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WordsEye is a text-to-scene conversion system that receives a text description of a picture

from the user via its online interface and converts it into a 3D scene. The core of WordsEye

is VigNet, a unified knowledge base and representational system for expressing lexical and

real-world knowledge needed to depict scenes from text. In particular, VigNet contains the

knowledge needed to map the objects and locations specified in a text into the actual 3D

objects. Individual objects typically correspond to single 3D models, but locations (e.g.

a living room) are typically a group of objects. Prototypical mappings from locations to

objects and their relations are called location vignettes.

This thesis explores our proposed methodology of using Amazon Mechanical Turk

(AMT) to populate some portions of VigNet. In the first part, we use AMT to fill out

contextual information about VigNet objects, including information about their typical

locations and nearby objects, and we filter out Turkers’ inputs by WordNet similarity and

x



corpus association measures. Manual evaluation of the Turkers’ results show that this is

a promising approach.

In the second part, we discuss three strategies for using AMT to collect semantic infor-

mation for location vignettes. In the first strategy, Turkers describe pictures of different

rooms and we then use the WordsEye NLP module to extract the objects in the rooms

from their descriptions. In the second strategy, Turkers list the objects that are func-

tionally important for a particular room (such as a sink for a kitchen), and in the third

strategy, Turkers name the objects that are visually important, including large objects

and furniture. For evaluation, we manually built a set of location vignettes and compare

the result of each strategy against that. Our experiments achieved up to 90.62% precision

and 87.88% recall.
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Chapter 1

Introduction

People use language naturally to express their ideas, but sometimes visualizing those ideas

into graphics might be a better way to communicate. It is still difficult for many people

to produce such graphics, since it is a time-consuming process and requires artistic skills.

Moreover, if someone wants to use computer software to generate these graphics, a big

challenge will be getting familiar with the software. Text to graphics conversion systems,

which receive natural language text input from the user and convert it into the corre-

sponding images or animations, simplify the process of visualizing mental imaginations.

These systems do not rely on user’s artistic skills or specific graphics software.

Text to graphics conversion systems also have applications in education and computer

games. They are great tools for learning new languages. They can help language learners

to visualize hence better memorize new words and sentences [11]. They are also helpful

in learning grammar and in creative story-telling. In computer games, players can use

these systems to interactively construct and modify game environments using natural lan-

guage input. (See section 2.1 for a review of some well-known text to graphics conversion

systems.)

1.1 WordsEye

WordsEye1 [11, 12] is a text to scene conversion system that receives a text description of

a picture from the user via its online interface and converts it into a 3D image. To depict

a picture from text, the NLP module of WordsEye first parses each input sentence into

1www.wordseye.com

1
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!

Infinite Time by Richard Sproat 

The clock is one foot in front of the silver 
wall. The ground has a grass texture. The 
texture is one foot wide. A silver wall is two 
feet in front of the clock. A light is fifty feet 
above the clock. 
 

The one that got away... by Bob Coyne 

The skiff is on the ocean. The grassy 
mountain is 20 feet behind the boat. The dog 
is in the boat. The fishing pole is two feet in 
front of the dog. The bottom of the palm tree 
is below the bottom of the mountain. It is 20 
feet behind the boat. 

 

!

Figure 1.1: Two pictures generated by WordsEye based on their descriptions.

a dependency structure and processes them to resolve anaphora and other coreferences.

The system then uses lexical valence patterns and other information in the VigNet for

converting the extracted lexical items and dependency links to semantic nodes and roles.

In the next step, the system converts the semantic relations to a set of graphical constraints

which represent the position, orientation, size, color, texture, and poses of objects in the

scene and finally, it generates the corresponding scene from these constraints and renders

that in OpenGL2 graphic library.[11]. Figure 1.1 shows two pictures created by WordsEye

based on their descriptions.

1.2 VigNet

VigNet is the core of the WordsEye system. It is a lexical resource that contains semantic

and visual information about the objects, locations and actions that are required for

2http://www.opengl.org
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depicting a scene from the input text. For example, if there is a bedroom in the input text,

to depict that VigNet should contain the knowledge about the typical objects in bedroom

and their arrangements.

The information in VigNet is represented by a set of objects, and semantic relations

between those objects. VigNet contains approximately 18,000 objects such as flashlight,

cabinet, car, wheel, spoon, and counter and approximately 4,500 semantic and graphical

relations between those objects. Examples of the relations are: next-to relation (between

sailboat and dock), part-of relation (between wheel and car), and on-surface relation (be-

tween spoon and counter).

1.3 Location vignettes

To convert a text description into the corresponding 3D image, it is necessary to convert

objects and locations of the text into the actual 3D objects. This is relatively straight-

forward for individual objects such as flashlight, sailboat, and spoon since each of these

individual objects has a direct mapping to its corresponding 3D object in our library and

we can simply use that mapping.

Text descriptions of pictures may also contain words for locations (such as living room)

which are usually composed of several individual objects. We might expect a living room

to contain a sofa, a coffee table, and a fireplace. In addition, these objects have a typical

spatial arrangement. Perhaps, the fireplace is embedded in a wall and the coffee table is

in front of the sofa, in the middle of the room. Therefore VigNet should contain the

knowledge of the typical objects in each location and the arrangements of those objects.

This knowledge is represented in VigNet in the form location vignettes. Prototypical

mappings from locations to objects and their relations are called location vignettes [36,

35]. Figure 1.2 shows an example of a location vignette for a bedroom. This vignette

includes a list of the main objects in that pictured bedroom (bed, dresser-1, dresser-2,

nightstand-1, nightstand-2, and rug), and the spatial relations between those objects (such

as [nightstand-1] left-side-of [bed]). Any given location term can have multiple associated
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!

Objects: bed, dresser-1, dresser-2,  
  nightstand-1, nightstand-2 

 

Arrangements: 
[bed] against [far wall] 
[bed] right-side-of [nightstand-1] 
[nightstand-1] against [far wall] 
[nightstand-1] left-side-of [bed] 
[nightstand-2] against [far wall] 
[nightstand-2] right-side-of [bed] 
[dresser-1] against [left wall] 
[dresser-1] left-side-of [dresser-2] 
[dresser-2] against [left-far-corner] 
[dresser-2] facing [middle-of room] 

Figure 1.2: A bedroom vignette with main objects and their arrangements

vignettes. For example, we can have multiple location vignettes for a bedroom, each with

a somewhat different set of objects and arrangements.

1.4 Collecting semantic information for locations

In order to build up location vignettes we need to collect information about the typical

objects in different locations and their typical arrangements. We also want to collect some

contextual information about VigNet objects, such as information about their typical

locations and nearby objects. As we will discuss in detail in section 2.2 existing lexical and

knowledge resources do not systematically contain such semantic information for locations

so we need to build our own lexical resource. One of the well-known approaches to build

lexical resources is automatic extraction of lexical relations from large text corpora. As we

will see in section 2.3 previous work focused specifically on extracting semantic information

for locations, and as Sproat shows in his 2001 work [41] the extracted data from corpora

is sometimes noisy and requires hand editing.

