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Abstract 

Hearing lose affects 360 million people worldwide and a largely 

preventable contributor is excessive noise. Exposure to loud noise damages the 

delicate hair cells of the cochlea. The mechanism by which this damage occurs 

has been linked to overproduction of reactive oxygen species in hair cell 

mitochondria. Characterization of noise-induced changes in mitochondria has 

previously been hampered by the lack of microscope technology with adequate 

resolution. The advent of high-resolution optical imaging techniques has allowed 

researchers to capture images of cellular structures, such as mitochondria, in 

intact fixed and live-cells. While imaging techniques have made great strides in 

the last 20 years, visualization and analysis techniques for super resolution 

images are lagging behind. Bio-image informatics is an emerging field that aims 

to employ computational methods to glean additional information from the large 

image datasets generated by today’s high resolution imaging techniques. 

Available analysis tools are often inaccessible to researchers due to steep 

learning curves, the need for computer programming experience or the high cost 

of commercially available software packages. In this capstone project we 

demonstrate the use of both ImageJ open-source software and commercially 

available Imaris® software to characterize mitochondria in cochlear hair cells. 

The application of available image analysis software to today’s multidimensional 

high-resolution imaging data is crucial to understanding the role of mitochondrial 

changes in noise-induced hearing loss. 
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Introduction and Purpose 

More than 350 million people worldwide are affected by disabling hearing 

loss. This includes 32 million children and approximately one-third of the elderly 

population over 65 years of age [1]. Three principal contributors to acquired 

hearing loss are age [2], ototoxic drugs [3] and exposure to excessive noise [4]. 

Nearly half of cases of acquired hearing loss are preventable, especially those 

caused by loud noise [1]. Noise-induced hearing loss is caused by damage to 

hair cells of the inner ear [5]. Since these cells do not regenerate, damage results 

in permanent sensironeural hearing loss. Several lines of evidence suggest that 

increased levels of reactive oxygen species (ROS) contribute to hair cell damage 

[6-9] and that mitochondria are involved in ROS production and cell death 

[5,10,11]. Furthermore, damage to mitochondrial DNA and associated cellular 

pathways, promotes overproduction of mitochondrial ROS [12] especially under 

hypoxic conditions [4,13]. However, few studies have evaluated how changes in 

mitochondrial volume, cell density, cell location and mitochondrial morphology 

contribute to cochlear hair cell damage and associated hearing loss. There is a 

critical need for improved techniques for characterizing the mitochondrial 

changes associated with hair cell damage. Previously, a major barrier to 

acquiring this knowledge has been a lack of tools with sufficient resolving power 

to study changes in mitochondrial morphology in response to loud noise. This is 

changing as super resolution microscopy systems become available.  
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Super resolution imaging technology, which makes use of advances in 

microscopic systems, manipulation of fluorescent proteins, and mathematical 

manipulation of image data, has increased the lateral and axial resolution 

available to investigators compared to conventional and confocal microscopy. 

With this level of resolution, scientists now have the ability to examine changes in 

mitochondria and characterize their role in hair cell degeneration and loss 

[14,15]. This technology generates large multidimensional datasets that require 

specialized analysis. In order to realize the full potential of this advanced imaging 

technology, further work is needed to determine optimal approaches for 

analyzing this data [16]. 

Bioimage informatics is an emerging field dedicated to developing the best 

approaches to enhance the acquisition, distribution, storage and analysis of 

biological images [17,18]. This capstone project evaluates the feasibility of 

applying various commonly used informatics algorithms to analyze super 

resolution images of mitochondria in cochlear hair cells.  
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Background 

Historical Perspective 

Since the first microscope was created in 1590, and the first living cell was 

observed nearly a century later, there has been a steady march to increase the 

microscope’s resolving power. Two centuries ago Joseph Jackson Lister showed 

that several carefully placed weak lenses would reduce image blurring. It was not 

until nearly 50 years later that Ernst Abbe developed a mathematical model to 

describe the relationship between resolution and the wavelength of light [19]. 

