

Study 3. Departing from the automatic selection of reference sounds used in the first 

two studies, the third study [LD78] used an interactive approach to the generation of 

reference sounds. 

Manual selection of reference sounds was followed by automatic isolation of the rep- 

resentative occurrences of these sounds from the speech data. The isolated sounds were 

then manually verified before further processing. Using 36 reference sounds and a silence 

measure, a nearest-mean decision rule was applied to yield 94% correct classification on 

the training set. Various subsets of these 37 features were evaluated on the test set to 



determine the subset that provided maximum performance. A subset of 13 reference 

sounds and the silence measure yielded 66% on the 50 test set speakers. 

The data collection documentation indicated that five different sources of data and 

three different sets of recording equipment were used to collect speech from the 100 

speakers used in the experiments. In an attempt to reduce variations due to different 

recording conditions, each speaker's long-term average spectrum was standardized. This 

resulted in much improved identification performance. A second set of 13 reference 

sounds and the same silence measure provided 80% correct classification on the test set 

speakers. 

Study 4. In the final study [Leo80], the interactive approach to reference sound gen- 

eration was extended to allow more accuracy in specifying reference sounds and more 

flexibility in the allowed types of reference sounds. Another improvement was the intro- 

duction of a criterion for rejection, i.e. not classifying an utterance when the basis for 

such a decision was not sufficiently strong. 

The data of the first three studies were augmented with speech from 17 speakers of 

language L7 (L6 was reserved for English) and 14 speakers of language L8. There were 

now 66 speakers in the training set and 65 speakers in the test set. 

The speech was digitized and the characteristic sound sequences determined using the 

improved interactive reference sound generation program. The initial reference file had 94 

sounds from the 7 languages. The training data was processed to automatically detect 

and count occurrences of these sounds to compute parameters of a decision function. 

After applying pruning techniques based on various thresholds, a file of 80 reference 

sounds was produced. The decision function for a language was defined to be the negative 

of the sum of the log-likelihoods for all detected reference sounds. The test data was then 

processed to  detect and count reference sounds to evaluate decision function values (one 

for each possible language). The language with the minimum decision function value 

was chosen. If the difference between the smallest and next smallest decision function 

value was below a certain threshold, the speaker was rejected (the rejection criterion). 



With the ?-language 65-speaker test set consisting of 80 reference sounds, 62% accu- 

racy was attained when no rejects were allowed, and 100% accuracy was achieved with 

a rejection rate of 68%. With the original 5-language 50-speaker test set consisting of 54 

reference sounds, the corresponding figures were 72%, and 100% with a rejection rate of 

56%. 

Critique. It is clear that significant contributions to the field of automatic language 

identification have been made by the TI effort. The TI studies embody notions of 

phonetic distinctiveness of languages. They followed a "phoneme spotting" approach 

using automatically defined sub-word units and measures to indicate which units were 

discriminative. Seven years of sustained effort produced improvement from 64% to 80% 

on the five-language task. 

The classified nature of the studies raises more questions than it answers. What were 

the seven languages? What were the reference sounds? Without this information, it is 

difficult to evaluate the results of this work. Moreover, the extensibility of their general 

approach is open to question. Improved results were obtained in the latter two studies, 

in which automatic determination of reference sounds was replaced by an interactive 

process that required considerable human input. However, such manual determination 

of the reference sounds in the languages under consideration mandates the researchers' 

a priori knowledge of the languages. This could severely limit addition of languages 

to  the identification system. This weakness is apparent in the fourth study [Leo801 in 

which there is a degradation in performance (from 72% to 62%) with the addition of the 

two languages L7 and L8. The author attributes it to a lack of familiarity with the two 

languages resulting in selection of inappropriate reference sounds for these languages. 

2.1.2 House and Neuberg 

In a landmark study, House and Neuberg [HN77] demonstrated the feasibility of using 

sequences of broad phonetic categories of speech to  identify languages. They reasoned 

that, since accurate phoneme recognition is beyond the current state-of-the-art (true 



in 1977; true in 1993), the information provided by broad phonetic categories (stop, 

fricative, vowel, silence) should be examined. They assumed that the sequence of broad 

phonetic categories of a language could be modeled by a Markov process, and that the 

parameters of the model could be estimated for a given language from sufficient training 

data. 

The data for this study consisted of manually generated phonetic transcriptions of 

text from each of the following eight languages: American English, Chinese, Greek, 

Japanese, Korean, Russian, Swahili and Urdu. 

Statistical models were trained on sequences of broad phonetic category labels derived 

from these phonetic transcriptions. Given a sequence of broad category symbols U, 

the probability P(UIL) is calculated for each language L, and U is said to represent 

the language L for which this probability is a maximum. The texts were used in their 

entirety to  train the models, leaving no text against which the model for a given language 

could be tested. To overcome this problem, each text was tested against every model 

(including its own) in an attempt to establish the power of this procedure to distinguish 

among languages. Perfect discrimination of the eight languages was obtained. 

Critique. House and Neuberg's study is an important concept demonstration, and 

shares many of the assumptions of the approach examined in this dissertation. Their 

actual study, however, did not make use of real speech, only phonetic transcriptions 

of tezt. The study assumes perfect segmentation and classification of broad phonetic 

segments which is not possible with real speech data. Another caveat is the lack of 

an independent test set against which the language models could be tested. Further, 

even though perfect discrimination between the languages was achieved, the differences 

between the individual language scores were very small, raising questions about their 

statistical significance. 



2.1.3 Li and Edwards 

The Markov techniques suggested by House and Neuberg were further developed by Li 

and Edwards and applied to real speech data. Their work [LE80] represents one of the 

earliest efforts to develop statistical inference techniques to discriminate among languages 

using real speech data . They used a broad segmentation scheme to classify data into six 

acoustic-phonetic classes: (i) syllabic nuclei, (ii) non-vowel sonorants, (iii) vocal murmur, 

(iv) voiced frication, (v) voiceless frication, and (vi) silence and low energy segments. 

Based on these broad segmental classes, two statistical models for automatic language 

identification were developed: one based on segments and one based on syllables. The 

segmental models were implemented as either zero, f is t  or second order Markov models 

that characterized segmental sequences in the languages. 

The syllable model was divided into two types, one based on inter-syllable-nuclei 

sequences and one based on intra-syllable-nucleus segment sequences. The inter-syllable 

zero-order Markov model described segment sequences between two syllabic nuclei, which 

can be roughly paraphrased as characterizing possible consonant clusters in the lan- 

guages. The intra-syllable model represented a syllable as a nucleus preceded or followed 

by up to two segments (not including a neighboring syllabic nucleus), and approximated 

the internal structure of a syllable without requiring detection of specific syllable bound- 

aries. The intra-syllable model was implemented as both zero and first order Markov 

models. 

The database consisted of read speech from 20 speakers of five languages, two Asian 

and three Indo-European. The two Asian languages were basically monosyllabic tonal 

languages with relatively simple consonant-vowel (CV) or CVC word structure. The 

three European languages represented two different language families, and were distin- 

guished from the Asian languages by greater word length and more complex consonant 

clusters. 

The training database consisted of 200 minutes of speech (four minutes each from 

ten speakers for each of five languages) collected in a reading mode, for a total of about 



42,000 syllables and 150,000 segments. The test data was 100 minutes of read speech 

(two minutes each from ten speakers for five languages). All speakers were male. The 

recording conditions and sampling frequency were not specified. 

The identification procedure consisted of moving a variable length analysis window 

through the training data and the independent test data. The analysis window was 

x "segmentsn (for the segment-based model) or y "syllables" (for the syllable-based 

models) where x and y were varied to cover an analysis period from 15 seconds to two 

minutes long. Each model was tested over a selected analysis window with each language 

accumulating a conditional probability of being the language tested. For each window, 

an accumulated weighted vote was obtained for each language based on the conditional 

probabilities. The window was then incremented through the test data by one element 

(segment or syllable) and the process repeated with new weighted votes accumulated 

until the data was exhausted for each speaker. The language associated with the largest 

analysis-window vote for that speaker was chosen as the correct language. 

The results of these techniques varied considerably across the various models, reach- 

ing a maximum of about 80% correct identification using the inter-syllable model for 

an independent test of 50 speakers (10 per language). An analysis of the confusions 

among languages indicated that the techniques distinguished the two major types of 

languages very well, that is, the Asian languages from the Indo-European languages. 

This suggests that a two-stage algorithm might be useful in language identification. The 

f i s t  stage divides the languages into major types, and the second stage examines the 

languages within each type in more detail and makes focused decisions based on known 

characteristics of that language type. 

Critique. This study extended House and Neuberg's concept demonstration, by apply- 

ing it to  real speech data. The classification accuracy of 80% on five languages validates 

House and Neuberg's hypothesis that broad phonetic category sequences do possess lan- 

guage discriminatory information. On the other hand, the results of this study cannot be 



meaningfully compared with those of other studies, since the languages used, the record- 

ing conditions and the sampling frequency of the digitized speech are all unknown. Also, 

the lack of female speakers in the database and the use of read speech limit the generality 

of the results. 

2.1.4 Cimarusti and Ives 

Cimarusti and Ives [CI82] conducted a feasibility study of a novel approach to automatic 

language identification that was not based on linguistic units such as phonetic segments 

or syllables. This approach applied pattern analysis techniques to acoustic features 

extracted from the speech signal. 

The data consisted of three minutes of read speech collected from audio recordings 

of five adult male speakers for each of the following eight languages: American English, 

Czech, Farsi, German, Korean, Mandarin, Russian and Vietnamese. The audio record- 

ings were digitized at a sampling frequency of 10 kHz and passed through a 5 kHz 

anti-aliasing filter. The data was randomly divided into training and test sets. 

Using a 30 ms moving analysis frame with a 30 ms increment, 100 features derived 

from LPC analysis (including autocorrelation coefficients, cepstral coefficients, filter co- 

efficient s, log area ratios and formant frequencies) were extracted from each utterance. 

There were an equal number of feature vectors in the training and test sets. 

A decision function was generated for all features in the training set. Using an 

iterative pattern analysis program, the complexity of the polynomial decision function 

was systematically increased until all the vectors in the training set were separated into 

the properly identified languages (100% classification accuracy). When this "tunedn 

decision function was applied to the evaluation test set, the overall classification accuracy 

was 84%. The individual language classification scores ranged from 76.8% (American 

English) to 93.4% (Korean). 

Critique. Unlike the studies reviewed thus far, this study specified the languages exam- 

ined. The individual language scores and the overall accuracy demonstrate the feasibility 



of language identification based on acoustic features alone. 

It is not clear whether aU of the 100 features contributed to the classification per- 

formance. Issues such as feature selection, and removal of redundant features need to 

be examined. Also, the tuning of the decision function on the training set might have 

attuned the decision function to the idiosyncrasies of the training set, reducing its abil- 

ity to  generalize to a different set of data. A better approach would have been to tune 

the decision function on a cross-validation or development test set, and then evaluate 

the tuned decision function on an independent final test set. Also, the relatively small 

number of speakers per language (five) makes it likely that the system is not truly 

speaker-independent . 

2.1.5 Ives 

Using an extended database for the same languages as the previous study, Ives [he861 

developed an expert system for real-time automatic language identification. The goal 

of this effort was to develop a set of rules which would minimize the time required for 

classification. 

The extended database consisted of a total of 50 hours of speech from 122 male speak- 

ers from each of the following eight languages: American English, Czech, Farsi, German, 

Korean, Mandarin, Russian and Vietnamese. The speech was originally recorded on 

magnetic tape, digitized at 10 kHz and low-pass filtered at 5 kHz. Exactly 720 five- 

second patterns were randomly chosen from each of the 8 languages for analysis, for a 

total of 5760 patterns. The training and test set subdivisions were not specified. 

The classification logic was based on 50 distinguishing features selected by domain 

experts. An empirical threshold algorithm converted these subjective distinguishing 

features into objective numerical boundaries or thresholds using the patterns in the 

training set. These thresholds were used to design a minimum set of nine production 

rules (all of them were based on the variance of Fo, one on the absolute value of Fo, one 

on the variance of F2, one on vowel counts, one on mean "talk windows", and four on 

power spectral density profiles). Application of this rule set to the test data resulted 



in classification scores ranging from 84% (Russian) to 99% (Vietnamese). The overall 

accuracy was 92%. 

Critique. The accuracy figures are impressive, assuming that they were obtained on 

five seconds of speech per speaker. The amount of speech provided by each speaker is 

not known, nor are training and test sets used in this study specified. It is also not clear 

if there was any overlap between the training and test sets. Given that all of the nine 

production rules were based on Fo, it would be interesting to see the performance of 

this system on female speakers, who tend to have higher values of Fo than males. The 

database used had only male speakers. 

2.1.6 Foil 

Foil [Foi86] was perhaps the first researcher to report on speech recorded from radio under 

noisy conditions (the typical signal-to-noise ratio was 5 dB). Re imposed an additional 

constraint that language recognition be made using less than 10 seconds of speech. 

The data consisted of 10 hours of speech from each of three unspecified languages, 

each from a different major language group. (One of them was Slavic, and another was 

tonal south-east Asian; the third group was not revealed). The training set consisted of 

6 hours of speech, the development set of 1.5 hours, and the final evaluation set of 2.5 

hours of speech. The number of speakers was not specified. 

Two techniques were explored, one based on pitch contours and the other on formant 

frequencies. The first technique was based on the premise that prosodic features, such 

as rhythm and intonation patterns which vary from language to  language, could be the 

basis of a powerful language identification technique. In one configuration, a classical 

quadratic classifier was applied to seven prosodic features extracted from pitch and 

energy contours in the speech signal. The recognition accuracy on the final test set, 

using an average of 5 seconds of speech for the identification decision, was 39%. This is 

only slightly better than chance, given the Bway choice among the languages. 



A second technique was designed to exploit the frequency of occurrence of character- 

istic sounds of a language by using formant frequency values and locations to represent 

the sounds. In this configuration, a k-means clustering algorithm determined the 10 best 

formant vector dusters for each language, and a vector-quantization distortion measure 

was used as the basis for language decisions. The recognition accuracy on the final test 

set, using an average signal duration of only 4.5 seconds, was 64%, with a rejection rate 

of 11%. 

Critique. Any evaluation of the results of this study should take into account the 

noisy data used. The inclusion of a development test set, that was used to provide 

feedback for the algorithm development process, seems to have helped in "fine-tuning" 

the features used. The higher score (64%) achieved using formant clusters suggests that 

formant frequencies are better features than pitch contours when dealing with very noisy 

speech. Also, given that the languages were from different language groups, it is likely 

that there are wide phonological differences between them, which might have helped in 

the identification process. 

2.1.7 Goodman et al. 

Goodman et al. [GMW89] enhanced Foil's formant extraction technique for language 

identification by modifying and adding parameters, improving the classifier and reduc- 

ing its channel sensitivity. A new formant peak-picking algorithm was devised that 

performed well even with very noisy speech. The original formant vector was augmented 

with log amplitude values at the formant frequencies, and time-difference terms mea- 

suring the formant transitions between significant phonetic events in the language. An 

improved voiced/unvoiced decision algorithm significantly reduced the number of false 

voicing errors. A k-means clustering algorithm similar to the one used by Foil was used 

to  determine the 60 best formant-vector clusters for each language. The decision strategy 

was improved by the use of a weighted Euclidean distance measure instead of a Euclidean 

distance measure. 



The data consisted of a large (9.6 hours), noisy (signal-to-noise ratio: 9 dB), database 

of six languages, with 2.92 hours of speech in the training set, 2.78 hours in the devel- 

opment set and 3.9 hours in the final test set. The final evaluation was done on a larger 

database of four different language sets, including this six-language set, the original 

three-language set used by Foil, and two other geographical subsets. The identity of the 

languages used was not revealed. 

The recognition results were superior to the earlier algorithm in all four language 

sets (percentage values were not specified). The error rate on Foil's original three- 

language set was reduced by more than 50%. A significant result was the insensitivity 

of the recognition accuracy to the signal-to-noise ratio, indicating the robustness of the 

formant peak-picking algorithm. 

Critique. This study achieved significant improvements over Foil's results, and also 

used several different sets of languages. The robustness of the formant peak-picking 

algorithm in noise is an important result, since most communication channels are char- 

acterized by low signal-to-noise ratios. The lack of information regarding the languages 

used and the actual classification results precludes comparisons of these results with 

other work. 

2.1.8 Sugiyama 

Sugiyama [Sugglb, Suggla] proposed two language identification algorithms that were 

based on vector quantization and used acoustic features of the speech signal such as LPC 

coefficients, autocorrelation coefficients and delta-cepstral coefficients. 

The data was taken from a multilingual speech database distributed by NTT, Japan 

[IIK9O]. It consisted of 16 sentences uttered twice by 4 male and 4 female speakers in 

each of 20 languages (American English, Arabic, Mandarin Chinese, Danish, Dutch, En- 

glish, Finnish, French, German, Greek, Hindi, Hungarian, Italian, Japanese, Norwegian, 



Polish, Portuguese, Russian, Spanish and Swedish)l. The duration of each sentence was 

about 8 seconds. Both the training and test sets had approximately the same amount 

of data: both in terms of number of speakers and duration (around 21 minutes). 

The first algorithm was based on standard vector quantization (VQ). Each language, 

k,  was characterized by its own VQ codebook, Vk, generated using the training sentences. 

In the recognition stage, input speech was quantized by Vk and accumulated quantization 

distortion, dk, was computed. The language with the minimum accumulated distortion 

was the recognized language. Several spectral distortion measures were tried. The best 

recognition accuracy, 65% using 64 seconds of unknown speech, was obtained using the 

weighted likelihood ratios. 

In the second technique, a universal codebook U = (u j ) ,  was generated using all 

training data. Each language k was characterized by its occurrence probability histogram 

hk. During recognition, each input sentence was quantized by U and its occurrence 

probability histogram, h(uj), was computed. The language which had the minimum 

Euclidean distance between hk and h was the recognized language. As with the standard 

VQ, several spectral distortion measures were used for training the universal codebook. 

The best overall recognition accuracy, 80% using 64 seconds of unknown speech, was 

obtained using the LPC cepstrum distance. 

Human listening experiments were also conducted to determine human language 

classification performance. Five listeners, four Japanese female and one French male, 

were presented with pairs of sentences and were asked to judge if they were from the 

same language or not. If they judged it as the same language, they gave it a value 0. 

If not, a value 1. If the listener knew one of the two languages in the pair, the value 

was 0. Since all listeners were familiar with Japanese, it was excluded from the data set. 

A total of 380 (= 19 x 19 + 19) sentence pairs were presented in random order, the 19 

same-language pairs being presented twice. 

The values assigned to each language pair were normalized by the total number of 

'Some of the languages had less than 8 speakers, e.g., Hindi and Greek, while others (English and 
Norwegian) had more than 8. 



sentence pairs presented and a confusion matrix of the languages was generated. A cluster 

analysis based on the confusion matrix revealed that American English and English were 

very similar, as were Finnish and Swedish. Chinese and Arabic were found to be isolated 

from the other languages. 

Critique. The results of this study are impressive, considering the large number of 

languages used. This is clearly one of the best reported results in the literature, and it 

was achieved on a publicly available corpus of speech. The only caveat is that the amount 

of speech and the number of speakers per language were small. It would be interesting to 

see the performance of the VQ techniques on a corpus with a larger number of speakers 

per language. 

The individual language accuracies were not specified, so an analysis of the inter- 

language confusions is not possible. As for the human perceptual experiments, overall 

identification accuracy or an analysis of listener performance on individual languages 

would have been informative. The duration of the speech and the listener's linguistic 

background clearly influence language identification performance. These effects need to 

be examined in greater depth. Increasing the number of listeners would also increase the 

reliability of the results. 

2.1.9 Savic et a]. 

Savic et al. [SAG911 reported preliminary work on language identification using HMMs 

and pitch contours. The data consisted of 10 minutes of read speech in 4 languages: 

English, Hindi, Mandarin Chinese and Spanish, recorded in a noise-free room. It was 

digitized at a sampling frequency of 10 kHz and passed thru a 4.5 kHz low-pass filter. 

The number of speakers per language was not specified. 

The system used features associated with two methodologies: hidden Markov mod- 

eling (HMMs) and language-specific pitch contours. A voting classifier was used to 

combine the results from the HMM and pitch contour modules to arrive at a language 

identification decision. 



Each language was modeled by a five-state linear predictive HMM, and it was found 

that these states roughly corresponded to different articulatory states of the vocal tract. 

Preliminary results indicated that transition probabilities for the different languages 

showed considerable inter-language variations, while the transition probabilities within 

a language were similar. At the same time, some languages had similar transition prob- 

abilities for a few states. This implied that those languages shared a similar phonetic 

structure for classes of phonemes represented by those states. 

The pitch contour analysis module looked at tone and intonation changes across lan- 

guages. The results on this module were very preliminary, consisting of visual inspection 

of pitch contours to spot differences between languages. 

Critique. This study does not provide any quantitative results and appears to be 

a preliminary publication of research in progress. The voting classifier mentioned in 

the overview is not described at all and it is not clear how the pitch contour analysis 

will be integrated with the HMM results to arrive at the overall language identification 

score. The one-HMM-per-language concept is an interesting one and merits further 

investigation. 

2.1.10 Nakagawa et al. 

Nakagawa et al. [NUS921 examined the application of different HMM-based methods 

to language identification using acoustic features. They compared the performance of 

4 methods: VQ (vector quantization), discrete HMM, continuous density HMM, and 

mixtured Gaussian distribution model. 

The data consisted of 750 utterances from each of four languages, English, Japanese, 

Mandarin Chinese and Indonesian. Fifteen native male speakers of each language pro- 

duced 50 sentences each. The type of speech was not specified. The average duration of 

the utterances was 3 seconds. About 300 utterances from 10 speakers in each language 

were used to estimate the model parameters. About 100 utterances from the remaining 

5 speakers in each language were used to test the models. 



The speech was digitized at 12 kHz and a 14-th order LPC analysis was performed 

with a window of 21.3 ms every 10 ms. The 14 cepstrum coefficients were transformed 

to  10 mel-cepstrum coefficients. 

The standard VQ method was identical to that employed by Sugiyama (see Sec- 

tion 2.1.8). The discrete and continuous HMM models were ergodic (full-structured) 

rather than left-to-right. An ergodic HMM was constructed for each language and the 

parameters were estimated using the Baum- Welch algorithm. For the incoming speech, 

the likelihood of each language was accumulated frame-by-frame. At the end of the 

utterance, the language with the maximum accumulated likelihood was taken as the 

system response. HMMs with 2, 3, 5, 7 and 10 states were evaluated. The number of 

mixtures was set to 1 for all HMMs. For the Gaussian distribution model, the number 

ofmixtures was set at 1, 2,4, 8 or 16. 

The results using the continuous HMMs and mixtured Gaussian models (both 81.1%) 

were superior to  those obtained by the VQ (77.4%) and discrete HMMs (47.6%). The 

addition of two separate enhancements to the continuous HMMs-duration modeling 

and dynamic mel-cepstrum features-improved the identification performance to 83.5% 

and 86.3% respectively. 

The addition of 5 more languages, French, German, Korean, Malay and Russian 

to  the data set resulted in a drop in the identification performance of the continuous 

HMMs from 81.1% to 48%. Pairwise classification between English and Japanese using 

the continuous HMM with 5 states resulted in an identification accuracy of "more than" 

95%. 

Critique. The results of the 4language study are impressive considering the short 

duration of the utterances (3 seconds). This study has been comprehensive in its exam- 

ination of different statistical models for language identification. 

The sharp drop in performance with the addition of more languages indicates that 

further experimentation with the model parameters (i.e. increasing number of mixtures 

and states) may be required. The absence of female speakers in the data set also limits 



the generality of the results. 

2.1.11 Kwasny et al. 

Kwasny et al. [KKWE92] reported preliminary results on a two-speaker two-language 

identification task using acoustic (raw speech waveform) features and neural network 

classifiers. The data consisted of 12.5 second samples of read speech in English and 

French from two bilingual speakers. Two different samples were recorded for each lan- 

guage for each speaker. The speech was recorded in an anechoic chamber resulting in 

16-bit samples at 24 kHz. Five band-pass filters were used to separate the signal into 

bands which were low-pass filtered and decimated by a factor of 200. 

The 12.5 second samples of the two speakers were divided into training and test 

samples. The recognition task was multi-speaker, i.e., different utterances from the same 

speaker were used in the training and test sets. Each training sample was processed into 

371 overlapping 750 ms segments of speech each of which produced 360 numeric values 

of frequency information across four frequency bands (90 samples in each band). This 

information was fed to a neural network classifier that performed at 73.7% correct on the 

test samples. The trained network was then evaluated on varying durations of windows 

and performance was measured according to a majority vote. This evaluation was done 

on the combined set of training and test samples. Perfect classification of English was 

achieved using 2.23 seconds of speech, while French samples needed 3.73 seconds to 

achieve 100% performance. 

Critique. While the use of speech waveform features alone for language identification is 

novel, this study is preliminary. Clearly, the results do not reflect language identification 

performance, given the number of speakers in each language (2), the s m d  amount of 

training and test data, and the fact that the results were achieved on the combined set 

of training and test samples. 



2.2 Summary 

There have been only fourteen studies in automatic language identification published 

in English over the past two decades. The data have spanned the range from phonetic 

transcriptions of text, laboratory-quality speech, to telephone and radio speech. The 

number of languages has varied from three to twenty. The approaches to language 

identification have used "reference sounds" in each language, segment - and syllable- 

based Markov models, pitch contours, formant vectors, acoustic features, and just raw 

waveform features. A variety of classification methods have been tried, including HMMs, 

expert systems, VQ, quadratic classifiers and artificial neural networks. 

While the performance figures of some of the studies might look impressive in isola- 

tion, meaningful comparisons across studies is not possible, for the following reasons: 

Many of the studies represented classified or sensitive research, so experimental 

details (e.g., languages used) are often not described. 

a There is no common, public-domain database (cf. TIMIT) with which to evaluate 

different approaches to automatic language identification. 

Given the growing importance of automatic language identification services in a 

rapidly shrinking global community, it is imperative that basic research be conducted in 

this area. Many of the techniques employed in the studies reviewed in this chapter have 

produced promising results. They include statistical methods such as HMMs (Nakagawa 

et. al) and VQ (Sugiyama) as well as a combination of acoustic, phonetic and prosodic 

features and pattern classifiers. These techniques need to be re-visited, preferably using 

a large corpus of multi-lingual speech, containing speech produced by several speakers. 

The availability of such a corpus in the public-domain would enable the proliferation and 

evaluation of different approaches to the problem. In the next chapter, the development 

of a ten-language telephone speech corpus, designed specifically for research in automatic 

language identification, is described in detail. This corpus has since been placed in the 

public domain. 



Chapter 3 

Speech Corpus Development 

Research in automatic language identification requires a large corpus of multi-lingual 

speech data to  capture the many sources of variability within and across languages. 

These include variability due to  speaker differences (e.g., age, gender, dialect), micro- 

phones, telephone handset s, communication lines, background noise and the language 

being spoken. It is also important that the corpus contain a wide variety of speech from 

each speaker, ranging from fixed-vocabulary utterances to natural, continuous speech. 

This makes it useful for both content-dependent and content-independent language iden- 

tification. 

The availability of such a corpus in the public-domain would enable researchers to 

study languages and to  develop, evaluate and compare multi-language recognition al- 

gorithms. Unfortunately, there was no such corpus of data available when I began this 

research. Consequently, I spent a considerable amount of time and effort in collecting and 

developing multi-lingual speech corpuses. This chapter describes two corpuses that en- 

abled the research reported in this dissertation: (i) a four-language corpus of high-quality 

(laboratory microphone) speech, and (ii) a ten-language corpus of telephone speech. Both 

these corpuses contain a mix of natural continuous speech and fixed-vocabulary utter- 

ances. These corpuses have since been distributed to several research sites in the United 

States and abroad, as shown in Table B.l in Appendix B. 



3.1 Four-language High-quality Speech Corpus (OGIHQ)  

3.1.1 Motivation 

High-quality speech is recorded in an acoustically controlled environment, and is digi- 

tized at a high sampling rate, usually in the 14 kHz to 20 kHz range, which preserves the 

high-frequency information associated with obstruents (stops, fricatives and affricates) 

in speech. For my initial research into automatic language identification, this was ideal, 

since it allowed me to  examine the acoustic, phonetic and prosodic differences between 

languages without being hampered by low signal-to-noise ratios (SNR), channel distor- 

tions or unintelligible speech. 

The number of languages in this corpus was limited to  four. The goal was to  examine 

the issues and problems involved in language identification on a small and manageable 

body of data, before tackling a larger set of languages. 

