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Abstract

Discriminative Joint Modeling of Acoustic and Lexical Variations for

Spoken Language Processing

Maider Lehr

Doctor of Philosophy

Center for Spoken Language Understanding

within the Oregon Health & Science University

School of Medicine

June 2014

Thesis Advisor: Dr. Izhak Shafran

Speech recognition systems consist of three components, namely, the acoustic model, the

pronunciation model and the language model. The acoustic and language models are

typically learned separately and furthermore optimized for different cost functions. This

framework has been a result of historical and practical considerations such as the availabil-

ity of limited amounts of training data and the computational cost. These considerations

are currently being overcome. Arguably, learning both models jointly to directly minimize

the word error rate will result in a better recognizer.

One of the contributions of this thesis is a detailed investigation of a discriminative

framework to jointly learn the parameters of the acoustic, language and duration models

(commonly captured with the parameters from the acoustic models). The acoustic state

transition parameters, the n-gram language model parameters and the state duration

parameters are learned using a reranking framework, which has been previously employed

in discriminative language models [156]. We report experiments on the GALE Arabic

transcription task, a NIST benchmark, with about 200 hours of training data and two test

xiv



sets of about 2.5 hours. Our results demonstrate that our model improves the performance

by about 1.4-1.6% absolute word error rate over the baseline system.

Continuing with the joint modeling framework, next, we apply it to learn pronunciation

variations particular to African American Vernacular English (AAVE) speech. Popular

speaker adaptation methods adapt the acoustic models quickly using small amounts of

data, for example, by estimating a few linear transforms. Such transformations are in-

capable of appropriately capturing systematic phonetic transformations. We investigate

strategies for learning phonetic transformations jointly with the discriminative language

model. We compare our new models on NPR’s StoryCorps corpus, which consists of

stories from self-identified AAVE and Standard American English (SAE) speakers. The

joint discriminative pronunciation and language model improves the performance of the

AAVE recognizer by about 2.0% WER of which about 0.5% can be attributed to pronun-

ciation models. Improvements on the SAE data are lower and mainly attributed to the

discriminative language model.

Finally, we examine how joint modeling of acoustic and lexical variations can improve

the performance of a downstream application, a narrative retelling assessment tool. We

develop a conditional random field (CRF) based model to incorporate both variations,

and demonstrate gains of 6.3% over a generative baseline in the F-score of detecting story

elements on a clinical task, the Wechsler Logical Memory test.
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Chapter 1

Introduction

Recent advances in speech recognition technology and the growing societal adoption of

mobile devices have led to an unprecedented demand for natural spoken interfaces in

a wide variety of commercial applications. Automatic mobile virtual assistants such as

Apple’s Siri1, Google Now2 and recent Microsoft’s Cortana3 are becoming popular. We

expect voice search on our smartphones to reliably and accurately locate the pertinent

documents, images, videos, music or other forms of content on the web. A large number

of companies are devoting considerable resources to allow users to speak to appliances

such as television or car navigation equipment to control them. Spoken language systems

have matured sufficiently that they are beginning to be employed in tutoring systems for

children and for second language learners. This provides a personalized and easy way for

students to practice at their own pace, making education more accessible to everyone,

including those with different forms of learning disabilities. Speech applications are also

finding inroads into healthcare, where physicians now routinely employ them for generating

their examination reports.

Spoken language applications typically consist of a cascade of systems that are de-

veloped or trained separately. In this cascade, the speech recognizer is often the first

system, tasked with inferring the spoken words, which are then fed into the downstream

components. The downstream components are often developed separately mostly due to

1www.apple.com/ios/siri/
2https://support.google.com/websearch/answer/2842392?hl=en
3http://www.techradar.com/news/phone-and-communications/mobile-phones/

cortana-everything-you-need-to-know-about-microsoft-s-siri-rival-1183607

1
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the availability of larger amounts of annotated text data than speech data. However, this

way of breaking up an application is suboptimal due to several reasons:

• The components are usually stochastic and the inferred output inevitably contains

errors which are propagated to the downstream components.

• The components are trained independently and optimized using objective functions

that are often not directly related to the performance measures of the application.

• Furthermore, the underlying assumption that the components are independent may

not be true.

Several solutions have been proposed in the literature to alleviate the shortcomings of the

separately trained components. The impact of the errors from the previous component

in the cascade can be reduced by not relying exclusively on just one output from the

previous component but a distribution of outputs with associated weights [110, 50, 87].

In certain applications, it may be possible to optimize the parameters of the models in all

the components to maximize the performance of the full system [162, 197].

Even within the speech recognizer, the different components, the acoustic model, the

pronunciation model and the language model, are estimated separately. In brief, the

acoustic model assigns probability to the acoustic realization of a given word sequence,

while the language model assigns probability to the word sequence in a given language.

The pronunciation model is often a lookup table that maps words to its phonemic pro-

nunciations. The three models are combined to create a full recognition model that maps

observed acoustic sequences to word sequences. From this recognition model, the process

of decoding extracts the most likely word sequence for a given input acoustic sequence.

In most systems, the acoustic and the language models are estimated independently,

typically to optimize different cost functions. The acoustic models are estimated to mini-

mize a surrogate differentiable function that approximates word error rate while the lan-

guage models are estimated to maximize the probability that the model generates the

training data. With the availability of large amounts of transcribed speech and cheap com-

putational cycles, the historical reasons for this practical choice are no longer valid. There
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has been recently considerable interest in estimating them jointly [81, 53, 203, 205, 206].

We investigate the problem of jointly modeling the transition probabilities in the acoustic

and the language models, along with the probabilities of duration cues.

Furthermore, even though speech recognizers have been employed in a variety of tasks

or domains, where the sorts of sentences spoken and the style of speaking them vary

considerably, each application requires careful tuning. A mismatch between training data

and the application can degrade performance considerably. These mismatches may occur

in one or more components of the speech recognizer, and adaptation methods are employed

to tune each component separately. For example, domain adaptation is employed for

language models [6, 10, 93], acoustic condition adaptation for acoustic models [135], and

accent, dialect or speaking style adaptation for pronunciation models [179, 104, 44, 187].

In this context, we address the problem of porting a standard recognizer to a new dialect

using two approaches: Explicitly by discriminative learning phonetic transformations, and

implicitly with a discriminative acoustic state transition model, both of which are jointly

trained with a discriminative language model.

Finally, we examine a spoken language application—scoring narrative retellings—

where we investigate solutions to mitigate the effect of errors in the output of the speech

recognizer. Automatic evaluation of narratives has wide variety of applications ranging

from tutoring systems to neuropsychological examinations. We examine the problem of

detecting a word or a phrase in the retelling which may be mutated due to lexical variants

that the speaker chooses or the acoustic confusions that the ASR system outputs.

1.1 Research objectives

The key objectives of this thesis are to develop solutions to address the three problems

mentioned above, and that are enumerated next.

1. Develop a framework for estimating jointly the parameters of the acoustic model

and the language model to minimize the word error rate directly. The focus of this

work lies in estimating the transition probabilities in the acoustic models, which are
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typically ignored in a large vocabulary system, along with the weights of a stan-

dard discriminative language model. We also investigate the utility of incorporating

duration information within this framework [97, 98].

2. Investigate methods to improve recognition performance on dialectal variants. We

investigate two alternatives for the discriminative modeling of dialectal variations—

one focused on learning phonetic transformations explicitly and the other focused on

representing them implicitly at the acoustic state level by fine tuning state transition

probabilities. In both cases, we learn the parameters jointly with the language model

to directly minimize the word error rate.

3. Address the task of automatically scoring narrative retellings using models that take

into account both the lexical choices from the user and the errors from the speech

recognizer. Our goal is to develop a joint model that captures both variants within

a discriminative estimation framework [96, 99].

1.2 Organization of the thesis

Before delving into the topic of the thesis, in Chapter 2, I provide the necessary background

on fundamentals of speech recognition that are pertinent to the rest of the thesis, which can

be easily skipped by those who are familiar with the technology. That chapter describes

the components of speech recognizers in more detail, the metric employed to evaluate

recognizers, weighted finite state transducers and their use in speech recognizers as well

as the recipes we use for training a recognizer and decoding speech. Next, in Chapter 3,

I look into the first research objective enumerated above. The joint discriminative model

framework is evaluated extensively on a GALE Arabic transcription benchmark task. In

Chapter 4, I focus on the second research objective, where I describe the extension of the

joint discriminative model for adapting a general English speech recognizer to improve

the recognition performance on African American Vernacular English (AAVE) dialectal

speech. Chapter 5 is devoted to the third research objective, the automated scoring of

narrative retellings from a clinical task, the Wechsler Logical Memory task. Finally, in
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the last chapter, Chapter 6, I conclude my thesis summarizing its key contributions and

pointing to some future directions.



Chapter 2

Background

2.1 Components, output and evaluation of an ASR

The task of automatic speech recognition (ASR) is to decode an utterance x and hypoth-

esize the spoken word sequence w. Mathematically, the process of decoding consists of

searching over all word sequences and picking the word sequence ŵ with the maximum

posterior probability given the input utterance x.

ŵ = argmax
w∈T

P (w|x) (2.1)

The decoding is performed efficiently by searching over a compact representation of the

acoustic realizations of all possible word sequences in a language or a task, the decoding

graph T . The paths in the decoding graph are weighted by the probability distribution of

different word sequences. These weights are not obtained from a single model. Instead,

they are obtained by combining different independent models, each one representing a

specific source of knowledge. This is achieved by factoring the posterior probability P (w|x)

using Bayes’ rule, and the process of generating the output is often referred to as the

maximum a posteriori (MAP) decoding.

ŵ = argmax
w∈T

P (x|w)P (w)

P (x)
= argmax

w∈T
P (x|w)P (w) (2.2)

The term P (x|w) is the acoustic likelihood, computed for a given input utterance x

conditioned on a candidate word sequence w, while the term P (w) is independent of the

input and captures the prior probability of the word sequence. Hence, the two models

6
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are referred to as the acoustic model (AM) and the language model (LM), respectively.

The acoustic model is evaluated by passing the input utterance as a sequence of high-

dimensional real-valued vectors, and as a result the acoustic likelihoods have a large dy-

namic range compared to the prior probabilities from the language model. In practice,

to reduce the disproportionate influence and incorrect independence assumptions of the

acoustic models the likelihoods are scaled by a constant factor uniformly across all utter-

ances and word sequence candidates [7, 40]. The probability from the denominator P (x)

is the same for all candidate word sequences, and so it is left out in the search.

In large vocabulary speech recognizers, the acoustic models are not modeled at the

word level since a large proportion of words in the vocabulary are not seen frequently

enough in the training data to allow robust estimation of their parameters. Instead, the

acoustics are modeled in terms of smaller units. Phones (pi) by themselves are too few

and too coarse to capture all the contextual variations, for example, the difference in /t/

at the beginning (tight) and middle of a word (butter). These differences in realization are

captured by taking into account the immediate phone contexts. These context-dependent

phones (pd) however are too numerous to be robustly estimated from the typical training

data. For example, in English, which has about 40 phones, taking the two left and right

contexts into account increases the inventory of acoustic units to 40(2+1+2). They are

instead mapped to a few thousand allophones using decision trees [199], as is explained

later in Section 2.1.2.

Putting this all together, during recognition, the probability P (x|w) is modeled in

terms of several factors that are obtained by Bayes’ rule and simplified using conditional

independence assumptions.

P (x|w) =
∑
pi

∑
s

P (x, s|pd)P (pd|pi)P (pi|w) (2.3)

The term P (pi|w) is the probability of the context independent phone sequence given

the word sequence w. The mapping from word sequence to phone sequence is performed

using a lexicon. The sequence of phones are mapped to context-dependent phones pd

deterministically. In turn, the states of the context-dependent phones are mapped to
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allophone states deterministically using the learned decision trees.

The sum over all the acoustic state sequences
∑

s and phonetic sequences
∑

pi
is

approximated with Viterbi approximation [189, 148] by considering only the best acoustic

state sequence for each phonetic sequence, and best phonetic sequence for each word

sequence.

P (x|w) = argmax
pi

argmax
s

P (x, s|pd)P (pd|pi)P (pi|w) (2.4)

Figure 2.1 illustrates an ASR system with its components. (The illustration shows the

simple case when acoustic models represent context independent phones).

Acoustic 
frontend

Acoustic 
model

Pronunciation 
lexicon

Language 
model

Search space

=‘anything else’

Chapter 3

Learning a Discriminative Weighted

Finite-State Transducer for Speech

Recognition

3.1 Background: Components of an ASR

The task of the Automatic Speech Recognition (ASR) is to decode a spoken utterance x

to get the corresponding word sequence w. Mathematically, the recognition consists of

searching the word sequence ŵ with the maximum posterior probability given the input

utterance x.

ŵ = arg max
w

P (w|x)

The decoding model that represents this probability distribution is not usually built by

estimating a single model. Instead, it is built by combining di↵erent independent models;

each one representing an specific source of knowledge.

By Bayes decision rule, the posterior probability P (w|x) can be factored into two

terms:

ŵ = arg max
w

P (x|w)P (w)

P (x)
= arg max

w
P (x|w)P (w)

The term P (x|w) and P (w) are the acoustic likelihood and prior given by the AM and

LM, respectively. In practice, both terms are combined with a scaling factor [14]. The

probability from the denominator P (x) is the same for all candidate word sequences,

therefore, we can ignore it to search the candidate word sequence that maximizes the

posterior probability.

3

P(x,s|p_i) P(p_i|w) P(w)

Wednesday, February 19, 14

Figure 2.1: Automatic speech recognition (ASR) system.

2.1.1 Acoustic model

The acoustics of large vocabulary statistical automatic speech recognizers are modeled

with context dependent hidden Markov models (HMMs) [9, 61, 148, 62, 57] (Figure 2.2

illustrates the HMM topology for a context dependent phone). Specifically, context de-

pendent HMMs represent the joint probability distribution P (x, s) over observation and

acoustic state sequences x and s, respectively. The observations are vectors of acoustic

features such as Mel frequency cepstrum coefficients (MFCCs) [27, 78] or perceptual lin-

ear predictions (PLPs) [54]. The joint probability is expressed in terms of the emission or

observation probability P (xt|st), and the state transition probability P (st+1|st) at time t:
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P (x, s) = P (s1)

t=T∏
t=1

P (xt|st)
T−1∏
t=1

P (st+1|st) (2.5)

where P (s1) is the initial state distribution.

The distribution of the acoustic vectors is represented with Gaussian mixture models

(GMMs) [149] where P (c|s) is the mixture weight, µsc the mean vector and Σsc the

covariance matrix for the cth Gaussian of each state s.

P (x|s) =
∑
c

P (c|s)√
(2π)d |Σsc|

exp
−1
2

(x−µsc)T Σ−1
sc (x−µsc) (2.6)

In recent work, deep neural networks (DNNs) have been found to be more effective

for modeling the observation probability than GMMs. They can capture more complex

feature spaces with non-linear transformations [55, 29, 160]. In the case of the GMMs

when observation vectors from the neighborhood are concatenated with the current vec-

tor, a linear transformation is applied to map the high dimensional vector into a lower

dimensional space where the features are decorrelated.

In large vocabulary speech recognizers, typically the transition probabilities of the

HMMs are modeled with only one parameter, the self-transition probability aii = P (st+1 =

i|st = i), since the transition out of the state can be trivially computed from it (P (st+1 =

j|st = i) = 1− aii with i 6= j ).

HMMs are very popular for sequence labeling because of their elegant mathematical

framework and the well-defined algorithms that exist for their training and decoding. The

mathematical elegance stems from two crucial conditional independence assumptions.

• Observations are conditionally independent given the hidden state. In speech recog-

nition, often, the neighboring acoustic features are concatenated with the current

features and the stacked vector is treated as the current observation [167].

• The hidden states have a Markov dependency. States are independent of previous

states given the most recent state. This assumption poses difficulty in modeling seg-

mental effects such as duration. Explicit duration models are often used to alleviate
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this weakness [147, 200].

It has been argued that the conditional independence assumption poses a severe limitation

on HMMs [40]. The adjacent frames are, in fact, not conditionally independent due to

the mechanics of speech production and influence of speaker characteristics on the speech

signal.

1 2a12

a22

3a23

a33

4a34

a44

5a45

Observation 
sequence

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

Friday, March 14, 14

Figure 2.2: Acoustic modeling with 3-state left-to-right HMM topology.

2.1.2 Context dependent decision trees

The difficulty of estimating the 3-states of a left-to-right HMM representing a context-

dependent (CD) phone is typically solved by clustering acoustically similar CD states into

far fewer allophone states. These clusters are learned from the data using decision trees [17]

whose partitions are defined using linguistically motivated questions about the membership

of a phone in different phonetic categories such as vowels, consonants, affricates and so

on. To be precise, for each of the three states of each phone, all the sufficient statistics for

all the corresponding context-dependent phone-states are pooled. Clustering is performed

in a top-down manner, by greedily splitting the states that maximize the likelihood. The

likelihood is computed using a single multivariate Gaussian model for each partition or

leaf of the tree in terms of the sufficient statistics. Figure 2.3 illustrates the decision tree

for the first state of phoneme /aa/. If the phoneme /aa/ is in the beginning of the word

(word boundary symbol | to the left) and its phone to the right is liquid, for example,

/l/, the observation model (the GMM) whose identifier is 1000 is used to represent the

acoustics of the first segment of phoneme /aa/.
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1 2<eps>/0.5

aa1/0.5

3aa1/0.5

aa2/0.5

4aa2/0.5

aa3/0.5

5aa3/0.5

aa1
[-1= | ]

No Yes

aa1-1 aa1-2
[+1= liquid ]

GMM 1000

No Yes

[-2= vowel]

No Yes

.........

Friday, March 14, 14

Figure 2.3: Context dependent decision tree for the first state of phoneme /aa/.

In practice, the correspondences between frames and states are not given, so decision

trees are learned using an alignment generated by a simpler model such as a context-

independent model. Subsequently, the decision trees are improved iteratively using align-

ments generated from more complex models. Thus, the decision tree maps the sequence

of context-dependent phones to allophone states.

2.1.3 Pronunciation lexicon

The pronunciation lexicon is the intermediate layer between the acoustic models (AMs)

and language models (LMs) that maps words into their phonemic representation. It

is typically a one-to-one mapping from words into their canonical pronunciation. The

choice of lexicon depends on the task, and sometimes a few variants are allowed for a

handful of words like “and” and “the”. Allowing variants for more words jeopardizes

recognition accuracy due to the acoustic confusability introduced. Furthermore, many of

the pronunciation variations are implicitly captured by training the AMs with domain

data [67].

2.1.4 Language model

Recall that language models (LMs) are the priors P (w) necessary for the maximum a

posteriori decoding, represented in Equation 2.2. The language models are also employed
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in other noisy channel models in natural language processing such as statistical machine

translation and tagging. In practice, the LMs have a disproportionate influence on the

performance of the recognizer and are trained with examples that match the task.

They assign a score to the word candidate that represents the probability of observing

the word sequence in the given language or recognition task.

p(w) =

N∏
i=1

P (wi|w1, ..., wi−1) (2.7)

As it is not feasible to keep all possible histories for the words from the vocabulary, a

Markov assumption is applied to reduce the history and retain only a fixed number (n−1)

of most recent previous words in an n-gram model. The probability p(w) is approximated

to:

p(w) ≈
N∏
i=1

P (wi|wi−n+1, ..., wi−1) (2.8)

These probabilities are estimated by a maximum likelihood criterion, which is simply

the frequency of the word given the history in the training data. During test time, however,

a user may utter n-grams not seen in the training data. In order to avoid assigning

zero probability to such n-grams, the maximum likelihood trained language models are

smoothed using, for example, Kneser-Ney smoothing [21].

As an alternative to the popular n-gram language models people presented recur-

rent neural network-based LMs. These models have lately shown state-of-the-art perfor-

mances [115, 173].

2.1.5 ASR output

The spoken words recognized by an ASR system are often processed further, for exam-

ple, in named entity recognition, spoken language understanding and spoken question-

answering systems, or re-evaluated in a multi-stage recognizer. Often, the correct can-

didate may not be the best (the highest scoring) candidate from the recognition, but it

may still be present in the top 50 or 100 candidates. Since there is a significant overlap in
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words from the top candidates, they are often represented in a more compact form than

N -best candidates (Figure 2.4(c)). Figure 2.4 illustrates storing them as lattices 2.4(a) or

word confusion networks (WCN) 2.4(b).

The most general form for representing ASR output is a lattice whose paths represent

different candidates. The nodes in the lattice correspond to boundaries between words. In

word confusion networks, the boundaries between words are aligned using heuristics and

words are binned within them, making them more compact than lattices. The binning

introduces spurious paths that were absent in the lattices and as a result they have the

lowest oracle error rate, that is, they often contain the candidates with the lowest error rate

(oracle). The binning of words allows direct comparison between words in each bin and

the words with highest posterior probability can be selected to improve ASR performance

[109].

0 1<s>/1

2get/0.3

3
the/0.2

4

cash/0.6

ash/1

that/0.4

excess/0.3

5</s>/1

(a) ASR output as a lattice

0 1<s>/1 2get/0.6
the/0.4

3

cash/0.4

that/0.1
ash/0.2

excess/0.3

4</s>/1

(b) ASR output as a word confusion network

0 1<s>/1 2get/1
3cash/0.4

4

ash/0.6 5

</s>/1

</s>/1

(c) ASR output as an N-best

Figure 2.4: ASR outputs
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2.1.6 ASR evaluation

Speech recognition performance is measured in terms of the word error rate (WER), com-

puted by aligning the ASR output with the reference transcription by dynamic program-

ming. The WER includes three kind of errors: Insertions, deletions and substitutions. If

the reference transcript contains N words and the ASR output has I insertions, D deletions

and S substitutions, the WER is computed as:

WER(%) = 100
S +D + I

N
% (2.9)

The edit distance metric rewards exact match and this may unnecessarily penalize words

with equivalent alternative spellings. This is often alleviated by using the scoring tool

developed by the National Institute of Standards and Technology (NIST) [132] which

normalizes the typographic form of words or phrases.

2.2 Weighted finite state transducers

Word lattices, described earlier, are often represented as weighted finite state machines.

In fact, a generalization of such machines, the weighted finite state transducers (WFSTs)

are widely used in speech recognition and also in related spoken language processing tasks.

2.2.1 Formal Definition of weighted finite state transducers

A weighted finite state transducer consists of a set of nodes and directed arcs. The

arcs contain input and output symbols, along with a cost for traversing the arc. These

elementary costs are then combined to obtain the total cost of traversing one or more arcs.

The algebra of combining the costs is defined using a semiring.

A system (K,⊕,⊗, 0̄, 1̄) is a semiring if it fulfills the following conditions [123]:

• It is specified by a set of values K, two binary operations ⊕ and ⊗, and two desig-

nated values 0̄ and 1̄.

• The operation ⊕ is associative, commutative, and has 0̄ as identity.

• The operation ⊕ is associative and has identity 1̄
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• The operation ⊗ distributes with respect to ⊕

∀x, y, z ∈ K : x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z). Left distributivity

∀x, y, z ∈ K : x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z). Right distributivity

• The operation ⊗ has 0̄ as annihilator: ∀k ∈ K, k ⊗ 0̄ = 0̄⊗ k = 0̄

Given a semiring (K,⊕,⊗, 0̄, 1̄) a weighted finite state transducer (WFST) can be formally

defined as an 8-tuple (Σ,∆, Q, I, F,E, λ, ρ), where Σ and ∆ are the finite input and output

alphabet, respectively, Q the finite set of states, I ∈ Q the start state, F ⊆ Q the set of

final states, E the set of transitions, and λ and ρ the weights for the initial and final state,

respectively.

Weighted finite state acceptors (WFSAs) are a special case of WFTs which contain

only input symbols and match or reject input sequences.