This allowed for the calculation of a microscope’s maximum resolution. The 

ultramicroscope, developed in 1903, was the first instrument to image particles 

smaller than the wavelength of light, overcoming the limitation described by 

Abbe. The ultramicroscope system was based on light scattering as opposed to 

reflection and was widely used in the study of colloids. Its illumination method 

has been extended to the measurement of fluorescence in bioimaging methods 

today.  Another leap in image resolution occurred when the electron microscope 

was introduced in 1938. This type of microscope does not have the limitation 

imposed by the wavelength of light since it uses a beam of electrons to create a 

detailed image of the sample being studied. Electron microscopes still produce 

the highest resolution images available today. However, electron microscopes 

are costly and cannot be used to observe live specimens [20].  Additionally, 

electron microscopy requires extremely thin samples less than 100nm thick. 

Samples must be thin enough for electrons to pass through them [21]. So, 

although nanometer scale lateral resolution can be achieved much of the depth 
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information is lost. Another major disadvantage is that electron microscopy is 

limited to recording from a single channel, which does not support visualization of 

differentially labeled cellular components or studies involving co-localization [20]. 

Conjugation of newly developed fluorescent proteins [22,23] and small organic 

dyes to cellular organelles such as mitochondria [24], allows for better 

visualization of cellular components. 

In conventional light microscopy the entire sample is illuminated 

simultaneously. This allows both in-focus and out-of-focus light to contribute to 

image formation and limits the resolving power. The confocal microscope system 

increases local contrast by rejecting light that is outside of the focal plain by 

means of a pinhole (an adjustable confocal aperture). The sample is illuminated 

point-by-point. To obtain an image of the entire sample, the laser beam is 

scanned over the specimen. Since the confocal aperture obstructs light from 

objects outside of the focal plain, confocal imaging greatly improves resolution in 

the Z direction.  This is one of the fundamental advantages of confocal 

microscopy. Improvements in depth discrimination make it possible to optically 

slice thick samples, typically up to 100µm. However, little improvement is seen in 

lateral resolution. Unlike electron microscopy, confocal microscopes take full 

advantage of fluorescent staining techniques to enhance visualization of 

differentially stained cellular components and the study of co-localized cellular 

components in fixed and live cells.  
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Imaging Basics 

In its most basic form, an image is an array of values or collection of 

points each with an intensity value relative to a position in a Cartesian coordinate 

system.	  Although there are many imaging techniques being used in a number of 

fields they all have three common features. These include, an energy source, a 

real world object and a system to interpret and digitize the signal that results from 

exposure of the object to the energy source. In optical microscopy the energy 

source is photons (light). The real world object is the sample to be imaged and in 

most cases the digitizing system consists of a sensor array in a charge-coupled 

device (a CCD camera) and computers for visualization. Image quality is 

dependent on the imaging system. One important determinant of image quality is 

resolution, which is the ability to discern closely located points from each other. 

Image resolution 

One simple method for improving image resolution is increasing the 

number of intensity values that can be encoded. For example, in a binary image 

there are only two possible values 0 and 1, black or white. The intensity 

resolution or dynamic range depends on the number of bits available. As the 

number of bits and gray levels increase so does the ability to discern details in 

the image. The number of available intensity values is related to the number of 

bits per pixel. A typical value of 8 bits encodes 256 (28) shades of gray and 16 

bits encodes 65536 (216) grey levels. In color images each pixel is a combination 

of three scales for example red, blue and green (RGB). However, a simple 

increase in intensity resolution is not sufficient in images produced by today’s 
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sophisticated optical imaging methods. Imaging of subcellular components 

requires a high spatial resolution. But the properties of light limit the achievable 

resolving power of optical microscopes. 

The ability of conventional microscopy to resolve two objects is limited by 

the diffraction barrier, fist noted in the seminal paper of Ernst Abbe in 1873 [19].  

The diffraction limit states that the resolving power of a microscope or other 

optical instrument (camera, telescope) is limited by the wavelength of light 

according to the following equation: 

d = λ/2[η  sin α ]  

Where d is the minimum resolvable diameter, λ is the wavelength of the 

illuminating light, η is the refraction index of the imaging medium (typically air, or 

immersion liquid) and α is the half-angle of incidence the light extends to a focal 

point. This fundamental limitation of optical imagery means that objects smaller 

than half the wavelength of the light used cannot be resolved. A measure of this 

limitation is the point spread function (PSF), which defines the spread of 

diffracted light from a single point source. In the X and Y directions the PSF 

appears as an airy disc while in the Z direction the PSF is hourglass shaped. The 

PSF of a particular imaging system determines the amount of image degradation 

that can be expected. 

