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Abstract 
Cellular microarrays are a combination of well plate and microarray technologies that create an 

efficient high-throughput method to quantitate the phenotypes of cells in response to 

perturbations such as microenvironments, RNAi and drugs. This thesis covers the development 

and use of an extensible computational pipeline to process High Content Screening data from 

cellular microarrays. Extensive Exploratory Data Analysis is performed to identify technical 

variations and inform normalizations that filter for biological variations. Robust rank product 

scoring combines replicate and channel data to prioritize hits for different biological questions. 

The pipeline has been applied to Cell Spot Microarrays and MEArray datasets, uncovering 

experiment design issues and generating hit lists for validation. A method to generate simulated 

datasets with variations that mimic those in actual microarrays has been developed and used to 

optimize the pipeline and predict the results for different experiment designs. 
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Introduction 
 

Cell-Based Experiments 
Human cell lines are generally accepted as effective models for understanding biological 

mechanisms and identifying therapeutic drugs.(1) Since the mid-1980s with the establishment of 

the US National Cancer Institute 60 cell lines(2) and later as 100’s of additional cell lines have 

been immortalized and quantified (3,4), drug discovery often begins with cell line experiments. 

An important aspect of cell lines is their ability to recapitulate the phenotypes of their source 

tumors(5). This enables discoveries made in cell lines to be transferable to humans.  

Many cell line experiments are performed in well plates where isolated cell populations grow 

exposed to controlled perturbations. New technologies are merging well plate and microarray 

methods to enable high throughput cellular microarray experiments.(6–8) Immunofluorescent 

stains, automated microscopes, machine vision and statistical analysis form the core of these 

high-throughput experiments that perturb cell populations in known ways and measure the 

resulting phenotypes. Initially performed in well plates these cell-based experiments are moving 

into microarrays, increasing the density of experiments by several magnitudes. While initial well 

plate experiments reported a single measure of cell population viability(9,10), Immunofluorescent 

stains and machine vision quantitate and locate up to four specific types of molecules along with 

cell morphology and texture.(11)  

Initial applications of cellular microarray experiments performed in Oregon Health and 

Science University’s Center for Spatial Systems Biomedicine have focused on cancer research 

using established cell lines. These experiments create perturbations through either short 

interrupting RNA (siRNA) knockdown of genes or through the manipulation of the extracellular 

matrix proteins and growth factors. The siRNA experiments follow the protocol of Rantala et al. 
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to create Cell Spot Microarrays (CSMAs). (6,12) The Microenvironment microarrays (MEArrays) 

follow a protocol under development led by LaBarge et al.(13,8,14) While the spotted 

perturbations differ, the downstream imaging and data analysis of CSMA and MEArrays are 

similar. 

Cellular well plate experiments and expression microarray experiments have mature 

workflows with computational pipelines that prepare their raw data for analysis. Cellular 

microarrays are an emerging technology that blends these two methods, creating a need for a new 

pipeline. A cellular microarray pipeline can be assembled from established well plate and 

microarray methods in a modular fashion. The modules can be selected based on robustness, 

interpretability, ease of implementation, computational speed and supportability.  

The cellular microarray pipeline discussed here includes extensive Exploratory Data Analysis 

(EDA) to detect batch effects, outliers and signal variances. The EDA also guides selection of 

normalization approaches that remove technical sources of variation. Scoring will prioritize the 

normalized data within the context of the experiment’s biological questions.  

Microarray experiments in this context are typically positioned as screens at the beginning of 

a series of experiments(15) with the role of evaluating a large number of perturbations and 

determining which warrant further investigation. Imaging the microarrays with a high-speed, low-

resolution scanning system that gathers population-level data is an efficient way to investigate 

each microarray population.(7) This High Throughput Screening (HTS) approach uses 

fluorescent intensity data at the population level. HTS uses simple machine vision methods to 

quantitate protein and DNA levels but does not determine any cell-level data such as morphology, 

texture or location. Statistical analysis of HTS data identifies which populations differ from the 

majority, often accepting a high false positive rate in order to capture more true positives(16).  

High Content Screening (HCS) is an example of a moderately resource intensive next step 

after HTS. HCS uses 10-20x magnification and machine vision to capture individual cell data. 
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This can be aggregated to create population-level data or analyzed at the cell level. Using HTS to 

define 10-20% of microarray populations as hits and then applying HCS to these populations 

provides a method that captures many high-quality hits at reasonable resource levels. The data 

generated from HCS can be combined with other omics data and/or used to define hits for new 

downstream experiments.  

 

In-vitro Cell Line Experiments 
Since Robert Hooke first viewed cells through a microscope in 1655(17) scientist have been 

learning about biological processes by direct imaging. Today, immunofluorescent staining can 

locate and quantitate specific molecules associated with molecular processes such as 

proliferation, apoptosis and differentiation.(12,18) Automated microscopes with motorized XY 

stages, autofocus, multiple wavelength light sources, color filters and high-resolution cameras 

routinely gather the images of thousands of cell populations.(19) Machine vision algorithms 

transform these images to numeric measurements, enabling computational biologists to apply 

statistical methods to determine the state of the cells.(20)  

In vitro biological experiments that use living cells from established cell lines started with 

HeLa cells from Henrietta Lacks’ ovarian cancer tumors.(21) Cell-based experiments rely on the 

immortalized cells being similar to in vivo cells,(5) those in a living organism. This similarity 

enables cell line-based experiments to efficiently yield important contributions to biological 

understanding. The cell lines used in this thesis all stem from cancer cells. They emulate human 

in vivo cells and can be ethically subjected to lethal doses of drugs, small molecules or radiation. 

Researchers are still learning about the limitations of in vitro cell-based experiments. The 

limitations that come from using a simplified model are important when designing a pipeline of 

experiments that includes drugs for human diseases. Each experiment in the pipeline typically 

uses a model that is more human-like and has increasing costs and complexity. Typically lacking 
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in microarray assays are physical perturbations such as stretch and pressure changes(22) and cell-

to cell signaling and interactions that come from 3-dimensional cell-based contact(23).  

 

Well Plates 
Many cell-based assays have been carried out in well plates with 96, 384 or 1536 clear-bottomed 

wells per plate(9,10). Well plates enable populations of 100’s to 1000’s of cells to grow in the 

same macro-environment while each well is isolated, exposing the populations to different 

treatments. Often, CellTiterGlo is used to measure the amount of ATP in a well population and 

interpreted as a biomarker for cell count. This is a mature technology that has been scaled up for 

large experiments. The process is tightly controlled and the analysis is well defined(24–27). 

Experiments that span 100’s of plates are often run in automated core facilities where automated 

equipment and specialized staff (28) generate reproducible results that contain minor technical 

variations.  

The downsides to well plate-based experiments include the cost of the reagents used in the 

wells, the need for specialized handling equipment and the corresponding lab space needs. 

Equipment needs extend to dedicated pipetting equipment, well plate storage systems, well plate 

handling robots and material handling compatible measuring systems. Another downside is there 

are known spatial affects around the perimeter of a well plate due to a gradient of evaporation. 

This is typically mitigated by leaving these wells empty or using them for controls. 

Well plate treatments used in screening assays can include gene silencing with RNA 

interference (RNAi)(29,30), exposure to different microenvironments, exposure to drugs, and 

combinations of two or three of these perturbations.  

siRNAs are RNAi molecules with 21 nucleotide sequences that become part of an RNA-

induced silencing complex (RISC). RISCs are endonucleases that use siRNAs to base pair match 

to mature RNA transcripts, and then degrade them through a process known as gene silencing. 
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This has proven to be an effective tool to discover a gene’s impact on a cell population’s 

phenotype. While highly selective, the 21 base sequences in siRNAs do have differing on-target 

and off-target rates(31) that vary across cell lines. The variation in these rates is a technical 

artifact that can be mitigated through the use of pooled siRNAs. The target gene for the pool will 

be the same while the off-target genes are typically different. This reduces the phenotype 

response from the off-target genes and concentrates the response due to silencing the on-target 

gene, even in situations where only two of the siRNAs in the pool have high on-target rates.  

Microenvironments include the extracellular matrix proteins, growth factors structural 

elements and scaffolding that affect cells through signaling and physical interactions.(32) 

Microenvironments are implicated in several processes important to cancer research such as 

metastasis and drug resistance. Specific microenvironments can be mimicked and controlled in 

well plates by letting the cells grow in contact with any combination of proteins or growth 

factors.(13,33,34) 

Drugs are a common perturbation in well plate assays. However, analysis of drug 

perturbations is not directly addressed in this thesis.  

 

Manufacturing Cellular Microarrays 
Cell based microarrays miniaturize the screening experiments that are typically run in well plates. 

Experiments with spot sizes that enable approximately 100 cells to adhere can go from fifteen 

384 well plates to a single microarray that is 1/8 the size of a well plate. Four microarrays printed 

on a convenient divided plate show a 60:1 reduction in footprint over 384 well plates. 

Descriptions of the two types of cell based microarrays addressed in this thesis follow.  