3.1.2 Language Selection 

The choice of the four languages: American English, Japanese, Mandarin Chinese and 

Tamil, was based more on the availability of native speakers in the Portland metropolitan 

area than on linguistic considerations. American English and Tamil are stress languages, 

Japanese is a pitch-accented language, while Mandarin Chinese is a tonal language. The 

four languages belong to different language families. American English belongs to the 

Germanic group of Indo-European languages, Japanese is considered by many linguists 

to  be a member of the Altaic family, while others believe it is an Isolate, i.e., belonging 

to no known language family[Cry87]. Mandarin Chinese is a Sino-Tibetan language, 

and Tamil is a Dravidian language widely spoken in Southern India and some parts of 

South-east Asia. 



3.1.3 Speakers 

Twenty native speakers of each language1 recorded their voices in our laboratory and 

were each paid $5 for their participation. The ages of the female speakers ranged from 

15 to 70 years while those of the male speakers ranged from 18 to 71 years. All the 

speakers had spent a major part of their childhood or youth in their native countries. 

There were approximately equal numbers of male and female speakers in each language. 

Speaker information for this corpus is listed in Appendix B.2.1. 

3.1.4 Recording Protocol 

Each speaker produced 20 different speech samples with a few exceptions (see Tables B.2 

through B.5 in Appendix B). The speakers were asked to (i) speak 15 conversational 

sentences on any topic(s) of their choosing, (ii) ask 2 questions of their choice, (iii) recite 

the days of the week, the months of the year, and the numbers 0 through 10. 

The intonation contours for declarative sentences are different from those for ques- 

tions in many languages. For example, in English, declarative sentences have a falling 

contour, while questions have a rising contour[GJD87]. The two questions were included 

in the corpus to capture such intonational differences within languages. 

3.1.5 Data Acquisition 

The speech was recorded using a Sennheiser HMD 224 noise-canceling microphone, low- 

pass filtered at 7.6 kHz and sampled at 16 kHz at 16-bit resolution. The recording 

was done in a carpeted laboratory with a background of computer disk and workstation 

cooling-fan noise. Each utterance was played back and speakers had the option of re- 

recording an utterance if it was not considered satisfactory either by them or by the 

recording supervisor. 

'There were 24 speakers in Mandarin Chinese and 25 speakers in Japanese. 



3.1.6 Corpus Development 

Since the data were collected under controlled conditions, there was no need to check 

for illegal or bad utterances. As such, development of the corpus was restricted to pro- 

viding broad phonetic transcriptions to a selected subset of the utterances. The speech 

was automatically segmented into 7 broad phonetic categories using a baseline version 

of a broad classification and segmentation algorithm (see Chapter 4). The seven broad 

phonetic categories were: (i) vowels (VOC), (ii) fricatives (FRIC), (iii) stops (STOP), 

(iv) closures (silence or background noise) (CLOS), (v) pre-vocalic sonorant (PRVS), 

(vi) inter-vocalic sonorant (INVS), and (vii) post-vocalic sonorant (POVS). The seg- 

menter output was then corrected by trained human transcribers using an interactive 

display program described in [FPC92]. These broad phonetic transcriptions were used 

to train and evaluate later versions of the segmentation algorithm. 

3.1.7 Corpus Statistics 

Not all speakers provided a l l  20 utterances. Five speakers in Tamil and one in Japanese 

recorded only 10 utterances each. At the same time, two other speakers in Tamil and 

one in Japanese recorded a few extra utterances. Table 3.1 displays the salient features 

of the corpus. The column headings #M/#F, RS/U, AuS/U and AvUD represent 

the number of males and females, range of number of segments per utterance, average 

number of segments per utterance, and average utterance duration, respectively. The 

average duration of the utterances in the entire corpus was 5.5 seconds. Figures 3.1 (a) 

through (g) display the average frequency of occurrence (per second of speech) of the 

seven broad phonetic categories in the corpus. The low frequencies of occurrence of 

fricatives in Tamil, of stops in Mandarin, and of post-vocalic sonorants in Japanese 

suggest that frequency of occumnce might be a valuable discriminating feature between 

the languages. Such features are examined in detail in Chapter 4. 
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Figure 3.1: Four-language Corpus: Histograms of the 7 Broad Phonetic Categories 



Table 3.1: Salient Features of the the Four-language Speech Corpus. 

Japanese 
Mandarin 5.0 
Tamil 5.8 

3.1.8 Training and Test Sets 

3.1.8.1 Segmentation and Broad Classification 

Five utterances from each of 16 speakers per language were used to train and test the 

segmenter. The training set had 50 utterances from 10 speakers (5 male and 5 female) 

from each of the 4 languages, for a total of 200 utterances. The development test set 

had 10 utterances from a different set of 2 speakers (1 male and 1 female) from each 

language, for a total of 40 utterances. The final test set had 20 utterances from yet 

another set of 4 speakers (2 male and 2 female) from each language for a total of 80 

utterances. The average duration of the utterances in the training set was 4.7 secs and 

that of the test sets was 5.7 secs. The speakers and utterances used from each language 

are listed in ~ p ~ e n d i x  B.2.2. 

3.1.8.2 Language Classification 

Experiments in language identification also used a training set, a development test set, 

and a final test set. The training set contained 12 speakers from each language, with 

10 or 20 utterances per speaker, for a total of 930 utterances. The development test 

set contained a different group of 2 speakers per language with 20 utterances from each 

speaker, for a total of 160 utterances. The final test set had 6 speakers per language, 

with 10 or 20 utterances per speaker, for a total of 440 utterances. The average duration 

of the utterances in the training set was 5.1 seconds and that of the test sets was 5.5 

seconds. The speakers and utterances used from each language are listed in Appendix 



3.2 Ten-language Telephone Speech Corpus 

3.2.1 Motivation 

There were several problems with the acquisition of a multi-language high-quality speech 

corpus. The collection process was slow and required considerable human supervision. 

Addition of new languages to the corpus was heavily dependent on the availability of 

native speakers of that language in the vicinity of the recording laboratory. Moreover, the 

usefulness of an automatic language identification system trained only on high-quality 

speech recorded in a laboratory is rather limited. 

In the real world, an automatic language identification system is more likely to be used 

over some form of communication channel, e.g., a telephone line, which is characterized 

by low bandwidth, channel distortion, microphone variability and low SNR. If the system 

is to perform accurately under these conditions, it needs to be trained on speech recorded 

under these conditions. It was therefore decided to  collect speech in many languages 

over commercial telephone lines. There are several advantages of telephone speech data 

collection over that of high-quality speech. 

The collection process can be easily automated. Once the recording protocol and 

equipment are set up, speech data can be collected very rapidly with minimum 

human supervision. 

Long-distance telephone networks provide access to speakers of different languages 

spread over a wide geographical area. 

Addition of a new language requires contact with just two native speakers (one 

to prerecord the instructions and prompts, and one to verify them) and a short 

advertising campaign before data collection in that language can begin. 



3.2.2 Language Selection 

The ten languages currently in the corpus, English, Farsi (Persian), French, German, 

Korean, Japanese, Mandarin Chinese, Spanish, Tamil and Vietnamese, were selected 

based on a combination of linguistic considerations and the availability of native speakers 

in the United States. 

The languages represent a range of unrelated languages (e.g., Vietnamese, Tamil, 

German) as well as languages from the same sub-family (e.g., Germanic languages such 

as English and German, Romance languages such as French and Spanish). The languages 

also include various prosodic features, e.g., Mandarin Chinese and Vietnamese are tonal 

languages, Japanese uses pitch-accents and syllabic mora. In addition to their linguistic 

characteristics, the languages represent important geographic and political regions, and 

many speakers of these languages can be found relatively easily in the U.S. 

Since most approaches to language identification rely on discriminators based on 

patterns of sounds and sound classes, it is important that the corpus include pairs of 

languages that are phonologically similar and others that are quite distinct. For example, 

syllable patterns of Vietnamese and Chinese are similar, basically consonant-vowel (CV) 

or consonant-vowel-consonant (CVC) patterns, with a relatively limited consonant reper- 

toire, and with a characteristic tonal contour associated with each syllable. In contrast, 

German and English have relatively elaborated syllable structures, potential clusters of 

half a dozen consonants between vowel nuclei, and no distinctive tonal contrasts at the 

syllable level. From the point of view of automatic language identification, Chinese and 

Vietnamese should be more confusable based on phonological sequences, and Chinese 

and German should be less confusable. 

3.2.3 Data Acquisition 

3.2.3.1 Collection Campaign 

Speaker participation was promoted under a Udonate your voice to sciencen theme. Re- 

quests for callers were posted on several university bulletin boards and national computer 



network newsgroups. In addition, a press release describing the research project and the 

need for volunteers resulted in newspaper and radio coverage. A toll-free telephone 

number, open round-the-clock, was provided. 

3.2.3.2 Call Format 

A touch-tone phone was needed for the call. Callers received a brief greeting in English 

followed by a prompt, in each language, to select a language by pressing a digit from 0 

through 9. All subsequent instructions and prompts were given in the target language. 

The objective was to reduce the number of crank calls by nonnative speakers. The 

instructions and prompts in each language were recorded by a native speaker of that 

language. 

3.2.3.3 Recording Equipment 

Speech was collected using a Gradient Technology Desklab connected via a SCSI port 

to a Sun 41110 workstation. The device was programmed to answer the telephone, play 

digitized files in each of the ten languages requesting the speech samples, and digitize the 

callers' response for a designated period of time. Speech was sampled at 8000 samples 

per second at .14 bit resolution. As the Desklab did not have any automatic gain control 

mechanism, a fixed recording gain (10) was used. 

3.2.3.4 Recording Protocol 

The recording protocol was designed to obtain (a) speech samples that create well- 

defined, useful vocabularies, (b) topic-specific descriptions, and (c) samples of elicited 

free speech. Small useful vocabularies included 

a language names: the speakers' native language and the language they spoke most 

of the time 

a the days of the week 



a the numbers 0 through 10 

Topic-specific descriptions were obtained by asking callers to describe 

a some aspect of their home-town that they liked 

a the dimate in their home-town 

a the room that they were calling from 

a their most recent meal 

The callers' responses to each of the questions/prompts above were recorded for a fixed 

length of time (see Appendix A). Elicited free speech was obtained by asking callers to 

speak for 1 minute on any topic of their choice. Several hints and suggestions about the 

possible topics were provided: recite a poem, make up a story, describe your favorite 

sport or hobby, etc. They were then given 10 seconds to organize their thoughts before 

the actual 1 minute recording. This was done to minimize the number of long pauses 

and false starts in the free speech. Each speaker contributed 9 utterances, a total of 

approximately 126 seconds of speech to the database. The duration of each call was 

approximately 5 minutes. A transcript of the actual prompts and instructions used in 

the recording protocol is given in Appendix A. 

3.2.4 Corpus Development 

Development of the corpus was divided into two phases. Phase I, performed by native 

English speakers, consisted of 

a preliminary verification: listening to each utterance and deleting prank or in- 

valid calls (hangups) 

a chopping: removing excess background noise at the beginning and end of each 

utterance 

a evaluation: making several judgments about the quality and type of speech 



a broad phonetic transcriptions: providing time-aligned broad phonetic labels to 

a subset of the utterances. 

Phase I1 involved 

a verification and  evaluation of the utterances by native speakers of the individual 

languages 

a orthographic transcript ions of each utterance 

a time-aligned phonemic transcriptions (provided by trained human transcribers) 

of a subset of the utterances for each language 

The orthographic and phonemic transcriptions do not have any bearing on the results 

of this dissertation. As such, these steps will not be discussed any further in this disser- 

tation, apart from mentioning that the Phase I1 transcriptions are to be used in future 

work on automatic language identification (see Chapter 6). 

The objective of processing the calls in two phases was to obtain a quick preliminary 

estimate of the number of potentially valid calls in each language, from Phase I. This 

estimate was helpful in determining when to stop the data collection. The chopping and 

preliminary evaluation by native speakers of English was fast enough to keep pace with 

the flow of incoming calls. Data collection was stopped when there were at least 100 

potentially valid calls in each language. 

3.2.4.1 Phase  I 

Phase I tasks were carried out by trained laboratory assistants who are native speakers 

of English. An interactive graphics program was used to display the waveform, play 

selected portions of the utterance, and to log information into a text file. The speech 

software tools used in the development of this corpus are described in detail in [FPC92]. 

Preliminary Verification and  Evaluation. Each utterance was processed as fol- 

lows: 



a The utterance was chopped, if necessary, to remove the excess noise and/or silence 

flanking the speech. Care was taken to include at least 300 ms of "silence" before 

and after the speech. Audible lip-smacks and breath noise were always retained. 

a Judgments were made about the quality and content of speech in each utterance. 

The listener noted the occurrence of any of the following: 

1. American or British accents (applicable to English calls only) 

2. excessive breath noise 

3. speech cut off at the beginning 

4. speech cut off at the end 

5. environmental noise 

6. caller did not follow instructions 

7. caller not a native speaker 

8. read speech 

9. spontaneous speech 

10. extraneous speech 

11. speech in non-native language 

a A set of automatic measurements was made on the utterance. These include its 

duration, the minimum and maximum sample values, the dc offset, and 10th and 

90th percentile of the power (in dB) measured over 10 ms windows in the utterance. 

Considering that the verification was done by native English speakers, a few of the above 

judgments for languages other than English were not very accurate. For example, a native 

English speaker who does not know Korean has no way of accurately detecting that a 

Korean c d e r  "did not follow instructions" for the "home-town climate" prompt unless 

that caller's response was obviously incorrect (e.g., laughing, singing, making animal 

noises). Similarly, the "caller not a native speaker" comment for languages other than 



English was made only if the speaker admitted to being a non-native speaker in response 

to the "native language" question. A more accurate determination of the number of 

non-native speakers in each language was made during Phase 11, by native speakers of 

each language. "Extraneous speech" refers to background speech produced by someone 

other than the caller. 

The laboratory assistants were trained to recognize the fixed vocabularies in each 

language and were able to detect incomplete responses and non- st andard pronunciations 

of the days-of-the-week and the numbers. 

In addition to  these utterance-specific comments and measurements, the following 

"global" judgments were made after listening to all utterances of a call: 

1. gender (male, female and unknown); 

2. age (child, adult); 

3. connection quality (poor, average, good); and 

4. speaker intelligibility (poor, typical). 

Broad Phonetic Transcript ions. As in the case of the four-language high-quality 

speech corpus; time-aligned broad phonetic transcriptions were provided to selected ut- 

terances in each language. The transcription process was semi-automatic, i.e., the output 

of a segmentation algorithm (described in Chapter 5) was corrected by trained tran- 

scribers with the aid of an interactive display program. 

3.2.4.2 Phase I1 

Verification of the utterances by native speakers of the individual languages included (i) 

confirming that each utterance was in fact spoken by a native speaker of that language, 

(ii) verifying that the caller followed the instructions for that utterance, (iii) judging the 

callers' accents and dialects, and (iv) providing a brief description of the topic of each 

caller's one-minute elicited free speech response. 



3.2.5 Current Status 

We received a total of 2490 calls over a period of eight months. Of these, 1044 calls were 

in English, with an average of 160 calls in the remaining 9 languages. On the average, 

22.0% of the calls were rejected in each language, mainly because of hangups. A total 

of 1987 calls (about 43 hours of speech), 868 in English, and an average of 122 calls in 

the remaining 9 languages, were judged as useful after verification by native speakers. 

Table 3.2 displays the distribution of "raw" calls, the number of usable calls that resulted 

from those raw calls, and the average amount of speech (in seconds) per caller, for all 

the 10 languages. Note that each call can produce a maximum of 126 seconds of speech. 

The lower numbers in column 6 of Table 3.2 represent the amount of speech actually 

obtained before the caller decided to terminate the call. 

Broad phonetic transcriptions have been provided for 2 utterances per call for the 

first 25 valid calls in each language (total of 500 utterances). These transcriptions were 

used in the development of a broad phonetic category segmentation algorithm (Chapter 

Language 
English 
Farsi 
French 
German 
Japanese 
Korean 
Mandarin 
Spanish 
Tamil 
Vietnamese 

Table 3.2: Distribution of Calls across 10 languages 

Raw Calls 
1044 
1 54 
149 
157 
147 
149 
186 
150 
194 
159 

Usable Calls 
868 
115 
122 
118 
107 
112 
141 
128 
149 
127 

# Utts 
7991 
993 
1082 
1059 
930 
905 
1103 
1150 
1189 
1023 

Avg #Utts/Call 
9.2 
8.6 
8.9 
9.0 
8.7 
8.1 
7.8 
9.0 
8.0 
8.1 

Avg Secs/Call 
89.7 
79.6 
85.4 
87.7 
79.5 
71.1 
66.4 
86.0 
67.8 
69.8 



3.2.6 Corpus Statistics 

3.2.6.1 Speaker Statistics 

The distribution of calls by age and gender judgments is provided in Table 3.3. The 

"Unk. Gen." column contains the number of speakers whose gender could not be ac- 

curately determined by the verifiers. The ratio of male to female speakers was roughly 

2.3:l over all the 10 languages, and ranged from 1.7:l for German to 6:l for Tamil. 

3.2.6.2 Utterance Statistics 

Table 3.3: Distribution of Calls by Gender and Age Judgments 

a 22.9% of the elicited free speech utterances in Enghsh were judged to contain read 

speech 

a Figures 3.2 and 3.3 show the average frequency of occurrence (per second of speech) 

of the seven broad phonetic categories in the utterances of the first 50 calls in each 

language. 

Language 
English 
Far si 
French 
German 
Japanese 
Korean 
Mandarin 
Spanish 
Tamil 
Vietnamese 

TOTALS 

The average speech rate (number of broad phonetic category segments i utterance 

duration) for the f i s t  50 calls in each language ranged from 8.02 segments/second 

Females 
269 
23 
37 
44 
38 
28 
42 
44 
2 1 
46 

602 

Calls 
868 
115 
122 
118 
107 
112 
141 
128 
149 
127 

1987 

Males 
595 
92 
85 
74 
69 
84 
89 
83 
127 
81 

1379 

Unk. Gen. 
4 
0 
0 
0 
0 
0 
0 
1 
1 

0 , 

Adults 
853 
114 
122 
118 
107 
111 
141 
125 
149 
127 

Children 
15 
0 
0 
0 
0 
1 
0 
3 
0 
0 

6 1 1968 19 



(a) VOWELS @) FRICATIVES 

(c) CLOSURES (d) STOPS 

Figure 3.2: Ten-language Corpus: Histograms of VOC, FR.IC, STOP and CLOS 



(a) PRE-VOCALIC SONORANTS 

@) INTER-VOCALIC SONORANTS 

(c) POST-VOCALIC SONORAMS 

Figure 3.3: Ten-language Corpus: Histograms of PRVS, INVS and POVS 



for Vietnamese, to 9.56 segments/second for English, with a median of 8.98 seg- 

ments/second. These figures include the the long pauses that characterized some 

callers' 1-minute Ustory" utterances. 

3.2.7 Training and Test Sets 

3.2.7.1 Segmentation and Broad Classification 

The segmentation algorithm was trained and tested on utterances from the first 25 valid 

calls in each language. In order to speed up the broad phonetic transcription process, 

only the following short utterances from each call were used in the segmenter data sets: 

native language 

common language 

home- t own liking 

home-town climate 

room description 

meal description 

The training set consisted of 300 utterances; 2 per call for 15 calls from each language. 

The development test set consisted of 100 utterances; 2 per call from a different set of 5 

calls in each language. The final test set also consisted of 100 utterances; 2 per call from 

yet another set of 5 calls in each language. The average duration of the utterances was 

4.0 seconds. The actual calls and utterances used are specified in Appendix B.3.2. 

3.2.7.2 Language Classification 

The language classifiers were trained and evaluated on only the spontaneous speech ut- 

terances from the first 90 valid calls in each language. The segmenter data sets described 

above were completely subsumed by the classifier training set. The training set consisted 

of 2714 utterances (from 342 males and 158 females); 2-6 utterances per call for 50 calls 



in each language. The development test set consisted of 1120 utterances (from 151 males 

and 49 females); 2-6 utterances per call for 20 calls in each language. The final test set 

consisted of 1077 utterances (from 139 males and 61 females); 2-6 utterances per call for 

20 calls in each language. The utterances ranged in duration from 1 second to 49 seconds 

with an average of 13.4 seconds. The actual calls and utterances used are specified in 

Appendix B.3.3. 

3.2.8 Human Listening Experiments 

How well can human listeners discriminate among these languages from excerpts of 

speech? To determine human listening performance on excerpts of speech from the 10 

languages, 7 female and 4 male monolingual native English speakers were presented with 

I-, 2-, 4 and 6-second excerpts of spontaneous speech excised from the 10 languages. 

3.2.8.1 Speech Excerpts 

The speech excerpts were taken from the l-minute "story" utterance from each speaker 

in the training, development and final test sets. Only those stories were chosen that were 

long enough to provide one excerpt each of four durations: 1, 2, 4 and 6 seconds. Care 

was taken to  ensure that silence constituted less than half of each excerpt. The number 

of stories chosen from each language was determined by the language containing the 

least number of stories long enough to provide all four excerpts. Since Korean had only 

76 stores satisfying this criterion, 76 different stories from each language were chosen. 

3.2.8.2 Experimental Procedure 

The experiment was designed such that each subject listened to exactly one excerpt from 

each speaker, and an equal number of excerpts at each duration from each language. The 

excerpts were chosen at random, keeping the above constraints in mind. This procedure 

had the following advantages: 



since each speaker provided only one excerpt, identification of the excerpt was not 

influenced by familiarity with a particular speaker's voice 

r since d excerpts were chosen at random, there was no danger of Choosing the 

longer excerpts from inherently "easy" speakers 

The experiment was conducted using an interactive graphics program that played 

excerpts of speech chosen at random from each of the 10 languages, and maintained 

a log of subject responses. Following a brief training session, subjects were presented 

with 760 different excerpts, 19 at each duration from each language. The subjects could 

listen to each excerpt as many times as they desired. After responding, they were given 

feedback on every trial. The subjects could also listen to an excerpt after making the 

choices feature that was included to aid in the learning process. Each block of 100 

trials was considered a session, and the program automatically quit after every 100 trials, 

to  ensure that the subjects did not get fatigued. 

3.2.8.3 Results 

The average listener performance for each language is shown for the four durations in 

Figure 3.4. As duration increased from 1 to 2 to 4 to 6 seconds, the average performance 

over all languages rose from 37.0% to 43.0% to 51.2% to 54.6% respectively. As expected, 

the subjects identified English with high accuracy at all four durations. Excluding En- 

glish, the average performance at each duration was 20.7%, 37.4%, 45.8% and 49.7%. 

Note the relatively high performance on French, German and Spanish-languages that 

the listeners were most often exposed to, either through courses or by contact with for- 

eign friends. Performance on Farsi, Korean, Tamil and Vietnamese-languages that the 

listeners were rarely (if ever) exposed to, was very poor. 

Analysis of performance by each block of 190 trials revealed little evidence of learning 

during the experiment. For example, for 6-second excerpts, the average performance on 

Korean for the first and last 190 trials was 13.5% and 16.7% respectively. 





3.2.8.4 Discussion 

Since the listeners were trained on speech from d three data sets-training, development 

test and final test-statistical (or strict) comparisons cannot be made between human 

and machine identification results (described in Chapter 5). Other differences in the data 

also exist. The listeners were trained on excerpts ranging from 1 to 6 seconds, while the 

machine experiments used excerpts ranging from 1 to 49 seconds (Section 3.2.7.2). Fur- 

ther, the listeners were exposed to far fewer utterances than the language classifiers (760 

compared to 2714). On the other hand, a human listener has access to other sources of 

information (such as memory of language sounds overheard in conversations, familiarity 

with a foreign language, etc.) that are not available to a machine classifier. Therefore, 

it is not clear that fewer utterances and short durations necessarily handicap human 

listeners. For this reason, it is interesting to (informally) compare human identific* 

tion performance with machine results. These listening experiments provide important 

perceptual benchmarks for automatic language identification. In addition, patterns of 

confusions between languages provide information about the salient acoustic character- 

istics that can be useful for automatic language identification. 

To determine the effect of additional trials on identification performance, and to  

examine differences in identification performance for speakers of different languages, a 

second series of experiments is in progress at the time of writing, using 10 native speakers 

of English and 2 native speakers of each of the other 9 languages as subjects. 

3.3 Summary 

In the absence of a public-domain multi-lingual speech corpus, we were left with no choice 

but to collect and develop our own corpuses to enable our research in automatic language 

identification. In this chapter, we have described the collection and development of a 

four-language high-quality speech corpus and a ten-language telephone speech corpus. In 

addition, we have provided relevant statistics of the corpuses and specified their division 

into training and test sets for broad phonetic segmentation and language classification. 



These corpuses have since been distributed to several research sites within the United 

States and Europe. 

Human listening experiments were conducted on excerpts of spontaneous speech of 

varying durations excised from the telephone speech corpus. Results indicated that the 

listeners, who were native speakers of English, performed poorly on unfamiliar languages 

like Farsi, Korean, Tamil and Vietnamese, regardless of the duration of the excerpts. 

In conclusion, it is worth noting that the two corpuses do suffer from one major 

drawback: they lack samples of free-form conversational speech. It is not immediately 

obvious that short monologues and extended descriptions are inherently more useful for 

automatic language identification than truly spontaneous conversational speech. How- 

ever, it is clear that these corpuses do provide enough data to initiate basic research into 

automatic language identification. The following two chapters contain a description of 

our research using these corpuses. The usefulness (or otherwise) of conversational speech 

for automatic language identification is an interesting research issue that is beyond the 

scope of this dissertation. 



Chapter 4 

Automatic Language Identification 

Using High Quality Speech 

This chapter describes the development of a four-language automatic language identifi- 

cation system for high-quality speech. While the development of this system provided 

valuable insights into the nature of the problem, it is pertinent to stress that this was 

essentially a feasibility study and therefore did not include detailed parametric analyses 

of the feature set. The goal of this study was to determine the feasibility of using lin- 

guistically motivated features and the classification power of artificial neural networks 

to perform automatic language identification. Detailed feature analyses were reserved 

for my research into language identification using ten languages and telephone speech, 

described in Chapter 5. 

An overview of the system is provided followed by detailed descriptions of each of 

the main stages. 

4.1 System Overview 

The system uses a neural network-based segmentation algorithm to segment speech into 

seven broad phonetic categories. Phonetic and prosodic features computed on these 

categories are then input to a second network that performs the language classification. 

The following steps transform an input utterance into a decision about what language 

was spoken. 



Data Capture. The procedure for data capture is described in Section 3.1.5. 

Signal Representation. A number of waveform and spectral parameters are com- 

puted in preparation for further processing. These parameters were empirically derived 

and were shown to be useful in the segmentation of English letters [GopSO]. The spectral 

parameters are generated from a 128-point discrete Fourier transform (DFT) computed 

on a 10 ms Hanning window. All parameters are computed every 3 ms. 

The waveform parameters consist of estimates of 

r zc8000: the zero-crossing count of the waveform in a 10 ms window in the frequency 

range 0-8000 Hz. Zero-crossing is the number of times the waveform crosses the 

zero line in a 10 ms window. A high zero-crossing count implies high frequency 

and therefore frication. It is largely independent of the power or amplitude of the 

signal. 

r ptp700 and ptp8000: the peak-to-peak amplitude of the waveform in a 10 ms 

window in two frequency bands (0-700 Hz and 0-8000 Hz) respectively. Peak-to- 

peak amplitude is defined as the difference between the highest positive and lowest 

negative peaks of the original waveform in a 10 ms window. ptp8000 provides a 

measure of the waveform envelope and is a very good indicator of silence in clean 

(high S/N ratio) speech. ptp700 is computed on the waveform low-pass filtered 

at 700 Hz. The first formant (the lowest resonant frequency of the vocal tract) is 

located in the range 0-700 Hz. Since formants are more salient during periodic 

signals, this parameter gives a fairly good estimate of sonorant intervals. 

r pitch: the presence or absence of pitch in each 3 ms frame. The pitch estimate 

is derived from a neural network pitch tracker that locates pitch periods in the 

filtered (0-700 Hz) waveform [BCVASl]. 

The spectral parameters consist of 

r sda700 and sda8000: estimates of averaged spectral difference in two frequency 

bands (0-700 Hz and 0-8000 Hz). The averaged spectral difference is computed 



as the mean squared difference of the spectrum averaged N frames before and 

N frames after the frame under consideration. N was set to 8 on the basis of 

experiments performed in [Gop9O]. The sda8000 parameter indicates changes in 

spectral energy from region to region. Sharp spectral changes indicate the presence 

of stop bursts. More gradual changes indicate vowel-nasal boundaries. The sda700 

parameter, computed on DFT coefficients below 700 Hz, is used to help determine 

the onset of voicing, especially vowel onsets. 

a sdf: fast-change spectral difference in adjacent 9 ms intervals, in the frequency 

band 0-8000 Hz. This is computed as the mean squared difference of the spectrum 

in adjacent 9 ms intervals. It has been found useful in detecting abrupt spectral 

changes, characteristic of stop bursts. 

a cm1000: the center-of-mass of the spectrum between 0-1000 Hz; in the region of 

the first formant. This parameter provides a rough estimate of the location of the 

first formant. 