Super resolution imaging techniques are considered methods that exceed 

the Abbe limit. Each technique is based on a distinct physical principle that 

determines its resolving power.  There are two major categories of super 

resolution imaging techniques. First are interferometric techniques, which 
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improve the PSF of the imaging system. For example structured illumination 

microscopy uses optical methods to reduce the size of the airy disc. The other 

category is single molecule localization, which uses photoswitching to isolate 

fluorophores and precisely locate the center of the PSF of molecules that would 

otherwise be unresolvable [25]. For instance, in photoactivation localization 

microscopy (PALM) a subset of fluorescent molecules are selectively activated, 

localized and deactivated [14]. The process is repeated until the coordinates of 

all fluorophores are determined. Our discussion will concentrate on structured 

illumination, from the first category of super resolution imaging. 

Structured illumination is a widefield microscopy technique that exceeds 

Abbe’s diffraction limit by superimposing a known interference pattern on the 

sample during imaging [26].  The interaction between the scattering of light from 

the sample and the controlled pattern creates interference patterns (moiré 

fringes) that carry high-resolution sample information. Several images are taken 

as the superimposed pattern is rotated in a precise manner. The high resolution 

image is recovered during post processing. Using this imaging technique, 

Guffstafsson was able to increase image resolution by a factor of two [27].  

Taking this concept further, Keller and colleagues devised an imaging method 

using incoherent as opposed to coherent light [28]. They were able to achieve a 

five-fold increase in image contrast. Most importantly, the increase was not 

achieved at the expense of imaging depth, a problem of electron microscopy.  

The advantage of structured illumination over confocal microscopy is the 

preservation of sample luminescence. The signal from samples stained with 
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bioluminescent dyes is often weak. The loss of essential in-focus light along with 

the rejected out-of-focus light in confocal microscopy may not return an adequate 

signal. Furthermore, while confocal microscopy greatly improves axial resolution 

little lateral resolution is gained.   
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Methods  

Animal Model 

Cochlear hair cells were collected from the transgenic mouse strain 

mtGFP-tg [29]. This transgenic mouse strain ubiquitously and exclusively 

expresses Green fluorescent protein (GFP) in the mitochondria. Advantages of 

mice expressing GFP include: 1) No staining is required consequently, cells can 

be imaged directly after preparation. The staining process damages cells [29]. In 

addition, staining processes often result in uneven fluorescence that can produce 

artifacts 2) An increase in the signal to noise ratio can be achieved since 

fluorescence of GFP in mtGFP-tg mice showed no diffusion. 3) The mitochondria 

of mtGFP-tg mice are resistant to photobleaching.  

Studies were conducted in accordance with the guidelines adopted by the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals 

and with the Oregon Health & Science University Institutional Animal Care and 

Use Committee approval. 

Cell Preparation and Imaging Parameters 

Cell preparation has been described in detail elsewhere [30]. Teresa 

Wilson (Department of Otolaryngology, OHSU) conducted cell preparation. 

Vibratome tissue sections were 60µm thick and fixed in 4% 

paraformaldehyde/0.25% glutaraldehyde. Sections were mounted on slides with 

CFM-1 PLUS mountant solution from EMS. Cells were imaged using the Ziess 

LSM710 microscope using structured illumination microscopy (SIM) available in 
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the Oregon Health and Science University Advanced Light Microscopy Core. The 

images were collected in a Z-stack containing 130 images and 65 to 72 slices. 

Total image size is 970 X 970 X 65 pixels in XYZ directions with 16 bits per pixel 

and a voxel size of 0.04µm in X and Y and 0.14µm in the Z direction.  

Image Processing and Analysis 

Multiple steps were required for the full analysis. They included image 

restoration (deconvolution), image segmentation and 3D image rendering.  

Images were analyzed using FIJI (Fiji Is Just ImageJ) [31] with ImageJ[32] 

version 1.48g (NIH) open source software or Imaris® (Bitplane, version 7.2) 

commercial software. Deconvolution was performed using Zen2012 software 

(Ziess). 

Restoration 

Image restoration is the process by which image quality is improved using 

a priori knowledge of the imaging system. Optical imaging systems such as 

microscopes are convolution operators. The measure of how light behaves in a 

system is the point spread function (PSF). In order to reverse the effects of 

convolution, mathematical models are constructed that define the amount of 

blurring for any given microscopy system and based on this a reversing function 

is applied. Zen software by Zeiss was used to perform deconvolution of SIM 

images. Zen software uses the algorithms developed by Agard and Sedat [33].  

