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Abstract

Accurate and Robust Models for Clinical Speech Processing
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Thesis advisor: Izhak Shafran

Samples of everyday conversations are being collected and analyzed in a growing number

of applications, ranging from studying behavior in social psychology to clinical assessment

of voice pathology and even cognitive function. Aside from the spoken words, the acoustic

properties of speech samples can provide important cues in these applications.

The goal of this study is to develop robust and accurate algorithms for estimating

speech features. Researchers have employed a number of techniques in time and fre-

quency domains to estimate, for example, fundamental frequency and harmonic-to-noise

ratio (HNR). However, their limitations hinder applications in clinical assessments. Time

domain methods often ignore the frequency and amplitude variations of speech over the

analysis frame, and on the other hand, the resolution of short time Fourier transform does

not provide the necessary time-frequency resolution to capture small amount of perturba-

tion observed in, for example, Parkinson’s disease (PD).

ix



The purpose of this study is to achieve accurate and reliable estimation of fundamental

frequency, HNR, jitter, and shimmer for clinical speech analysis. Adopting a time-varying

harmonic model (TVHM) for representing speech, we quantify hoarseness, a salient feature

of PD, as well as jitter and shimmer. We verify our implementation of TVHM and pitch

estimation on Keele data set. Results show that pitch detected using TVHM outperforms

those from get-f0 , an algorithm employed in many popular tools (wavesurfer, praat,etc).

Further, we demonstrated the utility of our measures for hoarseness, jitter and shimmer

in predicting clinical rating of severity of Parkinson’s disease.
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Chapter 1

Introduction

Analysis of acoustic signals of the human voice has many purposes. Our voice reveals

considerable insight into the structure and function of certain organs involved in speech

and language production. For instance, sometimes, the first symptom of a neurological

disorder such as Parkinson’s disease (PD) is a speech deficit [10]. PD can affect all of

the components of speech production including breathing, laryngeal function, articulator

movement as well as their coordination for smooth and fluent speech. Resulting dysarthric

speech often exhibits monotonous pitch, slurring, reduced stress, inappropriate pauses,

variable speech rate, short rushes of speech, harsh voice, imprecise consonant production

and breathy voice [8]. Researchers have shown the effects of psychological disorders such

as depression in patient’s voices [20]. Moreover, a number of studies have shown that the

level of emotional excitement changes during speech production [28]. These observations

encourage researchers to study about objective measurements using speech parameters

that reflect the effects of such disorders. Acoustic features of speech signal including

fundamental frequency (f0), Harmonic-to-Noise Ratio (HNR), shimmer, jitter, and speech

rate are used to analyze of pathological voices. These measures can be used to quantify the

voice quality, for example, in predicting the severity of PD. Also, a number of techniques

use these measures for automatically screening for many neurodegenerative diseases such

as Parkinson and Alzheimer.

HNR is a quantity to measure the amount of noise in voice to assess the degree of

hoarseness. Jitter and Shimmer refer to a short-term (cycle-to-cycle) perturbation in the

f0 and the amplitude of voice waveform respectively. Perturbation analysis is based on the

fact that small fluctuations in frequency, and amplitude of waveform reflect the inherent

1
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noise of voice. However, acoustic analysis of perturbation and HNR is usually dependent

on the accurate estimation of f0.

The main focus of our study is to robustly estimate acoustic features for clinical speech

analysis. There are a large number of approaches in time and frequency domain to es-

timate f0 and HNR. However, they face limitations for the analysis of disordered voices.

Time domain methods often ignore the frequency and amplitude variations of speech over

the analysis frame, and on the other hand, the resolution of short time Fourier trans-

form does not provide the necessary time-frequency resolution to capture small amount of

perturbation observed in, for example, Parkinsons disease (PD).Adopting a time-varying

harmonic model (TVHM) for representing speech, we quantify hoarseness, a salient feature

of PD, as well as jitter and shimmer. TVHM exploits the underlying structure of speech

production and aims to decompose the speech signal into a harmonic and a non-harmonic

component.

Starting with review of traditional acoustic feature extraction techniques in Chapter 2,

we will illustrate a model-based approach to quantify voice quality in Chapter3. The

model allows robust estimation of HNR, jitter and shimmer. Since, these quantities are

difficult to evaluate independently, we evaluate them in the context of predicting clinical

assessment of Parkinson’s disease as described in ??. The machine learning experiments

and the results are reported and discussed in Chapter 5.



Chapter 2

Review of Traditional Approaches for

Acoustic Feature Extraction

2.1 Fundamental Frequency Estimation

Fundamental frequency, also referred as pitch period, is a key feature in speech analysis.