Broad Category Segmentation. Segmentation is performed by a fully-connected, 

feed-forward, three-layer neural network that assigns 7 broad phonetic category scores 

to each 3 ms time frame of the utterance. The broad phonetic categories are: vowel 

(VOC), fricative (FRIC), stop (STOP), closure or silence or background noise (CLOS). 

pre-vocalic sonorant (PRVS), inter-vocalic sonorant (PRVS) and post-vocalic sonorant 

(POVS). A Viterbi search, which incorporates duration and bigram probabilities, uses 

these frame-based output activations to find the best scoring sequence of broad phonetic 

category labels spanning the utterance. 

Language Classification. Language classification is performed by a second fully- 

connected, feed-forward network that uses 80 phonetic and prosodic features derived from 

the time-aligned broad category sequence. These features, described in Section 4.3.2.1, 

are designed to  capture the phonetic and prosodic differences among the four languages. 



4.2 Neural Network Segmentation 

The segmentation and broad classification algorithm described below is a variant of the 

one developed by Gopalakrishnan for isolated English letters [GopSO]. The training and 

test sets for segmentation are described in Section 3.1.8.1. 

4.2.1 Training the Algorithm 

Both the training and test utterances were hand-labeled with the seven broad phonetic 

category labels and checked by a second labeler for correctness and consistency. The 

hand-labeling was semi-automatic. A baseline version of the segmenter was developed 

using a few utterances hand-labeled completely manually. This segmenter was run on 

the remaining utterances to be hand-labeled, and insertions, deletions, substitutions and 

the boundaries of the segments were corrected by human labelers with the aid of an 

interactive display program. 

The three broad phonetic categories PRVS, INVS and POVS were introduced to  

account for nasals (the phonemes /m/, In/,  and /ng/), semivowels (/I/, /r/ ,  /w/, and 

/y/) and flaps (/dx/ and /nx/) depending on their position of occurrence with respect 

to the vowels. For example, a nasal occurring between two vowels was transcribed as 

INVS, while the /I/ in the word "sleep" was transcribed as PRVS (occurs before the 

vowel /iy/), and the /n/ in "tent" was transcribed as POVS (occurs after the vowel /eh/ 

and before the closure /tcl/). 

4.2.1.2 Coarse Sampling of Frames 

It was not computationdy feasible to train on every 3 ms frame in each utterance. 

Therefore, only a s m d  number of frames were chosen at random from each segment. To 

ensure that each category was represented by approximately the same number of frames, 

fewer frames were sampled from the more frequent categories such as vowels and closures. 

Table 4.1 shows the number of tokens and the number of frames of each category used 



to train and test the networks. 

4.2.1.3 Feature Measurements 

Table 4.1: Distribution of Tokens and Frames in the Training and Development Sets 

Feature measurements were derived from the eight parameters described above to provide 

pattern descriptors sufficient to classify each time frame (3 ms) as one of seven broad 

phonetic categories. The measurements were taken from a 330 ms window centered 

on the frame to be classified. Parameter values were sampled from every frame in a 10 

frame (30 ms) window centered on the frame, and every 5 frames (15 ms) in two windows 

spanning 50 frames (150 ms) from each end of the central window. The window sizes were 

determined empirically. The features were designed to provide detailed information in 

the immediate vicinity of the frame and less detailed information about the surrounding 

context. In addition to  the 30 samples from each of zc8000, ptp8000, ptp700, sda8000, 

sda700, sdf, cmlOOO and pitch, the spectrum (64 DFT coefficients) at the frame to be 

classified was also included to give a total of 304 features. 

Label 

VOC 
FRTC 
CLOS 
STOP 
PRVS 
INVS 
POVS 

TOTAL 

4.2.1.4 Network Architecture and Training 

Development Set 

The segmentation network was a fully-connected, feed-forward network with 304 input 

units, 18 hidden units and 7 output units. The number of hidden units was determined 

Tokens 
219 
157 
249 
244 
43 
195 
114 

1221 

!Paining Set 
h m e s  

657 
471 
498 
732 
465 
585 
5 70 

3978 

Tokens 
943 
872 
1151 
981 
220 
848 
465 

5480 

h m e s  
2829 
2616 
2302 
2942 
2413 
2544 
2325 

17971 



experimentally. Figure 4.1 shows the network configuration and the input features. The 

inputs to  the network were normalized to lie between -1.0 and 1.0. This scaling was 

required to minimize local-minimum problems [BC89] and to accentuate differences be- 

tween the features for the seven broad phonetic categories. The normalization procedure 

for the segmenter features is described in detail in [Gop9O]. 
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Figure 4.1: Segmentation Network and Input Features 

The networks were trained using backpropagation with conjugate gradient optimiza- 

tion [BC89]. Each network was trained on 50 iterations through the training vectors. 

The trained network was then evaluated on the vectors in the development set to measure 

generalization. This process was continued and the performance of the network on the 

test vectors was recorded after every 50 iterations through the training set. The train- 

ing was stopped when the network had "convergedn (attained maximum generalization); 

convergence was observed as a consistent decrease or leveling off of the classification 

percentage on the test data over successive sets of 50 iterations. The maximum of the 

classification percentage on the test data was taken as the ha1 network score. Typically, 

the networks converged after 500-600 iterations and took 10-20 hours on a Sun 4/75. 

The above procedure was used in all neural network classification experiments described 



in this dissertation. 

4.2.2 Segment er Evaluation 

4.2.2.1 Network Performance 

Several networks were trained with increasing amounts of training data. All of them were 

tested on the development test set. Figure 4.2 shows the effect of increasing the number 

of training speakers per language on the development set classification performance. The 

highest result (83.6%) was obtained with 10 training speakers per language. Figure 4.2 

suggests that performance might further improve with the addition of more training 

speakers. 

#Training Speakers 
per Language 

Figure 4.2: Segmentation: Network Performance on the Development Set 

4.2.2.2 Performance as an Algorithm 

Segmentation performance was evaluated on the 80-utterance final test set using two 

different scoring procedures. In the first one, the labels output by the segmenter were 

compared frame-by-frame with the hand-labels, and the percentage of total frames in 



agreement was computed. In the second method, a string alignment and scoring pro- 

gram developed by NIST' was used. This algorithm treats each segment as a word and 

measures the number of insertions, deletions and substitutions in the segmenter output 

with respect to the hand-labels. With the first method, the overall performance accuracy 

was 85.1%. When scored on the middle 80% and middle 60% of each segment, the accu- 

racy rose to 86.9% and 88.0% respectively, indicating the presence of boundary errors. 

Table 4.2 shows the results for each broad phonetic category, averaged across languages, 

for the entire length, and for the middle 80% and 60% of each hand-labeled segment. 

With the NIST algorithm, the "word" accuracy was 80.4%, with 91.4% correct, 4.0% 

substitutions, 4.6% deletions and 11.0% insertions. 

4.3 Language Identification 

Table 4.2: Segmentation: Frame-by-frame Scoring on the Final Test Set 

Given the broad phonetic sequences, two approaches to language identification were 

Label 

VOC 
FRIC 
CLOS 
STOP 
PRVS 
INVS 
POVS 

evaluated: (a) sliding window approach, and (b) global features approach. Both these 

approaches used an artificial neural network for classification, but differed in the method 

# h m e s  

62027 
17259 
37138 
5458 
1963 
12734 
7413 

'National Institute of Standards and Technology. 

Overall 
Performance 

% Score 
f i l l  Segment 

84.4 
91.7 
86.5 
76.7 
77.3 
85.0 
77.5 

85.1 

Mid 80% 
87.8 
92.8 
86.3 
77.4 
78.2 
86.4 
80.5 

86.9 

Mid 60% 
90.0 
93.1 
85.1 
78.9 
80.6 
87.9 
83.5 

88.0 



of presenting the inputs to the network. The training and test sets for language classifi- 

cation are described in Section 3.1.8.2. 

4.3.1 Sliding Window Approach 

In this approach, features from a moving window of N segments were presented to the 

network at a time. The network produced four language activation scores for each window 

of N segments. There was an increment of I(< N) segments between successive windows. 

The four language activation scores were accumulated as the window progressed through 

the utterance. When the end of the utterance was reached, the language with the 

maximum accumulated activation score was taken as the system response. 

4.3.1.1 Feature Development 

For each segment in a window, the following feature measurements were made: (i) broad 

phonetic label, represented as a vector of length seven, with the appropriate element set 

to 1.0 and the rest set to -1.0, (ii) the segment duration, and (iii) spectral coefficients 

averaged over all the frames in S subsegments of the segment. The spectral coefficients 

were derived from a 7th-order PLP analysis [Hergo] on the waveform. This analysis 

resulted in 8 coefficients (1 energy coefficient and 7 spectral coefficients) for each 3 ms 

frame of the utterance. Thus, there were a total of 7 + 1 + (8 x S )  features from each 

segment. 

4.3.1.2 Network Architecture and Training 

The architecture of the language classification network was similar to that used for seg- 

mentation. The number of input neurons was determined by the values of N and S. The 

number of feature vectors (or windows) obtained per utterance was determined by the 

value of I. The smaller the value of I, the greater the number of windows and hence the 

greater the number of feature vectors. Different values of N,  I, and S were evaluated. 

It was found that the optimal network performance was obtained for N = 15, I = 1 

(single-segment increment), and S = 1 (no subdivisions in each segment). For N = 15 



and S = 1, the network had 240 (= 15 x 16) input neurons, 12 hidden neurons and 4 

output neurons, with the number of hidden neurons being determined experimentally. 

Figure 4.3 displays the network architecture and the schematic of the sliding window of 

segments. Table 4.3 displays the number of feature vectors in the training and develop- 

ment sets, for I = 1. The number of feature vectors in the training set was adjusted so 

that comparable numbers of vectors were obtained from each language. The relatively 

low number for Mandarin (6181) was due to the fact that there were fewer segments per 

utterance on the average in Mandarin than in the other three languages. 
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Figure 4.3: Sliding Window Approach: Network Architecture and Input Schematic 

As before, the input features were normalized to lie between -1.0 and 1.0. The label 

vector and the 7 spectral coefficients were already in the required range and did not 

need any further scaling. The segment duration was normalized as follows: histograms 

of the durations of the 7 broad phonetic categories across all languages were generated. 

For each histogram, the upper and lower duration bounds, maxdur, and mindur,, that 

contained 90% of the data were determined (s being one of the 7 broad categories). 

Individual duration values, dur,, were then normalized to lie between -1.0 and 1.0 using 



the following formula: 

dur, - mindur, 
nmrndur, = 2.0 x ( ) - 1.0 

masdur, - mindur, 

The energy coefficient of the PLP was normalized in similar fashion using upper and 

lower bounds generated from a histogram of all PLP energy values within the utterance. 

The training algorithm and the procedure for determining maximum generalization 

were identical to those described in Section 4.2.1.4. 

Table 4.3: Sliding Window Approach: Distribution of Feature Vectors for I = 1 

Language 
English 

4.3.1.3 Language Identification Performance 

Japanese 
Mandarin 

Tamil 

TOTAL 

The best network performance on the two-speakers-per-language development set was 

71.8%. This result represented the overall recognition accuracy of the 15-segment win- 

dows. The language identification performance on utterances was determined by accu- 

mulating the language activation scores for ad windows in an utterance, as explained 

above. With this method, the language identification performance on the development 

set was 84.4%, with English 67.5%, Japanese 85.0%, and Mandarin Chinese and Tamil 

both 92.5%. 

However, on the 6 speakers-per-language final test set, the corresponding language 

identification performance dropped to 61.6%, with English 79.2%, Japanese 56.7%, Man- 

darin Chinese 39.2% and Tamil 70.0%. Figure 4.4 displays the corresponding confusion 

matrix and the individual language classification percentages. The row labels represent 

the actual language and the column labels represent the system response. The one-way 

lhining Set 
8822 

- 

Development Set 
1568 

8822 
6181 
8822 

32647 

2226 
1391 
2775 

7960 



confusions between the languages are striking. Japanese and Mandarin show a tendency 

to get misdassified as English, while Tamil gets misdassified as Japanese. 

label EN JA MA TA 
----- ---- ---- ---- ---- 
E N 1 9 5  6 4 15 79.2% 
J A I  25 51 9 5 56.7% 
MA 1 46 14 47 13 39.2% 
TA 1 2 34 . 84 70.0% 

Figure 4.4: Confusion Matrix for the Sliding Window Approach 

4.3.2 Global Features Approach 

It is possible that the performance of the sliding window approach could have been 

improved with the addition of more sophisticated features from each segment (e.g., pitch 

contours). But in keeping with the breadth-fist nature of this study, I decided to try 

an approach wherein the features were computed over the utterance as a whole, rather 

than in a moving window. Hence the name global features. 

Since the neural network required all vectors to be of the same length, the global 

features had to  be duration independent, i.e., the feature computation had to yield a 

fixed number of values regardless of the utterance duration. 

4.3.2.1 Feature Development 

Several passes were needed through the iterative process of feature development and 

network training before a satisfactory feature set was obtained. Much of the effort was 

concentrated on exploratory statistical and linguistic analysis of the languages with the 

objective of determining the distinguishing characteristics among them. For example, 

the knowledge that Mandarin Chinese was the only tonal language in the set, led us to 

design features that attempted to capture the large variation in pitch within and across 

segments for Mandarin Chinese utterances. Similarly, the presence of sequences of almost 



equal-length broad category segments in Japanese utterances led us to design an "inter- 

segment duration difference" feature. Histograms of the frequency of occurrence of the 

broad phonetic categories (Figure 3.1) showed that (i) Tamil had the lowest frequency 

of occurrence of fricatives of the four languages, while Mandarin had the highest, (ii) 

Mandarin had the lowest frequency of occurrence of stops, and (ii) Japanese had the 

lowest frequency of occurrence of post-vocalic sonorants. 

The final set of 80 features is described below. All the features were computed over the 

entire length of an utterance and used the time-aligned broad category sequence provided 

by the segmentation algorithm. The numbers in parentheses refer to the number of values 

generated. 

a Intra-segment pitch variation: Average of the standard deviations of the pitch 

within all sonorant segments-VOC, PRVS, INVS, POVS (4 values) 

a Inter-segment pitch variation: Standard deviation of the average pitch in a l l  sono- 

rant segments (4 values) 

a Frequency of occurrence (number of occurrences per second of speech) of triples of 

segments. The following triples were chosen based on visual inspection of the broad 

phonetic sequences in each language: VOC-INVS-VOC, CLOS-PRVS-VOC, VOC- 

POVS-CLOS, STOP-VOC-FRIC, STOP-VOC-CLOS, and FRIC-VOC-CLOS (6 val- 

ues) 

a Frequency of occurrence of each of the seven broad phonetic labels (7 values) 

a Frequency of occurrence of all segments (number of segments per second) (1 value) 

a Frequency of occurrence of all obstruents (STOPS and FRICs) (1 value) 

Frequency of occurrence of all sonorants (1 value) 

a Ratio of number of sonorants to total number of segments (1 value) 

a Fraction of the total utterance duration devoted to each of the seven broad phonetic 

labels (7 values) 



a Fraction of the total utterance duration devoted to all sonorants (1 value) 

a Frequency of occurrence of voiced obstruents (1 value). An obstruent was consid- 

ered voiced if more than half the number of frames in it were labeled as voiced by 

the neural network pitch tracker [BCVASl] 

a Ratio of voiced consonants to total number of consonants (1 value) 

a Average duration of the seven broad phonetic labels (7 values) 

a Standard deviation of the duration of the seven broad phonetic labels (7 values) 

a Segment-pair ratios: the ratios num(AB)/num(AX) and num(AB)/num(YB), 

where A and B are the members of a particular segment pair, X is any segment 

that can legally follow A, Y is any segment that can legally precede B, and num(S) 

is a function that returns the number of occurrences of the segment-pair S. The 

segment-pairs were selected based on histogram plots generated on the training set. 

Examples of selected pairs: POVS-FRIC, VOC-FRIC, INVS-VOC, etc. (27 values) 

a Inter-segment duration difference: Average absolute difference in durations between 

successive segments (1 value) 

a Standard deviation of the inter-segment duration differences (1 value) 

a Average distance between the centers of successive vowels (1 value) 

a Standard deviation of the distances between centers of successive vowels (1 value) 

4.3.2.2 Network Architecture and Training 

The network had 80 input neurons, 29 hidden neurons and 4 output neurons. The number 

of hidden neurons was determined experimentally. All 80 features were normalized to 

lie between -1.0 and 1.0, using the normalization procedure described in Section 4.3.1.2. 

The training algorithm and the procedure for determining maximum generalization were 

identical to those described in Section 4.2.1.4. Table 4.4 displays the distribution of 



feature vectors in the training, development and final test sets. Note that each utterance 

yields one feature vector, unlike the sliding window approach (Table 4.3). As a result, 

the neural network classification score for each utterance was the language identification 

score for that utterance. 

Table 4.4: Global Features Approach: Distribution of Feature Vectors 

Language 
English 

4.3.2.3 Language Identification Performance 

Japanese 
Mandarin 

Tamil 

TOTAL 

Single Utterances. During the feature development phase, the 2 speakers-per-language 

development test set was used. The classifier performed at an accuracy of 90.0% on this 

small test set. For final evaluation, the development test set was combined with the orig- 

inal training set to form a 14 speakers-per-language training set. The performance of the 

classifier on the 6 speakers-per-language final test set was 79.6%. The individual language 

performances were English 75.8%, Japanese 77.0%, Mandarin Chinese 78.3%, and Tamil 

88.0%. This result was obtained with training and test set utterances that were approx- 

imately 5.5 seconds long on the average, and contained a mixture of fixed-vocabulary 

utterances (days-of-the-week, months-of-the-year and digits) and free speech. To make 

sure that the performance was not being inflated by these fixed segment sequences, the 

fixed vocabulary utterances in the test set were removed. With just the free-speech test 

set, the overall performance dropped from 79.6% to 79.5%, an insignificant change. 

For the sake of fair comparison between the global features approach and the sliding 

window approach, a network was trained on global features from the same 12 speakers- 

per-language training set used in the sliding window approach (Section 4.3.1). This 

Ttuining Set 
239 
213 
240 
238 

930 

Development Set 
40 

Final Test s e t  
120 

40 
40 
40 

160 

100 
120 
120 

460 



network performed at 78.0% accuracy on the final test set. This represents a 42.7% 

reduction in the error-rate compared to the 61.6% accuracy obtained with the sliding 

window approach. Figure 4.5 displays the confusion matrix and the individual language 

scores corresponding to the 78.0% result. The one-way confusions seen between Japanese, 

Mandarin and English, and between Tamil and Japanese with the sliding window features 

(Figure 4.4) are substantially reduced with the global features. Mandarin displays the 

largest jump in performance, $om 39.2% to 76.7% (a 61.7% reduction in the error- 

rate). Also, the overall identification accuracy with global features showed no appreciable 

increase (78.0% to  79.6%) with increase in the training data from 12 speakers to 14 

speakers per language. 

label EN JA MA TA 
----- ---- ---- ---- ---- 
EN 1 95 8 10 7 79.2% 
J A I  16 71 2 11 71.0% 
MA 1 14 5 92 9 76.7% 
T A 1  6 8 I 85 85.0% 

Figure 4.5: Confusion Matrix for the Single Utterances 

Concatenated Utterances. To observe the effect of training and testing with longer 

durations of speech per utterance, a series of experiments were conducted in which pairs 

and triples of utterances from each speaker were concatenated end-to-end (with 350 rns 

of silence in between the utterances to simulate natural pauses) in both the training and 

test sets. It is to be noted that the total duration of speech used in training and testing 

remained unchanged for all these experiments. This concatenation of the utterances was 

preferred to the time-consuming and labor-intensive task of recruiting more speakers 

in each language and having them speak longer utterances. Table 4.5 summarizes the 

performance of the classifier when trained and tested on different durations of speech 

per utterance. Each row of the table shows the effect of testing on progressively longer 

utterances for a given training set, while each column of the table shows the effect 



of training on progressively longer utterances for a given test set. Not surprisingly, 

the best performance (89.5%) is obtained when the classifier is trained and tested on 

three utterances concatenated together. Figure 4.6 displays the corresponding confusion 

matrix. As expected, performance of all languages increases with duration. The largest 

reduction in error-rate with respect to the single utterances (Figure 4.5) was obtained 

for English (80%), while the smallest drop was for Mandarin Chinese (23.0%). 

With just the free speech utterances in the test set, the corresponding best language 

identification score dropped from 89.5% to 88.5%, an increase of 9.5% in the overall 

error-rate. 

Table 4.5: Percentage Accuracy on Varying Durations of Speech per Utterance 

Avge. Dumtion 
of Training Utts. 
(set) 

Avge. Dumtion o f  
Test Utts. (sec) 

label EN JA MA TA 
----- ---- ---- ---- ---- 

E N 1  40 0 1 1 95.2% 

J A 1  6 28 0 0 82.4% 
MA / 3 3 35 1 83.3% 
T A )  0 1 0 34 97.1% 

Figure 4.6: Confusion Matrix for the Concatenated Utterances 

Error-rates vs. McNemar's Test. It is pertinent at this stage to explain my pref- 

erence for reporting reduction in error-rates rather than p-values from the McNemar's 

Test, while comparing neural network classification results. In selecting the "optimaln 



network configuration (i.e., number of hidden units and the random seed for the initial 

network weights) through parametric experiments, it is impossible to examine the space 

of all possible network configurations. There might well be a combination of hidden units 

and random weight seed that performs better than our chosen "optimal" configuration. 

Thus, differences between a pair of classification results are caused not only by random 

factors such as the selection of a particular set of training samples, but also by these 

complex deterministic choices. For this reason, it does not make mathematical sense 

to talk about statistical significance (p-values) of neural network classification results. 

Reporting the changes in error-rates provides a more realistic comparison of the results 

in this case. 

4.4 Discussion 

Clearly, the features used in the sliding window approach did not generalize well to the 

larger final test set. The inflated performance on the development set can be attributed 

to  a favorable (albeit random) set of speakers from each language in that set. It should 

be pointed out that the feature set did not contain any pitch information, which might 

explain the low recognition accuracy of Mandarin Chinese (39.2%). 

The results of the global feature approach suggest that (i) features computed on the 

utterance as a whole perform better than features in a moving analysis window, and (ii) 

global features perform better on longer utterances. While it is debatable whether the 

first observation would still be valid if more sophisticated moving-window features were 

to be examined, the second observation is certainly valid, given the nature of the feature 

set. Segment-based statistical features tend to be more reliable with a larger number 

of segments. Also, it is interesting that a language identification accuracy of 89.5% was 

possible without using any spectral information in the classifier feature set. All of the 

features were based on the broad phonetic category segment sequences provided by the 

segment er . 
Any attempt to use spectral features, derived from utterances of varying length, as 



input to a static neural network should address the following questions: how does one 

account for differences in utterance duration? How does one pick the frames from which 

the spectral information is sampled? What number of frames is considered "optimal?" If 

an utterance is shorter than the chosen fixed number, the feature vector will have to be 

padded with zeros, since the network requires equal-length vectors. Is this acceptable? 

These questions axe addressed in the next chapter. 

4.5 Summary 

In this chapter, I have described a segmental approach to automatic language identifica- 

tion using four languages and high-quality speech. Neural network-based broad phonetic 

segmentation of speech was followed by the computation of linguistically motivated fea- 

tures based on the broad phonetic sequences. These features were fed into a second 

network which classified the languages. It was found that features computed over the 

entire utterance provide better language identification performance than features from 

a sliding window of segments. 

Despite the fact that the high identification accuracy was obtained on a set of lan- 

guages with wide phonological differences, the results of this feasibility study are encour- 

aging. With just the information in seven broad phonetic categories, four languages were 

identified with an accuracy of 89.5% using utterances that were 17.1 seconds long on the 

average. The next chapter examines the application of this approach to a more difficult 

task: identification of ten languages using speech recorded over commercial telephone 

lines. 



Chapter 5 

Automatic Language Identification 

Using Telephone Speech 

5.1 Introduction 

Despite the myriad problems associated with telephone speech-low bandwidth, channel 

distortion, excessive noise, hand-set variability-it does have one overwhelming advan- 

tage: it is the kind of speech we encounter every time we use the phone. Given the 

widespread use of telephones, a language identification system using telephone speech 

will be significantly more useful than one trained on clean, laboratory speech. 

This chapter describes research in automatic language identification using speech 

recorded over commercial telephone lines. The speech corpus contained ten languages 

(Section 3.2) but the basic approach was essentially the same as that for high-quality 

speech: segmentation of speech into broad phonetic categories, followed by language 

classification using linguistically motivated features measured on sequences of the broad 

phonetic categories. The main difference was that spectral and pitch-based features, 

unexplored in the research using high-quality speech, were evaluated using telephone 

speech. Further, detailed parametric analyses of the feature set were carried out to 

determine the features most useful for language identification. 

The neural networks described in this chapter were all trained using backpropagation 

with conjugate gradient optimization [BC89]. In every case, the testing procedure and 

criterion for stopping training were identical to those described in Section 4.2.1.4. 



After a description of the broad category segmentation, the rest of this chapter is 

devoted to testing the hypothesis that knowledge-based features provide better language 

identification performance than features with minimal linguistic knowledge encoded in 

them. The performance of baseline segment-based features is compared to that obtained 

with features that are either linguistically motivated or derived from exploratory sta- 

tistical analyses of the segment sequences. Such features include (a) features based on 

triples and pairs of broad phonetic categories, and (b) pitch variation features. In ad- 

dition, spectral features, with and without segmentation, are also evaluated. The tasks 

examined include identification of all ten languages, and pairs and triples of languages 

with English as the anchor. Where applicable, the effect of reducing the dimension of 

the feature set through principal component analysis and visual inspection of feature 

plots is also investigated. The individual feature sets are evaluated on the development 

test set and a combined set of features is determined. Using this combined set, language 

identification performance on the final test set is reported. 

5.2 Ten-language Telephone Speech Corpus 

The ten-language telephone speech corpus consisted of fixed-vocabulary and spontaneous 

speech in English, Farsi (Persian), French, German, Japanese, Korean, Mandarin Chi- 

nese, Spanish, Tamil and Vietnamese, produced by native speakers of each language. The 

design and development of this corpus, and the subdivision into training, development 

and test sets are described in detail in Section 3.2. 

5.3 Broad Phonetic Category Segmentat ion 

The broad phonetic segmentation algorithm described here is a variant of the fine pho- 

netic segmentation algorithm developed for telephone speech in English [Roggl]. It is 

similar to  the one described in Section 4.2 for high-quality speech, in the sense that 

it uses the same seven broad phonetic categories and the same procedure: frame-based 

neural network classification followed by a Viterbi search using duration and bigram 



probabilities. There were, however, two major differences: 

a the spectral coefficients were obtained from a PLP analysis of the waveform [Her901 

instead of the DFT. 

frames randomly sampled from each hand-labeled segment (Section 4.2.1.2) for 

training were augmented with frames sampled at the edges of segments. Such edge- 

sampling has been shown to improve frame classification performance for Enghsh 

phonemes [Rogg 11 . 

5.3.1 Why Use PLP? 

Conventional linear predictive coding (LPC) analysis [Mak75] models the power spec- 

trum of speech equally well at all frequencies of the analysis band, making it inconsistent 

with human auditory processing. For example, it has been shown that the human ear 

is most sensitive in the middle range of the auditory spectrum, and has decreasing fre- 

quency resolution above 800 Hz. The PLP analysis of speech [Her901 attempts to mimic 

the properties of the human auditory system by applying mathematical transformations 

to the short-term power spectrum produced by conventional LPG analysis, then approx- 

imating the new, auditory-like spectrum with an autoregressive all-pole model. The 

mathematical transformations are, in order: integration over simulated critical-band au- 

ditory masking curves, followed by resampling the integrated spectrum in approximately 

1 Bark intervals; pre-emphasis by a simulated fixed equal-loudness curve; and com- 

pression of the resulting spectrum through the cubic root nonlinearity to  simulate the 

intensity-loudness power law of hearing. 

PLP analysis also has the advantage of producing a more compact representation 

than the DFT. Janssen et al. [JFCSl] showed that 8 PLP coefficients per frame worked 

just as well as 40 DFT coefficients per frame for frame-based phonetic classification of 

English letters using high-quality speech. Junqua [Jun89] demonstrated the superiority 

of PLP over standard LPC on an alphadigit recognition task. A comparison of PLP, 

DFT and cochleagrams [Lyo82, Sla88] on the English letter recognition task by Fanty 



and Cole [FC91] showed the superiority of PLP over the other two representations. 

Creekmore et al. [CFC91] investigated five spectral representations-PLP, DFT and 

three representations based on LPC-for speaker-independent phonetic recognition using 

the TIMIT corpus. They found that the PLP outperformed the other representations 

with less computation and shorter learning times. Chigier and Leung [CL92] found that 

the PLP produced the lowest error-rates on a 39-phone recognition task using multi-layer 

perceptrons, for both the TIMIT and NTIMIT [JKBSSO] corpuses. In the light of such 

substantial evidence for its effectiveness, for both high-quality and telephone speech, 

PLP analysis was the spectral representation of choice for the spectral-based features 

used in this research. 