In this thesis we propose a new methodology for collecting semantic information for

locations by using Amazon Mechanical Turk (AMT). After reviewing the related work in

chapter 2, in chapter 3 we discuss about our previous work in using AMT for collecting
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typical locations and nearby things of objects and then using WordNet similarity and

corpus association measures to filter out Turkers’ inputs [33, 34]. In chapter 4 we will talk

more specifically about the different strategies that we use AMT for collecting semantic

information for location vignettes as discussed in two other work [36, 35]. Finally in

chapter 5 we discuss the conclusions and the future work.



Chapter 2

Related Work

2.1 Text to graphics conversion systems

There have been numerous other systems for converting text into graphics including [45,

7, 22, 4, 10, 39, 15, 26, 46, 21, 38]. In this report we briefly describe and compare eight

well-known systems based on the type of input and output of the systems and their domain

and coverage.

To our knowledge the SHRDLU program [45], developed in MIT in 1972, is the earliest

system for producing simple graphics from text input. It is also one of the earliest systems

to understand and evaluate natural language. The system allows the user to use simple

English dialogs to interact with a “robot” living in a closed virtual world. SHRDLU has

limited vocabulary and the number of objects and actions is restricted to a pre-existing

environment.

Ani [22] is perhaps the earliest text to animation conversion system. It creates com-

puter animations from story descriptions. Ani receives descriptions of the personality and

appearance of the characters of a story and the interactions among the characters. Then

it generates an animation based on the inputs. Ani requires a formal language to describe

the characters and their properties and it cannot accept descriptions in natural language.

Ani has very incomplete bodies of knowledge and it can only visualize the “Cinderella”

story.

The Put system [10] is a language-based interactive system to change the spatial

arrangements of objects within a virtual image. The input of the system is a formal

expression in the form of “Put Object1, Relation, and Object2”. An example input can be

6
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“Put the box on the floor”. User can choose one of the relations of the system including

“in”, “on”, “at”, “above”, “below”, “left-of”, and “right-of”. The Put system is limited to

pre-existing objects and their arrangements and it only accepts limited number of language

expressions as input.

CarSim [15] is a domain-specific system that creates short animations of accident events

from written accident reports in French. The CarSim system understands the accident

condition by extracting relevant pieces of information from texts such as the type of road,

road objects (stop signs, traffic lights, pedestrian crossings and trees), number of vehicles

in accident, and sequence of movements of the vehicles. By converting such information

into a formal description, the system generates the corresponding 3D accidents scenes

showing the movements of the vehicles.

CONFUCIUS [26] is system that receives single natural language sentences and and

converts them to multi-modal animation of human characters’ actions. SceneMaker [21]

is an extension of CONFUCIUS which automatically interprets natural language film or

play scripts and generates multimodal, animated graphics from them.

Text-to-Video [38] is a system for generating a visual representation for a short text.

The system first parses an input text to generate appropriate and meaningful search terms

from that. Using these terms, the system collects some candidate images from online photo

collections and then the user selects the final images. After that, the system automatically

creates a storyboard or “photomatic” animation.

The main advantage of WordsEye over the other systems is its wide coverage in both

linguistic and graphical aspects. It is not limited to a specific domain, it accepts free

text input of scene description, and it is the first system that uses a large library of 3D

objects to depict variety of scenes. The current system contains 2,200 3D objects and

10,000 images and a lexicon of approximately 15,000 nouns. This speaks to the power and

flexibility of VigNet’s knowledge representation abilities.
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2.2 Location information in lexical resources

As we discussed in chapter 1 we need to include in VigNet, semantic and graphical knowl-

edge about the typical objects in locations and their arrangements, in addition to the

information about the typical locations and nearby objects of a given object. Lexical and

knowledge resources resources such as WordNet [16], FrameNet [5], Cyc [24], OpenMind

[40], and the annotations in the LabelMe [37] project are highly useful resources for seman-

tic, visual, or common sense knowledge but they do not systematically contain locational

relations that we are looking for. In this section we briefly discuss about these resources

and the information they contain about locations.

2.2.1 WordNet

WordNet 1 [16] is an online thesaurus of English developed in 1995 in Princeton. In

WordNet, English nouns, verbs, adjectives and adverbs are grouped into sets of synonyms

called synsets. Each synset expresses a distinct concept, consisting of a set of synonym

words (or sometimes a single word), a definition of the concept called gloss, and most of

the time an example of the usage of the concept in the form of a sentence. Synsets are

linked by means of conceptual, semantic and lexical relations and the resulting network

of the related concepts can be navigated with the browser. [30].

WordNet does not systematically contain locational information for a given object

or location. For instance, under the bedroom synset there is no information about what

objects are in a bedroom, or under the car synset, there is no information about the typical

locations that we can find a car such as street, garage, and parking lot. In a few cases

WordNet glosses, contains information about the elements or objects in a location. As an

example, the gloss of bathroom synset is “a room ... containing a bathtub or shower and

usually a washbasin and toilet”. It is possible to extract information about the elements of

bathroom by processing this gloss. However, the number of such entries with these kinds

of information is very small and they cannot be used in a principled way.

1http://wordnet.princeton.edu/
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2.2.2 FrameNet

FrameNet 2 [5] is an electronic lexical resource of English that groups the words together

into semantic frames. FrmaneNet contains 10,000 lexical entries and each of the entries

is associated with at least one of nearly 800 semantic frames. Each frame represents the

joint meaning of the lexical units in that frame. Each lexical unit is also associated with a

set of annotated sentences which map the syntactic constituents of the sentences to their

frame-based roles. [11]

FrameNet also does not contain detailed locational information. There is a Locale

frame (with different subframes Biological area, Locale by event, Locale by ownership,

Locale by use), that has a frame element constituent parts. This frame and its sub-

frames include relevant information to what we are looking for but there are only a few

sentences that have this frame element in their annotations. In cases that the individual

parts of locations are mentioned, the list of parts is not comprehensive and it does contains

no visual or spatial relation between the parts. Similar to WordNet, FrameNet in not very

informative about indoor locations such as rooms. Most rooms are only annotated using

the building part frame element of the Building subparts frame and there is no more

semantic or visual information about the elements of objects in the rooms.

2.2.3 Cyc

Cyc3 [24] is an artificial intelligence project, started in 1984 by Douglas Lenat and it, which

tries to put together a comprehensive ontology and knowledge base of everyday common

sense knowledge. The goal of the project is enabling artificial intelligence applications

to perform human-like reasoning. Cyc knowledge base contains over one million human-

defined assertions, rules or common sense ideas and parts of it are released as OpenCyc4

and ResearchCyc5 [18].