 

Cell Spot Microarrays 
There have been several methods published for spotting siRNAs onto flat plates to form 

microarrays.(6,7,35) As described in Rantala et al., Cell Spot Microarrays (CSMAs)  are created 
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by contact printing siRNAs, transfection agents and extracellular matrix gel onto flat plastic 

plates. The microarray manufacturing process creates pin spotted local regions referred to as pin 

grids. Ranging from 7x7 to 11x11 rows and columns, all spots within a pin grid are created by the 

same pin. Each pin grid defines a subgroup that may differ from the rest due to the physical 

characteristics of the pins and their holders. Depending on the spot size and spacing, a CSMA can 

have 2000-6000 spots. After printing, a CSMA is stable and can be stored for months.  

The protocol for CSMA experiments is to flood the microarray with a suspension of cells for 

a short period of time, enabling cells to adhere to the spots.  After a light rinsing, cells release 

from in between the spots and are cultured as separate populations exposed only to the reagents of 

their spot. Typically after 24-72 hours, the cells are fixed and stained for analysis. 

 

Microenvironment Microarrays 
Microenvironment microarrays (MEArrays) share CSMA manufacture and experiment protocols 

with the exception of the printed reagents. Instead of spots of siRNAs, MEArrays have 

extracellular matrix (ECM) proteins, adhesion molecules, growth factors and cytokines. Typical 

ECM proteins used in MEArrays are from the collagen family, fibronectin, and lamilin among 

others. Typical growth factors and cytokines include the WNT family, interferon, angiopoietins 

and more. MEArrays are also used to test drug interactions by exposing all cell populations on a 

microarray to the same drug concentration.  

 

Imaging and Machine Vision 
The phenotypes of cells in well plate experiments are quantitated by machine vision collecting 

one or more measurements from immunofluorescently stained cells. Measurements can be made 

at the individual cell or population level. The level of the measurements determines the analysis 

methods and the potential for results(36). The simpler level is measuring the total intensity of one 

fluorescent biomarker such as CellTiterGlo (CTG) that is proportional to the number of cells in a 
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population. Multiple lasers emitting at different frequencies or wide spectrum light sources that 

are filtered to desired frequencies can provide four distinct excitation colors. Antibodies labeled 

with different colored fluorophores can then report on four different biological endpoints. With 

one endpoint reporting cell count, the others can be normalized to the cell count to determine per 

cell activity of the other endpoints.  

The next step up in complexity is to increase the magnification to 10x or higher and use 

machine vision to directly measure individual cell values. Machine vision at the cell level first 

segments the image to identify cells, then measures the per cell biomarker intensities and 

morphological features such as size, circularity and texture. Derived features such as the ratio of 

nucleus area to overall cell area or cell cycle state based on several features can also be used in an 

analysis. A basic feature vector from machine vision based on individual cells might have only 

the cell counts and the biomarker intensities while a complex feature vector adds forty 

morphology features of the nucleus and cytosolic areas.(35)   

 

Impacts of High Throughput Methods 
Both CSMAs and MEArrays enable scaling up experiments at lower costs and with minimal 

specialized equipment. In a study of microarrays similar to CSMAs, Wood et al. found a 15-30-

fold decrease in costs of experiments of microarrays vs. well plates. Lower costs and handling 

constraints make it feasible for researchers to expand experiments to cover multiple cell lines, 

thousands of perturbations and tens of end points.  

The transition from well plates to spotted microarrays results in two potential sources of 

compromises to the data. As the cell populations reduce from 1000’s of cells in each well to 50-

200 cells at each spot, there is a greater possibility that measurements are not statistically robust. 

That is, measurements can be skewed by a small number of outlier cells. Robustness can be 

improved by increasing the number of replicate spots and plates while still maintaining a large 
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cost and complexity advantage over well plates. Analysis from lower cell populations can use 

robust methods and stick to conservative conclusions to overcome potential issues. This type of 

analysis remains compatible with using the microarrays as screens to determine hits for 

downstream processing. 

The second potential source of compromises to the data comes from the cell seeding and 

staining methods that flood the well that the microarray sits in. All spots are exposed to the same 

solution but gradients in the number of cells and the amount of stain taken up by the cells can 

appear in the data. 

Additional challenges exist on the computational side of microarray experiments due to the 

vast amount of data they generate. The big picture analysis plan is to combine data generated 

across microarrays and identify phenotypes of interest. Combining the data is preceded by an 

extensive Exploratory Data Analysis (EDA) with a goal of ensuring the dataset is free of 

unexpected technical artifacts.(37) EDA also informs the normalizations that will be used to 

remove the technical variations and combine the biological results. Finally, scoring will look 

across the endpoints individually or in combinations to determine which hits match the biological 

questions. Throughout the analysis, results must be visualized to aid in understanding. This 

computation analysis and visualization requires flexible and robust tools such as those provided 

in the language R(38) and associated Bioconductor packages. (39) 

 
Exploratory Data Analysis 
Microarrays are used in large experiments that run over weeks and months leading to differences 

in reagents, machine performance, operator performance, environmental conditions and other 

technical variations. In addition to informing the normalization methods and parameters designed 

to minimize these technical variations, EDA will determine if any microarrays must be excluded 

from an analysis. Using primarily visual techniques, EDA identifies microarrays with abnormal 

variations, excessive outliers and potential confounders.  
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EDA Plots and Summaries 
Since cellular microarrays share many characteristics with expression microarrays and pin-

spotted cDNA microarrays, the EDA techniques developed for those platforms are appropriate to 

be used on cell based microarrays(40).  Table 1 highlights some common microarray EDA 

methods and their areas of focus. 
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Table 1 Focus of visualization for cellular microarray EDA 
Plot Type Data to be plotted Focus of visualization 
Pseudo Images Channel values across plates Spatial variations 

Spatial Variation Index Channel values across plates Spatial variations 

Channel-to-channel Correlations between 
channels 

Scatter plots 

Replicate-to-replicate Correlations between 
replicates 

Channel values across pin grids Pin-to-pin variations 
Coefficients of Variation Replicate analysis 

Boxplots 

Channel values across plates Plate to plate variations 
Histograms Channel intensities within a plate Shape of distribution and 

location of controls 

QQ Plots Channel values across plates Normality of distribution 

 
Normalization 
The data from cellular microarrays must be normalized before it can be analyzed. The goal for 

normalization is to reduce systemic variations so that biological variations can be compared 

across channels, microarrays and cell lines. CSMAs and MEArrays are hybrids of spotted slide 

microarrays and well plates. Both spotted slide microarrays(40–46) and well plate 

experiments(46,47) have extensive normalization methods developed and characterized and some 

of these are appropriate for CSMAs and MEArrays.  

Normalizations can begin at the per channel pin level, proceed to the per channel microarray 

level, and then be combined across channels and microarrays. Since normalization can 

undesirably remove biological signal, it is prudent to do the least amount of normalization that 

allows combining data within the experiment. It is also important to match the normalization to 

the source of technical variation. For instance, if the source is due to pins performing differently, 

a pin-based normalization will be effective. If instead, the variations are solely due to global 

variations such as staining or cell adhesion gradients, then pin grid normalization may be skipped 

and microarray-level normalizations can be performed. Some data collected at the population 

level will need to be normalized to data that is proportional to the cell count of each spot. 
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After normalization, control treatments should be analyzed for separation of the positive 

controls from the negative controls to provide a QA check on each microarray. The separations 

can be quantified using well plate methods based on calculating the Z’-factor. 

 

Scoring 
Scoring is the process that prioritizes what should be included in the downstream analysis based 

on the biological questions addressed by the experiment. Multi-channel experiments that track 

multiple phenotypes provide multiple reasons for selecting hits(48). This ability to answer a 

broader range of biological questions increases the complexity of the scoring and requires it to be 

tailored to the experiment. 

 

Reproducibility 
Reproducible research is the standard that the data and code used in an analysis is available for 

others. (49) In addition to confirming initial results, the data and code will enable others to pursue 

different biological questions from the same data. Cellular microarray experiments generate 

enormous amounts of data that can be analyzed to answer many different biological questions. 

Many questions will focus on a subset of the data, perhaps only a type of cell line or particular 

end points. The type of questions being asked will determine which types of EDA, normalization 

and scoring are used within the pipeline. Having the code and data available enables other 

researchers to explore different aspects of the data. To enable reproducibility, the data and all 

code in the pipeline must be easily accessible as on a public repository or a published GitHub site. 

 
Overview of this Thesis 
This thesis concerns developing an extensible computational pipeline for cellular microarrays. 

Starting with raw imaging data and annotations, the pipeline reproducibly creates a fully 

annotated dataset of known quality that is ready for downstream analysis. Initially, the cellular 
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pipeline acts at a screen level, producing an unordered list of hits to be validated. This is achieved 

with modules selected for robustness and ease of integration so that all aspects of the pipeline are 

functioning. The object-based structure facilitates modularity and extensibility. As different 

computational techniques are employed, the pipeline will be optimized to prioritize perturbations 

as opposed to including them in an unordered list. 

A screen level pipeline has immediate value for improving cellular microarray technologies. 

The effects of experiment designs for randomization, control types and replicate numbers can all 

be quantified. Lab processes such as spotting, cell adherence, staining, imaging and machine 

vision analysis can be optimized across cell lines.  

