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2 Abstract

Slower gait speed has previously been shown to be associated with mortality in aging pop-
ulations, based on a single measure of gait speed,1–3 but repeated measures of gait speed
may be more informative. Although an extended Cox model can accommodate a time-
varying covariate, the Cox framework has certain limitations in context of endogenous or
continuous time-varying covariates or time-varying covariates measured with error.

The joint modeling framework uses a smooth, continuous model of the time-varying co-
variate that may more accurately represent its true, underlying longitudinal trajectory. The
framework also incorporates measurement error of the time-varying covariate and uses a
likelihood formulation that is consistent with endogenous covariates (i.e., covariates whose
future trajectories after the occurrence of the event of interest are altered by the event). The
chief benefits of these improvements, substantiated by simulation study,4 is that joint mod-
els are not subject to underestimation of the effect size and standard error, as may occur in
extended Cox models. Also, joint models have less stringent assumptions about missing
data mechanisms than linear mixed-effects models, so they can correct bias in longitudinal
estimates that may result from non-ignorable missingness.

The objective of this thesis is to estimate the association between longitudinal trajectories
of gait speed and survival time and to compare estimates of association from separate
models (i.e., mixed-effects models and Cox models) and joint models.

A subset of 877 ambulatory, community-dwelling older men from 2 of the 6 sites in the
Osteoporotic Fractures in Men (MrOS) study performed a walking test up to 5 times over a
median follow-up time of 7 years and were followed for a median of 11 years for mortality.
We modeled the hazard ratio (HR) of gait speed 1) as a baseline measure alone, 2) as a
time-varying covariate (extended Cox), and 3) as a longitudinal sub-model using linear
mixed-effects with cubic natural splines (joint model).

Slower gait speed was associated with mortality in all models. The HR per 0.1 m/s decline
in gait speed was 1.08 in the Cox model (95% CI: 1.01 to 1.15); 1.14 (95% CI: 1.05 to
1.22) in the extended Cox model; and 1.25 (95% CI: 1.15 to 1.36) in the best-fitting joint
model. Estimates of longitudinal parameters from the linear mixed-effects vs. joint model
suggested estimation was not sensitive to missingness assumptions.

As expected, the extended Cox model underestimated the effect of longitudinal gait speed
on survival time. Estimates of longitudinal parameters were similar across modeling strat-
egy, suggesting that the longitudinal process was not sensitive to missingness assumptions.
Contrary to expectation, standard errors for both longitudinal and event parameters were
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very similar across all modeling strategies.

Providers may benefit by considering the increased estimate of the association between
gait speed and survival time. Traditional modeling techniques may underestimate the mag-
nitude of this association.
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3 Introduction

Life expectancy is a particularly important consideration in treatment plans for older
adults, so finding predictors of mortality in older populations is a clinically important
endeavor. A 6-meter walking test is a convenient physical test that can be administered
in any clinic setting with a 6-meter-long space, such as a hallway, without the need for
specialized equipment or training. The general procedure is to measure the time it takes
for the patient to walk a 6-meter course at his or her usual walking pace.5

Gait speed has previously been shown to be associated with mortality in older popula-
tions: A 2009 prospective cohort study examined walking speed and mortality in 3 208
community-dwelling adults over 65 years old and found a hazard ratio for all-cause mor-
tality of 1.44 (95% CI: 1.03 to 1.99), comparing the slowest third to the faster two thirds.1

For cardiovascular death specifically, the hazard ratio was 2.92 (95% CI: 1.46 to 5.84);
there was no significant difference in cancer death. In a recent meta-analysis of the as-
sociation between physical capability measures and all-cause mortality among 5 cohorts
(N=14 692) of older adults, a summary hazard ratio, comparing the slowest-walking quar-
tile to the fastest-walking quartile, was 2.87 (95% CI: 2.22 to 3.72), adjusted for age, sex,
and body size.2 In 2011, Studenski et al published a pooled analysis of 34 485 community-
dwelling adults over 65 years old from 9 cohort studies that measured gait speed at baseline
and followed patients for mortality for at least 5 years. Estimates of hazard ratios ranged
from 1.06 to 1.20 per 0.1 meter-per-second decline in gait speed; the pooled estimate was
1.14 (95% CI: 1.11 to 1.15).3

In the discussion of their meta-analysis, Cooper et al point out that new research is needed
to “examine the associations between changes in capability with age and mortality, as a
steep decline in physical capability may be a better predictor of mortality than is the abso-
lute level at a single point in time.2” This reasoning makes good intuitive sense, especially
for older patients who are in the phase of life where one can expect to observe changes in
physical capability over a reasonably short follow-up period, and where a sudden decline
in mobility may be especially predictive of mortality. In that spirit, the current investiga-
tion endeavors to measure the association between longitudinal changes in gait speed and
mortality and to adjust for this association in estimates of the effects of other predictors of
both survival time and the longitudinal trajectory of gait speed.

Survival time and longitudinal trajectories frequently have a non-ignorable relationship.
In the case of survival time (or time to some event other than death), there is frequently
at least one important covariate that changes over time during follow-up. Accounting for
longitudinal changes in time-varying covariates may facilitate better prediction of survival
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time than accounting for cross-sectional covariates at baseline alone. On the other hand,
when the longitudinal trajectory is the outcome of interest, failing to account for systematic
patterns in dropouts may seriously bias estimates of the effects of predictors.6, 7

In both cases, it may be useful to measure the association between a longitudinal pro-
cess and a time-to-event process. Traditional methods can be used to model each process
separately, but unmeasured association in a separate longitudinal model tends to induce
bias.4 The Cox proportional-hazards model can be extended to accommodate a time-
varying covariate, but this framework is not optimal because it does not properly account
for longitudinal covariates whose future trajectory has a probabilistic relationship to oc-
currence of the event of interest (i.e., ”endogenous covariates”); it models even continuous
time-varying covariates as a step function; and it assumes that longitudinal covariates are
measured without error. Joint models for longitudinal and time-to-event data provide a
framework for accounting for the effects of endogenous, continuous, longitudinal trajec-
tories, measured with error, on an event process.

In his book on joint modeling, Rizopoulos8 predicts that, compared to joint models, a Cox
proportional-hazards model with a time-varying covariate will underestimate the magni-
tude of association between the longitudinal and time-to-event process and will under-
estimate the standard error for longitudinal, event, and association parameters. This can
be taken to mean that, in certain circumstances, joint models will provide more realistic
estimates than traditional methods.

This thesis explores the emerging method of joint longitudinal and time-to-event model-
ing by first applying it to a didactic dataset of longitudinal CD4 lymphocyte counts and
survival time from a study of acquired immunodeficiency syndrome (AIDS) patients. This
dataset has been used repeatedly in the literature on joint modeling,8–12 so it provides a
good didactic opportunity.

Second, the motivating example for the project is to examine the relationship between
longitudinal changes in gait speed and survival time in a population of older men. Gait
speed has previously been shown to be related to mortality2, 3 and represents a measure of
endogenous endurance whose underlying value is continuously changing, so it is a good
candidate for joint modeling.

The Osteoporotic Fractures in Men (MrOS) study is a long-duration longitudinal cohort
study that examines patterns of osteoporotic fractures and a variety of other clinical in-
dicators in older men.5 A subset of MrOS participants who participated in two ancillary
studies of periodontal health13 and sleep14, 15 performed a 6-meter walking test up to 5
times over a median follow-up period of 7 years. Data were also collected on a variety of
other clinical factors, and participants have, at the time of this writing, been followed for
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survival over a median time of 11 years. To my knowledge, longitudinal trajectories of
gait speed in this cohort have not previously been modeled, and joint modeling has not yet
been applied to data from this study.

This paper is organized as follows: In section 4, we describe notation and theory relevant
to joint longitudinal and time-to-event models, including a brief review of linear mixed-
effects models and Cox proportional-hazards models. In section 5, we describe separate
and joint models of longitudinal trajectories of CD4 lymphocyte counts, survival time, and
the association between the two outcomes in the didactic AIDS dataset. In section 6, we
describe separate and joint models of longitudinal changes in gait speed, survival time,
and the association between longitudinal gait speed and survival time in the MrOS cohort.
The paper concludes with a discussion of the results of the joint model of gait speed and
survival.

4 Theory

4.1 Linear mixed-effects model

Traditional mixed-effects models provide a framework for regression modeling when the
crucial assumption of independent observations is violated. This is typical when a study
design calls for repeated measures on individual subjects, because one can expect to ob-
serve correlation among measurements taken from the same individual, even if those mea-
surements are separated by time.

Let’s begin a description of the model by defining some notation:

• yi(t) is the observed response for individual i at time t.

• β is a vector of population-level coefficients corresponding to fixed effects xi.

• xi(t) is a vector of fixed effects for individual i at time t.

• bi is a vector of individual-level coefficients corresponding to random effects zi.

• zi(t) is a vector of random effects for individual i at time t.

• εi(t) is the residual error for individual i at time t, conditional on the random effects
bi.
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• Σ is the covariance matrix whose dimensions correspond to the length of the vector
bi.

• σ2Ini is the covariance matrix whose ni dimensions correspond to the number of
longitudinal observations for individual i.

Assuming a normal distribution for the outcome yi(t), a linear mixed-effects model of
form (1) can account for within-individual correlation by introducing in the linear model
one or more sets of predictors and corresponding regression coefficients that are allowed
to vary randomly across individuals.16 The model reflects the idea that each individual has
his or her own individual-specific response profile over time that is offset from the mean
response profile.


yi(t) = βx>i (t)+biz>i (t)+ εi(t),

bi ∼N (0,Σ),

εi ∼N (0,σ2Ini)

(1)

In model (1), the vector of fixed effects xi, the vector of random effects zi, and the residual
error term εi can all be functions of time, written as (t).