2.2.2 Common operations with weighted finite state transducers

• Composition is the operation used to combine several WFSTs in a single WFST.

Each WFST factor or component represents an intermediate binary relation of sym-

bols. For example, to get a WFST that maps context independent phone sequences

into context dependent phone sequences we can compose the WFST representation

of the context independent phone sequence from Figure 2.5(a) with a WFST that

has context independent phones as input symbols and context dependent phones as

output symbols, as shown in Figure 2.5(b). The output is a new WFST that has the

context independent phone sequence on the input side and its context dependent

representation on the output side (Figure 2.5(c)).

• Determinization is the operation that, broadly speaking, removes redundant out-

going arcs from a node. More specifically, a deterministic WFST contains at most

one transition leaving any state with a given input symbol. For example, Fig-

ure 2.6(a) and Figure 2.6(b) illustrates a non-deterministic WFST and its equivalent

deterministic WFST, respectively. Two WFSTs are equivalent when both of them

assign the same output sequence and weight to each input sequence. However, the



16

(a)

0 1x 2y 3x 4x 5y

(b)

0 1x:x/e_y 2y:y/x_x 3x:x/y_x 4x:x/x_y 5y:y/x_e

(c)

0 1x
5

y

2y
4

x
3x

y

y

(d)

0 1x:x/e_y

2

y:y/x_e

3

y:y/x_x

4x:x/y_x 5x:x/x_y
y:y/x_e

6

y:y/x_y y:y/y_e
y:y/y_x

ε,* x,ε

x:x/ ε_ε

x,x

x:x/ ε_x

x,y

x:x/ ε_y

y,ε

y:y/ ε_ε

y,x

y:y/ ε_x

y,y

y:y/ ε_y x:x/x_ε

x:x/x_x

x:x/x_y

y:y/x_ ε

y:y/x_x

y:y/x_y

x:x/y_ε
x:x/y_x

x:x/y_y

y:y/y_ε

y:y/y_xy:y/y_y

(a)

0 1x 2y 3x 4x 5y

(b)

0 1x:x/e_y 2y:y/x_x 3x:x/y_x 4x:x/x_y 5y:y/x_e

(c)

0 1x
5

y

2y
4

x
3x

y

y

(d)

0 1x:x/e_y

2

y:y/x_e

3

y:y/x_x

4x:x/y_x 5x:x/x_y
y:y/x_e

6

y:y/x_y y:y/y_e
y:y/y_x

(M. Mohri: Weighted FSTs in Speech Recognition,2001)

T=A∘C

A

C

T

Saturday, March 15, 14

(a) WFST representation of a context independent phone sequence

(a)

0 1x 2y 3x 4x 5y

(b)

0 1x:x/e_y 2y:y/x_x 3x:x/y_x 4x:x/x_y 5y:y/x_e

(c)

0 1x
5

y

2y
4

x
3x

y

y

(d)

0 1x:x/e_y

2

y:y/x_e

3

y:y/x_x

4x:x/y_x 5x:x/x_y
y:y/x_e

6

y:y/x_y y:y/y_e
y:y/y_x

ε,* x,ε

x:x/ ε_ε

x,x

x:x/ ε_x

x,y

x:x/ ε_y

y,ε

y:y/ ε_ε

y,x

y:y/ ε_x

y,y

y:y/ ε_y x:x/x_ε

x:x/x_x

x:x/x_y

y:y/x_ ε

y:y/x_x

y:y/x_y

x:x/y_ε
x:x/y_x

x:x/y_y

y:y/y_ε

y:y/y_xy:y/y_y

(a)

0 1x 2y 3x 4x 5y

(b)

0 1x:x/e_y 2y:y/x_x 3x:x/y_x 4x:x/x_y 5y:y/x_e

(c)

0 1x
5

y

2y
4

x
3x

y

y

(d)

0 1x:x/e_y

2

y:y/x_e

3

y:y/x_x

4x:x/y_x 5x:x/x_y
y:y/x_e

6

y:y/x_y y:y/y_e
y:y/y_x

(M. Mohri: Weighted FSTs in Speech Recognition,2001)

T=A∘C

A

C

T

Saturday, March 15, 14

(b) WFST that maps context independent phones to context dependent
phones

(a)

0 1x 2y 3x 4x 5y

(b)

0 1x:x/e_y 2y:y/x_x 3x:x/y_x 4x:x/x_y 5y:y/x_e

(c)

0 1x
5

y

2y
4

x
3x

y

y

(d)

0 1x:x/e_y

2

y:y/x_e

3

y:y/x_x

4x:x/y_x 5x:x/x_y
y:y/x_e

6

y:y/x_y y:y/y_e
y:y/y_x

ε,* x,ε

x:x/ ε_ε

x,x

x:x/ ε_x

x,y

x:x/ ε_y

y,ε

y:y/ ε_ε

y,x

y:y/ ε_x

y,y

y:y/ ε_y x:x/x_ε

x:x/x_x

x:x/x_y

y:y/x_ ε

y:y/x_x

y:y/x_y

x:x/y_ε
x:x/y_x

x:x/y_y

y:y/y_ε

y:y/y_xy:y/y_y

(a)

0 1x 2y 3x 4x 5y

(b)

0 1x:x/e_y 2y:y/x_x 3x:x/y_x 4x:x/x_y 5y:y/x_e

(c)

0 1x
5

y

2y
4

x
3x

y

y

(d)

0 1x:x/e_y

2

y:y/x_e

3

y:y/x_x

4x:x/y_x 5x:x/x_y
y:y/x_e

6

y:y/x_y y:y/y_e
y:y/y_x

(M. Mohri: Weighted FSTs in Speech Recognition,2001)

T=A∘C

A

C

T

Saturday, March 15, 14

(c) WFST with context independent phone sequence on the input side and its context dependent
representation on the output side

Figure 2.5: Example of composition operation with WFSTs (Example from Mohri and
colleagues [122])

weights on the arcs along the path may be different in both WFSTs as long as the

sums are the same over the paths.

• Minimization is the operation that reduces memory space requirements by repre-

senting a deterministic WFST with an equivalent WFST containing the minimum

number of states and arcs. Figure 2.7 is an example of a deterministic WFST (Fig-

ure 2.7(a)) and its equivalent minimized WFST (Figure 2.7(b)). This can be viewed

as a combination of prefix tree and suffix tree compression [119, 117].

2.3 Weighted finite state transducers in speech recognition

Weighted finite state transducers (WFSTs) have been widely adopted as efficient represen-

tations of a general speech recognition model and associated search space [121, 136, 118,



17

0

1

a/0

b/1

c/4

2

a/3

b/4

c/7

d/0

e/1

3/0

f/1

e/0

e/2

e/10

f/11

f/13

0

1

a/0

b/1

c/4

2

d/0

e/1

3/0

e/0

f/1

e/10

f/11

Non-deterministic WFSA Equivalent deterministic 
WFSA

Saturday, March 15, 14

(a) Non-deterministic WFST

0

1

a/0

b/1

c/4

2

a/3

b/4

c/7

d/0

e/1

3/0

f/1

e/0

e/2

e/10

f/11

f/13

0

1

a/0

b/1

c/4

2

d/0

e/1

3/0

e/0

f/1

e/10

f/11

Non-deterministic WFSA Equivalent deterministic 
WFSA

Saturday, March 15, 14

(b) Equivalent deterministic WFST

Figure 2.6: Example of determinization operation with WFSTs (Example from Mohri and
colleagues [122])

0

1

a/0

b/1

c/4

2

a/3

b/4

c/7

d/0

e/1

3/0

f/1

e/0

e/2

e/10

f/11

f/13

0

1

a/0

b/1

c/4

2

d/0

e/1

3/0

e/0

f/1

e/10

f/11

Non-deterministic WFSA Equivalent deterministic 
WFSA

Saturday, March 15, 14

(a) Deterministic WFST

0

1

a/0

b/1

c/4

2

d/0

e/1

3/0

e/0

f/1

e/10

f/11

Deterministic WFSA Equivalent minimized 
WFSA

0 1

a/0

b/1
c/4
d/10
e/11

2/0e/0
f/1

Saturday, March 15, 14

(b) Equivalent minimized WFST

Figure 2.7: Example of minimization operation with WFSTs (Example from Mohri and
colleagues [122])

120, 126, 125, 124]. The WFST model for speech recognition is assembled or composed

from separately estimated components that can also be represented as WFSTs. These

components are typically the language model G representing the distribution of the word

sequences, the pronunciation lexicon L that maps words into a sequence of phones, the

decision trees for mapping phone sequences to clustered allophone sequences C, and the

topology of hidden Markov models (HMMs) H [122]. The graphical representation of each
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component is shown in Figure 2.8
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(a)

0 1
using:using/1 2data:data/0.66

3
intuition:intuition/0.33

4

is:is/0.5

are:are/0.5

is:is/1

5
better:better/0.7

worse:worse/0.3

(b)

0

1d:data/1

5
d:dew/1

2
ey:ε/0.5

ae:ε/0.5

6
uw:ε/1

3
t:ε/0.3

dx:ε/0.7
4

ax: ε /1

(a)

0 1
using:using/1 2data:data/0.66

3
intuition:intuition/0.33

4

is:is/0.5

are:are/0.5

is:is/1

5
better:better/0.7

worse:worse/0.3

(b)

0

1d:data/1

5
d:dew/1

2
ey:ε/0.5

ae:ε/0.5

6
uw:ε/1

3
t:ε/0.3

dx:ε/0.7
4

ax: ε /1

0 1#_ey/d:d 2d_t/ey:ey 3ey_ax/t:t

0 1<eps>/1 2ey1/0.5

ey1/0.5

3ey2/0.5

ey2/0.5

4ey3/0.5

ey3/0.5

Saturday, March 15, 14

(d) HMM topology (H)

Figure 2.8: Components of the speech recognizers in WFST format (Example from Mohri
and colleagues [122])

After the composition of the WFST factors or components, the resulting WFST T is

determinized and minimized to eliminate redundant intermediate paths to optimize the

search space and the efficiency of the recognition.

T = Min(Det(H ◦ C ◦ L ◦ G)) (2.10)

The weights on a path through the WFST representing the decoding graph provide a

cost, often negative log likelihood, incurred in choosing that mapping among all other pos-

sibilities. This cost includes the contribution from all the components modeling acoustics,
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pronunciation and language.

During the decoding of the speech utterance, the WFST-based speech recognizer scores

the acoustic frames of the utterance with the HMM states, applies the states with the

scores on the input side, chooses a path with the least cost and finally, reads off the

word sequence on the output side of the chosen path. This decoding is very efficient

since the redundant paths are reduced or eliminated in the precompiled search graph [69].

The decoder may generate the single best candidate or a distribution of word sequences,

weighted by their probabilistic scores, in the form of a lattice or WFST, as depicted in

Figure 2.4(a).

2.4 Large vocabulary speech recognition

Current state-of-the-art large vocabulary speech recognition systems are considerably com-

plex. Both the training of the acoustic model and the decoding of an utterance are per-

formed in multiple stages. Typically, the models are trained on a few hundred hours of

speech in stages where each stage bootstraps a more powerful model than the previous

stage using the improved alignments of spoken words to the waveform generated in suc-

cessive stages. In this thesis, we adopt the training and decoding procedure described in

previous papers [168, 167], implemented with the toolkit from IBM.

2.4.1 Training

Briefly, the acoustic model training procedure consists of the following stages.

Context-independent models. In this step we define the HMM topology for the

phonemes by a three-state left-to-right topology and build a coarse context-independent

phone model by dividing the observation sequence in each utterance uniformly between

all the HMM states corresponding to the words in the transcript. From this alignment,

a Gaussian observation probability is estimated for each HMM state across all utterances

in the training data. This is then iteratively improved using Expectation-Maximization

(EM) algorithm [28].
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Context-dependent models. The context-independent models are employed to im-

prove the alignment of the HMM states of the transcript of each utterance to its waveform.

From these alignments, sufficient statistics are computed to estimate a linear discriminant

analysis transform [47]. The phone labels are mapped to their corresponding context-

dependent labels and sufficient statistics are computed for each context-dependent HMM

state. As mentioned previously, a decision tree is learned from this data to cluster the

states of these context-dependent phones to allophone states. The Gaussian observation

models are then refined using the EM algorithm. During EM, additionally, a semi-tied

covariance is estimated to alleviate the problems arising from using diagonal covariances

in the Gaussian components instead of full covariances [36].

Vocal tract length normalized system. Since acoustic features are computed from

the spectrum and the spectrum is affected by the vocal tract length of the speaker, the

performance of the recognizer can be improved by warping the frequencies to map all the

speakers to a normalized scale. The univariate warp factor is estimated by maximizing

the likelihood of observing the warped acoustic features in the acoustic model. The best

warp is computed by searching over a range of warps [32, 94].

Speaker adapted models. Variations that are related to the speaker and not the

content are generally not useful in a speech recognition model. These variations are further

removed from the model by transforming the speaker-specific space to a normalized space.

The normalization may be performed in the feature space (FMLLR) or in the model space

(MLLR) typically by estimating linear transforms that maximize the likelihood [38, 142].

In the case of MLLR, the Gaussian mixture models are clustered using a regression tree

so that the models in a cluster can share the transformation matrix. Thus, the infrequent

models may also benefit from the transformations.

Discriminative models. The models in the previous stages are estimated to maxi-

mize the likelihood of the training data. However, they are not necessarily optimal for

recognition since we do not know the true form of the underlying models and we cannot

estimate the parameters that achieve the global maximum. Discriminative models such
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as maximum mutual information (MMI) or its variant boosted MMI (BMMI) attempt to

minimize a cost function that serves as a surrogate for word error rate. Word error rate is

unfortunately not differentiable to obtain gradients for parameter optimization. Instead,

MMI and BMMI maximize the conditional likelihood and have consistently improved the

performance over maximum joint likelihood models [141].

2.4.2 Decoding

Mirroring training, the decoding is performed in several stages using the models from

different stages of acoustic training. The acoustic models are combined with the language

models and represented in a compact search graph as a WFST, as mentioned in Section 2.3.

In certain cases, when the language model has tens or hundreds of millions of parameters

(n-grams), the search graph becomes unwieldy. In such case, the search graph is factored

into two factors, where the first one generates the lattices with a relatively simple language

model and the second graph re-scores them with a more powerful language model using

an on-the-fly composition operation. The decoders can generate 1-best candidates or a

lattice in the form of a WFST [167].



Chapter 3

Joint acoustic, language and duration

discriminative modeling for speech

recognition

3.1 Discriminative modeling in speech recognition

Typically, the composite weighted finite state transducer (WFST) representing the de-

coding graph and obtained after composing the components of the speech recognizer is

utilized directly in decoding speech without any attempt to optimize its overall weights.

Recall, the decision trees for mapping phone sequences to clustered allophone sequences

C and the pronunciation lexicon L are deterministic mappings. The language models G
and, until recently, the acoustic models are estimated to maximize the likelihood of the

data. One problem with maximum likelihood (ML)-based training is that we do not

directly minimize the objective function of the speech recognition, the recognition error

rate.

Discriminative training aims to learn the parameters of the model by optimizing cost

functions related to the recognition task, instead of maximizing the likelihood of the

training data. It has lead to improvements in speech recognition, and therefore, it is now

common practice to discriminatively reestimate parameters for the acoustic and language

models. The reestimation is usually performed independently for each model, without any

interaction between the parameters of the acoustic and lexical features.

Discriminative training, ideally, should optimize the objective function of the task or

the word error rate directly. Because the word error rate is not differentiable and cannot

22
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be used to compute gradients with respect to the model parameters, the discriminative

training of the acoustic models is often done with approximate surrogate functions that

are differentiable, such as the maximum mutual information estimation (MMIE) or con-

ditional maximum likelihood estimation (CMLE) [8, 184], minimum classification error

estimation [66, 65], and minimum phone error or minimum word error estimation (MPE

or MWE) [143, 139]. These estimation methods do not take into account the language

model used in the decoding. Instead, language models are trained separately either using

maximum likelihood or a discriminative criterion [156].

Previous work has shown the benefits of considering the interdependency between

the acoustic and linguistic features by learning a model that directly estimates the most

likely word sequence given an input speech utterance [85, 53, 24] or by discriminatively

optimizing the weights from the composite WFST [103, 86, 81, 80].

Following this line, in this chapter I explain our approach to train discriminative

models that jointly estimate parameters from the acoustic and language model. The

proposed approach can be considered an extension of the discriminative language model

(DLM) [156], which has the interesting property of estimating the parameters to minimize

the word error rate directly. We extend this framework to not only learn the parameters of

word transitions (n-grams) but also of acoustic state transitions in the HMMs, as well as

the duration of the states. The proposed model is evaluated on GALE Arabic transcription

task.

3.1.1 Discriminative language modeling for speech recognition

Many natural language processing (NLP) tasks can be approached with a source-channel

paradigm. The noisy channel generates a collection of candidates for a given input, and the

source model modifies the probability of these candidates by constraining the confusability

or noise of the channel. In many applications the language model represents the source

model, for example, in speech recognition. The noisy channel is the acoustic model that

generates word sequence candidates for an input speech utterance, and the language model

penalizes the word sequences that are unlikely in a given language. The confusability of

the noisy channel is measured with an evaluation metric that depends on the task. In the
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case of speech recognition this metric is the recognition error rate, commonly the word

error rate (WER).

As generative n-gram language models are trained with large amounts of text data

independently from the channel model, the AM in this case, their parameters are typically

reestimated via discriminative training. For that, speech utterances are decoded to get a

set of candidate output sequences, and the parameters from the discriminative language

models are learned with this set of candidates and the reference text by optimizing the

classification or separability between the correct and incorrect candidates.

Linear models like the perceptron algorithm [26, 156], conditional log-linear mod-

els [156, 134, 164], minimum classification error models [84, 150] or minimum Bayes risk

models [83] have been applied to train discriminative language models by minimizing an

objective function directly related to the WER.

Global linear models

Global linear models have been successfully used for discriminative language modeling [156],

and these are the models we also choose for training our joint models.

The decoding task is to map a given speech utterance x ∈ X to a word sequence

w ∈ W where X denotes all possible acoustic inputs and W denotes all possible strings,

i.e., W = Σ∗, for some vocabulary Σ. Given a function GEN which enumerates a set of

candidates GEN(x) for an input x (e.g. N-best candidates or lattices), a representation

Φ mapping each (x,w) ∈ X ×W to a feature vector Φ(x,w) ∈ <d and a parameter vector

ᾱ ∈ <d, the output of a linear model F (x) is computed as below.

F (x) = argmin
w∈GEN(x)

Φ(x,w)ᾱ (3.1)

For large vocabulary speech recognition tasks, the global linear model typically con-

tains millions of parameters and is trained over a few hundred thousand utterances, a

setting for which the perceptron is a convenient option [156]. Let (xj , rj) be the jth train-

ing example out of M where xj and rj represent the acoustic input and its transcript (or

the oracle—the candidate transcript with the minimum word error rate—in the lattice
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being re-scored), respectively. The perceptron algorithm iterates over all the utterances

in the training examples, one utterance at a time. In each iteration i, for each utterance,

the algorithm updates the parameters α
(i)
j when the best-scoring candidate w̄j under the

current model differs from rj . Thus, the perceptron algorithm updates the model so that

the score of the oracle candidate improves with respect to the competing candidate. Since

the oracle by definition is the candidate with the minimum word error rate, the learning

algorithm minimizes the word error rate.

Algorithm 1 :Averaged Perceptron(x,GEN(x),r)

α
(0)
M ← 0
i← 1
repeat

α
(i)
0 ← α

(i−1)
M

for j = 1 to M do

w̄j ← argminwj∈GEN(xj) Φ(xj , wj)α
(i)
j−1

if w̄j 6= rj then

α
(i)
j ← α

(i)
j−1 + Φ(xj , rj)− Φ(xj , w̄j)

else
α
(i)
j ← α

(i)
j−1

end if
end for
i← i+ 1

until No Gain in Cross Validation WER
ᾱ←∑i

k=1

∑M
j=1 α

(k)
j

The algorithm is terminated when the performance of the model, evaluated after each

pass through the training data on a held-out set, does not improve significantly for a few

consecutive iterations.

Discriminative language model as a weighted finite state acceptor

The discriminative language model can be represented as a weighted finite state acceptor

(WFSA) and combined with the composite WFST T representing the decoding graph, or

in a post-processing step with the lattice containing the candidate output sequences [156].

Given an acoustic input x, let Lx be a word lattice generated by the baseline recognizer,

as shown in Figure 3.1. The lattice Lx is an acyclic and deterministic WFSA, representing

a probability distribution Px over all strings w ∈ Σ∗, i.e., all possible transcriptions of x
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Figure 3.1: Output lattice from a speech recognizer as a weighted finite state acceptor.
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Figure 3.2: Output lattice from a speech recognizer as a weighted finite state transducer.

under the baseline recognizer. The weights represent the combination of acoustic and

language model scores in the baseline recognizer. By casting the weights of the WFSA

in the log semi-ring, where the weights are negative log likelihood (where lower weights

correspond to better likelihood), the probabilistic computation of the language model can

be performed easily in terms of standard finite state operations.

The estimated discriminative language model can be represented as a deterministic

WFSA, D = Σ∗ using a failure class in the implementation (see [122] for details). The

weights wD[π] for all path π ∈ ΠD can be related to the linear form.

wD[π] =
d∑
j=1

Φj(x, l[π])αj (3.2)

Here, l[π] is the concatenation of all the labels of the path π, Φj(x, l[π]) for j > 0 is the

count of the j’th n-gram in l[π] (represents number of times the path traverses the n-gram

arcs in D) and αj is the parameter associated with that n-gram (weight on n-gram arcs

in D). Then, the output of the discriminative language model can be computed in terms

of operations on a WFSA. The log probability of the baseline recognizer is incorporated

into Lx with a scaling factor α0.
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argmin Φ(x, l[π])ᾱ = BestPath(Lx ◦ D) (3.3)

While the WFSA view is useful, the discriminative language model can be understood

and applied without resorting to finite state operations. For re-scoring a candidate w,

a feature vector Φ(x,w) consisting of n-gram subsequences from w is extracted. The

resulting feature vector could potentially contain a few hundred thousand components in a

large vocabulary task. Often, the feature vector for each candidate w includes, for example,

in the zeroth component of Φ(x,w), the log probability of w given x as evaluated by the

baseline recognizer and contains the total contributions from both acoustic and language

models. The feature vectors for all the candidates are evaluated using the discriminative

language model (a linear model), and the best scoring candidate is chosen as the output

of the rescoring pass.

Discriminative language models have been empirically demonstrated to improve speech

recognition in English [156]. In morphologically rich languages with free word order, ad-

ditional effort is required to overcome their large vocabulary sizes, which involves fac-

torizing the morphological components appropriately before recognition gains can be ob-

served [164, 5].

3.1.2 Joint acoustic and language modeling for speech recognition

Although the stochastic components of the speech recognizer, namely, the acoustic and

language models are independently optimized via discriminative training, there has been

previous work where the interaction between acoustic and language models have been ex-

plored. Printz and Olsen incorporated a notion of acoustic confusability into the language

model [144]. They estimated the confusability between words by measuring the distance

between their hidden Markov models using an approximate close form expression. How-

ever, the parameters of the acoustic and language model are not jointly estimated. For a

small task, Kuo and Gao estimated direct models of the form P (w|x) for speech recogni-

tion and estimated the parameters using maximum entropy criterion [85]. This approach

was later applied to large vocabulary tasks [53, 203] where both acoustic and linguistic
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features are evaluated to output the best candidate for a given input. Examples of features

include n-grams, word level templates, the HMM posterior probability and the dynamic

time warp distance between the instance and a set of templates. Continuing this line

of work, for the purpose of efficient sharing of parameters, Zweig and colleagues extract

multiphone units automatically from the training set using maximum mutual information

criterion, and then use them to compute a direct model [203]. Their approach does not

impose any structure. The classification of the speech utterance into a string of words is

modeled directly. Therefore, it is more suited to recognize short utterances, specifically, in

the Bing mobile voice search task that allows users to look for local businesses from their

mobile phone. This approach was extended in the form of segmental conditional random

fields (SCARF) to make it feasible to a broader set of applications [203, 205, 206] such

as Broadcast News (BN) and Wall Street Journal (WSJ) tasks.