Detailed explanation of this method is beyond the scope of this manuscript. In 

brief, Agard and Sedat used a constrained iterative process. The PSF is 

determined based on the blurring of a fluorescent bead. The reversing function is 
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then applied to each image voxel; the PSF is updated and the function applied 

again. Constraints on the value of intensities in the image, such as setting 

artificially generated negative intensities to zero, reduce the contribution of noise 

to the PSF. 

Segmentation 

Image segmentation is the process of isolating image features. There are 

many different techniques and algorithms used in image processing. However, 

due to the complexity of biological images standard segmentation methods may 

not be adequate. 

Thresholding is one of the simplest and widely used segmentation 

methods. It has been implemented using a variety of algorithms. We applied 

three thresholding algorithms in an effort to segment mitochondria in our 

structured illumination images. The Otsu method is an iterative thresholding 

method that calculates the best threshold value by minimizing the sum of the 

intensity variance between pixels classified as either foreground or background 

[34]. The IsoData method is an iterative clustering algorithm. The image 

histogram is separated into foreground and background using a threshold value 

equal to half the dynamic range. The average of the two groups is calculated and 

becomes the subsequent threshold choice. The process is repeated until the 

threshold value remains stable [35]. The Mean method simply uses the mean of 

the image grey levels as the threshold. Many algorithms use the Mean method 

as an initial threshold estimate. The auto threshold feature of ImageJ provides a 
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way to view the image threshold result of each of these methods and several 

other methods as well. This type of comparison was not available in Imaris®. 

Morphological segmentation 

Edge detection methods were used to segment cells and then to further 

segment mitochondria within the region of interest. We created a maximum 

image projection (MIP) of the original image stack and transformed the image to 

an 8bit binary image. In order to create smooth contours we applied a 

morphological dilation. Finally we used the Sobel edge detector with two 3x3 

kernels, to highlight sharp changes in intensity.  

3D rendering 

ImageJ provides a pluggin for 3D rendering of images. However, we found 

that the commercial software, Imaris®, not only provided a more visually 

attractive rendering but a highly interactive model. We were able to view 

mitochondria throughout the cell as we adjusted the threshold. Imaris® uses the 

marching cube algorithm to create the IsoSurface. In short, sets of specialized 

cubes are fit to the object 8 pixels at a time. The edges of the object that fit within 

the contours of the 8 pixels are assigned to the volume of the object while those 

outside are assigned to background.  The review by Newman and Yi gives a 

detailed description of this algorithm [36]. We used the Surpass 3D display mode 

of Imaris® to create an IsoSurface model of a cochlear hair cell previously 

segmented from an image containing several cells. The IsoSurface module steps 

through several parameters. First we adjusted the threshold to 60 to eliminate 

weakly fluorescent objects. Then smoothed the image with a Gaussian filter with 
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a width of 3.0µm and selected the function that closes object borders that may be 

cut open at the edges of the image (Close object Borders). Using the statistics 

function we were able to calculate an average mitochondrial volume based on 

this IsoSurface. Next, in order to count the number of mitochondria in the cell, we 

used the Imaris Spot module, which places a spot at the intensity center of 

objects of approximately the specified volume. Although Imaris® provides a 

region-growing algorithm, we chose to use the local contrast model that gave a 

more consistent outcome. We started with the original thresholded image and 

adjusted the dynamic range of the gray levels (spot quality) to eliminate spots 

with low intensity values. To eliminate small artifacts, we only included 

IsoSurface objects that were greater the 22 voxels in size. We used the volume 

obtained from the IsoSurface as the spot seed volume. 
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Results 

Figure 1 shows the change in image quality after application of the 

deconvolution algorithm of Agard and Sedat [33]. The image quality is 

significantly improved with much sharper image objects. 

 

 

Figure 1 Improvement of image quality after application of deconvolution 
algorithm. A) Raw image B) Image after deconvolution 

 

We applied three image segmentation algorithms Otsu, IsoData and Mean 

grey level, available in ImageJ. In figure 2 it can be seen that the choice of 

algorithm influences the quality of the segmentation. From a visual inspection the 

Otsu and IsoData algorithms, having arrived at comparable threshold values, 

give similar results. The Mean algorithm, however, performs poorly in this 

instance. It gave a significantly lower threshold value, compared to the other 

algorithms, which did not eliminate sufficient background noise. 

