
THREE-DllvIENSIONAL TEXTURING USING LATTICES

Robert R. Lewis
B.S., Harvey Mudd College, 1974

M.A., University of California, 1979

A thesis submitted to the faculty
of the Oregon Graduate Center

in partial fulfillment of the
requirements for the degree

Master of Science
in

Computer Science and Engineering

October, 1988

The dissertation "Three-Dimensional Texturing Using Lattices" by Robert R.

Lewis has been examined and approved by the following Examination Com-

mittee:

Bart Butell, Thesis Advisor
Adjunct Professor

tronix)

~
Richard Hamlet

Professor (Portland State University)

David Maier
Associate Professor

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to the many people who

helped during the production of this thesis.

The thesis committee provided much-needed direction and offered some

helpful suggestions.

My managers at TSSI: Tom Hamilton, 1-1ark Faust, ROIl Lunde, and Jeff

Hahs were all generous in providing computer resources. System administra-

tor and programmer Joe Pruett provided useful advice and cooperation.

(Okay, guys, you can trash that DN660 now!) Many people at TSSI provided

encouragement ("Hey, Bob! That looks cool!")

Chris Rose of the Beaverton sales office of Apollo Computer graciously

provided time on a DN5BO to produce some of the color plates shown here.

Mark Faust provided the photographic equipment.

Special thanks go to Jules Bloomenthal of Xerox PARC, who pointed

out the need for a change of direction much later than I should have seen it

myself.

i

TABLE OF CONTENTS

Introduction

Ray Tracing
Text ure Mapping ...
Particle Systems ..

...

...

Lattices

Rasteri zation ..

Grid Spac ing Considerations
The Lattice Hash Table

Lighting ~Iodel
Exam pie ...

Lattices in a Conventional Ray-Tracing System
Constructive Solid Geometry
P rimiti ves ..

...

....................................

Quartics
Lattices

Implementation Details

Example: A Fuzzy Sphere
Conclusions

Future Di rections

Time Efficiency

Memory Usage ...
Compress the LHT ...

Compute the LHT on Demand
Construct a 'Stochastic Lattice Hash Function

.........................

... ...

..

...

..............

References ... " ".....

1

1

5

8

12

13

15

18

20

23

26

26

29

29

30

30

31

36
40

40
40

41

41

44

45

.1

ABSTRACT

The thesis investigates a way to perform realistic three-dimensional tex-

turing of ray-traced objects that is especially useful for objects with irregu-

lar surfaces. Two similar existing methods are texture mapping and particle

systems. The thesis describes these methods and points out their strengths

and weaknesses. It then proposes an alternative to these methods that uses

a construct called a lattice. Lattices make as fast ray tracers, but they are

inexact. As long as lattices are used for small objects, though, their inexact-

ness doesn't show on the scale of the display, and the result is acceptable.

The thesis also shows how lattices fit with the more traditional large-

scale ray tracer, combining lattices with a Constructive Solid Geometry

(CSG) object model to pr?duce several examples..

Time and memory space considerations are major constraints on lat-

tices. The thesis discusses these limitations and how they can be reduced.

1

CP..APTER 1

LNTRODUCTION

This thesis discusses a new technique for adding surface detail to

objects represented in a three-dimensional rendering system.

1.1. Ray Tracing

Ray tracing is the most widely used image generation technique in real-

istic image synthesis. Although the fundamental ideas ("ray casting")

behind go back as far as Goldstein and Nagel ([Gold71]), widespread use of

ray tracing dates from the seminal paper [Whit80]. Since that time, invE;s(;i-

gators have done a considerable amount of work extending the basic notions

of ray tracing to cover a wide range of applications.

,.
It is impossible to cover all of them here. There are good overviews of

ray tracing in several popular computer graphics texts (e.g., [Roge85] and

[Fole82]). Every SIGGRAPH conference since 1980 has had numerous ray-

tracing contributions. The discussion here will confine itself to the necessary

mathematical notation.

The geometry relating what an observer in 3-space is looking at is as

follows. The observer at a point 0 is looking at a display a distance D

away. This display is made up of Nx X Ny pixels. A ray r begins at 0 and

1

passes through the center of one of the pixels. If d is a vector from 0 to

that pixel, the mathematical ("parametric") description of the ray is:

r = 0 + dt (1.1

where t > 0 is the "parameter". T = 0 at the origin 0 (obviously) and

t = 1 at the location of the pixel on the display. Let tV be the width of the

display and let H be its height. Figure 1 shows this geometry. Given D, ~V,

H, Nx' and N, one can construct a ray through any pointy

object

Figure 1 Basic geometry of ray tracing. Quantities are defined in the
text.

3

(i, j), 0 < i < lVX'0 <J < Ny on the display using

d=

o = (0, 0, -D)

[[

i 1
1

[

j 1

]]
~V -- H -- D

Nz - 1 2 j' Ny - 1 2'

(1.2a\

(1.2b

The essence of ray tracing is the ability to determine the intersections

of rays with a mathematical model of whatever it is that is being rendered

and then calculate the appearance of the model at that intersection. For

example, the model may be a simple opaque sphere x2 + y2 + z2 = 1. For a

given ray, x, y, and z are all constrained to lie along it, so it is easy to plug

the values of rx -+ x, ry -+ y, and Tz -+ z from (1.1) into the equation of

j,be sphere. The result is a quadratic in t with everything else known. Valid

rays must have positive, real t values, so this will lead to 0, 1, or 2 such

solutions.

If there are no solutions, the ray misses the sphere entirely. There is

one solution if the ray is exactly tangential to the sphere or 0 lies within the

sphere (this is perfectly ~kay). If there are two solutions, the desired one is

the one that is closer to o.