A few researchers have adopted the weighted finite state transducer framework and

modified the weights on the arcs of the decoding graph after composing the acoustic and

language model components [103, 86]. The key idea is to minimize the cost of the path

with the minimum word error rate compared to other competing paths. Lin and Yvon

defined a minimum classification error (MCE) criterion using a sigmoidal function defined

over the weights of the graph [103]. After setting the slope and the threshold of the

sigmoid, they refined the weights of the graph iteratively to optimize the MCE over the

training data. They demonstrated the effectiveness of their estimation procedure on a

small name recognition task using context-independent acoustic models.

This technique was subsequently applied on a large vocabulary task with context-

dependent acoustic models [86]. As the technique is computationally expensive, the es-

timation was performed only on a subset of training data using utterances for which the

misclassification function was below a threshold. They observed statistically significant

gains for a baseline with a weaker language model but not for a baseline with a stronger

4-gram language model.

Kubo and colleagues extended the idea of optimizing the transition weights of the de-

coding graph by also optimizing the acoustic information in the arcs from the graph. They

used the raw acoustic MFCC vectors as acoustic features and validated their approach in
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the MIT lecture task and the WSJ transcription task [81]. They also explored combining

their approach with acoustic features from deep neural networks (DNNs), first for phone

recognition task on TIMIT [79] and very recently for a large vocabulary speech recognition

task [80]. They show that even in speech recognizers with stronger AMs like DNNs the

joint discriminative linear models provide gains over the baseline.

Recently, Abdelhamid and Abdulla have shown that jointly optimizing the acoustic

and language model parameters from the decoding graph by MCE-based discriminative

training improves the performance under noisy conditions [2].

Gales and colleagues provide a detailed overview of the practices applied in the ASR

field regarding discriminative models, criteria and features [37].

Discriminative joint acoustic and lexical model as weighted finite state trans-

ducers

Based on the observation that the lattices provided by the speech recognizer are actually

weighted finite state transducers (WFSTs) with information from the input and output

side of the decoding graph (see Figure 3.2), our approach consists of extracting the avail-

able acoustic and lexical information (features) for the discriminative models.

Consider the general finite state model of a speech recognizer, composed of weighted

finite state components [122]. This transducer represents a mapping from the acoustic

state sequence to the word sequence, and incorporates all the intermediate mappings.

The lattice generated by a baseline recognizer can be viewed as an a posteriori version

of this transducer, whose weights represent the posterior distribution conditioned on the

given (decoded) acoustic input utterance. Thus, the lattice generated by a decoder in a

general case is a WFST and not just a WFSA.

Given an acoustic input x, let the output side of a path in the lattice Lx represent word

sequences w ∈ W (as before) and the input side represent acoustic state sequences s ∈ S
associated with the path, as shown in Figure 3.2 and as identified by the backtrace of the

Viterbi algorithm in the baseline recognizer. The state sequence may be augmented by

prosodic features such as duration, or phonological features such as pronunciation variants

from the Viterbi path.
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In our joint model, we expand the feature representation, from Φ(x,w) to Φ(x, s, w),

to include features defined over the input acoustic state sequence s in addition to those

defined over w. The lattice Lx may, in general, have multiple acoustic state sequences

s ∈ Sw associated with an output sequence w. Once again, given a function GEN which

enumerates a set of candidates GEN(x) for an input x (e.g. N-best candidates or lattices),

an acoustic state sequence s associated with w, a representation Φ mapping each (x, s, w) ∈
X ×S ×W to a feature vector Φ(x, s, w) ∈ <d and a parameter vector ᾱ ∈ <d, the output

of our linear model F (x) is very similar to the earlier case except for the search over all

acoustic state sequences s associated with candidates w of an utterance x.

F (x) = argmin
s,w∈GEN(x)

Φ(x, s, w)ᾱ (3.4)

The features for our model consist of n-grams extracted from not only w but also s.

For each path, we concatenate the n-grams from s with n-grams from w; Φ(x, s, w) =

[Φs(x, s, w) Φw(x, s, w)]. In a large vocabulary system, the number of acoustic states

(automatically clustered allophone states) is only a few thousand in number, at least one

to two orders of magnitude lower than the size of the word vocabulary. Thus, the number

of parameters in the joint model will only be marginally higher than those of discriminative

language models.

The joint discriminative model can be represented in terms of finite state machines,

factored into two WFSTs (or WFSAs). The parameters ᾱw corresponding to the features

of w can be converted to D, the discriminative language model, as before. Similarly,

the parameters ᾱs corresponding to the acoustic component can be converted to another

WFST, E . Then, the output of the model F (x),

argmin
s,w∈GEN(x)

Φs(x, s, w)ᾱs + Φw(x, s, w)ᾱw (3.5)

can be computed using finite state operations.
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F (x) = BestPath(E ◦ Lx ◦ D) (3.6)

While re-scoring, the lattice Lx is composed on the input side with E (the acoustic com-

ponent), on the output side with D (the language component), and then projected to the

output side. The minimum distance path of the resulting WFSA is the output of the joint

discriminative model. For the experiments Lx is constrained so that it contains only one

acoustic state sequence s for each w. However, in the most general case, multiple acoustic

state sequences may be associated with each w and the evidence from all the associated

acoustic state sequences s needs to be summed probabilistically. This can be achieved

through standard finite state machine (FSM) operations, specifically, minimization and

determinization.

F (x) = BestPath(Min(Det((E ◦ Lx ◦ D)))) (3.7)

Alternatively, instead of applying the WFSAs in a rescoring phase, they could be in-

corporated into the decoding graph; the WFSA E representing the discriminative acoustic

model would be composed with the decoding graph on the input side, and the WFSA D

describing the discriminative language model on the output side.

T ′ = Min(Det(E ◦ H ◦ C ◦ L ◦ G ◦ D)) (3.8)

The proposed model can also be implemented without any finite state operations.

While evaluating N -best candidates during rescoring, n-gram features corresponding to

lexical and acoustic states are extracted. The resulting feature vectors are evaluated for

all candidates using the discriminative linear model to pick the one with the lowest cost.
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3.2 Experimental setup

3.2.1 Task: GALE Arabic Transcription task

The proposed model was evaluated empirically on GALE (Global Autonomous Language

Exploitation) Arabic Transcription task. The purpose of the DARPA GALE program was

to make Arabic and Chinese speech and text accesible to monolingual English speakers,

particularly in military setting, which involves speech recognition and machine translation

techniques [25].

I now detail characteristics of the Arabic language and challenges that these charac-

teristics bring for building Arabic automatic speech recognizers. Semitic languages—of

which Arabic is the most widely spoken language—are characterized by absence of some

vowels and other pronunciation information in their written form. The consonants carry

most of the semantic information. The root of the words are a set of consonants and

the words are obtained by inserting vowels, consonants that mark grammatical functions

(these consonants may be used as prefixes, suffixes or infixes) and gemination in between

the root consonants [159]. For example, k-t-b is the root for the meaning write, and if

we fill it with different vowel patterns we get words such as kitaab (book), kutub (books)

or kaatib (writer) [76]. Arabic syllables must contain at least one vowel, and the allowed

syllables are CV, CVV, CVC, CVVC, CVCC where C indicates a consonant and V a short

or long vowel [159].

Common prefixes that are appended to the words are the definite article al, and con-

junctions and prepositions like fa (so, and) and li (for, in order to), respectively. Suffixes

are used, for example, to define possessives; kitaab-iy (my book) , kitaabu-ka (your (masc)

book). The way words are derived in Arabic – filling in consonant roots with vowel pat-

terns, and appending affixes, for example, to mark grammatical categories – generates a

huge number of word forms [76].

The formal written Arabic variety is Modern Standard Arabic (MSA). However, there

is great variation in spoken form, especially in casual or everyday communications. Arabic

dialects can be divided in different dimensions. Biadsy and colleagues [15] suggest one of

the possible ways of grouping them; Gulf Arabic, Iraqi Arabic, Levantine Arabic, Egyptian
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Arabic, and Maghrebi Arabic.

The standard Arabic alphabet contains 28 consonantal sounds, 2 of which sometimes

act as vowels, depending on the context [159]. Letters may have up to four different

shapes depending on their position in the word: Word-initial, medial, final, and separate.

Short vowels and other pronunciation phenomena are marked with diacritics, short strokes

placed either above or below of the preceding consonant [76]. The different pronunciation

phenomena indicated by diacritics are the absence of a vowel, and the consonant and

short vowels “doubling”, gemination and nunation, respectively. Nunation is phonetically

realized by adding n after the final vowel [92]. In total, Arabic has 8 diacritics, illustrated

in Table 3.1, that are not usually written in texts.

Diacritic Symbol name Meaning

Short vowels
fatHa /a/
kasra /i/

Damma /u/

Shadda shadda consonant doubling

Sukuun sukuun vowel absence

Tanween
tanween al-fatHa /an/
tanween al-kasr /in/

tanween aD-Damm /un/

Table 3.1: Diacritics in Arabic.

Although the grapheme-to-phone conversion is mainly a one-to-one mapping, the ab-

sence of diacritics introduces a high degree of phonetic ambiguity [76].

The described characteristics make the automatic speech recognition of Arabic chal-

lenging due to:

• Script form and representation: Most of the text material that is available in Arabic

is in MSA form, but the regular Arabic form used for the oral communication is one

of the dialectal Arabic. Therefore, the training data for the acoustic and language

models do not match. Furthermore, both the text material and the transcripts of

the acoustic data do not usually contain information about diacritics. Due to the

absence of short vowels and other pronunciation phenomena, the acoustic models are
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not closely related to the surface form realization. Previous work shows that adding

diacritics information into the training data of the AMs yields better word error

rates [186, 92, 168]. Similarly, including diacritics also improves the performance

of the LMs [114]. When the language model is trained with non-diacritized text

more linguistic contexts are assigned to each word form and therefore, there is more

confusability during decoding.

• Many dialectal varieties: Arabic is usually spoken in dialectal form and as mentioned

earlier there are many dialects. The dialectal variations are modeled implicitly by the

acoustic model and consequently the acoustic states represent more than allophonic

variations.

• Morphological complexity. Many word forms are possible due to the rich morphology

of Arabic. Hence, it is more difficult to estimate the language model probabilities,

and the out-of-vocabulary rate (OOV) is considerably higher than many other lan-

guages [75].

3.2.2 Data

The training data for our models consists of about 200 hours (≈ 1.5M words) of Arabic

Broadcast Conversations picked from the 1,000 hours of data used to train the acoustic

models. The models were evaluated on the 20-fold cross-validation of the training data

as well as on 2 independent test sets, namely, the 2007 GALE development set and the

2007 GALE evaluation set, distributed by NIST. The development set consists of 55

programs, totaling 2.6 hours (≈ 18K words) from 10 Broadcast News (BN) and Broadcast

Conversation (BC) sources, and the evaluation set contains 65 programs, totaling 2.8 hours

(≈ 20K words) from 11 BN and BC sources [168].

3.2.3 Baseline system

The baseline acoustic models, trained on about 1,000 hours of Arabic broadcast data,

contain 45 phones including long vowels, a 3-state left-to-right HMM topology for phones,

5,000 clustered pentaphone states (its context includes word boundaries and pauses), a
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linear discriminant transform [47], and a semi-tied covariance transform, described in de-

tail in [168]. The acoustic features consist of vectors with 13 perceptual linear prediction

coefficients with speaker-specific vocal tract length normalization (VTLN). The HMM

observations are computed by splicing 9 consecutive frames into a 117-dimensional su-

pervector, then projecting to 40 dimensions using linear discriminant analysis (LDA) or

heteroscedastic discriminant analysis (HDA) [168].

The baseline 4-gram language model with 122M n-grams, was estimated by interpo-

lating 14 components. The vocabulary is relatively large at 737K and the associated

dictionary has only single pronunciations that are modeled by the sequence of letters in

the word. The short vowels are not explicitly modeled, and it is assumed that speech

associated with the short vowels will be implicitly modeled by the adjacent phones [168].

To reduce the computational cost of decoding the training data, speaker adaptation

and cross system adaptation were not used, and hence, the results of the baseline reported

in section 3.2.7 correspond to an intermediate VTLN stage in [168], the IBM GALE system

for the second project year. Discriminative models are most effective when the models

used for training and testing are matched, so the proposed models are compared with the

performance of the same VTLN model on the test sets.

3.2.4 Generation of competing candidates

For training the proposed models, each utterance x was decoded with the baseline rec-

ognizer to generate weighted lattices or WFSTs, encoded with word sequences on the

output side, acoustic states with their time marks on the input side, and the associated

log probabilities for costs. The baseline language model contains transcripts corresponding

to the training data for the discriminative model. In order to avoid biasing the resulting

lattices, the decoding was performed using 20-fold cross-validation, where the transcripts

from 19 folds were used in the language model while decoding the held-out fold. From

each lattice, 100-best unique candidates were used to form the competing candidates.

For each candidate, we also extracted the single best acoustic state sequence (instead of

summing over all the acoustic state sequences for a given word sequence). Recent improve-

ments in the efficiency of lattice generation methods enable us to produce deterministic
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WFST lattices with unique word sequences and their associated lowest cost acoustic state

sequences [165, 169, 140].

3.2.5 Parameter estimation

The parameters of the models were estimated using the perceptron algorithm, iteratively,

until no improvements were observed for five consecutive iterations as evaluated on the

held-out set (one fold). The oracle candidates were chosen as the reference for the per-

ceptron algorithm. The maximum likelihood (ML) scores were not used as features in

the discriminative model since the ML scores are good predictors of the candidates with

lowest word error rate (WER) and are likely to overwhelm the other features [176]. In-

stead, the ML scores were interpolated with the scores from the discriminative models

for each utterance using an interpolation weight α0, which was optimized over 20-fold

cross-validation.

3.2.6 Feature space

The features for our model can be understood easily by considering an toy example.

• Word sequence (output side): <s> are odd </s>

• Acoustic state sequence (input side): <s>,1000,1000,4546,4789,...,1000,1000,4546

The feature space for our joint model is illustrated in Table 3.5, where Φw and Φs represent

the n-gram subsequences or features on words w and acoustic states s, respectively. The

numbers from the acoustic state sequence represent one of the three states of an allophone.

Figure 3.3 represents the sequence of acoustic states for the phone [aa] in a specific context;

the acoustic state 1000 is representing the GMM that models the spectral distribution of

the initial segment of the sound, the state 4546 the GMM for the middle part, and 4789

the corresponding GMM for the last part.

3.2.7 Results

The discriminative models were evaluated on 20-fold cross-validation of the training set

(Xval) and on two independent test sets (Dev07 and Eval07) using just lexical features
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aa27
1000 4546 4789

1 2<eps>/0.5

aa1/0.5

3aa1/0.5

aa2/0.5

4aa2/0.5

aa3/0.5

5aa3/0.5

0

1are/0.2

3

art/0.3 2

odd/0.4

pop/0.3
0 1aa27:<eps> 2r34:<eps>

3<eps>:are/0.2

4

t32:art/0.3

5aa28:odd/0.4

7p22:pop/0.3

6

d56:<eps>

8aa33:<eps>

p14:<eps>

3

Scematic 1-D Example

Saturday, March 15, 14

Figure 3.3: An example allophone of phoneme /aa/.

Φw Φs

<s>,are=1 <s>,1000=1
are,tone=1 1000,4546=2

... ...

Table 3.2: Features corresponding to the word and acoustic state sequences associated with a
given candidate.

Φw2 (discriminative language model), and using acoustic and lexical features [Φs2 Φw2].

The n-gram features are encoded so that they also include the lower order n-grams [156].

For training, 100-best unique candidates were extracted and the resulting models were

evaluated on 1000-best unique candidates. Although the number of potential bigram

features is large—the generative LM contains 60.8M bigrams—the averaged perceptron

algorithm estimates non-zero weights for only those that are observed in the training data

and are useful in discriminating the oracle from the competing candidates. The number

of such active features or parameters for each model, FU , is listed in the second column in

Table 5.9. To provide an insight of how often those parameters were used in the test sets,

their coverage FC is listed for Dev07 and Eval07 sets. The performance on Xval is lower

than Dev07 and Eval07 because the WER was measured on the surface form, without

the equivalent representations of words (an example in English would be gonna==going

to) which was available from NIST [132] for Dev07 and Eval07. The gains reported in

the table are statistically significant with respect to the baseline when they are evaluated
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using standard NIST statistical tests [132].

System #FU Xval #FC Dev07 #FC Eval07

Baseline - 26.6 - 21.2 - 24.0
Φw2 1.13M 26.2 24.74M 20.9 28.34M 23.8
Φw2,Φs2 1.47M 25.7 492.59M 20.6 570.91M 23.4

Table 3.3: Comparison of discriminative models with language and acoustic components, mea-
sured (WER) on 20-fold cross-validation, Dev07 and Eval07.

As reported in Table 5.9 the bigram discriminative language model has about 1M

parameters and provides a consistent gain of about 0.2%-0.4% across the three sets, simi-

lar to the gains observed in morphologically-rich languages such as Turkish [5]. The gain

obtained from the discriminative language component is modest because the large vocabu-

lary size of morphologically-rich languages increases the out of vocabulary rate. Thirty-six

percent and 40.5% of the features from the discriminative model are active on Dev07 and

Eval07, respectively. In both sets, these features constitute 73% of all the features.

The addition of the acoustic component to the model improved the gain of about

0.6%-0.9%. The size of the discriminative model increases just by a third, but the number

of total active features in the test sets is over 98%. Furthermore, acoustic features are

exercised more often than lexical features, about 500M compared to 25M, contributing

disproportionately to the total score of the discriminative model.

3.3 Incorporating duration features into the discriminative

model

In most large vocabulary speech recognizers, elementary units of sounds, namely allo-

phones or context dependent phones are represented by HMMs in a simple left-to-right

linear topology with about 3 hidden states.

The joint probability P (x, s) over observation and acoustic state sequences x and s,

respectively, is represented by the context dependent HMMs as a product of two proba-

bilities; the emission probability and the state transition probability:
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P (x, s) = P (s1)

t=T∏
t=1

P (xt|st)
T−1∏
t=1

P (st+1|st) (3.9)

The emission distribution, with Gaussian mixture models (GMMs), models the spectral

variability of the speech, and the transition distribution models the time variability of the

speech. In particular, the transition probabilities represent the duration of the context

dependent phonemes. In a linear topology, a state with self-loop probability aii (P (st+1 =

i|st = i)) models the probability of observing d frames, P (d) = (1 − aii)a
d−1
ii , which

is a geometric distribution (exponential in nature) whose most likely duration is zero.

This is clearly incorrect. State duration distributions are better fitted to Poisson [157] or

gamma distribution [101]. The duration modeled by a linear HMM, assuming the states

are independent is given by the convolution of the component distributions and results in

a negative binomial distribution, which can be regarded as a discrete version of the gamma

distribution. However, the resulting distribution is very limited in its capacity to represent

a wide variety of distributions, since the geometric distributions only depend on a single

parameter that defines the mean and variance of the distribution. The convolution of three

gamma distributions also results in a gamma distribution, but with more freedom, since

the gamma distribution of each state is now defined by two parameters [147]. Furthermore,

even if the distribution were the right one, when transition probabilities are multiplied with

the emission or observation probabilities to get the acoustic likelihood, the contribution

of the transition state probability is negligible, since the dimension of the observation

vectors is much larger (40 dimensional in our task) than the dimension of the transition

state vectors (bidimensional).

Instead of modeling duration implicitly through the transition probabilities, a number

of extensions attempt to model them explicitly, extensions that Yu reviews as variants of

hidden semi-Markov models (HSMMs) [200]. He outlines HSMM variants such as explicit

duration HMM [102], variable transition HMM [185] and residential time HMM [201].

Russell and Cook [158] modified the topology of the regular HMM model by representing

each HMM state with a sub-HMM. They extended the constrained left-to-right topology

allowing transitions that skip states.
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These approaches have shown modest improvements in controlled tasks. One reason

may be because duration parameters are estimated in a suboptimal way. The parameters of

the model are estimated to maximize the likelihood of durations observed in the training

data, and the estimation is done in isolation, without taking into consideration their

interaction with other components of the ASR system. In our approach the parameters

of the duration models are estimated jointly with the parameters from the language and

acoustic models to minimize the word error rate. We include duration cues related to

acoustic states encoded using simple discrete features into the joint discriminative model

presented in Section 3.1.2.

3.3.1 Duration cue in Arabic language

In Arabic, phonemic lengthening like vowel lengthening or consonant doubling (gemina-

tion) distinguishes minimal pairs—/hal/ (he solved) vs. /ha:l/ (condition), /sid/ (pay/close)

vs. /si:d/ (grandfather), /hibi/ (he crawled) vs. /hibbi/ (you love) and /ali/ (name)

vs. /a:li/ (high) [116]. However, these phonemic characteristics are not specified in writ-

ten form; texts usually contain just consonants and long vowels. This lack of information

increases the confusability of the ASR because both the acoustic model (AM) and the

language model (LM) have to handle more ambiguities.

In previous work Lamel and colleagues [92] used duration information for the GALE

Arabic transcription task. Lattices were re-scored in a post-processing step by augment-

ing the HMM likelihood with the duration likelihood. They modeled word and phone

durations with Gaussian mixture models (GMMs). Phone duration models were used as

back-off models, when there was not enough data for the word duration models. They got

modest gains of 0.2-0.4% on GALE 06 development data.

Although duration features can be modeled at the word, phone, or acoustic state level,

when the vocabulary is large, as in morphologically-rich languages, a large number of

words are likely to be observed very infrequently in the training data, making it difficult

to estimate robust word-level duration models for them. Modeling it at the phone level, on

the other hand, is too coarse. Clustered allophone or acoustic states provide a reasonable

compromise between these two extremes, so we choose to model their durations. Note
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that the contexts for the allophones include pauses and word boundaries which allows the

allophones to capture pre-pausal lengthening that is well studied in phonetics [35, 18].

Even though durations are inherently continuous, they are quantized by the recognizer

to a resolution of 0.01 s for a 100 frames/s system. Empirically, the range of durations

observed for each state is limited. We therefore encode each observed duration of an

acoustic state as a separate feature with its own model parameter.

Considering again the example from Section 3.2.6:

• Word sequence (output side): <s> are odd </s>

• Acoustic state sequence (input side): <s> 1000,1000,4546,4789,...,1000,1000,4546

The acoustic state sequence can be rewritten as a sequence of acoustic state labels and

their durations:

<s>,10002, 45461, 47891, ..., 10002, 45461 where the subscripts 2, 1, 1, ..., 2 and 1 are

representing the durations of each acoustic state in the sequence. From this sequence we

extract duration features in the form of n-grams in the same way as done previously in Sec-

tion 3.2.6 for the lexical and acoustic state features. The subsequence —1000, 1000, 4546—

is represented as a duration augmented state sequence bigram—10002, 45461—where 45461

denotes a single run of length one for state 4546. The extended feature space is depicted

in Table 3.4, where Φw, Φs and Φd represent the lexical, the acoustic state and their du-

ration n-gram subsequences or features, respectively. In the sequence from the example,

the bigram feature 10002, 45461 is assigned a value of two since the bigram occurs twice.

