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Abstract

Genomic structural variations are an important class of genetic variants with a wide va-

riety of functional impacts. The detection of structural variations using high-throughput

short-read sequencing data is a difficult problem, and published algorithms do not pro-

vide the sensitivity and specificity required in research and clinical settings. Meanwhile,

high-throughput sequencing is rapidly generating ever-larger data sets, necessitating the

development of algorithms that can provide results rapidly and scale to use cloud and

cluster infrastructures. MapReduce and Hadoop are becoming a standard for managing

the distributed processing of large data sets, but existing structural variation detection

approaches are difficult to translate into the MapReduce framework. We have formulated

a general framework for structural variation detection in MapReduce, and implemented a

software package called Cloudbreak, which detects genomic deletions and insertions with

very high accuracy compared to existing popular tools. Through the use of MapReduce

and Hadoop, Cloudbreak can scale to harness large compute clusters and big data sets,

leading to much faster runtimes than existing methods. In addition, we show that Cloud-

break’s formulation of the structural variation detection problem in terms of local feature

generation allows it to simultaneously integrate many informative signals in statistical

learning frameworks. We demonstrate this using conditional random fields, which enable

learning conditional probability distributions over labels on sequences of observations, and

show that it improves Cloudbreak’s results, in particular increasing breakpoint resolution.

In addition to the development of Cloudbreak and its extensions, we describe a data

analysis project in which we examined the genomic features that occur near evolutionary

breakpoints in the genome of the gibbon, whose karyotype is heavily rearranged compared

to other primate species. Using a distributed pipeline to conduct Monte Carlo permutation

tests, we find a statistical enrichment of segmental duplications, certain families of trans-

posable elements, and evolutionarily shared binding sites of the protein CTCF near the

locations of gibbon rearrangements. These findings may help us understand the process

by which structural variations formed and were preserved in the gibbon lineage.



Chapter 1

Introduction

The aim of the field of genomics is to characterize the structure and function of the DNA

of an organism or population of organisms, with the ultimate goal of understanding how

the sequences of nucleotides that make up the genome affect phenotypes and reveal evolu-

tionary history. To do so, it is necessary to identify and understand the differences between

the DNA from two samples, whether the samples come from two different individuals or

two different tissues from the same individual. Given that each sample can contain DNA

from multiple cells, and each cell in a human sample contains approximately 3 billion DNA

bases packaged into two sets of 23 chromosomes, this is difficult and complex undertaking.

If, as is the case for humans, the species has been widely studied, a reference genome

is often used in place of one of the samples. This allows variations between individuals to

be described as variations between the sample and the reference. Experiments of this type

are known as resequencing experiments. Assuming that a reference is used, or that the

samples come from an individual or individuals from the same or closely related species,

the majority of the DNA sequence will be the same between the two samples. In that case,

variants can be categorized into one of several forms. The first is a difference of a single base

of DNA at a particular location within the genome, or a single nucleotide variant (SNV).

If the variation is shared between many individuals in a population, these are referred

to as single nucleotide polymorphisms (SNPs). Another type of variation is the insertion

or deletion of a small number of base pairs at a particular location, commonly referred

to as indels. A final category of variants are genomic structural variations (SVs). This

term describes variations that affect a large number of bases of DNA (in common usage

at least 40 base pairs, ranging up to hundreds of megabases or entire chromosomes). SVs

1
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can take a variety of forms: strings of DNA can be deleted, inserted, duplicated, inverted,

or translocated to a different chromosome. Because they can be large and frequent, SVs

account for the majority of the bases that differ among normal human genomes [128, 42].

All of these types of variants can alter the function of a genome in different ways.

SNVs can change the sequence of the proteins coded for by genes, sometimes altering their

function and sometimes rendering them inactive, or they can alter regulatory elements

and cause genes to be expressed at differing levels. Indels typically disrupt the function

of a gene or regulatory element. SV’s can cause a variety of functional changes, ranging

from the deletion of exons to the formation of fusion genes such as the famous Brc-Abl

Philadelphia chromosome in chronic myelogenous leukemia [87].

In fact, SVs are very common in some types of cancer, producing extremely rearranged

genomes. Because of this, they have particular importance in cancer research, and it is

therefore essential to be able to identify them in biological samples, as well as to charac-

terize their functional impact and the mechanisms of their formation. The SVs that arise

in cancer genomes have similarities to those that have arisen between different species in

evolution (Figure 1.1). For example, the genomes of gibbon species, while still closely

related to humans and other apes, have undergone a variety of chromosomal rearrange-

ments and other structural variations when compared to these other species; many more,

in fact, than are typical in species with similar levels of divergence. Understanding the

evolutionary changes in gibbons, therefore, may shed light on the much faster processes

that take place in progenitor cancer cells.

The current technology to detect genomic variations is massively parallel, high-throughput

sequencing. This procedure involves amplifying the DNA from a sample and then shear-

ing it into small fragments. The ends of those fragments are then sequenced, producing

hundreds of millions or billions of read pairs for a sample using current, widely used instru-

ments. The challenge of genomics is then to discover the variants present in the sample

using only these short reads. By generating and sequencing enough fragments from a sam-

ple (quantified in terms of coverage, the average number of reads that cover any one locus

in the reference genome), the hope is that it should be possible to capture almost all of the

important variants in a given sample. Current practices suggest that 30X average coverage
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a b

Figure 1.1: Similarity of genomic breakpoints that occur in cancer and evolution. The
regions around the circle represent the human chromosomes. Lines in the centers of the
circles show rearrangements between and within chromosomes. A) Somatic rearrangements
detected within a breast cancer cell line, adapted from [64]. B) Rearrangements with
respect to the human genome sequence present in the gibbon genome, adapted from [29].

depth is required to achieve accuracy in detecting SNVs. Even with this level of cover-

age, however, the task is made difficult by errors in the sequencing process, the fact that

mammalian genomes are filled with repetitive sequences that make it difficult to ascertain

the location in the genome that generated a particular read pair, and the computational

challenges of analyzing the volume of data generated.

While SNVs and indels can be characterized relatively well from sequencing data using

current algorithmic approaches, the identification of SVs remains challenging. SVs often

arise within repetitive regions of the genome, making it difficult to align the reads sur-

rounding them unambiguously to the reference genome. In addition, when the boundaries

of an SV (the breakpoints) fall within a read sequence, it can be difficult to map that

read back to its point of origin in the reference sequence. Although some approaches are

based on searching for reads that contain breakpoints, it is often necessary to fall back

on other signals present in the read set: the distance between successfully mapped read

pairs, which should match the size of the fragments generated in the sequencing protocol,

and the depth of reads that cover individual loci along the genome. Detection of SVs with

current high-throughput sequencing technology remains a difficult problem, with limited
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concordance between available algorithms and high false discovery rates [128].

While current approaches struggle with accuracy, they also often fail to consider speed

and scalability. A 30X coverage data set for an individual sample, in compressed format

with associated quality scores, contains over 100GB of data to analyze. A typical bioin-

formatic pipeline includes steps to run quality control checks on the raw data; align the

reads to the reference genome; perform filtering and recalibration steps after alignment;

call SNVs and indels; and finally search for SVs. While a great deal of effort has been

put into developing, optimizing, and parallelizing fast methods for alignment and variant

calling, SV detection algorithms have not received the same attention, primarily because

research in SV detection algorithms has focused on improving accuracy. As large scale

sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas grow,

the need for fast and accurate algorithms is becoming more apparent. DNA sequencing is

already moving into the clinic, which will only exacerbate this requirement by requiring

rapid analysis turnarounds for patients.

One approach to scaling data analysis pipelines is to harness the power of distributed

computing using frameworks that tie together clusters of servers. Google’s MapReduce [45]

framework was designed to manage the storage and efficient processing of very large scale

data sets across clusters of commodity servers. Hadoop is an open source project of the

Apache Foundation which provides an implementation of the MapReduce programming

framework as well as a distributed file system (HDFS) for distributing the redundant

storage of large data sets across a cluster. Hadoop and MapReduce are rapidly becoming a

standard in industrial data mining applications. However, they require the use of a specific

programming model, which can make it difficult to design general-purpose algorithms for

arbitrary sequencing analysis problems like SV detection.

This dissertation presents several novel techniques for detecting SVs using distributed

computing and machine learning, which derive from the development of an algorithmic

framework for SV detection methods in MapReduce. In particular, the main contributions

are:

• The description of an algorithmic framework for solving SV detection problems in
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Hadoop and MapReduce based on the computation of local features along the genome

from paired end mappings (Chapter 4).

• The development in this framework of a software package, Cloudbreak, for discovering

genomic deletions up to 25,000bp long, and short insertions, which improves accuracy

over existing approaches and uses distributed computing to achieve dramatically

faster runtimes (Chapter 5 and Chapter 6).

• An evaluation of the strengths and weaknesses of Cloudbreak, as compared to several

other popular SV detection tools, when tested on several real and simulated data sets

(Chapter 6).

• An exploration of the use of local features as described in Chapter 4 to reformulate

SV detection as a sequence labeling problem, and the corresponding implementation

and evaluation of a conditional random field model to create a novel method for

integrating different signals of structural variations (Chapter 7).

In separate work not related to the algorithmic developments listed above, we also

present the results of data analysis projects which examined the SVs that have massively

rearranged the genome of the gibbon in an evolutionary time frame. This has led to the

additional contribution of:

• Identification of sets of genomic features that are enriched near the breakpoints

of the structural variations are present between gibbons and humans. These in-

clude segmental duplications and some families of transposable elements, as well as

evolutionarily shared transcription factor binding sites. This analysis enhances our

understanding of gibbon genome rearrangements. (Chapter 8).

A preliminary version of parts of this work was peer-reviewed and accepted for oral

presentation at the Third Annual RECOMB Satellite Workshop On Massively Parallel

Sequencing (RECOMB-seq). A preliminary breakpoint analysis was published in [28].

Throughout this document, I have tried to explicitly identify any work that was carried

out by my collaborators.



Chapter 2

Biological Background

In this chapter we will explore the nature of structural variations, discuss the mechanisms

that may be behind their formation, and their effect on phenotypes and disease. We will

then describe high-throughput sequencing and discuss the typical informatics pipelines that

researchers create to analyze sequencing data, placing SV detection within the context of

the other types of computation that must be done to support end-to-end analysis. Finally,

we will discus the challenges that the increasing number and size of sequencing data sets

represent.

2.1 Structural Variations

As we described in the introduction, structural variations (SVs) are rearrangements, rela-

tive to some reference genome sequence, of sequences of DNA with a length longer than

40 or 50bp. These can take the form of deletions of reference sequence, insertions of novel

sequence, duplications of sequence, inversions of orientation of a stretch of sequence with

respect to the rest of its chromosome, or translocations of sequence from one chromosome

to another. Deletions, insertions, and duplications are also frequently referred to as copy

number variations (CNVs). In addition, many complex SVs exist in which these simple

SV types are combined.

SVs can occur and become part of a gene pool on several different biological and time

scales. On the smallest level, SVs can rearrange the genomes of individual cells within an

organism. If the SV contributes to the cell’s ability to proliferate, or occurs in conjunction

with another mutation that does so, it can give rise to a tumor, or a new subpopulation or

6
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clone within an existing tumor. On a population scale, the genomes of individuals within

a species harbor SVs with respect to one another, either because they were transmitted

through the germline or because they arose de novo in certain individuals. Finally, on a

larger scale, SVs within a species may become fixed, contributing to differences between

the genomes of varying species on an evolutionary scale.

2.1.1 SV Effects on Phenotype and Disease

On all of these levels, SVs are associated with differences in phenotypes and have been

shown to associate with many types of disease, making them an important area of study. Of

course, our knowledge of these effects has been shaped by the types of SVs that researchers

have been able to detect in the past several decades given the assays at their disposal

and the scale at which samples could be analyzed. These limitations have biased our

understanding towards the large variants with large effect sizes that were discoverable

before the advent of modern array and sequencing technologies.

Cancer genomes contain many SVs that have been linked to tumor progression. The

famous Brc-Abl mutation [87] mentioned previously is the most famous example of a fusion

gene, in which portions of the genome coding for two different genes are made adjacent

due to an SV. This results in the creation of new gene which can take on novel functions,

which in turn drive cancer growth. Fusion genes can be caused through any type of SV that

causes a novel adjacency between regions of the genome, including deletions, duplications,

translocations, and inversions, and there have been dozens of recurring fusion genes iden-

tified across varying cancers to this point [10]. In another example, the genomic locus that

contains the MYC gene, which among other functions regulates cell proliferation [50], is

frequently duplicated multiple times in breast cancer cells [55]. These duplications change

the amount of protein made by the cell, causing a dosage-related defect in cell regulation.

In other cancer cells, a dramatic process called chromothripsis has been observed, in which

entire chromosomes appear to “shatter” and then be pieced back together. This gives rise

to hundreds of SVs, some of which can promote cancer development [179]. On the other

end of the spectrum in terms of variant size, small deletions of less than 150bp in untrans-

lated coding regions of genes have been observed to contribute to aberrant gene expression
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in leukemia [73].

On the scale of the human population, SVs and CNVs have been implicated in a variety

of diseases (for a comprehensive recent review see Weischenfeldt et al. [191]). The best

studied of these are large CNVs, including deletions or duplications of genes. These can can

include variants that arise de novo in individuals, either giving rise to rare disorders [115]

or contributing to the risk of more common conditions such as Crohn’s disease [122],

autism [169], and schizophrenia [188]. However, most CNVs in the human genome are

polymorphic within the population and contribute to human genetic diversity [123]. The

rise of microarrays and high-throughput sequencing has sped the discovery of smaller vari-

ants that affect coding sequence by deleting exons. To give one recent example, an 8kb

deletion of an exon in the BAG3 gene has been tied to risk for cardiomyopathy [141].

There are also numerous examples of deletions that affect human phenotypes even

though they do not directly overlap with the coding regions of genes, instead interacting

with regulatory elements that control gene expression levels. For example, deletions rang-

ing from 36kb to 319kb in size that are over one megabase away from the SOX9 gene locus

can alter its expression by removing an enhancer element, giving rise to a rare cleft palate

syndrome called Pierre Robin sequence [21]. Expanding on this idea, a survey of CNVs be-

tween inbred mouse strains showed that 28% of gene expression differences between strains

could be statistically explained by CNVs, but that only 7% of the identified CNVs directly

overlapped one of the differentially expressed genes, suggesting that SVs may shape many

aspects of organism phenotypes in complex ways [26]. In another dramatic example from

other species, the well-studied stickleback fish, which has repeatedly evolved adaptations

to fresh water in several locations around the world as it moved from the sea into lakes,

owes one of those adaptations, the loss of spines on its pelvis, to recurrent sub-2kb deletions

of an enhancer that regulates the Pitx1 gene [31].

2.1.2 Mechanisms and Signatures of SV Formation

Given that many of the phenotypic effects of SVs described above are deleterious to the

organism, it is natural to ask how they arise in genomes. Biologists have identified several

different mechanisms that can cause SVs. By studying many of the genomic disorders
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mentioned in the previous section, geneticists found that often CNVs recur in different

individuals at the same locations in the genome. Examining these locations revealed that

they are homologous to sequences repeated elsewhere in the genome in the form of seg-

mental duplications, stretches of DNA that are over 1kb in length with greater than 90%

sequence identity [170]. This helped to identify the process of non-allelic homologous re-

combination (NAHR) [112]. In the best studied form of NAHR, the cell attempts to repair

DNA in the cell that has suffered double-stranded breaks (DSBs). To do so, it attempts to

find homologous DNA in the nucleus that can be used as a template to repair the broken

strand. However, repeats in the genome provide the opportunity for DNA from the wrong

genomic location to be used in this repair process, creating genomic breakpoints in the

repaired DNA. In mammals, as little as 295bp of non-allelic homologous sequence can be

responsible for NAHR events [111]. The human genome contains many copies of trans-

posable elements, including 500,000 of the LINE family and over one million of the Alu

family, with average lengths of 6kb and 300bp, respectively. Both Alu [104] and LINE [158]

are frequently involved in NAHR events. As these and other transposons copy themselves

into new locations in the genome, they also give rise to their own class of SV, mobile ele-

ment insertions (MEIs), which leave their own signatures of small tandem site duplications

(TSDs) at either end of the insertions.

In contrast to NAHR, other mechanisms can create SVs without extensive sequence

similarity at the breakpoint. Non-homologous end joining (NHEJ) and microhomology

mediated end joining (MMEJ) are two such processes [67]. Both of these mechanisms

involve the repair of DSBs in the cell and typically result in SV breakpoints that have very

small (less than 20bp) homologies on either side. Other processes of SV formation that leave

a signature of microhomologies at the breakpoint are Fork Stalling and Template Switching

(FoSTeS) [101] and microhomology-mediated break-induced replication (MMBIR) [67]. In

these models, as the cell replicates all of its DNA two replication forks can switch DNA

templates, causing complex structural variations to form. Finally, the chromothripsis

process mentioned above also gives rise to microhomologies [113].

Given that different SV formation mechanisms have different signatures that can be

determined by the presence of varying amounts of duplication or homology at or near the
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breakpoints, it is possible to analyze SVs to gain insight into their formation in different

contexts. For example, Conrad et al. [41] surveyed CNVs from 40 unrelated individuals us-

ing a targeted sequencing method that enabled them to determine exact sequences around

the breakpoints of some events. They found that although the best studied human genomic

disorders are due to recurrent SVs caused by NAHR, NHEJ and MMEJ were responsible

for the great majority of CNVs they were able to detect, a result later confirmed by the

1000 Genomes Project [128], although studies in mice have found that MEI may be more

frequent albeit harder to detect [197]. In Chapter 8, we will discuss efforts to analyze the

sequence context of genomic rearrangements between species.

2.2 High-Throughput Short-Read Sequencing

The pace of analysis of genome rearrangements and SVs has risen dramatically with the

widespread adoption of high-throughput short-read sequencing (for a review see Shendure

and Ji [172]). In early projects to interrogate SVs in DNA samples researchers had to

painstakingly map individual variants using time-consuming microscopy (for very large re-

arrangements), fluorescence in situ hybridization (FISH), southern blotting, or polymerase

chain reaction (PCR) assays [14]. The development of microarray technology allowed si-

multaneous testing of many genomic probes on a sample, although the probes had to be

developed using prior knowledge of what variants to expect. Short-read sequencing, how-

ever, allows direct DNA sequence data to be collected in a relatively unbiased way from

the entire genome, overcoming these limitations.

High-throughput short-read sequencing technology is currently dominated by Illumina,

Inc. (San Diego, CA), and unless otherwise noted we will be referring to data generated

by Illumina instruments when we refer to short-read or next-generation sequencing data

in this document. The Illumina sequencing process begins with creation of genomic DNA

library, which has billions of small fragments of DNA, sheared randomly across the genome,

with adapter sequences attached to the ends. These adapters attach randomly to locations

on the surface of the sequencing instrument’s flow cell, and then are amplified in place to

form clusters on the flow cell, each consisting of thousands of copies of a DNA fragment
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from the library. The sequencer then initiates a process in which the complements of each

strand of DNA in the clusters are synthesized one base at a time. Each complementary

base added to the new molecule contains a fluorescent tag, and the instrument takes a

picture of the flow cell at each step. Pooling the color signal from each strand in a cluster,

the sequencer optically analyzes the image from each time step to call the base at that

position in each cluster. Because all clusters can be analyzed simultaneously in a single

flow cell image, Illumina’s sequencing instruments can now process billions of fragments

at the same time. Illumina’s HiSeq 2500 instrument, the current throughput leader, can

produce 1.2 billion paired-end reads, or 120Gb of data, in 27 hours.

While this technique produces unprecedented amounts of sequencing data, the downside

is that read lengths are limited by the extent to which the synthesis process can be regulated

and kept in sync across all of the clusters on the flow cell. In Illumina’s current high-

throughput instruments, this limits read lengths to 100bp or 150bp. The downsides of

this can be mitigated somewhat through techniques that sequence both ends of a DNA

fragments, producing the paired-end reads referred to earlier. If the size of the fragment is

approximately known, the distance between the two sequenced ends can be estimated, as we

will discuss in detail in Section 3.2. These paired-end techniques typically use fragments

of between 250 and 500bp, although in some cases mate pair fragment sequencing can

produce reads from the ends of much larger fragments (6-8kb).

Because nearly half of the human genome is made up of repetitive elements, the anal-

ysis of the short reads produced by these sequencing technologies present a unique set

of challenges [182]. As we mentioned earlier, repetitive elements such as Alu and LINE

appear many times in the genome. If a read, or pair of reads, falls entirely within a single

repetitive element, it will be impossible to determine the location in the genome it came

from if there has not been enough sequence divergence of the repeat over evolutionary

time to distinguish it from the others. Because many SV formation mechanisms depend

on sequence homologies at the breakpoints, they are particularly likely to fall into repeats

in the genome, complicating the task of SV detection from short-read data.
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In addition to making SV detection difficult, short-read sequencing – by the unprece-

dented volume of data it produces – also presents challenges to developing scalable infras-

tructure and algorithms for processing sequencing data in general. We will return to the

problem of SV detection in the next chapter, and in the remainder of this chapter will give

an overview of the applications of high-throughput sequencing data, and will discuss the

computational challenges they represent.

2.2.1 Sequencing Analysis Pipelines

To transform raw sequencing reads into usable information typically requires a series of

discrete steps. As genomic bioinformatics has matured, these have been increasingly mod-

ularized and made into components that can be connected together to create analytics

pipelines designed for particular applications. In this section, we will describe pipelines for

several of the most popular applications of high-throughput sequencing.

DNA Resequencing

As we mentioned in Chapter 1, resequencing projects attempt to identify variants present

in the genomic DNA of samples from a population for which there exists a reference

sequence. Variants can then be specified in standard formats (typically VCF, the Variant

Call Format [44]) that describes them in terms of the sequence and coordinates of the

reference. These can then be used in study designs such as case/control or genome wide

association studies (GWAS), or, in clinical contexts, can be searched directly using prior

knowledge for variants likely to be associated with diseases or conditions.

Figure 2.1 shows a high-level representation of the steps involved in a large-scale rese-

quencing project using the Genome Analysis Toolkit [46]. The main components are:

1. Quality Control and Data Preparation. Although not shown in Figure 2.1, most

pipelines typically begin by running a set of reports to assess the quality of the raw

data, often with a standardized QC suite such as FastQC [8] and data preparation

steps that include trimming the portions of the input sequences that have base calls

with low confidence scores or that contain sequence that matches known artifacts of
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Figure 2.1: An example of a full computational pipeline for high-throughput short-read
DNA resequencing projects. This figure describes the Genome Analysis Toolkit (GATK)
best practices pipeline, and is representative of the computational steps involved in a
full resequencing pipeline designed to process many samples simultaneously. Reprinted by
permission from Macmillan Publishers Ltd: Nature Genetics 43:5pp491-498 [46], copyright
2011

the sequencing process (adapter trimming). These components operate on raw data

in the FASTQ format [40].

2. Read Mapping. In this phase, reads are mapped to the reference genome to find

their most likely coordinates of origin. There exist a wide variety of short-read

mappers that are heavily optimized for the task of aligning short DNA sequences

to reference genomes (for a survey from several years ago see Li and Homer [108]).

These typically use some form of a seed-and-extend strategy, in which exact matches

of portions of the input read to the reference genome are found quickly using pre-

computed indices. These indices can take the form of hash tables or some form of
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enhanced suffix array, or more popularly, the suffix trie equivalent FM-index [58],

which uses the Burrows-Wheeler Transform (BWT) [25] to convert a suffix trie into

a highly compressed structure that is particularly useful for indexing highly repet-

itive genome sequences while still giving fast (under most conditions linear in the

length of the query pattern) lookup times. These exact matches are then extended

using direct comparisons or through dynamic programming techniques such as the

Smith-Waterman alignment algorithm [176]. Examples of hash-based aligners in-

clude Novoalign [142] and MOSAIK [103], while BWA [106] and Bowtie 2 [94] are

popular BWT-based aligners. The output of this step is typically in the Sequence

Alignment/Map (SAM) format [107], which in addition to the reads stores their align-

ment coordinates on the reference genome, mapping quality scores, and information

about mismatches to the reference.

3. Local Realignment, Duplicate Marking, and Recalibration. In some pipelines

there is often an additional quality control step after read mapping. PCR amplifi-

cation in the preparation of sequencing libraries from DNA samples can give rise to

duplicate fragments, which are typically identified and removed at this point. In ad-

dition, this step can include a more expensive realignment phase for groups of reads

that appear to span short insertions and deletions (indels, typically under 40bp in

size), and a recalibration of the base call quality scores reported by the sequencer

based on the empirically observed distribution of mismatches between the reads and

the reference sequence [46].