Unless otherwise specified, the PLP analysis performed in all the experiments in 

this dissertation was of the 7th-order with a 10 ms window and a 3 ms increment. 

This resulted in 7 cepstral coefficients and 1 energy coefficient per frame. The cepstral 

coefficients were weighted with an exponential window so that all coefficients had a 

similar range for input to a neural network. The energy coefficient was normalized with 

respect to the minimum and maximum values in each utterance using a formula similar 

to that in Equation 4.1. 

Roginski [Roggl] developed a neural network- based fine phonetic classifier for telephone 

speech for the English alphabet recognition task. He demonstrated the benefits of sam- 

pling at the edges of the hand-labeled segments in addition to sampling frames at random 

within the segments. He identified a set of "critical" phone boundaries that needed to 

be corrected. He showed that edge-sampling dramatically improved placement of the 

[b]/[iy] boundary. Overall, the random sampling network placed 46.4% of "critical" 

phone boundaries within one frame of the hand labels, compared to  58.2% by a network 

trained on both random and edge-samples. Roginski's experiments and visual inspection 

of the broad phonetic segmentation output provided compelling evidence of the need to 

sample at the edges of the hand-labeled broad phonetic segments. 



In our experiments, the randomly sampled frames from each segment were augmented 

with equal numbers of edge-samples from both edges of the segment. 

5.3.3 Feature Development 

The spectral features consisted of 120 averaged PLP coefficients taken from various 

points in a 435 ms window centered around the frame to be classified. These features 

were empirically derived to capture the contextual information in the vicinity of each 

frame [FCR92]. Figure 5.1 shows the sampling intervals for the PLP coefficients in the 

context surrounding the frame to be classified. The solid boxes indicate 9 ms and 15 ms 

intervals over which PLP coefficients are averaged. Dashed boxes indicate 18 ms intervals 

that are skipped. 

m:x~:mm mnxm~:mxb;m:~a: q q :  m:p: m;~a: g:~a:m:~a: px: i q  
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Figure 5.1: Sampling Intervals for the PLP coefficients. 

Experiments were conducted to examine the effect of adding waveform-based features 

such as zero-crossing rate and peak-tepeak amplitude and spectral features such as spec- 

tral difference to  the 120 PLP-based features. These features produced no improvement 

in comparison to networks that were trained with just the 120 PLP-based features. 

5.3.4 Segmenter Training 

As before, the utterances in the training and test sets were hand-labeled with the 7 

broad phonetic categories. Table 5.1 displays the distribution of tokens and frames of 

each broad phonetic category used to train the networks. The numbers in the h m e s  

column for both the training and development sets include 3000 edge-sampled frames 

from each broad phonetic category, the balance consisting of randomly sampled frames. 

The network had 120 input units, 35 hidden units and 7 output units, with the number 

of hidden units determined experimentally. 



Table 5.1: Distribution of Tokens and Frames in the Training and Development Sets 

1 Label 1 IPrainina Set I Develo~ment Set 1 
I 

" I I Tokens I h m e s  I Toke 
I VOC I 

I I I I 

3274 1 6251 1 1297 1 5578 1 
FRIC 
CLOS 
STOP 
P RVS 
INVS 
POVS 

1 TOTAL ( 10069 1 45094 1 3778 ( 38892 ( 

5.3.5 Viterbi Search 

The frame-by-frame outputs of the segmenter were converted into a time-aligned se- 

quence of the 7 broad phonetic category labels using a Viterbi search with duration 

and bigram constraints obtained from the hand-labeled utterances of the training set. 

In addition, the search used an insertion penalty that penalized all segments, reducing 

the incidence of short, spurious insertions in the segment sequence. Different values of 

the insertion penalty were evaluated on the development set using the output scores of 

the best network. The value that provided the best frame-by-frame comparison score 

(Section 4.2.2.2) on the development set, 0.035, was chosen. 

5.3.6 Segmenter Evaluation 

Several networks were trained and evaluated on the development set. The best network 

performance was 71.6% on the development set. The segmenter was scored on the final 

test set using the two scoring techniques described in Section 4.2.2.2. With the frame-by- 

frame comparison scoring method, the performance accuracy was 79.8%. This compares 

favorably with 85.1% for 4 languages using high-quality speech. When scored on the 

middle 80% and middle 60% of each segment, the accuracy rose to 82.2% and 83.9% 

respectively. Table 5.2 shows the performance accuracy for each broad phonetic category, 



averaged across languages, for the entire length, and for the middle 80% and 60% of 

each hand-labeled segment. With the NIST word-alignment algorithm, the performance 

accuracy was 72.2%, with 81.8% correct, 6.9% substitutions, 11.2% deletions, and 9.7% 

insertions. In comparison, the word-accuracy with high-quality speech was 80.4%. 

5.4 Language Classification 

Table 5.2: Telephone Segmentation: Frame-by-frame Scoring on the Final Test Set 

To the best of my knowledge, all of the literature on linguistic and phonological dif- 

ferences between languages examines differences at the level of phonemes or phones 

Label 

VOC 
FRIC 
CLOS 
STOP 
PRVS 
INVS 
POVS 

[Cry87, Com90, Mad841; levels that are beyond the scope of this dissertation. Therefore, 

#Rwnes 

80136 
26562 
80513 
6853 
3739 

13922 
10745 

% Score 

visual inspection and statistical analyses of the broad phonetic segment sequences were 

Overall 
Performance 

' f i l l  Segment 
76.5 
76.6 
89.4 
53.6 
63.5 
74.2 
69.7 

79.8 

the main tools used in the selection and development of features for language identifi- 

cation. From this point onwards, the term "segment" will be used to refer to "broad 

phonetic category segment," unless otherwise specified. 

5.4.1 Feature Selection 

Mid 80% 
80.4 
79.2 
91.1 
54.0 
64.1 
75.7 
71.8 

82.2 

The segment-based features used in the language classification experiments were moti- 

vated by the following objectives: 

Mid 60% 
83.6 
80.7 
91.8 
56.0 
64.9 
77.4 
73.5 

83.9 



r to exploit specific known language differences e.g., the tone variations in Mandarin, 

the "mora" in Japanese, the presence of consonant clusters in English, etc., 

to determine differences in the general statistics of segment sequences from the ten 

languages. 

Features based on segment sequences can be divided into two categories: 

r segment label and duration information, with minimum encoding of linguistic 

knowledge. The objective was to determine if the neural network could automat- 

ically extract the statistical differences among languages given all of the segment 

information, without any preprocessing. 

r features derived from exploratory analyses of segment sequences, such as aver- 

age duration, ratio of number of occurrences of each broad category, frequency of 

segment-pairs, segment-triples, etc. The objective here was to identify features that 

accentuated language differences, with the help of statistical analyses of segment 

sequences, and to present the processed information to the network. 

In the following sections, I test the hypothesis that language classifiers perform sig- 

nificantly better with knowledge-based features than with features that have minimal 

linguistic knowledge encoded in them. To this end, the performance of a baseline clas- 

sifier that uses just segment duration and label information is compared with that of 

classifiers using knowledgebased features derived from pairs and triples of broad pho- 

netic categories. The use of spectral features, both with and without segmentation, 

is also examined. The experiment using spectral features without segmentation pro- 

vides yet another baseline result for language identification performance. It illustrates 

the level of language identification accuracy possible without any segmentation of the 

speech signal. 

To determine if the features being used were redundant, principal component analysis 

and visual inspection of boxplots (described in Section 5.4.5) were used to  reduce the 

dimension of the feature space. 



While the classification performance of pairs of languages and other language com- 

binations smaller than ten might indeed be informative, it was decided to focus on the 

ten-language task during the feature development phase, since it was the most challenging 

of all the classification tasks with this corpus. Therefore, where feasible, the experiments 

examined classification of all ten languages with a single network. In cases where using 

input features from all ten languages at once was computationally infeasible, or where 

a mere concept proof was considered more important than detailed performance figures 

involving all languages, the classification involved just English and Japanese (a single 2- 

language network) or the nine language pairs with English as the anchor language (nine 

separate 2-language networks). Section 5.4.10.2 examines classification performance of 

language pairs and other smaller language combinations on the final combined feature 

set. 

5.4.2 Baseline Experiment - Segment Duration and Label 

This experiment was designed to determine the language discrimination ability of an 

artificial neural network when presented solely with information about the duration and 

category scores of each broad phonetic category segment in the utterance. The sliding 

window approach, used in Section 4.3.1 for high-quality speech, was used here. The 

salient aspects of the approach are summarized below. 

Let L be the number of languages being classified. Features from a moving window 

of N segments were presented to the network at a time. The network produced L 

language activation scores for each window of N segments. There was an increment of 

I(< N) segments between successive windows. The L language activation scores were 

accumulated as the window progressed through the utterance. When the end of the 

utterance was reached, the language with the maximum accumulated activation score 

was taken as the system response. 

5.4.2.1 Feature Computation 

For each segment in a window, the following feature measurements were made: 



the segment duration 

a vector of length seven, representing the broad phonetic label. There were two 

experimental conditions depending on the composition of this vector: 

- It was either a binary-valued vector, i.e., the element corresponding to the 

broad phonetic category label of the segment was set to 1.0 and the rest set 

to  -1.0, or, 

- it contained the averaged frame-based activation scores from the segmenter 

network for each of the seven broad phonetic categories. The averaging was 

done over all frames within the segment. 

Thus, there were a total of 8 features from each segment. Given that on the average, there 

were about 120 segments per utterance and 271 utterances per language in the training 

set, a large number of feature vectors were generated per utterance (960 = 8 x 120), 

and per language (260160 = 960 x 271), making it computationally infeasible to  train 

a single network using vectors from all ten languages at once. Therefore, nine separate 

pairwise networks, with English as the anchor language, were trained and evaluated. 

5.4.2.2 Network Architecture and Training 

The number of input neurons was determined by the value of N, size of the moving 

window. The number of feature vectors (or windows) obtained per utterance was deter- 

mined by the value of I, the window increment. The smaller the value of I, the greater 

the number of windows in an utterance and hence the greater the number of feature 

vectors. Parametric experiments were conducted on just the English-Japanese network 

to determine the optimal values for N and I. For these experiments, the label vec- 

tor was binary-valued. The optimal language identification performance was obtained 

for N = 15 and I = 1 (single-segment increment). This configuration was then used 

to determine the optimal composition of the label vector. It was found that the av- 

eraged segmenter network scores outperformed the binary values. The results of these 

parametric experiments are described in the next sub-section. 



Thus, for the language-pair experiments, with N = 15 and I = 1, the networks had 

120 (= 15 x 8 )  input neurons, either 24 or 32 hidden neurons, and 2 output neurons, 

with the number of hidden neurons being determined experimentally for each language 

pair. 

5.4.2.3 Normalization 

The input features were normalized to lie between 1.0 and -1.0 using a generalized form 

of Equation 4.1. It is worth specifying this generalized normalization formula, since it 

was used to normalize almost all input features described in this chapter. 

F; - minF; 
normF; = 2.0 x ( ) - 1.0 

max F; - minF, 

where f i  is the ith feature under consideration, minF; and mas4 are the minimum and 

maximum values of F;, and norme is the normalized value of F;. min& and maxF; 

are obtained from the 5th and 95th percentiles of a histogram of F; generated on the 

training data across ad languages. Normalizing the features in this fashion maximizes 

the differences in the distributions (if any) for input to the network. 

The segment duration feature was normalized with respect to the minimum and 

maximum duration values for that broad phonetic category over all languages. The 

averaged frame-based scores were normalized with respect to the minimum and maximum 

values within each label vector. 

5.4.2.4 Language Identification Performance 

Parametric Experiments with English and Japanese. With the binary-valued 

label vectors, the best network performance was 62.3%, with N = 15 and I = 1. The 

corresponding language identification score, i.e., the percentage of whole utterances cor- 

rectly classified, was 75.9%. With the averaged frame-based scores in the label vector, the 

language identification score improved to 83.2%, a reduction in the error-rate of about 

30%. This is to  be expected, since for a given segment, the averaged segmenter activa- 

tion scores impose a seven-tier ranking on the label values, providing more discriminant 



information to the network than is possible with the binary-valued vector, which does 

not differentiate between six of the seven values. The results of the English-Japanese 

parametric experiments are shown in Table 5.3. "BV" and "SS" refer to the binary- 

valued vector and the segmenter scores, respectively. Imt and Ibc,, refer to the segment 

increments used for testing the network and evaluating the language identification score 

respectively. The Network % column shows the percentage of segment windows correctly 

classified. The Score % column shows the language identification score. Training the 

network with Imt > 1, and scoring with I,,, = 1 (indicated by scores with asterisks) 

did have the advantage of reducing the training file sizes and thus the training time, but 

produced only very slight improvements in the identification scores (68.6% to 70.0% for 

Imt = 5, and 78.2% to 80.5% for Imt = 2). Training and testing with Imt = I,,,, = 1 

provided superior performance in all cases. 

Table 5.3: Baseline Experiments using English and Japanese 

Label Vector 
BV 
BV 
BV 
BV 
BV 
SS 
S S 
S S 

1 N I I,* 1 I,,, 1 Network % 1 Score % 

Other Language-Pairs. The pairwise classification experiment with N = 15, Imt = 1 

and I,,, = 1 was repeated with the remaining eight languages, with English as the 

anchor language. Table 5.4 displays the results of these experiments. The English- 

Japanese result is included for the sake of completeness. The language pairs are denoted 

by pairs of two-letter codes made up of the f i s t  two letters of the language names. The 

columns labeled L1 and L2 show the identification scores of the first and second languages 

in each pair. With the exception of Farsi, Korean and Vietnamese, the performance of 



English is always lower than that of the second language in the pair, indicating that 

English was more likely to get confused with the second language in these pairs than 

vice-versa. This effect was most pronounced for English and German, both Germanic 

languages (42.3% and 72.0% respectively). 

To summarize, with just the segment label and duration information from utterances 

that are 13.4 seconds long on the average, it is possible to distinguish between two 

languages with an accuracy ranging from 57.0% (English-German) to 85.3% (English- 

Tamil). The median score was 74.0%. 

Table 5.4: Baseline Experiments: Language Pairs with English as Anchor 

5.4.3 Experiments with Spectral Features 

Given that static neural networks require equal-length feature vectors, how does one 

present spectral features, derived from utterances of varying length, as input? There are 

two levels of granularity: frame-level and segment-level spectral features. With frame- 

level spectral features, the following questions need to be addressed: How does one pick 

the frames from which the spectral information is sampled? What number of frames is 

considered "optimal?" If an utterance is shorter than the chosen fixed number, the fea- 

ture vector will have to be padded with zeros. Zero-valued features might be misleading 

to  the network. If the utterance is very long, then the spectral sampling might be too 

coarse. With segment-level spectral features, the usual method is to average the spectral 

Overall Score (%) 
69.3 
72.0 
57.6 
83.2 
65.3 
74.0 
75.2 
85.3 
75.8 

L2 Score (%) 
69.2 
74.6 
72.0 
91.8 
62.0 
75.9 
82.0 
87.9 
70.2 

L1 Score (%) 
69.4 
69.4 
42.3 
74.8 
68.5 
72.1 
68.5 
82.9 
81.1 

Language Pair 
EN- FA 
EN-FR 
EN-GE 
EN- JA 
EN-KO 
EN-MA 
EN-SP 
EN-TA 
EN-VI 

Network % 
63.1 
63.1 
55.7 
66.8 
60.3 
63.1 
66.3 
75.2 
66.8 



coeficients from different subdivisions of the segment. The main concern here is the 

amount of smearing caused by the averaging. The greater the number of subdivisions 

of the segment, the greater the spectral variation preserved across the segment, and the 

larger the dimension of the input feature vectors. 

Two experiments were conducted using just PLP-based spectral features to identify 

English and Japanese. The features were designed to be independent of the utterance 

duration by using spectral information at the frame and segment levels. 

5.4.3.1 Spectral Experiment I: Frame-based P L P  Scores 

A baseline approach to using spectral features is to classify each 3 ms frame as one of the 

two languages using a neural network, and accumulate the network output activations 

across d frames of the utterance for each language. The language with the maximum 

accumulated activation score is the winner. This approach does not use broad phonetic 

category information. 

Feature Computation. The spectral features consisted of 56 averaged PLP coeffi- 

cients taken from 7 regions spanning a 171 ms window centered on the frame to be 

classified. The sampling intervals are shown in Figure 5.2. The solid boxes indicate 9 ms 

and 15 ms intervals over which PLP coefficients are averaged. Dashed boxes indicate 

18 ms intervals that are skipped. The objective was to provide substantial contextual 

information about the chosen frame to the network. 

Figure 5.2: Spectral Experiment I: Sampling intervals for the PLP features. 

F rame  Sampling a n d  Network Training. Since it was not computationdy feasible 

to  train a network using features from all frames in each utterance, frames were sampled 

at fixed intervals from each utterance. Two intervals were evaluated, 24 ms (8 frames) 



and 45 ms (15 frames). The smaller the interval, the greater the number of feature vec- 

tors generated. Resource constraints prevented experimentation with smaller intervals. 

Larger intervals were deemed useless based on the reduction in performance with the 45 

ms interval. 

Results. Several network configurations were evaluated. Table 5.5 summarizes the 

frame-by-frame classification performance of the different networks. The best network 

performance, 59.0%, was obtained from the 56-48-2 network trained on data with a 24 ms 

sampling interval. The results indicate that all networks performed at approximately the 

same level of accuracy. The test utterances were scored on the two best networks. The 

language identification score corresponding to the 56-42-2 network was 70.0% and that of 

the 56-48-2 network was 69.2%. The results of this spectral experiment provide a baseline 

for English- Japanese identification performance. Using just spectral information and no 

segmentation, English and Japanese were identified with 70% accuracy. In the following 

sections, performance on this task using more sophisticated features is examined. 

Table 5.5: Spectral Experiment I: Identification Results 

5.4.3.2 Spectral Experiment 11: Averaged PLP Coefficients in Each Segment 

Sampling Interval (ms) 
24 

Feature Computation. PLP coefficients were averaged across all frames within each 

segment so that a single vector of 8 spectral features was obtained from each segment. 

The sliding window approach described in Section 4.3.1 for label and duration was then 

Configurntion 
56-32-2 

Frame Acc. (%) 
58.0 

Id. Score (%) 



used with N = 15 and I = 1, so that each input feature vector had 120 (= 15 x 8) 

spectral features. 

Results. The best network configuration, 120 (= 15 x 8) inputs, 18 hidden units and 

2 output units, performed with an accuracy of 58.8%. The corresponding language 

identification score was 65.0%. This comparatively low result is to be expected given 

that the averaging smeared over a lot of spectral variation within each broad phonetic 

segment. 

5.4.4 Adding Spectral Information to Baseline Features 

Given the encouraging result of the label + duration baseline experiment (with averaged 

segmenter network scores) and the two baseline spectral experiments, the next logical 

step was to examine the effect of adding each of the two spectral feature sets to  the 8 label 

and duration features computed for each segment. For the sake of efficiency, the combi- 

nation experiments were conducted with English and Japanese only, with the objective 

of extending it to  other language pairs only if significant performance improvements were 

obtained. 

5.4.4.1 Combination Experiment I: Label + Duration + Frame-based PLP 

scores 

Procedure. The PLP features for each segment were obtained as follows: Frame-based 

PLP network actimtion scores (from the PLP network in Spectral Experiment I) were 

accumulated for each language within the segment. The accumulated score was then 

divided by the segment duration (in frames) to get the averaged PLP activation score 

per frame for that language. The two averaged scores (for English and Japanese) were 

added to the eight label and duration features to obtain 10 features per segment. The 

sliding window approach was then used with N = 15 and 1 = 1. Each input vector to 

the network contained 150 (= 15 x 10) features. 



Results. The best network performance, 72.7%, was obtained with a 150-42-2 network. 

When scored on the development set utterances, however, the language identification 

performance was only 74.4%. Comparing this to the 83.2% obtained by the label and 

duration features alone (Section 5.4.2.4) and the 70.0% obtained with the frame-based 

PLP features alone (Section 5.4.3.1) it appears that the two PLP network activation 

scores per segment actually hurt identification performance. 

5.4.4.2 Combination Experiment 11: Label + Duration + Averaged PLP in 

Segment 

Procedure. For each segment, PLP coefficients averaged across the entire segment 

(8 values) were added to the 8 label and duration features for a total of 16 features per 

segment. The sliding window approach with N = 15 and I = 1 was used. Each input 

vector to  the network contained 240 (= 15 x 16) features. 

Results. The best network performance, 67.7%, was obtained using a 240-75-2 net- 

work. The language identification score on the development set utterances was 80.5%. 

This result represents a 23.8% reduction in error-rate compared to the score obtained 

by adding the frame-based PLP scores to the label and duration features (74.4%) and a 

substantial 44:3% reduction in error-rate compared to using the PLP coefficients alone 

(65.0%). 

5.4.4.3 Discussion 

The results of the experiments with the baseline and spectral features on the English- 

Japanese task are summarized in Table 5.6. The averaged PLP coefficients perform 

much better in conjunction with the label and duration features (80.5%) than in isolation 

(65.0%). Adding the PLP coefficients to the label and duration features actually lowered 

performance from 83.2% to 80.5%, an increase in the error-rate of 16.1%. 

On the other hand, the framebased PLP features (70.0%) performed better than the 

averaged PLP coefficients (65.0%) in isolation. When added to the label and duration 



Table 5.6: Summary of Baseline and Spectral Experiments on English and Japanese 

Feature 
Dur. + Label 

features however, the averaged frame-based PLP network scores caused a steeper drop 

in performance (83.2% to 74.4%) than the averaged PLP coefficients (83.2% to 80.5%). 

In either case, addition of PLP-based spectral features does not help overall language 

identification performance. The label and duration features still produce the best lan- 

guage identification score of 83.2%. Based on these experiments, it was not considered 

worthwhile to investigate PLP-based spectral features further in this dissertation. 

Accuracy (%) 
83.2 

Frame-based PLP scores 
Avge. PLP in each segment 
Dur. + Label + Frame-based PLP 
Dur. + Label + Avge. PLP 

5.4.5 Boxplots 

70.0 
65.0 

74.4 
80.5 

Boxplots provide a very powerful method for visualizing the rough distributional shape of 

two or more data distributions. They were extensively used in the exploratory analyses 

of the features described in this chapter. 

A boxplot [Stag11 is a graphical representation showing the center and spread of a 

data distribution, along with a display of unusually deviant data points, called outliers. 

Figure 5.3 shows an example of a boxplot. The horizontal line in the interior of the box 

is located at the median of the data. This estimates the center of the distribution. The 

height of the box is equal to  the interquartile distance, or IQD, which is the difference 

between the third and first quartiles of the data. The IQD indicates the spread or width 

of the distribution for the data. It encompasses the middle half of the data points in the 

distribution. The whiskers (dotted lines extending from the top and bottom of the box) 

extend to  the extremes of the data or 1.5 x IQD from the center, whichever is less. For 

data having a Gaussian distribution, approximately 99.3% of the data falls inside the 



whiskers. Data points which fall outside the whiskers may be outliers, and so they are 

indicated by horizont a1 lines. 

Figure 5.3: Example of a Boxplot 

For the feature analyses described in this chapter, boxplots were generated both 

for the un-normalized feature values and for the normalized features. The normalized- 

feature boxplots served to display the differences in the language distributions exactly 

as presented to the network. This proved to be a useful aid in the feature selection 

process. Features for which the normalized boxplot did not show sufficient language 

discrimination (i.e., separation along the ordinate) were discarded. 

Informal evidence suggests that languages differ in the frequency and patterns of co- 

occurrence of phonemes. It would be interesting to see if such differences are retained at 



the broad phonetic level. Features were examined in the order of increasing granularity: 

features based on triples of segments were examined first, followed by those based on 

segment-pairs, followed by features based on individual segments. 

There are 63 legal segment-triples of the seven broad phonetic categories. These are 

listed in Table 5.7 along with their 3-letter codes. The following features were computed 

Table 5.7: List of 63 Legal Segrnent-triples 

' Segment-triple 
CLOS FRIC CLOS 
CLOS FRIC PRVS 
CLOS FRIC VOC 
CLOS PRVS VOC 
CLOS STOP CLOS 
CLOS STOP FRIC 
CLOS STOP PRVS 
CLOS STOP VOC 
CLOS VOC CLOS 
CLOS VOC FRIC 
CLOS VOC INVS 
CLOS VOC POVS 
FRIC CLOS FRIC 
FRIC CLOS PRVS 
FRIC CLOS- STOP 
FRIC CLOS VOC 
FRIC PRVS VOC 
FRIC VOC CLOS 
FRIC VOC FRIC 
FRJC VOC INVS 
FRIC VOC POVS 

Segment-triple 
INVS VOC CLOS 

- 

INVS VOC FRIC 
INVS VOC INVS 
INVS VOC POVS 
POVS CLOS FRIC 
POVS CLOS PRVS 
POVS CLOS STOP 
POVS CLOS VOC 
POVS FRIC CLOS 
POVS FRIC PRVS 
POVS FRIC VOC 
POVS STOP CLOS 
POVS STOP FRIC 
POVS STOP PRVS 
POVS STOP VOC 
PRVS VOC CLOS 
PRVS VOC FRIC 
PRVS VOC INVS 
PRVS VOC POVS 
STOP CLOS FRIC 
STOP CLOS PRVS 

Code- 
CFC 
CFP 
CFV 
CPV 
CSC 
CSF 
CSP 
csv 
cvc 
CVF 
CVI 
CVP 
FCF 
FCP 
FCS 
FCV 
FPV 
FVC 
FVF 
FVI 
FVP 

Code 
WC 
N F  
rvI 
r v P  
PCF 
PCP 
PCS 
PCV 
PFC 
PFP 
PFV 
PSC 
PSF 
PSP 
PSV 
PVC 
PVF 
PVI 
PVP 
SCF 
SCP 

Segment-triple 
STOP CLOS STOP 
STOP CLOS VOC 
STOP FRIC CLOS 
STOP FRIC PRVS 
STOP FRIC VOC 
STOP PRVS VOC 
STOP VOC CLOS 
STOP VOC FRIC 
STOP VOC INVS 
STOP VOC POVS 
VOC CLOS FRIC 
VOC CLOS PRVS 
VOC CLOS STOP 
VOC CLOS VOC 
VOC FRIC CLOS 
VOC FRIC PRVS 
VOC FRIC VOC 
VOC INVS VOC 
VOC POVS CLOS 
VOC POVS FRIC 
VOC POVS STOP 

Code 
SCS 
scv 
SFC 
SFP 
SFV 
SPV 
svc 
SVF 
SVI 
SVP 
VCF 
VCP 
VCS 
VCV 
VFC 
VFP 
VFV 
vrv 
VPC 
VPF 
VPS 

for segment-triples: 

Segment-triple Frequency (STF): number of occurrences of each segment-triple per 

second of speech, and 



r Segment-triple Ratio (STR): ratio of the number of occurrences of each segment- 

triple to the total number of segments in the utterance 

The STR features were considered essential since the STF features alone might 

present a misleading picture, given that speech rates (number of segments per second) 

vary widely across speakers. 

An analysis of variance using the one-way layout model [BHH78, Stag11 was con- 

ducted to determine the usefulness of the 126 segment-triple features in distinguishing 

between the 10 languages. Of the 63 segment-triples, five produced p-values greater than 

0.01. These were discarded. The five useless segment-triples and their p-values are given 

below: 

POVS-STOP-CLOS 0.011 

POVS-STOP-FRIC 0.237 

r POVS-STOP-PRVS 0.166 

STOP-CLOS-VOC 0.573 

STOP-FRIC-PRVS 0.319 

Therefore, 116 features from 58 segment-triples were used in all the experiments. Per- 

formance of these features on the ten-language task and the two-language task (English- 

Japanese only) were examined. 

5.4.6.1 Ten-language Task 

Several networks were trained on the 116 STF and STR features. The best performance, 

40.9%, was obtained with a 116-50-10 network. To determine if all 116 features were 

contributing to the classification performance, two techniques were used to reduce the 

feature set: 

a A principal component analysis was performed on the 116 features to determine 

the components of maximum variance in the feature set, and 



"Useful" features were selected by visual inspection of the boxplots of all 116 

features. 

Principal Component Analysis (PCA). This technique has been shown to be use- 

ful in reducing the dimensionality of the feature space for speech recognition tasks with 

negligible loss in performance [LRHSO]. There is no rigorous method of determining the 

optimal number of principal components of a given set of vectors. A good heuristic, 

however, is to generate a plot of the logarithm of the eigenvalues of the features. The 

number of eigenvalues corresponding to the "knee" of this curve is then taken as the "op- 

timal" number of principal components. To double-check this procedure, the following 

ratio is com~uted: 

where 

Vk is the fraction of the variance retained by the first k eigenvalues 

N is the total number of eigenvalues (= original number of features), 

k is the number of eigenvalues corresponding to the knee of the curve, and 

Am is the mth eigenvalue. 