Thus, in the bigram case, the duration feature space spans the product of the bigram

acoustic state space, augmented with every possible observed run length.

Φw Φs Φd

<s>,are=1 <s>,1000=1 <s>,10001=1
are,tone=1 1000,4546=2 10001, 45462=2

... ... ...

Table 3.4: Features corresponding to the word, acoustic state and their duration sequences asso-
ciated with a given candidate.
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3.3.2 Results

The experimental setup and data are the same as in Section 3.2, but in this case we also

incorporate duration features into our discriminative model.

System #FU Xval #FC Dev07 #FC Eval07

Baseline - 26.6 - 21.2 - 24.0
Φw2 1.13M 26.2 24.74M 20.9 28.34M 23.8
Φw2,Φs2 1.47M 25.7 492.59M 20.6 570.91M 23.4
Φw2,Φs2,Φd2 3.15M 25.2 949.74M 19.6 1.10G 22.6

Table 3.5: Comparison of discriminative models with language, acoustic and duration components,
measured (WER) on 20-fold cross-validation, Dev07 and Eval07.

As reported in Table 3.5 when incorporating duration features into the joint discrim-

inative language and acoustic model the WER improves between 0.5%-1.0% at the cost

of doubling the size of the model. In this case, around 76.0% and 80.0% of feature types

(language, acoustic state and duration feature types) from Dev07 and Eval07 are active

in the model, respectively, with a coverage of almost 98%.

3.4 Analysis of the proposed joint discriminative models

In this section, we analyze the influence of empirical factors. For clarity of legends, the

plots use a simplified notation, specifically, w, w+s, w+s+d to denote the feature space

corresponding to [Φw2] [Φw2 Φs2], and [Φw2 Φs2 Φd2].

3.4.1 Effect of the number of competing candidates

The size of the lattice (i.e., the number of competing candidates being considered in the

training data and rescored during testing) impacts both the accuracy and the compu-

tational cost. The number of competing candidates in the training and test set can be

varied independently and we explored three settings, represented in Figure 3.4, as previ-

ously done by Hollingshead when reranking n-best lists from parsers [56]. The legend in

the graph shows pairs, (Ntrain, Ntest), where the first number refers to the size of candi-

dates in the training set and the second to that in the test set. The number of candidates
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in training affects computational cost disproportionately more than the number of can-

didates in testing, since the perceptron algorithm has to iterate over all the candidates.

As a compromise between the settings (100,100) and (1K, 1K), we also investigated (100,

1K) setting.

w+s+d w+s+d
19

20

21

22

23

24
W

E
R

Dev07

Eval07

baseline

(100,100)

(1K,1K)

(100,1K)

Figure 3.4: Impact of the model on Dev07 and Eval07 performance (WER) when the number of
competing candidates is changed. Legend represents (Ntrain, Ntest) as explained in the text.

As the number of candidates in training and testing is increased from 100 to 1K, the

performance of the model improves steadily. The models with duration features exhibit a

gain of about 0.2% - 0.3% in Dev07 and 0.1% - 0.2% in Eval07.

3.4.2 Effect of the training data size

The amount of training data impacts the performance of discriminative models. In order

to understand the trend, we measure the performance of the integrated models when they

are trained with 200 hours, 100 hours and 50 hours of data.

The results, illustrated in Figure 3.5, show that the performance steadily improves as

the size of the training data increases and does not appear to plateau for 200 hours, so we

expect further gains with the complete 1000 hours of training data.
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Figure 3.5: Impact of the training data size on Dev07 and Eval07 performance with Φw2,
and [Φw2 Φs2 Φd2].

3.4.3 Effect of differences in genre

Recall that the discriminative models are trained on 200 hours of Broadcast Conversa-

tions (BC). However, the test data also includes Broadcast News (BN). This provides an

opportunity to test the ability of the different features to generalize across genre. The per-

formance gains, shown in Figure 3.6, with lexical Φw2 and acoustic states Φs2 is higher in

Broadcast News portion of Dev07 while the duration model provides similar gains across

both genre.

Getting higher performance gains in BN portion may come from its speech data char-

acteristics. The speech in this domain is more controlled, with less variability than conver-

sational speech, and probably closer to the Modern Standard Arabic (MSA) dialect. The

active feature types from the discriminative language model that are present in the BC

portion from Dev07 make up 45.8% of the total feature types, while 36.5% of the feature

types from the BN portion are active in the model. The vocabulary from the BC portion

must be larger, and we may suffer from more sparsity issues than in the BN portion.
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Figure 3.6: Performance on Broadcast Conversations (BC) and Broadcast News (BN)
portion of Dev07 with models trained on BC.

3.4.4 Interaction between acoustic, language and duration components

Next, we investigate the interaction between acoustic, duration and language features for

different orders of n-grams. The results, reported in Table 3.6, are grouped separately

for different orders of lexical, acoustic, and duration n-grams. Note, the lexical n-gram

features mentioned here are specific to the discriminative language model and this is

different from the 4-gram language model, estimated from a much larger corpus, whose

scores are included in the likelihoods from the baseline recognizer. For each model, the

interpolation weight (α0) is tuned on Xval to maximize the performance. The results

reported in the table show consistent trends except for a few results denoted in gray.

For models with unigram lexical features, the performance improves consistently across

the three test sets as the order of n-gram for acoustic state and duration features is

increased from unigram to bigram with only one exception out of 24 results. Recall that

the duration features explicitly encode the observed span for the acoustic states, and as a

result, their bigrams are numerous. When acoustic and duration features are augmented

with lexical bigrams, the performance improves consistently except for four cases out of

24 results. In this Arabic task, lexical features do not provide significant additional gains

beyond those obtained for acoustic state and duration features. The most useful features
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System #FU Xval Dev07 Eval07

Baseline Recognizer - 26.6 21.2 24.0
Φw1 164K 26.34 21.09 23.87
Φw1,Φs1 169K 25.85 20.65 23.58
Φw1,Φs2 159K 25.72 20.61 23.37
Φw1,Φd1 271K 25.40 19.82 22.77
Φw1,Φd2 1.78M 25.37 19.70 22.86
Φw1,Φs1,Φd1 276K 25.35 19.89 22.78
Φw1,Φs2,Φd1 253K 25.25 19.77 22.67
Φw1,Φs1,Φd2 1.79M 25.32 19.76 22.66
Φw1,Φs2,Φd2 1.85M 25.21 19.68 22.57

Φw2 1.13M 26.22 20.9 23.76
Φw2,Φs1 1.18M 25.72 20.49 23.57
Φw2,Φs2 1.47M 25.66 20.60 23.40
Φw2,Φd1 1.45M 25.26 19.74 22.77
Φw2,Φd2 3.06M 25.30 19.67 22.75
Φw2,Φs1,Φd1 1.54M 25.24 19.53 22.73
Φw2,Φs2,Φd1 1.59M 25.19 19.71 22.68
Φw2,Φs1,Φd2 3.02M 25.22 19.75 22.49
Φw2,Φs2,Φd2 3.15M 25.16 19.61 22.65

Φs1 4.87K 25.94 20.61 23.53
Φs2 41.26K 25.76 20.55 23.46
Φd1 107.23K 25.49 19.77 22.89
Φd2 1.72M 25.44 19.66 22.82
Φs1,Φd1 112.1K 25.41 19.77 22.78
Φs2,Φd1 1.35K 25.30 19.56 22.70
Φs1,Φd2 1.68M 25.36 19.77 22.64
Φs2,Φd2 1.71M 25.25 19.70 22.56

Table 3.6: Detailed performance (WER) comparison, measured on 20-fold cross-validation (Xval),
Dev07 and Eval07, using models with different combinations of acoustic, duration and lexical n-
grams features.

.

appear to be bigrams of durations of acoustic states. We observed the best performance

when acoustic, duration and lexical features of the candidates are encoded as bigrams in

the joint model. (Note that bigram discriminative models also contain unigram features.)

Effect of the interpolation weight (α0): For all the experiments reported in this

paper, we re-score the n-best list by interpolating the costs of the discriminative model

(LDM ) with the negative log likelihood from the baseline system (LML) according to the
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following formula:

L = α0 ∗ LML + (1− α0) ∗ LDM

The best performance on the cross-validation set is used as the optimal interpolation

weight.
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Figure 3.7: Effect of the interpolation weight α0 on the performance of Xval for different
combinations of features (Φw2, Φs2 and Φd2).

As Figure 3.7 shows, the performance on the cross-validation set is robust. The perfor-

mance is not sensitive to small changes in the interpolation weight and the local minima

for joint models that include duration features are easy to locate.

3.5 Discussion

Regular large vocabulary speech recognition systems are built by rewriting the posterior

probability P (w|x) of the word sequence w given an acoustic input sequence x as a product

of factors and by estimating a model for each of these factors. Then, using finite state

transducer representation and operations, a compact and optimal decoding graph that

combines all the components in a single WFST can be obtained. Dividing the problem

into several components makes the training easier but at the cost of erroneously assuming

independence between the features of the different components. In the case of speech
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recognition, it is assumed that acoustic and linguistic features are independent, despite

the obvious interdependency that exists between the two.

Recently, a few research groups have pursued the idea of directly modeling the posterior

probability P (w|x) which is similar to our approach in that they jointly estimate the

acoustic and language parameters [53, 203, 204, 205, 131, 206, 192, 82, 81].

Zweig and colleagues use CRF-based models which have the advantage of a convex

cost function but their training is complex and computationally expensive. Our approach

utilizes the structured perceptron algorithm, which does not need to compute any nor-

malization factor and converges faster than CRFs [156].

Subsequent to our work, Kubo and colleagues [81] estimated the acoustic and linguistic

parameters related to the arcs from the WFST-based decoding graph with perceptron

and CRF-based training methods. Their CRF-based methods require an approximation

to make the computation of the normalization factor feasible. Their acoustic features

consist of an average of the frame-level vectors over the segment. This is a very crude

characterization of the acoustic space. Our acoustic features in the form of acoustic

states can take fewer values while modeling the acoustics using more complex GMMs. An

alternative approach learns the means and variances of the GMMs along with word trigram

features and optimizes an MCE criterion in a WFST-based decoding configuration [1].

They evaluated their approach on small tasks, TIMIT and RM1, and are yet to scale their

approach to large vocabulary task.

Another recent related work focuses on estimating the parameters of the pronuncia-

tion model in a WFST-based framework [68]. Our approach also allows estimating the

parameters from the pronunciation model jointly with other parameters from the speech

recognizer as we demonstrate in the next chapter.

While our method can be applied to first-pass decoding, our experiments were per-

formed on rescoring the output of a previous stage. Most of the observed gain in our joint

model comes from the acoustic model; the contribution of the language model is about

0.2-0.4%. In the experiments from the next chapter our discriminative acoustic models

also provide significant gains with more refined baseline acoustic models (with speaker

adaptation and discriminatively trained GMMs).
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The discriminative modeling framework from our work make it easy to incorporate

other features that may not be fully exploited in general ASR systems such as duration

of speech as demonstrated in Section 3.3. Previous attempts to model duration in ASR

systems have only been modestly successful. We find that duration features in our joint

model are effective and improve the performance significantly over the baseline system in

a large vocabulary Arabic task.

Following our work, Kao and colleagues [71] included duration features into a segmen-

tal conditional random field (SCRF)-based speech recognizer to improve the discrimina-

tion between correct and incorrect word candidates. They modeled duration of the most

frequent words when they were correctly and incorrectly recognized, and included that

information in the constrained lattices that the speech recognizer outputs. The approach

was evaluated on an English Broadcast News task yielding improvements of up to 0.3%

over a state-of-the-art discriminatively trained baseline. They also estimated the param-

eters of duration features together with other acoustic and linguistic features. However,

they modeled duration at word level while we do it at acoustic state level. Due to sparsity

issues they considered only duration features of most frequent words which may be one

of the reasons for their resulting modest gains. Previous papers modeling duration at the

word level also reported limited gains when adding duration information [63, 35]. Arisoy

and colleagues, instead, estimated duration features at the acoustic state level jointly with

the discriminative language model [4] to improve the performance of an English Broadcast

News task. They observed gains of about 0.3%, lower than we observed in our experi-

ments. This may be due to the differences between English and Arabic transcription tasks.

The data from our Arabic task contains BN and BC speech. The spoken Arabic is usually

dialectal, and additionally some pronunciation phenomena are not written. These two

aspects make the recognition of Arabic speech more ambiguous. Apart from this, we did

not use discriminative acoustic models as baseline acoustic models.

Soltau and colleagues refined the Arabic unvowelized generative acoustic models by

explicitly modeling the short vowels and other diacritics. The performance obtained was

significantly better than the one with the unvowelized AMs, but these gains diminished

with discriminative acoustic models [168]. This raises the question whether our joint model
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and duration features would be less effective with baseline acoustic models whose GMMs

are trained discriminatively.

In the results from Soltau and colleagues [168] the vowelized systems appear to be more

helpful for broadcast news data than for broadcast conversation data. In the experiments

we ran to analyze the impact of the genre, the acoustic state features provide more gains for

BN data even when the training set contains just BC data. However, when adding duration

features we get similar gains for both genres, demonstrating the robust contribution of

the duration features in the noisier BC data.

3.6 Summary

In this chapter I proposed a joint discriminative model to estimate parameters from the

acoustic and language components as well as parameters from duration model. I de-

scribed how this model generalizes the discriminative language model from Roark and

colleagues [156]. The model factors into two WFSTs which can be applied to the input

(E) and the output side (D) of the general model (T ) for speech recognition E ◦T ◦D, and

thus can be used in first pass recognition as well as for rescoring. Empirical results demon-

strated that the proposed joint model improves performance by 1.4%-1.6% absolute on a

GALE Arabic transcription task. The aim of the work from this chapter was to learn the

weights on the finite state transducer for speech recognition, and as such the observation

probabilities have not been modified. For practical reasons, we used observation models

from VTLN baseline system.

The analysis of the model suggests the following five points. First, the performance

of the joint model improves as the amount of the training data increases from 50 hours

to 100 hours and 200 hours with no sign of saturation, leading to the expectation that

further gains may be obtained with additional training data. Second, even though the

joint models were trained on Broadcast Conversations, the model with duration features

performed on Broadcast News as well as on Broadcast Conversations, exhibiting a good

generalization across genre. Third, empirical results showed that most gains from the joint

model can be obtained by training with only 100 competing candidates while testing with
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1000 competing candidates. This is good news since the cost of training using an iterative

procedure is more than that of testing this linear model. Fourth, the joint model is not

overly sensitive to the interpolation weight and a robust operating point can be located

with ease. Fifth, the joint model captures the interaction between duration cues and lexical

n-grams. The gains from the duration features appear to be higher with lexical bigrams

than with lexical unigrams or when the lexical features are used in isolation. In contrast,

the duration of allophones modeled through a transition matrix of HMMs, estimated by

maximum likelihood, has failed to provide any gains in large vocabulary recognition. The

probabilities from the transition matrix are dwarfed by those from the high-dimensional

observation components of the HMMs.



Chapter 4

Discriminative pronunciation modeling

for dialectal speech recognition

4.1 Introduction

Speech recognition technology is increasingly ubiquitous in everyday life, but its adoption

depends on the user’s level of satisfaction with the performance of the system. Differences

between individual speakers pose one of the main challenges in speech recognition [11].

Speech varies with age, gender, ethnicity, geography (in the form of regional dialects),

and socioeconomic status [89, 90]. In particular, the performance of the recognition is

very sensitive to the dialect or accent of the speakers, especially when the given dialect or

accent is not covered in the training data [191, 202]. As it is not feasible to develop new

speech recognition systems for every accent and dialect, the approach commonly adopted

is to adapt an existing recognizer trained with general data from the main language,

for example, standard American English (SAE), into the specific accent or dialect such

as non-native English or African American Vernacular English (AAVE). Previous work

has focused on applying the generative acoustic model, the pronunciation lexicon and

the polyphone decision tree adaptation, especially, for non-native or accented speech. A

review of the different adaptation approaches proposed in previous work is detailed in

the final report from the workshop on dialectal Chinese speech recognition [170]. In this

chapter, instead, we use the discriminative approach presented in the previous chapter

(Chapter 3.1) to learn the weights of a phonetic transformation model (pronunciation

variation model) that captures the phonological differences between the task dialect and

52
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the canonical pronunciations. In our case, the phonetic transformations are generated

from knowledge-based phonological rules. We evaluate our approach on adapting an ASR

system trained with SAE speech to recognize AAVE speech. As pronunciation is also

modeled with the acoustic models by representing acoustics at context dependent phonetic

level, we also explore adapting pronunciation at acoustic level by training a discriminative

acoustic state model using features at acoustic state level. Additionally, we jointly train

parameters from the pronunciation and language model. The intuition behind this is that,

first, the language model may be able to capture pronunciation mismatches not covered

by the pronunciation-related features, and second, the model may just need to include the

phonetic transformations that correct the errors not considered by the language model.

The experiments are also run with SAE speech from the same domain of AAVE speech to

tease apart the impact of dialect and domain difference.

The common techniques applied in the literature for generative acoustic model adapta-

tion are the maximum likelihood linear regression (MLLR) [95] and maximum a posteriori

(MAP) adaptation [39]. Wang and colleagues [191] investigate the speech recognition for

German-accented English speakers by comparing the performance using MLLR adaptation

vs. MAP adaptation. They also give results for cases when acoustic models are trained

only with the accented speech, with data containing native and accented speech, and

by interpolating the native and accented acoustic models. Tomokiyo and Waibel [178]

examine Japanese-accented English speakers by applying MLLR and MAP adaptation

separately. The combination of both adaptation techniques in the speech recognition of

Shanghai-accented Mandarin is analyzed by Zheng and colleagues [202]. Vergyri and col-

leagues [187] investigate the effect of accent variation in English Broadcast News domain

with data from various geographical regions by training independent models for each accent

vs. training a single model with data from all accents and then, applying MAP adaptation.

As an alternative to these common adaptation techniques, Motlicek and colleagues employ

subspace Gaussian mixture models [129], while Soltau and colleagues [166] use a dialect

classifier for separating Modern Standard Arabic (MSA) speech utterances from Levan-

tine Arabic ones, and then, the acoustic models are trained with all the data containing

MSA and Levantine Arabic dialect speech, but weighting the statistics computed from
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the utterances with the score from the binary dialect classifier. Other authors [191, 130]

propose modifying the decision trees used to cluster the context-dependent phone models

based on questions about the phonetic context. The effectiveness of the above methods

has been limited. This may be in part due to limitations of the above adaptation tech-

niques. They largely impact the observation model of the states, and do not model the

systematic phonemic variations that occur in dialectal or accented speech.

There is extensive literature that explores ways to capture these systematic phone-

mic variations by adapting the pronunciation model at the lexical level [58, 44, 179,

104, 188, 59]. Pronunciation variants may be derived from knowledge-based or data-

driven techniques, and filtered or weighted so as not to increase the confusability during

the search [172]. Rather than adding pronunciation variants directly into the lexicon,

Tomokiyo [179] and Hutchinson and Droppo [59] use them for re-scoring lattices obtained

in the first pass decoding.

A popular approach to capture new pronunciation variants is to build joint-multigram

models to map graphemes onto phones [16]. They are built as regular word n-gram

language models (LMs), but the tokens are grapheme/ phone pairs—graphone units—

instead of words. These models consider information about grapheme and phone context.

McGraw and colleagues [112] use a graphone model to derive alternative pronunciations

for the words from the training data. After running Expectation-Maximization (EM)

for several iterations, they learn pronunciation weights, and filter out any pronunciation

variant with a probability lower than a certain threshold. Lu and colleagues [106] use

a similar method. However, in their experiments, the graphone model is learned with a

subset of the expert pronunciation lexicon instead of the whole set, and the EM algorithm

is run over the lattices rather than over the N-best alternative pronunciation sequences.

Alternatively, a phonological rule model can be represented with the joint multigram

model. In this case the model maps the spoken (surface) phone sequence onto a canonical

phone sequence. A unigram model with tokens representing surface and canonical phone

pairs is used by Karanasou and colleagues [72]. The weights of the model are learned

discriminatively, using conditional random fields (CRFs) and the perceptron algorithm to

minimize phone edit distance. They report improvements in phone error rate, but not
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in word error rate. In the work we present in this chapter we also learn a pronunciation

variation model that maps surface phones into canonical phones with the perceptron

algorithm, but with several differences. First, our surface phone sequences are obtained

after decoding with the canonical pronunciation lexicon, while in their case the surface

phone sequences come from a phone decoder. Second, we use unigram and bigrams of

phone transformations as opposed to just unigram phone transformations. Finally, instead

of optimizing the phone error rate, we learn the parameters by optimizing the word error

rate.

Vinyals and colleagues [188] also use a discriminative criterion for pronunciation learn-

ing. They first employ a minimum classification error approach to select the pronunciation

alternatives to include into the pronunciation model. Then, the principle of maximum en-

tropy is used to learn weights for pronunciation candidates. This approach is limited by

the amount of variants they are able to take into account; many test words simply do not

appear frequently in the training data.

Under a weighted finite state transducer (WFST) framework, Jyothi and colleagues [68]

discriminatively weight the arcs from the lexicon to optimize the recognition on Switch-

board conversational speech data [42]. They report results when they learn parameters of

the arcs only from the pronunciation lexicon WFST, and also when the parameters from

the pronunciation lexicon are jointly estimated with the parameters related to the arcs

from the acoustic HMM and decision tree WFSTs. The features to train the discriminative

models are extracted at the level of individual acoustic frames to take phone duration into

account. The authors find significant improvements in the recognition of isolated words,

but not recognizing continuous speech.

Our goal is not only to discriminatively weight existing canonical pronunciations at

phonetic level, but also to provide an approach to learn new pronunciation variants that

are closer to the way words are pronounced in the task dialect. Additionally, we show

that our framework also allows us to learn parameters related to pronunciation features

at acoustic level.
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4.2 African American Vernacular English

African American Vernacular English (AAVE) is a dialect of English spoken by many

African Americans, especially those living in predominantly black communities when

speaking in a casual register [153]. AAVE is distinct from standard American English

(SAE) in grammar, pronunciation, and vocabulary. Table 4.1, based on Rickford (1999),

lists a number of “variable rules” of AAVE. These relate canonical SAE pronunciations to

common realizations in AAVE. These rules apply stochastically rather than categorically,

and the probability of application is sensitive to phonological context as well as speaker-

specific social factors such as socioeconomic status [88, 194]. Some of these variable rules

are also found in other English dialects.

Phonological rule Example Phonological rule Example

th → t thin [+cons] → ∅ / [+cons] | hand
dh → d this s p → p s / | grasp
th → f bath s t → t s / | pianist
dh → v with s k → k s / | ask
oy → ao boy ax → ∅ / | about
ay → aa right ih → ae / ng drink
v → b / [+nasal] movement eh → ih / [+nasal] {|, [+cons]} pin
l → ax / [+vowel] bell l → ∅ / [+vowel] [+labial] help
z → d / [+nasal] isn’t z → d / [+vowel] [+vowel] reason
r → ax / [+vowel] four v → b / [+vowel] [+vowel] having
r → ∅ / [+vowel] there d → t / [+vowel] | god
ng → n / ih | walking b → p / [+vowel] | cab
r → ∅ / | th throw t → k / s r destroy
ts → ih z / s | breasts g → k / [+vowel] | log
ts → ∅ / | ghosts

Table 4.1: Variable rules mapping from SAE pronunciations to possible pronunciations in
AAVE.

