
Efficient Latent-Variable Grammars:

Learning and Inference

Aaron Joseph Dunlop

B.A. Computer Science, Willamette University, 1996

M.S. Computer Science, OHSU, 2008

Presented to the

Center for Spoken Language Understanding

within the Oregon Health & Science University

School of Medicine

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science & Engineering

May 2014

© Copyright 2014 by Aaron Joseph Dunlop

All Rights Reserved

ii

Center for Spoken Language Understanding

School of Medicine

Oregon Health & Science University

CERTIFICATE OF APPROVAL

This is to certify that the Ph.D. dissertation of

Aaron Joseph Dunlop

has been approved.

Dr. Brian Roark, Thesis Advisor

Research Scientist, Google

Dr. Richard Sproat

Research Scientist, Google

Dr. Slav Petrov

Research Scientist, Google

Dr. Izhak Shafran

Associate Professor

Dr. Steven Bedrick

Assistant Professor

iii

Dedication

To Irene

For her constant support and grace.

iv

Acknowledgements

I want to thank my advisor, Dr. Brian Roark, for convincing me to undertake this adven-

ture, for the freedom to explore my research agenda, and for his insight and wisdom along

the way. Thanks also to my other committee members, Drs. Richard Sproat, Slav Petrov,

Izhak Shafran, and Steven Bedrick for their recommendations, and for their support of

and corrections to this work.

Thanks to my colleagues at OHSU, including Nate Bodenstab, Kristy Hollingshead-

Seitz, Meg Mitchell, Emily Tucker Prud’hommeaux, Mahsa Yarmohammadi, Masoud

Rouhizadeh, and others too numerous to mention, for making CSLU such an enjoyable

environment, and for their input into my research.

I would like to acknowledge my parents; for entertaining the kids over many weekends

to give me time for research; for volunteering to replace faucets, fix doors, and tackle other

household maintenance while I was deep in writing; and most of all, for their constant

encouragement and faith in me.

Thanks to my children, Abram and Meika, for the joys of books, hikes, basketball

games, and sailing trips together; for the many things they have taught me; and for the

smiles and hugs they share so freely.

Finally, and most importantly, thanks to Irene, the greatest blessing in my life. Thanks

for being my constant support, through much sweat and many tears; for giving up far too

many evenings and weekends to research, and for reminding me regularly that even a

Ph.D. will eventually end. I am eternally grateful for you.

v

Contents

Dedication . iv

Acknowledgements . v

Abstract . xiv

1 Introduction . 1

1.1 Hierarchical Syntactic Analysis . 2

1.2 Problem Statement . 4

1.3 Goals . 5

1.4 Organization and Contributions of the Thesis 6

2 Background and Preliminaries . 8

2.1 Formal Languages and the Chomsky Hierarchy 9

2.2 Context Free Grammars . 11

2.2.1 Strengths and Weaknesses of CFGs 13

2.2.2 Weighted and Probabilistic CFGs . 13

2.2.3 Binarization . 14

2.3 Parsing and the CYK Algorithm . 15

2.4 Evaluation . 19

2.5 Expectation Maximization . 20

2.6 Inside-Outside Algorithm . 21

2.7 PCFG Induction . 22

2.7.1 Corpus Transformations . 22

2.7.2 State-splitting and Smoothing . 24

2.7.3 Bilexical Grammars . 26

2.8 High-Accuracy Unlexicalized Grammars . 26

2.9 Split-merge Training of Latent Variable Grammars 28

2.10 Evaluation of Latent-Variable Learning Algorithms 30

2.11 Hardware Background . 31

2.12 BUBS Parser . 33

vi

2.13 Evaluation Criteria . 33

2.13.1 Measuring Efficiency . 35

2.14 Summary . 37

3 Grammar Encoding, Intersection Methods, and Parallelism 38

3.1 Parsing and Matrix Operations . 39

3.2 Matrix Grammar Encoding . 40

3.3 Cache Effects . 42

3.4 Grammar Intersection Methods . 43

3.5 Matrix-Vector Grammar Intersection . 47

3.5.1 SpMV Intersection . 47

3.5.2 Lexicographic Semiring . 49

3.6 Grammar Intersection Evaluation . 51

3.6.1 Exhaustive Serial Search . 52

3.6.2 Pruned Serial Search . 53

3.7 Parallelism . 54

3.7.1 Parallel Parsing of Deterministic Languages 56

3.7.2 Parallel PCFG Parsing . 57

3.7.3 Exhaustive Parallel Search . 59

3.7.4 Pruned Parallel Search . 61

3.8 SIMD . 62

3.8.1 Related Work . 63

3.9 Discussion . 64

4 Lexicon Simplification and Corpus Transformations 65

4.1 Spurious State Splits . 65

4.2 Class-based Rare Word Handling and Normalization 67

4.2.1 Corpus Transforms . 68

4.2.2 Combined Normalization . 71

4.3 Word Clustering . 73

4.3.1 Tagging . 73

4.3.2 Clustering Results . 75

4.4 Test Set Results . 76

4.4.1 Cross-domain Generalization . 78

4.5 Discussion . 78

vii

5 Regularization and Merge Objective Functions 80

5.1 Sparse Priors and Regularization . 80

5.1.1 Uniform Parameter Pruning . 82

5.2 Merge Fraction . 83

5.3 Merge Objective Functions . 84

5.4 Greedy L0 Merge Objective . 87

5.5 Inference-Informed Merge Objective . 89

5.5.1 Training With An Inference-Informed Objective 90

5.6 Modeled Merge Objective . 94

5.6.1 Training With A Modeled Merge Objective 96

5.7 Results and Discussion . 98

6 Chart Decoding Methods .101

6.1 Viterbi Decoding . 102

6.2 Approximate Minimum-Bayes-Risk Decoding 102

6.3 Max-Rule Decoding . 104

6.4 Accuracy Evaluation . 107

6.4.1 AMBR . 108

6.4.2 Max-Rule . 109

6.4.3 Error Analysis . 109

6.5 Relationship with Pruning . 111

6.6 Efficient Approximations . 112

6.7 Scaling in the Real Semiring . 119

6.8 Test Set Results and Discussion . 121

7 Method Combination and Discussion .123

7.1 Combining Methods . 123

7.2 Best Practices . 129

7.2.1 Model Training . 129

7.2.2 Inference . 130

7.3 Conclusions and Future Work . 131

7.4 Applications Outside Constituency . 133

Bibliography .134

A Search Pruning Methods .152

A.1 Agenda Parsing and A* . 152

A.2 Beam Search and Prioritization Functions 153

viii

A.3 Coarse-to-fine . 154

A.4 Chart Cell Constraints . 154

A.5 Adaptive Beam Models . 155

Biographical Note .157

ix

List of Tables

2.1 The Chomsky Language Hierarchy . 10

2.2 A simple grammar . 11

2.3 Simple grammar with probabilistic rule scores 14

2.4 Relative sizes and Viterbi-search accuracies of various grammars 25

2.5 Evaluation corpora statistics . 35

2.6 Sampled efficiency variance . 36

3.1 L2 and L3 cache accesses and hit rates for matrix-encoded grammar 43

3.2 Grammar attributes and exhaustive Viterbi parse speeds 52

3.3 Pruned parsing speeds, comparing several grammar intersection approaches 54

3.4 GPU SpMV parsing speeds . 63

4.1 Sample grammar rules . 66

4.2 Class-based decision-tree features . 67

4.3 Thresholds which maximize F1 for each preterminal 68

4.4 Accuracy, size, and efficiency of grammars trained with normalized corpora 72

4.5 Word-clustering features . 74

4.6 Selected clustering operating points . 77

4.7 Test-set trials of grammars trained with combined normalization 77

4.8 English Web Treebank trials . 79

5.1 Parameter Pruning . 84

5.2 Greedy L0 Objective . 87

5.3 Inference-informed merge objective . 91

5.4 Regression model coefficients . 95

5.5 Modeled merge objective . 96

5.6 Merge objective comparison . 99

5.7 English Web Treebank trials . 100

6.1 Summary statistics of WSJ, Switchboard, and Chinese grammars 105

6.2 WSJ dev-set accuracy . 107

6.3 Switchboard dev-set accuracy . 107

x

6.4 Chinese dev-set accuracy . 108

6.5 Bracketing errors attributed to various syntactic error classes, as measured

on WSJ section 22 by the Berkeley Parser Evaluator. Averaged over 8 6-

cycle grammars. Measured using complete-closure and guided beam search;

near-exhaustive results are similar. Error categories are described inKum-

merfeld et al. [105]. 110

6.6 WSJ dev-set results . 116

6.7 Switchboard dev-set results . 117

6.8 Chinese dev-set results . 118

6.9 Accuracy and speed of approximation methods 120

6.10 Test-set results . 121

7.1 Principal contributions of this thesis . 124

7.2 Method combination, WSJ . 125

7.3 Method combination, Switchboard . 126

7.4 Method combination, Chinese . 127

7.5 CPU Architecture Comparison . 128

xi

List of Figures

1.1 Examples of several forms of syntactic processing. 3

2.1 A constituency parse tree . 9

2.2 Three possible parses for an example sentence 12

2.3 Example of prepositional phrase attachment ambiguity 12

2.4 Example binarizations of an n-ary production 16

2.5 Markovization during binarization . 16

2.6 A CYK chart populated with labels . 17

2.7 A CYK chart populated with a packed parse forest 18

2.8 Preprocessing applied to Penn Treebank annotations 23

2.9 Parent-annotated tree . 24

2.10 WSJ efficiency distribution . 36

3.1 A matrix representation of a simple PCFG 40

3.2 A partially-populated CYK chart . 45

3.3 Example matrix-vector multiplication . 49

3.4 Speed vs. beam width for various grammar intersection methods 55

3.5 F1 vs. speed . 56

3.6 Exhaustive parallelization . 60

3.7 Pruned parallelization . 62

3.8 Pruned search is constrained by the serial pruning initialization, so we see

little benefit from parallelism beyond 2–4 threads. 62

4.1 Grammar size at various normalization thresholds 69

4.2 F1 at various normalization thresholds for selected preterminal labels 70

4.3 Accuracy vs. size for combined simple-normaliation grammars 72

4.4 Size of clustering grammars . 75

4.5 Accuracy of clustering grammars . 76

5.1 Parameter Pruning . 83

5.2 Merge fractions . 85

5.3 Greedy L0 Objective . 88

xii

5.4 Inference-informed merge objective . 91

5.5 Modeling input trials . 93

5.6 Modeled merge objective . 97

5.7 Merge objective comparison . 98

6.1 Packed parse forest . 101

6.2 AMBR example from Goodman . 103

6.3 Development-set accuracy of AMBR methods 106

6.4 2-cycle WSJ grammar . 113

6.5 4-cycle WSJ grammar . 114

6.6 6-cycle WSJ grammar . 115

6.7 Approximating the logsumexp operation . 119

A.1 Roark and Hollingshead chart-cell classification 155

A.2 Complete closure . 156

xiii

Abstract

Efficient Latent-Variable Grammars: Learning and Inference

Aaron Joseph Dunlop

Doctor of Philosophy

Center for Spoken Language Understanding

within the Oregon Health & Science University

School of Medicine

May 2014

Thesis Advisor: Dr. Brian Roark

Syntactic analysis is important for many natural language processing (NLP) tasks, but

constituency parsing is computationally expensive — often prohibitively so. Consumers

who would be best served by constituency parsing are often forced by resource constraints

to settle for less effective approaches. In this work, we examine the barriers to efficient

context-free processing, and present several approaches to increasing throughput and re-

ducing latency.

We describe a matrix grammar representation and demonstrate that its memory- and

cache-efficient properties yield considerable speedups in inference. We present an efficient

and parallelizable refactoring of the standard dynamic programming algorithm, based on

that matrix grammar, which further improves latency.

We introduce several methods of targeting efficiency as an objective during model

training, including some which are applicable outside of constituency parsing. We present

several methods of incorporating efficiency concerns into the process of training latent-

variable grammars, and experimental trials demonstrating the effects of each approach.

xiv

We present several methods of text normalization (prior to grammar induction) that re-

duce the grammar size considerably and improve parse efficiency with minimal accuracy

degradation. We explore the characteristics of a grammar that impact efficient infer-

ence, and present a regression model predicting inference time from those characteristics.

We incorporate the accuracy and efficiency models into latent-variable grammar training,

allowing a controlled tradeoff between speed and accuracy, and optimizing the trained

grammar for the desired operating point.

Finally, we explore various optimization criteria for chart decoding, and efficient ap-

proximations thereof. We replicate prior results on max-rule decoding, and explore other

options which have not been well explored in prior work. We present efficient approxima-

tions of these methods, capturing some of those gains without severe computational cost.

In aggregate, our methods achieve a speedup of approximately 20× for Viterbi decoding,

and 3× for alternate decoding methods.

xv

Chapter 1

Introduction

Human languages have long presented a unique challenge for computational systems. De-

terministic processing algorithms often map poorly onto the inherent ambiguity in lan-

guage usage. Nevertheless, the potential benefits of automatic language processing have

motivated decades of research in Natural Language Processing (NLP) and its subfields.

Recent years have seen great advances in NLP, and successful systems are becoming

widely used. Personal-assistant applications like Apple’s Siri™ and Nuance’s Nina™ have

popularized speech recognition, Natural Language Understanding (NLU) and dialog mod-

eling. Similarly, Machine Translation (MT) — automatic translation from one language

to another — has progressed rapidly in recent years, yielding practical and widely-used

implementations.

Question-answering (QA) systems process natural-language queries and attempt to

produce a meaningful response (sometimes, but not always, also in the form of natural

language). Early systems were limited to specific domains — e.g. BASEBALL [78], cover-

ing American Baseball, or SHRDLU [181], which handled instructions and queries about

an environment of colored blocks. More recent QA systems incorporate data gleaned auto-

matically from text, allowing coverage of a broader range of queries; IBM’s Watson system

[65], which successfully competed on TV’s Jeopardy show, is perhaps the best-known ex-

ample. Broad-domain QA generally involves preprocessing large amounts of free-form text

to populate a knowledge-base, from which question answers can be induced.

These recent advances in NLP were fueled by the development of large training corpora

and of computational resources sufficient to effectively apply statistical models. For ex-

ample, the theoretical underpinnings for MT were developed in the 1960’s and earlier, and

1

1.1. Hierarchical Syntactic Analysis 2

the influential IBM model system was defined in the 1990’s [179]. But practical implemen-

tations required computational resources unavailable until relatively recently. Increased

computational power has enabled further modeling research, and more sophisticated mod-

els in turn required additional resources. In combination, improvements in modeling and

computational throughput have yielded the impressive gains of recent years.

However, much work remains, both in effective modeling approaches and in application

of those approaches to real-world problems. In particular, as we deploy NLP systems with

increasingly large models, efficiency considerations increase in importance. NLP tasks are

often limited by throughput constraints or real-time latency requirements. This thesis

presents several approaches to improve the speed of syntactic analysis.

1.1 Hierarchical Syntactic Analysis

Text-processing systems often require annotating free-form sequences with labels describ-

ing latent structural elements hidden in the sequence tokens. Example annotation tasks

include part-of-speech (POS) tagging, NP-chunking, and constituency and dependency

parsing, as demonstrated in Figure 1.1. Subsequent information extraction or other stages

make use of the labels to inform their own decisions.

Many NLP systems depend heavily on syntactic analysis. For example, Information

Extraction (IE) and Machine Reading systems attempt to extract facts from free-form

text. For example, the sentence Jim’s mother Betty is still swimming at 84. encodes (at

least) the following facts:

• Child-of 〈Jim,Betty〉

• Age 〈Betty, 84〉

• Parent-of 〈Betty, Jim〉

A fact representation of this form can form the knowledge ontologies that drive QA

systems, or aid in summarizing the content of long documents. Recovering those facts

from text (and avoiding spurious errors, such as inferring that Jim is swimming) will

1.1. Hierarchical Syntactic Analysis 3

DT

The

NN

fish

NN

market

VBZ

stands

RB

last

(a) Part-of-speech (POS) tagging applies

syntactic labels to each token, but ap-

plies no higher-order structures.

NP

The fish market

X

stands last

(b) Noun-phrase (NP) chunking labels only

NPs, leaving all other subsequences un-

labeled.

The fish market stands last

det nn nsubj advmod

(c) Dependency parsing attaches each to-

ken to its syntactic head, the word

whose function it directly supports.

In most dependency-parsing formalisms,

the main verb serves as the overall head

of the sentence.

ROOT

S

VP

RB

last

VBZ

stands

NP

NN

market

NN

fish

DT

The

(d) Constituency parsing. (Relatively) inde-

pendent subsequence units are denoted

with labels such as NP (noun phrase),

VP (verb phrase), and S (clause or sen-

tence), and a hierarchical tree structure

denotes the position of each constituent.

Figure 1.1: Examples of several forms of syntactic processing.

almost certainly require a sophisticated syntactic model of the source text. Many other

NLP tasks also depend heavily on syntax [16, 9]. MT is often formulated as a special

form of parsing, performing hierarchical inference simultaneously in the source and target

languages [37]. Other consumers of syntactic analysis include semantic role labeling [148],

anaphora and coreference resolution [33], and discourse analysis [67].

Unfortunately, syntactic parsing is one of the more expensive of the common NLP

tasks, often orders of magnitude more costly than other processies in a pipeline. Some

of the annotations demonstrated in Figure 1.1 can be recovered in linear time (i.e., O(n),

where n is the length of the input sequence). POS-tagging and NP-chunking are modeled

well by linear sequence models. Quadratic-time and linear greedy search are commonly

1.2. Problem Statement 4

applied to dependency parsing [131, 123], but recovering hierarchical constituency struc-

ture is usually more expensive. Although greedy search can be applied to constituency

structure [161, 95], the resulting accuracy is usually well below the state of the art; the

asymptotic complexity of more accurate algorithms is generally at least O(n3). However,

the resulting constituency structure is superior for many downstream tasks [143], and

dependency structure can often be extracted most effectively from a constituency parse

[30]. Thus, we focus in this thesis on constituency parsing, despite the computational

cost. Given the wide range of tasks which depend on syntactic analysis, efficiency gains

in constituency analysis are of broad interest to the NLP community.

1.2 Problem Statement

Prior to the introduction of sizable annotated training corpora, linguists would often hand-

build grammars for a language or genre of interest; these hand-coded grammars were

generally very compact, but usually failed to represent the wide range of constructions

observed in real-world language usage. All current wide-coverage parsers deal with this

ambiguity by learning grammars from large corpora (as described in Section 2.7). These

treebank grammars can be quite accurate, and markedly more robust to unseen data, but

at a steep efficiency cost, as they encode thousands or millions of individual probabilistic

productions. Recent parsing research has greatly improved — and expanded — our sta-

tistical models, and classic approaches such as dynamic programming [45, 188, 96] and

top-down filtering approaches [118, 61], which were quite effective on smaller models, be-

come less practical with grammars encoding millions of parameters. Most recent research

has focused on training increasingly accurate models, and efficiency of inference is often

an afterthought; researchers generally refine a pruning model or an inference engine suf-

ficiently to measure accuracy on a test corpus, but rarely is efficient inference a primary

goal.

Most modern context-free parsers perform approximate inference, pruning their search

space dramatically (and risking search errors) in order to return a result in tractable time

(c.f., for example, the Charniak [32], Berkeley [142], and Stanford [100] parsers). Even

1.3. Goals 5

with considerable pruning, the speed of most modern parsers ranges from approximately

15–100 words per second [105], orders of magnitude slower than other commonly-used

NLP methods.

A small body of prior work has addressed efficient grammar encodings [97] and bina-

rization strategies [169]. However, to our knowledge, prior work has not explored 1) the

interaction between grammar encoding and hardware-level memory representation; 2) the

impact of grammar characteristics on the efficiency of inference; 3) the efficiency impact

of rare- and unseen-word handling; or 4) the interplay between accuracy and efficiency

during grammar learning.

1.3 Goals

The overall goal of this thesis is to reduce the barriers to constituency parsing by examining

and improving the efficiency of context-free processing. To accomplish that goal, we will

focus on the following specific aims.

Aim 1: Efficient and Parallelizable CYK Chart Parsing. Compactly represent

a PCFG and efficiently populate a packed parse forest. Demonstrate the trade-offs

between grammar intersection approaches, particularly regarding effective paralleliza-

tion.

Aim 2: Efficiency Characteristics of PCFGs. Characterize how search efficiency

is affected by attributes of the grammar. Train a regression model predicting the

efficiency of a given grammar.

Aim 3: Efficient Latent-Variable Grammars. Incorporate predicted efficiency into

latent-variable (LV) grammar learning, and allow trading off accuracy and efficiency

in a controlled manner.

Aim 4: Accuracy and Efficiency of Advanced Chart Decoding Methods. Com-

pare competing chart decoding methods and examine approximations thereof which

improve accuracy over Viterbi search with reasonable impact on efficiency.

In combination, these aims contribute to the field of computer science in several ways:

1.4. Organization and Contributions of the Thesis 6

In our exploration of parallel parsing, we pull together research from the NLP community

with that of the parallel programming and supercomputing fields. By exploring gram-

mar properties, we improve understanding of the characteristics which yield effective and

efficient grammars, and the potential operating points when trading off accuracy and ef-

ficiency. We present several novel methods of incorporating efficiency metrics into the

process of training latent-variable grammars. Finally, the infrastructure and results are

incorporated into the open-source BUBS parser [20], and are thus available for further

research in parsing and in downstream tasks.

1.4 Organization and Contributions of the Thesis

We begin in Chapter 2 with a brief introduction of probabilistic context-free grammars

(PCFGs) and the standard approaches to PCFG training of and inference. Of particular

interest is the split-merge approach to training latent-variable grammars [142]. We use

this training method extensively in chapters 4 and 5, so we encourage any readers not

already familiar with it to review the discussion in Section 2.9.

The central contributions of this thesis are concentrated in chapters 3–5. Chapter 3

begins with a discussion of the relationship between matrix operations and CYK parsing,

and presents a matrix grammar encoding. We demonstrate a dramatic improvement in

memory and cache efficiency, and a commensurate speedup in parsing. We then com-

pare several approaches to the central argmax in the CYK algorithm and present a novel

refactoring of CYK, based on the matrix grammar encoding, that reduces the number

of expensive grammar-intersection operations from O(n3) to O(n2). We show that this

approach provides further efficiency gains and parallelizes smoothly across multicore ar-

chitectures, scaling nearly linearly with the number of available processor cores. This

chapter is adapted from work previously published in Dunlop et al. [58] and Dunlop et

al. [59].

In chapters 4 and 5, we present methods of learning grammars optimizing for efficient

inference, allowing controlled tradeoff between speed and accuracy. Chapter 4 present text-

normalization approaches that can produce considerably smaller — and faster — grammars.

1.4. Organization and Contributions of the Thesis 7

In Chapter 5, we examine various attributes of a PCFG and how those characteristics af-

fect the efficiency of inference with that grammar. We present a regression model which

predicts parsing time based on the grammar characteristics. We then extend the work of

Petrov et al. [142] to incorporate efficiency predictions and measurements into grammar

learning. We demonstrate that the tradeoff between efficiency and accuracy is not strictly

linear, permitting induction of jointly optimized grammars with markedly improved effi-

ciency at minimal cost in accuracy.

In Chapter 6 we explore chart decoding methods, including Max-Rule [144] and Ap-

proximate Minimum-Bayes-Risk [74, 83]. These decoding methods improve accuracy over

Viterbi decoding, but often at a severe computational cost. We present efficient approxi-

mations which capture some of those accuracy gains with minimal computational overhead,

and demonstrate consistent gains across languages and genres.

The combination of these methods yields considerable speedups in common parsing

tasks, as demonstrated over a variety of languages and domains. In Chapter 7, we present

experiments demonstrating the additive effects of the approaches explored throughout

the thesis, resulting in throughput in excess of 5700 words/second, improving by approx-

imately 2.5× on previously published results, and by 20× on earlier approaches.1 We

present a set of grammar-training recommendations and guidelines, aiming to provide

others a simple and effective path to incorporate these techniques into their own systems,

and suggest applications in areas other than constituency parsing, including dependency

analysis and machine translation.

1To our knowledge, the best previously-published results are those in Bodenstab [19], which incorporate

the grammar encoding from Chapter 3.

Chapter 2

Background and Preliminaries

Many common NLP tasks can be performed effectively by finite-state systems, including

regular languages [39] and Hidden Markov Models [10]. For example, POS-tagging and

NP-chunking (as demonstrated in Figure 1.1) can be modeled accurately with relatively

simple sequence models, such as Hidden Markov Models (HMMs). Further, finite-state in-

ference is O(n) (where n is the length of the sequence in tokens), and is thus tractable even

for lengthy sequences. However, finite-state models are unable to capture long-distance

dependencies, which are common in linguistic and biological sequences. Recovering long-

distance relationships requires a more complex model, incorporating hierarchical structure.

Hierarchical language modeling permits many of the constructions and variations we see

in everyday language usage. For example, consider the following sentences and 2 simple

modifications thereof:

John likes beans. He hates peas. (Original)

Beans, John likes. Peas, he hates. (Topicalized)

Beans are liked by John. (Passivized)

As demonstrated in these simple examples, certain subsequence units can function on

their own, and may (in some cases) be moved independently without rendering the sentence

ungrammatical. We call these self-contained subsequences constituents. In addition to the

movements demonstrated above, constituents can often be replaced in their entirety. For

example, in the sentence The fish market stands last, we might replace the phrase stands

last with an alternate verb construction:

8

2.1. Formal Languages and the Chomsky Hierarchy 9

S

.

.

VP

NP

PP

NP

NNP

Firefox

NNP

Mozilla

IN

for

NP

NN

engineer

JJ

lead

DT

the

VBZ

is

NP

NNP

Goodger

NNP

Ben

NP Noun Phrase

PP Prepositional Phrase

VP Prepositional Phrase

NN Noun

NN Proper Noun

DT Determiner

JJ Adjective

Figure 2.1: A constituency parse tree, labeling one possible hierarchical structure for a

simple sentence.

• The fish market was closed last week

• The fish market is on the corner of 8th and main

Further, these constituents can be of arbitrary complexity:

• The fish market next to the taco stand, which eventually went bankrupt and was

replaced with a . . .

Constituent length is theoretically unbounded, and can be quite long even in every-

day usage, so a simple sequence model cannot practically capture the variations observed

in real-world language. Moving from a linear sequence model to a hierarchical structure

allows us to capture many of the generalities in language usage from limited observa-

tions. Many linguistic formalisms incorporate hierarchy and constituent structures; in

this chapter, we will discuss several such models, and describe in depth the formalism of

the context-free language and its application to linguistic processing.

2.1 Formal Languages and the Chomsky Hierarchy

A formal language L is defined by a phrase-structure grammar [38], a form of rewriting

system [174]. A grammar G consists of a non-terminal set V , a terminal set T , a special

start symbol S† ∈ V , and a set of rewriting rules, or productions P . Thus, we often

represent G as the tuple
〈
V, T, S†, P

〉
.

2.1. Formal Languages and the Chomsky Hierarchy 10

Grammar Language
Production Complexity

Rules of Inference

Type 0 Recursively Enumerable α→ β Undecidable

Type 1 Context-sensitive αAβ → αγβ NP-Complete

Type 2 Context-free A→ γ O(n3)

Type 3 Regular A→ a, A→ aB O(n)

Table 2.1: The Chomsky Language Hierarchy. A,B ∈ V (single non-terminals), α, β ∈ V ∗

(0 or more non-terminals), γ ∈ {V ∪ T}+ (a sequence of 1 or more non-terminals and

terminals), and a ∈ T (a single terminal).

Each string of L is a sequence of terminals (T ∗); no non-terminal may also appear

in T (i.e., {V ∩ T} = {}). In 1956, Noam Chomsky categorized formal languages into

the classes in Table 2.1 [39]. Each language type is a subset of its predecessor — e.g., all

regular languages are also context-free, but many context-free languages are not regular.1

In a linguistic grammar, common non-terminal labels include NP for Noun Phrase, JJ

for adjective, and S for clause.2 The terminal set T consists of the words permitted by

the language.

A derivation is defined as an application of one or more rewrite rules to A ∈ V ,

ending with an ordered list of terminals. To ‘apply’ a rule production, we replace the

parent non-terminal with the one or more children that constitute the rule. Repeated rule

application is normally denoted with
∗⇒. For example, the following derivation shows that

S†
∗⇒ stands fish market by the grammar in Table 2.2.

1Several other language classes have since been described, fitting between the types 0–3 of Table 2.1.

Of those, the class known as mildly context-sensitive is the most closely related to this thesis; we will

describe it briefly in Section 2.2.1.
2The Penn Treebank annotation guidelines define S as a ‘simple declarative clause’. S is often used to

label complete sentences, presumably the motivation for the choice of the label S, but the same label is

used for subordinate clauses as well.

2.2. Context Free Grammars 11

Parent Children Parent Children

ROOT → S VP → VBD

S → NP VP VP → VB @VP

NP → DT @NP @VP → NP RB

NP → DT NN DT → The

NP → NN NNS NN → fish

NP → NN NN VB → fish

NP → NN RB NN → market

NP → NN VB → market

@NP → NN @NP NNS → stands

@NP → NN NN VBZ → stands

@NP → NN NNS RB → last

VP → VBZ RB VBD → last

Table 2.2: A simple grammar, intended to accept the example sentence in Figure 2.2.

Rule Application(s) State

ROOT

1) ROOT → S S

2) S → NP VP NP VP

3) NP → NN NNS NN NNS VP

4) VP → VB NN NNS VB

5) NN → market, NN → stands, and VB → fish market stands fish

Note that different derivations can produce the same sentence. For example, we can

reverse steps 3 and 4, or apply the first rule in step 5 prior to step 4, without changing

the final string.

2.2 Context Free Grammars

A context-free grammar G defines a context-free language (Type 2 in Table 2.1). The

rewrite rules in P are of the form A → γ, where A ∈ V and γ ∈ (V ∪ T)+. Note that γ

includes the empty production epsilon, although this form is disallowed in certain stricter

2.2. Context Free Grammars 12

ROOT

S

VP

RB

last

VBZ

stands

NP

NN

market

NN

fish

DT

The

(a) The fish market is

the last one standing.

ROOT

S

VP

VBD

last

NP

NNS

stands

NN

market

NN

fish

DT

The

(b) Long-lasting

market stands.

ROOT

S

VP

RB

last

NP

NNS

stands

VB

market

NP

NN

fish

DT

The

(c) Fish doing

marketing

Figure 2.2: Three possible parses for the example sentence, ‘The fish market stands last’,

and the interpretations they imply.

ROOT

S

VP

PP

NN

spoon

DT

a

IN

with

NP

NN

soup

VBD

ate

NP

PRP

She

(a) Preferred attachment

ROOT

S

VP

NP

PP

NN

spoon

DT

a

IN

with

NN

soup

VBD

ate

NP

PRP

She

(b) Dispreferred attachment

Figure 2.3: Example of prepositional phrase (PP) attachment ambiguity. The modifier

‘with a spoon’ attach to the VP, thus modifying ‘ate’, or to the object NP, modifying

‘soup’. Disambiguating between PP attachment targets can be a very difficult task for

syntactic parsers.

formalisms (see below). Table 2.2 demonstrates a simple context-free grammar (CFG),

designed to accept the example sentence in Figure 2.2, ‘The fish market stands last’.

A language LG is considered context-free if all sentences in the language can be derived

from S†: L = {t ∈ T ∗ : S†
∗⇒ T ∗}. A CFG is defined as proper if and only if:

2.2. Context Free Grammars 13

1. All non-terminals A ∈ V are accessible — ∀A ∈ V, ∃α, β ∈ {V ∪ T}∗ : S†
∗⇒ αAβ

2. All symbols are productive, generating one or more terminals — ∀A ∈ V ∃ t ∈ T ∗ :

A
∗⇒ t

3. No epsilon productions (A→ ε) are allowed.

With the exception of simple example grammars, all grammars discussed in this thesis are

induced from annotated treebanks (as described in Section 2.7). Each non-terminal in the

treebank is observed in a tree rooted at S† and derives one or more terminal symbols, so

these conditions are guaranteed [36].

2.2.1 Strengths and Weaknesses of CFGs

CFGs can represent the vast majority of human language constructs [39]; notable ex-

ceptions include cross-serial dependencies in Swiss German and Tagalog [166, 116] and

reduplication in Bambara [52]. Context-sensitive grammar formalisms address these limi-

tations, but at a very steep computational cost — CFG processing is O(n3) (as described

in Section 2.3), and fully context-sensitive approaches are exponential in the sentence

length. Even mildly context-sensitive formalisms [93] — of which Tree Adjoining Gram-

mars [94] and Combinatorial Categorial Grammars [42] are well-known examples — are

considerably more expensive to process, asymptotically O(n4) or greater.3 This thesis

targets high-throughput and low-latency parsing; cubic-complexity CFG inference is al-

ready problematic for many application domains, and increased complexity is usually

impractical. So we will restrict our focus to the context-free formalism.

2.2.2 Weighted and Probabilistic CFGs

The unweighted CFGs we have discussed thus far admit a binary decision on any se-

quence — is the sequence in or out of the language L? Given the ambiguity encoded

in most human languages, we may wish to make finer-grained distinctions, comparing

3General-case TAG and CCG algorithms are O(n6). Splittable tree-adjoining grammars can be pro-

cessed in O(n4) [29]. Other mildly context-sensitive approaches are at least O(n5).

2.2. Context Free Grammars 14

Parent Children Prob Parent Children Prob

ROOT → S 1 VP → VBD 1/3

S → NP VP 1 VP → VB @VP 1

NP → DT @NP 1/4 @VP → NP RB 1

NP → DT NN 1/4 DT → The 1

NP → NN NNS 1/8 NN → fish 2/3

NP → NN NN 1/8 VB → fish 1/3

NP → NN RB 1/8 NN → market 2/3

NP → NN 1/8 VB → market 1/3

@NP → NN @NP 1/3 NNS → stands 1/2

@NP → NN NN 1/3 VBZ → stands 1/2

@NP → NN NNS 1/3 RB → last 2/3

VP → VBZ RB 1/2 VBD → last 1/3

Table 2.3: The grammar from Table 2.2 with the addition of probabilistic rule scores,

allowing comparison of the three parses in Figure 2.2.

derivations to one another. For example, we might wish to rank the candidate parses in

Figure 2.2, or those in Figure 2.3. A weighted context-free grammar (WCFG) adds this

capability through a mapping ρ from P → R, assigning a real-valued weight to each rule.

Conditionally normalizing the weights on the rule parents yields a probabilistic context-

free grammar, or PCFG (e.g. Table 2.3). WCFGs and PCFGs are equally expressive

[168], and most of the algorithms discussed in this thesis are applicable to either; how-

ever, we can more easily compare scores of disparate nonterminal labels if the grammar

is properly normalized, and we can compute the probability of a (sub)tree as the product

of the probabilities of all productions incorporated therein.

2.2.3 Binarization

Many algorithms, including those of primary interest to us, require a binarized grammar;

that is, we must transform the grammar into a weakly equivalent grammar containing only

2.3. Parsing and the CYK Algorithm 15

rules rewriting to 2 or fewer non-terminals.4 One possible transform yields a grammar in

Chomsky Normal Form [84]. CNF permits only productions of the form A → B C and

A→ α where A,B,C ∈ V and α ∈ T . Note that CNF does not allow unary productions;

we can achieve full CNF by collapsing all unary productions into new non-terminals, but

this increases the non-terminal space considerably, so we generally choose to retain unary

productions in our models and handle them appropriately during inference.

We binarize a grammar by dividing n-ary productions into multiple rules, creating

additional ‘factored’ non-terminals as required. For example, we can transform the rule

A → B C D into 2 rules: A → @A D and @A → B C. When creating a new binarized

rule, we can place the original non-terminal consistently to the left of the factored non-

terminal or to the right (left- and right-binarization, respectively), or according to some

other rule set (as demonstrated in Figure 2.4).

In some cases, we may choose during binarization to also Markovize the grammar [119].

That is, we ‘forget’ the sibling context beyond some specified limit, thus collapsing some

of the newly-introduced factored non-terminals. Figure 2.5 demonstrates Markovization

of the same example tree from Figure 2.4. In Figure 2.5b, @A:CDE has been abbreviated

to @A:C. Or we may collapse all factored versions of a non-terminal, as in Figure 2.5c; this

produces the most compact grammar, but one in which the newly-introduced categories

encode no context whatsoever.

2.3 Parsing and the CYK Algorithm

As described in Section 2.1, we can apply a derivation (a sequence of rewrite rules from

a grammar G) to produce a string in the language L. Given a sequence from T , we can

also produce candidate derivations for that sequence. Inference of this form is commonly

called simply ‘parsing’.5 Often, many potential derivations represent the same hierarchical

4This transformation allows sharing of common substructure, permitting dynamic programming algo-

rithms such as those described in Sections 2.3 and 2.6.
5The general term ‘parsing’ can refer to several different algorithms. We are focused primarily on

constituency parsing; when discussing other forms of parsing, we will denote the distinction explicitly.