This thesis develops and evaluates a screen level cellular microarray pipeline and its 

performance on a simulated dataset and two initial datasets. Implemented around an existing 

screen-level well plate pipeline, the pipeline also includes microarray EDA, normalization and 

scoring methods. Initial use of the pipeline has uncovered layout and technical artifacts in 

preliminary datasets while guiding the design of future experiments and protocols. 
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Materials and Methods 
 

Dataset Descriptions 
To illustrate the pipeline, two experimental data sets and one simulated data set are utilized  

Table 2 Characteristics of the datasets 

Dataset Randomization Replicates Controls Treatments 

Aberration Yes None Negative controls 
only 

siRNAs targeting 440 
genes 

MEA No 
 

6 replicates 
within each 
microarray 
4 replicate 
microarrays 

None 
Combinations of 16 ECM 
and 24 growth factor 
molecules 

Simulated Yes 

3 replicates 
within each 
microarray  
4 replicates 
microarrays 

Positive, negative 
and simulated hits 

Controlled perturbations of 
channel values 

 

Aberration 
This dataset is from a siRNA-based CSMA experiment that targets 440 genes (see Appendix A, 

Table A1) in the HER2-positive breast cancer cell line HCC1954. The channels measure the 

DNA content, products of apoptosis, proteins associated with DNA damage and the levels of 

newly synthesized DNA. The image acquisition and machine vision analysis was performed on 

an Olympus scan^R automated microscope further described in Appendix C. All measurements in 

this dataset are on a per cell basis. The measurements are the average for each cell in the image, 

independent of how many cells are being measured. 

 

MEA  
The MEA dataset is a subset of the data from an experiment that uses a format based on 

MEArrays. This dataset has treatments that are all 384 possible pairings of 24 ECM proteins and 

16 growth factors (tables A2, A3). The data comes from population level measurements of the 
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CellMask plasma membrane stain and is proportional to cell count. The image acquisition was 

performed on a Teacan LS Reloaded (Appendix B) laser scanner using Array-Pro software to run 

the scanner and measure the intensities.  

 
Simulated 
The simulated dataset is created with a randomized layout, positive and negative controls, two 

replicate microarrays and one channel of values. Technical and biological variations are modeled 

as factors based on those seen in actual datasets. The factors are multiplied by each other and the 

base values to determine the sample, hits and positive control values.  

There are several known global microarray effects along with unknown but anticipated 

effects. There are also natural stochastic variations due to using living cells as the basis for study. 

These variations are modeled by sampling from a gamma distribution. The gamma distribution 

was chosen as it starts at 0 and can be shaped to emulate the actual intensity values. The sampled  

base values are shown in Equation 1 where BVij is the base value in the ith row and jth column.  

SVijm= BVij*PGFk*RFijm*MSFijm  (Equation 1)  

The simulated dataset reproduces the effects of the pin spotting process by assigning different 

means and standard deviations to pin grid factors referred to as PGFk in equation 1 where k goes 

from 1 to the number of pins in the pin head. Since the pins and holders are manufactured to be 

similar, these pin means and standard deviations are randomly sampled from a normal 

distribution.  

Replicate microarrays are modeled as variations from a base microarray by multiplying by a 

matrix of replicate factors RFijm in Equation 1. The factors are chosen from a normal distribution 

centered at one and having a selectable standard deviation. The base microarray is not used as one 

of the replicates. 

In addition, some spatial effects are attributed to uneven staining, characteristics of the plastic 

microarray substrate and physical contamination. These are modeled as ellipsoidal and linear 
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variations with selectable locations and intensities with parameters chosen to appear similar to 

variations seen in actual datasets. The microarray spatial variation factors, MSFijm in Equation 1 

are the product of the individual spatial variation factors associated with the ellipsoidal and linear 

variations at each ith row and jth column spot. 

SVijm is the final sample value in the ith row and jth column of the mth replicate. 

 

Controls and Hits 
Decreasing the values of specific spots simulates positive controls and hits. Positive controls are 

blocked throughout the microarray while hits are randomly located. After the sample base value 

is calculated, the hit or controls factor CFijm is multiplied to determine the final control value 

CVijm. 

CVijm= SVijm * CFijm    (Equation 2) 

HVijm= SVijm * HFijm    (Equation 3) 

In a similar fashion, hit values HVijm are created by multiplying the sample values by the hit 

factor HFijm. 

  
The ‘strength’ of the positive controls and the hits are determined by sampling from distributions 

of factors that are centered at numbers between zero and one. For instance, positive control 

factors centered at 0.4 and hits centered at 0.7 will yield an average control knockdown of 60% 

and a corresponding hit knockdown of 30%. 

Negative controls are at blocked locations that differ from the positive controls and hits. The 

values associated with the negative controls are determined by the sample and replicate factors so 

that they provide a subset that represents the non-positive control, non-hit populations. The 

pseudo images of the intermediate and final simulated microarrays are shown in Figure 1.  
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Figure 1  These images show the results from simulated variations in a 4800 spot microarray. 
The samples start at an intensity of 100, the controls are distributed around an intensity of 30 and 
hits are distributed around an intensity of 70. The effects of adding each variation are shown in 
the microarray pseudo-images. 

 

Computational Pipeline 
The computational pipeline that prepares the imaging results and annotations for downstream 

analysis is performed by adding microarray-specific capabilities to the Bioconductor 

cellHTS2(50) package. cellHTS2 is designed for experiments that are run in 96 and 384 well 

plates. The pin grids, and global cell seeding and staining attributes of the microarray workflow 

cause significant differences between well plates and microarrays. These differences define the 

need for EDA, normalization and visualization extensions that include pin grids and spatial 

variations. Additionally, cellHTS2 is missing vital support for the analysis of technical replicates 

within a microarray. Technical replicate EDA, QA and scoring are added to the pipeline as part of 

this thesis. 

There is significant formatting performed to structure the annotations and data for input to the 

pipeline. A key part of the annotations details the treatments at each spot. These come from the 

spotting machine in a GAL file format. The imaging data, cell line and staining set information all 

come from either the Teacan laser scanner or the Olympus scan^R. The annotations and imaging 
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data are merged on the microarray well locations. Additionally meta-data on the experiment such 

as the experimenter names, dates, and input file names and analysis source code are combined 

with the results to provide a reproducible framework.  

 
EDA Plots and Evaluation 
All EDA plots and statistics are generated using R and Bioconductor packages.  Details on each 

of the EDA components utilized are described below.  

 

Pseudo Images  
Plotting an image of a microarray that is colored by intensity values helps to reveal spatial 

artifacts that might distort the analysis (51,52). An ideal pseudo image of a microarray would 

show values that are randomly located. Variations due to row, column, perimeter, gradient and 

localization effects can be visually detected in pseudo images. The magnitude of these spatial 

effects determines their impact on the dataset. Automatic scaling of the colors to the intensities 

will maximize the appearance of the variations and so this must be taken into account to avoid a 

false determination of significant spatial variation.  

 

Spatial Variation Index 
A shortcoming of pseudo images becomes apparent in large datasets that contain many channel, 

drug set and cell line combinations. It is difficult to subjectively identify which of the images 

should be investigated. Therefore, objective values that quantify the spatial variations are helpful 

in ranking the images. Existing methods(53, 54) including normalized unscaled standard error 

(NUSE)(51) and Global NUSE, (GNUSE). (52) “NUSE provides a measure of the precision of its 

expression estimate on a given array, i, relative to other arrays in the batch ”. (52) GNUSE 

extends NUSE by replacing the batch with all published microarrays that use the same platform. 

These methods are not sensitive to whether the high variance spots (or probes) are grouped or 
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spatially distributed. This is significant in cellular microarrays where spatially concentrated 

staining and time-based imaging variations have been identified. We have created a new value 

termed Spatial Variation Index (SVI) as part of this thesis. The goal is to quantify the regions of 

spatial variations on a per microarray channel basis and exclude contributions from isolated spots. 

An SVI is computed for a microarray channel as follows: 

 

1. Fit a bivariate local regression model to the microarray channel data, defining the rows 

and columns as the x and y coordinates and the channel values as the z coordinate. 

Choose parameters that include enough neighboring spots in x and y such that the 

isolated spots with large z differences from their neighbors have little impact on the 

model. Initial testing of SVIs on the Simulated dataset used a value of nn=0.01. This 

results in a 3 dimensional model of the microarray that has been smoothed in the z 

dimension.  

 

2. Sum the absolute values of the difference of every z value in the model from the 

model’s median z value. This captures the total smoothed variation in the model.  

 

3. Divide the sum of the absolute value difference by the median to normalize to different 

intensity levels. 

 

4. Divide the median normalized value by the number of spots in the microarray to get the 

final SVI value. This last step enables comparing SVIs from different sized 

microarrays. 
  