The example ends here. If it were to go on, it would be necessary to

provide more information about the model: how many lights there are, where

they are, and how they interact optically with the object. A physically

sound "lighting model" is important to realistic image generation, and has

4

had considerable study in its own right ([Phon75], [Cook82]).

The example above used an analytical surface for the model. Ray trac-

ing, however, can be done with a wide variety of models, including fractals

([Kaji83]), particles (see below), and polyhedra. All that are required are a

way of determining intersections and a lighting model.

Ray tracing, then, consists of making this intersection calculation at

least once for each pixel on the display and often more than once to allow

for intricate lighting models (Le., reflection, refraction, shadows), and other

optical effects.

On a high-resolution display with Nz ~ Ny ~ 1000 pixels, ray tracing is

expensive even for single images, and if the images are to appear animated

(on film at 24 frames/second, say), the expense increases by a factor of 24

for every second of the tinal sequence.

Much of the work done on the technique has concentrated on improving

its efficiency, but even so, without considerable computer resources or spe-

cialized hardware, ray tracing is not interactive.

This thesis presents an alternative to a couple of well-established

enhancements that speed up ray tracing. The next two sections discuss

those enhancements.

5

1.2. Texture},trapping

Texture mapping was developed by Blinn [Blin76]. Although it has

been used with rendering techniques other than ray tracing (sorted polygons,

for instance), it fits nicely into the ray tracing environment. The principle is

straightforward: given a two-dimensional image in (u ,v) called a texture, a

three-dimensional object in (x,y,z), and a mapping u = u(x, Y, z),

v = v(x, 11,z), do a standard ray-tracing calculation on the object and then

transform the intersection points (xi' Yi' Zj) back into the texture at point

(u (xi' Yi' z,.), V(Xj' Yi' Zj)) to define the optical characteristics at each pixel.

Thus one can take a image database of a world with (u, v) being longi-

tude and latitude and map that onto a sphere to produce the image of a

globe.

Texture mapping is a fundamental technique of ray-tracing systems,

and the current state-of-the-art is highly sophisticated (cf. [Per185], [Bloo85],

[Heck86]).

Nevertheless, a majo~ shortcoming of texture mapping is that it is two-

dimensional. It works fine when the object has a smooth surface like glass,

metal, or plastic, but a rugged or hairy surface such as bark, fur, or rind

causes problems. In particular, the edges of the object appear smooth and

featureless when they should show the small scale structure silhouetted

against whatever is behind the object.

6

It is also difficult to render shadows caused by an unsmooth surface.

For example: Unless the underlying texture took account of the position of

the sun1, a texture-mapped half moon would have a smooth, gradual termi-

nator with neither bright mountain peaks in the shadowed area nor dark-

ened crater interiors in the sunlit area.

Plate 1, a reproduction of Perlin's "Stucco Donut" (from [PerI85]), shows

a stucco texture mapped onto a toroid. Note the lack of texture at the

edges of the object.

1Thus eliminating the whole point of texture mapping in the first place!

7

Plate 1 Perlin's "Stucco Donut", showing a stucco texture mapped
onto a toroid. Note that the edges of the donut appear
smooth and belie the rough texture one would expect for
such an object. (from [Perl85])

8

1.3. Particle Systems

Particle systems, as developed by Reeves [Reev83], are made up of a set

of easily-rendered, usually small objects that are allowed to move, tracing

out paths on the display. They are like having a genera~ized paintbrush or

collection of brushes, in that there can be any number of them, with arbi-

trary optical characteristics, tracing paths through the modelling space dur-

ing image production. It is often useful to constrain particle motion to obey

physics ({Reyn87]). Particle systems make motion blur easy to calculate.

They have seen wide application ([Yaeg86], [Reyn87]).

In general, particles are not ray-traced, but drawn directly on the

display. The only time a ray from the observer to the particle might be cal-

culated would be to see whether some obscuring (ray-traced, non-particle)

object blocked the observer's view of the particle.

Particle systems are best used at the limits of resolution. A particle at

close range looks no more realistic than a brushstroke. But if a particle sys-

tern describes small or thin objects (i.e., those whose thickness maps to a few

pixels on the display), the result is acceptable.

Particles are especially useful for phenomena like explosions and

fireworks, where there many small objects, each of which is easily rendered

individually. They do have one major drawback that limits their usefulness.

While a particle can interact with its environment by emitting, reflecting,

9

refracting, and blocking light coming from that environment, it cannot

interact with other particles in the same way. Particles cannot shade each

other2.

The reason is that a particle has no notion of the spatial relationship of

its path to those of the others. At a given stage in its motion, a particle

knows its own position and that of the other particles, but it would be com-

putationally prohibitive to have the particle reconstruct the trajectories of

the others in the past to see if their paths interacted (by one shading the

other, say).

Plate 2, a reproduction of Figure 12 of [Reev83], Alvy Ray Smith's

well-known "white.sand" image, shows this problem clearly: the particle-

generated clump of grass casts a shadow on the sand, but there are EOsha-
,

dows evident on the clump itself.

In addition, when rendering a dense collection of particles, such as a

forest or field of grass, the rendering must be done from back-to-front. Sup-

pose particle A's path lies between the path of particle B and the observer:

A obstructs B. If the scene were being ray-traced, A's obstruction of B

would appear naturally as a result of the distance of the intersection points

2With some foreknowledge of the scene being rendered, Reeves and Blau
([Reev85]) have shown that the effect of self-shaded particles can be pro-
duced probabilistically. This does not, however, solve the general problem.

10

of the ray with the two particles. But particles are not ray-traced -- they

are drawn directly on the display, so the only way for A to obstruct B is if B

is drawn before A, imposing an observer-dependent ordering on image pro-

duction. If the observer changes position, this ordering must, in general, be

recalculated.