If Vk 2. 0.90, then the first k principal components of the feature set are chosen, as 

they account for at least 90% of the variance. Figure 5.4 shows a plot of the logarithm 

of the eigenvalues of the 116 segment-triple features. The knee of this curve is at 40 

and V40 = 0.971, indicating that the first 40 principal components of the 116 segment- 

triple features account for 97.1% of the variance. The first 40 principal components of 

the segment-triple features were computed, normalized to  lie between -1.0 and 1.0, and 

given as input to a neural network classifier. The best performance, 40.5%, was obtained 

with a 40-27-10 network. This represents a negligible increase in the error-rate compared 

to  the performance on the full set of 116 features with a 65% reduction in the dimension 

of the input features. 



Visual Inspection. Appendix C.1 shows the boxplots of all the 116 segment-triple 

features. There are two boxplots per feature, one with the un-normalized features, and 

the other with the normalized features. 

The criterion used to declare a feature useful was simple: the ten boxes should show 

some degree of separation along the ordinate. For example, if all boxes had their medians 

(the white horizontal bands) aligned, then that feature is clearly not discriminant enough 

to  be included in the set of useful features. It is to be stressed that this selection process 

was based on informal visual evidence rather than quantitative measures. 

Figure 5.4: Logarithm of the Eigenvalues of the 116 STF and STR Features 

Using this procedure, 27 STF and 30 STR features were selected for a total of 57 

features out of the original 116. The selected trigrams are listed in Table 5.8. A 57- 

15-10 network trained on these 57 segment-triple features performed at an accuracy of 

32.6%. This represents a 14.0% increase in the error-rate (and a 50.8% reduction in the 

dimension of the input features) compared to the original 116-feature result. Apparently, 



our procedure of visual selection was too restrictive and removed useful features! 

Table 5.8: List of 57 Useful Segment-triple Features 

5.4.6.2 Two-language Task 

STF 
CFV CSV FCS FVC FVP IVI 
PCS PFV SVC SVF SVI VCF 
VCSVFVVIV VPFVPC FVI 
CFC IVP IVC CSC PCF SVP 
PVI IVF FVF 

Rather than examine all  45 language pairs or even the nine EN- L' pairs, it was decided 

to  concentrate only on the English-Japanese classification task for the segment-triple 

experiments. 

Visual inspection of the segmentation output for English and Japanese utterances 

indicated that Japanese utterances had more consecutive occurrences of the follow- 

ing segment-triples: (i) CLOS-STOP-VOC (CSV), (ii) VOC-CLOS-STOP (VCS), and 

(iii) STOP-VOC-CLOS (SVC). The following features were examined for each of the 

three segment- triples: 

STR 
CFV CSV FCS FVC FVP IVI 
PCS PFV SVC SVF SVI VCF 
VCS VFV VIV VPF CPV 
VPC FVI CFC IVP IVC CSC 
PVP PCF SVP PVI VFC IVF 
FVF 

r LSQ - longest sequence in an utterance 

r LSQF - longest sequence per second of speech 

r LSQlO - longest sequence in a moving 10-segment window 

#SQGTl - number of sequences greater than one, per second of speech 

r #SQGT2 - number of sequences greater than two, per second of speech 

#SQGT3 - number of sequences greater than three, per second of speech 



where "sequence" referred to two or more consecutive occurrences of the segment-triple. 

These features were examined in isolation and in combination. Table 5.9 summarizes 

the results of these segment-triple experiments. From the table it is clear that the 

#SQGT3 is not useful, given its almost-chance classification performance for all three 

segment-triples. Also, #SQGTl appears to be the most useful single feature for all three 

triples. The best performance, 67.4%, was obtained using the #SQGTl feature for the 

triple CSV and #SQGTl feature for the triple VCS together. With all 18 features, the 

performance was 66.5%, reflecting the uselessness of the other 16 features. 

5.4.6.3 Summary  of Segment-t riple Experiments 

The full set of 116 segment-triple frequency and ratio features provided 40.9% identifi- 

cation accuracy on the ten-language task using utterances that were 13.4 seconds long 

on the average. The first 40 principal components of these features performed at 40.5%, 

a negligible drop in performance coupled with a 65% reduction in the dimension of the 

input features. On the English- Japanese task, #SQGTl was identified as the most useful 

feature, while #SQGTl for the triples CSV and VCS provided the best identification 

performance (67.4%). 

Table 5.9: Segment-triple Experiments on English and Japanese 

I I Feature I 

There are 20 legal segment-pairs of the seven broad phonetic categories, VOC, FRIC, 

CLOS, STOP, PRVS, INVS and POVS. These 20 pairs are listed along with their two- 

letter codes in Table 5.10. Four feature sets based on segment-pairs were examined: 

Segment-triple 
CLOS-STOP-VOC 
VOC-CLOS-STOP 
STOP-VOC-CLOS 

#SQGTl 
66.1 
63.0 
62.1 

#SQGT2 
60.8 
58.6 
57.3 

#SQGT3 
52.9 
53.3 
51.5 

LSQ 
59.0 
58.6 
62.1 

LSQF 

58.6 
62.6 
61.7 

LSQlO 
59.5 
59.0 
62.1 



a Segment-pair Frequency (SPF): number of occurrences of each segment-pair per 

second of speech, and 

a Segment-pair Ratio (SPR): ratio of the number of occurrences of each segment-pair 

to  the total number of segments in the utterance 

a Segment-pair Median Duration (SPMD): median duration of each segment-pair in 

an utterance 

a Segment-pair Duration Ratio (SPDR): ratio of the total duration of aU occurrences 

of a segment-pair in an utterance to the total utterance duration 

As with segment-triples, the SPR features were considered essential since the SPF fea- 

tures alone might present a misleading picture, given that speech rates (number of seg- 

ments per second) vary widely across speakers. The SPMD features sought to extract the 

differences (if any) in the median durations of the segment-pairs. The SPDR features 

determined the fraction of an utterance's duration that was accounted for by specific 

segment-pairs. 

Table 5.10: List of 20 Legal Segment-pairs 

These 80 features above were motivated by informal knowledge that languages dif- 

fered in the characteristics of pairs of broad phonetic categories. 

Code 
CP 
SV 
SF 
SC 
SP 
PV 
TV 
PF 
PC 
PS 

Segment-pair 
CLOS PRVS 
STOPVOC 
STOP FRIC 
STOP CLOS 
STOP PRVS 
PRVSVOC 
INVS VOC 
POVS FRIC 
POVS CLOS 
POVS STOP 

Segment-pair 
VOC FRIC 
VOC CLOS 
VOC INVS 
VOC POVS 
FRIC VOC 
FRIC CLOS 
FRIC PRVS 
CLOS VOC 
CLOS FRIC 
CLOS STOP 

Code 
VF 
VC 
VI 
VP 
FV 
FC 
FP 
CV 
CF 
CS 



An analysis of variance using the one-way layout model was conducted to determine 

the usefulness of the 80 features in distinguishing between the 10 languages. All 80 

features produced p-values less than 0.01 indicating some degree of discriminative power. 

Language identification experiments were done with segment-pair features on the ten- 

language task and a two-language task, the latter being confined to English and Japanese 

only. The ten-language task was chosen to provide insights into the effectiveness of 

segment-pair characteristics in distinguishing between this varied mix of languages. The 

two-language task was inspired by visual inspection of boxplots generated for English 

and Japanese that showed marked separation in feature values for certain segment-pairs. 

5.4.7.1 Ten-language Task 

Networks were trained with a.ll 80 features as input. The performance accuracy was 

43.5% on the development set. Scatter-plots were generated between all pairwise com- 

binations of the four feature sets for a few segment pairs. A scatter-plot is useful in 

indicating correlations between feature pairs. If all  the data points in a scatter-plot 

align themselves on or close to a straight line (of any slope), then one can safely as- 

sume that the two features are highly correlated. Figure 5.5 and Figure 5.6 display the 

plots for the segment-pairs VOC-FRIC and INVS-VOC. The following consistent trends 

emerged from the plots: 

SPF, SPR and SPDR were highly correlated. 

SPMD and SPDR were not correlated. 

SPMD is not correlated with either SPF or SPR. 

The high correlation between the feature sets suggested that many of the 80 features 

might be redundant. Principal component analysis and visual inspection were again used 

to reduce the redundancy in the feature sets. 

PCA. Figure 5.7 displays the eigendue curve for the 80 features. The knee of the 

curve is at 36, and V36 = 0.984 (from equation 5.2). Therefore, the first 36 principal 



Figure 5.5: Scatterplots of SPF, SPR, SPMD, and SPDR for VOC-FRIC 



Figure 5.6: Scatterplots of SPF, SPR, SPMD, and SPDR for INVS-VOC 



components of the 80 segment-pair features were computed, normalized to lie between 

-1.0 and 1.0, and fed into a neural network. The best classification performance, 42.1%, 

was obtained with a 36-38-10 network trained on these 36 features. This represents a 

2.5% increase in the error-rate compared to the 80-feature network, with a 55% reduction 

in the dimension of the input features. 

Figure 5.7: Logarithm of the Eigenvalues of the 80 SPF and SPR Features 

Visual Inspection. Figures C.43 through C.70 in Appendix C.2 shows the boxplots 

of all the 80 segment-pair features. There are two boxplots per feature, one with the 

un-normalized features, and the other with the normalized features. 

By visual inspection of the boxplots, 12 SPF, 12 SPR, 6 SPMD and 10 SPDR features 

were selected for a total of 40 features out of the original 80. The selected features are 

listed in Table 5.11. A 40-30-10 network trained on these 40 segment-pair features 

performed at an accuracy of 43.5%. This is comparable to the performance of the 36 



principal components network, and identical to that obtained with the original 80-feature 

network. Thus, our visual inspection proved successful in this case. 

Table 5.11: List of 40 Useful Segment-pair Features 

5.4.7.2 Two-language Task 

Visual inspection of the boxplots for the four feature sets (SPF, SPR, SPMD and SPDR) 

with respect to English and Japanese revealed that there was some separation in the two 

distributions for SPF, SPR and SPDR for the following segment-pairs: 

1. POVS-FRIC 

2. CLOS-STOP 

3. VOC-CLOS 

4. VOC-POVS 

Of these, VOC-POVS clearly had the maximum difference in distributions. Interestingly, 

there were no distributional differences for the SPMD feature set indicating that English 

and Japanese differed only in the frequency and ratios of segment-pairs rather than in 

their median durations. 

To determine the contributions of these 12 features to the English- Japanese classifica- 

tion task, a series of neural network experiments were conducted using these features in 

isolation. Table 5.12 summarizes the results of these experiments. The informal evidence 

from the boxplots, namely the wide difference between the EN and JA distributions for 



all three VOC-POVS features, was borne out by the experimental results. The SPR fea- 

ture for the segment-pair VOC-POVS produced the best single-feature result of 74.5%. 

With all 12 features, performance improves to just 75.8% with a 12-10-2 network, in- 

dicating the dominance of the VOC-POVS features for English-Japanese classification. 

Table 5.12: Segment-pair Experiments on English and Japanese 

5.4.7.3 Summary of Segment-pair Experiments 

Segment-pair 
POVS-FRIC 
CLOS-STOP 
VOC-CLOS 
VOC-POVS 

Language identification experiments were performed on a set of 80 frequency, ratio, 

duration ratio and median duration features derived from 20 legal segment-pairs of the 

seven broad phonetic categories. With all 80 features, the accuracy was 43.5%. Scatter 

plots of the features revealed high correlation between the SPF, SPR and SPDR features. 

The first 36 principal components performed at 42.1%, while 40 features derived through 

visual inspection of the boxplots performed at 43.5%-identical to the performance with 

the original 80 features. On the English-Japanese task, the ratio of occurrence of VOC- 

POVS proved to be the most useful feature, performing at an accuracy of 74.5%. 

5.4.8 Pitch-based Features 

Single Feature Result (%) 

5.4.8.1 Pitch Tracking 

SPF 

59.0 
63.4 
62.6 
71.8 

The pitch tracker used in this research was developed by Daniel Burnett [Bur92], and 

trained on multi-lingual data from the OGI Ten-language Telephone Speech Corpus. 

SPR 

57.1 
59.5 
62.6 
74.5 

SPDR 

57.7 
54.6 
65.2 
73.6 



A neural network-based voicing detector used frame-based PLP features to determine 

voiced and unvoiced regions of an utterance. The pitch tracker computed pitch periods 

using the method of autocorrelation, on voiced portions of speech only (as determined by 

the voicing detector). The output of the pitch tracker consisted of median pitch period 

values, one for every 3 ms frame of the utterance. Unvoiced frames have a value of 0. 

The reciprocal of each non-zero period value provided an estimate of median pitch in Hz 

for that frame. 

5.4.8.2 Experiments 

Playback of utterances from English and tone languages such as Mandarin and Viet- 

namese, and visual inspection of median pitch contours suggested that languages might 

differ in the intra-segment and inter-segment variations in fundamental frequency. With 

this knowledge in mind, the following features were computed: 

a Intra-segment pitch variation: Average of the standard deviations of the pitch 

within all sonorant segments-VOC, PRVS, INVS and POVS (4 values) 

a Inter-segment pitch variation: Standard deviation of the average pitch in all sono- 

rant segments (4 values) 

Figures C.71 through C.73 in Appendix C.3 display the boxplots of these 8 pitch 

features. 

The effect of just these 8 pitch features on the ten-language classification task was 

examined by training several networks. The best performance, 18.8%, was obtained with 

a 8-15-10 network, indicating very poor discriminant ability of the 8 pitch-based features. 

5.4.9 Other Global Features 

Apart from the segment-pair and segment-triple features, a number of features were 

computed based on individual segment statistics. These features were the result of 

exploratory analyses of the segment sequences. There were a total of 129 segment-based 

features in this set. They are grouped by type in the sections below. Boxplots of these 



features are given in Figures C.74 through C.117 in Appendix C.4. The number of 

feature values in each class is indicated in parentheses. 

5.4.9.1 Frequency of Occurrence (11 features) 

It is well known that languages differ in the frequency of occurrence of certain sounds. 

The features described below sought to  determine if these differences extended to broad 

phonetic categories as well. In the list below, an "obstruent" is either a STOP or a 

FRIC. An obstruent was considered voiced if more than half the segment was labeled as 

voiced by the voicing detector. The voiced obstruent features were included to accentuate 

differences between languages with relatively high voiced obstruent frequencies (English, 

French, German) and those with low voiced obstruent frequencies (Spanish and Tamil). 

These differences are apparent in the boxplot labeled "freq(V0BS)" in Figure C.76 in 

Appendix C.4.1. 

a Frequency of occurrence of each of the seven broad phonetic categories (7 values) 

Frequency of occurrence of all segments (number of segments per second) (1 value) 

a Frequency of occurrence of all sonorants (1 value) 

a Frequency of occurrence of all obstruents (STOPs and FRICs) (1 value) 

a Frequency of occurrence of voiced obstruents (STOPs and FRICs) (1 value) 

5.4.9.2 Segment Ratios (94 features) 

As in the case of segment-pairs and triples, mere frequency of occurrence of individual 

broad phonetic categories does not give the complete picture. Ratio of occurrence, i.e., 

number of occurrences of a particular category divided by the total number of segments, 

in conjunction with the frequency of occurrence, normalizes speech rate differences among 

speakers of the same language. There were a total of 47 segment occurrence ratios. 

Figures C.78 through C.92 in Appendix C.4 display the boxplots of the features. 



a Ratio of number of occurrences of each of the seven broad phonetic categories to 

the total number of segments (7 values) 

a Ratio of number of occurrences of each of the seven broad phonetic categories to 

the total number of sonorants (7 values) 

a Ratio of number of occurrences of each of the seven broad phonetic categories to 

the total number of obstruents (7 values) 

a Ratio of number of occurrences of sonorants to that of obstruents (1 value) 

a Ratio of number of occurrences of VOC, CLOS, STOP, PRVS, INVS and POVS 

to  that of FRIC. (6 values) 

a Ratio of number of occurrences of VOC, STOP, PRVS, INVS and POVS to that 

of CLOS. (5 values) 

a Ratio of number of occurrences of VOC, PRVS, INVS and POVS to that of STOP. 

(4 values) 

a Ratio of number of occurrences of VOC, INVS and POVS to that of PRVS. (3 val- 

ues) 

a Ratio of number of occurrences of VOC and POVS to that of INVS. (2 values) 

a Ratio of number of occurrences of VOC to that of POVS. (1 value) 

Ratio of number of sonorants to total number of segments (1 value) 

Ratio of number of obstruents to total number of segments (1 value) 

a Ratio of number of voiced obstruents to total number of segments (1 value) 

a Ratio of number of voiced obstruents to total number of obstruents (1 value) 

Apart from speech rate differences among speakers, one needs to examine intrinsic 

speech rate differences across languages. To do this, it is necessary to examine segment 



duration ratios in conjunction with segment occurrence ratios. Segment duration ratios 

help in determining the fraction of the utterance duration devoted to individual broad 

phonetic categories. The 47 duration ratio features can be obtained from the above list 

by replacing "number of occurrences" and "total number" with "duration" and "total 

duration" respectively. Figures C.93 through C.107 in Appendix C.4 display the boxplots 

for the duration ratio features. 

5.4.9.3 Duration (24 features) 

Apart from ratios of durations of the individual categories, the following duration features 

were examined. 

Inter-segment duration difference: defined as the absolute difference in durations 

between successive segments. This feature was motivated by the knowledge (ob- 

tained by visual inspection of segmenter output) that the broad phonetic segments 

of Japanese utterances were of almost equal length. This resulted in low values of 

this feature for Japanese, but high values for a language like Mandarin which was 

characterized by long VOC segments and much shorter STOP and FRIC segments. 

The features computed were the minimum, median, average, standard deviation 

and maximum of the inter-segment duration difference. To avoid using outliers, 

the minimum and maximum values were obtained by generating a histogram of 

the duration differences and choosing the 5th and 95th percentile values. (5 values) 

Vowel center distance: defined as the distance between the centers of successive 

vowels. This feature was designed with the consonant clusters of English in mind 

(CCVCC syllable structure). This feature distinguished English from Japanese and 

Tamil, both of which have a CV syllable structure. The features computed were 

the minimum, median, average, standard deviation and maximum vowel center 

distance. (5 values) 

a Average duration of the seven broad phonetic categories (7 values) 



Standard deviation of the duration of the seven broad phonetic categories (7 values) 

5.4.9.4 Ten-language Task 

Several networks were trained with these 129 features. The best performance, 41.176, 

was obtained with a 129-80-10 network. The eigenvalue curve for this feature set is 

shown in Figure 5.8. The knee was taken at 19, with VI9 = 0.919. With just the first 

19 principal components, the performance dropped to 37.0%, a 7.0% increase in the 

error-rate. However, with the first 40 principal components as features, V40 = 0.977 

and the performance was 40.l%, a negligible increase of 1.7% in the error-rate with a 

corresponding 69.0% decrease in the input feature dimension. This is one example of a 

case where the eigenvalue curve does not provide an accurate estimate of the "optimal" 

number of principal components. 

Figure 5.8: Logarithm of the Eigenvalues of the 129 Global Features 



5.4.9.5 Two-language Task 

Visual inspection of the boxplots indicated that certain features were useful for dis- 

crimination between certain language pairs. Specifically, the following observations were 

made: 

1. Mandarin has a high frequency of occurrence of FRIC and a very low frequency 

of occurrence of INVS. Exactly the reverse is true for Tamil. This is evident in 

Figures C.74 and C.75. Also, given the approximately similar distributions of VOCs 

in Mandarin and Tamil, the ratio #VOC/#FRIC also seemed a good discriminant 

between the two languages. 

2. English and Tamil also differ substantially in the frequency of occurrence of INVS 

and FRIC (see Figures C.74 and C.75). 

3. Japanese has the lowest frequency of occurrence of POVS (Figure C.76). This 

feature was exploited in the segment-pair features described in Section 5.4.7.3. 

The visual evidence described above was tested by training two-language networks 

using freq(INVS), freq(FRIC), #VOC/#FRIC in appropriate combinations. These ex- 

periments are summarized in Table 5.13. The results show that freq(1NVS) is a bet- 

ter discriminator of Mandarin-Tamil than of English-Tamil. The reverse is true for 

freq(FR,IC). Both features combined provide substantial improvements in performance 

for both language pairs. Of the single features, freq(FRIC) and #VOC/#FRIC provide 

the best classification performance on English-Tamil and Mandarin-Tamil, respectively. 

Addition of #VOC/#FRIC to the frequency features produces slight improvement in 

performance in the case of English-Tamil and none at all, in the case of Mandarin-Tamil. 



Table 5.13: Some Pairwise Identification Results with Global Features 

5.4.9.6 Summary of Experiments with Other Global Features 

F e a t u ~  
freq(1NVS) 
freq(FRIC) 

#VOC/#FRIC 
freq(INVS)+freq(FRIC) 

freq(INVS)+freq(FRIC)+#VOC/#FRIC 

Language identification experiments were conducted with 129 features based on fre- 

quency of occurrence, segment occurrence ratios, segment duration ratios and inter- 

segment distances. These features were selected by a combination of linguistic knowledge, 

and visual inspection of the boxplots and segmenter output. On the ten-language task, 

the performance accuracy was 41.1%. It dropped to 40.1% with the first 40 principal 

components of the 129 features. On the two-language task, freq(1NVS) and freq(FRIC) 

proved to  be the most useful single features for the MA-TA and EN-TA tasks respec- 

tively. Further, the combination of just these two features provided 89.2% accuracy on 

the MA-TA task. 

5.4.10 Combined Feature Set 

Pairwise Id Score (%) 

In each of the sub-sections above, I have examined feature sets, both in their entirety and 

after reducing them using principal component analysis. Given that principal component 

analysis extracts features of maximum variance, it stands to reason that combining the 

principal components of each of the feature sets above would yield a compact feature 

set, relatively free of redundancies. Table 5.14 lists the components of the combined 

feature set and the corresponding numbers of principal components. The combined full- 

blown feature set consisted of 333 phonetic and prosodic features. The aggregate of 

the principal components of the four feature sets was 124. Given the small number 

EN- TA 
68.0 
86.0 
81.6 
84.7 
86.4 

MA - TA 
72.1 
82.9 
87.4 
89.2 
89.2 



of pitch-based features, it was not considered essential to reduce these eight features 

further. The classification performance on this 124feature set was then contrasted with 

that on the combined 333-feature set. In addition to the ten-language task, identification 

performance was also examined on language pairs and triples with English as an anchor. 

To determine the effect of utterance duration on the identification accuracy, classifiers 

were evaluated on just the 50-second ustory" utterances in the development set, in addi- 

tion to  the variable duration utterances (the entire development set). In the remainder 

of this chapter, the variable length utterances in the development set (average duration: 

13.4 seconds) will be referred to as the short utterances, while the "story" utterances 

(average duration: 45.3 seconds) will be called the long utterances. 

Table 5.14: Combined Feature Set and Principal Components 

Segment- triples 
Pitch 

Global Features 129 40 

5.4.10.1 Ten-language Task 

Combined 

With the 333 features, the best performance was obtained by a 333-60-10 network: 48.5%. 

With the 124 principal components, a 333-70-10 network performed at 47.9%, a negligible 

increase in the error-rate of 1.2% accompanied by a 62.8% reduction in the dimension 

of the input features. Efficiency considerations clearly point to the 124-feature network, 

since it performs as well as a network with almost 3 times as many features. However, it 

was decided to use the 333-feature set as the "best combined feature set". This decision 

was motivated by two considerations: 

Given that the objective is to determine the feature set that provides the highest 

classification performance on the development set, the 333-feature set is clearly the 

333 124 



logical choice, however small the improvement. 

At this stage in our research, efficiency and speed of classification are not as impor- 

tant as accuracy. There are several other areas that can be targeted for speed-up 

(e.g., performing the signal processing in hardware, pipelining the processing of the 

waveform) that would provide much more substantial improvements in efficiency 

than is achievable with a smaller network size. 

On the long utterances, the best identification performance, 65.6%, was obtained by 

a 333-70-10 network. The confusion matrices for identification of the short utterances 

and long utterances are displayed in Figures 5.9 and 5.10 respectively. It is interesting 

to note that with Vietnamese, there is actually a very slight decrease in the accuracy 

when evaluated on the long utterances, and Korean shows only a slight improvement as 

the average duration of the test utterances increases from 13.4 seconds to 45.3 seconds. 

Farsi shows the largest improvement of all languages (30.6% to 73.7%), with a 62.1% 

reduction in the error-rate. 

label EN JA MA TA SP KO V I  FR GE FA ---_- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 
E N 1 3 9  6  14 2  9  11 10 6  8 10 
J A (  5 4 6  1 6  19 4  2 1 6  7  6  
M A 1 1 0  1 6 4  7  0  10 3  2  7  5  
T A I O  4  3 7 1  8 4 1 5  1 1  6  
S P 1  6  4  2  11 62 7 4  10 2  3  
K O 1  3  7  9  11 7 36 10 8 6  12 
V I 1 7  3  7 1 0  1 3 6 6  4  0  6 
F R (  5 12 7 2 6  8 3 5 9  11 2  
G E I 1 6  6  6  1 4  8 3 5 6 6  3 
F A 1 1 6  6  14 5  6  9 4 7 1 0 3 4  

Figure 5.9: Confusion Matrix for 10-language Classifier: Short Utt. 



label  EN JA MA TA SP KO V I  FR GE FA 
----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

E N ) 9 0 1 0 1 2 0 1 1 3  
J A ~ O 1 3 O O 2 1 O O I O  
M A ~ 0 0 1 4 2 0 1 0 1 0 1  
T A I O 1 0 1 4 3 I O O O O  
S P ( 0 0 0 1 1 5 0 0 2 0 1  
K O l O O 1 1 O 7 3 l O 5  
v 1 I 0 0 1 1 0 3 1 1 1 0 1  
F R ~ 1 1 2 0 1 2 0 1 2 1 0  
G E 1 2 2 0 0 0 2 0 0 1 3 0  
F A ) I 1 O O O I O O 2 1 4  

Figure 5.10: Confusion Matrix for the 10-language Classifier: Long Utt. 

5.4.10.2 Using Fewer Than Ten Languages 

Language Combinations. With the feature development complete, tasks involving 

fewer than ten languages could now be examined using the combined feature set. Ex- 

periments were conducted on the following language combinations: 

Nine English - L' networks, where L' is one of the remaining nine languages. 

Ten L-Other networks, where L was one of the ten languages, and Other consisted 

of an equal number of utterances picked at random from each of the remaining nine 

languages. 

Nine English - L' - Other networks, which examined three-way classification. In 

this case, Other consisted of an equal number of utterances picked at random from 

each of the remaining eight languages. 

A English - Japanese - Mandarin - Tamil network, for the sake of compari- 

son with the high-quality speech language identification results described in Sec- 

tion 4.3.1. 

For each of the above combinations, the networks were evaluated on both the short 

utterances and the long utterances. 



Results. The 4-language network performed at an accuracy of 69.7% on the short 

utterances and at 82.2% on the long utterances. In comparison, the corresponding 4- 

language classifier trained on high-quality speech performed at an accuracy of 89.5% on 

test utterances that were 17.1 seconds long on the average. The confusion matrices for 

the Clanguage networks are shown in Figures 5.11 and 5.12. Not surprisingly, the clas- 

sification accuracies of all four languages improve substantially on the longer utterances, 

with Tamil obtaining a perfect score. 

label EN JA MA TA 
----- ---- ---- ---- ---- 
EN 1 65 15 24 11 56.5% 
JA 1 20 79 5 8 70.5% 
MA I 16 2 77 14 70.6% 
TA 1 6 12 3 92 81.4% 

Figure 5.11: Confusion Matrix of Clanguage Classifier (Dev. Test): Short Utt. 

label EN JA MA TA 
----- ---- ---- ---- ---- 
EN 1 12 2 4 0 66.7% 
J A I  1 1 6  0 0 94.1% 
M A (  2 0 15 2 78.9% 
TA I 0 0 0 19 100.0% 

Figure 5.12: Confusion Matrix of Clanguage Classifier (Dev. Test): Long Utt . 

The results of the remaining three experiments are shown in Tables 5.15, 5.16, and 

5.17. #Hid refers to the number of hidden units that yielded the best development set 

performance. Id refers to the identification performance on the short and long utterances. 

Columns labeled EN - L', L -0 ther and EN - L'- Other display the individual language 

scores. 

It can be seen that the EN - L' classification (Table 5.15) is the least difficult, with 

performances ranging from 69.0% (English-Farsi) to 87.7% (English-Tamil) for the 



short utterances, and from 81.1% (English-German) to 97.3% (English-Tamil) for 

the "stories". The median accuracies were 79.1% and 86.8% respectively. 

