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ABSTRACT 

THE EFFECT OF OPTICAL SPATIAL FILTERING 

ON THE STATISTICS OF LASER RADLATION 

PROPAGATING THROUGH THE TURBULENT ATMOSPHERE 

Libo Sun, Ph. D. 
Oregon Graduate Center, 1988 

Supervising Professor: J. Fred Holmes 

Speckle-turbulence interaction has the potential for allowing single ended 

remote sensing of the path averaged strength of turbulence (structure 

constant) along the limit of sight to a remote object. Unfortunately, the 

fluctuations in received intensity due to speckle and those due to the 

turbulence cannot be directly separated. It was therefore proposed that by 

utilizing optical apatial filtering (OSF) before measuring the received 

intensity, that the effects of speckle and turbulence could be separated. 

Consequently, the research for this dissertation was directly toward a better 

understanding of laser and laser generated apeckle propagation through 

turbulence, the effect of optical spatial filtering on the received intensity and 

its application to optical remote sensing of the strength of turbulence. 

The work involved both analysis of the statistics for the received inten- 

sity after OSF and experimental work to verify the analysis. The mean and 

the variance of the received intensity after OSF both for the lime of sight 

case and the single ended case were analyzed and the results atudied. These 

xi 



results indicated that the OSF mean intensity in both cases could be used 

very effectively to remote sense the strength of turbulence, but that the vari- 

ance was not useful for that purpose. 

Experimental work was conducted for both the line of sight and single 

ended cases in the atmosphere and also utilizing the OGC turbulence simula- 

tion tank. The results agree with the theoretical predictions and demon- 

strate that OSF can be used in both the line of sight case and the single 

ended case for optically remote sensing the strength of turbulence. The tech- 

nique should be useful for turbulence levels from around lo-'' to 1 0 - ' ~ r n - ~ ' ~  

by choosing appropriate laser wavelengths and the high-pass spatial filter 

sizes. 

rii 



1. Introduction 

Optical images have the inherent property that they possess two degrees 

of freedom as represented by the two independent variables. An additional 

property of an optical system is that a Fourier transform relation exists 

between the field distributions a t  the front and back focal planes of a lens 

used in such a system. Hence, in a coherent optical system, an optical 

arrangement which presents a space-domain function and successive Fourier 

transforms can easily be implemented. As a result, integral transforms and 

filtering in the spatial frequency domain may often be carried out more con- 

veniently in an optical system than in an equivalent electronic channel. 

Historically, the basic Fourier transform relations upon which the spatial 

filtering is based are essentially established by Huygens, Fresnel and Kir- 

chhoff. The first attempt in performing optical spatial filtering (OSF) were 

made by ~ b b e l  and porter2 in their studies on microscope vision3 in the 

years 1893 and 1903 respectively. In their experiments, the effects of OSF 

were demonstrated by inserting a narrow slit in the focal plane of a 

transform lens. The change in the orientation of the slot would produce a 

change in the contents of the vertical or horizontal component which can 

best be seen from the image of a meshed screen made of thin wire. Several 

filtering methods have been developed with the advancement of optical 

manufacturing techniques. The Schlieren technique4 (1866) provides a sensi- 

tive approach to detect light diffractions due to  changes in the refractive 



index along the path. A typical Schlieren system consists of two concave 

mirrors that produce and refocus a parallel beam of light from a mono- 

chromatic source; A knife edge is placed at the location of the focal point of 

the second mirror. The knife edge is placed in such a way as to obscure half 

of the image when there is no diffraction on the path, the effect of diffraction 

will form a shifted image. Due to the coherence of the primary and 

diffracted light, the illumination of the output will be altered. It is evident 

that the output is proportional to the integrated gradient throughout the 

path in a direction normal to the knife-edge. This fact, together with the 

effect of the finite aperture of the system, makes quantitative analysis of the 

Schlieren photography difficult. The anisotropicity of the Schlieren method 

can be removed by utilizing a two-dimensional knife-edge shaped to fit the 

shape of the source. Opaque stops of circular6 and square6 shape have been 

used as spatial filters for corresponding light sources. The well known 

experiment by zernike7 (1942) successfully solved the vision of a thin tran- 

sparent phase object by introducing a phase shift filter. 

In the fifties, the concept of electric filtering begun to be accepted by 

scientists in optics. Because of the Fourier transform relations of coherent 

optical systems they behave in many ways, analogously to electrical-filters. 

The erne of synthesis of optical system has made them useful in some areas 

where complex electric networks were previously used. Since then, the OSF 

technique has developed rapidly and the communication theory approach has 

widely been used in the analysis of such system. O'neill * and cutrona9 pro- 

vided good review papers summarizing the details of this development. 



In comparison to the electric filter counterpart, the optical filtering sys- 

tem features a huge information volume, instant processing and parallel pro- 

cessing. On the other hand, there are some disadvantages associated with 

using the optical approach. First, the two-dimensional nature of the filtering 

makes quantitative analysis difficult. In some cases of application, the effect 

of OSF can only be described in qualitative terms or be displayed in pictorial 

images before and after filtering. Second, the resolution of the optical system 

is always limited by the diffraction of the finite aperture. The output of the 

optical system is the convolution of the input image with the delta-response 

of the apertures involved. In electronic systems, the accuracy and the 

bandwidth of a filter can be implemented in response to  the requirement up 

to  a specified degree. In optical systems, high-quality filters are usually 

expensive to make and hard to  implement. For example, under mono- 

chromatic collimated input, a circular aperture produces an amplitude distri- 

bution in the form of a eero order Bessel function which features a rich eero- 

frequency component within the disk with radius r = 1.22hf/d, where d is 

the diameter of the aperture. The upper limit of resolution of the optical 

system, according to the Rayleigh criterion, is determined by r .  In order to 

increase the resolution beyond this limit, the only possible choice is to use a 

larger aperture. In addition, various aberrations of the optical system will 

introduce more errors and thus decrease the resolution. Hence, it is expen- 

sive to build a high-resolution system and it is also tedious to analyze such a 

system quantitatively. Another difficulty associated with the OSF system is 

the requirement for high-mechanical precision. The theoretical resolution of 



a lens 20 centimeters in diameter and with a focal length of one meter is 

about 3.6 micrometers. To match such resolution, the edge ehape as well as 

the positioning of the filter need to be controlled within the order of microm- 

eter. It is relatively easier to manufacture a half-plane filter by using a sharp 

edged knife as in the Schlieren apparatus. But, it is much more expensive to 

implement a small circular disk with the same edge sharpness. 

More recently, efforts have been made to probe the quantitative aspects 

of the OSF technique and to design precision measurement system based on 

the analysis. ~ a ~ l o r l O  completed an analysis on gas flow visualization using 

a phase contrast filter and a physical apparatus based on a Schlieren system 

was used to study the gas flow. He pointed out that in order to  realize the 

full sensitivity of the method, the image of the input pinhole, in the absence 

of a phase object, must exactly coincide with the phase shifting filter spot. 

The need for accurately matching the image of the source with the phase 

shifting spot requires that all aberrations in the optical system be kept to  a 

minimum and that all the optical components be of the highest possible qual- 

ity. The numerical discrete Fourier transform (DFT) was adopted l1 to dis- 

cuss the quantitative properties of the phase shift filtering. The performance 

of the optical matched filter, i.e. the Vander-Lugt filter, in regard to  the 

signal-bnoise ratio was analyzed by Shanker and ~ u ~ t a l *  in their studies 

on the multiplicative speckle noise of digital information storage system. 

An object with low contrast and soft edges possesses rich low frequency 

components which overlap the spectrum of the aperture. Numerous tech- 

niques have been developed to overcome this difficulty with various degree of 



success. A two-stage spatial filtering scheme was proposed by Blodgett and 

~ a s t o n l ~  with an attempt to separate the spectrum generated by the aper- 

ture and that generated by the object. A cross-shaped high-pass spatial filter 

was introduced in the focal plane of the first stage to match the square input 

window. The filter is analytically represented by the following formula 

T = [I - r e c t ( l ) ]  [l- rect ( : )] 
a 

where a and b are the half-width of the elements of the cross in the x and y 

directions respectively. By using optimum parameters, the aperture spec- 

trum energy is reduced by a factor of lo4. This technique, however, can only 

be used successfully when the object is in the format of a transparency. 

The optical spatial filtering techniques can also be applied to speckle 

interferometry14. This is a technique that uses a double-exposure speck- 

legram to detect small displacement and strain in mechanical structures. In 

this arrangement, a filtering aperture is located a t  the transform plane to 

allow a particular spatial frequency of the spectrum to pass through the 

reconstruction lens and to  form fringes. Chen and chiang16 performed a 

quantitative analysis of the effect of the size and location of the band-pass 

filter on the visibility of the fringes. 