A special case of the linear mixed-effects model (a popular choice for correlated obser-
vations) is a model allowing individual-level random intercepts and slopes. In the case of
time as a covariate, this popular model specification is


yi j = β0 +β1ti j +bi0 +bi1ti j + εi j,

bi0, bi1 ∼N (0,Σ),

εi j ∼N (0,σ2)

(2)

Model (2) uses a slightly different notation: the subscripts i and j refer to the ith individual
and the jth longitudinal observation. Then yi j denotes the outcome for individual i at
observation j, and the predictor ti j is the corresponding time.
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4.1.1 Estimation

The observations yi(t) are assumed to follow a multivariate normal distribution with mean
βxi and variance-covariance matrix Vi = ziΣz>i +σ2Ini . So the joint density of all ni ob-
servations of yi(t) for individual i is


p(yi|θ) =

1√
(2π)ni|Vi|

exp
(
−(yi−βxi)

>(yi−βxi)

Vi

)
,

θ> = (β>,σ2,vech(Σ)),

Vi = ziΣz>i +σ2Ini

(3)

and the log-likelihood for all yi(t) is

`(θ |yi) =−
K
2

log(2π)− 1
2

N

∑
i=1

log |Vi|−
1
2

(
N

∑
i=1

(yi−βxi)
>(yi−βxi)

Vi

)
(4)

where K = ∑
N
i=1 ni is the total number of observations for the N individuals with ni obser-

vations each. Since the parameter β appears only in the right-most term, maximizing the
log-likelihood with respect to β amounts to minimizing

N

∑
i=1

(yi−βxi)
>(yi−βxi)

Vi
, (5)

and the MLE for β is

β̂ =

(
N

∑
i=1

(x>i V−1
i xi)

)−1( N

∑
i=1

(x>i V−1
i yi)

)
. (6)

A similar method is employed to estimate the variance parameters, although numerical
techniques are necessary, since a closed-form solution usually doesn’t exist.

Although the method of maximum likelihood yields asymptotically unbiased estimates of
Vi, finite-sample estimates are biased, as a result of using maximum-likelihood estimates
for both parameters. The method of restricted maximum likelihood (REML) yields an
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unbiased estimate of Vi in finite samples by adding a correction term to the likelihood
function (7) to account for the fact that β has been estimated:

`REML(θ |yi) =−
1
2

log

∣∣∣∣∣ N

∑
i=1

x>i xi

Vi

∣∣∣∣∣− 1
2

N

∑
i=1

log |Vi|−
1
2

(
N

∑
i=1

(yi−βxi)
>(yi−βxi)

Vi

)
, (7)

whose maximization with respect to Vi is again carried out by numerical optimization.7

4.1.2 Shape of the longitudinal trajectory

As in other forms of of linear regression, mixed-effects models make use of linear or
polynomial shapes to model the shape of the relationship between the outcome variable
and the vector of independent variables—of course, in the case of a mixed-effects model
of longitudinal data, at least one of the independent variables is time.

A drawback to the use of polynomial shapes is that nature sometimes fails to provide
us with natural relationships that are perfectly polynomial. For this reason, it is some-
times necessary to employ more flexible techniques, such as piecewise polynomials, basis
splines (b-splines), or natural cubic splines.

The piecewise methods under consideration here are functions that allow a separate linear
specification for each of several intervals in the modeling region, separated by K internal
boundaries called knots. Let the internal knots be called ξ = (ξ1, . . . ,ξK). Then the general
form of our piecewise methods is

f (x) =
m

∑
d=1

κdhd(x) (8)

where κ are coefficients for the functions (h1, . . . ,hm). The function hd(·) can be defined
as any relevant functional form of X .

Piecewise constant

A simple piecewise approach is a piecewise-constant function, which amounts to a shifting
least-squares mean over however many intervals are specified. Consider a region broken
into 3 intervals by K = 2 internal knots. The piecewise-constant function is as specified in
(8), with m = K +1 and with hd defined as
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h1(X) = I(X < ξ1),

h2(X) = I(ξ1 ≤ X < ξ2),

h3(X) = I(X ≥ ξ2)

(9)

and the least-squares estimate of f (x) is the mean of Y in the dth interval: κ̂ = Y d .

Figure 1. Illustration of piecewise-constant approach with 2 internal knots ξ1 and ξ2.

Piecewise polynomial

Constraints can be added to require continuity of the 0th, 1st, 2nd, 3rd, or higher-order
derivatives. Enforcing 0th-derivative continuity connects the intervals without any smooth-
ing; enforcing continuity at higher-order derivatives will result in increasingly smooth
knots. To produce a set of splines with slopes that are continuous at the knots, we would
define hd as


h1(X) = 1,
h2(X) = X ,

h3(X) = (X−ξ1)+,

h4(X) = (X−ξ2)+

(10)

where the subscript + indicates that we are including only the positive portion of the
function. Plugging these functions into (8) produces
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f (X) = κ11+κ2X +κ3(X−ξ1)++κ4(X−ξ2)+, (11)

which is a familiar-looking linear function, with special features allowing regions [−∞,ξ1),
[ξ1,ξ2), and [ξ2,∞) to have different slopes. In this function, there are m = 4 coefficients
to accommodate K = 2 internal knots; a quadratic model would have m = 5 coefficients,
as in (12):

f (X) = κ11+κ2X +κ3X2 +κ4(X−ξ1)
2
++κ5(X−ξ2)

2
+, (12)

A cubic model would have m = 6 coefficients, and so on. Generally, if there are K knots,
and the function is of order Q, there will be m = K +Q coefficients.

Figure 2. Illustration of a 1st-degree piecewise polynomial with 2 internal knots ξ1 and ξ2.

B-splines

To configure the linear space for b-splines, consider a space with Q knots τ1, . . .τQ (with
Q corresponding to the order of the b-splines function) to the left of the boundary knot ξ0;
K knots τk+Q = ξk , k = (1, . . . ,K) corresponding to the internal knots ξ1, . . . ,ξK; and Q
knots τK+Q+1, . . . ,τK+2Q to the right of the other boundary knot ξK+1. Then in function
(8), hd is replaced by BiQ(·) for knots i = (1, . . . ,K+2Q). The recursive b-spline function
is defined as
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Bi,1(x) =

{
1 if τi ≤ x < τi+1

0 otherwise
for i = (1, . . . ,K +2Q−1)

Bi,q(x) =
x− τi

τi+q−1− τi
Bi,q−1(x)+

τi+q− x
τi+q− τi+1

Bi+1,q−1(x)

for i = (1, . . . ,K +2Q−q)

(13)

This function is evaluated by constructing a triangular matrix, beginning with order q = 1
and ending with order q = Q and taking the sum of the right-most column of the matrix to
construct the b-splines function (14).

f (x) =
m

∑
d=1

κdBiQ(x) (14)

Natural cubic splines

B-splines provide great flexibility in modeling non-linear shapes without departing from
parametric methods, although they can be somewhat badly behaved at the tails.17 Natural
cubic spines are a modification of (10) with additional constraints of linearity beyond the
boundary knots. A natural cubic spline with K knots will have K basis functions (and K
coefficients). Each basis function is represented as



N1(X) = 1,
N2(X) = X ,

Nk+2(X) = dk(X)−dK−1(X), k = (1, . . . ,K),

dk(X) =
(X−ξk)

3
+− (X−ξK)

3
+

ξK−ξk

(15)

The boundary constraints (X − ξK)
3
+ in the numerator in dk(X) drop out when x is in-

side the boundaries and apply when x is outside the boundaries, causing more reasonable
behavior in the tails.

Piecewise methods in mixed-effects models
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For all piecewise methods, the piecewise function (8) can be inserted into the linear mixed-
effects model as a regressor, and, with the functions hd defined, estimation proceeds as
with linear models.17

4.1.3 Advantages and limitations of linear mixed-effects models

Key advantages of mixed-effects models include that they can produce estimates of indi-
vidual subjects’ longitudinal trajectories in addition to estimates of the mean response.8, 16

Also, because the count of model parameters does not increase with the number of lon-
gitudinal time points in the mixed-effects model, the method tends to produce parsimo-
nious models.6 Finally, mixed-effects models can accommodate unbalanced study de-
signs, wherein different individuals do not necessarily have the same number of longitu-
dinal time points, although the mechanism underlying missing data must be considered in
constructing the model.

In fact, missing-data mechanisms are a key component of longitudinal modeling. To make
a discussion of missing-data patterns more clear, let’s introduce some definitions:

• Let T ∗i be time to dropout;

• let Ri(t) be an indicator of whether a response for individual i was missing (Ri(t) =
0) or observed (Ri(t) = 1) at time t;

• let yo
i be the observed longitudinal observations for individual i;

• let ym
i be the missing observations for individual i that would have taken place had

the dropout event T ∗i not occurred.

There are 3 types of missing-data mechanisms relevant to our discussion: missing com-
pletely at random (MCAR); missing at random (MAR); and missing not at random (MNAR).6, 7

MCAR: If the probability that a response is missing is unrelated to both yo
i and ym

i (for-
mally, P(r|yo

i ,y
m
i ) = P(r)), the mechanism is said to be missing completely at ran-

dom (MCAR). Under MCAR, limiting the analysis dataset to cases of complete as-
certainment will produce unbiased estimates. An example of an MCAR mechanism
would be a missing observation that resulted from damage to a source document.

MAR: If the probability that a response is missing depends on yo
i but not ym

i (formally,
P(r|yo

i ,y
m
i ) = P(r|yo

i )), the mechanism is said to be missing at random (MAR). Un-
der MAR, estimates conditioned on observed values yo

i are unbiased, although they
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are sensitive to misspecification of the covariance matrix. Traditional linear mixed-
effects models can provide valid parameter estimates under the MAR mechanism,
but not the MNAR mechanism. An example of an MAR mechanism would be a
missing observation in an interventional trial that resulted from removing a partic-
ipant because the participant’s condition was not sufficiently controlled under the
study treatment.

MNAR: If the probability that a response is missing depends on both yo
i and ym

i (for-
mally, P(r|yo

i ,y
m
i ) =P(r|yo

i ,y
m
i )), the mechanism is said to be missing not-at-random

(MNAR). An example of an MNAR mechanism would be a missing observation of
income that is missing because people with low income are less likely to disclose
their income.