Such an ordering might not even be possible. Suppose A and B were

rendering a double helix. The proper rendering order would vary, depending

on where along their paths one considered the particles to be. A fixed draw-

ing order would not exist.

Plate 2

11

"

;:.

Fig. 12. white.sand.

From [Reev83], Alvy Ray Smith's "white.sand"
Although the particle system grass casts shadows
ground, it does not shade itself.

image.
on the

CHAPTER 2

LATTICES

Developers of particle systems postulated that on small-scale features

one need not go to the same lengths as on large-scale objects to produce

acceptable images. This idea is important. This thesis will now discuss an

alterna.tive to particle systems, called "lattices", inspired by the same idea.

As with particle systems, lattices are built with an underlying small-

scale ray tracer. Instead of turning a set of particles loose in the modelling

space, however, let small-scale objects be represented by a small-scale ray

tracer that is much faster but not so accurate as t.he large-scale ray tracer.

An interface between the two ray tracers is necessary, so that the large scale

ray tra.cer knows when to,invoke the smaller one.
\

Imagine a small object ("primitive") defined in its own Cartesian coordi-

nate system, called obJect coordinates. Imagine also that a rectangular box

completely bounds this obj~ct. Let there be a grid on each of the six faces

of this box. The x, y, and z extents of the box are integer multiples of the

grid spacing (expressed in object coordinates) A. These grids form the lat-

tice.

12

13

One corner of the box becomes the origin of a second coordinate system,

cailed lattice coordinates, which, for the time being, is a simple translation of

object coordinates1. vVhen measured on the faces of the lattice, lattice coor-

dinates are always non-negative integers.

Figure 2 shows an example of this, a 4 by 2 by 4 lattice surrounding a

small object that may, for instance, be a small Velcro (tm) hook.

2.1. Rasterization

The process we call "rasterization" constructs the simple, fast ray tracer

as follows:

Before rendering the image, for every entry point Pi on the lattk~ to

every possible exit point Po on the lattice, determine the intersection, if any,

with the object. Save the relevant information (the intersection point and
,,

the surface normal, discussed below) about all intersections in a lookup

table. vVhen there are multiple intersections for the same (Pi' po)' save only

the intersection that is closer to Pi.

Once the table is constructed, begin ray tracing as usual. Each lattice

has associated with it a transform from world to lattice coordinates. This

allows scaling and positioning of the lattice anywhere, in any orientation.

1At some future time, the object-to-Iattice transform may be optimized
by rotation so that the volume of the lattice is minimized.

1-1

...
+z

~----, , , ,
...

...

I.. ,,
..., ,,

"-
I'
I '
I "
I '
I ' ,I ,
I '
I
I
'C.,I '
I ' ,I "
I ...
I "
I '

, I, I

-'
-<- ,,
P . ,

I ,, , , ,
...

------'---- ,,,, ,, ,,,
...

,,, ,,,,,,

Figure 2 A primitive object ("hook") embedded in a lattice. The ob-
ject is represented as three spheres connected by cylinders.
A typical ray (Pi' po) = ((1 0 1), (1 2 3)) intersects the ob-

ject. 0 object and 0lattice' the origins of the object and lat-
tice coordinate systems, are also shown.

15

Apply this transform to each ray to convert it to lattice coordinates and see

if the ray intersects the lattice's bounding box. If it does, the ray intersects

the object if there is an entry for the ray's (Pi' pJ in the table, and the

intersection ~nformation is there (although some will need to be transformed,

to be discussed below).

The fundamental assumption about lattices in this is that the proJec-

tion of A (transformed into world coordinates) subtends no more than a few

pixels on the display. The main source of error that would otherwise be

encountered would be in the rounding of the ray's initial world coordinates,

which are real, to lattice coordinates, which are integer.

2.2. Grid Spacing Considerations

Obviously the grid spacing, A, plays a critical role in determining the

appearance of the object" on the display, but the A also figures heavily into

the storage space needed for the lattice hash table (see below).

As the reader may already have guessed, this table is large. Given a

lattice of size N X N X N grid cells, Nl ' the number of pairs ofex cy cz p

(Pi' po) points to be tried2 is

+ Nl;xy+ Nz;yz+ Nz;zx]

16

where

The initial factor of 2 in (1.3) reflects the fact that (Pi' po) must be dis-

tinct from (po' Pi) for any Pi =f:Po' since, for a primitive object of finite

dimension, intersections usually come in pairs, one which is closer to Pi and

one which is closer to po. Furthermore even though they are often spatially

close, their surface normals, which playa major role in determining illumina-

tion, may vary widely.

So far, A has been chosen to be equal to the smallest characteristic

feature size (i.e., the thickness) of the primitive object, but this need not, be

the case. A larger A might cause parts of the object to be missed during ras-

terization, but a smaller A will increase the number of samplings and thus

2Actually, this equation should be considered an upper bound on the
number of points to be tried. Consider two adjacent faces Fl and F2 and
their common edge E. This equation considers only face-face interactions, so
the points in E are counted twice. Furthermore, since it includes all rays
starting on Fl and endin'g on F2, it counts rays that begin on E (as part of
Fl) and are contained entirely within F2. Such rays could not possibly in-
tersect the object, and an efficient tabulation of the intersections could
avoid them entirely. The equation also counts corner points three times.
All or these considerations would reduce the number of points to try from

the va1ue of NIp given in (1.3). Nevertheless, if one considers a cube with Nc
cells on a side and hence N2 points on a face, face-face interactions are

O(Nc4), while all other intera~tions are O(N;), where k < 3, so that as the
lattice gets larger and larger, the quartic terms which make up (1.3) dom-
inate and the actual number of points to try would converge linearly to-

wards the value of Nip given by this equation.

17

improve resolution. Let flat > 1 the latt~'ce oversampling factor, be the

number of object diameters per)". As flat increases, a finer and finer lattice

ia surrounding the object.

