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ABSTRACT 

Objectives: Evaluate the effects of process improvement methods on wait-time across each 

study period (baseline, intervention, sustain) for patients entering substance abuse treatment 

programs participating in the NIATx 200 study through the use of quantile and least squares 

regression.  Determine whether more intensive process improvement methods result in greater 

reductions in wait-time for patients entering substance abuse treatment programs participating 

in the NIATx 200 study. 

Methods: Data derived from the 201 organizations in five states participating in NIATx 200.  

Process improvement methods involve interest circle calls, coaching, learning sessions and a 

combination of all three.  The primary analysis is the development of a nonlinear quantile 

regression model for process improvement method evaluation.  Secondary analysis consists of 

the development of a nonlinear least squares regression model.   

Results: Among all groups, the coaching intervention (-56.8%) resulted in the greatest overall 

predicted reduction in wait-time for the duration of the study in the 50% quantile.  The interest 

circle calls (-33.21%) and learning sessions (-14.29%) groups had the greatest wait-time 

reductions among all groups in the 90% quantile between the intervention and sustain periods 

of the study.   

Conclusions: High cost/complexity process improvement methods do not necessarily result in 

greater reductions in wait-time for substance abuse treatment centers.  Aside from an unusual 

baseline period, the combination intervention was generally the least effective at reducing wait-

time.  By contrast, the interest circle calls and learning sessions interventions were effective at 

reducing wait-time during the intervention and sustain periods.  The coaching intervention 

consistently resulted in wait-time increases during the intervention period, but resulted in 

significant wait-time reduction during the baseline and sustain periods.
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1 Introduction 

NIATx 200 is a cluster-randomized, 17-month long clinical trial developed in 

partnership between the National Institute on Drug Abuse (NIDA) and the Network for 

the Improvement of Addiction Treatment (NIATx) (Quanbeck, et al., 2011).  Based upon 

prior NIATx research (Capoccia, et al., 2007; McCarty, et al., 2009; Ford, et al., 2007), 

NIATx 200 focuses on the application of four process improvement interventions that 

are intended to improve waiting time, rates of admissions to treatment, and 

continuation in treatment for participating substance abuse treatment programs.  The 

overall objective for NIATx 200 is to identify which process improvement methods work 

better/worse in achieving those goals. 

The primary objective of this thesis will be to evaluate the effects of process 

improvement methods on wait-time for patients entering substance abuse treatment 

programs participating in the NIATx 200 study.  In this evaluation, particular focus will 

be placed on the impact of the process improvement methods involved in the NIATx 200 

study on wait-time through various study periods and the complexity of the process 

improvement methods.  The general hypothesis, based on earlier results from NIATx 

based studies, is that more intensive process improvement methods result in greater 

reductions in wait-time for patients entering substance abuse treatment programs.   

In order to evaluate the efficacy of the process improvement methods being 

considered in the NIATx 200 study, a conventional least squares and quantile regression 

methods were utilized to evaluate how each process improvement method (treatment) 

effects changes in both portions (quantiles) of patient wait-time distribution and also 
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mean patient wait-time.  This modeling effort began with nonparametric methods 

involving cubic B-spline and density plots of wait-time distribution across time and 

NIATx 200 study periods.  Ultimately, a nonlinear quantile regression model and 

nonlinear least squares model were developed such that wait-time trend estimates and 

predicted changes in wait-time could be evaluated relative to the process improvement 

methods employed in the NIATx 200 study. 

2 Background 

2.1  NIATx 

The Network for the Improvement of Addiction Treatment (NIATx) is a national 

initiative that was established to provide its members with services intended to help 

them initiate and sustain process improvement approaches, specifically concerning 

access to and retention in addiction treatment (Capoccia, et al., 2007; McCarty, et al., 

2009; Ford, et al., 2007).  The principles of the program are derived from process 

improvement research: understand and involve the customer, fix key problems, pick a 

powerful change leader, get ideas from the outside, and use rapid cycle testing 

(Hoffman, et al., 2012).  NIATx was jointly developed by the Robert Wood Johnson 

Foundation (RWJF) and the Center for Substance Abuse Treatment (CSAT) of the 

Substance Abuse and Mental Health Services Administration (SAMSHA).  Agencies 

participating in NIATx were selected through a grant submission and award process with 

25 agencies being funded for NIATx participation for 18 months through RWJF (10 in an 

initial cohort and 15 in a second round of awards) and 13 agencies funded for 36 
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months through CSAT.  The grant submission and site selection process are outlined in 

McCarty, et al. (2007) and Hoffman, et al. (2011). 

The central aims of NIATx were to (1) reduce waiting time between the first 

request for service and the first treatment session, (2) reduce the number of patients 

who do not keep an appointment, (3) increase the number of people admitted to 

treatment, and (4) increase continuation from the first through the fourth treatment 

session (Capoccia, et al., 2007).  In order to achieve these objectives, process 

improvement efforts in the NIATx sites involved agency walkthrough procedures to 

identify key problem areas.  Following the walkthrough process, change teams utilized 

rapid cycle change initiatives to evaluate the efficacy of changes made to the admission 

processes.  Wait-time results from this study were based on a conventional least 

squares mixed effects regression analysis and estimated rates of change in wait-times of 

30 days or less (Hoffman, et al., 2011).  These results indicated that the purported 

theory that faster entry into treatment programs following assessment increases 

treatment program completion was valid.  Since the process improvement methods 

were uniformly applied, however, it was not possible to determine which process 

improvement methods resulted in the observed improvements (Hoffman, et al., 2011).   

Subsequent analysis via quantile regression of the initial NIATx study data (Choi, 

et al., 2012) demonstrated that relying upon conventional least squares regression 

analysis can miss important behaviors in other portions of the response variable 

distribution.  In fact, because one of the key aspects of the process improvement 

methods utilized in the earlier NIATx study is to reduce variation through treatment 
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intervention, it was no surprise that high quantiles of wait-time behaved differently 

from changes in mean values (Choi, et al., 2012).  In this earlier NIATx study, Choi, et al. 

(2012) found that improvements in high-quantile cases were detected regardless of 

significant changes at the mean level. 

2.2 NIATx 200 

Building on the earlier NIATx study results, NIATx 200 was a cluster-randomized 

study conducted through the Center for Health Enhancement System Studies (CHESS) at 

the University of Wisconsin - Madison, the Center for Substance Abuse Research and 

Policy at Oregon Health & Science University, and the Health Economics Research Group 

and the University of Miami (Quanbeck, et al., 2011).  Similar to the initial inception of 

NIATx, the intent of NIATx 200 was to apply process improvement techniques at the 

organization and service delivery level of community-based addiction treatment 

centers.  Unlike NIATx, the primary focus of the NIATx 200 study (Quanbeck, et al., 2011) 

was to assess which of the four process improvement methods would produce the 

greatest improvement in waiting time, rates of admissions to treatment, and 

continuation in treatment.  In this case, waiting time was defined as the number of days 

from first contact to treatment.  Secondary study objectives focused on the effects of 

treatment interventions on treatment completion rates, adoption and sustainability of 

recommended practices, and employee turnover.  Associated cost analysis was not 

initially included in the scope of study objectives.  Participating clinics were randomized 

with equal allocation at the state level into one of four treatment groups: (1) interest 

circle calls, (2) coaching, (3) learning sessions, and (4) a combination of 1-3.  
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Randomization was based on clinic size and management score where the management 

score was based on a pre-randomization interview with clinic leaders. 