2http://framenet.icsi.berkeley.edu/
3http://www.cyc.com/
4http://www.opencyc.org/
5http://research.cyc.com/
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For this work, we have referred to some entries for location in OpenCyc such as the

bedroom entry. The entry itself contains no information about the objects inside a bedroom

but the bedroom furniture entry contains bed as the only furniture in a bedroom. As with

WordNet and FrameNet, OpenCyc contains only sparse information about the typical

objects in rooms. (It should be noted that for this work we did not refer to ResearchCyc

which is supposed to include more semantic knowledge. We may examine and utilize this

resource for future work.)

2.2.4 OpenMind

OpenMind Common Sense6 is a system for acquiring common sense knowledge from the

general public over the web. The system allows participants to fill in or build natural

language templates to express facts, descriptions, and stories. It uses word-sense disam-

biguation and some other methods for clarifying the collected knowledge and it allows

participants to validate knowledge and in turn each other. [40]

The OpenMind Indoor Common Sense7 is a sub-project of OpenMind and it aims to

collect common-sense knowledge about indoor objects for making indoor mobile robots

(that work in homes and offices or similar environments) more intelligent [23]. The knowl-

edge base contains information about the objects in an indoor environments, mostly in

the form of pre-defined template. As an example, it contains several objects of bedroom,

represented in templets such as “You generally find a * in a bedroom.” where * can be

“pillow”, “blanket”, “bed”, “fan”, “dresser”, “comforter”, “chest of drawers”, etc.

While such information is in principle useful for our purpose, they are still not precise

enough. Since vignettes are abstract representations of locational information, to build

them up we are looking for only the main objects in each location based on some visual or

functional criteria. This means that we have to filter out many objects of the OpenMind

Indoor Common Sense database which we do not assume to be the main objects. However,

all of these objects can be considered as potential objects in each location and this is a

useful information for us. We can also use this resource to extract an initial set of the

6http://www.openmind.org/
7http://openmind.hri-us.com/
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typical or potential locations of objects (similar to what we will discuss in chapter 3) but,

the extracted information still require manual filtration and annotation.

More importantly, as we discussed in chapter 1 we need the spatial constraints and

relations of objects in the locations and the configuration of spatial relations that define

a particular location vignette. Such spatial relations are not represented in OpenMind

knowledge base and its related resources.

2.2.5 LableMe

LabelMe8 is a project in MIT to construct a large collection of images with annotated 2D

polygonal regions to be used for object detection and recognition tasks. The team have

collected a large data set containing many object categories, and multiple instances of a

wide variety of images [37].

LabelMe contains well-defined 2D polygonal regions of the annotated pictures and

it is a good resource for object detection and recognition tasks. But the 2D polygonal

regions are not the exact type of information that we are looking for location vignettes.

Moreover, the object list for each location is not precise enough for our task (as with

OpenMind). In an annotated set of bedroom pictures in the LabelMe dataset we can find

objects such as lamp, bed, painting, curtain, bedstead, bin, capboard, tally, etc. These

objects are obviously good candidate for the object in a bedroom, but not all of those are

considered to be the main objects in a bedroom based on our criteria. As with OpenMind,

LabelMe annotations also do not include spatial relations between objects in locations.

2.3 Extracting semantic information from corpora

Considering the fact that we cannot find the exact lexical information that we are looking

for in the existing lexical and knowledge resources, we have to develop our own way to

collect location information and construct location vignettes. One of the widely used ap-

proaches for collecting semantic information and populating lexical resources is extracting

semantic information from large text corpora. There has been a large amount of work in

8http://labelme.csail.mit.edu/
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this filed (For a comprehensive review see [20]). In this section we briefly discuss some of

the well-known work.

2.3.1 General approaches

We first discuss the general approaches for extracting different kinds of semantic informa-

tion from corpora, starting with the work of Vanderwende [44] in 1994, which is a system

for automatically interpreting the semantic relations between noun compounds. This sys-

tem uses relation extraction rules acquired automatically by analyzing the definitions of

words in an online dictionary, assigning a weight to each rule, and then applies all of the

rules in parallel to determine and rank a set of possible semantic interpretations for each

noun compound.

Berland and Charniak [6] present a system for extracting parts of objects from wholes.

To find the word P that is possibly a part of the object O, they look for occurrences of

patterns like “P of O” or “O’s P” on large text corpora and then sort the possible parts

by their statistical association with the objects.

Girju [19] presents an automatic method for detection and extraction of causation re-

lation in English sentences. She reviews a set of patterns for expressing causation relation,

such as causative verbal constructions that contain verbs like cause, lead to, bring about,

and make. She presents an inductive learning approach for automatic extraction of these

patterns based on their occurrences in annotated text corpora.

In their 2006 paper, Nakov and Hearst [27] use paraphrases or rewritings of noun com-

pounds posed against an enormous text collection as a way to determine which predicates

best characterize the the semantic relations that hold within English noun compounds.

In their 2007 work [28] they built a system for determining the relations between two

nominals, that mines the Web for the sentences that contain the target nominals. The

system then extracts the verbs, prepositions, and conjunctions of the sentences and use

them as features of a classifier to compare those sentences with the sentences that contain

other nominals.

Girju and colleagues [20] describe a system for the automatic identification of a set

of seven semantic relations between English nominals based on support vector machines
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(SVMs). They used various lexical, syntactic, and semantic features extracted from dif-

ferent sources of knowledge, including lexical semantic resources and annotated corpora,

and built a binary SVM classifier for each of the relations based on the features.

Most of this work does not focus on extraction of locational or spatial relations per se

and if they do, they mostly focus on extracting geographical locations such as the names

of countries and cities. Even if they were more concentrated in extracting the locational

information of our interest, it was still difficult to distinguish and extract the exact kind of

locational information that we are looking for based on our criteria for location vignettes.

2.3.2 Approaches for extracting locational information

Among a few works that specifically focus on such relations, we can name [43, 42], which

use the vector-space model and a nearest-neighbor classifier for extracting locational re-

lations. Perhaps the most relevant work to our goal is by Sproat in 2001 [41] in which he

uses “likelihood ratios to extract from text corpora strong associations between particular

actions and locations or times when those actions occur”. This approach sounds promising

in some cases. For instance, it correctly assignees bathroom as a location to wash hands,

but the extracted data from corpora is sometimes noisy in some other cases. For exam-

ple, there were strong associations between the action eat cheese and laundry since the

corpora contain news articles about some criminals who were arrested while eating cheese

in a laundry.

In this project we are proposing a new methodology for collecting semantic information

for locations by using AMT. In the next chapter we review our approach of using AMT

to collect typical locations and nearby things of objects based on our work in [33, 34] and

then we will talk the different ways of using AMT for collecting information for location

vignettes as we reported in [36, 35].



Chapter 3

Using AMT for collecting the typical

locations and nearby objects

To populate VigNet we need to fill out some contextual information about several hundred

objects in WordsEye’s database, including information about their typical location and

typical objects nearby them. This chapter explores our proposed methodology to achieve

this goal. First we try to collect some semantic information by AMT. Then, we manually

filter and classify the collected data and finally, we compare the manual results with the

output of some automatic filtration techniques which use WordNet similarity and corpus

association measures on a distributed framework.