2.3. Parsing and the CYK Algorithm 16

A

EDCB

(a) N-ary rule

A

E@A:BCD

D@A:BC

CB

(b) Left

A

@A:CDE

@A:DE

ED

C

B

(c) Right

A

@A:DE

ED

@A:BC

CB

(d) Equal

Figure 2.4: Example binarizations of an n-ary production. For linguistic processing, we

often choose either left- or right-binarization, but other binarizations are possible, as

demonstrated in (d). In these examples and others, we prefix the newly introduced ‘fac-

tored’ categories with ‘@’.

A

@A:CDE

@A:DE

ED

C

B

(a) Binarization only

A

@A:C

@A:D

ED

C

B

(b) Markov-order-1

A

@A

@A

ED

C

B

(c) Markov-order-0

Figure 2.5: Markovization during binarization. When binarizing a tree, we can record all

of the sibling context into the newly-introduced categories, as in (a), or we can ‘forget’

sibling context beyond some specified limit — e.g. beyond 1 sibling as in (b), or all context,

as in (c).

structure, differing only in the order of rule application; downstream processes generally

consider these alternatives as equivalent, so we represent the entire equivalence class as

a single tree structure. Parsing is commonly applied in compilers, NLP, bioinformatics,

machine translation, and other fields. Unambiguous languages, such as programming

languages and XML are parsed effectively by deterministic parsing approaches; natural

languages are very ambiguous, permitting multiple interpretations of the same input. For

example, consider the various parses of the same sentence in Figure 2.2.

Because of this ambiguity, any robust PCFG will permit a large number of trees Y for

any input sentence x ∈ T ∗ (and many spurious ambiguities arising from massive overgen-

eration). The rule probabilities allow us to score competing (permitted) derivations; we

2.3. Parsing and the CYK Algorithm 17

generally want to recover ŷ, the most probable tree.

ŷ = argmax
y∈Y

P (y|x,G) (2.1)

Exhaustively enumerating |Y| is very expensive; the graph search space is exponential

in the sentence length n, so inference is impractical even over relatively short linguis-

tic sequences. However, this problem meets the requirements for dynamic programming

[13] — namely: 1) Optimal substructure — the optimal tree incorporates locally optimal

parses of substrings and 2) Overlapping subproblems — Näıve search solves the same sub-

problems repeatedly; memoizing and reusing these partial solutions instead of recomputing

them reduces the search space greatly. Algorithm 2.1 shows pseudocode of the widely-used

CYK algorithm [45, 96, 188], which parses in O(n3) time.6 We store subsolutions in a

2-D chart structure; each cell in a CYK chart contains possible non-terminal labels over a

particular substring (or span) of the entire input. Computation for each cell depends only

on those cells covering smaller spans within the same substring, so we can compute po-

tential labels for each span once and memoize them for subsequent reuse while processing

higher cells (longer spans). Figures 2.6 and 2.7 demonstrate example chart structures, the

first populated with a single tree, and the second demonstrating a packed parse forest — a

6This algorithm, first presented in the 1960’s, is alternatively referred to as ‘CYK’ and ‘CKY’.

DT → The
0,10,1

NN → fish
1,2

NN → market
2,3

VB → stands
3,4

RB → last
4,5

0,2 1,3 2,4

VP → VB RB
3,5

NP → DT NP
0,3 1,4 2,5

0,4 1,5

S → NP VP
0,5

Figure 2.6: A CYK chart populated with labels matching the parse tree in Figure 2.2a.

2.3. Parsing and the CYK Algorithm 18

DT → The 1

0,10,1

NN → fish 1

1,2

NN → market 2/3
VB → market 1/3
VP → VB 1/12

2,3

NN → stands 1/2
VB → stands 1/2
VP → VB 1/8

3,4

RB → last 2/3
VB → last 1/3
VP → VB 1/12

4,5

NP → DT NN1
1/4

@VP → NP 1/4
0,2

@NP → NN NN2
2/3

NP → NN NN2
1/9

@VP → NP 1/9
1,3

@NP → NN NN3
1/3

NP → NN NN3
1/18

@VP → NP 1/18
2,4

NP → NN RB4
1/18

VP → VB RB4
1/6

@VP → NP 1/18
3,5

NP → DT NP1
1/36

S → NP VP2
1/48

@VP → NP 1/36
0,3

NP → NN @NP2
1/18

S → NP VP3
1/72

@VP → NP 1/18
1,4

VP → VB @VP3
1/216

S → NP VP4
1/216

2,5

NP → DT NP1
1/72

S → NP VP3
1/288

@VP → NP 1/72
0,4

S → NP VP3
1/54

1,5

ROOT → S 1/216
S → NP VP3

1/216
0,5

Figure 2.7: A CYK chart populated with a packed parse forest — a compact representation

of many unique parse trees. The cell spanning the first 4 words is marked in dark grey,

and the potential subconstituents of that cell in lighter grey.

compact representation of a (potentially) exponential number of trees.

We begin by initializing span-1 cells (the bottom row of the chart) with all part-of-

speech (POS) tags,7 and with any phrase-level labels spanning a single word. At higher

(longer-span) cells, such as the dark grey cell in Figure 2.7, we build new constituents by

combining constituents spanning adjacent substrings, guided by the productions in the

grammar. In each cell in the chart, we store the highest score for each entry in V , along

with a backpointer to the child non-terminals it produces.8 We process O(n2) cells, and

examine O(n) midpoints for each cell, yielding O(n3 |G|) complexity (where |G| is the size

of the grammar). Unfortunately, even this (relatively) efficient asymptotic complexity in n

is often dominated by the grammar constant G, and exhaustive search remains intractable

for large grammars. Subsequent chapters present several approaches to this problem.

7In most treebanks, parts-of-speech (POS) and phrase-level labels are disjoint sets. Thus, POS labels

occur only in conjunction with terminals (words), and are also referred to as preterminals.
8We may choose to maintain a backpointer containing a midpoint and a rule from P , or we may

conserve storage by omitting the midpoint at the cost of additional search effort after chart population

when decoding a tree from the packed forest.

2.4. Evaluation 19

Algorithm 2.1 Cyk(w1 . . . wn), G = (V, T, S†, P, ρ))

PCFG G must be in CNF; α represents the population of the current cell. Notation

adapted from Roark and Sproat [157].

1: for b = 1 to n do . Span = 1 (Words/POS tags)

2: for j = 1 to |V | do

3: αj(b, 1)← ρ(Aj → wb)

4: for s = 2 to n do . All spans > 1 (rows in the chart)

5: for b = 1 to n− 1 do . All start-points (cells in a row)

6: e← b+ s− 1 . End-point for cell

7: for i = 1 to |V | do

8: αi(b, e)← max
j,k∈V, b<m≤e

ρ(Ai → AjAk)αj(b,m− 1)αk(m, e)

9: ζi(b, e)← argmax
j,k∈V, b<m≤e

ρ(Ai → AjAk)αj(b,m− 1)αk(m, e)

Note that the argmax in Equation 2.1 and in Algorithm 2.1 lines 7–8 maximizes the

probability of the derivation, but alternate objective functions are also possible, such as

those that maximize measures of expected constituent accuracy. We will present experi-

ments comparing some of those methods in Chapter 6.

2.4 Evaluation

The constituency tree structure recovered by the CYK algorithm can be represented as a

multiset of labeled spans T (e.g., a label of NP on the first 4 words of a sentence might be

represented as NP0,4). The standard evaluation metric, known as PARSEVAL [17] measures

labeled precision (LP) and labeled recall (LR) of those spans vs. the gold tree τ (excluding

parts-of-speech, but including phrase-level nonterminals spanning a single word).

LP =
|T ∪ τ |
|T | LR =

|T ∩ τ |
|T | (2.2)

If a single summary statistic is desired, the common convention in the parsing com-

munity is to report the harmonic mean of these two measures, a metric generally labeled

as F1 , or equivalently F-score or F-measure. F1 appears to be reasonably well correlated

with the impact of parse accuracy on many downstream tasks. State-of-the-art parsers

2.5. Expectation Maximization 20

achieve F1> 90 for English newswire text, but performance is considerably lower on most

other languages and on non-canonical genres, and even F1> 90 is still considerably lower

than human inter-annotator agreement [23].

2.5 Expectation Maximization

The Expectation Maximization (EM) algorithm [54] learns latent (unobserved) parameters

of a statistical model from observed data points. EM training first initializes a random

model θ0, and then iterates between an expectation step, which calculates the likelihood of

the observations X under the current model θt, and a maximization step, which updates

the model parameters to maximize the likelihood of those observations.

L(X|θt) =
∏
x∈X

p(x|θt) (2.3)

θt+1 = argmax
θ

L(X|θt) (2.4)

Familiar examples of EM algorithms include the Baum-Welch algorithm for parame-

terizing HMM models [11], and the k-means clustering algorithm [117, 113].

EM guarantees improvement in the training likelihood on each iteration, and eventual

convergence to a consistent model [183]. However — like many other iterative optimization

techniques — EM is subject to local minima, so the learned model is not guaranteed to

be the maximum-likelihood model for the training data. The random initialization state

determines the trajectory of the optimization, so training runs with different initialization

states may converge to very different models; thus, one common approach trains multiple

models and selects a final model based on performance on held-out data.

EM is also prone to overfitting, particularly if run to convergence. Validation on held-

out data and careful application of alternate stopping criteria can in some cases help

prevent overfitting. In the following section, we will discuss the Inside-Outside algorithm,

an application of EM PCFG training. Section 2.9 discusses one approach to avoid local

minima and alleviate overfitting in PCFG training, and chapters 4 and 5 present novel

methods expanding on that approach.

2.6. Inside-Outside Algorithm 21

2.6 Inside-Outside Algorithm

The Baum-Welch algorithm [11] is a form of EM frequently used to train Hidden Markov

Models. The E step of Baum-Welch performs inference with the current model, using

the Forward-Backward algorithm to sum probabilities over all paths. Forward-backward

operates on linear sequences and HMMs; the inside-outside algorithm [7, 108] is the analog

over trees and context-free grammars; thus, we can use inside-outside to iteratively re-

estimate grammar probabilities.

Inside-outside, a close relative of CYK, computes posterior probabilities of each labeled

span. We compute inside probabilities of non-terminal span labels as in Algorithm 2.1,

but we replace the argmax in line 8 with a summation:

αi(b, e)←
e−1∑
m=b

∑
j∈V

∑
k∈V

ρ(Ai → AjAk)αj(b,m− 1)αk(m, e) (2.5)

Since α is a sum over all possible derivations, we omit the backpointer ζ. Note that

αS†(0, n) = P(w1 . . . wn), the probability of the sentence according to G (i.e., the sum of

the probabilities of all derivations of w1 . . . wn).

We then compute the outside probability for each label and span; informally, the

outside probability is the probability that a label will combine with the words to its left

and those to its right to participate in a full parse tree. The label may join with a label

on its left or on its right, so the total probability includes both possibilities:

βi(b, e)←
b−1∑
b′=1

∑
j∈V

∑
k∈V

ρ(Ai → AkAj)βi(b
′, e)αk(b

′, b− 1) +

n∑
e′=e+1

∑
j∈V

∑
k∈V

ρ(Ai → AjAk)βi(b, e
′)αk(e+ 1, e′)

(2.6)

We can now compute the posterior probability of a labeled span as:

γi(b, e) =
αi(b, e)βi(b, e)

P (w1 . . . wn)
(2.7)

And the conditional probability of each rule at a span:

2.7. PCFG Induction 22

ξijk(b, e) =
αijk(b, e)βijk(b, e)

P (w1 . . . wn)

e∑
m=b+1

αj(b,m)αk(m, e) (2.8)

We can use these values to maximize the conditional probability of a parse tree or

to re-estimate the PCFG. In the following section, we will describe induction of a PCFG

model from a labeled corpus, and Section 2.9 will incorporate γ and ξ to optimize those

models.

2.7 PCFG Induction

We generally induce PCFGs from a manually-annotated corpus of labeled trees, known

as a ‘treebank.’ In recent years, treebanks have been developed in a variety of domains,

including newswire text in English, Chinese, and other languages [120, 185, 167], telephone

conversations [71], and web text [14]. Treebank-trained grammars generally cover a much

wider range of real-world language usage than do hand-coded grammars, so nearly all

modern parsers incorporate treebank training.

2.7.1 Corpus Transformations

Many treebanks, including those we evaluate on, annotate information beyond context-free

trees, such as tense, aspect, gender, predicate-argument structure, and elided or implied

clauses (indicated by empty nodes). We often drop this additional information prior to

grammar induction; if required by a downstream process, we can often recover these anno-

tations following parsing [90, 55, 25]. In this thesis, we apply the following preprocessing

operations to all corpora:

1. Remove empty nodes. We focus on bottom-up inference mechanisms, which do not

allow arbitrary insertion, so parameterizations learned from empty nodes are not

useful at time of inference.

2. Strip functional tags and cross-referencing annotations.

3. Affix a root unary production to the root symbol of the original tree.

2.7. PCFG Induction 23

S

.

.

VP

S

VP

VP

NP

NN

carrier

DT

the

VB

purchase

TO

to

NP-SBJ

-NONE-

*-1

NP-TMP

NN

month

JJ

last

VBD

agreed

NP-SBJ-1

NNP

Giant

(a) Penn Treebank tree structure

ROOT

S

.

.

VP

S

VP

VP

NP

NN

carrier

DT

the

VB

purchase

TO

to

NP

NN

month

JJ

last

VBD

agreed

NP

NNP

Giant

(b) Processed tree structure

Figure 2.8: Preprocessing applied to Penn Treebank annotations

Figure 2.8 demonstrates these transformations as applied to a tree from the Penn

Treebank [120]. Preprocessing practices vary somewhat amongst researchers; the three

operations we apply are fairly standard; other researchers add some combination of the

following transformations as well:9

1. Collapse unary chains to a single (possibly composite) unary production [98]. Many

inference systems are limited by implementation details to unary chains of a limited

9Most of these transformations are not included in the standard accuracy evaluation, so minor differ-

ences in preprocessing between researchers are unlikely to greatly affect the comparability of their results.

2.7. PCFG Induction 24

ROOT

S-ROOT

.

.

VP-S

S-VP

VP-S

VP-VP

NP-VP

NN

carrier

DT

the

VB

purchase

TO

to

NP-VP

NN

month

JJ

last

VBD

agreed

NP-S

NNP

Giant

Figure 2.9: Parent-annotated version of the tree in Figure 2.8b.

depth (often only one). This transform allows recovery of the top unary parent, even

if intermediate labels are unavailable. If we introduce new labels to represent unary

chains, we can recover the entire chain as a post-processing step.

2. Remove X → X unary productions for all non-terminals X.10

3. Introduce new categories such as AUX. (Charniak, 1997)

4. Collapse categories such as PRT and ADVP. [46]

5. Remove quotation marks. [18]

2.7.2 State-splitting and Smoothing

The most straightforward grammar induction method simply normalizes over counts of

production occurrences in the treebank, producing a maximum-likelihood estimate [31].

P (A→ B C) =
count(A→ B C)

count(A)
(2.9)

10Many inference systems cannot produce X → X productions, so this transformation may affect

reported accuracy, but such productions are relatively rare, so the accuracy increase will be small.

2.7. PCFG Induction 25

Model |V | |Pb| F1

Markov-order-0 100 3.8k 62.9

Markov-order-2 2.6k 12k 74.3

Parent-Annotated [89] 6k 22k 78.6

Lexical [32] Implicit Implicit 89.6

Klein and Manning [100] 15k 46k 85.7

Petrov et al. [142] 1.1k 1.7m 89.7

Table 2.4: Relative sizes and Viterbi-search accuracies of various grammars. V is the

non-terminal set. Common entries include NP for Noun Phrase, JJ for adjective, S for

sentence, etc. |Pb| is the number of binary rules in the grammar.

On the commonly-used Penn Treebank [120], the resulting grammar achieves a labeled

F1 score of approximately 65. This simple grammar suffers from two important and seem-

ingly contradictory problems: 1) Common treebank productions often occur in multiple

contexts, so the resulting rule probabilities conflate distinct grammatical constructions

and often cannot disambiguate effectively; 2) Even sizable annotated corpora are unlikely

to include examples of all grammatical phenomena needed by a general-purpose parser.

E.g., the large n-ary productions found in the training corpus are unlikely to match those

needed in a test corpus, even within a similar domain.

We can solve the first problem by further splitting the non-terminal space; for instance,

we might choose to annotate each A ∈ V with its parent non-terminal [89]. For example,

an NP descended from an S becomes NP-S, whereas one descended from a VP becomes

NP-VP. Thus, the NP state is split into several substates; Figure 2.9 shows a version of

the tree from Figure 2.8b annotated in this manner.

Unfortunately, the solution to the problem of disambiguating contexts exacerbates

the second problem, that of ‘sparse data’. We approach sparse data by smoothing the

grammar probabilities; i.e., by reserving some probability mass for unseen productions.

In some cases, Markovization (as described in Section 2.2.3) can be an effective form

of smoothing. However, Markovization is often too coarse a tool, failing to discriminate

between useful and less-useful context. More sophisticated backoff and smoothing methods

2.8. High-Accuracy Unlexicalized Grammars 26

generally rely on knowledge of specific linguistic structures [49, 32].

2.7.3 Bilexical Grammars

We can split the non-terminal space further, conditioning each production rule not only

on the parent non-terminal, but also on grandparents and other related edges or on nearby

lexical items. One popular approach annotates each non-terminals with its lexical ‘head’

[49, 32], where the head of a label is chosen from the heads of its 2 children via a set

of inheritance rules. Naturally, these ‘bilexical’ grammars suffer even more from problem

sparse data. In fact, Bikel [15] found that bilexical probabilities from the training corpus

were available for less than 1.5% of all probability calculations during inference.

Bilexical grammars (with appropriate smoothing) can be very accurate (c.f. Table 2.4).

Unfortunately, they may also be impractically large. Under reasonable memory con-

straints, we cannot fully enumerate wide-coverage grammars conditioned on bilexical prob-

abilities. Parsing with such grammars requires computing backoff probabilities on-the-fly,

a sizable computational cost. And the computational complexity is worse as well — the

naive inference approach is O(n5); more sophisticated methods reduce that somewhat [62],

but the cost of lexicalization is still considerable. So solving the problems of disambigua-

tion and sparse data yields an accurate grammar, but at the cost of expensive inference.

The following sections describe one approach to this problem, and chapters 4 and 5 present

several methods of training compact, accurate, and efficient grammars.

2.8 High-Accuracy Unlexicalized Grammars

One solution to the high cost of inference with lexicalized grammars is to return to the

smaller state-space of unlexicalized grammars and to address generalizability by clustering

non-terminals. That is, to subdivide the non-terminal space with annotations not directly

encoding lexical items or relations directly extracted from the training trees. For example,

a lexicalized grammar would annotate the DT (determiner) symbols with the associated

word (DT-the, DT-a, DT-an, and so on). However, noting that ‘the’ is the most common

determiner, and that ‘a’ and ‘an’ operate in similar contexts, we might instead choose to

2.8. High-Accuracy Unlexicalized Grammars 27

split the DT symbol in 3 — DT 0 for ‘the’, DT 1 for ‘a’ and ‘an’, and DT 2 for all other

usages. This limited state-splitting allows specialized non-terminals when appropriate,

without the massive explosion of the state space of full lexicalization. These unlexicalized

PCFGs can be much more compact than bilexical grammars, both in non-terminal space

and rule count. We are particularly interested in such enumerable grammars, which permit

exhaustive search, efficient memory representations, and analysis of a grammar’s efficiency

characteristics.

One advantage of the Markovized or lexicalized grammars discussed earlier is that

training such grammars is typically quite straightforward, consisting primarily of accu-

mulating occurrence counts over the training corpus (as in Equation 2.9). In contrast,

training an unlexicalized grammar is more complex.

Klein and Manning [100] observed that parent annotation does not exhaust the possi-

bilities for effective state-splitting. They present a set of linguistically-motivated manual

annotations which further split the state space. For example, they divide the IN tag into

6, including specific tags for noun-modifying prepositions (e.g., of), verb-modifying forms

(as), etc. Each of these annotations provides a minor gain, and the combination thereof

yields an F1 of 85.7 on WSJ text, competitive with the state-of-the-art at the time. More-

over, their final grammar was relatively compact, with a sizable vocabulary, but a ruleset

only about twice the size of the parent-annotated grammar in Table 2.4 (46k vs. 22k).

To our knowledge, this manual annotation approach has not (yet) been extended

enough to compete with current state-of-the-art parsers, but it is certainly not unimagin-

able that additional linguistic annotations could further improve accuracy, while maintain-

ing a compact and enumerable (and thus very efficient) grammar. However, this approach

requires linguistic insight and observations of the likely parse errors, observations which

are unlikely to generalize beyond a specific target domain. Klein and Manning’s grammar

performs very well on WSJ text, but their process of exploration and manual annotation

would probably need to be repeated when moving from newswire to other English genres;

it would certainly not apply to other languages.

One possible goal of unlexicalized grammar training is to learn effective grammars

directly and automatically from training data, without manual intervention in the training

2.9. Split-merge Training of Latent Variable Grammars 28

process. An automatic approach simplifies domain adaptation (e.g., by mixing training

data from multiple domains) and has the potential to generalize across languages.

2.9 Split-merge Training of Latent Variable Grammars

Instead of predefining a method of splitting the state space (parent-annotation, lexicaliza-

tion, etc.), we want to learn state-splits directly from the training corpus (ideally, splits

which can both disambiguate and generalize). Matsuzaki et al. [122] demonstrated one

such approach, which was further refined by Petrov et al. [142]. They subdivided each

non-terminal into n separate state splits, annotating each with an arbitrary index — e.g.

DT 0, NP 2, etc. Splitting the grammar in this way multiplies the number of productions

in a predictable manner; each lexical rule is split into 2 (e.g., DT → the in the baseline

grammar becomes DT 0 → the and DT 1 → the). Each unary production is divided

into 4, and each binary production into 8. They use EM to parameterize this expanded

grammar — that is, to learn appropriate probabilities for each production.

They titled this approach PCFG with latent annotations, or PCFG-LA. ‘Latent’, in this

instance, refers to the fact that the non-terminal annotations (split indices) are not directly

observed in the training data, and that the production probabilities instead arise indirectly

through iterated optimization. The algorithm is fully described in those publications, but

the summary here is sufficient to describe the modifications we will present in Chapter 5

1. Induce a simple Markov-order-0 binarized grammar. When trained on the Penn

Treebank, this grammar will consist of approximately 100 non-terminals, 3800 binary

productions, 100 unary productions, and 55,000 lexical productions.

2. Annotate each category with a latent index of 0. ‘Latent’, in this instance, refers to

the fact that the non-terminal annotations are not directly observed in the training

data (after state-splitting in Step 3), and that the production probabilities instead

arise indirectly through iterated optimization.

3. Split each category into 2 sub-states, labeled 0 and 1 respectively (DT 0, DT 1,

NP 0, NP 1, etc.). This split divides each lexical production into two, each unary

2.9. Split-merge Training of Latent Variable Grammars 29

production into 4, and each binary production into 8.

4. Randomize each production probability slightly to break symmetry.

5. Iterate over the training corpus, performing expectation maximization (as described

in Section 2.5), to estimate probabilities for each grammar production.

• The expectation step computes γ, the posterior probabilities of each labeled

span, as described in Section 2.6. Since these posteriors can be constrained by

the gold trees, this operation is O(n) [139].

• Maximization re-estimates rule probabilities using ξ from the previous calcula-

tion.

ρ(Ai → AjAk) =

∑
τ,n∈τ

γiρ(Ai → AjAk)αjαk∑
τ,n∈τ,j′,k′

γiρ(Ai → Aj′Ak′)αj′αk′
(2.10)

6. Estimate the cost of re-merging each split pair (e.g., the cost of re-combining NP 0

and NP 1 into a single NP 0 category).

7. Re-merge the least costly 50% of the splits.11

8. (Optional) Smooth the post-merge production probabilities.

9. Repeat the split-EM-merge-smooth process (steps 3–7) several times — 5–7 cycles

seems to work well.

Matsuzaki et al. [122] and Dreyer and Eisner [57] demonstrated the effectiveness of

state-splitting and EM parameter estimation. The addition of the re-merge operation

[142] offers two related benefits:

1. It reduces greatly the number of parameters we must learn and encode into the gram-

mar. Performing 4 split cycles without any merging could produce as many as 15

11Note: we may perform additional EM iterations after the merge and smoothing steps. This can

further improve the training-corpus likelihood, but does not alter the overall structure of the algorithm.

2.10. Evaluation of Latent-Variable Learning Algorithms 30

million binary productions (3840× 24), and 6 cycles could exceed 1 billion.12 Gram-

mars that large are impractical on current hardware, and even a sizable treebank

does not encode enough information to accurately estimate the rule probabilities.

2. An effective merge criteria removes many of the less-helpful state-splits. For example,

splitting the comma non-terminal into , 0, , 1, . . . is likely to produce highly specific

productions which fail to generalize.

This framework produces very accurate grammars, exceeding the results reported in

similar work on latent-variable grammar learning [122, 57], and approximately matching

the accuracies obtained with lexicalized grammars and discriminative reranking [34].

Further, the method is robust across languages and genres, requiring little manual

intervention to adapt to new languages and genres (c.f. Petrov et al. [142], Petrov [141],

Le Roux et al. [109]).13 However, while the vocabulary of the resulting grammars is quite

compact, the ruleset is generally very large — usually multiple millions of productions —

and inference is costly. In Chapter 5, we will describe limited changes to the training

algorithm, primarily to the merge ranking criteria in step 6, aiming to improve the effi-

ciency of the final grammar.

2.10 Evaluation of Latent-Variable Learning Algorithms

Randomization (step 4 in the learning algorithm) plays an important role in training

latent-variable grammars. Petrov [141] observed significant differences between grammars

trained with different random seeds. Varying the random seed affects the distribution of

state-splits retained through the split-merge process. The general patterns remain clear

regardless of seed — e.g., NP, VP, NNP, JJ are retained the most, and $ and UH are nearly

always re-merged. But the variance in retained annotations is considerable, especially for

the most-common classes.

12Note that EM would reduce the probability of some — perhaps many — of those productions to 0, but

even so, the size of the grammar would be intractable.
13Adapting to a new language or genre will often require modifications to unknown-word processing,

but the remainder of the system remains unchanged.

2.11. Hardware Background 31

These differences (and, presumably the differences in production probabilities learned)

have noticeable impact on parse accuracy. At a coarse level, some grammars perform

measurably better than others on standard PARSEVAL scoring; when evaluated more finely,

varying the random seed often moves performance on recovery of different labels (NP, PP,

QP, etc.) and on various higher-level subtree evaluations such as PP-attachment and

coordination [141].

Any modification to the learning algorithm will impact the choice of which state-splits

to re-merge, and thus affect the final learned grammar. Given the inherent variance in the

algorithm, we cannot confidently evaluate a modification to the learning approach based on

a single learned grammar. In all trials presented in this thesis, we train multiple grammars

with each approach (each with a different random seed) and evaluate the performance of

the learning approach based on the average performance of those grammars.

2.11 Hardware Background

Low-level hardware issues are rarely discussed in the NLP literature, so we present here

a greatly simplified description of processor architectures and memory hierarchies. Our

analysis will not extend to quantitative modeling of memory access times, but our quali-

tative discussion refers often to cache behavior, so we include a brief introduction here.

Semiconductor designers over the past few decades have been very successful at scaling

processor transistor counts. Until quite recently, they have also been able to consistently

increase clock speeds. Unfortunately, memory access speeds have not kept pace with the

increases in processing power. The execution time of most algorithms is now dominated

by memory latency [51]. To alleviate this inefficiency, modern CPUs are isolated from

main memory by two or more layers of faster cache memory; memory requests are first

checked against a Level 1 cache (L1) of 16-32 KB, and then against a larger, but slower,

Level 2 cache (L2).14 Recently-accessed memory items are kept in cache, and older items

are evicted. Each successive layer (L1, L2, and main memory) is roughly 5–10× slower

14Many architectures, particularly multicore designs, add a third layer of cache as well; in such cases,

the hierarchical model is unchanged, so this condition does not affect our analysis.

2.11. Hardware Background 32

than the last. Thus, frequent reuse of nearby memory can dramatically improve runtimes

vs. an uneven access pattern.

Further, most processors implement cache prediction and pre-fetch logic, which at-

tempts to anticipate upcoming memory requests. For example, in-order iteration through

an array is easily predictable, and the CPU is able to fetch subsequent memory locations

into cache before the program requests them (prefetching), providing cache hit rates above

95% for many workloads. Other CPU technologies, such as branch prediction, register

renaming, and speculative execution, can allow processing to continue during a memory

read, avoiding some latency-induced pipeline stalls. But even the most advanced proces-

sor technology cannot completely overcome the impedance mismatch between processor

clocks and memory latency, so the execution pattern of many programs is: process (very

quickly) for a few clock cycles, wait many clock cycles for data, process for a few cycles,

wait for data, repeat. . . Thus, throughput on most workloads is nowhere near the chip’s

theoretical peak. In fact, execution time often increases super-linearly as a program’s

working set expands beyond the CPU’s cache size, so expanding an algorithm’s memory

footprint can dramatically increase processing time. [53, 97, 56]

We apply some of these considerations to the algorithms and implementation described

in Chapter 3, resulting in greatly improved parsing throughput. We refer interested readers

to the discussions of memory hierarchies and latency in Hennessy and Patterson [82] and

Drepper [56].

Graphics processors (GPUs) differ considerably from CPUs, devoting most of their

available silicon to arithmetic logic units, rather than to latency alleviation. For example,

the NVIDIA GT200 GPU contains 240 individual cores, and the GK104 series up to

1536; each handles thousands of simultaneous threads.15 On certain problems, GPUs can

achieve tremendous speedups; some dense matrix operations are accelerated by 100× or

more. For our purposes, it is sufficient to understand that GPUs offer a considerable

advantage on algorithms which 1) scale to large thread counts with limited interaction

between threads; and 2) access memory in a largely sequential pattern.

15Contrast this to current Intel and AMD CPUs, which contain 4–8 cores and process at most 16

simultaneous threads

2.12. BUBS Parser 33

2.12 BUBS Parser

We perform most of our experimental trials with the open-source BUBS parser, to our

knowledge currently the fastest publicly available high-accuracy constituency parser. BUBS

implements several state-of-the-art pruning methods (described more fully in Appendix A).

However, even the impressive performance of these pruning methods can be improved with

better memory layout and hardware utilization (as demonstrated in Chapter 3).

In combination with the matrix grammar encoding described in Chapter 3, these prun-

ing approaches yield the highest reported speeds on a variety of domains [19]. Further, the

pruning models train rapidly for arbitrary grammars, allowing us to apply them during

grammar training, yielding further improvements in both speed and accuracy as reported

in Chapter 5.

A brief note about implementation choices is appropriate here. BUBS is implemented

in Java, a language often (and we believe unfairly) viewed as inherently inefficient. This

perception became established when Java runtime environments were interpreted rather

than compiled. However, recent advances in virtual machine technology have largely

eliminated the differential between Java and statically-compiled languages such as Fortran

and C.

Java’s dynamic just-in-time compiler (JIT) uses runtime statistics (information un-

available to a static compiler) to choose the most effective optimization approaches. Col-

lecting the required statistics imposes some overhead during the first few loop iterations,

but the advantages often outweigh that overhead for a long-running process [102, 132].

In addition to dynamic JIT technology, garbage collection [43], range check elimination

[44, 184], and array access [172] have all advanced dramatically in recent years, and the

performance of Java code is now comparable to — and in some cases superior to — similarly

tuned C code [3].

2.13 Evaluation Criteria

In this section, we will describe the criteria by which we evaluate all the algorithms pre-

sented in this thesis. In Chapter 3, we evaluate grammar intersection approaches and

2.13. Evaluation Criteria 34

parallelization on the Penn Treebank. When evaluating learning algorithms in chapters 4

and 5, we include several other evaluation corpora, chosen to represent a variety of lan-

guages and genres:

Penn Treebank [121]. Approximately 1 million words of newswire text. Sections 02-21

(950k words) are traditionally used for training, sections 22 and 24 (73k words) for

development, and section 23 (57k words) for testing.

Penn Chinese Treebank [185]. Approximately 540k words of Chinese newswire text.

The PCTB training corpus is sizable, at approximately 525k words. However, the

standard development and test sets (of 7k and 8k words respectively) are quite small.

Thus, accuracy results on the PCTB corpus are likely to be quite noisy, but efficiency

trials should be unaffected.

Switchboard Treebank [71]. 1 million words of transcribed telephone conversations.

English Web Treebank [14]. Approximately 250k words of English text, taken from

weblogs, newsgroups, email, reviews, and question-answers. This corpus includes de-

velopment and test sets (of approximately equal size) from each genre, but does not

include training data. We report cross-domain evaluations on each of the 5 genres for

models trained on WSJ and Switchboard text.

These corpora include both written and oral communication, and cover a wide range

of interesting characteristics — language, genre, sentence length, and grammaticality. Ta-

ble 2.5 reports statistics about each corpus. Trials across this wide range will expose

differences between our methods as they apply to particular genres; methods that show

benefits across a range of genres should be expected to generalize well to other data as

well.

Accuracy: We report the standard PARSEVAL scores, as described in Black et al. [17].

We report cross-domain generalization for English models, evaluating models trained on

WSJ text on telephone conversations and vice-versa, and evaluating all English models

on web text from the English Web Treebank [14]. We also report label-specific accuracy

on a subset of the label-set, chosen to represent interesting linguistic phenomena (e.g. the

2.13. Evaluation Criteria 35

Treebank Training Test Words / Sentence Dev-set

words words Mean Med. Max UNKs

WSJ 950,028 56,684 23.8 23 141 2.8%

Chinese 493,708 8008 27.1 24 240 9.6%

English Web – 150,644 16.7 14 180 –

Switchboard 852,758 60,999 9.4 7 114 1.1%

Table 2.5: Statistics about each of the evaluation corpora, including total word count of

training and test sets, averages of test-set sentence lengths, and the percentage of tokens

in the development set unobserved in the training set. Note: The English Web Treebank

has no development set, providing instead a large collection of unlabeled in-domain data

intended to facilitate domain adaptation.

‘edited’ label in the Switchboard corpus).16

2.13.1 Measuring Efficiency

For all inference trials, we report the average throughput in words per second, evaluated

over a sizable corpus. This measure is common in the dependency parsing community,

and in other work on efficient constituency parsing (c.f Sagae and Lavie [162], Bangalore

et al. [8], Bodenstab [19]). As noted in Section 2.10, we report accuracy and efficiency

metrics on split-merge-trained grammars as averages over a large number of training runs

with differing random seeds.

Although we make every attempt to isolate the systems executing efficiency trials,

operating system overhead and unrelated processes may in some cases distort timings. This

distortion will by definition always decrease the measured throughput, so the ideal measure

of algorithmic efficiency would be the maximum speed obtained over an infinite number

of trials. Note that we don’t know the expected distribution of speed measurements over

these trials apriori; we expect it to be negatively skewed, with the median and mode

16Note that the label-sets differ somewhat between treebanks, so some of these label-specific tests are

not applicable for cross-domain trials.

2.13. Evaluation Criteria 36

0

50

100

150

200

3150 3200 3250 3300

Words per Second

O
b

s
e

rv
a

ti
o

n
s

Figure 2.10: Observed distribution of speeds obtained in 1500 pruned inference trials on

WSJ section 22.

Percentage Observed Variance

of Trials from Maximum

95% 1.04%

99% 1.26%

99.9% 1.65%

99.95% 1.78%

99.99% 2.31%

Table 2.6: Variance observed from population maximum speed in 5-trial samples from

that population. E.g., in 95% of all 5-trial samples, the maximum speed observed was

within 1.04% of the maximum observed in the 1500-trial ‘population’.

near the maximum, and a lengthy left tail (of slower trials, which suffered some form of

interference). Since an infinite — or even very large — number of trials is infeasible, we need

to estimate the number of trials necessary to produce an efficiency estimate of reasonable

accuracy. To quantify the aforementioned distribution, we executed 1500 pruned parsing

2.14. Summary 37

runs on a development set (WSJ section 22); Figure 2.10 displays the speeds obtained in

the form of a histogram. The observed distribution matches our intuition fairly closely,

with the median within 1.1% of the maximum.