Obviously, the OSF technique has become a powerful tool in the area of 

precision measurement. The purpose of this research is to provide a sys- 

tematic approach in modeling and analysis of OSF systems. With special 

application in the remote sensing of turbulence in the atmosphere, formula- 

tions for the mean intensity as well as the intensity variance are given in 



closed form. The formulation contains important system parameters such as 

the lens aperture, focal length, filter size, center transmission, phaseshift, 

etc. In order to verify the theory, several experiments were designed and 

measurements conducted by using the equipment and computer facilities of 

the Laboratory of Atmospheric Optics at Oregon Graduate Center. 

This paper is divided into seven chapters. Chapter 1 is an introduction 

which provides a review of the development of the OSF technique. In 

chapter 2, we introduce the Green function of the standard OSF system in a 

close form representation. All system parameters are involved in the discus- 

sion so the effect of each of them can be studied separately. This function is 

given for a general center-symmetrical-structured system and can thus be 

used elsewhere for analysis purposes. In chapter 3, the mean intensity of 

spatially filtered laser radiation propagated through the turbulent atmo- 

sphere is studied. Here, the mean intensities as functions of the system 

parameters and of the turbulence index are given for two planes of interest: 

the image plane and the output plane. The performances of high-pass and 

also phaseshift filtering are displayed under typical system parameter 

configurations. We have also considered the quadratic approximation of the 

wave structure function of the turbulent atmosphere and discussed the error 

introduced into the spatially filtered mean intensity. The analyses of spa- 

tially filtered intensity variance for the line of sight case and for speckle pro- 

pagation case in the turbulent atmosphere are discussed in chapters 4 and 5 

respectively. To avoid cumbersome mathematical complexity, the results are 

given using the quadratic approximation for the wave structure function. 



The experiments that were designed and performed to support the theory are 

described in detail in chapter 6. The major results of this paper are sum- 

marized in chapter 7. Appendix 1 presents a tranaformation in 8- 

dimensional space which enables us to simplify some mathematical expres- 

sions in the text. The numerical expansions of the four-point structure func- 

tion of spherical wave propagation in turbulent atmosphere are given in the 

closed forms in the appendix 2, which has much better accuracy of numerical 

evaluation in comparison with the quadratic approximation. 



2. The Green functions of the Spatial Filtering Symtem 

The Green function of a two-dimensional system is often called the 

'point spread function'16 in optics literature, which is the system response to 

a two-dimensional delta function input. In the following, we use the Green 

function to represent the input/output relation between field amplitude of a 

two-dimensional optical image processing system. 

2.1. Image Plane Green Function 

Fig. 2.1 shows a schematic diagram of the receiver system. A receiver 

consists of two lenses with diameter D = 2 6 a ,  where D is the actual diarne- 

ter of the lens and a is a normalized parameter. A spatial filter is put 

between these two lenses. 

There are two planes of interest in Fig. 2.1, i.e the image plane and the 

output plane. The image plane q is defined via the expression 

where do is the object distance , d, is the image distance and f is the 

focal length of the lens. We stress the term 'image plane' to distinguish it 

from the popular term 'focal plane' in our spatial filtering system. In most 

cases of remote sensing, the object is usually far away from the receiver and 





thus the image plane is very close to the focal plane. But, in practice, it is 

much easier to place the filter on the image plane which is well defined, has 

the sharpest image and is observable. The 'focal' plane, although also well 

defined conceptually for an aberration free lens, is hard to find in actual 

measurement. For an object situated a t  a distance of 500 meters, the dis- 

tance between the two planes is only 2 mm for a lens with a focal length of 1 

meter. But this produces a substantial difference in the results of spatial 

filtering. In order to have good consistency, our theory is developed in terms 

of image plane filtering and in our experimental work, efforts are made to 

place the filter on a plane having the sharpest image. 

We introduce two Green functions which are required to complete the 

theory: the image plane and output plane Green function. 

The input plane is assumed to be just in front of lens L,. The image 

Green function G3(q,p) can be constructed in terms of the field distribution 

u,(q) on the image plane due to a point source located a t  point po on the 

input plane. The output Green function G6(r,p) is similarly defined in terms 

of the field u6(r) on the output plane generated by the point source. Thus we 

assume 

Ul(P) = S(p-po) 

The lens is represented by a Gaussian transfer function 

Where a is the aperture parameter and f is the focal length of the lens. 



Under the thin lens assumption17 , the field behind the lens is given by 

2 2 
u 2 ( p )  = 6 ( p  - p s ) e x p ( -  2- - i k e )  

a 2  2 f  (2.4) 

The field on the q plane before filtering is the result of a free propaga- 

tion of u 2  and is given using the Huygens-Fresnel formulation and the parax- 

ial approximation by: 

where d p = p d p d e .  Thus the image Green function of the system is given by 

ikd, e [,- 1 j - ( - -  k 1  - 1 ) l p 2 - i p q )  (2.6) 
6 2 d i  f 4 

2.2. The Output Plane Green Function 

The spatial filtering is implemented by putting a Gaussian type spatial 

filter on the image plane. The transfer function of the filter is defined as: 

fi Where q, is the normalized filter size defined by q, = -D and D is 
4 

the actual diameter of the center spot of the filter. Different filter 

configurations can be simulated by properly choosing the parameters . Typi- 

cal examples are : 



1. High-pass filter: b = 1,a = 0,6 = 0 

2. Low-pass filter: b = 0,a = 1,6 = 0 

7r 3. w/2 Phase-contrast filter: b = l,a = 1,S = - 
2 

The field immediately behind the filter is given by 

u,(s) = u3(s)F(s)  (2.8) 

The field u6(r) is related to u4(q) by18: 

e2ikf k 
u6(r) = -S$U~(~)A (r+ q)exp(- i-raq)dq 

t A f  f (2.9) 

where dq=qdqd%, A(x) is the aperture function of the second lens and is 

2 given by A (x) = exp(- -). 
a2 

Substituting (2.7) , (2.8) and (2.5) into (2.9) , writing u6 = u,' + u i  , we 

have 

The integral can be worked out as : 

u,' can thus be rearranged as the following; 



Similarly, the second term of uS2(q) is 

k  i-) 2 
k ( 7 -  

- [ i  
1 1 . k  1r.p- 

1- ubi )  
2 d ' ( ~ +  -- !lo2 2d  

After rearrangement and combining terms, we have the output Green 

function of the system defined in the following form 

where the coefficients are given by: 



The statistical quantities needed are the second and fourth moments of 

the field. Under the new coordinate system defined by 

The second moment is given by 

where the subscript i is 3 or 5 depending on whether image or output plane 

statistics is derived. For the output plane, Q and q are replaced by R and r. 

The field quantities ui can be expressed in terms of the Green function as 



ui(q)= Gi(q, P) * UI(P)  

= S ~ i ( 9 ,  P ) ~ I ( P ) ~ P  (2.25) 

Using equation (2.25) in (2.24), the second moment of the fields becomes 

ri(Q,P) = JJGi(q1, PI)G:(%, ~ 2 )  < u I ( P I ) u ; ( P ~ ) > ~ P ~ ~ P ~  

= JJG,G:(Q,~; p , p ) r 1 ( p ,  P ) ~ P ~ P  (2.26) 

Proceeding in a similar manner, the fourth moment of the field is given by 

The second order image and output Green functions as given by: 



1 1 - ( B , + B , ! ) ( P ~ + ~ ~ ~ ) + ( B , - B , ~ P - ~ + ( D ~ +  D,?(R-P+ a r . p ) + ( ~ , - ~ j ! ) ( - i - ( ~ . ~ + r . ~ )  
4 I 

(2.29) 

and the fourth order output Green function by 



3. Mean Intensity 

3.1. Mean Intensity on Image Plane 

The intensity statistics on the focal plane of a receiver lens have been 

discussed by several a u t h o r ~ l ~ - ~ ~  for a laser beam propagating through tur- 

bulence and a method for optical measurement of the turbulence parameter 

has been developed 22*23 based on theoretical analysis. As we mentioned ear- 

lier, the focal plane is conceptually different from the image plane. The image 

plane statistics of the intensity is essential to the spatial filtering system. It 

is also important to study the intensity distribution on the image plane in 

order to optimize the filter parameter. We will first discuss the image plane 

intensity under two different cases of interest, i.e. line of sight and speckle 

propagation. 