Due to important effect of robust pitch estimation on speech-related applications, it has

been an interesting topic for many years. There are a variety of pitch detection algorithms

in the literature, which generally consist of two stages: (1) pitch candidate generation, in

which local pitch candidates are selected from a correlation function that measures the self-

similarity, such as autocorrelation function and normalized cross-correlation function; and

(2) performing a dynamic programming algorithm, such as Viterbi algorithm to obtain the

most probable trajectory of pitch periods among all the candidates. Such methods have

been used in standard pitch detector tools such as WaveSurfer [4] and Praat [33]. However,

they are sensitive to background noise and their performance significantly drop at low

signal-to-noise ratios (SNRs). Tabrikian and his colleagues [32] integrated a Harmonic

model with MAP framework, to robustly estimate pitch period at low SNR situations.

However, the proposed harmonic model is not able to follow small waveform variations,

especially in disordered voices. Adopting a MAP framework, we will modify the introduced

harmonic model of Tabrikian [32] to robustly estimate the pitch period for pathological

voice analysis.

3



4

2.2 Harmonic-to-Noise Ratio Estimation

An accurate estimate of the HNR provides useful information about the amount of aperiod-

icity in the speech signal. Acoustic properties of the speech signal such as period-to-period

frequency perturbation, amplitude variation, and aspiration noise are the sources of speech

aperiodicity. Researchers have used the HNR in the acoustic studies for the evaluation

and management of voice disorders. HNR seems to be the most applicable measure in

the clinic as a quantitative index to measure the degree of hoarseness. Hoarseness is an

important symptom of most laryngeal disorders and speech pathologists rate the degree

of hoarseness to assess the voice disorders [37]. Generally, we expect the lower HNR in

disordered voices rather than the healthy voices [11]. A variety of HNR estimation meth-

ods in the studies can be classified into two types: (1) time-domain methods, in which

HNR is directly computed from the speech waveform; and (2) frequency-domain methods,

in which HNR is computed from the transformed version of speech waveform.

A representative, time-domain approach for measuring the HNR was introduced by

Yumoto and his colleagues [37]. They assume that the voiced speech is a sum of two parts:

a periodic component, and an additive noise component. To estimate the HNR, they first

compute an average waveform for a single period by calculating the mean of successive

periods. The energy of this average waveform defines the harmonic energy. Assuming

the noise is a stationary process across the frame, noise energy is then calculated using

the mean squared difference between the average waveform and the individual periods.

However, because of the cycle-to-cycle pitch period perturbations, the periods are not

necessarily aligned. Therefore, zero padding is used for time-normalization of the periods

prior to computation of the mean and variance. However, this simple time-normalization

technique significantly amplifies the computed noise energy when the speech signal has

large waveform variations, such as in disordered voices.

To overcome these limitations, Qi [24] proposed a time-normalization process using

Dynamic Time Warping (DTW), which aims to minimize the effects of f0 perturbations.

DTW is a non-linear time-normalization method, which minimizes the mismatch between

the two input frames. It optimally aligns the waveforms prior to computation of the
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HNR. However, the time domain HNR estimation requires accurate pitch period estima-

tion. Further, the pitch boundaries are very sensitive to the phase distortion and cause

inaccurate HNR estimation. Qi and his colleagues later [26] proposed another appropriate

time-normalization technique using zero-phase transformation to minimize the influence

of shimmer and jitter on the computation of the HNR.

A number of techniques have been proposed for HNR estimation in the frequency-

domain. The main advantage of those methods is less dependency on the accurate esti-

mate of pitch period [25]. Krom [18] proposed a technique, in which the harmonic and

noise components are discriminated in the cepstrum domain using a comb-liftering oper-

ation. However, cepstral analysis assumes that the process is stationary across the frame

and waveform variations may leads to spectral leakage, which causes the reduction in

magnitude of harmonics.

Recently, Asgari and Shafran [1] introduced a model-based framework for HNR esti-

mation. This method focuses on decomposition of voiced speech into a periodic and a

non-periodic component. It assumes that a harmonic model approximates the harmonic

part of the voiced speech and the the non-harmonic part is obtained by subtracting the

harmonic part from the original speech signal. Tabrikian and his colleagues [32] intro-

duced a harmonic model, in which the amplitudes are assumed to be constant. However,

this model is not able to follow the amplitude variations within the frame. Asgari and

Shafran [1] improved the proposed harmonic model using time-varying amplitudes, which

provides more flexibility in capturing sample to sample variations in harmonic amplitudes

across the frame. We elaborate this further in Section 3.