Figure 2 shows a monotonic relationship between SVI values and spatial variations due to 

regional artifacts and pin grid differences. Figure 2 also shows that SVI’s are not sensitive to 

perturbations that are at isolated spots. This shows that SVIs can rank microarrays according to 

their regional and pin grid spatial variations. 
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Figure 2  Pseudo Images and Spatial Variation Indices – The four images in the top row show 
pseudo images with increasing ellipsoidal perturbations, the second row shows increased 
variation in the pin grids while the third row shows increasing variations in the isolated control 
and hit locations. The blue and red lines on the bottom graph show the SVIs for the ellipsoidal 
and pin grid variations increase with increasing perturbation. The purple line shows that SVIs do 
not change as the isolated perturbations increase. This graph shows SVIs are sensitive to regional 
variations while being insensitive to isolated variations. 
 



 

  21 
 

Pseudo Images for Layout 
Pseudo images are also useful to visually check the layout of treatments in a microarray. This 

process begins with assigning contrasting colors to each subgroup of treatments. The definition of 

a treatment subgroup is treatments with biological reasons to cause similar reactions. Examples 

include a family of growth factors or siRNAs that target genes whose products from a complex. 

Creating a pseudo image colored by the treatment subgroups will show localizations of treatments 

as areas with the same color. These areas may violate assumptions of a random layout and 

compromise the downstream analysis.  

The layout of perturbations on a microarray must be randomized so that the biological effects 

are not confounded with location. A simple example of confounding would be to place all 

replicates of a perturbation in a contiguous region. It would not be possible to separate the 

variations due to the perturbation from variations due to the location. MEArrays are combinations 

from relatively small sets of compounds and preliminary datasets have had structured layouts. It 

is important to ensure that the compounds are randomly located throughout the microarray. 

Pseudo images that assign contrasting colors to each compound can reveal structure in a layout as 

described in the MEA dataset. 

 

Pseudo Images to locate actual Images 
Laser scanners gather low-resolution images of every spot on a microarray resulting in a single 

image with thousands of cell populations. It is a useful quality check to look at the spot images 

associated with specific treatments to check for the presence of cells, focus issues and spot 

misalignments. A variation of the pseudo image for layout helps locate the desired cells by 

assigning the target subgroup a color of transparent. When this image is overlaid on the actual 

image of the microarray, only the target subgroup will show through the transparent window, 

quickly showing the images of those cell populations. 
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Scatter Plots, Boxplots and Histograms 
Scatter plots effectively display how microarray data is correlated across pin grids, channels and 

treatments. Replicate microarrays are checked for high levels of correlations using scatter plots 

and by calculating Spearman rank correlation coefficients. Applying unique colors to the controls 

and hits is an effective way to show their distributions in scatter plots.  

Boxplots and histograms show subgroups of the dataset intensities and statistics. Subgroups 

include plates, ECM and Growth Factor molecules and replicates. 

 

Normalization 
The goal for normalization is to remove systemic variations so that biological variations can be 

analyzed across pin grids, subarrays, channels and cell lines. Cellular microarrays are a hybrid of 

spotted slides and well plates and it is proposed to combine normalization methods used in both 

of these domains. HTS analysis of cellular microarrays is based on a single intensity value per 

channel at each spot. The channels will be normalized independently and sometimes to a cell 

count channel. If needed, normalizing across cell lines is left to the downstream meta-analysis.  

 
Pin Grid Normalization Methods 
Combining the raw pin grid values of a subarray has the undesired effect of ordering the intensity 

values about their pin means instead of their biological variation. This will lose the biological 

signal in the technical noise of the experiment. The choice of which pin grid normalization to use 

is based on the variations in the data. Pin grid variations are not seen in the Aberration and MEA 

datasets so pin grid normalizations are not performed. 

It is appropriate to first perform a log transformation of the microarray raw intensity values to 

make their distribution more Gaussian. The median normalization process is to subtract each 
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channel’s logged pin grid median from the logged channel values of that grid. This centers all of 

the intensity values within a pin grid at 0 but does not normalize their variances.  

The bivariate local regression method as implemented in the R package locfit(55) develops a 

smoothed model of the data using a proportion of the nearest neighbors. The goal is to match the 

size of the neighborhood used in the model to the size of the spatial variations on the microarray. 

The residuals from the model represent the difference between each data point and its local 

neighborhood. The residuals are used as the normalized data in the analysis.  

A key question is how to determine an appropriate level of normalization in a real dataset 

where the hits are unknown. Most of the information to answer this questions lies in the EDA of 

the normalized data. The pseudo images of the normalized data should be free of regions of low 

or high intensity. The pin grid box plots should be centered about the plate median and have 

similar inter-quartile ranges (the height of the boxes which contain the 1st to 3rd quartiles). If there 

are positive controls, a histogram should show them as a cluster in one of the tails of the 

distribution.  

 

Microarray Normalization 
Microarray normalization is similar mathematically to pin grid normalization but it its performed 

at the microarray level. Choosing between median normalization and spatial normalization of a 

microarray depends on the variations in the dataset and on the layout of the treatments. The 

simplest case is when there are differences in the mean intensity levels between microarrays but 

no spatial variations. Normalizing each microarray by dividing all of its values by the median (or 

subtracting the log of the median if the intensities have been logged) will allow the values across 

all microarrays to be combined or compared.  

If there are spatial variations within a microarray such as gradients or perimeter effects, good 

normalizations can be achieved by applying bivariate local regression at the microarray level. 
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However, this assumes the layout of treatments is random. If the treatments form patterns or if 

there are too many empty locations, bivariate local regression will include biological variation in 

its model and this will be undesirably removed from the normalized data. In these cases, median 

normalization will be performed. 

 

Coefficient of Variation 
Calculating the Coefficient of Variation (CV) among replicates is appealing as they provide 

quality values that are independent of positive and negative controls(56). However, the threshold 

for acceptable CV values is dependent on the data and the number of data points(44,57).  In most 

dataset analyses there are minimum and maximum thresholds for determining valid values. This 

filtering eliminates spots from inclusion in the technical replicate calculations and reduces the 

reliability of associated CV values.   

Figure 3 shows the 5 percent quantiles of CVs calculated on randomly selected sets of spots 

and the variations due to difference in the standard deviation of the underlying. The pipeline in 

this thesis includes the count of values in the CV calculations as a check on validity.  

 

 

Figure 3  The blue vertical line represents the 5 percent quantile value in the distribution of 1000 
CVS of randomly chosen and therefore uncorrelated spots. As the underlying standard deviation 
increases form 10 to 20, the 5 percent quantile moves from 0.05 to 0.11 making it difficult to 
determine a valid threshold. 
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Evaluation of Normalizations 
Normalization is first evaluated with a repeat of the EDA methods used on the raw data. 

Comparisons of the raw and normalized pseudo images, distributions, pin grid boxplots and 

scatter plots will show if there are still technical variations. The shape of the distributions and the 

locations of the controls can inform if more normalizations are needed. The pin grid boxplots 

should have similar medians and interquartile ranges. The analysis can proceed with one or more 

boxplots different from the rest but conclusions based on that data should be conservative.  

The effectiveness of the normalization is evaluated using the area under the curve (AUC) of a 

Receiver Operating Characteristic (ROC)(58,59) curve and the Positive Predictive Value for 

identifying the positive controls. As AUC values approach 1, the ability to discern between actual 

positives and false positives increases. In the simulated dataset, ROC analysis focuses on the 

created “hits” in addition to the positive. The normalization evaluation will be limited to the 

simulated dataset as the other datasets do not have positive controls or known hits.  

Using a simulated dataset to evaluate the normalization requires setting values for the effect 

of the positive controls and hits on the phenotypes. These effect values are relative to the 

biological variations of the samples, which are the perturbations that do not change the 

phenotypes. When the signal of the positive controls and hits is large relative to the noise of the 

samples the normalization will be evaluated to perform better. Therefore, it is important that the 

effect values and biological variations in the simulated data are representative of the actual data 

and they are not changed during the evaluation. 

 

Scoring 
Well plate scoring methods are based on the performance of control treatments or on assumptions 

of near-normality in the responses of the samples. The sample-based methods have proven more 

robust and are the focus of this pipeline. Well plate HTS experiments typically assume a Gaussian 



 

  26 
 

distribution of the assay-wide intensities and then select the treatments based on their z-scores(9). 

An alternative to z-scores is to use rank products(60). This method uses the product of the rank of 

the normalized conditions across replicates, channels and even cell lines. The gamma distribution 

models the distribution of rank products as previously described. (61) This makes it 

computationally trivial to estimate the probabilities of a given rank product. Comparisons favor 

rank products over z-scores(62) in datasets with small numbers of replicates and non-Gaussian 

distributions. Since cellular microarrays typically exhibit distributions that are not normal and 

have few replicates, rank product analysis is an appropriate scoring method. The general nature of 

rank product analysis makes it useful when combining results across channels, drugs and cell 

lines.  

Screen-level scoring results in one or more hit lists of perturbations that match biological 

questions such as which conditions drive cells into apoptosis or which perturbations cause cells to 

differentiate. Microarray experiments with multiple biological end points have evidence for 

multiple hit lists. After normalization and scoring, hits can be called by taking a percentage of the 

top scoring perturbations(7) or establishing a threshold for hits based on the values of the 

statistically-derived scores. 