Across all treatment groups, the 17-month period following the baseline period 

was divided into three intervention periods, each with specific aims.  The first 5-month 

period focused on wait-time improvements, the second 6-month period focused on 

retention of patients in the treatment program and the third 6 month program focused 

on increasing the number of new patients.  For the scope of this thesis, we limited the 

focus to the intervention period focusing on improvements in wait-time; the following 

intervention descriptions are based on the study protocol (Quanbeck, et al., 2011) and 

cost analysis carried out by Gustafson, et al. (2013).   Interest circle calls were monthly 

teleconferences during which change team members from the programs involved 

discuss issues and progress and have an opportunity to get advice from experts or one 

another.  At a cost per clinic of $1329 (Gustafson, et al., 2013) these teleconferences are 

inexpensive, but the quality of such calls can vary by facilitator and, because they are 

scheduled in advance, competing priorities of the participants can limit involvement.  

Coaching involves the assignment of a process improvement expert to work directly 

with program leaders and change teams to help implement and sustain process 

improvements.  In NIATx 200, coaching consisted of one site visit, monthly 

teleconferences, and email correspondence.  Coaching gives a program process 

improvement assistance that is customized to their needs and the ability to access an 

expert on demand.  Coaching, however, is more expensive ($2878 per clinic [Gustafson, 

et al., 2013]) than interest circle calls and the match between the coach and program 

5 
 



may not always be a good one.  Learning sessions, which occurred twice a year in this 

case, were in-person multi-day conferences that bring together program change teams 

to learn and gather support from outside experts and one another.  Despite these 

benefits, learning sessions are very expensive at $4495 per clinic (Gustafson, et al., 

2013) and require a substantial time investment for the participants.  The combination 

intervention involved all three forms of process improvement and was, of course, the 

most intensive and expensive option at a cost of $7930 per clinic. 

Figure 1: Design of the NIATx 200 cluster-randomized trial. 

 

 

Addiction treatment centers in five states (Massachusetts, Michigan, New York, 

Oregon, Washington) were recruited by state authorities for the study.  Treatment 

centers in these five states formed two cohorts due to a staggered study 

implementation timeline.  Centers from Michigan, New York, and Washington make up 

Cohort 1, while centers from Massachusetts and Oregon make up Cohort 2.  

Recruitment in Cohort 1 took place between March and August of 2007, with a baseline 
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data collection period occurring between September 2007 and November 2007 and 

wait-time intervention occurring between December 2007 and April 2008.  The 

corresponding study timeline for Cohort 2 was shifted four months later.  After 

recruitment, a baseline period of three months occurred where treatment center staff 

were instructed on collecting data and their assigned process improvement 

intervention.  Then a six month intervention period was followed by a nine month 

sustainability period where the wait-time intervention was removed. 

Figure 2: NIATx 200 cohort study timelines. 

 

Gustafson, et al. (2013) published results for the NIATx 200 study and utilized a 

mixed-effect model for fitting wait-time improvement, including fixed effects for state 

and group.  Random effects at the organization level were included to account for 

correlation among clinics in the same organization and random effects at the clinic level 

were included to account for correlation between repeated observations from the same 

clinic over time.  In this model, Gustafson, et al. (2013) utilized monthly averages of 

wait-time, which both served as the unit of analysis and also gave equal weight to all 

clinics, regardless of size.  After the wait-time intervention period, both the coaching 

and combination groups had statistically significant reductions in wait-time     (-4.9 days, 

p = 0.013 and -6.2 days, p = 0.002, respectively).  Learning sessions had a modest wait-
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time reduction and interest circle calls resulted in an increase in wait-time, but neither 

were statistically significant at the 0.05 level.  When the groups were compared, 

however, a statistically significant difference was only found between the interest circle 

calls group and the combination group.  Sensitivity analysis was also used in order to 

evaluate the effect of giving equal weight to the clinics in the model by weighting each 

clinic based on patient counts in an alternative model.  This alternative model did not 

change the rank order of wait-time reduction effect among the treatment groups 

(Gustafson, et al., 2013). 

2.3 Quantile Motivation 

Least squares regression is a useful and pervasive tool in modern statistics, but it 

only informs the user about a portion of the distribution of the response variable.  

Mosteller and Tukey (1977) noted that other portions of the response variable 

distribution could be explored, but that it is not commonly done and, thus, we rarely 

arrive at a complete picture of the relationships between variables.  Conventional least 

squares regression also will not meet the need if certain percentiles or quantiles of a 

response variable distribution require estimation.  Furthermore, if heterogeneity in the 

data cannot be mostly explained by changes in the mean, then it is necessary to pursue 

an alternative method in order to derive inferential conclusions (Choi, et al., 2012).   

Quantile regression is a method for estimating functional relations between 

variables for all portions of a probability distribution (Koenker and Bassett, 1978).  Least 

squares regression can be used to estimate conditional quantiles, but this method 

requires an assumption of normally distributed residuals.  Least squares regression also 
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assumes that covariates do not affect the scale or distributional shape of the conditional 

response.  Quantile regression, by contrast, makes neither of these assumptions and, 

thus, has a distinct advantage over least squares regression in modeling data with 

heterogeneous conditional distributions.  Lastly, compared to least squares regression, 

quantile regression estimates are more robust in the presence of outliers in the 

response variable (Koenker, 2005).   

2.4 Quantile Estimation 

Consider a real-valued random variable 𝑌𝑌 with cumulative distribution function 

𝐹𝐹𝑌𝑌.  The 𝜏𝜏th quantile of 𝑌𝑌, 𝑦𝑦𝜏𝜏 , can be written as 

𝐹𝐹𝑌𝑌(𝑦𝑦𝜏𝜏) = 𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦𝜏𝜏) = � 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑢𝑢 = 𝜏𝜏
𝑦𝑦𝜏𝜏

−∞
 

where 𝜏𝜏 𝜖𝜖 (0,1).  The boundaries on 𝜏𝜏 are not included in order to preserve uniqueness 

and 𝐹𝐹𝑌𝑌 will be a strictly monotonic increasing function if 𝜏𝜏 is unique.  The foundation of 

quantile estimation for a univariate sample {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛} is the piecewise linear loss 

function (Figure 3),  

𝜌𝜌𝜏𝜏(𝑢𝑢) = 𝑢𝑢(𝜏𝜏 − 𝐼𝐼(𝑢𝑢 < 0)) 

for some 𝜏𝜏 ∈ (0,1).   
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Figure 3: Quantile estimator function ρτ(u) 

 

We minimize the expected loss of 𝑌𝑌 − 𝑦𝑦� with respect to 𝑦𝑦�: 

min
𝑦𝑦�
𝐸𝐸�𝜌𝜌𝜏𝜏(𝑌𝑌 − 𝑦𝑦�)� = min

𝑦𝑦�
(𝜏𝜏 − 1)� (𝑦𝑦 −

𝑦𝑦�

−∞
𝑦𝑦�)𝑑𝑑𝐹𝐹(𝑦𝑦) + 𝜏𝜏� (𝑦𝑦 − 𝑦𝑦�)𝑑𝑑𝐹𝐹(𝑦𝑦)

∞

𝑦𝑦�
 

and then set the derivative with respect to 𝑦𝑦� equal to 0: 

0 = (1 −  𝜏𝜏)� 𝑑𝑑𝐹𝐹(𝑦𝑦)
𝑦𝑦�

−∞
− 𝜏𝜏� 𝑑𝑑𝐹𝐹(𝑦𝑦)

∞

𝑦𝑦�
= 𝐹𝐹(𝑦𝑦�) − 𝜏𝜏 

Thus we have found that any element of {𝑥𝑥:𝐹𝐹(𝑦𝑦) = 𝜏𝜏} minimizes expected loss since 

𝐹𝐹(𝑦𝑦) is monotone.  When the solution is unique, 𝑦𝑦� = 𝐹𝐹−1(𝜏𝜏) and the solution will be an 

interval of 𝜏𝜏th quantiles otherwise.  In this case, the smallest element must be chosen in 

order to ensure that the empirical quantile function be left-continuous. 