4. Variant Calling. The next phase includes calling of single nucleotide variants

(SNVs), indels, and SVs. To call SNVs and indels, algorithms examine each possible

variant indicated by mismatches of reads to the reference. They typically evaluate

the number of reads supporting the variant against the total number of reads at that

location, as well as prior beliefs, in a Bayesian framework. Popular SNP and INDEL

callers include the GATK [124], SAMtools [107], and SOAPsnp [109]. In some cases,

multiple samples from a population are examined simultaneously, giving additional

power to detect variants in that population. We will discuss SV callers in more detail
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in Chapter 3.

5. Integrative Analysis/Filtering. After raw variants have been called, additional

sources of outside information can be used to adjust their confidence scores or filter

out false positives. This can include data from existing catalogs of genomic variants

or knowledge about the population structure of the samples. If multiple samples from

the same pedigree are being sequenced, data can be reconciled based on the principles

of inheritance. DePristo et al. [46] describe one such set of filters appropriate for a

large scale study involving many individuals from a population. In Section 3.7 we will

describe a simple filtering scheme we implemented for a cancer sequencing project.

Other Sequencing Applications

In addition to DNA resequencing to detect genomic variants, there are many other appli-

cations of short-read sequencing. We will not go into detail on how each works, but will

briefly list the goals and major informatic components of several of the most common so

that we can address a full picture of the computational scaling challenges that short-read

sequencing represents.

• RNA-seq. In RNA-seq (see Oshlack et al. [146] for a review), the goal is to in-

terrogate the expression of genes across samples, for example in different disease

conditions. Rather than sequencing DNA, libraries are constructed from RNA taken

from the sample. Similarly to DNA resequencing, the reads are QC’d and aligned

to the reference genome, although there are read mappers especially designed for

RNA-seq that include functionality to map reads over exon junctions. The reads

that map to annotated genes on the reference are then analyzed and quantified to

determine the genes that are being expressed in the sample, along with their relative

expression levels and isoforms.

• ChIP-seq The intent of ChIP-seq (reviewed by Park [147]) is to determine the lo-

cations in which DNA, or the chromatin that contains it, is being bound by protein

transcription factors or modified, with the ultimate goal of determining the modi-

fications that are driving gene expression. In this case fragments of DNA that are
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bound to the protein of interest are preferentially separated and sequenced. After

read trimming and mapping, the locations of binding events can be identified by

searching for “peaks” of coverage on the reference genome.

• de novo Assembly When there is no reference genome present for the organism

being sequenced, the goal is to try to reconstruct the full sequence of the input genome

based only on the short reads. A full discussion of de novo assembly algorithms is

beyond the scope of this section; for a review see Nagarajan and Pop [135]. The

general approach is to build a graph representing overlaps between the reads in the

form of either a string graph [133] or a de Bruijn graph, and then walk the graph to

determine the underlying sequence. This is complicated by the fact that mammalian

genomes are highly repetitive. The need to construct a graph data structure linking

all of the input reads means that assembly is typically an extremely memory-intensive

process, making it difficult to distribute computation.

There are of course additional sequencing applications, including workflows specifically

designed for cancer-related projects and metagenomics, which aims to discover all of the

microorganisms present in a diverse sample.

2.2.2 Big Data from Sequencing

All of these sequencing applications are creating an enormous amount of data that is push-

ing the limits of the computational infrastructure and algorithms used by biologists. For

example, the European Bioinformatics Institute currently stores multiple petabytes of ge-

nomic data, and that amount has been taking less than one year to double since the advent

of high-throughput sequencing in 2008 [120]. This has led to increasing calls for new bioin-

formatics strategies for storing, managing, sharing, and processing that data. An early

recognition of the fact that computational requirements would soon outstrip the capacity

of the prevailing model of processing data on local servers in individual laboratories created

a movement towards centralized databases and processing on remote servers enabled by

standardized data formats and annotations [177]. After the creation of large scale cloud

compute services, bioinformatics leaders quickly realized their potential to ease the burden
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of processing sequencing data [178, 164, 162]. In particular, they noted that cloud comput-

ing would allow the scaling of compute infrastructure to meet demand, rather than having

to plan for, acquire, and maintain compute clusters capable of handling the predicted peak

load. In addition, cloud computing offers a potential solution to the problem of sharing

large data sets in the highly collaborative field of genomics; by storing large data sets in

the cloud that are accessible to multiple groups, collaborators could become less dependent

on the prevalent strategy of sharing data by shipping hard drives to one another. Several

of these arguments also noted that cloud computing is a natural fit for creating distributed

algorithms that can be scaled to larger data sets by adding more compute resources, in

particular through the use of the MapReduce programming model [164, 162]. We will re-

turn to the topic of cloud computing in Chapter 4, where we will develop a framework for

detecting SVs in MapReduce. Before we do so, however, we will review existing algorithms

for SV detection in Chapter 3.



Chapter 3

Algorithms for Structural Variation

Detection

In Chapter 2, we described the biological impact of SVs, and the development of short-read

sequencing technology, along with the computational challenges they represent. In this

chapter we review existing algorithms for SV detection based on short-read sequencing

data. We will discuss the four major computational strategies for SV detection from

sequencing data, and review specific approaches, with an emphasis on algorithms that use

paired sequencing reads as a primary source of information. Finally, as a demonstration

of how SV detection can fit into the pipeline models we described in Chapter 2, we will

describe a small pipeline for SV detection that we developed that used an existing tool,

BreakDancer, to characterize SVs in a low-coverage cancer sample.

3.1 The Four Signals of SVs in Sequencing Data

Most popular SV detection algorithms can be placed into one of four categories based on

the type of signal they extract and analyze from sequencing data sets [4, 83]. The first three

categories depend upon first aligning short reads to the reference genome. In Section 2.2,

we described paired-end sequencing, in which both ends of a single DNA fragments are

sequenced. Read pair (RP) based methods use the distance between and orientation of the

mappings of these sequenced ends to identify the signatures of SVs. Out of all SV detection

techniques, RP approaches are the most commonly used based on their ability to detect

many types of SVs and their computational tractability [4]. Read depth (RD) approaches

identify regions of the genome with anomalous coverage by read mappings, which may

18
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indicate the presence of deletions or duplications, a subcategory of SV known as copy

number variations (CNVs). Split Read (SR) approaches attempt to find local mappings of

portions of individual reads that span SV breakpoints. Finally, assembly-based methods

attempt to construct as much of the genome sequence as possible directly from the reads,

without first mapping them to the reference genome. The constructed sequence is then

compared to the reference to identify SVs. Beyond these four categories, several recent

approaches have attempted to integrate more than one type of signal to increase accuracy.

In this review of published algorithms, we will focus on those that are built to handle

whole-genome DNA resequencing from a single sample at a time; there are of course other

approaches for different applications, including SV detection from targeted resequencing

data such as exome sequencing, and approaches which are designed only to operate on

many samples at once.

3.2 Read Pair Approaches

Given correct mappings of paired reads to the reference genome and a reliable estimate of

the length of the fragments from which the reads came, it is relatively straightforward to

detect SVs. For example, Figure 3.1 shows the signatures of insertions and deletions based

on the insert size of paired-end mappings: deletions lead to a longer distance between read

mappings than expected, insertions to a shorter distance. Similarly, because protocols

determine the orientation in which the read will be sequenced, inversions can be detected

if they diverge from expectations. Finally, inversions can be detected if the reads map to

different chromosomes in the reference genome. These ideas were first applied to high-

throughput short-read sequencing data by Korbel et al. [85] and Campbell et al. [27],

who built upon strategies developed for analyzing SVs through the mapping of sequenced

ends of larger DNA fragments (bacterial artificial chromosomes (BACs) and fosmids) from

non-high-throughput sequencing data [187, 156, 184].

Most read pair approaches use a basic strategy outlined in Figure 3.2. They begin by

separating paired end mappings onto the reference genome into those that are concordant

and those that are discordant, i.e. those which deviate from the expected insert size or
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Figure 3.1: Detecting deletions and insertions from the distance between mappings of
paired reads. For the case of a deletion, a fragment with a 310bp internal insert size is
created from the sample DNA, in a region in which 250bp has been deleted relative to the
reference. The two reads when mapped to the reference will be 460bp apart, providing
evidence for a deletion if we expect the internal insert size to be approximately 300bp.
A 310bp internal insert size fragment that overlaps a 150bp insertion in the sample, con-
versely, will give a distance between reads of 180bp when mapped to the reference.

orientation of the library. With only a few exceptions, discussed below, RP approaches

discard concordant pairs and consider only discordant pairs for the remainder of their

analysis. The next step is then to cluster the discordant mappings such that each cluster

coherently supports a single candidate SV call. Finally, they filter or rank the candidate

SV calls, for example only keeping those with support from multiple discordantly mapped

read pairs.

The BreakDancerMax component of BreakDancer [37] is probably the most widely

used of these algorithms1. As described above, BreakDancer first searches for discordant

read pairs based on a hard threshold on the distance between mapped paired reads. It

then looks for regions of the genome that anchor more discordant read pairs than expected

according to its model; if two of these regions are connected by a minimum number of

discordant read pairs, it calls an SV that links them. It calls breakpoints based on the

inner boundaries of the two connected regions, as illustrated in Figure 3.2 (d), and then

1Based on a sampling of Google Scholar citation counts as of 12/28/2013: BreakDancer, 270; Varia-

tionHunter, 153; PEMer, 111; GASV, 65; SVDetect, 46.
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assigns a confidence score by computing the likelihood of the SV based on a null model

in which discordant read pairs are distributed across the genome according to a mixture

Poisson model. Other seminal RP-based tools include GASV [173], PEMer [84], Variation-

Hunter [72], HYDRA [154], and SVDetect [202]. These all operate on similar principles,

differing primarily in the method used to cluster discordant read pairs that support the

same potential SV call, and in the filtering steps used to select candidate SV calls. For

example, GASV formulates the clustering step in terms of a geometric model in which the

goal is to find the intersection of the coordinates of breakpoints that each discordant read

pair could possibly support. Marschall et al. [118] insightfully observed that most of the

popular clustering procedures are computationally equivalent to solving some variant of

the problem of finding maximum cliques in a graph structure in which nodes are read pairs,

and edges exist if the pairs could possibly support the same variant. VariationHunter and

HYDRA were also the first approaches to also integrate ambiguously mapped discordant

read pairs, a topic we will consider in the next section.

Read pair approaches have the advantage of being theoretically able to detect any type

of SV except for multiple copy number duplications. Their disadvantages stem from the

fact that they depend on comparing mapping distances between reads to the unknown

size of the fragments from which they came. This means that they cannot capture the

breakpoints of SVs with single nucleotide resolution, and that they depend on having a

sequencing library with a tight distribution of fragment sizes in order to have power. In

addition, the fact that many SV breakpoints occur in regions with high sequence similarity

to other parts of the genome, as discussed in Section 2.1.2, means that it may be difficult

to unambiguously map reads to those locations.

3.2.1 Ambiguously Mapped Read Pairs

Many of these approaches use only reads that are unambiguously mapped to the refer-

ence genome; this has the advantage of using the same set of alignments that are used

for calling SNVs and indels in most sequencing pipelines. A second group of RP methods

attempt to include discordant read pairs which cannot be unambiguously mapped to the

reference genome in their analysis, in an effort to improve sensitivity in repetitive regions
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Figure 3.2: The general algorithmic steps of a classic read-pair algorithm. a) The algorithm
accepts a set of alignments of paired reads to the reference as input. b) The algorithm
identifies discordant read pairs. c) Discordant pairs are clustered to find groups that could
support the same algorithm. d) Clusters of discordant read pairs are filtered (in this case,
by the number of supporting read pairs), and bounds on the potential breakpoints are
identified.

of the genome. One approach to incorporating this type of information can be found in

soft clustering algorithms, which assign each ambiguously mapped read pair to one of its

mappings such that it clusters with other discordant read pairs. These approaches include

VariationHunter [72], which allocates ambiguously mapped reads by optimizing a maxi-

mum parsimony explanation of all discordant reads; HYDRA [154], which takes a similar

approach based on heuristics; and GASVPro [174], which uses a Markov-Chain Monte

Carlo sampling strategy to assign a read to its correct mapping. Even though they do

consider more information than methods solely based on concordant reads, most methods

in this category (with the exception of VariationHunter) use only a limited number of

ambiguous discordant mappings per read pair, in part because of the storage and compu-

tational requirements necessary to process all or most ambiguous mappings of each read

pair in a high-coverage data set. In Chapters 5 and 6, we will show that the MapReduce

distributed computing framework has the potential to help address these challenges.

3.2.2 Concordant Read Pairs

The RP approaches listed above only consider the mapped insert sizes of discordant read

pairs. (GASVPro does consider some concordant mappings in its final output, which we

will mention in Section 3.6, but only in the sense of computing an RD signal rather than
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actually considering the insert sizes of the concordant pairs themselves.) Since discordant

read pairs make up only a very small fraction of the mapped reads in a typical sequencing

data set, these approaches are not considering much of the data available. Several algo-

rithms have tried to use the information present in concordant read pairs to generate SV

predictions. One simple example can be found in ChopSticks [199], which refines the break-

point locations of deletion calls based on discordant pairs by looking for concordant pairs

that overlap the ends of the predicted variant. This approach only works for homozygous

deletions, however, and is therefore limited in scope.

More comprehensive attempts to include concordant RP information were described

in MoDIL [102] and the BreakDancerMini component of BreakDancer [37]. MoDIL mod-

els the distribution of insert sizes at candidate locations in the genome using a Gaussian

mixture model (GMM) describing the insert sizes observed; deletions and insertions are

represented as additional components in the mixture. This has two advantages: because

reads are not categorized as concordant or discordant based on a hard threshold, it is

possible to detect smaller insertions and deletions; and these approaches can explicitly

model the zygosity (presence of the variant on one or both of the pairs of chromosomes

in the cell) of the variant in the sample, and potentially classify the variant as homozy-

gous or heterozygous. The disadvantage of this approach in these implementations has

been the computational requirements. BreakDancerMini considered only concordant read

pairs, after processing discordant pairs in the BreakDancerMax. For each location in the

genome they executed a sliding window Kolmogorov-Smirnov test comparing the distri-

bution of concordant insert sizes to that of the entire library. This limited the approach

to detecting only very small variants; the authors of BreakDancer no longer recommend

running BreakDancerMini, presumably because of its computational requirements, instead

suggesting SR-based approaches such as Pindel [200] to find smaller insertion and deletion

variants. In Chapters 5 and 6, we will show that a strategy that considers the RP signal

present in concordant read pairs can be made to give highly accurate result with very

fast runtimes through the use of an algorithm developed in the MapReduce distributed

computing framework.

Finally, CLEVER [118] took an alternative approach based on constructing a graph
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linking all paired reads, both concordant and discordant, that could support the same

allele at a position, and then clustering reads based on finding maximum cliques in the

graph. As mentioned above, they showed that this is conceptually similar to the clustering

approaches used by other algorithms for discordant reads. They demonstrated that their

approach was superior at detecting smaller variants because of its lack of hard thresholds

for discordancy, and provided a relatively efficient implementation that can process a full

30X genome in approximately 8 hours.

3.3 Read Depth Approaches

Read-depth (RD) approaches consider the changing depth of coverage of concordantly

mapped reads along the genome to infer the presence of SVs. For example, a homozygously

deleted region will have zero coverage in the reference genome, while a region that has

been duplicated many times, as can happen in some regions of the genome and in some

cancers, will have a much higher coverage than average. These approaches differ mainly

in the statistical and signal processing techniques used to identify anomalous regions. For

example, CNVnator [2] uses a mean-shift approach to segment the genome into CNV

regions. Other approaches in this category include MrFAST [5], Event-Wise Testing [201],

and SegSeq [38].

RD approaches are good at finding large deletions and duplications. As previously

noted, they are the only approach that can identify segments of the genome that have

been duplicated multiple times. Their disadvantages are their lack of ability to reliably

detect smaller events, and their breakpoint resolution, which is even lower than than of

RP approaches.

3.4 Split Read Approaches

Split-read (SR) methods look for breakpoints within individual reads by mapping portions

of the read to different genomic locations. Due to the computational challenge involved in

aligning reads to the reference genome while allowing for very large gaps between portions

of the read, they use different strategies to guide the search. Pindel [200] looks for paired
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reads in which one read in the pair aligned to the reference genome but the other did

not. Supposing that the other read may contain a breakpoint, it searches the reference

nearby for split read mappings. CREST [189] takes advantage of aligners that insert gaps

at the ends of read alignments when there are many mismatches between the read and the

reference, known as soft clipping. By looking for multiple alignments with soft clips at the

same reference coordinate, it can identify breakpoints. SplazerS [51] did not use heuristics

to guide the SR search, instead designing a unique mapping strategy based on mapping

the prefixes and suffixes of reads independently. They showed that their unbiased search

is more sensitive than other approaches, at the cost of greatly increased runtimes.

Split read approaches can identify SVs with high specificity and single base breakpoint

accuracy. They are particularly good at detecting smaller variants. However, their sen-

sitivity is limited by coverage and the length of the reads. As read lengths increase with

advances in sequencing technology, they will play a larger role in SV detection.

3.5 Assembly-Based Approaches

An alternative approach to mapping reads to the species reference to discover variants

is to first attempt to directly assemble the genomic sequence from which the reads were

generated (AS approaches). This typically involves the construction of a de Bruijn graph

to represent the overlapping k-mers in the entire read set, and then walking the graph

to construct the longest possible unambiguous sequence of k-mers. Although most work

in assembly is focused on de novo assembly, where there is no reference for the organism

being sequenced, there have been attempts to find variants in a resequencing context

by comparing the contigs that result from assembling reads to a reference genome. This

strategy for detecting SVs was first demonstrated by Li et al. [110] using assemblies created

at the Beijing Genomics Institute. One published assembly approach that is targeted at

detecting variants including SVs is Cortex [75]. Cortex uses the reference to guide assembly

with a colored de Bruijn graph structure, and can therefore identify SVs by walking colored

paths in its graph. In general the task of creating de novo assemblies for human-sized

genomes, however, is still an extremely involved and difficult process that requires a great
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deal of technical knowledge, as well as extremely high-memory compute nodes.

In practice, AS approaches are more likely to be used to verify candidate SV calls

generated by other approaches. In these workflows, the reads mapped to the reference

genome near the site of the possible variant are put into a de novo assembly process. The

resulting sequencing generated by the assembly process is then aligned to the reference

to see if it supports the existing call. TIGRA [36] is a recently published assembly tool

explicitly for this process; other groups have reported building in-house custom pipelines

to accomplish this [152, 116].

While AS approaches can theoretically identify any type of SV, in practice assembly

requires extremely high coverage (typically 100X). In addition, the computational require-

ments necessitate high-memory servers, making the task difficult to run on widely available,

non-specialized hardware. Finally, genome assembly using short reads tends to collapse

identical repeats, leading to a loss of visibility in repetitive regions of the genome and

in segmental duplications [6]. Because SVs are enriched in these repetitive regions, this

could potentially lead to many false negative calls, and potentially even false positives if

repetitive regions are assembled incorrectly, as a loss of a set of repeats could look like a

deletion.

3.6 Hybrid Approaches

Recently, many approaches have been published with the goal of combining more than one

of the signals of SVs (RP, RD, SR, and AS) in order to improve accuracy. Table 3.1 lists

those that we are aware of. In general these can be divided into three types: those that

generate candidate SV calls using one primary signal, and then use a second signal to refine

or filter those predictions; those that incorporate existing tools as modular components

into a pipeline that then merges the candidate calls from each component; and those that

have an integrative model of all three signals, typically using a feature-based statistical

approach. We will review several examples of each category in the next sections.
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Algorithm Primary Signal Secondary Signals Comments
GASVPro [174] RP RD support RP predictions with RD signals
DELLY [157] RP SR refine RP predictions with SR mappings
PRISM [77] RP SR refine RP predictions with SR mappings
Meerkat [198] RP SR refine RP predictions with SR mappings
SoftSearch [66] RP SR support RP predictions with softclips
Bellerophon [68] RP SR support RP predictions with softclips (translocations only)
SVSeq [203] SR RP support SR predictions by at least one discordant RP
CNVer [125] RD RP support RD predictions with discordant RP mappings
inGAP-sv [153] RD RP refine RD predictions with discordant RP mappings
Nord et al. [139] RD SR support RD predictions with softclips
PeSV-Fisher [54] RP RD support RP predictions with RD signals
SVMerge [194] Pipeline SR,RP,RD,AS combines BreakDancer, Pindel, RDXexplorer, others
HugeSeq [90] Pipeline SR,RP,AS combines BreakDancer, Pindel, BreakSeq, others
LUMPY [98] Pipeline SR,RP modular approach, merges breakpoint intervals
iSVP [129] Pipeline SR,AS,RP deletions only; merges GATK, Pindel, BreakDancer
Zinfandel [171] Integrative RP,RD HMM based on RD, RP distances
forestSV [126] Integrative RP,RD Random forest classifiers on RD and RP features
SVM2 [39] Integrative RP,RD SVM classifiers based on RD and RP features
SVMiner [69] Integrative RP,RD GMM clustering based on RD, RP features

Table 3.1: A summary of published SV detection algorithms that combine more than one
sequencing signal. Most use one primary signal and then either discard those predictions
not supported by the secondary signal or refine the breakpoints of the primary prediction
using secondary data. Pipelines independently run several modules based on different
signals and then merge the results. Integrative approaches generate primary predictions
based on a statistical model that includes features from multiple signals.

3.6.1 Support from Secondary Signals

One example of a tools that uses one of the four basic signals outlined above but then incor-

porates other signals into its algorithms to refine the call set is GASVPro [174]. GASVPro

is primarily an RP based method, but it uses RD signals to validate its predicted break-

points, assuming that coverage directly around the breakpoint, and in predicted deleted

regions, should be reduced. DELLY [157] and PRISM [77], meanwhile, use RP based

approaches to identify candidate SV regions, and then guide an SR search for the exact

breakpoints of those SVs. Typically, these approaches that incorporate secondary signals

improve the specificity of the primary approach, at the cost of a decrease in sensitivity.

3.6.2 Pipelines

SVMerge [194] and HugeSeq [90] are examples of pipelines that independently execute

multiple algorithms of different types and then attempt to merge the results together. The

latter ranked calls by the number of components that predicted them, while the former
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filtered and validated the union of the independent call sets using local assembly. While

the integration of these approaches could detect any type of variant detectable by any

individual algorithm, it is difficult to combine results from different approaches in a prin-

cipled manner, and the large number of dependencies and complex parameterization and

configuration required has prevented adoption of these pipelines outside of the laboratories

in which they were created.

3.6.3 Integrative Models

Finally, several algorithms have been developed that integrate more than one signal at once

in a statistical model to generate SV calls. All of these have created features based on

components of RD and RP signals. For example, Zinfandel [171] created an HMM where

the observations included RD and RP features, and the hidden states included differently

sized deletions and duplications with hand-tuned transition probabilities. forestSV [126]

and SVM2 [39] created feature vectors and then trained machine learning classifiers on

example data sets; the former demonstrated that it can be useful to include additional

features related to genomic context in feature vectors for predicting SVs. In Chapter 7, we

will demonstrate a novel integrative approach that incorporates many more features using

conditional random fields.

3.7 An Example of an SV Detection Pipeline for a Cancer

Dataset

To illustrate how these tools are used in practice, in this section we describe our experiences

in developing a pipeline for SV detection using existing tools to try to detect genomic

rearrangements in a low-coverage cancer data set. Our pipeline roughly follows the steps

we outlined in Section 2.2.1. We will return briefly to this data set in Section 6.4.

The data came from samples taken from a patient with acute myelomonocytic leukemia

(AML). Our collaborator Dr. Jeffrey Tyner collected peripheral blood under a written and

oral informed consent process reviewed and approved by the Institutional Review Board

of Oregon Health & Science University. Known cytogenetic abnormalities associated with
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this specimen included trisomy 8 and internal tandem duplications within the FLT3 gene.