Under MNAR, it is necessary to jointly model the missing-data mechanism with the lon-
gitudinal trajectory. One method of accomplishing this is the class of shared-parameter
models to which joint models belong.8, 18 In the shared-parameter framework, both the
longitudinal process and the event process are assumed to depend on shared latent vari-
ables. That is, longitudinal measurements Yi and missingness indicators Ri are assumed
independent conditional on random effects bi. Under this assumption, if the model pa-
rameters are maximized conditional on bi, it is possible to measure the association of this
conditional part.

4.1.4 Model diagnostics for mixed-effects models

Conditional residuals (16) plotted against model-fitted values can be used to check the as-
sumption of homoscedasticity in a mixed-effects model. If the spread of points is larger on
one side of the plot than on the opposite side, there may be a violation of the homoscedas-
ticity assumption. We hope to observe no clear pattern with relatively constant variance.

ryc
i (t) = yi(t)− β̂x>i (t)− b̂iz>i (t), (16)

Conditional residuals can be standardized by scaling them by the standard deviation of
the errors. Plotted against theoretical quantiles of a normal distribution, the standardized
conditional residuals will form a diagonal line if they are normally distributed.

rysc
i (t) =

yi(t)− β̂x>i (t)− b̂iz>i (t)
σ̂

(17)
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Marginal residuals (18) plotted against fitted values can be used to check for misspecifi-
cation of the design matrix X . A departure from a mean of 0 at any portion of the plot
indicates some systematic departure from the fitted values and is an indication of poor fit
of the mean response profile. Also, since the variance of the random effects is included in
the marginal residuals, a larger spread of points at one end of the plot than on the opposite
side may indicate a misspecification of the variance-covariance matrix Σ.

rym
i (t) = yi(t)− β̂x>i (t) (18)

4.2 Time-to-event models

Time-to-event models provide a framework for modeling time to an event of interest
given a set of predictors. The defining feature of time-to-event data is the presence of
censoring—the inevitable truncation of follow-up time that results when a subset of study
participants do not experience the event during their participation in the study. The fol-
lowing notation will be useful in discussing such models:

• T ∗i is the true time to event for individual i.

• Ci is the time of censoring.

• Ti = min(T ∗i ,Ci)

• δi = I(T ∗i ≤Ci)

where I() is the indicator function (i.e., δi = 1 for individuals who experienced the event
during the study period, and δi = 0 for censored individuals)

The joint likelihood function (19) accounts for censoring by contributing the density func-
tion for each non-censored individual and the survivor function (defined as P(T ∗ > t)) for
each censored individual.8

L(θ |t) =
n

∏
i=1

[
p(ti|θ)δiS(ti|θ)(1−δi)

]
(19)

where S(t|θ) is the survivor function and p(t|θ) = h(t|θ)S(t|θ) is the density of the ran-
dom variable T .
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The hazard function h(t|θ) can be thought of as the instantaneous rate of the event at time
t, based on the count of events up to this time, and can be expressed in probability notation
as

h(t|x) = lim
dt→0

P(t ≤ T ∗i < t +dt|T ∗i ≥ t)
dt

(20)

or modeled as

h(t|x) = h0(t)g(x′γ) (21)

where h0(t) is the baseline hazard function, i.e., the hazard when all (x′iγ) = 0, and g(·)
is an appropriate link function. In the case of parametric time-to-event models, h0(t) can
be modeled using, for example, an exponential or Weibull distribution. Of course, the
natural world rarely presents us with a baseline hazard that aligns perfectly to parametric
curves. In cases where it is especially advantageous to accurately model the baseline
hazard, additional flexibility can be gained by applying one of the piecewise approaches
discussed in section 4.1.2.

If the covariates x are multiplicatively related to the hazard, then for any points x1 and x2,
h0(t) cancels from the hazard ratio (22), which is constant with respect to time, and the
model is called a proportional-hazards model.

h(t|x1)

h(t|x2)
=

h0(t)g(x′1γ)
h0(t)g(x′2γ)

=
g(x′1γ)
g(x′2γ)

(22)

When the link function g(·) is the exponential, the model is called a Cox proportional-
hazards model. In either case, h0(t) can be left unspecified, and estimation is carried out
by maximizing the partial likelihood function.19

4.2.1 Extended Cox model with a time-varying covariate

Since time-to-event datasets deal with the passing of time, they often include one or more
covariates whose values at baseline may differ from those at time t. To account for such
covariates, the extended Cox model (23) includes a time-varying covariate or vector of
covariates yi and a corresponding vector of regression coefficients γ2:

13



h(t|x) = h0(t)exp(γ1xi +γ2yi(t)) (23)

where yi(t) is the value of yi at time t.

Time-varying covariates can be endogenous or exogenous. Endogenous covariates are
those whose values depend on characteristics or behavior of individual participants, such
as exposure to treatment, smoking status, or blood biomarkers; exogenous covariates in-
clude external forces acting on the entire sample or subgroups of the sample simultane-
ously, such as pollution levels or economic conditions.19

Rizopoulos8 formalizes the idea of exogenous covariates by specifying that an exogenous
time-varying covariate yi(t) is associated with the time-varying hazard, but the covariate’s
future trajectory for individual i is not affected by occurrence of the event for individual i
at time s:

P[Yi(t)|Yi(s),T ∗i ≥ s] = P[Yi(t)|Yi(s),T ∗i = s], s≤ t (24)

Conversely, when the event is death, an endogenous covariate necessarily cannot exist
after the event, so the survival function is equal to 1 wherever the covariate Yi(t) exists:

Si[t|Yi(t)] = P[T ∗i > t|Yi(t)] = 1 (25)

When death has occurred at time s, Yi(t) does not exist on t ≥ s, and the usual relationships


Si(t|Yi(t)) = exp

[
−
∫ t

0
hi(s|Yi(s))ds

]
,

p(t|Yi(t)) = hi(s|Yi(s))Si(t|Yi(t))

(26)

are fundamentally altered, in that the realities Si(·) = 0, hi(·) = 1, and p(·) = 0 are not
reflected in (26). Under this circumstance, the log-likelihood (27), which depends on p(·)
and S(·), is approximately meaningless.

`(θ) =
n

∑
i=1

δi log p(Ti|θ)+(1−δi) logSi(Ti|θ) (27)

Making the situation worse, since the extended Cox model places the time-varying covari-
ate on the right side of the regression equation, it violates the weak-exogeneity assumption
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of linear regression—that is, it is assumed to be free of measurement error.20 This prob-
lem results in regression coefficients that suffer from overstated precision. A method that
accommodates the inclusion of measurement error in the time-varying component would
be likely to produce more realistic estimates of standard error.

The extended Cox model treats the time-varying covariate as a step function, assuming that
each value is measured without error and carried forward to the next measurement time. In
the case of the time-varying covariate of CD4 counts in our didactic dataset, for example,
the underlying, unmeasured longitudinal process is a smooth longitudinal curve, changing
instantaneously—not just at study visits when CD4 counts were measured (Figure 3).

Figure 3. Graphical representation of a step-function model of a continuous underlying longitudinal co-
variate. The solid line indicates the step-function estimated by the extended Cox model, and the smooth
dotted line indicates the true, continuous underlying longitudinal trajectory. This figure is adapted from
Rizopoulos.8

4.2.2 Model diagnostics for proportional-hazards models

Cox-Snell residuals (28) can be useful to diagnose the overall fit of an event model.

rtcs
i (t) =

∫ Ti

0
ĥ0(s)exp(γ̂>xi)ds

= Ĥ0(Ti)exp(γ̂>xi)∼ exp(λ = 1)

(28)
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Theoretically, if the model fits, its estimated cumulative hazard has an exponential distri-
bution with a hazard rate λ = 1.8, 19 Then the model fit can be checked by comparing the
survival function of an exp(λ = 1) distribution to a Kaplan-Meier estimate of the survival
function of the Cox-Snell residuals. If the model fits, the two curves will be similar.

Another option is to plot the cumulative hazard of the Cox-Snell residuals against the
residuals themselves. In a theoretical exp(λ = 1) distribution, H(t) = t, so the estimated
cumulative hazard plotted against the Cox-Snell residuals will form a 45◦ line through the
origin if the model fits.19

Martingale residuals are a slight modification of Cox-Snell residuals. They are useful for
examining the appropriateness of the functional form of individual covariates and identify-
ing thresholds at which covariates might best be categorized. In context of a model where
the event of interest is death, Martingale residuals (29) can be interpreted as the difference
between the observed number of deaths for individual i at time t and the number of events
at t predicted by the mode. departure of observed deaths from the predicted probability of
death given the value of xi at time t. To assess the functional form of an important covari-
ate xi, we can plot the Martingale residuals against values of xi and look for a systematic
departure from mean 0.

rm
i (t) =


1−

∫ t

0
Ri(s)ĥ0(s)exp(γ̂>xi)ds

Ri(s) =

{
1 if individual i is at risk at time s,
0 otherwise

= Ri(s)− rtcs
i

(29)

4.3 Joint models

Joint models provide a framework for simultaneously modeling a longitudinal outcome
with a time-to-event outcome. A longitudinal sub-model of form (1) provides a continuous
estimate of the actual, unmeasured longitudinal trajectory, complete with its own residual
term. This model can be incorporated as a sub-model component of a Cox proportional-
hazards model (30):
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hi(t|mi(t),wi) = h0(t)exp

(
γ>wi +αmi(t)

)
,

yi(t) = mi(t)+ εi(t),

mi(t) = βx>i +biz>i (t),
bi,∼N (0,Σ), εi(t)∼N (0,σ2)

(30)

where hi(t|mi(t),wi) is the hazard function, and mi(t) represents the modeled estimate of
the complete, continuous longitudinal trajectory. The observed longitudinal values yi(t)
are the sums of the modeled trajectory mi(t) and the measurement error εi(t). The chief
proposed advantage of the joint model is that the hazard at time t is adjusted for the value
of mi(t), which is postulated to be a more realistic estimate of the longitudinal path than
the Cox model’s step function. The association parameter α denotes the association be-
tween the longitudinal and event models and can be interpreted in exactly the same way
as a regression coefficient from a Cox model—that is, a unit change in the longitudinal
outcome predicts a change of exp(α) in the hazard ratio.8

When there is no real association between the longitudinal and event processes (α = 0), the
joint model is equivalent to the set of separate models. Conversely, when an association
does exist, the consequence of ignoring that association is generally an underestimation
of the magnitude of the effect of all longitudinal and event model parameters. Hender-
son et al.4 conducted a simulation study, using a joint model that assigns association
parameters to the longitudinal intercept, slope, and current value at time t. Their study
demonstrated that separate models that ignored the association between the longitudinal
and event processes consistently underestimated true parameter values, including variance
of the random effects, while estimates from joint models were consistently much closer to
true values. Standard errors from separate and joint models were similar. The authors ap-
plied their model to a didactic dataset from a schizophrenia trial, and comparisons between
separate and joint models displayed a similar pattern, indicating that separate models may
have underestimated parameters as a consequence of ignoring association.