In the case of an empirical distribution, we can estimate the 𝜏𝜏th sample quantile 

to be 

min
𝜉𝜉∈ℝ

�𝜌𝜌𝜏𝜏(𝑦𝑦𝑖𝑖 − 𝜉𝜉)
𝑛𝑛

𝑖𝑖=1

 

Rather than relying upon ranking observations, this quantile estimator can then be 

transformed into a linear program by adding 2𝑛𝑛 artificial variables �𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑗𝑗: 1, … ,𝑛𝑛� to 
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represent the positive and negative parts of the vector of residuals.  Then we have a 

new minimization problem: 

min
(𝜉𝜉,𝑢𝑢,𝑣𝑣)∈ℝ×ℝ+2𝑛𝑛

{𝜏𝜏1𝑛𝑛𝑇𝑇𝑢𝑢 + (1 − 𝜏𝜏)1𝑛𝑛𝑇𝑇𝑣𝑣|1𝑛𝑛𝜉𝜉 + 𝑢𝑢 − 𝑣𝑣 = 𝑦𝑦} 

which can be solved either by the simplex method (Koenker and D’Orey, 1987) or 

interior point method (Portnoy and Koenker, 1997). 

If we now consider 𝑌𝑌 as a response variable and random variable 𝑿𝑿 as a 𝑝𝑝-

dimensional predictor, which we may begin to think of as representing an independent 

variable having some effect on 𝑌𝑌, then a conditional quantile of 𝑌𝑌 can be similarly 

written as 

𝐹𝐹𝑌𝑌(𝑦𝑦𝜏𝜏(𝒙𝒙)|𝑿𝑿 = 𝒙𝒙) = 𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦𝜏𝜏(𝑥𝑥)|𝑿𝑿 = 𝒙𝒙) = 𝜏𝜏 

Thus the quantile function 𝑄𝑄𝜏𝜏(𝜏𝜏|𝑿𝑿 = 𝒙𝒙)  is the smallest 𝑦𝑦 where the quantile property is 

fulfilled if 𝐹𝐹𝑌𝑌 is not strictly monotonic.  This can alternatively written as:  

𝑄𝑄𝑌𝑌(𝜏𝜏|𝑿𝑿 = 𝒙𝒙) = 𝑖𝑖𝑛𝑛𝑓𝑓�𝑦𝑦:𝐹𝐹𝑦𝑦(𝑦𝑦|𝒙𝒙) ≥ 𝜏𝜏� 

We can then observe that this is the inverse of the CDF of 𝑌𝑌 if 𝐹𝐹𝑌𝑌 is strictly increasing, 

i.e.,  

𝐹𝐹𝑌𝑌(𝑦𝑦𝜏𝜏(𝑥𝑥)|𝑿𝑿 = 𝒙𝒙) = 𝜏𝜏    ⟺     𝑄𝑄𝑌𝑌(𝜏𝜏|𝑿𝑿 = 𝒙𝒙) = 𝑦𝑦𝜏𝜏(𝒙𝒙) 

and that this function describes 𝜏𝜏 × 100% quantiles of 𝑌𝑌 depending on covariates 𝒙𝒙 and 

quantile parameter 𝜏𝜏 𝜖𝜖 (0,1).   

2.5 Quantile Regression 

Quantile regression is a method for modeling the conditional quantile function of 

a continuous variable 𝑌𝑌 depending on a set of 𝑝𝑝-dimensional covariates 𝑿𝑿.  Similar to 

conventional least squares modeling, we will denote 𝑌𝑌 as our response variable and 𝑿𝑿 
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as our independent variable(s).  In a conventional least squares linear regression model 

we have 𝑌𝑌 = 𝑿𝑿𝑇𝑇𝛽𝛽 + 𝜀𝜀 and 𝐸𝐸(𝜀𝜀) = 0.  Similarly, the linear quantile regression model can 

be written as 𝑦𝑦𝑖𝑖 = 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷𝜏𝜏 + 𝜀𝜀𝜏𝜏𝑖𝑖  where 𝑦𝑦𝑖𝑖 represents the sample {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛} , 𝒙𝒙𝑖𝑖 =

(1, 𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖)𝑇𝑇 represents the covariate vector for observation 𝑖𝑖 and 𝜷𝜷𝜏𝜏 =

(𝛽𝛽𝜏𝜏0,𝛽𝛽𝜏𝜏1, … ,𝛽𝛽𝜏𝜏𝑖𝑖)𝑇𝑇 represents the quantile-specific linear effects (Buchinsky, 1998).  

Note that the first element of 𝒙𝒙 is one and corresponds to the model intercept.  Lastly, 

the quantile parameter 𝜏𝜏 𝜖𝜖 (0,1) is fixed in advance of model fit.  Unlike least squares 

linear regression, no firm assumptions are made with regards to the distribution of error 

terms 𝜀𝜀𝜏𝜏𝑖𝑖 aside from independence and the quantile restriction 𝑄𝑄𝜏𝜏(𝜀𝜀𝜏𝜏𝑖𝑖|𝒙𝒙𝑖𝑖) = 0 

(Buchinsky, 1998).  Based on the quantile restriction, the linear quantile regression 

model as defined above describes the quantile function 𝑄𝑄𝑌𝑌𝑖𝑖(𝜏𝜏|𝒙𝒙𝑖𝑖) of the response 

variable 𝑌𝑌𝑖𝑖 conditional on covariate vector 𝒙𝒙𝑖𝑖 at a given quantile parameter 𝜏𝜏 𝜖𝜖 (0,1).  To 

prove this relationship we first write the CDF of 𝑌𝑌𝑖𝑖 in terms of the CDF of 𝜀𝜀𝜏𝜏𝑖𝑖: 

𝐹𝐹𝑌𝑌𝑖𝑖(𝑦𝑦𝜏𝜏|𝒙𝒙𝑖𝑖) = 𝑃𝑃(𝑌𝑌𝑖𝑖 ≤ 𝑦𝑦𝜏𝜏|𝒙𝒙𝑖𝑖) = 𝑃𝑃(𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷𝜏𝜏 + 𝜀𝜀𝜏𝜏𝑖𝑖 ≤ 𝑦𝑦𝜏𝜏�𝒙𝒙𝑖𝑖) 