He then isolated cells for sequencing by separating mononuclear cells on a Ficoll gradient,

followed by red cell lysis. Mononuclear cells were immunostained using antibodies specific

for CD3, CD14, CD34, and CD117 (all from BD Biosciences) and cell fractions were

sorted using a BD FACSAria flow cytometer. This enabled us to isolate cell fractions

including non-cancerous T-cells (CD3+), malignant monocytes (CD14+), and malignant

blasts (CD34, CD117+), which represent an intermediate state between the normal CD3+

T-cells and the CD14+ tumor cells.

We sequenced all three cell isolates on an Illumina Genome Analyzer II, producing

128,819,200 76bp paired-end reads for the CD14+ cells, 194,945,868 reads for the CD3+

cells, and 172,182,321 reads for the CD117+ cells. We then developed a pipeline to detect

somatic SVs in the CD14+ tumor cells. This pipeline roughly follows the form described

in Section 2.2.1 for variant calling from DNA resequencing data, although we were not

interested in SNV calls and therefore did not include them in our pipeline. Our pipeline

began with a QC step, in which we gathered statistics on read quality and possible du-

plication rates using FastQC [8], and then trimmed adapter sequence (artifacts of the

Illumina sequencing process) using cutadapt [119]. We then aligned reads to the hGRC37

human reference genome using Novoalign [142]. We chose Novoalign because it has higher

accuracy than many other aligners, at a cost of significantly longer runtimes [161]; we

were able to make Novoalign runtimes managable by splitting input reads into chunks and

simultaneously aligning them across a compute cluster using custom scripts to coordinate

the HTCondor grid engine [181]. We then used Picard Tools [24] to identify and remove

duplicate reads. To call SVs, we used BreakDancer [37], as a preliminary version of the

simulations we will describe in Section 6.1.2 showed that it had slightly better accuracy

than other the other tools we evaluated. By subtracting SV calls from the CD3+ nor-

mal cells from those called for the CD14+ tumor cells, we were able to identify a set of

candidate somatic SV calls which might be associated with the patient’s AML.

The QC and deduplication steps of our pipeline revealed that due to the small amount

of input DNA in our samples, we had very high duplication rates in our sequencing data,

with 15.69% and 85.54% of the reads being duplicates in the CD14+ and CD3+ data
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sets, respectively. This led to very low physical depths of coverage of the genome: 8.3X

for the CD14+ cells and 1.3X for the C3+ cells. Nevertheless, BreakDancer still made

over six thousand SV calls, far more than we could verify. Examination of selected calls,

together with the knowledge that the cells’ karyotype did not include gross rearrangements,

showed that many were false positives due to incorrectly aligned reads in repetitive regions

of the genome, particularly in areas with many simple repeats such as the regions near

chromosome centromeres and telomeres. Therefore, we developed a filtering pipeline that

used BreakDancer SV scores and genome annotations, including interval files containing the

genomic coordinates of transposable elements, peri-centromeric and telomeric regions, and

segmental duplications. This annotation pipeline is open-source and available at https:

//github.com/cwhelan/sv-annotate.

Using this filtering pipeline we were able to reduce the set of candidate SVs to a small

number of high-quality calls that we could verify. This list included 38 deletions, 13 in-

versions, and 14 translocations. With the help of our collaborators Alberto L’Abbate

and Tiziana Storlazzi at the University of Bari, Italy, we were able to test a subset of

predictions by PCR. They designed PCR primers using Primer3 [185], considering the

chromosome localization and orientation of the interval involved in the candidate rear-

rangement, and checked them for specificity using the BLAT tool of the UCSC Human

Genome Browser [80]. All the primer pairs were preliminarily tested on the patient genomic

DNA and a normal genomic DNA as control. The PCR conditions were as follows: 2 min

at 95◦C followed by 35 cycles of 30 sec at 95◦C, 20 sec at 60◦C, and 2 min at 72◦C. All the

obtained PCR products were sequenced and analyzed by BLAT for sequence specificity.

Overall, PCR confirmed nine out of eleven tested deletions, two out of seven tested

inversions, and only one out of seven tested translocations. Nevertheless, the confirmed

SVs included several that might be relevant to the patient’s AML, including a deletion

in the gene CTDSPL/RBPS3, an AML tumor suppressor [206]; and another deletion in

NBEAL1, a gene up-regulated in some cancers [35]. We are currently investigating these

deletions to determine their functional impact on this patient.

Our experiences in developing this pipeline illustrate several of the themes of this dis-

sertation. Even for a low-coverage data set, to compute high-quality alignments using
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Novoalign we resorted to data parallelization over a compute cluster coordinated by cus-

tom scripting, but were unable to speed up the runtime of BreakDancer. In the next

chapter, we will discuss methods to easy distribution of sequencing analysis pipelines over

compute clusters and to the compute cloud, and develop a truly distributable algorithmic

framework for SV detection. In addition, the high false positive rate of our candidate SV

calls illustrates the need for more accurate algorithms; we will develop and evaluate a novel

algorithm in Chapters 5 and 6, and discuss a possible method for increasing its accuracy

in Chapter 7.



Chapter 4

A Framework for SV Detection in

MapReduce

In the previous two chapters, we discussed the need for scalable approaches to processing

high throughput sequencing data, and explored algorithms for detecting genomic structural

variations while noting that efficient processing has not been a primary concern in their

design. In this chapter we will explore the MapReduce computing paradigm and its open

source Hadoop implementation. We will then discuss ways in which Hadoop has been

applied to sequencing tasks. Finally, we will describe a general approach for implementing

SV detection algorithms in MapReduce and Hadoop, which we will explore in more detail

in later chapters.

4.1 MapReduce and Hadoop

MapReduce [45] is a parallel computing framework designed at Google to handle com-

putation over very large data sets - in particular, the vast amounts of data produced by

Google’s web crawlers. These volumes of data are too large to store and access efficiently on

single instances or storage arrays, and must therefore be stored in distributed file systems

(DFS), in which portions of the data are stored on individual nodes distributed throughout

the cluster, rather than on a central file server; MapReduce runs in conjunction with the

Google File System (GFS) [60]. MapReduce was designed to simplify the development of

applications that need to process large volumes of data that are distributed across clusters

of many servers, while hiding the complexity of data and processing distribution and load

balancing from the application developer. An overriding goal in its design was to develop

32
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a robust framework in scenarios where clusters are composed of hundreds or thousands of

commodity machines, which may have high failure rates and heterogeneous performance

characteristics. In particular, it is optimized to provide the following benefits automatically

to applications built according to its programming model:

• Fault tolerance. Both data and processing tasks have redundancy built into the

application framework due to the expectation of a certain failure rate among the

nodes in the cluster. As mentioned earlier, data is distributed over the file system such

that individual blocks of data reside on individual nodes in the cluster. Rather than

storing single copies of each block, however, the DFS ensures that multiple copies of

each block are stored in the file system on different nodes, and if a node fails, will

re-replicate blocks to other nodes so that no data is lost. The same philosophy is also

applied to the task scheduler/tracker, which breaks up jobs into many small tasks.

If the tracker notices an unresponsive task, for example caused by a hardware error

on an individual node, it will restart additional tasks to operate on the same input

block of data. In this way jobs can continue processing and complete successfully

even when worker nodes fail in the middle of their processing.

• Data locality. Taking note of the fact that the most expensive part of distributed

computing is often transferring data over slower network connections, MapReduce

makes every effort to schedule tasks on nodes that physically hold a copy of their

input data. This philosophy of “bringing the code to the data” is key to processing

large data sets quickly without saturating cluster networks.

• Scalability. The framework’s goal is allow the size of both the data sets and the

cluster to grow seamlessly. As more data is added to a data set, the DFS divides

it into blocks and distributes it across available space on the cluster, avoiding bot-

tlenecks in storage capacity, and increasing the number of nodes that have copies of

portions of the data set locally. As more nodes are added to the cluster to increase its

capacity, they automatically expand the capacity and have data replicated to them.

Since tasks are also broken up into small independent pieces, new nodes can also be

seamlessly incorporated into the cluster’s processing jobs.
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Clearly, the desirable properties of the DFS are dependent on being able to divide the

data into small blocks that can be distributed easily around the cluster. Similarly, the

scalability goals for processing depend on dividing up compute jobs into small tasks that

can run independently on different cluster nodes. To achieve this, MapReduce requires that

developers structure their application into functional components known, unsurprisingly,

as Map and Reduce tasks. This structure is inspired by a functional technique from the

Lisp programming language. In functional programming, map is a function that takes a

single-argument function m and a list l as arguments and returns a new list which is the

result of applying m to every element of l. Meanwhile, reduce is a function that takes a

binary operator r and a list l, and returns the result r(r(r(l1, l2), l3), ...), applying r to every

element of l and a running result. Many operations can be expressed as an application

of map to a list followed by an application of reduce. For example, to find the sum of

squares of a list of integers l, one would write reduce(sum, map(square, l)). Although

the semantics of MapReduce’s functions are slightly different than those of functional

programming [91], its creators hoped to enable the same expressive power while ensuring

that applications are decomposed into parallelizable pieces.

In MapReduce, Map tasks are responsible for examining every record in a block of the

input set, and emitting information in the form of 〈key, value〉 pairs. Reduce tasks then

take as input all of the values that were emitted by a mapper under a particular key and

and produce one or more outputs that summarize or aggregate those values. In order to

accomplish the necessary data handling to ensure that reducers receive all of the keys for a

particular value, in between the map and reduce phase MapReduce executes a “shuffle and

sort” procedure, in which each node sorts the output of all of its mappers by key, sends

the results for each key to the machine on which the reducer for that key will run, and

then on the reduce machine merges the incoming data from map nodes. This distributed

sorting phase is often the key to the efficiency and scalability of MapReduce algorithms.

Figure 4.1 shows the canonical example MapReduce application. The task is to count

the number of occurrences of every word that appears in a large text corpus. In this simple

implementation, mappers take as input blocks of the text input. For every word w that

they encounter, they emit the key/value pair 〈w, 1〉. Reducers then sum all of the values
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The brown dog

dog eat dog

Mapper

Mapper

The 1

brown 1

dog 1

dog 1
eat 1
dog 1

Reducer

Reducer

brown 1

dog 3

eat 1

The 1

Figure 4.1: The word count example MapReduce application. Mappers examine blocks of
text data and emit the value one under a key for each word that they encounter. Reducers
sum the values they receive for each word, resulting in a count of the number of times each
word occurs in the data set.

for each word key w, which gives the count of occurrences for that word in the input.

Hadoop is the Apache Software Foundation’s open source implementation of the frame-

work described by Google in Dean and Gehemewat’s MapReduce paper. It includes an

implementation of the MapReduce job scheduler, called the TaskTracker, as well as a

distributed file system that mimics GFS called HDFS. The open source community has

developed Hadoop extensively, with support from many corporations including Yahoo! and

Facebook, making it a widely adopted and extended platform for distributed computing.

4.2 Uses of Hadoop and MapReduce in Sequencing Tasks

Now that we understand the components of Hadoop and MapReduce, we can explore its

use in sequencing-related bioinformatic tasks. Figure 4.2 gives an overview of the published

applications of Hadoop to three popular sequencing pipelines: DNA resequencing, RNA-

seq, and de novo assembly. In some cases, researchers have developed native MapReduce

algorithms to solve particular problems. In other instances, Hadoop has been used to run

existing tools in parallel; of course, this is only possible when the tasks are embarrassingly
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parallel at some level. Finally, there are several lower-level APIs, toolkits, and frameworks

that have been created in an attempt to ease the development of Hadoop pipelines. These

toolkits provide libraries for reading and writing popular sequencing related file formats,

wrappers for commonly used tools, and functions to manipulate short read sequences and

alignment records. We will discuss each of these pipelines in more detail in the following

sections.

4.2.1 DNA Resequencing

As we discussed in Section 2.2.1, there are multiple steps that are typically part of DNA

resequencing pipelines. These steps included quality control analysis, alignment to the

genome reference, a series of processes including realignment in problematic regions and

removal of duplicate reads, steps to call SNVs and SVs, and finally annotation and analysis

of the variants that were discovered.

A native algorithm for mapping short reads to a reference genome was first demon-

strated in Cloudburst [163]. This algorithm creates keys for each k-mer that appears in

both the reads and the reference. The reducers then bring together the reads and portions

of the reference that match on the same k-mer, and determine whether the match on the

seed can be extended to an alignment of the entire read to the reference. Because the read

and reference portions are each transferred to the reducers for every single k-mer which

appears in them, this algorithm, while accurate, generates large amounts of data that must

be shuffled, sorted, and potentially cross the network. Therefore, it is difficult to scale it to

very large read sets. This shows the difficulty of designing MapReduce algorithms that can

scale and take advantages of Hadoop’s infrastructure. CloudAligner [137] uses a similar

seed-and-extend algorithm, although the exact details of their map and reduce steps are

not specified.

Since short read mapping is an embarrassingly parallel task and highly optimized non-

MapReduce alignment tools with full feature sets are readily available, it is more efficient

in practice to use the map phase of a Hadoop job to align splits of input reads with existing

tools, and then merge results in the reduce phase. SEAL [151] and the CRS4 Sequencing

and Genotyping Platform’s CSGP workflow [150] are two such pipelines which use the
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Figure 4.2: Hadoop-enabled tools for tasks of three popular sequencing analysis pipelines.
Solid lines indicate native MapReduce applications developed specifically for Hadoop. Dot-
ted lines indicate pipelines that parallelize the execution of existing tools on splits of the
input data using Hadoop. In addition, several toolkits and frameworks are listed that are
broadly applicable to many portions of these pipelines.
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BWA [106] aligner in each map task. By emitting mappings under a key for the alignment

location, they are then able to accomplish the duplicate removal step in the reduce function

in a manner similar to that of the popular non-MapReduce tool Picard [24]. Similarly,

Crossbow [95] uses Hadoop to parallelize Bowtie [96]. Crossbow then calls single nucleotide

variants in the reduce phase using SOAPsnp [109], allowing it to function as a minimum

viable pipeline for sequencing. Crossbow also includes infrastructure for running in the

Amazon Elastic Compute Cloud, which has contributed to its popularity. SeqInCloud [131]

similarly combines BWA with the GATK’s [124] realignment and SNV calling steps, along

with infrastructure to run in the Microsoft Azure cloud computing platform.

After variant discovery, the usual next step in a resequencing project is to analyze the

variants found to detect functional impact (i.e. what genes might be disrupted by the vari-

ants found) or to find associations between variants and phenotypes, as in case/control

sequencing projects. SeqWare [143] uses HBase [11], a Hadoop database based upon

Google’s BigTable [32], to provide functionality to annotate and query the variants. Se-

qWare uses the genomic coordinates of variants and coverage information as schema keys

within HBase’s MapReduce queries. BlueSNP [74], meanwhile, implements Hadoop algo-

rithms for finding significant loci and estimating p-values through permutation analysis in

genome wide association studies.

To our knowledge, there are no publicly available Hadoop/MapReduce software tools

for SV detection. Several non-Hadoop pipelines such as HugeSeq [90] and SVMerge [194]

use grid scheduling engines like SGE to distribute SV detection tasks across compute

clusters. For example, the HugeSeq pipeline is an end-to-end pipeline for DNA resequencing

that integrates BreakDancer [37], Pindel [200], CNVnator [2], and BreakSeq [89] for SV

calling. However, these pipelines can only achieve parallelization by sample or at most by

chromosome of the reference, limiting their scalability.

4.2.2 RNA-seq

The goals of RNA-seq are to determine the transcripts and isoforms being expressed, quan-

tify their differential expression, and potentially call DNA variants based on the sequences
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of the RNA transcripts. Myrna [93] and FX [71] are Hadoop pipelines that execute align-

ment, transcript identification, and differential expression calculations in multiple Hadoop

jobs. Myrna uses Bowtie in each mapper to distribute alignment work across the clus-

ter, and then parallelizes each of the differential expression calculations by first assigning

alignments to transcripts, gathering the data by sample to compute normalization factors,

and then re-gathering the normalized counts under keys representing transcripts to com-

pute statistics. FX has a less complex workflow, in which alignments are executed in a

map-parallel fashion using the GSNAP alignment tool [195], and then has simple steps to

count reads by gene for differential expression statistics, and to call SNPs in genes. Both

Myrna and FX have infrastructure to automatically create Hadoop clusters in Amazon

EC2. Eoulsan [78] is a very similar workflow, which allows a number of aligners to be used

in the mapping step, and then computes read counts per gene in parallel, before computing

differential expression statistics outside of the Hadoop environment using existing tools.

For use after expression levels have been computed, YunBe [204] computes statistics to

determine whether particular gene pathways have been perturbed in two sets of samples,

using a MapReduce strategy where mappers produce expression values from the sample

data under keys that represent specific pathways, and reducers aggregate all data for each

pathway to determine a “perturbation statistic” between sample conditions. Finally, Kim

et al. [81] described a pipeline for SNV detection from RNA-seq data based on a Hadoop

job in which the mappers emit each base and quality score from the aligned reads under

a key representing the genomic coordinate, and reducers call the absence or presence of a

SNV at each location.

4.2.3 de novo Assembly

The third major pipeline for which there has been significant interest in applying Hadoop

and MapReduce is de novo assembly. Most state-of-the-art algorithms for assembly depend

on building large data structures that model the overlaps between reads (in the case of

string graph based approaches) or between k-mers found in the reads (in the case of de

Bruijn-graph algorithms) as edges in a graph. Given the high depth of coverage that is

needed to produce a quality assembly, these graphs become very large, and the need to
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traverse them requires random rather than sequential access to the data. This would seem

to make the problem a poor fit for Hadoop, which is optimized for sequential access of

large data sets on commodity hardware. Nevertheless, several groups have attempted to

create assembly algorithms using MapReduce. Contrail [165] builds a de Bruijn graph by

emitting each pair of consecutive k-mers from the reads as a key-value pair to form a k-mer

adjacency matrix. CloudBrush [33] uses a “prefix-and-extend” strategy [34], in which all

k-mers that appear in the reads are used as keys, with the reads themselves as values.

Extension procedures then test whether the k-mer is the prefix of one of the reads and

the suffix of another. Both of these tools have then developed MapReduce procedures for

graph pruning and traversal that are necessary to produce contigs from their respective

graph data structures. Finally, some helpful read pre-processing steps for assembly have

been implemented in Hadoop: Quake [79] is a widely used MapReduce k-mer counter, and

BioPig [140] also contains facilities for k-mer analysis of large read sets.

4.2.4 Frameworks and Toolkits

In addition to the pipelines listed above, recently several sequencing-related frameworks

and toolkits have been created to ease the development of Hadoop applications. These

tools include APIs and library code to handle reading from and writing to files in popular

sequencing data formats. For example, Hadoop-BAM [138] allows manipulation of data

in the SAMtools [107] binary alignment format BAM. Two libraries, SeqPig [167] and

BioPig [140], were also recently published that provide file formats and commonly used

functions in the Apache Pig [12] environment, which provides a high-level programming

language called Pig Latin that allows easy expression of simple data analysis tasks. These

libraries allow for rapid development of scripts that gather statistics on read and alignment

data sets, and Pig automatically optimizes their execution by translating them into one or

more MapReduce jobs.

4.2.5 Other uses of Hadoop and MapReduce

Although not implemented in Hadoop, the very widely used Genome Analysis Toolkit [124]

(GATK) implements many sequencing and variant calling functions using a MapReduce
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programming model. Although it currently can only distribute tasks across clusters using

traditional grid engines, future versions of this package may be re-implemented to use

Hadoop. Other notable sequencing applications that have been implemented in Hadoop

include ChIP-seq peak calling [57], and computing genome mappability scores [100].

4.3 MapReduce Constraints on SV Algorithms

To this point, we know of no Hadoop-based SV detection algorithms. This may be because

the need to separate logic into mappers and reducers makes it difficult to implement

traditional RP-based SV detection approaches in MapReduce, particularly given the global

clustering of paired end mappings at the heart of many RP approaches. MapReduce

algorithms, by contrast, excel at conducting many independent calculations in parallel. The

sequencing applications that have been implemented in MapReduce succeed by dividing

processing into a series of local computations, for example calling a SNV at a particular

location in the genome given the reads that cover it, to use the example of Crossbow [95],

the most widely accepted sequencing MapReduce algorithm. As we noted in Chapter 3,

SV approaches that are similarly based on local computations have been described: the

RP-based SV callers MoDIL [102] and forestSV [126] try to solve the SV detection problem

by computing scores or features along the genome and then producing SV predictions from

those features in a post-processing step. In the remainder of this chapter, we formalize this

idea and develop it as a potential framework for implementing SV detection algorithms in

MapReduce.

4.4 A General MapReduce SV Detection Algorithm

Using the strategy of computing local features along the genome, we have developed a

conceptual algorithmic framework for SV detection in MapReduce, which is outlined in

Algorithm 1. This framework divides processing into three separate MapReduce jobs: an

alignment job, a feature computation job, and an SV calling job. The overall workflow

of the algorithm and its implementation on a compute cluster or cloud is summarized in

Figure 4.3.
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Figure 4.3: An overview of the steps of the MapReduce SV detection workflow. Reads are
first uploaded to a Hadoop cluster from local storage. Processing is then then divided into
three MapReduce jobs: 1) Mapping with sensitive settings. 2) Computation of features
across the genome. 3) Calling structural variations based on the features computed in the
previous step. Finally, SV predictions can be downloaded from the Hadoop cluster and
examined and annotated. Cloudbreak can also use the Apache Whirr library to automat-
ically provision Hadoop clusters on and deploy data to cloud providers such as Amazon
Elastic Compute Cloud.

The Align Reads job uses existing alignment tools to discover mapping locations for

each read pair. Aligners can be executed to report multiple possible mappings for each

read, or only the best possible mapping. Given a set of read pairs, each of which consists

of a read pair identifier rpid and two sets of sequence and quality scores < s, q >, each

mapper aligns each pair end set < s, q > in either single- or paired end mode and emits

possible mapping locations under the rpid key. Reducers then collect the alignments for

each paired end, making them available under one key for the next job.

In the Compute Features job, we compute a set of features for each location in
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the genome. To begin, we tile the genome with small fixed-width, non-overlapping in-

tervals. For the experiments reported in Chapter 6 we use an interval size of 25bp (see

Section 6.2.2 for an exploration of the effects of different window sizes on accuracy and

runtime). Let L = {l1, l2, . . . , lN} be the set of intervals covering the entire genome. Let

R1 =
{
r11, r

1
2, . . . , r

1
M

}
and R2 =

{
r21, r

2
2, . . . , r

2
M

}
be the input set of paired reads. Let

A1 =
{
a1m,1, a

1
m,2, . . . , a

1
m,K

}
and A2 =

{
a2m,1, a

2
m,2, . . . , a

2
m,L

}
be the set of alignments for

the left and right reads from read pair m. For any given pair of alignments of the two

reads in a read pair, a1m,i and a
2
m,j , let the ReadPairInfo rpim,i,j be information about the

pair relevant to detecting SVs, e.g. the fragment size implied by the alignments and the

likelihood that the alignments are correct. We then leave two functions to be implemented

depending on the application:

Loci :〈a1m,i, a2m,j〉 → Lm ⊆ L

Φ : {ReadPairInfo rpim,i,j} → RN

The first function, Loci, maps an alignment pair to a set of genomic locations to which

it is relevant for SV detection; for example, the set of locations overlapped by the internal

insert implied by the read alignments. We optimize this step by assuming that if there

exist concordant mappings for a read pair, defined as those where the two alignments are

in the proper orientation and with an insert size within three standard deviations of the

expected library insert size, one of them is likely to be correct and therefore we do not

consider any discordant alignments of the pair. The second function, Φ, maps a set of

ReadPairInfos relevant to a given location to a set of real-valued vectors of features useful

for SV detection.