For the moment, we will treat this set of 1500 trials as the ‘true’ distribution. While

we could certainly find a probability distribution — or perhaps several — which could be

parameterized to fit the empirical observations, we have no theoretical basis to choose one

distribution over another. Instead, we consider a nonparametric approach, sampling from

the 1500 observations to simulate a practical number of trials for a given experiment. We

are interested in the expected difference between the true (distribution) maximum speed

and the maximum we will observe in a limited number of trials. We extracted 10,000

random samples of 5 trials each, and computed the difference between the maximum speed

observed in the 5-trial sample and the maximum from the full distribution. The variance

observed in any 5-trial sample may be considerable, but as demonstrated in Table 2.6, 5

trials is generally sufficient to obtain at least one trial very close to the true maximum from

the entire population. Thus, for the remainder of this thesis, we will execute all pruned

efficiency experiments 5× and report the maximum speed observed in those trials.17

2.14 Summary

In this chapter, we described the algorithmic background on which the methods and

experiments presented in subsequent chapters depend. We described existing work in

grammar learning, and the potential for extension of that work to incorporate efficiency

as a direct objective. Finally, we presented the experimental methodology and evaluation

criteria we will use throughout the remainder of this thesis.

17Exhaustive inference is much slower, so small OS variances are less detrimental. We generally execute

exhaustive trials 2 times, rather than the 5 we use for pruned trials.

Chapter 3

Grammar Encoding, Intersection

Methods, and Parallelism

Natural language sequences are in general of moderate length, so processing time of NLP

algorithms — including CYK parsing — is in some cases dominated by the size of a complex

model as much as by the asymptotic complexity of the algorithm itself. An efficient model

representation may permit novel algorithms, and in some cases can provide a real-world

speedup comparable to an improvement in algorithmic complexity. The inner loop of the

CYK algorithm (lines 7–8 in Algorithm 2.1) computes an argmax for each constituent span

by intersecting the set of observed child categories spanning adjacent substrings with the

set of rule productions in the grammar. This grammar intersection operation is the most

computationally intensive component of the algorithm, and prior work has shown that

the cost depends greatly on the grammar representation and access methods [22]. Klein

and Manning [98] investigated and modeled the causes of observed super-cubic behavior.

They found considerable efficiencies by encoding the PCFG as a finite-state automaton.

Moore [125] similarly demonstrated that model encoding can lead to significant efficiency

gains, and Penn and Munteanu [138] demonstrated substantial gains through algorithmic

refactorings targeted at reducing low-level CPU operations.1

We begin this chapter with a matrix grammar encoding, motivated by the hardware-

level memory access considerations discussed in Section 2.11. We compare that repre-

sentation to the baseline implemented in BUBS, and find 13-45% improvements in L2

1All grammar encodings discussed, including our own, alter only efficiency; search is exact, so accuracy

remains unchanged.

38

3.1. Parsing and Matrix Operations 39

cache hit rate, and an overall increase in inference speed of 2–7×. We examine various

approaches to performing the central argmax in CYK, and again we find that an appro-

priate choice of intersection technique yields considerable efficiency gains. In Sections 3.5

and 3.6, we present a matrix-vector grammar intersection method, and compare it to the

other methods described previously.

We conclude the chapter with an examination of parallel parsing. Discussions of effi-

cient parsing usually concentrate on throughput, the aggregate number of words parsed per

second on a particular machine. However, for some applications, response time is of equal

or greater interest — e.g., real-time speech recognition and machine translation, or mobile

QA systems. Thus, we should also consider latency, the time to parse a single sentence, as

a primary objective. The recent adoption of multicore CPU architectures and massively-

parallel graphics processors allows finer-grained parallelism in parsing, potentially allowing

lower latencies than those of serial approaches. We compare several approaches to par-

allel inference, including very fine-grained methods permitted by matrix-vector grammar

intersection.

3.1 Parsing and Matrix Operations

Matrix manipulations are inherently parallel, so we are especially interested in relation-

ships between CYK parsing and matrix operations, as these relationships may lead to

practical parallelization strategies. Valiant showed that CYK recognition can be rep-

resented as iterated boolean matrix multiplication [177].2 In theory, this transformation

opens the door to algorithms with asymptotic complexity better than O(n3). However, the

matrix multiplication algorithms with sub-cubic complexity involve impractical constant

factors [170, 50], and the matrix-element multiplication operator in Valiant’s formalism is

quite expensive to compute on a sizable grammar. To our knowledge, no implementation

of Valiant’s algorithm has been reported on a high-accuracy grammar.

Much later, Lee [110] proved the converse — that boolean matrix multiplication can

2Church demonstrated finite-state operations using a similar matrix representation, and referenced

Valiant’s earlier work, but did not extend his own implementation to context-free grammars. [40]

3.2. Matrix Grammar Encoding 40

NP,VP DT,NP DT,NN NN,NN NN,@NP NN,RB VB,RB · · ·
S 1 - - - - - -

NP - 1⁄4 1⁄4 1⁄6 1⁄6 1⁄6 -

@NP - - 1 - - -

VP - - - - - 1⁄2

· · · · · ·

Figure 3.1: A matrix representation of a portion of the simple PCFG from Table 2.3.

Binary parents are represented as rows, and child pairs as columns. The matrix is |V |×|V |2

(where |V | is the number of non-terminals in the PCFG), but is generally very sparse.

be transformed into context-free parsing and that a practical parser asymptotically faster

than O(n3) would also be practical for fast boolean matrix multiplication (BMM). BMM

has been explored even more extensively than CYK, and fast BMM — i.e., much faster

than O(n3) — is generally believed to be impossible.

The combination of these results leads us to believe that parsing exhaustively in less

than cubic time is probably not practical, and we will proceed on that assumption. We

find the relationship with matrix multiplication encouraging, but the theoretical literature

does not provide us with a path to efficiency gains or to practical parallelization. For the

moment, we will concern ourselves with a smaller problem, that of performing the grammar

intersection within a cell while populating a CYK chart in the normal fashion.

3.2 Matrix Grammar Encoding

In this section we present a matrix encoding that can encode very large grammars to

maximize inference efficiency. This matrix grammar encoding is very compact and cache-

efficient, improving serial performance on common CPU architectures (as demonstrated in

Section 3.3), and it enables the refactoring of the CYK algorithm presented in Section 3.5.

We begin with a binarized PCFG, as described in Section 2.2. We will consider binary

rules (those with 2 children) and unary rules (those with only a single child) separately,

and we denote those two sets Pb and Pu, respectively. We will focus most of our attention

3.2. Matrix Grammar Encoding 41

on Pb, as it is generally much larger, and inference time is disproportionately concentrated

on binary processing.

We encode Pb in matrix form, where the rows of the matrix 1..|V | represent a pro-

duction’s left-hand-side non-terminal, and the columns represent a tuple of all possible

right-hand-side non-terminals (pairs in a binarized grammar). This forms a matrix of |V |
rows and |V |2 columns. Figure 3.1 shows a simple grammar represented in this format.3

In theory, this matrix could contain |V |3 entries, but most grammars of interest are in-

credibly sparse, populating only a small fraction of the possible matrix cells. For example,

the Berkeley parser’s default latent-variable grammar [142] defines 1134 non-terminals, so

a fully populated binary rule matrix would contain 1.49 billion rules, but the grammar only

populates 1.73 million. The Markov-0 grammar is comparably sparse (4240 of 970k cells

populated), and the other grammars we consider, with their larger non-terminal space,

are even sparser. Dense matrices map straightforwardly into memory structures, and are

generally stored and accessed in linear order, but storing and accessing a sparse matrix

efficiently can be more challenging. These representation choices greatly affect overall

parsing efficiency, so we will briefly describe our implementation. We use a compressed

sparse column (CSC) sparse matrix representation [173]. CSC stores a matrix three one-

dimensional arrays — the first holding all non-zero matrix entries, a second (parallel to

the first) the row indices of each entry, and the third offsets (into the first two) the first

entry of each column.

The sparse matrix representation stores productions very compactly — the storage pro-

portional to the number of non-zero entries, and we store the binary rules of the Berkeley

grammar in approximately 10.5 MB of memory. However, the column offset array is still

O(|V |2); since many possible left-child / right-child combinations are never observed, we

can achieve further gains by storing those column offsets more compactly. We map left-

and right-child non-terminal pairs to matrix columns with a perfect hash of the form

h(l, r) → [m]. Since a perfect hash function ensures no collisions, this function is re-

versible (h−1([m]) → (l, r)), allowing recovery of the left and right children from their

3We store unary rules in a similar, but smaller, matrix.

3.3. Cache Effects 42

hashed representation. We construct |V | separate hash functions, mapping hl(r) → [ml].

We store the data structures for these functions adjacently in memory. Thus, iterating

over the entire range of c accesses memory in roughly linear order, with the concomitant

advantages thereof, as described in Section 2.11. Global optimization of a perfect hash

is an NP-complete problem, so we instead use a displacement heuristic [171] to pack the

hash efficiently, achieving 50-80% occupancy for most grammars. We elected not to use a

minimal perfect hash, since the decrease in storage space comes at the cost of additional

instructions and increased memory access. The column offsets and grammar rules are

both stored contiguously in memory and in order of access, so the grammar intersection

operation is very cache-efficient.

3.3 Cache Effects

We examined the effects of cache on parsing efficiency by comparing implementations of

identical algorithms. We chose the Grammar Loop and Left Child Loop algorithms

as representative examples of the algorithms described in Section 3.4. As demonstrated in

Table 3.1, the default implementations suffer greatly from cache misses, and their through-

put is quite slow. The matrix grammar encoding from Section 3.2 delivers speedups of

8×, emphasizing the importance of memory representation and implementation details

for efficient inference.4 The critical implementation differences were: 1) representing the

grammar as parallel arrays of primitives (thus in a compact and contiguous block of mem-

ory) in place of Java objects, which are more memory-intensive and may be located non-

contiguously throughout the heap; and 2) sorting those arrays such that rules involving

the same left (or right) children are located adjacent to one another in memory.

As shown in Table 3.1, inference with the matrix-encoded grammar requires many

fewer requests to lower-level memory caches, resulting in much greater parse throughput.

The lower memory footprint generally also results in improved cache hit rates, and even

the small reduction in L3 hit-rate for the grammar-loop algorithm is overcome by the

4Unlike most other experiments reported in this thesis, these trials were performed on an Intel Core

i7 CPU (Model 3520M) under Windows 7 using Java 1.7.0 21.

3.4. Grammar Intersection Methods 43

Algorithm / L2 Cache L3 Cache
Speed

Encoding Req Hits Req Hits (w/s)

Grammar-loop (Alg. 3.1)

Baseline 7653m 35.6% 4924m 27.3% .25

Matrix 1866m 80.7% 352m 19.6% 1.2

Left-child loop (Alg. 3.2)

Baseline 6872m 57.8% 2907m 16.8% .50

Matrix 584m 71.1% 189m 57.5% 8.4

Table 3.1: L2 and L3 cache accesses and hit rates for matrix-encoded grammar vs. BUBS

baseline grammar representation. Evaluated on an Intel Core i7 (3520M) CPU; inference

trials performed on the first 25 sentences of WSJ section 22 using the standard Berkeley

6-cycle grammar.

nearly 14× reduction in L3 accesses. In short, the matrix grammar encoding provides a

large increase in speed without any reduction in accuracy.

In light of these large improvements, we performed all subsequent trials in this the-

sis using variations of this grammar encoding, differing only in sort order (for different

binarizations) and matrix storage format (compressed-sparse-column in most cases, but

compressed-sparse-row for inner-loop implementations which require a parent-oriented rule

ordering). This efficient representation and grammar access not only improves parsing

throughput in subsequent trials, but provides an efficient and stable baseline for learning

efficient grammars in chapters 4 and 5.

3.4 Grammar Intersection Methods

We begin by pointing to Algorithm 2.1, the standard CYK algorithm. The argmax on

lines 7–8 intersects the set of observed child categories spanning adjacent substrings (stored

in chart cells) with the set of rule productions found in the grammar. Algorithms 3.1 and

3.2 show two possible grammar intersection methods, one which loops over productions in

the grammar (Alg. 3.1) and one which loops over left-children prior to looking for grammar

3.4. Grammar Intersection Methods 44

Algorithm 3.1 Grammar intersection via full grammar loop (backpointer storage omit-

ted). α(b, e) represents the population of the cell spanning words b to e.

1: α(b, e)← 0

2: for m = b+ 1 to e− 1 do . Loop over midpoints

3: for Ai → AjAk ∈ P do . Loop over grammar rules

4: x← P(Ai→ AjAk)αj(b,m−1)αk(m, e)

5: if x > αi(b, e) then

6: αi(b, e)← x

Algorithm 3.2 Grammar intersection via left child grammar loop

1: α(b, e)← 0

2: for m = b+ 1 to e− 1 do . Loop over midpoints

3: for j ∈ α(b,m−1) do . Observed left children

4: for Ai → AjAk ∈ P do . Grammar rules matching j

5: x← P(Ai→ AjAk)αj(b,m−1)αk(m, e)

6: if x > αi(b, e) then

7: αi(b, e)← x

productions (Alg. 3.2).

Conventional wisdom holds that parsing time depends primarily on the number of

constituents populated in the chart. Song et al. [169] began with this assumption, lead-

ing them to investigate grammar transformations which reduce total chart population.

They explored the efficiency effects of several grammar intersection methods and found

Algorithm 3.2 to be superior for right-factored grammars. They then proposed optimized

binarizations to reduce chart population. Unfortunately, the efficiency gains from their

binarization approaches are rather ambiguous. As demonstrated in Section 3.3, cache ef-

fects can be very large, and we suspect that they may have obscured the expected gains.

In this section, we revisit the methods they described using the cache-efficient grammar

encoding, and we explore their effects on a wider range of grammars. We find that a

number of factors play a role in parsing efficiency, some of which may dwarf the effects

of chart population. We will consider the following grammar-intersection methods (and

implementation variants of some):

3.4. Grammar Intersection Methods 45

DT → The 1

0,10,1

NN → fish 1

1,2

NN → market 2/3
VB → market 1/3
VP → VB 1/12

2,3

NN → stands 1/2
VB → stands 1/2
VP → VB 1/8

3,4

RB → last 2/3
VB → last 1/3
VP → VB 1/12

4,5

NP → DT NN1
1/4

@VP → NP 1/4
0,2

@NP → NN NN2
2/3

NP → NN NN2
1/9

@VP → NP 1/9
1,3

@NP → NN NN3
1/3

NP → NN NN3
1/18

@VP → NP 1/18
2,4

NP → NN RB4
1/18

VP → VB RB4
1/6

@VP → NP 1/18
3,5

NP → DT NP1
1/36

S → NP VP2
1/48

@VP → NP 1/36
0,3

NP → NN @NP2
1/18

S → NP VP3
1/72

@VP → NP 1/18
1,4

VP → VB @VP3
1/216

S → NP VP4
1/216

2,5

NP → DT NP1
1/72

S → NP VP3
1/288

@VP → NP 1/72
0,4 1,5

0,5

Figure 3.2: A partially-populated CYK chart. The cell spanning the first 4 words is

marked in dark grey, and the potential subconstituents of that cell in lighter grey.

Grammar Loop. This approach, described in the previous chapter, and detailed in

Algorithm 3.1, is the most intuitive approach to analyze. In short, we iterate through the

entire grammar, looking for rules A→ B C for which we find B in the left child cell and C in

the right child cell. For example, when populating the highlighted cell (0,4) in Figure 3.2,

we begin with the first pair of child cells —(0,1) (1,4) — and iterate through all binary

productions looking for possible parents of the child pairs DT,NP; DT,S and DT,@VP.

We repeat the process with each pair of child cells — (0,2), (2,4) and (0,3),(3,4) in this

case. We must iterate through the grammar at each midpoint, and for each grammar rule

we must examine both child cells.

Early discussions of grammar intersection methods, such as that in Goodman [75],

found the grammar loop to be inefficient, and Song et al. [169] refer to it as ‘generally not

preferred in practice’. We, however, are not so quick to discard the grammar loop, for two

reasons: 1) Iterating over Pb directly, instead of probing it repeatedly, presents a more

linear memory access pattern to the processor, resulting in fewer cache misses. Previous

discussions experimented on systems with flatter memory hierarchies (fewer layers of cache

and smaller cache miss penalties), so a reexamination on modern hardware is warranted;

and 2) Looping over the entire grammar parallelizes across a large number of processor

3.4. Grammar Intersection Methods 46

cores (most simply, by assigning to one thread all rules for a given parent). We might be

willing to accept an increase in the total work required if we are able to exploit under-

utilized processing units (c.f. the discussion of Canny et al. [27] in Section 3.8.1). We

believe that attribute alone justifies consideration of the method.

Left-child loop (Algorithm 3.2) For each non-terminal B in the left child cell, iterate

through all rules A→ B C looking for C in the right child cell and populate A in the chart.

The iteration is similar to that in Algorithm 3.1, but in this case, when processing the

first pair of child cells, we need only consider productions with DT as the left child, and

those with NP or @VP when processing the second midpoint. Presuming the productions

are represented in memory such that rules with the same left child are adjacent to one

another, this approach should be quite cache-efficient. The iteration over those rules

accesses memory in a linear fashion, so a CPU’s cache prediction logic is able to pre-fetch

successive rules and avoid cache misses. We note that the left-child loop is more difficult

to parallelize efficiently, since we must prevent simultaneous updates of the same parent

by different threads.

Right-child loop. Analogous to the left-child-loop approach, differing only in direc-

tion. For each C in the right child cell, iterate through all rules A → B C and look for B

in the left child cell. All of the same comments apply to this method.

Cartesian-product loop. For all B,C combinations in left and right cells, look for

grammar rules A→ B C. We can further subdivide this method by the possible techniques

used to look up grammar rules. A linear search (O(Pb)) is generally not practical; hashing

or binary search are possible choices, but their memory-access patterns can result in

frequent cache stalls [107].

Section 3.6 presents experimental trials comparing each of these methods and the

matrix-vector method presented in the next section.

3.5. Matrix-Vector Grammar Intersection 47

3.5 Matrix-Vector Grammar Intersection

We now present an intersection method, based on the grammar encoding from Section 3.2,

which decouples midpoint iteration from grammar intersection and can reduce the cell pop-

ulation cost considerably. This approach has two beneficial properties: 1) the number of

expensive grammar intersection operations is reduced from O(n3) to O(n2); and 2) since

grammar intersection is reduced to a set of matrix operations, the resulting algorithm is

amenable to fine-grained parallelization. We begin with an informal description, with mid-

points omitted for clarity. In Section 3.5.2, we will formalize the method as an application

of a lexicographic semiring.

3.5.1 SpMV Intersection

We represent the population of each chart cell α as a vector in R|V |. Each dimension of

this vector represents the (log) probability of a non-terminal in that cell. To perform the

argmax, we populate a temporary vector c of |V |2 dimensions with the cartesian product

of all observed non-terminals from the left and right child cells over all midpoints. That

is, each dimension of this vector represents an ordered pair of non-terminals from the

grammar, and its length (score) is the product of the inside probabilities of the respective

children. For any child pairs which occur at multiple midpoints, we need record only the

most probable — i.e., the child pair which might participate in the Viterbi 1-best solution.

Following the example grammar intersection from Section 3.4, consider populating the

highlighted cell (0,4) in Figure 3.2. The first midpoint (m=1) adds (DT,NP), (DT,S),

and (DT,@VP) to c; the second midpoint (m=2) will add (NP,@NP), (NP,@VP),

(@VP,@NP), and so on. If we observe the same pair at multiple midpoints, we retain

only the maximum score.

Given a matrix-encoded grammar, G, and the child-cell vector, c, we simply multiply

G by c to produce α, the population of the target cell. In Viterbi search, we perform this

operation in the 〈T, T 〉 lexicographic semiring, thus computing the maximum probability

instead of the sum (described more fully in Section 3.5.2). Figure 3.3 demonstrates this

Sparse-Matrix × Vector multiplication (SpMV). The SpMV is the only portion of our

3.5. Matrix-Vector Grammar Intersection 48

Algorithm 3.3 Grammar intersection via Sparse Matrix × Vector Multiplication. h(l, r)

maps l, r ∈ V to an index of c (Backpointer ζ omitted for clarity).

c← 0

for m = b+ 1 to e− 1 do

for j = 1 to |V | do

for k = 1 to |V | do

i← h(αj(b,m− 1), αk(m, e))

if αj(b,m− 1)αk(m, e) > ci then

ci ← αj(b,m− 1)αk(m, e)

α(b, e)← G · c

algorithm which must access the grammar. We perform that operation once per cell,

rather than once per midpoint, reducing the number of expensive grammar operations

from O(n3) to O(n2) (the cost of constructing c is still O(n3), so the asymptotic complexity

remains cubic, but the practical runtime is reduced).

In Section 3.1 we discussed the formalism of Valiant [177], which transforms parsing

into boolean matrix multiplication, and Lee [110], which inverts that transformation. We

note the similarity to those approaches, but that similarity is only superficial; Valient’s

algorithm populates an upper-triangular matrix, the elements of which are equivalent to

CYK chart cells. Each matrix element is a subset of V , the observed population of the

analogous chart cell. The matrix is populated by a transitive closure operation, which

takes the place of the CYK algorithm. Our matrix operation, on the other hand, is

concerned with the population of individual chart cells, the operation accomplished by

Valient’s ∗ operator.

Decoupling the midpoint iteration from grammar intersection is not contingent on our

matrix-vector encoding. The optimization in Graham et al. [77] also refactors the CYK

algorithm to result in O(n2) grammar intersection operations by changing the dynamic

programming to iterate through right (or left) child cells and build new (parent) categories

in multiple chart cells at once. Similarly, the grammar-loop intersection of Algorithm 3.1

3.5. Matrix-Vector Grammar Intersection 49

G

DT,NP DT,NN NN,NN · · ·
NP 1⁄4 1⁄4 -

S - 1⁄32 1⁄32

@VP - - -

@NP - - 1

· · · · · ·

×

c

Child Pair Pr

DT,NP 1⁄18

DT,NN 0

NN,NN 0

· · ·

NP,VP 1⁄72

DT,S 1⁄72

NP,@NP 1⁄12

NP,NN 1⁄72

· · · · · ·

=

α

Parent Pr

NP 1⁄72

S 1⁄288

@VP 1⁄72

@NP 0

· · ·

Figure 3.3: Example matrix-vector multiplication for cell 0,4 in Figure 3.2. The grammar G

encodes binary rules as a |V |×|V |2 matrix, with rows representing parents and columns representing

child pairs. The vector c contains non-terminal child pairs observed across all possible midpoints.

The matrix-vector product of G × c produces the target cell population, α. Factored categories

are prefixed with ‘@’, and backpointers are omitted for clarity.

could be modified to first maximize over all midpoints, then iterate over grammar produc-

tions as is done in Algorithm 3.3. However, neither variation lends itself to straightforward

parallelization, and the required synchronization would severely impact parallel efficiency.

In contrast, the cartesian product and matrix-vector operations of our SpMV method

parallelize easily across many cores. We partition the vector V into subvectors, one for

each thread. Each thread iterates over its own subvector in the left child cell and combines

with all entries in the right child cell, populating an entry in c for each observed child

pair. c is represented as independent segments safe for lock-free mutation by independent

threads (using the grammar’s segmented hash system, as described in Section 3.2).

To perform the matrix-vector operation in parallel, we retain the same subvectors and

G. Each thread t multiplies its subvector Gt · ct, producing a vector αt. We then merge

the αt vectors into the final α. Since |V | << |c|, this final merge is relatively inexpensive.

3.5.2 Lexicographic Semiring

We now present Algorithm 3.3 more formally as an application of a lexicographic semiring

[73]. We frequently apply the tropical and log semirings to NLP tasks, but alternate

semirings can provide a convenient and efficient representation of complex algorithms.

3.5. Matrix-Vector Grammar Intersection 50

For instance, Roark et al. [158] recently applied lexicographic semirings to language-model

encoding. We will summarize the formalism of the lexicographic semiring, following their

notational conventions, and refer the interested reader to their detailed discussion.

A semiring is a ring, possibly lacking negation, defining two operations ⊕ and ⊗ and

their respective identity elements 0̄ and 1̄ [103]. One common example in speech and

language applications is the tropical semiring (R ∪ {∞},min,+,∞, 0). min is the ⊕
operation, with identity ∞, and + is the ⊗, with identity 0. This definition is often used

for Viterbi search, using negative log probabilities as costs.

A lexicographic semiring is defined over tuples of weights 〈w1, w2 . . . wn〉, with the

condition that the tuples can be ordered first by w1, then by w2, and so on (so named

because of the similarity to lexicographic string comparison). We use the 〈T, T 〉 semiring,

defined as a pair of tropical weights:

〈w1, w2〉 ⊕ 〈w3, w4〉 =


〈w1, w2〉 if w1 < w3 or (w1 = w3 and w2 < w4)

〈w3, w4〉 otherwise

〈w1, w2〉 ⊗ 〈w3, w4〉 = 〈w1 + w3, w2 + w4〉

In our application, w1 encodes the negative log probability of a production in G or of an

observed non-terminal in the chart. w2 encodes the midpoint of the maximum-probability

analysis.5 To perform grammar intersection using this semiring, we encode the grammar

matrix as described in Section 3.2, and include 0 as w2 for each grammar entry (since this

weight is constant, it need not be encoded in the grammar representation).

We populate a vector of tuples ci for each possible midpoint of the cell, and c =

c1 ⊕ c2 ⊕ . . . cspan. ⊕ compares with min, so the entries in c will be from the

maximum probability midpoints and the first midpoint will ‘win’ in the case of a tie.

When we multiply G · c in the 〈T, T 〉 semiring, we use the ⊗ multiplication operator

on each individual element, and the ⊕ addition operator for the sum. Since w2 is 0 for all

entries in G, the midpoints are simply carried over from c, and G · c is the minimum-cost

5Since w2 represents a midpoint, we could alter the definition to specify that w2 ∈ N, but the standard

tropical semiring is adequate and slightly simpler.

3.6. Grammar Intersection Evaluation 51

path to each observed non-terminal.

SpMV implementations often represent the vector densely in memory (even if it is

sparsely populated). We can then iterate through the populated matrix entries, accessing

the (dense) vector as appropriate. The converse approach (dense matrix and sparse vector)

is also possible, and a useful option if the input vector is much sparser than the matrix.

In either case, the memory access pattern is highly irregular, and frequent cache stalls are

likely [76]. The hash mechanism described in Section 3.2 is one approach to improving

memory locality, but many other SpMV optimizations have been explored in the high-

performance computing literature. In some cases, extracting dense blocks from a sparse

matrix can improve cache efficiency [87, 1]. For some matrices, other transformations

improve performance considerably [12]. Although some of these approaches are imple-

mented in standard libraries, most operate in the real semiring; to our knowledge, none

support the 〈T, T 〉 semiring. Our implementation is intended to be grammar-agnostic,

and we present experimental trials with a variety of grammars. The performance bene-

fits of the various matrix transformations vary greatly with the structure of the specific

matrix. Thus, we leave a full exploration of SpMV optimizations to future work, focused

on optimizing a more limited range of grammars. Our expectation is that the benefit of

standard SpMV optimizations would be greatest on grammars more densely populated

than those we explore in this thesis.

3.6 Grammar Intersection Evaluation

We compare exhaustive and pruned parsing efficiency with several other competitive pars-

ing implementations. The BUBS parser framework is grammar agnostic, permitting ex-

periments on grammars of various sizes, and it implements both exhaustive inference and

various pruning approches, as described in Section 2.12 and in Appendix A. For exhaus-

tive parsing, we use BUBS implementation of Algorithms 3.1 and 3.2 and Mark Johnson’s

highly optimized C implementation, lncky [91] as baselines; for pruned inference, we

compare with the Charniak parser [32], the Berkeley parser [142], and complete-closure

pruning as implemented in BUBS. The Charniak parser is written in C and parses with a

lexicalized grammar. The BUBS and Berkeley parsers are implemented in Java and parse

with a latent-variable grammar.

We performed all trials on a 12-core Linux machine (2 × Intel® Xeon X5650 CPUs).

Each core can execute 2 simultaneous threads, for a total of 24 concurrent threads. For

3.6. Grammar Intersection Evaluation 52

M-0 M-2 Parent LV

Parsing accuracy (F1) 61.1 72.3 78.1 89.1

Non-terminal vocabulary (V) 99 2916 6712 1133

Binary productions (Pb) 4240 13,210 24,542 1.7m

Unary productions (Pu) 236 236 736 115k

Lexical productions (Plex) 52k 52k 52k 2.4m

Speed (w/s)

Johnson (2006) 245.0 106.3 68.3 .7

Grammar loop (Alg. 3.1) 278.2 51.0 24.8 0.9

Left-child loop (Alg. 3.2) 418.9 95.3 49.4 5.7

Cartesian Product

Binary search 140.7 2.7 0.6 1.8

Binary search right children 159.0 38.2 4.7 2.0

Hash lookup 240.3 2.5 0.7 2.5

Hash lookup in right children 262.9 3.6 0.8 2.3

SpMV (Alg. 3.3) 530.0 33.6 7.6 10.2

Table 3.2: Grammar attributes and exhaustive Viterbi parse speeds over WSJ Section

22 for grammars using a variety of state-splitting methods; specifically, Markov-order-0,

Markov-order-2, Markov-order-2 with parent annotations, and the Berkeley 6-cycle latent-

variable grammar. All parsers produce the same maximum-likelihood parse trees (modulo

minor differences in tie-breaking strategies).

the parsers implemented in Java, we used the Oracle 1.7.0 17 Virtual Machine.

3.6.1 Exhaustive Serial Search

Table 3.2 presents exhaustive search results with four grammars, each induced from the

Penn Treebank Sections 2-21 [121]. The Markov-order-0 and Markov-order-2 grammars

were markovized as described in Manning and Schuetze [119]. The parent-annotated

grammar further splits the states of the Markov-order-2 grammar by annotating each

3.6. Grammar Intersection Evaluation 53

non-terminal with its parent category, as described in Johnson [89]. This expands the

non-terminal vocabulary greatly, but the ruleset somewhat less so. The Latent-variable

grammar [142] used here is one trained and selected by Slav Petrov, using the method

described in Section 2.9. Its vocabulary is relatively small (particularly in comparison with

the parent-annotated grammar), but the ruleset is quite large. We previously presented

similar trials on both right- and left-binarized grammars, and found that the efficiency

differences between the two depended primarily on implementation biases in grammar-

intersection [58]. For example, left-child loop intersection (Algorithm 3.2) benefits from

the smaller number of left-side children in a right-binarized grammar, and the analogous

right-child loop method is appropriate for a left-binarized grammar. Since the efficiency

impact of binarization direction is quite small, we limited these trials to right-binarized

grammars, and biased all grammar-intersection implementations appropriately.

The comparison in Table 3.2 between SpMV and other approaches highlights the differ-

ences in grammar attributes. With the Markov-order-2 and Parent-annotated grammars,

which have large vocabularies and relatively small rulesets, Johnson’s C implementation

and several other grammar-intersection methods outperform SpMV, but for the grammars

with larger rulesets relative to their nonterminal space, SpMV provides a considerable

speedup — a gain of 79% over Algorithm 3.2. Note that this improvement is in addition

to the large gain from the matrix-encoded grammar, as reported in Table 3.1. For the

remainder of this thesis, we are primarily interested in high-accuracy grammars, particu-

larly for non-exact inference, so we focus the remaining empirical trials in this chapter on

the Berkeley latent-variable grammar.

3.6.2 Pruned Serial Search

We now proceed to examine pruned inference with our SpMV method. We take as our

primary baseline, the grammar-intersection methods and complete-closure pruning imple-

mented in BUBS.6 Our grammar intersection method works well with complete-closure

and with adaptive beam search, but the serial initialization for adaptive beam search is

considerably more expensive, so we chose complete-closure for these trials. Table 3.3 shows

6All experimental procedures follow the approach described in Section 2.13. Note that the trials in

this chapter are limited to a fixed set of preexisting grammars (those listed in Table 3.2); we will explore

a wider range of grammars in subsequent chapters.

3.7. Parallelism 54

F1 Words/sec

Charniak (2000) 90.3 40.1

Berkeley (2006) 90.4 107.9

Complete Closure

Left-child loop (Alg. 3.2) 89.3 73.8

Cartesian-product hash 89.3 36.3

SpMV (Alg. 3.3) 89.3 97.4

Complete Closure and Beam Search

Left-child loop (Alg. 3.2) 89.2 926.5

Cartesian-product hash 89.2 1313.2

SpMV (Alg. 3.3) 89.2 895.9

Table 3.3: Pruned parsing speeds, comparing several grammar intersection approaches

and pruning methods. Evaluated using the Berkeley latent-variable grammar on WSJ

Section 22. The Charniak implementation uses an agenda search, and the Berkeley parser

coarse-to-fine pruning. Beam search trials used a lexical prioritization model [19] and a

beam width of 20.

a speedup of over 2× vs. the baseline implementation, and an even greater advantage vs.

other competitive parsers.

The Charniak and Adaptive Beam pruning systems both have tunable parameters,

controlling their accuracy vs. efficiency operating point. Figures 3.4 and 3.5 shows empir-

ical results over a range of those tuning parameters for those two implementations and for

our approach. For a given parameterization, the search space explored by our approach is

identical to that explored by Bodenstab et al., (modulo minor differences in unary process-

ing), so the efficiencies achieved are directly comparable. We find consistently improved

speed across all pruning thresholds.

3.7 Parallelism

Since smooth parallelization is one of the benefits of the algorithm presented in Section 3.5,

we begin with background on some of the barriers to efficient parallelism. The overhead of

parallelism takes many forms.7 The operating system consumes processor cycles in thread

7We are concerned primarily with parallelism within a single machine. Cluster-level parallelism incurs

network latency, shared filesystem, and other forms of overhead that do not concern us here.

3.7. Parallelism 55

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

10

100

1000

0100200300

Beam Width

S
p
e
e
d
 (

w
/s

)

parser

● Cartesian Product

SpMV

Left−child

Figure 3.4: Speed vs. beam width, evaluated using complete-closure and a lexical priori-

tization model [19]. At a beam width of 300, SpMV is 62% faster than left-child-loop and

3.1× faster than cartesian-product intersection. As beam width is reduced, however, the

benefit of SpMV lessens, and at very small beam widths, the cartesian-product intersection

is considerably superior.

scheduling; coordination and synchronization of concurrent tasks can leave processors idle;

and (more importantly to memory-bound applications such as parsing) context switching

between threads often requires flushing the CPU cache, resulting in more memory con-

tention and stalls. Further, some multi-core architectures share L2 or L3 caches between

CPU cores, and nearly all share bandwidth to memory (the ‘front-side bus’, or FSB). Par-

allel execution threads may stall while competing for those resources. Thus, parallelism

can introduce considerable hardware overhead, even if OS- and task-level overhead are

minimal, but shared data structures can reduce this impact.

3.7. Parallelism 56

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

88.6

88.8

89.0

89.2

0 500 1000 1500 2000

Words / Sec

F
−

S
c
o
re

parser

● Cartesian Product

SpMV

Left−child

Figure 3.5: F1 vs. speed, evaluated using complete-closure and a lexical prioritization

model [19]. Accuracy of all three methods begins to drop off with beam widths below 10.

Note: if beam width is reduced further, speed actually decreases, as parse failures force

more reprocessing.

3.7.1 Parallel Parsing of Deterministic Languages

Parsing methods have been used for decades on deterministic languages, including pro-

gramming languages and machine-readable data formats. Recent interest in high-volume

data processing and the development of multicore architectures have prompted research

in parallel parsing, particularly of large XML documents. Sequential parsing is sufficient

for most small XML documents, but parallel methods are of interest for documents of

hundreds of kilobytes or more. Parallelization methods that depend on unambiguous

grammars do not apply straightforwardly to statistical parsing of ambiguous languages.

However, we do find analogous mechanisms useful for linguistic parsing. In this section,

3.7. Parallelism 57

we will briefly summarize some methods of parallelizing deterministic parsing algorithms,

and consider analogous applications in stochastic parsing.

Most parallel XML-parsing methods divide the document into subsegments using a

simple serial mechanism, and process those segments in parallel [115, 134, 111]. The

initial division (called preparsing by some authors) uses a simplified grammar, ignoring

most well-formedness constraints.

One notable exception to that paradigm is the work of Cameron et al. [24]; they use

hardware Single Instruction Multiple Data (SIMD) processing units (described in detail

in Section 3.8) to process XML input 16 bytes at a time. They use hardware counters to

analyze the penalty for out-of-order byte access (similar to our analysis in Section 3.3).

El Hassan and Ionescu [64] demonstrates XML processing using custom hardware (Field

Programmable Gate Arrays, or FPGAs). They achieve remarkable throughput, although

limited to relatively small XML documents by the constraints of the FPGA architecture.

Although our analysis does not extend to custom hardware, we can certainly envision a

related approach applied to ambiguous languages. In the case of statistical parsing, the

length of the input sequence is reasonable; we anticipate that the key limitation would be

the size of the grammar (a problem we consider in chapters 4 and 5).

Although the techniques from the XML-processing literature do not apply directly, we

find the success in parallel deterministic parsing promising. The constraint-based pruning

methods implemented by the BUBS parser (and described in Appendix A) are in some

ways similar to the ‘preparsing’ processes, and memory-access and cache analysis is clearly

applicable in both cases.