3.1 Data collection from Amazon Mechanical Turk

AMT is an online marketplace that provides a way to pay people small amounts of money

to perform tasks that are simple for humans but difficult for computers. Examples of

these Human Intelligence Tasks (HITs) range from labeling images to moderating blog

comments to providing feedback on the relevance of results for a search query [9]. The

highly accurate, cheap and efficient results of several NLP tasks have encouraged us to

explore using AMT. (For examples of successful AMT tasks in NLP see [9])

We designed two separate tasks to collect information about typical locations of our

objects and their typical nearby objects. For task 1, Turkers named up to 10 locations in

which they might typically find a given object and for task 2, Turkers named named up

to 10 common objects that they might typically find around or near a given object. We

collected 4517 unique responses for locations and 4668 responses for nearby object tasks.

14
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3.2 Pre-processing of the AMT inputs

In the next step we manually checked and corrected the spelling of the inputs for both

tasks, and lemmatized them by WordNet lemmatizer module of NLTK1 (Natural Language

Toolkit). In the location task, we compared the inputs against a list of legitimate locations

that we prepared before, filtering the inputs that were not present in that list such as book,

painting, poem, dream, movie, and UFO. We filtered 1522 of Turkers’ inputs and finally

we came up with 2925 locations for the 257 objects. For the task of nearby objects we did

not filter any input and we kept the 4668 nearby objects for 257 of our objects. The data

that we collected in this step was in raw format.

3.3 Manual annotation

In the manual annotation process, we (and a colleague2) first rejected the undesirable

inputs in both tasks. For instance, we rejected office as a potential location for a boat

or shadow as a potential nearby object of an arbor. Overall, we approved approximately

%71.86 of locations and %89.45 of nearby objects. As an example, we approved clinic,

doctor office, emergency room, fire station, firehouse, garage, highway, hospital, military

base, nursing home, police station, road, street, trauma center, and war zone for the

locations that an ambulance can be found and blanket, car wreck, defibrillator, fire engine,

oxygen mask, police, siren, stretcher, and vehicle as examples of potential nearby objects

of an ambulance.

3.4 Automatic filtering of undesirable data

Manual processing of the data is a time-consuming and expensive approach. As a result,

we are investigating different automatic techniques to filter out the undesirable responses

from AMT, using current manually annotated data as a gold standard for evaluation of

automatic approaches.

1http://www.nltk.org/
2Margit Bowler
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3.4.1 WordNet Similarity measures

In the first approach, we computed some lexical similarity scores for the target and the

response items based on the following WordNet (WN) similarity measures. For accessing

WN and computing the similarity measures we used the WordNet Interface of NLTK [3]

WN Path Distance Similarity: This score shows how similar two word senses are,

based on the shortest path that connects the senses in the is-a (hypernym/hypnoym) tax-

onomy [3]. We computed this score between each target word and each received response

for that target word.

Resnik Similarity: This score shows how similar the two word senses are, based on

the Information Content (IC) of the Least Common Subsumer of the two words [3, 31].

Again, We computed this score between each target word and each received response for

that target word.

The Average Pairwise Similarity Score: We computed this score based on both

WN path distance similarity and Resnik Similarity scores separately. If we assumeW1,W2...Wn

to be n responses for target word T ; and Sij to be the WN path distance (or Resnik)

similarity score between Wi and Wj , then the average pairwise similarity score for Wi will

be Si1+Si2+...+Sin
n . This will provide us the average similarity of each response (i.e Wi)

with the other responses (i.e. Wj so that i 6= j ). In this way we will reward the responses

that are more semantically related to each other regardless of their similarity to the target

word.

3.4.2 Corpus association measures

The next approach for filtering the raw data was finding the association measure of target-

response pairs using Google’s 1-Trillion 5-gram web corpus (LDC2006T13) [8], by counting

the frequency of each target and response word in unigram and bigram portions of the

corpus and then the number of times the two words co-occur within a +/- 4-word window

in the 5-gram portion of the corpus. Based on these counts, we used log-likelihood ratio

[14] to compute the association between the two words.
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MapReduce programming framework: In this work we extended our previous

work [33, 34] by counting the word association in Google web corpus using the MapRe-

duce programming model [13] which is an associated implementation for processing and

generating large data sets. In MapReduce framework user defines a mapper function

which processes a set of key/value pairs and emits a set of intermediate key/value pairs.

Then the reducer merges all intermediate values associated with the same intermediate

key. MapReduce programs are automatically parallelized and executed on a large cluster

of machines. We use MapReduce on Hadoop [2, 1] which is a software framework that

supports data-intensive distributed applications and enables applications to work with

thousands of cluster nodes and petabytes of data. [17]

Counting word associations in MapReduce: Our word associations algorithm

(Figure 3.1) is inspired from word count algorithm. Our Mapper goes through each 5-

gram in Google corpus and for each two words within AMT target and inputs (key) that

co-occur in a 5-gram string, it emits count 1 (value). Then the reducers accumulates

the key-value pairs and sums up all counts for each two-word association. Using this

algorithm, computing the word association on approximately 34 million pairs, took 8hrs,

31mins and 52sec.

class MAPPER  
 method MAP(line a) 
  for all term i,j ! line a 
   If i,j ! TargetInputs do  
         EMIT(assoc ij , count c) 
 
class REDUCER  
 method REDUCE(assoc ij, counts [c1, c2, . . .]) 
  sum ! 0  
  for all count c ! counts [c1, c2, . . .] do 

sum ! sum + c  
EMIT(assoc ij, count sum) 

Figure 3.1: Pseudo-code for the word association algorithm in MapReduce. The mapper
emits a key-value pair for each two-word association from target words or AMT inputs
(TargetInputs) in a document (5-gram string). The reducer sums up all counts for each
association. (Figure adopted and modified from [25].)
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Computing associations between target-respond pairs Similar to what we did

for WN similarity measures, here we first computed the log-likelihood of associations

between the target and the response items. We computed the log-likelihood based based

on the counts of all words in the corpus (N), the counts of target word (ci), the count of

the response item (cj) and the number of times they occur in the same 5-gram in Google

web corpus (cij) using the following equation [32]:

log(λ) = ci log ci +(N − ci) log (N − ci)+ cj log cj +(N − cj) log (N − cj)−N log N−

cij log cij − (ci− cij) log (ci− cij)− (cj − cij) log (cj − cij)− (N − ci− cj + cij) log(N −

ci − cj + cij)

The average pairwise association score we computed this score based on log-

likelihood of two given pairs. As with WN similarity scores, if we assume W1,W2...Wn

to be n responses for target word T ; and Lij to be the Log-likelihood score between Wi

and Wj , then the average pairwise association score for Wi will be Li1+Li2+...+Lin
n . This

will provide us the average statistical association of each response (i.e Wi) with the other

responses (i.e. Wj so that i 6= j ). Here we reward the responses that are more statistically

related to each other.