Of course, as described in section 4.2.1, the Cox model can be extended to accommodate a
time-varying covariate on an event process, but in the case of endogenous covariates, this
strategy has some serious limitations.

Biomarkers (such as CD4 lymphocyte counts) are especially good candidates as longi-
tudinal covariates for joint models, because, as one can easily imagine, their values are
continuous functions of time. The step model shown in Figure 4 seems especially inap-
propriate for a lymphocyte count, since one can presume that if we were able to monitor
this outcome constantly during the study, the count would be changing constantly—not
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Figure 4. Graphical representaiton of a joint model (concept borrowed from Rizopoulos8).

jumping instantly from one value to the next at the time of measurement. A counter-
example to lymphocyte counts would be a prescribed drug dose, which is a value we could
expect to change abruptly at scheduled clinic visits, coinciding with a dose measurement.
In such cases, the step-function model of the extended Cox framework would more closely
represent reality. If, however, we wanted to measure the amount of the drug in the partici-
pant’s blood, rather than the prescribed dose, we would prefer to model it as a continuous
function, as in a joint model.

As implemented in the R package JM, joint models can incorporate the longitudinal compo-
nent in a variety of ways, including an instantaneous value of the longitudinal covariate at
hazard time t; a random intercept and slope; the cumulative area under the curve up to time
t; or a lag-function—that is, the value of the longitudinal covariate at some specified time
before t. These options provide a great deal of flexibility in accounting for longitudinal
changes in a variety of covariates that may differ in how they impact survival time. The JM
package facilitates linear mixed-effects longitudinal sub-models, but not generalized lin-
ear mixed sub-models, so it is not yet convenient to model discrete (for example, Poisson
or binary) longitudinal outcomes, although a new R package based on work by Viviani
and Rizopoulos is forthcoming (S Viviani [sara.viviani@uniroma1.it], e-mail, September
3, 2013).
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4.3.1 Joint models and mechanisms of missing data

As discussed in section 4.1.3, traditional linear mixed-effects models can provide valid
parameter estimates under the MAR mechanism, but not the MNAR mechanism.7 If miss-
ingness is related to both the observed and missing longitudinal trajectories, it is necessary
to jointly model the missing-data mechanism with the longitudinal trajectory.6, 7 In a joint
model the longitudinal and time-to-event sub-models share the same random effects and so
account for a missing-not-at-random (MNAR) mechanism. In fact, the association param-
eter α measures the effect of drop-out on the longitudinal outcome. If the true underlying
mechanism is MCAR, the association parameter will be α = 0, and the joint model will
be equivalent to the set of separate models.8

4.3.2 Estimation

Wulfsohn and Tsiatis proposed the likelihood function

`(θ |Ti,δi,yi) =
n

∑
i=1

log
∫

∞

−∞

(
mi

∏
j=1

p(yi j|bi,θy)

)
p(bi|θb)p(Ti,δi|bi,θt ,β )dbi (31)

where θ = {θy,θb,θt},θy = {β ,σ2
e },θb = {σ2

b}, and θt = {γ,h0(t),α};

then p(yi j|bi,θy) is the joint density for the mi longitudinal observations for individual
i conditioned on the random effects bi and the longitudinal outcome parameters θy =
{β ,σ2

e };

p(bi|θb) is the distribution of the multivariate normally distributed random effects matrix,
conditioned on parameters of the random-effects covariance matrix θb = {Σ};

and p(Ti,δi|bi,θt ,β ) is the distribution of the survival process, conditioned on the random
effects bi, the regression coefficients β from the longitudinal model, and the event outcome
parameters θt = {γ,h0(t),α}. Note that α is the association parameter.

The likelihood function (31) is maximized using a 2-stage estimation-maximization (EM)
procedure. The E-step computes an expected value of the log-likelihood of the compete
model, conditioned on the random effects and current estimates of the parameters. The
M-step maximizes the parameter estimates using the computed expected log-likelihood
from the E-step. The procedure is repeated until the parameter estimates converge.4, 11
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A key advantage of the Cox proportional-hazards model is the freedom to leave the base-
line hazard function unspecified, and much of the theoretical work in joint modeling pre-
serves the unspecified baseline hazard function and estimates parameters by partial max-
imum likelihood.4, 11, 21 Note, however, that the parameter set θt includes the baseline
hazard function h0(t), so the log-likelihood can be computed with or without specifying
the baseline hazard. When the baseline hazard is left unspecified, the semiparametric
likelihood approach necessary to cope with h0 results in a step function in place of the
cumulative hazard

∫
h(s)ds, adding a new parameter to the joint model for each step. A

profile-likelihood approach is one way to deal with the high-dimensionality of such mod-
els (and is the approach used by the R function jointModel(), from package JM, when
the baseline hazard is left unspecified), but since this leads to an estimator in the M-step of
the EM algorithm that depends on h0, this approach will often underestimate the standard
errors for parameters (β ,σ ,γ,α). As a result, it is advisable to specify a parametric model
for h0.8

In the current project, the R function jointModel() failed prior to convergence, due to
high dimensionality, when the baseline hazard was left unspecified.

4.3.3 Inference

For univariate tests of the joint model parameter estimates θ̂ = (β̂, γ̂,α̂), the differences
between maximum-likelihood estimates and their null values are assumed to be normally
distributed, so their squares follow a chi-squared distribution, and significance can be
tested using the Wald procedure (32).

W =
θ̂ −θ0

ŝ.e.(θ̂)
(32)

Confidence intervals are also Wald-based and can be generalized to produce confidence
intervals for the predicted longitudinal trajectory.

Comparison of nested joint models is possible by standard likelihood-ratio test, and com-
parison of non-nested models is possible using Akaike’s information criterion (AIC) or
Bayesian information criterion (BIC). Both AIC and BIC penalize for the total number of
both longitudinal and event parameters.
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4.3.4 Joint model diagnostics

Graphical diagnostic techniques for separate longitudinal and time-to-event models (see
sections 4.1.4 and 4.2.2, respectively) are also available to check the assumptions of each
of the 2 sub-models in a joint model, with a key limitation: the mixed-effects model frame-
work assumes a missing-data mechanism of MAR, and this plot of residuals reflects that
assumption. In context of a joint model, however, the mixed-effects sub-model assumes a
missing-data mechanism of MNAR. We can adjust the plot of residuals to compensate for
non-ignorable missingness by imputing the missing longitudinal values. The imputation
technique calculates posterior distributions of the joint model parameters and random ef-
fects and the draws a sample of a pre-specified size for each individual from the posterior
distribution of the missing values ym

i , given the observed data for each visit time point.
Residuals are then calculated from both the observed yo

i and the imputed ym
i observations.

If the non-imputed plot of residuals shows a systematic deviation from 0 that disappears in
a plot with residuals generated from multiply imputed missing values, this is an indication
that the missing-data mechanism is MNAR.

Note that, in context of joint modeling, this imputation procedure is intended to be used
for generating a plot of residuals—not for inference in the joint model.

If, as in many observational studies, visit times are random (that is, not pre-specified by a
protocol, as is often the case in prospective studies), the timing of the visits that would have
occurred after the observed event or censoring time Ti is unavailable, so it is necessary to
model the timing of these “missing visits.” A Weibull model of visit times with a Gamma
frailty term (33) is a simple, flexible strategy for modeling event times for each individual.8

{
λ (uik|xvi,wi) = λ0(uik)wi exp(x>viγv)

wi ∼ Gamma(σw,σw)
(33)

In (33), ui is the kth sequential event time for individual i, wi is the frailty term, γv are the
coefficients corresponding to the covariates xvi, and 1

σw
is the variance of the frailty terms.
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5 Longitudinal measures of CD4 lymphocyte counts and
survival time in AIDS patients

To illustrate joint modeling methods, we will use a didactic dataset of longitudinal CD4
lymphocyte counts and survival time from a multi-center, open-label study in which 467
patients with very low CD4 lymphocyte counts (≤ 300 per cubic millimeter) or a diagno-
sis of acquired immunodeficiency syndrome (AIDS) who had previously failed treatment
with zidovudine were randomly assigned to treatment with didanosine (ddI, n=230) or zal-
citabine (ddC, n=237). Participants were followed for survival time over a median follow-
up period of 16 months, and CD4 counts were measured up to 5 times during study par-
ticipation.22 CD4 count is an important biomarker of immune system health, so a decline
in this measure is associated with higher risk of infection and death in AIDS patients.23, 24

As such, a secondary goal of the study was to examine the association between the longi-
tudinal process of CD4 counts and survival time. This dataset has been used repeatedly in
the literature on joint modeling,8–12 so it provides a good didactic opportunity.

CD4 counts were right-skewed, reflecting the very low CD4 counts in the study population,
and required a square-root transformation for normality. Median square-root CD4 counts
declined from 6.1 at baseline to 4.5 at 18 months in an approximately linear trend (Figure
5).