Classification of individual languages against all  others (L - Other) produces about 

the same level of performance (Table 5.16), from 63.7% (Enghsh-Other) to 86.2% 

(Mandarin-Other) for the short utterances, and 80.6% (English-Other) to 97.3% 

(Tamil-Other) for the "stories", with median accuracies of 77.0% and 87.5% re- 

spectively. 

a English-L' - Other classification is more difficult (Table 5.17), with performances 

ranging from 53.3% (English-Farsi-Other) to 64.9% (English-Mandarin-Other) for 

the short utterances, and from 69.2% (English-Vietnamese-Other) to 81 .l% (English- 

Tamil-Other) for the "stories," with median accuracies of 59.1% and 70.6% respec- 

tively. 

Table 5.15: Results of the English-L' Experiment 

Network 

EN-FA 
EN-FR 
EN-GE 
EN- JA 
EN-KO 
EN-MA 
EN-SP 
EN-TA 
EN-VI 

ihort Uttemnces Long Uttemnces 

Comparison with Baseline Results. For the short utterances, it is interesting 

to compare the identification performance of the E N  - L' pairs using the combined 

knowledge-based feature set with that of the baseline label and duration features de- 

scribed in Section 5.4.2. Table 5.18 displays the performance figures for the two feature 



Table 5.17: Results of the English- L' - Other Experiment 

Table 5.16: Results of the L - Other Experiment 

Network 

EN-Other 
FA-Other 
FR-Other 
GE-Other 
JA- 0 t her 
KO-Other 
MA-Other 
SF-Other 
TA-Other 
VI- 0 t her 

Long Uttemnces 

Network 

EN-FA-0 
EN-FR- 0 
EN-GEO 
EN- JA-0 
EN-KO-0 
EN-MA-0 
EN-SP-O 
EN-TA-0 
EN-VI- 0 

#Aid 
6 
9 
10 
9 
6 
6 
6 
5 
6 
10 

Short Uttemnces 

Long Uttemnces Short Utterances 

G O  (%) 
61.1-100.0 
89.5-83.3 
80.0-88.9 
89.5-77.8 
88.2-88.9 
77.8-88.9 
89.5-100.0 
89.5-100.0 
94.7-100.0 
88.9-94.4 

Id (%) 
63.7 
71.2 
76.2 
75.7 
77.7 
72.8 
86.2 
78.5 
85.1 
81.9 

#H2d 
6 
10 
6 
9 
7 
8 
10 
6 
10 
10 

Id (%) 
69.8 
74.1 
73.6 
70.6 
73.1 
69.8 
69.8 
81.1 
69.2 

#Hid 
10 
10 
7 
7 
6 
10 
8 
8 
6 

Id (%) 
80.6 
86.5 
84.2 
83.8 
88.6 
83.3 
94.6 
94.6 
97.3 
91.7 

G O  (%) 
59.1-68.5 
72.1-70.4 
75.7-76.9 
84.7-65.7 
79.5-75.9 
67.0-78.7 
87.2-85.2 
76.6-80.6 
85.8-84.3 
74.8-88.9 

EN- L ' -0 (%) 
50.0- 94.7 -62.5 
66.7- 90.0 -62.5 
50.0- 89.5 -81.5 
72.2- 82.4 -56.2 
55.6- 77.8 -87.5 
55.6- 78.9 -75.0 
66.7- 94.7 -43.8 
55,6-100.0-87.5 
50.0- 83.3 -75.0 

Id (%) 
53.3 
59.9 
59.4 
58.4 
55.1 
64.9 
58.6 
64.4 
60.8 

#Hid 
7 
9 
5 
7 
6 
7 
8 
10 
5 

EN- L ' -0 (%) 
47.0-53.2-59.8 
45.2-75.7-58.9 
53.9-61.0-63.4 
53.9-68.8-52.7 
54.8-54.1-56.2 
53.0-76.1-66.1 
50.4-71.2-54.5 
60.9-87.6-44.6 
59.1-72.0-51.8 



sets. The third column indicates the percentage change (positive or negative) in the 

error-rate obtained by using knowledge-based features. Of all the EN - L' pairs, the 

error-rate on EN-JA actually increases by 15.5%, while that on EN-FA increases by a 

negligible amount. For the remaining seven pairs, using knowledge-based features does 

improve identification performance, with error-rate decreases ranging from 3.8% (for 

EN-MA) to 37.3% (for EN-GE). 

It is interesting that on the EN-JA task, a single segment-pair feature such as ratio 

of occurrence of VOC-POVS provided an accuracy of 74.5%, and the addition of 332 

other features succeeded in improving the performance to only 80.6%. Similarly, for the 

EN-TA task, the frequency of occurrence of FRIC alone provides an accuracy of 86%, 

compared to the 87.7% obtained with all 333 features. 

Table 5.1 
Language- Pair - - 
EN-FA 
EN-FR 
EN-GE 
EN- JA 
EN-KO 
EN-MA 
EN-SP 
EN-TA 
EN-VI 

5.4.11 Final Test 

3: Baseline and the Combined Feature Sets: A Comparison 

Thus far, all the feature evaluations were performed on the development test set. The 

final set of 333 features was now used to report results on the final test set. Unlike 

Emr-rate Change (%) 
4-1.0 
-25.4 
-37.3 
+15.5 
-26.0 
-3.8 
-19.8 
-16.3 
-18.2 

Baseline (%) 
69.3 
72.0 
57.6 
83.2 
65.3 
74.0 
75.2 
85.3 
75.8 

the development phase, where typically several network configurations (with different 

Combined Features (%I 
69.0 
79.1 
73.4 
80.6 
74.3 
75.0 
80.1 
87.7 
80.2 

numbers of hidden neurons) were trained and evaluated to determine the optimal con- 

figuration, a single network configuration was trained and evaluated for each experiment 

in the final test. This network configuration was the one that yielded the best results 



on the development set (shown in Tables 5.15, 5.16 and 5.17). Given that the optimal 

number of hidden neurons, and therefore classification performance is determined by 

idiosyncrasies of individual test sets, it is reasonable to state that the results obtained 

on the final test set might not be the optimal result on this data set. 

5.4.11.1 Data Sets 

Short Utterances. The 500-speaker training set and the 200-speaker development set 

were combined into a larger final training set. This set had 3834 utterances produced 

by 700 speakers from 10 languages. The average duration of the utterances was 13.5 

seconds. The h a l  test set had 1077 utterances from a new set of 200 speakers. The 

average duration of the utterances was 13.3 seconds. The utterances in both data sets 

ac tudy ranged in duration from 1 second to 50 seconds, but these two data sets were 

collectively referred to as the "short" utterances since the average duration was indeed 

small when compared to a data set consisting only of "stories". 

Long Utterances. The training set for this pair of data sets was identical to the one 

above, but the test set consisted of only the "storiesn in the h a l  test set. There were 

a total of 178 "stories", one per speaker, ranging in duration from 1 second through 50 

seconds, with an average duration of 45.1 seconds. 

5.4.11.2 Results 

Since training a neural network with additional data almost always improves dassifica- 

tion performance, two tests were run on the 10-language task using the final test set but 

different amounts of training data: 

a Test#l: Training on the original training set of 2714 utterances from 500 speakers, 

and 

a Test#2: Raining on the combined training set of 3834 utterances from 700 speak- 

ers. 



Test#l provided a comparison between performances on the development set and the 

h a l  test set (using a common training set). It provided insights into the generalization 

capability of the 333 features. Test#2 served to show the effects of adding more training 

data on the classification performance (using the final test set as a common test set). 

Both tests used a 333-60-10 network, the configuration that yielded the best performance 

on the development set (Section 5.4.10). 

The classification performances for Test#l and Test#2 were 45.0% and 47.3% re- 

spectively indicating that addition of more training data does indeed help performance. 

The drop in performance from 48.5% to 45.0% using a common training set reflects a 

6.8% increase in the error-rate when tested on a completely new test set. 

The confusion matrices for Test#l and Test#2 are shown in Figures 5.13 and 5.14 

respectively. Note that the addition of training data actually degrades the performance 

of Mandarin and Spanish (58.7% to 53.2% and 54.1% to 51.4% respectively) while per- 

formance on German remains unchanged at 46.5%. The remaining languages show an 

improvement in performance. 

label EN JA MA TA SP KO VI FR GE FA 
----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 
E N 1 3 9  14 4 3 8 2 2 13 23 7 33.9% 

J A (  6 52 10 13 7 0 1 5 11 8 46.0% 
M A (  8 5 6 4  2 4 9 7 3 5 2 58.7% 

TA1 3 7 5 6 0  5 8 7 4 1 1  59.4% 
SP1 2 16 3 6 59 4 5 4 6 4 54.1% 
K O 1  7 1 7 6 3 34 14 14 3 6 35.8% 

VI1 2 5 8 10 8 5 5 0  6 1 6  49.5% 
F R ( 1 2  6 10 5 8 12 5 39 2 10 35.8% 

G E 1 1 3  6 6 1 6  7 8 6 5 3  8 46.5% 

F A (  15 4 9 3 12 8 5 8 12 35 31.5% 

Figure 5.13: Confusion Matrix for Final Test #1: Original Training Set 

Based on the results of Test#l and Test#2, it was decided to use the larger training 

set (original training plus development) for all the other tasks. For the 4-language task, 

the performance accuracy was 66.2% for the short utterances and 85.7% for the long 



label  
----- 
EN I 
JA I 
MA I 
TA I 
s p  I 
KO I 
VI I 
FR I 
GE I 
FA I 

Figure 5.14: Confusion Matrix for Final Test #2: Augmented Training Set 

utterances. Confusion matrices are given in Figures 5.15 and 5.16 respectively. 

label EN JA MA TA 
----- ---- ---- ---- ---- 
E N 1  72 27 10 6 62.6% 
JA 1 19 73 12 9 64.6% 

M A (  24 6 72 7 66.1% 
T A 1  4 17 7 73 72.3% 

Figure 5.15: Confusion Matrix for 4-language Classifier (Final Test): Short Utt. 

label JA MA TA 
----- ---- ---- ---- ---- 
EN I 16 3 0 0 84.2% 

J A 1  2 17 0 0 89.5% 
MA1 2 1 15 0 83.3% 
T A I  0 2 0 12 85.7% 

Figure 5.16: Confusion Matrix for 4-language Classifier (Final Test): Long Utt. 

The results on the E N  - L', L - Other and E N  - L' - Other tasks are summarized 

in Figures 5.17, 5.18 and 5.19 respectively. Figure 5.20 summarizes the results of aJl 



the experiments on the final test set. The bars for the English-L', L - Other and 

English-L' - Other tasks represent median scores. 

" I 
EN-FA I EN-FR ' EN-GE ' ENJA ' EN-KO ' EN-MA ' EN-SP ' EN-TA ' EN-VI ' 

TASK 

Figure 5.17: Results of the English-L' Final Test 

5.5 Summary 

This chapter described research into speaker-independent automatic language identifica- 

tion using a ten-language telephone speech corpus. 

A neural network-based broad phonetic segmentation algorithm for telephone speech 

was developed using just PLP-based spectral features. Features based on linguistic 



- ' EN-0 ' FA-0 ' FR-0 ' GE-0 ' JA-0 ' KO-0 ' MA-0 ' SP-0 ' TA-0 ' VI-0 

TASK 

Figure 5.18: Results of the L - Other Final Test 

Figure 5.19: Results of the English- L' - Other Final Test 



E N -  L' L - Other EN-L'-Other EN-JA-MA-TA All 10 

TASK 

Figure 5.20: Summary of Language Identification Results on the Final Test Set 

knowledge and on exploratory statistical analyses of the languages were measured on 

the broad-phonetic segment sequences, and input to a second neural network which per- 

formed the language classification. The types of features examined ranged from simple 

segment duration and label information (the baseline feature set) to  segment-pair fre- 

quencies, segment-triple frequencies, duration statistics of segments, and intra- and inter- 

segment pitch variations. In addition, PLP-based spectral features, with and without 

segmentation, were also examined. On the ten-language task, it was found that features 

based on segment-pairs performed the best and those based on pitch variation, the worst. 

In order to remove redundancies among the features, the feature sets were reduced using 

principal component analyses and visual inspection of the boxplots. In most cases, the 

language identification performance using just the principal components was comparable 

to that with the full-blown feature set, with substantial reductions in the dimensions of 

the input feature space. Language identification performance on a combined feature set 

was then contrasted with that on a combination of principal components of each feature 



set. The full-blown feature set performed slightly better. Using this feature set, language 

classification experiments with smaller combinations of languages were conducted. Not 

surprisingly, language identification performance on constrained tasks (fewer languages) 

was reasonably high, and dropped steeply as more languages were added. Evaluation 

on the longer "story" utterances sets provided significant performance improvements for 

almost all the languages. 

On the two-language task, single features such as the ratio of occurrence of the 

segment-pair VOC-POVS and the frequency of occurrence of FRIC, proved to be most 

useful for the EN-JA and EN-TA tasks, respectively. The language identification per- 

formance with each of these features was only slightly worse than that obtained with 

all 333 features on their respective tasks. Spectral features were examined for the EN- 

JA task alone. Frame-based PLP features with no segmentation proved to be inferior 

to  segment-based features in language identification performance on this task. On the 

E N  - L1 task, comparison of the baseline results with those of the knowledge-based fea- 

tures showed that EN-JA was the lone pair that did significantly better on the baseline 

features than on the 333 combined features! 

Since the development set was extensively used to optimize the feature set, results 

were reported on a new hitherto untouched test set, the final test set. For the final 

test, the original training set was augmented with the development set to provide more 

training data to the classifier. With the exception of Mandarin, Spanish and German, the 

individual language performances on the final test set were better than the corresponding 

development set results. 



Chapter 6 

Conclusion 

6.1 Comparisons with Recent Work 

To place the results described in Chapter 5 in proper perspective, it is pertinent to com- 

pare them to those of two recent studies that have also used the OGI Multi-language 

Telephone Speech Corpus (with the same training, development test and final test divi- 

sions). 

Marc Zissman at MIT Lincoln Laboratory has reported results of a HMM-based 

approach to  automatic language identification [Zis93]. Using continuous observation, 

ergodic hidden Markov models (HMMs) with tied Gaussian observation probability den- 

sities, he obtained an identification accuracy of 46.0% on the development test set for the 

ten-language task. He found that performance of a Gaussian mixture classifier (a single- 

state HMM) was comparable to that of multi-state HMMs, indicating that the sequen- 

tial modeling capabilities of HMMs were not exploited. His results on the English-L' 

and L - Other tasks were also comparable to our results. He did not examine the 

English-L' - Other task. 

Timothy Hazen and Victor Zue at MIT have reported results on a segment-based 

approach to  automatic language identification, designed around a formal probabilistic 

framework [HZ93]. Using probablistic models for the phonotactic, prosodic and acoustic 

properties of the different languages in the corpus, they obtained an identification ac- 

curacy of 47.7% on the development test set for the ten-language task. Results on the 

English-L', L - Other and English-L' - Other tasks were not reported. 



Results of both these studies are in close agreement with the 48.5% reported in Chap- 

ter 5 using knowledge-based features and artificial neural networks. While Zissman used 

a completely different approach (HMMs and tied Gaussian probability densities), Hazen 

and Zue's approach, like the research described in this dissertation, was inspired by the 

work of House and Neuberg [HN77], who proposed that languages can be differentiated 

based on sequential constraints on broad phonetic categories. The fact that two other 

approaches to  the same problem, using the same corpus, have arrived at comparable re- 

sults, is an indication of the inherent difficulty of the problem. It is also significant that 

the HMM approach, which did not utilize any (broad or fine) phonetic transcriptions of 

speech, produced results comparable to the other two approaches that relied on broad 

phonetic transcriptions. 

6.2 Contributions 

The two main contributions of this dissertation are the development of a ten-language 

telephone speech corpus and the detailed examination of an approach to automatic lan- 

guage identification that relies only on the properties of seven broad phonetic categories. 

6.2.1 OGI Multi-language Telephone Speech Corpus (OGI-TS) 

Before the development of the OGI Multi-language Telephone Speech Corpus (OGI-TS), 

the field of language identification had a relatively small number of published papers 

reflecting twenty years of research, performed mainly by government agencies and com- 

panies on contract to government agencies. Much of the research was classified, and 

it was difficult to make objective comparisons between the results of the studies that 

were published, since they used different corpuses, and the languages used and other 

experimental details were not publicly available. 



The free availability1 of the OGI Multi-language Telephone Speech Corpus, devel- 

oped specifically to support the research described in this dissertation, has substantially 

altered this landscape. For example, a new initiative in automatic language identification 

is now under way in the United States. In March 1993, NIST designated OGI-TS as the 

standard for evaluating language identification algorithms. Researchers at eight different 

sites across the United States (see Table 6.1) are working on different approaches to auto- 

matic language identification using OGI-TS. The evaluation of the different approaches 

is being conducted by NIST. The tasks consist of identification of all  ten languages and 

the language groups L - Other, English- L', and English- L' - Other described in Chap- 

ter 5. At the time of writing, results of the first NIST language identification evaluation 

held in June 1993 were yet to be formally published. 

It is clear that the interaction and exchange of ideas resulting from different sites 

working on different approaches to the problem using the same speech corpus will result 

in significant advances in the area of automatic language identification, and the devel- 

opment of techniques to assess and compare different language identification methods. 

Table 6.1: Participants of the First NIST LangId Evaluation 

'The corpus is distributed free of charge only to universities, not-for-profit organizations and research 
laboratories funded by the U.S. government. 

Name 
Emerson & Stein 
GTE 
ITT 
Lockheed-Sanders 
MIT Lincoln Laboratory 
MIT Laboratory for Computer Science 
Oregon Graduate Institute (OGI) 
Renssaeler Polytechnic Institute (RPI) 

Location 
San Diego, CA 
Baltimore, MD 
San Diego, CA 
Nashua, NH 
Cambridge, MA 
Cambridge, MA 
Portland, OR 
Troy, NY 



6.2.2 Detailed Examination of the Broad Phonetic Approach 

While a majority of the approaches to automatic language identification over the past 

two decades have been frame-based statistical approaches [CI82, Ive86, Foi86, GMW89, 

Zis931, very few researchers [LE80] have followed up on House and Neuberg's semind 

work [HN77] in which they proposed that languages could be distinguished solely on 

the basis of sequential constraints on broad phonetic categories. The broad phonetic 

approach described in this dissertation and Hazen and Zue's work described above are 

two recent studies that have expanded on House and Neuberg's work. 

One of the objectives of the dissertation was to determine the extent to which features 

derived from sequences of broad phonetic categories would help in distinguishing between 

ten languages using telephone speech. As shown in Chapter 5, features based on individ- 

ual broad phonetic categories, as well as pairs and triples and ratios combined perform 

at an accuracy of 47.3% on the utterances of the find test set (average duration: 13.4 

seconds). The results for the English-L', L - Other and English- L' -Other tasks range 

from 69.4% to 90.7%, 68.5% to 83.3%, and 57.4% to 67.4% respectively, on the short 

and long utterances. These results are much better than chance performance (10% for 

the ten language task, 50% for the two-language task and 33.3% for the three-language 

task) and indicate that sequences of broad phonetic categories do reflect some degree of 

language discriminatory ability. Comparison of the baseline and knowledge-based fea- 

ture results on the pairwise language identification task indicate that knowledge-based 

features do perform better than features with minimal linguistic knowledge encoded in 

them. Further, the discriminative power of the knowledge-based features does increase 

with duration of the utterances, as shown by the results for the long utterances (Sec- 

tion 5.4.11.2). As expected, there was a degradation in performance in moving from 

high-qualit y speech to  telephone speech for the four-language task. 

These results are encouraging and validate House and Neuberg's hypothesis that 

sequential constraints on broad phonetic categories have the ability to distinguish be- 

tween languages. However, the level of identification performance achieved with broad 



phonetic features still leaves considerable room for improvement. Although the research 

described in this dissertation may not have exhaustively searched the broad phonetic 

category feature space, it has explored enough of it to determine that broad phonetic 

category information alone is not sufficient for the development of viable language iden- 

tification systems. By "viable" I mean systems that could be useful on a day-to-day 

basis. The level of accuracy that such systems demand requires approaches that mimic 

the way human beings possibly perform language identification: by cuing onto specific 

phonemes or phoneme sequences and words in the language. 

6.3 Future Work 

Within the broad phonetic framework, there is room for improvement in two areas: 

a increased accuracy of the broad phonetic category segmentation algorithm. This 

can be achieved by increasing the training data (involves more hand-labeling) and 

by training a boundary classifier to reduce the number of boundary errors. Given 

that all of the language classifier features are based on sequences of broad pho- 

netic categories, it is likely that improvements in the segmenter performance would 

translate to significant improvements in language identification performance. 

a improved prosodic features. The pitch variation features examined in this disser- 

tation performed the poorest of all feature sets. Features incorporating intonation 

contours and tone variations are likely to help in distinguishing between the tone 

languages and the non-tone languages in the corpus. 

Assuming that exploiting differences between languages at the phonemic and pho- 

netic levels is the key to more accurate language identification, the availability of a 

phonemically or phonetically labeled corpus of data is essential. There is current work 

at the Oregon Graduate Institute in two areas: providing a phonemic transcription of 

the utterances in the corpus and exploring phonemic approaches to automatic language 

identification. 



6.3.1 Phonemic Transcriptions 

Providing an accurate phonetic transcription of speech is a time-consuming task and 

brings up the question of precision versus accuracy. The more precise the phonetic 

transcription, the greater the likelihood of transcription errors. It also requires the 

expertise of linguists and phoneticians who are well-versed in the phonology and the 

acoustic-phonetic structure of the languages involved and the use of a phonetic notation 

convention such as the International Phonetic Alphabet (IPA). In view of these difficulties 

involved in arriving at an accurate phonetic transcription of speech, the OGI Speech 

Laboratory is currently producing phonemic transcriptions of the languages in OGI-TS. 

A phoneme is the smallest distinguishable unit of sound in a language. A phone is the 

articulatory realization of a phoneme. A phonemic transcription is less detailed than a 

phonetic transcription in the sense that different articulatory realizations of the same 

phoneme (called allophones) are essentially ignored. This approach has the following 

advantages: 

a it minimizes problems of precision vs. accuracy since robust phonemic transcrip- 

tions can generally be obtained with reasonable training, and 

the transcribers need not be expert linguists and phoneticians; fluent native speak- 

ers with some knowledge of the phonology of the language can be trained for the 

transcription task. 

However, one of the problems with this approach is that the same symbol is used to 

represent different sounds across the languages. This might make it difficult to train 

a classifier since the symbols do not represent consistent mappings to sounds across 

languages. 

Two native speakers of each language, familiar with its phonology, are being trained 

to provide phonemic transcriptions to the utterances in OGI-TS. For each language, each 

transcriber labels slightly more than half of the utterances in that language. This ensures 

that some of the utterances get transcribed by two different transcribers. These duplicate 



transcriptions are used to determine inter-transcriber reliability for that language. Care 

is being taken to have a uniform set of labeling conventions across the different languages 

to avoid ambiguities and phoneme label conflicts. 

This transcription effort is clearly an arduous and time-consuming process, but the 

benefits of a phonemicdy labeled corpus of multi-lingual speech fully justify the large 

investment of time and effort. Such a corpus would be invaluable in pursuing a phonemic 

approach to automatic language identification and would serve as a common database 

for assessment and comparison of techniques. 

6.3.2 P honeme-based Approaches 

Preliminary results are in from a phoneme-based approach to automatic language iden- 

tification for the English-Japanese task [Ber93, MBA+93]. The system consists of two 

stages: 

PLP features derived from the signal are used to perform a frame-based phoneme 

classification for each language. 

Unigram and bigram features derived from the frame-by-frame classifier outputs 

are fed into a language classifier network. 

Figure 6.1 displays a schematic block diagram of the system. The English phonemic 

front-end uses 39 phonemes, while the Japanese front-end has 25 phonemes. The English 

phonemic front-end currently performs at an accuracy of 48%, and the Japanese front-end 

at an accuracy of 46%. The unigram features consist of the average output activation, 

the maximum output activation, and the variation in the output activation for each of the 

64 (= 39 + 25) phonemes. The bigram features consist of those transition probabilities 

between pairs of phonemes whose average values over the Japanese and English training 

sets differed the most. While the English-Japanese classification performances using the 

unigram and bigram features separately (82.3% and 79.3% respectively) were inferior 

to that of the baseline sliding window approach described in section 5.4.2.3 (83.2%), 
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classification performance improved to 86.3% when the unigram and bigram features 

were combined in a single network. 

This is an encouraging result, given the relatively poor performances of the English 

and Japanese phonemic front-ends. Apparently, the low accuracy of the phonemic clas- 

sifiers is offset by the more detailed information that they provide. Work is under way 

to extend this approach to the full ten-language set and to improve the classification 

accuracy of the phonemic front-ends by the addition of more hand-labeled data. 
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Appendix A 

Telephone Speech Corpus Recording 

Protocol 

Given below is a transcript of the recording instructions and prompts that callers to 

our toll-free phone number heard. For languages other than English, the instructions 

and prompts were translated into that language by a native speaker. The following 

conventions are observed in the text of the transcript: 

a Sentences and phrases spoken only in English are in italics. 

a The recording time is given in parentheses following each prompt or question. 

a LANGUAGE is a placeholder for one of the ten languages. 

TONE refers to  the machine-generated tone that was used to signal the start of 

the final 10 seconds of the 1 minute elicited free-speech response. 

a The two-letter code in bold (e.g., dw) beside each prompt is the acronym of the 

response. sb refers to portion of the "story" before the TONE and sa is the portion 

of the "story" after the tone. 

A. 1 Transcript 

Thank you for calling the Oregon Graduate Institute language database. We are cur- 

rently recording speech in American English, Farsi, French, German, Korean, Mandarin 

Chinese, Japanese, Spanish, Tamil and Vietnamese. 



To record in German, please press 1 now. 

To record in Japanese, please press 2 now. 

To record in Korean, please press 3 now. 

To record in Mandarin, please press 4 now. 

To record in Spanish, please press 5 now. 

To record in Tamil, please press 6 now. 

To record in Vietnamese, please press 7 now. 

To record in French, please press 8 now. 

To record in English, please press 9 now. 

To record in Farsi, please press 0 now. 

You have selected the Oregon Graduate Institute LANGUAGElanguage database. We 

are studying the different languages of the world. To do this, we need to record samples of 

speech from native speakers of LANGUAGE. Please respond to the following questions 

and instructions in LANGUAGE only. Please wait for the beep before speaking. 

r What is your native language? (3 seconds) (nl) 

r What language do you speak most of the time? (3 seconds) (cl) 

r Please recite the 7 days of the week. (8 seconds) (dw) 

r Please count from 0 through 10. (11 seconds) (nm) 

We will now ask you to tell us something about your home-town. If you do not wish to 

talk about your home-town, you can talk about any city of your choice. Please wait for 

the beep before speaking. 

r Tell us something that you like about your home-town. (10 seconds) (hl) 

r Tell us about the climate in your home-town. (10 seconds) (hc) 

We will now ask you to  describe certain events and locations. If you do not wish to 

describe them, feel free to make some up fictional descriptions. Please wait for the beep 

before speaking. 



Describe the room that you are calling fiom. (12 seconds) (rm) 

Describe what you had for your most recent meal. (10 seconds) (ml) 

We now want you to talk for a longer period of time. We do not care what you say 

as long you keep talking. You can tell us anything about yourself, your hobbies and 

interests, the city that you live in, and the sports that you like. Or you can make up a 

story, teU a fairy-tale or recite a poem. You will have 1 minute to speak. We will now 

give you 10 seconds to think about what to say. 

10 second pause 

Please begin talking at the beep. You will hear a tone like this TONE when you have 

10 seconds left. Please continue t&ing and finish your story. (1 minute) (sb and sa) 

Thank you for calling. We appreciate your help. 



Appendix B 

Corpus Statistics 

B.l Corpus Distribution Sites 

Table B.l lists the research sites that have received either or both the four-language 

high-quality speech corpus (OGI-HQ) and the ten-language telephone speech corpus 

(OGI-TS). Sites marked with a 1 received both the high-quality and the telephone speech 

corpuses, while the one marked with a t received just the high-quality speech corpus. 

B.2 Four-language High-quality Speech Corpus 

B.2.1 Speaker and Utterance Information by Language 

Tables B.2, B.3, B.4 and B.5 display speaker and utterance information for the En- 

glish, Japanese, Mandarin and Tamil portions of the corpus, respectively. Not d of 

the speakers in Japanese and Mandarin were used in the segmentation and classification 

experiments. The column headings represent: 

SpkrID - Speaker initials (of the form AAN or AAAN where 'A' is a letter of the 

alphabet and 'N' is a digit 0 - 9 to disambiguate identical initials between speakers 

of the same gender). Initials with asterisks next to them represent speakers that 

were not used in any of the experiments. 