= 𝑃𝑃(𝜀𝜀𝜏𝜏𝑖𝑖 ≤ 𝑦𝑦𝜏𝜏 − 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷𝜏𝜏�𝒙𝒙𝑖𝑖) = 𝐹𝐹𝜀𝜀𝜏𝜏𝑖𝑖(𝑦𝑦𝜏𝜏 − 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷𝜏𝜏|𝒙𝒙𝑖𝑖) 

Since the 𝜏𝜏 × 100% quantiles of 𝑌𝑌 depending on covariates 𝒙𝒙 and quantile parameter 

𝜏𝜏 𝜖𝜖 (0,1) is 𝐹𝐹𝑌𝑌𝑖𝑖(𝑦𝑦𝜏𝜏|𝒙𝒙𝑖𝑖) = 𝜏𝜏, we can now show that the linear quantile regression function 

is derived as follows: 

𝐹𝐹𝑌𝑌𝑖𝑖(𝑦𝑦𝜏𝜏|𝒙𝒙𝑖𝑖) =  𝜏𝜏 

𝐹𝐹𝜀𝜀𝜏𝜏𝑖𝑖(𝑦𝑦𝜏𝜏 − 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷𝜏𝜏�𝒙𝒙𝑖𝑖) =  𝜏𝜏 

𝑦𝑦𝜏𝜏 − 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷𝜏𝜏 = 𝐹𝐹𝜀𝜀𝜏𝜏𝑖𝑖
−1(𝜏𝜏) 

𝑦𝑦𝜏𝜏 = 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷𝜏𝜏 + 𝐹𝐹𝜀𝜀𝜏𝜏𝑖𝑖
−1(𝜏𝜏)  
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Due to the quantile restriction 𝐹𝐹𝜀𝜀𝜏𝜏𝑖𝑖
−1(𝜏𝜏) = 0 and we have: 

𝑄𝑄𝑌𝑌𝑖𝑖(𝜏𝜏|𝒙𝒙𝑖𝑖) = 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷𝜏𝜏 

which is a function that describes the linear relationship between covariates 𝒙𝒙 and the 

quantile function of 𝑌𝑌 based on parameters 𝜷𝜷𝜏𝜏 and fixed 𝜏𝜏 𝜖𝜖 (0,1).   

Returning to the least squares linear regression model 𝑌𝑌 = 𝑿𝑿𝑇𝑇𝛽𝛽 + 𝜀𝜀 where 

𝐸𝐸(𝜀𝜀) = 0, we may also write this such that 𝛽𝛽 represents the marginal change in the 

mean of 𝑌𝑌 due to a marginal change in 𝑥𝑥:   𝐸𝐸(𝑌𝑌|𝑿𝑿 = 𝒙𝒙) = 𝒙𝒙𝑇𝑇𝛽𝛽.  As we have shown, this 

relationship is similarly extended to the linear model for the 𝜏𝜏th conditional quantile 

function 𝑄𝑄𝑌𝑌𝑖𝑖(𝜏𝜏|𝒙𝒙𝑖𝑖) = 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷𝜏𝜏 such that 𝜷𝜷𝜏𝜏 is the marginal change in the 𝜏𝜏th quantile due 

to a marginal change in 𝒙𝒙.  In the least squares case, 𝐸𝐸(𝑌𝑌) = 𝜇𝜇𝑌𝑌 = min
𝑎𝑎
𝐸𝐸{(𝑌𝑌 − 𝑎𝑎)2} and 

the sample mean solves min
𝑎𝑎
∑ (𝑦𝑦𝑖𝑖 − 𝑎𝑎)2𝑛𝑛
𝑖𝑖=1 .  If we then consider the conditional mean 

of 𝑌𝑌 given 𝑥𝑥 to be 𝐸𝐸(𝑦𝑦|𝑥𝑥) = 𝒙𝒙𝑇𝑇𝛽𝛽, then 𝛽𝛽 can be estimated by solving min
𝛽𝛽

∑ (𝑦𝑦𝑖𝑖 −𝑛𝑛
𝑖𝑖=1

𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽)2.  Again, this estimation method is extended to the linear quantile regression 

model since the 𝜏𝜏th sample quantile, 𝛼𝛼�𝜏𝜏, solves min
𝛼𝛼

∑ 𝜌𝜌𝜏𝜏(𝑦𝑦𝑖𝑖 − 𝛼𝛼)𝑛𝑛
𝑖𝑖=1  and in the 

conditional quantile function 𝑄𝑄𝑌𝑌𝑖𝑖(𝜏𝜏|𝒙𝒙𝑖𝑖) = 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷𝜏𝜏 the estimator of 𝛽𝛽𝜏𝜏 is 

�̂�𝛽𝜏𝜏 = min
𝛽𝛽∈ℝ𝑝𝑝

�𝜌𝜌𝜏𝜏(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽)
𝑛𝑛

𝑖𝑖=1

 

Since this estimation is a generalization of the sample quantile to a linear regression 

context, this method has commonly been referred to as least absolute deviations (LAD) 

(Koenker & Bassett, 1978; Buchinsky, 1998).  This estimation method too can be 

transformed into linear programming optimization problem: 

13 
 



min
(𝛽𝛽,𝑢𝑢,𝑣𝑣)∈ℝ𝑝𝑝×ℝ+2𝑛𝑛

{𝜏𝜏1𝑛𝑛𝑇𝑇𝑢𝑢 + (1 − 𝜏𝜏)1𝑛𝑛𝑇𝑇𝑣𝑣|𝑋𝑋𝛽𝛽 + 𝑢𝑢 − 𝑣𝑣 = 𝑦𝑦} 

where X represents the 𝑛𝑛 by 𝑝𝑝 regression design matrix.  Just as with the quantile 

estimator, this optimization problem can be solved either by the simplex method 

(Koenker and D’Orey, 1987) or interior point method (Portnoy and Koenkey, 1997).  In 

the nonlinear case, the asymptotic behavior of the nonlinear quantile regression 

estimator closely parallels that of the nonlinear least squares estimator (Koenker, 2005).  

For the nonlinear quantile regression model we are trying to solve min
𝜃𝜃∈ℝ𝑝𝑝

∑ 𝜌𝜌𝜏𝜏(𝑔𝑔𝑖𝑖(𝜃𝜃))𝑛𝑛
𝑖𝑖=1  

where the functions 𝑔𝑔𝑖𝑖 are continuously differentiable in 𝜃𝜃.  Parameter estimates in the 

nonlinear case can be solved via an interior point method suggested by Koenker and 

Park (1996). 