Figure 5. Median
√

CD4 over time among patients diagnosed with AIDS.
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The linear mixed-effects model (34) estimated a decrease of 0.16 units in square-root CD4
count over each passing month (95% CI: 0.12 to 0.20 units); the ddI group’s average
decline each month did not significantly differ from that of the ddC group. At baseline,
the two treatment groups had substantially similar square-root CD4 levels (see Table 1).
There was far more variation between individuals in square-root CD4 counts at baseline
(SD=4.59) than in change over time (SD=0.17).


yi(time) = β0 +β1ddIi +β2time+β3ddI× time+bi0 +bi1time+ εi(time),
(bi0,bi1)∼N (0,Σ),

εi(time)∼N (0,σ2)

(34)

A plot of Kaplan-Meier survival curves (Figure 6) shows that patients in the ddI and ddC
groups had very similar survival over the first six months, and then patients in the ddC
group had slightly better survival through 18 months of follow-up.

Figure 6. Kaplan-Meier survival curves for patients in the ddI and ddC treatment groups.

The Cox model (35), with treatment group and a single (baseline) measure of square-root
CD4 count, estimates that treatment with ddI is associated with a 30% increase in risk of
death compared to treatment with ddC (95% CI: 2% lower to 74% higher) and that each

23



unit decrease in baseline square-root CD4 count is associated with a 20% higher risk of
death (95% CI: 15% to 25%).

hi(time|xi) = h0(time)exp(γ1ddIi + γ2CD4i) (35)

Of course, we want to consider the effect of change in square-root CD4 count, rather
than a single baseline measure, so we can extend model (35) to account for time-varying
square-root CD4 count:

hi(time|xi) = h0(time)exp(γ1ddIi + γ2CD4i(time)) (36)

Model (36) incorporates time-varying square-root CD4 count, which pushes the estimate
for treatment with ddI into the realm of statistical significance at the 0.05 level. In this
model, treatment with ddI is associated with a 36% increase in risk of death (95% CI:
2% to 82%) compared to treatment with ddC. Each unit decrease in square-root CD4 is
associated with a 21% increase in risk of death (95% CI: 16% to 27%).

We can combine the longitudinal model (34) as a sub-model in the event model to produce
joint model (37).


hi(time|ddIi) = h0(time)exp(γ1ddIi +αmi(time)) ,

h0(time) = 1,
yi(time) = mi(time)+ εi(time),

mi(time) = β0 +β1ddIi +β2time+β3ddIi× time+bi0 +bi1time

(37)

Model (37) estimates that treatment with ddI is associated with a 36% increase in risk
of death (95% CI: 2% to 82%) and that each unit decrease in square-root CD4 count is
associated with a 21% higher risk of death (95% CI: 16% to 27%). Compared to the
linear mixed-effects model (34), the joint model produced a substantially higher estimate
of overall baseline square-root CD4 counts, and it reversed the direction of the effect of
treatment group on the longitudinal trajectory of CD4 counts. The joint model generally
produced slightly narrower confidence intervals, but we should expect the standard er-
rors for these fixed effects to be somewhat underestimated, because the baseline hazard
function is unspecified.8

In context of joint modeling, it is almost always better to specify the baseline hazard
function, as in model (38), which includes a 4th-order b-splines approximated baseline
hazard with 5 equally spaced internal knots.
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hi(time|ddIi) = h0(time)exp(γ1ddIi +αmi(time)) ,

logh0(time) =
9

∑
d=1

κdBd4(time),

yi(time) = mi(time)+ εi(time),

mi(time) = β0 +β1ddIi +β2time+β3ddIitime+bi0 +bi1time

(38)

In model (38), κd are the spline coefficients, and Bd4(time) are the summed b- basis func-
tions at time t of degree 4.

By Bayesian information criteria (BIC), model (38) improves the fit of the joint model
compared to the joint model with an unspecified baseline hazard (BIC=8760, compared to
BIC=9592, respectively). Model (38) estimates that treatment with ddI is associated with a
40% increase in risk of death compared to treatment with ddC (95% CI: 3% to 9%) and that
each unit decrease in square-root CD4 count is associated with a 33% higher risk of death
(95% CI: 24% to 42%). This model produces longitudinal estimates very similar to those
of the linear mixed-effects model (34). Since treatment group is a significant predictor
of survival time but not of longitudinal changes in square-root CD4 count, it seems that
its effect on survival is not mediated through changes in CD4 count. A likelihood ratio
test comparing a model without the effect of treatment group to a model with the effect of
treatment group is significant (p=0.04).

As expected, confidence intervals for all estimates are wider than in joint model (37) and
than in the extended Cox model (36), and the magnitudes of the event estimates are larger.

Table 1 summarizes parameter estimates from all separate and joint models of square-root
CD4 count and survival time.

6 Longitudinal measures of walking gait speed and sur-
vival time in older men

The MrOS study is a prospective longitudinal cohort study (n=5995) of ambulatory,
community-dwelling men ages 65 and older that examines sequelae of fractures and the
relationships between a variety of biomedical and lifestyle factors and risk of fracture.
Enrollment took place from March 2000 to April 2002, and follow-up continues at the
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Table 1. Parameter estimates from separate and joint models of sqare-root CD4 lymphocyte counts and
survival time among patients diagnosed with AIDS.

Cox∗ LME/extended Cox† Joint model‡ Joint model§
BIC = 9592 BIC = 8760

Longitudinal estimates
Intercept 6.95 (6.34, 7.56) 7.51 (7.07, 7.95) 6.96 (6.35, 7.57)
ddI 0.48 (-0.39, 1.35) -0.22 (-0.76, 0.33) 0.49 (-0.38, 1.36)
Time -0.16 (-0.20, -0.12) -0.17 (-0.21, -0.13) -0.19 (-0.23, -0.14)
ddI X time 0.02 (-0.04, 0.08) 0.00 (-0.06, 0.06) 0.01 (-0.05, 0.07)

Event estimates (exponentiated to obtain HRs)
ddI 1.30 (0.98, 1.74) 1.36 (1.02, 1.82) 1.36 (1.05, 1.77) 1.4 (1.03, 1.9)√

CD4 (or α) 1.20 (1.15, 1.25) 1.21 (1.16, 1.27) 1.30 (1.24, 1.37) 1.33 (1.24, 1.42)
∗ Cox proportional-hazards model with baseline CD4 count only.
† Linear mixed-effects model (top portion) and Cox proportional-hazards model with time-varying covariate.
‡ Joint model with unspecified baseline hazard function (method = "Cox-PH-GH").
§ Joint model with spline-approximated model of baseline hazard function (method = "spline-PH-aGH").

time of this writing. Baseline data included self-reported medical histories, medications,
physical activity, diet, and substance use. Participants also submitted to anthropometric,
neuromuscular, vision, strength, and cognitive tests, DEXA scans, calcaneal ultrasounds,
and vertebral radiographs. As a measure of physical endurance, participants were asked to
walk a 6-meter course at their usual walking pace.5 The current project utilizes data from
the February 13, 2013 release of data to the community of MrOS investigators.

A subset of 1210 dentate participants from the Portland, Oregon and Birmingham, Al-
abama sites in the MrOS study participated in the MrOS Dental ancillary study;13 a subset
of 3135 participants from the greater MrOS cohort participated in the MrOS Sleep ancil-
lary study.14 Both ancillary studies administered repeated walking tests. Of the n=879
patients who participated in both ancillary studies, 814 (93%) provided at least 4 observa-
tions of walking speed. The current project will utilize data from MrOS participants who
participated in both ancillary studies and had at least 1 post-baseline follow-up walking
test (n=877). An additional 16 participants were excluded for missing baseline covariates
or as outliers during longitudinal modeling, resulting in a final analysis dataset of n=861.

Covariates under consideration included those summarized in Table 2. To protect patient
privacy, ages for patients older than 90 years were coded as 90. This change affected 4
patients in the sample. Because of the eligibility floor at 65 years old, age is substantially
right-skewed, so median is used as a measure of center. Age at the time of each observation
was used as the time variable.

Due to underrepresentation of Native Hawaiians, Pacific Islanders, Native Americans, and
Alaskan Natives, race and ethnicity were collapsed to a single variable and were recatego-

26



rized as non-Hispanic white, non-Hispanic African-American, and other. Alcohol use is
by self-report of having had 12 or more drinks in the year prior to baseline.

Table 2. Summary of baseline covariate candidates for modeling survival time and longitudinal changes in
gait speed among older men from the MrOS cohort.

N Minimum Maximum
Age, years 861 Median = 72.4 IQR = 68 to 76 65 90
BMI 861 Mean = 27.3 SD = 3.5 17.9 39.5

n (%)
Study site (N = 861)

Birmingham 429 (49.8)
Portland 432 (50.2)

Race/ethnicity (N = 861)
Non-Hispanic White 775 (90.0)
African-American 54 (6.3)
Asian 18 (2.1)
Hispanic 5 (0.6)
Other 9 (1.0)

Smoking status (N = 861)
Never smoked 322 (37.4)
Past smoker 513 (59.6)
Current smoker 26 (3.0)

Self-reports 12+ alcoholic drinks in past year (N = 861)
No 330 (38.3)
Yes 530 (61.6)
Don’t know 1 (0.1)

Self-reported overall health (N = 861)
Good or excellent 773 (89.8)
Fair, poor, or very poor 88 (10.2)

Self-reported history of any type of cancer (N = 861)
No 611 (71.0)
Yes 250 (29.0)

Self-reported history of non-skin cancer (N = 861)
No 743 (86.3)
Yes 118 (13.7)

Self-reported history of congestive heart failure (N = 861)
No 839 (97.4)
Yes 22 (2.6)

Self-reported history of diabetes mellitus (N = 861)
No 781 (90.7)
Yes 80 (9.3)
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6.1 Longitudinal modeling

Exploratory analyses of longitudinal observations of gait speed revealed a normally dis-
tributed outcome (refer to the appendix) and a slightly quadratic shape. The best-fitting
model was a natural cubic-splines model with 1 internal knot, although a quadratic model
fit almost as well (BIC = 15824.9 for the quadratic model, versus BIC = 15823.5 for
natural-splines model). Participants with different monotonic missing-data patterns had
significantly different baseline gait speeds (by ANOVA test, F = 10.9, p < 0.001), in-
dicating that the missing-data mechanism is informative. In models with all candidate
covariates, tests for random intercept and slope were both significant (p < 0.0001). Fixed
effects were selected using a backwards approach, proceeding by removing the covariate
with the largest p-value and continuing to remove covariates until Bayesian information
criterion (BIC) was no longer improved. The selection procedure resulted in the selection
of age, body mass index (BMI), race/ethnicity, and self-reported good or excellent health.