3.7.2 Parallel PCFG Parsing

A sizable literature has explored parsing in parallel, demonstrating — theoretically, at

least — that context-free and mildly context-sensitive parsing can be parallelized effec-

tively. For example, Palis and Shende [133] presented an algorithm that processes Tree

Adjoining Grammars in O(log2(n)) time; however, their approach requires a machine with

O(n6) processors, and effective communication between them; similarly, the approach of

Rytter [160] requires polynomially many processing units. Subsequent decades have seen

great advances in hardware technology, but that level of parallelism remains impractical

(even using modern GPU hardware, which we will discuss in Section 3.8).

Unfortunately, the overhead of parallelizing can be considerable. For example, Chytil et

al. [41] presented a parallel recognition algorithm for unambiguous context-free languages,

3.7. Parallelism 58

but the O(n3) complexity of their approach is considerably worse than the known O(n2)

sequential solutions. Ninomiya et al. [130] explored cell-level parallelization on a 256-

processor machine. Their method incurred an overhead of 6–10× vs. their baseline serial

algorithm (depending on sentence length). That is, their parallel algorithm ran 6–10 times

slower on a single core than a simpler serial implementation. So even if their approach

scaled ideally, many cores would be required to match their serial baseline performance.

In practice, their algorithm did not scale linearly and required approximately 64 CPUs

to equal their baseline single-CPU performance, and the total speedup observed on 256

CPUs was only 2–4×.8

Further, the relationship between throughput and latency is often not linear. Given

ideally efficient algorithms and hardware, there would be no tradeoff between the two —

that is, we would be able to parallelize each sentence across an arbitrary number of pro-

cessor cores, reducing latency and increasing throughput linearly with core-count. Un-

fortunately, hardware constraints and Amdahl’s law ensure that we will never achieve

that ideal speedup;9 in practice, we are likely to see some tradeoff. So application devel-

opers might choose to optimize for latency, to improve user response time, even if that

choice required a larger hardware investment to achieve a particular throughput. We will

demonstrate interesting patterns of the tradeoff between throughput and latency with var-

ious parallelization methods, allowing consumers to tailor parsing strategies to particular

application requirements.

We observe that CYK parsing can be parallelized in (at least) three distinct ways, each

likely to have different advantages and disadvantages vis-à-vis the bottlenecks discussed

in Section 3.7:

Sentence-level: The simplest way to parallelize parsing is to parse sentences or doc-

uments independently on separate cores. This approach is well-understood, simple to

implement, and quite effective. Total throughput should scale roughly linearly with the

number of cores available, at least until we reach the limits of memory bandwidth, but

latency is not improved — and may actually increase. Further, the cost of scaling a cluster

(or datacenter) increases at least linearly with the number of cores, and power consump-

tion is increasingly a priority. We would prefer to improve not only parse throughput, but

8The inter-thread synchronization required by their algorithm probably constrains their scalability on

a shared-memory CPU architecture, and renders an efficient GPU implementation unlikely.
9‘Amdahl’s Law’ is the observation that the theoretical maximum speedup of a parallel operation is

limited by whatever portion of the operation which must run serially.

3.7. Parallelism 59

also latency and power consumption (sentences parsed per kWh).

Cell-level: In most forms of CYK iteration, we populate each cell separately, leading

to a straightforward form of cell-level parallelism. For example, in bottom-up cell iteration

order, we populate one chart row fully before proceeding to the next. The cells on each

row are independent of one another, so we can process all cells of a row in parallel [129].

Unfortunately, as we move higher in the chart, there are fewer cells per row, and we must

leave CPU cores idle. The highest cells in the chart are often the most densely populated

(and require the most processing), an inherent limitation of this form of parallelism.10

Additionally, filtering algorithms such as Earley [61, 182], with more dependencies between

cells and alternative iteration orders, are not easily amenable to this form of parallelism.

Grammar-level: Parallelization within a chart cell is more difficult to implement,

but may avoid some of the weaknesses of the first two methods described. If we can

fully parallelize cell population, we can make use of all available cores regardless of the

cell iteration order or the current position in the chart [187].11 Because each thread is

operating on the same cell, their working sets may align more closely than in other forms

of parallelism, reducing context-switch overhead. However, this method implies very fine-

grained task divisions and close coordination between threads — when we split a single

grammar intersection operation across many threads, each task is quite small. At this

fine granularity, locking of shared data structures is impractical, so we must divide tasks

such that they share immutable data (the grammar and current cell population) but do

not simultaneously mutate the same target data structures (e.g., individual threads may

populate separate ranges of non-terminals in the target cell, but must not attempt to

populate the same range). Even with careful task division, the task management may

overwhelm the potential gains.

3.7.3 Exhaustive Parallel Search

We now move to evaluating parallelization methods. Our baseline parsers could be par-

allelized at a sentence-level, and possibly at a cell-level, but having already established

dramatic gains vs. those approaches for serial parsing, we will focus all these trials on

our own SpMV algorithm — thus, the sentence-level results reported serve as a ‘baseline’

of sorts, albeit one already demonstrated to be a considerable improvement on standard

10If optimizing for throughput, those idle threads could be reassigned to subsequent sentences, but

cache- and FSB-contention is likely to further increase latency.
11Of course, we can utilize sentence-level and cell-level parallelism as well.

3.7. Parallelism 60

●

●

●

●

●

●

●

●

25

50

75

0 5 10 15 20 25

Threads

W
o

rd
s
 /

 S
e

c

Parallelism

● Sentence Level
Cell Level
Grammar Level
Combined Cell, Grammar

(a) Throughput, in words per second.

●

●

●

●

●

●

●
●

1000

2000

3000

4000

0 5 10 15 20 25

Threads

M
ill

is
e

c
o

n
d

s

Parallelism

● Sentence Level
Cell Level
Grammar Level
Combined Cell, Grammar

(b) Latency, in milliseconds per sentence.

Figure 3.6: Exhaustive SpMV throughput and latency vs. thread-count.

baselines. We parallelize the SpMV implementation using the three parallelization strate-

gies discussed in Section 3.7., and compare throughput and latency. To explore potential

additive effects, we include a system combining cell-level and grammar-level parallelism,

using several grammar-level threads for each cell-level thread, over the same range of total

thread count. Note that some serial processing is required for each sentence (primarily

initialization of the chart and extraction of the final parse tree), but these operations

consume only 1.5% of the total time.

Executed with a single thread, the cell-level and grammar-level parallel implementa-

tions incur an overhead of less than 5%, which compares very favorably with the 500–900%

overhead in Ninomiya et al. [130]. Figure 3.6 shows throughput and latency of each par-

allelization approach as thread count increases. All approaches show improved through-

put with increased thread-count. Cell-level and grammar-level approaches begin to level

off around 12 threads, when all physical cores are occupied; combining the two appears

to benefit further from Hyper-threading, achieving throughput superior to sentence-level

threading.

In Figure 3.6b, we see two interesting latency effects: 1) We expected the sentence-

parallel approach to produce fairly constant latency, but instead found that latency jumped

3.7. Parallelism 61

considerably after only 2 threads, and continued to increase after 12 threads, as Hyper-

threading came into use. Our (unproven) theory is that one parsing thread saturates the

shared cache and/or front-side-bus on a physical die, and that additional threads on the

die must compete for those shared resources. 2) Cell-level and grammar-level approaches

show large decreases in latency as thread count increases, and the combination shows

additive gains — an overall reduction in latency of more than 9× and an improvement of

nearly 26.3% vs. cell-level threading alone. 12

While that improvement is quite impressive, we anticipate that further gains might be

possible. We found that both cell-level and grammar-level methods often leave numerous

threads idle, and CPU monitoring rarely shows all cores being occupied. Our observations

lead us to believe that much of the ‘lost’ processor time is going to the task handling and

inter-thread communication; hardware threading (as described in Section 3.8) may extend

the gains for those methods.

3.7.4 Pruned Parallel Search

Figure 3.7 presents similar trials for pruned parallel search (once again, all trials use SpMV

grammar intersection). In this case, we find that the cell-level and combined approaches

perform quite strongly — nearly optimally, in fact. In contrast to the relatively small

serial portions of exhaustive search, pruned search requires some fairly expensive serial

operations. The initial version of this work used an adaptive-beam model, which was

much more costly to initialize. The complete-closure model used in these trials initializes

considerably faster, but the total serial steps (chart and pruning initialization, and the

beam-search pruning itself) account for 23% of the time, so the observed 27.7% increase

in throughput and reduction in latency, although much smaller than that of sentence-level

threading, is not unreasonable.13

For grammar-level parallelism in Figure 3.7b, however, we find a somewhat counterin-

tuitive result: increasing the thread-count increases latency. This is due to the character-

istics of the grammar and the severity of pruning during inference. The Berkeley grammar

has a small non-terminal set (|V | = 1134), but a large ruleset (|Pb| ≈ 1.7 million). When

12We found that varying the ratio of cell-level to grammar-level threads produced similar results, up to

4–6 grammar-level threads; we omit those combinations from the plots for clarity.
13We will re-incorporate an improved adaptive-beam model in the final trials presented in Chapter 7.

3.8. SIMD 62

●

●

●

●

● ●

●

●

0

3000

6000

9000

12000

0 5 10 15 20 25

Threads

W
o

rd
s
 /

 S
e

c

Parallelism

● Sentence Level
Cell Level
Grammar Level
Combined Cell, Grammar

(a) Throughput, in words per second.

●

●

●

●

●

●

●
●

50

100

0 5 10 15 20 25

Threads

M
ill

is
e

c
o

n
d

s

Parallelism

● Sentence Level
Cell Level
Grammar Level
Combined Cell, Grammar

(b) Latency, in milliseconds per sentence.

Figure 3.7: Pruned search throughput and latency vs. thread-count.

Figure 3.8: Pruned search is constrained by the serial pruning initialization, so we see

little benefit from parallelism beyond 2–4 threads.

performing exhaustive search, many cells are densely populated (the average cell popula-

tion is 450 of 1134). When performing pruned search, the cell populations are naturally

much sparser (at most 30 entries, and often fewer). Thus, the grammar-level parallel

tasks are much smaller, and task management overhead overwhelms the potential gains

of additional execution threads, a further motivation for hardware thread management.

3.8 SIMD

Single Instruction Multiple Data (SIMD) computation units execute the same instruc-

tion on multiple data streams in parallel. The architecture was formally classified in

Flynn’s taxonomy in the early 1970’s [68], and the first practical implementations were

the vector supercomputers of the same era. Most historical SIMD implementations use

a large number of very simple processing units to accelerate matrix transformations and

other inherently parallel tasks. Many multimedia processing operations are similarly par-

allelizable, so many recent microprocessor architectures have incorporated SIMD units

specifically for that purpose.

3.8. SIMD 63

Speed (words/second)

Markov-0 Markov-2
Parent Latent

Annotated Variable

CPU 530.0 33.6 7.6 10.2

GPU 9.2 1.8 .42 1.2

Table 3.4: GPU SpMV parsing speeds (in w/s), using the same grammars as Table 3.2.

Evaluated using an Nvidia Tesla M2090 GPU. CPU results repeated from Table 3.2.

A SIMD processor loads a large array of data from memory and executes the same op-

eration on each element of that array. Example operations might increment each element,

multiply by a fixed multiplicand, or take the natural logarithm of each.14 SIMD processors

are often applied to matrix operations, where the parallelism is explicit. Purpose-built

graphics processing units (GPUs), such as those produced by Nvidia and AMD also incor-

porate SIMD processing, often with slight changes targeted on image manipulation.The

large memory bandwidth and raw processing power of these units has motivated other

applications as well (so-called ‘General-purpose GPU computing’, or GPGPU).

The SpMV parsing algorithm from Section 3.5 centers on a matrix-vector multiplica-

tion, and is thus amenable to SIMD processing. We implemented this algorithm in the

OpenCL environment [126], and tested it on a Nvidia Tesla M2090 graphics-processing

unit with 512 cores, 6 GB of RAM and 256 KB of global-memory cache. The results in

Table 3.4 are disappointing, in that even massively parallel hardware underperforms the

baseline CPU implementation. Effectively coding for GPU hardware is a very specialized

skill-set (perhaps even an art form). We are certain that our simplistic implementation

does not make full use of the available memory and computational bandwidth. We remain

optimistic that engineers more skilled in GPU coding patterns could improve greatly on

our proof-of-concept implementation.

3.8.1 Related Work

In a separate effort, Mark Johnson reimplemented the SpMV algorithm on CPU and GPU

hardware [92]. His experimental trials focused on densely-populated grammar matrices,

14Note that this processing model require a sizable increase in memory bandwidth vs. a conventional

processor.

3.9. Discussion 64

as might be used for unsupervised grammar induction. He also found considerable gains

on a CPU, and disappointing results on GPU hardware. Like us, he attributed that

deficit to the highly specialized coding requirements for efficient GPU utilization. Yi et

al. [186] and Canny et al. [27] also examined CYK inference on a GPU, and each of their

implementations were more efficient. Yi et al. obtained a 25.8× speedup, albeit with

a smaller latent-variable grammar and comparing to a somewhat slower baseline CPU

implementation. Canny et al. parallelized at the cell level, but kept multiple sentences

in flight simultaneously, allowing them to fully utilize the available memory bandwidth.

They came near to the theoretical throughput bounds of their GPU hardware, obtaining

over 2800 words per second under exhaustive inference.15

3.9 Discussion

In this chapter, we presented a matrix grammar encoding which has several beneficial

properties. Access to grammar rules encoded in this manner is very cache-efficient, and

it enables cell population using a Sparse Matrix × Vector grammar intersection. This

reduction allows very fine-grained parallelism, and can reduce parse latency and improve

throughput considerably. We found dramatic speedups on exhaustive serial parsing and

a sizable improvement in pruned inference, vs. BUBS baseline encoding and other state-

of-the-art parser implementations. Although results on SIMD / GPU hardware were

disappointing, the combination of grammar encoding and intersection methods reduce

latency as low as 17.8 ms, and produce throughput in excess of 9000 words per second

on commodity SMP hardware. These results improve greatly on other common parsing

implementations, and will be of great interest to end-user applications with response-time

constraints and to semi-supervised model training constrained by parsing throughput.

Further, these approaches provide a very solid baseline for the approaches for training

efficient grammar models we present in chapters 4 and 5. Although we do not claim

that the implementation described in this chapter is fully optimal (i.e., making full use of

available computational and memory resources), the large improvement in cache efficiency

removes one large source of noise which otherwise would obscure any potential gains from

training efficient grammar models. And an efficient and parallelizable implementation

makes it practical to incorporate inference during grammar training in Chapter 5.

15Canny at al. predict further gains from pruning, although that claim is suspect; their approach de-

pends on a full grammar-loop (Alg. 3.1), so it is unlikely to benefit greatly from a sparser chart population.

Chapter 4

Lexicon Simplification and Corpus

Transformations

We now move from grammar-agnostic inference methods to approaches of training gram-

mars which will enable further efficiency gains. In this chapter, we present corpus transfor-

mation methods, applied prior to training, which can reduce the size of the final grammar

and increase inference speed.

4.1 Spurious State Splits

Annotated treebanks have revolutionized syntactic processing, providing the means to

train accurate and generalizable statistical models. However, these models have inherent

weaknesses that limit their effectiveness. Treebanks are constructed in hopes they en-

code general patterns, but grammars trained from raw treebanks often overfit to specific

examples, encoding spurious productions and reducing performance on unseen sentences.

Second, partially due to these productions, grammars learned from raw treebanks are

quite large, dramatically increasing inference time.

For example, consider the non-terminal label CD. In the Penn Treebank annotation

system, this preterminal (part-of-speech) is used for all cardinal numbers, including nu-

meric values and textual representations thereof (e.g., ‘9.88’, ‘91-23’, ‘eight’, ‘billion-plus’,

and ‘mid-1970s’). Consider the rules in Table 4.1, drawn directly from a split-merge

latent-variable grammar trained with the Berkeley Parser [142] on the Penn Treebank

[121]. This particular grammar encodes 129,189 lexical rules for various splits of the CD

(cardinal number) label, most of them for specific numbers — in fact, over half of these

rules (66,096) are for tokens which occur only once in the training corpus. Clearly the

majority of these rules are unlikely to help disambiguate between larger contexts in unseen

65

4.1. Spurious State Splits 66

data. Further, these spurious productions increase the size of the grammar considerably,

adding not only the required lexical productions, but increasing the binary ruleset as well.

CD labels are usually children of NP or QP nodes, and the model is reserving probabil-

ity mass in NP and QP productions specifically for the (unnecessarily) split CD labels.

Thus, eliminating the spurious lexical productions may greatly reduce the size of the final

grammar, yielding a more efficient model without loss in generalizability.

Parent Terminal Log Probability

CD 0 → 675,400,000 -13.3299269994

CD 1 → 675,400,000 -13.5714331797

CD 9 → 0.6287 -12.566730769

CD 10 → 0.6287 -12.1136975239

CD 11 → 0.6287 -12.6230114872

Table 4.1: A sample of grammar rules headed by various splits of the CD (cardinal number)

non-terminal, taken from a 6-cycle latent-variable grammar.

We have focused this discussion on CD as an extreme example, but the same arguments

apply to other open-class preterminals as well — for example, the proper noun label, NNP,

behaves similarly, as the parent of many singleton tokens; many substates are learned, most

of them unlikely to generalize beyond the training data.

In this chapter, we present two novel methods of reducing the number of spurious lex-

ical productions in latent-variable grammars, and demonstrate an improvement of 27.2%

in inference speed. In Section 4.2, we present a novel corpus transformation, based on the

Berkeley Parser’s class-based unknown-word handling system. We train grammars from

transformed corpora, finding large reductions in grammar size with minimal degradation of

parse accuracy. In Section 4.3, we derive a similar corpus transformation from automated

clustering, and incorporate a discriminative cluster-assignment tagger into the inference

process. This approach provides a comparable size reduction, but at a substantial cost in

both speed and accuracy.

4.2. Class-based Rare Word Handling and Normalization 67

-INITC Capitalized initial word of sentence

-KNOWNLC Lower-case version of the word observed in grammar

-CAPS Capitalized (but not sentence-initial)

-NUM Contains one or more numerals

-DASH Contains one or more hyphens
-s, -ed, -ing, -ion,

-er, -est, -ly, -ity,

-y, -al

Suffix features

Table 4.2: Class-based decision-tree features, in the order in which they are applied. The

class of an unknown word is built up by appending each appropriate feature to the base

UNK class. For example, the token ‘90th-story’ would be assigned the unknown word

class UNK-NUM-DASH-y.

4.2 Class-based Rare Word Handling and Normalization

The Berkeley parser includes a simple but robust unknown-word system, which replaces

each OOV word with a class signature [140].1 OOV classes are assigned by a decision tree

based on characteristics of the observed token. E.g., UNK-NUM for a word containing a

number, UNK-NUM-DASH for one containing both numeral(s) and dashes, UNK-CAPS

for a word in capital letters, and so on (the full list is in Table 4.2). Production probabil-

ities for these classes are estimated using observation counts of rare words. In the Penn

Treebank [121] training section, we observe 66 unique unknown-word classes. During in-

ference, we replace any unknown words with the appropriate UNK class (using the same

decision-tree hierarchy). In the rare case that the UNK class was also unobserved during

training, we back off through the decision tree (removing suffixes from the predicted UNK

class) until we find grammar productions matching the class. For example, the token

‘90’s-era-fashion’ would be assigned the class UNK-NUM-DASH-ion. If no productions

are available for that class, we would back off to UNK-NUM-DASH, then to UNK-NUM,

and finally to the base UNK class.2

1This signature-based system is similar to those used by Arun and Keller [5] and Crabbé and Can-

dito [26] for French, and by Attia et al. [6] for Arabic.
2Although the backoff strategy of the resulting decision tree is not always linguistically ideal, we chose

to retain the method unchanged, for consistency with earlier published results and the existing grammars

we use as baselines.

4.2. Class-based Rare Word Handling and Normalization 68

POS λ F1 ∆ρ(%) ∆w/s (%)

baseline - 88.6 - -

CD 5 89.0 -1.9 +2.8

JJ 2 88.6 -6.6 +6.4

NN 1 88.6 -5.2 +0.6

NNP 4 88.7 -11.2 +2.3

NNPS 8 88.9 +0.3 +1.2

NNS 1 88.8 -2.1 +2.5

RB 1 88.5 -0.3 -1.0

VB 1 88.6 -0.1 +4.8

VBD 2 88.6 -0.4 +0.6

VBG 1 88.9 +0.1 -0.5

VBN 1 88.7 -0.8 +6.6

VBP 1 88.5 -0.2 +5.2

VBZ 1 88.9 +0.3 +3.3

Table 4.3: Thresholds which maximize F1 for each preterminal, and the resulting change

in grammar size (∆ρ) and speed (∆w/s). Evaluated on WSJ section 22.

4.2.1 Corpus Transforms

To eliminate some of the spurious productions described in Section 4.1, we use this class-

based model to produce transformed training corpora. We replace rare open-class words —

those observed in the training corpus less frequently than a threshold λ— with their class

signature. A grammar trained on this transformed corpus learns production probabilities

for the classes, without the spurious productions observed in the raw treebank.

We consider any preterminals which parents more than 500 unique lexical tokens to be

open-class (namely, CD, JJ, NN, NNP, NNPS, NNS, RB, VB, VBD, VBG, VBN, VBP,

and VBZ).3 At λ = 1, we replace all singletons; as we tune λ upward, we replace more

frequent words as well.4

3We chose an arbitrary threshold of 500, but the distribution of counts of unique lexical children is

very much bimodal — closed-class preterminals have very few parents and open-class preterminals have

many — so the open-class set is relatively stable across a wide range of possible thresholds.
4With the standard WSJ training corpus of 950k words, λ = 5 is equivalent to pruning lexical produc-

tions where P (A→ w) < e−12.15.

4.2. Class-based Rare Word Handling and Normalization 69

● ●

3700000

3800000

3900000

4000000

4100000

4200000

0 10 20 30

Threshold

S
iz

e

POS

● Baseline

CD

JJ

NN

NNPS

NNS

Figure 4.1: Grammar size at various normalization thresholds for selected preterminal

labels. Averaged over 5 grammar-training trials and evaluated on WSJ section 22.

We performed a grid search over a variety of λ values, training latent-variable grammars

on the transformed corpora with a variant of the Berkeley Parser’s grammar-training

system [142], as described in Section 2.9. The EM-based training mechanism is somewhat

sensitive to initialization state [141], so we trained 5 separate grammars (using different

random seeds) on each transformed corpus. All reported accuracy values are averages over

these random grammars. We trained all grammars for 6 cycles, yielding grammars with

approximately 1100 split non-terminals.

Figures 4.1 and 4.2 demonstrate the effects of these normalization on selected preter-

minals. As demonstrated in Figure 4.1, in most cases, normalizing most preterminals

4.2. Class-based Rare Word Handling and Normalization 70

●

●

●

●

●

●

●

●

●

87.5

88.0

88.5

89.0

0 10 20 30

Threshold

F
−

s
c
o

re

POS

● CD

JJ

NN

NNPS

NNS

Figure 4.2: F1 at various normalization thresholds for selected preterminal labels, evalu-

ated on WSJ section 22, as in Figure 4.1.

produces a considerably more compact grammar (although not universally so; the gram-

mars normalizing NNPS are somewhat larger than the baseline). Figure 4.2 demonstrates

the effect on dev-set accuracy of normalizing each of these labels separately. Note that

some preterminals are very sensitive to this normalization process, and accuracy drops off

sharply with increasing λ, while others are more tolerant of aggressive normalization. In

particular, CD and NNPS consistently show increased accuracy, even up to λ = 30. In

the case of those two preterminals, this effect is somewhat unsurprising, as the class-based

features in Table 4.2 (particularly -NUM, -CAPS, and -s) serve to uniquely identify car-

dinal numbers and plural proper nouns, and the normalization improves generalization

without greatly sacrificing specificity in the learned productions.

4.2. Class-based Rare Word Handling and Normalization 71

4.2.2 Combined Normalization

We then combined normalizations of multiple open-class preterminals and trained gram-

mars the resulting corpora. We began with the thresholds from Table 4.3, which maximize

development-set F1 for each preterminal. For these trials, we omitted RB and VBP, for

which even normalizing singletons costs accuracy without a significant grammar-size re-

duction.

We produced a training corpus N0, using the thresholds from Table 4.3, which maxi-

mize F1 . That is, λCD = 5, λJJ = 2, and so on. This normalization reduced the lexicon

size by 58.6% (from 44.4k to 18.3k words) and the memory footprint of the lexicon itself

even more so (from 377KB to 151KB). We call this corpus N0. We then varied each λ

equally to produce a series of corpora Nx, where −1 ≤ x ≤ 20. Thus, for N3, λCD = 8

(recall that λCD = 5 for N0), λJJ = 5, and so on. As we discussed in Section 4.1, eliminat-

ing lexical productions may allow a reduction in the number of phrase-level productions

as well. If so, we may be able to re-merge more non-terminal splits than the default 50%

at each cycle, reducing both |V | and |P |. For each x, we trained two sets of grammars,

one using a 50% merge, and one at 55%.5 Figure 4.3 plots the accuracy and size of each

resulting grammar and Table 4.4 presents a subset of the trials numerically. We found

moderate efficiency gains for exhaustive parsing

Grammar N0 is 32.4% smaller than the baseline, while sacrificing only .1 F1 . A 55%

merge reduces the size by an additional 13.3% at a cost of an additional tenth of a point.

But the speed gains on exhaustive inference are modest, and on pruned inference, we found

no significant speed improvement. The most interesting result is that re-merging 55% of

the candidate splits (without any corpus transformation) actually improves accuracy. We

will explore this result further in Section 5.2.

The class assignments learned from this decision-tree incorporate a number of lexical

features (described in Table 4.2), and generally provide robust probability estimates. But

generalization is in many cases limited by the strict decision-tree structure. For example,

the usage and context of the tokens ‘fourteenth-story’ and ‘90th-story’ is likely to be

quite similar, but their class assignments (UNK-DASH-y and UNK-NUM-DASH-y) do not

incorporate that similarity. In fact, the two tokens would only be tied probabilistically

5The Berkeley parser defaults to merging 50% of candidate splits. Text-normalization may permit

merging a larger percentage without loss; we will explore merge percentages more fully in Section 5.2.

4.2. Class-based Rare Word Handling and Normalization 72

●
●

●
●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

87

88

2000000 2500000 3000000 3500000

Size

F
−

s
c
o
re pos

● Normalized 50%

Normalized 55%

Figure 4.3: Accuracy vs. size for combined simple-normaliation grammars as the normal-

ization threshold is varied from 0–20.

Grammar
∆|P |

Exhaustive Pruned

(λ, merge) F1 (σ) w/s F1 (σ) w/s

Baseline, 50% - 88.6 (.10) 10.51 88.6 (.20) 1955

Baseline, 55% -4.2% 89.1 (.05) 12.72 89.0 (.15) 2038

0, 50% -32.4% 88.5 (.19) 10.66 88.6 (.17) 1952

0, 55% -45.7% 88.4 (.17) 13.37 88.6 (.16) 2010

5, 50% -45.0% 87.9 (.24) 10.72 88.2 (.22) 2035

5, 55% -55.2% 87.7 (.26) 13.17 88.1 (.24) 2031

Table 4.4: Accuracy, size, and efficiency of grammars trained with normalized corpora,

at selected operating points. Training corpora transformed by normalizing all open-class

preterminals. Evaluated on WSJ section 22.

if (at inference time) the model was forced to back off fully to probabilities for the base

UNK class. In the following section, we present a more sophisticated method of class

assignment that can robustly link lexically-similar items.

4.3. Word Clustering 73

4.3 Word Clustering

The class-based model described in the preceding section can be viewed as a determinis-

tic hard-clustering mechanism, with a simple (again, deterministic) means for assigning

unobserved tokens to existing clusters. In this section, we describe an alternate clustering

method, which performs cluster assignment using a sequence tagger. The overall approach

is similar to that of Seddah et al. [165], but the specific clustering and cluster-assignment

methods are quite different, as our primary objective criteria remains efficient inference,

whereas they targeted cross-domain generalization.

We clustered all rare open-class words — varying the threshold defining ‘rare’ as in

Section 4.2. We extracted from the training corpus all rare words and the features thereof,

as listed in Table 4.5. Note that in addition to lexical features similar to those of the class-

based model, we are able to include information from the syntactic context as well. In some

cases, this syntactic context (or an estimate thereof) will be available during inference to

guide the cluster assignments of unknown words. Other features (e.g. span features of

grandparent labels) are only available during training, but are still of utility to guide the

clusters from which the inference-time tagging models are trained. We assigned those rare

words to clusters using K-Means++ [4] as implemented in the Weka toolkit [79].

This clustering produces a set of word classes analogous to the class-based signatures

described in Section 4.2, and the rare-word probabilities learned in Huang and Harper [85].

We again transformed the training corpus, replacing rare words with tokens denoting their

cluster assignments. Training a PCFG on this transformed corpus learns production prob-

abilities for the word clusters. The following section will describe a means of assigning

unseen tokens to the appropriate clusters, incorporating the surrounding lexical and syn-

tactic context.

4.3.1 Tagging

We trained a discriminative multiclass tagger to replicate the K-Means++ cluster assign-

ments. Such taggers have proven effective in a variety of domains [48, 156]. We train an

averaged-perceptron model [48], using the same features used during clustering (with the

notable exception of those features only available from labeled training data, denoted with

an ‘*’ in Table 4.5).

We begin by POS-tagging the input sentence, using an averaged-perceptron tagger.

4.3. Word Clustering 74

ti−1, ti, ti+1

Parent POS tag of tokens i-1, i, i+1 (as assigned by a 1-best dis-

criminative POS tagger)

lp2, lp3 Grandparent and great-grandparent non-terminals *

sp2, sp3
Span of the grandparent and great-grandparent labels (1, 2, 3, 4–5,

6+) *

s1 Unigram suffix (final character of the token)

s2 Bigram suffix

ni Contains-numeral

nfi
Fraction of the entire token consisting of numerals (≥ 20%, 40%,

60%, 80%, and 100%)

@i Contains ‘@’

p# Starts-with ‘#’

phttp Starts-with ‘http’

puncti Contains-punctuation

punctfi
Fraction of the token consisting of punctuation (binned as for the

analogous numeral features).

Table 4.5: Word-clustering features. Features from labeled training data are marked

with an ‘*’; these features are used during clustering, but are not available for cluster-

assignment during inference. Some of features are more applicable to non-canonical genre,

such as email, Twitter, and blog posts, and are not regularly observed in WSJ text, but

we retain the same feature-set for the cross-domain trials in Section 4.4.1.

Although we did not engineer features sufficiently to match the state-of-the-art for POS-

tagging, our tagger achieves accuracies > 96.3% on WSJ text, which is quite sufficient for

our needs. Note that we do not strictly need to perform this step for an input sentence

containing no unknown words, but the POS tags are shared with other pruning steps later

in the parsing pipeline [19], so we tag each input sentence. The tagger processes input at

upwards of 200k words per second, so it is a relatively inexpensive preprocessing step (in

comparison to the overall cost of context-free inference).

We use the predicted POS tags, along with the lexical features from Table 4.5 as

input to the cluster-assignment classifier. This tagging method — unlike the decision-

tree approach and most other methods in widespread use — incorporates the surrounding

context (including previous and subsequent parts-of-speech) into OOV-class assignment,

so the cluster-assignment process is similar to that of a sequence tagger.

Although many of the features in Table 4.5 are English-specific, the syntactic features

4.3. Word Clustering 75

● ●
●

●
●

●
●

● ●
●

●
●

● ●
●

● ● ●

●
● ● ●

●

●

●

●
● ● ● ●

●

●
● ●

●

●
● ● ●

● ●
● ● ●

● ●

2500000

3000000

3500000

4000000

10 20 30 40 50

Clusters

S
iz

e

Grammar

● 50 % Merge

55 % Merge

Baseline

Figure 4.4: Size of clustering grammars, plotted against the number of clusters. The

grammar size appears to be relatively independent of the cluster count, but we do see a

considerable size improvement when merging an additional 5% of the non-terminal splits

at each cycle.

apply across languages and genres. And in some cases, even the lexical features are appli-

cable beyond English. For example, the newswire text of the Penn Chinese Treebank [185]

includes numerous instances of foreign words and abbreviations (often English) incorpo-

rated into the Chinese text. Chinese words are generally quite short (1-4 characters), and

Huang and Harper [85] found that a character n-gram model predicts word classes quite

well; thus, although we did not extend the feature-set specifically for Chinese, the suffix

features may capture a considerable portion of that predictive power.

4.3.2 Clustering Results

Table 4.7 demonstrates that the clustering and tagging approach achieves similar reduc-

tions in grammar-size to those we found in Section 4.2.2. However, at comparable gram-

mar sizes, clustered-grammar accuracy is degraded considerably from that of the combined

normalization method. Further, as indicated in Figure 4.4 and Figure 4.5, the tradeoff

between size and accuracy is not smooth or consistent. Instead, we find that grammar

4.4. Test Set Results 76

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

87.50

87.75

88.00

88.25

88.50

10 20 30 40 50

Clusters

F
−

s
c
o
re

Grammar

● 50 % Merge

55 % Merge

Baseline

Figure 4.5: Accuracy of clustering grammars, plotted against the number of clusters.

Unlike the grammar size plotted in Figure 4.4, accuracy is clearly impacted by the cluster

count; with less than 10–15 clusters, accuracy degrades considerably. However, with

sufficient clusters, the accuracy recovers somewhat, and it appears that the 55% merge

fraction does not greatly degrade accuracy.

size is relatively invariant to the number of clusters, and that accuracy is also fairly flat

(after a minimum cluster-count of approximately 10–12, below which accuracy drops con-

siderably). In general, it appears that the manually tuned decision-tree ‘clusters’ better

represent groupings of tokens which serve similar syntactic roles than do the automatic

clusters we trained. Alternate clustering techniques might improve on these results, but

we will leave that exploration for future work, and focus the following section and the trials

in Chapter 7 on the more successful combined normalization approach from Section 4.2.2.

4.4 Test Set Results

We evaluated the ‘combined’ normalization method across several languages and genres.

Table 4.7 presents the resulting accuracies and speeds on WSJ newswire text [121], Switch-

board telephone conversations [71], and Chinese newswire [185]. We trained 5 separate

grammars and present accuracies averaged across that set.

4.4. Test Set Results 77

Clusters |P | F1 (σ) w/s

10 2316k 87.9 (.19) 3.3

17 2263k 88.0 (.16) 3.3

50 2293k 88.0 (.09) 3.7

Table 4.6: Selected operating points from Figure 4.5. Accuracy, size, and efficiency of

grammars trained with lexical clustering, evaluated using exhaustive inference on WSJ

section 22.

Grammar |P | (σ)
Exhaustive Pruned

F1 (σ) w/s F1 (σ) w/s

WSJ

Baseline 3543k (45.7k) 88.7 (.16) 13.1 88.7 (.19) 2043

Normalized 2281k (62.7k) 88.2 (.36) 14.0 88.4 (.32) 2074

Switchboard

Baseline 1920k (15.7k) 86.9 (.15) 2.9 85.1 (2.3) 1697

Normalized 1652k (43.1k) 86.6 (.09) 3.0 86.8 (.21) 1776

Chinese

Baseline 2702k (77.1k) 81.0 (.41) 4.1 79.4 (.70) 745

Normalized 2223k (27.8k) 79.8 (.44) 4.5 78.8 (.56) 753

Table 4.7: Test-set trials of grammars trained with the combined normalization method

from Section 4.2.2 at λ = 0. All grammars trained merging 55% of non-terminal splits at

each cycle. Standard deviations in parenthesis)

As in the previous development-set trials, we found that normalization imposed a

modest accuracy cost, although the WSJ test-set degradation was slightly less than that on

the development-set.6 We found improvements of up to 10% in exhaustive parsing speed,

but the gains for pruned inference were more modest. One note of interest regarding the

accuracy of Chinese parsing: Bodenstab [19] reported that pruning improved accuracy vs.

exhaustive search, whereas we found a loss of 1-1.5 points. As we discussed in Section 2.13,

6In Chapter 7, we will present similar trials over a larger set of grammars as we combine grammar

training methods; in that case corpus transformation does not degrade accuracy measurably. Although

the results in Table 4.7 were consistent across languages, they may still be indicative of the statistical noise

inherent in a small set of grammars.

4.5. Discussion 78

the PCTB test set is very small, so we are inclined to attribute this discrepancy to sampling

noise over a limited number of grammars (Bodenstab tested a single grammar, and we

examined 5).

4.4.1 Cross-domain Generalization

Although efficient inference is our primary objective, we also consider how lexicon simpli-

fication affects the cross-domain generalizability of the learned model. The distribution

of token occurrences is likely to differ greatly across genres, particularly between well-

formed newswire text and less well-formed genres. We applied models trained on WSJ

text to the 5 genres of the English Web Treebank [14], and evaluated how the simplified

lexicon — removing rare tokens specific to the WSJ text — generalizes to other domains.