In the case of independent and identically distributed (IID) errors for univariate 

sample {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛}, asymptotic normality can be extended from the conventional 

linear regression model to the quantile regression process.  Consider the linear model 

𝑦𝑦𝑖𝑖 = 𝑋𝑋𝑖𝑖𝛽𝛽 + 𝜀𝜀𝑖𝑖 with IID errors 𝜀𝜀𝑖𝑖 with common distribution 𝐹𝐹 (i.e. 𝜀𝜀𝑖𝑖~𝐹𝐹).  Suppose that 𝐹𝐹 

has density 𝑓𝑓 such that 𝑓𝑓�𝐹𝐹−1(𝜏𝜏𝑖𝑖)� > 0 for 𝑖𝑖 = 1, … ,𝑚𝑚 and 𝑛𝑛−1 ∑𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑇𝑇 ≡ 𝑄𝑄𝑛𝑛  

converges to a positive definite matrix 𝑄𝑄0.  Koenker and Bassett (1978) then showed 

that the joint asymptotic distribution of the 𝑚𝑚𝑝𝑝-variate quantile regression estimators 

𝜁𝜁𝑛𝑛 = (�̂�𝛽𝑛𝑛(𝜏𝜏1)𝑇𝑇 , … , �̂�𝛽𝑛𝑛(𝜏𝜏𝑚𝑚)𝑇𝑇)𝑇𝑇 takes the form 

√𝑛𝑛�𝜁𝜁𝑛𝑛 − 𝜁𝜁� = �√𝑛𝑛��̂�𝛽𝑛𝑛�𝜏𝜏𝑗𝑗� − 𝛽𝛽�𝜏𝜏𝑗𝑗���𝑗𝑗=1
𝑚𝑚 𝐹𝐹

→ 𝑁𝑁(0,Ω⊗𝑄𝑄0−1) 
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where Ω = 𝜔𝜔2 = 𝜏𝜏(1 − 𝜏𝜏)/𝑓𝑓2(𝐹𝐹−1(𝜏𝜏)).  Recall that 𝐹𝐹−1(𝜏𝜏) refers to the quantile 

function 𝑄𝑄𝑌𝑌𝑖𝑖(𝜏𝜏|𝒙𝒙𝑖𝑖) of the distribution 𝐹𝐹.  Asymptotic normality of quantile regression 

estimators then enables the use of the Wald test for hypothesis testing. 

2.6 Quantile Regression Applications 

In recent years, quantile regression has become a popular alternative to 

conventional least squares regression and has been applied in a number of different 

areas.  Applications range from environment and ecological sciences (Cade, et al., 2008; 

Pandey and Nguyen, 1999); medicine and biology, with particular importance in the 

development of reference and growth charts (Wei, et al., 2006; Koenker and Geling, 

2001); economics (Buchinsky, 1994; Matano and Naticchioni, 2012); and social and 

educational sciences (Hao and Naiman, 2007; Arulampalam, et al., 2011).  Additional 

examples are available in Koenker (2005).  Regardless of the area of application, 

quantile regression is a useful tool when the response has distributional features such as 

asymmetry, heavy tails or outliers, or whenever the response’s distributional shape 

depends on covariates (Koenker, 2005). 
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Figure 4: Distribution of first treatment session wait-time in organization “MA-06”.  (A) 
Density plot for wait-time across all study time periods (𝑛𝑛 = 224) .  (B) Density plot by 

study time periods: baseline (𝑛𝑛 = 30), intervention (𝑛𝑛 = 80), sustain (𝑛𝑛 = 114). 

 

Given the importance of reducing patient-level wait-time and patient-level wait-

time variance for improving admission rates to treatment and continuation in treatment 

(Hoffman, et al., 2011), quantile regression methods are a logical choice for modeling 

the treatment effects of NIATx 200 on wait-time.  Figure 4 shows wait-time density 

across all study time periods in NIATx 200 (Figure 4a) and wait-time density for each 

individual study time period in NIATx 200 (Figure 4b) for a single organization, “MA-06”.  

As Choi, et al. (2012) noted, the variation in the densities of wait-time across time that 

can be seen in Figure 4 indicate that there is more than one slope that describes the 

overall distribution of wait-times.  In the presence of such heterogeneity in the response 

variable distribution, least squares regression may be inadequate for characterizing 
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changes in mean response of the response variable (Cade, et al., 1999).  By contrast, 

quantile regression extends the examination of treatment effects beyond the mean 

response via least squares regression and into the lower and upper quantiles, which is 

something that was shown to be relevant in an earlier NIATx study (Choi, et al., 2012).  

In the applied setting, the superiority of the interior point method (Koenker, 2005) in 

application to linear or nonlinear fixed effects models allows for inferential conclusions 

to be drawn about group-wide treatment effects in these lower and upper quantiles.   

3 Methods 

3.1 Sample 

The source data from which a sample was drawn for this analysis is data from 

the NIATx200 study from outpatient treatment agencies from both cohorts.  Because 

the analysis objectives of this study deal with treatment effects on wait-time only, then 

the data timeframe was restricted to study time periods concerning wait-time 

improvements for each cohort: September 2007 to January 2009 for cohort 1 and 

January 2008 to May 2009 for cohort 2.  Due to data quality issues with the underlying 

data, inclusion/exclusion criteria were utilized.  Overall, the NIATx 200 study involved 

201 individual sites though some sites were eventually lost to follow-up due to closures 

or time/scheduling problems.  Individual records within the data set represent individual 

patients requesting enrollment for treatment in the participating treatment centers 

during the timeframes for each respective cohort.  As such, record level 

inclusion/exclusion criteria will be applied first and then organization level criteria. 
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At the record level, treatment request and first treatment dates were required 

to be populated.  Additionally, logical criteria such as the treatment request date 

occurring during the study period for the corresponding cohort and chronologically 

sequential treatment sessions were also required at the record level.  At the 

organization level, organizations without any data during the study period 

corresponding to their cohort were removed.  Organizations without at least one data 

point recorded during each of the first eleven months of the intervention and 

sustainability periods were also removed so as to establish a minimum data threshold 

for contributing organizations. 

Table 1: Attrition diagram for inclusion/exclusion criteria at organization level.  
Timeframe indicates the study time period relevant to wait-time intervention for each 

cohort. 
 

 
Interest 
Circle Calls Coaching 

Learning 
Sessions Combination Total 

NIATx 200 Source 
Data 49 50 54 48 201 

- Lack of data 3 8 11 6 28 
- Insufficient data  11 17 15 12 55 

Included in sample 35 25 28 30 118 
 

The source data consisted of 72338 patient records (53969 for cohort 1 and 

18369 for cohort 2) for patients who received a first treatment session during the wait-

time relevant timeframe for each cohort following their initial request for treatment.  

No patient records were removed due to logical issues concerning the temporal 

sequence of treatment sessions. Following the application of record level 

inclusion/exclusion criteria, 28 organizations were removed due to a lack of data during 

the study timeframe corresponding to wait-time.  A further 55 organizations were 
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removed from the sample because they did not have at least one data point recorded 

during each of the first 11 months of the study period.  The resulting sample consisted 

of 118 organizations and 63475 patient records (47894 for cohort 1 and 15581 for 

cohort 2) who received a first substance abuse treatment session following their initial 

request for treatment. 

3.2 Statistical Analysis 

Initial exploratory analysis was conducted via univariate analysis and density 

plots of wait-time across the study timeline and individual study time periods.  

Univariate analysis and density plots were first conducted at the site level, then various 

combinations of treatment group and state before proceeding to the grouping of data 

based only on treatment group in order to evaluate the potential influence of the 

quantile regression approach and data clustering within states and organizations.   