4.2.1 Discriminative pronunciation model

The performance of an ASR system often degrades considerably when it is employed to

recognize certain dialects that are not well represented in the training data. We assume

that pronunciation variation is the primary cause of this degradation. The pronunciation
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lexicon is traditionally a deterministic mapping from words into their canonical phonemic

representation. There may be a few pronunciation variants for some words (e.g., and), but

these are unweighted. The lexicon is not learned or adapted for each task, so pronunciation

variation is largely captured by the AMs [67]. However, it is not often feasible to train

new AMs for other dialects, so baseline AMs, trained on publicly available corpora, must

be adapted for recognition of those other dialects. Furthermore, when dealing with speech

from a dialect other than the standard, the pronunciation at the lexical level differs more

from the canonical pronunciation of the lexicon. Hence, the lexical-level pronunciation

must be adapted too.

The adaptation may be performed by adding new pronunciation variants into the

lexicon, or by learning a pronunciation variation model that maps surface phones onto

canonical phones. The pronunciation variation model may be built from knowledge-based

rules or rules learned from the data. In our work we use knowledge-based phonological

rules, depicted in Table 4.1, to generate the features for the discriminative pronunciation

variation model. Specifically, we discriminatively learn the weights for n-grams of phone

transformations of the form ps : pc that match any rule from Table 4.1, where ps is the

surface phone and pc the canonical phone. The goal is to introduce pronunciation vari-

ability with the phone transformation pairs to model dialectal speech without increasing

the confusability or ambiguity during decoding.

We apply the idea of the global linear models explained in Section 3.1.1 for the esti-

mation of the discriminative models. The goal of the decoding is to estimate the word

sequence w for a given input speech utterance x. For that, the speech utterances x are

decoded to get the ASR outputs y. A function GEN enumerates a set of candidates

GEN(x) for the input x (for example, N-best candidates or lattices). In our case, each

candidate y contains not only the word sequence w, but also the sequence with phonetic

information, where each token is a phone transformation ps : pc. In the proposed discrim-

inative pronunciation model, the representation Φ maps each (x, y) to a feature vector

Φp(x, y) ∈ <d and a parameter vector ᾱp ∈ <d (features and parameters related to the

pronunciation model are denoted with the subscript p), and the output of a linear model

F (x) is computed as below.
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F (x) = argmin
y ∈ GEN(x)

Φp(x, y)ᾱp (4.1)

The learned pronunciation variation model could easily be represented as a WFST P
and included into the WFST-based speech recognizer T as follows:

T ′ = Min(Det(H ◦ C ◦ P ◦ L ◦ G)) (4.2)

Alternatively, the WFST P could also be applied in a post-processing step to re-score

the paths from the ASR lattices Lx. For our experiments, the pronunciation variation

model is applied in the re-scoring of N-best lists extracted from the speech recognizer

output.

4.2.2 Discriminative pronunciation model at the level of acoustic states

As an alternative to explicitly modeling the pronunciation variation at symbolic level we

can implicitly model at the acoustic state level [161, 49, 70]. In this case the parameters

ᾱs to estimate with our discriminative models are the weights of the features Φs(x, y)

representing acoustic state n-grams. They are the same kind of features as the features

used in the experiments from Chapter 3. The output of the linear model F (x) is computed

as:

F (x) = argmin
y ∈ GEN(x)

Φs(x, y)ᾱs (4.3)

If we wanted to incorporate the discriminative model into the WFST-based decoding

graph, these parameters could be compiled in a WFST E and composed with the WFST-

based decoding graph. Alternatively, it could be applied in a post-processing stage as

mentioned in Section 3.1.2. In our experiments the discriminative models are applied to

re-score the N-best lists extracted from the lattices Lx.
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4.3 Experimental results

4.3.1 Corpus

We use data from the StoryCorps project1 for all the experiments, a subset of the data

set used by Chen and colleagues for their dialect recognition experiments [20]. This data

consists of conversations between two or more speakers of the same dialect, either AAVE

or SAE. Speaker dialect is self-reported. We learn independent discriminative models for

each dialect. For AAVE, the training and test set contain 56 speakers and 11 speakers,

respectively. The training and test sets for SAE include 46 speakers and 14 speakers,

respectively. For both dialects, the training set consists of approximately 13 hours of

speech, and the test set approximately 3 hours. Both the training and test sets have equal

numbers of male and female speakers.

4.3.2 Baseline system

The baseline ASR system is a recognizer designed for English Broadcast News modeled

with the IBM toolkit following Soltau and colleagues [74]. The acoustic model consists

of 4000 clustered allophone or acoustic states defined over a pentaphone context and a

set of 44 phones, with states represented by Gaussian mixture models with a total of

150K mixture components. The observation vectors consist of PLP features, stacked from

10 neighboring frames and projected into a 50-dimension space using linear discriminant

analysis [47]. The acoustic models were trained using 430 hours of transcribed English

Broadcast News speech [45, 34]. The language model was estimated using several corpora

of conversational telephone speech; it has a 48k-word vocabulary and contains approxi-

mately 16M bigrams, 16M trigrams, and 11M 4-grams. On average, the pronunciation

lexicon has 1.1 pronunciations per word. Decoding is performed in several stages using

successively refined acoustic models, including a context-dependent model, a vocal-tract

normalized model, a speaker-adapted maximum likelihood linear regression model, and a

feature and model-based discriminative model explained in more detail in Section 2.4.

1www.npr.org/series/4516989/storycorps
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4.3.3 Generation of competing candidates

For training the discriminative pronunciation models—the AAVE and SAE models—each

utterance x is decoded with the baseline recognizer, generating lattices Lx containing word

sequences, acoustic state sequences, their time indices, and associated log probabilities.

The 100-best unique candidates are then extracted from each lattice. For each candidate

y, apart from the word sequences, we also extract the single best acoustic state sequence

s with the associated durations, and the canonical phone sequence pc. The canonical

phone sequence is obtained by forced-aligning the speech utterance with the word sequence

candidate using the baseline (out-of-dialect) ASR system with the canonical pronunciation

lexicon.

Additionally, we also generate a second phone sequence for each candidate using the

knowledge-based phonological rules from Table 4.1. The second phone sequence contains

surface phones and is generated by forced-aligning the speech utterance with the word

sequence candidate using an extended pronunciation lexicon. The extended pronunciation

lexicon contains canonical pronunciations and new additional pronunciations generated

after applying the knowledge-based phonological rules to the canonical pronunciations.

Table 4.2 shows the extended lexicon generated for a candidate with the word sequence

“and then”. In this example, a new pronunciation is generated for the word and after

applying the rule [+cons]→ ∅. The word then gets assigned two new pronunciations from

the rule dh → d and dh → v.

and(01) ae n d
and(02) ae n
then(01) dh eh n
then(02) d eh n
then(03) v eh n

Table 4.2: Extended lexicon for candidate “and then”.

After forced-aligning the word sequence candidate with the extended lexicon the phone

sequence associated with the lowest acoustic cost (highest likelihood) may be different from

the canonical phone sequence. We call this new phone sequence the surface phone sequence

ps. Then, the Levenshtein alignment [100] is computed for the canonical phone pc and
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surface phone sequence ps. The alignment produces a sequence whose tokens are pairs of

phones of the form pi,s : pi,c, where i represents the position in the sequence.

4.3.4 Parameter estimation

The parameters of the models are iteratively estimated with perceptron algorithm, using

the oracle candidates as the reference. The parameter estimation is iterated until we see

no improvement on the held-out data for five iterations. Maximum likelihood scores, LML,

are interpolated with scores from the discriminative models, LDM , using an interpolation

weight α0 determined by 20-fold cross validation.

L = α0 ∗ LML + (1− α0) ∗ LDM (4.4)

4.3.5 Features Space

For each candidate in the N-best list we have the following sequences:

• Word sequence: <s> and then </s>

• Canonical phone sequence: <s> | ae n d | dh eh n| </s>

• Surface phone sequence <s> | ae n | d eh n | </s>

• Joint phone sequence: <s> | ae:ae n:n -:d | d:dh eh:eh n:n | </s>

• Acoustic state sequence: <s> 3219, 3219, 3219,3179,2900... </s>

From these sequences we extract features in the form of n-grams to train the pro-

nunciation variation model (phone transformation n-grams), the discriminative acoustic

state model (n-grams of acoustic states) and the joint pronunciation model (n-grams of

pronunciation cues and word n-grams). Table 4.3 gathers some of the n-grams extracted

from the candidate example.
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Φps:pc Φs Φw

ae:ae,n:n=1 3219,3179=1 and,then=1
n:n,-:d=1 3179,2900=1 then, </s>

... ... ...

Table 4.3: Features corresponding to the phone transformations, acoustic state sequences and
words associated with the candidate example.

4.3.6 Results

Discriminative pronunciation model

We compare our models on StoryCorps corpus, using both the AAVE and SAE por-

tions described in Section 4.3.1 and report word error rate on 20-fold cross-validation

(Xval) and test set. As explained earlier, the phonetic pronunciation-related features are

unigrams and bigrams of phone transformations; Φps:pc . The experiments on SAE and

AAVE are performed independently to understand the effectiveness of the model on stan-

dard vs. AAVE dialectal speech. Statistical significance is computed with respect to the

baseline system using the matched-pairs test [41] provided by NIST SCTK toolkit [132]

and results non-significant at p < 0.001 are marked with †.
A large number of previous studies were performed with maximum likelihood (ML)

acoustic models. So, we report results with both our best generative and discriminative

models, specifically the speaker-adapted models (FSA) and boosted MMI models (BMMI),

respectively. The results from the FSA and BMMI models are reported in Table 4.4 and

Table 4.5, respectively.

The performance of the baseline speech recognizer on AAVE data is over 10% worse

than on SAE data. This is expected since the SAE data is closer to the baseline acoustic

models (English Broadcast News). For reference, the oracle accuracy for the 100-best

candidates is reported which specifies the lowest achievable WER for all the re-scoring

experiments from the tables. There is considerable room for improvement in both SAE

and AAVE dialects. When the baseline AMs are discriminatively trained (BMMI models)

the WER improves on both dialects with respect to the results with generative acoustic

models (FSA models). Although the discriminative training of the baseline acoustic models
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AAVE SAE

#FU α0 Xval #FC test #FU α0 Xval #FC test

Oracle - - 30.3 - 32.1 - - 17.4 - 19.6
Baseline - - 40.4 - 42.8 - - 25.8 - 29.3

AM rescoring - - 40.2 - 42.3 - - 26.1 - 29.7†
Φpc 1.42K 0.40 39.1 15.98M 41.6 1.43K 0.35 25.0 14.92M 28.5
Φps:pc 1.53K 0.35 39.1 21.13M 41.3 1.47K 0.35 25.5 19.58M 28.8

Table 4.4: Performance (WER) comparison of discriminative pronunciation model on SAE and
AAVE portions of the corpus using features from canonical phone sequence (Φpc

) and sequence
with phone transformations (Φps:pc

) with FSA models. Fu and Fc denote the number of unique
features in the model and the number of times they were employed in the test sets, respectively.
Results non-significant at p < 0.001 are marked with †.

AAVE SAE

#FU α0 Xval #FC test #FU α0 Xval #FC test

Oracle - - 26.7 - 28.1 - - 14.8 - 16.6
Baseline - - 36.1 - 38.2 - - 22.3 - 25.2

ML rescoring - - 35.9 - 37.7 - - 22.4† - 25.3†
Φpc 1.0K 0.35 35.1 20.68M 37.0 0.93K 0.45 21.8 18.45M 25.0†
Φps:pc 1.48K 0.35 35.1 20.67M 36.9 1.40K 0.45 21.9 18.33M 25.1†

Table 4.5: Performance (WER) comparison of discriminative pronunciation model on SAE and
AAVE portions of the corpus using features from canonical phone sequence (Φpc

) and sequence
with phone transformations (Φps:pc

) with BMMI models. Fu and Fc denote the number of unique
features in the model and the number of times they were employed in the test sets, respectively.
Results non-significant at p < 0.001 are marked with †.

is done with out-of-dialect data the recognition of AAVE data also improves, since they

share common phones.

Next, we re-score the N-best candidates with the baseline acoustic models and the

extended lexicon that incorporates the phonological rules from Table 4.1. The performance

of this maximum likelihood re-scoring pass is denoted as “ML rescoring” in Table 4.4 and

Table 4.5. The WER improves on the AAVE portion but not on the SAE portion. This

may be an indicator of the utility and relevance of the phonological rules for AAVE data.

In the case of the baseline FSA acoustic models (less accurate models) the ML re-scoring

has more negative impact on the SAE portion than when using baseline BMMI models

(more accurate models).
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AAVE SAE

#FU α0 Xval #FC test #FU α0 Xval #FC test

Oracle - - 30.3 - 32.1 - - 17.4 - 19.6
Baseline - - 40.4 - 42.8 - - 25.8 - 29.3
Φps:pc 1.53K 0.35 39.1 21.13M 41.3 1.47K 0.35 25.5 19.58M 28.8
Φpc 1.42K 0.40 39.1 15.98M 41.6 1.43K 0.35 25.0 14.92M 28.5
Φs 22.33K 0.65 38.8 47.38M 40.9 21.98K 0.85 25.1 44.15M 28.5

Table 4.6: Performance (WER) comparison of discriminative pronunciation model on SAE and
AAVE portions of the corpus using features from the acoustic state sequence (Φs) with FSA
models. Fu and Fc denote the number of unique features in the model and the number of times
they were employed in the test sets, respectively.

Instead of ML re-scoring, we use canonical phones Φc as features in a discriminative

model. The performance of this model is marginally better than the ML rescoring for

both SAE and AAVE. Increasing the complexity of the model, we investigate the utility

of features that encode the transformed surface form and canonical form Φps:pc . The

additional complexity does not appear to be particularly useful in our case. Adding new

pronunciation variants does not bring further gains. We may need a larger set of phone

transformations to see further improvements.

Discriminative pronunciation model at the level of acoustic states

Previous work has modeled pronunciation both explicitly at phonetic level and implicitly

in the acoustic models [161, 49]. They found that modeling pronunciation with the acous-

tic models can provide similar or even better performance than adding new pronunciation

variants at phonetic level, without the need to worry about increasing the decoding con-

fusability. Instead of using phonetic features, we learn discriminative models with features

from the acoustic models to determine if they are also able to capture AAVE-specific pro-

nunciations. The discriminative acoustic state model is represented using unigram and

bigrams of acoustic state as features: Φs, as in Chapter 3 (Section 3.2.7). We do not

reestimate parameters from the Gaussian mixture models, just transition weights between

acoustic states. Results are detailed in Table 4.6 and Table 4.7 for baseline generative

speaker adapted (FSA) and discriminative (BMMI) acoustic models, respectively.

Discriminative pronunciation models with features from the acoustic models behave
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AAVE SAE

#FU α0 Xval #FC test #FU α0 Xval #FC test

Oracle - - 26.7 - 28.1 - - 14.8 - 16.6
Baseline - - 36.1 - 38.2 - - 22.3 - 25.2
Φps:pc 1.48K 0.35 35.1 20.67M 36.9 1.40K 0.45 21.9 18.33M 25.1†
Φpc 1.0K 0.35 35.1 20.68M 37.0 0.93K 0.45 21.8 18.45M 25.0†
Φs 22.03K 0.60 34.6 46.34M 36.7 21.98K 0.75 21.6 41.56M 24.6

Table 4.7: Performance (WER) comparison of discriminative pronunciation model on SAE and
AAVE portions of the corpus using features from the acoustic state sequence (Φs) with BMMI
models. Fu and Fc denote the number of unique features in the model and the number of times
they were employed in the test sets, respectively. Results non-significant at p < 0.001 are marked
with †.

slightly better than the models with phonetic features. They provide gains of 1.5% or

more on the AAVE dialect, but no more than 0.8% on the SAE dialect. However, the

feature space of discriminative models with acoustic features is much larger than the

feature space of the models with phonetic features, about 15 times larger. The gains

for the baseline discriminative (BMMI) acoustic models are lower for both pronunciation

models (with acoustic states and phones), but not significantly. Training models that

combine acoustic and phonetic features do not provide additional gains. It may be that

their contributions are not additive or that the large feature space of the acoustic features

hides the contribution of the phonetic features.

Joint discriminative pronunciation and language model

As the proposed estimation framework allows us to easily learn parameters from differ-

ent ASR components jointly, we next analyze the interactions between the language and

pronunciation models. The language model is represented using unigram and bigrams of

words as features: Φw, as in Chapter 3 (Section 3.2.7).

As results from Table 4.8 and Table 4.9 show, discriminative language models (DLMs)

are more useful for the AAVE data than for the SAE data. They provide gains over 1%

for the AAVE test set, but lower than 0.7% for the SAE test set.

Including language features along with acoustic state features provides consistent addi-

tional gains in both dialects, although these gains are not always statistically significant.
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AAVE SAE

#FU α0 Xval #FC test #FU α0 Xval #FC test

Baseline - - 40.4 - 42.8 - - 25.8 - 29.3

Φw 34.04K 0.25 39.2 4.02M 41.7 46.80K 0.25 25.1 3.79M 28.7

Φs 22.33K 0.65 38.8 47.38M 40.9 21.98K 0.85 25.1 44.15M 28.5
Φw,Φs 90.22k 0.65 38.7 51.73M 40.7 63.3K 0.65 24.7 47.87M 28.2

Φps:pc 1.53K 0.35 39.1 21.13M 41.3 1.47K 0.35 25.5 19.58M 28.8
Φw,Φps:pc 47.86K 0.45 38.7 25.28M 41.0 53.53K 0.50 25.1 23.41M 28.4
Φpc 1.42K 0.40 39.1 15.98M 41.6 1.43K 0.35 25.0 14.92M 28.5
Φw,Φpc 54.65K 0.45 38.8 25.49M 41.1 67.93K 0.45 24.9 23.51M 28.4

Table 4.8: Comparison of performance (WER) of joint discriminative models on SAE
and AAVE portions with features from different levels—words (Φw), canonical phones
(Φpc), surface and canonical phone transformations (Φps:pc) and acoustic states with FSA
models. FU and FC denote the number of unique features in the model and the number
of times they were employed in the test sets, respectively.

AAVE SAE

#FU α0 Xval #FC test #FU α0 Xval #FC test

Baseline - - 36.1 - 38.2 - - 22.3 - 25.2

Φw 61.03K 0.25 34.9 4.06M 36.7 48.48K 0.25 21.8 6.94M 24.7

Φs 22.03K 0.60 34.6 46.34M 36.7 21.98K 0.75 21.6 41.56M 24.6
Φw,Φs 78.35K 0.65 34.5 50.38M 36.3 84.45K 0.80 21.5 45.21M 24.4

Φps:pc 1.48K 0.35 35.1 20.67M 36.9 1.40K 0.45 21.9 18.33M 25.1†
Φw,Φps:pc 67.12K 0.45 34.6 24.75M 36.1 59.93K 0.55 21.7 21.91M 24.5
Φpc 1.0K 0.35 35.1 20.68M 37.0 0.93K 0.45 21.8 18.45M 25.0†
Φw,Φpc 76.75K 0.40 34.6 24.67M 36.2 60.52K 0.45 21.5 22.04M 24.4

Table 4.9: Comparison of performance (WER) of joint discriminative models on SAE and
AAVE portions with features from different levels—words (Φw), canonical phones (Φpc),
surface and canonical phone transformations (Φps:pc) and acoustic states with BMMI
models. FU and FC denote the number of unique features in the model and the number
of times they were employed in the test sets, respectively. Results non-significant at
p < 0.001 are marked with †.

Including phonetic features into the discriminative language model, either with, Φpc or

Φps:pc provides further consistent gains, especially for the AAVE data. Combining the

discriminative language model with pronunciation features at the level of acoustic states

or at the phonetic level provides comparable results for the AAVE data, but twice as many
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features are activated when using the acoustic states as when using the phonetic features.

A discriminative model that jointly estimates the parameters of the language model

and the pronunciation model improves the performance of the AAVE recognizer by about

2.1% WER of which about 0.5% can be attributed to pronunciation models. On the other

hand, improvements on the SAE data are lower and mainly attributed to the discriminative

language model, since the canonical pronunciations are well-matched to the SAE and the

training data used in the baseline (out-of-dialect) recognizer.

Even if the data sets are quite small and the observed gains are quite limited we can

state that the discriminative models seem to be more effective for the AAVE dialect than

for the SAE dialect. The lower gains on SAE data are expected since the models are

closer to the baseline speech recognizer. Furthermore, the phonological rules make sense

for the AAVE dialect, but not for the SAE dialect, as expected. However, the phone

transformations we use to generate the features and capture phonological characteristics

of AAVE do not provide benefits over using only features extracted from the canonical

phone sequences. We may see benefits from using phone transformations if we use a larger

set of rules. Modeling pronunciation at the acoustic state or phonetic level provides similar

gains, but the features learned at the phonetic level are more intuitive and provide an easier

analysis about which pronunciation variations are relevant to the given dialect. However,

if our main goal is just to adapt the speech recognizer to the given dialect using acoustic

state features is more straightforward. We do not need to compute the forced-alignments

between the speech utterances and the word sequences.

Incorporating duration features

As in our experiments in the large vocabulary Arabic speech recognition task, described in

Section 3.3, we incorporate duration information of acoustic states into our discriminative

models, and explore the interaction between duration related features and the rest of

the features. The baseline speech recognizer has acoustic models discriminatively trained

with English Broadcast News data (BMMI models). Like the other features, the duration

features, Φd, are also bigrams and unigrams. They are extracted and represented as

explained in Section 3.3.1.
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AAVE SAE

#FU α0 Xval #FC test #FU α0 Xval #FC test

Baseline - - 36.1 - 38.2 - - 22.3 - 25.2

Φd 224.0K 0.65 34.9 41.02M 36.8 181.37K 0.65 21.7 35.97M 24.7

Φw 61.03K 0.25 34.9 4.06M 36.7 48.48K 0.25 21.8 6.94M 24.7
Φw,Φd 288.80K 0.65 34.6 45.18M 36.5 223.57K 0.65 21.5 39.34M 24.5

Φs 22.03K 0.60 34.6 46.34M 36.7 21.98K 0.75 21.6 41.56M 24.6
Φs,Φd 277.18K 0.75 34.5 88.03M 36.3 221.61K 0.80 21.6 78.02M 24.2

Φw,Φs 78.35K 0.65 34.5 50.38M 36.3 84.45K 0.80 21.5 45.21M 24.4
Φw,Φs,Φd 340.96K 0.80 34.3 92.05M 36.2 225.30K 0.70 21.5 80.26M 24.4

Φps:pc 1.48K 0.35 35.1 20.67M 36.9 1.40K 0.45 21.9 18.33M 25.1
Φps:pc ,Φd 159.13K 0.60 34.6 59.70M 36.8 194.80K 0.70 21.7 54.47M 24.5
Φw,Φps:pc 67.12K 0.45 34.6 24.75M 36.1 59.93K 0.55 21.7 21.91M 24.5
Φw,Φps:pc ,Φd 289.16K 0.65 34.3 65.82M 36.4 202.02K 0.70 21.5 56.91M 24.5

Table 4.10: Comparison of performance (WER) of joint discriminative models on SAE and AAVE
portions with duration features (Φd) combined with features from different levels—words (Φw),
canonical phones (Φpc), surface and canonical phone transformations (Φps:pc) and acoustic states
with BMMI models. FU and FC denote the number of unique features in the model and the
number of times they were employed in the test sets, respectively.

Discriminative duration models (Φd) provide gains comparable to those achieved using

discriminative language models (Φw) for both dialects, but the feature space is almost

four times larger. The joint models trained with both feature sets give consistent gains

with respect to the independent discriminative duration or language models. The gains

observed with AAVE data are approximately twice of what we observe with SAE data.

Combining duration features with pronunciation features does not bring any significant

improvement. Overall, duration features are useful for correcting errors from the baseline

speech recognizer, especially when the pronunciation of the target speech (AAVE speech)

significantly differs from the canonical pronunciation. However, the gains that duration

features provide are not additive.