We performed no domain adaptation for the target genres, so the accuracies are unsur-

prisingly lower than those obtained by most submissions to the SANCL 2012 Shared Task

[147]. But for our investigation, the relative effect of normalization is more important

than the absolute accuracies obtained. Table 4.8 presents the results of these trials; we

report the average accuracy over the 5 WSJ grammars from Table 4.7 and the maximum

speed obtained in 5 individual trials with each. We found no consistent effect of the text-

normalization on either accuracy or speed. The largest difference between the baseline

mode and the λ = 0 model was a gain of .5 in F1 . That gain (on the ‘Email’ genre) might

be meaningful, but the other differences (gain and loss) were negligible in magnitude.7

The speed differences were similarly small; in general, the text-normalized grammars were

somewhat faster (excepting a very small regression on the ‘Newsgroups’ genre), but none

of the gains were material improvements.

4.5 Discussion

In this chapter, we presented two methods of corpus transformation that simplify the

lexicon of a PCFG. We found that we can reduce the lexicon — and the memory footprint

thereof — dramatically without great loss in parsing accuracy. This reduction may provide

7In the case of a search failure — relatively more common in non-canonical genres — our inference

system automatically relaxes pruning parameters and re-parses. This mechanism increases reliability of

inference, but occasionally causes increased parsing time with a smaller or less flexible model; c.f., for

instance, the email genre at λ = 5.

4.5. Discussion 79

Genre
Baseline λ = 0 λ = 5

F1 (σ) w/s F1 (σ) w/s F1 (σ) w/s

Email 73.7 (.21) 1264 74.2 (.39) 1392 73.3 (.15) 1053

Weblogs 75.8 (.27) 434 75.7 (.44) 456 74.7 (.38) 437

Reviews 74.4 (.20) 349 74.3 (.60) 356 73.2 (.38) 352

Newsgroups 72.2 (.27) 308 72.4 (.30) 298 71.5 (.35) 306

Answers 73.3 (.36) 1659 73.1 (.35) 1601 72.0 (.25) 1742

Table 4.8: Accuracy and speeds of a WSJ-trained grammar on the 5 non-canonical genres

of the English Web Treebank. Each test set includes approximately 2000 sentences of

annotated text drawn from web crawlers or other sources as appropriate for the domain.

All trials performed with the BUBS parser using a complete-closure model [21] and beam-

search guided by a lexical prioritization model [19].

real advantages in constrained-memory environments, or on some processor architectures

(depending primarily on the specific cache capacity and layout). However, the lexical

productions removed by these normalization techniques would often be unused — and not

competing for cache storage. Their cost is mainly incurred while reading the grammar at

startup, after which they lie idle in main memory. On the Intel Nehalem architecture we

examined, we found that simplifying the lexicon provided minimal efficiency gains. The

results from this chapter serve to underscore the nonlinear relationship between grammar

size and speed. In the following chapter, we will further explore that relationship, and

train models which can more effectively trade off speed and accuracy. In Chapter 7,

we will combine the methods from this chapter with those from chapters 5 and 6; the

combination yields interesting operating points, and in some cases, considerable additive

efficiency gains.

Chapter 5

Regularization and Merge Objective

Functions

In the previous chapter, we presented methods of altering training data to improve the

efficiency of a trained model. In this chapter, we move on to the training process itself,

developing methods of incorporating efficiency objectives into the split-merge grammar

training approach described in Section 2.9. We present several variants of the approach

and compare the effects thereof.

We begin by examining the parameter pruning threshold of the grammar training

process. Optimizing this threshold yields a reduction in model size of approximately

60% and an improvement in parsing speed of 41% for exhaustive inference and 45% for

pruned. We then proceed to describe methods of altering the model structure within the

split-merge process, specifically by varying the objective function used to select candidate

state-splits during the merge phase of the algorithm. As in the majority of this thesis,

we are interested specifically in efficient inference, so most of the objective functions we

consider will target compact and efficient grammars, but the learning methods we present

are applicable to other goals as well — e.g., targeting specific parser error categories, or

semi-automatic domain adaptation. These merge objectives all reduce the model size

greatly, and the most successful thereof improves efficiency of exhaustive and pruned

inference by 60% and 15% respectively.

5.1 Sparse Priors and Regularization

As we have demonstrated in earlier chapters, efficiency of inference usually benefits from

a compact model. In some cases, we can encode this preference for compact models into

the learning process, a bias known as a ‘sparse prior’. This training bias prefers — in the

80

5.1. Sparse Priors and Regularization 81

space of all possible models — to learn sparser solutions. Since a compact model is often

also an efficient one, all the training methods we present in this chapter are biased in one

way or another toward producing sparse models (although they differ considerably in the

manner in which that bias is implemented). Thus, all these methods can all be considered

sparse priors, in a very broad sense.

However, the term ‘sparse prior’ is often used to refer more specifically to specific

regularization methods. Regularization simply means selecting a level of model complexity

appropriate for the task, particularly to avoid overfitting (common) or underfitting (less

common) the model to the training data. L1 and L2 regularizations are common in signal

processing [35], statistics [135], and NLP applications [145, 69]. These regularization

methods introduce a secondary objective — secondary, that is, to the primary model-

fit objective — which minimizes some measure of model complexity. That objective is

represented by a penalty term R, controlled by a hyperparameter λ, to balance between

overfitting and oversimplification of the model. In the context of learning a least-squares

linear regression model w, we perform the following minimization:

ŵ = argmin
w

(Aw − y)2 + λR (5.1)

L1 regularization [175] penalizes the sum of the absolute values of the model parame-

ters — i.e., the L1 norm of the model vector (R = ||w||). This penalty forces many model

parameters to 0, producing sparse models [128]. This normalization can be effective in

training compact conditional probability models, and is often applied to discriminative

NLP modeling tasks. However, penalizing L1 does not yield a useful objective function

for training a generative model. In the case of a PCFG, the sum of the probabilities for

each parent non-terminal is 1, so the L1 norm of the overall model is simply the size of the

non-terminal set V . While |V | is a meaningful component of overall model complexity,

and a significant predictor of inference cost (see Section 5.6), it is not the most important

one.1. We will consider another method of controlling |V | in Section 5.2, but we will focus

our exploration of sparse priors on other methods.

L2 regularization [176] penalizes the sum of the squared model weights (R = ||w||2).2

1For example, recall the comparison of various grammars in Table 3.2. Although the non-terminal set of

the parent-annotated grammar is approximately 6× that of the latent-variable grammar, the dramatically

smaller ruleset yields faster inference under most grammar-intersection approaches.
2L2 regularization and related methods go by a variety of names, including Tikhonov regularization,

the TikhonovMiller method, the PhillipsTwomey method, and Ridge Regression.

5.1. Sparse Priors and Regularization 82

L2 regularization rewards small parameter values, and does not force weights to 0, so

it generally does not yield as sparse a model as L1. At the extreme, L2 regularized

PCFG training would yield a fully-populated grammar matrix with a perfectly flat weight

distribution (i.e., every possible grammar production, each with an infinitesimal weight).

Although L2 regularization might be an effective smoothing method, it is unlikely to yield

sparse and efficient PCFG models.

L0 regularization [2, 164, 112] penalizes all non-zero parameters equally (R =
∑

i Iwi 6=0).

This objective disregards the magnitude of the weights, instead counting and weighting

equally all non-0 parameters. When applied to PCFG training, the L0 norm is simply the

size of the ruleset, and L0 regularization reduces |P |. Thus, L0 regularization may be a

profitable approach for training efficient PCFGs. L0 optimization consists of selecting the

minimum-loss feature subset. Unfortunately, this feature-selection problem is NP-Hard

[127], so L0 is generally impractical when the feature-set is large; however, we will consider

a greedy analog thereof in Section 5.4.

5.1.1 Uniform Parameter Pruning

After each split, merge, and smoothing phase of the split-merge process (as described in

Section 2.9), we learn production probabilities using expectation maximization. As EM

converges, some rules will be deemphasized, such that eventually the observed fractional

counts are nearly 0. This is in some ways similar to the weight pruning of L1 regulariza-

tion — in both cases, an implementation will usually specify a small ε below which weights

will be set to 0.3 In the Berkeley Parser grammar training system, we prune rules between

each EM iteration, at a threshold which defaults to ε = 10−30. Figure 5.1 demonstrates

the effect of varying ε across a wide range. We find that ε can be increased considerably

(reducing the resulting model size) before accuracy begins to degrade. And as demon-

strated in Table 5.1, the more compact model yields an improvement of 45% in inference

speed, along with a small gain in accuracy.4 Note that the rule-pruning threshold ε is used

only during grammar training, and is separate from any pruning done during inference.

3The limitations of floating-point arithmetic imply such a threshold on any practical machine; speci-

fying ε allows a larger — and configurable — threshold.
4Note: in this chapter, we will examine the training methods separately. In Chapter 7, we will present

trials combining the approaches from this chapter with those from chapters 4 and 6.

5.2. Merge Fraction 83

●

●

● ● ●
●

● ●
● ● ● ●

● ● ●

1e−04

1e−05
1e−15 1e−30 1e−50

70

75

80

85

90

1e+06 2e+06 3e+06 4e+06 5e+06

Size

F
−

s
c
o

re

Figure 5.1: Parameter Pruning Accuracy vs. grammar size as the rule-pruning thresh-

old is varied from 10−4 to 10−60 (with selected thresholds marked). Averaged over 8

grammars, trained on WSJ sections 02-21, and evaluated using exhaustive inference on

section 22. The Berkeley Parser’s trainer defaults to a threshold of 10−30. We find that

reducing that threshold does not improve performance, and that we can in fact increase

the threshold to 10−6 and reduce the grammar size by 39% with no loss of accuracy.

5.2 Merge Fraction

In the merge phase of split-merge training, we re-merge a portion of the current set of

non-terminal splits. Standard practice since Petrov et al. [142] has been to merge 50%

of the candidate splits. In Section 4.2.2, we found that merging 55% produced a slightly

smaller grammar and a minor efficiency gain, along with a considerable gain in accuracy.

Before examining merge objective functions (which rank the merge candidates), we will

5.3. Merge Objective Functions 84

ε Size (|P |)
Exhaustive Pruned

F1 w/s F1 w/s

10−30 3215k (42.9k) 88.7 (.23) 10.3 88.6 (.17) 1952

10−15 3509k (40.9k) 88.8 (.24) 12.3 88.7 (.27) 2163

10−6 2581k (37.9k) 88.9 (.20) 14.6 88.8 (.16) 2837

Table 5.1: Pruned inference at selected operating points from Figure 5.1. Performed with

a complete-closure model [21] and beam-search guided by a lexical prioritization model

[19]. At ε = 10−6, we find a 45.3% improvement in speed, along with a slight gain in

accuracy and reduction in variance.

explore operating points for this merge fraction hyperparameter.

A considerable body of work supports the benefits of the merge phase. Thus, we can

exclude values near 0 (i.e., those that retain nearly all splits). While a merge fraction near

1 — and a commensurately larger number of training cycles — might be interesting, the

dramatic increase in training time is impractical. Thus, we evaluated 4-, 5-, and 6-cycle

training at merge fractions between .25 and .7. Figure 5.2 plots the average accuracies

obtained at various operating points (for clarity, this plot includes merge fractions between

40% and 65%). Unsurprisingly, in each case a 6-cycle grammar produces the highest

accuracy and lowest speed, and a 4-cycle grammar the inverse. Merging 55% at each cycle

produces grammars with the most favorable performance — a combination of maximum

accuracy and superior speed (vs. the 40%-merge grammars, which provide comparable

accuracy, but at a speed penalty of approximately 10%). Thus, we will use a 55% merge

hyperparameter for all grammars trained in the remainder of this chapter.

5.3 Merge Objective Functions

As discussed in Section 2.9, the merge phase of latent-variable grammar training improves

generalization and constrains the size of the grammar, allowing more training cycles (typ-

ically 5 or 6, whereas splitting without merging is usually limited to 4) and thus more

splits of certain non-terminals, when justified by the training data. All corpus-based

PCFG training methods learn model weights from training data. We can think of the

merge phase as automatically adapting the structure of the model as well (specifically the

set of split non-terminals).

5.3. Merge Objective Functions 85

●

●

●

87.5

88.0

88.5

2000 2250 2500 2750

Words per Second

F
−

s
c
o
re

Merge

● 40%

45%

50%

55%

60%

65%

Figure 5.2: Accuracy vs. speed of grammars trained at different merge fractions. Averaged

over 12 grammars trained at each operating point, and evaluated on WSJ section 22.

The regularization methods discussed in Section 5.1 adapt model weight training,

biasing weights in a direction favorable to efficient inference — in particular, L1 forces

some of those weights to 0, thus reducing the memory footprint of the model. We will now

consider analogous methods which alter merge candidate selection to introduce a similar

bias.

During each cycle of LV grammar training, we split each non-terminal into 2 substates,

and learn appropriate weights via EM. To constrain the model size, we must then select a

portion of those splits to retain, and a portion to discard (re-merge). We rank candidate

state splits by an estimate of the cost of re-merging the substates. In most cases, the cost

function is chosen to approximate the potential loss in accuracy if the split is re-merged.

Petrov et al. [142] presented a likelihood-based approach. To estimate the cost of

re-merging a split non-terminal, we compute two probability estimates for each training

5.3. Merge Objective Functions 86

tree — one probability retaining the split and one with the split re-merged (P and Pn

respectively). The product of all estimates over all sentences wi in the training corpus

yields an approximation of the global likelihood loss if the split is re-merged.

∆L(A1, A2) =
∏
i

∏
n∈Ti

Pn(wi, Ti)

P (wi, Ti)
(5.2)

This likelihood-based merge criteria can be computed efficiently during training, and is

in accordance with the overall likelihood objective of EM training. It has proven effective

in the Berkeley Parser, and has been integrated into other L-PCFG learning frameworks as

well (e.g. Le Roux et al. [109]). However, likelihood loss is not the only potential objective

function for merge candidate selection; a wide array of other objectives are possible, and

to our knowledge, few have been explored. In some cases, alternate merge objectives

may better model the desired evaluation criteria or produce a grammar better-suited for a

potential application domain. We adapted the grammar training system from the Berkeley

Parser [142], adding the ability to rerank merge candidates by arbitrary functions. Each

of the objective functions we will consider incorporates both an accuracy metric and an

efficiency metric, allowing a smooth tradeoff between the two.

More formally, let f(A1, A2) be a function that prioritizes a state split A1, A2 according

to some desired criterion, and r(f(A1, A2)) a ranking function which assigns ordinal ranks

to candidate state splits, as prioritized by f). Let â(A1, A2) be a function estimating

the accuracy impact of a state-split and ê(A1, A2) an analogous function estimating the

efficiency effects.5 We can then vary the operating point from entirely accuracy-driven to

100% efficiency-driven, using the following function:

rank(A1, A2) = λ · r(â(A1, A2)) + (1− λ) · r(ê(A1, A2)) (5.3)

In the following sections, we will examine and compare several candidates for â(A1, A2)

and ê(A1, A2). This approach is in many ways similar to the speed-accuracy tradeoff in

Eisner and Daumé [63] and Jiang et al. [88], although they operated in a different domain,

using reinforcement learning to train efficient agenda parsers.

5Equation 5.2 is a natural candidate for a baseline â(A1, A2).

5.4. Greedy L0 Merge Objective 87

λ Size (|P |)
Exhaustive Pruned

F1 (σ) w/s F1 (σ) w/s

0 4215k (40.6k) 88.7 (.23) 10.7 88.6 (.17) 1968

.25 3903k (36.5k) 89.0 (.16) 10.4 88.9 (.14) 1959

.40 2450k (33.7k) 88.9 (.30) 10.0 89.1 (.21) 2027

.45 1304k (53.6k) 88.7 (.15) 12.8 88.9 (.15) 2086

.5 390k (64.5k) 86.7 (.37) 16.5 87.2 (.33) 2228

Table 5.2: Greedy L0 Merge Objective — selected operating points from Figure 5.3. At

λ = .45 — before accuracy begins to decline — the model size is reduced greatly, but the

gains in parsing speed are modest — 19% for exhaustive inference and 6% for pruned.

Pruned inference trials performed with a complete-closure model [21] and beam-search

guided by a lexical prioritization model [19].

5.4 Greedy L0 Merge Objective

Although true L0 optimization is NP-Hard, greedy approximations thereof are tractable,

and can be quite effective [127]. In this section, we consider one such method, wherein the

greedy feature-selection is done at the time of merge candidate selection. In this merge

objective, we explicitly target the rule count of the post-merge grammar. We retain

Equation 5.2 as â(A1, A2), and ∆|P | as ê(A1, A2) yielding the following ranking function:

r(A1, A2) = λ · r(∆L(A1, A2)) + (1− λ) · r(∆|P |(A1, A2)) (5.4)

We trained 8 grammars on WSJ sections 2-21 at each operating point 0 ≤ λ ≤ 1,

and evaluated on WSJ section 22. Figure 5.3 and Table 5.2 demonstrate that even this

simple approach can be quite effective, reducing the size of the PCFG by 69% with no

degradation of accuracy, and improving parsing speed by 19% and 6% (respectively) for

exhaustive and pruned inference. Although the speed improvement is not dramatic, we are

encouraged by the gain from even a very simple estimate of ê(A1, A2), particularly as the

gain was achieved without any loss of accuracy. In the following section, we will explore

incorporating direct accuracy and efficiency measurement into the training process.

5.4. Greedy L0 Merge Objective 88

●
●●●●●●●●

●

●

●

●

●

●

●
●

●
●●●

00.30.350.40.45

0.5

0.55

0.6

0.65

70

80

90

0e+00 1e+06 2e+06 3e+06 4e+06

Size

F
−

s
c
o
re

(a) Accuracy vs. grammar size (total productions)

●
●●●●●●● ●

●

●

●

●

●

●

●
●

●
● ●

●

0.4

0.5

0.6

0.7

70

80

90

20 40 60

Words per Second

F
−

s
c
o
re

(b) Accuracy vs. exhaustive parsing speed (w/s)

Figure 5.3: Greedy L0 Objective: accuracy vs. grammar size and speed as λ is varied

from 0 (likelihood) to 1 (pure rule count objective). Averaged over 8 grammars, trained on

WSJ sections 02-21, and evaluated using exhaustive inference on section 22. At λ = 0.45,

the grammar size is reduced by 69% and speed increased by 20% with no loss in accuracy.

5.5. Inference-Informed Merge Objective 89

5.5 Inference-Informed Merge Objective

Discriminative models are very effective for many NLP tasks, and are frequently ap-

plied to constituency parsing [66, 42, 151], and more specifically, to latent-variable models

[145, 146]. Discriminative PCFG training — in contrast to the generative training methods

we described in Sections 2.7–2.9 — incorporates inference. Although the training process

can be quite expensive, the resulting models are in some cases superior to their generative

equivalents. In many cases, that advantage is attributable to the flexibility in feature se-

lection permitted by log-linear discriminative modeling, but performing inference directly

into training may also aid in selecting the optimal model structure.

In this section, we incorporate accuracy and efficiency of actual inference (on a de-

velopment set) into the merge objective function. The cost of that evaluation might be

prohibitive if it required exhaustive inference with each merge candidate, but the pruning

approaches used throughout this thesis integrate well into the learning process.

The merge process (step 6 in LV grammar learning) thus subdivides into the following

steps:

• For each candidate pair:

• Re-merge the candidate split and train a prioritization model on the resulting gram-

mar.6

• Parse a sizable development-set, using beam-search guided by the prioritization

model and a complete-closure model (trained separately and shared across all train-

ing stages).

Using section 24 as a 32.8k-word development set, this inference requires approxi-

mately 40 seconds per merge candidate during cycle 3 (on an Intel Nehalem pro-

cessor) and 2 minutes per candidate at cycle 6.7 Since each inference run, and in

fact each sentence, is independent, this ranking function would parallelize smoothly

across multiple cores or over a large cluster, but accurate comparison of inference

speeds requires that the cores or cluster nodes be homogenous and not subject to

interference from other processes. To limit potential interference from unrelated

6Prioritization model training can be performed effectively on parses constrained by the gold-chart, so

this step it is very efficient, usually training in only a few seconds.
7Training the pruning models consumes over 70% of that time, and is a logical target for optimization,

if training time becomes a bottleneck.

5.5. Inference-Informed Merge Objective 90

tasks, we limited grammar training tasks to a single node. Overall, grammar train-

ing requires approximately 24-36 hours. We can reduce that training cost somewhat

further if we use the baseline likelihood-loss estimate to limit the set of merge can-

didates examined. In general, the splits ranked highest by that criteria are quite

important (and should be retained), while the splits ranked lowest will (nearly) al-

ways be re-merged. We are attempting to discriminate between the candidates near

the ‘cutoff’, and choose the most appropriate to merge. Thus, we can exclude those

candidates near the top and bottom of the likelihood ranking, and measure effi-

ciency only on the ‘middle’ splits. The trials reported here examine all candidates,

but limiting inference to 50% of the candidates produces similar results.

• Rank the potential merges by Equation 5.3 — in this case, â(A1, A2) and ê(A1, A2)

are determined empirically (rather than estimated) over a sizable development set.

Pruning during training will certainly bias the choices of retained splits (vs. those

splits which might be chosen were we to perform exhaustive search). However, the pruning

models used for inference in this reranking function are very similar to those we normally

use when parsing with the final model, so any bias introduced should contribute positively

to the pruned performance of the final grammar.8

5.5.1 Training With An Inference-Informed Objective

As evidenced in Figure 5.4 and Table 5.3, the inference-informed merge objective appears

to be dominated by noise, and did not provide a smooth tradeoff between accuracy and

efficiency. We found instead a very small accuracy gain9 and inference speed approximately

flat from λ = 0 to λ = 1.

Limited subsequent experiments indicate that this counterintuitive result is at least

partially attributable to the relatively small size of the development-set (approximately

8We used section 24 as the development set during training, the same section used to tune the complete-

closure model. Reusing the same section may produce slightly more accurate cell-closure during the merge-

objective inference; this may bias the set of retained splits somewhat but the bias should be toward those

splits which perform well under an accurate complete-closure model, which we will generally have during

final inference.
9A stratified shuffle test finds the accuracy gain significant at the .05 level, but a gain of this magnitude

is unlikely to benefit downstream applications.

5.5. Inference-Informed Merge Objective 91

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.4

0.5

0.6

88.8

88.9

89.0

10.5 11.0 11.5 12.0 12.5

Words per Second

F
−

s
c
o
re

Figure 5.4: Accuracy vs. speed for grammars trained using an inference-informed merge

objective. Trained on WSJ sections 02-21 and evaluated on section 22.

λ Size (|P |)
Exhaustive Pruned

F1 (σ) w/s F1 (σ) w/s

0 3131k (57.6k) 89.0 (.19) 10.6 88.8 (.28) 2087

.25 3216k (50.4k) 88.9 (.13) 11.2 88.8 (.20) 2165

.50 3119k (73.1k) 88.8 (.24) 12.0 88.9 (.21) 2206

.75 3116k (95.6k) 88.9 (.32) 12.4 88.9 (.24) 2059

1 3140k (80.9k) 88.8 (.30) 11.3 88.8 (.37) 2069

60k-sentence dev-set

0 3585k (78.5k) 89.0 (.22) 10.4 89.0 (.12) 1982

.50 3538k (72.9k) 88.9 (.27) 10.9 88.9 (.25) 2026

Table 5.3: Selected operating points from Figure 5.4, and trials with a larger development

set at two selected operating points.

5.5. Inference-Informed Merge Objective 92

32k words). Inference speeds are high enough during the early cycles that real efficiency

differences between splits are obscured by timing noise, so the splits chosen are not repre-

sentative of the intended objective. Accuracy measurements during training are similarly

obscured by noise, again — we believe — due to the limited dev-set. In fact, although we

might anticipate this objective to reduce the variance in accuracy between grammars, we

find that variance increases slightly vs. that of the other objectives.

To (partially) address this concern, we combined the full training set with several

repetitions of sections 00 and 24, creating an expanded dev-set of approximately 60k

sentences and 1.4m words. Evaluating accuracy (during training) on the training set is

perhaps not ideal, but should not overfit any more than the standard likelihood metric

(also evaluated on the training set), and including the combination of sections 00, 2-21,

and 24 produces a more diverse objective than the small dev-sets would alone.

Naturally, performing inference on this larger corpus is considerably more expensive,

so we limited these trials to two operating points —λ = 0 and .5. Table 5.3 reports these

trials, as well as selected operating points from the trials which performed inference only

on section 24. The larger dev-set makes little difference in either accuracy or efficiency —

certainly not enough to warrant the training cost.

These trials certainly do not exhaust the possibile methods of incorporating inference

into the split-merge process. Thus far, we have examined each merge candidate in isolation,

which may obscure interactions between merged non-terminals. To observe (and perhaps

benefit from) those interactions, we could sample random sets of merge candidates, and

examine the resulting grammars in their entirety. That is, if we are merging half of all

merge candidates from the ‘middle’ 50% (as ranked by likelihood), we select 50% of that

50%, merge the selected candidates, and perform inference as before. We can then evaluate

an entire grammar using same accuracy and efficiency metrics applied previously to an

individual merge candidate. Preliminary trials using this method do not demonstrate any

improvement over the other inference-informed methods, and the training method is even

more costly than direct inference on a large dev-set (well over a month of training on our

evaluation cluster). Thus, we will instead move on to considering an alternate method

of estimating ê(A1, A2) for merge candidates, a method which can achieve most of the

benefits of inference-informed training at a very reasonable cost.

5.5. Inference-Informed Merge Objective 93

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

86.5

87.0

87.5

88.0

88.5

89.0

20 40 60

Speed (w/s)

F
−

s
c
o

re

(a) Exhaustive inference

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

87.5

88.0

88.5

89.0

2000 2250 2500 2750

Speed (w/s)

F
−

s
c
o

re

(b) Beam search, guided by a lexical prioritization model and con-

strained with a complete-closure model

Figure 5.5: Accuracy and efficiency of a large array of latent-variable grammars, trained

on WSJ sections 02-21, and evaluated on section 22.

5.6. Modeled Merge Objective 94

5.6 Modeled Merge Objective

We found in Section 5.4 that penalizing |P | reduces the grammar size greatly, but provides

a more modest improvement in parsing speed. This differential is unsurprising, since most

grammar productions are lexical rules (nearly 60% in the baseline grammars). Lexical

productions do not greatly impact inference time, as they are only accessed when popu-

lating span-1 chart cells. But an objective function based on ∆|P |(A1, A2) penalizes all

productions equally, overemphasizing the effectiveness of removing a lexical production.

In this section, we consider attributes of a grammar other than |P | which impact efficiency

of inference. Additional binary rules are are likely to add considerably more cost than

lexical rules, since they must be accessed once per midpoint, in each cell (O(n3)).10 Thus,

a more sophisticated estimate of ê(A1, A2) may better predict the efficiency impact of a

merge candidate, and lead to greater efficiency gains at a comparable operating point.

To obtain inputs for our model of ê(A1, A2), we began with a large number of latent-

variable grammars, trained on WSJ text. We varied the random initialization seeds, the

number of training cycles, and the percentage of non-terminal splits merged during each

cycle. Figure 5.5 plots the accuracy and efficiency of each of these grammars. In most

other accuracy trials reported in this thesis, we report averages over random seeds; in this

case, we want to incorporate the observed variance, so Figure 5.5 displays the maximum

speed obtained with each grammar, over 5 separate trials. We then created a regression

model to predict the observed speeds, using the following grammar attributes:

• VPhrase : The number of phrase-level non-terminals11

• VPOS : The number of preterminal (part-of-speech) non-terminals

• Pb : Binary rule count

• Pu : Unary rule count

• Pl : Lexical rule count

• µ(PPOS) : Mean preterminal rule-count (i.e., the number of lexical children of each

preterminal)

10Unary rules are accessed once per cell, and are thus between the two extremes.
11The vocabulary of a PCFG is formally a single set, but in the linguistic grammars of interest here,

the phrase-level labels and part-of-speech tags are disjoint sets.

5.6. Modeled Merge Objective 95

Feature
Pruned Exhaustive

β p-value β p-value

VPhrase -.997 1.46× 10−10 -.135 < 2× 10−16

VPOS -1.67 1.73× 10−13 - -

Pb 8.12× 10−4 < 2× 10−16 8.813× 10−5 < 2× 10−16

Pu - - 2.053× 10−4 .0089

Pl - - −4.402× 10−5 2.02× 10−9

µ(pPOS) - - .0110 .00028

D̃r -.207 1.26× 10−8 -.0102 .00911

D̃c -21.2 3.90× 10−13 -1.585 .00191

Table 5.4: Regression coefficients and P-values of the final linear model predicting pruned

inference speed. The pruned model accounts for the vast majority of the variance in speed

(Adjusted R2 = .973).

• D̃r : Median row density of the binary grammar matrix (i.e., the number of child

pairs for each phrase-level parent)

• D̃c : Median column density of the binary grammar matrix (i.e., the number of

parents for each child pair)

With those grammars and appropriate pruning models, we recorded parsing speeds

on WSJ section 22. We fit a least-squares linear model predicting those inference speeds

using the grammar features listed and the lm function in the open-source R statistics

package [149]. We found in our initial model that several of the features did not contribute

significantly to the model predictions; we omitted those features with P-values > .05 (Pu,

Pl, and µ(PPOS), for pruned parsing). Table 5.4 includes P-values and model coefficients of

the final regression models. The pruned-parsing model explains over 97% of the observed

variance in parsing speed —R2 = .973 when adjusted for the number of input variables;

a similar model for exhaustive parse speeds is not as tight, but still explains 89.7% of the

observed variance.

One point of particular interest regarding this linear model is the predicted effect of

additional binary rules. Our intuition is that — holding all else equal — adding a binary

5.6. Modeled Merge Objective 96

λ Size (|P |)
Exhaustive Pruned

F1 (σ) w/s F1 (σ) w/s

0 3758k (53.3k) 88.8 (.25) 12.1 88.6 (.21) 2083

.25 3663k (24.5k) 88.8 (.19) 13.0 89.0 (.11) 2095

.45 2637k (202.5k) 88.6 (.31) 19.4 88.7 (.25) 2399

.50 1993k (130.6k) 87.5 (.47) 37.4 87.8 (.43) 2743

Table 5.5: Selected operating points from Figure 5.6.

rule to a PCFG will have greater negative impact on parsing speed than unary or lexical

rules. Recall that we generally must intersect with the binary grammar O(n3) times,

whereas access the lexical productions only O(n) times — once for each span-1 cell —and

the unary productions once in each cell (O(n2)). Thus, we find it somewhat surprising

that the coefficient for Pb is positive — i.e., the model indicates that adding binary rules to

a grammar increases parsing speed.12 Clearly, that cannot be true in the extreme, but —

within the relatively narrow range of grammars we examined — the other factors have

greater impact on efficiency. Note that D̃r and D̃c encode other attributes of the binary

ruleset, and are thus positively correlated with |Pb|. However, even that correlation does

not completely explain the unexpected result. The coefficient for |Pb| remains positive for

a model excluding D̃r and D̃c. In fact, the same held true for any model except one fit on

only |Pb|, which produces the expected negative coefficient (and R2 of .851).

5.6.1 Training With A Modeled Merge Objective

We then used the linear model described in Table 5.4 as ê(A1, A2), predicting the efficiency

impact of each candidate merge. That is:

ê(A1, A2) = −.951 · VPhrase − 2.02 · VPOS + .00082 · Pb − .356 · D̃r − .125 · D̃c (5.5)

As in Section 5.4, we retained Equation 5.2 as â(A1, A2). Figure 5.6 plots size and accuracy

of the resulting grammars, over a variety of operating points, and Table 5.5 presents size,

accuracy, and inference speed for selected operating points along those curves. Grammar

training guided by this linear model improves over the rule-count objective at nearly every

12The two models coefficients differ, but the directionality of this effect is consistent between the two.

5.6. Modeled Merge Objective 97

●●●●●
●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

0.4

0.5

0.6

75

80

85

50 100

Words per Second

F
−

s
c
o

re

(a) Exhaustive inference

●
●

●
●

●

● ● ● ●

●

●

●

●

●

●●

●

●

●

●

●

0.4

0.5

0.6

75

80

85

2500 3000

Words per Second

F
−

s
c
o

re

(b) Pruned inference

Figure 5.6: Accuracy vs. speed for grammars trained using a modeled merge objective.

Trained on WSJ sections 02-21 and evaluated on section 22.

5.7. Results and Discussion 98

● ●
●

●
● ●

●

●
●

●
●●●

●

●●

●
●

●

●

●

84

86

88

2000 2250 2500 2750 3000

Words per Second

F
−

s
c
o
re

Method

● Discriminative

Modeled

Rule−Count

Figure 5.7: Accuracy vs. speed each merge objective function. The modeled objective

provides the greatest speed gain before accuracy begins to fall off. Trained on WSJ sections

02-21 and evaluated on section 22.

operating point. We find a similar relationship between accuracy and the efficiency priori-

tization parameter λ as that in Table 5.2, but the efficiency gains are considerably greater

for the modeling approach. Overall, we find this method yields a meaningful efficiency im-

provement with little loss in accuracy, providing an advantageous and controllable tradeoff

between accuracy and efficiency.

5.7 Results and Discussion

Figure 5.7 compares the merge objectives of sections 5.4–5.5, again on WSJ section 22.

Note that the inference-informed results are all clustered within a narrow range, and that

the modeled objective provides a much faster operating point than the rule-count objective

before accuracy begins to decline. In fact, the modeled objective can be pushed near 3000

5.7. Results and Discussion 99

Grammar |P |
Exhaustive Pruned

F1 (σ) w/s F1 (σ) w/s

WSJ

Baseline 4215k (40.6k) 88.7 (.17) 9.5 88.5 (.30) 1910

Uniform Pruning 2581k (37.9k) 88.7 (.26) 16.6 88.7 (.15) 2838

Rule-count Obj. 2450k (33.6k) 88.8 (.12) 9.7 88.9 (.15) 1950

Modeled Obj. 3160k (97.2k) 88.7 (.23) 14.0 88.8 (.21) 2238

Switchboard

Baseline 2406k (20.0k) 86.6 (.17) 7.8 86.8 (.34) 1633

Uniform Pruning 1096k (10.3k) 86.8 (.11) 12.4 87.1 (.07) 2398

Rule-count Obj. 1521k (45.7k) 86.6 (.17) 7.6 87.3 (.13) 1721

Modeled Obj. 1899k (57.0k) 86.9 (.22) 10.0 87.2 (.19) 1712

Chinese

Baseline 3073k (103.1k) 80.6 (.46) 3.5 79.3 (.60) 744

Uniform Pruning 1933k (39.3k) 80.8 (.23) 4.8 79.9 (.77) 1152

Rule-count Obj. 1909k (69.2k) 80.6 (.46) 3.5 80.4 (.43) 742

Modeled Obj. 2558k (73.7k) 81.0 (.55) 5.6 80.1 (.78) 811

Table 5.6: Test-set trials of grammars trained with selected grammar training methods

from this chapter. All grammars trained merging 55% of non-terminal splits at each cycle.

words/second, although we could almost certainly obtain a comparable speed — and higher

accuracy — with a 4- or 5-cycle grammar.

Table 5.6 presents test-set trials on WSJ, Switchboard, and Chinese. We trained uni-

form pruning grammars at ε = 10−6, and the rule-count and modeled objectives at a

relatively conservative λ of .4 (we omitted the inference-informed objective from these

trials, as the modeled objective outperformed it handily). For all genres, we find that

uniform parameter pruning and the modeled objective each provide a considerable effi-

ciency gain with little or no accuracy degradation. We will present trials combining these

methods, along with those from Chapter 4, in Chapter 7.

In Table 5.7, we present similar trials, applying grammars trained on WSJ text with

a modeled merge objective to the English Web Treebank (analogous to the experiments

in Section 4.4.1). We observed a speed improvement comparable or greater than that

5.7. Results and Discussion 100

Genre
Baseline Modeled

F1 (σ) w/s F1 (σ) w/s

Email 74.0 (.30) 926 73.9 (.48) 1277

Weblogs 76.0 (.20) 339 76.1 (.46) 475

Reviews 74.8 (.28) 271 74.7 (.47) 386

Newsgroups 72.9 (.28) 250 72.9 (.41) 341

Answers 73.7 (.36) 1105 73.7 (.37) 1238

Table 5.7: Accuracy and speeds of modeled grammars on the English Web Treebank test

sets. All grammars trained on WSJ text, without domain adaptation. Inference performed

using a complete-closure model [21] and beam-search guided by a lexical prioritization

model [19].

obtained for in-domain data, again with no loss in accuracy.

In summary, we presented several novel methods of optimizing LV grammars for effi-

ciency, yielding speedups of up to 75% and 49% respectively for exhaustive and pruned

inference. We found that we could obtain these efficiency gains with little or no loss in

accuracy, and that the results are consistent across several genres. In Chapter 7, we will

combine some of the methods from this chapter with those from chapters 4 and 6, yielding

further gains in both efficiency and accuracy.