3.1.1. Line of Sight Propagation 

We first try to find the field mutual coherence function (MCF) at the 

input of the system. Since the system is linear, the intensity on the image 

plane is given by the convolution of the MCF of the input field with the sys- 

tem Green function G ~ G ~ .  The geometry of the remote sensing system is 

shown in Fig. 3.1. A raw laser beam is propagating through turbulent atmo- 

sphere and is received by the spatial filtering receiver. By utilizing of the 

extended Huygens-Fresnel principle24 , the input field on the p plane can be 



Transmitter 

-/- Receiver 
He - Ne A 0  Modulator 0 , 0 

I 
100 KHs Osc. --- I 

I I Turbulent Atmosphere 

I Tape Recorder 

40 MHI Osc. 

Fig. 3.1 Line of Sight Remote Sensing System 



expressed by 

ikd,  
e k 

~ I ( P )  = ~ I J u o ( ~ ) e x ~ [ ~ -  I P-P 1 2 + 4 J ( ~ , ~ ) l d ~  
2do 

where do is the object distance measured from the source to the receiver, and 

@(p,p) is the random phase perturbation by the atmosphere. 

The laser source can well be modeled by a spherical wave for long dis- 

tance propagation and using a relatively small receiver aperture. For simpli- 

city, we assume that 

Thus 

ikd, 
e 

So the MCF of the field at  the input plane is given by 

where po = ( 0 . 5 4 6 ~ ~ k ~ ~ ) ~ ~ ~  is the coherence length of a spherical wave pro- 

pagating in the random medium. 

The mean intensity on the image plane can be obtained from the fol- 

lowing double convolution: 



Here, we use subscript 1 and 3 for the input and image plane respectively 

and the four dimensional integration is with respect to d P d p = P d P d e p p d p d e , .  

Using (2.28) and (3.4) in (3.5), we have 

1 k 2 1 1 1  k r3(Q,q) = J J [ - ] 2 e x p [ i - ~ . q - 7 ( ~ 2 +  - p 2 ) - i k ( - - - ) ~ - p - i - ( ~ . q + p - ~ ) ]  
~ d ,  d ,  a  4 f di di 

By using the imaging condition (2.1), this can be simplified to 

k 1 . r r a 2 2  1 1 k e x p [ , - - Q - q -  -(-) q ] l e x p [ -  7 p 2 + ( - ) " - i - ~ - Q ] d ~  
di 2 ~ d ,  2 a  PO di 

The intensity distribution on the image plane is a function of radial 

coordinate Q and turbulence index C:. Let q = 0 in (3.6). The result is 

where Jo is the Bessel function of zero order. 

The numerical integration result of (3.7) with different aperture sizes 

and filter parameters is shown in Fig. 3.2. 
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3.1.2. Speckle Propagation 

In the speckle propagation case, the transmitter and the receiver are a t  

the same end of the propagation path and a diffuse target is placed at  the 

other end. The laser beam is focused on the target and generates speckles 

that propagate back to the receiver. 

The laser source has a finite aperture a, . As it is focused on the target, 

we have f =do, so 

The intensity distribution on the target is given by 

The target is assumed to be a Lambertian reflector and provides a 6 spa- 

tial correlation. It can be shown that the MCF of the field a t  the input of 

the receiver is 25 

Comparing (3.10) with (3.4), it can be seen that the effect of the tur- 

bulence on the MCF has 'doubled'. Putting (2.13) and (3.10) into (3.5), going 

through the procedure used for the case of line of sight propagation, one can 

find the MCF distribution as 



The intensity distribution on the image plane is a function of radial 

coordinate Q and turbulence index C:. Letting q = 0 in (3.11), the intensity 

is obtained, 

I t  is worth noting that in the speckle case, the transmitter aperture 

effect on the image plane spot size is combined with the receiver aperture 

under a geometrical rule. We can define the effective aperture a,,, as 

Fig. (3.3) shows the dependence of the intensity distribution versus the 

turbulence as a function of radial coordinate Q for the geometry of the 

remote sensing used to gather experimental data. 

3.2. Mean Intensity on Output Plane 

3.2.1. Line of Sight Propagation 

The field correlation on the output plane of the spatial filtering system 

is given by the convolution of (3.4) with (2.28) : 

Using (2.15) and (3.4) in (3.13), we get the output MCF as 
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Using 

utilizing the imaging condition (2.1), working out the integration 

and putting it all back into (3.13) and rearranging terms, the intensity on the 

output can be expressed as 



The intensity a t  the center of the output plane is related to the tur- 

bulence level by 

Equation (3.17) is the result for remote sensing of turbulence in the case 

of line of sight propagation. 

Fig. 3.4 and 3.5 show the behavior of the axis intensity as a function of 

system parameters and strength of turbulence. 

3.2.2. Speckle Propagation 

Making use of (3.10) and (2.15) in (3.13), and proceeding as was done 

for the line of sight case, the intensity distribution on the output plane is 

I 2 2 W A , A ~ :  (D,  + D , ) ~  
r,(R,O) = CC exp -[(c,+c;)- 

I 1 h 2 d , ' ( ~ , +  B,) 4(B, + B,) 

The intensity a t  the center of output plane is obtained by putting R = 0 in 

(3.18). Thus we have 
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solid ) and 0 ( dxqhed ), path length =500m. 



The center intensity output of the spatial filtering system in the speckle 

case is shown in Fig. 3.6 and 3.7. 

3.2.3. Phaee Contrast Filtering 

The phase contrast filtering was first suggested by zernike7 for observ- 

ing a phase object which is not observable using conventional microscopic 

techniques. Since then more complicated methods of what can collectively be 

called interference microscopy have been developed. The basic idea is to 

introduce a phase shift of n/2 to the low frequency components in the image 

plane of the object. I t  can be seen by simple c a l ~ u l a t i o n ~ ~  that  under 

coherent illumination, a small phase shifts (8<<.rr) are converted into first 

order intensity differences after phase contrast filtering. To consider the 

effect of phase shift filtering on light propagated through the atmosphere, 

two factors have to be taken into account. First, the light after traveling 

through the turbulent atmosphere loses some of its spatial coherence. This is 

especially true for the speckle generated by a laser beam on a diffuse target. 

Second, the phase shift introduced by the turbulent atmosphere is a random 

quantity, which under most propagation conditions exceeds several n. Hence 

the small phase modulation assumption is no longer valid. However, it  is still 
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of interest for both theoretical and applied physicists to study the effect of 

phase contrast filtering on the turbulence modulated light. 

Our model was designed to cover this type of spatial filter. By adjusting 

the parameter configurations in (3.17) and (3.19), the theoretical curves of 

the mean intensity under either the line of sight or speckle propagation case 

can be generated. In Fig. 3.8 and Fig. 3.9, the effects are shown for different 

system parameters. 

The curves in these figures show a feature of coherent cancellation at  

some specific turbulence level. At low turbulence levels, most of the light 

energy goes through the central spot and is shifted collectively by n/2. At 

the high turbulence end, most of the light does not go through the center 

spot and the phase shift of the center part can be ignored. Thus, the output 

mean intensity is relatively independent of the turbulence changes. For both 

of these conditions in transition, some light goes through both regions and 

the output intensity is reduced due to destructive interference from the phase 

shift. However, because the light has traveled through the turbulent atmo- 

sphere and lost some of its coherence, the intensity cancellation is never com- 

plete and the response is not very sensitive to the turbulence. 

3.3. Quadratic Approximation 

We develop this section for two reasons. First, this section provides a 

direct comparison with the true.numerica1 result for the mean intensity to 



determine the error introduced by using the quadratic approximation to the 

wave structure function. Second, the theory of intensity variance presented in 

later chapters can only be solved in analytical form by using the quadratic 

approximation. 

We define the quadratic form of wave structure function as 

where p, = ( 0 . 5 4 6 C : k ~ ~ ) - ~ ~ .  The two cases of line of sight and speckle pro- 

pagation will be discussed separately. 

3.3.1. Line of sight propagation 

By utilizing of (3.20),  (3.17) is reduced to the following: 

In Fig. (3.10),  the results of the accurate numerical integration of (3.17) 

are plotted along with the its cpadratic form (3.20) for different values of 1 .  

The parameters used are propagation distance L = 500m, receiver aperture 

a=0.15m, filter size Q , = 3 3 ~ 1 0 - ~ m .  The case q = 3 corresponds to the con- 

ventional approximation form. It is worthwhile to note that the slope 

changes substantially under the quadratic approximation. By adjusting the 

factor 9 ,  the slope remains the same but the average mean square error is 





reduced. Under this criterion, the factor of q = 15 is better than the usually 

accepted value of = 3. 

3.3.2. Speckle propagation 

The mean intensity output under quadratic approximation can be 

obtained by using (3.20) in (3.19). Thus we have 

Both of the above results of mean intensity under quadratic approxima- 

tion will be used in the analysis of the intensity variance. On Fig. 3.11, a 

comparison of quadratic approximation (3.22) with true numerical integra- 

tion of (3.19) for speckle propagation is given. The parameters used are L = 

500 m, transmitter aperture a0=0.0lm, filter size ~ ~ = 1 0 6 ~ 1 0 - ~ .  Again, we 

see a better fit can .be obtained by adjusting the parameter T. 