Discriminative pronunciation modeling with adapted acoustic models

Because it is common practice to use MLLR adaptation to adapt pronunciation of accented

and dialectal speech [178, 191, 202], we next investigate whether our discriminative models
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MLLR N/A w/ SAE w/ AAVE

baseline 38.2 36.8 33.3

Φw 36.7 35.8 32.1

Φs 36.7 35.7 32.5
Φw,Φs 36.3 35.6 32.1

AM rescoring 37.7 36.5† 33.0†
Φps:pc 36.9 35.8 32.8†
Φw,Φps:pc 36.1 35.6 32.0

Table 4.11: WER (%) on AAVE test set for joint discriminative models when the baseline
BMMI acoustic models are adapted to AAVE (w/ AAVE) and SAE (w/ SAE) training
sets using MLLR technique. Results non-significant at p < 0.001 are marked with †.

bring any additional gains when the underlying acoustic models are already adapted using

standard techniques like MLLR. There are two cases to be considered: Adapting the

baseline BMMI models (1) to the SAE training data and (2) to the AAVE training data.

In the first case, we map the acoustic models from SAE Broadcast News domain to SAE

StoryCorps domain. In the second case, the models are not only transformed from one

domain to the other one, but also from SAE to AAVE. We compare these two cases

with the baseline case (baseline BMMI models) and report results on AAVE test data in

Table 4.11. As in the previous experiments we use a matched-pairs test [41] provided by

NIST SCTK toolkit [132] for the statistical significance test. All the results are statistically

significant with respect to the baseline ( first row in Table 4.11) with p < 0.001 except for

the cases marked with †.
When the baseline BMMI models are adapted to SAE data, the WER decreases by

more than 1%. Both discriminative language and pronunciation models (with acoustic or

phonetic features) provide an additional 1% improvement, slightly less than what we get

with the non-adapted baseline AMs. The gains from the two models are not additive.

Interestingly, even after the BMMI models are adapted to AAVE data, we still find

gains from pronunciation models. This confirms our earlier assertion that standard acous-

tic model adaptation (MLLR) is not sufficient to capture the phonetic transformations

observed in AAVE dialect. Not surprisingly, the gains are less than in the unadapted

case (first column from the table). In the adapted case, we found that the gains from the
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language model and the pronunciation models are not additive. This may be due to the

overuse of the limited amount of AAVE training data for both MLLR and the training of

our discriminative models.

4.4 Discussion

Dealing with dialectal or accented speech is one of the important challenges in speech recog-

nition. Pronunciation mismatches between the speech recognizer and the speech from the

target domain is one of the main causes of the performance degradation. Pronunciation

lexicons of general speech recognizers usually contain more than one pronunciation for

only a small number of words. The weak modeling of the pronunciation in the lexicon is

overcome by the acoustic models that represent context dependent phones and are trained

with many hours of speech data. This configuration may be acceptable for standard speak-

ing styles, but when we need to recognize, for example, dialectal speech other than the

standard, trying to capture the pronunciation variations that do not match the canonical

pronunciations with the acoustic models might not be feasible, especially because we do

not usually have large amounts of data for every specific dialect.

There are different approaches that people have proposed to refine the general pro-

nunciation model from the speech recognizer, and also to adapt it to dialectal or accented

speech. The technique we presented to adapt the pronunciation of an out-of-dialect speech

recognizer to dialectal speech is related to recent publications [131, 204, 68]. Zweig, Nguyen

and Heigold [131, 204] present a framework for discriminatively learning parameters not

only from the pronunciation model but also from other components of the speech recog-

nizer. They use flat direct models and segmental conditional random fields to decode a

speech utterance into a word sequence. Apart from features from the language model they

also consider pronunciation related features extracted from a decoded phonetic sequence

that contains surface phones. They use more complex features than the ones we use in our

work, but eventually we could also include more complex features in our models. Jyothi

and colleagues [68] employ their approach to learn the parameters of the pronunciation
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model in terms of WFSTs. Specifically, they train the arcs from the pronunciation lex-

icon WFST that contains in average 1.7 pronunciations per word, in isolation, and also

jointly with the weights for the arcs of the acoustic HMM and context-dependent deci-

sion tree WFSTs. As in our approach, they do not reestimate parameters of the GMMs

from the acoustic models. They report gains for an isolated speech recognition task with

Switchboard data, but not for the continuous case.

Both cited approaches [131, 204, 68] are tested on in-domain data, both the training

data for the speech recognizer and the evaluation set contain data from the same domain.

Their goal is to refine the pronunciation model that is poorly modeled in regular speech

recognizers, so in that sense their work differs from our work.

The features we used for the pronunciation model are simple unigram and bigram

features of phone transformations, but we may see some benefits from, for example, using

triphone transformations, that is, considering phone transformations to the left and to the

right of the current token. Furthermore, we generated the transformations by applying

knowledge-based phonological rules that only consider intra-word phonological variations.

An extension would be to also consider cross-word phonological rules, and using data-

driven phone transformations instead of or in addition to phone transformations generated

from knowledge-based rules.

4.5 Summary

In this chapter we applied discriminative linear models to adapt the pronunciation of an

out-of-dialect speech recognizer into dialectal speech. We ran the experiments in parallel

for two dialectal sets; AAVE and SAE dialects. Our hypothesis was that the style of the

SAE dialect should be closer to the baseline speech recognizer. Therefore, the discrim-

inative models learned with features representing phonological characteristics particular

to AAVE dialect should provide more gains for the AAVE data set. The results obtained

empirically seem to follow this hypothesis. As a preliminary step we re-scored the ASR

N-best lists with the baseline acoustic models and the extended lexicon that incorporates

the phonological rules. The re-scoring improved the WER on the AAVE set, but not on



72

SAE data which empirically validates the usefulness of the knowledge-based phonological

rules to capture pronunciation cues that happen on AAVE dialect. The discriminative

pronunciation models with features representing phonetic transformations were also more

effective for improving the performance on AAVE data than for improving the performance

on SAE data. The gains observed for AAVE dialect were, in general, approximately twice

than those observed for SAE dialect.

Because of the flexibility of our discriminative models we were also able to explore

modeling pronunciation at acoustic state level. Discriminative pronunciation models with

acoustic state features were also more beneficial for AAVE dialect. Discriminative pronun-

ciation models with acoustic states performed slightly better than with phonetic features.

It may be that they are capturing more than just the dialectal pronunciation characteris-

tics. Unlike pronunciation models with phonetic features models relying on acoustic states

provided gains on SAE data.

Jointly estimating parameters from the language model and the pronunciation model

provides further gains on AAVE portion, although these gains are not significant for

pronunciation models with acoustic state features.

Combining acoustic state and phonetic features did not give additional gains over just

using acoustic state features (we did not include these results in the tables). The feature

space of the acoustic state features is much larger than the space of the phonetic features,

and they are also frequently activated. Therefore, when using both feature spaces together

the acoustic state features may conceal the contribution of the phonetic features.

We also explored the impact of duration features since duration is a relevant cue in pro-

nunciation. Including duration features in the discriminative pronunciation models did not

provide significant gains. Discriminative duration models and discriminative pronuncia-

tion models performed similarly, so duration features may also be capturing pronunciation

characteristics of AAVE dialect, but the feature space of discriminative duration models

was much larger than the feature space of the pronunciation models.

Finally, we studied different acoustic model configurations for the baseline speech rec-

ognizer: (1) English Broadcast News speaker-adapted models (generative speaker adapted

models), (2) English Broadcast News BMMI models (discriminative models), (3) English
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Broadcast News BMMI models adapted by MLLR with SAE data, and (4) English Broad-

cast News BMMI models adapted by MLLR with AAVE data. First, using generative

vs. discriminative acoustic models in the baseline (out-of-dialect) speech recognizer did

not impact the behavior of our discriminative models. The estimated discriminative lin-

ear models performed similarly for both baseline AMs. Second, when adapting the channel

and acoustic environment mismatch between the English Broadcast News AMs and the

StoryCorps data (English Broadcast News BMMI models with MLLR adaptation using

SAE data) the overall WER improved, and the performance of our discriminative models

was comparable to the performance with the non-adapted English Broadcast News BMMI

model. Third, when the AMs were adapted with MLLR using AAVE dialectal speech, our

discriminative pronunciation models still provided some gains.



Chapter 5

Joint discriminative modeling of lexical

variation and acoustic confusion for

automated narrative retelling assessment

5.1 Introduction

Narrative production tasks are part of many standard neuropsychological test batteries.

They are intended to collect information related to lexical diversity, cohesion, coherence,

content richness and syntactic complexity [180, 3, 73, 107], useful markers in diagnosing

aphasia [43], autism [105], Alzheimer’s [3] and other neurological conditions. For example,

Western Aphasia Battery (WAB) is administered for detecting presence of aphasia [46],

narration of a wordless picture book is part of the Autism Diagnostic Observation Schedule

(ADOS) [105] and retelling of previously narrated stories is part of both the Developmental

Neuropsychological Assessment (NEPSY) [77] and the Wechsler Logical Memory (WLM)

test [193].

Such tests must be administered and evaluated by experienced clinicians. In the case

of dementia, regular assessment of performance on these tests can lead to early detection

of neurodegeneration. Building tools to automate this process could potentially allow clin-

icians to more easily and efficiently monitor their patients at risk of developing dementia.

In this chapter, I present and evaluate systems based on word tagging models to auto-

mate the scoring of narrative retellings. We evaluate our systems on the Wechsler Logical

Memory test [193], a widely used subtest of the Wechsler Memory Scale neuropsycholog-

ical test used to assess memory function in adults. The approach is general enough to

74
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allow tagging of word confusion networks derived from lattices, thus allowing us to explore

the utility of such representations to achieve robustness to the recognition errors from the

speech recognizer. We analyze different experimental conditions, including: Several adap-

tation levels of the ASR models to the domain, maximum entropy classifiers versus CRFs

log-linear models, different tagsets (BIO versus IO), and several degrees of supervision of

the discriminative log-linear models. The Wechsler Logical Memory test has been shown

to be a good indicator of mild cognitive impairment (MCI) [171, 137, 190, 133], the stage

of cognitive decline that is often a precursor to dementia of the Alzheimer’s type. Thus, we

also analyze the effectiveness of the automatically detected salient features used to assess

the performance on the WLM test to classify elderly individuals as having mild cognitive

impairment.

5.2 Previous work on automated assessment of narrative

retellings for clinical tasks

There are a number of recent developments in applying spoken language processing tech-

niques to automate the evaluation of clinically elicited language data. Roark and col-

leagues [155] automatically extract various markers from spoken responses to a neuropsy-

chological test to analyze the usefulness of these features in discriminating subjects with

mild cognitive impairment from subjects without. They automatically derive speech fea-

tures such as pause frequency and duration, and also linguistic complexity features ex-

tracted from syntactic parse trees. They found that the explored linguistic complexity

markers model different patterns, and therefore they convey complementary information.

The classifiers trained with features derived from these markers show a better classification

performance than classifiers trained with global scores of the neuropsychological test.

Hakkani-Tür and colleagues examine the feasibility of a fully automated system for

the cognitive decline assessment in elderly people [51]. They manually transcribe and

score the recordings from their data sets containing retellings of a story-recall test—

part of a subtest in the Wechsler Memory Scale (WMS)— for detecting degradation in

memory skills related to very mild dementia of the Alzheimer’s type, and narrations of a
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picture description test used for aphasia evaluation. For the manual scoring of the first

test they extract a list of 35 story elements (what they called “semantic content units”)

from the source narrative. If the subject’s retelling contains any phrase from which the

story element could be entailed or inferred, they consider that particular story element

as recalled. The automated scores are extracted by computing the unigrams and bigrams

overlap between the original story and the retellings. For the picture description test, they

also define a set of story elements and score the retellings based on the recalling of these

elements. One of the main goals of the work is to analyze the correlation between the

scores obtained with manual vs. automatic transcripts.

Prud’hommeaux and Roark [146, 145] develop automated scoring models for narrative

retellings based on automatic word-alignment methods. Such alignments are learned in

an unsupervised manner from a parallel corpus of manual transcripts of retellings and

the original source narrative, much as in machine translation training. The accuracy of

the automated scoring depends on correctly identifying which of the propositions or story

events from the source narrative have been included in the retelling from a predetermined

list of story events. Speakers may choose to relate to these elements using diverse words or

phrases. Therefore, an automated method for identifying these elements needs to model

the permissible variants and paraphrasing.

As an initial step towards automation, we replace the manual transcripts used by

Prud’hommeaux and Roark with automated transcripts from an ASR system [96]. The

experiments are performed using the 1-best transcript from the ASR output, and therefore,

the performance of the scoring model degrades significantly in high-error rate scenarios.

The word-alignment models are able to capture linguistic variations that occur in the

retellings, but it does not get enough information from the 1-best transcripts to overcome

the ASR errors or the acoustic confusions. The models are evaluated on retellings from

the Wechsler Logical Memory test.

Hakkani-Tür and colleagues compare the task of automatically scoring the retellings

with natural language summarization, where the speakers need to just utter the key con-

cepts. Following the evaluation metric from speech summarization task they compute the

precision, recall and F-measure of unigrams and bigrams in the retellings with respect to
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the source narrative [51]. Prud’hommeaux and Roark, instead, use techniques common

to automatic machine translation task, in particular, word-alignment models with parallel

corpora, to automate the assessment of the narrative retellings [146, 145].

In this chapter I present an alternative approach based on conditional log-linear tech-

niques used in word tagging tasks for spoken language understanding such as concept and

semantic tagging, or named entity recognition [48, 182, 183, 87]. In contrast to previous

work, we do not constrain our analysis to 1-best hypothesis from the ASR, but use mul-

tiple hypotheses in the form of word confusion networks (WCNs), which have been found

to improve robustness to ASR errors in other tasks [50, 195, 108, 182, 177].

5.3 Framing the problem as a tagging task

The spoken language understanding field includes tasks that involve speech and natural

language processing techniques. The applications are usually built following a sequential

approach where an automatic speech recognition (ASR) system is at the front-end. There-

fore, natural processing techniques originally presented for written text have to be modified

to deal with noisy text containing ASR errors and a different language style. Speech in-

put, and in particular, spontaneous speech is characterized by the frequent occurrence of

disfluencies like filled pauses, repetitions, repairs and false starts. Furthermore, as sponta-

neous speech is often agrammatical, the performance of systems like part of speech (POS)

taggers, syntactic parsers or name entity recognition (NER) systems, originally trained

with written text degrades considerably. Various mechanisms have been adopted to make

the systems robust to ASR errors.

One of them, adopted in our approach, consists in considering multiple candidates

in the form of lattices or word confusion networks [50, 87] explained in more detail in

Section 2.1.5. Illustrating with an example, consider that a person utters get cash and

the ASR 1-best output is the ash. If we take as output the lattice from Figure 5.1 apart

from the 1-best output we also keep other candidates where one of them is the correct

transcript.

Some popular application domains of spoken language understanding are spoken dialog
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0 1<s>/1

2get/0.3

3
the/0.2

4

cash/0.6

ash/1

that/0.4

excess/0.3

5</s>/1

Figure 5.1: ASR output in the form of lattice.

systems, spoken information retrieval and speech translation [127], and NER is a common

preliminary step in many spoken language understanding tasks. A NER task detects the

segments representing entities and tags them with a specific entity such as person, location

or organization. Framing the task as a tagging system, the goal is to assign a tag to each

word from the sentence. The tag represents the category to which the word belongs.

Different granularity levels of tagging have been proposed. We can define a tagset with

just tags representing the entity (LOC, ORG, PERSON) and an additional tag for words

outside any entity (O), an extended tagset with tags that also specify if the word is in the

beginning (B) or inside (I) the entity—BIO models—or a more fine-grained model that

also includes a tag for the last word of the entity (L) and for one word-length entities

(U)—BILOU models [151]. Table 5.4 shows a tagging example with each tagset.

Tagging Reggie Waldi Blinker had his indefinite lifted by FIFA

IO-tags I-PER I-PER I-PER O O O O O I-ORG
BIO-tags B-PER I-PER I-PER O O O O O B-ORG
BILOU-tags B-PER I-PER L-PER O O O O O U-ORG

Table 5.1: Tagsets for NER. Adapted example sentence from Ratinov and Roth’s paper
[151]

By stating the NER task as a tagging problem, generative and discriminative tech-

niques such as hidden Markov models (HMMs), maximum entropy models (ME) or con-

ditional random fields (CRFs)—previously applied for POS tagging—can be used for es-

timating the NER models.

The approach we propose for the automated scoring of the narrative retellings follows
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the same strategy as the one used for NER, but in our case, first, the segments of interest

express concepts instead of entities, and second, we do not need to consider one of the

main issues of NER tasks [183]; entities often contain proper names that may be absent

in the limited vocabulary of the ASR system.

In particular, I present and evaluate the use of word tagging models based on discrim-

inative log-linear techniques (ME and CRFs) to build the automated scoring system. The

evaluation of the scoring system is done with different input alternatives; with the ASR

1-best alone, with a set of transcript candidates represented as WCNs, and with manual

transcripts.

5.4 Discriminative log-linear models for word tagging tasks

Log-linear models are widely used in natural language processing (NLP) tagging tasks as

the discriminative alternative of hidden Markov models (HMM) [12, 138, 152, 91]. Word

tagging systems assign a tag ti from a set T to each word wi of a word sequence w1,N .

The assigned tags are the ones that maximize the conditional likelihood of the tags given

the input sequence: P (t1,N |w1,N ).

Parameters of the discriminative log-linear model are estimated by maximizing the

conditional likelihood of the training data, or what it is equivalent, by maximizing the

entropy of the model given the constraints set by the training data. Replicating the

explanation from the paper of Berger and colleagues [12] the idea of the maximum entropy

models lies in not making any assumption apart from what we know from the data and in

choosing the most uniform model that meets the contraints imposed by the data. Consider

a conditional distribution p(t|w) ∈ P where P denotes the set of all the conditional

probability distributions. Consider also a set of training sample pairs in the form of (w, t)

that can be summarized in terms of its empirical distribution p̃:

p̃(w, t) =

∑
w,t(w, t)

N
(5.1)

where
∑

w,t(w, t) specifies the number of times the pair (w, t) occurs in the training

data and N the total number of samples.
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Next, the concept of feature functions is introduced to describe facts observed in the

data. A feature function is a non-negative valued function. The expected value of a feature

function f with respect to the empirical distribution p̃(w, t) can be expressed as:

Ep̃[f ] =
∑
w,t

p̃(w, t)f(w, t) (5.2)

And the expected value of f with respect to the model distribution p(w, t) is:

Ep[f ] =
∑
w,t

p(w, t)f(w, t) (5.3)

As the model distribution p(w, t) cannot be computed in general because of all the pos-

sible w that should be taken into account, the model distribution is rewritten as p(w)p(t|w)

and the probability p(w) is substituted with the empirical distribution of w in the training

set p̃(w).

Ep[f ] =
∑
w,t

p̃(w)p(t|w)f(w, t) (5.4)

Given a set of feature functions fi with i = 1, ...n we force our model to follow the

statistics of these features in the training set by constraining the expected value Ep[f ] to

be the same as the expected value of f in the training set Ep̃[f ]:

Ep[f ] = Ep̃[f ] (5.5)

Substituting with Equations 5.2 and 5.4:

∑
w,t

p̃(w)p(t|w)f(w, t) =
∑
w,t

p̃(w, t)f(w, t) (5.6)

This requirement is defined as the constraint equation. We just consider the subset C
of conditional models p(t|w) from P that satisfy the constraint.

C = p ∈ P | Ep[fi] = Ep̃[fi] for i = 1, ..., n (5.7)
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Among all the models p ∈ C, the maximum entropy principle [60] requires the selection

of the most uniform distribution. The uniformity of the conditional distribution can be

mathematically expressed with the conditional entropy:

H(p) = −
∑
w,t

p̃(w)p(t|w)logp(t|w) (5.8)

Thus, based on the maximum entropy principle we select a distribution p̂ from the

subset C with the maximum entropy H(p):

p̂ = argmax
p∈C

H(p) (5.9)

The distribution p̂ with maximum entropy is unique in any constrained set C, and it

can be estimated with the method of Lagrange multipliers. The Lagrangian Λ(p, α) can

be defined as:

Λ(p, α) = H(p) +
∑
i

αi(Ep[fi]− Ep̃[fi]) (5.10)

Holding α fixed, the unconstrained maximum of the Lagrangian Λ(p, α) is computed

over all p ∈ P. The obtained p and Lagrangian value Λ(p, α) are denoted as pα and Ψ(α),

respectively, and take the following form:

pα(t|w) =
exp(

∑
i αifi(w, t))

Zα(w)
(5.11)

Ψ(α) = −
∑
x

p̃(w)logZα(w) +
∑
i

αip̃(fi) (5.12)

where Zα(w) is a normalization factor determined by the requirement that
∑

t pα(t|w) =

1 for all w:
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Zα(w) =
∑
t

exp(
∑
i

αifi(w, t)) (5.13)

Finally, we find the parameters α that maximize Ψ(α):

α̂ = argmax
α

Ψ(α) (5.14)

The log-likelihood of the model p with respect to the empirical distribution p̃ is defined

as:

Lp̃(p) = log
∏
w,t

p(t|w)p̃(w,t) =
∑
w,t

p̃(w, t)logp(t|w) (5.15)

It is straightforward to show that Ψ(α) is just the log-likelihood for the exponential

model pα(t|w):

Lp̃(pα) =
∑
w,t

p̃(w, t)logpα(t|w) (5.16)

=
∑
w,t

p̃(w, t)log(
exp(

∑n
i=1 αifi(w, t))

Zα(w)
)

=
∑
w,t

p̃(w, t)(−logZα(w) +
n∑
i=1

αifi(w, t))

= −logZα +

n∑
i=1

αiEp̃[fi]

= Ψ(α)

Therefore, the model p̂ ∈ C with maximum entropy is the model in the parametric

family pα(t|w) that maximizes the likelihood of the training data.
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The model parameters α estimated by maximizing the conditional likelihood make the

correct tag t more likely than the rest of the possible tags t′ 6= t for a given input w,

as opposed to the case where the parameters α are estimated by maximizing the joint

likelihood, where the estimated parameters make the pair (t, w) as likely as possible.

Apart from their discriminative nature, conditional log-linear models also provide more

flexibility than, for example, HMMs for defining the feature vectors. They do not make any

independence assumptions about the features, and their framework allows the inclusion

of features from multiple knowledge sources. We evaluate the performance of two kind of

discriminative log-linear models: Maximum entropy classifiers [12] and conditional random

fields [91] discussed in the following sections.

When the parameters of the model are trained by maximizing the likelihood of the data,

as in log-linear models, it is usually necessary to add a regularization term that penalizes

large parameter values and prevents overfitting to the training data. The most popular

regularizers are L1 and L2. The L1 regularizer produces sparse parameter vectors with

many of the parameters equal to zero by penalizing the weights for its L1 norm, reducing

in this way the dimensionality of the model. The L2 regularizer, instead, penalizes its L2

norm, and produces parameters close to zero, but not exactly zero. The disadvantage of

L1 with respect to L2 is that it is not differentiable, and consequently the parameters of

the log-linear models cannot be efficiently estimated with optimization algorithms such as

stochastic gradient descent (SGD), recently applied for NLP tasks [181].

5.4.1 Maximum entropy classifiers

Maximum entropy models are local classifiers that estimate a class, or in our case a tag,

for each position i in the input sequence h. Its corresponding graphical model is depicted

in Figure 5.2, and mathematically the model is expressed as:

p(ti|hi) =
exp(Σd

k=1αkφk(hi, ti))

Z(hi)
(5.17)

where hi is the input with information relative to the word wi, and Z(hi) a normal-

ization factor of the form:
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Z(hi) =

T∑
t′=1

e
∑d

k=1 αkφk(hi,t
′
i) (5.18)

The probability of the entire tag sequence is computed by:

p(t1,N |w1,N ) =

N∏
i=1

p(ti|hi) (5.19)

...