2.3 Jitter and Shimmer Estimation

Jitter and shimmer are the prominent acoustic measures that can be used in the context

of voice quality assessment. Small cycle-to-cycle fluctuations in glottal pitch period and

amplitude are defined jitter and shimmer respectively. They may occur during voice

production and cause voice roughness, especially in pathological voices [19]. A number of

methods have been proposed for the computation of the jitter and shimmer [23, 27]. They
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usually employ relative frequency and amplitude differences between consecutive pitch

periods for jitter and shimmer estimation. However, these approaches are sensitive to

pitch period estimation and their accuracy is a function of the accuracy of the pitch period

estimators. Vasilakis and Stylianou [36] proposed a mathematical model for estimation of

jitter in frequency domain. Assuming that the magnitude spectrum can be separated into

a harmonic part and a sub-harmonic part, they showed that the jitter could be estimated

by counting the number of intersections between harmonic and sub-harmonic spectra.

In this study, we will illustrate a model-based approach for jitter and shimmer estima-

tion proposed by Asgari and Shafran [1].



Chapter 3

Model-based Acoustic Feature Extraction

3.1 Speech Production Model

Our approach is motivated by the computational model of speech production. During

voiced sounds, rhythmic opening and closing of vocal folds converts the airflow from the

lungs into a sequence of short glottal pulses. These excitation pulses are rich in harmonics

and considered as the source of voiced speech. They are subsequently modulated by

resonances of the vocal tract and the transfer function of the lip radiation. Unvoiced

sounds are generated in a similar manner except they are driven by a noisy source while

the vocal folds remains open. The noisy source comprises frication noise, aspiration noise,

and the fluctuations produced by the turbulences of the glottal airflow. Individuals with

voice disorders usually cannot seamlessly switch between the two sources and therefore,

excitation pulses are contaminated by the noise signal. As such, the goal of our approach

is to separate the contribution of the two sources in order to quantify the degradation

in voice quality. From a signal processing point of view, speech production process can

be modeled by a linear system as shown in figure 3.1. The voiced and unvoiced sounds

are modeled by two separate sources as we mentioned earlier. The effect of the shape of

the vocal tract is modeled by V(z), and the radiation characteristics of the lips are taken

into account by L(z). Since the glottal pulses carry the harmonic information of voiced

speech, the resulting voiced sounds can be modeled with a harmonic model that separates

the harmonic parts from the noise. Such a model have been successfully employed for

periodic signal [6] and in the next subsection, we develop the model for our context.

7
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Figure 3.1: A computational model of speech production.

3.2 Time-Varying Harmonic Model

The Harmonic Model is a special case of a sinusoidal model where all the sinusoidal com-

ponents are assumed to be harmonically related, i.e., the frequencies of the sinusoids are

multiples of the fundamental frequency, f0. This assumption arises from the harmonic

nature of the speech signal and reduces the number of parameters in general sinusoidal

model. Stylianou [31] introduced a Harmonic plus Noise Model (HNM) for speech analysis

and synthesis, in which speech signals are represented as a time-varying harmonic com-

ponent plus a modulated noise component. The harmonic part accounts for the periodic

component of the speech signal while the noise part accounts for its non-periodic compo-

nents. Speech decomposition using a HNM is useful for applications in speech synthesis,

voice conversion, speech enhancement, and speech coding.
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3.2.1 Model Description

Let y = [y(t1), y(t2), . . . , y(tN )]T denote the speech samples in a voiced frame, measured

at times t1, t2, . . . , tT . The samples can be represented with a harmonic model with an

additive noise n = [n(t1), n(t2), . . . , n(tN )]T as follow:

s(t) = a0 +
H∑

h=1

ah(t)cos(2πf0ht) + bh(t)sin(2πf0ht) (3.1)

y(t) = s(t) + n(t) (3.2)

where H denotes the number of harmonics and 2πf0 stands for the fundamental angular

frequency. The amplitude of cosine components, ah(t), and sine components, bh(t) are

not constant across the analysis frame. Due to the fact that vocal tract and lip radia-

tion transfer functions vary much slower than the frequency of glottal pulse excitation,

ah(t) and bh(t) can effectively capture sample to sample variation in harmonic amplitude

within the frame. We represent the amplitudes of the sinusoidal components as a linear

combination of a few local basis functions as follow:

ah(t) =
I∑

i=1

αi,hψi(t) , bh(t) =
I∑

i=1

βi,hψi(t) (3.3)

where ψi(t), i = 1, . . . , I are set of smooth basis functions that can be obtained by trans-

lating in time a prototype of any convenient function ψ(t). In this work, we use four

(I = 4) Hanning windows as basis functions, which were centered on 0, M/3, 2M/3, and

M with an overlap of M/3 with adjacent basis functions and length of 2M/3 where M is

the analysis window length. Figure 3.2 shows a representation of amplitude of a harmonic

component obtained by combination of four basis functions.