Fig. 3.11 Mean intensity or speckle propa(tati0n. True numerical 
inkgrstion ( d i d )  .is compared with quadratic approximation with difbrrnt 
lactor r(. 



4. Intensity Variance 

( Line of Sight Case ) 

4.1. Introduction 

The theory of intensity variance and other second order intensity statis- 

tics of laser propagation through the turbulent atmosphere have been well 

developed in the two previous decades and several review papers are avail- 

able26p27 for good reference. The significance of this study of the intensity 

variance of optically spatial filtered laser radiation is that  by introducing a 

filter, the spectrum of the radiation is intentionally altered and hence it pro- 

vides a different approach to access the subject. In the following, we will 

first develop a general formulation of the intensity correlation of the output 

of the spatial filtering system which applies to various propagation cases and 

then use this formulation to analyze two important cases of interest: line of 

sight propagation of coherent laser source and speckle propagation which is 

completely incoherent. This formulation can easily be extended to  the case 

of partially coherent light propagation through turbulence. 

4.2. General expression for intensity correlation 



Using our Green-function notation, the input and output fields of the 

spatial filtering system are related by the following: 

where G(r, p) is the Green function of the system and is given explicitly 

by 

All the desired second order statistics of the intensity can be derived 

from the time-delayed intensity autocorrelation function defined as 

To simplify the analysis, let us calculate the correlation a t  points sym- 

metrical to the origin, therefore: 

The intensity correlation a t  the center of output plane is given by: 

where GGGG(rl2,-r212; p1,p2,p3,p4) is given by: 



In the case of line-of-sight propagation, the field at  the receiver input is 

given by a distorted spherical wave: 

The fourth moment of the input field is 

where H is given by 

As our major concern is to study the spatial filtering effect, we will 

assume in the following that the function H is dominated by the phase 

fluctuations. In other words, the effects of log-amplitude correlation as well as 

the cross-correlation between phase and amplitude are ignored. Hence, the 

results will apply to the case of propagation in low to moderate integrated 

turbulencea6, 289 29. Consequently, 

H = exp[-J-(Dl2- D13+D,4+D23-~24+~34)I  
2 

where 



where V is the cross wind and t ,  - ti is the time delay T. 

The final expression for the time delayed correlation of the intensity a t  

the center of output plane is: 

where Ei = B,-g- , etc. 
2 4  

Equation (4.7) is the form of time delayed intensity correlation which 

involves the cross-wind effect. It was observed in our experimental high-pass 

system that the random intensity pattern on the output plane moves with 

the cross wind in the same fashion as that in the case without filtering. 

Because the bright background has been removed, the intensity variations 

are much easier to observe. The cross wind can then be obtained by study- 

ing the time delayed intensity correlation. In order to retain the cross-wind 

effect, as we will discuss in the next section, the eightfold integration of (4.7) 

has to be calculated through numerical techniques. 



The 5/3 law functions within the eightfold integration and 16-term 

summation make (4.7) impractical to be evaluated by conventional numerical 

approaches and further simplifications are needed. We have developed an 

expansion of the wave structure function with good accuracy which can be 

used to perform this type of sophisticated numerical integration [Appendix 

21. To obtain good physical insight into the subject and avoid messy ambi- 

guous expressions, in the following we will use the quadratic form of the 

wave structure function in the variance analysis work, as other authors have 

done in the analysis of partially coherent propagation30 and receiver aperture 

averaging effect2Ol3l. To be more flexible, we use the quadratic form with 

adjustable factor rl to give a dimension of best fit of the theoretical result to 

the experiments. This simplifies the analysis and yields a result in closed 

form. A comparison of the 5/3 law results and the quadratic form results will 

be made. 

4.3. Variance 

The variance of the intensity at  the output of the spatial filtering system 

will now be developed. We will use the quadratic approximation for the wave 

structure function. Under the quadratic approximation, the typical term in 

(4.7) can be written as 



The phase structure function can thus be written as 

It can be seen from (4.8) that the cross-wind effect in the phase struc- 

ture function is completely cancelled out under the quadratic approximation. 

Hence, this approximation can not be used to determine the cross-wind effect 

in the case of line of sight propagation. By utilizing (4.8), the intensity auto- 

correlation a t  zero time delay can be organized in the generalized form: 

The eight-fold integration of (4.9) can be worked out analytically. We 

provide a simpler version of the integral which is essentially equivalent to the 

result given by ~ e a d e r ~ O  in 1979. Our result is 



where 

The Intensity correlation is given by the summation 

In the case of line of sight propagation, the following set of parameters 

were used in (4.10)-(4.14): 



When = 3, the result correspond to the conventional quadratic 

approximation. The intensity correlation can thus be calculated. 

Typical behaviors of the correlation, the squared intensity, the variance 

and normalized variance as functions of turbulence strength are shown in 

Fig. (4.1) through (4.4). When plotting these figures, the wavelength of a 

He-Ne laser ( 0.6328~10-' ), and a receiver focal length of 2 meters were 

used. To reflect the realistic filter characteristics, a finite center transmission 

of 1 of one-millionth of power attenuation were assumed. The trivial con- 

stant (n/~d, ) '  in front of relevant expressions was omitted. 

The calculation is performed using a single precision complex algorithm 

with an accuracy of 1 ~ 1 0 - '  . The numerical noise is apparent (Fig. 4.4) 

when the correlation goes below IO", this can be improved by using comput- 

ers with a double precision complex algorithm in Fortran. 

In fig. 4.1 and 4.5, all quantities of second order statistics are displayed. 

Our theory reveals the features of line of sight propagation. The intensity 

correlation equals the squared intensity a t  both low and relatively high ends 

of turbulence strength and so the normalized variance are zero a t  these ends. 

The system parameters were chosen so that a t  the low turbulence end, most 

light energy falls within the non-transparent center disk of the filter and thus 
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is attenuated by the same amount. In this case, the system output statistics 

should be similar to the raw input beam in front of the receiver. On the 

other end, the turbulent atmosphere scatters most of the incoming beam so 

the image pattern is very large compared to the filter disk. The filtering 

effect can then be ignored, and the normalized variance should be close to 

that at the input of the system. In the transition region, the variance 

increases almost linearly in a log-log scale with the turbulence strength, then 

saturates at  a peak and drops down. Similarly, the normalized variance 

increases above unity in the first half of the dynamical range and falls back 

to  zero almost symmetrically in the second half range. It is to be noted that 

the normalized variance (curve 4) reaches its peak at  the turbulence level 

where the intensity curve (2) has its largest slope. 

Our theory does not predict the high turbulence end behavior correctly 

because of two reasons: (1) we used phase structure functions only and the 

correlation including log-amplitude terms are excluded; (2) we have used the 

quadratic approximation of (5/3) law. As has been indicated in our previous 

work, the introduction of the quadratic approximation changes the slope of 

the curves substantially. The effect of different filter parameters are shown 

in fig (4.2) (for normalized variance) and fig (4.3) (for variance). 



6. The Intensity Variance 

( Speckle csse ) 

6.1. Introduction 

The speckle case is where the laser transmitter and the receiver are a t  

the same end of the propagation path with a target located a t  the other end 

of the propagation path. Because of the mathematical complexity of the 

problem, we limit our discussion within the following restrictions: 

1. In the forward propagation, we assume the gaussian beam is focused on 

the target and that the atmosphere perturbations due to the forward propa- 

gation are independent of those due to the return propagation. 

2. We consider only the phase distortion by the turbulence. This is a good 

description for low and moderate turbulence condition but is not correct 

under strong turbulence 

3. The quadratic approximation will be used throughout this analysis. The 

use of 5/3 law yields a result that includes many-fold unsolved integrations 

which are not practical to evaluate numerically. As we have indicated in the 

intensity analysis, the quadratic approximation will change the slope and 

range of the resultant curves. We will provide a comparison of the theory 

with our experimental data. 



5.2. Fourth Moment of the Incoming Field 

In order to find the second statistics of the intensity after spatial filter- 

ing, we need first to calculate the fourth moment of the incoming field . We 

assume a gaussian beam source with a diffuse target. The beam is focused on 

the target so that the scattered fields leaving the target have the following 

correlation: 

The speckles generated a t  the target travel back to the receiver end. By util- 

izing of the Extended Huygens-Fresnel principle for wave propagation in the 

a t m ~ s ~ h e r e ~ ~ r ~ ~  , the time-delayed fourth moment of the field at  the input of 

the spatial filtering system with coordinate p is given in terms of integration 

over p as 

where H ,  and Hz are the spherical wave mutual coherence functions on 



the back propagation and are given by the following expressions respectively. 