 

Reproducibility 
To meet the goals of reproducible research, this pipeline stores the results, the analysis script that 

created them and a Minimum Information About a Microarray Experiment (MIAME) file(63) that 

describes the experiment. In order to have the broadest impact, the pipeline developed in this 

thesis and the Aberration and MEA data published at GitHub repository markdane/CMA2 with 

DOI: 10.5281/zenodo.10145. 
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Results 
In order to focus on the computational pipeline shown in Figure 4 instead of the datasets, each 

module of the pipeline will be applied first to the simulated dataset and then to the Aberration and 

MEA datasets.  

 

 
Figure 4  Computational pipeline as developed for this thesis. Data in files are solid squares. Data 
in software objects are in circles. The Clean section gathers the data and metadata from the 
printer, imaging system and the experimenter and combines them into a raw software object. The 
EDA displays pseudo images, box plots, scatterplots, histograms and qq-plots of the raw or 
normalized data. Normalization converts objects of raw data into objects with normalized data. 
Scoring operates on normalized data to create an object with scores. The report section takes all 
three types of objects to create HTML, files, plots and tab delimited files. 
 
EDA 
The first step in the pipeline is to assemble the data, annotations and the experiment’s meta-data 

into a cellHTS2 object.(20) This is an S4 object in the programming language R(38). The object 

will be the software organizing entity for the rest of the pipeline, ensuring that data, annotations 

and processing states are correctly aligned and updated. As soon as the object is built, we can 

begin the EDA on the raw data. Much of this is performed by the cellHTS2 writeReport function 

generating html pages viewable with a web browser. writeReport also creates pdf, png and text 

files that can be accessed directly.  
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Pseudo Images of Values - Simulated Raw 
Figure 5 shows pseudo images of the raw values in the Simulated dataset. The colors in the 

pseudo images are auto-scaled to the 5 and 95 percentile of the spot values. The color-to-value 

levels are set for each microarray so that the location and relative amounts of variation can be 

seen within each microarray. This auto-scaling can be misleading as it does not show the 

magnitudes of the variation, however these can be seen by cross-referencing the histograms and 

pin grid boxplots. 

The two microarrays in this simulated data set are replicates made by adding random noise to 

a base microarray of values. This mimics biological and technical variations in the replicates. 

Visible in the images are the 48 pin grids each comprised of a 9 x10 array of spots. Replicate 1 

also has two ellipsoidal and two linear perturbations that are visible in the pseudo images. The 

center perturbation doubles the intensities at its center with an ellipsoidal roll off towards its 

edges. The lower left perturbation causes values in the corner to be near 0 and then increase 

ellipsoidally to normal. The two linear perturbations both double the base intensities.  These 

variations mimic staining and manufacturing artifacts. 

Randomly distributed about the plate are hits that reduce the values by 40%. These represent 

the targets for the screen. 

A last item to note in these images is the repeated positions of the three positive controls in 

each pin grid. The positive controls lower the channel intensities by an average of 70% as shown 

by the darker blue circles.  

The histograms in the middle of Figure 5 show the distributions of all values. The rug below 

the histogram is colored red for positive controls, blue for negative controls, purple for hits and 

black for the rest of the samples. The Spatial Variation Index for replicate 1 is 0.227 and .093 for 

replicate 2. 
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Distribution Channel 1 Replicate 1

4 6 8 10 12 14 

Distribution Channel 1 Replicate 2

4 6 8 10 12 14 
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Figure 5  Pseudo images, histograms and a replicate scatter plot of the raw values of replicates 1 
and 2 in the Simulated dataset 
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One of the first steps in the EDA is reviewing the pseudo-images for spatial and pin grid 

variations while using the histograms to quantify the magnitudes and frequencies. We are looking 

for issues that can inform the normalization and analysis approaches. Another early step is to 

locate the controls within the distribution. We expect to see the positive controls within one of the 

tails and the negative controls spread throughout the body of the distribution. After normalization 

we will perform a more rigorous controls assessment that includes quantify the microarray 

quality. 

The effects of the spatial perturbations in Replicate 1 can be seen in the right skew of its 

distribution. Since these perturbations span pin grids, this microarray will benefit from a global, 

spatially-aware normalization. Visible in replicate 2, there are also obvious pin grid variations 

with the pin in the 7th row and 2nd column (pin grid 26) having noticeably higher values. These 

will be quantified using boxplots later in the EDA. 

Figure 5, lower panel shows the correlation of all spots in the replicate microarrays. 

Replicates with high correlation form a linear group with a slope close to one. Perturbations in 

Replicate 1 cause data points to fall to the left and right of the main linear group and result in a 

Spearman Rank Correlation value of 0.44. A shortcoming of Spearman Rank Correlation is that it 

includes all of the data values while the focus of the screen is on the values in the tails of the 

distribution. This scatterplot confirms the presence of perturbations in one of the replicates that 

are not in the other but it is not informative about whether they can be removed during 

normalization. 
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Pseudo Images and Distributions of Values - Aberration Raw  
  
The Aberration dataset has 4 channels of intensities and the raw pseudo images in the upper 

panels of Figure 6 show spatial variations in three of them.  The Spatial Variations Indices of the 

channels 1-4 are 0.03, 0.05, 0.06 and 0.02 respectively which correspond to small amounts of 

spatial variation.  The auto-scaling of the pseudo images makes these small amounts of spatial 

variation visible. This dataset is a good example of the need to use the histograms in the Figure 6 

lower panels to determine the magnitude of the variations along with the pseudo images to show 

their locations. The layout of the siRNAs in this experiment is randomized so these variations are 

likely due to technical effects in the staining or imaging processes. There are not distinct pin grid 

differences although these may be masked by the color scaling that is driven by the global 

variations. The values have been log transformed and the distributions are mostly Gaussian.  

    
Distribution Channel 1 Replicate 1

4.0 4.5 5.0 5.5  

Distribution Channel 2 Replicate 1

2.5 3.0 3.5 4.0  

Distribution Channel 3 Replicate 1

2 4 6 8 10  

Distribution Channel 4 Replicate 1

6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6  

Figure 6  Pseudo images and histograms of the log transformed raw values of the 4 channels in 
the Aberration dataset 
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Pseudo Images and Distributions of Values - MEA Raw  
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Figure 7  The raw values from the four MEA replicates all show similar skewed right 
distributions. Log transforming these values will make them easier to interpret. 
 
The MEA dataset shown in Figure 7 has one channel of data from four replicate microarrays. The 

biomarker in the channel is CellmaskTM from Thermo Fisher Scientific Inc. which is designed to 

stain intact plasma membranes and provide a measure of cell counts. The gray spots have no 

treatments and their uneven distribution will have an impact on spatial normalizations. The 
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pseudo images in Figure 7 show spatial variations with similar patterns across the replicates. The 

Spatial Variation Indices for replicates 1 through 4 are 0.25, 0.14, 0.13 and 0.12 respectively. 

These variations may be from a combination of the structure in the layout and spatial variations 

such as staining or imaging. 

The distributions in Figure 7 are heavily right skewed starting at 0 and the analysis and 

interpretation will benefit from being log transformed. 

 

Pseudo Images for Layout - MEA 
The perturbations in the MEA dataset are the 384 possible pairings of 16 ECM molecules with 24 

growth factors. We can proceed by assigning each ECM molecule one of 16 contrasting colors, 

then creating an image of the microarray layout. The same process can be applied to the growth 

factors, creating two different maps of the same microarray. As seen in Figure 8, the perturbation 

locations are structured with the ECM molecules in columns and the growth factors in rows. 

There is randomization within the structure, for instance each 8 x 6 pin grid has four randomly 

located growth factors. However, identical pin grids are created in a symmetrical pattern, 

confounding the position of the perturbations with their type. This violates an assumption of 

spatial normalization that could correct for spatial variations within the microarray. 
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Figure 8  Pseudo Image of MEA layout. Each colored grid represents the growth factors (left) or 
ECM proteins (right) that are combined at each spot. The symmetrical patterns of the rows and 
columns show that the layout of treatments is not random. 
 
Pseudo Images to locate Actual Images 
It is often informative to view the images underlying the quantitated data. While the image of an 

entire scanned microarray can be seen with a simple image viewer, we often want to see specific 

subgroups of spots. This can be done by making a pseudo image of the layout that has the 

subgroup transparent and then overlaying the layout on top of the whole microarray image.  
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Figure 9  Pseudo images to locate vision images – The combined ECM and growth factor colored 
grids are overlaid on the tiff image of the microarray. The machine vision images of selected 
ECMs and growth factors are readily located through transparent windows.  
 

During the EDA of the MEA dataset the colors for VCAM and ANGPT1 were made transparent 

in order to locate the images behind data that had high CV values. The two right-side panels in 

Figure 9 show the six VCAM+ANGPT1 images. The upper panel shows a neighborhood of 

bright spots which result in high signals while the lower panel shows a neighborhood of dim 

spots which result in low signals. These images provide evidence that locations on the microarray 

are driving the signal in addition to the biology of the spots. 
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Pin Grid Level EDA – Simulated Raw 

  
Figure 10  Boxplots of raw values from the Simulated data set. 
 