A

B



 15 

 

Figure 2 Result of thresholding algorithms. A) Original image B) Otsu C) IsoData 
D) Mean grey level.  

 

The use of edge detection and morphological operations yielded good 

results using ImageJ. The result of each step is shown in figure 3. The 

combination of the Z-projection (figure 3A) and the morphological dilation (figure 

3B) produced a sharp contrast that distinguishes the edges of each cell. The 

edge detector created an outline based on this distinction (figure 3C). For 

emphasis of the result we also created an overlay on the maximum intensity 

projection (MIP) image (figure 3D). 

The 3D IsoSurface model created with Imaris® software is shown in figure 

4A. Although this image shows distinct mitochondria, the creation of the image 

was labor intensive requiring much manual intervention to adjust parameters 

specific to this image, and would not be suitable for high-throughput automatic 

segmentation.  
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Figure 3 Series of edge detection images created in ImageJ (NIH). A) Maximum 
intensity projection of the original image stack B) Binary image after 
morphological dilation to create smooth edges C) Application of the Sobel edge 
detection algorithm D) Overlay of the edge detection result on the MIP image. 
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Figure 4 Three-dimensional rendering of mitochondria in a cochlear hair cell. A) 
Imaris® (Bitplane) IsoSurface model to determine mitochondrial volume B) 
Result of spot module analysis to obtain a mitochondrial count. 

 

The spot module of Imaris® provided a count of mitochondria. It places a 

spot on the highest intensity center of each object that is approximately the 

specified volume. We entered the average volume calculated from the 

IsoSurface model as the spot seed volume from which Imaris® constructed a 3D 

image showing the location of individual mitochondria (figure 4B). 
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Discussion 

Super resolution imaging makes it possible to image cellular organelles 

such as mitochondria. However, further optimization of approaches to analyze 

and visualize image datasets is needed to efficiently improve our understanding 

of subcellular structures. Furthermore, labor-intensive steps should be automated 

to support high-throughput processing. The project we have described was 

designed to demonstrate the use of common informatics algorithms in 

determining the volume and count of mitochondria in cochlear hair cells. The 

results of this approach will allow researchers to determine how mitochondrial 

changes contribute to noise-induced hearing loss. 

In this analysis we chose the thresholding methods (Otsu and IsoData) 

that best separated the mitochondria from the image background based on visual 

inspection. A better method to evaluate algorithm effectiveness was proposed by 

Otsu in 1973 based on the intensity histogram of gray-level images [34]. Otsu’s 

method is predicated on selection of the algorithm that maximizes the difference 

criteria between object pixels and background pixels. This method could be 

adapted to be a measure of algorithm performance. The comparison of an image 

processing technique to ground truth is currently a problem in analysis of super 

resolution images. This is mainly because there are few publicly available image 

datasets for such a validation and in the characterization of mitochondria, to our 

knowledge, there are no available datasets. Coelho et al 2009 describes 

manually processed images that can be used as ground truth [37]. They also 
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discuss methods that can be used to evaluate the performance of segmentation 

algorithms. 

The combination of morphological operations and edge detection 

techniques provides a clean segmentation of cells. However, edge detection 

algorithms are computationally expensive. Continued progress in creating more 

efficient edge detection methods would provide faster analysis of large biological 

data sets 

The rendering of 3D models provides an informative way to display and 

view 3D datasets. Imaris® provides a step-by-step process to create 3D models 

that can be viewed from all directions. However, this process is labor intensive 

and highly subjective. Furthermore, the complex nature of biological images 

would not allow for automated analysis of several images. With Imaris®, the user 

has less control over the analysis process than with ImageJ. However, the 

advantage of Imaris® 3D modeling and visualization is that it gives researchers 

with expertise in biological systems, but not with computer programming, the 

ability to use sophisticated image processing techniques. With the IsoSurface 

model we approximated the volume of mitochondria, however, this value is highly 

subjective as several manual manipulations of the image were required. We took 

the average volume obtained from the IsoSurface model as the initial volume in 

the spot analysis. The 3D spot module uses this volume to place a spot on each 

object of that approximate size. Although the volume was only an approximation, 

this method worked well for counting mitochondria as we found that small shifts 

(2stdv) did not significantly impact the count. This method could also be used to 
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observe changes in mitochondrial location within the cell in response to loud 

noise or other noxious stimuli.   