Equation (5.2) needs to be solved in closed form in order to calculate the 

effect of spatial filtering on the intensity variance. We first evaluate the 

time-delayed correlation of the field after leaving the diffuse target. Accord- 

ing to Holmes et a1 29 , we have: 

where uo is the amplitude of the transmitted field, a, is the waist radius of 

the transmitted gaussian beam and D,,, is the wave structure function. 

Under quadratic approximation, we assume 



Here we have used the quadratic approximation with coefficient q as defined 

earlier. The integral of (5.5) can be worked out as given by the following: 

The mean intensity can be obtained from (5.5) by letting 1 = 0: 

The functions H1 and H2 can also be obtained in closed form. By replac- 

ing the 5/3 law with a square in each term in H1 and H,, we have the follow- 

ing type of approximation: 



After algebraic cancellation, the final results can be expressed in more 

concise form under the transformation notation described below. 

It is noticed that under the quadratic approximation, H1 is independent 

of the cross wind V, and both H functions are free from p dependence. 

In order to evaluate expression (5.2), let us put these results of (5.5) 

through (5.8) back in (5.2). The first integral in (5.2) can be found as: 

The second integral in (5.2) is the major term for cross-wind effect under 

quadrature approximation. After some algebraic manipulations, we have 

The time-delayed fourth order moment of the incoming field is thus given by 



For eero time delay, the correlation function is reduced to 

In the above we have used the following parameter notations: 

According to Appendix 1, variables pa, p, ,  u, v are related to 

pl, PO, p3, p4 through a transformation matrix. We list some useful expan- 

sions below for quick reference. 



and 



6.3. Variance of Intensity after Spatial Filtering 

Similar to the case of line of sight propagation, the time-delayed inten- 

sity correlation on the output plane can be written as : 

where GGGG(pl lp2,p3,p4;r /2 , -  r / 2 )  is given by (2 .16)  and 

BI(pl ,p2,p3,p,4;6Lau) is given by (5.11).  The expression for <P> on the opti- 

cal axis is obtained by putting 7 = 0 and r = 0 in (5 .21) .  The result is 

We first work on the eightfold integration as we did in the case of line 

of sight propagation. Expanding u2 , p: and pb2 in terms of p,  , p2 , p3 , p4 

and combining similar terms, these integrals reduce to the standard format 

contained in formula (4.10).  The correlation can then be expressed in the 

following form 

where J , ( i , j , k , l )  and J 2 ( i l j , k l l )  are of the form of (4 .10) ,  with the following 

entries: 



For both J1 and J2, use 

For J1 use 

For J2 use 

In the above, the following notations have been used: 

In summary, the second statistics of intensity of the speckle propagation 

case can be expressed in terms of system parameters. 

We have intensity variance: 



and normalized intensity variance: 

where Bi(O,O) is given by (5.23) and <I(o,o)>~ is available from our 

preceeding result for the mean intensity. 

In Fig. 5.1 through Fig. 5.5, the behavior of the intensity correlation 

along with other second order intensity statistics are plotted for system 

parameters and the strength of turbulence. The parameters common to 

these figures are wave length h = 0.6328~10-~rn, focal length of the receiver 

lens f = 2m. 

Fig. 5.1 shows the general behavior of the four quantities of interest: the 

squared intensity, the intensity correlation ( at zero time delay ), the inten- 

sity variance and the normalized intensity variance. According to the theory 

of speckle propagation through the turbulent atmosphere25 , the normalized 

intensity variance at  the receiver input stays a t  unity for all levels of tur- 

bulence when phase dominance is assumed. After the high-pass filtering, our 

theory indicates that this remains true for relatively low and high turbulence 

levels, but in the transition region where the mean intensity is sensitive to 

the turbulence, the normalized variance rises above unity. 

Fig. 5.2 and 5.3 show the effect of the transmitter aperture. A larger 

aperture results in a smaller focused spot on the target. At the receiver image 

plane, this gives a smaller image spot a t  low turbulence levels and a wider 

dynamic range of the turbulence sensing. The peak of the normalized vari- 
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Fig. 5.1 Speckle pmpngnlion. L = lkm, a, = O.OSm, High psa filler with 
Qa=0.015mm. I- Squared inknsity(lng), 2-- Intensity cnrrelation(log), 3--- 
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Fig. 5.4 Speckle propagalion (OGC campus field geometry). L =290m, 
a. = O.OIORm, high paw Rlbr with Ql=O.lOGmm. I--- Normaliaed intensity 
variance(1inear). 2-- lnknsily cortelalion(~og), 3--- Inknsily variance(log), 4--- 
S q u a d  inknsily(1q). 
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ance is thus shifted toward the low turbulence end. 

Our theory also indicates that with increased turbulence strength, the 

variance increases faster than the squared intensity during the first half of 

the dynamic range, but slower during the second half. This explains the up- 

bump of the normalized variance. The experiment of the speckle propaga- 

tion were conducted in the OGC campus field site with a propagation dis- 

tance of 290 meters. Fig. 5.4 gives the curves for that specific geometry with 

a high-pass filter of 0.3 mm in diameter. 

The effect of different filter sizes is displayed in Fig. 5.5. A very small 

filter has the least effect on the incoming light. Our theory indicates that the 

normalized variance is very close to that of raw beam a t  the entrance. We 

also noticed that with a larger filter, the peak shifts to the high turbulence 

direction as expected. 



6. Exper imental  Reeults 

6.1. Int roduct ion 

Previous work on remote sensing of turbulence strength has suggested 

basically two categories of instrumentation that are responsive to  the changes 

of the turbulence strength along the light path. The first uses the linear rela- 

tionship between the log intensity variance for a spherical wave and the path 

integrated turbulence strength a t  low to moderate turbulence levels. The 

second, which uses focal plane statistics to measure the turbulence level, was 

proposed by ~ r t e m ' ~ e v ~ ~  in 1969. Recent improvements were made by other 

Russian 21 in 1982 and 1984 respectively. This method uses the 

changes of half-width of intensity on the focal plane of the receiver lens to 

measure the strength of the turbulence. The arrangement includes a well 

designed receiver lens and a moving mechanical system a t  the location of the 

focal plane. A slow scanning mechanism consisting of a narrow slot and 

attached photo-sensing receiver is driven by a motor and travels back and 

forth across the focal plane. ~ i r o n o v ~ ~  described a typical instrument hav- 

ing the following system parameters: 

Receiver lens: 15 cm diameter 
Focal length : 1.6 m 
Width of slot: 20x 10-~rn 
Scan speed: 0.11 3 mm/minu te 



The theory of above system is based on the calculation of the intensity distri- 

bution on the focal plane for s collimsted laser beam. Under quadratic 

approximation for the wave structure function and assuming a Gaussian lens 

aperture, the following formulas were obtained l9 : 

where p = 1 for plane wave, p = 1.2'~ for space-limited Gaussian beam and 

p = 3.0~'" for spherical wave input. 

The major disadvantage of this approach is the moving part in the 

receiver system and its small dynamic range. 

Our theory of spatial filtering suggests a new approach of remote sensing 

of the path integrated turbulence which has no moving parts and can be con- 

veniently implemented on an existing telescope by inserting a high-pass spa- 

tial filter on the image plane of the telescope and attaching a photosensitive 

receiver. We first discuss several aspects of experiment design for the spatial 

filtering receiver. 

The most important parameters of the system are 1) the aperture of the 

receiver lens, 2) the size of the filter, 3) the system noise level, 4) the 

transmission ratio of the filter, and 5) the size of the pin-hole of the photore- 

ceiver. 

1) The aperture of receiver lens. 



According to our theory, the log of the mean intensity on the output 

axis of the two-lens spatial filtering system is linearly related to the log of the 

path-integrated turbulence in a specific range. The lower limit of the linear 

dependence is mainly determined by the aperture of the receiver lens which 

is known as the diffraction limit. 

2) The size of the filter. 

By properly choosing the diameter of the high-pass filter, one can deter- 

mine the range of turbulence level that can be measured. A smaller filter 

size reduces tbe range and shifts it toward the low turbulence end. 

3) The system noise level 

The thermal noise from the electronics system and the shot noise from 

the photomultiplier are the sources of the noise that restrict the lower limit 

of turbulence detection. However, another factor which behaves like a noise 

source is the imperfectness of all optical passages (optical noise). The meas- 

urement is based on the scattering of the light by turbulent eddies in the 

atmosphere. Hence, the scattering by any particle, dust or small object in 

the light path will also be detected. As a result, the mean intensity can not 

follow the variation of turbulence below a specific level determined by the 

optical noise. 

4) The transmission of the filter. 