Even without oversampling, both NIp and Nix' the number of intersec-

tions, can be large. For the relatively simple object shown in Figure 2,

Nez = 4, Ney = 2, and Nez = 4, so, according to (1.3), Nlpty = 15,

N,PYZ= 15, and N/pzx = 25. There are then Nrp = 9,950 (Pi' po) pairs to

try! Table 1 shows similar calculations, along with the actual numbers of

intersections found, for a variety of objects and flat values.

Table 1 Some typical lattice intersection calculations.

f'nf N, I'll;

sphere 1 2430 510
radi us: 0.5)" 2 18750 3486

3 72030 13614

straight line 1 24030 10766

length: 10)" 2 238750 93614

straight line 1 1190430 570926

length: 100)" 2 13018750 5368334

spiral 1 33698 11190
radius: 5)" 2 353950 111804
height: 10)",
Fig ure 2 1 9950 3224
"hook" l) 95742 30266.:..

hair 1 522450 100504
2 6928158 1366229

18

For the sake of discussion, imagine a cubic lattice, with 1V being thee

number of cells on an edge, then N = N = N = N . Accordingto (1.3),e ex cy cz ~

the number of points to try goes like o(Nc4). This is not, however, a meas-

ure of the size of the table, only of the number of points to try. The way

the number of intersections scales with Ne depends on the of the object.

For a hair., or filament, it is O(N~3). There is an easy way to see this intui-

tively.

Imagine an observer at a particular entry point Pi on the lattice, look-

ing at the object. The observer sees the projection of the filament intersect-

ing a certain number of exit points, Po' on the lattice. Doubling the length

01' the filament (and keeping A equal to the filament thickness), the lattice

must also double in each dimension to continue to surround the filament.

But, from the observer's point of view, the number of intersections Po for

the given Pi has only doubled, Le., it has only increased linearly with Ne.

Since the number of possible Pi points has squared, the net effect on the

number of intersections is that of O(Ne3).

2.3. The Lattice Hash Table

How best to store intersections for the fast ray tracer? There are SIX

(integer) lattice coordinates in (Pi' po)' so one could implement the table as

a 6-dimensional array. But as seen in Table 1, this table would be huge for

19

most non-trivial lattices. Note, however, that the table is sparse for filamen-

tary structures.

The obvious way to store the information, then, is in a hash table

whose index is constructed from (Pi' po). This. is the lattice hash table, or

LHT. The information this table has to contain is:

. (pj' po) itself, since the hashing cannot be guaranteed to be perfect

. the point of intersection, in real3 lattice coordinates

. the surface normal of the object at the intersection (this determines

reflection and other optical properties discussed below)

. a pointer or index into the hash overflow area

In theory, thi~ would require 4 integers and 6 reals for each entry. If

each quantity required 4 bytes, each entry would require 40 bytes. For

tables with -100,000 entries or so, this would use a lot of memory! One can

reduce the size of an entry with the following constraints:

. Restrict (integer) lattice coordinates to fit in a single byte. Assuming 8

bits/byte, this means that the maximum extent of the object can be no

more than 255).4. This constraint is not significant. The pair (p i' po)

3Although lattice coordinates are integers on the surrounding grids of
the lattice, the intersection points are, in general, real.

4Since the bounding lattice must surround the object completely, it is
necessary to allow 2 coordinate values, 0 and 255, which are guaranteed to
be outside the object.

20

then takes up 6 bytes.

o Since the intersection point lies along a line from Pi to Po' express this

intersection as a scalar value s, 0 < s < 1 such that the intersection is

Pi + (Po - Pi)8 and further scale 8 by 255 to fit .in a single byte.

There is a small but acceptable truncation error here.

. Since the surface normal has unit magnitude, scale each component by

127 to fit in a signed 8-bit quantity with, again, a small, acceptable

truncation error.

Probably nothing should be done with the overflow pointer. If the lat-

tice were small, it might be restricted to 16 bits, but Table 1 shows that

typical lattices are likely to run over 216 intersections.

One can thus get ',the table entry size down to 14 bytes. The final

chapter of this thesis will discuss possible further reductions.

2.4. Lighting Model

Given way of determining intersections, the next step for the ray tracer

is to determine the intensity of light at the intersection point. For what fol-

lows, see the ray diagram in Figure 3.

The interaction of light with the material an object is made of deter-

mines the object's appearance. To cover a wide range of materials, models

for this interaction can be complex ([Cook82]). Fortunately, there is a

21

ith light source

ray origin

n
r.
I

intersection

Figure 3 The geometry at the intersection point. The text explains
the various directions.

simple model dating back to [Phon75] that is comparatively fast to calculate
,
\

and will be good enoug~ to illustrate the effectiveness of lattices. The basic

equation is (see Figure 3):

N., J. .

[() ()

n

]

mc ,I 'p"

I = kamblamb + X; kdiff ii'lj + kspec rj.tj (2.3
i... 1Di + K

where kamb is the ambient reflection coefficient, Iamb is the ambient light

intensity, kdlff is the diffuse reflection coefficient, Nvs is the number of (non-

ambient) light sources visible from (i.e., not shading) the intersection, linc ,i is

the the incident intensity of the ith source at some canonical distance, Di is

the distance from the ith source to the intersection, K is an arbitrary con-

22

stant (mainly to fudge the inverse-square law, see [Roge85] for more informa-

tion), Ii is the surface normal of the object at the intersection, ti is the nor-

mal in the direction of the ith lioO'ht source , k is the Sp ecular reflection
apec

coefficient, s points from the observer to the intersection, r. = 2 (
t.'Ii

)
Ii - 1.. I 1 1

is the reflected ray from the ith source, as given by the Fresnel equation

(angle of incidence = angle of reflection), and napec is the specular reflection

exponent. kdiff' kspec' and nspec are all empirically derived.