3.5 Discussion and evaluation of automatic filtration tech-

niques

The collected responses of each AMT task were ranked separately by each of the above

similarity and association measures. We classify the ranked responses into “keep” (higher-

scoring) and “reject” (lower-scoring) classes by defining a specific threshold for each list.

Then we evaluated the accuracy of each filtration approach by computing their precision

and recall on correct “keep” items. For each measure and for each list, we examined

different thresholds to achieved the best precision without loosing much data (we tried to

keep the recall around %50 or higher). Tables 1 and 2 show the accuracy of WN similarity

and corpus association measures after applying the close to optimum thresholds. Baseline
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scores show the accuracy of the responses of each AMT task before using automatic

filtration techniques.

Manual WN Path Dist sim Resnik similarity WN Pairwise sim Resnik Pairwise sim
Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec

LOC 71.86 100.0 71.33 48.73 71.61 53.76 72.08 49.38 71.63 49.38
OBJ 89.45 100.0 89.92 56.93 91.49 51.49 90.82 55.01 90.70 49.11

Table 3.1: The percentage accuracy of WordNet Similarity filtering approaches

Manual Log-likelihood Pairwise Log-likelihood
Pre Rec Pre Rec Pre Rec

LOC 71.86 100.0 85.27 51.80 74.05 50.38
OBJ 89.45 100.0 92.24 51.00 90.10 55.19

Table 3.2: The percentage accuracy of corpus association filtering approaches

As can be seen in Table 1, none of the WN similarity measures worked well for our

task. They hardly could improve the precision, but reduced the recall by around %50.

The reason that the WN similarity measures did not help improving precision may be that

there is not necessarily a semantic relation between different locations of a given object

or different object nearby that. The main reason that they reduced the recall maybe that

some of AMT inputs are not present in WordNet and as a result we loose them when we

use WN similarity measures.

Table 2 shows that we could get good results by using log-likelihood associations be-

tween target and inputs in the locations task. We achieved %85.27 precision but we lost

nearly half of our inputs (recall is %51.80). Corpus association measures did not work

well in the nearby objects task, they slightly improved the precision but they reduced the

recall to around %50-55.



Chapter 4

Using AMT to collect information for

location vignettes

In this chapter we discuss how we use AMT to collect semantic information about location

vignettes. As discussed in chapter 1, each location vignette contains two kinds of informa-

tion: typical objects of the location and typical arrangements of the objects. In this report

we focus on the task of collecting the main objects of each location and try to examine

three different strategies for collecting objects of locations.

In all AMT tasks Turkers required a previous approval rating of 99% and they had to

be based in the US. The latter condition increases the probability that the workers are

native speakers of English and decreases the chance that they have cultural differences. We

presented the Turkers with several pictures of different rooms such as the bedroom picture

in Figure 1.2. We carefully selected those pictures from the results of image searches from

Google1 and Bing2 search engines.

4.1 Task 1: Free description of each location

In this task, we had at least two Turkers provide simple and clear descriptions of the

pictured room We explicitly asked Turkers that their descriptions had to be in the form

of naming the the main elements or objects in the room and their positions in relation to

each other. Each description had to be very precise and 5 to 10-sentences long. We also

required them to use only “is” and “are” for the verbs of the sentences.

1www.google.com
2www.bing.com

20
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4.1.1 Extracting location elements from descriptions

In order to extract location information from the free-form descriptions we have ob-

tained from AMT, the text is first processed using the NLP module of WordsEye. (For

more details see [35]) We extracted the objects and other elements of locations from

processed descriptions which are mainly in the form of relation–(attribute)ground–

(attribute)figure and extract the objects and elements which are represented as figure

or ground. In other words, the list of figures and grounds is the list of objects and

elements of the given location that the Turkers mentioned in their descriptions. We then

further processed this extracted locations as explained in section 4.4.

4.2 Task 2: Listing funcionally important objects of loca-

tions:

One way to pick up the main objects of a location is to see which objects are functionally

important for that location compared to the other objects. For example, the important

objects for a kitchen, are those that are really required in order for the kitchen to be con-

sidered or to function as a kitchen. Those objects include a stove, an oven, a refrigerator,

and a sink, but not but a picture frame. One can imagine a kitchen without a picture

frame but it is rarely possible to think of a kitchen without a refrigerator.

Based on this, we designed an AMT task, in which we asked workers to provide a list

of functional objects using an AMT hit such as the one shown in figure 4.1. We showed

each AMT worker an example room with a list of objects and their counts. We gave the

following instructions:

“ Based on the following picture of a kitchen list the objects that you really need in

a kitchen and the counts of the objects.

1. In each picture, first tell us how many room doors and room windows do you see.

2. Don’t list the objects that you don’t really need in a kitchen (such as magazine,

vase, etc). Just name the objects that are absolutely required for this kitchen. ”
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Figure 4.1: AMT input form to collect functionally important objects (task 2) or visually
important (task 3) objects in locations. Workers are asked to enter the name of each
object type and the object count.

4.3 Task 3: Listing visually important objects of locations:

For this task we asked workers to list large objects (furniture, appliances, rugs, etc) and

those that are fixed in location (part of walls, ceilings, etc). The goal was to know which

objects help define the basic structural makeup of this particular room instance.

We used the AMT input form shown in figure 4.1 again, provided a single example

room with example objects and and gave the following instruction:

“ What are the main objects/elements in the following kitchen? How many of each?

1. In selecting the objects give priority to:

• Large objects (furniture, appliances, rugs, etc).

• Objects that are fixed in location (part of walls, ceilings, etc).

The goal is to know which objects help define the basic makeup and structure of

this particular kitchen.

2. In each picture, first tell us how many room doors and room windows do you see.”
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As an example, in the bedroom in Figure 1.2 the bed, the dressers, the nightstands, the

mirror, and the rug are visually the most salient objects. They are large and part of the

furniture whereas, the vases are not large enough to be seen easily and the pillows are not

part of the furniture. Similar to previous task, here we had Turkers list the objects that

are visually important for a location.

4.4 Processing of the extracted objects and the AMT inputs

We collect the extracted objects of Task 1 and the inputs of tasks 2 and 3, and process

them in the following steps:

1. Manual checking of spelling: We check the spelling with common spell-checkers in

text editors and correct the misspelled words.

2. Lemmatization (plural to singular): here we first change the case of all words to

lower-case and then we lemmatize the inputs by the WordNet lemmatizer module of

NLTK3 (Natural Language Toolkit). In particular our purpose of lemmatization is

to convert the plural inputs to singular.

3. Removing conjunctions: If the Turkers put multiple inputs in one box (each box

is just for one input) separated by “and”, “or”, and the slash character (“/”) we

separate those inputs to multiple objects. For example, we separate the input “desk

and chair” to “desk” and “chair”.