The signal s(t) can be expressed as a linear combination of harmonic components and

coefficients of basis functions.

s(t) = a0 +

H∑
h=1

[ψ(t)cos(2πf0ht) ψ(t)sin(2πf0ht)][
α

β
] (3.4)

α = [ α1,1 · · · αI,H ]T , β = [ β1,1 · · · βI,H ]T

ψ(t) = [ ψ1(t) · · · ψI(t) ]T
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Figure 3.2: An illustration of time-varying amplitude of a harmonic component modeled
as a superposition of four bases functions spanning the duration of the frame.

The harmonic signal can be factored into coefficients of basis functions, α, β, and the

harmonic components which are determined solely by the given angular frequency 2πf0

and the choice of the basis function ψ(t).

s(t) = [1 Ac(t) As(t)]


a0

α

β

 (3.5)

Ac(t) = [ψ(t)cos(2πf0t) · · · ψ(t)cos(2πf0Ht)]

As(t) = [ψ(t)sin(2πf0t) · · · ψ(t)sin(2πf0Ht)]

Stacking rows of [1 Ac(t) As(t)] at t = 1, · · · , T into a matrix A, equation (2) can

compactly represented in matrix notation as:

y = A b + n (3.6)

where y = A b corresponds to a basis function expansion of the harmonic part of voiced

frame in terms of windowed sinusoidal components. We assume the distribution of noise

is constant during the frame and can be modeled by a zero-mean Gaussian noise with

unknown variance σ2), n ∼ N(0, σ2), which is required to be estimated.
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3.2.2 Parameter Estimation

The model analysis consists of estimation of the parameters of harmonic and noise part.

The unknown parameters in the model described in (3.2) are: fundamental frequency, f0,

the vector of coefficients of basis functions,b, and the noise variance, σ2. The number of

basis functions and harmonics are assumed to be known. Assuming a voiced frame, we

first estimate the f0 and noise intensity.

Frame Level Maximum Likelihood Estimation: Assuming the noise samples n in

equation (3.2) are independent and identically distributed random variables, with zero-

mean Gaussian distribution the likelihood function of the observed vector, y, given the

model parameters is as follow:

p(y |f0,b, σ2) = (2πσ2)−D/2exp(− 1

2σ2
||y−Ab||2) (3.7)

where D stands for dimension of observed vector, y. Note that the only unknown param-

eter of matrix A is fundamental frequency, f0.

The objective is to estimate the unknown parameters. We employ Maximum Likeli-

hood estimator (ML) to maximize the log-likelihood function with respect to unknown

parameters [32]. The log-likelihood function is defined as:

L(f0,b, σ
2) = −D

2
log(2πσ2)− 1

2σ2
||y−Ab||2 (3.8)

Note that the vector of harmonic coefficients, b, and matrix A, are independent from

each other. We first maximize the log-likelihood function with respect to b and one

obtains:

b̂ = (ATA)−1ATy (3.9)

We then substitute b̂ into equation (3.8) and the log-likelihood function can be written as

follow:

L(f0, b̂, σ2) = −D
2
log(2πσ2)− 1

2σ2
(y−P)T (y−P) (3.10)
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where P = A(ATA)−1AT is the function of f0. To maximize equation (3.10) with respect

to f0, we can rewrite equation (3.10) as:

L(f0) = const+ yTPy (3.11)

f̂0 = arg max
f0

{yTPy} (3.12)

Maximizing f0 in equation (3.12) requires a search over the coordinates of f0 to find

the global maximum.

To estimate unknown noise variance, the log-likelihood function in equation (3.8) needs

to be maximized also with respect to σ2. Taking derivative with respect to σ2 and making

it zero leads to:

σ̂2 =
1

D
yT (I− P̂)y (3.13)

where I is a identity matrix.

Multiple Frame Pitch Tracking: Single frame estimation of f0 sometimes leads to f0

halving and doubling estimates. To better estimate the f0 trajectory, a common approach

is to use dynamic programming to find an optimal f0 trajectory for sequence of frames

[32]. Lets define Y = {y1,y2, · · · ,yM} and F0 = {f01, f02, · · · , f0M} as a sequence of M

consecutive voiced frames and their corresponding f0 trajectory respectively. Assuming

that yi are independent of each other, the conditional probability of data vector, Y, given

the vector of F0 can be expressed as:

p(Y|F0) =

M∏
i=1

p(yi|f i0) (3.14)

According to the Bayes rule, we can drive the posterior probability as:

p(F0|Y) =
p(Y|F0)p(F0)

p(Y)
(3.15)