Finally, the third MapReduce job, Call Variants, is responsible for making SV calls

based on the features computed at each genomic location. It calls another application-

specific function:

PostProcess : {φ1, φ2, . . . , φN} → {〈SVType s, lstart, lend〉}

This function maps the sets of features for related loci into a set of SV calls characterized

by their type s (i.e Deletion, Insertion, etc.) and their breakpoint locations lstart and lend.
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Algorithm 1 The algorithmic framework for SV calling in MapReduce.
1: job Alignment
2: function Map(ReadPairId rpid,ReadId r,ReadSequence s,ReadQuality q)
3: for all Alignments a ∈ Align(< s, q >) do
4: Emit(ReadPairId rpid,Alignment a)

5: function Reduce(ReadPairId rpid,Alignments a1,2,...)
6: AlignmentPairList ap← ValidAlignmentPairs(a1,2,...)
7: Emit(ReadPairId rp,AlignmentPairList ap)
8: job Compute SV Features
9: function Map(ReadPairId rp,AlignmentPairList ap)

10: for all AlignmentPairs < a1, a2 >∈ ap do
11: for all GenomicLocations l ∈ Loci (a1, a2) do
12: ReadPairInfo rpi←< InsertSize(a1, a2),AlignmentScore(a1, a2) >
13: Emit(GenomicLocation l,ReadPairInfo rpi)
14: function Reduce(GenomicLocation l,ReadPairInfos rpi1,2,...)
15: SVFeatures φl ← Φ(InsertSizes i1,2,...,AlignmentScores q1,2,...)
16: Emit(GenomicLocation l, SVFeatures φl)
17: job Call SVs
18: function Map(GenomicLocation l, SVFeatures φl)
19: Emit(Chromosome(l), < l, φl >)

20: function Reduce(Chromosome c,GenomicLocation l1,2,..., φ1,2,...)
21: StructuralVariationCalls svsc ← PostProcess (φ1,2,...)

We parallelize this job in MapReduce by making calls for each chromosome in parallel,

which we achieve by associating a location and its set of features to its chromosome in the

map phase, and then making SV calls for one chromosome in each reduce task.

4.5 Discussion

The framework that we have just described is agnostic to the type of structural variations

that the user wishes to detect. In the next chapter, we describe Cloudbreak, our imple-

mentation of this framework that identifies small deletions and insertions. To do so, it

defines the relevant information from each pair (the ReadPairInfo) as information about

the insert size implied by the mapping of the paired reads, sends them to every location

which is spanned by that read pair in the reference genome, and then computes features

from them by modeling the expected distribution of insert sizes at each location with a
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Gaussian Mixture Model. We demonstrate some of the strengths of this particular imple-

mentation in Chapter 6. However, we believe that this general framework could be applied

to many other SV detection problems. For example, to detect inversions, one might define

a different ReadPairInfo for each pair that includes information about the orientation of

the mappings. Translocation detection programs might emit ReadPairInfos that contain

information about the chromosomes linked to by interchromosomal mappings, which the Φ

function would then cluster to see if a preponderance of those mappings point to the same

breakpoint location. In addition to paired mapping locations, it would also be possible

to design ReadPairInfo and feature function definitions that allowed the computation of

read depth or split read related features, enabling the integration of more of the signals

available in the data set. We will explore one possible way to integrate disparate features

such as these in Chapter 7. Use of the Hadoop/MapReduce computing framework would

ensure that any of these applications, if carefully designed, could enjoy the benefits of

redundancy, data locality, and scalability we described in Section 4.1, and therefore will

be able to grow to meet the rising demands of genomics applications in the near future.



Chapter 5

Cloudbreak

In the previous chapter, we described and formalized a general strategy for building SV

detection algorithms in MapReduce and Hadoop. In this chapter, we describe an soft-

ware package, Cloudbreak, that we have developed using this algorithmic framework. To

build Cloudbreak, we implemented the infrastructure necessary to support the algorith-

mic framework we described in Section 4.4, and also provided implementations of the

three application-specific functions we described there. Here we will describe this imple-

mentation, as well as our choices for the three user-defined functions we specified in the

framework definition, and additional functionality we developed to genotype calls and to fa-

cilitate the deployment of Cloudbreak on public cloud platforms including Amazon’s EC2.

In Chapter 6, we will provide an evaluation of the algorithm’s accuracy and performance

characteristics.

5.1 Variant types detected

Cloudbreak is our implementation of a detection algorithm for genomic deletions (40bp-

25,000bp) and small insertions based on examining the insert sizes of paired end mappings.

We chose this application because small deletions in the range of 50bp to 150bp are partic-

ularly difficult to detect using many existing SV algorithms [4, 127]. This is because most

read-pair based algorithms use a hard cutoff based on the variance of the fragment size

distribution to select discordant read pairs, as described in Section 3.2. By taking advan-

tage of many compute cores using MapReduce, we can design an algorithm that considers

all of available data (both concordant and discordant read pairs) in a generative statistical

46



47

framework, as we will describe in Section 5.3.

5.2 Framework infrastructure

In addition to the specific algorithm for detecting deletions and insertions (which take

the form of implementations of the user-defined functions we described in the previous

chapter), the Cloudbreak package also contains the infrastructure necessary to implement

the three MapReduce jobs defined in our MapReduce algorithmic framework. Providing a

fully featured, multi-job Hadoop application requires several implementation decisions:

• Programming language and method of interacting with Hadoop. Hadoop

applications can be developed in several ways. A native application is written in Java

and directly uses the Hadoop application programming interface (API) to start jobs,

implement Map and Reduce functions, and set advanced Hadoop configurations. Al-

ternatively, applications can be developed in any language using the Hadoop stream-

ing interface, as long as the input to and output from all map and reduce tasks is

textual and certain conventions are followed with respect to data format. Finally, for

C/C++ applications, the Hadoop pipes interface can be used to marshal input and

output data from tasks. Each method has its own advantages and disadvantages.

Native applications constrain the developer to Java but enjoy the best performance

when the jobs are data intensive rather than CPU bound [47]. Streaming applications

allow greater programming language flexibility but make it somewhat more difficult

to organize complex applications and take advantage of advanced Hadoop features.

Pipes, meanwhile, allow for maximum performance for CPU intensive applications.

We opted to develop Cloudbreak as a native application to take advantage of the

tight integration with the Hadoop API improved I/O performance on data intensive

portions of the workflow. For the Align Reads job, which executes existing short-

read alignment tools, a mapper class written in Java invokes the external tools using

the system runtime environment.

• File formats and compression. Hadoop applications usually store their data

in HDFS in text format or in sequence files, a binary format that allows numeric
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or complex data types to be stored in a key-value pair structure easily accessed

by Hadoop. In addition, varying levels of compression can be used, although only

certain compression types allow Hadoop to automatically split large files by HDFS

blocks for processing by different map tasks, which is a key consideration for building

fully parallelized applications. Cloudbreak uses sequence files for input and interme-

diate files, although for alignments the values are stored as text strings containing

full records in the Sequence Alignment Map (SAM) format [107], to allow for easy

exports of data. For compression we use the Snappy [63] compressor/decompressor

(codec), a compression scheme developed at Google which aims for reasonable file

size reduction with very fast compression and decompression speeds. This makes it

ideal for data-intensive Hadoop applications. Given that the output data from the

Align Reads job is alignment records, a future implementation goal is to switch

to using Hadoop-BAM [138], a library for storing SAM/BAM records efficiently in

HDFS; Hadoop-BAM did not posses necessary functionality at the time of Cloud-

break’s initial implementation and so we proceeded with a text-based representation

of alignment records.

• Distribution of auxiliary files. In some cases all tasks require access to large

input files, such as genome reference indices for alignment, or genome annotation

files. Hadoop offers a distributed cache service, which places copies of the files on

each node that will host tasks for the job so that they will not all need to copy the

files over the network. Cloudbreak makes use of the distributed cache to distribute

index and annotation files, as well as the alignment executables for the Align Reads

job.

Our implementation of the Align Reads job contains wrappers to execute the aligners

BWA [106], GEM [117], Novoalign [142], RazerS 3 [190], mrFAST [5], and Bowtie 2 [94].

This job can also be skipped in favor of importing a pre-aligned BAM file directly into

HDFS. The code is structured in such a way that to add a new aligner, developers would

simply create a class that finds the necessary index files in the distributed cache and

determines the proper command line parameters for aligner execution, and parses the
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aligner output if it is in a non-standard format.

Cloudbreak can be executed on any Hadoop cluster; Hadoop abstracts away the details

of cluster configuration, making distributed applications portable. We deployed Cloud-

break on an internal 56-node cluster running the Cloudera CDH3 Hadoop distribution,

version 0.20.2-cdh3u4. In addition, Cloudbreak can create and operate on Hadoop clusters

located in commercial and private compute clouds (see Section 5.6).

The source code and user manual for Cloudbreak are publicly available at https:

//github.com/cwhelan/cloudbreak. We hope that by publishing under an open-source

license, we will facilitate the adoption of our Cloudbreak implementation, as well as provide

a base from which other computational researchers can develop their own SV detection

algorithms for Hadoop.

5.3 Implementation of a MapReduce SV Algorithm

In Section 4.4, we described three user-defined functions that can be implemented to create

an SV detection application in our MapReduce framework. These functions were named

Loci, Φ, and PostProcess. These functions map aligned read pairs to locations on the

genome to which they are relevant, compute a set of local features for each genomic location

based on the relevant read pairs, and call variants based on the features computed for

neighboring genomic locations. Cloudbreak contains implementations of these functions

that combine to allow it to detect deletions (of size 40bp-25,000bp) and insertions. A

detailed description of each of these implementations appears below, and an illustration

of each phase of the Cloudbreak algorithm working on a simple example in MapReduce is

shown in Figure 5.1.

Loci Because we are detecting deletions and short insertions, we map ReadPairInfos from

each possible alignment to the genomic locations overlapped by the implied internal

insert between the reads. For efficiency, we define a maximum detectable deletion

size of 25,000bp, and therefore alignment pairs in which the ends are more than 25kb

apart, or in the incorrect orientation, map to no genomic locations. In addition, if

there are multiple possible mappings for each read in the input set, we optimize this
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Figure 5.1: An Example of the Cloudbreak deletion and insertion detection algorithm
running in MapReduce. A) In the first MapReduce job, mappers scan input reads in
FASTQ format and execute an alignment program in either paired-end or single-ended
mode to generate read mappings. Reducers gather all alignments for both reads in each
pair. B) In the second MapReduce job, mappers first emit information about each read pair
(in this case the insert size and quality) under keys indicating the genomic location spanned
by that pair. Only one genomic location is diagrammed here for simplicity. Reducers then
compute features for each location on the genome by fitting a GMM to the distribution
of spanning insert sizes. C) Mappers group all emitted features by their chromosome, and
reducers find contiguous blocks of features that indicate the presence of a variant.

step by assuming that if there exists a concordant mapping for a read pair, defined as

a mapping pair in which the two alignments are in the proper orientation and with

an insert size within three standard deviations of the expected library insert size, it

is likely to be correct and therefore we do not consider any discordant alignments of

the pair.

Φ To compute features for each genomic location, we follow the mixture of distributions
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approach (see Section 3.2.2) first described by Lee et al. [102], who observed that if

all mappings are correct, the insert sizes implied by mappings which span a given

genomic location should follow a Gaussian mixture model (GMM) whose parameters

depend on whether a deletion or insertion is present at that locus. Figure 5.2 shows

several examples of the mixtures observed for various types of variants. If there

is no indel, the insert sizes implied by spanning alignment pairs should follow the

distribution of actual fragment sizes in the sample, which is typically modeled as

normally distributed with mean µ and standard deviation σ. If there is a homozygous

deletion or insertion of length l at the location, µ should be shifted to µ+ l, while σ

will remain constant. Finally, in the case of a heterozygous event, the distribution of

insert sizes will follow a mixture of two normal distributions, one with mean µ, and

the other with mean µ + l, both with an unchanged standard deviation of σ, and

mixing parameter α that describes the relative weights of the two components. The

features generated for each location l include the log-likelihood ratio of the filtered

observed data points under the fit GMM to their likelihood under the distribution

N(µ, σ), the final value of the mixing parameter α, and µ′, the estimated mean of

the second GMM component.

The choice of a mixture of distributions model has several benefits. Firstly, it is a

generative model for the entire data set, including concordant and discordant read

pairs. This removes the need to set hard thresholds that define discordant read

pairs, and allows the detection of smaller variants given a tight enough insert size

distribution. Second, the parameters that are estimated can be used to refine and

classify predictions. For example, the mixing parameter α can be used to genotype

variants, as we will describe in Section 5.5. In addition, the estimated µ′ parameter

gives a prediction for how many genomic locations the variant might cover, which we

leverage in the PostProcess function described below to integrate local features

into variant calls.

To implement our model, at each genomic location we fit the parameters of the GMM

using the Expectation-Maximization algorithm. Let Y = y1,2,...m be the observed
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insert sizes at each location after filtering, and say the library has mean fragment

size µ with standard deviation σ. Because the mean and standard deviation of the

fragment sizes are selected by the experimenter and therefore known a priori (or at

least easily estimated based on a sample of alignments), we only need to estimate the

mean of the second component at each locus, and the mixing parameter α. Therefore,

we initialize the two components to have means µ and Ȳ , set the standard deviation

of both components to σ, and set α = .5. In the E step, we compute for each yi

and GMM component j the value γi,j , which is the normalized likelihood that yi was

drawn from component j. We also compute nj =
∑

i γi,j , the relative contributions

of the data points to each of the two distributions. In the M step, we update α to

be n2 − |Y |, and set the mean of the second component to be
∑

m γm,2ym
n2

. We treat

the variance as fixed and do not update it, since under our assumptions the standard

deviation of each component should always be σ. We repeat the E and M steps until

convergence, or until a maximum number of steps has been taken. Prior to fitting the

GMM at each location, we attempt to filter out incorrect mappings for that location

using an outlier-detection based clustering scheme and an adaptive mapping quality

cutoff; see Section 5.4 for details.

PostProcess The third MapReduce job is responsible for making SV calls based on the

features defined above. We convert our features along each chromosome to insertion

and deletion calls by first extracting contiguous genomic loci where the log-likelihood

ratio of the two models is greater than a given threshold. To eliminate noise we apply

a median filter with window size 5. We end regions when µ′ changes by more than

60bp (2σ), and discard regions where the average value of µ′ is less than µ or where

the length of the region differs from µ′ by more than µ.

5.4 Filtering Incorrect and Ambiguous Mappings

One of our goals in developing Cloudbreak was to see if the use of distributed computing in

the MapReduce framework would allow us to develop an algorithm that could process mul-

tiple mappings for ambiguously mapped reads in a reasonable amount of time, especially
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Figure 5.2: Illustration of insert size mixtures at individual genomic locations. A) there is
no variant present at the location indicated by the vertical line (left), so the mix of insert
sizes (right) follows the expected distribution of the library centered at 200bp, with a small
amount of noise coming from low-quality mappings. B) a homozygous deletion of 50bp
at the location has shifted the distribution of observed insert sizes. C) A heterozygous
deletion at the location causes a mixture of normal and long insert sizes to be detected.
D) A heterozygous small insertion shifts a portion of the mixture to have lower insert sizes.

because the size of data sets can grow very large if many possible mappings are kept for all

ambiguous reads. Most SV detection tools that use multiple mappings attempt to identify

the correct mapping for each ambiguously mapped pair; for example, GASVPro [174] uses

an MCMC approach to sample from the distribution of possible mapping locations for each

read, and VariationHunter [72] attempts to assign mappings to reads through a combina-

torial optimization approach. Cloudbreak, in contrast, attempts to solve this problem at

the genomic location level by filtering mappings during the feature computation step.

To handle incorrect and ambiguous mappings, we assume that in general they will

not form normally distributed clusters in the same way that correct mappings will, and

therefore use an outlier detection technique to filter the observed insert sizes for each
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location. We sort the observed insert sizes and define as an outlier an observation whose

kth nearest neighbor is more than nσ distant, where k = 3 and n = 5. In addition,

we rank all observations by the estimated probability that the mapping is correct and

use an adaptive quality cutoff to filter observations: we discard all observations where

the estimated probability the mapping is correct is less than the score of the maximum

quality observation minus a constant c. This allows the use of more uncertain mappings

in repetitive regions of the genome while restricting the use of low-quality mappings in

unique regions. Defining Mismatches(a) to be the number of mismatches between a read

and the reference genome in the alignment a, we approximate the probability pkc of each

end alignment being correct by:

pkc (a
k
m,i) =

exp(−Mismatches(akm,i)/2)∑
j exp(−Mismatches(akm,j)/2)

By multiplying pc(a1m,i) and pc(a2m,i), we can approximate the likelihood that the pair

is mapped correctly.

5.5 Genotyping

In theory, it should be possible to use the parameters of the fit GMM to infer the genotype of

each predicted variant. Assuming that our pipeline is capturing all relevant read mappings

near the locus of the variant, the genotype should be indicated by the estimated parameter

α, the mixing parameter that controls the weight of the two components in the GMM. We

set a simple cutoff on the average value of α for each prediction to call the predicted

variant homozygous or heterozygous, and use the same cutoff for deletion and insertion

predictions. Somewhat surprisingly, we observed on the cutoff point that distinguishes

homozygous from heterozygous variants is significantly less than the expected .5; based on

empirical observations on a simulated data set, we set the threshold to .35 (see Section 6.5

for more details).
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5.6 Running in the Cloud

In Section 2.2.2, we discussed the increasing recognition of the genomics community of the

need for tools that ease the use of cloud computing resources [164, 178]. This has spurred

the development of a variety of applications and toolkits that use the APIs of Infrastructure

as a Service (IaaS) providers, such as Amazon EC2, to allocate compute resources on public

compute clouds. In this section, we will briefly review some of the existing cloud-enabled

tools, including those that are based on traditional grid scheduling engines and those that

enable Hadoop and MapReduce pipelines. Many of the latter take advantage of Amazon’s

Elastic MapReduce (EMR) service, an offering from Amazon specifically for creating and

running Hadoop jobs that simplifies the creation and monitoring of clusters on EC2. We

will then discuss how Cloudbreak enables the use of cloud computing in a provider-neutral

way using the Apache Whirr library.

5.6.1 Cloud-Enabled Genomics Tools

Several groups have created general-purpose toolkits for creating, allocating, and managing

cloud resources for biological data processing. For example, the CloudBioLinux project [86]

provides virtual machine images for use in Amazon EC2 that are pre-configured with a

wide range of open-source bioinformatics applications. Galaxy CloudMan [3] allows for

the automatic creation of clusters in the Amazon cloud configured to run workflows in

the popular Galaxy environment [61], backed by the SGE grid scheduling engine and with

interfaces to Amazon’s S3 storage service. CloVR [9] is a cloud cluster manager that

includes several pipelines for metagenomics managed by SGE. Finally, Elastream [76] is a

newer offering that can provision and manage cloud clusters using either grid schedulers

or EMR.

Several commercial providers are also offering services that allow elastic cloud comput-

ing for sequencing pipelines, including DNAnexus (Mountain View, CA), Illumina’s (San

Diego, CA) BaseSpace cloud, Seven Bridges Genomics’ (Cambridge, MA) IGOR platform,

and an offering from Biodatomics (Bethesda, MD). These commercial cloud services are in

many cases backed by Amazon’s EC2, but are wrapped in additional sequencing-specific
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APIs and user interfaces by the vendor. To our knowledge Biodatomics is the only com-

mercial bioinformatics vendor that offers automatic Hadoop cluster provisioning, however.

There are also a number of bioinformatics suites designed for specific applications that

are able to allocate resources on EC2 automatically. Apart from those that use Hadoop,

which we will discuss in the next paragraph, these include: Atlas2 Cloud [56], which

allows users to run the Genboree Workbench workflow for variant calling and annotation

in personal genomics DNA resequencing projects; SIMPLEX [59], which enables cloud

processing for an exome alignment and variant calling pipeline based on BWA and the

GATK; a set of ChIP-seq tools of the modENCODE and ENCODE projects [183] that can

create clusters to run analysis pipelines on EC2 or the Bionumbus private cloud [145].

Finally, several of the Hadoop applications we discussed in Section 4.2 come with

command-line or graphical interfaces that automate their deployment on commercial cloud

services. Most of these leverage EMR. The most widely used EMR-enabled tool is Cross-

bow [95], which has a UI that will create Hadoop workflows using EMR. Crossbow’s ability

to use EMR was recently made more robust by Rainbow [205], which wraps Crossbow with

additional facilities for transferring large files in parallel, monitoring clusters for failing

nodes, and aggregating results from multiple samples run simultaneously. As mentioned in

Section 4.2, FX [71] and Euolsan [78] are both Hadoop workflows for RNA-seq processing;

both have the ability to automatically create EMR jobs on Amazon EC2.

5.6.2 Enabling Cloud Computing with Whirr

In contrast to the tools mentioned above, Cloudbreak leverages the Apache Whirr [13]

library to automatically create Hadoop clusters in the cloud. Whirr differs from the strate-

gies referred to in the last section in that it provides a unified application programming

interface (API) for provisioning and running cloud services that is agnostic to the cloud

IaaS provider. Although the largest and most popular cloud IaaS is provided by Amazon

Web Services though their Elastic Compute Cloud (EC2), Whirr is a facade API that

allows the transparent substitution of other cloud services such as Rackspace, Microsoft

Azure, or private clouds such as those built with Eucalyptus. Most of the Hadoop-enabled

applications and toolkits mentioned in the previous section depend on Amazon Elastic
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MapReduce to provision Hadoop clusters. Cloudbreak’s use of Whirr breaks this depen-

dency on a single vendor.

Using Whirr’s API, Cloudbreak is able to provision Hadoop clusters which can then be

terminated when processing is complete. This eliminates the need to invest in a standing

cluster and allows a model in which users can scale their computational infrastructure as

their need for it varies over time. Through a command line interface, Cloudbreak uses

Whirr functionality to offer commands that:

• Automatically provision Hadoop clusters in the cloud. After specifying the

parameters of the Hadoop cluster desired in a property file, a single Cloudbreak com-

mand will request the creation of the necessary compute instances in the cloud, will

configure them with the proper Hadoop services to provide a fully functioning cluster,

and will start proxies that make the Hadoop cluster’s management and reporting UIs

available to the user. Cloudbreak users can configure clusters with their credentials

for the cloud service provider, the number of worker nodes to include in the cluster

as well the hardware requirements for each node, and, if desired, the pricing model.

This last point is particularly useful on EC2, where spot pricing allows users to bid

for unclaimed compute capacity on Amazon’s cloud. Spot pricing can dramatically

reduce costs compared to full price on-demand instances. The disadvantage is that

instances can be reallocated if a higher bid comes in, resulting in termination of the

processes they are running. Hadoop’s facility for automatic redundancy of data and

tasks can mitigate this risk.

• Transfer data into cloud compute clusters. Typically when using cloud com-

pute services it is fastest to store large data sets in a cloud storage service such as

Amazon’s Simple Storage Service (S3). From there it is fast to transfer them into

and out of cloud compute services like EC2. However, moving data into S3 can be

time-consuming depending on the network connections and number and size of the

files in the data set. Cloudbreak includes code which communicates with S3 to do a

multi-threaded upload of large data files, enabling much faster transfer times.

• Destroy clusters when processing is complete. Cloudbreak, by using the Whirr
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API, can destroy allocated cloud clusters when processing is complete, ensuring that

compute costs can be managed efficiently.

Cloudbreak’s user manual contains detailed instructions and examples describing how

to leverage cloud computing. We hope that by making cloud computing readily accessible

through Cloudbreak’s command line interface, more researchers will have the opportunity

to leverage Hadoop’s distributed computing model, even if they do not have local Hadoop

clusters available at their institutions.

5.7 Discussion

The strategy of fitting a GMM to the distribution of insert sizes at a given genomic location

has been used by the SV detection tools MoDIL [102] and SVM2 [39]. SVM2 fits a mixture

of distributions only to candidate regions of the genome identified through a preliminary

analysis for the purpose of genotyping variants as homozygous or heterozygous. This leaves

MoDIL as the only tool that attempts to model the distribution of insert sizes across the

entire genome. As we will see in the next chapter, MoDIL is prone to excessively long run

times that make it impractical to run for large-scale genomics data sets. Cloudbreak, on

the other hand, through its use of MapReduce and Hadoop, is able to efficiently distribute

computation so that given a sufficiently large cluster it can deliver the benefits of this

strategy with very fast runtimes.

For those researchers that wish to take advantage of cloud computing in order to avoid

the expense and maintenance costs of running their own large Hadoop clusters, Cloudbreak

is able to automatically provision, transfer data to, and destroy Hadoop clusters using IaaS

providers. Although there are other cloud-enabled sequencing analysis tools, Cloudbreak is

unique in using the Apache Whirr library to provide an IaaS provider-agnostic solution. In

addition to the obvious benefit of avoiding vendor lock-in, we believe that this will become

increasingly important in the future as research agencies and clinical providers begin to

create private or semi-private clouds to manage the analysis of sensitive personal genomic

data in a controlled setting.
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Evaluating Cloudbreak

In this chapter we evaluate Cloudbreak and compare its accuracy, runtime, and additional

features to a variety of other popular tools. We begin by defining some of the methods and

parameters of our tests, and then describe experiments we have carried out using simulated

data and two real data sets. Finally, we explore the runtime characteristics of the various

tools and the extent to which they can be parallelized.