Based upon the initial exploratory analysis and cubic B-spline plots, the following 

parameterization with 𝑦𝑦 representing patient wait-time and 𝑡𝑡 representing the time of 

initial request for treatment was developed for a nonlinear quantile regression model 

fit: 

𝑄𝑄𝜏𝜏(𝑦𝑦|𝑡𝑡) = �
𝛼𝛼1(𝜏𝜏) + 𝛽𝛽1(𝜏𝜏)𝑡𝑡    𝑓𝑓𝑓𝑓𝑓𝑓 0 ≤ 𝑡𝑡 < 𝑏𝑏1  
𝛼𝛼2(𝜏𝜏) + 𝛽𝛽2(𝜏𝜏)𝑡𝑡    𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏1 < 𝑡𝑡 < 𝑏𝑏2
𝛼𝛼3(𝜏𝜏) + 𝛽𝛽2(𝜏𝜏)𝑡𝑡    𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏2 < 𝑡𝑡          

 

where 𝛼𝛼2(𝜏𝜏) = 𝛼𝛼1(𝜏𝜏) + 𝛽𝛽1(𝜏𝜏)𝑏𝑏1 − 𝛽𝛽2(𝜏𝜏)𝑏𝑏1 and 𝛼𝛼3(𝜏𝜏) = 𝛼𝛼2(𝜏𝜏) + 𝛽𝛽2(𝜏𝜏)𝑏𝑏2 − 𝛽𝛽3(𝜏𝜏)𝑏𝑏2.  

The time points which define the end/start of study time periods are denoted by 𝑏𝑏1 and 

𝑏𝑏2.  The end of the NIATx 200 baseline period occurs at 90 days and the start of the 

intervention period begins at 91 days and, thus, 𝑏𝑏1 = 90+91
2

= 90.5 days.  The end of the 
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NIATx 200 intervention period occurs at 243 days and the start of the sustain period 

begins at 244 days and so  𝑏𝑏2 = 243+244
2

= 243.5 days.  Initial values for the nonlinear 

quantile regression optimization problem (Koenker, 2005) are based upon the following 

linear least squares regression model: 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + 𝛽𝛽2𝑡𝑡 ∙ 𝐼𝐼(𝑡𝑡 > 𝑏𝑏1) + 𝛽𝛽3𝑡𝑡 ∙ 𝐼𝐼(𝑡𝑡 > 𝑏𝑏2) 

where 𝐼𝐼(𝑡𝑡 > 𝑏𝑏1) and 𝐼𝐼(𝑡𝑡 > 𝑏𝑏2) represent indicator functions relating to changes in wait-

time due to the intervention and sustain study time periods, respectively.   

A nonlinear least squares model was fit for comparison against the nonlinear 

quantile regression models.  The least squares model had a parameterization similar to 

the quantile regression model: 

𝑦𝑦 = �
𝛼𝛼1+𝛽𝛽1𝑡𝑡    𝑓𝑓𝑓𝑓𝑓𝑓 0 ≤ 𝑡𝑡 < 𝑏𝑏1  
𝛼𝛼2 + 𝛽𝛽2𝑡𝑡    𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏1 < 𝑡𝑡 < 𝑏𝑏2
𝛼𝛼3 + 𝛽𝛽2𝑡𝑡    𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏2 < 𝑡𝑡          

 

where 𝛼𝛼2 = 𝛼𝛼1 + 𝛽𝛽1𝑏𝑏1 − 𝛽𝛽2𝑏𝑏1 and 𝛼𝛼3 = 𝛼𝛼2 + 𝛽𝛽2𝑏𝑏2 − 𝛽𝛽3𝑏𝑏2.  The time points 𝑏𝑏1 and 𝑏𝑏2 

were defined the same way as with the quantile regression models.  The starting values 

for the nonlinear least squares optimization problem were also defined by the same 

linear regression model used for defining the starting values for the nonlinear quantile 

regression models. 

Attempts were made to address the hierarchical structure of the NIATx 200 data 

in the modeling effort through the initial development of a nonlinear mixed effects 

model.  In this mixed effects model, treatment groups were handled as fixed effects and 

organizations as a random effect.  These efforts, however, were not successful due to a 

lack of convergence for the parameter estimates, which was likely due to very few 
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organization level covariates being present in the data.  Given the problems 

encountered with a developing a nonlinear least squares mixed effects model, efforts to 

produce a nonlinear quantile regression mixed effects model were similarly abandoned. 

Sample data processing was conducted using Statistical Analysis Software, 

version 9.3 (SAS Institute Inc., 2013).  All statistical analysis was conducted in R, version 

2.15.2 (R Core Team, 2013). 

4 Results 

Exploratory quantile regression model fits of each treatment arm via 

nonparametric cubic B-splines with 5 degrees of freedom are presented in Appendix 

section 8.1.  These plots provided the basis for nonlinear model parameterization and 

subsequent model fits of 10%, 50% and 90% quantiles in addition to conditional mean 

plots resulting from a least squares model, which are shown in Figures 5 through 8.  

Indications of variations in the behavior of wait-time at different areas of the 

distribution which were suggested in earlier density plots are reinforced with the cubic 

B-spline and parametric nonlinear plots.  In particular, both cubic B-spline and 

parametric nonlinear plots corresponding to the regression quantiles for learning 

sessions and coaching treatment groups demonstrate this behavior.  Furthermore, it can 

be seen in most plots that the 90% and 10% regression quantiles are not parallel to the 

conditional mean line within each study period, which suggests that variability in patient 

wait-time is not constant in the data.  The overall similarity between the nonparametric 

cubic B-spline plots (Appendix section 8.1) and parametric nonlinear plots (Figures 5-8) 
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suggest that the chosen parameterization is appropriate for modeling wait-time 

quantiles and conditional mean response. 

Figure 5: Nonlinear quantile and least squares regression model fits (10%, 50% and 90% 
quantiles) for the interest circle calls treatment group.   Vertical reference lines indicate 

the baseline, intervention and sustain study periods. 
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Figure 6: Nonlinear quantile and least squares regression model fits (10%, 50% and 90% 
quantiles) for the coaching treatment group.  Vertical reference lines indicate the 

baseline, intervention and sustain study periods. 
 

 

Figure 7: Nonlinear quantile and least squares regression model fits (10%, 50% and 90% 
quantiles) for the learning sessions treatment group.  Vertical reference lines indicate 

the baseline, intervention and sustain study periods. 
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Figure 8: Nonlinear quantile and least squares regression model fits (10%, 50% and 90% 
quantiles) for the combination treatment group.  Vertical reference lines indicate the 

baseline, intervention and sustain study periods. 

 

Model parameter estimates for both nonlinear least squares and quantile 

regression models are presented in Table 2.  Regression quantiles for the coaching, 

learning session and the combination treatment groups were compared against the 

interest circle calls group and these results are also shown in Table 2.  All model results 

are deemed to be statistically significant for p < 0.05.   

Results for the baseline period in the 10% and 50% regression quantiles indicate 

that all treatment groups were statistically significant with a negative slope estimate, 

with the exception of interest circle calls.  At the 10% regression quantile in the baseline 

period, the coaching (t = -2.504, p = 0.012), learning sessions (t = -2.817, p = 0.005) and 

combination (t = -2.193, p = 0.028) groups all had significantly greater reductions in 

wait-time than the learning sessions group.  Similarly, at the 50% regression quantile in 

the baseline period, the coaching (t = -9.547, p < 0.001), learning sessions (t = -2.629, p = 
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0.009) and combination (t = -8.570, p < 0.001) were all found to have significantly 

greater reductions in wait-time than the learning sessions group.  At the 90% quantile in 

the baseline period, only the coaching (t = -4.098, p < 0.001) and combination                  

(t = -3.964, p < 0.001) groups were found to have significant reductions in wait-time and 

none of the other treatment group effects were found to be significantly different from 

interest circle calls.  Within the least squares model, the conditional mean of wait-time 

in the baseline period was found to have a significant reduction in the coaching               

(t = -5.930, p < 0.001) and combination (t = -6.704, p < 0.001) groups. 