The boxplots of the Simulated dataset raw values grouped by pin grids in Figure 10 show both 

pin grid and spatial variations. The pin grid variations show up as singular boxplots that differ 

from their direct neighbors such as pin grid 26 in Replicate 1. Global variations affect contiguous 

regions and can be seen in sequential boxplots or in effects that repeat with an index of four. The 

index of four stems from the four columns of pins in the spotting pinhead. Numerous examples of 

spatial variations in Replicate 1 can be seen in the boxplots that are contiguous and those that are 

indexed by four. 

Much of the downstream processing yields better results and is easier to visualize when the 

data is log transformed. As an example, Figure 11 shows log transforms of the Simulated raw 

data. The relative magnitudes of the spatial variations in the lower left corner of Replicate 1 are 

now more apparent. 

  
Figure 11  Box plots of the log transformed raw values from the Simulated data set. 
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Pin Grid Level EDA – Aberration Raw 

Figure 12 shows boxplots of the raw channel values of the Aberration dataset. Inspecting 

these plots for microarray variations shows decreasing values in channels 1 and 2 from the top of 

the microarray to the bottom. A possible source for this is uneven staining. It could also be a 

time-based effect due to lengthy measuring times.  Global spatial effects are apparent in the up 

and down wave pattern seen in all channels. These are from values in the center columns being 

different than those on the edges. These boxplots show the location and magnitude of the 

variations but do not directly determine its source. Pin grids 17 and 24 are consistent examples of 

higher variance across all channels.  

  

  

Figure 12  Log transformed raw values of the four channels of Aberration. These boxplots show 
global variations in the data such as the general decrease in values of channel 1, upper left and 
channel 2, upper right. Also seen is the pattern of the second and third boxplots being the highest 
in a row of four in channel 4, lower right. None of the pin grids appear as outliers.  
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Pin Grid Level EDA – MEA 
The boxplots in Figure 13 show the high amount of variance in the four MEA replicate 

microarrays. There are patterns common across the replicates such as the high values in the first 

grids, a general trend down and then an upswing in the last grids. There are variations correlated 

across the rows that cause similarities in groups of four grids. There are also singular grids that 

differ from their neighbors and from the other replicates.  

The EDA of the MEA data is showing significant spatial variations. Unfortunately, the layout 

of the biological treatments is not random and the variations can be due to the biological 

treatments, their locations on the microarray or both factors. 

 

 Figure 13  Boxplots of MEA pin grids. These boxplots show global and singular pin grid 
variations in the raw data of the MEA replicates. The along the microarray row variations are 
seen in the repetitive patterns of groups of four pin grids. High variation is seen in the first 21 pin 
grids of replicate 1 (upper left) and in pin grid 4 of replicate 3 (bottom left). 
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Microarray Normalization and EDA - Simulated 
The next process in the pipeline is to normalize the data to remove technical artifacts and enable 

combining data from pin grids, microarrays, channels and experiments. The EDA of the 

simulated data showed both pin grid and global spatial effects. Since normalizations can be 

performed at either or both levels, we will start at the microarray level using a spatially aware 

normalization. Figure 14 shows the pseudo images and distributions after normalizing with a 

bivariate local regression. The ellipsoidal spatial variations are gone and only a remnant of the 

linear perturbation in the lower part of the microarray is visible. 

The distributions in Figure 14 show a promising scenario with the positive controls far to the 

left and most of the hits between the controls and the majority of samples. The box plots in Figure 

15 show similar medians and variations in all pin grids even though there was no pin grid specific 

normalization.  

The scatterplot in Figure 16 still shows variation between the replicates as seen by the spread 

of the data points orthogonal to the diagonal. A Spearman rank correlation value of 0.48 has been 

calculated for these replicates. Scatterplots and correlation values are not very informative of the 

quality of screens(64) as they are driven by the large majority of genes that do not cause 

significant phenotypic differences.  We are interested in the small number of perturbations found 

in the tails of the distributions that cause significant phenotypic differences.  

At this point in the pipeline we can evaluate the controls by inspecting their distributions and 

calculating the Z’-factor as shown in the lower panels in Figure 16. Replicate 1 has a Z’-factor of 

-0.15 and Replicate 2 is -0.08 Well plate experiments look to have Z’-factors greater than 0. 

There is not an established rating for Z’-factors for cellular microarrays. 
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Figure 14  After spatial normalization, the log transformed Simulated values are distributed with 
most of the positive controls (red) at the lower end and most of the hits (purple) between the 
positive controls and the samples. 
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Figure 15  Spatially normalized Simulated data. Using a bivariate local regression to normalize 
the values centers each pin grid close to 0 and results in similar variations across the microarray. 
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Figure 16  Scatter plot and Controls plots for the two normalized replicate microarrays in the 
Simulated dataset. After the spatial normalization the scatterplot still shows variation at the tails 
of the distribution. This is an indicator that there are going to be false positives in the final hit 
lists. The lower figures analyze the controls, showing there is overlap which results in Z’factors 
of -0.15 on the highly perturbed replicate 1 and -.08  on replicate 2.  
 
Evaluation of Normalization - Simulated 

 

Figure 17  Using Positive Predictive Value (PPV) to evaluate the number of neighbors (nn) 
parameter in the bivariate local regression. The left panel is partial ROC curves of raw, median 
normalized and spatially normalized intensities with nn values between 0.001 and 0.5. The right 
panel shows the highest PPV at an nn of 0.005 [log10(.005)= -2.3]. 
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The spatial normalization fits a bivariate local regression to each spot using its neighborhood 

of spots. The weights of the spots in the neighborhood are based on a parameter nn, the number of 

neighbors. Smaller values of nn reduce the size of the neighborhood. Conceptually, we would like 

a neighborhood that captures the technical variations but has little effect on the isolated spots that 

represent biological variation. Figure 17 shows the results from using ROC analysis to pick a 

threshold and then calculating the resulting Positive Predictive Value defined as True 

Positives/(True Positives + False Positives). The value of nn=0.005 is selected as the value to 

normalize and score the Simulated dataset. This type of parameter selection requires positive 

controls so it cannot be performed on either of the experimental datasets. 

 
Microarray Normalization and EDA – Aberration  
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Figure 18  Pseudo images of the spatially normalized Aberration channel data 
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Figure 19  Distributions of the log transformed and spatially normalized Aberration channels 

 
Figure 20  Normalized Aberration dataset pin grid boxplots. All four channels show mostly 
normalized data with just a few high variance pins such as channel 3, pins 16 and 17 (lower left 
panel) and channel 4, pin 17 (lower right panel).  
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The spatial normalization of the Aberration dataset has removed most of the spatial variations as 

seen in Figures 18-20. This is appropriate as the layout is random. If this experiment had 

replicates, these could be used to filter the biological variations from the technical ones 

Microarray Normalization and EDA - MEA  
The EDA of the MEA dataset revealed a need for spatial normalization but a layout that has the 

perturbations confounded with the locations. Applying a spatial normalization will distort the 

biological variations. Therefore, a median normalization is applied to each microarray so the 

replicates can be combined. The raw values are also log transformed in order to compress their 

scale and make the results easier to visualize. 

The median normalization results in distributions and boxplots as seen in Figures 21 and 22 

but does not change the appearance of the pseudo images shown in Figure 7. 

 

 

Figure 21  Distributions of the median normalized and log transformed MEA dataset.  
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Figure 22  Boxplots of the log transformed and median normalized MEA data have the same 
pattern as the raw values but are now centered about 0. 
 
Scoring  
Z scores and rank product scores for the Simulated dataset are compared using the PPVs. The left 

panel of Figure 23 shows how rank products are more robust to non-normal distributions. The nn 

value of 1 does no spatial normalization. With no spatial normalization, rank products return 

higher PPVs than Z scores until the list size increases to 350. As the spatial normalization is 

increased by lowering the nn value, the data becomes more normal and the two scoring methods 

converge. At the theoretical optimal value for normalization of nn=0.005, z scores outperform 

rank products as seen in the right panel of Figure 23. This may be due to the slight estimation 

error associated with modeling the rank products with the gamma distribution.  

This analysis of the simulated dataset uses the advantage of knowing which samples are hits. 

Actual datasets will at best have positive controls to evaluate the normalization. This is a reason 

to favor rank products over z scores enabling the use of higher, more conservative nn values. 
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Figure 23  Positive Predictive Values of rank products and Z scores. The left panel shows PPVs 
form rank products remain stable as the amount of normalization varies. The right panel shows Z 
scores outperform rank products on the spatially normalized data. 
 

We can score the Aberration dataset by ranking each channel according to its intensities but the 

experiment does not have positive controls nor replicates. This limits the ability to directly 

quantify the quality of the hit list. If the dataset is to be used for downstream experiments, the 

channels can be spatially normalized and a threshold set based on the number of genes that can be 

efficiently evaluated in the next experiment.  
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Discussion 
As stated in LaBarge et al.(8) concerning MEArrays “Currently the major crux of this technology 

is inadequate methods of analysis.” To begin to address this, this pipeline provides a modular 

solution for data cleaning, EDA, normalization and scoring cellular microarrays.  