Chapter 6

Chart Decoding Methods

Using the methods presented in previous chapters, we can populate a chart structure very

quickly, encoding a packed parse forest in the chart (see Figure 6.1, repeated here from

Chapter 2 for convenience). We must then extract a target tree from that forest, and the

decoding method chosen has considerable impact on both accuracy and efficiency. In this

chapter, we will describe several decoding methods, compare them on both exhaustive

and pruned inference, and present approximation methods that improve efficiency with

minimal impact on accuracy.

DT → The 1

0,10,1

NN → fish 1

1,2

NN → market 2/3
VB → market 1/3
VP → VB 1/12

2,3

NN → stands 1/2
VB → stands 1/2
VP → VB 1/8

3,4

RB → last 2/3
VB → last 1/3
VP → VB 1/12

4,5

NP → DT NN1
1/4

@VP → NP 1/4
0,2

@NP → NN NN2
2/3

NP → NN NN2
1/9

@VP → NP 1/9
1,3

@NP → NN NN3
1/3

NP → NN NN3
1/18

@VP → NP 1/18
2,4

NP → NN RB4
1/18

VP → VB RB4
1/6

@VP → NP 1/18
3,5

NP → DT NP1
1/36

S → NP VP2
1/48

@VP → NP 1/36
0,3

NP → NN @NP2
1/18

S → NP VP3
1/72

@VP → NP 1/18
1,4

VP → VB @VP3
1/216

S → NP VP4
1/216

2,5

NP → DT NP1
1/72

S → NP VP3
1/288

@VP → NP 1/72
0,4

S → NP VP3
1/54

1,5

ROOT → S 1/216
S → NP VP3

1/216
0,5

Figure 6.1: A CYK chart populated with a packed parse forest — a compact representation

of many unique parse trees.

101

6.1. Viterbi Decoding 102

6.1 Viterbi Decoding

The simplest and most common decoding method finds the most probable complete tree

populated in the forest F . That is, we maximize:

ŷ = argmax
y∈F

P (y|G) (6.1)

We often call this method Viterbi decoding, because of the obvious correlation to

the Viterbi algorithm for finding the single best path through a Hidden Markov Model

[178]. As described in Section 2.3, we often maintain as part of the chart structure, a

set of backpointers ζ, recording the highest scoring path to each observed non-terminal.

Given these backpointers, we simply start with the start symbol S† in the topmost cell,

and recurse downward through the start, following the backpointers and constructing the

maximum-likelihood tree ŷ. If we choose to omit ζ during the initial pass, we can again

recurse downward from S†, but we must recompute the highest-scoring path for each

non-terminal by re-intersecting with the grammar.

6.2 Approximate Minimum-Bayes-Risk Decoding

Minimum-Bayes-Risk (MBR) decoding attempts to find the candidate hypothesis which

minimizes the expected loss according to the evaluation criteria. MBR methods are widely

used in speech recognition [72] and machine translation [104], and have been shown to

improve performance in both domains. The standard F1 parse evaluation metric (described

in Section 2.4) averages precision (LP) and recall (LR) of span labels, so minimizing risk

under this evaluation must balance expected precision and recall.

Goodman [74] proposed a max-recall decoding method, which properly belongs to a

family of methods we call approximate minimum-Bayes-risk (AMBR) methods. Figure 6.2,

borrowed from Goodman, demonstrates that this max-recall method is able to produce

parse trees which recover more correct nodes than the Viterbi parse, even if the resulting

tree is not permitted by the grammar. Note: because standard parseval metrics do

not score factored non-terminals or unary productions, true MBR is ill-defined — we can

always improve recall by adding another unary production. The methods we describe are

close approximations of true MBR, with bounds on unary chain length. The inside-outside

algorithm described in Section 2.6 computes the posterior probability γ(X) of each labeled

span. We can use those posterior probabilities to optimize LR, by maximizing γ(X).

6.2. Approximate Minimum-Bayes-Risk Decoding 103

Grammar

S → A C 0.25

S → A D 0.25

S → E B 0.25

S → F B 0.25

A,B,C
→ x x 1.0

D,E,F

Permitted Trees
S

C

xx

A

xx

S

D

xx

A

xx

S

B

xx

E

xx

S

B

xx

F

xx

Maximum-Recall

Tree
S

B

xx

A

xx

Figure 6.2: AMBR example from [74]. Trees are scored by the number of expected correct

labels. Each permitted tree scores 1 + .5 + .25 = 1.75. Although it is not permitted by

the grammar, the maximum-recall tree scores 1 + .5 + .5 = 2.

max(LR) = argmax
T∈τ

∑
X∈T

(γ(X)) (6.2)

Because this method optimizes recall of scored non-terminals, it will tend to predict

non-factored labels, even in contexts where a factored label (and an n-ary branching

structure rather than a strictly binary one) is more appropriate, and will overpredict

unary chains. We can introduce a term to penalize this spurious overgeneration, and

optimize LP instead:

max(LP) = argmax
T∈τ

∑
X∈T

(γ(X)− 1) (6.3)

Optimizing LP yields the opposite problem, overpredicting factored non-terminals

(producing very flat trees) and by avoiding prediction of unary productions. However,

by varying the overgeneration penalty, we can choose an operating point on the contin-

uum between max(LP) and max(LR).1

T̂ = argmax
T∈τ

∑
X∈T

(γ(X)− λ) (6.4)

At λ = 0, this is equivalent to Equation 6.2, and at λ = 1 to Equation 6.3. λ = 0.5

balances expected recall and precision equally, minimizing the expected loss according to

the F1 evaluation metric.

1See Appendix A of Hollingshead and Roark [83] for the full derivation.

6.3. Max-Rule Decoding 104

Inference with these methods is a 4-step process (in contrast to the 2-step process of

Viterbi search):

1. An inside pass, proceeding upwards through the chart and computing the inside

probabilities α of each labeled span.

2. A downward outside pass, computing the analogous outside probabilities β. Note

that the combination of steps 1 and 2 is a single cycle of the inside-outside algorithm

from Section 2.6, applied during inference rather than grammar induction.

3. An upward maximization pass, computing the argmax at each span and recording

backpointers (similar to the computations in the upward pass of Viterbi decoding)2

4. A downward decoding pass, which follows those backpointers and extracts the tree

Most grammars of interest split their non-terminal spaces, but downstream processes

(and thus our evaluation metrics) generally only consider the base (unsplit) non-terminals.

We can choose to perform the AMBR argmax over the split nonterminals or while summing

over splits of each base label. That is, in the maximization pass, we can accumulate scores

for each non-terminal (e.g. NP 0, NP 1, . . .), or we can instead accumulate a single score

for NP. We refer to these approaches as AMBR-Max and AMBR-Sum; we find it unclear

apriori which choice is superior, so we present results for each in Section 6.4.

6.3 Max-Rule Decoding

Petrov and Klein [144] presented a closely-related approach they call Max-Rule decoding.

This method alters the maximization step, optimizing the number of expected correct rules

(rather than the number of expected correct labels). Inference follows the same 4-pass

process as the AMBR methods, performing inside and outside probability calculations,

maximization, and finally decoding. However, instead of maximizing expectations over

labels, we instead perform the argmax over grammar rules:3

r(A → BC, i, k, j) =
∑
x

∑
y

∑
z

β(Ax, i, j)α(By, i, k)α(Cz, k, j)P (Ax → ByCz) (6.5)

T̂ = argmax
T∈τ

∏
X∈T

r(X) (6.6)

2See Goodman [74] for a full description of the maximization algorithm.
3This maximization function is taken directly from Petrov and Klein [144], with notation modified to

match that in Section 2.6.

6.4. Accuracy Evaluation 105

Vphrase VPOS Pb Pu Plex

WSJ

M-0 53 46 4240 236 52k

M-2 2870 46 13.2k 236 52k

Parent 6600 46 24.5k 736 52k

2-cycle 112 (0.9) 106 (0.7) 21.9k (539) 3639 (119) 205k (39)

4-cycle 244 (4.0) 248 (1.0) 166k (3.3k) 19.9k (1k) 747k (6k)

6-cycle 540 (19.2) 579 (6.6) 1.25m (42k) 100k (7k) 2.4m (40k)

SWBD

2-cycle 124 (0.9) 100 (0.7) 26.7k (681) 6.2k (107) 81k (2.0k)

4-cycle 280 (2.6) 227 (2.8) 174k (5.6k) 34.4k (851) 264k (2.0k)

6-cycle 664 (12.1) 480 (5.8) 1.1m (41k) 171k (6.3k) 742k (9.4k)

PCTB

2-cycle 102 (0.8) 75 (0.8) 11.6k (245) 3.6k (157) 165k (1.5k)

4-cycle 229 (2.1) 166 (2.1) 110k (3.4k) 16k (640) 556k (11k)

6-cycle 558 (3.7) 327 (3.7) 966k (18k) 80k (2.5k) 1.8m (44k)

Table 6.1: Summary statistics of WSJ, Switchboard, and Chinese grammars, includ-

ing vocabulary and rule-count distributions (binary, unary, and lexical). Statistics for

the Markov-0, Markov-2, and Parent-annotated grammars are repeated from Table 3.2.

Statistics for latent-variable grammars are averaged over 8 grammars trained with different

random seeds, and include standard deviations in parenthesis.

Petrov [144] also explored a related optimization that maximizes the sum of rule scores in

the tree, but found the product formulation superior, so we will constrain our experiments

to the latter. Note that computing r requires revisiting the grammar rules during the

maximization pass, a potentially expensive operation. In the next section, we compare

and contrast the behaviors of these decoding methods, evaluated on a wide range of

grammars.

6.4. Accuracy Evaluation 106

●

●
●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

30

40

50

60

70

80

90

0.00 0.25 0.50 0.75 1.00
Lambda

F
−

S
c
o
re

grammar

● 2−cycle
4−cycle
6−cycle
Parent−annotated
Markov−2
Markov−0

(a) AMBR-Max

●

●
●

●
● ● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

30

40

50

60

70

80

90

0.00 0.25 0.50 0.75 1.00
Lambda

F
−

S
c
o

re

grammar

● 2−cycle
4−cycle
6−cycle
Parent−annotated
Markov−2
Markov−0

(b) AMBR-Sum

Figure 6.3: Development-set accuracy of the AMBR approaches over λ values from 0–1.

Evaluated on WSJ section 22. Note that AMBR-Sum is much more robust to the choice

of λ, while AMBR-Max performance is more peaked (with the exception of the Markov-0

grammar, which does not split nonterminals, and thus has no splits to sum over).

6.4. Accuracy Evaluation 107

M0 M2 Parent 2-cycle 4-cycle 6-cycle

Beam width 25 100 200 100 150 200

Viterbi 61.1 72.2 78.1 81.9 (.43) 87.4 (.21) 88.8 (.13)

AMBR-Max 66.0 73.9 79.7 83.4 (.27) 88.4 (.17) 89.8 (.20)

AMBR-Sum 66.0 73.9 80.3 83.3 (.30) 88.3 (.25) 89.7 (.19)

Max-Rule 64.4 73.5 79.6 83.5 (.23) 88.7 (.16) 90.3 (.15)

Table 6.2: WSJ development-set accuracies of each decoding method, using near-

exhaustive inference (beam widths selected to minimize pruning error). Results for latent-

variable grammars are averages over 8 grammars trained with different random seeds, and

include standard deviations in parenthesis. AMBR approaches use a λ, selected to maxi-

mize accuracy on the same dev-set.

2-cycle 4-cycle 6-cycle

Beam width 100 150 200

Viterbi 80.5 (.62) 86.4 (.21) 87.2 (.16)

AMBR-Max 82.5 (.50) 87.7 (.14) 88.4 (.14)

AMBR-Sum 81.7 (.70) 87.5 (.19) 88.4 (.22)

Max-Rule 81.7 (.49) 87.8 (.15) 88.7 (.20)

Table 6.3: Switchboard development-set accuracies of each decoding method, using near-

exhaustive inference. AMBR approaches use the same λ values as Table 6.2.

6.4 Accuracy Evaluation

We evaluated each decoding method on a variety of genres and grammars.4 Table 6.1

shows summary statistics of each grammar. To execute these trials in reasonable time,

we executed a beam search, but with a beam determined empirically to be large enough

to minimize search errors. These trials are labeled as near-exhaustive, since they produce

results indistinguishable from exhaustive inference.

4Note: As discussed in Section 2.13, accuracy evaluations on the PCTB’s small development and test

sets may be quite noisy.

6.4. Accuracy Evaluation 108

2-cycle 4-cycle 6-cycle

Beam width 100 150 200

Viterbi 77.5 (.46) 82.7 (.65) 83.3 (.32)

AMBR-Max 79.7 (.39) 84.1 (.27) 84.1 (.29)

AMBR-Sum 79.7 (.39) 84.3 (.35) 84.8 (.29)

Max-Rule 79.4 (.56) 84.8 (.41) 85.4 (.34)

Table 6.4: Chinese development-set accuracies of each decoding method, using near-

exhaustive inference. AMBR approaches use the same λ values as Table 6.2.

6.4.1 AMBR

We begin by examining the behavior of both AMBR variants at various operating points.

As discussed in Section 6.2, we expect to balance precision and recall (and thus maximize

F1) at λ = .5. However, as demonstrated in Figure 6.3, the peak operating points for

both variants and all grammars are found at λ < .5. Maximum-recall parsing (λ = 0)

does not penalize additional label predictions, so the maximum score would be obtained

by predicting infinite unary chains (and a fully binary-branching tree). Since an infinite

chain is impractical, an implementation must bound the size of unary chain predictions.

Our implementation is more flexible than some (e.g., the Berkeley Parser allows only a

single level of unary parents at any span). We allow longer chains, but disallow repetitions

within the chain (i.e., PRN → S → VP → VB is permitted, but NP → NP. . . and VP →
S → VP. . . would be disallowed). Thus, the maximum length of a permitted unary chain

is |VPhrase| + 1 (one entry in the chain for each phrase-level non-terminal and a single

preterminal). In practice, the sparsity of the unary grammar matrix constrains the length

of these chains, and most observed chains are much shorter. This inherent bias toward

shorter unary chains increases the observed performance near λ = 0 and shifts the peak

operating point away from .5.

As demonstrated in Table 6.2, the two AMBR variants perform very similarly to each

other, providing a consistent gain over Viterbi search for all grammars. Figure 6.3 demon-

strates that AMBR-Sum is much less sensitive to the choice of λ, providing near-optimal

results from approximately .25–.6 on the larger grammars. Since the peak operating points

are similar, the greater stability of AMBR-Sum makes it a better choice for practical ap-

plications. In the remainder of our trials, we report only this variant.

6.4. Accuracy Evaluation 109

6.4.2 Max-Rule

Our expectation was that the AMBR approaches, which directly maximize a criteria

closely related to the evaluation metric, would outperform other decoding methods. How-

ever, max-rule shows further gains, improving over AMBR-Sum by .1 (for Switchboard)

to .5 (for WSJ and Chinese). Max-rule decoding clearly makes better use of the same

posterior probabilities used in the AMBR variants. One note of potential interest: In

previous work using a single latent-variable grammar, we found that max-rule decoding

under the Berkeley Parser’s coarse-to-fine pruning system produced a similar gain [60].

This gain was in line with previously-reported results [144]. In this work, we tested nu-

merous grammars trained with our variant of the Berkeley trainer (see Section 5.3). Those

grammars are incompatible with the Berkeley inference system, so we did not attempt to

replicate those earlier results on CTF pruning, but we expect the performance would be

comparable with the Berkeley CTF pruning system.

6.4.3 Error Analysis

Although F1 is a useful measure of overall parsing performance, many downstream ap-

plications benefit from a more granular evaluation, incorporating information about the

linguistic errors present in parser output. To our knowledge, the first broad-based study

of such errors (at least on modern parsers) was that of Kummerfeld et al. [105, 106].

We evaluated the output of each decoding method using the tools they developed in that

work; Table 6.5 compares the syntactic error patterns of each objective.5

For many of the classic parsing errors — including Clause Attachment; Coordination;

and Modifier-, NP- and PP- Attachment, AMBR decoding outperforms Max-Rule. How-

ever, it severely underpredicts unary productions. The gold trees in this development

set contain 7489 unary productions (combining the two subclasses). Viterbi search and

MaxRule decoding both recover a comparable number (7436.8 and 7353.0, respectively);

AMBR decoding recovers only 6604.0. In the detailed analysis in Table 6.5, unaries are

split across 2 categories — ’Single Word Phrase’, which includes unary parents of preter-

minals, and ’Unary’, encompassing all other unary productions. In combination, the two

account for an average of 383 additional errors in AMBR decoding vs. Viterbi, and 474

5The ’UNSET *’ categories contain bracketing errors which were not attributed to specific syntactic

categories. The underlying causes of those errors are widely varied, and the differences between decoding

methods are fairly small, so we will not attempt to analyze these unattributed errors.

6.4. Accuracy Evaluation 110

Error Category Viterbi AMBR-Sum Max-Rule

Clause Attachment 802.3 578.1 725.8

Coordination 598.1 499.0 536.3

Different label 550.3 461.5 478.3

Modifier Attachment 574.1 502.9 522.3

NP Attachment 516.6 402.4 438.4

NP Internal Structure 424.9 401.0 395.8

PP Attachment 1506.8 1284.9 1302.8

Single Word Phrase 551.0 630.1 500.9

UNSET add 156.1 226.3 130.0

UNSET move 242.3 219.6 221.8

UNSET remove 173.1 195.3 133.0

Unary 326.0 630.6 285.9

VP Attachment 194.8 233.9 173.3

XoverX Unary 1.0 1.0 1.0

Total 6617.2 6266.5 5845.1

Table 6.5: Bracketing errors attributed to various syntactic error classes, as measured on

WSJ section 22 by the Berkeley Parser Evaluator. Averaged over 8 6-cycle grammars.

Measured using complete-closure and guided beam search; near-exhaustive results are

similar. Error categories are described inKummerfeld et al. [105].

vs. Max-Rule. Note that the additional unary errors more than account for the total

difference between AMBR and Max-Rule; if AMBR’s unary performance were improved

to match that of Max-Rule, it would outperform Max-Rule overall.

Although Max-Rule and AMBR utilize the same posterior probabilities (of non-terminal

labels at each span), those posteriors combine probabilities of binary and unary produc-

tions. That is, if a non-terminal X has probability 1/3 of participating in a parse tree as

a binary parent at a particular span, and 1/6 as a unary parent (at the same span), the

posterior will combine those, recording only probability 1/2 for X at that span. Our Max-

Rule implementation follows that of the Berkeley Parser in computing unary probability

sums separately during decoding, and limiting each span to a single unary production.

Thus, revisiting the grammar during decoding serves to separate those two sources of

probability mass. This opens a possibility for further work in decoding, combining the

6.5. Relationship with Pruning 111

advantages of AMBR with those of Max-Rule — potentially improving accuracy and/or

avoiding the expense of grammar intersection during decoding.

6.5 Relationship with Pruning

Thus far, we have focused on near-exhaustive inference, which produces a very dense

chart, in which nearly every cell is populated with many non-terminals. Pruned search can

produce a much sparser chart, and may in some cases interact with subsequent decoding

in interesting and unpredictable ways.

For example, consider a simple beam search. Since Viterbi decoding retains only the

maximum-scoring non-terminal in each cell, beam search does not impact the resulting

tree, unless a non-terminal which would participate in that tree is mistakenly pruned from

the chart. Inside-outside chart population, however, accumulates probability sums, so

even non-terminals which do not participate in the final tree may contribute materially

to the chart scores. Thus, the alternate decoding methods we are examining may behave

much differently under beam search.

Cell-closure approaches, as described in Appendix A and implemented in the BUBS

parser, classify certain cells as highly unlikely to participate in the target parse, and do

not populate those closed cells. Unless a cell participating in the maximum-likelihood tree

is closed, these cell-closure methods have no effect on Viterbi search, but the reduction in

summed inside and outside scores may impact alternate decoding methods.

Conversely, the alternate decoding methods may in some cases be more robust to search

errors than Viterbi search. For example, if the complete-closure model closes a cell which

would otherwise participate in the maximum-likelihood tree, Viterbi search may fail to find

an alternate solution — in which case the parse fails — whereas the summed probabilities of

inside-outside methods can discover alternatives. The standard evalb bracket-evaluation

tool ignores parse failures. A failed parse may have considerable detrimental impact on

a downstream application, so for all evaluations in this chapter, we use a variant which

penalizes recall in the event of a parse failure, thus demonstrating the overall impact of

beam width on accuracy.

Table 6.6 compares the accuracy and speed of each decoding method under a variety

of pruning conditions, including complete-closure [21], beam search, and the combination

thereof. We chose beam search parameters that minimize parse failures, even under the

6.6. Efficient Approximations 112

more susceptible Viterbi search. We found the effects of the beam search and complete-

closure vary considerably between grammars and genres. In some cases (particularly with

smaller grammars), the pruning models supply enough additional information to improve

accuracy over unpruned search; when accuracy is degraded (as with the largest WSJ

grammars, the loss is typically fairly small, and the improvement in efficiency is quite

large).

Note also that — even with heavily pruned search — the accuracy gains of alternate

decoding methods come at a considerable efficiency cost vs. Viterbi decoding (more than

10× in most cases). In the following sections, we will consider several methods of allevi-

ating that cost.

6.6 Efficient Approximations

The results in the previous sections indicated consistent accuracy gains from alternate

decoding methods, but as shown in Tables 6.6–6.8, the accuracy improvements come at a

steep computational cost. In this section we will consider several less-costly approxima-

tions, in hopes of finding an efficient decoding method that provides an accuracy boost over

simple Viterbi decoding without incurring the computational cost of a full inside-outside

computation.

To avoid numeric underflow during inference, we generally represent observed non-

terminal probabilities in the log domain (loge(P)). Viterbi search requires only the maxi-

mum inside probability for each non-terminal, so we can use the Tropical semiring and ac-

cumulate logs very efficiently with simple arithmetic sums. For example, if computing the

probability of label A given the children B and C (P (A) = P (B)×P (C)×P (A→ BC)),

we can simply add the relevant log probabilities:

log(P (A)) = log(P (A→ BC)) + log(P (B)) + log(P (C))

This operation is handled very efficiently by modern hardware. However, the inside-

outside algorithm (Equation 2.5) operates in the real semiring instead, summing proba-

bilities over all paths. This requires that we accumulate log sums:

6.6. Efficient Approximations 113

●

●

●

●

●

●
●

● ●

81.0

81.5

82.0

82.5

83.0

83.5

10 20 30
Beam

F
−

S
c
o

re

Decoding
● Max−Rule

AMBR−Sum
Viterbi

(a) Guided beam search

●

●

●

●

●
●

● ● ●

82.0

82.5

83.0

83.5

84.0

10 20 30
Beam

F
−

S
c
o

re

Decoding
● Max−Rule

AMBR−Sum
Viterbi

(b) Guided beam search and complete closure

Figure 6.4: Accuracies of 2-cycle LV grammars at various pruning thresholds. Executed on

WSJ section 22, using a lexical prioritization model and λ selected to maximize accuracy

on that section. Evaluated with a variant of the standard PARSEVAL that penalizes recall

in the event of a parse failure.

6.6. Efficient Approximations 114

●

●

●

●

●

●

● ●
● ●

86.5

87.0

87.5

88.0

88.5

10 20 30
Beam

F
−

S
c
o
re

Decoding
● Max−Rule

AMBR−Sum
Viterbi

(a) Guided beam search

●

●

●

●

●

●

●
● ● ●

87.0

87.5

88.0

88.5

10 20 30
Beam

F
−

S
c
o
re

Decoding
● Max−Rule

AMBR−Sum
Viterbi

(b) Guided beam search and complete closure

Figure 6.5: Accuracies of 4-cycle LV grammars, using the same experimental settings as

Figure 6.4.

6.6. Efficient Approximations 115

●

●

●

●

●

●

●

●

●
●

86

87

88

89

90

10 20 30
Beam

F
−

S
c
o
re

Decoding
● Max−Rule

AMBR−Sum
Viterbi

(a) Guided beam search

●

●

●

●

●

●

●

●

● ●

86

87

88

89

90

10 20 30
Beam

F
−

S
c
o
re

Decoding
● Max−Rule

AMBR−Sum
Viterbi

(b) Guided beam search and complete closure

Figure 6.6: Accuracies of 6-cycle LV grammars, using the same experimental settings as

Figure 6.4.

6.6. Efficient Approximations 116

2-cycle 4-cycle 6-cycle

F1 (σ) w/s F1 (σ) w/s F1 (σ) w/s

Viterbi

Near-Exhaustive 81.9 (.43) 81 87.4 (.21) 24.4 88.8 (.13) 11.5

Complete-Closure 83.0 (.29) 979 87.8 (.16) 279 89.0 (.10) 114

Beam-Search 82.0 (.40) 2473 87.4 (.21) 494 88.8 (.13) 192

Beam-Search+CC 83.3 (.29) 6009 87.7 (.09) 2210 88.9 (.13) 859

AMBR-Sum

Near-Exhaustive 83.3 (.30) 11.4 88.3 (.27) 3.4 89.7 (.19) 1.4

Complete-Closure 84.1 (.27) 74 88.2 (.22) 30.7 89.4 (.20) 10.9

Beam-Search 83.2 (.31) 267 88.3 (.24) 42.0 89.7 (.17) 15.1

Beam-Search+CC 84.0 (.31) 1029 88.3 (.23) 211 89.4 (.16) 65.4

Max-Rule

Near-Exhaustive 83.5 (.23) 6.0 88.7 (.17) 1.6 90.3 (.15) 0.8

Complete-Closure 84.3 (.19) 67 88.9 (.17) 16.2 90.1 (.13) 6.6

Beam-Search 83.5 (.21) 203 88.7 (.17) 29.5 90.3 (.16) 11.7

Beam-Search+CC 84.3 (.22) 739 88.9 (.19) 146 90.1 (.14) 50.9

Table 6.6: WSJ development-set accuracies and speeds of each decoding method on latent-

variable grammars, using various pruning approaches. Accuracies averaged over runs

with 8 grammars trained using different random seeds. Beam search guided by a lexical

prioritization model. Beam widths (6, 20, and 30) chosen to minimize accuracy impact,

and AMBR approaches use λ = .35, selected to maximize accuracy on the same dev-set.

log(P (A)) = log(elog(αA) + elog(P (B))+log(P (C))+log(P (A→BC)))

The repeated exponentiations and logarithms of this so-called logsumexp operation are

very expensive. Even on modern processors, these are expensive computations, and our

profiling indicated that it consumes the vast majority of the inference time (and accounts

for the considerable speed penalty of max-rule vs. AMBR, since max-rule recomputes

probability sums during the maximization pass). Note that this CPU-bound processing

is in contrast to Viterbi inference, which (as demonstrated in Chapter 3) is generally

memory-bound. Thus, we focus most of our optimization methods on the logsumexp

6.6. Efficient Approximations 117

2-cycle 4-cycle 6-cycle

F1 (σ) w/s F1 (σ) w/s F1 (σ) w/s

Viterbi

Near-Exhaustive 80.5 (.62) 67.7 86.4 (.21) 28.5 87.2 (.14) 14.9

Complete-Closure 82.2 (.31) 456 86.9 (.17) 181 87.6 (.13) 77.3

Beam-Search 80.6 (.65) 2115 86.4 (.22) 441 87.2 (.10) 184

Beam-Search+CC 82.3 (.33) 4236 86.9 (.18) 1403 87.6 (.12) 514

AMBR-Sum

Near-Exhaustive 81.7 (.70) 7.8 87.5 (.19) 3.4 88.4 (.22) 1.8

Complete-Closure 83.1 (.45) 46.9 87.8 (.17) 18.0 88.6 (.18) 8.4

Beam-Search 81.8 (.73) 208 87.5 (.19) 35.1 88.4 (.18) 13.3

Beam-Search+CC 83.1 (.46) 624 87.8 (.18) 120 88.6 (.14) 41.4

Max-Rule

Near-Exhaustive 81.7 (.49) 4.2 87.8 (.16) 1.8 88.7 (.20) 1.0

Complete-Closure 83.2 (.37) 27.5 88.0 (.12) 10.4 88.9 (.13) 5.3

Beam-Search 81.8 (.54) 171 87.8 (.15) 25.8 88.6 (.18) 10.4

Beam-Search+CC 83.2 (.37) 486 88.0 (.11) 87.6 88.8 (.12) 32.8

Table 6.7: Switchboard development-set accuracies and speeds of each decoding method on

latent-variable grammars, using various pruning approaches, and the same configuration

as reported in Table 6.6.

operation, examining the following approximations thereof:

Log-sum pruning at various heuristic operating points When adding two proba-

bilities, each stored as loge(p) in 32-bit IEEE floating point number, the largest difference

between the two which can be represented in the final sum is approximately e−16. Thus, if

a−b > 16, loge(e
a+eb) = a. This allows us to prune the number of logsumexp operations

considerably, by computing |a− b| before the expensive exponentiation and logarithm op-

erations. If we are willing to accept more error in our logsumexp estimate, we can prune

further, by eliminating calculations where |a−b| < δ. Figure 6.7 demonstrates that we can

tune δ considerably below 16 with minimal impact on parse accuracy. Max-rule accuracy

begins to degrade at δ < 4, and AMBR accuracy actually peaks at δ = 3 before dropping

off. Tables 6.9 and 6.10 label this method Approximate Log Sum.

6.6. Efficient Approximations 118

2-cycle 4-cycle 6-cycle

F1 (σ) w/s F1 (σ) w/s F1 (σ) w/s

Viterbi

Near-Exhaustive 77.5 (.46) 59.2 82.7 (.65) 17.1 83.3 (.32) 8.3

Complete-Closure 78.2 (.48) 374 83.0 (.63) 106 83.7 (.32) 43.4

Beam-Search 77.6 (.42) 1894 82.6 (.68) 350 83.4 (.31) 134

Beam-Search+CC 78.2 (.43) 3295 83.0 (.67) 1010 83.8 (.35) 355

AMBR-Sum

Near-Exhaustive 79.7 (.39) 8.0 84.3 (.35) 1.9 84.8 (.29) 0.8

Complete-Closure 80.2 (.37) 42.3 84.6 (.44) 9.2 84.9 (.25) 3.3

Beam-Search 79.8 (.39) 200.0 84.3 (.35) 25.6 84.8 (.33) 9.6

Beam-Search+CC 80.1 (.35) 554.6 84.6 (.44) 81.3 85.0 (.28) 26.3

Max-Rule

Near-Exhaustive 79.4 (.56) 3.9 84.8 (.41) 0.9 85.4 (.34) 0.4

Complete-Closure 79.9 (.57) 22.9 85.2 (.48) 4.8 85.7 (.33) 2.0

Beam-Search 79.4 (.58) 153 84.8 (.39) 18.0 85.4 (.36) 7.4

Beam-Search+CC 80.0 (.56) 431 85.2 (.50) 60.1 85.7 (.48) 21.0

Table 6.8: Chinese development-set accuracies and speeds of each decoding method on

latent-variable grammars, including complete-closure pruning and beam search guided

by a POS-Boundary prioritization model (the Brown clusters used to train the lexical

prioritization model are only available for English).

IEEE approximation of logsumexp The standard hardware floating-point representa-

tions allow efficient and reasonably accurate approximations of the exponential and natural

logarithm functions [163], and replacing the true logarithm and exponentiation functions

in logsumexp may provide a considerable efficiency gain.

As demonstrated in Table 6.9, both approximation methods are accurate enough for

effective parsing, and improve efficiency considerably. However, contrary to our expecta-

tion, the IEEE approximation did not combine smoothly with Approximate Log Sum; as

shown in Table 6.9, accuracy declines greatly for all genres when the two approximations

are used in conjunction.

We omit here a third potential approximation. The lexical prioritization model we use

for beam-search parsing uses (as part of its non-terminal ranking function) an heuristic

6.7. Scaling in the Real Semiring 119

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ●

89.0

89.5

90.0

0 5 10 15
Delta

F
−

S
c
o
re

Decoding
● Max−Rule

AMBR−Sum

Figure 6.7: Approximating the logsumexp operation. WSJ development-set accuracies of

6-cycle latent-variable grammar, as δ is varied from .2–16. Evaluated with near-exhaustive

beam search. Max-rule decoding appears to benefit from incorporating the very small

probabilities pruned at lower δ values, while AMBR-Sum accuracy peaks earlier and de-

clines as δ increases.

outside score for each non-terminal label. If this score were a sufficiently accurate estimate

of the outside probability, we could use it in place of β, and eliminate the outside pass.

However, preliminary trials with this method resulted in large accuracy loss. The outside

score, although useful for local prioritization, is not a true outside-probability estimate,

and using it as such results in severe numeric instability. We leave a more reliable outside

heuristic as a possibility for future investigation.

6.7 Scaling in the Real Semiring

The approximations described in the previous section improve logsumexp efficiency con-

siderably; in this section, we describe an alternate approach, borrowed largely from the

Berkeley Parser [142] — and similar to that described by Rabiner [150] in the context of

HMM estimation — that does away completely with the logsumexp operation. As noted

previously, we generally maintain chart probabilities in the log domain (and thus, it is

6.7. Scaling in the Real Semiring 120

Baseline
Approx. IEEE Log-sum

Log-sum Approx. and IEEE

F1 w/s F1 (σ) w/s F1 (σ) w/s F1 (σ) w/s

AMBR-Sum

WSJ 89.4 (.16) 64.9 89.9 (.19) 113.7 89.5 (.15) 96.3 86.5 (.86) 54.9

SWBD 88.6 (.14) 30.3 88.6 (.17) 62.6 88.5 (.15) 54.9 86.7 (.28) 41.7

PCTB 84.8 (.27) 24.4 84.0 (.45) 60.3 83.8 (.79) 54.0 81.3 (1.04) 37.1

Max-Rule

WSJ 90.0 (.13) 50.1 90.1 (.14) 73.8 90.1 (.15) 73.8 86.8 (.80) 37.0

SWBD 88.8 (.12) 30.3 88.8 (.12) 41.4 88.8 (.13) 43.6 87.0 (.28) 33.0

PCTB 85.4 (.35) 19.3 84.9 (.46) 38.5 84.9 (.48) 41.7 82.6 (.49) 26.7

Table 6.9: Development-set accuracies and speeds of various approximate methods on

6-cycle latent-variable grammars. All trials used the same grammars and beam-search

settings as Table 6.6, with complete-closure and prioritization models trained for each

genre (lexical boundary prioritization models for English genres, POS boundary models

for Chinese). Log-sum deltas (8 for max-rule and 3 for AMBR-Sum) chosen to maximize

near-exhaustive F1 on WSJ section 22.

convenient to represent production probabilities as logarithms as well, although underflow

is less of a problem in grammar rules).

The standard 64-bit IEEE floating-point representation [86] provides 53 binary digits

of precision and 10 binary digits of exponent (i.e., it can represent numbers between

approximately 10−307 and 10307, or e−707–e707), with roughly 16 decimal digits of precision.

Underflow in this range is relatively infrequent, but still problematic, particularly when

processing longer sentences.

Note that the probability range represented within a single cell is likely to be much

smaller than the range of the hardware representation, even if the probabilities are near

the lower bound of the floating-point format. We can avoid underflow by re-scaling all

probability representations by a fixed amount, keeping the maximum probability within a

fixed range (e.g., > e−200, well within the range of a 64-bit double). Thus, we record the

grammar probabilities in the real domain (as 64-bit doubles), and all cell probabilities in

(possibly) scaled real domain. We populate non-terminal probabilities in a cell using the

inside-outside summations from Section 2.6. After processing each cell, we multiply all

6.8. Test Set Results and Discussion 121

Viterbi
Approx Log Sum Scaled Real Semiring

AMBR-Sum Max-Rule AMBR-Sum Max-Rule

WSJ

F1 (σ) 89.0 (.12) 89.7 (.21) 89.9 (.13) 89.4 (.16) 90.0 (.13)

w/s 882.7 113.0 83.9 217.8 121.9

SWBD

F1 (σ) 87.1 (.09) 88.1 (.13) 88.3 (.07) 88.2 (.09) 88.3 (.07)

w/s 524.4 61.1 47.6 144.5 84.5

PCTB

F1 (σ) 80.9 (.64) 82.2 (.45) 83.1 (.62) 81.7 (.72) 82.9 (.68)

w/s 300.5 40.6 29.6 91.0 9.5

Table 6.10: Final accuracies and speeds of various decoding methods and representation

choices. Evaluated on WSJ, SWBD, and PCTB test sets, using complete-closure and

beam search, with parameterizations selected to minimize accuracy loss on development

sets.

probabilities by a multiplier chosen to keep the maximum value within our chosen range.6

We can represent the grammar using the same matrix encoding (as described in Chap-

ter 3), but the grammar and chart representations have approximately twice the memory

footprint of our standard representation, since we must replace all 32-bit floating-point val-

ues with their 64-bit equivalents. However, as demonstrated in Table 6.10, the additional

memory access is outweighed by eliminating the expensive logsumexp operations.