Each of the selected main effects were evaluated, one at a time, for interaction with age (as
time). All interactions made the model fit substantially worse (using BIC), so none were
included in the final model (39):



yi(age) = β0 +ns(age)+β1BMI +β2race+β3health+bi0 +bi1t + εi(age),

ns(age) = κ0 +∑
4
j=1 κ jB j(age)

bi0,∼N (0,Σ),

εi(age)∼N (0,σ2)

(39)

where time is scaled as age, and ns(time) is a natural cubic splines function with 1 in-
ternal knot, producing coefficients κ0, . . . ,κ4. Natural cubic splines are basis splines with
the basis function constrained to be linear beyond the boundary knots, producing “better-
behaved tails”.25 See section 4.1.2 for details. This strategy provides a great degree of
flexibility over a simple quadratic shape without resorting to nonparametric methods—
this is a crucial feature if we intend to incorporate the longitudinal model into a joint
model.
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6.2 Time-to-event modeling

In the analysis dataset of 861 participants, 644 (74.8%) participants were living, and 217
(25.2%) were deceased at the time of the last contact. Median baseline age at last follow-
up was 82.9 among those still living and 83.6 among the deceased.

All models used age as the time scale. The natural interpretation of survival time in this
setting is survival probability as a function of age, rather than as a function of time on
study. Also, simulation studies have demonstrated that using time-on-study and adjusting
for baseline age yields biased estimates, especially when the cumulative hazard does not
have an exponential shape and when there is a statistical association between age and other
covariates.26, 27

We constructed a Cox proportional-hazards model by considering all covariates that ap-
peared in at least 4 of 7 previously published time-to-event analyses of data from the MrOS
study.28–34 The complete set of candidate covariates included gait speed, self-reported
overall health, history of congestive heart failure, history of diabetes mellitus, current or
past smoking, and alcohol use. Univariate Kaplan-Meier plots indicated that self-reported
overall health, smoking category, and history of diabetes mellitus or congestive heart fail-
ure may impact survival time (Figure 7). A Kaplan-Meier plot of based on a dichotomized
version of baseline gait speed also indicated that this variable may impact survival time
(Figure 8).

A backwards stepwise selection procedure based on Bayesian information criterion (BIC)
selected model (40) with the effects of time-varying gait speed and self-reported overall
health. For comparison, we also constructed model (41), which includes a single measure
of gait speed (at baseline) instead of time-varying gait speed.

hi(age|xi) = h0(age)exp(γ1healthi + γ2gaiti(age)) (40)

hi(age|xi) = h0(age)exp(γ1healthi + γ2[baselinegait]i) (41)

Kaplan-Meier curves show differential survival curves by each of the selected categorical
covariates (Figure 7). A dichotomized version of baseline gait speed (Figure 8) shows a
less dramatic difference in survival curves, but participants whose baseline gait speed was
below the mean appear to have lower survival probability between ages 83 and 92.

Including gait speed as a time-varying covariate (model (40)) produces a substantially
higher estimate of the effect of gait speed than in model (41) (HR of 1.08 for model (41),

29



Figure 7. Kaplan-Meier curves by self-reported overall health category, smoking category, and diagnoses of
diabetes mellitus and congestive heart failure.
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Figure 8. Kaplan-Meier curves by baseline gait speed (dichotomized to less-than versus greater-than-or-
equal-to the mean.
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compared to 1.14 for model (40)). Estimates of standard error are similar in the 2 models
(0.033 for the baseline-only model, versus 0.037 for the time-varying model).

6.3 Joint modeling

The joint model accounts for time-varying changes in gait speed by including model (39)
as a longitudinal sub-model. The complete joint model with an unspecified baseline hazard
(42) can be expected to produce results similar to those produced by model (40). Unfortu-
nately, this model does not converge under the R function jointModel().



h(age|xi) = h0(age)exp(γ1healthi +αmi(age)) ,
h0(age) = 1,
yi(age) = mi(age)+ εi(age),

mi(age) = β0 +ns(age)+β1BMI+β2race+β3health+bi0 +bi1age,
ns(age) = κi1N1(age)+κi2N2(age)

bi0,∼N (0,Σ) εi(age)∼N (0,σ2)

(42)

A better approach is to use a parametric method to model the baseline hazard, as Ri-
zopoulos suggests.8 A simple option is to use a Weibull baseline hazard, but this para-
metric model does not offer the same level of flexibility as piecewise or b-splines-based
approaches. A piecewise-constant model with 6 internal knots (43),

h0(age) =
6

∑
d=1

κqI(ξd−1 < age≤ ξd), (43)

where each κd is a constant hazard on interval (ξd−1,ξd) provides the flexibility to specify
a constant hazard that changes as a step function of time. Another flexible alternative is a
linear (second-order) b-splines model with a single internal knot:

logh0(age) =
3

∑
d=1

κdBd(age,Q = 2), (44)

where Bd(·) is the b-splines function defined in (13). This model yields 3 coefficients and
provides allows different slopes over each of the 2 splines while enforcing continuity at
the internal knot and linearity beyond the boundaries.
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By BIC, the joint model with a b-splines approximated baseline hazard is the best fitting
(BIC = 17433, compared to 17548 and 17594 for the joint models with piecewise-constant
and Weibull baseline hazards, respectively).

6.4 Results

Table 3 summarizes parameter estimates and confidence intervals from both Cox models
and all 3 joint models. As expected, gait speed declines over time in all sub-groups. Figure
10 displays predicted longitudinal trajectories by race and self-reported health category,
with BMI fixed at the mean 27.32. Estimates of the longitudinal parameters were similar
in the linear mixed-effects model and all 3 joint models, indicating that the longitudinal
estimates are not particularly sensitive to modeling strategy or, by extension to assump-
tions about missing-data patterns. Contrary to expectation, standard errors and confidence
intervals for longitudinal estimates were also very similar across modeling strategy.

In table 3, λ̂ denotes the Weibull shape parameter for the joint model with a Weibull-
shaped baseline hazard. In the joint model with a piecewise-constant baseline hazard, the
parameters (κ̂1, . . . , κ̂6) correspond to the estimates of the mean constant hazard in each
of 6 equally spaced intervals from age 65 to age 90. In the joint model with a b-splines-
approximated baseline hazard, the parameters κ1 and κ2 correspond to the overall hazard
intercept and slope, and the parameter κ3 corresponds to the shift in slope at age 81.

Marginal survival curves were similar among the 3 models (see Figure 9). The jaggedness
of the models with piecewise and b-splines baseline hazards reflects the underlying piece-
wise changes in baseline hazard. The small uptick on the leftmost side of the model with
a b-splines baseline hazard results from the left tail of the b-splines function and is typical
odd behavior in the tails of b-splines.8, 17

The modeled longitudinal trajectory of gait speed, stratified by race and by self-reported
overall health category, is an identical shape in all strata, because there were no interac-
tions among race, self-reported health, or age. Nevertheless, there are clear differences in
baseline gait speed among the strata (Figure 10).

Gait speed was significantly associated with mortality regardless of the modeling strategy.
The best-fitting joint model predicts a 25% increase in risk of death for each 0.1 m/sec
decline in gait speed. Estimates of predictors of gait speed were not sensitive to modeling
strategy (or, by extension, to assumptions about missing data). Compared to the joint
model, the extended Cox model underestimated the effect of longitudinal gait speed and
overestimated the effect of self-reported health on survival time (see Table 3). Contrary to
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Figure 9. Marginal survival curves from the 3 joint models. Internal knots in the piecewise-constant model
are indicated by vertical dotted lines. The single internal knot in the b-splines approximated baseline hazard
is at age 81.

expectation, standard errors were similar in the separate and joint models.

These results add to existing literature on the association between gait speed and mortality
and offer a method to avoid the attenuation of effect size that results from measurement
error when the underlying longitudinal process is better modeled as a continuous curve
than as an extended Cox-style step function.
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Figure 10. Predicted longitudinal trajectories of gait speed by race and self-reported health covariate values.
BMI is fixed at the mean 27.32. The single internal knot for the natural cubic splines is indicated by a dotted
vertical line at age 75.

The JM package is capable of producing subject-specific survival curves. In case of a
prospective study, it can dynamically update survival curves at each longitudinal obser-
vation. For the current retrospective study, it can be informative to examine the top and
bottom 10 survival curves (Figure 11) to get a sense of how their gait speeds differ at each
observation. Table 4 shows that those individuals with the highest survival probability had
substantially faster gait speeds. Absolute differences from first to last observation in gait
speeds were very similar, but if we consider this change as a proportion of baseline gait
speed, those with lower survival probability had a much larger decline.
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Figure 11. Subject-specific survival curves, with the highest and lowest 12 curves from each model isolated.
Table 4 shows the mean gait speeds at each longitudinal measurement for these selected individuals.

Table 4. Mean gait speed at each visit among individuals with highest and lowest survival curves (see Figure
11).

Visit Lowest curves Highest curves

Baseline 8.72 17.88
Follow-up 1 8.55 17.50
Follow-up 2 7.80 15.68
Follow-up 3 7.68 16.43
Follow-up 4 7.64 16.76
Net change -1.08 -1.12
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6.5 Additional modeling: Time-varying self-reported overall health

As an exploratory analysis, we constructed an additional extended Cox model that in-
cluded a time-varying version of the self-reported overall health variable (collected at
baseline (visit 1), the dental visit (visit 2), and the 2 main study follow-up visits (visits
4 and 5). We also constructed a joint model, with time-varying self-reported health in the
event sub-model and gait speed in the longitudinal sub-model (45).



h(age|xi) = h0(age)exp(γ1health(age)i +αmi(age)) ,

h0(age) = logh0(age) =
3

∑
d=1

κdBd(age,Q = 2),

yi(age) = mi(age)+ εi(age),
mi(age) = β0 +ns(age)+β1BMI+β2race+β3health+bi0 +bi1age,
ns(age) = κi1N1(age)+κi2N2(age)

bi0,∼N (0,Σ) εi(age)∼N (0,σ2)

(45)

By including updated information about self-reported overall health at the time of estimat-
ing the hazard, we arrive at substantially attenuated estimates of the association between
longitudinal gait speed and mortality (see Table 5). In other words, model (45) reveals
time-varying self-reported health to be a confounder of the association between longitudi-
nal gait speed and mortality.