6.1 Evaluation Methods

6.1.1 Choice of SV Detection Tools to Compare To

We compared the performance of Cloudbreak for detecting deletions and insertions to a se-

lection of popular tools: BreakDancer [37], GASVPro [174], Pindel [200], and DELLY [157].

BreakDancer and Pindel are two of the most highly cited SV detection tools, representing

classic RP-based methods and SR-based methods, respectively. GASVPro is a hybrid RP

method that integrates RD signals and ambiguous mappings into an RP framework based

on discordant pairs. DELLY is a recent hybrid RP-SR method that uses split-read mapping

to refine candidate calls made with RP information. DELLY produces two sets of calls,

one based solely on RP signals, and the other based on RP calls that could be supported

by SR evidence; we refer to these sets of calls as DELLY-RP and DELLY-SR. We also

attempted to evaluate MoDIL on the same data given that it is the most algorithmically

similar method to Cloudbreak. All of these methods detect deletions. Insertions can be

detected by BreakDancer, Pindel, and MoDIL.

59
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6.1.2 Simulated and Biological Data Sets

As has been observed elsewhere, there is no available test set of real Illumina sequencing

data from a sample that has a complete annotation of SVs from the reference. Therefore,

testing with simulated data is important to fully characterize an algorithm’s performance

characteristics. On the other hand, it is important that the simulated data contain realistic

SVs that follow patterns of SVs observed in real data. To address this, we took one of the

most complete lists of SVs from a single sample available, the list of homozygous insertions

and deletions from the genome of J. Craig Venter [105]. Using these variants, we simulated a

30X read coverage data set for a diploid human Chromosome 2 with a mix of homozygous

and heterozygous variants. Since there are relatively few heterozygous insertions and

deletions annotated in the Venter genome, we used the set of homozygous indels contained

in the HuRef data (HuRef.homozygous_indels.061109.gff) and randomly assigned each

variant to be either homozygous or heterozygous. Based on this genotype, we applied

each variant to one or both of two copies of the human GRCh36 chromosome 2 reference

sequence. We then simulated paired Illumina reads from these modified references using

dwgsim from the DNAA software package [70]. We simulated 100bp reads with a mean

fragment size of 300bp and a standard deviation of 30bp, and generated 15X coverage for

each modified sequence. Pooling the reads from both simulations gives 30X coverage for a

diploid sample with a mix of homozygous and heterozygous insertions and deletions.

We downloaded a data set of reads taken from a DNA sample of Yoruban individual

NA18507, experiment ERX009609 from the Sequence Read Archive. This sample was

sequenced on the Illumina Genome Analyzer II platform with 100bp paired end reads and

a mean fragment size (minus adapters) of 300bp, with a standard deviation of 15bp, to a

depth of approximately 37X coverage.

To create a gold standard set of insertions and deletions to test against, we pooled an-

notated variants discovered by three previous studies on the same sample. These included

data from the Human Genome Structural Variation Project reported by Kidd et al. [82],

a survey of small indels conducted by Mills et al. [127], and insertions and deletions from

the merged call set of the Phase 1 release of the 1000 Genomes Project [1] which were
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genotyped as present in NA18507. We merged any overlapping calls of the same type into

the region spanned by their unions. It should be noted that the 1000 Genomes call set

was partially produced using DELLY and BreakDancer, and therefore those calls are ones

that those tools are sensitive to, biasing this test in their favor.

6.1.3 Parameters Used for Alignment and SV Detection

We aligned simulated reads to hg18 chromosome 2, NA18507 reads to the hg19 assembly.

Alignments for all programs, unless otherwise noted, were found using BWA aln version

0.6.2-r126, with parameter -e 5 to allow for longer gaps in alignments due to the number

of small indels near the ends of larger indels in the Venter data set. We also tested the effect

of including multiple possible mapping locations for ambiguously mapped reads in results

reported in Section 6.7. For those tests, we used two different sets of reads with multiple

mapping locations reported. The first used alignments generated with BWA in paired-end

mode, reporting up to 25 additional hits for each mapping using the -n and -N parameters

for bwa sampe and the script xa2multi.pl. For the second, we attempted to generate an

exhaustive list of possible mapping locations by running the GEM aligner in single-ended

mode on each read in each pair individually, reporting up to 1000 additional hits per align-

ment. GEM was executed in parallel using Hadoop tasks which wrap GEM version 1.362

(beta), with parameters -e 6 -m 6 -s 2 -q ignore -d 1000 –max-big-indel-length

0. These parameters request all hits for a read that are within an edit distance of 6 of

the reference, within 2 strata of the best hit, with a maximum of 1000 possible align-

ments reported for each read. GASVPro also accepts ambiguous mappings but expects

them to be realigned with a more sensitive alignment tool; following the details given in

their manuscript we extracted read pairs that did not align concordantly with BWA and

re-aligned them with Novoalign V2.08.01, with parameters -a -r -Ex 1100 -t 250.

We ran BreakDancer version 1.1_2011_02_21 in single threaded mode by first exe-

cuting bam2cfg.pl and then running breakdancer_max with the default parameter values.

To run BreakDancer in parallel mode we first ran bam2cfg.pl and then launched paral-

lel instances of breakdancer_max for each chromosome using the -o parameter. We ran

DELLY version 0.0.9 with the -p parameter and default values for other parameters. For
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the parallel run of DELLY we first split the original BAM file with BamTools [18], and then

ran instances of DELLY in parallel for each BAM file. We ran GASVPro version 1.2 using

the GASVPro.sh script and default parameters. Pindel 0.2.4t was executed with default

parameters in single CPU mode, and executed in parallel mode for each chromosome using

the -c option. We executed MoDIL with default parameters except for a MAX_DEL_SIZE

of 25000, and processed it in parallel on our cluster with a step size of 121475. To execute

other SV detection tools in parallel we wrote simple scripts to submit jobs to the clus-

ter using the HTCondor scheduling engine [181] with directed acyclic graphs to describe

dependencies between jobs.

6.1.4 SV Prediction Evaluation

Due to the inability of most tools to determine the exact breakpoint coordinates of an

SV given read pair data, as well as the potential for uncertaintly due to error in real

gold standard data sets, it is necessary to define a rule for determining whether or not a

predicted SV call is correct or not. There are many ways of doing so, each with their own

characteristics. For example, the authors of BreakDancer [37] and VariationHunter [72]

considered a predicted deletion to be correct if had a 50% reciprocal overlap with a deletion

in the test set. For GASVPro [174], Sindi et al. defined a “double uncertainty” metric, in

which tolerance parameters ε and δ could be defined for the predictions and for the test

set respectively, and a deletion prediction of the interval [x, y] is deemed to be correct if

there exists an interval in the test set [a, b] for which there is overlap between both pairs

of intervals 〈[x− ε, x+ ε],[a− δ, a+ δ]〉 and 〈[y − ε, y + ε],[b− δ, b+ δ]〉. The forthcoming

SMASH [180] benchmark of variant callers, including SV detection tools, counted a deletion

call as a match if the left breakpoint of the call was within 100bp of the left breakpoint of the

deletion interval in the test set and the difference between lengths of the two intervals was

less than or equal to 100bp. The authors of the iSVP pipeline [129], meanwhile, assigned

a quality score between 0 and 1 based on the ratio of the length of the intersection of the

predicted and test variants, with 50bp margins added to each, to the length of the union

of the two intervals.

To evaluate Cloudbreak we decided to use looser standards for calling a prediction
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true, because we would like to test the maximum potential sensitivity of the algorithmic

approach even if the resolution of the breakpoints is limited. We feel that this is appropriate

given that most calls from SV detection tools will likely be validated either through an

additional computational step such as local assembly, or through wet lab techniques such

as PCR. Therefore, we use the following criteria to define a true prediction given a gold

standard set of deletion and insertion variants to test against: A predicted deletion is

counted as a true positive if a) it overlaps with a deletion from the gold standard set, b)

the length of the predicted call is within 300bp (the library fragment size in both our real

and simulated libraries) of the length of the true deletion, and c) the true deletion has not

been already been discovered by another prediction from the same method. For evaluating

insertions, each algorithm produces insertion predictions that define an interval in which

the insertion is predicted to have occurred with start and end coordinates s and e as well

as the predicted length of the insertion, l. The true insertions are defined in terms of their

actual insertion coordinate i and their actual length la. Given this information, we modify

the overlap criteria in a) to include overlaps of the intervals 〈s,max (e, s+ l)〉 and 〈i, i+la〉.

In this study we are interested in detecting events larger than 40bp, because with longer

reads, smaller events can be more easily discovered by examining gaps in individual reads.

Both Pindel and MoDIL make many calls with a predicted event size of under 40bp, so

we remove those calls from the output sets of those programs. Finally, we exclude from

consideration calls from all approaches that match a true deletion of less than 40bp where

the predicted variant length is less than or equal to 75bp in length.

6.2 Results on Simulated Data

6.2.1 Accuracy and Runtime

Figure 6.1 shows Receiver Operating Characteristics (ROC) curves of the performance

of each algorithm for detecting deletions and insertions on the simulated data set. All

approaches show excellent specificity at high thresholds in this simulation. Cloudbreak

provides the greatest specificity for deletions at higher levels of sensitivity, followed by

DELLY. For insertions, Cloudbreak clearly provides the best combinations of sensitivity
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Figure 6.1: Cloudbreak accuracy on a simulated data set. Receiver Operating Charac-
teristic (ROC) curves showing the specificity and sensitivity of each tool to deletions and
insertions larger than 40bp on a simulated set of reads giving diploid coverage of 30X on
human chromosome 2. Deletions and insertions from the Venter genome were randomly
added to one or both haplotypes. Each point on a curve represents a different threshold
on the confidence of predictions made by that tool. Thresholds vary by: Cloudbreak - like-
lihood ratio; BreakDancer, DELLY, GASVPro - number of supporting read pairs; Pindel
- simple score.

and specificity. Figure 6.2 shows the runtimes for each tool on the simulated data set,

parallelized when possible. Runtimes exclude alignment, which should be similar for all

tools. Cloudbreak’s runtime is half that of BreakDancer, the next fastest tool, processing

the simulated data in under six minutes. Of course, Cloudbreak uses many more CPUs

as a distributed algorithm. See Section 6.6 for a more detailed discussion of runtimes and

the amount of parallelization that was done for each tool. The output which we obtained

from MoDIL did not have a threshold that could be varied to correlate with the trade-off

between precision and recall and therefore it is not included in ROC curves; in addition,

MoDIL ran for 52,547 seconds using 250 CPUs in our cluster, so results are not included

in the runtime figure. Apart from the alignment phase, which is embarrassingly parallel,

the feature generation job is the most computationally intensive part of the Cloudbreak

workflow. Therefore, to test the algorithm’s scalability we measured the runtime of that

job on Hadoop clusters made up of varying numbers of nodes and observed that linear

speedups can be achieved in this portion of the algorithm by adding additional nodes to

the cluster until a point of diminishing returns is reached (Figure 6.3).
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Figure 6.2: Runtimes for each tool on the simulated data set, not including alignment
time, parallelized when possible. See Section 6.6 for details on measuring and parallelizing
the runtime of each tool.

Choosing the correct operating point or threshold to set on the output of an SV calling

algorithm can be difficult when operating on a new data set. The use of simulated data and

ROC curves allows for some investigation of the performance characteristics of algorithms

at varying levels. First, we characterized the predictions made by each algorithm at the

operating point which gives them maximum sensitivity. For Cloudbreak we chose an

operating point at which marginal improvements in sensitivity became very low. The

results for both deletion and insertion predictions are summarized in Table 6.1. MoDIL

and Cloudbreak exhibited the greatest recall for deletions. Cloudbreak has high precision

and recall for deletions at this threshold, and discovers many more small deletions. For

insertions, Cloudbreak has the highest recall, although recall is low for all four approaches.

Cloudbreak again identifies the most small variants. Pindel is the only tool which can

consistently identify large insertions, as insertions larger than the library insert size do not

produce mapping signatures detectable by read-pair mapping.

We also used the ROC curves to attempt to characterize the predictions made by each

algorithm when a low false discovery rate is required. Table 6.2 shows the total number of

simulated deletions found by each tool when choosing a threshold that gives an FDR closest

to 10% based on the ROC curve. At this more stringent threshold, Cloudbreak identifies
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Figure 6.3: Scalability of the Cloudbreak algorithm. Runtime of the Cloudbreak feature
generation job for the simulated Chromosome 2 data is shown on Hadoop clusters consist-
ing of varying numbers of compute nodes. Clusters were created in the Amazon Elastic
Compute Cloud.

more deletions in every size category than any other tool. Performance on insertions never

reached an FDR of 10% for any threshold, so insertion predictions are not included in this

table.

6.2.2 Choice of Window Size

A key parameter choice for Cloudbreak is the size of the fixed-width, non-overlapping win-

dows used for local feature computation. The experiments reported thus far in this chapter

all used a window size of 25bp. Using the simulated data set, we evaluated the effect of

choosing differing window sizes on runtime, breakpoint resolution, and accuracy. Figure 6.4
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Prec. Recall F1 40-100bp 101-250bp 251-500bp 501-1000bp > 1000bp
D
el
et
io
ns

Total Number 224 84 82 31 26
Cloudbreak 0.638 0.678 0.657 153 (9) 61 (0) 62 (0) 12 (0) 15 (0)

BreakDancer 0.356 0.49 0.412 89 (0) 54 (0) 53 (0) 8 (0) 15 (0)
GASVPro 0.146 0.432 0.218 83 (2) 32 (0) 55 (0) 8 (0) 15 (0)

DELLY-RP 0.457 0.613 0.613 114 (3) 68 (0) 66 (0) 9 (1) 17 (0)
DELLY-SR 0.679 0.166 0.266 0 (0) 3 (0) 49 (0) 6 (0) 16 (0)

Pindel 0.462 0.421 0.44 96 (11) 24 (0) 48 (0) 5 (0) 15 (0)
MoDIL 0.132 0.66 0.22 123 (6) 66 (3) 66 (11) 17 (7) 23 (8)

In
se
rt
io
ns

Total Number 199 83 79 21 21
Cloudbreak 0.451 0.305 0.364 79 (32) 32 (18) 11 (8) 1 (0) 0 (0)

BreakDancer 0.262 0.0968 0.141 23 (5) 14 (5) 2 (1) 0 (0) 0 (0)
Pindel 0.572 0.196 0.292 52 (25) 5 (1) 10 (9) 3 (2) 9 (9)
MoDIL 0.186 0.0521 0.0814 14 (1) 4 (0) 1 (0) 2 (2) 0 (0)

Table 6.1: The number of simulated deletions and insertions in the 30X diploid chromosome
2 with Venter indels found by each tool at maximum sensitivity, as well as the number of
those variants that were discovered exclusively by each tool (in parentheses). The total
number of variants in each size class in the true set of deletions and insertions is shown in
the first row of each section.

40-100bp 101-250bp 251-500bp 501-1000bp > 1000bp
Total Number 224 84 82 31 26

Cloudbreak 68 (17) 67 (10) 56 (5) 11 (3) 15 (0)
BreakDancer 52 (8) 49 (2) 49 (0) 7 (0) 14 (0)

GASVPro 35 (2) 26 (0) 26 (0) 2 (0) 6 (0)
DELLY-RP 22 (1) 56 (1) 40 (0) 8 (0) 12 (0)
DELLY-SR 0 (0) 2 (0) 28 (0) 2 (0) 10 (0)

Pindel 60 (32) 16 (0) 41 (2) 1 (0) 12 (0)

Table 6.2: The number of simulated deletions in the 30X diploid chromosome 2 with Venter
indels found by each tool at a 10% FDR, as well as the number of those deletions that
were discovered exclusively by each tool (in parentheses). The total number of deletions
in each size class in the true set of deletions is shown in the second row of the header.

shows the runtime of the feature computation and variant calling steps of Cloudbreak on

the Chromosome 2 data set using differing window sizes. Runtime decreases dramatically

with larger window sizes. For very small window sizes, the runtime is dominated by the

variant extraction job, which is only parallelized by chromosome and therefore only runs

on one core when running on the simulated data set. Table 6.3 shows several accuracy

measures for Cloudbreak running with varying window sizes, using the same threshold

for each run. The greatest recall is achieved at very low window sizes, probably because
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Figure 6.4: Runtimes for Cloudbreak on the Chromosome 2 simulated data set using
differing choices of window size. Runtimes include the feature computation and variant
calling Cloudbreak Hadoop jobs.

evidence for smaller variants is less likely to be mixed in with non-variant supporting read

pairs from the flanking regions. However, overall accuracy is high until window sizes reach

50bp, at which point recall decreases dramatically. Finally, we examined the effect of

breakpoint accuracy on window size and found that it had little effect (Figure 6.5).

6.3 Results on Biological Data

6.3.1 Accuracy and Runtime

Figure 6.6 shows the performance of each algorithm on the NA18507 data set when com-

pared against the gold standard set for both deletions and insertions. We were unable
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Window Size Calls True Positives Precision Recall F1
1 274 228 0.832 0.57 0.677
5 268 228 0.851 0.57 0.683
10 258 223 0.864 0.557 0.678
25 240 217 0.904 0.542 0.678
50 215 194 0.902 0.485 0.631
100 162 141 0.87 0.352 0.502

Table 6.3: Accuracy measures for Cloudbreak on the Chromosome 2 simulated data set
using different choices of window size. For each window size the same Cloudbreak score
threshold was used (1.98).

to run MoDIL on the whole-genome data set due to the estimated runtime and storage

requirements. All other algorithms show far less specificity for the gold standard set than

they did for the true variants in the single chromosome simulation, although it is difficult

to tell how much of the difference is due to the added complexity of real data and a whole

genome, and how much is due to missing variants in the gold standard set that are actu-

ally present in the sample. For deletions, Cloudbreak is the best performer at the most

stringent thresholds, and has the highest or second highest precision at higher sensitivity

levels. Cloudbreak has slightly lower accuracy for insertions than the other tools at more

stringent thresholds, although it can identify the most variants at higher levels of sensi-

tivity. Figure 6.7 and Table 6.6 show the runtime of each of the tools on the NA18507

dataset. Cloudbreak processes the sample in under 15 minutes on our cluster, more than

six times as fast as the next fastest program, BreakDancer, even when BreakDancer is run

in parallel for each chromosome on different nodes in the cluster.

Given the high number of false positives produced by all tools at maximum sensitivity

indicated by the ROC curves, we decided to characterize the predictions made by each

tool at more stringent thresholds. We examined the deletion predictions made by each

algorithm using the same cutoffs that yielded a 10% FDR on the simulated chromosome

2 data set, adjusted proportionally for the difference in coverage from 30X to 37X. For

insertions, again, we were forced to use the thresholds that gave maximum sensitivity for

each tool due to the high observed FDR rates in the simulated data. The precision and

recall at these thresholds with respect to the gold standard set, as well as the performance
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Figure 6.5: Breakpoint resolution for Cloudbreak on the Chromosome 2 simulated data
set using differing choices of window size.

of each algorithm at predicting variants of each size class at those thresholds, is shown

in Table 6.4. For deletions, Cloudbreak has the greatest sensitivity of any tool at these

thresholds, identifying the most variants in each size class. Pindel exhibits the highest

precision with respect to the gold standard set. For insertions, Pindel again has the highest

precision at maximum sensitivity, although according the ROC curve it is possible to choose

a threshold for Cloudbreak with higher precision and recall. At maximum sensitivity,

Cloudbreak identifies 120 more insertions from the gold standard set than Pindel, giving

it by far the highest recall.
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6.3.2 Breakpoint Resolution

We expected that the methods tested here would vary in their breakpoint resolution: SR

methods can achieve single nucleotide breakpoint resolution, while RP methods depend

on insert size evidence from overlapping fragments that will likely not indicate the exact

location of the breakpoint. This distinction can be seen clearly in Figure 6.8. Cloudbreak
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Prec. Recall F1 40-100bp 101-250bp 251-500bp 501-1000bp > 1000bp
D
el
et
io
ns

Total Number 7,462 240 232 147 540
Cloudbreak 0.0943 0.17 0.121 573 (277) 176 (30) 197 (18) 121 (6) 399 (24)

BreakDancer 0.137 0.123 0.13 261 (29) 136 (3) 178 (0) 114 (0) 371 (0)
GASVPro 0.147 0.0474 0.0717 120 (21) 40 (2) 85 (0) 36 (0) 128 (0)

DELLY-RP 0.0931 0.1 0.0965 143 (6) 128 (3) 167 (1) 103 (0) 323 (1)
DELLY-SR 0.153 0.0485 0.0736 0 (0) 26 (0) 123 (0) 66 (0) 203 (0)

Pindel 0.179 0.0748 0.106 149 (8) 61 (0) 149 (0) 69 (1) 217 (0)

In
se
rt
io
ns Total Number 536 114 45 1 0

Cloudbreak 0.0323 0.455 0.0604 265 (104) 49 (24) 3 (1) 0 (0) 0 (0)
BreakDancer 0.0281 0.181 0.0487 97 (10) 27 (5) 2 (1) 0 (0) 0 (0)

Pindel 0.0387 0.239 0.0666 144 (45) 14 (7) 7 (6) 1 (1) 0 (0)

Table 6.4: The precision and recall with respect to the gold standard set of deletions and
insertions for each tool on the NA18507 data, as well as the number of variants found in
each size class found. Exclusive predictions are in parentheses. For deletions, the same
cutoffs were used as for the simulated data as in Table 6.2, adjusted for the difference in
coverage from 30X to 37X. For insertions, the maximum sensitivity cutoff was used.

has the lowest resolution of any of the RP tools tested, with GASVPro also having relatively

poor resolution. Pindel and DELLY-SR, meanwhile, use split read mappings to pinpoint

the exact breakpoint correctly in many cases. Cloudbreak’s resolution suffers because

the independent calculation of features from the distribution of overlapping insert sizes

does not allow the algorithm to keep track of the actual coordinates of the mapped reads

from each pair, which other tools use to set bounds on the true breakpoint locations.

Cloudbreak’s goal, however, is to increase sensitivity and specificity to actual variants in

the hopes that such calls could still be useful even if their resolution is limited. For example,

it is possible to build SV detection pipelines in which a set of RP-based candidate calls

is further validated in silico in a post-processing step, and such approaches typically also

refine breakpoint resolution. In silico validation can be accomplished through a variety

of methods; in one example, a recently published approach validated RP-based calls by

performing a de novo assembly of the reads surrounding candidate calls that had been

created by an RP-based approach [116]. Another approach to call refinement can be seen

in studies that improve the breakpoint resolution of RP calls to single-nucleotide resolution

using SR-based validation [92]. In Chapter 7, we will explore an alternative approach to

in silico validation of SV calls based on a discriminative machine learning technique, and

show that we can use it to greatly improve the breakpoint resolution of Cloudbreak’s calls.
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Figure 6.8: Breakpoint resolution for each tool for deletions from the gold standard set on
the NA18507 data. For each correctly predicted deletion, we calculated the difference in
length between the true deletion and the prediction.

6.4 Results on a Low-Coverage Cancer Data Set

We also tested Cloudbreak on the sequencing data set obtained from a patient with acute

myeloid leukemia (AML) described in Section 3.7. This data set consisted of 76bp paired

end reads with a mean insert size of 285bp and standard deviation of 50bp, yielding se-

quence coverage of 5X and physical coverage of 8X. Using a pipeline consisting of Novoalign,

BreakDancer, and a set of custom scripts for filtering and annotating candidate SVs, we

had previously identified a set of variants present in this sample and validated several

using PCR, including 8 deletions. Cloudbreak was able to identify all 8 of the validated

deletions, showing that it is still sensitive to variants even when using lower coverage data

sets with a greater variance of insert sizes.
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Actual Genotypes
Simulated Data NA18507

Homozygous Heterozygous Homozygous Heterozygous
Predicted
Genotypes

Homozygous 35 2 96 21
Heterozygous 0 39 2 448

Table 6.5: Confusion matrices for the predicted genotype of deletions found by Cloudbreak
on both the simulated and NA18507 data sets.