...

tit1 tNtN-1

h1 hi hN-1 hN

w1,N

...
tit1 tNtN-1

w1,N

...

...

...

Sunday, April 6, 14

Figure 5.2: Graphical model of the maximum entropy classifier.

The parameters αk are the parameters to learn, and φk(h, t) represent the feature

functions, usually binary or indicator functions related to the context of the word and

information from other knowledge sources with different levels of dependencies. For ex-

ample, Zhang and Johnson define the following features for a NER task: (1) Previous

two predictions ti−1 and ti−2 (2) current word wi (3) wi word type (all-capitalized, is-

capitalized, all-digits, alphanumeric, etc.) (4) prefixes and suffixes of wi (5) tokens in

the window c = (wi−2, wi−1, wi, wi+1, wi+2) (6) capitalization pattern in the window c (7)

conjunction of c and ti−1 (extracted from Ratinov and Roth [151])

5.4.2 Conditional random fields

Conditional random fields (CRFs), as opposed to maximum entropy classifiers, model the

conditional probability of the entire tag sequence t1,N given the input sequence w1,N . It

does not make any independence assumption in the estimation of the tags sequence. In a
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general form CRFs can consider a large variety of probabilistic relationships between the

variables. For example, Sutton and colleagues apply them for a two-level dynamic CRF

part of speech tagging and noun phrase chunking with better results than when modeling

each task independently [175]. Skip-chain CRFs have been used to model long-distance

dependencies between entities for tasks such as information extraction [174]. Linear-chain

CRFs are popular for sequence labeling or tagging tasks, our task of interest. Their

graphical structure is illustrated by Figure 5.3.

...

...

tit1 tNtN-1

h1 hi hN-1 hN

w1,N

...
tit1 tNtN-1

w1,N

...

...

...

Sunday, April 6, 14

Figure 5.3: Graphical model of the linear-chain CRF.

The conditional probability of the tag sequence t1,N given the input sequence w1,N can

be expressed as:

P (t1,N | w1,N ) =

exp

(
d∑

k=1

αkφk(t, w)

)
Z(t)

(5.20)

The parameters to estimate by maximizing the conditional probability P (t1,N |w1,N )

(specifically, the logarithm of the conditional probability is maximized) are the parameters

αk. The term Z(t) is a global normalization constant over the entire sequence —rather

than local for each position as is the case for maximum entropy classifiers— represented

as:

Z(t) =
∑
t

exp

(
d∑

k=1

αkφk(t, w)

)
(5.21)
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The features φk(t, w) are Markov order 1 features and capture dependencies between

a pair of adjacent states ti−1, ti, the whole input sequence w1,N and the position in the

sequence i; φk(ti−1, ti, w, i). Additionally, it is convenient to also include redundant fea-

tures for back-off, as is common in n-gram language modeling. These back-off features are

Markov order 0 features that only depend on the tag at the current position, represented

with the function φk(ti, w, i).

5.4.3 Discriminative log-linear models with word confusion networks

By using word confusion networks (WCNs) we can get a set of acoustically confusable word

candidates for each position in the sequence. The input sequence w1,N is extended so that

instead of having just a word sequence we have a sequence of vectors v1,N . Each vector

of dimension V , the vocabulary size of the speech recognizer, represents a word confusion

bin from the WCN. The bins are mapped to vectors following a bag-of-words (BOW)

representation. Each word from the vocabulary is assigned an identifier, and a confusion

bin is mapped to the vector by setting to one the positions of the vector that match with

the identifiers of the words from the bin. The rest of the elements from the vector are set

to zero. Figure 5.4 illustrates a training example for the tagging task; (x1,N , t1,N ). The

term x1,N represents any of the alternative input sequences we can use: (1) The manual

transcripts r1,N , (2) the best scoring word sequence from the speech recognizer w1,N or (3)

the sequence of vectors representing the confusion bins from the WCN v1,N . Each input

position is paired with a tag from the tag sequence.

5.4.4 Feature templates

Given tagged or labeled examples of the form (w1,N , t1,N ) the features extracted for each

example are Markov order 0 (backoff features) and Markov order 1 on the tags t1,N for the

CRFs, and just Markov order 0 features for the maximum entropy classifiers. Regarding

the features that include variables from the input sequence w1,N , we explore two settings,

(1) just context-independent features, and (2) extending the set with context-dependent

features that apart from the current position they also capture one position to the left

and to the right. All the feature templates are illustrated in Table 5.2.
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Figure 5.4: Input and output sequence example for log-linear models.

Markov order 0 Markov order 1
(ME) (CRF)

Context ti ti−1ti
independent (CI) tiwi ti−1tiwi
Context tiwi−1 ti−1tiwi−1

dependent (CD) tiwi+1 ti−1tiwi+1

Table 5.2: Feature templates either using or not using neighboring tag ti−1 (ME vs. CRF),
and using or not using neighboring words wi−1, wi+1 (CI vs. CD).

When tagging confusion networks, each element in the input vector vi different from

zero results in a feature instance. Thus, if there are five elements ( confusable words ) equal

to one at position i, then there will be five different wi values being used to instantiate

the features in Table 5.2. Second, following Kurata and colleagues [87], we multiply the

feature counts for the context-dependent features by a weight to control their influence on

the model.

5.5 Combining log-linear and word-alignment models

The word-alignment models that Prud’hommeaux and Roark [145, 146, 96] presented for

the automated scoring of the retellings are generative and learned in an unsupervised way.
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They are trained with expectation maximization (EM) by aligning the retelling transcripts

to the source narrative without any supervised data, which makes this approach attractive.

However, generative models lack the flexibility to include arbitrary features from the input

due to the independence assumptions between features imposed by the model. When

the retelling transcripts come from the ASR output, the word-alignment models have to

capture the recognition errors. As shown in previous work [96], if the ASR output has

relatively low error rate the word-alignment models are still able to score the retellings

quite accurately, but in noisier conditions the models are inconsistent in providing robust

automated scores. However, as the word-alignment output is still a good approximation

of the correct scores, in a recent paper we propose two ways in which we can use the word-

alignment output in our discriminative log-linear models [99]. In this section I describe the

two ways: (1) By augmenting the feature space with the word-alignment output, and (2)

by using the word-alignment output as the tags to train an unsupervised discriminative

model.

5.5.1 Word-alignment derived features

Log-linear models provide a suitable framework to include arbitrary features that can

overlap and do not require an independence assumption. Consequently, adding features

that depend on the word-alignment output z1,N into the feature set is straightforward.

It is also common practice to include the posterior probability from the generative ASR

system into the feature set when training discriminative language models for ASR systems.

The features derived from the word-alignment output z1,N are created with the feature

templates from Table 5.3 and incorporated into the feature set to learn the discriminative

models.

5.5.2 Unsupervised discriminative tagger

The main drawback of discriminative models is the need of hand-labeled data. To train

our tagging model, for example, we need (x, t) sample pairs where x is the retelling and

t the manual tag sequence. Tagging the retellings is quite laborious due to the vari-

ety of paraphrases subjects use to refer to a given story element. As an alternative, we
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Markov order 0 Markov order 1
(ME) (CRF)

Context independent (CI) tizi ti−1tizi
Context tizi−1 ti−1tizi−1

dependent (CD) tizi+1 ti−1tizi+1

Table 5.3: Feature templates for the word-alignment output either using or not using
neighboring tag ti−1 (ME vs. CRF), and using or not using neighboring word-alignment
output zi−1, zi+1 (CI vs. CD).

replace manual tag sequences with the word-alignment outputs z1,N to have an unsuper-

vised discriminative modeling scenario. The tag sequences will be noisy, since they are

automatically generated from a stochastic model (word-alignment model) whose perfor-

mance depends on the accuracy of the speech recognizer. The automatically generated

tag sequences convey the noise coming from the speech recognizer and word-alignment

model.

5.6 Experimental setup

5.6.1 Task

The collection of narrative retellings used in our experiments were elicited using the Wech-

sler Logical Memory (WLM) test [193], the same test used in previous work [146, 145, 96].

In the WLM test, the subject listens to the examiner read a brief narrative and then

retells the narrative twice; immediately upon hearing it and after about 20 minutes of

unrelated activities. The source narrative that the examiner reads (top paragraph) and

an example retelling (paragraph at the bottom) are depicted in Figure 5.5. The story

elements are separated by slashes in the source narrative, and the elements recalled by

the subject are underlined in the example retelling. The examiner grades the subject’s

response by counting how many story elements the subject recalled from a predefined set

of 25 elements. The example retelling received a score of 12, with one point for each of

the recalled story elements: Anna, Boston, employed, as a cook, and robbed of, she had

four, small children, reported, station, touched by the woman’s story, took up a collection

and for her.
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Anna/ Thompson/ of South/ Boston/ employed/ as a cook/ in a 
school/ cafeteria/ reported/ at the police/ station/ that she had 
been held up/ on State Street/ the night before/ and robbed 
of/ fifty-six dollars/. She had four/ small children/ the rent was 
due/ and they hadn’t eaten/ for two days/.

Ann Taylor worked in Boston as a cook.  And she was robbed of 
sixty-seven dollars. Is that right? And she had four children and 
reported at the some kind of station. The fellow was sympathetic 
and made a collection for her so that she can feed the children

Wednesday, March 12, 14

Figure 5.5: Excerpt of narrative read by the clinician (at the top) and an example retelling
(at the bottom).

The clinical evaluation guidelines specify what lexical substitutions, if any, are allowed

for each element. Some elements, Thompson, school, cafeteria and four, must be recalled

verbatim. In other cases, subjects are given credit for variants, such as Annie for Anna,

or paraphrasing of concepts such as sympathetic for touched by the woman’s story.

5.6.2 Tagsets

For this task we investigate two of the three different tagsets explained in Section 5.3 for

tagging the story elements. Table 5.4 shows how a retelling is tagged with each tagset.

The simplest tagset (IO) simply identifies words that are in a story element; there are

only 26 tags. The tag O is assigned to the words that do not belong to any story element,

and tags I1 to I25 represent the 25 story elements from the source narrative.

The larger tagset (BIO) handles multi-word story elements by differentiating among

positions in the story element chunk as described in Section 5.3. This tagset is only of

utility for models with Markov order greater than zero, and hence are only used with CRF

models.

Tagging anna rent was due

IO-tags I1 I19 I19 I19
BIO-tags B1 B19 I19 I19

Table 5.4: Two possible tagsets for labeling.
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5.6.3 Data

Our models are trained on immediate and delayed retellings from 144 subjects with a

mean age of 85.4, of whom 36 were clinically diagnosed with MCI (training set). We

evaluate our models on a set of retellings from 70 non-overlapping subjects with a mean

age of 88.5, half of whom had received a diagnosis of MCI (test set).

The recordings are sometimes made in an informal setting, such as the subject’s home

or a senior center. For this reason, there are often extraneous noises in the recordings such

as music, footsteps, and clocks striking the hour. Although this presents a challenge for

the ASR, part of the goal of our work is to demonstrate the robustness of our methods to

noisy audio.

5.6.4 ASR output

Each retelling from the data set is decoded with the speech recognizer to get the best scor-

ing word sequences and word confusion networks generated with the algorithm proposed

by Mangu and colleagues [109], implemented in the IBM toolkit. We keep in the bins only

those word candidates with posteriors above 0.002. We use different ASR configurations,

with different levels of adaptation: (1) The baseline speech recognizer trained on out-of-

domain data, without adaptation, (2) the speech recognizer with adapted acoustic models,

(3) the speech recognizer with adapted language models, and (4) the speech recognizer

with adapted acoustic and language models.

Baseline ASR system

The baseline ASR system used in the current work is a English Broadcast News system

trained with the IBM toolkit following the recipe from Kingsbury and colleagues [74].

The acoustic models are the same as the ones used in the experiments from Chapter 4

and detailed in Section 4.3.2. The language model is defined over an 84K vocabulary and

consists of about 1.8M bigrams, 1M trigrams and 331K 4-grams, estimated from standard

English Broadcast News corpus. The decoding is performed in several stages using suc-

cessively refined acoustic models—a context-dependent model, a vocal-tract normalized
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model, a speaker-adapted maximum likelihood linear regression (MLLR) model, and fi-

nally a discriminatively trained model with the boosted MMI criteria [141]. The system

gives a word error rate of 13.1% on the 2004 Rich Transcription benchmark by NIST [33],

which is comparable to state-of-the-art for equivalent amounts of acoustic training data.

On the WLM corpus, the recognition word error rate was significantly higher at 47.2%

due to a mismatch in domain and the skewed demographics (age) of the speakers.

Adapted ASR system

We improve the performance of the above English Broadcast News models by adapting

to the domain of the WLM retellings. The acoustic models are adapted using standard

MLLR, where linear transforms are estimated in an unsupervised manner to maximize

the likelihood over the transcripts of the retellings. The transcripts are generated from

the baseline system after the final stage of decoding with the discriminative model. The

language models are adapted by interpolating the in-domain model (weight=0.7) with the

out-of-domain model. The gains from these adaptations are reported in the Table 5.5.

1-best oracle oracle
System (%) WCN(%) lat(%)

Baseline 47.2 39.9 27.7
AM adaptation 38.2 30.6 21.2
LM adaptation 28.3 29.5 19.9
AM+LM adaptation 25.6 25.5 16.5

Table 5.5: Improvement in ASR WER by adapting the Broadcast News models to the
domain of narrative retelling.

As expected, we find substantial gains from both acoustic model (AM) and language

model (LM) adaptation. Furthermore, we find benefit in employing them simultaneously.

We also include the oracle values of the WCNs and lattices for each ASR configuration.

In theory, the oracle WER for WCNs should be better than the oracle WER for lattices,

since they are considering paths that are not in the lattices. However, there are a couple

factors that make the oracle WER of the WCNs worse than the oracle WER of the lattices:

One is the threshold applied on the WCN bins to prune word candidates with posteriors

lower than the threshold, and a second factor is the alignment errors that are introduced
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when generating the word candidate bins of the WCNs.

The results from the table refer to the default threshold that is the one we use for

our experiments, but we also computed the WERs with a lower threshold. When we

lower the threshold the substitution errors are reduced, but the insertion and deletion

errors are relatively unchanged. The oracle substitution error rate with WCNs is similar

to the oracle substitution error rate with lattices, but the insertion and deletion error

rate is significantly higher, probably due to the alignment errors. Similarly, the 1-best

WER of the ASR system with adapted LMs is slightly better than the oracle WER of the

WCNs, but the substitution error rate of the 1-best transcripts is higher than the oracle

substitution error rate of the WCNs.

5.6.5 Automated scoring system

The log-linear models are trained with MALLET toolkit implementation for maximum

entropy-based classification and sequence tagging based on linear chain CRFs [111]. The

toolkit provides implementations of several classifiers, and also sequence tagging imple-

mentations for HMMs, MEMM and linear-chain CRFs.

MALLET uses L-BFGS quasi-Newton method for the estimation of the model, and

by default the regularizer is L2 with variance values of 1.0 and 10.0 for the maximum

entropy classifier and linear-chain conditional random field, respectively. We use the

default settings of MALLET in our experiments.

5.6.6 Results

We analyze the performance of the scoring system with three kind of input sequences:

(1) ASR 1-best word sequence, (2) ASR word confusion networks and (3) the manual

transcripts that will set the upper bound in the accuracy of the scoring model. The ASR

1-best and word confusion networks are extracted from several ASR configurations that

differ in their adaptation level to the task data: (1) Baseline speech recognizer (out-of-

domain English Broadcast News recognizer), (2) speech recognizer with domain adapted

acoustic model, (3) speech recognizer with domain adapted language model, and (3) speech

recognizer with domain adapted acoustic and language model. The performance of the
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word-alignment models, trained with manual transcripts, is also included[145, 146, 96],

since its output is used with the log-linear models as an extra feature, or as the output

tag sequence for the discriminative training.

Each story element is automatically tagged by the systems as either having been

recalled or not, and this is compared with manual scores to derive an F-score accuracy by

calculating precision and recall of the recalled story elements. We do not take into account

whether the boundaries of the story elements are correctly recognized. If any of the words

in the story element is correctly tagged, we consider that story element as recalled. This

is a reasonable approach to take, since the manual tagging annotations are quite noisy

regarding the boundaries of the recalled story elements. Also, the input sequences are

prefiltered before providing them to the scoring system by eliminating function words.

Source narrative in a school

Manual transcript: at the public schools
Manual tags I7 I7 I7 I7

Automatic transcript were schools
Automatic tags O I7

Recalled element 7

Table 5.6: Boundary mismatch between manual and automatic tagging.

Log-linear based automated scoring

When looking at the scoring performance of the discriminative log-linear models we explore

the impact of including the context information from the input and output sequence

by running the following experiments: (1) Without any context information, (2) with

context information from the input sequence, (3) with context information from the output

sequence, and (4) with context information from the input and output sequence.

Context-independent features. Table 5.7 summarizes the accuracy of the maximum

entropy classifier and conditional random fields when we do not consider any context

information from the input sequence. Maximum entropy classifiers do not either consider

the context of the tag sequence while conditional random fields just look at the value from

the previous tag (Markov order 1).
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Transcripts 1-best WCN manual
ASR base AM LM AM+LM base AM LM AM+LM N/A
Word-alignment 71.9 77.3 84.3 85.4 N/A 88.8
ME 76.0 81.7 84.6 85.6 78.9 83.4 84.0 84.7 86.4
CRF 80.3 87.3 89.7 91.4 83.7 88.8 88.2 90.8 94.4

Table 5.7: Story element F-score achieved by log-linear models (ME and CRF) using context
independent features (CI) with 3 different inputs (1-best ASR, word confusion network, and
manual transcripts) and different ASR models (baseline out-of-domain, AM adapted, LM adapted
and AM+LM adapted).

Maximum entropy classifiers beat word-alignment models just in noisy conditions.

The average F-score is similar for both models in low error rate scenarios. Conditional

random fields perform significantly better than maximum entropy classifiers in all the

configurations, especially in low error rate scenarios, when the transcripts are generated

with the fully adapted ASR system or with manual transcripts.

Word confusion networks are most effective in noisy scenarios. As the error rate of

the transcripts decreases the number of word candidates in the bins gets smaller, and

therefore, the performance with word confusion networks gets closer to the performance

with the best scoring word transcript candidate. With domain adapted language models

the performance is a bit worse, probably because the candidates from the bin that are

kept after the pruning of the candidates with posteriors lower than the threshold are not

actually acoustically confusable candidates.

Figure 5.6 illustrates the F-scores for the story elements whose accuracy differs with

maximum entropy classifiers and CRFs, with the unadapted speech recognizer. The graph

from the left refers to the 1-best transcript (figure(a)), the graph from the middle to

the WCNs (figure (b)), and the graph from the right to the manual transcripts (figure

(c)). Story elements related to cafeteria, small children, the rent was due and took up a

collection are better recognized with maximum entropy classifiers, although this difference

vanishes with manual transcripts. For the rest of the story elements from the graphs,

CRFs perform better, especially, for story elements related to The police and for her.

This difference may come from the fact that the story elements for her contain words that

could also be common in parts of the retelling that do not belong to any story element.

Regarding the story element The police the Markov order 1 features help in disambiguating
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this story element with story element (10): at the police.

(3) of South (South in any context)
(6) as a cook (cook or some form of the word)
(8) cafeteria (cafeteria)
(13) on State Street (State Street in any context)
(14) the night before (indication that the hold-up occurred the previous night)
(17) she had four (four is required with an indication that the children were hers)
(18) small children (children or a synonym is required)

(19) the rent was due (phrase indicating that the rent was due)
(20) and they had not eaten (indication that her children or family were without 
food)
(21) two days (two days or phrase meaning about two days)
(22) The police (word or phrase signifying one or more members of the police 
department, in any context)
(24) took up a collection (phrase indicating that money was collected)
(25) for her (indication that the money collected was for her or her children)

Sunday, March 2, 14

Figure 5.6: Story elements whose F-score differs for ME and CRF models. (a) ASR 1-best,
(b) ASR WCNs, (c) manual transcripts

Context-dependent features and BIO tagset. Next, we include context information

from the input sequence. In particular, we add to the input information of the current

position the input values from the previous and next position in the sequence. We use a

scaling weight of the context-dependent features equal to 0.3. We also tried a couple more

values (0.5 and 1.0), but 0.3 gave the best results.

Transcripts 1-best WCN manual
ASR base AM LM AM+LM base AM LM AM+LM N/A
ME 80.1 87.3 90.0 91.1 83.5 88.6 88.2 90.3 93.3
CRF-IO 80.6 88.0 89.9 91.2 84.2 89.6 88.8 90.5 94.7
CRF-BIO 81.1 87.9 90.6 91.7 84.5 89.5 88.8 90.8 94.7

Table 5.8: Story element F-score achieved by log-linear models (ME and CRF) when adding
context dependent features (CD) and BIO tags for the CRF models, with 3 different inputs
(1-best ASR, word confusion network, and manual transcripts) and different ASR models (baseline
out-of-domain, AM adapted, LM adapted and AM+LM adapted).

When including the context information the gap between maximum entropy classifiers

and conditional random fields gets significantly reduced. The average F-scores are similar
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for both models in all conditions. The use of word confusion networks over the best scoring

word sequence is just effective in noisy scenarios. Using a more fine-grained tagset does

not bring significant improvements on the average F-score obtained with the CRF models,

possibly because of the limited training data.

Figure 5.7 gathers story elements whose F-score gets degraded or improved after con-

sidering the context from the input sequence. For example, the story element that refers

to the word “reported” benefits from the context information, probably because the set of

words used to recall this story is quite variable. This improvement is not seen with ASR

1-bests, possibly, because of the high degree of noise in the transcripts. Context informa-

tion is also helpful to detect that when the word “street” goes in some specific context it

belongs to a story element (story element 13). Also, the detection of story elements “and

they had not eaten”, “two days”, “The police” and “for her” considerably improves with

context related features. However, for the story element ”for her” taking into account the

previous tag on the output sequence seems to degrade the performance.

(3) of South (South in any context)
(5) employed (indication that she held a job)
(6) as a cook (cook or some form of the word)
(9) reported (formal statement was made to someone in authority)
(10) at the police (police in any context)
(13) on State Street (State Street in any context)

(14) the night before (indication that the hold-up occurred the previous night)
(19) the rent was due (phrase indicating that the rent was due)
(20) and they had not eaten (indication that her children or family were without food)
(21) two days (two days or phrase meaning about two days)
(22) The police (word or phrase signifying one or more members of the police 
department, in any context)
(25) for her (indication that the money collected was for her or her children)

Monday, March 24, 14

Figure 5.7: Story elements whose F-score differs for ME and CRF models when adding
input context. (a) ASR 1-best, (b) ASR WCNs, (c) manual transcripts
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Combining word-alignment and log-linear models

After studying the supervised scoring models, we use the output from the word-alignment

model to explore two new scenarios: (1) Hybrid discriminative tagging and (2) unsuper-

vised discriminative tagging explained in Section 5.5.1 and Section 5.5.2, respectively.

Context-independent features. As shown in Table 5.9, the unsupervised scenario

follows the same trend as the supervised scenario; CRFs perform better than maximum

entropy classifiers. However, in the unsupervised case, the higher accuracy of the max-

imum entropy classifiers over the word-alignment models disappears with low error rate

input sequences. As in the supervised case, the word confusion networks are effective only

with noisy inputs. The unsupervised models have lower accuracy than their supervised

counterparts, but they are still competitive.

The hybrid discriminative models give the best F-scores among the three scenarios.

In this case, using CRFs does not provide consistent gains over the maximum entropy

classifiers, probably because the word-alignment output is a strong predictor of the output

tag, and the Markov order 1 features do not add extra information to the discrimination.