In this simple model, (2.3) is monochromatic and the resulting intensity

at a given wavelength).. is dependent only on the incident intensities and the

optical properties of the object at that wavelength, not at any other

wavelength. The wavelength-dependent quantities in (2.3) are kamb, Iamb'

Equation (2.3) does' not include the possibility of transmission, which

would be an additional term, and since this model assumes that the incident

light could only be coming directly from an unshadowed light source, it will
,

not allow the refractive or mirror reflection effects so popular in other ray

tracers. Neither of these features is necessary, however, for demonstrating

lattices, and there is no conceptual problem with their co-existence with lat-

tices. Both of them could be added to the ray tracer with little difficulty.

The relationship of (2.3) to lattice information is in the major role

played by the surface normal Ii in determining the intensity.

23

It may seem unnecessary to save the intersection point as well as :fi for

each (Pi' po)' One might think it would be enough to use the center of the

lattice as the intersection point for the purposes of the ray-object intersec-

tion calculation. For that calculation, it would pr?bably suffice, but there is

a more subtle dependency on the intersection point in (2.3). The more exact

intersection point is needed because it affects the shadowing calculation;

that is, the set of Nvs sources over which the summation in (2.3) takes place.

Using the center point of the lattice would never allow the primitive to

shade itself.

2.5. Example: A Thistle

Plates 3 and 4 show a simple application of a lattice: the rendering of a

"thistle" made up of 10.0 randomly-oriented line segments, each of length,

20A. For emphasis, both plates enlarge the segments more than the recom-

mended A~ a few pixels. Plate 3 shows this object without lattices shadow-

ing each other, as would be the case if rendered by a particle system. Plate

4 shows the effect of allowing lattices to shadow each other.

24

Plate 3 100 randomly-oriented straight lattice primitives without
self-shading. This is equivalent to what a particle system
would produce.

,

25

Plate 4 100 randomly-oriented straight lattice primitives with self-
shading. Particles in a particle system cannot shade each
other. (The jagged edges are a result of the enlargement of
the figure for purposes of illustration and are not detectable
at the recommended scale for lattice primitives of a few pix-

els.)

CHAPTER 3

LA.TTICES IN A COl\iry~NTIONAL RAY-TRACING SYSTEiVI

In order for lattices to be useful, it should be possible to combine them

with more traditional rendering techniques. That is what this chapter cov-

ers.

3.1. Constructive Solid Geometry

Section 1.1 discussed how to compute ray-object intersections when the

object is a sphere. The kinds of objects usually rendered, however, are more

complicated than spheres. A sphere has a simple analytical representatio;l,

but rendering a sphere with a hole through it, for example, is difficult at

best if one is restricted to purely analytical means.
,
\

The constructive solid geometry (CSG) (cf. [Requ80]) approach starts

with simple primitive objects like spheres and defines a set of logical opera-

tions that combine those simple objects into more complicated ones.

Although the choice of primitives varies from system to system (the ones

chosen here will be discussed below), the operations are invariably the same.

Let A and B be two objects and 0 = A op B be the result of the

dyadic logical operator op acting on A and B. If op is union, 0 consists of

all points that belong to either A or B (or both). If op is intersection, 0

26

consists of only those points that belong in both A and B. If op is

difference, 0 consists of only those points in A that are not in B.

For example, to model a sphere with a hole in it, let A be a sphere, B

be a cylinder (transformed to the proper location), and op be difference.

The CSG representation of any object, then, is a binary tree whose leaf

nodes are primitive objects (spheres and such) and whose non-leaf nodes are

logical operators acting on their child objects. Transformations between

world and primitive (or lattice) coordinates need only be kept at the leaf

nodes, although during construction of the tree, it is useful to allow transfor-

mat ions to be performed on non-leaf nodes and propagated downward at

that time. Figure 4 illustrates this.

Ray tracing a CSG tree is straightforward. Given a ray, for each leaf

node build a list of int~rsections of the ray with that primitive object. The

list should be ordered in increasing distance from the observer. Then,

proceeding bottom-up from the leaf nodes, for each non-leaf node build a list
,

of intersections by merging the lists of its children according to rules deter-

mined by the value of op for the node. (For more details, see [Requ80].)

The first element in the resulting intersection list is the intersection

point of the ray with the composite object. The lighting model can then be

applied. This st.ep will include tracing an additional ray from the intersec-

tion point in the direction of each of the light sources to determine whether

28

lattice lattice lattice lattice

Figure 4 A eSG tree. There are four lattice primitives and a spheri-
cal quartic primitive.

or not that ray intersects the composite object, i.e., whether or not the point

is in that light source's shadow.

The point to note here is that it does not matter how one gets intersec-

tion lists for the leaf nodes. This means that the only criterion for primitive

objects in a eSG system is the ability to build ray-object intersection lists

for them.

29

3.2. Primitives

There are many possible objects that can serve as primitive objects for

a CSG system. This thesis will choose lattices (obviously) and quartics

(defined below). Other. types of primitive (fractals, polyhedra, splines, or

whatever) are feasible, but only one non-lattice primitive is sufficient to

demonstrate how well lattices fit into a CSG scheme. Also, quartics provide

flexibility.

3.2.1. Quartics

A quartic is a polynomial in x, y, and z of the form

i+j+k ~ 4
' () ~ i j k
J x,y,Z = L.J aijkxy z (3.1

i-j=k=O

The surface of the quartic is defined by f = 0, and, by convention, f > °

outside the quartic and f < ° inside it. Quartics can represent a wide

variety of figures. If f contains only constant and linear (i + j + k < 1)

terms, it represents a half-space. Several halfspaces can be intersected to
,

form a polyhedron, although this may not be the most efficient way to do so.