6.5 Genotyping Variants

Because Cloudbreak explicitly models zygosity in its feature generation algorithm, it can

predict the genotypes of identified variants. We tested this on both the simulated and

NA18507 data sets. For the NA18507 data set, we considered the deletions from the 1000

Genomes Project, which had been genotyped using the population-scale SV detection

algorithm Genome STRiP [65]. Cloudbreak was able to achieve 92.7% and 95.9% accuracy

in predicting the genotype of the deletions it detected at our 10% FDR threshold in the

simulated and real data sets, respectively. Table 6.5 shows confusion matrices for the two

samples using this classifier. None of the three input sets that made up the gold standard

for NA18507 contained a sufficient number of insertions that met our size threshold and

also had genotyping information. Of the 123 insertions detected by Cloudbreak on the

simulated data set, 43 were heterozygous. Cloudbreak correctly classified 78 of the 80

homozygous insertions and 31 of the 43 heterozygous insertions, for an overall accuracy of

88.6%.

6.6 Notes on Evaluating Runtime

We implemented and executed Cloudbreak on a 56-node Hadoop cluster, with 636 map

slots and 477 reduce slots. Not including alignment time, we were able to process the

Chromosome 2 simulated data in under six minutes, and the the NA18507 data set in

under 15 minutes. For the simulated data set we used 100 reducers for the compute SV

features job; for the real data set we used 300. The bulk of Cloudbreak’s execution is

spent in the feature generation step. Extracting deletion and insertion calls take under
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two minutes each for both the real and simulated data sets; the times are equal because

each reducer is responsible for processing a single chromosome, and so the runtime is

bounded by the length of time it takes to process the largest chromosome.

Cloudbreak’s elapsed times are faster than all of the other tools tested; however, there

are several ways in which to compare runtime performance between tools that support

different levels of parallelization. In Table 6.6 we display a comparison of runtimes on

the real and simulated data sets for all of the tools evaluated in this work. We report

runtimes for each tools run in its default single-threaded mode, as well as for levels of

parallelization achievable with basic scripting, noting that one of the key advantages of

Hadoop/MapReduce is the ability to scale parallel execution to the size of the available

compute cluster without any custom programming. Pindel allows multi-threaded operation

on multicore servers. Pindel and BreakDancer allow processing of a single chromosome in

one process, so it is possible to execute all chromosomes in parallel on a cluster that has

a job scheduler and shared filesystem. BreakDancer has an additional preprocessing step

(bam2cfg.pl) which runs in a single thread. DELLY suggests splitting the input BAM file

by chromosome, after which a separate DELLY process can be executed on the data for

each chromosome; splitting a large BAM file is a time consuming process and consumes

most of the time in this parallel workflow, in fact making it faster to run in single-threaded

mode. GASVPro allows parallelization of the MCMC component for resolving ambiguously

mapped read pairs; however, this requires a significant amount of custom scripting, and we

did not find that the MCMC module consumed most of the runtime in our experiments,

so we do not attempt to parallelize this component. The MoDIL distribution contains a

set of scripts that can be used to submit parallel jobs to the SGE scheduling engine or

modified for other schedulers; we adapted these for use in our cluster.

In parallel execution, the total time to execute is bounded by the runtime of the longest-

running process. In the case of chromosome-parallelizable tools including BreakDancer,

Pindel, and DELLY, this is typically the process working on the largest chromosome.1

In the case of MoDIL’s run on the simulated data, we found that the different processes

1We note that one BreakDancer process, handling an unplaced contig in the hg19 reference genome,

never completed in our runs and had to be killed manually; we exclude that process from our results.
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Simulated Data NA18507
SV Types Single CPU Parallel Proc. Single CPU Parallel Proc.

Cloudbreak D,I NA 290 312 NA 824 636
BreakDancer D,I,V,T 653 NA NA 134,170 5,586 84

GASVPro D,V 3,339 NA NA 52,385 NA NA
DELLY D 1,964 NA NA 30,311 20,224 84
Pindel D,I,V,P 37,006 4,885 8 284,932 28,587 84
MoDIL D,I NA 52,547 250 NA NA NA

Table 6.6: Runtimes (elapsed) on both data sets of each tool tested, in single-processor
and parallel mode. For parallel runs, Proc. is the maximum number of simultaneously
running processes or threads. All times are in seconds. The types of variants detected by
each program are listed with the abbreviations: D - deletion; I - insertion; V - Inversion;
P - duplication; T - translocation. Interchromosomal translocations are only detected by
BreakDancer in single CPU mode.

varied widely in their execution times, likely caused by regions of high coverage or with

many ambiguously mapped reads. Cloudbreak mitigates this problem during the time-

consuming feature generation process by using Hadoop partitioners to randomly assign

each genomic location to one of the set of reducers, ensuring that the work is evenly

distributed across all processes. This distribution of processing across the entire cluster

also serves to protect against server slowdowns and hardware failures - for example, we

were still able to complete processing of the NA18507 data set during a run where one of

the compute nodes was rebooted midway through the feature generation job.

6.7 Choice of Aligner and Use of Multiple Mappings

As mentioned in Section 5.4, one goal for developing Cloudbreak was to see if the use of

Hadoop would allow productive use of large sets of possible mappings for ambiguously

mapped read pairs. Therefore, we also tested the effect of using different aligners and

including multiple mappings for ambiguously mapped reads. In addition to the BWA

paired end best alignments used in the results reported above, we also used BWA in

paired end mode set to report up to 25 possible mapping locations for each ambiguously

mapped read pair, as well as the GEM aligner run in single ended mode on each read in

each pair and set to report up to 1000 additional mappings per read. Interestingly, we



77

0 100 200 300 400

0
10

0
20

0
30

0
Deletions

False Positives

Tr
ue

 P
os

iti
ve

s

0 40 80 120

0
40

80
12

0

Insertions

False Positives

Tr
ue

 P
os

iti
ve

s Cloudbreak
Breakdancer
Pindel
GASVPro
DELLY−RP
DELLY−SR
Cloudbreak−BWA−PE−MM
Cloudbreak−GEM−SE−MM

Figure 6.9: Cloudbreak performance on the chromosome 2 simulation using different align-
ment strategies. ROC curves show the number of true positives and false positives for each
operating point for deletions and insertions. The Cloudbreak alignment strategies are: 1)
“Cloudbreak”: Alignments generated with BWA in paired-end mode, reporting the best
hit for each pair. 2) “Cloudbreak-BWA-PE-MM”: Alignments generated with BWA in
paired-end mode, reporting up to 25 additional hits for each mapping. 3) “Cloudbreak-
GEM-SE-MM”: Alignments generated by running the GEM aligner in single-ended mode,
reporting up to 1000 additional hits per alignment. Considering multiple mappings im-
proves Cloudbreak’s specificity for insertions but decreases sensitivity to deletions.

found that including multiple mappings increases accuracy on insertions, but decreases

performance for deletions (Figure 6.9). This seems to indicate that while BWA’s paired

end mode is very good at picking correct alignments for pairs that map with long implied

insert sizes, it seems to not be as good at finding correct pairings for the shorter distances

indicative of insertions. We also examined the ability of all of the approaches, including

Cloudbreak using both the BWA unambiguous best alignments and the GEM alignments,

to detect events in repetitive regions of the genome, as shown in Table 6.7. We found

that all of the tested methods detected a similar proportion of such variants, although we

did find that when used with the GEM multiple mappings, Cloudbreak does exclusively

find a set of both deletion and insertion variants. In terms of runtime, use of the large

set of multiple mappings did not change elapsed time to run the simulated data sample

greatly, taking 308 seconds versus the 290 sections reported in the previous section. For

the NA18507 dataset, the difference in runtime was more substantial, with Cloudbreak

moving from taking 824 seconds to process the best alignments to 2,310 seconds to process
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Simulated Data NA18507
Non-repeat Repeat Non-repeat Repeat

D
el
et
io
ns

Total Number 120 327 562 8059
Cloudbreak 62 (0) 241 (3) 300 (44) 1166 (150)

Cloudbreak-GEM 65 (2) 230 (4) 226 (8) 1001 (17)
BreakDancer 42 (0) 177 (0) 192 (11) 868 (20)

GASVPro 37 (1) 156 (1) 79 (6) 330 (16)
DELLY-RP 57 (1) 217 (2) 152 (4) 712 (3)
DELLY-SR 3 (0) 71 (0) 27 (0) 391 (0)

Pindel 26 (4) 162 (7) 109 (2) 536 (6)
MoDIL 72 (12) 223 (16) NA NA

In
se
rt
io
ns

Total Number 133 270 341 355
Cloudbreak 32 (7) 91 (30) 169 (41) 148 (43)

Cloudbreak-GEM 21 (0) 58 (7) 137 (30) 135 (32)
Breakdancer 17 (5) 22 (3) 82 (22) 44 (8)

Pindel 25 (16) 54 (26) 84 (13) 82 (15)
MoDIL 5 (0) 16 (2) NA NA

Table 6.7: Detected deletions and insertions on the simulated and NA18507 data sets
identified by each tool, broken down by whether the deletion overlaps with a RepeatMasker-
annotated element. For all calls the maximum sensitivity cutoff was used.

the multiple mappings data set, a runtime which is still almost 50% less than the next

fastest approach, BreakDancer parallelized by chromosome. Although the runtimes were

very manageable, we see no substantial benefit in terms of accuracy in using large sets of

ambiguous mappings, at least in our current implementation.

6.8 Discussion

We have demonstrated the Cloudbreak can deliver excellent accuracy at identifying regions

that contain deletion and insertion SVs while at the same time achieving dramatically

faster runtimes than other approaches through the use of the Hadoop framework and its

implementation of parallel computing with data locality. In particular, the algorithm we

developed for Cloudbreak is better able to identify small variants (50bp-150bp) than other

tools. The downside to Cloudbreak’s performance on our evaluations is its poor breakpoint

resolution. As we mentioned previously, we believe that in most cases, predictions from SV

detection tools require further validation, either through wet lab techniques or by further
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computational validation through techniques such as the split-read refinement offered by

tools like DELLY, or through breakpoint assembly techniques such as TIGRA [36]. In

the next chapter, we will demonstrate an additional technique that improves Cloudbreak’s

resolution: a discriminative machine learning framework that can identify breakpoint loca-

tions by integrating read pairing, depth of coverage, and split read signals from sequencing

data sets.



Chapter 7

Extending Local Feature Based Models of

SV Detection in a Discriminative Machine

Learning Framework

In the formulation of a general algorithmic framework for SV prediction in MapReduce that

we described in Chapter 4, a crucial step is the computation of a set of features for each

of the small, non-overlapping windows with which we tiled the genome reference. In the

implementation of Cloudbreak described in Chapter 5, these features were the parameters

which are estimated by fitting a GMM to the distribution of insert sizes that span that

location. However, in general the nature of these features are purposefully not specified

in the algorithmic framework to allow flexibility in the nature of the applications that it

could potentially be used to build.

Given a set of arbitrary features that encode information about a set of loci that are

connected in a sequence, a natural approach is to apply techniques from machine learning

to identify regions of interest in that sequence, rather than the heuristics and noise reduc-

tion techniques from signal processing that are used in the Cloudbreak implementation

described in Chapter 5. In this chapter we will reformulate the problem as a sequence

labeling task, discuss possible machine learning frameworks that could be used to solve it,

explore the ways in which features can be engineered to integrate multiple signals of SVs,

and show that it is possible to achieve modest but positive improvements using conditional

random fields, a discriminative machine learning technique.

80
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7.1 Related Work

Discriminative machine learning techniques have been applied to SV detection in the tools

forestSV [126] and SVM2 [39]. SVM2 computes a set of statistics based on differences

between the coverage and insert size distributions observed at nearby locations on the

genome. If the statistics pass a set of coarse filtering rules, they are used as features for a

support vector machine (SVM) classifier that the authors trained on a set of simulated short

insertion and deletions. forestSV trained a Random Forest classifier [23] to detect deletions

and duplications based on validated and false positive predictions from many samples in

the 1000 Genomes Project data set. Their tool is based upon computing features for

a sliding window moving across the genome, as well as for the flanking regions of that

window. The authors demonstrated that it was possible to combine disparate signals by

including features that were based on read depth as well as discordant read pair mappings

in their feature set. The forestSV algorithm was similar to Cloudbreak in that the classifier

made calls at each window, and a postprocessing function then merged windows classified

with the same label into variant calls. Both of these methods demonstrate innovative

ways of learning from existing data, and integrating read pair and split read based signals.

However, neither of these tools use machine learning techniques that take into account

the sequential nature of the data; the classifiers are run independently on each candidate

variant location (in the case of SVM2) or window (in the case of forestSV), and the labels

that are assigned in each invocation of the classifier do not affect the neighboring regions.

We will show that by treating the problem as a sequence labeling task, it is possible to

take advantage of learning techniques that operate on the entire sequence of observations

at once.

7.2 SV Detection as a Sequence Labeling Problem

In our MapReduce algorithmic framework, the features computed at each window are

transformed into variant calls by a function that examines the features along each chromo-

some of the reference sequentially and identifies contiguous blocks of regions with features

values that combine to coherently indicate the presence of a variant. This part of the
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process, which we named the Postprocess function in Algorithm 1, can be thought of as

a sequence labeling problem based on a series of observation features. To take the example

of deletion detection, we could define two labels: “Deletion” if the window participates in a

deletion variant, and “No Deletion” if it does not. More formally, we can let Yi be the label

at genomic window i, where 1 ≤ i ≤ n and n is the number of windows in the chromosome.

If we similarly name the features for genomic window i Xi, we can then refer to the entire

sequence of labels and features as Y and X, respectively.

The goal of the Postprocess function can be broken down into two parts: first,

to assign a label to each window in the reference sequence, and second, to consolidate

neighboring windows with the same label into variant calls which affect larger regions.

Analyzing the implementation of Cloudbreak described in Chapter 5 in this model, we

used a simple linear threshold on the likelihood ratio of the insert size data to label each

window, and then consolidated neighboring windows with hand-tuned rules such as the

median filter and restriction on the estimated mean of the second GMM component. These

latter rules were made necessary by the noisy nature of the data and the simplicity of the

window-labeling procedure. However, if we had a completely accurate window-labeling

procedure, we could remove much of the complexity of the consolidation step. Since real

world data is noisy the best that we can do is to try to find the most likely sequence of

labels given the observed data:

arg max
Y

P (Y |X)

7.3 Graphical Models for Sequence Labeling

To achieve the goal of a more principled and more accurate window-labeling procedure

we would need to be able to take into account information from multiple features, as well

as the labels of nearby windows. In other words, the label of each window should be

dependent not only on the observed features at that window but also on the labels of other

windows nearby. Probabilistic graphical models provide a useful framework for defining

and learning models that describe these types of dependencies. One class of graphical
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Figure 7.1: A Hidden Markov Model for the SV detection problem.

model that has been used extensively for sequence labeling tasks in bioinformatics are

Hidden Markov Models (HMMs). HMMs model sequence labeling problems by assuming

that the observations at each point are dependent on a hidden state, and that the state

at a given time is dependent on the state at the previous time step. If one creates an

HMM such that the hidden states correspond to the labels of interest, the task of learning

an HMM is equivalent to learning a probability distribution P (Yi|Yi−1) that describes the

likelihood of moving from one state to another, and a distribution P (Xi|Yi) that gives

the likelihood of seeing a particular observation given the true label at that time point,

which can be modeled by a directed graphical network (Figure 7.1). Therefore, HMMs are

generative models that model the entire distribution over labels and observations, or the

joint distribution P (Y,X). One published CNV detection algorithm, Zinfandel [171], used

an HMM to predict the presence of deletions and duplications. That algorithm used a

feature set consisting of the read depth at each location and likelihood of the distribution

of insert sizes given varying fixed potential sizes of deletions.

One downside to modeling the joint distribution over features and labels is that what we

are really interested is the conditional distribution P (Y |X): given the observations, what

is the most likely sequence of labels? Since P (Y,X) = P (Y |X) ∗ P (X), by training an

HMM we are forced to learn P (X), or the distribution over sequences of observations, even

though it does not help us achieve our goal. A second drawback to HMMs, particularly in

the proposed application of SV detection, is the fact that the model assumes that P (Xi) is

independent of P (Xi−1) given Yi. In other words, observations drawn from the same state

should all be independent. For the SV detection problem described here, this seems highly
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restrictive: for many features we might imagine, observations from two different genomic

windows that are participating in the same deletion variant are likely to be much more

similar than two windows that are participating in different deletion variants, even though

they all share the label “Deletion”. As the developers of Zinfandel noted, this required them

to create a grid of “Deletion” and “Deletion Flank” states, with each row corresponding to

a different size class of deletion variant.

Conditional random fields [88] (CRFs) offer solutions to each of these drawbacks. In

contrast to HMMs, CRFs are Markov Random Fields which can be represented by undi-

rected graphical models. Because the model is undirected, it is possible to directly learn

the conditional distribution P (Y |X) from a set of training data. Training and inference

of these models is tractable for simplified graphical structures; for our application we will

use a linear chain CRF, which mimics the structure of a sequence of observations and its

labels (Figure 7.2). Furthermore, CRFs represent the factors that relate the observation

sequence to the label node at position i in the sequence in the graph through a log-linear

model over a set of k feature functions:

exp

(∑
k

θkfk(yi, yi−1, X)

)
This means that the feature functions for each position i in the sequence can incorpo-

rate information from observations any point in the observation sequence. This removes

the requirement that observations be independent from one another, and allows the con-

sideration of features taken from neighboring observations, something that could be useful

in our context of SV detection, where multiple small genomic windows are spanned by

single reads and fragments.

7.4 Integrating Features with Conditional Random Fields

We implemented a linear-chain conditional random field model to label genomic inser-

tions and deletions. The model was developed using Factorie [121]. Factorie is a toolkit

written in Scala that supports a wide variety of factor-graph based models, trainers,
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Figure 7.2: A linear chain Conditional Random Field model of the SV detection prob-
lem. Label nodes can be connected by feature functions to any of the observations in the
sequence.

and tools, particularly for NLP tasks such as named entity recognition. Our Factorie-

based implementation of a structural variation detection program consists of two parts:

a modular and configurable set of code for data management of features defined along

the genome, along with conversion of real-valued features into into binary binned fea-

ture values, and code to construct, train, and run inference on linear-chain CRF models.

The code developed for this project was written in Scala and is available on GitHub at

http://github.com/cwhelan/svfactorie.

7.5 Features for SV Detection

As described in Chapter 2, there are three main signals available for SV detection in short

read sequencing data sets: those that come from read pairing information, those that come

from read depth, and those that come from split reads. The creation of a discriminative

machine learning framework as described above can be used with any arbitrary set of

features. Therefore it is possible to create feature sets that combine information from

all three SV detection signals and integrate them into this framework. In addition, we

can model interactions between features and use those in our predictions. Finally, the

arbitrary nature of the feature function allows us to incorporate prior knowledge about

given genomic regions, including sequence annotations. We have constructed a feature set

that includes all of these types of features, as described below:
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7.5.1 Read Pair Features

Read pair features are those that are based upon the inferred insert sizes and orientations

linking paired reads, as described previously. We use the following RP features:

• The three features generated by Cloudbreak and described in Chapter 5: the log

likelihood ratio of the insert sizes observed at each window in the two-component

GMM fit vs. the likelihood under the expected normal distribution for the sample;

the estimated mean µ2 of the second component of the two-component GMM, and

α, the estimated weight of the second component in the two-component GMM.

• Insert size change point features: in addition to the insert size calculations described

in the Cloudbreak implementation, we also wanted to consider alternative features

based on insert sizes. In particular, we wanted to test whether the addition of

features that indicate whether a window represents a point at which the insert size

distribution in a local surrounding region is changing would improve identification of

variants. We compute such a score as follows: let i be the index of a window in the

genome, and Si..j be the list of observed insert sizes spanning the windows labeled i

through j. Now consider a local neighborhood of size n which comprises the windows

i − n
2 , ..., i, ..., i + n

2 . Let Θi..j be model parameters that can be estimated from the

distribution of insert sizes Si..j , and P (Si..j |Θi..j) be the likelihood of observing Si..j

under the model with parameters Θ. We can calculate a change score for each window

i by examining the likelihood of the data in the halves of the neighborhood to the right

and left of that window, by estimating P (Si−n
2
..i) and P (Si+1..i+n

2
). Simultaneously,

we can perform the same estimates for all of the data in the neighborhood and

compute P (Si−n
2
..i+n

2
). The likelihood ratio between these two models:

P (Si−n
2
..i) ∗ P (Si+1..i+n

2
)

P (Si−n
2
..i+n

2
)

then serves as a score indicating the presence of a change between the segments to the

left and right of point i. This has the advantage of being a parameter-free calculation,

since parameters are re-estimated from each segment for each calculation. According
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to the Cloudbreak’s model, it would be natural to estimate two component GMMs

for each segment of insert size data. However, in practice we found that changes were

well captured by the likelihood ratio score when only a single-component Gaussian

is used for each segment, and so we have used that model for the sake of efficiency.

We use a neighborhood size of 200 bp.

7.5.2 Split-read features

Split read signals are caused when a read overlaps a genome breakpoint, disrupting the full

alignment of that read. If only simple variants are considered, such a scenario should reveal

the exact location of the breakpoint. However, these are difficult to resolve in practice,

because the algorithm must first identify potentially split reads from those that fail to align

or partially align, and then align the two ends of the split read to the genome, potentially

at large distances from one another. True split-read based SV detection methods use

dynamic programming and heuristics to try to accomplish this; however, the difficulty of

doing so with current read lengths means that they have low sensitivity (although very high

specificity). Rather than conduct an exhaustive split read alignment search, we instead use

indirect evidence of split reads that can be extracted from standard first-pass alignments:

• Soft clipping: When reads are aligned to the genome by short read mappers like

BWA, they can in some cases be only partially aligned. In BWA, this occurs when a

parameterized clipping penalty is less than the additional cost of aligning the rest of

the read according to a Smith-Waterman dynamic programming alignment. Aligners

refer to this "soft clipping", and flag the read with specific indicators when it occurs.

Although there are other possible reasons for soft clipping (for example, the quality

could fall at the end of the read, producing many erroneous mismatches with the

reference), this could potentially be indicative of a structural variation breakpoint

disrupting the read’s alignment to the reference. For integration into the CRF feature

set, we created a feature track that counts the number of times a soft clip occurred

in each 25bp genomic window.

• Singleton alignments: For paired end reads, sometimes only one read in the pair
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can be successfully aligned to the genome. These are referred to as "singleton"

alignments. Potentially a singleton alignment could indicate that the other read in

the pair contains a variant that prevented it from being aligned, and therefore that

a breakpoint could lie somewhere within the distance of the insert size, or could

have disrupted the alignment of the other read in the pair. We count the number of

singleton alignments in each window.

7.5.3 Read depth features

The third major signals of structural variations from short-read sequencing data are related

to read depth. In the context of deletions, one would expect to see fewer reads aligning

to sections of the genome which have been deleted in the sample; if the deletion is 100%

represented in the sample and is homozygous, any reads aligning to that location must

be incorrect alignments. In practice, coverage depth is affected by noise resulting from

incorrect mappings and biases of the sequencing process (for example, the amount of GC

content in a given fragment of DNA will affect its representation in the sequencing data

set).

• Coverage depth: As one feature, we calculate the average coverage depth of each

base in each 25bp window.

• Coverage change points: We applied the change point detection algorithm outlined

in the previous section to identify windows at which the coverage changes. Although

we experimented with different neighborhood sizes, we found that this was not a

very valuable feature for breakpoint identification. For the results reported below,

we used a neighborhood size of 600bp.

• Coverage Drops: We speculated that for the specific case of deletion detection, the

most informative coverage statistic might be one that indicates whether or not the

coverage at a given window drops relative to its local neighborhood. Therefore, we

compute for each window the drop in coverage depth from the mean coverage depth

of the windows that lie in the surrounding 500bp.
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7.5.4 Genome annotations

Finally, the ability to include arbitrary features in the model allows us to incorporate prior

knowledge about the genome into our feature set. In particular, some types of genomic

features frequently cause incorrect alignments; training the model based on those feature

annotations could help the variant caller calibrate its confidence in each prediction.

• Repetitive regions: We took the UCSC RepeatMasker track for the reference genomes

used in the testing and training sets and created a binary feature for each window

in the genome, which was true if the window overlaps with a repetitive element

designated by RepeatMasker [175].

• Simple repeats: these are a subset of the repetitive regions track that are made up of

repeated k-mers of lengths from one to six. Simple repeats are very difficult to align

to, and are therefore the source of many alignment errors. We set a binary feature

for each window if it overlapped with an element from the UCSC Simple Repeats

track [22] for the reference genome.

• Segmental duplications: These are larger regions (10kb+) that have at least one

other copy in the genome with high sequence similarity between the two regions,

and are again the source of many alignment errors. We used the UCSC Segmental

Duplications track to set binary features on each window in the genome.