Theoretically, a high-pass spatial filter can have zero transmission a t  the 

center. But in practice, this is technically impossible. Most filters have a 

finite non-zero center transmission. This needs to  be taken into 



consideration especially at  the lower end of the turbulence level. At this end, 

the majority of incoming light is focused a t  the center. Even a tiny part of 

the residue transmitted center light is comparable to the light scattered by 

the turbulence eddies. The effect of residue center transmission is to further 

reduce the dynamic range at  the lower end of turbulence level. 

5) The aperture of the photosensitive receiver. 

The theory of the mean intensity and intensity variance is developed 

based on a point-receiver model. The finite pin-hole size of the receiver 

represents spatial averaging which is more critical for intensity variance. In 

order to avoid aperture averaging effects, the effective diameter of the pin- 

hole is chosen to be much smaller than the coherence length of the incoming 

light. Considering the effective diameter, the ratio of focal length of the two 

lenses in the receiver has to be taken into account, if they are different. The 

mean intensity on the other hand, is not so critically related to the pin-hole 

size because it is already a time-averaged quantity. Therefore, spatial averag- 

ing does not deteriorate the performance under the ergodicity assumption. 

The quantitative relationship of the above factors can be studied in 

more detail by using the figures obtained in the theoretical section. The fol- 

lowing experiments have been designed and conducted to verify the theory. 

1. Experiment in tank simulated turbulence. 
2. Line of sight propagation in open field. 
3. Speckle propagation in open field. 



8.2. Mean Intensity Measurement 

The mean intensity output of the optical high-pass filtering system is 

responsive to the changes of the path-integrated turbulence levels as well as 

other factors. In order to eliminate the effect of other meterological parame- 

ters, the drift of laser output power and the change in background illumina- 

tion condition, the intensity is normalized according to the following rule. 

1) Before taking intensity data under spatial filtering, first take the 

saturation intensity I, and the bias intensity Ib .  I, is the intensity output of 

the system without the high-pass filter, that is, the maximum intensity avail- 

able a t  the current turbulence condition. I, is the intensity output with the 

filter in place and the laser turned off. This is the total amount of back- 

ground radiation that reaches the receiver output. 

2) The intensity data are taken immediately after .I, and I , .  During 

this data taking period, special care was exercised to prevent the spatial 

orientation of the receiver from being affected by any foreign source of vibra- 

tion and even unnecessary motion of the operator. The normalized mean 

intensity is thus given by the following formula: 

Zt was found from our data taking experience that the change of the 

meterological conditions especially the change of beam refraction in the 

atmosphere due to the vertical temperature gradient can result in noticeable 



displacement of the light image spot in the image plane for the line of sight 

case. Hence, the normalization procedure is required for each data taking 

period and the length of the data set is restricted to about 10 minutes when 

the meterological conditions undergo swift changes such as just before and 

after sun set. 

6.2.1. Experiment in laboratory simulated turbulence. 

A tank full of alcohol equipped with heating and cooling systemss4 can 

be used to  implement an artificial turbulence environment. The system pro- 

vides controllable simulated turbulence with good repeatability. The meas- 

urement apparatus is shown schematically in Fig. 6.1. A point source is 

obtained from a He-Ne laser and a pin-hole spatial filter. The spherical wave 

propagates through the tank, is received by lens L, and enters the spatial 

filtering receiver. A part of the laser radiation is reflected upward by a mir- 

ror and received by photomultiplier PM2, from which the intensity variance 

is obtained and used to compare to the spatial filtering result. The tur- 

bulence level in the tank is monitored by a microthermal sensor array. To 

reduce system error, an expensive fourier transform lens with a full aperture 

of 7.5 cm was used for lens L,. The high-pass spatial filter was made by 

photocopying a pin-hole on a KODAK film plate and processing using a 

highest contrast formula. It can be seen from Fig. 6.1 that only a portion of 

the propagation path (the tank) is under the effect of turbulence. Hence, two 
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Fig. 6.1 Line or sight propagation. Experimental resuls or mean intensity 
d k r  opt~cal spatial filtering vs. olf. Solid tide is theoretical curve. Each dot 
represents the intensity averaged over 120 seconds. 



under the given geometry. To further reduce the noise, a narrow band opti- 

cal line filter was placed in front of the receiver pin-hole. The receiver elec- 

tronics consists of a band-pass amplifier of 100 k Hz with bandwidth of 10 k 

Hz and a linear mean square detector. 

A microthermal probe system (Model MT-2 by Oregon Graduate 

Center) is placed at  the same height as the light path to measure the local 

temperature structure function data as a measure of turbulence strength. In 

addition, a separate optical measurement system (Laser Anemometer by 

Campbell Scientific Co.) is also used to provide the cross-wind and path- 

averaged turbulence data. 

The measured data of normalized intensity output of the optical spatial 

filtering system is shown in Fig. 6.4 against the data of u: obtained from the 

Campbell unit ( a t  low to moderate turbulence levels) and microthermal 

measurement (above the level that optical measurement was saturated). 

8.2.3. Speckle propagation in turbulent atmosphere 

The measurement of spatially filtered mean intensity was conducted a t  

the optical propagation site located on the campus of the Oregon Graduate 

Center. The structures of the transmitter and receiver are shown in Fig. 6.5 

and 6.6 respectively. The diffuse reflector is located 290 meters away from 

the transmitter-receiver end, and the light path is around 2 meters high 

above the ground. The whole measurement system were redesigned and 
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improved by John Hunt (senior engineer) and Todd Cloninger (graduate stu- 

dent) of Oregon Graduate Center. The transmitter is based on a 5-mw He-Ne 

Irsser, with an acoustic-optical modulator and a high quality beam expander. 

The average power of the exit beam is two milliwatt (chopped a t  50-50 duty 

cycle) with a beam width of 3 cm, focusing on the target. The target is 

made of Scotchlite reflector (3M Sprint Marking Paper) with a directional 

return which realizes a gain in signal strength of 1000 to 1 over the perfect 

Lambertian surface. To improve the signal to noise ratio, the high-pass spa- 

tial filter is made by metal evaporation technology, providing a center 

transmission below one of one-millionth in power ratio. A high-sensitivity 

photomultiplier is sealed in a receiver box with a pin-hole of 100 micrometer 

diameter. The pin-hole size is determined so that its equivalent diameter is 

less than the coherence length of the incoming speckle and hence aperture 

averaging can be ignored. In Fig. 6.7, the experimental mean intensity out- 

put were plotted against the turbulence level obtained from the data of ox 

from the Campbell anemometer. 

6.3. Intensity Variance 

The intensity variance measurement were conducted for the speckle pro- 

pagation case. The variance data are normalized by the squared intensity and 

are displayed in Fig. 6.8. As a comparison, two theoretical curves with 

different value of the parameter 11 are plotted. The theory of the normalized 

variance for the speckle propagation predicts a bump above unity a t  





intermediate turbulence levels. Even with some apparent ghost signals that 

come from vehicles passing across the path as well as from the scattering by 

water mist, the experimental data correctly reflect these features. It is 

worthwhile to note further that in the theory for the variance, the quadratic 

approximation was used in both the mean and correlation statistics of the 

intensity. Along with Fig. 3.10, our work shows that for precision measure- 

ment, the quadratic approximation needs factoring adjustment. This is 
! 

because the optical spatial filtering process includes cancellation of several 

terms: four in the mean calculation and 16 in the correlation calculation. 

Consequently, the error due to using the quadratic approximation is highly 

enhanced. 



7. Conclusions 

We have studied the general theory of an optical spatial filtering system 

with application to remote sensing of atmosphere turbulence. The OSF tech- 

nique has been analyzed fully in quantitative description and the application 

of optical high-pass filtering to remote sensing of turbulence has also been 

studied in detail. 

(1) A system model was proposed which leads to a closed form for the 

Green function of a conventional spatial filtering system. In order to get a 

closed form, a Gaussian lens and filter profile was assumed. In the develop- 

ment, Fresnel diffraction formulation was used throughout the analysis. This 

model contains all of the system parameters and thus can be used elsewhere 

to analyze the quantitative effects of such a system in image processing, 

feature recognition, and other applications. 

(2) It was found theoretically and verified by our experiments that the 

log of the mean output intensity is linearly related to the log of the path- 

integrated turbulence within a specific range. According to the theory, sys- 

tem parameters such as transmitter and receiver lens aperture, focal length, 

filter size, etc. can be so chosen in a combination that the linear range will 

meet the requirements of most remote sensing circumstances. 

(3) The averaged intensity variance of the output of the optical spatial 

filtering receiver is given in closed form. It  is shown that the normalized out- 



put intensity variance rises above zero for line of sight propagation and 

above unity for the speckle propagation case a t  an intermediate level of the 

path-integrated turbulence level. The location of the peak corresponds to the 

turbulence value at  which the mean intensity changes most sharply. 