Spheres are obviously quartics, as are ellipsoids, paraboloids, hyperboloids,

and toroids.

If one extends i, j, and k, to take on any positive values, (3.1) will

describe a general 3-d analytical surface. The reason for restricting

i + j + Ie to be less than or equal to 4 is purely practical. Extending the

30

example from Section 1.1, intersecting a ray with a quartic will produce

polynomials of degree of at most i + j + k = 4 to be solved for t, hence the

name "quartic". Closed-form solutions do not exist for arbitrary polynomials

of degree greater than 4. The quartic restriction thus avoids having to deal

with the iterative and comparatively slow rootfinding techniques needed at

higher degrees.

A useful feature of quadrics is that the surface normal, which analytic

geometry shows to be Y'J, is easy to compute in closed form by purely sym-

bolic methods.

3.2.2. Lattices

Chapter 2 describes the representation of lattice primitives in an LHT.

As was mentioned there! each lattice also has an arbitrary transform from,

world coordinates (in which we initially define the rays) into lattice coordi-

nates. This transform serves two purposes. First, to clip the ray against the

lattice. Second, to transform the normal from the LHT's lattice coordinates

back into world coordinates to find the illumination from (2.3).

3.3. Implementation Details

There is now a system of programs, written in C and running under the

UNIXcrIDoperating system, that implements the ideas of the previous sec-

tions. The ray tracer, model, is about 11,700 lines long. The program

31

rasterize, which constructs the LHT, is about 1,400 lines long. In addition,

both programs use a vector and matrix arithmetic package about 1,700 lines

long and an LHT construction and lookup table package about 1,900 lines

long.

Several minor programs generate tables of transformations (special pur-

pose for the examples presented in this thesis), map the 18-bit colors that

model produces to a color-mapped display with fewer than 18 planes (using

the algorithm in [Heck82]), and render the result on either an Apollo DN660

workstation or a Tektronix 4125 graphic terminall.

Out of necessity, the software compiles and runs on Sun workstations

under SunOS@, Apollo workstations under Domain/IX@, VA..""{enunder BSD

UNIX@), and Tektronix workstations under UTek@, although not all pro-
,

grams have been tested on all platform/aSes.

3.4. Example: A Fuzzy Sphere

Plate 5 shows a closeup view of the "hair" lattice used in this example.

Similar to Figure 2, but larger, the hair was modelled as 10 spheres con-

neeted by 9 cylinders.

IFor the author's own amusement, a version for the long-obsolete Tek-
tronix 4027 graphic terminal is now under development.

32

Plate 6 shows 1000 hairs placed randomly on a sphere, the result oi

combining quartics with lattices. An infinite plane (actually a half-space)

extends below a sphere that has been covered with almost-uniformly-spaced

hairs. Unlike texture mapping, the edges show three-dimensional texture.

The hairs cast shadows from the two light sources (of differing intensity)

onto the plane, the sphere, and, unlike particle systems, themselves. It took

12.1 hours of CPU time to render this 512 by 512 pixel image on an

unloaded Sun 3/60. The system had 8:MB of real memory, much more than

model needed, so paging was minimal.

Plate 7 is similar to Plate 6, but with 5000 hairs. This image took 25.5

hours of CPU time to render on the same configuration.

33

~i"

Plate 5 A closeup of a "hair" lattice primitive. This is the same
primitive used in both Plates 6 and 7.

34

Plate 6 1000 "hairs" placed randomly on a sphere. Notice how the
texture at the edges of the sphere appears against the back-
ground.

35

Plate 7 5000 "hairs" placed randomly on a sphere.

CHAPTER 4

CONCLUSIONS

This thesis has shown that using lattices for three-dimensional texturing

can produce acceptable results. For rough objects, this technique produces

more realistic images than either texture mapping or particle systems.

The three most common criteria used in evaluating techniques of

rendering realistic images are fidelity (''Does the image look realistic?"),

speed (''How quickly was the image rendered?"), and, to a lesser degree,

space ("How much memory did rendering the image require?"). Tabl~ 2

qualitatively summarizes the findings of this thesis.

Table 2 Qualitative summary of results.

Note that Table 2 has included the option of "full ray trace". A full

ray trace would remove the intermediary lattice primitives and represent

them with composite objects made up of the primitives used to construct the

lattice primitive (spheres connected by cylinders in the case of the "hair" of

36

texture part.icle full
mapping system ray trace lattice

fidelity low', medium high high
speed very fast fast slow moderate

space small small medium larg:e

37

Plate 5). The large-scale ray tracer would then render the result. For any

but the most trivial primitives, this would increase the number of leaf nodes

by a large factor (19 in the case of Plates 6 and 7) to a value that would

slow down ray tracing and use more memory. Not having to. do this is the

main rationale for texture mapping, particle systems, and lattices in the first

place, so full ray tracing is included in the table only for purposes of com-

parison.

\Vhat about a more quantitative comparison? As far as fidelity is con-

cerned, there is no well-established quantitative criterion. Readers must

judge Plates 3, 4, 6, and 7 for themselves. If one is willing to use lattice

oversampling, a degree of fidelity arbitrarily close to that of a full ray trace

can be achieved (at a cost of increased memory usage).

,

Preceeding sections ~resented a quantitative analysis of memory usage.

In summary, a typical lattice takes up a few megabytes. An application

that did not have the memory space available would be ill-advised to use

lattices.

Something quantitative needs to be said about time efficiency. The

times cited above amount to 170 msec/pixel for Plate 6 and 350 msec/pixel

for Plate 7. The only way to do a direct comparison between lattices and a

ray tracer with surface texturing or particles would be to build such a sys-

tern and run it on the same configuration rendering the same image. This is

38

beyond the scope of this thesis, but even it it were to be done, the com-

parison might still be considered "biased" because there would be no guaran-

tee that either of the traditional techniques was implemented in its most

efficient form.