7.5.5 Binarization of real-valued features

Although conditional random fields can support real-valued features, the fact that they

are linear models means that it is often helpful to convert real-valued features into related

set of binary-valued features for labeling problems. For example, this can help prevent the

domination of the output by single real-valued features with very high values. Therefore,

we built two binarization schemes into our code base for real valued features. The first

allows the user who is training the system to specify a set of cut points c1..k which divide

the range of the variable into k+ 1 bins. If the value of the feature lies in bin i, the system

sets binary feature bi to true and all others to false. The second binarization procedure is
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Feature Name Type Column Description Cutpoints
mu1 binnedReal 1 µ2 from Cloudbreak

GMM
260.0,340.0

lr cumulativeBinnedReal 2 Likelihood Ratio from
Cloudbreak GMM

0.75,2.5,10.0,75.0,500.0

singletons cumulativeBinnedReal 6 Singleton alignments 1.0,2.0
changePoint cumulativeBinnedReal 7 Insert size change point 5.0,15.0,50.0

softClip cumulativeBinnedReal 8 Soft clipped alignments 1.0,2.0,3.0
rdepth cumulativeBinnedReal 9 Average read depth 0.1,0.25,0.5,0.75,1.0

covChangePoint cumulativeBinnedReal 10 Depth of coverage
change point scores

10.0,20.0,30.0

covDrop20 cumulativeBinnedReal 11 Coverage drop 5.0,10.0,20.0
simpleRepeat boolean 13 Simple Repeat

repeat boolean 14 Repeat
segdup boolean 15 Segmental Duplication

Table 7.1: Feature definition for the CRF training and test data. Each line indicates the
feature’s name and type, as well as the type of binning scheme (simple or cumulative), and
the cut points to use when binning.

a cumulative binning scheme. Again, the user specifies cut points which divide the range

of the variable into i bins. In this case, however, binary features are set to true for bin

whose end point is greater than or equal to the actual value of the variable. To specify

all feature definitions and their types, the user defines each feature variable, its location

in the training and test data files, the binning scheme, and the cutoff points for binning.

Table 7.1 shows the feature definitions used for the results reported later in this chapter.

This scheme allows for rapid testing of different feature combinations and binning schemes,

depending on what data is available.

7.5.6 A feature example

Figure 7.3 shows an example deletion from the NA18507 gold standard data set, along with

tracks showing each of the features described above, as well as the original Cloudbreak call

identifying the deletion and a call made by running inference on the trained CRF model.

One can observe an elevated likelihood ratio in the first track covering the deletion. At or

near the breakpoints of the deletion there are higher scores for the insert size change point,

soft clip count, and singleton alignment features. The deletion span is also associated with

lower coverage values.
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7.5.7 Interaction and neighbor features

Several of these features may be most informative when considered in conjunction with

other features. For example, low coverage depth may mean something different when it

occurs in a repetitive element, since that region of the genome might be harder to align

reads to. Similarly, the features of neighboring windows could also inform the choice of

label; since the CRF makes no demands of independence between neighboring feature

functions, it is possible to include these neighboring features in the model. To that end,

in addition to adding the features defined above to each bin, we also add as separately

labeled features:

• Interaction terms for all of the features for the current window.

• The features of the windows immediately before and after the current window.

• The features of the windows within a certain radius of the current window (currently

7 neighboring bins).

Although this creates a large feature space, we hope that by training with regularization

the optimizer will be able to select the most important features and avoid overfitting.

7.6 Training the CRF

As noted in Chapter 6, there are limited complete SV annotations of real data sets available.

Therefore, we decided to train on simulated data. It should be noted that training on

simulated data only exposes the model to one form of noise: incorrect or incomplete

mappings. In real data sets, there are additional sources of noise in short read data sets,

including chimeric fragments; complex structural variations, and errors in the genome

reference. Therefore, any gains that can be made by training on simulated data and

testing on real data are less than the possible gains that could be achieved with a more

realistic training set.

To increase the number of training examples, we took the original simulation of Chro-

mosome 2 described in Chapter 6 and expanded it to a whole genome simulation. This
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Figure 7.3: An example deletion with features from the NA18507 data set. The true
deletion is shown in track 8. Features shown are in each track are: 1) Likelihood ratio of
distribution of insert sizes. 2) Insert size change points. 3) Number of soft clipping events
in each window. 4) Number of singleton mappings in each window. 5) Read coverage in
each window. 6) Coverage change points. 7) Coverage drops. 11) Simple repeats. 12)
Repeats. The original Cloudbreak call is shown in Track 13, and a call made by running
inference in the CRF model is shown in Track 14.

also has the effect of increasing the possibility for mapping ambiguity, adding noise to

the signal. The simulation includes all of the insertions and deletions annotated for J.

Craig Venter’s genome. Considering variants with a length over 40bp, there are 5,610

deletions and 6068 insertions. We simulated 30X coverage 100bp paired-end reads with an

insert size of 300bp and aligned them to the reference genome using BWA, as described in

Section 6.1.2.

We created a set of labels based on a bitmask representation of the following four

states that a window could be in with respect to deletions and insertions: “Deletion”,
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Figure 7.4: An example of the labeling scheme used for CRF model training and testing.
Labels are a bitmask composed of variant and flanking information. First bit: Deletion.
Second bit: Deletion Flank. Third bit: Insertion. Fourth bit: Insertion Flank.

“Deletion Flank”, “Insertion”, and “Insertion Flank”. We decided to include separate labels

for flanking regions because several of the features we selected would be most likely to occur

in the immediate flanks of deletion or insertion variants, such as singleton mappings, or the

change point detection features. The use of a bitmasked label also means that we capture

the windows that actually contain the breakpoints for each deletion or insertion under a

separate label, since those windows contain both flanking sequence and variant sequence.

See Figure 7.4 for an example of how labels are assigned to windows. This labeling scheme

translates to a set of six commonly used labels: “Outside Variant”, “Insertion Flank”,

“Insertion Breakpoint”, “Deletion Flank”, “Deletion Breakpoint”, and “Inside Deletion”. In

our view, this set of labels represents the different categories of windows that are likely to

have informative features. However, it is possible that other labeling schemes might prove

to represent the feature space better; this would be a useful area for a more thorough

future study.

We also had to choose what portions of the data to train the model on, since it would be

infeasible to train on the entire reference genome, and would likely bias the model against

predicting any deletions because the vast majority of the reference does not participate

in a deletion variant. First, we took all of the simulated insertion and deletion variants,

and added regions of 250bp with the label “Deletion Flank” to either side. In addition,

we selected 10,774 Cloudbreak calls. Some of these overlapped with the true variants, but

the others added regions to the training set which had produced false positives. We then

expanded all of the 9,497 regions selected for training by first adding 400bp to either end,

and then adding the length of the resulting region to both sides. This ensured that all
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true variants and false positives were flanked by many windows that were properly labeled

“Outside Variant”.

To train our model, we coded it in Factorie and used their implementation of the LGBFS

algorithm with L2 regularization. We also experimented with other optimizers including

the online AdaGrad regularized dual averaging algorithm [49] with L1 regularization but

did not see large differences in preliminary testing. A limited difference in results on

the test data combined with faster training times guided our choice of LGBFS; however,

exploring different optimization methods with different feature sets could still be a useful

area for research.

7.7 Improving Cloudbreak Calls with CRF Predictions

For our initial implementation, we adopted the approach of rapidly identifying candidate

regions using a fast tool (Cloudbreak in this instance), adding flanking regions to them, and

then running the CRF model on those candidate regions to try to label the true variants.

Of course, this bounds the recall of the CRF approach to the recall of the candidate regions

selected by the preliminary screen, but allows for a more tractable computation than trying

to label the entire genome.

For the test set, we used the same data set for individual NA18507 described in Sec-

tion 6.3, with 37X coverage by high-quality 100bp paired end reads with an insert size of

300bp. To choose regions to test on, we used Cloudbreak predictions for the same data set,

at a low threshold to increase sensitivity. We then created test windows to run inference

on in the CRF model by again adding 200bp of flank to each side of each deletion prediction

interval, and then adding the length of the interval in each direction. To conduct inference

we use the Viterbi max-product belief propagation algorithm implemented in Factorie.

We then took all windows that the CRF model labeled deletions and merged contiguous

blocks of windows to form intervals. For each such interval, we assign a confidence score

as follows: first, for each window in the interval we calculate the sum of the likelihoods

assigned to labels which indicate a deletion (i.e. have the “Deletion” bit set to one). We

then compute the average of this window score across the entire deletion interval, giving
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us an overall CRF confidence in the deletion interval as a whole.

Finally, we refined the initial set of Cloudbreak deletion calls using the CRF calls

according to the following rule: if a Cloudbreak deletion call and a CRF deletion call share

a reciprocal overlap of at least 60%, we consider that Cloudbreak call to be confirmed by

the CRF model. By reciprocal overlap, we mean that 60% of the length of the Cloudbreak

call overlaps the CRF call, and 60% of the CRF call overlaps the Cloudbreak call. For

confirmed calls, we take the boundaries of the CRF deletion interval to be the deletion

variant boundaries, and multiply the Cloudbreak deletion likelihood ratio by the CRF

confidence score to get an adjusted confidence score for the confirmed call.

7.8 Results

Figure 7.5 shows a ROC curve that compares the confirmed CRF calls with the other

methods including Cloudbreak. The sensitivity of the merged CRF predictions is lim-

ited compared to the other methods. However, the updated score, which combines the

Cloudbreak likelihood ratio with the CRF confidence, does provide a small improvement

in discriminative power, as the true positives occur at higher thresholds than when using

the unadjusted Cloudbreak score.

Although the CRF method provides only a limited benefit to discriminative power over

the raw Cloudbreak calls, it proves to be excellent at improving the breakpoint resolution

of the calls. Figure 7.6 shows the breakpoint resolution of each of the methods, as reported

previously in Chapter 6, with the addition of the set of Cloudbreak calls confirmed by the

CRF model. The confirmed calls have dramatically better resolution than the original

Cloudbreak call set. With CRF confirmation, Cloudbreak’s median difference between the

true deletion length and the predicted length, 17bp, is now similar to that of DELLY-RP,

which at 16bp is the best performing read-pair based method according to this metric

(methods that take advantage of split-read mappings, such as DELLY-SR and Pindel, of

course do better in this category). When one considers that Cloudbreak’s predictions and

the CRF features and labels are all based on the use of 25bp windows, it is clear that most

of the time the CRF predictions are accurately identifying the window which contains the



96

0 500 1000 1500 2000 2500 3000 3500

0
20

0
40

0
60

0
80

0
Deletions − NA18507

Novel Predictions

Tr
ue

 P
os

iti
ve

s

Cloudbreak
Breakdancer
Pindel
GASVPro
DELLY−RP
DELLY−SR
Cloudbreak−CRF

Figure 7.5: ROC curve showing the accuracy of Cloudbreak calls that have been verified
and refined with conditional random field predictions (Cloudbreak-CRF)

true breakpoint.

7.9 Features Selected by the CRF

It can often be informative to examine the features that are given high scores by a ma-

chine learning technique, as they can sometimes provide insights into non-obvious features

associated with certain labels. It should be noted, however, that a simple list of the

highest-scoring features does not necessarily give a complete picture of the features that

were important for learning performance. For example, if several features are correlated

or appear with each other only in certain types of interactions, individual features within

that correlated group may not be given high scores even though the group as a whole may

have been quite important in learning the training data. This problem is compounded by

the use of regularizers in training; in the case of L2 regularization, as used in these results,
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Figure 7.6: Breakpoint resolution of each tool’s correct deletion predictions on the NA18507
data set, including Cloudbreak calls which were verified and refined with CRF predictions
(Cloudbreak-CRF)

correlated features will all be reduced in weight similarly by the regularization term, po-

tentially leaving none of them with high weights even though the group of features was

highly significant in training.

Despite these caveats, we can still identify several interesting features with high scores

in the trained CRF model. Table 7.9 shows the top 25 features learned by the CRF for

the window labels that correspond to “Deletion Breakpoint” (the windows which contain

the endpoints of deleted regions) and “Insertion”. The CRF has learned a strong associ-

ation between the deletion breakpoint label and the presence of simple repeats, showing

how much correspondence there is between those features and the variants in the training

set. As we might expect given the large improvement that the model achieved in localiz-

ing breakpoint locations, soft clipping-related features are given high scores, particularly

when they occur in conjunction with coverage drops. The mu2 feature is used heavily for

both deletions and insertions. Further examination of the feature scores may allow for

improvements in feature engineering to create more parsimonious and effective models.
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Deletion Insertion
Feature Name Score Feature Name Score
simpleRepeat 0.6 softClip > 1.0 0.47
260 < mu2 < 340 and simpleRepeat 0.34 simpleRepeat 0.41
simpleRepeat neighbor 0.34 softClip > 3.0 0.39
rdepth < .1 and simpleRepeat 0.32 260 < mu2 < 340 and softClip > 1.0 0.38
260 < mu2 < 340 and simpleRepeat neighbor 0.29 softClip > 1.0 neighbor 0.31
softClip > 1.0 and covDrop20 > 5.0 0.23 softClip > 2.0 0.29
softClip > 3.0 and covDrop20 > 5.0 0.2 mu2 < 260 in region 0.26
mu2 < 260 and lr = 0 in region 0.19 260 < mu2 < 340 and softClip > 3.0 0.25
softClip > 1.0 0.18 rdepth < .1 and simpleRepeat 0.24
softClip > 3.0 and covDrop20 > 10.0 0.17 rdepth > 1 and simpleRepeat neighbor 0.23
softClip > 2.0 and covDrop20 > 5.0 0.17 softClip > 2.0 neighbor 0.22
mu2 > 340 and simpleRepeat 0.17 softClip > 1.0 in region 0.22
covDrop20 > 5.0 in region 0.17 mu2 < 260 and simpleRepeat 0.21
changePoint > 5.0 in region 0.16 simpleRepeat and repeat 0.21
softClip > 2.0 and covDrop20 > 10.0 0.15 singletons > 1.0 and covDrop20 > 5.0 0.21
covChangePoint > 10.0 in region 0.15 softClip > 2.0 in region 0.2
softClip > 1.0 neighbor 0.14 softClip > 3.0 neighbor 0.2
mu2 > 340 in region 0.14 260 < mu2 < 340 and softClip > 2.0 0.2
mu2 > 340 and lr > 0.75 0.14 rdepth > 1 and simpleRepeat 0.2
changePoint > 15.0 and rdepth < .5 in region 0.14 softClip > 1.0 and rdepth > 1 0.16
mu2 > 340 and softClip > 1.0 0.13 mu2 < 260 neighbor 0.16
softClip > 1.0 and covDrop20 > 10.0 0.13 lr > 0.75 and simpleRepeat 0.15
260 < mu2 < 340 and covDrop20 > 10.0 neighbor 0.13 260 < mu2 < 340 and lr = 0 in region 0.15
rdepth < .1 and covDrop20 > 5.0 neighbor 0.13 softClip > 1.0 and repeat 0.15
rdepth < .25 0.13 changePoint > 5.0 and softClip > 3.0 0.14

Table 7.2: Most important features learned by the CRF model for deletion and insertion
breakpoints. “Neighbor”: feature occurs in neighboring window. “In region”: feature occurs
within 300bp of current window. Feature names are the same as those in Table 7.1

7.10 Discussion

With the CRF model presented in this chapter, we have shown that the use of local

features is a useful abstraction that can enable innovative algorithmic approaches to the

SV detection problem. We redefined SV detection as a sequence labeling problem, and

created a framework for generating and managing local features across the genome that

can integrate read pair, split read, and read depth related features, as well as features

that incorporate prior knowledge such as genome annotations. Despite only training with

simulated data that likely does not incorporate all of the aspects of the SV detection

problem that make it difficult, we were able to generate useful predictions from our model.

Although the improvements in accuracy we achieved with the CRF model are marginal

at best, it did prove to be very effective in improving Cloudbreak’s breakpoint resolution,

which was one of the weak points of the initial implementation of Cloudbreak as described
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in the previous chapters. The fact that for the majority of correctly predicted variants the

CRF model was able to correctly identify the windows in which the breakpoint occurred

indicates that the resolution could potentially be further improved with reductions in

window size. In addition, those windows identified could be excellent targets for exhaustive

split read analysis or local assembly.

Opening the door to arbitrary features potentially allows the inclusion of a variety of

types of information useful for SV detection in a single unified framework. For example,

other other types of genomic annotations could be very useful for detecting where the

SV signals might be distorted due to sequence content. In this work we used binary

features indicating the presence of repeats and segmental duplications. There are more

fine-grained measures of repetitiveness and its effect on short read alignment, such as the

genome mappability score [100] that could help to distinguish difficult regions. In addition,

GC content in genomic sequence is known to have an effect on sequencing depth and copy

number estimation [19] and could be added as an additional feature to help correct for

these biases. Another type of feature that similarly represents prior knowledge about the

genome and could be incorporated into this framework is sets of predictions from different

SV detection tools. The SV detection methods that have achieved the greatest overall

accuracy for non-cancer domains are those that pool multiple samples from across the

same population, such as Genome STRiP [65]. The pooled signals are used to identify

candidate variant regions, which are then genotyped in each sample separately in a second

pass over the data. These candidate variant regions could also be used as features within

an integrated machine learning technique.

Finally, the characterization of the problem as a generic sequence labeling task over

arbitrary features could potentially enable the use of a variety of different statistical and

machine learning techniques for the SV detection problem in addition to the CRFs explored

in this chapter. For example, deep learning techniques such as sequential deep belief

networks [7] have recently been used very successfully in sequence processing tasks in

speech recognition and other domains. Since it is difficult to find fully annotated training

data for the SV detection problem, the fact that deep learning networks are amenable to

semi-supervised training with unlabeled data [192] makes them a very attractive area for
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future research.



Chapter 8

Analysis of Evolutionary Breakpoint

Features

This chapter describes a data analysis project unrelated to the algorithmic development of

Cloudbreak and its extensions, although it is related at the biological level because it deals

with genome breakpoints and rearrangements. In addition to being able to locate genomic

breakpoints, we also seek to understand the genomic contexts in which they are located

to gain insights into their origins. As we discussed in Chapter 2, the sequence features

of the genome that neighbor structural variations can leave clues about the mechanisms

that caused the rearrangements, as in the cases of large homologies that point to the

activity of non-allelic homologous recombination (NAHR) or the microhomologies that

indicate non-homologous end joining (NEHJ). In this chapter we examine a set of structural

variations that have reshaped a genome at the evolutionary timescale: the chromosomal

rearrangements of the gibbon genome. We analyze the locations in which the gibbon

genome has been rearranged relative to humans and the other apes, first using a limited

set of breakpoint data, and then using the entire gibbon genome reference sequence created

by the International Consortium for Sequencing and Annotation of the Gibbon Genome.

The associations we discover could help to provide insights into the mechanisms by which

the gibbon genome was rearranged. The main contributions of this chapter are 1) the

statistical analysis of the enrichment or depletion of certain genomic features in regions

of the gibbon genome that have participated in genomic breakpoints, 2) development of

an open-source software tool that can harness compute clusters to conduct permutation

analysis for statistical enrichment of features in the genome, and 3) a novel, cross-species

101
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analysis of the locations of binding sites of the transcription factor CTCF with respect to

genome breakpoints in the gibbon family.

8.1 Background

In Chapter 2, we described how SVs can occur in the genomes of many different populations,

ranging from rearrangements that occur in populations of cells within a tumor in a single

individual, to SVs that are polymorphic within the population of a species, to the structural

differences between the genomes of different species. This last type of rearrangement

represents SVs that occurred within a population and then became fixed in that species

and were preserved as it evolved and differentiated.

Rather than identifying them by comparing short-read sequencing data to a reference

genome, as has been the focus of the previous chapters, we can detect these evolutionary

breakpoints by directly comparing the genomes of species to one another. This can be

done experimentally, by large fragments of DNA from one species onto the chromosomes

of another; in Section 8.2 we will describe the analysis of data from one such experiment

that used a technique based on bacterial artificial chromosomes (BACs). With the advent

of whole genome sequences they can be found by conducting sequence alignments (or

multiple sequence alignments) of the the reference genomes for the species under study.

When species share regions that contain the same genes and other genomic features, in

the same order, it is referred to as shared synteny. By examining the endpoints of syntenic

blocks of the genomes of two species, or synteny breakpoints, it is possible to find the

breakpoints of the structural variations that rearranged the structure of the two genomes.

Identifying evolutionary breakpoints can give insights into the mechanisms of their

formation. It was long thought that chromosomal breakpoints are largely random, such

that they are equally likely to occur at any location in the genome. This theory is known

as the random breakage model [144, 134]. Higher-resolution analysis, however, revealed

that certain regions of the genome, or “hot-spots”, are much more likely to give rise to

evolutionary breakpoints [148], and this model, called the fragile breakage model, was re-

confirmed once whole-genome reference sequences for many species became available [132].
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Tantalizingly, Murphy et al. also showed that these reused evolutionary breakpoint regions

overlapped significantly with the breakpoints of SVs found in cancer genomes [132].

This raises the question of whether these regions of the genome have special proper-

ties that make them more likely to participate in evolutionary breakpoints. In Chapter 2,

we described the fact that certain mechanisms for SV formation, in particular NAHR,

are a result of having regions with high sequence similarity at different locations in the

genome, as the cell’s machinery attempts to repair double-stranded breaks in DNA by

joining homologous regions together. As one might expect if evolutionary breakpoints

were the result of NAHR, a large number of chromosomal rearrangements in mammals,

approaching 40%, are associated with segmental duplications [15, 16]. Closer examination

of breakpoints from a variety of species, including human, chimp, macaque, rat, mouse,

pig, cattle, dog, opossum, and chicken, confirmed that they contain more sequence that is

not unique relative to the rest of the genome than would be expected by chance, including

segmental duplications (SDs) and other low-copy number repeats [97]. However, analysis

of evolutionary sequence divergence in these repeats indicates that some of the duplica-

tions may have occurred after the rearrangements, casting doubt on the theory that an

NAHR-like process is primarily responsible [15], and indeed the precise mechanisms behind

evolutionary breakpoints remain unknown.

Gibbons represent a unique opportunity to study the process of evolutionary genomic

rearrangement because of their highly rearranged genomes. In most branches of the evolu-

tionary tree, large genomic rearrangements are rare events, occurring at a rate of approx-

imately two every ten million years [193]. However, some species appear to have faster or

slower rates of rearrangements. For example, the orang-utan genome has very few medium

and large scale rearrangements relative to the expected number given its time of evolu-

tionary divergence [114]. At the other end of the spectrum, gibbon genomes have 10 to 20

times more rearrangements than would be expected given the rate in other mammals, and

in fact the four genera of gibbons have numbers of chromosomes ranging from 28 to 52,

suggesting that gibbon genome has been shuffled rapidly since it diverged from the other

apes 17 to 18 million years ago [130].

Given their highly rearranged karyotypes, gibbons represent an excellent model in
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which to study mechanisms of chromosomal rearrangements. Until recently, however, the

whole genome sequence of the gibbon was not available. Therefore, several studies ana-

lyzed gibbon genome breakpoints using techniques involving BACs [62, 30, 29]. BACs are

medium sized (150-350kb) fragments of DNA from a sample that are isolated, turned into

plasmid bacterial chromosomes, and then amplified in a culture. By probing gibbon BACs

with arrays or testing their hybridization to human chromosomes using fluorescent in situ

hybridization (FISH) experiments, it is possible to isolate BACs which span human-gibbon

evolutionary breakpoints. This allows one to locate the breakpoint regions to within several

hundred kilobases, and the small size of the BACs relative to the entire genome makes them

much easier to sequence, allowing the analysis of sequence features near the breakpoints.

Initial studies examined selected BACs from the northern white-cheeked gibbon species

Nomascus leucogenys leucogenys (NLE) and found a high level of segmental duplications

and repetitive sequence at the breakpoints [30, 159]. Similar results were found in BACs

from the white-handed gibbon species Hylobates lar (HLA) [130]. A later study increased

the scope by examining 24 sequenced NLE BACs that spanned breakpoints, and analyzed

gibbon-specific insertions of repeats and segmental duplications at the breakpoints to pos-

tulate several possible rearrangement mechanisms [62]. More recently, Carbone et al. [29]

analyzed 57 NLE BACs and, in addition to segmental duplications, found enrichment for

Alu repetitive elements. The latter study also found differences in CpG methylation marks

on Alu elements near the breakpoints, suggesting that there may be an epigenetic process

involved in gibbon genomic rearrangements.