It is not terribly surprising to see that the effect of this very general question overwhelms a
specific physical function measure such as gait speed. Since self-reported overall health is
a very non-specific measure, there are a number of possibilities for the causal relationships
at play here. For example, perhaps some unmeasured health event, captured by a change
in the self-reported overall health variable, is causing a slower gait speed, and both of
these variables are impacting survival probability; or perhaps slower gait speed is causing
patients to report poorer overall health, and both of these variables are impacting survival
probability. A limitation of the models reported here is that they do not include updated
information on age-related diagnoses or other health events that may be partially captured
by changes in self-reported overall health. As a result, there is bound to be residual un-
measured confounding.

Self-reported overall health can be expected to overlap with the effects of a number of
confounders–especially new diagnoses of age-related disease–that remain unmeasured in
this model, so it may be of limited clinical utility compared to the clinical information
available to a treating provider.
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Table 5. Longitudinal and event parameter estimates from separate and joint models of longitudinal gait
speed and survival time among older men from the MrOS study.

Extended Cox∗ Extended Cox†

Mixed-effects model‡ Joint model§ Joint model‖

Form of self-reported health single measure time-varying single measure time-varying
BIC (joint models) 17433 17281

Event estimates (exponentiated to obtain HRs)
Fair/Poor/Very Poor health 1.80 (1.18, 2.73) 2.56 (1.79, 3.67) 1.43 (0.97, 2.13) 2.96 (2.18, 4.04)
Gait speed 1.14 (1.05,1.22) 1.11 (1.03, 1.19) 1.25 (1.15, 1.36) 1.18 (1.09, 1.28)

Longitudinal estimates
Intercept 16.40 (15.49, 17.31) 16.40 (15.58, 17.22) 14.93 (14.02, 15.85)
ns(age,2)1 -5.16 (-5.70, -4.61) -5.28 (-5.74, -4.81) -5.22 (-5.69, -4.75)
ns(age,2)2 -6.15 (-6.92, -5.37) -6.35 (-7.00, -5.69) -6.23 (-6.89, -5.57)
Body mass index -0.09 (-0.12, -0.05) -0.09 (-0.11, -0.06) -0.08 (-0.11, -0.06)
Race: African-American -1.32 (-1.77, -0.87) -1.21 (-1.63, -0.79) -1.22 (-1.64, -0.8)
Race: Other -0.77 (-1.36, -0.18) -0.81 (-1.34, -0.29) -0.81 (-1.34, -0.29)
Fair/Poor/Very Poor health -1.49 (-1.86, -1.12) -1.44 (-1.77, -1.10) 1.43 (1.09, 1.76)
∗ Cox model with time-varying gait speed and a single measure of self-reported health (top portion).
† Cox model with time-varying gait speed and time-varying self-reported health (top portion).
‡ Mixed-effects model of longitudinal gait speed (bottom portion).
§ Joint model with baseline-only self-reported health (b-splines-approximated baseline hazard).
‖ Joint model with time-varying self-reported health (b-splines-approximated baseline hazard).
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6.6 Discussion

This thesis investigated the utility of using joint models toward three ends:

• Improving estimates of the association between a longitudinal process and a time-
to-event process;

• improving estimates of other longitudinal and time-to-event parameters;

• and accounting for non-ignoreable (MNAR) missing-data patterns.

In this investigation, the longitudinal covariate, gait speed, was a continuous, endogenous
outcome, measured with error, and as such was a good candidate for joint modeling. As
expected, the extended Cox model underestimated the effect of gait speed on survival
time. The results indicate that the association between a longitudinal decline in gait speed
is more important than the association between a single measure of gait speed in this pop-
ulation of older men. Providers may benefit during treatment planning by considering this
higher estimate of association. This work implies that traditional proportional-hazards
methods may underestimate the magnitude of association between endogenous or contin-
uous covariates and time to an event.

6.6.1 Future directions

Future research along this line in the MrOS study would do well to consider other func-
tional forms of the longitudinal gait speed covariate—especially a joint model that consid-
ers the effect of the rate of change of gait speed at hazard time t, rather than the current
gait speed at time t, as in this investigation. It might also be particularly illuminating to
examine the effects of a variety of other longitudinal covariates, especially counts of falls
or fractures—both of which are longitudinal variables collected in the MrOS datasets—
although these analyses will depend on the future release of software for producing gener-
alized linear mixed joint models for discrete longitudinal outcomes, as with Dr. Viviani’s
forthcoming R package. It may also be useful to consider a vector of longitudinal co-
variates, including longitudinal changes in diagnoses of chronic diseases such as diabetes
mellitus or congestive heart failure, or longitudinal changes in other health markers such
as smoking status.

Since the MrOS study collects a number of discrete measures that change over time, the
MrOS community may particularly benefit from emerging methods in generalized linear
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mixed joint models that can account for longitudinal changes in discrete variables.35 An
R package accommodating this sort of model is expected to be published to the Compre-
hensive R Archive Network (CRAN) shortly.

6.6.2 Summary

Under certain circumstances, researchers may benefit from using the joint modeling frame-
work when their primary research objective involves either a longitudinal or a time-to-
event outcome:

Longitudinal outcome: If the longitudinal data suffer from non-ignorable missingness,
and data are available for the event responsible for the missingness, a joint model
will correct the bias that would otherwise result in a mixed-effects model. If it
is unclear whether non-ignorable missingness is present, a joint model provides a
good sensitivity analysis. If, as in the analysis of longitudinal gait speed here, the
longitudinal estimates are not sensitive to modeling strategy, one can conclude that
missingness is not important to estimates of longitudinal parameters.

Event outcome: If there are important covariates that are endogenous, naturally continu-
ous, or measured with error, a joint model will correct underestimation of effect that
is likely to result from modeling time to the event under the proportional hazards
framework alone.

41



References
1 Dumurgier J, Elbaz A, Ducimetière P, Tavernier B, Alpérovitch A, Tzourio C. Slow
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35 Viviani S, Alfó M, Rizopoulos D. Generalized linear mixed joint model for longitudinal
and survival outcomes. Statistics and Computing. 2013;1–11 .

36 Chan BK, Marshall LM, Winters KM, Faulkner KA, Schwartz AV, Orwoll ES. Incident
fall risk and physical activity and physical performance among older men the osteo-
porotic fractures in men study. American journal of epidemiology. 2007;165(6):696–
703 .

45



7 Appendix

7.1 Descriptive analysis of CD4 counts and survival time

A histogram of CD4 counts makes it clear at a glance why Rizopoulos8 used a square-
root transformation before modeling changes in the biomarker under an assumption of
normality (see figure 1a). Although a square-root transformation doesn’t quite achieve
symmetry, it certainly moves the mode away from the floor of zero (figure 1b).

Figure 12. Histograms for CD4 and
√

CD4

A plot of mean square-root CD4 counts (Figure 13) shows a general downward trend over
time, although there are increases at months 2 and 12.

A series of box plots of square-root CD4 count by observation time (Figure 14) indicates
that the distributions are somewhat skewed, so to evaluate a linear trend over time, it may
be more appropriate to examine median square-root CD4 counts over time.
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Figure 13. Mean
√

CD4 over time

Figure 14. Box plots of
√

CD4 by observation time
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7.2 Longitudinal modeling of gait speed from the MrOS study

7.2.1 Distributions of gait speed

Histograms (Figure 15) and QQ-plots (Figure 16) of gait speed at each visit support the
assumption of normality: distributions are unimodal and symmetric and almost perfectly
aligned with normal quantiles.

Figure 15. Histograms for gait speed at each visit

7.2.2 Longitudinal patterns of change in gait speed

The longitudinal outcome of interest is gait speed, in which MrOS participants walked a
6-m course at their normal walking pace, and the fastest speed (meters per second) was
recorded for analysis.36 Previous research has shown a strong relationship between gait
speed and survival.2, 3

Table 6 summarizes the counts of observations of gait speed and the number of follow-
up days at each visit. Together with the spaghetti plots in figure 18, showing longitudinal
patterns of gait speed over time for unique random subsets of 50 individuals, this summary
indicates a slight decline in mean gait speed over time.

Spaghetti plots do not demonstrate a strong overall longitudinal pattern. Some individual
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Figure 16. Q-Q plots for gait speed at each visit

Figure 17. Box plots for gait speed at each visit
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Table 6

Baseline Dental visit Sleep visit Visit 2 Visit 3

n 861 857 853 779 708
Mean gait speed* (SD) 12.91 (2.24) 12.88 (2.19) 12.29 (2.28) 12.27 (2.24) 12.11 (2.30)
Median age at follow-up (IQR) 72.0 (8.0) 73.9 (8.4) 75.3 (8.3) 76.3 (8.2) 77.9 (7.8)

profiles exhibit a linear trend in gait speed, but others deviate from a linear trend. Differ-
ences in baseline measures of narrow-walk pace seem to determine some of the differences
between individuals in follow-up measures.

The overall, whole-sample profile (Figure 19) indicates a small but detectable decline in
gait speed over the 5 visits, spanning on average 6.75 years. A simple linear regression
model predicts a mean baseline gait speed of 1.29 m/sec that declines by 0.01 m/sec each
year. Of course, this estimate and the profile plot in Figure 19 should be interpreted with
caution, because they do not account for the within-individual correlation that should be
expected from repeated measures.

Table 7. Follow-up time (in years) at each study visit.