Nevertheless, we can make a semi-qualitative judgement by citing a

couple of results in the literature. Even the very early [Whit80] has exam-

pIes of surface texturing requiring between 9 and 24 msec/pixel on a VfuX

780 (a slower CPU than the Sun 3/60); depending on the scene complexity.

For particle systems, [Reev85] shows res:ults between 12 and 143 msec/pixel

on a VAX 750 (even slower than the 780), depending on the number of parti-

cles and the scene complexity.

The time required to render a surface texture is independent of the
,
\

appearance of the textur~. The time to render a particle system is propor-

tional to the number of particles. Profiling indicates that (as with most ray

tracers) intersection calculations for lattices and their bounding boxes dom-

inate time usage. The time required to render a lattice system, then, is pro-

portional to the mean number of intersections encountered tracing the CSG

tree. Ideally, this should be the logarithm of the number of lattice primi-

tives. The fact that increasing the number of lattice primitives by a factor

of 5 from Plate 6 to Plate 7 only increased the rendering time by a factor of

about 2 illustrates this.

39

Using these considerations, it is possible to scale data given in [Whit80]

and {Reev85] to get the very approximate comparisons shown in Table 3.

Plate 6
Plate 7

1
1

particle
system

1.5
3.5

full

ray trace
51

120

lattice

12
25

texture
ma .

Table 3 Gross estimation of relative efficiency. All times are rela-
tive to that of texture mapping == 1, which should be the
same absolute amount of time for both images.

Surface texturing will probably always be the fastest technique of the

three,-. but because of the linear-vs.-Iogarithmic dependencies~. for a. large

enough number of primitives, lattices should be more efficient than particle

systems. This number may, however, be too large for practical usefulness.

,\

CHAPTER 5

FUTURE DffiECTIONS

This thesis has shown the conceptual validity of lattice techniques.

Continued work with lattices should move in the direction of practicality.

There are two principle aspects of lattices that need improvement before the

technique can be said to be practical: time efficiency and memory usage.

5.1. Time Efficiency

Profiling mgdel s_howsthat very little time (less that 1%) is spent look-

iug up intersections. Most time is spent computing intersections with bound- .

ing boxes1. This is consistent with other work ([vVhit80], for example).

Apart from the bounding boxes, no optimizations such as described in
,
i

[Kaji83] or other literatu~e have been implemented to speed up intersection

computations. This should be done.

5.2. Memory Usage

The other drawback to using lattices is the space required for the LHT.

When each primitive requires about one megabyte of storage, this can eat

lClearly, this arises from having so many distinct objects to be ray
traced.

40

41

up virtual memory quickly. There are three possible ways in which the

memory requirements could be reduced.

5.2.1. Compress the LHT

Section 2.3 presented some considerations that allowed reduction of the

size of each entry in the LHT from 40 bytes to 11 bYtes. Other reductions

might be possible.

For example, it is necessary to keep (Pi' po) around because the hash-

ing scheme is not perfect. If the set of values to put in the table is known

from the start, as it is now, it should be possible to devise a perfect hashing

scheme. Omitting (Pi' po) would reduce the size of each entry to 5 bytes.

Alternatively, it would be interesting to study how many entries in the

LHT are actually refer~nced while tracing a typical object. It may be

advantageous to reject' points that would otherwise go into the overflow

area, if there is only a small chance that they would ever be needed.

Another way to reduc~ the size of the LHT might be to treat the prob-

lem as one of compression of a digital signal.

5.2.2. Compute the LHT on Demand

Along these lines, one might try constructing the LHT on demand dur-

ing ray tracing. This means that the LHT would start out empty, and as

rays intersected lattices at (Pi' po) pairs, make the intersection calculation

42

then. The LHT would grow accordingly. An approximate calculation of

~TV1ook!!.p' the number of times the LHT is consulted, will show why this is use-

ful.

\Vithout allowing for transmission or multiple reflections, the total

number of rays generated during rendering is Nray ~ (1 + Ns)NXNy where

IV is the total number of light sources. For a typical display,8

Nx ~ Ny ~ 1000. Generously suppose there are N8 = 3 light sources. That

6 --
means that Nray ~ 4X10. Nzookup is Nray nix' where nix is the average

number of lattice intersections per ray. This will depend on the number of

primitives in the image as well as their size. Assume that, as above, the

CSG tree has a bounding-box test so that rays that miss a lattice completely

are quickly rejected. If there were 10,000 primitives placed randomly within
,

the viewing volume and the projection of each one subtended an area of 100

pixels, nix would still be of order unity, so Nzookup ~ 4X106. Compare this

number with N. , the actual size of the lookup fable required, shown TableIX

1. Even for some of the simple primitives here, Nix approaches 4X106. This

means that the ray trace is looking up each entry in the LHT once on the

average. This is not even considering the fact that many times one would

be looking up the same (Pi' po)' so that in practice many of the Nix entries

in the LHT are never referenced at all.

43

Furthermore, consider what happens for larger lattices. Section 2.2

showed that Nix is O{Nc3) for a lattice with Nc cells on an edge. Since it

only depends on the projection of the lattice on the display, nix is propor-

tional to t.he area of that projection, which is O{Nc2). Nray does not depend

on Nc' so N/ookup is O(Nc2) also. Hence, Nix/Nra is O(Nc)' This means, y

that as lV increases, it will eventually become desirable to avoid the lookupc

table altogether and calculate intersections during ray tracing. Where the

break-even point occurs depends on both the model and the relative

efficiency of the lookup and intersection calculations.

One complication on-demand LHT computation would add would be

that the LHT would have to contain information on both hits and misses,

but in the latter case, of course, there would be no intersection information
,
.