Sex - Speaker gender (m or f )  

RecDate - Speaker recording date 



Table B.l: OGI Multi-lingual Speech Corpus Distribution Sites 

Boston Univ. 
Dragon Systems, hc.$ 
Emerson & Stern 
IDA 
IDIAP 
LDC 
LIMSI CNRS 
MIT$ 
MIT Lincoln Labst 
MITRE Corporationt 
NC State Univ.1 
NSA$ 
Old Dominion Univ. 
NIST 
US West 
Washington Univ. 

Site 
AT&T 

Boston, MA 
Newton, MA 
San Diego, CA 
Princeton, NJ 
Martigny, Switzerland 
Pittsburg, PA 
Orsay, France 
Cambridge, MA 
Cambridge, MA 
VA 
Raleigh, NC 
Fort Meade, MD 
Norfolk, VA 
Gaithersburg, MD 
Boulder, CO 
St. Louis, MO 

Location 
Murray Hill, NJ 



a BirthDate - Speaker birth date 

a Origin - state(s) or country where the speaker spent most of his/her youth 

a #RecUtt - Number of utterances recorded by the speaker 

#HndLabel - Number of utterances for which broad phonetic transcriptions were 

provided 

B.2.2 Segmenter Training, Development and Final Test Sets 

Tables B.6, B.7 and B.8 display the speakers and utterances from each language chosen 

for the segmenter training, development and final test sets respectively. The following 

naming conventions are used for the utterances provided by each speaker. 

a s l  through sN - conversational utterances, where 'N' ranged from 7 through 19 

a q l  and q2 - questions 

a 'dw' - days-of-the-week 

a 'nm' - numbers 0 through 10 

B.2.3 Classifier Training, Development and Final Test Sets 

Tables B.9, B.10 and B.ll  display the speakers used in the language classification train- 

ing, development test and final test sets, respectively. All utterances from each speaker 

were used. 



Table B .2: OGIHQ: Speaker and Utterance Information for English 

SpkrID 
bbf0 
CPO 
dcb0 
dcdO 
jbcO 

jjs0 
jwl 
ka0 
kdr 0 
kwO 
lvl0 
mml  
njh0 
pmbO 
rmsO 
sjs0 
slb0 
ss0 
tkl0 
vcw0 

Sex 
f 
f 
m 
m 
f 
m 
f 
f 

m 
f 
f 
f 
m 
m 
m 
f 
m 
f 

m 
m 

BirthDate 
1/24/64 
1/3/55 

11/29/68 
1/13/57 
6/1/46 
3/9/57 
6/2/52 

11/3/66 
1/3/63 

7/17/56 
10/28/61 
8/10/55 
4/4/64 
1/9/52 
7/5/48 

11/7/51 
9/9/56 
5/7/64 

12/24/55 
11/11/50 

RecDate 
4/2/91 
4/1/91 

3/20/91 
3/29/91 
4/2/91 

3/28/91 
4/9/91 

3/26/91 
3/27/91 
3/26/91 
3/18/91 
3/27/91 
3/27/91 
3/28/91 
3/29/91 
4/10/91 
3/25/91 
4/1/91 

3/25/91 
3/28/91 

Origin 
Guam 
OR 
VA 
OR 
VA,CA 
MO 
OR 
OR 
MN 
OR 
NY 
IA 
NY 
WA 
NY 
NYC,NJ 
ME 
OR 
NJ 
OR 

#Rec Utt 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

#HndLabeZ 
5 
5 
5 
5 
5 
5 
5 
5 
5 
0 
5 
5 
5 
5 
5 
5 
5 
5 
5 
0 



Table B.3: OGI-HQ: Speaker and Utterance Information for Japanese 

SpkrID 
CY 0 
eaO 
fio 
ft0 
fyo 
hoO 
hwO 
kkO* 
ks0 
kuO 
mi0 
mk0 
rnm0 
mno 
mno* 
mtO 
mwO* 
nu0 
st0 
st0 
taO 
tf0 
tuo* 
yi0 
yso* 

- - 
Sex - 

f 
f 
f 
m 
m 
f 
m 
m 
f 
m 
m 
f 
f 
f 

m 
f 
f 
f 
f 

m 
m 
m 
m 
f 
m - - 

RecDate Origin 
, Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 
Japan 



Table B.4: OGIHQ: Speaker and Utterance Information for Mandarin Chinese 

RecDate 

11/9/90 
11/18/90 
11/12/90 
12/10/90 
11/20/90 
5/10/90 

11/19/90 
5/6/90 

11/10/90 
11/18/90 
4/28/90 
11/8/90 

11/18/90 
11/16/90 
11/27/90 
5/11/90 
11/2/90 

11/16/90 
6/13/90 

11/10/90 
5/12/90 
11/9/90 

11/12/90 

SpkrID 
cd0 
dl0 * 
flo 

ggo 
g10 
jhO 
jqo 
jw0 
Ilo 
Is0 
lzo 
lzo 

 YO 
qlO* 

qxo 
sgo 
wso 
Xho 
xwo 

~ 1 0  
YPO 
YtO 
zb0 
210 

Origin 
China 
China 
China 
China 
China 
Taiwan 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
China 
china 
China 
China 
China 
China 

Sex 
m 
m 
f 
f 
m 
f 

m 
f 
f 

m 
f 
m 
m 
m 
f 
f 
m 
f 
m 
m 
f 

m 
m 
m 



Table B.5: OGIHQ: Speaker and Utterance Information for Tamil 

dr0 
hs0 
js0 
jv0 
la0 
mgO 
ngO 
nmO 
rps0 
rrO 
rsO 
rvO 
snO 
srO 
sr 1 
suo 
vrO 
vvg 0 
ykmO 

Origin 
India 
India 
India 
India 
India 
India 
India 
India 
India 
India 
India 
India 
India 
India 
India 
India 
India 
India 
India 
India 



Table B.6: OGIHQ Segmenter Training Set 

English - 
Spkr 
fbbfO 
fjwl 
fka0 
fmml 
fsjs0 
mdcdO 
mkdrO 
mnjhO 
mpmbO 
mslbO 

Utts. 
sl-s5 
sl-s5 
sl-s5 
sl-s5 
sl-s5 
sl-s5 
sl-s5 
sl-s5 
sl-s5 
sl-s5 

Japanese 
S P ~  
fcy0 
fh00 
fmm0 
fks0 
fnuO 
mft0 

mfy0 
mhwO 
mkuO 
mtaO 

Mandarin 

Table B.7: OGIHQ Segmenter Development Test Set 

Utts. 
sl-s5 
sl-s5 
sl-s5 
sl-s5 
sl-s4 nm 
sl-s5 
s l  s2 s16-s18 
sl-s5 
q l  q2 nm s4 s5 
sl-s5 

Spkr 
f f lO 
fJw0 
f f lO  
fqx0 

fyp0 
mjqO 
mls0 
mLz0 
mws0 

Tamil 
Utts. 

sl-s5 
q l  q2 sl-s3 
s l  ~10-s13 
sl-s5 
sl-s5 
dw nm q l  q2 s3 
sl-s5 
sl-s3 s10 s l l  
s l  s4 s5 s10 s l l  

Spkr 
fhs0 
fjs0 
fjv0 
fng0 
fsrO 
mdrO 
mmgO 
mrpsO 
mrrO 
msuO 

Table B.8: OGIHQ Segmenter Final Test Set 

Utts. 
sl-s5 
sl-s5 
sl-s5 
sl-s5 
sl-s5 
s l  s16-s19 
sl-s5 
s l  s16-s19 
nm sl-s4 
q2 s l  s2 s4 s5 

English 
Spkr 
flvlO 

Utts. 
sl-s5 

Japanese 

English 

Spkr 
feaO 

Spkr 
fcpO 
fssO 
mdcbO 
mrmsO 

Utts. 
sl-s5 

Mandarin 

Utts. 
sl-s5 
sl-s5 
sl-s5 
sl-s5 

Japanese 

Spkr 
fxhO 

Tamil 

Spkr 
fmtO 
fyiO 
mstO 
mtfO 

Utts. 
sl-s5 

Spkr 
frvO 

Utts. 
sl-s5 
sl-s5 
sl-s5 
sl-s5 

Mandarin 

Utts. 
sl-s5 

Spkr 
fjhO 
&O 
mglO 
mnyO 

Tamil 
Utts. 
sl-s5 
sl-s5 
sl-s5 
sl-s5 

Spkr 
fsnO 
fsrl 
makg0 
mvvgO 

Utts. 
sl-s5 
sl-s5 
dwsl-s4 
sl-s5 



Table B.9: OGIHQ Classifier Training Set 

fjbcO 
fjwl 
fkao 
fmml 
fsjs0 
mdcdO 
mkdr0 
mnjhO 
mpmbO 
mslbO 

English 
fbbfO 

ffio 
fh00 
fmmO 
fmt0 
fnu0 
fyi0 
mfto 
mfy 0 
mhw0 
mku0 

fjw0 
NO 
fqx0 
fsg0 
~ Y P O  
mglO 
mls0 
mlzo 
mwsO 
mxwo 

Japanese 
fcyO 

Mandarin 
ffl0 

Tamil 
fhs0 
fjs0 
fjv0 
fla0 
fng0 
fsr0 
mdrO 
mmgO 
mnmO 
mrpsO 
mrrO 

rntlc10 I mtao 

Table B.lO: OGIHQ Classifier Development Test Set 

myt o 

English 

mdcbO 

Table B.ll: OGIHQ Classifier Final Test Set 

Tamil 
frv0 
mvr0 

Japanese 
feaO 
mmi0 

makg0 
my10 mrso 
mzbO mvvgO 
mzl0 mykm 

Mandarin 
fxh0 
mcdO 

English 
fkwo 

Japanese 
fmko 

Mandarin 
kg0  

Tamil 
fsno 



B.3 Ten-language Telephone Speech Corpus 

B.3.1 Speaker and Utterance Information 

Since the callers were not asked information about their origin or date of birth, the 

speaker information for this corpus is limited to subjective judgments about the caller's 

age (adult, child) and gender (male, female, unknown). Table B.12 displays the distri- 

bution of utterances in each language by type. The utterance types are represented by 

the two-letter codes defined in Appendix A. 

B.3.2 Segmenter Training, Development and Final Test Sets 

Tables B.13 and B.14, B.15 and B.16, and B.17 and B.18 display the actual calls and 

utterances used in the training, development test and final test sets, respectively. The 

gender of the caller is juxtaposed to each call number. 

B.3.3 Classifier Training, Development and Final Test Sets 

Since a variable number of utterances were used from each language in the language 

classification data sets, Table B.19 displays the distribution of utterances from each 

language in the training, development test and final test sets. Tables B.20 through B.26, 

B.27 through B.30, and B.31 through B.34 display the callers and utterances used from 

each language in the training, development test and final test sets, respectively. 
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Table B.12: Ten-language Telephone Speech Corpus: Speaker and Utt. Information 

English 
Far si 
French 
German 

1 Japanese 
Korean 
Mandarin 
Spanish 
Tamil 
Vietnamese 

# Utts 
7991 
993 

1082 
1059 
930 
905 

1103 
1150 
1189 
1023 

Table B.13: OGI-TS Segmenter Training Set 

Uttenznce Types 

~ l i sh  
Utts. 
nl rm 
nl nm 
nl nm 
nl nm 
nl nm 
nl nm 
nl nm 
nl nm 
nl nm 
nl nm 
clhl 
cl hl 
hl nl 
hl nl 
hl nl 

nm 
842 
113 
116 
116 
104 
110 
132 
125 
137 
122 

sb 
753 
95 

104 
101 
85 
82 
98 

109 
98 
91 

sa 
684 
64 
82 
88 
76 
44 
66 
85 
74 
47 

hl 
802 
101 
111 
105 
92 
92 

102 
118 
126 
94 

Farsi f inch  
Spkr 
2m 
5m 
6m 
8m 
9f 
10m 

' l l m  
13m 
16m 
17m 
20f 
22m 
24f 
26m 

i 27m 

hc 
805 
102 
107 
105 
90 
96 

110 
118 
114 
107 

German 
Spkr 
l m  
2m 
4m 
5m 
6m 
7m 
9m 
l l f  
13m 
15m 
16f 
17m 
18m 
20m 
21m 

Utts. 
nl nm 
n lnm 
n lnm 
nl nm 
nl nm 
hln l  
n lnm 
hch l  
hl rm 
hl nl 
h ln l  
hl nl 
hl nl 
h ln l  
hl nl 

Spkr 
If 
2m 
4f 
5f 
6f 
7m 
9f 
10f 
13f 
14m 
15f 
16f 
18m 
19f 
2% 

Utts. 
n lnm 
nl nm 
nl nm 
n lnm 
n lnm 
hl nl 
hl nl 
h ln l  
hl nl 
hl nl 
h ln l  
h ln l  
h ln l  
hl nl 
h ln l  

Japanese 

rm 
801 

96 
104 
105 
92 
95 

108 
112 
112 
104 

Utts. 
n lnm 
nl nm 
hl nm 
hl nm 
nl nm 
hl nl 
hl Ill 
h ln l  
h ln l  
hc nl 
hl nl 
h ln l  
nl ml 
nl hl 
h ln l  

Spkr 
l m  
2f 
3m 
4m 
6m 
7m 
13m 
15m 
17f 
19f 
22m 
23m 
24m 
25f 
26f 

ml 
800 

93 
106 
104 
92 
91 

107 
117 
114 
103 

Utts. 
nl nm 
n lnm 
nl nm 
nl nm 
nl nm 
hl nl 
hl nl 
h ln l  
hl nl 
h ln l  
h ln l  
hl nl 
hl nl 
hl nl 
hl nl 



Table B.14: OGI-TS Segmenter Training Set (continued) 

Table B.15: OGI-TS Segmenter Development Test Set 

Enalish I Farsi f inch I German I Jawnese I 

Vietnamese 
Spkr 
lm 
2f 
3m 
6m 
8f 
9m 
l l m  
12m 
13m 
14f 
16m 
18f 
21f 
25f 
26m 

Korean Spanish 
Utts. 

nl nm 
nlnm 
nlnm 
hcnl 
hl nl 
nlnm 
hl nl 
hlnm 
hl nl 
hl nl 
hlnl 
hlnl  
hl nl 
hlnl  
hl nl 

Spkr 
If 
3f 
4m 
5m 
7f 
8m 
9m 
10m 
14m 
15m 
16f 
17m 
18m 
19m 
20m 

Mandarin 

Spkr " Utts. 

Spkr 
lm 
2f 
3m 
4m 
5m 
6m 
7m 
8m 
9m 
10f 
12m 
13m 
15f 
16f 
17m 

Tamil 
Utts. 

nlnm 
hl nm 
nlnm 
hcrm 
hl nl 
nlnm 
hlnl  
nlnm 
hl nl 
hl nl 
hlnl  
hlnl  
hl nl 
h ln l  
hl nl 

Spkr 
l m  
3f 
8m 
9m 
10m 
l l m  
12m 
13m 
14f 
15m 
16f 
18m 
19m 
21m 
23m 

27m 
28m 
29m 
31f 
3% 

Utts. 
nl nm 
nlnm 
nlnm 
nlnm 
nl nm 
hlnl  
dw nl 
hlnl  
hl nl 
nl nm 
d h l  
hlnl 
hl nl 
hlnl  
hl nl 

Spkr 
lm 
3m 
4m 
7m 
8m 
9m 
10f 
l l m  
12m 
14m 
15m 
16m 
17m 
18m 
20m 

Utts. 
nl nm 
nlnm 
nlnm 
nlnm 
nl nm 
hlnl  
hlnl  
hlnl  
hl nl 
hl nl 
hlnl 
hlnl  
hl nl 
hlnl  
hl nl 

hl rm 
hl ml 
h lml  
hl ml 
hl ml 

S p k ~  
29m 
30m 
31m 
35f 
36m 

Utts. 
nl nm 
nl nm 
nlnm 
hlnl 
hl nl 
hlnl 
hc nl 
hlnl  
hl nl 
hl nl 
hlnl 
hlnl 
hl nl 
hlnl 
hl nl 

Utts. 
hl ml 
hl ml 
hlml 
hl ml 
hc hl 

Spkr 
22f 
23m 
25f 
26m 
30m 

Utts. 
hl ml 
hl ml 
hlml 
hl ml 
hl ml 

Spkr 
23f 
24m 
26m 
27m 
28m 

Utts. 
hl ml 
hl ml 
hlml 
hl ml 
hl ml 

spG 
27m 
28m 
29m 
35f 
36m 

Utts. 
hl ml 
hl nl 
hlml 
hl ml 
hl ml 



Table B.16: OGI-TS Segmenter Development Test Set (continued) 

Korean I Mandarin I Spanish I Tamil I Vietnamese 1 

Table B.17: OGI-TS Segmenter Final Test Set 

Spkr 
22f 
23f 
24f 
25m 
26m 

Table B. 18: OGI-TS Segrnenter Final Test Set (continued) 

Utts. 
hl ml 
hl ml 
hl ml 
hl ml 
hl ml 

Spkr 
24m 
27m 
30f 
36m 
37f 

English 

Utts. 
hc rm 
hl ml 
hl ml 
hl ml 
hl ml 

Spkr 
33f 
34m 
35m 
37m 
38m 

~ p k r  Utts. 

Farsi 
Utts. 

hl ml 
hl ml 
hl ml 
hl ml 
hl ml 

18m 
19m 
20m 
22m 
23m 

Spkr 
37m 
39f 
40m 
42m 
43m 

Vietnamese 

Spkr 
21m 
2% 
23m 
24m 
26m 

hl ml 
hl ml 
hl ml 
hl ml 
hl ml 

Utts. 
hl ml 
hl ml 
hl ml 
hl ml 
hl ml 

f inch  

Spkr 
37m 
38m 
40m 
46f 
47f 

Tamil Korvan 

Spkr 
27m 
29f 
30f 
31m 
32f 

Utts. 
hl ml 
dw nl 
hl ml 
hl ml 
hl ml 

Spkr 
32m 
33m 
34m 
35f 
37m 

Utts. 
hc hl 
hl ml 
hl ml 
hl rm 
ml rm 

Spkr 
31m 
32m 
33m 
34m 
36f 

Spkr 
33f 
34m 
35m 
37m 
38m 

Utts. 
hl ml 
hc ml 
ml rm 
m l r m  
hl ml 

German 
Utts. 

hl ml 
hl ml 
hl ml 
hl ml 
hl ml 

Utts. 
hl ml 
hl ml 
hl ml 
hl rm 
hc rm 

Mandarin 
Utts. 
hl ml 
hl ml 
hl ml 
hl ml 
hl ml 

Japanese 
Spkr 
31m 
32m 
33m 
34m 
36f 

Spanish 
Spkr 
37m 
39f 
40m 
42m 
43m 

Spkr 
37m 
38m 
40m 
46f 
47f 

Utts. 
hl ml 
hl ml 
hl ml 
hl rm 
hc rm 

Spkr 
32m 
33m 
34m 
35f 
37m 

Utts. 
hl ml 
hl ml 
hl ml 
hl ml 
hl ml 

Utts. 
hc hl 
hl ml 
hl ml 
hl rm 
ml rm 

Utts. 
hl ml 
hl ml 
hl ml 
hl ml 
hl ml 



Table B.19: Distribution of Utterances in the Language Classification Data Sets 

Farsi 
French 
German 
Japanese 
Korean 
Mandarin 
Spanish 

Dev. Test Final Test 

Tamil 
TOTAL 

263 

2714 

113 

1120 

101 

1077 



Table B.20: OGI-TS Classifier Training Set (50 speakersjlanguage) 

I Enalish 
No, 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 

Farsi I finch 
Spkr Utts. Spkr Utts. 
5m hc hl ml rm sa sb l m  hc hl ml rm sa sb 



Table B.21: OGI-TS Classifier Training Set (continued) 

No. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
48. 
49. 
50. 

Spkr 
33f 
34m 
35m 
37m 
38m 
39f 
40m 
41f 
42m 
43m 
44m 
45m 
47f 
48f 
50f 
51f 
52m 
53m 
54m 
56f 
57m 
58m 
59m 
60m 
61m 

Spkr 
44m 
45f 
46f 
47m 
51m 
52m 
53m 
55m 
56m 
59m 
62f 
63m 
66m 
67m 
70m 
72m 
74m 
77m 
78m 
82m 
83f 
84m 
85m 
86m 
88m 

English 
Utts. 

hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl rrd rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 

Farsi 
Utts. 

hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc ml rm 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl rrd rm sa sb 
hc hl rm sa sb 
hc hl ml rm sa sb 
hc hl rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 

Spkr 
37m 
38m 
40m 
41f 
4% 
43m 
44m 
45f 
46m 
47m 
48m 
51f 
52m 
53m 
55m 
56m 
57m 
58f 
59m 
61m 
62m 
64m 
65m 
66m 
67m 

French 
Utts. 

hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl rnl rm sa sb 
hc hl ml rm sa sb 
hc hl 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 



Spkr 
If 
2m 
3m 
4f 
5f 
6f 
7m 
9f 
10f 
l l f  
12f 
13f 
14m 
15f 
16f 
18m 
19f 
22f 
23f 
24m 
26m 
27m 
28m 
31m 
32m 

Table B.22: OGI-TS Classifier Training Set (continued) 

German 
Utts. Spkr 

lm 
2f 
3m 
4m 
6m 
7m 
13m 
15m 
17f 
19f 
20m 
22m 
23m 
24m 
25f 
26f 
27m 
29m 
35f 
36m 
37m 
38m 
40m 
47f 
48m 

Spkr 
If 
3f 
4m 
7f 
9m 
14m 
15m 
16f 
17m 
18m 
19m 
20m 
22f 
23f 
24f 
25m 
26m 
30f 
34m 
35m 
36m 
37m 
38m 
39m 
40m 

Japanese 
Utts. 

hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc ml 
hc hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl rm sb 
hl ml rm sa sb 
h lmlrmsb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc ml rm sb 
hc hl ml rm sa sb 

Korean 
Utts. 

hc hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
h c h l m l r m s a s b  
hc hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hcml rm sb 
hc hl ml rm 
hc hl ml rm sb 
hc hl ml rm sb 
hc ml rm sb 
hc hl ml rm sb 
hc hl ml rm sb 



Table B.23: OGI-TS Classifier aaining Set (continued) 

No. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
48. 
49. 
50. 

Spkr 
41m 
42m 
43m 
46f 
48f 
49m 
51f 
53m 
54m 
55m 
56m 
58m 
59f 
60m 
61m 
62m 
63f 
64m 
65m 
67f 
68m 
69f 
70m 
71f 
72m 

Korean 
Utts. 

hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
h c h l m l r m s b  
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa 
hc hl ml rm sb 
hc hl ml rm 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
ml rm sb 

Sp kr 
50f 
51m 
53f 
54m 
55f 
57m 
58m 
60f 
61m 
62m 
65m 
66m 
67f 
68f 
69m 
71f 
72f 
73f 
75m 
80m 
82f 
83m 
85f 
86f 
88m 

Japanese 
Utts. 

hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 

Spkr 
33m 
34m 
36f 
37m 
38m 
39m 
40m 
41m 
42f 
44f 
45f 
46f 
47m 
50f 
51m 
52m 
53f 
56f 
57f 
58m 
59f 
60m 
61m 
63f 
68m 

German 
Utts. 

hc hl ml rm sa sb 
hc hl rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hlmlrm 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm 



Table B.24: OGI-TS Classifier Training Set (continued) 

No. 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 

Spkr 
l m  
3m 
4m 
7m 
8m 
9m 
l l m  
12m 
14m 
15m 
16m 
17m 
18m 
21m 
23m 
24m 
26m 
27m 
29f 
30m 
32m 
33m 
34m 
35m 
36m 

Tamil 
Utts. 

hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hl sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sb 
hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sb 
hl ml rm sa sb 
hc hl rm 
hc hl ml sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm 
hc hl ml rm sb 
hc hl ml rm 

Spkr 
l m  
2f 
3m 
4m 
5m 
6m 
8m 
9m 
10f 
12m 
13m 
14m 
15f 
16f 
17m 
18m 
19m 
20m 
22m 
23m 
24m 
25f 
26m 
27m 
28m 

Spcmish 
Utts. 

hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm 
hc ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 

Spkr 
lm 
8m 
9m 
10m 
l l m  
12m 
13m 
14f 
15m 
16f 
18m 
21m 
23m 
24m 
27m 
30f 
31f 
32f 
33f 
34m 
35m 
36m 
37f 
39m 
40f 

Mandarin 
Utts. 

hc hl ml rm sb 
h c m l r m  
hc hl ml rm sa sb 
h c h l m l r m  
hc hl ml rm sa sb 
hc hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 



No. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
48. 
49. 
50. 

Table B.25: OGI-TS Classifier Training Set (continued) 

Mandarin 
Utts. 

hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl rm 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl  ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 

Spanish Tamil 



Table B.26: OGI-TS Classifier Training Set (continued) 

No. 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
lo.  
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 

Utts. 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm 
hc hl rm 
hc hl ml rm sa sb 
hc ml rm sb 

Vietnamese 
No. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
48. 
49. 
50. 

Spkr 
l m  
2f 
3m 
8f 
l l m  
12m 
13m 
14f 
16m 
18f 
21f 
25f 
26m 
27m 
29f 
3M 
31m 
3% 
33m 
34f 
35f 
37m 
38m 
39m 
40m 

Spkr 
41f 
42m 
43f 
44f 
45f 
46m 
47m 
49f 
52m 
53m 
55m 
56m 
57m 
58m 
63m 
64m 
65m 
68f 
69m 
70f 
71m 
72f 
74m 
75m 
76m 

Utts. 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc h l m l r m  
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc ml rm 
hc ml rm 
rnl rm 
hc hl ml rm 

' hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm 
hc hl ml rm sb 
hc hl ml rm sa sb 



Table B.27: OGI-TS Classifier Development Test Set (20 speakers/language) 

- 

No. - 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 

S P ~  
84m 
85m 
86m 
87m 
88f 
90f 
92m 
93m 
94m 
96m 
97m 
98m 
99f 
100m 
lOlm 
103f 
105m 
106f 
107m 
108f 

English 
Utts. 

hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
h c h l m l r m  
hc hl ml rm sb 

Spkr 
117m 
118f 
119m 
120m 
121m 
122m 
123m 
124f 
125m 
126m 
127m 
128f 
129m 
130m 
131m 
132m 
135m 
136m 
138f 
139m 

S P ~  
97f 
98f 
99m 
lOOf 
lOlm 
102m 
103m 
104f 
105m 
106m 
107m 
108m 
109m 
110m 
113m 
114f 
116f 
117m 
118m 
119f 

Farsi 
Utts. 

hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 

Bvnch 
Utts. 

hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 



Table B.28: OGI-TS Classifier Development Test Set (continued) 

No. 
German 

Utts. 

97f hc hl ml rm sa sb 120m 
99m hc hl ml rm sa sb 121f 
lOOf hc hl ml rm sa sb 122m 
lOlm hc hl ml rm sa sb 124f 
102m hc hl ml rm sa sb 126m 
106m hc hl ml rm sa sb 127m 
109m hc hl ml rm sa sb 128f 
113f hc hl ml rm sa sb 129m 
114m h c h l m l r m  sasb 130m 
116f hc hl ml rm sa sb 131m 
118f hc hl ml rm sa sb 133m 
120f hc hl ml rm sa sb 134m 
123m hc hl ml rm sa sb 135m 
124f hc hl ml rm sa sb 136m 
125m hc hl ml rm sa sb 137f 
127m hc hl ml rm sb 138m 
128f hc hl ml rm sa 139m 
129f hc hl ml rm sa sb 140m 
130m hc hl ml rm sa sb 141m 

Korean 
Utts. 

hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl rm sa 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa 
hc hl ml rm sa sb 

Japanese 
Utts. 

hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
h c h l m l r m s a s b  
hc hl ml rm sa sb 
hc ml rm sa sb 
h c h l m l r m  
hc hl ml rm sa sb 
hc hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 

Spkr 
109m 
llOm 
l l l m  
112m 
113m 
114m 
118m 
120m 
125m 
127m 
129111 
130m 
131m 
132m 
136f 
137m 
138m 
139m 
140f 
141m 



No. - 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 

Table B .29: 0 GI-TS Classifier Development Test Set (continued) 

Spkr 
121f 
122f 
123f 
124f 
126m 
127m 
129f 
134m 
135m 
136m 
137f 
138m 
140m 
141m 
142m 
143f 
146m 
147m 
148m 
149m 

Mandarin I 
Utts. 

hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc ml rm sb 
h c h l m l r m  
hc hl ml rm sa sb 
hc ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 

106m 
107m 
108m 
110m 
l l l m  
114m 
115m 
116m 
117f 
118m 
121m 
122m 
124m 
125m 
129m 
132m 
133f 
137m 
138m 

Spanish 
Utts. 

hc hl ml rm sa sb 

Tamil 
Sp kr 
105m 

Utts. 
hc hl ml rm sa sb 



No. 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. - - 

Table B.30: OGI-TS Classifier Development Test Set (continued) 

Vietnamese 

h c h l m l r m  
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 

. ..- .-- -~ - 

Table B.31: OGI-TS Classifier Final Test Set (20 speakers/language) 

Utts. 
hc hl ml rm sb 

Spkr 
126m 

Utts. 
hc hl ml rm sb 

hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml sb 

1 h c h l m l r m s b  

No. 
11. 