A simulated dataset, an siRNA dataset and a microenvironment dataset were used to 

demonstrate the implications of layout randomization, replicates and controls on the ability to 

normalize and develop hit lists with high positive predictive values. As emerging technologies, 

these microarrays benefit from extensive EDA as demonstrated with the use of pseudo images, 

boxplots, histograms and scatterplots before and after normalization. Normalizations that match 

the technical variations and rank product scoring that is robust to non-Gaussian distributions are 

key contributors to reducing false positives as shown by ROC curve analysis. 

This pipeline has identified problems in layout randomizations, cell adherence, staining, 

image processing, dye-to-filter mismatches and experiment design. This had led to use of the 

QA/QC and EDA to inform the ongoing experiment designs to determine the number of 

replicates and setting expectations of the PPV of the hit lists based on data quality etc. 

We note that this pipeline complements existing methods and pipelines. Existing 

computational methods for the MicroScale microarray from Wood et al. do not address layout 

randomization. They use a form of B score normalization that normalizes to the median of the 6 

nearest row and column spots. This type of normalization is appropriate for well plates where 

there are row and column effects due to multichannel pipettes but does not match the pin grid and 

global spatial variations found in cell based microarrays. The computational pipeline uses 

bivariate local regression and pin grid normalizations to match the global and pin tip variations, 

respectively.    

LaBarge et al.(8) describes using a Dunnett’s t test to compare the ratios of lineage markers 

in treated spots to control spots and a visualization of the resulting p-values. Mann-Whitney tests 
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are also used to compare the distributions of cell level data. Randomization of the layout, use of 

replicate microarrays and normalization methods are not considered. 

Rantala et al.(6) used pin grid normalization on a per channel basis, calculated ratios between 

channels then assigned z-scores using all samples in the microarray. Rank product analysis was 

used for comparisons across microarrays and cell lines. Layout randomization and replicate 

microarrays are not addressed. Negative and positive controls were used to establish effective 

reverse transfection concentration levels but are not described in the case study assay 

The computational pipeline is intentionally modular so that alternative EDA, normalization 

and scoring solutions can be efficiently test and implemented.  

Many biomarkers are must be analyzed on a per cell level. When high speed laser scanning is 

used to gather population-level data, one of the channels must measure cell count. There would 

be benefit to developing a method to estimate cell count from the three biomarkers that are 

measuring differentiation features as opposed to cell count. 

 For normalization, there is likely benefit from fitting a linear model to the data and its 

position. The coefficients of the model will show the relative impact of their features. For 

instance, spatial variations that vary across a microarray will result in larger coefficients for the 

row or column terms.  Principal Component Analysis could be useful as an additional 

visualization to identify the sources of variations in the raw data and to examine the effect of the 

normalizations. Open source methods such as ComBat(65) may be used to robustly address 

known batch effects.  

With regard to the scoring, a clustering approach could group perturbations on a portion of 

the feature vector of their phenotype data. Unsupervised clustering would be useful if the clusters 

are well separated and they contain perturbations that cause similar phenotypes. Known 

perturbations could be used to identify the cluster and reveal novel perturbations with similar 
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phenotypes. The extensible nature of this pipeline allows the addition of other modules for more 

extensive visualization and analysis.  
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Summary and Conclusions 
 
The developed pipeline performs EDA, normalizes and scores data from cellular microarray 

experiments and stores the analysis in an interactive and reproducible fashion. The computational 

methods and code are based on published methods developed for well plate and spotted cDNA 

microarrays.  Software objects that combine the data and metadata are passed between the 

pipeline modules, making the pipeline extensible and ensuring effective capture of data 

provenance and lineage. 

Several key experiment design considerations have been highlighted through applying this 

pipeline to experimental and simulated datasets. These include randomization of the 

perturbations/treatments, using replicates within and across microarrays, including positive 

controls, matching the dyes to the imaging wavelengths, filtering out low cell count spots, 

including cell count endpoints and identifying low signal to noise channels. 

MEArrays are particularly challenging to fully randomize. They are combinations of less than 

100 ECM proteins and growth factors and it requires diligence (and a formal randomization 

scheme) to ensure that the final layouts do not have organized structure as occurred in the MEA 

dataset.  

Not surprisingly, analysis of the Aberration screen showed how the lack of replicates limits 

the ability to reduce the technical artifacts and quantify the screen quality. 

While negative controls can be replaced with the majority of perturbations that do not cause 

phenotype responses, positive controls are vital to assessing the quality of an assay and to 

estimating the PPV of a scored list of hits. Ideally, every biological endpoint would have a 

perturbation that creates a known effect in all cell lines. This is a challenge in MEArrays due to 

cell lines having different responses to their microenvironments. Analysis without positive 

controls further reiterates the importance of EDA in assessing microarray quality. 
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The ability to create simulated datasets that model variations seen in cellular microarrays has 

informed the expectations of PPVs in the hit lists. Modeling includes the strength of biological 

and systemic variations such as the responses to the controls, location and magnitude of global 

variations, pin grid effects and replicate-to-replicate variations. These tunable parameters inform 

which normalizations are most effective and aid in assessment of PPVs. 

The simulated dataset showed the value of rank product analysis over z scores when 

combining replicates. This rank product analysis will become more important as additional 

channels, cell lines and drugs are analyzed in microarrays. 

All steps in the analysis are scripted in R and the scripts are included with the results. 

Combined with the data and a description of the operating environment, this framework was 

implemented to ensure the pipeline is reproducible, allowing for ease to re-run analyses, facilitate 

external validation and secondary use of this data.  
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Appendices 
 

Appendix A Dataset Perturbations 
Table A1  - Aberration siRNA targets
TMEM190 
CD59 
ARHGAP5 
AKAP6 
SSC5D 
BEND3 
ITGBL1 
WNK1 
IRS2 
VSTM2B 
WT1-AS 
TBL1XR1 
ZNF581 
CDH1 
PRPF18 
PGAP3 
TSC2 
THRSP 
FKSG29 
MLH1 
PPP1R12B 
KCTD14 
HSPBP1 
MBIP 
KLHL12 
PDSS2 
TMCO3 
PPIF 
CBLB 
KISS1 
PLEKHF1 
FRMD4A 
LOC283050 
MRPS25 
EPS15 
ZNF787 
ERBB2 
UBL3 
CCDC90A 
NUMA1 
OPTN 
SNORA77 
NKX2-8 
SLC9A3 
KDM5B 
SLC41A1 
DCUN1D2 
BEND7 
CNTN2 
CCDC73 
SMARCA4 
TMEM183A 
UPF2 
C19orf51 
PEX5L-AS2 
LAX1 

SFTPA1 
C3orf19 
ADORA1 
NDUFB5 
F7 
STRN3 
NLRP4 
ECM1 
SYT5 
NFASC 
HECTD1 
TFDP1 
KLHDC8A 
SEPHS1 
CDK18 
LOC284578 
FAM72A 
ARGLU1 
EPN1 
COCH 
RAB20 
SLC15A1 
NUBPL 
RAP2A 
NLRP5 
NKX2-1 
BRIP1 
ZC3H11A 
EIF3M 
PHGDH 
ATM 
CHEK2 
ZNF697 
EIF5AL1 
PPP1R12C 
TNNI3 
GOLPH3L 
PHKB 
GP6 
RASA3 
RPRD2 
FANCD2 
NINJ2 
HEATR5A 
RSF1 
C19orf29 
WT1 
MCM10 
LEMD1 
TUBD1 
GOLT1A 
CHAMP1 
AP4S1 
ZIC5 
URI1 
MDM4 

RDH13 
GNB4 
ABCC4 
VOPP1 
FRS2 
CD83 
NDUFC2 
CCDC168 
ZNF579 
CSTF3 
FGF14 
TPD52 
SLC10A2 
LINC00346 
LOC389493 
SNORA15 
RAB11FIP1 
MRPS17 
MCF2L 
KCNMB3 
PIK3CA 
C19orf12 
TCP11L1 
C13orf35 
CPM 
MFSD4 
PF4 
LAMP1 
DCT 
GATA3 
QSER1 
CLDN10 
CARD11 
SNRPE 
SUV420H2 
EDN1 
MLLT4 
SOX13 
CCND1 
ETV5 
SFTA3 
STARD3 
RANBP9 
CDC123 
DNAJC3 
ECHDC3 
B4GALNT3 
TMTC4 
SBK2 
SYT2 
G2E3 
MCL1 
TNNT1 
LRRN2 
MYO16 
CAMK1D 

SLC26A9 
ABHD13 
AFP 
NPAS3 
BIRC3 
MBL1P 
ZCCHC24 
NUP214 
FGFR1 
TMEM86B 
EPS8L1 
ADAMTSL4 
HAO2 
UPF3A 
AVPR1B 
HSD3B1 
ALG8 
CXCL1 
ZNF704 
RABIF 
TP53 
ZNF703 
LOC148709 
MRPL47 
LYZ 
CPSF6 
CLNS1A 
TEX30 
NLRP2 
ZSCAN5B 
STMN2 
PSPH 
GPR124 
CCT6A 
KCNMB2 
ZNF639 
ATP11A 
C11orf41 
FAM71E2 
C6orf203 
KDELC1 
CCNE1 
METTL21C 
ZNF784 
CDC16 
TCAP 
DOCK9 
IGF1R 
DZIP1 
RBBP5 
GDPD4 
TUBGCP3 
PRRG4 
ARHGEF7 
LOC650623 
RAP1GDS1 