Furthermore, using word confusion networks is not helpful even with noisy inputs. The

performance of the hybrid model with the transcripts from the fully adapted ASR system

is just over 2% worse than with manual transcripts.

Training Transcripts 1-best WCN manual
Scenario ASR base AM LM AM+LM base AM LM AM+LM N/A
Word-alignment 71.9 77.3 84.3 85.4 N/A 88.8
Sup. ME-CI 76.0 81.7 84.6 85.6 78.9 83.4 84.0 84.7 86.4

CRF-CI 80.3 87.3 89.7 91.4 83.7 88.8 88.2 90.8 94.4
Unsup. ME-CI 72.1 79.3 82.7 84.2 77.5 81.2 83.4 83.2 84.8

CRF-CI 79.4 85.4 86.8 88.0 81.2 85.8 86.2 87.2 90.5
Hybrid ME-CI 88.1 89.4 89.2 89.6 87.6 89.2 88.8 89.5 91.8

CRF-CI 87.0 90.9 91.5 92.1 87.4 91.5 90.1 92.4 94.6

Table 5.9: Story element F-score achieved by combining word-alignment model and log-linear
models (ME and CRF) using context independent features (CI) under 3 different scenarios
(supervised, unsupervised and hybrid), with 3 different inputs (1-best ASR, word confusion net-
work, and manual transcripts) and different ASR models (baseline out-of-domain, AM adapted,
LM adapted and AM+LM adapted).
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Context-dependent features and BIO tagset. When including features related to

the context information from the input sequence, the performance of the unsupervised

maximum entropy classifiers is similar to the performance of the unsupervised CRFs.

However, with noisy transcripts the CRFs show modest gains over the maximum entropy

classifiers, as shown in Table 5.10.

The hybrid models do not get any significant benefit from the context dependent

features. As mentioned earlier the features related to the word-alignment output are a

good predictor of the output tag, and the contribution of the rest of the features gets

reduced.

As in the supervised scenario the more fine-grained tagset (BIO tagset) does not pro-

vide any significant gains either in the unsupervised or hybrid scenarios.

Training Transcripts 1-best WCN manual
Scenario ASR base AM LM AM+LM base AM LM AM+LM N/A
Sup. ME-CD 80.1 87.3 90.0 91.1 83.5 88.6 88.2 90.3 93.3

CRF-CD-IO 80.6 88.0 89.9 91.2 84.2 89.6 88.8 90.5 94.7
CRF-CD-BIO 81.1 87.9 90.6 91.7 84.5 89.5 88.8 90.8 94.7

Unsup. ME-CD 77.1 83.1 86.5 89.0 80.2 85.0 86.2 87.6 90.7
CRF-CD-IO 79.1 85.3 87.1 88.3 81.0 85.9 86.4 87.5 90.3
CRF-CD-BIO 79.1 85.6 87.2 88.4 81.3 85.9 86.2 87.3 90.6

Hybrid ME-CD 88.4 90.2 90.7 91.6 88.6 90.5 90.4 91.4 93.5
CRF-CD-IO 87.9 91.3 91.6 92.5 88.3 91.7 90.7 92.1 94.8
CRF-BIO 87.8 91.9 91.8 93.0 88.7 92.0 90.7 92.3 94.7

Table 5.10: Story element F-score achieved by combining word-alignment model and log-linear
models (ME and CRF) when adding context dependent features (CD) and BIO tags for the
CRF models, under 3 different scenarios (supervised, unsupervised and hybrid), with 3 different
inputs (1-best ASR, word confusion network, and manual transcripts) and different ASR models
(baseline out-of-domain, AM adapted, LM adapted and AM+LM adapted).

5.6.7 MCI classification

The main goal of this chapter is to explore the best practices to accurately detect in

retellings the story elements from a source narrative. However, as Prud’hommeaux and

Roark empirically demonstrated that features extracted from the retellings of the WLM

test are useful in distinguishing subjects with mild cognitive impairment (MCI) from

neurotypical age-matched controls [145, 146, 96], we also run the MCI classification ex-

periments with the output from our log-linear models to see how improvements in the
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scoring systems translate into the classification.

Each of the individuals producing retellings in our corpus underwent a battery of

neuropsychological tests, and were assigned a clinical dementia rating (CDR) [128], which

is a composite score derived from measures of cognitive function in six domains, including

memory. Importantly, it is assigned independently of the WLM test, which was used to

elicit the retellings analyzed here, allowing us to evaluate the utility of our WLM analyses

in an unbiased manner. MCI is defined as a CDR of 0.5 [154], and subjects in this study

have either a CDR of 0 (no impairment) or 0.5 (MCI).

Each subject produces two retellings: One immediately after hearing the original nar-

rative, and another after a delay of 20 to 30 minutes. From each retelling, we extract

Boolean features for each story element indicating whether the retelling contains that

story element, plus a count feature representing the total score assigned to the retelling.

In total, there are 52 features for the classification. We use the classification setup from

Prud’hommeaux and Roark [145, 146, 96] where a support vector machine (SVM) is

built using the LibSVM [19] extension to the Waikato environment for knowledge analysis

(WEKA) data mining Java API [52]. The SVM is trained with the radial basis function

kernel and default parameter settings.

From all the discriminative models analyzed in Section 5.6.6 we select only the models

with the highest F-score performance to run the MCI classification. The experiments are

run with the three types of input and the four ASR configurations under the supervised,

unsupervised, and hybrid scenarios. Classification results, evaluated as area under the

curve (AUC), are reported in Table 5.11. The values of AUC are in the range of 0 to 1,

with 1 representing the highest score for classification. We also include the classification

accuracy obtained with the word-alignment models. For reference (not shown in the table),

the SVM classifier performed at 0.83 when features values are manually populated.

The results show that the supervised approach does not tend to provide a better

MCI classification than the unsupervised approach. Overall, the best classification values

are given by the hybrid approach, which performs slightly better than the other two

approaches. The best AUC in the hybrid scenario (0.79, very close to the AUC=0.81

achieved with manual transcripts) is obtained with a CRF trained with WCNs from the
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Training Transcripts 1-best WCN manual
Scenario ASR base AM LM AM+LM base AM LM AM+LM N/A
Word-alignment 0.65 0.67 0.74 0.76 N/A 0.79
Sup. ME-CD 0.65 0.73 0.76 0.77 0.70 0.73 0.77 0.77 0.81

CRF-CD-BIO 0.69 0.76 0.77 0.76 0.73 0.76 0.77 0.78 0.82
Unsup. ME-CD 0.65 0.72 0.75 0.76 0.70 0.75 0.75 0.76 0.80

CRF-CD-BIO 0.74 0.75 0.78 0.78 0.71 0.74 0.77 0.76 0.81
Hybrid ME-CD 0.72 0.76 0.77 0.78 0.74 0.76 0.77 0.77 0.82

CRF-CD-BIO 0.72 0.76 0.78 0.78 0.76 0.77 0.78 0.79 0.81

Table 5.11: Classification performance (AUC) for the word-alignment model and the best per-
forming log-linear models of both types (ME and CRF) under 3 different scenarios (supervised,
unsupervised and hybrid) with 3 types of input and 4 types of ASR models.

fully adapted ASR system and with context dependent features.

In our experiments, using WCNs as input is more effective for the out-of-domain ASR

configuration. For the adapted ASR configurations, we do not observe any significant

gains by using WCNs versus 1-best inputs.

Comparing the ME model with the CRF model for detecting the story elements, we

see that the average F-scores for the ME models trained on CD features are nearly as good

as and sometimes slightly better than those produced using the CRF models. The CRF

extracted story elements, however, tend to yield classifiers that perform slightly better,

especially in the unsupervised approach with 1-best inputs.

5.7 Discussion

Motivated by the benefits of automating the administration and assessment of tasks

administered as part of a neurological evaluation, there is active research on exploring

the potential of spoken and natural language processing techniques to achieve this goal.

Hakkani-Tür and colleagues compute the overlap of the unigrams and bigrams between

the retellings (manual and automatic transcripts) and the reference narrative, and find the

correlation between the F-scores of the ngrams overlap and the manual scores assigned to

the retellings. As opposed to our work they do not attempt to detect each of the individual

key elements of the narrative, but just compute the final score assigned to the retelling.

Also, their approach does not capture the lexical variations that occur when subjects retell
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the narrative with their own words.

This chapter further investigated the task defined in the work published by Prud’hommeaux

and Roark [146, 145]. We explored the same task, but from a different perspective. Instead

of using word-alignment models similar to the ones used in machine translation systems,

we framed the task as a tagging problem based on the techniques commonly used in spo-

ken language processing systems such as name entity recognition or semantic tagging.

In contrast to word-alignment models, generative and unsupervised, our tagging models

are discriminative and supervised, and although there is previous work proposing speech

translation decoding with word confusion networks [13, 14], our tagging models provide a

more appropriate framework to take into account a set of ASR output candidates. Specif-

ically, we explored the use of word confusion networks with maximum entropy classifiers

and conditional random fields. One thing to note is that the use of conditional random

fields with word confusion networks has not been applied for semantic parsing until very

recently [182], a little bit later than our publication of the work from this chapter. They

found that training the CRFs both with manual transcripts and the WCNs improves the

performance of the model. In our experiments we found WCNs to be just useful in noisy

scenarios, so as future work we should try incorporating the manual transcripts when

training the discriminative models with WCNs.

With respect to the features used to train the conditional log-linear models, the pre-

sented results refer to models trained with binary feature functions. An alternative is to

use real-valued features by including the posterior probability information of the recog-

nized word candidates provided by the ASR system. We trained the models with ASR

posterior probabilities, but we did not get consistent gains. Tür and colleagues included

the posterior probability information only during the decoding [182].

When we used the outputs of the word-alignment models to train the discriminative

models in an unsupervised way, we used the simple approach of just considering the best

scoring output z1,N . However, we could instead consider a distribution of tag sequences

(multiple-label tagging), in a similar way as it is done for the input sequence when this

input is automatically generated (multiple-instance tagging). There is previous work that

looks into this problem, where the noisy labels could not just be generated automatically,
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but alternatively, they could come from the annotation of multiple labelers [64, 31]. Dredze

and colleagues [31] present a modified CRF approach to take into account multiple label

sequences in the training. The set of labels assigned to each input position also contains

prior probabilities to take into account how likely the labels are. They analyze the impact

that the quantity of the training data and the noise level on the labels has on the usefulness

of the approach. Their results show that keeping multiple labels is effective when we have

limited training data or when the labels are very noisy. The training data we use for

our experiments is limited and, depending on the ASR configuration, the tags that the

word-alignment outputs can be noisy too, so the multiple-labeling approach could be an

interesting future line to explore.

5.8 Summary

This chapter examines the task of automatically scoring narrative retellings in terms of

their fidelity to the original narrative content, using discriminatively trained log-linear

tagging models for detecting the recalled story elements. Fully automated scoring sys-

tems must account for both lexical variations and acoustic confusions from the ASR

errors. Lexical variation—due to paraphrasing on the part of the individuals retelling

the narrative—can be modeled effectively using word-alignment models such as those em-

ployed in machine translation systems [96, 145]. However, when the retelling transcripts

are automatically generated by an ASR system, the word-alignment models may be not

capable of consistently learning the variation patterns. In this chapter we presented an

alternative approach to the word-alignment models, where both lexical variation and ASR

confusions are modeled using log-linear models by using features extracted from ASR

word confusion networks. In addition to allowing very flexible feature definitions, they are

discriminative, so they provide more accurate element F-score than unsupervised word-

alignment models. We evaluated our systems with ASR outputs from ASR systems with

varying levels of adaptation to the task data. We found the following trends. First, using

word confusion networks improved the detection accuracy of the story elements in high
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error rate scenarios, that is, with the unadapted speech recognizer. Second, the perfor-

mance with the fully adapted speech recognizer was close to the performance with manual

transcripts. Third, CRFs were significantly better when only context independent fea-

tures are extracted from the input sequence. When adding context dependent features

the performance with maximum entropy classifiers and CRFs is similar. Four, we did not

find additional gains from using a more complex tagset where we used different tags for

words in the beginning and inside the story element.

The feature definition flexibility of the log-linear models allowed us to incorporate the

unsupervised word-alignment labels into these models, resulting either in fully unsuper-

vised approaches that performed competitively with the supervised models or in hybrid

(supervised) approaches that provided the best performing systems in this study.

Finally, the automatically detected story elements were employed for the classification

of patients according to having mild cognitive impairment or not. The story elements

detected with the discriminative log-linear models yielded classification accuracies of 0.79

in terms of AUC (with 1 being the most accurate), 4% worse than what we obtain with

manually detected story elements (AUC=0.83).



Chapter 6

Summary and future work

6.1 Summary

WFST-based speech recognition systems provide optimal representation of the decoding

graph T and efficiency for the search. The WFST-based decoding graph is the result of

composing the speech recognizer components (acoustic models, context dependent decision

trees, pronunciation lexicon and language model) that are trained and optimized indepen-

dently. However, a more accurate approach might be to consider the correlations between

components when estimating the parameters and performing the estimation according to

the target objective function. We explored the joint estimation of the parameters from

the speech recognizer components by discriminatively optimizing the word error rate in

Chapter 3 and Chapter 4. In particular, we applied discriminative models that belong to

the global linear models, commonly used for discriminative language models [156], and

trained them with the structured perceptron algorithm.

In Chapter 3 the joint discriminative models were used to estimate the parameters from

the acoustic and language components as well as parameters from the duration model to

improve the performance of the GALE Arabic transcription task, a NIST benchmark.

The presented joint discriminative acoustic and language models can be factored into

two WFSTs which can be applied to the input (E) and the output side (D) of the general

model (T ) for the speech recognition E◦T ◦D, and thus can be used in first pass recognition

as well as for re-scoring. Empirical results demonstrated that the presented joint model

improved the performance by 1.4%-1.6% absolute on a GALE Arabic transcription task.

The goal of the work from this chapter was to learn the weights of the WFST-based speech

105
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recognizer and as such we just estimated the acoustic state transitions from the acoustic

models. The observation probabilities were not modified.

The experimental analysis of the joint model suggests the following key points. First,

acoustic state and duration n-grams are more effective than lexical n-grams for Arabic

transcription task. Second, duration features, usually ignored in large vocabulary speech

recognizers show robust gains across genres (Broadcast News vs. Broadcast Conversa-

tions). Third, from the experimental results it is expected that further gains may be

obtained with additional training data.

In the next chapter (Chapter 4) the joint discriminative models presented in Chap-

ter 3 were applied to learn a pronunciation variation model that captures phonological

differences between African American Vernacular English (AAVE) and canonical pronun-

ciations of American English (pronunciations usually included in the lexicon of standard

speech recognizers). The discriminative pronunciation model was applied for the adap-

tation of an out-of-dialect speech recognizer. We ran the experiments in parallel for two

dialectal sets: AAVE and standard American English (SAE) dialects. The discrimina-

tive pronunciation variation models were more effective to improve the performance on

AAVE data than on SAE data, as expected. The gains observed for AAVE dialect were,

in general, approximately twice than those observed for SAE dialect, since the canonical

pronunciations used to train the out-of-dialect speech recognizer are well-matched to the

SAE.

Leveraging the flexibility of our discriminative models, we also explored modeling pro-

nunciation at acoustic state level, and jointly estimating parameters of pronunciation and

language models. Discriminative models with acoustic state features performed slightly

better than the models with phonetic features. Therefore, if the goal of the task is sim-

ply adapting the recognizer to the target dialect and not extracting any pronunciation

characteristics or cues, the discriminative acoustic state models are a better option. In

addition to performing slightly better than the discriminative phonetic features they are

more straightforward and simple (there is no need to generate canonical and surface phone

sequences). A discriminative model that jointly estimates the parameters of the language

model and the pronunciation model improved the recognition performance on the AAVE
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data by about 2.1% WER of which about 0.5% can be attributed to pronunciation models.

On the other hand, improvements on the SAE data were lower and mainly attributable

to the discriminative language model.

Combining acoustic state and phonetic features did not give additional gains over just

using acoustic state features. The feature space of the acoustic state features was much

larger than the space of the phonetic features, and they were also frequently activated in

the model training, so when using both feature spaces together the acoustic state features

may conceal the contribution of the phonetic features.

Additionally, we studied the impact of duration features since it is a relevant cue in

pronunciation. Including duration features into the discriminative pronunciation mod-

els did not provide significant gains. Discriminative duration models and discriminative

pronunciation models performed similarly, so duration features may also be capturing

pronunciation characteristics of AAVE dialect, but the feature space of discriminative

duration models was much larger than the feature space of the pronunciation models.

We also studied how varying acoustic models of the out-of-dialect speech recognizer

can impact the behavior of our discriminative models. We employed four acoustic model

configurations for the out-of-dialect ASR system: (1) English Broadcast News generative

speaker adapted models, (2) English Broadcast News BMMI discriminative models, (3)

English Broadcast News BMMI models adapted with MLLR using SAE training data,

and (4) English Broadcast News BMMI models adapted with MLLR using AAVE train-

ing data. First, using generative or discriminative acoustic models in the out-of-dialect

speech recognizer did not impact the behavior of our discriminative models. The esti-

mated discriminative models performed similarly for both acoustic models. Second, when

just adapting the channel mismatch between the out-of-dialect speech recognizer and the

StoryCorps data, by adapting the out-of-dialect BMMI models with MLLR adaptation

using SAE data, the overall WER improved, and the performance of our discriminative

models with the adapted speech recognizer was comparable to the performance with the

unadapted recognizer. Third, when the acoustic models were adapted with MLLR using

AAVE data, our discriminative pronunciation models could still provide further gain.

Finally, in Chapter 5 we examined how jointly modeling acoustic and lexical variations
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can improve the performance of a downstream application, a narrative retelling assessment

task. In particular, we presented discriminative log-linear models that provide a suitable

framework to capture acoustic confusions from the speech recognizer as well as lexical

variations and paraphrasing present in the retellings. We borrowed techniques common

from spoken language understanding and used them with ASR outputs in the form of

word confusion networks. Using word confusion networks as opposed to just ASR 1-best

candidates was beneficial in noisy scenarios, but in our experiments their effectiveness

vanished when the speech recognizer was adapted to the task data. We demonstrated

gains of 6.3% over a generative baseline in the F-score of detecting story elements on a

narrative retellings-based clinical task, the Wechsler Logical Memory task.

In previous work Prud’hommeaux and Roark [146, 145] used word-alignment models

for the same task, that is, to automatically detect the recalled story elements in the

narrative retellings of the Wechsler Logical Memory test. Word-alignment models have

the benefit of being unsupervised, and therefore, not requiring manual tagging of the

retellings. We ran some experiments in joint work with Prud’hommeaux and Roark to

explore two ways of combining word-alignment models with our discriminative log-linear

models. First, we extended the feature space of our log-linear models by generating new

feature templates containing the word-alignment output (what we called hybrid models).

The experimental results showed that these models were robust and could provide accurate

scoring. Second, the word-alignment output was used to train the discriminative log-

linear models. This allowed us not to need manual tags and achieve an unsupervised

discriminative approach. The performance was worse than in the supervised case, but the

results were still comparable.

As previously done by Prud’hommeaux and Roark [146, 145] we employed the auto-

matically detected story elements for the classification of subjects according to having

mild cognitive impairment or not. The story elements detected with the discriminative

log-linear models yielded classification accuracies of 0.79 in terms of AUC (with 1.0 being

the most accurate), about 4% worse than what it was obtained with manually detected

story elements (AUC=0.83).
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6.2 Future directions

In the first part of the work we learned joint discriminative acoustic, language and dura-

tion models. These models significantly improved the performance of the baseline large

vocabulary Arabic speech recognizer. However, the acoustic models from our speech rec-

ognizer were not as refined as the acoustic models used in current speech recognizers. The

question is then whether our acoustic state and duration features are still effective with

more accurate acoustic models. This is something to investigate in further experiments.

The benefit of these features with state of the art acoustic models may be dependent on

the domain. If our discriminative models are applied for English Broadcast News, they

may show limited gains as reported in a recent publication [4]. However, it may not be the

case for the GALE Arabic transcription task with Arabic Broadcast News and Broadcast

Conversation data. This data is commonly unvowelized and with speech from different

dialects. Discriminative acoustic models therefore need to capture more variability than,

for example, in English Broadcast News. In the large vocabulary Arabic speech recogni-

tion task from our experiments, Soltau and colleagues [168] show that using discriminative

acoustic models provides similar benefits as vowelizing the data, but there is the dialec-

tal variability that needs to be captured. Discriminative acoustic models (discriminative

GMMs) may not be capturing that variability completely, and our discriminative models

may capture this variability more effectively than the discriminative GMMs.

Instead of optimizing the acoustic models with BMMI discriminative training indepen-

dently from the optimization of the other components of the speech recognizer, we could

extend our joint discriminative models to also estimate the parameters from the GMMs

by applying the online algorithm for large margin training proposed by Cheng and col-

leagues [22, 23]. By using the reparameterization for GMMs from Sha and Saul work [163],

the mixture weight, mean and covariance of the Gaussian distribution can be represented

in a single matrix Φ, and therefore, during the online training only one update must be

done. This update can be easily combined with the update of the current parameters

(acoustic state and word transition weights) from our joint discriminative model.

With respect to the discriminative pronunciation modeling work from Chapter 4, there
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are several lines to work on further. Our pronunciation variation model contains unigram

and bigram phone transformation features, but we could instead use triphone transfor-

mation features where the context is one phone transformation to the left and one phone

transformation to the right, similar to what it is done when modeling context dependent

acoustic models. Also, instead of applying the phonological rules at word level, we could

also include cross-word rules and apply them at utterance level. Using data-driven phone

transformations instead of or in addition to knowledge-based phonological rules is another

alternative. When using data-driven phone transformations, incorporating the parameters

from the language model into the discriminative model may be particularly useful. The

feature set with phonetic transformations extracted from data may be large, and incorpo-

rating features from the language model may allow us to include only the transformations

that correct errors not captured by the features from the language model.

We applied our discriminative models either with phonetic features or acoustic state

features to capture pronunciation characteristics of speakers of a dialect, in particular, the

AAVE dialect, but this approach could potentially be applied to capture and learn pronun-

ciation characteristics of a set of speakers sharing some specific pronunciation patterns.

An interesting line of research would be to apply the presented discriminative models to

extract pronunciation patterns from children’s speech, from speech of elderly people, or

speech from individuals with motor speech disorders such as dysarthria.

Thus far, we have applied our discriminative models with baseline speech recognizers

with GMM-based acoustic models. Currently, neural network-based acoustic models are

being adopted. Then, the next step would be to analyze the performance of our discrim-

inative models with neural network-based speech recognizers. Our discriminative models

should still be useful, since we do not estimate parameters from the emission model of the

acoustic models.

Regarding the work done on automating the assessment of the narrative retelling tasks,

we could use recurrent neural networks instead of log-linear models. Lately, researchers on

spoken language understanding field are exploring the gains that using neural networks-

based models can bring over using conditional random fields [113, 198, 30]. Recurrent

neural networks-based models have the potential to capture long-span dependencies and
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consider more complex features.

Additionally, we could extend the presented scoring models to apply them on other

neuropsychological tests and other fields such as education. ETS1, for example, has done

extensive work on automating the evaluation of their written and spoken tests for second

language learners. In general, their work has focused on deriving a single final score

that represents the performance of the student on the given test. Specifically, in the

automated analysis of spoken tests, they apply techniques originally used to measure

similarity between text documents to compute the similarity between the spoken responses

and a set of pre-scored responses or prompts related to the test. In a recent work they

automatically evaluate if students include some relevant concepts that should be retold in

their answers [196]. Therefore, further research we could do is to apply our scoring models

to automate these sort of tests.

1www.apple.com/ios/siri/
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