8.2 Evolutionary Breakpoints in the Gibbon Genome Identi-

fied by BACs

To determine whether or not the characteristics observed in the breakpoints identified

by BACs from NLE and HLA gibbons were generalizable to the entire gibbon family,

we conducted an expanded analysis of gibbon breakpoints based on the identification of

additional BACs covering breakpoints in the remaining two gibbon genera using samples

from the species Symphalangus syndactylus (SSY) and Hoolock leuconedys (HLE). Since
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each of the gibbon genera has a different karyotype, identifying breakpoints across all four

allows for greater insight into the mechanisms and timing of the evolution of the gibbon

family. I contributed to this research by analyzing the overlap between breakpoints from all

four gibbon genera with genomic features. This work was published in Capozzi et al. [28].

8.2.1 Methods

To determine whether there exists an enrichment or depletion for genomic features associ-

ated with gibbon chromosomal breakpoints we computed the significance of their overlap

using Monte Carlo permutation tests. The purpose of the permutation analysis is to dis-

cover the null distribution for the number of overlaps a set of intervals has with a particular

feature in the genome. In essence, the test asks: if my intervals were placed in random

locations on the genome, what is the probability of seeing the number of overlaps we ob-

served with that features in the actual data? In this case, the intervals whose locations we

permute are the gibbon breakpoint regions.

For this test, we identified the human regions that are syntenic to the locations of

the breakpoints in gibbons. We then permuted their start coordinates 10,000 times using

BEDTools version 2.16.2 [155], while maintaining the chromosomal assignment and length

of breakpoint regions. Genomic regions annotated as centromeres and telomeres in the

“Gaps” track of the hg19 build were excluded from possible random placements of the

regions. Locations of the features were held constant. We then compared the actual number

of features that overlapped a breakpoint region to the distribution of overlap counts among

the randomly permuted regions, and used the quantile of the real observed value in that

distribution as an estimate of the p-value of observing a value equal to or greater than the

real observation. For events that are rare, it is necessary to consider a large number of

permutations or Monte Carlo samples in order to accurately estimate the p-value [160]. In

order to facilitate conducting many permutations, we created a pipeline for distributing

the necessary computation across a compute cluster using the grid management system

HTCondor [181].

The analysis was performed on the human hg19 assembly. The features examined were

genes, human segmental duplications, and some repeat families (Alu, LINE, ERV, and
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SVA). We also investigated the associations between breakpoint regions and chromatin

structure by testing the overlap with open chromatin regions in human embryonic stem

cells reported by the ENCODE consortium [52].

8.2.2 Results

We found a significant enrichment for genes (Bonferroni adjusted P-value = 0.0287), human

segmental duplications (P = 0.0366), Alu (P < 0.0001), and SVA (P = 0.0008) Figure 8.1

displays the histograms of overlap counts in the random distributions for segmental dupli-

cations, Alu elements, and SVA elements. We did not find significant enrichment for LINE

and ERV repeats, nor for the ENCODE open chromatin regions. SVA elements are not

found in gibbons; therefore, their status as significantly enriched in the human syntenic

breakpoint regions is surprising. However, SVAs are known to correlate with Alu elements

due to their preference for G+C rich regions of the genome (Wang et al. 2005). It seems

likely that the association between human SVA locations and gibbon breakpoint regions is

therefore an indirect one, dependent on the presence of additional genomic features present

in both humans and gibbons.

Systematically shifting the location of breakpoint regions by increments of 10 kb up-

and downstream of their actual location, up to a maximum of 1 MB, shows that the

locations of the breakpoint regions gives the greatest or close to the greatest number of

overlaps with the four significantly overlapping features (genes, segmental duplications,

Alu, and SVA) in the local genomic neighborhood, also shown in Figure 8.1.

8.3 Analysis of Breakpoints from the Gibbon Genome Ref-

erence Sequence

While analysis using breakpoints identified with BAC clones has provided useful results,

the International Consortium for Sequencing and Annotation of the Gibbon Genome has

recently created a draft assembly of the whole gibbon genome for an NLE individual.

Comparison of the assembly sequence with the human reference genome has enabled the

identification of a complete set of synteny breakpoints between the human and gibbon



107

Figure 8.1: Enrichment of genomic features in regions of the human genome syntenic to
gibbon breakpoint regions identified using BACs. Permutation tests were used to assess the
overlap between the gibbon breakpoints and genomic features. (A) Segmental duplications;
(B) Alu elements; and (C) SVA elements. The black vertical line indicates the observed
value for the breakpoints identified in the study. In all three cases it is evident that the
genomic features have a higher overlap with the breakpoints than one could expect by
chance. Figure reproduced from Capozzi et al. [28].
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genomes at single nucleotide resolution. This allows for a much more comprehensive picture

of the sequence features surrounding gibbon breakpoints than was previously possible. As

a member of the project, I was responsible for the breakpoint analyses described below.

8.3.1 Overlap with Genomic Features: Repeats and Genes

To analyze the enrichment of genomic features in the regions flanking evolutionary break-

points, we used a similar permutation based approach. We compared the number of over-

laps between breakpoint flanks and each feature of interest in the assembled genome (the

observed overlap count) compared to a background distribution estimated by randomly

permuting the locations of breakpoint regions 100,000 times. The Nleu1.1 version of the

assembly was used for these analyses. To create breakpoint regions, for those breakpoints

for which we had single nucleotide resolution we added flanking regions to either side of the

breakpoint; for breakpoints that fell within a gibbon-specific repeat element, we chose the

flanking regions of the repeat. In each permutation, the location of each breakpoint region

was randomly changed, while keeping its length and scaffold assignment the same. We then

counted the number of overlaps between the randomized breakpoint regions and the fea-

ture of interest (the permuted overlap count). Enrichment p-values were computed as the

proportion of permuted overlap counts that were more extreme than the observed overlap

count. We also visualized the spatial relationship of breakpoint regions to each type of fea-

ture by simultaneously shifting the locations of the breakpoint regions up to 1MB in each

direction, in increments of 25kb, and counting the proportion of shifted breakpoint regions

that overlapped a feature of interest, after discarding regions that were shifted beyond

the beginning or end of a scaffold. Permutation testing and shift testing were carried out

using custom Python scripts and the BEDtools [155], pybedtools[43], and BEDOPS [136]

libraries. For this project we enhanced our testing pipeline, adding command-line options

to support the distribution of permutations across Condor clusters, and made the code pub-

licly available at https://github.com/cwhelan/permuting-feature-enrichment-test.

We tested for enrichment in the breakpoint regions of genes, segmental duplications,

and several classes of repetitive elements: Alu, L1, LAVA, and LTR. In addition to testing

the entire Alu family, we also tested the subfamilies AluS, AluJ, and AluY individually.
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Segmental Duplications Alu Elements Genes

Figure 8.2: Enrichment or depletion of gibbon genome breakpoints for several features. The
number of overlaps between the 1kb regions flanking gibbon-human synteny breakpoints
and segmental duplications, Alu elements, and genes in the gibbon genome is shown by
the arrow labeled “breakpoints”. Histograms represent the random distribution for these
overlap counts obtained by permuting the locations of the breakpoints 100,000 times.

Gene locations were taken from Ensembl build 70. For the segmental duplication analysis,

we used the segmental duplications identified by our collaborators in the Eichler labo-

ratory using the WSSD method [17]. Alu, L1, and LTR locations were identified using

RepeatMasker output. In order to determine the distance from the breakpoints at which

enrichments are strongest, we varied the size of the breakpoint flanking regions by adding

differently sized intervals; we tested flanking regions of size 100bp, 250bp, 500bp, and

1000bp. We corrected for multiple testing using the FDR under dependency method of

Bejamini and Yekutieli [20].

Breakpoint regions are depleted for genes, but enriched for Alu elements and segmental

duplications (Figure 8.2, Table 8.1). The enrichment for Alu becomes particularly strong

at distances of 750bp or 1000bp from the breakpoint (Figure 8.3). The enrichment for Alu

is primarily due to a strong enrichment of the AluS subfamily.

We also conducted a shift analysis similar to the one we described in Section 8.2.

Breakpoint regions were simultaneously shifted in increments of 25kb, up to a maximum

of 1MB in each direction, and the proportion of breakpoint regions that overlap a feature of

interest is reported. In Figure 8.4, the shifts show that breakpoints are centered on regions

that are depleted in genes but close to regions that contain genes, while the opposite is true

for segmental duplications. Alu elements are more evenly spread across the shift regions.
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Feature Breakpoints that Overlap Quantile Adjusted -1 * log(P-value)
Alu 109 1.0000 8.8696
AluJ 35 0.9952 3.2191
AluS 81 1.0000 8.8696
AluY 26 0.9918 2.7599
CTCF Peak 12 0.9990 4.5930
Gene 22 0.0000 -8.8696
L1 70 0.9516 1.2222
LAVA 1 0.9755 1.7284
LTR 48 0.9697 1.6054
WSSD Segmental Duplication 35 1.0000 8.8696

Table 8.1: Enrichment counts and scores of features in breakpoint flanking regions. For
each feature type, we display the number of 1kb regions flanking breakpoints that overlap
with a feature of that type, the quantile of that count in the empirical distribution ob-
tained by permuting breakpoint flank locations 100,000 times, and the negative log FDR
of that quantile treated as a p-value. Negative values indicate a depletion rather than an
enrichment. Prior to FDR correction quantiles of zero were adjusted to p-values of 0.00001.

In conjunction with our collaborator Larry Wilhelm, in addition to testing the count

of overlaps between breakpoint flanking regions and repeats, we also conducted a com-

plementary test that examined the distance of each breakpoint to the nearest repeat of

a given class. For this test we used only the 44 breakpoints for which we had single nu-

cleotide breakpoint resolution, with no Gibbon-specific repeats directly intersecting the

breakpoint. We compared these breakpoint locations to 10,000 randomly selected regions

in the nomLeu2 genome. For each random location, we determined the distance to the

nearest repeat. We compared the distribution of distances to a repeat from the breakpoints

to the distribution of distances to a repeat from the randomly selected positions using a

Kolmogorov-Smirnov test. We examined the distance to any repeat, as well as those for

Alu, LINE, and LTR elements, and finally the AluJ, AluS, and AluY subfamilies. After

FDR correction for multiple hypothesis testing, the distance test showed similar results

to the overlap test described above, with significant results for the Alu family as a whole,

and for the AluJ and AluS subfamilies, indicating that the breakpoints tend to be closer

to those repeats than random locations in the genome.
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Figure 8.3: Enrichment or depletion of regions of the gibbon genome for various features, as
a function of distance from the breakpoint. Positive y values are the negative log q-values
of enrichment for each feature in the regions flanking the breakpoint of the size indicated on
the x-axis. Negative y-values represent the q-values of depletion. Q values were calculated
using the FDR correction under dependency procedure. The dotted line indicates an FDR
threshold of 0.05. Breakpoints are enriched for Alu elements, and particularly the AluS
subfamily, especially at distances of 750bp and 1000bp from the breakpoints. Breakpoints
are also enriched for segmental duplications, depleted for genes, and enriched for CTCF
binding sites (see Section 8.3.2.)

8.3.2 Overlap with CTCF Binding Sites

Using the gibbon genome reference, we conducted another set of analyses to determine

the relationship of gibbon genome breakpoints with binding sites of the evolutionarily

conserved binding factor CTCF. CTCF is a transcription factor with many functions,
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Figure 8.4: The proportion of breakpoint flanking intervals (defined as the 1000bp intervals
flanking exact breakpoint locations or gibbon-specific repeats located at the breakpoints)
which overlap with a feature of interest, when the flanking intervals are shifted left or right
from their actual locations. Breakpoints are located in locations enriched in Alu (especially
AluS ) and segmental duplications relative to their genomic neighborhoods, but which are
depleted for genes relative to their genomic neighborhoods.
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including the ability to separate regulatory domains in the genome from one another [149].

CTCF has also recently been shown to be associated with the three-dimensional structure

of DNA and chromatin in the cell [48], and therefore may have important associations

with genomic DNA breakpoints and structural variations. We examined CTCF in the

gibbon through the analysis of chromatin immunoprecipitation followed by sequencing

(ChIP-seq) data [147]. Briefly, in ChIP-seq DNA from a sample is cross-linked in vivo and

then fragmented, so that proteins (in particular transcription factors) remain bound to the

fragments of DNA that contain their binding sites. After selecting only those fragments

with a bound protein of interest using immunoprecipitation, the DNA is then sequenced.

Mapping the reads back to the genome reference sequence creates “peaks” of coverage along

the genome that indicate the location of transcription factor binding sites. In this analysis

we identified a set of CTCF binding sites using gibbon ChIP-seq data, and conducted a

comparative analysis using CTCF peaks from other primate species to separate CTCF

peaks shared with a common ancestor from those that are unique to gibbons.

ChIP-seq for CTCF

CTCF ChIP-seq assays were performed in the Carbone laboratory by Elizabeth Terhune

and Michelle Ward (visiting from the laboratory of Duncan Odom), according to the proto-

cols described in Schmidt et al. [166] on eight EBV-transformed gibbon lymphoblastoid cell

lines. In brief, CTCF-bound DNA was immunoprecipitated using an Anti-CTCF rabbit

polyclonal antibody (07-729, Millipore). End-repair was performed on immunoprecipi-

tated and input DNA prior to A-tailing and ligation to single-end Illumina sequencing

adapters. DNA was amplified using Illumina primers 1.1 and 2.1 in an 18-cycle PCR re-

action. Gel electrophoresis was used to select 200-300 bp DNA fragments. DNA libraries

were sequenced using 36 bp reads on an Illumina Genome Analyser II according to the

manufacturer’s instructions.

Peak Calling from CTCF ChIP-seq Data

We aligned reads to the nomLeu2 reference using BWA (version 0.62) [106] with de-

fault parameters, and removed non-uniquely mapping reads. We then called peaks using
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CCAT [196], with parameters fragmentSize 100, slidingWindowSize 150, movingStep 10,

isStrandSensitiveMode 1, minCount 10, minScore 4.0, and bootstrapPass 50. We then

combined the peaks called across the different individuals and chose the following set for

further analysis: any peak called in an individual individual by CCAT with an FDR of less

than 0.05, as well as any peak that was called in more than one individual with an FDR

of less than 0.1.

Determination of Gibbon-specific and Shared CTCF Binding Sites

We classified Gibbon peaks as shared or gibbon-specific by comparing them to a set of

CTCF peaks called on human, macaque, and orangutan individuals [168]. This work was

carried out in conjunction with our collaborators Javier Herrero of the European Bioinfor-

matics Institute and Larry Wilhelm. First, orthologous locations of gibbon CTCF peaks

in other primate species were determined using a local installation of the EnsemblCom-

para multi-species alignment database [53, 186]. This database contains alignments of

the references for human (GRCh37), chimp (CHIMP2.1.4), gorilla (gorGor3.1), orangutan

(PPYG2), rhesus macaque (MMUL_1), and gibbon (Nleu1.1). Gibbon CTCF peaks for

which no multi-species alignment were present, or where the nucleotide alignment identity

to human and macaque was less than 70%, were excluded from analysis. We then created

a non-redundant list of non-gibbon CTCF peaks by converting the human, orangutan and

macaque peaks to gibbon coordinates using the Compara database and removing redun-

dant entries. Shared and gibbon-specific CTCF peaks were then identified as those gibbon

CTCF peaks that did or did not intersect a peak in the non-redundant list of non-gibbon

CTCF peaks.

Analysis of Enrichment for CTCF Binding Sites in Gibbon Genome Break-

points

We identified 52,685 gibbon CTCF binding sites from the eight individuals. We found that

12 of the 1kb regions flanking breakpoints overlap with CTCF binding sites (see Figure 8.5

for an example). Using the same permutation analysis described above, this overlap has

an enrichment p-value of 0.0009. This effect was even stronger when we expanded the
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breakpoint flanking regions to 25kb, as 95 expanded flanking regions overlap CTCF peaks

for an enrichment p-value <0.0001.

We then tested whether the CTCF peaks causing the enrichment in breakpoint regions

are specific to gibbons. Using the CTCF ChIP-seq data from other species described

above, we classified CTCF binding sites as unique to gibbons (11,449 sites) or shared

with a primate ancestor (41,236 sites). We found that the gibbon breakpoint regions are

heavily enriched for CTCF binding sites shared with a primate ancestor (enrichment p-

value = 0.0006) but are not significantly enriched for gibbon-specific CTCF binding sites.

Again, the enrichment is stronger in the 25kb expanded breakpoint regions (enrichment

p-value <0.0001) for shared binding sites, but not for gibbon-specific binding sites. This

suggests that the formation or selection of gibbon genome rearrangements was associated

with ancestral CTCF binding sites.

8.4 Discussion

In our work examining breakpoints that included data from HLE and SSY gibbons, we

extended previous analyses that had only considered data from NLE. This confirmed that

the associations between breakpoints and segmental duplications, genes, and repetitive

elements of the Alu family previously observed in NLE extended to breakpoints in other

genera of the gibbon family. Extending this analysis to the other genera should assist

the study of gibbon chromosome evolution, especially when used in conjunction with the

release of the gibbon genome reference, which is based on data from an NLE individual.

In Capozzi et al.[28], we were surprised to find an association between breakpoints and

genes, given that most genome breaks will have deleterious effects if they occur in coding

or regulatory sequence. However, we noted that those results were based on analyzing

the features of the human genome reference that are orthologous to the gibbon breakpoint

regions, and that the result might change when the full gibbon genome sequence was

available to be tested. Indeed, that proved to be the case, as the depletion for genes in the

breakpoints from the gibbon reference data shows.

Our discovery that gibbon genome breakpoints are enriched for CTCF binding sites
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indicates that there is a connection between regions with similar regulatory environments

and the genome rearrangements preserved in the gibbon family, and the fact that break-

points are only enriched for CTCF binding sites shared with gibbon’s common ancestors

suggests that the heavy rearrangement of the gibbon genome may have had to respect

existing regulatory domains; breakages in other locations may have been too deleterious

to survival to be preserved through evolution. In addition, the interaction between ge-

nomic structural variation and the three-dimensional structure of DNA in the cell is just

beginning to be explored [48], but it is interesting to hypothesize that locations where the

three-dimensional conformation of chromatin in the cell change, as represented by CTCF

binding sites, might be vulnerable to genomic breakage under certain circumstances that

may have been present in the gibbon’s evolutionary past.



Chapter 9

Future Work

In this dissertation we have demonstrated that distributed computing, in the form of

Hadoop and MapReduce, can be applied to the SV detection problem, enabling highly

accurate algorithms with very fast runtimes. In addition, we showed that the use of

discriminative sequence labeling techniques, in the form of conditional random fields, can

be used to integrate many different signals of SVs and by doing so can improve Cloudbreak’s

results. We hope that the work presented in this dissertation is not only useful in itself but

is extensible enough to contribute to additional innovations in the detection of structural

variations.

9.1 Cloudbreak

There are many possible extensions that could be made to enhance Cloudbreak’s effective-

ness as a general SV analysis tool for high-throughput sequencing data. These include:

• Support the detection of additional SV types such as longer deletions, inversions, and

translocations. These would be useful and necessary additions to a complete variant

detection pipeline. We hope that the abstract formulation of our MapReduce frame-

work in Chapter 4 will create a base from which to extend Cloudbreak’s capabilities

and implement many additional SV detection algorithms in the future. For exam-

ple, detection of small to medium-sized inversions could be realized by adding the

orientation of mapped read pairs as an additional component of the mixtures used

in Cloudbreak’s feature generation function. One difficulty in this effort will be the

relative lack of validated SVs that are not deletions and inversion to develop and test
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against, but as large scale projects such as the 1000 Genomes continue to generate

data this concern should be mitigated.

• Extend Cloudbreak’s GMM-based feature generation function to relax the assumption

of a diploid genome sample. Currently Cloudbreak forces a GMM with two compo-

nents. This assumption would not apply for some sequencing projects, especially in

cancer-related research. In a heterogeneous tumor sample, for example, there may

be multiple tumor sub-clones, as well as normal DNA, in the sequenced sample, and

each set of input DNA might have different genotypes. With additional modeling

of these mixtures, it might be possible for Cloudbreak not only to detect different

variants in a sample but also to estimate their relative abundances, something that

would be useful for tracking tumor clone evolution.

• Add a local assembly step to increase breakpoint resolution and validate SV candi-

dates. Cloudbreak’s breakpoint resolution is lower than that of many other RP

algorithms. Although we improved that result in Chapter 7, we could not obtain

single nucleotide resolution, because our features were defined in terms of fixed-

size genomic windows. As we mentioned in Chapter 3, one approach to improving

breakpoint resolution, and providing additional validation of predicted results, is to

attempt to conduct a de novo assembly of the reads that mapped near the break-

points as well as their paired sequences. If effectively implemented, this would be a

very useful addition to any SV detection algorithm. Theoretically, each breakpoint

could be assembled simultaneously in reduce tasks in an additional MapReduce job.

This would greatly increase the confidence and utility of Cloudbreak’s predictions.

• Support the simultaneous analysis of multiple samples and libraries. Approaches such

as Genome STRiP [65] have demonstrated that they can achieve higher accuracy than

single-sample SV detection algorithms by simultaneously considering many samples

at once. Even if a variant is only supported by a very low number of reads in

each individual sample, by pooling data from multiple samples the presence of a

variant can become clear. Additional modeling in Cloudbreak of multiple samples,

each with its own insert size distribution, might provide a similar increase in power.
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Alternatively, data could be pooled in Cloudbreak and the resulting predictions could

be used as features in our discriminative machine learning models.

• Adopt emerging standardized Hadoop libraries and file formats. As more effort is

put into developing Hadoop-based sequencing analysis applications, it will become

increasingly important that these applications use consistent APIs and data formats

so that they can be composed into large pipelines. Once they contain the requisite

features, refactoring Cloudbreak to use libraries such as Hadoop-BAM [138] would

be a step in that direction.

9.2 SV Detection with Discriminative Machine Learning

We believe that the application of CRFs to SV detection we described in Chapter 7 is very

promising and could be extended in many directions:

• Construction of improved training data sets. The most obvious limiting factor for

this project was the training and test data used. Training on simulated data ignores

many potential sources of noise as well as possible signals that could be used to detect

SVs. Training on real data sets, such as those that are being generated for the 1000

Genomes project, would allow much greater potential for learning.

• Using additional or different sets of labels. In some sequence labeling tasks, it can

improve performance to model the start and end of variants with separate labels,

or to use different types of labels for flanking sequence. It would be useful to test

different labeling schemes to determine the optimal one for this task. In addition,

the authors of forestSV [126] demonstrated some utility in directly labeling regions

known to cause false positives for other algorithms in training their classifier; this

might be useful in our model as well.

• Add additional features to the model. There are many other possible features that

could be added to our model. One example would be possible SNVs near the break-

point locations, indicated by mismatches between the reads and the reference. There

are also many other possible genome annotations or sources of prior knowledge that
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could be used as features, including the locations of previously identified variants in

other samples.

• Learning for additional variant types. As mentioned above, it would be useful to

train our model to detect additional variant types by expanding the label set and set

of features used

• Alternative learning methods. Recently, many advances have been made in machine

learning for sequencing labeling tasks through the use of deep learning using artificial

neural networks. With additional data to train on, it may be possible to apply these

techniques to the SV detection problem.

9.3 Gibbon Genome Breakpoint Analysis

The identification of enrichment of genomic features at the location of gibbon-human

synteny breakpoints can be used as background for further research into the evolutionary

history of gibbons, with an ultimate goal of understanding the processes that caused them:

• Analysis of epigenetic marks associated with breakpoints. The Carbone lab has been

investigating epigenetic signatures near genomic breakpoints, and has found distinct

patterns of DNA methylation in breakpoint-associated transposable elements [99].

DNA methylation may have a role in the formation or conservation of rearranged

genomes. Further analysis may reveal new mechanisms of gibbon genome rearrange-

ment.

• Exploration of association of large DNA structures and domains with breakpoints.

The association of CTCF binding sites with gibbon breakpoints suggests a possi-

ble relationship between rearrangement sites and the three dimensional structure

of DNA. Alternatively, CTCF’s role as separator of regulatory domains may have

rendered genome rearrangements that did not respect those boundaries unviable,

causing only those present in today’s gibbons to be preserved. Additional analysis

of other types of data may allow us to gain insight into these questions.
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