The 5/3 law model of refractivity fluctuations which can be justified by 

analysis and supported by experiments, remains a major obstacle in obtain- 

ing expressions in closed form. This becomes more serious for problems 

involving higher order statistics or complex processing steps. It is then a 

common practice to use quadratic in stead of 5/3 law as an approximation in 

the analysis of more complex problems. However, this can lead to serious 

error in the 36. 

In the process of this research, we approached this question in two 

ways. First, we have developed a closed form expansion for the integrals 

involving fractional power (Appendix 2). This expansion has good accuracy 

and can be used in the numerical analysis to solve complex problems in the 

wave propagation through turbulence. Second, we have developed the formu- 

las for the intensity after optical spatial filtering process under both 5/3 and 

quadratic structure functions. By comparing with the experimental data, the 

model errors of quadratic approximation for different turbulence levels are 

fully displayed. Our result show that the major effect under this approxima- 

tion is that the slope of the intensity curve changes substantially, which can 

not be explained satisfactoryly by the traditional estimate of 4% change in 

coherence length. 
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Appendix 1 

On Multidimensional Integration 

Summary 

Through two successive linear transformations, we proved that the 8- 

fold integral associated with the intensity fluctuation of a laser beam pro- 

pagating through the turbulent atmosphere is equivalent to a S-fold integral 

and thus direct numerical evaluation of the optically processed intensity 

fluctuation is feasible. The resultant integration formulas are directly appli- 

cable to the calculation of the intensity fluctuations of a laser beam after the 

receiver lens and/or the optical spatial filtering system. 

1. Introduction 

Consider the optical processing of the laser beam that has propagated 

through the turbulent atmosphere. The major difficulty associated with the 

second order statistics is the evaluation of the &fold integral which has no 

closed form solution and direct numerical evaluation takes too much com- 

puter time and is hard to implement. This similar problem has been 

approached in three ways. Wang ct  a l ,  utilized the quadrature approxima- 

tion to the wave structure function to obtaine a closed form for the intensity 

fluctuation. But the quadrature approximation is not well justified for the 

fourth moments of the field. Asymptotic method have been adopted to 



evaluate the behavior of the intensity fluctuations under extreme conditions, 

but the behavior in the transition region remains unsolved. The Monte-Carlo 

method has also been used to solve the integration. But this method becomes 

very inefficient for high dimensions. In the following, we introduce a two- 

step linear transformation method and show that the &fold integral is 

equivalent to a 5-fold integral. 

Consider the following general form of the integration: 

x H((p2- ~ 1 ) 1 ( ~ 3 - ~ 1 ) r ( ~ 4 - ~ 1 ) , ( ~ 3 -  ~ 2 ) r ( ~ 4 - ~ 2 ) , ( ~ 4 - ~ 3 ) )  

Where H is the fourth order MCF of the input field and ie given by: 

2. Linear Transformation (1) 

Introduce 



The inverse transformation is given by 

It is easy to verify that the Jacobian of the transformation is J = 1 . 
Under this transformation, the arguments of the function H are given by 

thus the function H can be expressed as: 

H = H l(pa 9 pb 9 u 9 ea-8u 8 b - e ~  f)a-eb) (1.2) 

It can be seen from (1.2) that the variables v and 8,  are not included in the 

function H explicitly and thus the integration regarding to these two 



variables can be worked out analytically. 

Under this transformation, the exponential terms take the form: 

To further simplify the integral, introduce the following notation: 

1 B,(kk)= -(B, + B]*+ 8, + B,? 
4 

1 B ~ ~ ( ~ ~ ) = ~ ( B , - B ~ * + B , - B , ' )  

1 Bau(kk)= -(8, + B]*- 8, -B1? 
4 

Bav(kk)= ( ~ ~ - 8 ~ ' -  B, + B,.) 
1 Bbu(kk)= -(B, - B)*- B, + BI? 
4 

Bbv ( kk ) = (B, + B]*- 8, -43 
1 B,(kk)= -(B;- B:+ B, - B,.) 
2 

where we have the sequential index kk = 8(i - 1)+ 4( j -  1)+ 2(k - 1)+ 1 . 
The function F can be written in a simple form as 



The integral on v can be worked out and the integral (1) takes the fol- 

lowing form: 

Where : 

Particularly, we consider the cace when Bi= Bj = Bk = Bl = B , we have 

Thus the integral with respect to v can 'be worked out: 



After the first transformation, the explicit form of the integral I is given 

by 

We rewrite H in the following form: 

= ( PO ,Pb y u  ; O o - O u , @ b - O u , O o - O b  ) 

The angular integral will be discussed further in the next section. 

3. Linear Transformation (2) 

Consider the general form of the angular part of the above integration: 

Introduce the transformation: 

The inverse transformation is 



The Jacobian is also unity. This transformation maps the cube with sides 271 

in the eaebeU space into a rhomb in the new space of e1e2e3. The vertexes 

(a-h) are related by the following correspondence: 

e e e  --------------- 
a b u  @leZe3 

A = (2-,2-,0 ) - - - - - - - - - - -  h = (2n,2n,2~) 

The correspondences are displayed in Fig. Al . l .  We noticed that under this 

transformation, the variable e3 is not included in the function S. Indeed, we 

have 

I = $$$s ( el, e 2 ,  01-e~ )deldeZde, ( lag )  

Denoting the projection of the rhomb on e,e2 plane by D ( Fig. A1.2), 

the integral over e3 can be worked out. To do this, the region D is cut into 6 

sub-regions ( I, 11, III, 17, 117, 111' ) and integrals are performed separately. 







The final result is given by: 

Combine these two transformations together, the final expression of the 

integral (1) is 

a a a  

Tr I =  J J J p a  d ~ a  pb d ~ b  u d u e x ~  
~ ( B + B * )  o o o 

Consequently, the original &fold integral has been converted to a 5-fold 

intrgral. To check the validity of the result above, let us calculate a simple 



integration. 

This can be worked out as 

According to formula (ll), we have 



References 

1. S.  J. Wang, Y. Baykal, and M. A. Plonus, "Receiver-aperture averaging 

effects for the intensity fluctuation of a beam wave in the turbulent 

atmosphere," J. Opt. Soc. Am., vol. 73, pp. 831-837, June 1983. 



- 105 - 

Appendix 2 

Closed Form Expansions of the Four-point, 

Wave Structure Function for a Turbulent Atmosphere 

1. Introduction 

In the study of laser beam propagation through turbulent atmosphere, 

the end-processing of received light by optical instrument is often required. 

In imaging and communication system, telescope of all types are utilized to 

increase the sensitivity by collect more light using a larger entrance aper- 

ture1s2. The receiver-aperture averaging effect were analyeed by several 

 author^^'^. We have performed analysis on the effect of optical spatial filter- 

ing system on the statistics of laser radiation propagating through 

t u r b u l e n ~ e ~ - ~ .  In optical communication system, to analyse the signal-to- 

noise ration (analog) or error rate (digital), the variance of received signal has 

to be evaluatedg and an calculation of the four-point wave structure function 

of the input wave is a necessary step. The four-point structure function is 

laso needed in the study of specklele propagation through turbulencelo. 

In the case of spherical wave propagation, the fourth moment of the 

input field is 



and the wave structure function H  is 

Under weak turbulrence assumption, the the wave structure function is 

dominant by phase. The mutual coherence function can be written as 

1 H  = exp[-  
2 

where 

where V is the cross wind and ti- ti is the time delay. 

The integration of concern is: 

H ( P I , P ~ , P ~ , P ~ ; V ~ =  

(2) is the form contained in time delayed intensity correlation which 

involves the cross-wind effect. Due to the high completty, direct numerical 

evaluation of these integrals are very costly. In addition, D* ia usually the 

argument of an exponential and t o  complicate matters further, the whole 



expression usually needs to be integrated with respect to P or Q. If we intro- 

duce the quadratic assumption as defined b e ~ o w ~ ' ~ :  

It can be seen by direct substitution, that the c m  wind effect is com- 

pletely canceled out under the quadratic assumption: 

Another words, the quadratic assumption is not applicable to describe 

the cross-wind effect in the structure function of line of sight propagation 

and an efficient numerical algorithm is neded to perform the above integra- 

tion. 

2. Analysis 

Consider the four-point time delayed wave structure function as defined 

below: 

where C:(t) is the index of refraction structure constant, V is the cross wind, 

P and Q are two-dimensional spatial coordinate vectors, T is the time delay 

and t is the normalized propagation distance from the source to the receiver. 