Visit N Mean follow-up time (SD) Mean time between visits (SD)

Baseline 877 N/A N/A
Dental visit 870 1.86 (0.40) 1.86 (0.40)
Sleep visit 866 3.39 (0.53) 1.54 (0.35)
Visit 2 792 4.58 (0.36) 1.21 (0.32)
Visit 3 720 6.75 (0.29) 2.19 (0.34)
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Figure 18. Spaghetti plots of longitudinal changes in gait speed for 9 subsets of 50 randomly selected
individuals
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Figure 19. Trend in mean gait speed over time for overall sample and stratified by site and survival status at
last follow-up.
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7.2.3 Missing-data patterns

Of the 861 patients in the sample, 681 (79.1%) had complete ascertainment of gait speed
data for all 5 visits; 152 (17.7%) had monotone missing-data patterns (i.e., they had no
missing data or had non-intermittent missing data), and 28 (3.3%) had intermittent missing
data. A one-way ANOVA test of intercepts indicates a significant difference in intercepts
(F = 10.9, p < 0.001). It will, therefore, be important to account for differential patterns
of missing data in the longitudinal analysis.

A much larger proportion of the patients with monotone missing data died than did those
with complete ascertainment (62.5% versus 16.4%, χ2 = 138.7, p < 0.0001), so dropouts
resulting from death likely account for the difference in longitudinal trajectory of gait
speed among different missing-data patterns. Longitudinal profiles categorized by de-
ceased status at last contact show a baseline difference in gait speed (Figure 20).

Figure 20. Gait speed profiles by deceased status.
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7.2.4 Correlation structure

The baseline measure of gait speed is less correlated with subsequent visits than the sub-
sequent visits are with each other (Figure 21). Otherwise, correlation does not appear to
degrade over time.

Figure 21. Scatterplot and correlation matrix for gait speed by follow-up visit (missing values omitted)

7.2.5 Model selection for longitudinal gait speed

Shape of time

Comparison of a simple linear model to quadratic, cubic, and natural-splines models indi-
cated that higher-order terms and splines models do not improve the fit over a linear model
(confirmed by LRT comparing the linear model to the quadratic model (χ2

1 = 1.3, p=0.26).

Repeating the comparisons with a random intercept in the model indicate that a quadratic
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model fits better than a linear model (χ2
1 = 23.4, p < 0.001, BIC = 15824.88). A natural-

splines model with 1 interior knot fits slightly better than a quadratic model (BIC =
15823.50).

Random effects

We compared a model with all candidate covariates with no random effects to the same
model with a random intercept only and to the same model with a random intercept and
slope, using likelihood ratio tests (summarized in Table 8). Models including polynomial
random effects of time failed to converge.

Table 8. Likelihood ratio test comparing a linear model to a mixed-effects model with a random intercept
and and mixed-effects model with a random intercept and slope.

Model df AIC BIC Log Likelihood Test -2 (LR) p-value

Linear model (1) 16 17242.75 17343.68 -8605.37
Random intercept (2) 17 15659.82 15767.06 -7812.908 (1) vs (2) 1584.9 <0.0001
Random intercept & slope (3) 19 15637.18 15757.04 -7799.592 (2) vs (3) 26.632 <0.0001

The covariance structure obtained from the random intercept and slope model indicates
that there is much more variation in baseline values of gait speed than in change over time
in gait speed (SD of intercept = 8.2, SD of slope = 0.11). Nevertheless, the likelihood ratio
tests indicate that accounting for between-individual differences in slope improves the fit
of the model.

Fixed effects

Since several racial and ethnic groups were underrepresented, we recategorized race as
“white”, “African-American”, or “other.”

Model selection was a backwards approach, proceeding by removing the covariate with the
largest p-value and continuing to remove covariates until Bayesian information criterion
(BIC) was no longer reduced. The selection procedure, summarized in Table 9, resulted
in the selection of age, body mass index (BMI), race/ethnicity, and self-reported good or
excellent health.

Each of the selected main effects were evaluated, one at a time, for interaction with age
(as time). All interactions made the model fit substantially worse (by BIC), so none were
included in the final model (46).
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Table 9. Selection of fixed effects.

Fixed effects BIC

[ns(age,2)] + [BMI] + [smoke] + [race/ethnicity] + [drank in past year] + [good/excellent health] +
[non-skin cancer] + [congestive heart failure] + [diabetes] + [BMD]

15784.25

[ns(age,2)] + [study site] + [BMI] + [smoke] + [race/ethnicity] + [good/excellent health] + [non-skin
cancer] + [congestive heart failure] + [diabetes] + [BMD]

15769.87

[ns(age,2)] + [study site] + [BMI] + [smoke] + [race/ethnicity] + [good/excellent health] + [non-skin
cancer] + [diabetes] + [BMD]

15762.65

[ns(age,2)] + [study site] + [BMI] + [smoke] + [race/ethnicity] + [good/excellent health] + [diabetes] +
[BMD]

15754.54

[ns(age,2)] + [study site] + [BMI] + [race/ethnicity] + [good/excellent health] + [diabetes] + [BMD] 15740.04

[ns(age,2)] + [BMI] + [race/ethnicity] + [good/excellent health] + [diabetes] + [BMD] 15733.52

[ns(age,2)] + [BMI] + [race/ethnicity] + [good/excellent health] + [diabetes] 15730.43

[ns(age,2)] + [BMI] + [race/ethnicity] + [good/excellent health] 15725.96

[ns(age,2)] + [BMI] + [good/excellent health] 15744.79



yi(t) = β0 +ns(t)+β1BMI +β2race+β3health+bi0 +bi1t + εi(t),

ns(t) = ∑
3
d=1 κ jNd(t)

bi0,∼N (0,Σ),

εi(t)∼N (0,σ2)

(46)

7.2.6 Diagnostics

A plot of conditional residuals versus fitted values (Figure 22) is not particularly helpful
for establishing fit or homoscedasticity, because it fails to account for correlation within
individuals; nevertheless, it identifies 12 outliers to be removed from the analysis to obtain
the analysis dataset of n=861.
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Figure 22. Conditional residuals versus fitted values for random intercept model of narrow-walk pace.

7.3 Time-to-event modeling of survival time from the MrOS study

The cumulative hazard 23 has an approximately exponential shape, indicating that the
shape of the hazard does not prohibit using time-on-study as the time scale; nevertheless,
many of the covariates under consideration are diseases of aging and can be assumed to be
associated with age, so it may be better to model age as time.
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Figure 23. Cumulative hazard, using age as time scale.

Figure 24. Overall Kaplan-Meier curve for survival among MrOS participants.
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Figure 25. Histograms for follow-up time among living and deceased participants
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7.4 Joint modeling of longitudinal changes in gait speed and survival
time from the MrOS study

7.4.1 B-splines baseline hazard function

The baseline hazard function defined in (44) is a locally defined 2nd-order b-splines func-
tion. What follows here is a demonstration of the algebra for calculating the local shape for
an arbitrarily selected value of the x variable, age. This process finishes by summing the
right-most column of calculations to obtain the local definition of the b-splines function.

For τ2 ≤ X < τ3, τ2 = 0.30, τ3 = ξ1 = 81.00:

B11 = 0 B12 =
x− τ1

τ2− τ1
0+

τ3− x
τ3− τ2

1 =
τ3− x
τ3− τ2

B21 = 1 B22 =
x− τ2

τ3− τ2
1+

τ4− x
τ4− τ3

0 =
x− τ2

τ3− τ2

B31 = 0 B32 =
x− τ3

τ4− τ3
0+

τ5− x
τ5− τ4

0 = 0

B41 = 0


⇒ logh0(age)τ2≤X<τ3 = κ1

τ3− x
τ3− τ2

+κ2
x− τ2

τ3− τ2
+κ30

7.4.2 Standard errors from the joint model

Rizopoulos predicts that joint models will generally yield larger standard errors compared
to traditional methods. In the current investigation, however, this loss of stated precision
did not occur (see Table 10).
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7.4.3 Joint model diagnostics

Diagnostics for the longitudinal sub-model

A plot of conditional residuals versus model-fitted values (Figure 26) shows some system-
atic departure from the expected mean 0 for all 3 joint models, indicating that the specifica-
tion of the hierarchical model can be improved. However, we should note that these plots
are more appropriate for a traditional mixed-effects model than for a joint model, since
they do not show the event sub-model’s accounting for a significant NMAR mechanism.
The deviation from 0 on the left side of the plot may be attenuated if we multiply imputed
the missing observations at the low end of gait speed, as described in section 4.3.4. Un-
fortunately, this method is not available in the jointModel package when visit times are
random and data are left-censored (as is the case in our model, because we use age the
time scale).

Figure 26. Diagnostic residuals plot for the longitudinal sub-model: Conditional residuals versus model-
fitted values.

A plot of standardized conditional residuals versus theoretical normal quantiles (Figure
27) indicates slight deviation from normality in the tails, but the data within 2 standard
deviations appear normal.
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Figure 27. Diagnostic residuals plot for the longitudinal sub-model: Standardized conditional residuals
versus theoretical normal quantiles.

Diagnostics for the event sub-model

Figure 28. Martingale residuals for the models with piecewise constant and b-splines baseline hazards. At
low values of walking speed, there is some systematic deviation from 0, indicating that there are fewer deaths
in this range of walking speed than the model predicts. This may be an artifact of sparcity of data at these
very slow walking speeds, or an indication that model fit can be improved. At moderate and fast walking
speeds, the predictions are much closer to observed deaths. For reference, average human walking speed is
1.4 m/s (14 on the scale below).
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Figure 29. Survival Function of Cox-Snell Residuals, with a superimposed unit exponential curve (in gray).
Ideally, the survival function will match the unit exponential curve. These plots indicate that the model with
a b-splines baseline hazard is a better fit.

Figure 30. Cumulative hazard of the Cox-Snell residuals plotted against the Cox-Snell residuals themselves.
If Ĥi(rtcs

i )∼ exp(λ = 1), the plot will be a 45◦ line through the origin. These plots indicate a reasonable fit
for all 3 joint models, with the model with a b-splines baseline hazard showing the best fit.
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