The additional time required to build the LHT this way would not be a

a problem. vVhile the rendering time would increase, the overall time to pro-

duce the LHT and render it would decrease since not as many lattice points

2It would be efficient to maintain two LHTs of differing entry sizes: one
for hits, containing the usual intersection information, and one for misses,

with only {Pi' pJ and an overflow pointer. One could place arbitrary limits
on the size of either table, rejecting (Pi' po) pairs after a table had been
filled up. The only consequence would then be that one might have to

recompute the same (Pi' po) more than once, but even so, this would yield
more flexibility in trading space for time than the current scheme.

44

would have to be evaluated. In any case, the time it takes to build the LHT

is typically a few minutes, whereas ray tracing takes hours, so doing both at

once should not hurt.

This approach 'Y0u1d link the space used by the LHT to the complexity

of the model being rendered.

5.2.3. Construct a Stochastic Lattice Hash Function

This alternative approach would seek the replacement of the LHT

entirely by replacing the data in it with a rapidly-evaluated function whose

parameters were derived statistically from the original data. Instead of

seeking the exact representation that the previous approach would maintain,

this approach would trade some exactness for recovering some address space.

A fractal approach might prove useful here.

. + +- - - --

REFERENCES

Bloo85 Bloomenthal, J., Modeling the Mighty Maple. Computer Graphics,
19, 3 (SIGGRAPH 85 Proceedings) 305-31l.

Blin76 Blinn, J. F., and Newell, M. E., Texture and Reflection in
Computer-Generated Images. Commun. ACM 19, 10 (October,
19(6), 542-547.

Cook82 Cook, R. 1., and Torrance, K. E., A Reflectance Model for Com-
puter Graphics. ACM Trans. Gr. 1, 1 (January, 1982) 7-24.

Fole82 Foley, J. D., and Van Dam, A., Fundamentals of Interactive Com-
pute'r Graphics. Addison-Wesley Publishing Company, Reading,
11ass., 1982.

Gold71 Goldstein, R. A., and Nagel, R., 3-D Visual Simulation. Simulation
16, 1 (January, 1971) 25-3l.

Heck82 Heckbert, P. S., Color Image Quantization for Frame Buffer
Display. Computer Graphics, 16, 3 (SIGGRAPH 82 Proceedings)
297-307.

Heck86 Heckbert, P. S., Survey of Texture Mapping. IEEE Computer
Graphics and Applications 6, 11 (November, 1986).

Kaji83 Kajiya, J. T., New Techniques for Ray Tracing Procedurally

Defined Objects., ACM Trans. Gr. 2, 3 (July, 1983) 161-181.
Phon75 Phong, B. T., IlI~mination for Computer Generated Pictures. Com-

mun. ACM 18, 6 (June, 1975), 311-317.

Perl85 Perlin, K., An Image Synthesizer. Computer Graphics, 19, 3 (SIG-
GRAPH 85 Proceedings) 287-296.

Reev83 Reeves, W. T., Particle Systems -- A Technique for Modeling a
Class of Fuzzy Objects. ACM Trans. Gr. 2, 3 (April, 1983) 91-108.

Reev85 Reeves, vV. T., and Blau, R., Approximate and Probabilistic Algo-
rithms for Shading and Rendering Structured Particle Systems.
Computer Graphics, 19) 3 (SIGGRAPH 85 Proceedings) 313-322.

Requ80 Requicha, A. A. C., Representations for Rigid Solids: Theory,
methods, and systems. ACM Compo Surv., 12, 4, Dec. 1980.

Reyn87 Reynolds, C., Flocks, Herds, and Schools: A Distributed Behavioral
Model. Computer Graphics, 21, 4 (SIGGRAPH 87 Proceedings) 25-
34.

45

'-0. _......_

46

Roge85 Rogers, D. F., P.roced'ural Elements for Computer Graphic.s.
NlcGraw-Hill Book Company, New York, 1985.

Yaeg86 Yaeger, Y., Upson, C., and Myers, R., Combining Physical and
Visual Simulation -- Creation of the Planet Jupiter for the Film
"2010", Computer Graphics, 20, 4 (SIGGRAPH 86 Proceedings) 85-
93.

Whit80 Whitted, T. An Improved Illumination Model for Shaded Display
Commun. ACM 23, 6 (June, 1980), 343-349.

VITA

Bob Lewis received his BS in Physics at Harvey Mudd College in 1974.

He received an 1v1Ain Astronomy at the University of California at Berkeley

in 1979. His part-time graduate studies in Computer Science began at the

University of Santa Clara in 1981 and continued at the Oregon Graduate

Center in 1983 when he moved to Portland.

He first worked with computer graphics in 1977, when, as a research

assistant in the Astronomy De.partment at UC Berkeley, he developed an

interactive program for the analysis of stellar spectral data using the ven-

erated Tektronix 4010 storage tube terminal.

1vlaking a career change from Astronomy to Software Engineering, he
,
\

has worked for several firms specializing in Computer-Aided Design for

Electrical Engineering, including GE-Calma, Cornsat General Integrated Sys-

terns, and Tektronix. While at the latter, he was project leader for the Tek-

niVIEWS@ graphics terminal-based window manager.

He is currently employed as a Senior Software Engineer at Test Systems

Strategies, Inc. and is a member of the IEEE Computer Society,

ACMjSIGGRAPH, and the Portland Computer Arts Resource Committee.

2

	198810.lewis.robert to p. 6.pdf
	198810.lewis.robert to p.7.pdf
	198810.lewis.robert to p.10.pdf
	198810.lewis.robert to p.11.pdf
	198810.lewis.robert to p.23.pdf
	198810.lewis.robert to p.25.pdf
	198810.lewis.robert to p.32.pdf
	198810.lewis.robert to p.36.pdf
	198810.lewis.robert to p.47.pdf