6.8 Test Set Results and Discussion

Table 6.10 presents accuracy and timing trials on the test sets of each corpus, executed

with complete closure and a guided beam search (using lexical prioritization models for

WSJ and SWBD and a POS-boundary model for PCTB). In general, the scaled real-value

representation improves speed measurably (but not dramatically) over the log-domain rep-

resentation. In some cases (e.g. WSJ AMBR-Sum), the accuracy results differ between the

6By retaining the multipliers for each cell, we can recover real-valued probabilities.

6.8. Test Set Results and Discussion 122

two representations, presumably due to numeric instability in the summed probabilities.7

In this chapter, we have examined several competing chart decoding methods, includ-

ing two approximations of Minimum-Bayes-Risk decoding, which have previously been

described but not empirically validated. However, several related areas of research re-

main. We presented summary results averaged over numerous latent-variable grammars;

recent work has demonstrated that incorporating multiple grammars into a single decod-

ing pass can be very effective, at least for max-rule decoding [141, 165]. Incorporating this

approach into AMBR decoding methods might yield further gains there as well.

In this work, we report only F1 of each decoding method (standard practice in pars-

ing research). However, the performance of downstream consumers of constituency parse

output is likely to be only loosely correlated with F1 , depending instead on the parser’s

performance vis-à-vis specific parsing errors (e.g. PP-attachment and coordination er-

rors). Recent work has also begun to explore finer details of such errors across parser

implementations [105], and a similar exploration of chart decoding methods would yield

further insight on their relative merits.

Finally, a decoding algorithm that incorporated some of max-rule’s ‘reordering’ effects

directly into the outside pass might improve accuracy over straightforward AMBR methods

without requiring the (expensive) second grammar intersection of max-rule.

7As demonstrated in Figure 6.7, AMBR-Sum may in some cases benefit from less numeric precision.

It remains unclear which representation method suffers more from numeric instability, and thus, whether

AMBR-Sum decoding suffers or benefits from those effects.

Chapter 7

Method Combination and Discussion

The goals of this research were to examine and improve the efficiency of context-free infer-

ence, particularly with high-accuracy latent-variable grammars. In support of these goals,

we have explored numerous methods — in both training and inference — of improving pars-

ing efficiency (summarized in Table 7.1). We described a compact and efficient grammar

representation, and demonstrated large efficiency gains from that encoding; we presented

several novel methods of grammar training that yield more compact models and more

efficient inference; and we compared the accuracy and efficiency of various chart decoding

methods. In so doing, we have improved considerably on the state-of-the-art for efficient

context-free inference and broadened the array of operating-point choices available to an

application designer, when trading off accuracy and efficiency.

In Chapter 3, we presented a grammar encoding that dramatically improves cache

utilization and improves parsing throughput by 7–10×. Subsequent chapters presented

model-training and inference methods, each of which made use of that grammar encoding.

In this final chapter, we combine the methods from chapters 4–6 and examine the potential

for additive gains. We compare those trials with previous state-of-the-art systems; we find

an efficiency gain of approximately 2.5× over the best previously-reported results, which

themselves benefited from a 7× gain from the approaches from Chapter 3. We also present

practical guidance for training efficient parsing models, and discuss opportunities for future

work in efficient constituency parsing.

7.1 Combining Methods

In this section we will combine the methods presented in chapters 4–5, and examine

the potential for additive gains (Note that the trials presented in those chapters already

incorporate the grammar encoding from Chapter 3).

123

7.1. Combining Methods 124

Efficient and Parallelizable CYK Chart Parsing. Chapter 3 presented a compact

and efficient PCFG representation, and application thereof in a parallelizable grammar

intersection approach.

Analysis of Efficiency Characteristics of PCFGs. The regression models of Chap-

ter 5 demonstrate the efficiency impact of various PCFG characteristics, and provide

guidance for subsequent exploration of parameterization approaches likely to yield

further efficiency gains.

Methods of training efficient latent-variable grammars Chapter 5 presented cor-

pus transformations aimed at compact and efficient grammars, and Chapter 5 demon-

strated the effectiveness of incorporating efficiency measures directly into the split-

merge training process.

Evaluation of alternate chart decoding methods In Chapter 6, we compared several

decoding methods and approximations thereof.

Table 7.1: Principal contributions of this thesis

The pruned inference trials presented in chapters 3–6 all use a complete-closure cell

pruning model [21] and a lexical prioritization model [19]. For these final trials, we re-

implemented adaptive beam pruning [21] and unary constraint systems [156], using mem-

ory representations similar to those described in Chapter 3 to improve CPU cache efficiency

and reduce memory stalls. This greatly reduces the sentence-level initialization time for

these pruning methods, and allows us to combine them with a lexical prioritization model,

improving the effectiveness of beam search. Bodenstab [19] presented inference results us-

ing a lexical prioritization model and others incorporating adaptive-beam pruning, but

did not combine the two; our implementation allows us to include trials combining both.

Since the pruning methods we use are strongly related to those in Bodenstab [19],

we also compare with the final timing trials presented there; we executed our trials on

the same hardware, so those results provide an appropriate baseline and well-represent

the current state-of-the-art. One other note on that baseline is important: Bodenstab’s

final results make use of the matrix grammar encoding from Chapter 3; On WSJ text, he

reported an improvement from 188 to 1331 w/s when replacing a previous encoding with

our matrix encoding, and a further increase to 1581 when unary constraints were added.

To place the full contributions of this thesis in proper context, the lower figure might be a

more appropriate baseline; as presented, Tables 7.2–7.4 emphasize the further gains from

chapters 4–6. The results of those trials are presented in tables 7.2–7.4. We incorporated

7.1. Combining Methods 125

F1 LP LR W/S

Baselines

Coarse-to-Fine MaxRule [142] 90.2 90.3 90.0 110

Adaptive Beam + Unary [19] 88.8 89.0 88.6 1581

This Thesis

Matrix Grammar + CC 88.7 (.18) 88.8 (.20) 88.5 (.18) 2285

+ Param. Pruning + Modeled Obj. 88.6 (.17) 88.8 (.18) 88.4 (.18) 3313

+ Unary 88.5 (.17) 88.8 (.18) 88.3 (.18) 3862

+ Adaptive Beam 87.7 (.22) 87.8 (.23) 87.5 (.21) 4188

Pruning + Mod. Obj. + Lex. Simp. 88.3 (.19) 88.5 (.19) 88.1 (.22) 3363

1-Best Grammar (Parameter Pruning + Modeled Obj)

Viterbi 88.8 89.0 88.6 3214

+ Unary Constraints 88.7 88.9 88.4 3734

Max-Rule 89.8 90.1 89.5 448

Table 7.2: WSJ accuracy and efficiency, combining the efficient-inference techniques dis-

cussed in this thesis. The baselines are from Bodenstab [19], executed on the same Intel®

Xeon X5650 “Nehalem” systems, and include adaptive-beam pruning, unary constraints,

and begin- and end-constituent chart-cell closures [156].

the uniform parameter pruning from Section 5.1.1 into the modeled efficiency objective,

training a total of 444 grammars (at ε = 10−6) and fitting a new linear regression to the

inference speeds observed with those models. We trained all modeled grammars in this

chapter at λ = .35, a relatively conservative ranking function.

7.1. Combining Methods 126

F1 LP LR W/S

Matrix Grammar + CC 87.1 (.26) 87.5 (.28) 86.6 (.25) 1834

+ Param. Pruning + Modeled Obj. 87.4 (.22) 87.8 (.22) 86.9 (.23) 2753

+ Unary Constraints 87.2 (.22) 87.8 (.22) 86.7 (.22) 3214

+ Adaptive Beam 86.6 (.60) 87.1 (.44) 86.1 (.78) 3731

Pruning + Mod. Obj + Lex. Simp. 8721 (.11) 87.7 (.13) 86.7 (.11) 2822

1-Best Grammar (Parameter Pruning + Modeled Obj.)

Viterbi 87.8 88.2 87.4 2670

+ Unary Constraints 87.6 88.1 87.1 3102

Max-Rule 88.5 89.2 87.8 339

Table 7.3: Switchboard accuracy and efficiency, using the same settings as in Table 7.2.

As per our standard practice throughout this thesis, we report accuracies and speeds

over a sizable number of grammars (16 in this case). We believe these trials over a wide

range of grammars reduce the variance introduced by a random factor in EM training,

and present an accurate reflection of the effects of each grammar training method. We

executed 5 trials for each configuration, and report the maximum speed observed. As the

inference speed increases, variances induced by small environmental influences becomes

more apparent; to dampen any such effects, we replicated the test corpora (3× for WSJ

and Switchboard and 20× for Chinese) to produce files of 160–180k words.

The baseline trials from Bodenstab [19] were executed with a single grammar (the

Berkeley Parser’s default 6-cycle English and Chinese grammars). Those grammars were

selected from set of similar grammars for their superior performance. Since end-user

applications will generally operate similarly on a single model, presumably one selected

similarly from a set of competing models. To represent this operating condition, we

selected the most accurate grammar — as measured on development data, without regard

to speed — and present accuracies and timings for that grammar as well. The WSJ corpus

7.1. Combining Methods 127

F1 LP LR W/S

Baselines

Coarse-to-Fine MaxRule [142] 83.9 84.5 83.3 56.8

Adaptive Beam + Unary [19] 81.1 82.3 80.0 1169

This Thesis

Matrix Grammar + CC 79.7 (.83) 80.0 (.87) 79.4 (.83) 824

+ Param. Pruning + Modeled Obj. 80.2 (.60) 80.5 (.73) 80.0 (.57) 1379

+ Unary 80.4 (.57) 80.7 (.65) 80.0 (.57) 1442

+ Adaptive Beam 79.7 (.58) 79.9 (.72) 79.6 (.49) 1815

1-Best Grammar (Parameter Pruning + Modeled Obj.)

Viterbi 80.5 81.1 79.8 1344

+ Unary Constraints 80.5 81.1 79.8 1403

Max-Rule 83.6 85.2 82.0 147

Table 7.4: Chinese test-set accuracy and efficiency, using the POS prioritization model;

other settings are the same as in Table 7.2. Note: the lexical simplification approaches

from Chapter 4 cost considerable accuracy without a commensurate efficiency gain, so we

omit that approach in these combined trials.

includes multiple development sets, so we selected the model which maximizes the product

of F1 on sections 22 and 24 (i.e. F1 (22) · F1 (24)). For each of the other genres, we chose

the grammar which maximizes F1 on the standard development set. We anticipate that

accuracy on the 63.7k-word Switchboard development set will be a reasonable predictor

of test-set accuracy. We hesitate to make the same assumption about the Chinese corpus,

as accuracy on the small 7.2k-word development set — and on the 8k-word test set — is

likely to be dominated by noise.

7.1. Combining Methods 128

F1

Words/Sec

X5650 3520M

Nehalem Ivy Bridge

Viterbi

WSJ 88.7 3734 5302

Switchboard 87.6 3101 4531

Chinese 80.5 1442 2211

Max-Rule

WSJ 89.8 445 728

Switchboard 88.5 339 530

Chinese 83.6 147 228

Table 7.5: Trials with 1-best grammars on the Intel® ‘Ivy Bridge’ architecture. All trials

use the same 1-best grammars from Tables 7.2–7.4; accuracies and Nehalem timings are

repeated from those tables. Ivy Bridge trials performed on the 3520M model at 2.9 GHz,

executed on Java 1.7.0 45 under Mac OS 10.8.

We found that the lexical simplification methods from Chapter 4 and the pruning and

modeling methods from Chapter 5 combine smoothly, yielding additive efficiency gains

with minimal accuracy degradation. The final throughput on WSJ text is approximately

double that of the fastest result in Bodenstab [19], and we found a small accuracy gain as

well — the average accuracy of the models we trained was nearly equal to the baseline, and

the best model improved on that baseline by a small margin. Integrating adaptive-beam

pruning appears to incur search errors that lower accuracy — likely an unjustified cost,

even for the additional speed gained.

To provide results directly comparable to previously-published work, we limited the

trials in Tables 7.2–7.4 to Intel Nehalem hardware. Table 7.5 repeats the 1-best grammar

trials, this time on an Intel 3520M ‘Ivy Bridge’ CPU; we found that the newer proces-

sor architecture provides a consistent gain — of approximately 50–70% — across corpora

and decoding methods. Our expectation is that these trials should be representative of

expected throughput on relatively recent hardware.

7.2. Best Practices 129

7.2 Best Practices

Potential parsing consumers — whether utilizing parse data in research or developing end-

user applications — need accurate and efficient models, but few users want to commit

significant time to exploring grammar training. Several of the models we’ve examined in

this thesis are available for download along with the BUBS parser distribution, and are

documented on the BUBS wiki. However, these models will not cover the needs of every

application, so we present in this section general guidelines for training and use of accurate

and efficient latent-variable grammars and pruning models for them.

We made available the grammar training system used in chapters 4 and 5 as part

of the BUBS project. This system is an adaptation of code from the Berkeley Parser,

adding the ability to rerank merge candidates by arbitrary objective functions (such as

the inference-informed model from Section 5.5 and the regression model from Section 5.6).

In addition, the constrained inference during EM incorporates some of the cache-efficient

representation methods from Chapter 3, reducing training time by approximately 50% in

the default configuration. Step-by-step instructions for grammar training are also included

in the BUBS project wiki.1

7.2.1 Model Training

Although we showed in Chapter 5 that the relationship between model size and efficiency

is not strictly linear, it is still the case that the smallest grammar (that achieves the

required accuracy) will generally yield the fastest performance. Many training choices

affect the ultimate size of the model; the BUBS training system provides for configuration

of the following parameters — listed approximately in order of the expected return on

modeling-time investment:

• The number of split-merge cycles — parameter pruning and some of the other meth-

ods listed below can vary the rate of expansion considerably, but a rough rule-of-

thumb is that each additional cycle will approximately double the number of pro-

ductions. And in some cases, additional cycles will overfit to the training corpus, so

a 4- or 5-cycle grammar may be superior to 6-cycle training for some applications.

• Uniform Parameter Pruning (Section 5.1.1). The Berkeley training system defaults

to pruning any parameters of probability below 10−30. The BUBS implementation

1https://code.google.com/p/bubs-parser/w/list

https://code.google.com/p/bubs-parser/w/list

7.2. Best Practices 130

defaults to 10−12, but in many genres, even that threshold is overly conservative,

and can be increased considerably before accuracy declines. A grid-search over a

range of values should yield an effective threshold.

• Explicit efficiency objectives (Chapter 5)

• Lexical simplification (Chapter 4). As we found in Chapter 4, normalizing out rare

words is unlikely to improve inference speed dramatically, but it will reduce the

model’s memory footprint and initialization time, both of which may be important

in some applications.

As always, evaluation on a sizable in-domain development set is the most reliable

way to determine whether the model achieves accuracy goals. In many cases, optimizing

for (relatively) minor improvements in F1 will not be reflected in improved application

performance. For applications particularly sensitive to specific grammatical errors (e.g.

PP-attachment errors, erroneous modifier attachment, and coordination errors), the error

analysis tools we used in Section 6.4.3 [105] may provide insight into the sources of such

errors, and inform the choice of an appropriate speed/accuracy operating point.

7.2.2 Inference

At inference time, an efficient grammar representation and effective pruning are crucial.

As we demonstrated in Chapter 3, a cache-efficient grammar encoding can improve speed

by 10× or more. Accurate pruning of the search space is equally crucial. The BUBS and

Berkeley parsers both implement effective (albeit very different) pruning approaches, but

the BUBS grammar representation is somewhat more efficient (as demonstrated by the

relative speeds in tables 7.2 and 7.4).

If maximum accuracy is required, Petrov [141] showed that the differing performance

characteristics of grammars trained with different random initialization seeds can often

be harnessed jointly, and the weaknesses of a particular grammar can in some cases be

ameliorated by the strengths of the others. However, this approach requires a separate

inference run with each of the target grammars. Even if those tasks are parallelized to

reduce latency, the total system throughput drops by (at least) a factor of the number of

7.3. Conclusions and Future Work 131

grammars.2 While the approaches described in this thesis are applicable to products-of-

grammars inference, the BUBS framework does not currently support this method, and we

leave further investigation of optimization thereof to future work (see also the discussion

of interpolating and merging latent-variable grammars below).

7.3 Conclusions and Future Work

In this thesis, we explored a wide range of methods of improving constituency parsing

efficiency. We presented a grammar encoding which greatly improves throughput on CPU

architectures, and allows parallelization at a finer level than any other practical approach

to-date. We demonstrated that parsing throughput can be predicted quite accurately

given a relatively few characteristics of the grammar, and incorporated that measure into

grammar training, yielding more compact and efficient grammars with minimal accuracy

loss. We demonstrated the effectiveness of our methods across multiple languages and

genres; in combination, we found improvements of 10–20× over the previous state-of-the-

art for efficient constituency parsing.

Nevertheless, many avenues remain for further progress in efficient parsing. As dis-

cussed in Section 1.1, dependency structure can in some cases be recovered by very efficient

algorithms [131, 123]. Although the pruning methods used in this thesis yield an average-

case complexity of approximately O(N1.5) [19], the linear complexity and lower constant

factors of transition-based dependency parsing methods result in dramatically faster in-

ference (often tens of thousands of words per second). The timings in Tables 7.2–7.4 show

that we have closed this gap somewhat; the larger constant factors make it unlikely that

PCFG-based inference will ever reach the speeds of transition-based parsers, but there

may be room to leverage the strengths of the two approaches.

Greedy transition-based inference can in some cases recover constituency structure as

well as dependency [161, 95], although thus far such systems do not obtain the accu-

racy of state-of-the-art PCFG-based parsers, and our methods provide a superior accu-

racy/efficiency operating point for most applications. Even so, transition-based parsers

provide another valuable operating-point choice for applications where maximum through-

put and minimum latency are crucial.

2In some cases, pruning passes may be shared between separate grammars, reducing — but not elim-

inating — this effect. Petrov discusses reuse of multi-pass coarse-to-fine pruning [141], and some of the

pruning methods described in Appendix A can be applied similarly.

7.3. Conclusions and Future Work 132

Another promising avenue would leverage dependency parsing as a pre-processing stage

to constrain traditional chart-parsing inference. The structure of a projective dependency

tree is closely related to that of the analogous constituent tree — i.e., each subtree in the

dependency structure corresponds to a constituent spanning the same set of words. Wang

and Zong [180] noted that, given the dependency tree, we can 1) Close CYK cells which

conflict with that subtree structure, and 2) Tag cells within that substring as incapable

of participating in spans beyond the fixed subtree. Thus, we can use dependency infer-

ence analogously to the chart-pruning methods described in Appendix A, and prune a

considerable fraction of the CYK search space.3

This approach depends crucially on confidently classifying dependency arcs for use in

the chart cell closure — as with other chart-constraint methods we need very high precision

(to limit search errors) and the effectiveness of the method depends on the recall obtain-

able at that high-precision operating point. Unfortunately, obtaining that classification

accuracy may be a difficult task. Mejer and Crammer [124] attempted a similar classifi-

cation on graph-based arcs, with limited success. Their reported classification accuracy

on incorrect arcs was only around 50%; effective application of this method will require a

considerable improvement in arc classification.

Finally, we see great potential in exploration of methods of combining latent-variable

grammars. As we discussed in the previous section, scoring with multiple latent-variable

models can leverage the strengths of each and improve accuracy. However, to our knowl-

edge, existing implementations of this approach require separate inference passes with

each model. If the final models are all derived from a single parent model, the Berkeley

Parser implementation is able to leverage that shared structure and reuse early stages of

its multi-level coarse-to-fine process (up until the models diverge). However, even with

that shared structure, inference is slowed dramatically.

Since the latent annotations in two latent-variable models are unrelated, merging or

interpolating between two such models is not straightforward. However, if we were able to

cluster and merge those annotations, we might obtain some of the benefits of product-of-

grammars inference, with a single model. Even if that PCFG is larger (and slower) than

3Like constituency parsing, transition-based dependency parsers produce only projective dependen-

cies (i.e., they cannot recover structure with crossing dependencies). Note: transition-based dependency

parsers cannot recover structure with crossing dependences. This constraint is often considered a weakness,

but the languages which exhibit frequent non-projective dependencies are (by definition) those for which

constituency structure is least useful. For languages which are well-described by constituency structure,

the limitation to projective dependencies is not problematic.

7.4. Applications Outside Constituency 133

any of the source models, inference with a single model would almost certainly be more

efficient than populating and combining multiple separate charts.

7.4 Applications Outside Constituency

Although this thesis has focused exclusively on constituency parsing, many of the methods

we explored are extensible into other NLP domains. Some such applications have already

been explored, and a few are in common use; although it is not a primary contribution

of this thesis, we have already utilized some of the cache-sensitive model representation

methods from Chapter 3 in a POS tagger (integrated into the BUBS parser, and also

usable as a standalone tagger). Other examples include model encodings in language

modeling [152, 70, 136] and machine translation cube pruning [81], or model pruning

methods [153]. To our knowledge, previous work has not explored the methods from

Chapter 5 — specifically, predicting model efficiency and incorporating efficiency objectives

into training; we see great potential in adapting those methods for machine translation,

graph-based dependency parsing, named entity recognition, semantic processing, and other

NLP applications. In summary, while the contributions of this thesis have greatly improved

constituency-parsing throughput, we see great opportunities for further efficiency gains —

in constituency parsing and in other areas of NLP as well.

Bibliography

[1] Agarwal, R. C., Gustavson, F. G., and Zubair, M. A high performance

algorithm using pre-processing for the sparse matrix-vector multiplication. In Pro-

ceedings of the 1992 ACM/IEEE conference on Supercomputing (Minneapolis, Min-

nesota, United States, 1992), IEEE Computer Society Press, pp. 32–41.

[2] Akaike, H. Information theory and an extension of the maximum likelihood prin-

ciple. In Second international symposium on information theory (1973), p. 267–281.

[3] Amedro, B., Caromel, D., Huet, F., Bodnartchouk, V., Delbé, C., and

Taboada, G. L. HPC in java: experiences in implementing the NAS parallel

benchmarks. In Proceedings of the 10th WSEAS international conference on ap-

plied informatics and communications and 3rd WSEAS international conference on

Biomedical electronics and biomedical informatics (2010), p. 221–230.

[4] Arthur, D., and Vassilvitskii, S. k-means++: the advantages of carefull seed-

ing. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms (2007), pp. 1027–1035.

[5] Arun, A., and Keller, F. Lexicalization in crosslinguistic probabilistic parsing:

The case of french. In Proceedings of the 43rd Annual Meeting on Association for

Computational Linguistics (Stroudsburg, PA, USA, 2005), ACL ’05, Association for

Computational Linguistics, p. 306–313.

[6] Attia, M., Foster, J., Hogan, D., Le Roux, J., Tounsi, L., and van Gen-

abith, J. Handling unknown words in statistical latent-variable parsing models for

arabic, english and french. In Proceedings of the NAACL HLT 2010 First Workshop

on Statistical Parsing of Morphologically-Rich Languages (Los Angeles, CA, USA,

June 2010), Association for Computational Linguistics, p. 67–75.

[7] Baker, J. K. Trainable grammars for speech recognition. The Journal of the

Acoustical Society of America 65 (1979), S132.

134

[8] Bangalore, S., Boulllier, P., Nasr, A., Rambow, O., and Sagot, B.

MICA: a probabilistic dependency parser based on tree insertion grammars ap-

plication note. In Proceedings of Human Language Technologies: The 2009 An-

nual Conference of the North American Chapter of the Association for Computa-

tional Linguistics, Companion Volume: Short Papers (Stroudsburg, PA, USA, 2009),

NAACL-Short ’09, Association for Computational Linguistics, p. 185–188.

[9] Banko, M. Open Information Extraction for the Web. PhD dissertation, University

of Washington, Seattle, Washington, 1999.

[10] Baum, L. E., and Petrie, T. Statistical inference for probabilistic functions of

finite state markov chains. The Annals of Mathematical Statistics 37, 6 (Dec. 1966),

1554–1563.

[11] Baum, L. E., Petrie, T., Soules, G., and Weiss, N. A maximization technique

occurring in the statistical analysis of probabilistic functions of markov chains. The

Annals of Mathematical Statistics 41, 1 (Feb. 1970), 164–171.

[12] Bell, N., and Garland, M. Implementing sparse matrix-vector multiplication

on throughput-oriented processors. In Proceedings of the Conference on High Per-

formance Computing Networking, Storage and Analysis (Portland, Oregon, 2009),

ACM, pp. 1–11.

[13] Bellman, R. E. The theory of dynamic programming, 1954.

[14] Bies, A., Mott, J., Warner, C., and Kulick, S. English web treebank, 2012.

[15] Bikel, D. M. Intricacies of Collins’ parsing model. Computational Linguistics 30,

4 (2004), 479–511.

[16] Björne, J., Ginter, F., Pyysalo, S., Tsujii, J., and Salakoski, T. Complex

event extraction at PubMed scale. Bioinformatics 26, 12 (June 2010), 382–390.

[17] Black, E., Abney, S., Flickenger, F., Grishman, R., Harrison, P., Hin-

dle, D., Ingria, R., Jelinek, F., Klavans, J., Liberman, M., Marcus, M.,

Roukos, S., Santorini, B., and Strzalkowski, T. A procedure for quantita-

tively comparing the syntactic coverage of english grammars. In Proceedings of the

Fourth DARPA Speech and Natural Language Workshop (1991).

[18] Bod, R. An efficient implementation of a new DOP model. In Proceedings of the

tenth conference on European chapter of the Association for Computational Linguis-

tics - Volume 1 (Stroudsburg, PA, USA, 2003), EACL ’03, Association for Compu-

tational Linguistics, p. 19–26.

[19] Bodenstab, N. Prioritization and Pruning: Efficient Inference with Weighted

Context-Free Grammars. Ph.D. thesis, Oregon Health & Science University, 2012.

[20] Bodenstab, N., and Dunlop, A. BUBS parser, 2012.

[21] Bodenstab, N., Dunlop, A., Roark, B., and Hall, K. Beam-width prediction

for efficient context-free parsing. In Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics (Portland, Oregon, June 2011), pp. 440–

449.

[22] Boullier, P., and Sagot, B. Are very large context-free grammars tractable? In

Proceedings of the 10th International Conference on Parsing Technologies (Prague,

Czech REpublic, 2007), ACL, pp. 94–105.

[23] Brants, T. Inter-annotator agreement for a german newspaper corpus. In In Pro-

ceedings of Second International Conference on Language Resources and Evaluation

LREC-2000 (2000).

[24] Cameron, R. D., Herdy, K. S., and Lin, D. High performance XML parsing

using parallel bit stream technology. In Proceedings of the 2008 conference of the

center for advanced studies on collaborative research: meeting of minds (New York,

NY, USA, 2008), CASCON ’08, ACM, p. 17:222–17:235.

[25] Campbell, R. Using linguistic principles to recover empty categories. In Pro-

ceedings of the 42nd Annual Meeting on Association for Computational Linguistics

(Stroudsburg, PA, USA, 2004), ACL ’04, Association for Computational Linguistics.

[26] Candito, M., and Crabbé, B. Improving generative statistical parsing with semi-

supervised word clustering. In Proceedings of the 11th International Conference on

Parsing Technologies (Stroudsburg, PA, USA, 2009), IWPT ’09, Association for

Computational Linguistics, p. 138–141.

[27] Canny, J., Hall, D., and Klein, D. A multi-teraflop constituency parser us-

ing GPUs. In Proceedings of the 2013 Conference on Empirical Methods in Natural

Language Processing (Seattle, Washington, USA, Oct. 2013), Association for Com-

putational Linguistics, p. 1898–1907.

[28] Caraballo, S. A., and Charniak, E. New figures of merit for best-first proba-

bilistic chart parsing. Computational Linguistics 24 (June 1998), 275–298.

[29] Carreras, X., Collins, M., and Koo, T. TAG, dynamic programming, and the

perceptron for efficient, feature-rich parsing. In Proceedings of the Twelfth Confer-

ence on Computational Natural Language Learning (Stroudsburg, PA, USA, 2008),

CoNLL ’08, Association for Computational Linguistics, p. 9–16.

[30] Cer, D., Marneffe, M.-C. d., Jurafsky, D., and Manning, C. D. Parsing to

stanford dependencies: Trade-offs between speed and accuracy. In 7th International

Conference on Language Resources and Evaluation (LREC 2010) (2010).

[31] Charniak, E. Statistical language learning. The MIT Press, 1996.

[32] Charniak, E. A maximum-entropy-inspired parser. In Proceedings of the 1st

North American chapter of the Association for Computational Linguistics conference

(Seattle, Washington, 2000), Morgan Kaufmann Publishers Inc., pp. 132–139.

[33] Charniak, E., and Elsner, M. EM works for pronoun anaphora resolution.

In Proceedings of the 12th Conference of the European Chapter of the Association

for Computational Linguistics (Stroudsburg, PA, USA, 2009), EACL ’09, ACL,

p. 148–156.

[34] Charniak, E., and Johnson, M. Coarse-to-fine n-best parsing and MaxEnt

discriminative reranking. In Proceedings of the 43rd Annual Meeting on Association

for Computational Linguistics (Ann Arbor, Michigan, 2005), ACL, pp. 173–180.

[35] Chen, S. S., Donoho, D. L., and Saunders, M. A. Atomic decomposition by

basis pursuit. SIAM Review 43, 1 (Jan. 2001), 129–159.

[36] Chi, Z., and Geman, S. Estimation of probabilistic context-free grammars. Com-

put. Linguist. 24, 2 (June 1998), 299–305.

[37] Chiang, D. A hierarchical phrase-based model for statistical machine translation.

In Proceedings of the 43rd Annual Meeting on Association for Computational Lin-

guistics (Ann Arbor, Michigan, 2005), ACL, pp. 263–270.

[38] Chomsky, N. Syntactic Structures. Mouton, Paris, 1957.

[39] Chomsky, N. A. Three models for the description of language. IRE Transactions

on Information Theory 2, 3 (1956), 113–124.

[40] Church, K. W. A finite-state parser for use in speech recognition. In Pro-

ceedings of the 21st Annual Meeting on Association for Computational Linguistics

(Stroudsburg, PA, USA, 1983), ACL ’83, Association for Computational Linguistics,

p. 91–97.

[41] Chytil, M., Crochemore, M., Monien, B., and Rytter, W. On the parallel

recognition of unambiguous context-free languages. Theoretical Computer Science

81, 2 (Apr. 1991), 311–316.

[42] Clark, S., and Curran, J. R. Parsing the WSJ using CCG and log-linear mod-

els. In Proceedings of the 42nd Annual Meeting on Association for Computational

Linguistics (Stroudsburg, PA, USA, 2004), ACL ’04, Association for Computational

Linguistics.

[43] Click, C., Tene, G., and Wolf, M. The pauseless GC algorithm. Proceedings of

the 1st ACM/USENIX international conference on Virtual execution environments

(2005), 46–56.

[44] Click, C. N., Vick, C. A., and Paleczny, M. H. System and method for

range check elimination via iteration splitting in a dynamic compiler, May 2007. US

Patent 7,222,337.

[45] Cocke, J., and Schwartz, J. T. Programming languages and their compilers.

Technical report Preliminary notes, Courant Institute of Mathematical Sciences,

NYU, 1970.

[46] Collins, M. Three generative, lexicalised models for statistical parsing. In Proceed-

ings of the 35th Annual Meeting of the Association for Computational Linguistics

and Eighth Conference of the European Chapter of the Association for Computa-

tional Linguistics (Madrid, Spain, 1997), ACL, pp. 16–23.

[47] Collins, M. Head-Driven Statistical Models for Natural Language Parsing. PhD

dissertation, University of Pennsylvania, 1999.

[48] Collins, M. Discriminative training methods for hidden markov models: theory

and experiments with perceptron algorithms. In Proceedings of the ACL-02 con-

ference on Empirical Methods in Natural Language Processing (Philadelphia, July

2002), vol. 10, ACL, pp. 1–8.

[49] Collins, M. J. A new statistical parser based on bigram lexical dependencies. In

Proceedings of the 34th annual meeting on Association for Computational Linguistics

(Santa Cruz, California, 1996), ACL, pp. 184–191.

[50] Coppersmith, D., and Winograd, S. Matrix multiplication via arithmetic pro-

gressions. In Proceedings of the nineteenth annual ACM symposium on Theory of

computing (New York, New York, United States, 1987), ACM, pp. 1–6.

[51] Cuff, J. A., and Barton, G. J. Application of multiple sequence alignment

profiles to improve protein secondary structure prediction. Proteins: Structure,

Function, and Genetics 40, 3 (2000), 502–511.

[52] Culy, C. The complexity of the vocabulary of bambara. Linguistics and Philosophy

8, 3 (Aug. 1985), 345–351.

[53] Cuppu, V., Jacob, B., Davis, B., and Mudge, T. High-performance DRAMs in

workstation environments. IEEE Transactions on Computers 50, 11 (2001), 1133–

1153.

[54] Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society.

Series B (Methodological) 39, 1 (Jan. 1977), 1–38. ArticleType: research-article /

Full publication date: 1977 / Copyright © 1977 Royal Statistical Society.

[55] Dienes, P., and Dubey, A. Antecedent recovery: experiments with a trace tagger.

In Proceedings of the 2003 conference on Empirical methods in natural language pro-

cessing (Stroudsburg, PA, USA, 2003), EMNLP ’03, Association for Computational

Linguistics, p. 33–40.

[56] Drepper, U. What every programmer should know about memory. Technical

report, Red Hat, Inc., Nov. 2007.

[57] Dreyer, M., and Eisner, J. Better informed training of latent syntactic features.

In Proceedings of the 2006 Conference on Empirical Methods in Natural Language

Processing (Stroudsburg, PA, USA, 2006), EMNLP ’06, Association for Computa-

tional Linguistics, p. 317–326.

[58] Dunlop, A., Bodenstab, N., and Roark, B. Reducing the grammar constant:

an analysis of CYK parsing efficiency. Technical report CSLU-2010-02, OHSU, 2010.

[59] Dunlop, A., Bodenstab, N., and Roark, B. Efficient matrix-encoded grammars

and low latency parallelization strategies for CYK. In Proceedings of the 12th In-

ternational Conference on Parsing Technologies (Dublin, Ireland, Oct. 2011), ACL,

pp. 163–174.

[60] Dunlop, A., and Roark, B. Contrasting objective functions for CYK chart

decoding. In NW-NLP 2012 (Redmond,WA, 2012).

[61] Earley, J. An efficient context-free parsing algorithm. Commun. ACM 13, 2

(1970), 94–102.

[62] Eisner, J. Bilexical grammars and their cubic-time parsing algorithms. In Ad-

vances in Probabilistic and Other Parsing Technologies, H. Bunt and A. Nijholt,

Eds. Kluwer Academic Publishers, Oct. 2000, p. 29–62.

[63] Eisner, J., and III, H. D. Speed-accuracy tradeoffs in nondeterministic inference

algorithms. In Proceedings of COST: NIPS 2011 Workshop on Computational Trade-

offs in Statistical Learning (Sierra Nevada, Spain, 2011).

[64] El-Hassan, F., and Ionescu, D. SCBXP: an efficient hardware-based XML

parsing technique. In 5th Southern Conference on Programmable Logic, 2009. SPL

(Apr. 2009), pp. 45 –50.

[65] Ferrucci, D. A. IBM’s Watson/DeepQA. SIGARCH Comput. Archit. News 39,

3 (June 2011), –.

[66] Finkel, J. R., Kleeman, A., and Manning, C. D. Efficient, feature-based,

conditional random field parsing. IN PROC. ACL/HLT (2008).

[67] Fisher, S., and Roark, B. The utility of parse-derived features for automatic

discourse segmentation. In Proceedings of the 45th Annual Meeting of the Association

of Computational Linguistics (Prague, Czech Republic, June 2007), ACL, pp. 488–

495.

[68] Flynn, M. Some computer organizations and their effectiveness. IEEE Transactions

on Computers C-21, 9 (Sept. 1972), 948–960.

[69] Gao, J., Andrew, G., Johnson, M., and Toutanova, K. A comparative

study of parameter estimation methods for statistical natural language processing.

In Proceedings of the 45th Annual Meeting of the Association of Computational

Linguistics (Prague, Czech Republic, June 2007), Association for Computational

Linguistics, p. 824–831.

[70] Germann, U., Joanis, E., and Larkin, S. Tightly packed tries: How to fit

large models into memory, and make them load fast, too. In Proceedings of the

Workshop on Software Engineering, Testing, and Quality Assurance for Natural

Language Processing (Stroudsburg, PA, USA, 2009), SETQA-NLP ’09, Association

for Computational Linguistics, p. 31–39.

[71] Godfrey, J. J., Holliman, E. C., and McDaniel, J. SWITCHBOARD: tele-

phone speech corpus for research and development. In Proceedings of the 1992 IEEE

International Conference on Acoustics, Speech, and Signal Processing (Los Alami-

tos, CA, USA, 1992), vol. 1, IEEE Computer Society, pp. 517–520.