4. Comparing the inputs agains our 3D object library: We make this comparison to

ensure that all the inputs are valid objects based on our object library.

5. Applying a cut-off of three (only for tasks 2 and 3): We find the intersection of the

objects and elements from the five inputs provided by five different Turkers. There

are a few objects which all five Turkers commonly named and we should have a

cut-off of less than five.

3http://www.nltk.org/
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6. Detecting WordNet synonyms: After collecting the intersections, we further process

the non-intersecting items. We see if they are in the same WordNet synset or not,

since different Turkers may have used different synonymous words for referring to

the same object (such as tub and bathtub). We add the most frequent word within

the synonymous inputs to the list of the intersecting items.

7. Finding major substrings in common: We look for the words that have major com-

mon substrings in common. Some input words only differ by a space or hyphen

character such as night stand, night-stand, and nightstand. In such cases, we con-

vert all the variants to the simple with one which has no intermediate character

(nightstand in this example).

8. Finding direct hypernyms: We see if the two words are direct hypernym of each

other in WordNet synset or not. Some Turkers may refer to a more specific or more

general concept to refer to the same object (such as double bed and bed)

9. Looking for head nouns in common: In some cases WordNet does not contain the

compound nouns which we are processing. In such cases, we see if the head of the

compound noun (the last noun in the compound) can be found in the other inputs

or not. As an example, we got projector screen and screen, both referring to the

same object in a classroom picture. We choose screen between the two since it is

also the head of the projector screen compound.

10. Recalculating the intersections (only for tasks 2 and 3): Finally, we recalculate the

intersections to collect newly normalized inputs with the cut-off of three.

4.5 Discussion and evaluation of AMT tasks for collecting

location vignettes

As one might imagine, evaluation of the results is not an easy task. Sometimes, there is no

obvious answer for the question of what are the main objects in a picture. Even if we define

clear visual and functional criteria, there might still be disagreement in interpreting those

criteria, even among experts. Evaluation of this task is comparable to Machine Translation
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evaluation in which there is no single answer (as there is in speech recognition) and most

of the time, there are multiple correct answers. Considering all these points, we manually

built the location vignettes for a set of rooms and used them as our gold standards and

compared the results of each tasks against that. Figure 4.2 shows an example description

for a bedroom and the extracted objects (Task 1), the list of functionally important objects

(Task 2), and the list of visually important objects (Task 3).

4.5.1 Using gold standard vignettes to evaluate extracted location ele-

ments

In each gold standard vignette, we have A) a list of objects, and B) the arrangements of

those objects. We selected the objects for the gold standard vignettes based on the visual

criteria i.e. we gave priority to large objects (furniture, appliances, rugs, etc) and those

that are fixed in location (part of walls, ceilings, etc). The goal was to select the object

that help define the basic makeup and structure of the particular room. Since in this

project we focused on the objects of locations and not their arrangements, we compare

the extracted objects from the processed inputs with the objects of gold standard location

vignettes. (We should mention that the following results are based on manually revised

gold standards. We will discuss this in subsection 4.5.5)

4.5.2 Results for the free description AMT task (Task 1)

We extracted 34 objects from the descriptions of 6 rooms. 22 objects were in our gold

standard vignettes and this shows that we achieved 64.70% precision. Our gold standard

vignettes contain 41 objects and we could extract 22 of those objects, which means we

could achieve 53.66% recall.

4.5.3 Results for the functional AMT task (Task 2)

In the task of collecting objects of locations based on functional criteria we extracted 32

objects for 5 rooms from the processed inputs. From those objects, 28 objects were present

in our gold standard vignettes which means that we achieved 87.50% precision. Our gold
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Term: Bedroom 
 
Free description (Task 1): 

“The rug is in front of the bed. The bed is between the nightstands. The pillows are on top 
of the bed. The mirror is above the wide dresser. The plant is above the nightstand. The 
yellow vase is on top of the tall dresser. The tall dresser is to the right of the wide dresser.” 

 
Extracted objects after processing: 'rug', 'bed', 'mirror', 'dresser', 'vase' 

 
Functionally important objects (Task 2): 

'mirror' 5, 'dresser' 5, 'bed' 4, 'nightstand' 4, 'pillows' 2, 'mattress' 2, 'rug' 1, 'bed frame' 1, 
'lamp' 1, 'comforter' 1, 'chest' 1 
 

Visually important objects (Task 3): 

'rug' 4, 'bed' 4, 'nightstand' 4, 'dresser' 4, 'mirror' 3, 'plant' 2, 'lamp' 2, 'pillow' 2, 'area rug' 1, 
'clock' 1, 'vase' 1, 'flower pot' 1 

http://www.gowfb.com/images/Abbyson-Living/Aristo-Bedroom-Set1.jpg 

!

Figure 4.2: An example description and the extracted objects (Task 1), the list of func-
tionally important objects (Task 2), and the list of visually important objects (Task 3)
provided by Turkers for the pictured bedroom. The numbers in front of each objects shows
their frequency within the 5 inputs.

standard vignettes contain 33 objects and we could extract 28 of those object from the

processed inputs which means we could achieve 84.85% recall.
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4.5.4 Results for the visual AMT task (Task 3)

In the task of collecting objects of locations based on functional criteria, we extracted 32

objects for 5 rooms from the processed inputs. From that set of objects, 29 objects were

present in our gold standard vignettes that is to say that we achieved 90.62% precision.

Our gold standard vignettes contain 33 objects and we could acquire 29 of those object

from the processed inputs. In other words we could achieve 87.88% recall.

4.5.5 Manual error analysis and revising the gold-standards

As stated before, the reported results in the above subsections are based on the manu-

ally revised gold standards. We made that revisions in the gold-standards based on the

following error analysis:

1. Lexical choice: We found out that in a few cases Turkers use different terms from

our gold standard terms which were not actually synonyms. As an example, we used

the term end-table to refer to the small, low table which sits by a bed in the bedroom

in Figure 4.2, while most of the Turkers preferred to use the term nightstand to refer

to the same object. In another case we used the term lectern whereas most of the

Turkers used the term podium instead.

2. The visibility of the object: Sometimes Turkers did not mention a partially visible

object although it was an important object for the location (such as a chair for a

kitchen). Interestingly, in one case, we did not include an object in our gold-standard

for the same reason but the majority of Turkers mentioned that. We then updated

our gold-standard to include that object.

3. The importance of the object based on the given criteria: In some cases, the majority

of Turkers assumed that an object is important for a particular location (such as

a clock for a classroom) but we did not mention that in the gold-standard. In this

particular case, we did not even update the gold-standard since we still think the

clock was not one of the main object in that particular classroom.
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4.5.6 Potential objects for each location

As discussed in section 4.4 we applied a cut-off of three on the normalized Turkers’ input.

In other words, we filtered out the words that were mentioned by less that three Turkers.