The Maximum A Posteriori (MAP) estimation of f0 is then obtained by maximizing the

following equation:

F̂0 = arg max
F0

{p(Y|F0)p(F0)} (3.16)
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The vector of fundamental frequency, F0 can be treated as a first order Markov process

by assuming that the probability of the f0 at a frame depends only on the f0 in the previous

frame, and it can be approximated using a Gaussian distribution.

p(F0) = p(f0
(1), f0

(2), · · · , f0(M)) = p(f0
(1))

M∏
m=2

p(f0
(m)|f0(m−1)) (3.17)

p(f0
(m)|f0(m−1)) ∼ N(f0

(m−1), σt) (3.18)

where p(f0
1) is the prior probability function of f0 at the first frame. Substituting (3.10)

and (3.18) into (3.16) and taking the logarithm leads to:

F̂0 = arg max
F0

M∑
m=1

[L(f0
(m), b̂m, σ̂2) + log p(f0

(m)|f0(m−1))] (3.19)

Maximizing F̂0 requires a multidimensional search over the possible f0 values across the

whole frames, which is not a computationally feasible task. As it can be seen in (3.19), f0

trajectory estimation consists of simultaneously maximizing the likelihood function, and

the log of the transition probability function between the states. So, we can employ a

Hidden Markov Model (HMM), in which the log of observation and emission probabilities

are computed by L(f0
(m), b̂m, σ̂2), and log p(f0

(m)|f0(m−1)) respectively.

log p(f0
(m)|f0(m−1)) = −1

2
log(2πσ2t )− 1

2σ2t
(f0

(m) − f0(m−1))2 (3.20)

The states in the HMM represent the possible discrete values of f0 ranging from 50 Hz to

500 Hz. Finally, we use a Viterbi algorithm to find the optimal state sequence through

this trellis of states. The Viterbi path is most likely hidden states, which in our case is

fundamental frequency.

3.2.3 Pitch Tracking Evaluation

To verify our implementation of TVHM for pitch estimation, the performance of the

proposed algorithm is evaluated and compared to get-f0 , an algorithm employed in many

popular tools (wavesurfer, praat,etc). For all the experiments, we used Keel pitch reference

database [21], which is available online. It contains 10 files from 10 speakers (five males

and five females), each 35s long. It provides a reference pitch, which is obtained from a
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recorded laryngograph. The performance of each estimators in terms of mean absolute

error (MAE) and gross error rate (GER) are reported in table 3.1. GER is defined as

percentage of pitch estimates that deviate more than 20% of the ground truth. The

voiced boundaries are assumed to be known and all the comparisons are performed on

voiced frames. The audio files are contaminated with the additive white Gaussian noise

(AWGN) at different SNRs. The mean of computed errors for all the files are reported in

the table 3.1. The results proves the robustness of the proposed method for severe noise

conditions.

Table 3.1: Mean absolute error (MAE) and gross error rate (GER) in estimated pitch

SNR (dB)
MAE(Hz) (GER(%) )

get-f 0 TVHM

0 11.12(17.20) 8.45(5.23)
5 7.33(14.44) 4.12(4.53)
10 4.65(10.23) 3.73(4.23))
15 3.07(5.56) 3.70(3.12))

No additive noise 3.12(2.8) 2.67 (2.21)

3.2.4 Harmonic-to-Noise Ratio

Estimating the unknown parameters of TVHM in previous subsection enables us to

compute the Harmonic-to-Noise Ratio (HNR). Given an estimate of fundamental fre-

quency, the vector b that contains all the coefficients of basis functions can be estimated

as b̂ = (ATA)−1ATy. However, ML estimation of parameter vector b may leads to

overfitting. The robustness of the estimates can be improved using the prior statistical in-

formation regarding to the shape of vocal tract, in which the amplitudes of the harmonics

are not allowed to vary in an arbitrary subspace.

We can integrate this additional knowledge by adding a regularization term to equa-

tion (3.10), which restricts the parameters into a limited subspace. For computational

convenience, we chose the L2 regularization term, ||b||2, to obtain the closed form solu-

tion b = (ATA + λI)−1ATy where higher λ increases the weight on the regularization

term. From a Bayesian point of view, adding a penalty term is equivalent to imposing a
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prior distribution on model parameters. As we pointed out in the introduction section,

noise presence in a voiced utterance can be regarded as incomplete physiological closure

of vocal folds. As such, our focus is to separate the contribution of the two noisy and

harmonic sources in order to quantify the degradation in voice quality. Given the esti-

mate of fundamental frequency at m-th frame, f
(m)
0 , and the corresponding vector of basis

functions, bm, we can reconstruct the signal in equation (3.1) by

ŝm = A(f
(m)
0 )b̂m , m = 1, . . . ,M (3.21)

where ŝm denotes the reconstructed signal at m-th frame.