[72] Goel, V., and Byrne, W. J. Minimum bayes-risk automatic speech recognition.

Computer Speech & Language 14, 2 (Apr. 2000), 115–135.

[73] Golan, J. S. Semirings and their Applications. Springer, July 1999.

[74] Goodman, J. Parsing algorithms and metrics. Proceedings of the 34th annual

meeting on Association for Computational Linguistics (1996), 177–183.

[75] Goodman, J. Global thresholding and multiple-pass parsing. Proceedings of the

Second Conference on Empirical Methods in Natural Language Processing (EMNLP)

(1997), 11–25.

[76] Goumas, G., Kourtis, K., Anastopoulos, N., Karakasis, V., and Koziris,

N. Understanding the performance of sparse matrix-vector multiplication. In

PDP’08: Proceedings of the 16th Euromicro International Conference on Parallel,

Distributed and Network-based Processing (2008).

[77] Graham, S. L., Harrison, M., and Ruzzo, W. L. An improved context-free

recognizer. ACM Trans. Program. Lang. Syst. 2, 3 (July 1980), 415–462.

[78] Green, Bert F., J., Wolf, A. K., Chomsky, C., and Laughery, K. Base-

ball: an automatic question-answerer. In Papers presented at the May 9-11, 1961,

western joint IRE-AIEE-ACM computer conference (New York, NY, USA, 1961),

IRE-AIEE-ACM ’61 (Western), ACM, p. 219–224.

[79] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and

Witten, I. H. The WEKA data mining software: an update. SIGKDD Explor.

Newsl. 11, 1 (Nov. 2009), 10–18.

[80] Hart, P., Nilsson, N., and Raphael, B. A formal basis for the heuristic de-

termination of minimum cost paths. IEEE Transactions on Systems Science and

Cybernetics 4, 2 (July 1968), 100 –107.

[81] Heafield, K., Koehn, P., and Lavie, A. Language model rest costs and space-

efficient storage. In Proceedings of the 2012 Joint Conference on Empirical Meth-

ods in Natural Language Processing and Computational Natural Language Learning

(Stroudsburg, PA, USA, 2012), EMNLP-CoNLL ’12, Association for Computational

Linguistics, p. 1169–1178.

[82] Hennessy, J. L., and Patterson, D. A. Computer Architecture: A Quantitative

Approach, 4th Edition, 4 ed. Morgan Kaufmann, Sept. 2006.

[83] Hollingshead, K., and Roark, B. Pipeline iteration. In Proceedings of the 45th

Annual Meeting of the Association of Computational Linguistics (Prague, Czech

Republic, June 2007), ACL, p. 952–959.

[84] Hopcroft, J. E., and Ullman, J. D. Introduction to automata theory, languages,

and computation. Addison-wesley, Reading, Massachusetts, 1979.

[85] Huang, Z., and Harper, M. Self-training PCFG grammars with latent annota-

tions across languages. In Proceedings of the 2009 Conference on Empirical Methods

in Natural Language Processing: Volume 2 - Volume 2 (Stroudsburg, PA, USA,

2009), EMNLP ’09, Association for Computational Linguistics, p. 832–841.

[86] IEEE. IEEE standard for floating-point arithmetic. IEEE Std 754-2008 (Aug.

2008), 1–58.

[87] Im, E.-J., Yelick, K., and Vuduc, R. Sparsity: Optimization framework for

sparse matrix kernels. International Journal of High Performance Computing Ap-

plications 18, 1 (Feb. 2004), 135–158.

[88] Jiang, J., Teichert, A., III, H. D., and Eisner, J. Learned prioritization

for trading off accuracy and speed. In Advances in Neural Information Processing

Systems 25 (Dec. 2012).

[89] Johnson, M. PCFG models of linguistic tree representations. Comput. Linguist.

24, 4 (1998), 613–632.

[90] Johnson, M. A simple pattern-matching algorithm for recovering empty nodes

and their antecedents. In Proceedings of the 40th Annual Meeting on Association

for Computational Linguistics (Stroudsburg, PA, USA, 2002), ACL ’02, Association

for Computational Linguistics, p. 136–143.

[91] Johnson, M. lncky, 2006.

[92] Johnson, M. Parsing in parallel on multiple cores and GPUs. In Proceedings

of the Australasian Language Technology Association Workshop 2011 (Canberra,

Australia, Dec. 2011), p. 29–37.

[93] Joshi, A., Shanker, K. V., and Weir, D. The convergence of mildly context-

sensitive grammar formalisms. Technical Reports (CIS) (Jan. 1990).

[94] Joshi, A. K., Levy, L. S., and Takahashi, M. Tree adjunct grammars. J.

Comput. Syst. Sci. 10, 1 (Feb. 1975), 136–163.

[95] Kalt, T. Induction of greedy controllers for deterministic treebank parsers. In

Proceedings of EMNLP 2004 (Barcelona, Spain, July 2004), D. Lin and D. Wu,

Eds., Association for Computational Linguistics, p. 17–24.

[96] Kasami, T. An efficient recognition and syntax-analysis algorithm for context-free

languages. Scientific report AFCRL-65-758, Air Force Cambridge Research Lab,

Bedford, MA, 1965.

[97] Klein, D., and Manning, C. D. Parsing and hypergraphs. In In IWPT (2001),

p. 123–134.

[98] Klein, D., and Manning, C. D. Parsing with treebank grammars: Empirical

bounds, theoretical models, and the structure of the penn treebank. In Proceedings

of 39th Annual Meeting of the Association for Computational Linguistics (Toulouse,

France, July 2001), pp. 338–345.

[99] Klein, D., and Manning, C. D. A* parsing: Fast exact viterbi parse selection.

In Proceedings of the 2003 Conference of the North American Chapter of the As-

sociation for Computational Linguistics on Human Language Technology (NAACL

’03) (Edmonton, Canada, 2003), pp. 40–47.

[100] Klein, D., and Manning, C. D. Accurate unlexicalized parsing. In Proceedings

of the 41st Annual Meeting on Association for Computational Linguistics - Volume

1 (Sapporo, Japan, 2003), ACL, pp. 423–430.

[101] Klein, D., and Manning, C. D. Fast exact inference with a factored model for

natural language parsing. In Advances in Neural Information Processing Systems

15, S. T. S. Becker and K. Obermayer, Eds. MIT Press, Cambridge, MA, 2003,

p. 3–10.

[102] Kotzmann, T., Wimmer, C., Mössenböck, H., Rodriguez, T., Russell,

K., and Cox, D. Design of the java HotSpot™ client compiler for java 6. ACM

Transactions on Architecture and Code Optimization (TACO) 5 (May 2008), 7:1–

7:32.

[103] Kuich, W., and Salomaa, A. Semirings, Automata, Languages. EATCS Mono-

graphs on Theoretical Computer Science, Number 5. Springer-Verlag, Berlin, Ger-

many, 1985.

[104] Kumar, S., and Byrne, W. Minimum bayes-risk decoding for statistical machine

translation. In HLT-NAACL 2004: Main Proceedings (Boston, Massachusetts, USA,

May 2004), D. M. Susan Dumais and S. Roukos, Eds., Association for Computational

Linguistics, p. 169–176.

[105] Kummerfeld, J. K., Hall, D., Curran, J. R., and Klein, D. Parser showdown

at the wall street corral: An empirical investigation of error types in parser output. In

Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language Learning - EMNLP 2012 (2012).

[106] Kummerfeld, J. K., Tse, D., Curran, J. R., and Klein, D. An empirical

examination of challenges in chinese parsing. In Proceedings of the 51st Annual

Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

(Sofia, Bulgaria, Aug. 2013), Association for Computational Linguistics, p. 98–103.

[107] Ladner, R., Fortna, R., and Nguyen, B.-H. A comparison of cache aware and

cache oblivious static search trees using program instrumentation. In Experimental

Algorithmics, vol. 2547 of Lecture Notes in Computer Science. Springer Berlin, 2002,

pp. 78–92.

[108] Lari, K., and Young, S. The estimation of stochastic context-free grammars

using the inside-outside algorithm. Computer Speech & Language 4, 1 (Jan. 1990),

35–56.

[109] Le Roux, J., Foster, J., Wagner, J., Kaljahi, R. S. Z., and Bryl, A. DCU-

Paris13 systems for the SANCL 2012 shared task. In Working Notes of SANCL 2012

(Montreal, Quebec, Canada, 2012).

[110] Lee, L. Fast context-free parsing requires fast boolean matrix multiplication. In

Proceedings of the 35th Annual Meeting of the Association for Computational Lin-

guistics (Madrid, Spain, July 1997), ACL, pp. 9–15.

[111] Li, X., Wang, H., Liu, T., and Li, W. Key elements tracing method for parallel

XML parsing in multi-core system. In 2009 International Conference on Parallel and

Distributed Computing, Applications and Technologies (Dec. 2009), pp. 439 –444.

[112] Lin, D., Foster, D. P., and Ungar, L. H. A risk ratio comparison of l0 and l1

penalized regressions. University of Pennsylvania, Tech. Rep (2010).

[113] Lloyd, S. Least squares quantization in PCM. IEEE Transactions on Information

Theory 28, 2 (1982), 129–137.

[114] Lowerre, B. T. The Harpy speech recognition system. Ph.D. thesis, Carnegie

Mellon University, Apr. 1976.

[115] Lu, W., Chiu, K., and Pan, Y. A parallel approach to XML parsing. In 7th

IEEE/ACM International Conference on Grid Computing (Sept. 2006), pp. 223 –

230.

[116] Maclachlan, A., and Rambow, O. Cross-serial dependencies in tagalog. In In

Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and

Related Frameworks (TAG+6), 100–104, Università di Venezia (2003).

[117] Macqueen, J. Some methods for classification and analysis of multivariate obser-

vations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics

and Probability (1967), pp. 281–297.

[118] Magerman, D. M., and Marcus, M. P. Pearl: a probabilistic chart parser.

In Proceedings of the fifth conference on European chapter of the Association for

Computational Linguistics (Stroudsburg, PA, USA, 1991), EACL ’91, Association

for Computational Linguistics, p. 15–20.

[119] Manning, C. D., and Schuetze, H. Foundations of Statistical Natural Language

Processing. The MIT Press, June 1999.

[120] Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. Building a large

annotated corpus of english: the penn treebank. Computational Linguistics 19, 2

(1993), 313–330.

[121] Marcus, M. P., Santorini, B., Marcinkiewicz, M. A., and Taylor, A.

Treebank-3. Linguistic Data Consortium, Philadelphia, 1999.

[122] Matsuzaki, T., Miyao, Y., and Tsujii, J. Probabilistic CFG with latent annota-

tions. In Proceedings of the 43rd Annual Meeting on Association for Computational

Linguistics - ACL ’05 (Ann Arbor, Michigan, 2005), pp. 75–82.

[123] McDonald, R., Pereira, F., Ribarov, K., and Haji\vc, J. Non-projective

dependency parsing using spanning tree algorithms. In Proceedings of the confer-

ence on Human Language Technology and Empirical Methods in Natural Language

Processing (Stroudsburg, PA, USA, 2005), HLT ’05, Association for Computational

Linguistics, p. 523–530.

[124] Mejer, A., and Crammer, K. Are you sure? confidence in prediction of de-

pendency tree edges. In Proceedings of the 2012 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies (Montréal, Canada, June 2012), Association for Computational Linguistics,

p. 573–576.

[125] Moore, R. C. Improved left-corner chart parsing for large context-free grammars.

New developments in parsing technology (2004), 185–201.

[126] Munshi, A. OpenCL 1.0 specification, Oct. 2009.

[127] Natarajan, B. K. Sparse approximate solutions to linear systems. SIAM J.

Comput. 24, 2 (Apr. 1995), 227–234.

[128] Ng, A. Y. Feature selection, l1 vs. l2 regularization, and rotational invariance. In

Proceedings of the twenty-first international conference on Machine learning (New

York, NY, USA, 2004), ICML ’04, ACM, p. 78–.

[129] Nijholt, A. The CYK approach to serial and parallel parsing, June 1991.

[130] Ninomiya, T., Torisawa, K., Kinjiro, T., and Jun’ichi, T. A parallel CKY

parsing algorithm on large-scale distributed-memory parallel machines. In PA-

CLING ’97 (Tokyo, Japan, 1997), pp. 223–231.

[131] Nivre, J. Algorithms for deterministic incremental dependency parsing. Comput.

Linguist. 34, 4 (Dec. 2008), 513–553.

[132] Paleczny, M., Vick, C., and Click, C. The java hotspot server compiler. Pro-

ceedings of the 2001 Symposium on Java Virtual Machine Research and Technology

Symposium (2001), 1–12.

[133] Palis, M. A., and Shende, S. Sublinear parallel time recognition of tree adjoining

language. Technical report, ScholarlyCommons@Penn, 1988.

[134] Pan, Y., Lu, W., Zhang, Y., and Chili, K. A static load-balancing scheme for

parallel XML parsing on multicore CPUs. In Seventh IEEE International Symposium

on Cluster Computing and the Grid, 2007. CCGRID 2007 (May 2007), pp. 351 –362.

[135] Park, M. Y., and Hastie, T. L1-regularization path algorithm for generalized

linear models. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology) 69, 4 (2007), 659–677.

[136] Pauls, A., and Klein, D. Faster and smaller n-gram language models. In Proceed-

ings of the 49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies - Volume 1 (Stroudsburg, PA, USA, 2011), HLT ’11,

Association for Computational Linguistics, p. 258–267.

[137] Pauls, A., Klein, D., and Quirk, C. Top-down k-best a* parsing. In Proceedings

of ACL 2010 (Morristown, NJ, USA, 2010), p. 200–204.

[138] Penn, G., and Munteanu, C. A tabulation-based parsing method that reduces

copying. In Proceedings of ACL ’03 (Sapporo, Japan, 2003), pp. 200–207.

[139] Pereira, F., and Schabes, Y. Inside-outside reestimation from partially brack-

eted corpora. In Proceedings of the 30th annual meeting on Association for Compu-

tational Linguistics (Newark, Delaware, 1992), ACL, pp. 128–135.

[140] Petrov, S. Coarse-to-Fine Natural Language Processing. PhD thesis, University

of California at Bekeley, Berkeley, CA, USA, 2009.

[141] Petrov, S. Products of random latent variable grammars. In Human Language

Technologies: The 2010 Annual Conference of the North American Chapter of the

Association for Computational Linguistics (Los Angeles, June 2010), ACL, pp. 19–

27.

[142] Petrov, S., Barrett, L., Thibaux, R., and Klein, D. Learning accurate,

compact, and interpretable tree annotation. In Proceedings of the 21st International

Conference on Computational Linguistics and the 44th annual meeting of the Asso-

ciation for Computational Linguistics (Sydney, Australia, 2006), ACL, pp. 433–440.

[143] Petrov, S., Chang, P.-C., Ringgaard, M., and Alshawi, H. Uptraining for

accurate deterministic question parsing. In Proceedings of the 2010 Conference on

Empirical Methods in Natural Language Processing (Stroudsburg, PA, USA, 2010),

EMNLP ’10, Association for Computational Linguistics, p. 705–713.

[144] Petrov, S., and Klein, D. Improved inference for unlexicalized parsing. In Hu-

man Language Technologies 2007: The Conference of the North American Chapter

of the Association for Computational Linguistics (Rochester, New York, Apr. 2007),

ACL, pp. 404–411.

[145] Petrov, S., and Klein, D. Discriminative log-linear grammars with latent vari-

ables. In Advances in Neural Information Processing Systems 20 (NIPS) (Cam-

bridge, MA, 2008), J. C. Platt, D. Koller, Y. Singer, and S. Roweis, Eds., MIT

Press, p. 1153–1160.

[146] Petrov, S., and Klein, D. Sparse multi-scale grammars for discriminative latent

variable parsing. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing (Stroudsburg, PA, USA, 2008), EMNLP ’08, Association for

Computational Linguistics, p. 867–876.

[147] Petrov, S., and McDonald, R. Overview of the 2012 shared task on parsing

the web. In Notes of the First Workshop on Syntactic Analysis of Non-Canonical

Language (SANCL) (2012).

[148] Punyakanok, V., Roth, D., and Yih, W.-t. The importance of syntactic pars-

ing and inference in semantic role labeling. Computational Linguistics 34, 2 (2008),

257–287.

[149] R Core Team. R: A Language and Environment for Statistical Computing. Vienna,

Austria, 2012. ISBN 3-900051-07-0.

[150] Rabiner, L. R. A tutorial on hidden markov models and selected applications in

speech recognition. Proceedings of the IEEE 77, 2 (1989), 257–286.

[151] Ratnaparkhi, A. A linear observed time statistical parser based on maximum

entropy models. arXiv:cmp-lg/9706014 (June 1997).

[152] Riley, M., Allauzen, C., and Jansche, M. OpenFst: an open-source, weighted

finite-state transducer library and its applications to speech and language. In Pro-

ceedings of Human Language Technologies: The 2009 Annual Conference of the

North American Chapter of the Association for Computational Linguistics, Com-

panion Volume: Tutorial Abstracts (Boulder, Colorado, May 2009), Association for

Computational Linguistics, p. 9–10.

[153] Roark, B., Allauzen, C., and Riley, M. Smoothed marginal distribution con-

straints for language modeling. In Proceedings of the 51st Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers) (Sofia, Bul-

garia, Aug. 2013), Association for Computational Linguistics, p. 43–52.

[154] Roark, B., and Hollingshead, K. Classifying chart cells for quadratic complex-

ity context-free inference. In Proceedings of the 22nd International Conference on

Computational Linguistics (Coling 2008) (Manchester, UK, Aug. 2008), D. Scott

and H. Uszkoreit, Eds., ACL, pp. 745–752.

[155] Roark, B., and Hollingshead, K. Linear complexity context-free parsing

pipelines via chart constraints. In Proceedings of Human Language Technologies:

The 2009 Annual Conference of the North American Chapter of the Association for

Computational Linguistics (Boulder, Colorado, June 2009), ACL, pp. 647–655.

[156] Roark, B., Hollingshead, K., and Bodenstab, N. Finite-state chart con-

straints for reduced complexity context-free parsing pipelines. Computational Lin-

guistics 38, 4 (Mar. 2012), 719–753.

[157] Roark, B., and Sproat, R. Computational Approaches to Morphology and Syn-

tax. Oxford University Press, USA, Sept. 2007.

[158] Roark, B., Sproat, R., and Shafran, I. Lexicographic semirings for exact

automata encoding of sequence models. In Proceedings of the 49th Annual Meeting

of the Association for Computational Linguistics (Portland, Oregon, June 2011),

ACL.

[159] Russell, S. J., and Norvig, P. Artificial Intelligence: A Modern Approach,

1st ed. Prentice Hall, Jan. 1995.

[160] Rytter, W. Parallel time o(log n) recognition of unambiguous context-free lan-

guages. Information and Computation 73, 1 (Apr. 1987), 75–86.

[161] Sagae, K., and Lavie, A. A classifier-based parser with linear run-time com-

plexity. In Proceedings of the Ninth International Workshop on Parsing Technology

(Stroudsburg, PA, USA, 2005), Parsing ’05, Association for Computational Linguis-

tics, p. 125–132.

[162] Sagae, K., and Lavie, A. A best-first probabilistic shift-reduce parser. In Pro-

ceedings of the COLING/ACL on Main conference poster sessions (Stroudsburg,

PA, USA, 2006), COLING-ACL ’06, Association for Computational Linguistics,

p. 691–698.

[163] Schraudolph, N. A fast, compact approximation of the exponential function.

Neural Computation 11, 4 (1999), 853–862.

[164] Schwarz, G. Estimating the dimension of a model. The Annals of Statistics 6,

2 (Mar. 1978), 461–464. Mathematical Reviews number (MathSciNet): MR468014;

Zentralblatt MATH identifier: 0379.62005.

[165] Seddah, D., Candito, M., and Anguiano, E. H. A word clustering approach

to domain adaptation: Robust parsing of source and target domains. Journal of

Logic and Computation (Feb. 2013).

[166] Shieber, S. M. Evidence against the context-freeness of natural language. Lin-

guistics and Philosophy 8, 3 (Aug. 1985), 333–343.

[167] Skut, W., Krenn, B., Brants, T., and Uszkoreit, H. An annotation scheme

for free word order languages. In Proceedings of the fifth conference on Applied

natural language processing (Stroudsburg, PA, USA, 1997), ANLC ’97, Association

for Computational Linguistics, p. 88–95.

[168] Smith, N. A., and Johnson, M. Weighted and probabilistic context-free gram-

mars are equally expressive. Computational Linguistics 33, 4 (Dec. 2007), 477–491.

[169] Song, X., Ding, S., and Lin, C.-Y. Better binarization for the CKY parsing.

In Proceedings of the 2008 Conference on Empirical Methods in Natural Language

Processing (Honolulu, Hawaii, Oct. 2008), ACL, pp. 167–176.

[170] Strassen, V. Gaussian elimination is not optimal. Numerische Mathematik 13, 4

(1969), 354–356.

[171] Tarjan, R. E., and Yao, A. C.-C. Storing a sparse table. Communications of

the ACM 22, 11 (1979), 606–611.

[172] Tene, G., Choquette, J. H., Sellers, S., and Click, C. N. Array access,

Aug. 2009. US Patent 7,577,801.

[173] Tewarson, R. P. Sparse Matrices. Mathematics in Science and Engineering Vol-

ume 99. Academic Press, Apr. 1973.

[174] Thue, A. Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln,

von Axel Thue... J. Dybwad, 1914.

[175] Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological) 58, 1 (1996), 267–288.

[176] Tikhonov, A. N. On the stability of inverse problems. In Dokl. Akad. Nauk SSSR

(1943), vol. 39, p. 195–198.

[177] Valiant, L. G. General context-free recognition in less than cubic time. Journal

of Computer and System Sciences 10, 2 (Apr. 1975), 308–314.

[178] Viterbi, A. J. Error bounds for convolutional codes and an asymptotically opti-

mum decoding algorithm. IEEE Transactions on Information Theory 13, 2 (1967),

260–269.

[179] Vogel, S., Ney, H., and Tillmann, C. HMM-based word alignment in statisti-

cal translation. In Proceedings of the 16th conference on Computational linguistics

- Volume 2 (Stroudsburg, PA, USA, 1996), COLING ’96, Association for Compu-

tational Linguistics, p. 836–841.

[180] Wang, Z., and Zong, C. Phrase structure parsing with dependency structure.

In Proceedings of the 23rd International Conference on Computational Linguistics:

Posters (Stroudsburg, PA, USA, 2010), COLING ’10, Association for Computational

Linguistics, p. 1292–1300.

7.4. Applications Outside Constituency 151

[181] Winograd, T. Procedures as a Representation for Data in a Computer Program

for Understanding Natural Language. Ph.D. thesis, Massachusetts Institute of Tech-

nology, Feb. 1971.

[182] Wirén, M. A comparison of rule-invocation strategies in context-free chart parsing.

In Proceedings of the third conference on European chapter of the Association for

Computational Linguistics (Stroudsburg, PA, USA, 1987), EACL ’87, Association

for Computational Linguistics, p. 226–233.

[183] Wu, C. On the convergence properties of the EM algorithm. The Annals of Statistics

11, 1 (1983), 95–103.

[184] Würthinger, T., Wimmer, C., and Mössenböck, H. Array bounds check elim-

ination for the java HotSpot\™ client compiler. Proceedings of the 5th international

symposium on Principles and practice of programming in Java (2007), 125–133.

[185] Xue, N., Xia, F., Chiou, F.-D., and Palmer, M. The penn chinese TreeBank:

phrase structure annotation of a large corpus. Natural Language Engineering 11, 02

(2005), 207–238.

[186] Yi, Y., Lai, C.-Y., Petrov, S., and Keutzer, K. Efficient parallel CKY parsing

on GPUs. In Proceedings of the 12th International Conference on Parsing Technolo-

gies (Dublin, Ireland, Oct. 2011), pp. 175–185.

[187] Yonezawa, A., and Ohsawa, I. Object-oriented parallel parsing for context-free

grammars. In Proceedings of the 12th conference on Computational linguistics -

Volume 2 (Stroudsburg, PA, USA, 1988), COLING ’88, ACL, p. 773–778.

[188] Younger, D. H. Recognition and parsing of context-free languages in time $nˆ3$.

Information and Control 2, 10 (1967), 189–208.

Appendix A

Search Pruning Methods

Inference speed depends greatly on the size of the search space. As noted in Section 2.3, full

CYK inference is O(n3), but heuristic pruning can reduce the space, often with minimal

impact on accuracy. Common pruning methods include beam search, coarse-to-fine [142],

A* [99, 137], best-first [28, 32], and beam search [47]. Pruning reduces the search space

greatly, allowing effective search in reasonable time, although (of the methods listed), only

A* guarantees finding the globally optimal solution.

Search pruning approaches are not a principal contribution of this thesis, but will make

use of several recent pruning approaches in our learning and inference trials, and compare

them in a variety of domains. We chose these pruning approaches for the following reasons:

1) They are rapid to train for an arbitrary grammar; 2) They are (relatively) easy to tune

such that the maximum-likelihood tree remains in the beam, thus retaining the accuracy

of exhaustive search; and 3) They provide state-of-the-art efficiency, yielding a very strong

baseline.

This section introduces briefly some of the pruning methods implemented in the BUBS

parser, focusing on the algorithms we utilize in chapters 3–6. The approaches are described

more fully in Roark and Hollingshead [154], Roark and Hollingshead [155], Roark et

al. [156], and Bodenstab et al. [21].

A.1 Agenda Parsing and A*

Context-free parsing can be formulated as search over a hypergraph for a target node,

corresponding to the CFG start symbol S† [97]. The A* graph-search algorithm [80], as

extended for hypergraphs by Klein and Manning [101] reduces the graph search space while

ensuring the optimal solution is returned. A* (and many other graph-search methods)

depends on a heuristic — an estimate of the cost of the remaining distance from a source

152

A.2. Beam Search and Prioritization Functions

node to the target node. The search is prioritized by the combination of the (known) cost

from the start node g(·) and the estimated cost h(·) to the target node. To guarantee that

the first solution found will be optimal, h(·) must be admissible — that is, it must never

overestimate the true cost to the target [159]. The more closely h(·) approximates α(·),
the more quickly an agenda search will complete.

While agenda search can be quite effective for CFG parsing [32], managing the a

global agenda and computing complex prioritization functions is quite expensive [19].

However, similar heuristic estimates can be applied effectively over a smaller context

within a standard bottom-up search.

A.2 Beam Search and Prioritization Functions

Beam search [114] is a heuristic best-first graph search algorithm which limits the number

of candidate solutions explored at each step. The number of solutions explored (the ‘beam

width’) is often fixed, but can be varied during search to adapt to contexts of greater or

lesser ambiguity (c.f. Bodenstab et al. [21]). In the context of CYK chart parsing, a beam

search usually means limiting the cell population — the number of non-terminals populated

in a cell. Beam search requires a heuristic prioritization of the candidate sub-solutions

(also called a ‘local prioritization’, or ‘figure-of-merit’). The inside probability of each

non-terminal label is one simple and effective heuristic — we simply rank candidates by

inside probability and retain the n most probable. In empirical trials with a 6-cycle latent-

variable grammar, we found we can reduce the beam to approximately 100 before accuracy

begins to decline (the total vocabulary of this grammar is over 1100, and exhaustive search

averages over 400 entries per cell, so a beam of 100 is constraining the search greatly).

We can improve on inside probability by estimating the candidates’ posterior prob-

ability as well. Combining with a heuristic estimate of the outside probability with the

(known) inside probability gives us an estimate of the posterior [28]. Bodenstab [19] pre-

sented a lexicalized prioritization function which provide dramatically improved rankings,

maintaining accuracy with a beam of 30 or fewer on the same 6-cycle grammar. A straight-

forward beam search improves efficiency by orders of magnitude [19], but combining beam

search with coarse-to-fine pruning approaches can yield further gains.

153

A.3. Coarse-to-fine

A.3 Coarse-to-fine

Coarse-to-fine (CTF) search proceeds in 2 or more stages, first processing the sequence

with a simpler ‘coarse’ model and using the output of that stage to guide and constrain

subsequent inference with a more accurate model. The general CTF approach is common

in many NLP tasks, and is described well in Petrov [140]. When applied to constituency

parsing, CTF approaches generally involve annotating cells of the parse chart with con-

straints from the coarse stage which can then be applied during the fine stage(s). For

example, the Charniak-Johnson parser [32, 34] performs an agenda parse with a finely-

tuned bilexical grammar, requiring computation of probabilities and smoothing during

inference. These on-the-fly calculations are quite expensive, so it first parses with a small,

explicitly enumerable PCFG, and then guides its agenda parse using the posterior proba-

bilities from the initial search. Petrov et al. [142] adopts a similar approach, extending it

to a multi-level hierarchical grammar trained with the algorithm described in Section 2.9.

In this thesis, we make use of CTF approaches which perform O(n) or O(n2) pre-

processing stages, prior to the O(n3) chart-parsing operation. The following sections

introduce several examples of such approaches.

A.4 Chart Cell Constraints

Roark and Hollingshead [154] presented a tagging approach that closes certain chart cells,

disallowing entries in positions unlikely to contribute to a complete parse tree. For exam-

ple, the word the is quite unlikely to end a complete constituent (subtree). Cells which

require the to end a subtree can be closed, reducing the search space. To apply this

approach, we train a pair of taggers to classify each word in the target sentence as poten-

tially capable of beginning or ending a subtree. We want to run these two taggers at a

very high-precision operating point, such that the vast majority of the ‘cannot-begin’ and

‘cannot-end’ classifications are correct.

We then extend the classifications upwards in the chart along a diagonal from each

word, marking the cells which would contribute to disallowed subtree constructions, as

demonstrated in Figure A.1. For simplicity, we omit here the details of accommodating

incomplete constituents (factored categories) and the time-complexity proofs; both are

detailed in the original publications [154, 155, 156].

Bodenstab et al. [21] introduced a modification of this approach they called complete

154

A.5. Adaptive Beam Models

It
0,10,1

would
1,2

have
2,3

been
3,4

too
4,5

late
5,6

to
6,7

think
7,8

about
8,9

on
9,10

Friday
10,11

.
11,12

0,2 1,3 2,4 3,5 4,6 5,7 6,8 7,9 8,10 9,11 10,12

0,3 1,4 2,5 3,6 4,7 5,8 6,9 7,10 8,11 9,12

0,4 1,5 2,6 3,7 4,8 5,9 6,10 7,11 8,12

0,5 1,6 2,7 3,8 4,9 5,10 6,11 7,12

0,6 1,7 2,8 3,9 4,10 5,11 6,12

0,7 1,8 2,9 3,10 4,11 5,12

0,8 1,9 2,10 3,11 4,12

0,9 1,10 2,11 3,12

0,10 1,11 2,12

0,11 1,12

0,12

Figure A.1: CYK chart highlighting cells closed by Roark and Hollingshead [154] chart

cell constraints. The words ‘late’ and ‘Friday’ are highlighted as unable to begin a multi-

word constituent, and ‘would’, ‘have’, ‘been’, and ‘think’ as unable to end one. The cells

closed by those constraints are marked in dark gray. (Note: this simple example ignores

the nuances of factored categories and partially-open cells).

closure, which applied a similarly-trained classifier to individual chart cells instead of ter-

minals. Figure A.2 displays a sample chart. Complete closure performs O(n2) open/closed

classifications (rather than O(n)), allowing in some cases finer distinctions between cells

within a diagonal. Chart-constraint methods are very effective, reducing average-case

parse times by an order of magnitude or more, and both variants interoperate smoothly

with beam search and local prioritization.

A.5 Adaptive Beam Models

Bodenstab et al. [21] further refined and generalized cell constraints. A local prioritization

function — as described in Section A.2 — ranks non-terminal labels within each cell. An

effective prioritization function will often rank very highly the labels which participate

in the final parse tree. Thus, a fixed beam width often includes many unnecessary cell

entries.

An Adaptive Beam model is a regression model, trained to predict the appropriate

155

A.5. Adaptive Beam Models

It
0,10,1

would
1,2

have
2,3

been
3,4

too
4,5

late
5,6

to
6,7

think
7,8

about
8,9

on
9,10

Friday
10,11

.
11,12

0,2 1,3 2,4 3,5 4,6 5,7 6,8 7,9 8,10 9,11 10,12

0,3 1,4 2,5 3,6 4,7 5,8 6,9 7,10 8,11 9,12

0,4 1,5 2,6 3,7 4,8 5,9 6,10 7,11 8,12

0,5 1,6 2,7 3,8 4,9 5,10 6,11 7,12

0,6 1,7 2,8 3,9 4,10 5,11 6,12

0,7 1,8 2,9 3,10 4,11 5,12

0,8 1,9 2,10 3,11 4,12

0,9 1,10 2,11 3,12

0,10 1,11 2,12

0,11 1,12

0,12

Figure A.2: CYK chart highlighting cells closed by ‘complete closure’ [21]. Note the

similarities and differences between this chart and that in Figure A.1. More cells are

closed, but not always in straight diagonals.

population of each individual chart cell. When the model predicts less ambiguity, the cell

population is reduced below the maximum beam width. For some unambiguous cells, the

modeled beam width may be 1 (i.e., the top-ranked constituent is the only one stored

in the chart). As in complete closure, the model may also close cells (i.e., predict a

beam width of 0). Adapting the beam width on a per-cell basis allows heavier pruning in

less-ambiguous areas of the chart, without risking search errors in more other contexts.

While this is fundamentally a regression problem (i.e., for each cell, predict the appro-

priate beam width), Bodenstab et al. [21] found it more effective to train a small set of

binary classifiers — e.g., beam width=0, beam-width=1, beam-width=2, . . . — and com-

bine them into a single model. All adaptive-beam pruning models used in this thesis follow

the same approach.

156

Biographical Note

Aaron J. Dunlop was born in January 1975, in Portland Oregon. He received his Bachelor

of Arts in Computer Science from Willamette University in 1996 and his Masters of Science

from Oregon Health & Science University in 2008. He continued his studies at OHSU,

doing his doctoral research while working as a Software Engineer at TransCore and later

at Intel. His professional interests include syntactic parsing, language modeling, and

information extraction. He has co-authored several papers in peer-reviewed conferences

and other venues.

157

	Dedication
	Acknowledgements
	Abstract
	Introduction
	Hierarchical Syntactic Analysis
	Problem Statement
	Goals
	Organization and Contributions of the Thesis

	Background and Preliminaries
	Formal Languages and the Chomsky Hierarchy
	Context Free Grammars
	Strengths and Weaknesses of CFGs
	Weighted and Probabilistic CFGs
	Binarization

	Parsing and the CYK Algorithm
	Evaluation
	Expectation Maximization
	Inside-Outside Algorithm
	PCFG Induction
	Corpus Transformations
	State-splitting and Smoothing
	Bilexical Grammars

	High-Accuracy Unlexicalized Grammars
	Split-merge Training of Latent Variable Grammars
	Evaluation of Latent-Variable Learning Algorithms
	Hardware Background
	BUBS Parser
	Evaluation Criteria
	Measuring Efficiency

	Summary

	Grammar Encoding, Intersection Methods, and Parallelism
	Parsing and Matrix Operations
	Matrix Grammar Encoding
	Cache Effects
	Grammar Intersection Methods
	Matrix-Vector Grammar Intersection
	SpMV Intersection
	Lexicographic Semiring

	Grammar Intersection Evaluation
	Exhaustive Serial Search
	Pruned Serial Search

	Parallelism
	Parallel Parsing of Deterministic Languages
	Parallel PCFG Parsing
	Exhaustive Parallel Search
	Pruned Parallel Search

	SIMD
	Related Work

	Discussion

	Lexicon Simplification and Corpus Transformations
	Spurious State Splits
	Class-based Rare Word Handling and Normalization
	Corpus Transforms
	Combined Normalization

	Word Clustering
	Tagging
	Clustering Results

	Test Set Results
	Cross-domain Generalization

	Discussion

	Regularization and Merge Objective Functions
	Sparse Priors and Regularization
	Uniform Parameter Pruning

	Merge Fraction
	Merge Objective Functions
	Greedy L0 Merge Objective
	Inference-Informed Merge Objective
	Training With An Inference-Informed Objective

	Modeled Merge Objective
	Training With A Modeled Merge Objective

	Results and Discussion

	Chart Decoding Methods
	Viterbi Decoding
	Approximate Minimum-Bayes-Risk Decoding
	Max-Rule Decoding
	Accuracy Evaluation
	AMBR
	Max-Rule
	Error Analysis

	Relationship with Pruning
	Efficient Approximations
	Scaling in the Real Semiring
	Test Set Results and Discussion

	Method Combination and Discussion
	Combining Methods
	Best Practices
	Model Training
	Inference

	Conclusions and Future Work
	Applications Outside Constituency

	Bibliography
	Search Pruning Methods
	Agenda Parsing and A*
	Beam Search and Prioritization Functions
	Coarse-to-fine
	Chart Cell Constraints
	Adaptive Beam Models

	Biographical Note