However, we keep those filtered out words as potential objects of each location. For

example, we filtered out clock, lamp, pillow, plant, and vase in the bedroom in Figure 1.2

because of their low frequency, but they are all kept as legitimate potential objects of that

room.



Chapter 5

Conclusions and future work

In this work, we investigated the use of AMT for collecting semantic information for

locations in VigNet that is the core knowledge base of WordsEye. We introduced the

concept of location vignettes that are the prototypical mappings from locations terms

to their objects and their arrangements. We had an overview of the well-known text to

graphics generation systems and after that, we investigated the possibility of using the

existing lexical and graphical knowledge resources to build up VigNet. We also discussed

about automatic approaches for extracting semantic information from large text corpora.

Then, we proposed our novel method of collecting semantic information by AMT

based on our papers in [33, 34, 36, 35]. In chapter 3 we used AMT to collect contextual

information about typical locations of VigNet objects and the typical objects near them,

and we applied some automatic filtration approaches using WordNet similarity measures

and statistical association, computed on the distributed MapReduce framework. Manual

evaluation of the AMT responses (baseline results in Tables 1 and 2) show that we can

collect highly accurate data in a cheap and efficient way by using AMT. The accuracy

of automatic filtration techniques sounds acceptable as we were able to filter out some

undesirable data and improve the precision of the inputs specially in locations tasks. For

the future work of this approach, –inspired by [29, 27, 28]– we are planning to use lexical

patterns in the Google 1T web corpus in MapReduce framework to extract locational

relations between our target words and the AMT inputs using our manual annotations of

relations a set of gold standards.

In chapter 4 we investigated the use of AMT for collecting semantic information for

location vignettes. In Task 1, we had Turkers describe a picture of a given room and then

29
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we extract the elements and objects of the room by syntactic and semantic processing

of their descriptions. In task 2 we acquired the objects that are functionally important

for a room i.e. the objects that were really needed to define a room, and in task 3, we

were looking for the objects that are more visible or they are fixed in the room. We the

processed of the extracted objects and the AMT inputs and compared them agains the

list of objects in the gold standard vignettes which shows that we can achieve very good

accuracy by using the functional and visual strategies (Tasks 2 and 3). Given these very

good results, we extended this approach to a set of 85 different rooms.

Location vignettes consist of both a list of objects, and the arrangements of those

objects, and we also designed a series of AMT tasks for determining the arrangements of

objects in different locations. In that tasks, we use the objects that we collected for each

room and we have Turkers determine the arrangements of those objects in that particular

room. For each object in the room, Turkers should determine its spatial relation with A)

one wall of the room and B) one other object in the room. For example for the bedroom

in Figure 4.2, we expect Turkers to enter that the bed is against the far wall and it is on

the right side of nightstand-1. We force workers to choose the spatial relations among a

limited set of relations including against, embedded-in, right-side-of , left-side-of , on, in,

behind, and facing. Similar to the AMT task in chapter 4, we have five different workers

to determine the spatial arrangements of objects in each room. The reason that we did

not include the results of this task in this report is that we are still exploring the methods

for objective evaluation of the spatial arrangements. The gold standard location vignettes

do include the arraignments of the objects, but we are working on applying this to the

Turkers inputs. Similar to section 4.4 we need to post-process the and normalize the

inputs of the spatial arrangements to compare them agains gold standard vignettes.

Overall, we have shown here that the vignette semantic approach and our informa-

tion collection method have great potentials to be extended in populating VigNet. We

are planning to extend this to collect vignettes for a variety of indoor locations, includ-

ing stores, sport complexes, vehicles, etc. and outdoor locations such as streets, roads,

beaches, waterfronts, etc. We are also working using AMT in collecting information for

action vignettes needed to depict different actions from text inputs. Action vignettes are
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composed of location vignettes, participants of actions, and spatial and temporal relations

between the locations, the objects and the participants.



Bibliography

[1] Hadoop–Apache Software Foundation project home page.

[2] Hadoop in Action. Manning Publications, 2010.

[3] NLTK WordNet Interface, 2011.

[4] Adorni, G., Di Manzo, M., and Giunchiglia, F. Natural language driven image

generation. In Proceedings of the 10th International Conference on Computational

Linguistics and 22nd Annual Meeting of the Association for Computational Linguis-

tics (Stanford, California, USA, 1984), pp. 495—500.

[5] Baker, C., Fillmore, C., and Lowe, J. The Berkeley Framenet Project. In

Proceedings of the 17th international conference on Computational linguistics (1998),

pp. 86–90.

[6] Berland, M., and Charniak, E. Finding parts in very large corpora. In Proceed-

ings of the 37th Annual Meeting of the Association for Computational Linguistics

(College Park, MD, USA, June 1999), Association for Computational Linguistics,

pp. 57–64.

[7] Boberg, R. Generating line drawings from abstract scene descriptions. Master’s

thesis, Department of Electronic Engineering, MIT, Cambridge, MA, 1972.

[8] Brants, T., and Franz, A. Web 1T 5-gram Version 1. Linguistic Data Consor-

tium, Philadelphia, 2006.

[9] Callison-Burch, C., and Dredze, M. Creating speech and language data with

amazon’s mechanical turk. In Proceedings of the NAACL HLT 2010 Workshop on

Creating Speech and Language Data with Amazon’s Mechanical Turk (Los Angeles,

CA, USA, 2010), pp. 1–12.

[10] Clay, S., and Wilhelms, J. Put: Language-based interactive manipulation of

objects. IEEE Computer Graphics and Applications (1996), 31—39.

32



33

[11] Coyne, B., Rambow, O., Hirschberg, J., and Sproat, R. Frame semantics

in text-to-scene generation. In Knowledge-Based and Intelligent Information and

Engineering Systems, R. Setchi, I. Jordanov, R. Howlett, and L. Jain, Eds., vol. 6279

of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2010, pp. 375–

384.

[12] Coyne, B., and Sproat, R. Wordseye: An automatic text-to-scene conversion

system. In Proceedings of the 28th annual conference on Computer graphics and

interactive techniques (Los Angeles, CA, USA, 2001), pp. 487– 496.

[13] Dean, J., and Ghemawat, S. Mapreduce: simplified data processing on large

clusters. In Proceedings of the 6th conference on Symposium on Opearting Systems

Design & Implementation - Volume 6 (Berkeley, CA, USA, 2004), USENIX Associ-

ation, pp. 10–10.

[14] Dunning, T. E. Accurate methods for the statistics of surprise and coincidence.

Computational Linguistics 19, 1 (1993), 61–74.

[15] Dupuy, l., Egges, A., Legendre, V., and Nugues, P. Generating a 3d simu-

lation of a car accident from a written description in natural language: The carsim

system. In Proceedings of the ACL 2001 Workshop on Temporal and Spatial Infor-

mation Processing (2001), pp. 1—8.

[16] Fellbaum, C. WordNet: An Electronic Lexical Database. MIT Press, Cambridge,

MA, 1998.