Given the reconstructed signal as the harmonic source of vocal tract, the noisy part is

obtained by subtracting the reconstructed signal from the original speech signal. The noisy

part encompasses everything in the signal that is not described by harmonic components

including the frication noise, the waveform fluctuations, etc. Figure 3.3 illustrates an

example frame, the signal estimated using the harmonic model with constant amplitude

and with time-varying amplitudes. The signal estimated with the time-varying harmonic

amplitudes is more flexible and it is able to follow sample-to-sample variations not only

in amplitude but also variation in pitch to a certain extent.

According to Parseval’s theorem, HNR and the ratio of energy in first and second har-

monics can be computed from the time-varying amplitudes of the harmonic components.

ch(t) =

√√√√ I∑
i=1

ah(t)2 + bh(t)2 (3.22)

HNR = log

N∑
t=1

H∑
h=1

ch(t)2 − log
N∑
t=1

(y(t)− s(t))2 (3.23)

H12 = log
N∑
t=1

c1(t)
2 − log

N∑
t=1

c2(t)
2 (3.24)

3.2.5 Shimmer

Shimmer is defined as the variation in amplitude between the adjacent cycles of the

glottal waveform. From a point of view, it can be referred as a slow amplitude modulation
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Figure 3.3: An example speech frame (black), estimated signal from harmonic model
with time-varying amplitude (blue), estimated signal from harmonic model with constant
amplitude (purple), estimated shimmer (red).

(AM) of glottal waveform due to the inability of humans to keep constant the tension

of their vocal folds [34]. In order to compute shimmer in output waveform, we first

estimate a prototype waveform using all the observed signals in the frame. This can be

easily computed from the harmonic model by assuming the amplitudes of the harmonic

components are constant across the frame.

s(t) = a0 +
H∑

h=1

ahcos(2πf0ht) + bhsin(2πf0ht), ch =

√√√√ H∑
i=1

a2h + b2h (3.25)

where ch denotes the amplitude of the harmonic components obtained using a maximum

likelihood framework. Now, shimmer can be considered as a function f(t) that scales the

amplitudes of all the harmonics in the time-varying model. From another point of view,

f(t) can be regarded as the envelop of speech waveform extracted by AM demodulation.

ch(t) = chf(t) + e(t), t = 1, . . . , T , h = 1, . . . ,H (3.26)
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where e(t) is assumed to be uncorrelated noise. We estimate f(t) using maximum likeli-

hood criterion as follow:

f̂(t) =

∑H
h=1 chch(t)∑H

h=1 c
2
h

(3.27)

Figure 3.3 illustrates an example frame where the solid red line shows the estimated

shimmer and blue line is the speech waveform. The larger the tremor in voice, the larger

the variation in f̂(t). Hence, we use the standard deviation of f̂(t) as a summary statistics

for shimmer to quantify the severity of tremor.

3.2.6 Jitter

Jitter is the counterpart of shimmer in time period, i.e., the cycle-to-cycle variation in

pitch period. It effects the spectrum of a sustained vowel by reducing the amplitudes of

harmonics and adding noise between them [38]. Analysis of jitter is based on the accurate

estimation of pitch period. Given an estimate of the average pitch period of the frame

(1/f0), we first create a matched filter by excising a one pitch period long segment from

the signal estimated with the harmonic model from the center of the frame. This matched

filter is then convolved with the estimated signal and the distance between the maximas

defines the pitch periods in the frame. The perturbation in period is normalized with

respect to the given pitch period and its standard deviation is an estimate of jitter. Thus,

we compute jitter quantitatively on any voiced signal, unlike many previous techniques

were jitter could be computed only in specially elicited signals (e. g. phonation task).



Chapter 4

Assessing the severity of Parkinson’s

disease

Parkinson’s disease (PD), is a progressive degenerative neurological disorder character-

ized by muscle rigidity, tremor, a loss and slowing of physical movement. A number of

studies have shown a variety of symptoms in patient with PD affecting their quality of life.

PD can affect all of the components of speech production including breathing, laryngeal

function, articulator movement, and also their coordination for smooth speech. Resulting

dysarthric speech often exhibits monotonous pitch, slurring, reduced stress, inappropriate

pauses, variable speech rate, short rushes of speech, harsh voice, imprecise consonant pro-

duction, and breathy voice [8]. The severity of Parkinson’s disease is typically assessed

clinically using a widely accepted metric, the Unified Parkinson’s Disease Rating Scale

(UPDRS). The metric consists of clinician-scored motor evaluations and self evaluation of

the activities of daily life.