Compared to the baseline period, the results for the intervention period were 

much more mixed.  Despite a significant wait-time reduction in the 10% regression 

quantile (t = -2.418, p = 0.016), the coaching group experienced a wait-time increase in 

the 50% (t = 2.089, p = 0.037) and 90% (t = 5.350, p < 0.001) regression quantiles.  

Relative to interest circle calls, the coaching group also had significantly increased wait-

time in the 50% (t = 3.641, p < 0.001) and 90% (t = 2.791, p = 0.005) regression 

quantiles.  In addition, the coaching treatment group experienced a significant increase 

in the conditional mean of wait-time during the intervention period (t = 4.762, p < 

0.001).  In contrast, wait-time reductions were found in some regression quantiles in the 

interest circle calls and learning sessions groups.  At the 10% regression quantile (-2.654, 

p = 0.008), 50% regression quantile (-2.983, p = 0.003) and conditional mean (t = -3.309, 

p = 0.001) in the intervention period, the interest circle calls group was found to have 

significant reductions in wait-time.   Meanwhile, at the 50% regression quantile               

(t = -11.156, p < 0.001), 90% regression quantile (t = -4.352, p < 0.001) and conditional 
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mean (t = -4.605, p < 0.001) in the intervention period, the learning sessions groups was 

found to have significant reductions in wait-time.  Quantile and least squares model 

response during the intervention period may reflect the potentially beneficial and 

disruptive effect of process improvement. 

During the sustain period, the interest circle calls groups had significant 

reductions in wait-time in the 10% regression quantile (t = -3.951, p < 0.001), 90% 

regression quantile (t = -5.504, p < 0.001), and conditional mean (t = -3.936).  Given this 

reduction during the sustain period for the interest circle calls group, only the coaching 

group had a significant reduction in wait-time relative to the interest circle calls group in 

the 50% regression quantile (t = -4.309, p < 0.001).  All other treatment groups either 

had non-significant wait-time response during this period or had relative increases in 

wait-time when compared to interest circle calls: 10% regression quantile for coaching  

(t = 2.078, p = 0.038), 90% regression quantile for coaching group (t = 2.140, p = 0.032), 

90% regression quantile for learning sessions group (t = 5.512, p < 0.001), 90% 

regression quantile for combination group (t = 4.591, p < 0.001).  Despite the trend of 

increasing wait-time during the intervention period for most models for the coaching 

group, the coaching group had significant reductions in wait-time in the 50% regression 

quantile (t = -8.348, p < 0.001), 90% regression quantile (t = -4.369, p < 0.001) and 

conditional mean (t = -5.197, p < 0.001).  It is important to recall that during the sustain 

period, the intervention for a specific group is removed and it is then possible to 

observe the post-intervention effects on wait-time.     
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Predicted values and changes in wait-time based on quantile and least squares 

regression models are presented in Table 3.  These predicted values are largely 

reflective of the significant increasing or decreasing wait-time slope estimates for the 

study time periods previously mentioned.  Based on the least squares model, all 

treatment groups had reductions in wait-time with the combination and coaching 

groups having the largest reductions in predicted mean wait-time.  The largest predicted 

wait-time reduction across the entire study timeline in the 90% regression quantile was 

in the interest circle calls and combination groups.  By the end of the study, 90% of 

patients in the interest circle calls group were predicted to wait 71.4 days or less; a 

reduction of 38.1% from the predicted wait-time at the start of the study (115.4 days or 

less).  Within the combination group, 90% of patients were predicted to wait 66 days or 

less at the end of the study; a reduction of 37.5% from the predicted wait-time at the 

start of the study (105.5 days or less).   
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Table 3:  Changes in wait-time through study periods as predicted by nonlinear quantile 
and least squares regression models. 

 

 

An interesting result is the predicted increase in wait-time in the coaching group 

during the intervention period.  At the end of this period, 90% of patients in the 

coaching group were predicted to wait 80.5 days or less; an increase of 26.6% from the 

predicted wait-time at the start of the intervention period (63.6 days or less).  Within 

the intervention period, the coaching group also had a similar predicted wait-time 

increase in mean wait-time (21.5%) and a small increase in wait-time in the 50% 

regression quantile (5.5%).  The combination group had large reductions in predicted 

wait-time in all regression quantiles and conditional mean during the baseline period, 

but either modest predicted wait-time reductions or increases in all other study periods.  

Despite wait-time trend changes during individual study periods, all intervention groups 

experienced substantial wait-time reductions in all quantiles and the conditional mean. 
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5 Discussion 

The hypothesis of this thesis was that more intensive process improvement 

methodologies offered through the NIATx 200 study result in greater reductions in wait-

time for patients entering substance abuse treatment programs.  In order to evaluate 

this hypothesis multiple quantile regression models and a least squares model were 

developed to evaluate changes in wait-time across NIATx 200 study time periods at 

lower (10%), median (50%) and upper (90%) quantiles in addition to the mean.  A 

nonlinear approach was used in an effort to evaluate wait-time behavior within each 

study period while still fitting a model across all time periods.  One unusual result of 

these models was numerous significant reductions in wait-time in the baseline period at 

all regression quantiles and the conditional mean.  This unexpected result may indicate 

a flaw in the definition of the study time periods and/or preliminary initiation of 

intervention efforts.   

Within the intervention period, the interest circle calls and learning sessions 

groups appeared to perform the best in terms of wait-time reduction in multiple 

regression quantiles and the conditional mean.  The interest circle calls group had 

significant wait-time reductions in the 10% regression quantile, 50% regression quantile, 

and conditional mean (Table 2).  The interest circle calls group also performed similar to 

or significantly better than many other treatment groups in all regression quantiles of 

the intervention period.  During the intervention period, only the learning sessions 

group experienced a significant reduction in wait-time when compared to the interest 

circle calls group (t = -2.436, p = 0.015).  For the intervention period, in the 50% 
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regression quantile, 90% regression quantile, and conditional mean, the interest circle 

calls and learning sessions groups also experienced the greatest reductions in predicted 

wait-time (Table 3).  During the sustain period, however, the learning sessions group 

had only modest, non-significant reductions in wait-time in most regression quantiles, 

with the notable exception being the 10% regression quantile, and the conditional 

mean.  In the sustain period, the interest circle calls group continued to experience 

significant reductions in wait-time in the 10% regression quantile, 90% regression 

quantile, and conditional mean and these reductions are reflected in the predicted 

values for that time period (Table 3).   

In contrast to the interest circle calls and learning sessions groups, the coaching 

group had significant increases in wait-time during the intervention period in the 50% 

regression quantile, 90% regression quantile, and conditional mean (Table 2).  The 

increases in wait-time for the coaching group are reflected in Table 3.  These wait-time 

increases for the coaching group in the intervention period may indicate that, during 

implementation, coaching is disruptive enough that it is counterproductive to the goals 

of the process improvement.  The situation did improve for the coaching group in the 

sustain period with significant reductions in wait-time in the 50% regression quantile, 

90% regression quantile, and conditional mean.  Thus, despite the relatively poor 

performance of the coaching group during the intervention period, this group was able 

to achieve wait-time reductions post-intervention.  This difference in wait-time trends 

between the intervention and overall study periods may indicate that the coaching 

process improvement method has a delayed effect on the organization it is used with. 
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Most surprising in these results is that the resource-intensive combination group 

only experienced significant wait-time reductions in the baseline period and in the 50% 

regression quantile of the intervention period.  The combination group did not 

necessarily perform poorly in terms of wait-time reduction, but there simply was no 

evidence of much change at all as a result of this intervention.  Perhaps this indicates 

that a battery of process improvement solutions all at once is too much for the 

organizations to handle.   