[17] From Wikipedia, the free encyclopedia. Apache hadoop.

[18] From Wikipedia, the free encyclopedia. Cyc, 2011.

[19] Girju, R. Automatic detection of causal relations for question answering. In Pro-

ceedings of the ACL 2003 Workshop on Multilingual Summarization and Question

Answering (Sapporo, Japan, July 2003), Association for Computational Linguistics,

pp. 76–83.

[20] Girju, R., Beamer, B., Rozovskaya, A., Fister, A., and Bhat, S. A

knowledge–rich approach to identifying semantic relations between nominals. The

Information Processing and Management Journal 46, 5 (2010), 589–610.

[21] Hanser, E., Mc Kevitt, P., Lunney, T., Condell, J., and Ma, M. Scene-

maker: Multimodal visualisation of natural language film scripts. In Knowledge-

Based and Intelligent Information and Engineering Systems, R. Setchi, I. Jordanov,



34

R. Howlett, and L. Jain, Eds., vol. 6279 of Lecture Notes in Computer Science.

Springer Berlin / Heidelberg, 2010, pp. 430—439.

[22] Kahn, K. M. Creation of Computer Animation from Story Descriptions. PhD thesis,

Computer Science and Artificial Intelligence Lab, MIT, 1979.

[23] Kochenderfer, M. J., and Gupta, R. Common sense data acquisition for indoor

mobile robots. In In Nineteenth National Conference on Artificial Intelligence (AAAI-

04 (2003), AAAI Press / The MIT Press, pp. 605–610.

[24] Lenat, D. B. CYC: a large-scale investment in knowledge infrastructure. Commu-

nications of the ACM 38 (November 1995), 33–38.

[25] Lin, J., and Dyer, C. Data-Intensive Text Processing with MapReduce. Morgan &

Claypool Publishers, 2010.

[26] Ma, M. Automatic Conversion of Natural Language to 3D Animation. PhD thesis,

University of Ulster, 2006.

[27] Nakov, P., and Hearst, M. Using verbs to characterize noun-noun relations. In

Proceedings of the 12th International Conference on Artificial Intelligence: Method-

ology, Systems, Applications (AIMSA) (Bulgaria, 2006), pp. 233—244.

[28] Nakov, P., and Hearst, M. UCB: System description for semeval task # 4. In Pro-

ceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-

2007) (Prague, Czech Republic, June 2007), Association for Computational Linguis-

tics, pp. 366—369.

[29] Nulty, P., and Costello, F. Using lexical patterns in the google web 1t corpus to

deduce semantic relations between nouns. In Proceedings of the Workshop on Seman-

tic Evaluations: Recent Achievements and Future Directions (SEW-2009) (Boulder,

Colorado, June 2009), Association for Computational Linguistics, pp. 58–63.

[30] Princeton University. About WordNet, 2010.

[31] Resnik, P. Semantic similarity in a taxonomy: An information-based measure and

its application to problems of ambiguity in natural language. Journal of Artificial

Intelligence Research (1999), 95–130.

[32] Roark, B., and Hollingshead, K. Natural Language Processing. [PDF docu-

ment]. Retrieved from Lecture Notes, 2010.



35

[33] Rouhizadeh, M., Bowler, M., Sproat, R., and Coyne, B. Data collection and

normalization for building the scenario-based lexical knowledge resource of a text-to-

scene conversion system. In Proceedings of SMAP 2010: 5th International Workshop

on Semantic Media Adaptation and Personalization (Limassol, Cyprus, 2010).

[34] Rouhizadeh, M., Bowler, M., Sproat, R., and Coyne, B. Collecting seman-

tic data by Mechanical Turk for the lexical knowledge resource of a text-to-picture

generating system. In Proceedings of International Conference on Computational

Semantics (IWCS) (Oxford, UK, 2011).

[35] Rouhizadeh, M., Coyne, B., and Sproat, R. Collecting semantic information

for locations in the scenario-based lexical knowledge resource of a text-to-scene con-

version system. In KES (4) (2011), A. König, A. Dengel, K. Hinkelmann, K. Kise,

R. J. Howlett, and L. C. Jain, Eds., vol. 6884 of Lecture Notes in Computer Science,

Springer, pp. 378–387.

[36] Rouhizadeh, M., Coyne, B., Sproat, R., and Bauer, D. Collecting spatial

information for locations in a text-to-scene conversion system. In Proceedings of

Second Workshop on Computational Models of Spatial Language Interpretation and

Generation (CoSLI 2), Boston, MA, July 2011 (Boston, MA, USA, 2011).

[37] Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T. La-

belMe: a database and web-based tool for image annotation. International Journal

of Computer Vision 77, 1–3 (May 2008), 157–173.

[38] Schwarz, K., Rojtberg, P., Caspar, J., Gurevych, I., Goesele, M., and

Lensch, H. P. Text-to-video: Story illustration from online photo collections. In

Knowledge-Based and Intelligent Information and Engineering Systems, R. Setchi,

I. Jordanov, R. Howlett, and L. Jain, Eds., vol. 6279 of Lecture Notes in Computer

Science. Springer Berlin / Heidelberg, 2010, pp. 402—409.

[39] Simmons, R. The clowns microworld. In Theoretical Issues in Natural Language

Processing (2004), Schank and Nash-Webber, Eds., Association for Computational

Linguistics.

[40] Singh, P., Lin, T., Mueller, E., Lim, G., Perkins, T., and Li Zhu, W. Open

mind common sense: Knowledge acquisition from the general public. In On the Move

to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE, R. Meersman

and Z. Tari, Eds., vol. 2519 of Lecture Notes in Computer Science. Springer Berlin /

Heidelberg, 2002, pp. 1223–1237.



36

[41] Sproat, R. Inferring the environment in a text-to-scene conversion system. In

Proceedings of The First International Conference on Knowledge Capture (Victoria,

BC, Canada, 2001), pp. 147–154.

[42] Turney, P. D. Expressing implicit semantic relations without supervision. In Pro-

ceedings of the 21st International Conference on Computational Linguistics and 44th

Annual Meeting of the Association for Computational Linguistics (Sydney, Australia,

2006), pp. 313–320.

[43] Turney, P. D., and Littman, M. L. orpus-based learning of analogies and se-

mantic relations. Machine Learning 60, 1-3 (2005), 251–278.

[44] Vanderwende, L. Algorithm for automatic interpretation of noun sequences. In

Proceedings of the 15th conference on Computational linguistics (Stroudsburg, PA,

USA, 1994), vol. 2 of COLING, Association for Computational Linguistics, pp. 782–

788.

[45] Winograd, T. Understanding Natural Language. Academic Press, New York, 1972.

[46] Ye, P., and Baldwin, T. Towards automatic animated storyboarding. In Pro-

ceedings of the 23rd national conference on Artificial intelligence (Chicago, Illinois,

2008), vol. 1, pp. 578–583.