4.1 speech-based PD diagnosis

There have been extensive studies on employing automatic speech processing for assess-

ing voice disorders [5, 13, 15, 16] and in particular, classifying PD subjects from controls

or inferring the severity of the diseases [7, 2, 17]. Researcher have used a range of ma-

chine learning techniques for diagnosing PD. Gil and his colleagues [12] proposed a hybrid

classifier combining artificial neural network (ANN) and support vector machine (SVM)

classifiers. Their experiments carried out using a range of speech measurements on a

18
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dataset composed of 31 people, 23 with Parkinson’s disease and achieved a high accu-

racy of around 90%. Another study by Dus [9] attempted to compare different types of

classification methods for diagnosis of PD on the same dataset. He employed four differ-

ent classifiers: neural networks, DMneural, regression, and decision tree where the neural

network classifier yielded the best score at 92.9% classification accuracy. More recently,

Bocklet and colleagues applied a more rigorous machine learning approach to classify PD

subjects from control [3]. They extracted 292 prosodic features, adapted a 128 component

Gaussian mixture model or universal background model using a maximum a posteriori

criterion and found that they were able to perform the classification with good accuracy.

However, their sample size contained only 46 Czech subjects of which 23 were diagnosed

with PD. The severity of the disease in their subjects was fairly low, with a score of 17.5

on the UPDRS scale. Taken together, there has been continuous interest spanning several

decades in characterizing the speech abnormalities in PD. However, most studies were fo-

cused on measuring group differences of speech features or have been performed on small

samples.



Chapter 5

Experimental Paradigm

Empirical evaluation reported in this study were performed on data collected from 116

clinical assessment from 82 subjects, including 21 controls, through two clinics, namely

OHSU and Parkinson’s Institute. Subjects were asked to perform 3 tasks designed to

exercise different aspects of speech and non-speech motor control: (1) sustained phonation

task where subjects were instructed to phonate the vowel /a/ in a clear and steady voice

as long as possible; (2) Diadochokinetic (DDK) task where subjects are asked to repeat

the sequence of syllables /pa/, /ta/ and /ka/ continuously for about 10 seconds as fast

and as clearly as they possibly can; and (3) Reading task where subjects are asked to read

standard passages.

As a clinical reference, the severity of subjects’ condition were measured by clinicians

using the Unified Parkinson’s Disease Rating Scale (UPDRS), the current gold standard

[22]. In this study, we focus on the motor sub-scale of the UPDRS (mUPDRS), which

spans from 0 for healthy individual to 108 for extreme disability. Most clinical ratings

of speech pathologies such as hypokinetic dysarthria in PD are based on perceptions of

trained clinicians. For automating assessment, we adopt a machine learning approach,

where we define a large number of features that can be reliably extracted from speech

and let the learning algorithm pick out the features that are most useful in predicting the

clinical rating.

20
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5.1 Features

As in most speech processing systems, we extract 32 millisecond long frames using a Han-

ning window at a rate of 100 frames per second before computing the following features.

1. Pitch: One of the key features in frequency domain is pitch, which can be extracted

using a standard pitch tracking algorithm such as get-f0 . The estimated pitch is

also used to estimate the harmonic model mentioned earlier.

2. Spectral Entropy: Properties of the spectrum serve as a useful proxy for cues

related to voicing and quality. Spectral entropy can be used to characterize speechi-

ness of the signal and has been widely employed to discriminate speech from noise.

As such, we compute the entropy of the log power spectrum for each frame, where

the log domain was chosen to mirror perception.

3. Cepstral Coefficients: Shape of the spectral envelope is extracted from cepstral

coefficients. Thirteen cepstral coefficients of each frame were augmented with their

first- and second-order time derivatives.

4. Segmental Duration and Frequency: In the time-domain, apart from the en-

ergy at each frame, we compute the number and duration of voiced and unvoiced

segments, which provides useful cues about speaking rate.

5. Harmonicity: We compute HNR, the ratio of energy in first to second harmonics,

jitter and shimmer, as described earlier.