--- - n-- - n
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To simplify the discussion, uniform turbulence is first considered, i.e. C;

is a constant and not a function of position along the propagation path. The

non-uniform turbulence case can then be handled by exactly the same tech-

nique as will be used for the uniform case. Thus for the uniform turbulence

case and suppressing C;, the integral to be considered is

1

I = f I tP+(l- t)Q- VT 16/3dt
0

(3)

Making the following changes of variable:

R=P-Q

M = VT - Q

(4)

(5)

The integral becomes

1

I = f I tR - M 16/3dt
0

1

= f (M2 + t2R2 - 2tR . M)6/6dt
0

where

M = [M . M]1I2 = [(VT - Q) . (VT - Q)P/2

= [~T2 + Q2-2TV. QjI/2 (7)

R= (R . RjI/2 = [(P - Q)'(P - Q)P/2

= [p2 + Q2 - 2P . QjI/2 (8)

R . M = (VT - Q) . (P - Q)



= Q ~ - Q ' P - T V * Q + T V * P  

If P, Q and V are now expressed in vector form as 

P  = 2 P cos0, + Psin0, 

v = 2 v  

Then equations (7) - (9) can be expressed as 

It should be noted that  no loss of generality will result from aligning the 

x axis with the wind so long as the wind direction does not change along the 

path length. The factor M~ is now removed from the integrand which yields 

where 0 is the angle between M and R and can be determined from equations 

(7), (8) and (9) and p = R/M. For the case of M = 0, the integral can be 

evaluated directly and yields 



Also when R = 0, 

The next step is to find an expansion for the function I that is accurate 

enough for all values of p and 0 and also simple enough to be useful. 

3. Approximate Expansion 

What is desired is a n  efficient approximation for the integration of the 

type shown in Eq.(16) which is a function of two variables p and 0. The gen- 

eral behaviors of the integral (16) with respect to argument p and 0 are 

shown in Fig. A2.1 and A2.2 respectively. The general approach of two- 

dimensional polynomial fitting was tried and the result was not satisfactory. 

It requires at  least 6th order power polynomials in p dependence for a rela- 

tive error of 5% in the range 0 < p < 10, and each term requires another 

polynomial in 8 to fit the angle variation. The resultant two-variable polyno- 

mial expression has 35 coefficients which must be determined from non-linear 

fitting. Also, the resultant forinulation applies only for a finite range of 

0 r p 5 10, due to fhe non-integer power of the integrand. 

Another possible approach is to 'use the Gegenbauer function expan- 

sionll based on the following generating function 

This expansion has one restriction that z (in our case, p) is limited 

(0 I z I I). It  is in reality also a two-dimensional polynomial expansion. 
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Consequently it has the same problems with the non-integer power as the 

regular polynomial expansion. 

In an attempt to find a useful expansion for Eq.(16), numerical work 

was done to gain some insight on how the expression behaves as a function of 

p and 8. It was found that: for a given p, the integral reaches its minimum 

a t  0 = 0 and maximum a t  8 = n; the angle dependence of the integral is 

symmetrical about A, and is periodic for each 2 A increment; the p depen- 

dence is of fractional power; and for sufficiently large p, the integral has an 

3 asymptotic approximation of I = - p6/3, which cannot be fitted with just a 
8 

few integer power polynomials. 

Based on this information, our approach was to expand the integral in a 

harmonic series in 8 with coefficients dependent on p, solve the dependence 

on p explicitly for the first two terms as the foundation of the expression, 

and then to empirically fit the other coefficients in the series. This is advan- 

tageous because the p6/3 dependence is preserved. Consequently, the expan- 

sion was accomplished using the following steps: 

Obtain accurate analytical expressions F,(p) and Fz(p) for I a t  

0 = 0 and 0 = 2~ respectively; 

Solve the l-D fitting problem for the ai, a t  various values of p by using 

the formula 

I(p,8) = [c (p)- d(p)cos0] + a,(p) I sin0 1 + a2(p)cos(28)+ a3(p) I sin (20) I + . . (20) 

where 



c(p) = (F*(P) + Fl(P))/2 

is the average of Eq.(16) for 0 = 0 and IT 

and 

is the amplitude of the cos0 dependence; then determine appropriate func- 

tions to approximate the a,(p). It should be noted that the absolute value 

signs on the sin functions are needed to accommodate the symmetrical nature 

of the integral with respect to 0 = IT. 

3.1. Step 1: 

For 0 = 0 and IT, Eq.(16) can be simplified to 

Performing the integrations, the results are 

3 F2(p) = JI 1+tp16"dt = -[lp t I I ~  -11 (0 = IT) 
0 BP 



3.2. Step 2: 

Depending on the required accuracy, the proper number of harmonic 

terms can be chosen from the expansion 

H(p,e)  = Fo(p18) + al(p) l sine l + a2(p)cos(2e) + a&) 1 sin(28) 1 + . (26) 

where 

and the ai(p)'s are unknown functions of p. Then minimum mean square 

error fitting of the function H(p,8) to the integral I(p,e) can be used to gen- 

erate a set of coefficients (a,,a,, . ak) for discrete values of p and e .  This is 

accomplished by solving the minimization problem 

where Ei = [I(pirem) - H ( P i , ~ m ) ] 2  and i = 1,2 ,... k ;  m = 1,2, . k. 
This process generates a matrix equation of order k which can be solved 

for the unknown a,%. A numerical study of the error distribution with 

respect to 8 revealed that the error is dominated by small 0 values. Conse- 

quently, to better optimize the fit more weight was put on small values of 8. 

This reduces the maximum error and results in a more uniform error distri- 

bution. The resultant coefficients and associated maximum relative errors 

are listed in tables 1-3 for the following three expansions: 



H12(p,8) = F0(p,8)+ al(p) I ain 8 1 + az(p)cos(28)+ a3(p) I ain (28) 1 P9)  

and 

Hla(p,e) = Fo(p,B)f al(p) l sin 8 1 + a,(p')cos (38)+ aS(p) I sin (38) I (30) 

respectively. 

Comparing the errors in tables 2 and 3, it can be seen that the next 

dominant term after the first harmonic is the 3rd rather than the second 

order harmonics. Consequently the three expansions that are proposed are 

expansion (28) with al(p) = 0; expansion (28) and expansion (30). In princi- 

ple, additional harmonic terms could be included to further improve the 

accuracy, but this does not appear to be necessary. The coefficients in the 

tables could be used with a table look up scheme and interpolation to  gen- 

erate the function I. However, it is more convenient to use analytic forms for 

the coefficients and these will be generated in the next section. 

3.3. Step 3: 

The coefficients obtained from step 2 can now be fitted into appropriate 

functions of p. A study of the error distribution obtained from the second 

step shows that as p increases, the relative error decreases monotonically and 

the maximum error occurs at  p = 2. Since the formulations that use the 

wave structure function are of the form exp(-I), for small p I is small and 

contributes the most to any integral formulation such as Eq.(2). Conse- 

quently, functions ai(p) were chosen that are close to the numerical data a,'s 

for p I 3, exactly equal at  p=2 and have a tolerable deviation from the data 



larger p values. After studying the dependency of ai with p, the following 

functional form was chosen: 

which automatically satisfies the requirement that ai(0) = 0. The coefficients 

bi and Ci were chosen by minimizing the mean square error (as a function of 

8) a t  p = 1. 

4. Final Reeults 

Completing Step 3, the final results for the three expansions are as fol- 

lows: 

3 R 613 I = -  
8 

(M = 0, all expansions) 

I = (R = 0, all expansions) 

Expansion 1 yields: (error s 14%) 

Expansion 2 yields: (error 5 2.88%) 

Expansion 3 yields: (error 5 1.66%) 



Where M, R, 0, and Fo are related back to the original problem variables by 

equations (13), (14), (151, and (27), p = RIM, and Fo is obtained from equa- 

tions (21)-(25) and (27). 

The relative errors of the three models are displayed in Figs. A2.3-A2.5 

respectively. The p dependence in these figures is restricted to p 5 10 

because the error decreases continuously as p increases beyond p = 10. 

Although the expansion was made for the case of uniform turbulence, this 

same approach can be used for non-uniform turbulence. However, different 

coefficients will be obtained for each different C;(t) profile. 

6. Example: Line-of-sight spherical wave propagation 

By using the above approxiamtion of (33), the four-point, time delay 

mutual coherence function of (1) can be given in a closed form as below: 

where 

Oij= angle(Pi-P ,,VT) 

This can be evaluated efficiently by using a Fortran subroutine. Higher accu- 

racy can be reached by using a better approixmations of (34)-(35). 









max. relative error = 2.94% 

Table 1 Coefficients for first harmonics 



max. relative error = 2.66% 

Table 2 Coefficients for 2nd harmonics 



max. relative error = 1.66% 

Table 3 Coefficients for 3rd harmonics 
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