PHYH 
RNF182 
NFKB2 
OPTC 
NLRP8 
POU5F1 
SSTR1 
PCID2 
FMOD 
GNA11 
TMEM183B 
C1orf186 
LOC283070 
HMGCS2 
FAM155A 
PLEKHA6 
CLEC14A 
ANKRD10 
NLRP11 
ENSA 
GRTP1 
SCFD1 
COX18 
PM20D1 
ZNF580 
PAX9 
COL4A1 
HS6ST3 
U2AF2 
PPP1R15B 
DSTYK 
BLM 
FGD5 
PDGFRB 
ADAM30 
NBPF7 
SHISA7 
TMEM150B 
CTSS 
RB1 
TMEM81 
ZFYVE20 
RAB7L1 
ADIPOR1 
PTEN 
TNFSF13B 
CLYBL 
UBE2S 
IPO5 
FKBP9L 
BIVM 
ERCC5 
TEX29 
GBAS 
SUMF2 
CUL4A 

POP4 
AQP11 
FAM70B 
METTL21CP
1 
TMCC2 
CXCL6 
ATP4B 
ORAO 
FOXA1 
USP22 
PROZ 
GPC3 
FBXO3 
NCOA4 
ZNF524 
PIK3C2B 
FANCG 
CHI3L1 
LINC00410 
LOC127841 
ARHGAP5-
AS1 
CREBBP 
ACTL6A 
UCMA 
CTSE 
NKX2-1-AS1 
BRSK1 
REN 
PEX5L 
ZSCAN5A 
PPP6R1 
CHIT1 
C14orf126 
NUCKS1 
MFN1 
ANKRD17 
USP13 
KAT6A 
ZMIZ1 
COL1A1 
KRAS 
PTPRH 
ZNF628 
TARS2 
GPC6 
NF2 
DHTKD1 
NUAK2 
PAG1 
MIPOL1 
AFM 
ZBTB10 
HRAS 
BRF2 

CYB5R1 
IL11 
JARID2 
NOL7 
YEATS4 
INTS4 
ISOC2 
GALP 
MRPS28 
PROSC 
CHCHD2 
GPC5 
ZMAT3 
ADPRHL1 
C11orf67 
FIZ1 
LOC553137 
TPP2 
A2LD1 
NR2C2 
PNMT 
UGGT2 
SMARCB1 
SRGAP2 
MYC 
EFNB2 
LINC00303 
RPS6KB1 
USP6NL 
PLAT 
SEC61A2 
SFTPA2 
SPTSSA 
DEPDC7 
FLJ44054 
SIRT5 
NUDT5 
BTG2 
NLRP13 
BRAF 
GFOD1 
CARS2 
MYOG 
IL6ST 
KDM5B-AS1 
C10orf47 
RAD52 
AP3M2 
C3orf20 
ETNK2 
PHACTR1 
F10 
HORMAD1 
SOX1 
ALB 
CCDC3 

ELK4 
ERC1 
CCDC106 
EGLN3 
COL4A2 
RNF113B 
NLRP9 
RFPL4A 
MYBPH 
NTRK1 
BRCA2 
PER1 
NOTCH1 
REG4 
HSD3B2 
NAT14 
COX6B2 
IKBKB 
EP300 
RASSF6 
ATP2B4 
SLC45A3 
PRELP 
PML 
LIG4 
PCCA 
ERLIN2 
OXGR1 
LANCL2 
GRK1 
ZNF444 
HIPK3 
HEY1 
NALCN 
SPACA7 
DAOA 
ZNF713 
CARKD 
ZNF217 
VMP1 
ING1 
GAS6 
PHKG1 
PAK1 
MAP2K4 
EGFR 
MAP3K1 
BRMS1L 
IL8 
FGFR2 
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Table A2- MEA ECM Proteins
Col I  
MG Col II  
Col III 
Col IV 
HyA  
HMW  
ICAM-1  
Desmoglein 

Fibronectin 
Integrin a2b1 
Integrin a6b4  
Integrin a4b1  
Integrin a5b6 
Integrin a3b1 
Vitronectin  
VCAM  

 
 
Table A3 - MEA Growth Factors
VEGF 165  
TGFB1  
SCF  
PBS  
Wnt10b  
SHH  

BMP4  
EGF  
Wnt 5a  
IL-8  
TgfB2  
Jagg 1  

SDF1b  
IL-1B  
ANGPT2  
Jagg 2  
OPG  
IGF-1  

ANGPT1  
SDF1a  
Osteoactivin  
HGF  
IL-3  
CTGF 
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Appendix B: Olympus Scan^R Microscope 
Hardware   Olympus IX83 and IX81 microscope 

    CCD Hamamatsu: ORCA-ERG, C8484, ORCA 285. Intensified 
and EMCCD cameras (Hamamatsu) on request 

    Motorised Stage Märzhäuser SCAN IM for IX3 and IX2 frames 

    Imaging Computer (latest generation PC), 2 Hard-Drives (80 GB 
and 250 GB), 2GB RAM 

Hardware 
control   MT20 

  Short arc burners  150 W Xenon or Mercury-Xenon  
  8 Filter positions  Diameter 25 mm  
  Filter switch  min. 58 ms (neighbouring positions)  
  Attenuation  14 levels, 1% - 100%  
  Attenuation switch  <58 ms 
  Shutter, on/off time  1 ms  
  Operation  all modules in parallel  

Image 
Acquisition   Workflow oriented configuration and user interface 

    Variable powerful software auto-focus procedures 

    
Format Manager with predefined formats (slides, multiwell 
plates) and editing interface to create and edit customised 
formats (spotted arrays) 

    On-line display 
    Fully automated operation 
    User interaction: pause, resume, set marker 

Image 
Analysis   On-line & off-line analysis 

    Independent software module 
    Image processing 
    Image analysis & particle detection 
    Parameter extraction and calculation 
    Cytometric data analysis, gating & classification 
    Direkt link between data-points, objects and images 
    Data-export 
    Complex analysis procedures can be saved as assays 

    Predefined assays and advanced scientific assay development 
functionality  

  Fast filter turret min. switching time 350 ms 
    Professional data storage systems 

Performance Image acquisition 2 1 s/position 
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colour channels á 200 
ms 

  IR-hardware auto-focus 1 - 2 s/position 
  software auto-focus 2 - 5 s/position 

General 
Features   Maximum throughput and minimised bleaching/photo-toxicity 

due to real-time synchronisation  

    Homogeneous and high intensity fluorescence illumination by 
optimised illumination optics 

    Thermal insulation of samples and vibration free image 
acquisition by fiber-optic illumination coupling 

    High precision and high endurance components 

    Maximum flexibility and modularity by open microscope based 
system platform 

    Fluorescence and transmitted light screening 
    "Unlimited" colour channels 
    

Appendix C: Teacan LS Reloaded Laser Scanner 
General 

• Possible Laser Sources 635 nm, 532 nm, 488 nm, 594 nm 
• Detectors 1 or 2 PMTs, optional simultaneous dual color detection 
• Emission Filters 1 or 2 filter slides, space for 4 filters each 
• 1 Laser System: CY5 (692/45), 
• 1-4 Laser System: CY5, ROX (635/35), CY3 (575/50), FITC (535/25) standard filters 
• Additional filters can easily be added. Up to 20 filters can be applied per system and registered by 

LS Software. 
• Substrates as microscope slides, microplates or any other substrate up to the size of microplates 

(15x85x127 mm) 
• Scan area slides 22x75 mm one run; 1-96 scan areas over an area up to microplate footprint 

(automated stitching) 
• Autofocus for transparent or not-transparent surfaces with or without segmentations performed in 

advance to each individual scan 
• Depth of Focus 90, 300, or 800 µm reading by 3 software selectable pinhole sizes 
• Working Distance 6.5 mm (focus) 
• NA 0.6 
• Adjustable angle of incidence of laser beam 25-0° for evanescence resonance scanning and three-

dimensional structures 
Performance 

• Signal to electronic noise ratio 5 orders of magnitude 
• Sensitivity < 0.1 Fluorophore equivalent/µm² 
• <0.01 Fluorophore equivalent//µm² by adjusted laser beam angle to Cy3/Cy5 evanescence 

resonance slide scanning 
• Intrascenic Dynamic Range 4.5 orders of magnitude 
• Gain Adjustment 5 orders of magnitude (0.005% to 500%) 
• Pixel Resolution 6, 10, 20, 40 µm 
• Reading speed 4 minutes for a full slide, 25 minutes a SBS plate (dual color, 10 µm pixel 

resolution), 
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Pipeline Software 
Pre-release code for the computational pipeline and simulation functions and the thesis datasets 

are available at GitHub markdane/CMA2 at DOI: 10.5281/zenodo.10145.  