The features computed at the frame-level needs to be summarized into a global feature

vector of fixed dimension for each subject before we can apply models for predicting clinical

ratings. Features extracted from voiced regions tend to differ in nature compared to those

from unvoiced regions. These differences were preserved and features were summarized in

voiced and unvoiced regions separately. Each feature was summarized across all frames

from the voiced (unvoiced) segments in terms of standard distribution statistics such as

mean, median, variance, minimum and maximum. Speech pathologists often plot and

examine the inter- action between quantities such as pitch and energy to fully understand
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the capacity of speech production [34]. We capture such interactions by computing the

covariance matrix (upper triangular elements) of frame-level feature vectors over voiced

(unvoiced) segments. The segment-level duration statistics including mean, median, vari-

ance, minimum and maximum were computed for both voiced and unvoiced regions. The

three kinds of summary features were concatenated into a global feature vector for each

subject. There has been suggestion that many speech features are better represented in

log domain. So, we performed experiments by augmenting the global feature vector with

its mirror in log domain. The resulting features were computed separately for the three

elicitation tasks (phonation, DDK and reading) and augmented into one vector, up to 17K

long, for each subject.

5.2 Regression Model

The motor sub-scale of UPDRS (mUPDRS) was predicted from extracted speech fea-

tures using several regression models estimated by support vector machines. Epsilon-SVR

and nu-SVR were employed using several kernel functions including polynomial, radial

basis function and sigmoid kernels [29]. The models were evaluated using a 20-fold cross-

validation and the results were measured using mean absolute error (MAE).Not all the

features extracted from speech are expected to be useful and in fact many are likely to

be noisy. We apply standard feature selection algorithm over training folds and evaluate

several models using cross-validation to pick the one with optimal performance. One weak-

ness of most feature selection algorithm is that they compute the utility of each element

separately and not over subsets. For understanding the contribution of the different fea-

tures, we introduced them incrementally and measured performance, as reported in Table

5.1. The first regression model was estimated with frequency-domain, temporal-domain

and cepstral-domain features. Subsequently, log space features, segmental durations and

harmonicity were introduced.

The baseline system contains features related to pitch, spectral entropy and cepstral

coefficients, in all about 7K features per subject. From among these features, automatic

feature selection picks about 800 features to predict the UPDRS scores with an MAE of
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Table 5.1: Mean absolute error (MAE) measured on a 20-fold cross-validation for predict-
ing severity of Parkinsons disease (mUPDRS) from speech

Speech Features Features MAE

(a) Baseline 7K 6.14

(b) (a) + log-space 14K 6.06

(c) (b) + duration 14K 5.85

(d) (c) + HNR + H1/H2 15K 5.81

(e) (d) + jitter + shimmer 15K 5.66

about 6.14 and a standard deviation of about 2.63. Recall that guessing the mean UPDRS

score on this data incurs an MAE of about 9.0. As a check for overfitting, we shuffled the

labels, selected features and then learned the regression using the same algorithms. The

resulting models performed significantly worse, at about 8.5 MAE. To put the reported

results in the right perspective, studies show that the clinicians do not agree with each

other completely and attain a correlation of about 0.82 and commit an error of about 2

points. The improvement in prediction with the baseline model is statistically significant.

The mapping of features in the log-space provides a small and consistent gain, but not as

large as the ones reported in [35] whose experimental setup (utterance- level test vs. train

split, not subject-level), number of subjects (only 42), features and models are significantly

different from ours. The frequency and duration of voiced segments proved to be useful

cues in predicting mUPDRS as expected from clinical observations [30]. Finally, the

HNR and the ratio of energy in first to second harmonic estimated using the algorithm

proposed in this paper provides further improvement in predicting mUPDRS. The gains

from harmonicity are consistent with previous studies on classification of dysarthria [14].

Among all combination of features listed in the table, the size of the optimal feature set

was about 550 features for model (e). The best performance was consistently obtained

with epsilon SVR using 3rd degree polynomial kernel functions.



Chapter 6

Conclusion

This study describes a computational approach for quantifying perceptual voice quali-

ties such as breathy and hoarseness. We focused to develop robust and accurate algorithms

for estimating speech features. Starting with review of traditional acoustic feature extrac-

tion techniques, we illustrated a model-based approach based on a computational model

of speech production. We solved the problem of parameter estimation using a maximum

likelihood framework for voiced speech. We then employed this model to robustly estimate

fundamental frequency, harmonic-to- noise ratio (HNR), jitter and shimmer. We evalu-

ated the performance of estimated pitch using Keel Pitch Reference database at different

noisy conditions. We evaluated other estimated quantities in the context of predicting

clinical assessment of Parkinsons disease. These features are exploited along with energy,

spectrum, cepstrum and segmental features in a support vector machine based regression

model. The epsilon support vector machines with polynomial kernel of degree 3 was found

to be most effective, whose performance was about 5.66 mean absolute error as measured

on a 20-fold cross-validation.

For the future works, we will integrate pitch estimates of proposed model into the fea-

ture set and use it to estimate other parameters of harmonic model. Also, the experiments

will be performed on more subjects.
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