Overall, if the unexpected results from the baseline study period are ignored 

(Intervention to Sustain column in Table 3), the interest circle calls and learning sessions 

groups appeared to have the best performance in terms of wait-time reductions.  These 

two groups experienced significant wait-time reductions in the intervention and sustain 

period across multiple regression quantiles and the conditional mean.  If the entire 

study timeframe is considered (Baseline to Sustain column in Table 3), however, then 

the coaching and combination groups appear to perform better or similar to the interest 

circle calls and learning sessions groups.  While the coaching and combination groups 

generally experienced either significant increases or no reductions in wait-time during 

the intervention period, they did have wait-time reductions in the baseline and sustain 

periods (Tables 2-3).  Because the coaching intervention resulted in similar wait-time 

reduction and has significantly lower cost/complexity, the coaching intervention is more 

cost effective than the combination intervention.  The baseline period results are a 

cause for concern but regardless of whether it is ignored or not, it is clear that higher 
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cost/complexity process improvement interventions do not necessarily result in greater 

reductions in wait-time for substance abuse treatment programs in the NIATx 200 study. 

These results and conclusions differ somewhat from the earlier NIATx 200 study 

by Gustafson, et al. (2013), but conclusions drawn from each paper are not necessarily 

superior to the other because the data and methods used differ.  Gustafson, et al. made 

use of month average outcome metrics, including wait-time, for modeling, while this 

paper used patient-level data.   The use of month averaged outcome metrics, in effect, 

reduces the data resolution, but also the noise that can be observed in some of the 

model fits.  The noise that we find in patient-level wait-time data may be one of the 

reasons for lack of convergence in attempted nonlinear quantile regression mixed 

effects model fits mentioned earlier.  The site selection methods also differ between the 

two analyses.  Gustafson, et al. only filtered out organizations which were lost to follow-

up (ten organizations) and then removed month averaged data points if the average was 

based on fewer than five records.  In contrast to this thesis (Table 1), Gustafson, et al. 

utilized data from 45 organizations in the interest circle calls group, 47 in the coaching 

group, 51 in the learning sessions group, and 48 in the combination group.  Thus, there 

were many more organizations included in the analysis in the Gustafson paper than in 

this paper.  The more stringent site selection method employed in this paper implies 

high internal validity for conclusions at the sake of external validity.  The site selection 

method used in this paper removed 83 organizations from the initial data sample, which 

is 41.3% of the participating organizations, but only 12.3% of the patient records were 

removed as a result.  This disparity in the effects on the data sample by the site 
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selection method appears to indicate that smaller organizations were disproportionately 

removed from the final data sample.  Lastly, Gustafson, et al. only made use of linear 

mixed effects models for evaluating the changes in monthly mean wait-time during the 

intervention period and across the entire study period.  This linear approach ignores 

how wait-time change in earlier study periods can influence changes in wait-time in 

subsequent study periods. 

Model development conducted within this paper only considered a fixed effects 

model.  Given the presence of data resulting from a cluster-randomized trial, it is 

unfortunate that the hierarchical structure of the data could not be evaluated through 

the use of a nonlinear quantile regression mixed effects model.  Mixed effects model fits 

were attempted, but convergence to a solution was not possible.  The lack of 

organization and patient covariates played a likely role in this result and is a hindrance 

to accurate statistical model development regardless of method.  In this particular data, 

there may also be the presence of multiple maxima in the response variable 

distribution, which can also result in the lack of convergence.  A method and 

computational package for producing nonlinear mixed effects quantile regression 

models is also not readily available.  Fortunately, methods for computing quantile 

regression mixed effects models are being actively developed.  Koenker (2005) originally 

suggested using a distribution-free, penalty method, while Karlsson (2008) explored a 

likelihood-based, weighted approach.  More recently, Kim and Yang (2011) proposed a 

semiparametric method based on empirical likelihood for random effects models.  

Based on earlier work with the asymmetric Laplace distribution, Geraci and Bottai 
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(2013) developed an approach for mixed effects models based on maximization of 

Laplace likelihood.  Lastly, Wang (2012) suggested a Bayesian quantile regression 

method for nonlinear mixed effects models, which also involved the asymmetric Laplace 

distribution.  A careful review and application of these proposed methods for quantile 

regression mixed model development would be a logical progression from the results 

presented in this thesis. 

Results in this thesis, particularly those found in Table 2, highlight the power of 

quantile regression to unearth variation in response variable distribution that 

conventional least squares regression ignores.  Throughout the study periods, significant 

increases or reductions in wait-time were found in various regression quantiles, but 

similar significant estimates were not found via least squares regression.  The ability of 

quantile regression to detect such effects reinforces the idea of quantile regression as a 

high-resolution analysis method that can uncover process improvement effects with 

remarkable detail.    
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7 Appendix 

7.1  Nonparametric B-spline Plots 

Figure 9: Nonparametric quantile regression model fit with cubic B-spline and 5 degrees 
of freedom for the interest circle calls treatment group. 
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Figure 10: Nonparametric quantile regression model fit with cubic B-spline and 5 
degrees of freedom for the coaching treatment group. 
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Figure 11: Nonparametric quantile regression model fit with cubic B-spline and 5 
degrees of freedom for the learning sessions treatment group. 
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Figure 12: Nonparametric quantile regression model fit with cubic B-spline and 5 
degrees of freedom for the combination treatment group. 
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7.2  Site-level Nonlinear Quantile Regression Slope Estimate Boxplots 

Figure 13: Boxplot of site-level slope estimates for the baseline period resulting from 
nonlinear quantile regression fit of the 10% quantile. 

 

 

Figure 14: Boxplot of site-level slope estimates for the intervention period resulting 
from nonlinear quantile regression fit of the 10% quantile. 
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Figure 15: Boxplot of site-level slope estimates for the sustain period resulting from 
nonlinear quantile regression fit of the 10% quantile. 

 

 

Figure 16: Boxplot of site-level slope estimates for the baseline resulting from nonlinear 
quantile regression fit of the 50% quantile. 
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Figure 17: Boxplot of site-level slope estimates for the intervention period resulting 
from nonlinear quantile regression fit of the 50% quantile. 

 

 

Figure 18: Boxplot of site-level slope estimates for the sustain period resulting from 
nonlinear quantile regression fit of the 50% quantile. 
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Figure 19: Boxplot of site-level slope estimates for the baseline period resulting from 
nonlinear quantile regression fit of the 90% quantile. 

 

 

Figure 20: Boxplot of site-level slope estimates for the intervention period resulting 
from nonlinear quantile regression fit of the 90% quantile. 
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Figure 21: Boxplot of site-level slope estimates for the sustain period resulting from 
nonlinear quantile regression fit of the 90% quantile. 
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