English 

63m 
64m 
65m 
66m 
68f 
69m 
70m 
71m 
72m 
73m 
74f 
76m 
77f 
78m 
79m 
80m 
81m 

1 82m 

Utts. 
Farsi 

Spkr 
62m 

Spkr 
90m 

Utts. 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
h c h l m l r m s b  
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc h l m l r m s a s b  
hc hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sa sb 

Utts. 
hc hl ml rm sa sb 

93f 
94m 
95m 
96m 
99m 
lOOm 
lOlm 
102m 
103m 
104m 
107m 
108m 
109m 
l l l m  
112f 
113m 
114m 
115m 

69m 
71m 
72m 
73m 
74m 
75m 
79f 
80f 
81f 
83m 
85m 
86f 
87f 
90 
92f 
93f 
94f 
95m 
96m 

hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
h c h l m l r m s b  
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sa sb 



Table B .32: OGI-TS Classifier Final Test Set (continued) 

No. - 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. - - 

Spkr 
69f 
70m 
72m 
74m 
75f 
77f 
78m 
79m 
80m 
81m 
83m 
85f 
86m 
87m 
88m 
89m 
90m 
91m 
93m 
94f 

G e m n  
Utts. 

hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 

Japanese 
Utts. zqzF= Spkr I Utts. 

91f 
92f 
94f 
96m 
97f 
lOOm 
lOlf 
102m 
104m 
105f 
106m 
107m 
108m 

1 109f 
llOf 
112m 
113m 
116m 
117m 

74m 
75m 
76m 
79m 
80m 
81m 
85f 
90m 
91m 
94m 
96m 
97f 
99f 
lOOm 
lOlm 
103f 
105m 
106m 

1 108m 

hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc h l m l r m  sasb 

hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl rm sb 
hc ml rm sb 
hc hl ml rm sb 
hc ml rm 
hc hl ml rm sa sb 
h c h l m l r m  
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl sb 



Table B.33: OGI-TS Classifier Final Test Set (continued) 

No. 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 

Mandarin 
Utts. 

hc hl ml rm sb 

Spanish 

hc hl ml rm sa sb 
h c h l m l r m  
hc hl ml sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
h c h l m l r m  
hc hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 

Tamil 
Spkr 
75m 
76m 
77m 
78m 
79m 
80m 
83m 
84m 
85m 
86m 
89m 
90m 
91m 
94f 
95m 
98m 
99m 
lOOm 
102m 
104m 

Table B.34: OGI-TS Final Test Set (continued) 

Utts. 
hc hl rm 
hc hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm 
hc hl ml rm sa sb 
h c h l m l r m  
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
h c h l m l r m  
hl ml rm 
hc hl ml rm sa sb 
hc hl ml rm sa sb 

Vietl 
Utts. 

hc hl ml rm sb 
hc hl ml rm 
hc hl ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sa sb 
h c h l m l r m  
hc hl ml rm sa sb 
hc hl ml rm sb 

ames~ 
No. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 

Spkr 
96m 
97m 
98m 
99m 
lOOm 
lOlm 
102f 
104f 
105f 
lO6f 

Utts. 
hc hl rm 
hc hl ml rm sb 
hc ml rm sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm sb 
hc ml rm sa sb 
hc hl ml rm sa sb 
hc hl ml rm sb 
hc hl ml rm 



Appendix C 

Boxplots of Feature Sets 

Figures C. l  through C.21 display the boxplots for the 63 segment-triple frequency (STF) 

features. 

Figures C.22 through C.42 display the boxplots for the 63 segment-triple ratio (STR) 

features. 

Figures C.43 through C.49 display the boxplots for the 20 segment-pair frequency (SPF) 

features. 

Figures C.50 through C.56 display the boxplots for the 20 segment-pair ratio (SPR) 

features. 

Figures C.57 through C.63 display the boxplots for the 20 segment-pair duration 

ratio (SPDR) features. 

Figures C.64 through C.70 display the boxplots for the 20 segment-pair median du- 

ration (SPMD) features. 

C.3 Pitch-based Features 

Figures C.71 through C.73 display boxplots for the 4 intra-segment pitch variation and 

4 inter-segment pitch variation features respectively. 



C.4 Other Global Features 

C.4.1 Frequency of Occurrence 

Figures C.74 through C.77 display boxplots of the 11 frequency-of-occurrence features 

described in Section 5.4.9.1. OBS, VOBS, SON and SEG refer to obstruents, voiced 

obstruents, sonorants and all segments, respectively. 

C.4.2 Segment Occurrence Ratios 

Figures C.78 through C.92 display boxplots of the 47 segment occurrence ratios described 

in Section 5.4.9.2. 

C.4.3 Segment Duration Ratios 

Figures C .93 through C .lo7 display boxplots of the 47 segment duration ratios described 

in Section 5.4.9.2. 

C.4.4 Duration 

The duration features are described in Section 5.4.9.3. Figures C.108 through C.l10 

display boxplots of the 7 average duration features. 

Figures C.lll through C.113 display boxplots of the 7 standard-deviation-of-duration 

features. 

Figures C.114 through C.117 display boxplots of the 5 inter-segment duration differ- 

ence and 5 vowel center distance features. 



slf(CL0S-FRICCLOS) stf(CL0S-FRIC-CLOS) normalized 

slf(CL0SFRIC-PRVS) slf(CL0SFRC-PRVS) normalized 

stf(CL0S-FRIC-VOC) normalized 

UNOUAQE CODES 

Figure C.l: Boxplots of Segment-triple Frequency (STF) Features 
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stf(CL0S-STOP-PRVS) stf(CL0S-STOP-PRVS) normalized 

stf(CL0S-STOP-VOC) stf(CL0SSTOP-VOC) normalized 

Figure C.3: Boxplot s of STF Features (continued) 



stf(CL0S-VOC-FRC) slf(CL0S-VOC-FRIC) normalized 

stf(CL0SVOC-INS) stf(CL0S-VOC-INVS) normalized 

stf(CL0SVOC-POVS) stf(CL0S-VOC-POVS) normalized 

Figure C.4: Boxplots of STF Features (continued) 



stf(FRICCL0S-PRVS) stl(FRICGL0S-PRVS) normalized 

UNQUAGE CODE8 UNQUAGE CODE8 

Figure C.5: Boxplots of STF Features (continued) 
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stf(INVS-VOC-POVS) stf(lNVS-VOC-POVS) normalized 

stf(POVS-CLOS-FRIC) slf(POVSCL0SFRIC) normalized 
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stf(POVSCL0S-PRVS) stf(P0VSCLOS-PRVS) normdied 

Figure C.9: Boxplots of STF Features (continued) 



stf(P0VS-CLOS-VOC) stf(P0VS-CLOS-VOC) normalized 

stf(P0VSFRIC-CLOS) stf(P0VS-FRIC-CLOS) normalized 

LANDUAQE CODES UNQWlOE CODE8 

Figure C.lO: Boxplots of STF Features (continued) 



.stf(POVS-FRIC-PRVS) stf(P0VS-FRIC-PRVS) normalized 

stf(POVS-STOPCLOS) stfpOVSSTOP-CLOS) normalized 

Figure C . l l :  Boxplot s of STF Features (continued) 



stf(POVS-STOP-PRVS) stf(P0VS-STOP-PRVS) normalized 

stf(P0VS-STOP-VOC) stf(P0VS-STOP-VOC) normalized 

LANOUAQE CODES LANQUAQE CODE8 

Figure C.12: Boxplots of STF Features (continued) 



sll(PRVS-VOC-CLOS) stf(PRVS-VOC-CLOS) normalized 

stf(PRVSV0CINVS) stf(PRVS-VOC-INVS) normalized 

Figure C.13: Boxplots of STF Features (continued) 



stf(PRVS-VOC-POVS) stf(PRVS-VOC-POVS) normalized 

stf(ST0P-CLOS-FRIC) stf(STOP-CLOS-FRIC) normalized 

M(STOP-CLOS-PRVS) stf(ST0PCLOS-PRVS) normalized 

LANQUACIE M O E 8  LANOUAQE CODE8 

Figure C.14: Boxplots of STF Features (continued) 



&(STOP-CLOS-STOP) &(STOP-CLOS-STOP) normalized 

stf(STOP-CLOS-VW) &(STOPCLOS-VOC) normalized 

&(STOP-FRIC-CLOS) normalized 
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Figure C.15: Boxplots of STF Features (continued) 



&(STOP-FRIGVOC) &(STOP-FRIC-VOC) normalized 

sH(ST0P-PRVS-VOC) &(STOP-PRVS-VOC) n~nnaliied 

LANQUQEMOEB W U A Q E  CODE8 

Figure C.16: Boxplots of STF Features (continued) 
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&(STOP-VOC-POVS) &(STOP-VOC-POVS) normalized 

&(VOCCLOS-FRIC) &(VOC-CLOS-FRIC) normalized 

&NOC-CLOSPRVS) &(vOCCLOSPRVS) normalized 

UNOUAOE CODEL) IANQUAOE CODES 

Figure C.18: Boxplots of STF Features (continued) 



Str WOC-CLOSSTOP) stf(V0CCLOSSTOP) normalized 

LANOUAQE CODE8 LANOUAOE CODE8 

Figure C.19: Boxplots of STF Features (continued) 



stf(V0C-FRIC-PRVS) normalized 

d(V0GFRIC-VOC) normalized 

L4NQuAQECODES 

Figure C.20: Boxplots of STF Features (continued) 



stfrVOC-POVSSOP) &(vOC-POVS-STOP) normalized 

Figure C.21: Boxplots of STF Features (continued) 
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LAMQUAQE CODE8 

Figure C.23: Boxplots of 

str(CL0S-STOP-FRIC) normalized 

UNGUAQE CODE8 

STR Features (continued) 



slrfCLOS-STOP-PRVS) str(CL0S-STOP-PRVS) normalied 

str(CL0S-STOP-VOC) normalized 

Figure (3.24: Boxplots of STR Features (continued) 



Figure C .25: Boxplot s of STR Features (continued) 



str(FRIC-CLOS-FRIC) str(FRIC-CLOS-FRIC) normalized 
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Figure C.26: Boxplots of STR Features (continued) 



W U A G E  CODES LANQUAOE CODE8 

str(FRIC-VOC-CLOS) slr(FRIC-VOCCLOS) normalized 

Figure C.27: Boxplots of STR Features (continued) 
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str(FRIC-VOC-FRIC) normalized 

strQRIGVOC-POVS) normalized 

UNOUAQE CODE8 IANQUAQE CODE8 

Figure (3.28: Boxplots of STR Features (continued) 



Figure C.29: Boxplots of STR Features (continued) 



Figure C.30: Boxplots of STR Features (continued) 

str(POVSCL0SFRIC) str(POVS-CLOS-FRIC) normalized 
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str(P0VSCLOSVOC) str(POVSCL0SVOC) normalized 

str(POVSFR1C-CLOS) str(P0VS-FRICCLOS) normalized 

IANWAQE CODE8 LANCIUQE COOE8 

Figure C.31: Boxplots of STR Features (continued) 



str(POVS-FRIC-PRVS) str(POVS-FRIC-PRVS) normalized 

str(P0VS-FRIGVOC) str(P0VSFRIC-VOC) normalized 

LANOUAOE CODES UNDUAQE CODE8 

Figure C.32: Boxplots of STR Features (continued) 



Figure C.33: Boxplots of STR Features (continued) 
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Figure C.34: Boxplots of STR Features (continued) 



str(PRVS-VOC-POVS) str(PRVSV0C-POVS) normalized 

str(ST0P-CLOSPRVS) str(ST0P-CLOS-PRVS) normalied 

UNOUAOE GODEB UNOUAOE CODES 

Figure C.35: Boxplots of STR Features (continued) 



LAMQVAOE CODES L A W O E  CODE8 

Figure C -36: Boxplot s of STR Features (continued) 



str(ST0P-FRIC-PRVS) str(ST0P-FRIC-PRVS) normalized 

LANaUAaE CODES M U M E  CODE8 

Figure C.37: Boxplots of STR Features (continued) 
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Figure C.38: Boxplots of STR Features (continued) 



LANaUAQE M O E 8  UNOUAQE COOEB 

Figure C.39: Boxplots of STR Features (continued) 



str(VOCCL0S-STOP) str(VOCCL0S-STOP) normalized 

str(VOC-FRICCLOS) str(VOC-FRIC-CLOS) normalized 

UNQUAOE COOE8 UNQUAQE CODE8 

Figure C.40: Boxplots of STR Features (continued) 



btr(VOC-FRIC-PRVS) str(VOC-FRIC-PRVS) normalized 

LANWAQE CODEB IANQLUQE CODES 

Figure C .41: Boxplots of STR Features (continued) 



str(VOC-POVS-CLOS) str(VOCP0VS-CLOS) normalized 

UNOUAQE COD68 LANQUAQE CODES 

Figure C.42: Boxplots of STR Features (continued) 



Spf(V0C-FRG) spf(V0C-FRIC) normalized 

SpYvOC-CLOS) spf(V0C-CLOS) normalized 

Spf(VOC-INVS) spf(V0C-IWS) normalized 

LANOUAQE COOEB LANOUAQE CODES 

Figure C.43: Boxplots of Segment-pair Requency (SPF) Features 



spf(v0c-POVS) spf(VOC-POVS) normalized 

spf(FRIGCL0S) spl(FRICCL0S) normalized 

LANQUQE COOES LANQMQE CODES 

Figure C.44: Boxplots of SPF Features (continued) 



spf(FR1GPRVS) spf(F~lC-PRVS) normalized 

spr(CL0S-VOC) spf(CL0S-VOC) normalized 

spf(CL0S-FRIC) spf(CL0S-FRIC) normalized 

UNQUAQE COOE8 UNOUAQE CODES 

Figure C.45: Boxplots of SPF Features (continued) 



spf(CL0SSTOP) spf(CLOS-STOP) normalized 
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Figure C .46: Boxplot s of SPF Features (continued) 



spf(ST0P-FRIC) spf(ST0P-FRIC) normalized 

spf(ST0P-PRVS) !@(STOP-PRVS) normalized 

IANQLJAQE COOE8 LANQVAQE CODE8 

Figure C.47: Boxplots of SPF Features (continued) 



spf(PRVSVOC) spf(PRVS-VOC) normalized 

@(lNVS-VOC) spf(lNVSVOC) normalized 

UNCIUAQE W E 8  LANQUAOE CODES 

Figure (3.48: Boxplots of SPF Features (continued) 



spf(POVSCL0S) spf(POVS-CLOS) normalized 

spf(P0VS-STOP) normalized 

Figure C.49: Boxplots of SPF Features (continued) 
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Figure C.50: Boxplots of Segment-pair Ratio (SPR) Features 
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spr(V0C-POVS) spr(VOC-POVS) normalized 

spr(FRIC-VOC) spr(FRIC-VOC) normalized 

Figure C.51: Boxplots of SPR Features (continued) 



5pr(FRIC-PRVS) spr(FRIC-PRVS) normalized 

EN FA FR QE JA KO MA SP TA 

spr(CL0S-VOC) normalized 

spr(CL0S-FRIC) spr(CL0SFRIC) normalized 

Figure C.52: Boxplots of SPR Features (continued) 



spr(CL0S-STOP) normalized 

spr(CL0SPRVS) spr(CL0S-PRVS) normalized 
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Figure C.53: Boxplots of SPR Features (continued) 
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spr(PRVS-VOC) normalized 

sprONVS-VOC) normalized 

spr(P0VS-FRIC) normalized 

Figure C.55: Boxplots of SPR Features (continued) 



spr(P0VSCLOS) spr(POVSCL0S) normalized 

spr(POVSST0P) spr(P0VS-STOP) normalized 

Figure C.56: Boxplot s of SPR Features (continued) 



spdr(VOC-FRIC) spdr(V0C-FRIC) normalized 

spdr(VOC-CLOS) spdr(V0C-CLOS) normalized 
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Figure C.57: Boxplots of Segment-pair Duration Ratio (SPDR) Features 



spdr(V0C-POVS) normalized 

s .  

spdr(FRIC-VOC) spdr(FRIGV0C) normalized 

spdr(FRIC-CLOS) normalized 

Figure C.58: Boxplots of SPDR Features (continued) 



spdr(FRIC-PRVS) @r(FRIC-PRVS) normalized 

spdr(CL0S-VOC) spdr(CL0S-VOC) normalized 

spdr(CL0S-FRIC) normalized 

Figure C.59: Boxplots of SPDR Features (continued) 
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spdr(CL0S-STOP) spdr(CL0S-STOP) normalized 

spdr(CL0SPRVS) spdr(CL0S-PRVS) normalized 

spdr(ST0P-VOC) spdr(ST0P-VOC) normalized 
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Figure C.60: Boxplots of SPDR Features (continued) 



spdr(ST0P-FRIC) normalized 

UNQUAOE CODE8 LANQUAOE CODE8 

Figure C.61: Boxplots of SPDR Features (continued) 



spdr(PRVS-VOC) spdr(PRVS-VOC) normalized 

spdr(P0VSFRIC) spdr(POVS-FRIC) normalized 

Figure C.62: Boxplots of SPDR Features (continued) 



spdr(P0VS-CLOS) spdr(P0VS-CLOS) normalized 

spdr(P0VS-STOP) spdr(POVSST0P) normalized 

Figure C.63: Boxplots of SPDR Features (continued) 



spmd(VOC-FRIC) normalied 

spmd(VOC-CLOS) spmd(VOCCL0S) normalized 

Figure C.64: Boxplots of Segment-pair Median Duration (SPMD) Features 



Figure C.65: Boxplots of SPMD Features (continued) 



spmd(FRIC-PRVS) spmd(FRIC-PRVS) normalized 

spmd(CL0S-VOC) spmd(CL0SVOC) normalized 

spmd(CL0S-FRIC) normalized 

9 .  - 

Figure C.66: Boxplots of SPMD Features (continued) 



spmd(CL0S-STOP) spmd(CL0S-STOP) normalied 

spmd(ST0P-VOC) spmd(ST0P-VOC) normalized 

Figure C.67: Boxplots of SPMD Features (continued) 



spd(ST0P-FRIC) normalized 

spmd(ST0P-CLOS) spmd(ST0P-CLOS) normalized 

spmd(ST0P-PRVS) ~pmd(ST0P-PRVS) normalized 
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Figure C.68: Boxplot s of SPMD Features (continued) 



spmd(PRVS-VOC) spmd(PRVSV0C) normalized 
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spmd(P0VS-FRIC) spmd(P0VS-FRIC) normalized 

Figure C.69: Boxplots of SPMD Features (continued) 



spmd(P0VS-CLOS) spmd(POVSCL0S) normalized 
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Figure C.70: Boxplots of SPMD Features (continued) 



intra(V0C) intra(V0C) normalized 

intra(PRVS) intra(PRVS) normalized 

intra(lNVS) intra(lNVS) normalized 

Figure C.71: Boxplots of Intra-segment Variation in Pitch 



inira(P0VS) intra(P0VS) normalized 

inter(V0C) inter(V0C) normalized 

inter(PRVS) normalized 
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Figure C.72: Boxplots of Intra-segment and Inter-segment Variation in Pitch 



inter(lNVS) normalized 

Figure C. 73: Boxplots of Inter- segment Variation in Pitch (continued) 
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-(STOP) freq(ST0P) normalized 

heq(PRVS) freq(PRVS) normalized 

freq(lNVS) freq(lNVS) normalized 

LANQUAQE CODE8 m Q E  CODE8 

Figure C.75: Frequency of Occurrence of STOP, PRVS and INVS 



freq(P0VS) freq(P0VS) normalized 

lres(VmS) freq(V0BS) normalized 

Figure C.76: Frequency of Occurrence of POVS, OBS and VOBS 
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freq(SON) freq(S0N) normalized 

Figure C.77: Frequency of Occurrence of SON and SEG 



#VOC : WOBS normalized 

WCLOS : WOBS 

I F R C  : #OBS normalized 

Figure C.78: Boxplots of Segment Occurrence Ratios 



#STOP : #OBS #STOP : WOBS normelired 

#PRVS : #OBS WRVS : #OBS normalized 

#lNVS : #OBS #IWS : #OBS normalized 

UNQUAQE CODE8 UNQUAQE CODE8 

Figure C.79: Boxplots of Segment Occurrence Ratios (continued) 



IPOVS : WOBS IPOVS : WBS normalized 

UVOBS : WOBS UVOBS : WOBS normalized 

UNOUAQE CODES UNQUACIE CODE8 

Figure C.80: Boxplots of Segment Occurrence Ratios (continued) 
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#STOP : #SON normalized 

#PRVS : #SON #PRVS : #SON normalized 

. 

- 

UNQUAQE WOES m Q E  CODE8 

Figure C.82: Boxplots of Segment Occurrence Ratios (continued) 
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#POVS : #SON WPOVS : #SON normalized 
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#VOC : WRlC #VOC : #mIC normalized 

Figure C.83: Boxplots of Segment Occurrence Ratios (continued) 



#STOP : SRIC  #STOP : #FRIC normalized 

EN FA FR QE JA KO MA 8 P  TA VI 

#PRVS : S R I C  

- I 

EN FA FR GE JA KO MA 8 P  TA VI 

#PRVS : WRlC normalized 

#lNVS : #FRIC UINVS : #ERIC normalized 

Figure C.84: Boxplots of Segment Occurrence Ratios (continued) 



#POVS : #FRlC #POVS : UFRIC normalized 

#VOC : WCLOS normalized 

0 

#STOP : WCLOS 

Figure C.85: Boxplots of Segment Occurrence Ratios (continued) 
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#VOC : #STOP #VOC : #STOP normalized 

#PRVS : #STOP #PRVS : #STOP normalized 

Figure C.87: Boxplots of Segment Occurrence Ratios (continued) 



WPOVS : S T O P  normalized 

#VOC : #PRVS #VOC : RPRVS normalized 

#INVS : #PRVS #lNVS : WPRVS normalized 

LANQUAQE CODES LANOUAQE CODES 

Figure C.88: Boxplots of Segment Occurrence Ratios (continued) 



#WVS : #PRVS #POVS : #PRVS normalized 

#WVS : IINVS normalized 
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Figure C.89: Boxplots of Segment Occurrence Ratios (continued) 



#VOC : #POVS normalized 

#VOC : #SEG normalized 

WFRlC : #SEG WFRlC : #SEG normalized 

Figure C.90: Boxplots of Segment Occurrence Ratios (continued) 



KLOS : WEG UCLOS : USEG normalized 

USTOP : WEG STOP : #SEG normalized 

UPRVS : #SEG UPRVS : WEG normalized 

Figure C.91: Boxplots of Segment Occurrence Ratios (continued) 
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#SON : #SEG #SON : #SEG normalized 

Figure C.92: Boxplots of Segment Occurrence Ratios (continued) 



dur(VOC) : dur(OBS) dur(VOC) : dur(0BS) normalized 

dur(FRIC) : dur(0BS) dur(FRIC) : dur(0BS) normalized 

dur(CL0S) : dur(0BS) dur(CL0S) : dur(0BS) normalized 

Figure C.93: Boxplots of Segment Duration Ratios 



dur(ST0P) : dur(0BS) normalired 

Figure C.94: Boxplots of Segment Duration Ratios (continued) 



dur(P0VS) : dur(0BS) normalized 

dur(S0N) : dur(0BS) normalized 

Figure C.95: Boxplots of Segment Duration Ratios (continued) 



dur(FRIC) : dur(S0N) dur(FRIC) : dur(SON) normalized 

dur(CL0S) : dur(S0N) dur(CL0S) : dur(S0N) normalized 
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Figure C.96: Boxplots of Segment Duration Ratios (continued) 



dur(ST0P) : dur(S0N) normalized 

dur(PRVS) : dur(S0N) normalized 

dur(lNVS) : dur(SON) normalized 
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Figure C.97: Boxplots of Segment Duration Ratios (continued) 
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dur(P0VS) : dur(S0N) dur(P0VS) : dur(S0N) normalized 

dur(V0C) : dur(FRIC) dur(V0C) : dur(FRIC) normalized 

dur(CL0S) : dur(FRIC) dur(CL0S) : dur(FRIC) normalized 

UNQUAQE COOE8 UNQUAQE CODE8 

Figure C.98: Boxplots of Segment Duration Ratios (continued) 
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LANQUAOE COO= LANQUAQE COOEO 

Figure C.lOO: Boxplots of Segment Duration Ratios (continued) 



dur(PRVS) : dur(CL0S) dur(PRVS) : dur(CL0S) normalized 

dur(lNVS) : dur(CL0S) dur(lNVS) : dur(CL0S) normalized 

dur(P0VS) : dur(CL0S) normalized 

EN FA FR QE JA KO MA 8P W VI 

UNQUAQE CODES UNQUAQE CODE8 

Figure C.lO1: Boxplots of Segment Duration Ratios (continued) 



dur(VOC) : dur(ST0P) dur(VOC) : dur(ST0P) normalized 

dur(PRVS) : dur(ST0P) dur(PRVS) : dur(ST0P) normalized 

Figure C.102: Boxplots of Segment Duration Ratios (continued) 



dur(P0VS) : dur(ST0P) normalized 

dur(V0C) : dur(PRVS) normalized 

Figure C.103: Boxplots of Segment Duration Ratios (continued) 



dur(P0VS) : durpRVS) normalized 
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Figure C.104: Boxplots of Segment Duration Ratios (continued) 



dur(VOC) : dur(P0VS) dur(V0C) : dur(P0VS) normalized 

dur(V0C) : dur(Utteranc6) dur(VOC) : dur(Utterance) normalized 

dur(FRIC) : dur(Utemnce) dur(FRIC) : dur(Utterance) normalized 
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Figure C.105: Boxplots of Segment Duration Ratios (continued) 



dur(CL0S) : dur(Utterance) dur(CL0S) : dur(Utterance) normalized 
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Figure C.106: Boxplots of Segment Duration Ratios (continued) 



dur(S0N) : dur(Ulterance) normalized 

Figure C.107: Boxplots of Segment Duration Ratios (continued) 



evSduro'oc) avgdur(VOC) normalized 

avgdur(FRIC) avgdur(FRIC) normalized 

avadur(cLos) avgdur(CL0S) normalized 

Figure C.108: Average Duration of VOC, FRIC and CLOS 



avgdur(ST0P) avgdur(ST0P) normalized 

avgdur(PRVS) normalized 

avgdur(lNVS) avgdurONVS) normalized 
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Figure C.109: Average Duration of STOP, PRVS and INVS 



avgdur(P0VS) normalized 

. 

' 

. 

Figure C.llO: Average Duration of POVS 
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sdevdur(V0C) sdevdur(V0C) normalized 

sdevdur(FRIC) sdevdur(FRIC) normalized 
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Figure C.lll: Standard Deviation of Duration of VOC, FRIC and CLOS 



sdevdur(PRVS) normalized 
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sdevdur(lNVS) normalized 

Figure C.112: Standard Deviation of Duration of STOP, PRVS and INVS 



Figure C.113: Standard Deviation of Duration of POVS 



avge(lSDD) avge(lSDD) normalized 

sdev(lSDD) sdev(lSDD) normalized 

min(lSDD) normalized 

Figure C.114: Inter-segment Duration Difference Features 
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avge(VCD) normalized 

sdev(VCD) normalized 

min(VCD) normalized 

Figure C.116: Vowel Center Distance Features 



medOlcD) med(VCD) normdied 

max(vCD) maxOlCD) normalized 

Figure C.117: Vowel Center Distance Features (continued) 
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Engineering department at the Jawaharlal Nehru Technological University at Hyderabad 

in September 1983. He graduated in August 1987 at the top of his class and was awarded 

the University Gold Medal for his achievement. A month after receiving his B. Tech. 

degree, he began studies in the PhD program in the Computer Science and Engineering 

department at the Oregon Graduate Institute of Science & Technology (then known as 

the Oregon Graduate Center) in Beaverton, Oregon. 

On April 8, 1988, Yeshwant attended a colloquium talk on computer speech recogni- 

tion by a faculty candidate, a Speech Scientist from Carnegie Mellon University named 

Ronald Cole. This talk essentially altered the course of his academic career. Excited 

about the field, he hoped that Ron would accept a position in the department, so that 

he could work with him. As luck would have it, Ron did indeed accept a faculty position 

in the department and Yeshwant became his first student at OGI in September 1988. 

Projects on rule-based segmentation, vowel classification, vowel perception, English al- 

phabet recognition (EAR) followed in quick succession before Yeshwant decided upon 



the topic of his PhD dissertation: automatic language identification. Despite the advice 

of his friends in the speech research community, Ron gave the go-ahead for the project 

in March 1990. Three odd years, eons of CPU time and gigabytes of disk space later, 

neither advisor nor student has any misgivings about that decision. 
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