In this manuscript, we have demonstrated the use of a few of the most 

commonly used informatics algorithms in image processing. While these 

algorithms are widely used in medical image analysis, the added complexity of 

biological images and the nanoscale nature of the objects of interest require 

sophisticated techniques and tools.  

While imaging technology has made great strides, advances in processing 

and visualization of the large amount of data generated by super resolution 

microscopy (SRM), is trailing behind. As SRM becomes a staple of modern 

research the need for user friendly and readily available post processing software 

has become critical to realizing the full research potential of images produced in 

this manner. Fortunately, open source and commercial tools are rapidly being 

developed.  

Image Processing Tools 

Digital image processing hit its stride in the medical field with analysis 

approaches that highlight macroscopic features such as tumors. However, 

application of these processing techniques does not translate to microscopic 

examination of image features on the nanoscale level. For example, macroscopic 

bodies in Optical Coherence Tomography (OCT) or Computed Tomography (CT) 

scans are routinely identified visually with borders manually drawn by a 

physician. This simple segmentation method is highly impractical for the 

identification of hundreds of mitochondria in what could potentially be thousands 
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of images.  In developmental biology it is not uncommon to collect a series of 

images totaling in the thousands and spanning days [28]. Clearly, an imaging 

project of this magnitude would not be feasible without the availability of efficient 

image processing tools and automating algorithms. 

Open source tools, such as ImageJ, consist of a collection of task-oriented 

plugins written by members of the scientific community [32]. The advantages of 

this distribution method are many. The cost is negligible and the software is 

available to the general public. Furthermore, plugins have already been written to 

address an array of image processing steps required in the average imaging 

project. Documentation is readily available; each plugin usually contains a 

vignette that describes the package and includes examples. Finally, forums can 

easily be found on the Internet for many disciplines where individual questions 

can be posed and are answered by either those with a similar experience or 

experts in the field. On the other hand, there is usually a steep learning curve for 

the majority of researchers whose main focus is biological mechanisms, not 

computer programming or image processing. Another disadvantage of the open 

source paradigm is the dizzying array of available tools. It is often difficult to 

determine which plugin is best for any given research project. Collections of the 

most commonly used image processing algorithms have been assembled into 

suites such as FIJI. Commercially available software while highly documented 

and generally designed for ease of use, can be cost prohibitive for most 

laboratory settings and especially for the individual user.  More importantly, 

commercial software can become a “black box” where the user does not have 
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control or knowledge of the algorithms and parameters used in image processing 

tasks. Both open-source and commercial software provide compatibility with 

several of the proprietary file formats used by microscope manufacturers. 

Other aspects of imaging projects that have not been discussed in this 

manuscript but need to be addressed include: image storage and sharing, image 

registration and standardized image annotation. Storage and sharing of large 

datasets can be daunting. With researchers generating hundreds of terabytes of 

imaging data, it becomes necessary to have a devoted server for adequate and 

safe storage of images. Many imaging projects involve more than one imaging 

modality and differences in temporal resolution and differences between subjects 

often require registration of images to one another or to an established image 

atlas. Finally, there is a great need to standardize image annotation. Image 

metadata is critical to image sharing and reproducibility of image processing 

workflows. Annotation of images is a necessary step in the ability to create image 

databases that would facilitate the advancement of super resolution imaging 

projects. 

In conclusion, imaging techniques have made great strides in the last 20 

years. Super resolution microscopy has exceeded the limits of conventional 

microscopy, giving researchers the ability to capture images of subcellular 

components, such as mitochondria. The large multidimensional image datasets 

that this technology generates requires sophisticated analysis methods. We have 

demonstrated the use of just a few key informatics algorithms in analyzing super 

resolution images of mitochondria in cochlear hair cells. This approach can also 
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be used to evaluate other nanoscale components such as cellular nuclei and the 

cellular cytoskeleton. As imaging takes a pivotal role in modern research, the 

continued development of image analysis approaches is crucial to advancing our 

understanding of subcellular structures and their contribution to disease states 

such as noise-induced hearing loss.  
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